Scala Data Analysis
Cookbook

Navigate the world of data analysis, visualization, and machine
learning with over 100 hands-on Scala recipes

community experience distiiled

Arun Manivannan []Open source

PUBLISHING

.alitebooks.col

http://www.allitebooks.org

Scala Data Analysis
Cookbook

Navigate the world of data analysis, visualization, and
machine learning with over 100 hands-on Scala recipes

Arun Manivannan

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Scala Data Analysis Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-674-9

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Arun Manivannan

Reviewers
Amir Hajian
Shams Mahmood Imam

Gerald Loeffler

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Larissa Pinto

Content Development Editor
Rashmi Suvarna

Technical Editor
Tanmayee Patil

Copy Editors
Ameesha Green

Vikrant Phadke

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Arun Manivannan has been an engineer in various multinational companies, tier-1
financial institutions, and start-ups, primarily focusing on developing distributed applications
that manage and mine data. His languages of choice are Scala and Java, but he also meddles
around with various others for kicks. He blogs at http://rerun.me.

Arun holds a master's degree in software engineering from the National University of Singapore.

He also holds degrees in commerce, computer applications, and HR management. His interests
and education could probably be a good dataset for clustering.

I am deeply indebted to my dad, Manivannan, who taught me the value of
persistence, hard work and determination in life, and my mom, Arockiamary,
without whose prayers and boundless love I'd be nothing. | could never try to
pay them back. No words can do justice to thank my loving wife, Daisy. Her
humongous faith in me and her support and patience make me believe in
lifelong miracles. She simply made me the man | am today.

| can't finish without thanking my 6-year old son, Jason, for hiding his
disappointment in me as | sat in front of the keyboard all the time. In your
smiles and hugs, | derive the purpose of my life.

| would like to specially thank Abhilash, Rajesh, and Mohan, who proved that
hard times reveal true friends.

It would be a crime not to thank my VCRC friends for being a constant
source of inspiration. | am proud to be a part of the bunch.

Also, | sincerely thank the truly awesome reviewers and editors at Packt
Publishing. Without their guidance and feedback, this book would have
never gotten its current shape. | sincerely apologize for all the typos and
errors that could have crept in.

[vww allitebooks.cond

http://rerun.me
http://www.allitebooks.org

About the Reviewers

Amir Hajian is a data scientist at the Thomson Reuters Data Innovation Lab. He has a PhD
in astrophysics, and prior to joining Thomson Reuters, he was a senior research associate

at the Canadian Institute for Theoretical Astrophysics in Toronto and a research physicist

at Princeton University. His main focus in recent years has been bringing data science into
astrophysics by developing and applying new algorithms for astrophysical data analysis using
statistics, machine learning, visualization, and big data technology. Amir's research has been
frequently highlighted in the media. He has led multinational research team efforts into
successful publications. He has published in more than 70 peer-reviewed articles with more

than 4,000 citations, giving him an h-index of 34.

I would like to thank the Canadian Institute for Theoretical Astrophysics for
providing the excellent computational facilities that | enjoyed during the
review of this book.

Shams Mahmood Imam completed his PhD from the department of computer science at
Rice University, working under Prof. Vivek Sarkar in the Habanero multicore software research
project. His research interests mostly include parallel programming models and runtime
systems, with the aim of making the writing of task-parallel programs on multicore machines
easier for programmers. Shams is currently completing his thesis titled Cooperative Execution of
Parallel Tasks with Synchronization Constraints. His work involves building a generic framework
that efficiently supports all synchronization patterns (and not only those available in actors or the
fork-join model) in task-parallel programs. It includes extensions such as Eureka programming
for speculative computations in task-parallel models and selectors for coordination protocols

in the actor model. Shams implemented a framework as part of the cooperative runtime

for the Habanero-Java parallel programming library. His work has been published at leading
conferences, such as OOPSLA, ECOOP, Euro-Par, PPPJ, and so on. Previously, he has been
involved in projects such as Habanero-Scala, CnC-Scala, CnC-Matlab, and CnC-Python.

[vww allitebooks.cond

http://www.allitebooks.org

Gerald Loeffler is an MBA. He was trained as a biochemist and has worked in academia

and the pharmaceutical industry, conducting research in parallel and distributed biophysical
computer simulations and data science in bioinformatics. Then he switched to IT consulting
and widened his interests to include general software development and architecture, focusing
on JVM-centric enterprise applications, systems, and their integration ever since. Inspired by the
practice of commercial software development projects in this context, Gerald has developed

a keen interest in team collaboration, the software craftsmanship movement, sound software
engineering, type safety, distributed software and system architectures, and the innovations
introduced by technologies such as Java EE, Scala, Akka, and Spark. He is employed by MuleSoft
as a principal solutions architect in their professional services team, working with EMEA clients
on their integration needs and the challenges that spring from them.

Gerald lives with his wife and two cats in Vienna, Austria, where he enjoys music, theatre,
and city life.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» Ondemand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface i
Chapter 1: Getting Started with Breeze 1
Introduction 1
Getting Breeze - the linear algebra library 2
Working with vectors 5
Working with matrices 13
Vectors and matrices with randomly distributed values 25
Reading and writing CSV files 28
Chapter 2: Getting Started with Apache Spark DataFrames 33
Introduction 33
Getting Apache Spark 34
Creating a DataFrame from CSV 35
Manipulating DataFrames 38
Creating a DataFrame from Scala case classes 49
Chapter 3: Loading and Preparing Data - DataFrame 53
Introduction 53
Loading more than 22 features into classes 54
Loading JSON into DataFrames 63
Storing data as Parquet files 70
Using the Avro data model in Parquet 78
Loading from RDBMS 86
Preparing data in Dataframes 90
Chapter 4: Data Visualization 99
Introduction 929
Visualizing using Zeppelin 100
Creating scatter plots with Bokeh-Scala 112
Creating a time series MultiPlot with Bokeh-Scala 122
o

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 5: Learning from Data 127
Introduction 127
Supervised and unsupervised learning 127
Gradient descent 128
Predicting continuous values using linear regression 129
Binary classification using LogisticRegression and SVM 136
Binary classification using LogisticRegression with Pipeline API 146
Clustering using K-means 152
Feature reduction using principal component analysis 159

Chapter 6: Scaling Up 169
Introduction 169
Building the Uber JAR 170
Submitting jobs to the Spark cluster (local) 177
Running the Spark Standalone cluster on EC2 183
Running the Spark Job on Mesos (local) 193
Running the Spark Job on YARN (local) 198

Chapter 7: Going Further 207
Introduction 207
Using Spark Streaming to subscribe to a Twitter stream 208
Using Spark as an ETL tool 213
Using StreamingLogisticRegression to classify a Twitter stream
using Kafka as a training stream 218
Using GraphX to analyze Twitter data 222

Index 229

Preface

JVM has become a clear winner in the race between different methods of scalable data
analysis. The power of JVM, strong typing, simplicity of code, composability, and availability of
highly abstracted distributed and machine learning frameworks make Scala a clear contender
for the top position in large-scale data analysis. Thanks to its dynamic-looking, yet static type
system, scientists and programmers coming from Python backgrounds feel at ease with Scala.

This book aims to provide easy-to-use recipes in Apache Spark, a massively scalable
distributed computation framework, and Breeze, a linear algebra library on which Spark's
machine learning toolkit is built. The book will also help you explore data using interactive
visualizations in Apache Zeppelin.

Other than the handful of frameworks and libraries that we will see in this book, there's a
host of other popular data analysis libraries and frameworks that are available for Scala.
They are by no means lesser beasts, and they could actually fit our use cases well.
Unfortunately, they aren't covered as part of this book.

Apache Flink

Apache Flink (http://flink.apache.org/), just like Spark, has first-class support
for Scala and provides features that are strikingly similar to Spark. Real-time streaming
(unlike Spark's mini-batch DStreams) is its distinctive feature. Flink also provides a machine
learning and a graph processing library and runs standalone as well as on the YARN cluster.

Scalding (https://github.com/twitter/scalding) needs no introduction—Scala's
idiomatic approach to writing Hadoop MR jobs.

http://flink.apache.org/
https://github.com/twitter/scalding

Preface

Saddle

Saddle (https://saddle.github.io/)is the "pandas" (http://pandas.pydata.org/)
of Scala, with support for vectors, matrices, and DataFrames.

Spire (https://github.com/non/spire) has a powerful set of advanced numerical
types that are not available in the default Scala library. It aims to be fast and precise in
its numerical computations.

Akka (http://akka.io) is an actor-based concurrency framework that has actors as its
foundation and unit of work. Actors are fault tolerant and distributed.

Accord (https://github.com/wix/accord) is simple, yet powerful, validation library
in Scala.

What this book covers

Chapter 1, Getting Started with Breeze, serves as an introduction to the Breeze linear algebra
library's API.

Chapter 2, Getting Started with Apache Spark DataFrames, introduces powerful, yet intuitive
and relational-table-like, data abstraction.

Chapter 3, Loading and Preparing Data - DataFrame, showcases the loading of datasets
into Spark DataFrames from a variety of sources, while also introducing the Parquet
serialization format.

Chapter 4, Data Visualization, introduces Apache Zeppelin for interactive data visualization
using Spark SQL and Spark UDF functions. We also briefly discuss Bokeh-Scala, which is a
Scala port of Bokeh (a highly customizable visualization library).

Chapter 5, Learning from Data, focuses on machine learning using Spark MLIib.

Chapter 6, Scaling Up, walks through various deployment alternatives for Spark applications:
standalone, YARN, and Mesos.

Chapter 7, Going Further, briefly introduces Spark Streaming and GraphX.

g

https://saddle.github.io/
http://pandas.pydata.org/
https://github.com/non/spire
http://akka.io
https://github.com/wix/accord

Preface

What you need for this book

The most important installation that your machine needs is the Java Development Kit (JDK 1.7),
which can be downloaded from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html.

To run most of the recipes in this book, all you need is SBT. The installation instructions for
your favorite operating system are available at http://www.scala-sbt.org/release/
tutorial/Setup.html.

There are a few other libraries that we will be using throughout the book, all of which will be
imported through SBT. If there is any installation required (for example, HDFS) to run a recipe,
the installation URL or the steps themselves will be mentioned in the respective recipe.

Who this book is for

Engineers and scientists who are familiar with Scala and would like to exploit the Spark
ecosystem for big data analysis will benefit most from this book.

In this book, you will find several headings that appear frequently (Getting ready, How to do it...,
How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.scala-sbt.org/release/tutorial/Setup.html
http://www.scala-sbt.org/release/tutorial/Setup.html

Preface

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

organization := "com.packt"
name := "chapterl-breeze"
scalaVersion := "2.10.4"

libraryDependencies ++= Seq(

"org.scalanlp" %% "breeze" % "0.11.2",

//Optional - the 'why' is explained in the How it works
section

°

"org.scalanlp" %% "breeze-natives" % "0.11.2"

)
Any command-line input or output is written as follows:

sudo apt-get install libatlas3-base libopenblas-base
sudo update-alternatives --config libblas.so.3

sudo update-alternatives --config liblapack.so.3

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Now, if we wish to share this
chart with someone or link it to an external website, we can do so by clicking on the gear icon
in this paragraph and then clicking on Link this paragraph."

i |

Preface

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub . com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Started
with Breeze

In this chapter, we will cover the following recipes:

» Getting Breeze—the linear algebra library

» Working with vectors

» Working with matrices

» Vectors and matrices with randomly distributed values
» Reading and writing CSV files

Introduction

This chapter gives you a quick overview of one of the most popular data analysis libraries in
Scala, how to get them, and their most frequently used functions and data structures.

We will be focusing on Breeze in this first chapter, which is one of the most popular and
powerful linear algebra libraries. Spark MLlIib, which we will be seeing in the subsequent
chapters, builds on top of Breeze and Spark, and provides a powerful framework for scalable
machine learning.

Getting Started with Breeze

Getting Breeze - the linear algebra library

In simple terms, Breeze (http://www.scalanlp.org) is a Scala library that extends the
Scala collection library to provide support for vectors and matrices in addition to providing a
whole bunch of functions that support their manipulation. We could safely compare Breeze
to NumPy (http://www.numpy.org/) in Python terms. Breeze forms the foundation of
MLlib—the Machine Learning library in Spark, which we will explore in later chapters.

In this first recipe, we will see how to pull the Breeze libraries into our project using Scala
Build Tool (SBT). We will also see a brief history of Breeze to better appreciate why it
could be considered as the "go to" linear algebra library in Scala.

For all our recipes, we will be using Scala 2.10.4 along with Java 1.7. |

wrote the examples using the Scala IDE, but please feel free to use your
g favorite IDE.

How to do it...

Let's add the Breeze dependencies into our build. sbt so that we can start playing with
them in the subsequent recipes. The Breeze dependencies are just two—the breeze (core)
and the breeze-native dependencies.

1. Under a brand new folder (which will be our project root), create a new file called
build. sbt.

2. Next, add the breeze libraries to the project dependencies:

organization := "com.packt"
name := "chapterl-breeze"
scalaVersion := "2.10.4"

libraryDependencies ++= Seq(

"org.scalanlp" %% "breeze" % "0.11.2",

//Optional - the 'why' is explained in the How it works
section

"org.scalanlp" %% "breeze-natives" % "0.11.2"

)

3. From that folder, issue a sbt compile command in order to fetch all your
dependencies.

http://www.scalanlp.org
http://www.numpy.org/

Chapter 1

You could import the project into your Eclipse using sbt eclipse

after installing the sbteclipse plugin https://github.com/
Lo typesafehub/sbteclipse/. For IntelliJ IDEA, you just need to import

the project by pointing to the root folder where your build. sbt file is.

There's more...

Let's look into the details of what the breeze and breeze-native library dependencies we
added bring to us.

The org.scalanlp.breeze dependency

Breeze has a long history in that it isn't written from scratch in Scala. Without the native
dependency, Breeze leverages the power of net1ib-java that has a Java-compiled version
of the FORTRAN Reference implementation of BLAS/LAPACK. The net1ib-java also
provides gentle wrappers over the Java compiled library. What this means is that we could still
work without the native dependency but the performance won't be great considering the best
performance that we could leverage out of this FORTRAN-translated library is the performance
of the FORTRAN reference implementation itself. However, for serious number crunching with
the best performance, we should add the breeze-natives dependency too.

=N

Breeze (not native)

ps

netlib-java (FORTRAN to Java conversions and
APl wrappers)

Reference implementation - FORTRAN

BLAS (Basic Linear Algebra System)
LAPACK - API

vww allitebooks.conl

https://github.com/typesafehub/sbteclipse/
https://github.com/typesafehub/sbteclipse/
http://www.allitebooks.org

Getting Started with Breeze

The org.scalanlp.breeze-natives package

With its native additive, Breeze looks for the machine-specific implementations of the
BLAS/LAPACK libraries. The good news is that there are open source and (vendor provided)
commercial implementations for most popular processors and GPUs. The most popular open
source implementations include ATLAS (http://math-atlas.sourceforge.net)and
OpenBLAS (http://www.openblas.net/).

Breeze + Breeze native
(Access to Hardware optimized libs)

Breeze + Breeze native

netlib-java (APl wrappers)

Machine optimized BLAS/LAPACK Impl.

BLAS (Basic Linear Algebra System)/

LAPACK - APl

If you are running a Mac, you are in luck—Native BLAS libraries come out of the box on Macs.
Installing NativeBLAS on Ubuntu / Debian involves just running the following commands:

sudo apt-get install libatlas3-base libopenblas-base
sudo update-alternatives --config libblas.so.3

sudo update-alternatives --config liblapack.so.3

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit

http://www.packtpub.com/support and register to have the

files e-mailed directly to you.

http://math-atlas.sourceforge.net
http://www.openblas.net/
http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

File Edit View Search Terminal Help 1 =) 2:26AM|

arun@arun-VirtualBox:~$ sudo update-alternatives --config libblas.so.3
There are 2 choices for the alternative libblas.so.3 (providing /usr/lib/libblas.so.3).

Priority Status

Jusr/lib/openblas-base/libblas.s0.3 auto mode
Jusr/lib/atlas-base/atlas/libblas.so.3 manual mode
Jusr/lib/openblas-base/libblas.so.3 40 manual mode

Press enter to keep the current choice[*], or type selection number: 1

update-alternatives: using /usr/lib/atlas-basefatlas/libblas.so.3 to provide fusr/lib/libblas.so.3 (libblas.so.3) in manual mode
arun@arun-VirtualBox:~$ sudo update-alternatives --config liblapack.so.3

There is only one alternative in link group liblapack.so.3 (providing /usr/lib/liblapack.so.3): /usr/lib/atlas-base/atlas/liblapack.so.3
Nothing to configure.

arun@arun-VirtualBox:~$ I

For Windows, please refer to the installation instructions on https://github.com/
xianyi/OpenBLAS/wiki/Installation-Guide.

Working with vectors

There are subtle yet powerful differences between Breeze vectors and Scala's own scala.
collection.Vector. As we'll see in this recipe, Breeze vectors have a lot of functions that
are linear algebra specific, and the more important thing to note here is that Breeze's vector is
a Scala wrapper over net1ib-java and most calls to the vector's API delegates the call to it.

Vectors are one of the core components in Breeze. They are containers of homogenous
data. In this recipe, we'll first see how to create vectors and then move on to various data
manipulation functions to modify those vectors.

In this recipe, we will look at various operations on vectors. This recipe has been organized
in the form of the following sub-recipes:
» Creating vectors:
o Creating a vector from values
o Creating a zero vector
o Creating a vector out of a function
o Creating a vector of linearly spaced values
o Creating a vector with values in a specific range
o Creating an entire vector with a single value
o Slicing a sub-vector from a bigger vector
o Creating a Breeze vector from a Scala vector

» Vector arithmetic:
a Scalar operations
o Calculating the dot product of a vector
o Creating a new vector by adding two vectors together

https://github.com/xianyi/OpenBLAS/wiki/Installation-Guide
https://github.com/xianyi/OpenBLAS/wiki/Installation-Guide

Getting Started with Breeze

» Appending vectors and converting a vector of one type to another:
o Concatenating two vectors
o Converting a vector of int to a vector of double

» Computing basic statistics:
o Mean and variance
o Standard deviation
o Find the largest value
o Finding the sum, square root and log of all the values in the vector

Getting ready

In order to run the code, you could either use the Scala or use the Worksheet feature available
in the Eclipse Scala plugin (or Scala IDE) or in Intelli) IDEA. The reason these options are
suggested is due to their quick turnaround time.

How to do it...

Let's look at each of the above sub-recipes in detail. For easier reference, the output of the
respective command is shown as well. All the classes that are being used in this recipe are
from the breeze.linalg package. So, an "import breeze.linalg. " statementat
the top of your file would be perfect.

Creating vectors

Let's look at the various ways we could construct vectors. Most of these construction
mechanisms are through the apply method of the vector. There are two different flavors

of vector—breeze.linalg.DenseVector and breeze.linalg.SparseVector—the
choice of the vector depends on the use case. The general rule of thumb is that if you have
data that is at least 20 percent zeroes, you are better off choosing Sparsevector but then
the 20 percent is a variant too.

Constructing a vector from values

» Creating a dense vector from values: Creating a DenseVector from values is just
a matter of passing the values to the apply method:

val dense=DenseVector(1l,2,3,4,5)

println (dense) //DenseVector(l, 2, 3, 4, 5)

Chapter 1

» Creating a sparse vector from values: Creating a SparseVector from values is also
through passing the values to the apply method:

val sparse=SparseVector(0.0, 1.0, 0.0, 2.0, 0.0)

println (sparse) //SparseVector((0,0.0), (1,1.0), (2,0.0),
(3,2.0), (4,0.0))

Notice how the SparseVector stores values against the index.

Obviously, there are simpler ways to create a vector instead of just throwing all the data into
its apply method.

Creating a zero vector

Calling the vector's zeros function would create a zero vector. While the numeric types would
return a 0, the object types would return null and the Boolean types would return false:

val denseZeros=DenseVector.zeros [Double] (5) //DenseVector (0.0,
0.0, 0.0, 0.0, 0.0)

val sparseZeros=SparseVector.zeros [Double] (5) //SparseVector ()

Not surprisingly, the Sparsevector does not allocate any memory for the contents of
the vector. However, the creation of the Sparsevector object itself is accounted for in
the memory.

Creating a vector out of a function

The tabulate function in vector is an interesting and useful function. It accepts a size
argument just like the zeros function but it also accepts a function that we could use to
populate the values for the vector. The function could be anything ranging from a random
number generator to a naive index based generator, which we have implemented here.
Notice how the return value of the function (Int) could be converted into a vector of
Double by using the type parameter:

val
denseTabulate=DenseVector.tabulate [Double] (5) (index=>index*index)
//DenseVector (0.0, 1.0, 4.0, 9.0, 16.0)

Creating a vector of linearly spaced values

The 1inspace function in breeze.linalg creates a new Vector [Double] of linearly
spaced values between two arbitrary numbers. Not surprisingly, it accepts three arguments—
the start, end, and the total number of values that we would like to generate. Please note
that the start and the end values are inclusive while being generated:

val spaceVector=breeze.linalg.linspace(2, 10, 5)
//DenseVector (2.0, 4.0, 6.0, 8.0, 10.0)

Getting Started with Breeze

Creating a vector with values in a specific range

The range function in a vector has two variants. The plain vanilla function accepts a start
and end value (start inclusive):

val allNosTilll0=DenseVector.range (0, 10)
//DenseVector (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

The other variant is an overloaded function that accepts a "step" value:

val evenNosTill20=DenseVector.range (0, 20, 2)
// DenseVector (0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

Just like the range function, which has all the arguments as integers, there is also a rangeD
function that takes the start, stop, and the step parameters as Double:

val rangeD=DenseVector.rangeD(0.5, 20, 2.5)
// DenseVector (0.5, 3.0, 5.5, 8.0, 10.5, 13.0, 15.5)

Creating an entire vector with a single value

Filling an entire vector with the same value is child's play. We just say HOW BIG is this vector
going to be and then WHAT value. That's it.

val densedJust2s=DenseVector.fill (10, 2)
// DenseVector (2, 2, 2, 2, 2, 2 , 2, 2, 2, 2)

Slicing a sub-vector from a bigger vector

Choosing a part of the vector from a previous vector is just a matter of calling the slice method
on the bigger vector. The parameters to be passed are the start index, end index, and an
optional "step" parameter. The step parameter adds the step value for every iteration until

it reaches the end index. Note that the end index is excluded in the sub-vector:

val allNosTilll0=DenseVector.range (0, 10)

//DenseVector (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

val fourThroughSevenIndexVector= allNosTilll0.slice (4, 7)
//DenseVector (4, 5, 6)

val twoThroughNineSkip2IndexVector= allNosTilll0.slice(2, 9, 2)
//DenseVector (2, 4, 6)

Creating a Breeze Vector from a Scala Vector

A Breeze vector object's apply method could even accept a Scala Vector as a parameter and
construct a vector out of it:

val
vectFromArray=DenseVector (collection.immutable.Vector(1,2,3,4))
// DenseVector (Vector (1, 2, 3, 4))

—e1]

Chapter 1

Vector arithmetic
Now let's look at the basic arithmetic that we could do on vectors with scalars and vectors.

Scalar operations

Operations with scalars work just as we would expect, propagating the value to each element
in the vector.

Adding a scalar to each element of the vector is done using the + function (surprise!):

val inPlaceValueAddition=evenNosTill20 +2
//DenseVector (2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Similarly the other basic arithmetic operations—subtraction, multiplication, and division
involves calling the respective functions named after the universally accepted symbols
(_1 *y and /):

//Scalar subtraction
val inPlaceValueSubtraction=evenNosTill20 -2
//DenseVector (-2, 0, 2, 4, 6, 8, 10, 12, 14, 16)

//Scalar multiplication
val inPlaceValueMultiplication=evenNosTill20 *2
//DenseVector (0, 4, 8, 12, 16, 20, 24, 28, 32, 36)

//Scalar division
val inPlaceValueDivision=evenNosTill20 /2
//DenseVector (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Calculating the dot product of two vectors

Each vector object has a function called dot, which accepts another vector of the same
length as a parameter.

Let's fill in just 2s to a new vector of length 5:

val justFive2s=DenseVector.fill (5, 2)
//DenseVector (2, 2, 2, 2, 2)

We'll create another vector from 0 to 5 with a step value of 1 (a fancy way of saying 0
through 4):

val zeroThrough4=DenseVector.range(0, 5, 1)
//DenseVector (0, 1, 2, 3, 4)

Getting Started with Breeze
Here's the dot function:

val dotVector=zeroThrough4.dot (justFive2s)
//Int = 20

It is to be expected of the function to complain if we pass in a vector of a different length
as a parameter to the dot product - Breeze throws an I1legalArgumentException if
we do that. The full exception message is:

Java.lang.IllegalArgumentException: Vectors must be the same
length!

Creating a new vector by adding two vectors together

The + function is overloaded to accept a vector other than the scalar we saw previously. The
operation does a corresponding element-by-element addition and creates a new vector:

val evenNosTill20=DenseVector.range (0, 20, 2)
//DensevVector (0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

val densedJust2s=DenseVector.fill (10, 2)
//DenseVector (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

val additionVector=evenNosTill20 + densedust2s
// DenseVector (2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

There's an interesting behavior encapsulated in the addition though. Assuming you try to add
two vectors of different lengths, if the first vector is smaller and the second vector larger, the
resulting vector would be the size of the first vector and the rest of the elements in the second
vector would be ignored!

val fiveLength=DenseVector(1l,2,3,4,5)
//DenseVector (1, 2, 3, 4, 5)

val tenLength=DenseVector.fill (10, 20)
//DenseVector (20, 20, 20, 20, 20, 20, 20, 20, 20, 20)

fiveLength+tenLength
//DenseVector (21, 22, 23, 24, 25)

On the other hand, if the first vector is larger and the second vector smaller, it would result
in an ArrayIndexOutOfBoundsException:

tenLength+fiveLength
// java.lang.ArrayIndexOutOfBoundsException: 5

Chapter 1

Appending vectors and converting a vector of one type to
another

Let's briefly see how to append two vectors and convert vectors of one numeric type
to another.

Concatenating two vectors

There are two variants of concatenation. There is a vertcat function that just vertically
concatenates an arbitrary number of vectors—the size of the vector just increases to the
sum of the sizes of all the vectors combined:

val justFive2s=DenseVector.fill (5, 2)
//DenseVector (2, 2, 2, 2, 2)

val zeroThrough4=DenseVector.range(0, 5, 1)
//DenseVector (0, 1, 2, 3, 4)

val concatVector=DenseVector.vertcat (zeroThrough4, justFive2s)
//DenseVector (0, 1, 2, 3, 4, 2, 2, 2, 2, 2)

No surprise here. There is also the horzcat method that places the second vector
horizontally next to the first vector, thus forming a matrix.

val concatVectorl=DenseVector.horzcat (zeroThrough4, justFive2s)

//breeze.linalg.DenseMatrix [Int]

0o 2
1 2
2 2
3 2
4 2

While dealing with vectors of different length, the vertcat function happily

- arranges the second vector at the bottom of the first vector. Not surprisingly,
% the horzcat function throws an exception:
s

java.lang.IllegalArgumentException, meaning all vectors must be
of the same size!

Getting Started with Breeze

Converting a vector of Int to a vector of Double

The conversion of one type of vector into another is not automatic in Breeze. However, there is
a simple way to achieve this:

val evenNosTill20Double=breeze.linalg.convert (evenNosTill20,
Double)

Computing basic statistics

Other than the creation and the arithmetic operations that we saw previously, there are
some interesting summary statistics operations that are available in the library. Let's look
at them now:

Needs import of breeze.linalg. and breeze.numerics. .The

operations in the Other operations section aim to simulate the NumPy's
’ UFunc or universal functions.

Now, let's briefly look at how to calculate some basic summary statistics for a vector.

Mean and variance

Calculating the mean and variance of a vector could be achieved by calling the
meanAndVariance universal function in the breeze. stats package. Note that
this needs a vector of Double:

meanAndVariance (evenNosTill20Double)
//MeanAndVariance (9.0,36.666666666666664,10)

As you may have guessed, converting an Int vector to a Double vector
% and calculating the mean and variance for that vector could be merged
s into a one-liner:
meanAndVariance (convert (evenNosTill20, Double))

Standard deviation
Calling the stddev on a Double vector could give the standard deviation:

stddev (evenNosTil1l120Double)
//Double = 6.0553007081949835

Find the largest value in a vector

The max universal function inside the breeze . 1inalg package would help us find the
maximum value in a vector:

val intMaxOfVectorVals=max (evenNosTill20)

//18

Sk

Chapter 1

Finding the sum, square root and log of all the values

in the vector

The same as with max, the sum universal function inside the breeze.linalg package
calculates the sum of the vector:

val intSumOfVectorVals=sum (evenNosTill20)

//90

The functions sqrt, log, and various other universal functions in the breeze .numerics
package calculate the square root and log values of all the individual elements inside
the vector:

The Sqrt function

val sqgrtOfVectorVals= sqgrt (evenNosTill20)
// DenseVector (0.0, 1. 4142135623730951, 2.0, 2.449489742783178,

2.8284271247461903, 3.16227766016 83795, 3.4641016151377544,
3.7416573867739413, 4.0, 4.242640687119285)

The Log function

val log2VectorVals=log(evenNosTil120)

// DenseVector (-Infinity , 0.6931471805599453, 1.3862943611198906,
1.791759469228055, 2.079441541679 8357, 2.302585092994046,
2.4849066497880004, 2.6390573296152584, 2.77258872 2239781,
2.8903717578961645)

Working with matrices

As we discussed in the Working with vectors recipe, you could use the Eclipse or IntelliJ IDEA
Scala worksheets for a faster turnaround time.

How to do it...

There are a variety of functions that we have in a matrix. In this recipe, we will look at some
details around:
» Creating matrices:
o Creating a matrix from values
o Creating a zero matrix
o Creating a matrix out of a function
o Creating an identity matrix
o Creating a matrix from random numbers

o Creating from a Scala collection

[}

[vww allitebooks.cond

http://www.allitebooks.org

Getting Started with Breeze

» Matrix arithmetic:
o Addition
o Multiplication (also element-wise)

» Appending and conversion:
o Concatenating a matrix vertically
o Concatenating a matrix horizontally
o Converting a matrix of Int to a matrix of Double

» Data manipulation operations:
o Getting column vectors
o Getting row vectors
o Getting values inside the matrix
o Getting the inverse and transpose of a matrix

» Computing basic statistics:
o Mean and variance
o Standard deviation
o Finding the largest value
o Finding the sum, square root and log of all the values in the matrix
o Calculating the eigenvectors and eigenvalues of a matrix

Creating matrices
Let's first see how to create a matrix.

Creating a matrix from values

The simplest way to create a matrix is to pass in the values in a row-wise fashion into the
apply function of the matrix object:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13), (21,22,23))

//Returns a DenseMatrix[Int]

1 2 3
11 12 13
21 22 23

Chapter 1

There's also a Sparse version of the matrix too—the Compressed Sparse Column Matrix
(CSCMatrix):

val sparseMatrix=CSCMatrix((1,0,0),(11,0,0),(0,0,23))

//Returns a SparseMatrix[Int]

(0,0) 1

(1,0) 11

(2,2) 23

Breeze's Sparse matrix is a Dictionary of Keys (DOK) representation with
s (row, column) mapped against the value.

Creating a zero matrix

Creating a zero matrix is just a matter of calling the matrix's zeros function. The first integer
parameter indicates the rows and the second parameter indicates the columns:

val denseZeros=DenseMatrix.zeros|[Double] (5,4)

//Returns a DenseMatrix[Double]

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

val compressedSparseMatrix=CSCMatrix.zeros[Double] (5,4)

//Returns a CSCMatrix[Double] = 5 x 4 CSCMatrix

% Notice how the SparseMatrix doesn't allocate any memory for the
i values in the zero value matrix.

]

Getting Started with Breeze

Creating a matrix out of a function

The tabulate function in a matrix is very similar to the vector's version. It accepts a row and
column size as a tuple (in the example (5, 4)). It also accepts a function that we could use to
populate the values for the matrix. In our example, we generated the values of the matrix by
just multiplying the row and column index:

val denseTabulate=DenseMatrix.tabulate[Double] (5,4) ((firstIdx, secondIldx) =
>firstIdx*secondIdx)

Returns a DenseMatrix[Double] =

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0
0.0 4.0 8.0 12.0

The type parameter is needed only if you would like to convert the type of the matrix from
an Int to a Double. So, the following call without the parameter would just return an
Int matrix:

val denseTabulate=DenseMatrix.tabulate(5,4) ((firstIdx, secondIdx)=>firstId
x*secondIdx)

o 1 2 3
0 2 4 6
0 3 6 9
0 4 8 12

Creating an identity matrix

The eye function of the matrix would generate an identity square matrix with the given
dimension (in the example's case, 3):

val identityMatrix=DenseMatrix.eye[Int] (3)

Returns a DenseMatrix[Int]

1 0 O
0 1 0
0 0 1

Chapter 1

Creating a matrix from random numbers

The rand function in the matrix would generate a matrix of a given dimension (4 rows * 4
columns in our case) with random values between 0 and 1. We'll have an in-depth look into
random number generated vectors and matrices in a subsequent recipe.

val randomMatrix=DenseMatrix.rand (4, 4)

Returns DenseMatrix[Double]

0.09762565779429777 0.01089176285376725 0.2660579009292807
0.19428193961985674

0.9662568115400412 0.718377391997945 0.8230367668470933

0.3957540854393169

0.9080090988364429 0.7697780247035393 0.49887760321635066
0.26722019105654415

3.326843165250004E-4 0.447925644082819 0.8195838733418965

0.7682752255172411

Creating from a Scala collection

We could create a matrix out of a Scala array too. The constructor of the matrix accepts three
arguments—the rows, the columns, and an array with values for the dimensions. Note that the
data from the array is picked up to construct the matrix in the column first order:

val vectFromArray=new DenseMatrix(2,2,Array(2,3,4,5))

Returns DenseMatrix[Int]

2 4

3 5

If there are more values than the number of values required by the dimensions of the matrix,
the rest of the values are ignored. Note how (6, 7) is ignored in the array:

val vectFromArray=new DenseMatrix(2,2,Array(2,3,4,5,6,7))
DenseMatrix[Int]

2 4

3 5

However, if fewer values are present in the array than what is required by the dimensions of
the matrix, then the constructor call would throw an ArrayIndexOutOfBoundsException:

val vectFromArrayIobe=new DenseMatrix(2,2,Array(2,3,4))

//throws java.lang.ArrayIndexOutOfBoundsException: 3

Getting Started with Breeze

Matrix arithmetic
Now let's look at the basic arithmetic that we could do using matrices.

Let's consider a simple 3*3 simpleMatrix and a corresponding identity matrix:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13),(21,22,23))
//DenseMatrix[Int]

1 2 3
11 12 13
21 22 23

val identityMatrix=DenseMatrix.eye[Int] (3)

//DenseMatrix[Int]

1 0 0
0 1 0
0 0 1
Addition

Adding two matrices will result in a matrix whose corresponding elements are summed up.

val additionMatrix=identityMatrix + simpleMatrix

// Returns DenseMatrix[Int]

2 2 3

11 13 13

21 22 24
Multiplication

Now, as you would expect, multiplying a matrix with its identity should give you the matrix
itself:

val simpleTimesIdentity=simpleMatrix * identityMatrix

//Returns DenseMatrix[Int]

1 2 3
11 12 13
21 22 23

Chapter 1

Breeze also has an alternative element-by-element operation that has the format of prefixing
the operator with a colon, for example, : +,: -, : *, and so on. Check out what happens when
we do an element-wise multiplication of the identity matrix and the simple matrix:

val elementWiseMulti=identityMatrix :* simpleMatrix

//DenseMatrix[Int]

1 0 0
0 12 0
0 o0 23

Appending and conversion

Let's briefly see how to append two matrices and convert matrices of one numeric type
to another.

Concatenating matrices - vertically

Similar to vectors, matrix has a vertcat function, which vertically concatenates an arbitrary
number of matrices—the row size of the matrix just increases to the sum of the row sizes of
all matrices combined:

val vertConcatMatrix=DenseMatrix.vertcat (identityMatrix, simpleMatrix)

//DenseMatrix[Int]

1 0 0
0 1 0
0 0 1
1 2 3
11 12 13
21 22 23

Attempting to concatenate a matrix of different columns would, as expected, throw an
IllegalArgumentException:

java.lang.IllegalArgumentException: requirement failed: Not all
matrices have the same number of columns

Concatenating matrices - horizontally

Not surprisingly, the horzcat function concatenates the matrix horizontally—the column size
of the matrix increases to the sum of the column sizes of all the matrices:

val horzConcatMatrix=DenseMatrix.horzcat (identityMatrix, simpleMatrix)
// DenseMatrix[Int]

10 0 1 2 3

Getting Started with Breeze

0 1 0 11 12 13
0 0 1 21 22 23

Similar to the vertical concatenation, attempting to concatenate a matrix of a different row
size would throw an I1legalArgumentException

java.lang.IllegalArgumentException: requirement failed: Not all
matrices have the same number of rows

Converting a matrix of Int to a matrix of Double

The conversion of one type of matrix to another is not automatic in Breeze. However, there is
a simple way to achieve this:

import breeze.linalg.convert

val simpleMatrixAsDouble=convert (simpleMatrix, Double)

// DenseMatrix[Double] =

1.0 2.0 3.0

11.0 12.0 13.0

21.0 22.0 23.0

Data manipulation operations
Let's create a simple 2*2 matrix that will be used for the rest of this section:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))
//DenseMatrix[Double] =

4.0 7.0

3.0 -5.0

Getting column vectors out of the matrix

The first column vector could be retrieved by passing in the column parameter as 0 and using
: : in order to say that we are interested in all the rows.

val firstVector=simpleMatrix(::,0)
//DenseVector (4.0, 3.0)

Getting the second column vector and so on is achieved by passing the correct zero-indexed
column number:

val secondVector=simpleMatrix(::,1)
//DenseVector (7.0, -5.0)

Alternatively, you could explicitly pass in the columns to be extracted:

val firstVectorByCols=simpleMatrix (0 to 1,0)
//DenseVector (4.0, 3.0)

=]

Chapter 1

While explicitly stating the range (as in 0 to 1), we have to be careful not to exceed the matrix
size. For example, the following attempt to select 3 columns (0 through 2) on a 2 * 2 matrix
would throw an ArrayIndexOutOfBoundsException

val errorTryingToSelect3ColumnsOn2By2Matrix=simpleMatrix (0,0 to 2)
//java.lang.ArrayIndexOutOfBoundsException

Getting row vectors out of the matrix

If we would like to get the row vector, all we need to do is play with the row and column
parameters again. As expected, it would give a transpose of the column vector, which is
simply a row vector.

Like the column vector, we could either explicitly state our columns or pass in a wildcard (: :)
to cover the entire range of columns:

val firstRowStatingCols=simpleMatrix (0,0 to 1)
//Transpose (DenseVector (4.0, 7.0))

val firstRowAllCols=simpleMatrix (0, ::)
//Transpose (DenseVector (4.0, 7.0))

Getting the second row vector is achieved by passing the second row (1) and all the columns
(::)in that vector:

val secondRow=simpleMatrix (1, ::)
//Transpose (DenseVector (3.0, -5.0))

Getting values inside the matrix

Assuming we are just interested in the values within the matrix, pass in the exact row and the
column number of the matrix. In order to get the first row and first column of the matrix, just
pass in the row and the column number:

val firstRowFirstCol=simpleMatrix(0,0)
//Double = 4.0

Getting the inverse and transpose of a matrix

Getting the inverse and the transpose of a matrix is a little counter-intuitive in Breeze. Let's
consider the same matrix that we dealt with earlier:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))
On the one hand, transpose is a function on the matrix object itself, like so:

val transpose=simpleMatrix.t
4.0 3.0
7.0 -5.0

Getting Started with Breeze

inverse, on the other hand is a universal function under the breeze.linalg package:

val inverse=inv(simpleMatrix)

0.12195121951219512 0.17073170731707318
0.07317073170731708 -0.0975609756097561

Let's do a matrix product to its inverse and confirm whether it is an identity matrix:

simpleMatrix * inverse

1.0 0.0
-5.551115123125783E-17 1.0

As expected, the result is indeed an identity matrix with rounding errors when doing floating
point arithmetic.

Computing basic statistics

Now, just like vectors, let's briefly look at how to calculate some basic summary statistics
for a matrix.

M This needs import of breeze.linalg. , breeze.numerics._
Q and, breeze.stats. . The operations in the "Other operations"
section aims to simulate the NumPy's UFunc or universal functions.

Mean and variance

Calculating the mean and variance of a matrix could be achieved by calling the
meanAndVariance universal function in the breeze . stats package. Note that
this needs a matrix of Double:

meanAndVariance (simpleMatrixAsDouble)
// MeanAndVariance (12.0,75.75,9)

Alternatively, converting an Int matrix to a Double matrix and calculating the mean and
variance for that Matrix could be merged into a one-liner:

meanAndVariance (convert (simpleMatrix, Double))

Chapter 1

Standard deviation
Calling the stddev on a Double vector could give the standard deviation:

stddev (simpleMatrixAsDouble)
//Double = 8.703447592764606

Next up, let's look at some basic aggregation operations:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13), (21,22,23))

Finding the largest value in a matrix
The (apply method of the) max object (a universal function) inside the breeze.linalg
package will help us do that:

val intMaxOfMatrixVals=max (simpleMatrix)

//23

Finding the sum, square root and log of all the values in the matrix
The same as with max, the sum object inside the breeze.1inalg package calculates the
sum of all the matrix elements:

val intSumOfMatrixVals=sum (simpleMatrix)
//108

The functions sqrt, log, and various other objects (universal functions) in the breeze.
numerics package calculate the square root and log values of all the individual values
inside the matrix.

Sqrt

val sqgrtOfMatrixVals= sqrt (simpleMatrix)
//DenseMatrix[Double] =

1.0 1.4142135623730951 1.7320508075688772
3.3166247903554 3.4641016151377544 3.605551275463989
4.58257569495584 4.69041575982343 4.795831523312719

Log

val log2MatrixVals=log(simpleMatrix)

//DenseMatrix [Double]

0.0 0.6931471805599453 1.0986122886681098
2.3978952727983707 2.4849066497880004 2.5649493574615367
3.044522437723423 3.091042453358316 3.1354942159291497

Getting Started with Breeze

Calculating the eigenvectors and eigenvalues of a matrix
Calculating eigenvectors is straightforward in Breeze. Let's consider our simpleMatrix from
the previous section:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))

Calling the breeze.linalg.eig universal function on a matrix returns a breeze.linalg.
eig.DenseEig object that encapsulate eigenvectors and eigenvalues:

val denseEig=eig(simpleMatrix)
This line of code returns the following:
Eig(
DenseVector (5.922616289332565, -6.922616289332565),
DenseVector (0.0, 0.0)
,0.9642892971721949 -0.5395744865143975 0.26485118719604456

0.8419378679586305)

We could extract the eigenvectors and eigenvalues by calling the corresponding functions on
the returned Eig reference:

val eigenVectors=denseEig.eigenvectors

//DenseMatrix[Double] =

0.9642892971721949 -0.5395744865143975

0.26485118719604456 0.8419378679586305

The two eigenValues corresponding to the two eigenvectors could be captured using the
eigenvalues function on the Eig object:

val eigenValues=denseEig.eigenvalues

//DenseVector [Double] = DenseVector(5.922616289332565,

-6.922616289332565)

Let's validate the eigenvalues and the vectors:

1. Let's multiply the matrix with the first eigenvector:

val matrixToEigVector=simpleMatrix*denseEig.eigenvectors (::,0)
//DenseVector (5.7111154990610915, 1.568611955536362)

2. Then let's multiply the first eigenvalue with the first eigenvector. The resulting vector
will be the same with a marginal error when doing floating point arithmetic:

val vectorToEigValue=denseEig.eigenvectors(::,0) *
denseEig.eigenvalues (0)

//DenseVector (5.7111154990610915, 1.5686119555363618)

Chapter 1

The same as with vectors, the initialization of the Breeze matrices are achieved by way of the
apply method or one of the various methods in the matrix's Object class. Various other
operations are provided by way of polymorphic functions available in the breeze .numeric,
breeze.linalgand breeze.stats packages.

Vectors and matrices with randomly

distributed values

The breeze.stats.distributions package supplements the random number generator
that is built into Scala. Scala's default generator just provides the ability to get the random
values one by one using the "next" methods. Random number generators in Breeze provide
the ability to build vectors and matrices out of these generators. In this recipe, we'll briefly
see three of the most common distributions of random numbers.

In this recipe, we will cover at the following sub-recipes:

» Creating vectors with uniformly distributed random values

» Creating vectors with normally distributed random values

» Creating vectors with random values that have a Poisson distribution
» Creating a matrix with uniformly random values

» Creating a matrix with normally distributed random values

» Creating a matrix with random values that has a Poisson distribution

Before we delve into how to create the vectors and matrices out of random numbers, let's
create instances of the most common random number distribution. All these generators are
under the breeze.stats.distributions package:

//Uniform distribution with low being 0 and high being 10
val uniformDist=Uniform(0,10)

//Gaussian distribution with mean being 5 and Standard deviation
being 1
val gaussianDist=Gaussian(5,1)

//Poission distribution with mean being 5
val poissonDist=Poisson (5)

=]

Getting Started with Breeze

We could actually directly sample from these generators. Given any distribution we created
previously, we could sample either a single value or a sequence of values:

//Samples a single value
println (uniformDist.sample())
//eg. 9.151191360491392

//Returns a sample vector of size that is passed in as parameter
println (uniformDist.sample(2))
//eg. Vector (6.001980062275654, 6.210874664967401)

Creating vectors with uniformly distributed random values

With no generator parameter, the DenseVector . rand method accepts a parameter for
the length of the vector to be returned. The result is a vector (of length 10) with uniformly
distributed values between 0 and 1:

val uniformWithoutSize=DenseVector.rand(10)

println ("uniformWithoutSize \n"+ uniformWithoutSize)

//DenseVector (0.1235038023750481, 0.3120595941786264, 0.3575638744660876,
0.5640844223813524, 0.5336149399548831, 0.1338053814330793,
0.9099684427908603, 0.38690724148973166, 0.22561993631651522,
0.45120359622713657)

The DenseVector.rand method optionally accepts a distribution object and generates
random values using that input distribution. The following line generates a vector of 10
uniformly distributed random values that are within the range 0 and 10:

val uniformDist=Uniform(0,10)

val uniformVectInRange=DenseVector.rand (10, uniformDist)
println ("uniformVectInRange \n"+uniformVectInRange)

//DenseVector (1.5545833905907314, 6.172564377264846, 8.45578509265587,
7.683763574965107, 8.018688137742062, 4.5876187984930406,
3.274758584944064, 2.3873947264259954, 2.139988841403757,
8.314112884416943)

Creating vectors with normally distributed random values

In the place of the uniformDist generator, we could also pass the previously created
Gaussian generator, which is configured to yield a distribution that has a mean of 5 and
standard deviation of 1:

val gaussianVector=DenseVector.rand (10, gaussianDist)

println ("gaussianVector \n"+gaussianVector)

=]

Chapter 1

//DenseVector (4.235655596913547, 5.535011377545014, 6.201428236839494,
6.046289604188366, 4.319709374229152,

4.2379652913447154, 2.957868021601233, 3.96371080427211,
4.351274306757224, 5.445022658876723)

Creating vectors with random values that have a Poisson
distribution

Similarly, by passing the previously created Poisson random number generator, a vector of
values that has a mean of 5 could be generated:

val poissonVector=DenseVector.rand (10, poissonDist)

println ("poissonVector \n"+poissonVector)

//DenseVector(5, 5, 7, 11, 7, 6, 6, 6, 6, 6)

We saw how easy it is to create a vector of random values. Now, let's proceed to create a

matrix of random values. Similar to DenseVector. rand to generate vectors with random
values, we'll use the DenseMatrix.rand function to generate a matrix of random values.

Creating a matrix with uniformly random values

The DenseMatrix.rand defaults to the uniform distribution and generates a matrix of
random values given the row and the column parameter. However, if we would like to have
a distribution within a range, then as in vectors, we could use the optional parameter:.

//Uniform distribution, Creates a 3 * 3 Matrix with random values from 0
to 1
val uniformMat=DenseMatrix.rand (3, 3)

println ("uniformMat \n"+uniformMat)

0.4492155777289115 0.9098840386699856 0.8203022252988292
0.0888975848853315 0.009677790736892788 0.6058885905934237
0.6201415814136939 0.7017492438727635 0.08404147915159443

//Creates a 3 * 3 Matrix with uniformly distributed random values with
low being 0 and high being 10

val uniformMatrixInRange=DenseMatrix.rand (3,3, uniformDist)

println ("uniformMatrixInRange \n"+uniformMatrixInRange)

7.592014659345548 8.164652560340933 6.966445294464401
8.35949395084735 3.442654641743763 3.6761640240938442
9.42626645215854 0.23658921372298636 7.327120138868571

e

Getting Started with Breeze

Creating a matrix with normally distributed random values

Just as in vectors, in place of the uniformDist generator, we could also pass the previously
created Gaussian generator to the rand function to generate a matrix of random values that
has a mean of 5 and standard deviation of 1:

//Creates a 3 * 3 Matrix with normally distributed random values
with mean being 5 and Standard deviation being 1
val gaussianMatrix=DenseMatrix.rand (3, 3,gaussianDist)

println ("gaussianMatrix \n"+gaussianMatrix)

5.724540885605018 5.647051873430568 5.337906135107098
6.2228893721489875 4.799561665187845 5.12469779489833
5.136960834730864 5.176410360757703 5.262707072950913

Creating a matrix with random values that has a Poisson
distribution

Similarly, by passing the previously created Poisson random number generator, a matrix
of random values that has a mean of 5 could be generated:

//Creates a 3 * 3 Matrix with Poisson distribution with mean being 5
val poissonMatrix=DenseMatrix.rand (3, 3,poissonDist)

println ("poissonMatrix \n"+poissonMatrix)

4 11 3
6 6 5
6 4 2

Reading and writing CSV files

Reading and writing a CSV file in Breeze is really a breeze. We just have two functions
in breeze.linalg package to play with. They are very intuitively named csvread
and csvwrite.

In this recipe, you'll see how to:

1. Read a CSV file into a matrix

Save selected columns of a matrix into a new matrix
Write the newly created matrix into a CSV file
Extract a vector out of the matrix

Write the vector into a CSV

ok D

=]

Chapter 1

There are just two functions that we need to remember in order to read and write data from
and to CSV files. The signatures of the functions are pretty straightforward too:

csvread(file, separator, quote, escape, skipLines)
csvwrite (file, mat, separator, quote, escape, skipLines)

Let's look at the parameters by order of importance:

» file:java.io.File: Represents the file location.

» separator: Defaults to a comma so as to represent a CSV. Could be overridden
when needed.

» skipLines: This is the number of lines to be skipped while reading the file.
Generally, if there is a header, we pass a skipLines=1.

» mat: While writing, this is the matrix object that is being written.

» quote: This defaults to double quotes. It is a character that implies that the value
inside is one single value.

» escape: This defaults to a backspace. It is a character used to escape
special characters.

Let's see these in action. For the sake of clarity, | have skipped the quote and the escape
parameter while calling the csvread and csvwrite functions. For this recipe, we will do
three things:

» Read a CSV file as a matrix

» Extract a sub-matrix out of the read matrix

» Write the matrix

s

Getting Started with Breeze

Read the CSV as a matrix:

1.

Let's use the csvread function to read a CSV file into a 100*3 matrix. We'll also skip
the header while reading and print 5 rows as a sample:

=] WWWusage.csv g3

, "time", "WWWusage"
"1",1,88
"2r.2,84
"3",3,85
"4" 4,85
"5",5,84
"6",6,85
"7r,7,83
"g", 8,85
"9".9,88
"1e",10,89
"11",11,91
"12",12,99
"13",13,104
"14" . 14,112

val usageMatrix=csvread(file=new File ("WWWusage.csv"),
separator="',', skipLines=1)

//print first five rows

println ("Usage matrix \n"+ usageMatrix(0 to 5,::))

Output :

1.0 1.0 88.0
2.0 2.0 84.0
3.0 3.0 85.0
4.0 4.0 85.0
5.0 5.0 84.0
6.0 6.0 85.0

Extract a sub-matrix out of the read matrix:

For the sake of generating a submatrix let's skip the first column and save the second
and the third column into a new matrix. Let's call it firstColumnSkipped:

val firstColumnSkipped= usageMatrix(::, 1 to
usageMatrix.cols-1)

//Sample some data so as to ensure we are fine

println
5, ::))

Output :
1.0 88.
2.0 84.
3.0 85.
4.0 85.
5.0 84.
6.0 85.

("First Column skipped \n"+ firstColumnSkipped(0 to

o O o o o o

Write the matrix:

Chapter 1

As a final step, let's write the firstColumnSkipped matrix to a new CSV file named
firstColumnSkipped.csv:

//Write this modified matrix to a file

csvwrite(file=new File
mat=firstColumnSkipped,

("firstColumnSkipped.csv"),
separator="',")

B R 2 D 00 N Y U B W

RS TR 8

= &

=

-
26 e ®

= firstColumnSkipped.csy £3

.0,88.
.0,84.

Getting Started
with Apache Spark
DataFrames

In this chapter, we will cover the following recipes:

» Getting Apache Spark
» Creating a DataFrame from CSV
» Manipulating DataFrames

» Creating a DataFrame from Scala case classes

Introduction

Apache Spark is a cluster computing platform that claims to run about 10 times faster than
Hadoop. In general terms, we could consider it as a means to run our complex logic over
massive amounts of data at a blazingly fast speed. The other good thing about Spark is that
the programs that we write are much smaller than the typical MapReduce classes that we write
for Hadoop. So, not only do our programs run faster but it also takes less time to write them.

Spark has four major higher level tools built on top of the Spark Core: Spark Streaming, Spark
MLlib (machine learning), Spark SQL (an SQL interface for accessing the data), and GraphX
(for graph processing). The Spark Core is the heart of Spark. Spark provides higher level
abstractions in Scala, Java, and Python for data representation, serialization, scheduling,
metrics, and so on.

[vww allitebooks.cond

http://www.allitebooks.org

Getting Started with Apache Spark DataFrames

At the risk of stating the obvious, a DataFrame is one of the primary data structures
used in data analysis. They are just like an RDBMS table that organizes all your attributes
into columns and all your observations into rows. It's a great way to store and play with
heterogeneous data. In this chapter, we'll talk about DataFrames in Spark.

GraphX

(Graph processing)

Spark Libraries and Components

/

Spark SQL
(Relational query
support)

Spark Sreaming
(Streaming support)

spark-streaming spark-graphx

spark-sql

Apache Spark Core

Getting Apache Spark

In this recipe, we'll take a look at how to bring Spark into our project (using SBT) and how
Spark works internally.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapterl-spark-csv/build.sbt.

=

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt

Chapter 2

How to do it...

Let's now throw some Spark dependencies into our build. sbt file so that we can start
playing with them in subsequent recipes. For now, we'll just focus on three of them: Spark
Core, Spark SQL, and Spark MLIib. We'll take a look at a host of other Spark dependencies
as we proceed further in this book:

1. Under a brand new folder (which will be your project root), create a new file called
build.sbt.
Next, let's add the Spark libraries to the project dependencies.

3. Note that Spark 1.4.x requires Scala 2.10.x. This becomes the first section of our

build.sbt:

organization := "com.packt"
name := "chapterl-spark-csv"
scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(

) °

"org.apache.spark" "spark-core" % sparkVersion,

"org.apache.spark"

o° o° o°

% "spark-sgl" % sparkVersion,
"org.apache.spark" %% "spark-mllib" % sparkVersion

)

Creating a DataFrame from CSV

In this recipe, we'll look at how to create a new DataFrame from a delimiter-separated
values file.

_ The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/
o chapterl-spark-csv/src/main/scala/com/packt/
scaladata/spark/csv/DataFrameCSV.scala.

s

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala

Getting Started with Apache Spark DataFrames

How to do it...

This recipe involves four steps:

1.
2.

NEQ

Add the spark-csv support to our project.

Create a Spark Config object that gives information on the environment that we are
running Spark in.

Create a Spark context that serves as an entry point into Spark. Then, we proceed
to create an SQLContext from the Spark context.

Load the CSV using the SQL.Context.
CSV support isn't first-class in Spark, but it is available through an external library
from Databricks. So, let's go ahead and add that to our build. sbt.

After adding the spark-csv dependency, our complete build. sbt looks like this:

organization := "com.packt"
name := "chapterl-spark-csv"
scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(

L) °

"org.apache.spark" %% "spark-core" % sparkVersion,
"org.apache.spark" %% "spark-sqgl" % sparkVersion,
"com.databricks" %% "spark-csv" % "1.0.3"

)

SparkConf holds all of the information required to run this Spark "cluster." For this
recipe, we are running locally, and we intend to use only two cores in the machine—
local [2]. More details about this can be found in the There's more... section of
this recipe:

import org.apache.spark.SparkConf

val conf = new
SparkConf () .setAppName ("csvDataFrame") .setMaster ("local [2] ")

* When we say that the master of this run is "local," we mean that we
are running Spark on standalone mode. We'll see what "standalone"
’ mode means in the There's more... section.

Chapter 2

7. Initialize the Spark context with the Spark configuration. This is the core entry point
for doing anything with Spark:

import org.apache.spark.SparkContext
val sc = new SparkContext (conf)

The easiest way to query data in Spark is by using SQL queries:
import org.apache.spark.sqgl.SQLContext
val sglContext=new SQLContext (sc)
8. Now, let's load our pipe-separated file. The students is of type org.apache.
spark.sqgl.DataFrame:

import com.databricks.spark.csv.

val students=sglContext.csvFile(filePath="StudentData.csv",
useHeader=true, delimiter='|")

The csvFile function of sglContext accepts the full £ilePath of the file to be loaded.
If the CSV has a header, then the useHeader flag will read the first row as column names.
The delimiter flag defaults to a comma, but you can override the character as needed.

Instead of using the csvFile function, we could also use the 1oad function available in
SQLContext. The 1oad function accepts the format of the file (in our case, it is CSV) and
options as Map. We can specify the same parameters that we specified earlier using Map,
like this:

val options=Map ("header"->"true", "path"->"ModifiedStudent.csv")

val
newStudents=sglContext.load("com.databricks.spark.csv",options)

As we saw earlier, we now ran the Spark program in standalone mode. In standalone mode,
the Driver program (the brain) and the Worker nodes all get crammed into a single JVM.

In our example, we set master to local [2], which means that we intend to run Spark

in standalone mode and request it to use only two cores in the machine.

Spark can be run on three different modes:

» Standalone
» Standalone cluster, using its in-built cluster manager
» Using external cluster managers, such as Apache Mesos and YARN

Eis

Getting Started with Apache Spark DataFrames

In Chapter 6, Scaling Up, we have dedicated explanations and recipes for how to run Spark
on inbuilt cluster modes on Mesos and YARN. In a clustered environment, Spark runs a Driver
program along with a number of Worker nodes. As the name indicates, the Driver program
houses the brain of the program, which is our main program. The Worker nodes have the
data and perform various transformations on it.

Manipulating DataFrames

In the previous recipe, we saw how to create a DataFrame. The next natural step, after
creating DataFrames, is to play with the data inside them. Other than the numerous functions
that help us to do that, we also find other interesting functions that help us sample the data,
print the schema of the data, and so on. We'll take a look at them one by one in this recipe.

i The code and the sample file for this recipe could be found at
& https://github.com/arunma/ScalaDataAnalysisCookbook/
o blob/master/chapterl-spark-csv/src/main/scala/com/
packt/scaladata/spark/csv/DataFrameCSV.scala

How to do it...

Now, let's see how we can manipulate DataFrames using the following subrecipes:

» Printing the schema of the DataFrame

» Sampling data in the DataFrame

» Selecting specific columns in the DataFrame

» Filtering data by condition

» Sorting data in the frame

» Renaming columns

» Treating the DataFrame as a relational table to execute SQL queries
» Saving the DataFrame as a file

Printing the schema of the DataFrame

After creating the DataFrame from various sources, we would obviously want to quickly check
its schema. The printSchema function lets us do just that. It prints our column names and
the data types to the default output stream:

1. Let'sload a sample DataFrame from the StudentData. csv file:

//Now, lets load our pipe-separated file
//students is of type org.apache.spark.sqgl.DataFrame

NED

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala

Chapter 2

val
students=sglContext.csvFile(filePath="StudentData.csv",

useHeader=true, delimiter='|')
Let's print the schema of this DataFrame:

students.printSchema

Output

|-- id: string (nullable = true)
|-- studentName: string (nullable = true)
| -- phone: string (nullable = true)

|-- email: string (nullable = true)

Sampling the data in the DataFrame

The next logical thing that we would like to do is to check whether our data got loaded into the
DataFrame correctly. There are a few ways of sampling the data in the newly created DataFrame:

>

Using the show method. This is the simplest way. There are two variants of the show
method, as explained here:

o One with an integer parameter that specifies the number of rows to be
sampled.

o The second is without the integer parameter. In it, the number of rows
defaults to 20.

The distinct quality about the show method as compared to the other functions that
sample data is that it displays the rows along with the headers and prints the output
directly to the default output stream (console):

//Sample n records along with headers

students.show (3)

//Sample 20 records along with headers

students.show ()

//Output of show(3)

s

Getting Started with Apache Spark DataFrames

R DT Hmmmm e Hmm e +
| 1] Burke|1-300-746-8446|ullamcorper.velit...

| 2] Kamal|1-668-571-5046 |pede.Suspendisse@... |
| 3] Olga|1-956-311-1686 |Aenean.eget.metus... |
R DT Hmmmm e Hmm e +

» Using the head method. This method also accepts an integer parameter representing
the number of rows to be fetched. The head method returns an array of rows. To print
these rows, we can pass the print 1n method to the foreach function of the arrays:

//Sample the first 5 records
students.head(5) . foreach(println)

If you are not a great fan of head, you can use the take function, which is common
across all Scala sequences. The take method is just an alias of the head method
and delegates all its calls to head:

//Alias of head
students.take(5) .foreach(println)

//Output
[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]
[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim. edu]
[3,01ga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu]
[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.ukl]
[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]

Selecting DataFrame columns

As you have seen, all DataFrame columns have names. The select function helps us pick
and choose specific columns from a previously existing DataFrame and form a completely
new one out of it:

» Selecting a single column: Let's say that you would like to select only the email
column from a DataFrame. Since DataFrames are immutable, the selection returns
a new DataFrame:

val emailDataFrame:DataFrame=students.select("email")

=)

Chapter 2

Now, we have a new DataFrame called emailDataFrame, which has only the e-mail
as its contents. Let's sample and check whether that is true:

emailDataFrame.show(3)

//Output

e +
| email |
e +

|ullamcorper.velit...

| pede.Suspendissee@. ..

|Aenean.eget.metus...

Selecting more than one column: The select function actually accepts an arbitrary
number of column names, which means that you can easily select more than one
column from your source DataFrame:

val studentEmailDF=students.select("studentName", "email")

. Theonly requirement is that the string parameters that specify must
a be a valid column name. Otherwise, an org.apache.spark.sql.
s AnalysisException exception is thrown. The printSchema
function serves as a quick reference for the column names.

Let's sample and check whether we have indeed selected the studentName and
email columns in the new DataFrame:

studentEmailDF.show(3)

Output

Hmmm e Hm e +
| studentName | email |
Hmmm e Hm e +
| Burke|ullamcorper.velit...

| Kamal |pede.Suspendissee@...

| Olga|Aenean.eget.metus...

Hmmm e Hm e +

Getting Started with Apache Spark DataFrames

Filtering data by condition

Now that we have seen how to select columns from a DataFrame, let's see how to filter the
rows of a DataFrame based on conditions. For row-based filtering, we can treat the DataFrame
as a normal Scala collection and filter the data based on a condition. In all of these examples,
| have added the show method at the end for clarity:

1. Filtering based on a column value:
//Print the first 5 records that has student id more than 5
students.filter("id > 5") .show(7)

Output

oo mmmmmmm oo o mmmmmme o Hmmm e +
| id| studentName | phone | email |
oo mmmmmmm oo o mmmmmme o Hmmm e +
| 6| Laurel|1-691-379-9921|adipiscing@consec...

| 7| Sara|1-608-140-1995|Donec.nibh@enimEt. ..

| 8| Kaseem|1-881-586-2689|cursus.et.magna@e. ..

| 9| Lev|1-916-367-5608|Vivamus.nisi@ipsu... |
| 10| Maya|1-271-683-2698|accumsan.convalli...
|11 Emi|1-467-270-1337| est@nunc.com|
|12 | Caleb|1-683-212-0896|Suspendisse@Quisq... |
oo mmmmmmm oo o mmmmmme o Hmmm e +

Notice that even though the id field is inferenced as a String type, it does the
numerical comparison correctly. On the other hand, students.filter ("email >
'c'") would give back all the e-mail IDs that start with a character greater than 'c'.

2. Filtering based on an empty column value. The following filter selects all students
without names:

students.filter ("studentName =''") .show(7)

Output

e il e T E e LT +
| id| studentName | phone | email |
e il e T E e LT +
|21 |1-598-439-7549 | consectetuer.adip... |
|32 |1-184-895-9602 | accumsan. laoreete@. .. |

=

|1-245-752-0481 | Suspendisse.eleif...

|1-858-810-2204 | sociis.natoque@eu. ..

|1-443-410-7878 |Praesent.eu.nulla...

Chapter 2

Filtering based on more than one condition. This filter shows all records whose

student names are empty or student name field has a NULL string value:

students.filter ("studentName ='' OR studentName = 'NULL'").show(7)
Output

oo mmmmmme oo Hmmmmmmmmme o oo +
| id|studentName | phone | email |
oo mmmmmme oo Hmmmmmmmmme o oo +
|21 |1-598-439-7549 |consectetuer.adip...
|32 |1-184-895-9602 | accumsan. laoreet@. ..
|33 NULL|1-105-503-0141 |Donec@Inmipede.co.uk]|
|45 | |1-245-752-0481 | Suspendisse.eleif...
|83 |1-858-810-2204 | sociis.natoque@eu. ..
|94 | |1-443-410-7878 |Praesent.eu.nulla...
oo mmmmmme oo Hmmmmmmmmme o oo +

We are just limiting the output to seven records using the show (7) function.

Filtering based on SQL-like conditions.

This filter gets the entries of all students whose names start with the letter 'M'.

students.filter ("SUBSTR(studentName,0,1) ='M'") .show(7)
Output

oo mmmmmme oo Hmmmmmmmmme o oo +
| id|studentName | phone | email |
oo mmmmmme oo Hmmmmmmmmme o oo +
|10]| Maya|1-271-683-2698|accumsan.convalli...
|19 Malachi|1-608-637-2772|Proin.mi.Aliquam@. ..
|24 | Marsden|1-477-629-7528 |Donec.dignissim.m...
|37] Maggy|1-910-887-6777 | facilisi.Sed.nequ...
|61 Maxine|1-422-863-3041|aliquet.molestie....
|77 Maggy|1-613-147-4380| pellentesque@mi.net|
| 97| Maxwell |1-607-205-1273 |metus.In@musAenea...
oo mmmmmme oo Hmmmmmmmmme o oo +

Getting Started with Apache Spark DataFrames

Sorting data in the frame
Using the sort function, we can order the DataFrame by a particular column:

1. Ordering by a column in descending order:

students.sort (students ("studentName") .desc) .show(7)

Output

oo mmmmmmm oo o mmmmmme o Hmmm e +
| id| studentName | phone | email |
oo mmmmmmm oo o mmmmmme o Hmmm e +
| 50| Yasir|1-282-511-4445|eget.odio.Aliquam...
|52 | Xena|1-527-990-8606|in. faucibus.orcie...

| 86 | Xandra|1-677-708-5691|libero@arcuVestib. ..
|43 | Wynter|1-440-544-1851|amet.risus.Donece@...
|31 Wallace|1-144-220-8159| lorem.lorem@non.net |
|66 | Vance|1-268-680-0857 |pellentesque@netu...
|41 | Tyrone|1-907-383-5293 |non.bibendum. sede. ..

| 5| Trevor|1-300-527-4967 |dapibus.id@acturp...

| 65| Tiger|1-316-930-7880 |nec@mollisnoncurs...

| 15| Tarik|1-398-171-2268|turpis@felisorci.com|
oo mmmmmmm oo o mmmmmme o Hmmm e +

2. Ordering by more than one column (ascending):

students.sort ("studentName", "id") .show(10)

Output

oo mmmmmmm oo o mmmmmme o Hmmm e +
| id| studentName | phone | email |
oo mmmmmmm oo o mmmmmme o Hmmm e +
|21 |1-598-439-7549 |consectetuer.adip...
|32 |1-184-895-9602 | accumsan. laoreete@. ..
|45 | |1-245-752-0481|Suspendisse.eleif...

| 83| |1-858-810-2204 | sociis.natoquee@eu. ..
|94 | |1-443-410-7878 |Praesent.eu.nulla...
|91 Abel |1-530-527-7467 | urna@veliteu.edu|

Chapter 2

| 69| Aiko|1-682-230-7013|turpis.vitae.puru...
|47 | Alma|1-747-382-6775| nec.enime@non.org|
|26 | Amela|1-526-909-2605| in@vitaesodales.edu]|
|16 | Amena|1-878-250-3129|lorem.luctus.ut@s...
R DT Hmmmm e Hmm e +

Alternatively, the orderBy alias of the sort function can be used to achieve this. Also,
multiple column orders could be specified using the DataFrame's apply method:

students.sort (students ("studentName") .desc, students("id") .asc) .show(10)

Renaming columns

If we don't like the column names of the source DataFrame and wish to change them
to something nice and meaningful, we can do that using the as function while selecting
the columns.

In this example, we rename the "studentName" column to "name" and retain the "email™"
column's name as is:

val copyOfStudents=students.select(students("studentName") .as("name"),
students ("email"))

copyOfStudents.show()

Output

Hmmm - Hmm e +
| name | email |
Hmmm - Hmm e +

Burke |ullamcorper.velit...

Kamal|pede.Suspendisse@...

01ga|Aenean.eget.metus...

Trevor |dapibus.id@acturp...

|
|
|
| Belle|vitae.aliquet.nec...
|
| Laurel|adipiscing@consec...
|

Sara|Donec.nibh@enimEt. ..

Getting Started with Apache Spark DataFrames

Treating the DataFrame as a relational table
The real power of DataFrames lies in the fact that we can treat it like a relational table and
use SQL to query. This involves two simple steps:
1. Register the students DataFrame as a table with the name "students" (or any
other name):

students.registerTempTable ("students")

2. Query it using regular SQL:

val dfFilteredBySQL=sglContext.sql ("select * from students where
studentName!='"' order by email desc")

dfFilteredBySQL.show(7)

id studentName phone email

87 Selma 1-601-330-4409 vulputate.velit@p
96 Channing 1-984-118-7533 viverra.Donec.tem
4 Belle 1-246-894-6340 vitae.aliquet.nec
78 Finn 1-213-781-6969 vestibulum.massa@
53 Kasper 1-155-575-9346 velit.eget@pedeCu
63 Dylan 1-417-943-8961 vehicula.aliquet@
35 Cadman 1-443-642-5919 ut.lacus@adipisci

The lifetime of the temporary table is tied to the life of the SQLContext
VS that was used to create the DataFrame.

Joining two DataFrames

Now that we have seen how to register a DataFrame as a table, let's see how to perform SQL-
like join operations on DataFrames.

Inner join

An inner join is the default join and it just gives those results that are matching on both
DataFrames when a condition is given:

val studentsl=sglContext.csvFile(filePath="StudentPrepl.csv",
useHeader=true, delimiter='|")

val students2=sglContext.csvFile(filePath="StudentPrep2.csv",
useHeader=true, delimiter='|")

=)

Chapter 2

val studentsJoin=studentsl.join(students2, studentsl("id")===students2 ("
id"))

studentsJoin.show(studentsJoin.count.toInt)

The output is as follows:

B e i B i it B it i +
| id|studentName| phone| emaillidl studentName | phone| emaill
+——t+— +-—— +————— === +-——+——— +-—— +-————————= +
I 11 Burke|1-300-746-8446|ullamcorper.velit...| 1lBurkeDifferentName|1-300-746-8446|ullamcorper.velit...|
I 21 Kamall1l-668-571-5046|pede.Suspendisse@...| 2|KamalDifferentName|l-668-571-5046]pede.Suspendisseg. .. |
I 31 Olgal1-956-311-1686|Aenean.eget.metus...| 31 Olgal1-956-311-16861Aenean.eget.metus. .. |
| 41 Bellel1-246-894-6340|vitae.aliquet.nec...| 4|BelleDifferentName|1-246-894-6340|vitae.aliquet.nec...|
I 51 Trevor|1-300-527-4967 | dapibus.id@acturp...| 51 Trevor|1-308-527-4967 | dapibusDifferentE. . .|
I 61 Laurell1-691-379-9921|adipiscing@consec...| 6lLaurelInvalidPhonel 00PPOB0Ad | adipiscing@consec. .. |
I 71 Saral1-608-14@-1995|Donec.nibh@enimEt...| 71 Saral1l-608-14@-1995|Donec. nibh@enimEt. .. |
| 81 Kaseem|1-881-586-2689| cursus.et.magna@e...| 81 Kaseem|1-881-586-26891 cursus.et.magnae. . .|
I 9l Levl1-916-367-5608 | Vivamus.nisi@ipsu...| 9l Lev|1-916-367-56@8 | Vivamus.nisi@ipsu. .. |
1181 Mayal1-271-683-2698|accumsan. convalli... 1@l Mayal1-271-683-2698 | accumsan.convalli...|
e e e = e = e e e +|

Right outer join

A right outer join shows all the additional unmatched rows that are available in the right-hand-
side DataFrame. We can see from the following output that the entry with ID 999 from the
right- hand-side DataFrame is now shown:

val studentsRightOuterJoin=studentsl.join(students2, studentsl("id")===st
udents2("id"), "right outer")

studentsRightOuterJoin.show(studentsRightOuterJoin.count. toInt)

e ittt bt ettt 4mmmmmmmm oo e 4mmmmmmmm oo oo s mmmmmmm—mmm o +
| idl|studentNamel phonel emaill idl studentName | phone| emaill
e ittt bt ettt 4mmmmmmmm oo e 4mmmmmmmm oo oo s mmmmmmm—mmm o +
I 11 Burke|1-300-746-84461ullamcorper.velit...| 1| BurkeDifferentNamell-300-746-8446|ullamcorper.velit...|
21 Kamal|1-668-571-50461pede.Suspendisse@...| 2| KamalDifferentNamel1-668-571-5046|pede.Suspendisse@. . .|
I 31 Olgal1-956-311-16861Aenean.eget.metus...| 3| Olgal1-956-311-1686|Aenean.eget.metus. .. |
I 4] Bellel|1l-246-894-63401vitae.aliquet.nec...| 4| BelleDifferentNamell-246-894-6348|vitae.aliquet.nec...|
I 51 Trevor|1-300-527-4967 |dapibus.id®acturp...| 5] Trevor|1-300-527-4967 |dapibusDifferentE. . .|
I el Laurell1-691-379-9921ladipiscing®consec...| Bl LaurelInvalidPhonel DPRBBBRRR | adipiscing@consec. .. |
[Saral1-608-140-19951Donec.nibh@enimEt...| 7| Saral1-6@8-148-1995|Donec.nibh@enimEt. .. |
I 81 Kaseem|1-881-586-26891cursus.et.magnae...| B8l Kaseem|1-881-586-2689| cursus. et.magna@e. . . |
I 9l Lev|1-916-367-5608 |Vivamus.nisi@ipsu...| 9l Lev|1-916-367-5608 | Vivamus.nisi@ipsu. .. |
I 1@l Mayal1-271-683-2698 | accumsan. convalli...| 18I Mayal1-271-683-2698 | accumsan. convalli.. .|
Inulll nulll nulll null1999| LevUniqueToSecondRDD11-916-367-5608 | Vivamus.nisi@ipsu. .. |
R et 4o mmmmmm i — o et 4mmmmmmmm——— o m o mmmmmmmm o +

@1

Getting Started with Apache Spark DataFrames

Left outer join

Similar to a right outer join, a left outer join returns not only the matching rows, but also the
additional unmatched rows of the left-hand-side DataFrame:

val studentsLeftOuterJoin=studentsl.join(students2, studentsl("id")===st
udents2 ("id"), "left outer")

studentsLeftOuterJoin.show(studentsLeftOuterJoin.count.toInt)

Saving the DataFrame as a file

As the next step, let's save a DataFrame in a file store. The 1oad function, which we used in
an earlier recipe, has a similar-looking counterpart called save.

This involves two steps:

1. Create a map containing the various options that you would like the save method to
use. In this case, we specify the filename and ask it to have a header:

val options=Map ("header"->"true", "path"->"ModifiedStudent.csv")

To keep it interesting, let's choose column names from the source DataFrame.
In this example, we pick the studentName and email columns and change the
studentName column's name to just name.

val copyOfStudents=students.select(students ("studentName") .
as ("name"), students("email"))

2. Finally, save this new DataFrame with the headers in a file named
ModifiedStudent.csv:

copyOfStudents.save("com.databricks.spark.csv", SaveMode.
Overwrite, options)

The second argument is a little interesting. We can choose Overwrite (as we did here),
Append, Ignore, of ErrorIfExists. Overwrite— as the name implies—overwrites the
file if it already exists, Ignore ignores writing if the file exists, ErrorIfExists complains
for pre-existence of the file, and Append continues writing from the last edit location.
Throwing an error is the default behavior.

=

Chapter 2

The output of the save method looks like this:

[% Package Explorer 53 0% ¥Y=a [Z part-00000 32

[z > chapteri-breeze [sca "name" , "email"

ey > chapteri-spark-csv | master] Burke,ullamcorper.velit. in@ametnullaDonec.co.uk
{ﬁ“*’ main/scala Kamal ,pede. Suspendisse@interdumenim. edu
Esro/main/java Olga,Aenean. eget . metus@dictumcursusNunc. edu
@ sroftest/scala Belle,vitae.aliquet.nec@neque.co.uk

(% sre/test/java N i N
=i Scala Library [2.10.4] Trevor,dapibus.idBacturpisegestas.net

=), Referenced Libraries Laurel,adipiscing@consectetueripsum. edu

=, Scala Compiler [2.10.4] Sara,Donec.nibh@enimEtiamimperdiet.edu

=) JRE System Library [Java SE 7 [1.7.0_45]] Kaseem, cursus. et .magna@euismod.org

(5> ModifiedStudent.csv Lev,Vivamus.nisi@ﬁpsumdolor.coﬂ
j -SUGCESS Mava, accumsan. conval lis@ornarelectusjusto. edu
HIpArie0nng Emi ,est@nunc. com
i part-00001 . .

o Caleb,Suspendisse@Quisque. edu

=3 project L . .

- Florence,sit.amet.dapibus@lacusAliquamrutrum.ca

Ly ST

(= target Anika,euismod@ligulaelit.co.uk

. build.sbt Tarik,turpis@felisorci.com
¥ studentData.csv Amena, lorem. Luctus .ut@scelerisque . com

Creating a DataFrame from Scala case

classes

In this recipe, we'll see how to create a new DataFrame from Scala case classes.

. The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/chapterl-
i spark-csv/src/main/scala/com/packt/scaladata/spark/
csv/DataFrameFromCaseClasses.scala.

How to do it...

1. We create a new entity called Employee with the id and name fields, like this:

case class Employee(id:Int, name:String)

Similar to the previous recipe, we create SparkContext and SQLContext.

val conf = new SparkConf () .setAppName ("colRowDataFrame") .
setMaster ("local[2]")

//Initialize Spark context with Spark configuration. This is the
core entry point to do anything with Spark

val sc = new SparkContext (conf)

@]

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala

Getting Started with Apache Spark DataFrames

//The easiest way to query data in Spark is to use SQL queries.

val sqglContext=new SQLContext (sc)

We can source these employee objects from a variety of sources, such as an
RDBMS data source, but for the sake of this example, we construct a list of
employees, as follows:

val listOfEmployees =List (Employee(l,"Arun"), Employee(2,
"Jason"), Employee (3, "Abhi"))

The next step is to pass the 1istOfEmployees to the createDataFrame function
of SQL.Context. That's itl We now have a DataFrame. When we try to print the schema
using the printSchema method of the DataFrame, we will see that the DataFrame has
two columns, with names id and name, as defined in the case class:

//Pass in the Employees into the “createDataFrame~ function.
val empFrame=sqlContext.createDataFrame (listOfEmployees)

empFrame.printSchema

Output:

root
|-- id: integer (nullable = false)

|-- name: string (nullable = true)

As you might have guessed, the schema of the DataFrame is inferenced from the
case class using reflection.

We can get a different name for the DataFrame—other than the names specified in
the case class—using the withColumnRenamed function, as shown here:

val empFrameWithRenamedColumns=sqglContext.createDataFrame (listOf
Employees) .withColumnRenamed ("id", "empId")

empFrameWithRenamedColumns.printSchema

Output:

root
|-- empId: integer (nullable = false)

| -- name: string (nullable = true)

SNED

Chapter 2

5. Let's query the DataFrame using Spark's first-class SQL support. Before that, however,
we'll have to register the DataFrame as a table. The registerTempTable, as we saw
in the previous recipe, helps us achieve this. With the following command, we will have
registered the DataFrame as a table by name "employeeTable"

"employeeTable"

empFrameWithRenamedColumns.registerTempTable ("employeeTable")

6. Now, for the actual query. Let's arrange the DataFrame in descending order of names:

val sortedByNameEmployees=sglContext.sql("select * from
employeeTable order by name desc")

sortedByNameEmployees.show ()

Output:

+----- +----- +
2	Jason
1	Arun
3	Abhi
+----- +----- +

The createDataFrame function accepts a sequence of scala.Product. Scala case

classes extend from Product, and therefore it fits in the budget. That said, we can actually

use a sequence of tuples to create a DataFrame, since tuples implement Product too:

val mobiles=sglContext.createDataFrame (Seq((1, "Android"), (2, "iPhone")))
mobiles.printSchema

mobiles.show ()
Output:

//Schema
root
|-- 1: integer (nullable = false)

|-- _2: string (nullable = true)

i

Getting Started with Apache Spark DataFrames

//Data

L T +
| 1] 2|
L T +
| 1|Android|

| 2| iPhone|

Of course, you can rename the column using withColumnRenamed.

Loading and Preparing
Data - DataFrame

In this chapter, we will cover the following recipes:

» Loading more than 22 features into classes
» Loading JSON into DataFrames

» Storing data as Parquet files

» Using the Avro data model in Parquet

» Loading from RDBMS

» Preparing data in DataFrames

Introduction

In previous chapters, we saw how to import data from a CSV file to Breeze and Spark
DataFrames. However, almost all the time, the source data that is to be analyzed is available
in a variety of source formats. Spark, with its DataFrame API, provides a uniform API that
can be used to represent any source (or multiple sources). In this chapter, we'll focus on the
various input formats that we can load from in Spark. Towards the end of this chapter, we'll
also briefly see some data preparation recipes.

Loading and Preparing Data - DataFrame

Loading more than 22 features into classes

Case classes have an inherent limitation. They can hold only 22 attributes—Catch 22,

if you will. While a reasonable percentage of datasets would fit in that budget, in many

cases, the limitation of 22 features in a dataset is a huge turnoff. In this recipe, we'll

take a sample student dataset (http://archive.ics.uci.edu/ml/datasets/
Student+Performance), which has 33 features, and we'll see how we can work around this.

The 22-field limit is resolved in Scala version 2.11.
S However, Spark 1.4 uses Scala 2.10.

How to do it...

Case classes in Scala cannot go beyond encapsulating 22 fields because the companion
classes that are generated (during compilation) for these case classes cannot find the
matching FunctionN and TupleN classes. Let's take the example of the Employee case
class that we created in Chapter 2, Getting Started with Apache Spark DataFrames:

case class Employee (id:Int, name:String)

When we look at its decompiled companion object, we notice that for the two constructor
parameters of the case class, the companion class uses Tuple2 and AbstractFunction2
in its unapply method, the method that gets invoked when we pattern-match against a
case class. The problem we face is that the Scala library has objects only until Tuple22 and
Function22 (probably because outside the data analysis world, having an entity object with
10 fields is not a great idea). However, there is a simple yet powerful workaround, and we will
be seeing it in this recipe.

Employees.class

package com.packt.scaladata.spark.csv;
+import scala.None.;

public final class Employee$ extends AbstractFunction2<Object, String, Employee>
implements Serializable

{
public static final MODULES;

static
{
new (;

}

public final String toString()
{
return "Employee"; }
public Employee apply(int id, String name) { return new Employee(id, name); }
public Option<Tuple2<Object, String>> unapply(Employee x$0) { return x$0 == null ? None..MODULES$: new Some(new Tuple2(BoxesR|
private Object readResolve() { return MODULES; }
private Employee$() { MODULES$ = this; }

H

=

http://archive.ics.uci.edu/ml/datasets/Student+Performance
http://archive.ics.uci.edu/ml/datasets/Student+Performance

Chapter 3

We saw in Chapter 2, Getting Started with Apache Spark DataFrames (in the Creating
a DataFrame from CSV recipe), that the requirement for creating a DataFrame using
SQLContext .createDataFrame from a collection of classes is that the class must
extend scala.Product. So, what we intend to do is write our own class that extends
from scala.Product.

This recipe consists of four steps:

Creating sQLContext from SparkContext and Config.

Creating a Student class that extends Product and overrides the necessary
functions.

3. Constructing an RDD of the Student classes from the sample dataset
(student-mat.csv).

4. Creating a DataFrame from the RDD, followed by printing the schema and
sampling the data.

Refer to the How it works... section of this recipe for a basic
introduction to RDD.

%j%‘\ The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/tree/master/
chapter3-data-loading.

Let's now cover these steps in detail:

1. Creating SQLContext: As with our recipes from the previous chapter, we construct
SparkContext from SparkConfig and then create an SQLContext from
SparkContext:

val conf=new

SparkConf () . setAppName ("DataWith33Atts") .setMaster ("local [2]")
val sc=new SparkContext (conf)

val sglContext=new SQLContext (sc)

2. Creating the student class: Our next step is to create a simple Scala class that
declares its constructor parameters, and make it extend Product.

Making a class extend Product requires us to override two functions from
scala.Product and one function from scala.Equals (which scala.Product,
in turn, extends from). The implementation of each of these functions is pretty
straightforward.

) Refer to the APl docs of Product (http://www.scala-lang.
% org/api/2.10.4/index.html#scala.Product)and
s Equals (http://www.scala-lang.org/api/2.10.4/
index.html#scala.Equals)for more details.

s

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
http://www.scala-lang.org/api/2.10.4/index.html#scala.Product
http://www.scala-lang.org/api/2.10.4/index.html#scala.Product
http://www.scala-lang.org/api/2.10.4/index.html#scala.Equals
http://www.scala-lang.org/api/2.10.4/index.html#scala.Equals

Loading and Preparing Data - DataFrame

Firstly, let's make our Student class declare its fields and extend Product:

class Student (school:String,
sex:String,
age:Int,
address:String,
famsize:String,
pstatus:String,
medu: Int,
fedu:Int,
mjob:String,
fjob:String,
reason:String,
guardian:String,
traveltime:Int,
studytime:Int,
failures:Int,
schoolsup:String,
famsup:String,
paid:String,
activities:String,
nursery:String,
higher:String,
internet:String,
romantic:String,
famrel:Int,
freetime:Int,
goout :Int,
dalc:Int,
walc:Int,
health:Int,
absences:Int,
gl:Int,
g2:Int,
g3:Int) extends Product({

Next, let's implement these three functions after briefly looking at what they are
expected to do:

o productArity () :Int: This returns the size of the attributes. In our case,
it's 33. So, our implementation looks like this:

override def productArity: Int = 33

productElement (n:Int) :Any: Given an index, this returns the
attribute. As protection, we also have a default case, which throws

an IndexOutOfBoundsException exception:

@throws (classOf [IndexOutOfBoundsException])

override def productElement (n: Int):

IndexOutOfBoundsException (n.toString())

}

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

0

H F wW 00 J 0 U1l & W N

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

case _

=> school

=> sex

=> age

=> address

=> famsize

=> pstatus

=> medu

=> fedu

=> mjob

=> fjob

=> reason

=> guardian
=> traveltime
=> studytime
=> failures
=> schoolsup
=> famsup

=> paid

=> activities
=> nursery
=> higher

=> internet
=> romantic
=> famrel

=> freetime
=> goout

=> dalc

=> walc

=> health

=> absences
=> gl

=> g2

=> g3

=> throw new

Any

n match {

Chapter 3

7}

Loading and Preparing Data - DataFrame

o canEqual (that:Any) :Boolean: Thisis the last of the three functions,
and it serves as a boundary condition when an equality check is being done
against this class:

override def canEqual (that: Any): Boolean =
that.isInstanceOf [Student]

Constructing an RDD of students from the student -mat . csv file: Now that we
have our Student class ready, let's convert the "student-mat .csv" input file
into a DataFrame:

val rddOofStudents=convertCSVToStudents ("student-mat.csv", sc)

def convertCSVToStudents (filePath: String, sc: SparkContext) :

RDD [Student] = {

val rddOfStudents: RDD[Student] = sc.textFile(filePath).
flatMap (eachLine => Student (eachLine))

rddOfStudents

}

As you can see, we have an apply method for Student that accepts a String and
returns an Option[Student]. We use £latMap to filter out None thereby resulting
in RDD [Student].

Let's look at the Student companion object's apply function. It's a very simple
function that takes a String, splits it based on semicolons into an array, and then
passes the parameters to the Student 's constructor. The method returns None if
there is an error:

object Student {

def apply(str: String): Option[Student] = {
val paramArray = str.split(";") .map(param =>
param.replaceAll ("\"", "")) //Few values have extra double
quotes around it
Try (

new Student (paramArray (0),
paramArray (1),

paramArray (2) .tolnt,

’

paramArray
paramArray

)
)
),
)
paramArray (6) .toInt,
)
)

.tolInt,

(
(
(
paramArray (
(
paramArray (
(

3
4
5
6
7
8

paramArray

’

NED

Chapter 3

paramArray (9),

paramArray (10),

paramArray (11),
paramArray (12) .toInt,
paramArray (13) .toInt,
paramArray (14) .toInt,
paramArray (15),

paramArray (16),

paramArray (17),

paramArray (18),

paramArray (19),

paramArray (20),

paramArray (21),

paramArray (22),
paramArray (23) .toInt,
paramArray (24) .toInt,
paramArray (25) .toInt,
paramArray (26) .toInt,
paramArray (27) .toInt,
paramArray (28) .toInt,
paramArray (29) .toInt,
paramArray (30) .toInt,
paramArray (31) .toInt,
paramArray (32) .toInt)) match
case Success (student) => Some (student)
case Failure (throwable) => ({

println (throwable.getMessage())

None

Creating a DataFrame, printing the schema, and sampling: Finally, we create
a DataFrame from RDD [Student]. Converting an RDD [T] to a DataFrame
of the same type is just a matter of calling the toDF () function. You are
required to import sglContext.implicits. . Optionally, you can use
the createDataFrame method of sglContext too.

The toDF () function is overloaded so as to accept custom
column names while converting to a DataFrame.

s

Loading and Preparing Data - DataFrame

We then print the schema using the DataFrame's printSchema () method and
sample data for confirmation using the show () method:

import sqglContext.implicits._

//Create DataFrame

val studentDFrame = rddOfStudents.toDF ()
studentDFrame.printSchema ()
studentDFrame. show ()

The following is the output of the preceding code:

|-- school: string (nullable = true)

|-- sex: string (nullable = true)

|-- age: integer (nullable = false)

|-- address: string (nullable = true)

|-- famsize: string (nullable = true)

|-- pstatus: string (nullable = true)

|-- medu: integer (nullable = false)

|-- fedu: integer (nullable = false)

|-- mjob: string (nullable = true)

|-- fjob: string (nullable = true)

|-- reason: string (nullable = true)

|-- guardian: string (nullable = true)
|-- traveltime: integer (nullable = false)
|-- studytime: integer (nullable = false)
|-- failures: integer (nullable = false)
| -- schoolsup: string (nullable = true)
|-- famsup: string (nullable = true)

|-- paid: string (nullable = true)

|-- activities: string (nullable = true)

|-- nursery: string (nullable = true)
|-- higher: string (nullable = true)
-- internet: string (nullable = true)
g
-- romantic: string (nullable = true)
g
)

|-- famrel: integer (nullable = false
|-- freetime: integer (nullable = false)
|-- goout: integer (nullable = false)
|-- dalc: integer (nullable = false)

|-- walc: integer (nullable = false)

|-- health: integer (nullable = false)
|-- absences: integer (nullable = false)

|-- gl: integer (nullable
|-- g2: integer (nullable
|-- g3: integer (nullable

false)
false)
false)

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]

[info] root

scheol: string (nullable = true)
sex: string (nullable = true)

age: integer (nullaoble = false)
address: string (nullable = true)
famsize: string (nullable = true)
pstatus: string (nullable true)
medu: integer (nullable = false)
fedu: integer (nullable = false)
mjob: string (nullable = true)

fjob: string (nullable = true)
reason: string (nullaoble = true)
guardian: string (nullable = true)
traveltime: integer (nullable = false)
studytime: integer (nullable = false)
failures: integer (nullable = false)
schoolsup: string (nulloble = true)
famsup: string (nullable = true)
paid: string (nullable = true)
activities: string (nullable = true)
nursery: string (nullable = true)
higher: string (nullable = true)
internet: string (nullable = true)
romantic: string (nullable = true)
famrel: integer (nullable = false)
freetime: integer (nullable = false)
goout: integer (nullable = false)
dalc: integer (nullable = false)
walc: integer (nullable = false)
health: integer (nullable = false)
absences: integer (nullable = false)
gl: integer (nulloble = false)

gZ: integer (nullaoble = false)

g3: integer (nullable = false)

Chapter 3

The foundation of Spark is the Resilient Distributed Dataset (RDD). From a programmer's

perspective, the composability of RDDs just like a regular Scala collection is a huge

advantage. An RDD wraps three vital (and two subsidiary) pieces of information that help in
the reconstruction of data. This enables fault tolerance. The other major advantage is that

while RDDs can be composed into hugely complex graphs using RDD operations, the entire
flow of data itself is not very difficult to reason with.

Other than optional optimization attributes (such as data location), at its core, RDD just
wraps three vital pieces of information:

» The dependent/parent RDD (empty if not available)

» The number of partitions

» The function that needs to be applied to each element of the RDD

[ei-

Loading and Preparing Data - DataFrame

In simple words, RDDs are just collections of data elements that can exist in the memory or
on the disk. These data elements must be serializable in order to have the capability to be
moved across multiple machines (or be serialized on the disk). The number of partitions or
blocks of data is primarily determined by the source of the input data (say, if the data is in
HDFS, then each block would translate to a single partition), but there are also other ways
of playing around with the number of partitions.

So, the number of partitions could be any of these:

» Dictated by the input data itself, for example, the number of blocks in the case
of reading files from HDFS

» The number set by the spark.default.parallelism parameter (set while
starting the cluster)

» The number set by calling repartition or coalesce on the RDD itself

Note that currently, for all our recipes, we are running our Spark application in the self-
contained single JVM mode. While the programs work just fine, we are not yet exploiting
the distributed nature of the RDDs. In Chapter 6, Scaling Up, we'll explore how to bundle
and deploy our Spark application on a variety of cluster managers: YARN, Spark standalone
clusters, and Mesos.

There's more...

In the previous chapter, we created a DataFrame from a List of Employee case classes:

val listOfEmployees =List (Employee (1, "Arun"), Employee (2, "Jason"),
Employee (3, "Abhi"))

val empFrame=sglContext.createDataFrame (1listOfEmployees)

However, in this recipe, we loaded a file, converted them to RDD [String], transformed them
into case classes, and finally converted them into a DataFrame.

There are subtle, yet powerful, differences in these approaches. In the first approach (converting
a List of case classes into a DataFrame), we have the entire collection in the memory of the
driver (we'll look at drivers and workers in Chapter 6, Scaling Up). Except for playing around

with Spark, for all practical purposes, we don't have our dataset as a collection of case classes.
We generally have it as a text file or read from a database. Also, requiring to hold the entire
collection in a single machine before converting it into a distributed dataset (RDD) will unfold
itself as a memory issue.

&

Chapter 3

In this recipe, we loaded an HDFS distributed file as an RDD [String] that is distributed
across a cluster of worker nodes, and then serialized each String into a case class, making
the RDD [String] into an RDD [Student]. So, each worker node that holds some partitions
of the dataset handles the computation around transforming RDD [String] to the case class,
while making the resulting dataset conform to a fixed schema enforced by the case class
itself. Since the computation and the data itself are distributed, we don't need to worry about
a single machine requiring a lot of memory to store the entire dataset.

Loading JSON into DataFrames

JSON has become the most common text-based data representation format these days. In
this recipe, we'll see how to load data represented as JSON into our DataFrame. To make it
more interesting, let's have our JSON in HDFS instead of our local filesystem.

The Hadoop Distributed File System (HDFS) is a highly distributed filesystem that is both
scalable and fault tolerant. It is a critical part of the Hadoop ecosystem and is inspired by
the Google File System paper (http://research.google.com/archive/gfs.html).
More details about the architecture and communication protocols on HDFS can be found at
http://hadoop.apache.org/docs/rl.2.1/hdfs design.html.

How to do it...

In this recipe, we'll see three subrecipes:

» How to create a schema-inferenced DataFrame from JSON using
sglContext.jsonFile

» Alternatively, if we prefer to preprocess the input file before parsing it into JSON, we'll
parse the input file as text and convert it into JSON using sglContext .jsonRDD

» Finally, we'll take a look at declaring an explicit schema and using it to create
a DataFrame

Reading a JSON file using SQLContext.jsonFile
This recipe consists of three steps:

1. Storing our json (profiles. json)in HDFS: A copy of the data file is added to our
project repository, and it can be downloaded from https://github.com/arunma/
ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/
profiles.json:

hadoop fs -mkdir -p /data/scalada

hadoop fs -put profiles.json /data/scalada/profiles.json

hadoop fs -1ls /data/scalada

-Yw-r--r-- 1 Gabriel supergroup 176948 2015-05-16 22:13 /
data/scalada/profiles.json

(&5}

http://research.google.com/archive/gfs.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json

Loading and Preparing Data - DataFrame

The following screenshot shows the HDFS file explorer available at
http://localhost:50070, which confirms that our upload is successful:

<« C' | [1 localhost:50070/explorer.html#/data/scalada bicdl +* L) @

% ppps 2 Java- Examplesof ¢ [] Home [l Using Nutchand Soi] TPWeb) joweber/ScalaForTn Bl Scalex | Scala docu | A Taste of the A Gal » [L Other B

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

Idata/scalada Go!
Block
Permission Owner Group Size Last Modified Replication Size Name
-TW-r—r-- Gabriel supergroup 172.8 5/16/2015, 10:13:21 1 128 MB profiles.json
KB PM
Hadoop, 2014.

2. Creating contexts: We do the regular stuff—create SparkConfig, SparkContext,
and then SQLContext:

val conf = new
SparkConf () . setAppName ("DataFromJSON") .setMaster ("local[2]")

val sc = new SparkContext (conf)

val sglContext = new SQLContext (sc)

3. Creating a DataFrame from JSON: In this step, we use the jsonFile function of
SQLContext to create a DataFrame. This is very similar to the sglContext.
csvFile function that we used in Chapter 2, Getting Started with Apache Spark
DataFrames. There's just one thing that we need to watch out here; our . json
should be formatted as one line per record. It is unusual to store JSON as one line
per record considering that it is a structured format, but the jsonFile function
treats every single line as one record, failing to do which it would throw a scala.
MatchError error while parsing:

val
dFrame=sqlContext.jsonFile ("hdfs://localhost:9000/data/scalada/
profiles.json")

Chapter 3

That's it! We are done! Let's just print the schema and sample the data:

dFrame.printSchema ()

dFrame.show ()

The following screenshot shows the schema that is inferenced from the JSON file. Note that now
the age is resolved as long and tags are resolved as an array of string, as you can see here:

[info] root
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info] |

_id: string (nullable = true)
about: string (nullable = true)
address: string (nullable = true)
age: long Cnullable = true)
company: string (nullable = true)
email: string (nullable = true)
eyeColor: string (nullable = true)
faveriteFruit: string (nullable = true)
gender: string (nullable = true)
name: string (Cnullable = true)
phone: string (nullable = true)
registered: string (nullable = true)
tags: array (nullable = true)

|-- element: string (containsNull = true)

The next screenshot shows you a sample of the dataset:

e —————— e v e v e e e e e e e +
| _idl about| addresslagel companyl| emailleyeColor| favoriteFruitigender|

e e e ittt e e o= m e S +
155578ccb@cc5b35@d. . . |Eu excepteur esse...|694 Oriental Cour...| 3@ ENDIPINItracynguyen@endip...! brown| applelfemalel
155578ccb6975¢4ela. . . IProident exercita...|267 Amber Street,...| 231 WARETEL|leannagarrett®war...!| brown| strawberry | femalel
155578ccb33399a615. . . |Aute proident Lor...1243 Bridgewater S...| 24| IMPERIUMIblairwhite@imperi...| brown| bananal malel
155578ccb@f1dSab@9. . . 10fficia cillum nu...1647 Loring Avenue...| 24| BEADZZA|andrearay@beadzza. . .| bluel applelfemalel
155578ccb591a45d4e. . . ISit fugiat mollit...1721 Bijou Avenue,...| 27| AUSTECHI|penningtongilbert...!| green| applel malel
155578ccb9fBed2@c4. . . IMinim do eiusmod ...1694 Llama Court, ...l 211 PYRAMIAlIshelleyburns@pyra...!| greenl| bananalfemalel
155578ccb8dBacccZ8. . . IQui proident ulla...|498 Perry Terrace...| 48] EDECINEInicolefigueroa®ed...!| greenl| applelfemalel
155578ccbdb82ccall. . . |Labore exercitati...|243 Stillwell Ave...| 32|SINGAVERA|galealvarado@sing...!| bluel bananalfemalel
155578ccb@d9925ddd. . . IVelit cillum Lore... 1649 Beard Street,...| 36|FURNITECHImelindaparker@fur...!| bluel strawberry|femalel
155578ccbSbe7@de@d. . . |Laborum tempor mi...|1972 Marconi Place...| 361 DIGIAL|byerscarson@digia...!| bluel applel malel
155578ccbc5a1@5@a5. . . [Duis fugiat Lorem... 1483 Hanson Place,...| 31| ASSURITY!kristiemckinney@a...!| greenl| bananalfemalel
155578ccb@7fa@2369. . . |Consequat fugiat ...154@ Woodpoint Roa...| 4@IMICROLUXE!salazarburks@micr...!| brown| strawberryl malel
155578ccb8@9e55bf@. . . |Lorem culpa Lorem...|442 Ainslie Stree...| 32| VIOCULAR!hopkinspatterson@...!| green| applel malel
155578cchb2@4ff8eeb. .. IQui ad cillum mag. .. 1444 Argyle Road, ...l 23| IMKAN| maysrosario@imkan. . . | green| applel malel
155578ccb4bB62fchl. . . 1Duis ex velit dui...1571 Sunnyside Ave...| 381 HELIXOlatkinshancock@hel...!| bluel strawberryl malel
155578ccba5ff361a9. . . IEt magna laboris ...1385 Meeker Avenue...| 48] SLOFAST|edwinarobertson@s...| bluel strawberrylfemalel
155578ccb386948ac3. . . |[Labore sit mollit...1936 Cheever Place...| 37| FLEETMIXlelsiencel@fleetmi...!| bluel applelfemalel
155578ccbfc4lff7fe. .. |Consequat eiusmod...|486 Lake Place, M...| 36| EVENTAGE!mirandamarsh@even...| greenl| applelfemalel
155578ccbfabbbe3@@. . . IDuis fugiat conse...|364 Metropolitan ...| 311 BALOOBAlsharronmcconnell@.. .| brown| applelfemalel
155578ccbdd6658d81. . . |Consequat et magn. .. 1113 Applegate Cou...| 29| EURON|mcdowel lwelch@eur. . . | bluel strawberryl malel
e ——————— e e e e e e i e o e e ——— e e +

]

Loading and Preparing Data - DataFrame

Reading a text file and converting it to JSON RDD

In the previous section, we saw how we can directly import a textFile containing JSON
records as a DataFrame using sglContext.jsonFile. Now, we'll see an alternate approach,
wherein we construct an RDD [String] from the same profiles.json file and then convert
them into a DataFrame. This has a distinct advantage from the previous approach—we can have
more control over the schema instead of relying on the one that is inferenced:

val strRDD=sc.textFile("hdfs://localhost:9000/data/scalada/profiles.
json")
val jsonDf=sglContext.jsonRDD (strRDD)

jsonDf.printSchema ()

The following is the output of the preceding command:

[info] root

[infol I-- _id: string (nullable = true)

[infol |-- about: string (nullable = true)

[info] |-- address: string (nullable = true)
[infe] I-- age: long (nullable = true)

[info] |-- company: string (nullable = true)
[infe] |-- email: string (nullable = true)

[infol |-- eyeColer: string (nullable = true)
[infe]l |-- favoriteFruit: string (nullable = true)
[info] |-- gender: string (nullable = true)

[infe] |-- name: string (nullable = true)

[infe] |-- phone: string (nullable = true)

[infe] |-- registered: string (nullable = true)
[infel |-- tags: array (nullable = truel

[info] | |-- element: string (containshull = true)

Explicitly specifying your schema
Using j sonRDD and letting it resolve the schema by itself is clean and simple. However,
it gives less control over the types; for example, the age field must be Integer and not
Long. Similarly, the “registered™ column is inferenced as a String while it is actually a
TimeStamp. In order to achieve this, let's go ahead and declare our own schema. The way we
do this is by constructing a StructType and StructField:
val profilesSchema = StructType (
Seq (
StructField (" id",StringType, true),
StructField("about", StringType, true),
StructField("address",StringType, true),

StructField("age", IntegerType, true),

(&)

Chapter 3

StructField ("company", StringType, true),
StructField("email", StringType, true),
StructField("eyeColor",StringType, true),
StructField("favoriteFruit",StringType, true),
StructField("gender", StringType, true),
StructField("name", StringType, true),
StructField ("phone", StringType, true),
StructField("registered", TimestampType, true),
StructField("tags",ArrayType (StringType), true)
)

val jsonDfWithSchema=sglContext.jsonRDD (strRDD, profilesSchema)

jsonDfWithSchema.printSchema () //Has timestamp
jsonDfWithSchema.show ()

Another advantage of specifying our own schema is that all the columns
* need not be specified in the StructType. We just need to specify the
columns that we are interested in, and only those columns will be available
in the target DataFrame. Also, any column that is declared in the schema
but is not available in the dataset will be filled in with null values.

The following is the output.

We can see that the registered feature is considered to have a timestamp data type and
age as integer:

[info] root

[infoe] |-- id: string (nullable = true)

[infoe] |-- agbout: string (nullable = true)

[infoe] |-- address: string (nullable = true)
[infe] |-- age: integer (nullable = true)

[info] |-- company: string (nullable = true)
[info] |-- email: string (nullable = true)

[infoe] |-- eyeColor: string (nullable = true)
[infoe] |-- favoriteFruit: string (nullable = true)
[infe] |-- gender: string (nullable = true)

[infe] |-- name: string (nullable = true)

[info] [|-- phene: string (nullable = true)

[info] |-- registered: timestamp (nullable = true)
[infoe] |-- tags: array (nullable = true)

[info] | |-- element: string (containsNull = true)

Loading and Preparing Data - DataFrame

Finally, just for kicks, let's fire a filter query based on the timestamp. This involves three steps:

1. Register the schema as a temporary table for querying, as has been done several
times in previous recipes. The following line of code registers a table by the name of
profilesTable:

jsonRDDWithSchema.registerTempTable ("profilesTable")
2. Let's fire away our filter query. The following query returns all profiles that have been

registered after August 26, 2014. Since the registered field is a timestamp, we
require an additional minor step of casting the parameter into a TimeStamp:

val filterCount = sglContext.sqgl("select * from profilesTable
where registered> CAST('2014-08-26 00:00:00' AS TIMESTAMP)") .count
3. Let's print the count:

println("Filtered based on timestamp count : " + filterCount)
//106

There's more...

If you aren't comfortable with having the schema in the code and would like to save the
schema in afile, it's just a one-liner for you:

import scala.reflect.io.File
import scala.io.Source
//Writes schema as JSON to file

File("profileSchema.json") .writeAll (profilesSchema.json)
Obviously, you would want to reconstruct the schema from JSON, and that's also a one-liner:

val loadedSchema = DataType.fromJson (Source.fromFile ("profileSchema.
json") .mkString)

Let's check whether the 1oadedSchema and the profileSchema encapsulate the same
schema by doing an equality check on their json:

println ("ProfileSchema == loadedSchema :"+ (loadedSchema.
json==profilesSchema.json))

The output is shown as follows:

ProfileSchema == loadedSchema :true

&)

Chapter 3

If we would like to eyeball the json, we have a nice method called prettyJson that formats
the json:

//Print loaded schema

println(loadedSchema.prettyJdson)

The output is as follows:

[info] {

[info] "type"” @ "struct”,
[info] "fields" : [{

[info] "name"” @ "id",
[info] "type” @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name"” : "about”,
[info] "type” @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name” : "address”,
[info] "type” @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name” : "age"”,
[info] "type" @ "integer”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name” : "company”,
[info] "type" @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name” : "email”,
[info] "type" @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol 1, {

[info] "name” : "eyeColor”,
[info] "type" @ "string”,
[info] "nullable” : true,
[info] "metadata” : { }
[infol }, {

[info] "name"” : "favoriteFruit”,

Loading and Preparing Data - DataFrame

Storing data as Parquet files

Parquet (https://parquet.apache.org/) is rapidly becoming the go-to data storage
format in the world of big data because of the distinct advantages it offers:

» It has a column-based representation of data. This is better represented in a picture,
as follows:

Parquet Data Representation

/

\

Name Age Gender School Name
IT

Jeya

Sara

Rithin

Stanford

Chunk of Rows (Row Group, as they call it) - eg.100 rows

Guru

Row Grp 2

Schema and metadata- Footer

_ 80000

. Column chunks (shown only for one column for clarity)

As you can see in the preceding screenshot, Parquet stores data in chunks of

rows, say 100 rows. In Parquet terms, these are called RowGroups. Each of these
RowGroups has chunks of columns inside them (or column chunks). Column chunks
can hold more than a single unit of data for a particular column (as represented

in the blue box in the first column). For example. Jai, Suri, and Dhina form a single
chunk even though they are composed of three single units of data for Name.

Another unique feature is that these column chunks (groups of a single column's
information) can be read independently. Let's consider the following image:

https://parquet.apache.org/

Row based vs Column based data storage formats

<)

Row based - Avro

CRER O CHERERC N

Column based - Parquet
EREDCDEDEREDERERC

Chapter 3

We can see that the items of column data are stored next to each other in a
sequence. Since our queries are focused on just a few columns (a projection)
most of the time and not on the entire table, this storage mechanism enables

us to retrieve data much faster than reading the entire row data that is stored
and filtering for columns. Also, with Spark's in-memory computations, the memory
requirements are reduced in this way.

The second advantage is that there is very little that is needed for our transition from
the existing data models that we already use to represent the data. While Parquet
has its own native object model, we are pretty much free to choose Avro, ProtoBuf,
Thrift, and a variety of existing object models, and use an intermediate converter to
serialize our data in Parquet. Most of these converters are readily available at the
Parquet-MR project (https://github.com/Parquet/parquet-mr).

In this recipe, we'll cover the following steps:

o 0N

Load a simple CSV file and convert it into a DataFrame.
Save it as a Parquet file.

Install Parquet tools.

Use the tools to inspect the Parquet file.

Enable compression for the Parquet file.

The entire code for this recipe can be found at https://github.
com/arunma/ScalaDataAnalysisCookbook/tree/master/
g chapter3-data-loading-parquet.

7}

https://github.com/Parquet/parquet-mr
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet

Loading and Preparing Data - DataFrame

How to do it...

Before we dive into the steps, let's briefly look at our build. sbt file, specifically the library
dependencies and Avro settings (which we'll talk about in the following sections):

organization := "com.packt"
name := "chapter3-data-loading-parquet"
scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++

Seq (

°

"org.apache.spark" "spark-core" % sparkVersion,

)

"org.apache.spark" "spark-sqgl" % sparkVersion,

)

"org.apache.spark" "spark-mllib" % sparkVersion,

o o° o° o°
o° o° o° o°

"org.apache.spark" "spark-hive" % sparkVersion,

)

"org.apache.avro" %

°

avro" % "1.7.7",

"org.apache.parquet" % "parquet-avro" % "1.8.1",

)

"com.twitter" %% "chill-avro" % "0.6.0"

resolvers ++= Seq(

"Apache HBase" at
"https://repository.apache.org/content/repositories/releases",

"Typesafe repository" at
"http://repo.typesafe.com/typesafe/releases/",

"Twitter" at "http://maven.twttr.com/"
fork := true
seq(sbtavro.SbtAvro.avroSettings : _*)
(stringType in avroConfig) := "String"

javaSource in sbtavro.SbtAvro.avroConfig <<= (sourceDirectory in
Compile) (_ / "java")

Now that we have build. sbt out of the way, let's go ahead and look at the code behind each
of the listed steps.

=

Chapter 3

Load a simple CSV file, convert it to case classes, and create a
DataFrame from it

We can actually create a DataFrame directly from CSV using the com.databricks/spark-
csv file, as we saw in Chapter 2, Getting Started with Apache Spark DataFrames, but for this
recipe, we'll just tokenize the CSV and create classes from it. The input CSV has a header
column. So, the conversion process involves skipping the first row.

. The class file that we will discuss in this section is the https://
% github.com/arunma/ScalaDataAnalysisCookbook/blob/
i master/chapter3-data-loading-parquet/src/main/
scala/com/packt/dataload/ParquetCaseClassMain.scala.

There are just two interesting things that you might notice in the code:

sglContext.setConf ("spark.sql.parquet.binaryAsString", "true")

Some Parquet producing systems, such as Impala, binary encode the strings. In order to work
around this issue, we set the following configuration, which says that if it sees binary data,
it should be treated as a string:

Instead of using sglContext .createDataFrame, We just use a toDF () on the

RDD [Student]. The SQLContext .Implicits object has a number of implicit conversions
that help us convert an RDD [T] to a DataFrame directly. The only requirement for us, as
expected, is to import the implicits:

import sglContext.implicits._
The rest of the code is the same as we saw earlier:

val conf = new

SparkConf () .setAppName ("CaseClassToParquet") .setMaster ("local [2]")
val sc = new SparkContext (conf)
val sglContext = new SQLContext (sc)

//Treat binary encoded values as Strings
sglContext.setConf ("spark.sql.parquet.binaryAsString", "true")

import sglContext.implicits._

//Convert each line into Student
val rddOofStudents = convertCSVToStudents ("StudentData.csv", sc)

//Convert RDD[Student] to a Dataframe using sqglContext.implicits
val studentDFrame = rddOfStudents.toDF ()

(75}

[vww allitebooks.cond

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
http://www.allitebooks.org

Loading and Preparing Data - DataFrame

The convertCSvVToStudents method, which converts each line into a Student object,
looks like this:

def convertCSVToStudents (filePath: String, sc: SparkContext) :
RDD [Student] = {

val rddOfStudents: RDD[Student]
=sc.textFile (filePath) .flatMap (line => {

val data = line.split ("\\|")
if (data(0) == "id") None else Some (Student (data(0),
data(l), data(2), data(3)))
|3

rddOfStudents

Save it as a Parquet file

This is just a one-liner once we have the DataFrame. This can be done using either
the saveAsParquetFile or the save method. If you wish to save it in a Hive table
(https://hive.apache.org/), then there is also a saveAsTable method for you:

//Save DataFrame as Parquet using saveAsParquetFile
studentDFrame.saveAsParquetFile ("studentPqg.parquet")

//OR

//Save DataFrame as Parquet using the save method

studentDFrame.save ("studentPqg.parquet", "parquet",
SaveMode.Overwrite)

% The save method allows the usage of SaveMode, which has the following
S alternatives: Append, ErrorIfExists, Ignore, or Overwrite.

The save methods create a directory in the location that you specify (here, we simply store
it in our project directory). The directory holds the files that represent the serialized data.

It is not entirely human readable, but you may notice that the data of a single column is
stored together.

Just as we do for the rest of the recipes, let's read the file and sample the data for
confirmation:
//Read data for confirmation

val pgDFrame=sglContext.parquetFile ("studentPg.parquet")

pgDFrame. show ()

7

https://hive.apache.org/

Chapter 3

The following is the output:

i it ittt ittt +
lidl name | phone| emaill
e ittt ittt ittt +
1511 Baker|1-754-775-9024 | enim@atortorNunc. ... |
1521 Xenal1-527-990-86@611n. faucibus.orci@. ..
1531 Kasper|1-155-575-93461velit.eget@pedelu. ..
541 Hannah|1-712-794-8145|Phasellus.libero....
1551 Reese|1-106-653-2899 | aliquet.magna.a@l. ..

I
I
I
I
I561Buckminster|1-352-299-2056| cursus.Nunc.mauri.. .|
1571 Richard|1-461-925-7@84|fringilla.cursus@. . .|
581 Shafirall-786-210-78191 a@magnamalesuada.cal
1591 Frances|1-312-680-5112|enim.consequat.pu. ..
I
I
I
I
I
I
I
I
I
|
|

1601 Avall1l-816-439-4739]ipsum.Phasellus.v. ..
611 Maxinel|1-422-863-3@41|aliquet.molestie. ...
1621 Kirk|1-782-749-4287|fringilla@luctusv. . .
1631 Dylan|1-417-943-8961|vehicula.aliquet@. ..
641 Francescall-425-876-220@|nec.euismod. in@co. . .
1651 Tiger|1-316-930-788@| nec@mollisnoncurs. . .
661 Vance|1-268-680-0857 | pellentesque@netu. . .

1671 Hermione|1-673-268-11561eu.dolor@auctorn. ..
681 Candice|1-701-263-88891sit.amet.ornarela. . .
1691 Ailko|1-682-230-7013 | turpis.vitae.puru...
17@1 Quemby 11-380-414-6915] interdum. ligulo@e. . .
e it B bttt Fommmmm e m e m +

Install Parquet tools

Other than using the print Schema method of the DataFrame to inspect the schema, we can
use some interesting parquet tools provided as part of the parquet project to get a variety of
other information.

+ The parquet-tools is a subproject of Parquet and is available at

https://github.com/Parquet/parquet-mr/tree/master/
’ parquet-tools.

Since Spark 1.4.1 uses Parquet 1.6.0rc3, we'll need to download that version of the tools from
the Maven repository. The executables and the JARs can be downloaded as one bundle from
https://repol.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/
parquet-tools-1.6.0rc3-bin.tar.gz.

Using the tools to inspect the Parquet file
Let's put the tools into action. Specifically, we'll do three things in this step:

» Display the schema in Parquet format
» Display the meta information that is stored in Parquet's footer

(7]

https://github.com/Parquet/parquet-mr/tree/master/parquet-tools
https://github.com/Parquet/parquet-mr/tree/master/parquet-tools
https://repo1.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/parquet-tools-1.6.0rc3-bin.tar.gz
https://repo1.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/parquet-tools-1.6.0rc3-bin.tar.gz

Loading and Preparing Data - DataFrame

>

Sample the data using head and cat

Displaying the schema: This can be achieved by calling the parquet-tools
command with schema and the parquet file as the parameter. As an example,
let's print the schema using one of the part files:

bash-3.2$ parquet-tools-1.6.0rc3/parquet-tools meta part-r-00000-
20a8b58c-feld-43e7-b148-£874b78eb5ec.gz.parquet

message root {
optional binary id (UTFS8) ;
optional binary name (UTFS8);
optional binary phone (UTFS8);

optional binary email (UTFS8);

}

We see that the schema is indeed available in Parquet format and is derived from our
case classes.

Displaying the meta information of a particular Parquet file: As we saw earlier,
meta information is stored in the footer. Let's print it to see it.

We see that the extra information has the schema that is specific to the data model
we used. This information is used when the data is deserialized. The meta parameter
of parquet-tools will help achieve this:

bash-3.2$ parquet-tools-1.6.0rc3/parquet-tools meta part-r-00000-
20a8b58c-feld-43e7-b148-£874b78eb5ec.gz.parquet

creator: parquet-mr version 1.6.0rc3 (build
d4d5a07ec9bd262cale93c309f1d7d4a74ebda4c)

extra: org.apache.spark.sql.parquet.row.metadata = {"type"
:"struct","fields": [{"name":"id", "type":"string", "nullable":true
,"metadata":{}}, {"name": "name", "type":"string", "nullable":true,
[more] ...

file schema: root

id: OPTIONAL BINARY O:UTF8 R:0 D:1
name: OPTIONAL BINARY O:UTF8 R:0 D:1
phone: OPTIONAL BINARY O:UTF8 R:0 D:1

7@

Chapter 3

email: OPTIONAL BINARY O:UTF8 R:0 D:1

row group 1l: RC:50 TS:3516

id: BINARY GZIP DO:0 FPO:4 SZ:140/326/2.33 VC:50
ENC:RLE,BIT PACKED,PLAIN

name: BINARY GZIP DO:0 FPO:144 SZ:313/483/1.54 VC:50
ENC:RLE,BIT PACKED,PLAIN

phone: BINARY GZIP DO:0 FPO:457 SZ:454/961/2.12 VC:50
ENC:RLE,BIT PACKED,PLAIN

email: BINARY GZIP DO:0 FPO:911 SZ:929/1746/1.88 VC:50
ENC:RLE,BIT PACKED,PLAIN

» Sampling data using head and cat: Let's now have a sneak peek at the first few
rows of the data. The head function will help us do that. It accepts an additional -n
parameter, where you can specify the number of records to be displayed:

bash-3.2$ parquet-tools-1.6.0rc3/parquet-tools head -n 2
part-r-00001.parquet

The preceding command will display only two rows because of the additional -n 2 parameter.
The following is the output of this command:

id = 1
name = Burke

phone 1-300-746-8446

email = ullamcorper.velit.in@ametnullaDonec.co.uk

id = 2
name = Kamal

phone = 1-668-571-5046

email = pede.Suspendisse@interdumenim.edu

Optionally, if you wish to display all the records in the file, you can use the cat parameter with
the parquet-tools command:

parquet-tools cat part-r-00001l.parquet

Loading and Preparing Data - DataFrame

Enable compression for the Parquet file

As you can see from the meta information, the data is gzipped by default. In order to

use Snappy compression, all that we need to do is set a configuration to our SQL.Context
(actually the sQLConf of SQLContext). There's just one catch with regard to enabling
Lempel-Ziv-Oberhumer (LZ0O) compression—we are required to install native-1zo on all
the machines where this data is stored. Otherwise, we get a "native-1zo library not
available" error message.

Let's enable Snappy (http://google.github.io/snappy/) compression by passing the
configuration parameter of Parquet compression to Snappy:

sglContext.setConf ("spark.sqgl.parquet.compression.codec", "snappy")
After running the program, let's use the parquet-tools meta command to verify it:

parquet-tools meta part-r-00000-aee54b77-288e-44b2-8£36-53b38a489e8d.
snappy .parquet

creator: parquet-mr version 1.6.0rc3 (build d4d5a@7ecSbd262caled3¢c3@9f1d7d4a74ebdadc)
extra: org.apache.spark.sql.parquet.rov.metadata = {"type":"struct”,"fields":[{"name":"id", " "type":"string”,"nullable”:true, ‘metadata”:{}},{ "name":"name
", "type":"string"”,"nullable"”:true, [more]...

file schema: roct

id: OPTIONAL BINARY O:UTFE R:@ D:1
name : OPTIDNAL BINARY O:UTF8 R:@ D:1
phone: OPTIONAL BINARY O:UTF8 R:@ D:1
email: OPTIONAL BINARY O:UTF8 R:@ D:1

row group 1: RC:58 T5:3516

id: BINARY SNAPPY D0:@ FPO:4 57:245/326/1.33 VC:5@ ENC:BIT_PACKED,RLE,PLAIN
name: BINARY SNAPPY D0:@ FP0:249 5Z:423/483/1.14 VC:5@ ENC:BIT_PACKED,RLE,PLAIN
phone: BINARY SNAPPY D0:@ FP0:672 SZ:748/961/1.28 VC:5@ ENC:BIT_PACKED,RLE,PLAIN
email: BINARY SNAPPY D0:@ FP0:1420 5Z:1375/1746/1.27 VC:58 ENC:BIT_PACKED,RLE,PLAIN

Using the Avro data model in Parquet

Parquet is a kind of highly efficient columnar storage, but it is also relatively new. Avro
(https://avro.apache.orqg) is a widely used row-based storage format. This recipe
showcases how we can retain the older and flexible Avro schema in our code but still use
the Parquet format during storage.

The Spark MR project (yes, the one that has the Parquet tools we saw in the previous recipe)
has converters for almost all the popular data formats. These model converters take your
format and convert it into Parquet format before causing it to persist.

http://google.github.io/snappy/
https://avro.apache.org

Chapter 3

How to do it...

In this recipe, we'll use the Avro data model and serialize the data in a Parquet file. The recipe
involves the following steps:

1. Create the Avro Model.
Generate Avro objects using the sbt avro plugin.
Construct the RDD of your generated object (StudentAvro) from Students.csv.
Save the RDD [StudentAvro] in a Parquet file.

Read the file back for verification.

© o M w Db

Use Parquet-tools to verify.

Creation of the Avro model

The Avro schema is defined using JSON. In our case, we'll just use the same Student.csv
as the input file. So, let's code the four fields— 1d, name, phone, and email—in the schema:

{"namespace": "studentavro.avro",

"type": "record",

"nmame": "StudentAvro",

"fields": [
{"name": "id", "type": ["string", "null"]},
{"name": "name", “"type": ["string", "null"]},
{"name": "phone", "type": ["string", "null"]},
{"name": "email", "type": ["string", "null"]}

]
}

Probably, you are already familiar with Avro, or you have already understood the schema just
by taking a look at it, but let me bore you with some explanation of the schema anyway.

The namespace and name attributes in the JSON translate into our package name and class
name in our world, respectively. So, our generated class will have a fully qualified name as
studentavro.avro.StudentAvro. The "record" (of the type attribute) is one of the
complex types in Avro (http://avro.apache.org/docs/1.7.6/spec.html#schema
complex). Let me rephrase this again. A record roughly translates to classes in Java/

Scala. It is at the topmost level in the schema hierarchy. A record can have multiple fields
encapsulated inside it, and these fields can be primitives (https://avro.apache.org/
docs/1.7.7/spec.html#schema primitive)or other complex types. The last bit about
the type having an array of types is interesting ("type": ["string", "null"]). Itjust
means that the field can be more than one type. In Avro terms, it is called a union.

Now that we are done with the schema, let's save this file with an extension of .avsc. | have
saved it as student .avsc in the src/main/avro directory.

(7]

http://avro.apache.org/docs/1.7.6/spec.html#schema_complex
http://avro.apache.org/docs/1.7.6/spec.html#schema_complex
https://avro.apache.org/docs/1.7.7/spec.html#schema_primitive
https://avro.apache.org/docs/1.7.7/spec.html#schema_primitive

Loading and Preparing Data - DataFrame

Generation of Avro objects using the sbt-avro plugin

The next step is to generate a class from the schema. The reason we stored the avro
schema file in the src/main/avro folder is this: we'll be using an sbt -avro plugin
(https://github.com/cavorite/sbt-avro)to generate a Java class from the
schema. Configuring the plugin is as easy as configuring any other plugin for SBT:

» Let's add the plugin to project/plugins. sbt:
addsbtPlugin("com.cavorite" % "sbt-avro" % "0.3.2")

» Add the default settings of the plugin to our build. sbt:
seq(sbtavro.SbtAvro.avroSettings : *)
» Let's generate the Java class now. We can do this by calling sbt avro:generate.

You can see the generated Java file at target/scala-2.10/src_managed/
main/compiled avro/studentavro/avro/StudentAvro.java.

Gabriel@Gobriels-MacBook-Pro ~/D/o/53/C/s/chapter3-dato-loading-parquet> sbt ovro:generate

[info] Leading global plugins from /Users/Gabriel/.sbt/@.13/plugins

[info] Loading project definition from /Users/Gabriel/Dropbox/arun/ScalabataAnalysis/Code/scaladataanalysisCB-tower/chapter3-dat
a-leading-parquet/project

C] Multiple resoclvers having different access mechanism configured with same name 'sbt-plugin-releases’. To avoid conflict,

Remove duplicate project resclvers ('resolvers’) or rename publishing resolver (publishTo’).

[info] Set current project to chapter3-data-loading-parquet (in build file:/Users/Gaobriel/Dropbox/arun/ScalabataAnalysis/Code/sc
aladataanalysisCB-tower/chapter3-data-loading-parquet/)

[info] Avro compiler using stringType=String

[info] Cempiling Avre schema /Users/Gabriel/Dropbox/arun/ScalabDataAnalysis/Code/scaladataanalysisCB-tower/chapter3-data-loading-
parquet/src/mainsavros/student . avsc

[success] Total time: 1 s, completed Sep 2@, 2015 9:@7:21 AM

v TEJ- > chapter3-data-loading-parquet [scaladataanalysisCB-tower master]
[sre/main/scala
%5 sre/maindava
([srcitest/scala
(% sro/test/java
¥ =i\ Referenced Libraries
» =)\, Scala Compiler [2.10.4]
» =i Scala Library [2.10.4]
P =\ JRE System Library [Java SE 7 [1.7.0_45]]
P [Z3 = metastore_db
¥ [z > project
¥ (5 project
¥ [=-target
P (= config-classes
¥ (= resolution-cache
» [=scala-2.10
¥ [streams
5 plugins.sbt
MR
¥ (> main
¥ =z avro
» student.avsc
[=3 resources
(Frtest
¥ 23> studentAvroPq
¥ [=-target
» [resolution-cache
¥ (=-scala-2.10
» (= cache
¥ [=-src_managed
¥ [=>main
¥ (= compiled_avro
¥ = studentavro

¥ [=avro

https://github.com/cavorite/sbt-avro

Chapter 3

» We also need the following library dependencies. Finally, let's perform an SBT compile
to compile the class so that the rest of the project picks up the generated Java file:

libraryDependencies ++
"org.apache.spark"
"org.apache.spark"
"org.apache.spark" "spark-mllib" % sparkVersion,
"org.apache.spark" %% "spark-hive" % sparkVersion,
"org.apache.avro" % "avro" % "1.7.7",
"org.apache.parquet" % "parquet-avro" % "1.8.1",

) o

"com.twitter" %% "chill-avro" % "0.6.0"

Seq (
"spark-core" % sparkVersion,

o

"spark-sgl" % sparkVersion,

)

o o o°
o o0 o° |l

o\

sbt compile

Constructing an RDD of our generated object from Students.csv

This step is very similar to the previous recipe in the sense that we use the
convertCSVToStudents function to generate an RDD of the StudentAvro object. Also,
since this isn't a Scala class and the generated Java object comes up with a builder inside
it, we use the builder to construct the class fluently (http://en.wikipedia.org/wiki/
Fluent interface):

val conf = new
SparkConf () . setAppName ("AvroModelToParquet") .setMaster ("local [2] ")

val sc = new SparkContext (conf)

val sglContext = new SQLContext (sc)

sglContext.setConf ("spark.sqgl.parquet.binaryAsString", "true")
val rddOfStudents = convertCSVToStudents ("StudentData.csv", sc)

//The CSV has a header row. Zipping with index and skipping the
first row
def convertCSVToStudents (filePath: String, sc: SparkContext) :
RDD [StudentAvro] = {
val rddOfStudents:
RDD [StudentAvro]l =sc.textFile (filePath) .flatMap (eachLine => {
val data = eachLine.split ("\\|")
if (data(0) == "id") None
else Some (StudentAvro.newBuilder ()
.setId(data(0))
.setName (data (1))
.setPhone (data (2))
.setEmail (data(3)) .build())
3

rddOfStudents

http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Fluent_interface

Loading and Preparing Data - DataFrame

Saving RDD[StudentAvro] in a Parquet file

This is a tricky step and involves multiple substeps. Let's decipher this step backwards.

We fall back to RDD [StudentAvro] in this example instead of a DataFrame because
DataFrames can be constructed only from an RDD of case classes (or classes that extend
Product, as we saw earlier in this chapter) or from RDD [org . apache. spark.sqgl .Row].
If you prefer to use DataFrames, you can read the CSV as an array of values, and

use RowFactory.create for each array of values. Once an RDD [Row] is available,

we can use sglContext.createDataFrame to convert it to a DataFrame:

>

In order to save the RDD as a Hadoop SequenceFile, we can use
saveAsNewAPIHadoopFile. A sequence file is simply a text file that holds
key-value pairs. We could have chosen one of the Student attributes as a key,
but for the sake of it, let's have it as a Void in this example.

To represent a pair (key-value) in Spark, we use PairRDD (https://spark.
apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.
rdd.PairRDDFunctions). Not surprisingly, saveAsNewAPIHadoopFile is
available only for PairRDDs. To convert the existing RDD [StudentAvro] to a
PairRDD [Void, StudentAvro], we use the map function:

val pairRddOfStudentsWithNullKey = rddOfStudents.map (each
=> (null, each))

Spark uses Java serialization by default to serialize the RDD to be distributed
across the cluster. However, the Avro model doesn't implement the serializable
interface, and hence it won't be able to leverage Java serialization. That's no reason
for worry, however, because Spark provides another 10x performant serialization
mechanism called Kryo. The only downside is that we need to explicitly register our
serialization candidates:
val conf = new
SparkConf () . setAppName ("AvroModelToParquet") .setMaster ("local [2]")
conf.set ("spark.kryo.registrator",
classOf [StudentAvroRegistrator] .getName)

conf.set ("spark.serializer",
"org.apache.spark.serializer.KryoSerializer")

So, we say using the "spark.serializer" configuration that we intend to use
KryoSerializer, and that our registrator is StudentAvroRegistrator. As
you may expect, what the Registrator does is register our StudentAvro class as
a candidate for Kryo serialization. The twitter-chill project (https://github.
com/twitter/chill) provides a nice extension to delegate the Kryo serializer to
use the Avro serialization:

class StudentAvroRegistrator extends KryoRegistrator ({
override def registerClasses (kryo: Kryo) {

https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://github.com/twitter/chill
https://github.com/twitter/chill

Chapter 3

kryo.register (classOf [StudentAvro],
AvroSerializer.SpecificRecordBinarySerializer [StudentAvro])
}
}

The intent of this recipe is to write a Parquet file, but the data model (schema) is Avro.
Since we are going to write this down as a sequence file, we'll be using a bunch of
Hadoop APIs. The org. apache.hadoop.mapreduce.Output Format specifies
the output format of the file that we are going to write, and as expected, we use
ParquetOutputFormat (this is available in the parquet -hadoop subproject in
the parquet -mr project). There are two things that an OutputFormat requires:

o TheWriteSupport class, which knows how to convert the Avro data model
to the actual format. This is achieved with the following line:

ParquetOutputFormat.setWriteSupportClass (job,
classOf [AvroWriteSupport])

o The schema needs to be written to the footer of the Parquet file too. The
schema of StudentAvro is accessible by using the getClassSchema
function. This line of code achieves that:

AvroParquetOutputFormat.setSchema(job, StudentAvro.
getClassSchema)

Now, what's that job parameter doing here in these two lines of code? The job
object is just an instance of org.apache .hadoop.mapreduce . Job:

val job = new Job()

When we call the setWriteSupportClass and setSchema methods of
ParquetOutputFormat and AvroParquetOutputFormat, the resulting
configuration is captured inside the JobConf encapsulated inside the Job object.
We'll be using this job configuration while saving the data in a sequence file.

Finally, we save the file by calling saveAsNewAPIHadoopFile. The save method
requires a bunch of parameters, each of which we have already discussed. The first
parameter is the filename, followed by the key and the value classes. The fourth is
the outputFormat of the file, and finally comes the job configuration itself:

pairRddOfStudentsWithNullKey.saveAsNewAPIHadoopFile ("studentAvro
Pq",

classOf [Void],

classOf [StudentAvro],

classOf [AvroParquetOutputFormat] ,

job.getConfiguration())

Loading and Preparing Data - DataFrame

We saw the entire program in bits and pieces, so for the sake of completion, let's see
it completely:

object ParquetAvroSchemaMain extends App {

val conf = new

SparkConf () . setAppName ("AvroModelToParquet") .setMaster ("local [2] ")
conf.set ("spark.kryo.registrator",

classOf [StudentAvroRegistrator] .getName)

conf.set ("spark.serializer",
"org.apache.spark.serializer.KryoSerializer")

val job = new Job ()

val sc = new SparkContext (conf)

val sglContext = new SQLContext (sc)

sglContext.setConf ("spark.sqgl.parquet.binaryAsString",
"true")

val rddOfStudents =
convertCSVToStudents ("StudentData.csv", sc)

ParquetOutputFormat .setWriteSupportClass (job,
classOf [AvroWriteSupport])

AvroParquetOutputFormat .setSchema (job,
StudentAvro.getClassSchema)

val pairRddOfStudentsWithNullKey = rddOfStudents.map (each
=>
(null, each))

pairRddOfStudentsWithNullKey.saveAsNewAPIHadoopFile ("studentAvro
Pq",

classOf [Void],

classOf [StudentAvro],

classOf [AvroParquetOutputFormat] ,

job.getConfiguration())

//The CSV has a header row. Zipping with index and
skipping the first row
def convertCSVToStudents (filePath: String, sc:
SparkContext) :
RDD [StudentAvro] = {
val rddOfStudents:
RDD [StudentAvro] =sc.textFile (filePath) .flatMap (eachLine =>

{

val data = eachLine.split ("\\|")

=

Chapter 3

if (data(0) == "id") None
else Some (StudentAvro.newBuilder ()
.setId(data(0))
.setName (data (1))
.setPhone (data (2))
.setEmail (data(3)) .build())
)

rddOfStudents

class StudentAvroRegistrator extends KryoRegistrator ({
override def registerClasses (kryo: Kryo) {

kryo.register (classOf [StudentAvro],
AvroSerializer.SpecificRecordBinarySerializer [StudentAvro])

}

Reading the file back for verification

As always, let's read the file back for confirmation. The function to be called

for this is newAPIHadoopFile, which accepts a similar set of parameters as
saveAsNewAPIHadoopFile: the name of the file, InputFormat, the key class, the value
class, and finally the job configuration. Note that we are using newAPIHadoopFile instead
of the previously used the parquetFile method. This is because we are reading from a
Hadoop sequence file:

//Reading the file back for confirmation.

ParquetInputFormat.setReadSupportClass(job, classOf [AvroWriteSupport])

val readStudentsPair = sc.newAPIHadoopFile("studentAvroPq", classOf[Av
roParquetInputFormat [StudentAvrol]l, classOf[Void], classOf[StudentAvro],
job.getConfiguration())

val justStudentRDD: RDD[StudentAvro] = readStudentsPair.map(. 2)
val studentsAsString = justStudentRDD.collect().take(5).mkString("\n")

println (studentsAsString)

This is the output:

[info] {"id": "1", "name": "Burke", "phone": "1-380@-746-8446", "email": "ullamcorper.velit.in@ametnullaDonec.co.uk"}
[info] {"id": "2", "name": "Kamal"”, "phone": "1-668-571-5846", "email": "pede.Suspendisse@interdumenim.edu"}

[info] {"id": "3", "name": "Olga", "phone": "1-956-311-1688", "email": "Aenean.eget.metus@dictumcursusNunc.edu"}
[infe] {"id": "4", "name": "Belle", "phene": "1-246-894-6348", "email": "wvitae.aliguet.nec@neque.co.uk"}

[infe] {"id": "5", "name": "Trever", "phone": "1-3B0-527-4967", "email": "dapibus.id@acturpisegestas.net"}

&1

Loading and Preparing Data - DataFrame

Using Parquet tools for verification

We'll also use Parquet tools to confirm that the schema that is stored in the Parquet file is
indeed an avro schema:

/Users/Gabriel/Dropbox/arun/ScalaDataAnalysis/git/parquet-mr/parquet-
tools/target/parquet-tools-1.6.0rc3/parquet-tools meta /Users/Gabriel/
Dropbox/arun/ScalaDataAnalysis/Code/scaladataanalysisCB-tower/chapter3-
data-loading-parquet/studentAvroPq

Yup! Looks like it is! The extra section in meta does confirm that the avro schema is stored:

creator: parquet-mr
extra: parquet.avro.schema = {"type":"record", "name":"StudentAvro",
"namespace":"studentavro.avro","fields": [{"name":"id", "type": [{"type":"st

ring","avro.java.string":"Stri [more]...

creator: parquet-mr
extra: parquet.avro.schema = {"type":"record","name":"StudentAvro","namespace”:"studentavro.avro”,"fields": [{"name":"id","

file schema: studentavro.avro.5tudentAvro

id: OPTIONAL BINARY O:UTF8 R:@ D:1
name : OPTIONAL BINARY O:UTF8 R:@ D:1
phone: OPTIONAL BINARY D:UTF8 R:@ D:1
email: OPTIONAL BINARY O:UTF8 R:@ D:1

row group 1: RC:5@ TS:3382

id: BINARY UNCOMPRESSED DO:@ FP0:4 5Z:316/316/1.8@ VC:5@ ENC:PLAIN,RLE,BIT_PACKED

name : BINARY UNCOMPRESSED DO:@ FP0D:320 57:478/470/1.0@ VC:50 ENC:PLAIN,RLE,BIT_PACKED
phone: BINARY UNCOMPRESSED DO:@ FPO:790 57:925/925/1.0@ VC:50 ENC:PLAIN,RLE,BIT_PACKED
email: BEINARY UNCOMPRESSED DO:@ FPO:1715 5Z:1671/1671/1.08 VC:50 ENC:PLAIN,RLE,BIT_PACKED

Loading from RDBMS

As the final recipe on loading, let's try to load data from an RDBMS data source, which is MySQL
in our case. This recipe assumes that you have already installed MySQL in your machine.

How to do it...

Let's go through the prerequisite steps first. If you already have a MySQL table to play with,
you can safely ignore this step. We are just going to create a new database and a table and
load some sample data into it.

The prerequisite step (optional):

1. Creating a database and a table: This is achieved in MySQL by using the create
database and the create table DDL:

create database scalada;

use scalada

~[ee]

Chapter 3

CREATE TABLE student (
id varchar (20),

“name~ varchar (200),
phone varchar (50),
email varchar (200),
PRIMARY KEY (id));

Loading data into the table: Let's dump some data into the table. | wrote a very
simple app to do this. Alternatively, you can use the 1load data infile command
if you have "local-infile=1" enabled on your server and the client. Refer to
https://dev.mysqgl.com/doc/refman/5.1/en/load-data.html for details
about this command.

As you can see, the program loads the Student . csv that we saw in Chapter

2, Getting Started with Apache Spark DataFrames, when we saw how to use
DataFrames with Spark using the databricks.csv connector. Then, for each line,
the data is inserted into the table using the plain old JDBC insert. As you might have
already figured out, we need to add the MySQL connector java dependency to our
build. sbt too:

))

"mysgl" % "mysqgl-connector-java" % "5.1.34"
object LoadDataIntoMySQL extends App {

val conf = new
SparkConf () . setAppName ("LoadDataIntoMySQL") .setMaster ("local [2]")
val config=ConfigFactory.load()
val sc = new SparkContext (conf)
val sglContext = new SQLContext (sc)

val students = sqglContext.csvFile(filePath =
"StudentData.csv", useHeader = true, delimiter = '|')

students.foreachPartition { iter=>
val conn =
DriverManager.getConnection (config.getString ("mysqgl.connection.
url"))

val statement = conn.prepareStatement ("insert into
scalada.student (id, name, phone, email) wvalues (?,?,7?,7?)

ll)

for (eachRow <- iter) {
statement.setString(l, eachRow.getString
statement.setString (2, eachRow.getString
statement.setString (3, eachRow.getString

(0))
(1))
(2))
(3))

statement.setString (4, eachRow.getString

7}

https://dev.mysql.com/doc/refman/5.1/en/load-data.html

Loading and Preparing Data - DataFrame

statement .addBatch ()

statement .executeBatch ()
conn.close ()
println ("All rows inserted successfully")

}
}

A"select * from scalada.student" onthe MySQL client should confirm this, as
shown here:

id name phone email

10 IMaya 1-271-683-2698 accumsan.convallis@ornarelectusjusto.edu

100 Iannix 1-804-635-5645 rutrum@per.org

11 Emi 1-467-270-1337 est@nunc.com

12 Caleb 1-6683-212-0896 Suspendisse@Quisque.edu

13 Florence 1-603-575-2444 sit.amet.dapibus@lacusAliquamrutrum.ca

14 Anika 1-856-828-7883 euismod@ligulaelit.co.uk

15 Tarik 1-398-171-2268 turpis@felisorci.com

Steps for loading RDBMS data into DataFrame:

The recommended approach to loading data from RDBMS databases is using the
SQLContext's 1oad method:

1.

Creating the Spark and sQLContext: You may have already become familiar with
this step by looking at the previous recipes:
val conf = new
SparkConf () .setAppName ("DataFromRDBMS") . setMaster ("local [2]")
val sc = new SparkContext (conf)
val sglContext = new SQLContext (sc)

Constructing a map of options: This map is expected to have not only the driver

and the connection URL, but also the query to be invoked in order to load the data.
In this example, we'll store the parameter values in an external Typesafe config
file and load the values into our program.

The Typesafe application.conf is located at src/main/resources as per
standard SBT/Maven conventions. Here is a screenshot that shows the contents
of application.conf:

[Z| application.conf 23

1mysql.driver="com.mysql.jdbc.Driver"
Zmysql.connection.url="jdbc:mysql://localhost:3306/scalada?user=root&password=orangelZ3"

(e

Chapter 3

Now let's look at the code that constructs the map:

val config = ConfigFactory.load()

val options = Map (
"driver" -> config.getString("mysqgl.driver"),
"url" -> config.getString("mysqgl.connection.url"),
"dbtable" -> " (select * from student) as student",
"partitionColumn" -> "id",
"lowerBound" -> "1",
"upperBound" -> "100",
"numPartitions"-> "2")

The first three parameters are straightforward. The numPartitions specifies the
number of partitions for this job, and partitionColumn specifies the column

in the table based on which the job has to be partitioned. The 1owerBound and
upperBound are values of the "id" field. The amount of data to be handled by

a single partition is calculated using the number of partitions and the lower and
upper bounds.

Loading data from the table: The 1oad function of SQLContext expects two
parameters. The first one specifies that the source of the data is through "jdbc™",
and the second parameter is the options that we constructed in step 2. Let's now
print the schema and show the first 20 rows, as we always do:

val dFrame=sglContext.load("jdbc", options)
dFrame.printSchema ()

dFrame. show ()

This is the output:

id: string (nullable = false)

name: string (nullable = true)
phone: string (nullable = true)
email: string (nullable = true)

gender: string (nullable = true)

We see that the schema of the DataFrame is derived from the MySQL table definition by
examining the not nullable constraint of the id field.

]

Loading and Preparing Data - DataFrame

The output is as follows:

[info] id name phone email

[info] 1@ Maya 1-271-683-2698 accumsan.convalli...
[info] 1@@ Mannix 1-8@4-635-5645 rutrumZper.org
[info] 11 Emi 1-467-278-1337 est@nunc.com

[info] 12 Caleb 1-683-212-0896 Suspendisse®Quisqg...
[info] 13 Florence 1-6@3-575-2444 sit.amet.dapibus@. ..
[info] 14 Anika 1-856-82B-7B83 euismod@ligulaeli...
[info] 15 Tarik 1-398-171-2268 turpis@felisorci.com
[info] 16 Amena 1-878-250-3129 lorem.luctus.ut@s. ..
[info] 17 Blossom 1-154-486-9596 Nunc.commodo.auct. . .
[info] 18 Guy 1-869-521-3230 senectus.et.netus...
[info] 19 Malachi 1-6BE8-637-2772 Proin.mi.Aliquam. ..
[info] 2 Kamal 1-668-571-5846 pede.Suspendisse@. ..
[info] 286 Edward 1-711-718-6552 lectus@aliquetlib...
[info] 21 1-598-439-7549 consectetuer.adip...
[info] 22 Talon 1-880-986-1269 nec.malesuada.ut@. ..
[info] 23 Julie 1-430-807-5430 turpis.Nulla.aliqg...
[info] 24 Marsden 1-477-629-7528 Donec.dignissim.m...
[info] 25 Igor 1-983-815-5364 conubio@tellus.co.uk
[info] 26 Amela 1-526-909-2605 in@vitaesodales.edu
[info] 27 Bianca 1-842-558-2906 posuere.cubilio@s...

Preparing data in Dataframes

Other than filtering, conversions, and transformations (with DataFrames which we saw

in Chapter 2, Getting Started with Apache Spark DataFrames) , let's see a few more data
preparation tricks in this recipe. We'll also be looking at specific data preparation in Chapter 5,
Learning from Data, where we will focus on using various machine learning algorithms.

How to do it...

While preprocessing data, we may be required to:

» Merge two different datasets
» Perform set operations on two datasets
» Sort the DataFrame by casting an attribute value
» Choose a member from one dataset over another based on the predicate
» Parse arbitrary date/time inputs
We'll use the StudentPrepl.csvand StudentPrep2 . csv datasets for the first four tasks,

and for the last one, we'll use StrangeDate. json, a JSON-based dataset. The CSV and the
JSON dataset are chosen primarily for convenience—the input data could be anything.

5]

Chapter 3

The StudentPrepl.csv dataset is shown in this screenshot:

11Burke|1-30@-746-8446|ulLlamcorper.velit. inBametnul laDonec. co.uk
21Kamal | 1-668-571-5046 | pede . Suspendisse@interdumenim. edu
3101lgall-956-311-1686]1Aenean. eget . metus®dictumcursusNunc. edu
41Bellel1-246-894-63481vitae.aliquet.nec@neque. co. uk
51Trevor|1-30@-527-4967 | dapibus. id@acturpisegestas.net
6lLaurel|1-691-379-9921 1 adipiscing@consectetueripsum. edu
715aral1-688-148-19951Donec . nibh@enimEtiamimperdiet. edu
81Kaseem|1-881-586-2689] cursus.et.magna@euismod.org
91Lev|1-916-367-5608 | Vivamus . nisi@lpsumdolor. com

10 IMaya|1-271-683-2698 | accumsan . convallis@ornarelectusjusto. edu

The StudentPrep2.csv dataset is shown in the following screenshot:

idlstudentName|phonelemail

1| BurkeDifferentNamel1-300-746-8446|ullamcorper.velit.in@ametnullaDonec.co.uk
21 KamalDifferentName|1-668-571-5046|pede. Suspendisse@interdumenim.edu
3101gal1-956-311-16861Aenean.eget.metus@dictumcursusNuncDifferentEmail.edu
4|BelleDifferentNamel1-246-894-634@|vitae.aliquet.nec@neque.co.uk
51Trevor|1-300-527-4967 |dapibusDifferentEmail.id@acturpisegestas.net

6lLaurelInvalidPhone | @0000000@|adipiscing®consectetueripsum. edu

999 LevUniqueToSecondRDD|1-916-367-5608 | Vivamus.nisi@ipsumdolor. com

+ The code for this recipe can be found at https://github.com/

arunma/ScalaDataAnalysisCookbook/tree/master/
’ chapter3-data-loading

Let's convert them into a DataFrame using the databricks/spark-csv library, which we
used in Chapter 2, Getting Started with Apache Spark DataFrames, when we talked about
loading DataFrames from CSV:

import com.databricks.spark.csv.CsvContext

val studentsl=sglContext.csvFile (filePath="StudentPrepl.csv",
useHeader=true, delimiter='|")
val students2=sglContext.csvFile (filePath="StudentPrep2.csv",
useHeader=true, delimiter='|")

i

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading

Loading and Preparing Data - DataFrame

1.

Merging datasets: The DataFrame provides a convenient way to merge another
DataFrame—unionAll. The unionall accepts another DataFrame as an argument.
Not surprisingly, the merged DataFrame maintains duplicates inside it:

val allStudents=studentsl.unionAll (students2)

allStudents.show(allStudents.count () .toInt)

The output is shown as follows:

i e niniti it ittt ittt +

I idl studentName | phone| emaill

i it it dmmmmmmm s mm e +
11 Burke|1-30@-746-8446|ullamcorper.velit...
21 Kamal|1-668-571-5046|pede.Suspendisse®. . .
31 Olgall-956-311-1686|Aenean.eget.metus. . .
4] Bellel1-246-894-6348vitae.aliquet.nec. ..
51 Trevor|1-3@0-527-4967 | dapibus. id@acturp. ..
6l Laurel 11-691-379-9921 | adipiscing@consec. ..
71 Sarall-6@8-140-1995]Donec.nibh@enimEt. . .
81 Kaseem|1-881-586-26831 cursus.et.magnale. . .
9l LevIl—916—36?—5638|¥ivamus.nisi@ipsu...|

I
I
I
|
I
I
I
I
|
| 1@1 Mayal1-271-683-2698| accumsan. convallti. ..
I
I 21 KamalDifferentName|l-668-571-5046]pede.Suspendisse®. . .
I
I
I
I
I
I

|
I
|
I
I
|
I
|
I
I
11 BurkeDifferentName|1-30@-746-8446|ullamcorper.velit...|
I
|
|
I
|
I
|
|
I
|

31 Olgall1-956-311-1686|Aenean.eget.metus. . .
4] BelleDifferentMame|1-246-894-634@|vitae.aliquet.nec...
51 Trevor|1-30@-527-4967 | dapibusDifferentE. ..
61 LaurelInvalidPhonel PPPARRROA | adipiscing@consec. . .
71 Sarall-6@8-140-1995]Donec.nibh@enimEt. . .
8l Kaseem|1-881-586-26891 cursus.et.magnale. . .

I 9l Lev]1-916-367-5608 | Vivamus . nisi@ipsu. ..

I 181 Mayal1-271-683-2698 | accumsan. convalli. ..

19991 LevUniqueToSecondRDD11-916-367-56@88 | Vivamus .nisi@ipsu. ..

e ittt bbbt it Fommmmm e m e +

Performing set operations: Just like unionAll, the DataFrame has functions for
various set operations.

The intersection of two DataFrames would just entail calling the intersect function:
val intersection=studentsl.intersect(students2)

intersection. foreach (println)

[7,8ara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edul
[8,Kaseem,1-881-586-2689, cursus.et.magna@Reuismod.org]
[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edul

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]

Chapter 3
Deriving the difference of one DataFrame from another is done by calling the

except () function with another DataFrame as the parameter:

val subtraction=studentsl.except (students2)

subtraction.foreach(println)

Here is the output:
[6,Laurel,1-691-379-9921,adipiscing@consectetueripsum.edu]
[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.ukl]
[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim. edu]
[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]
[3,01ga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edul]

[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]

If there are duplicates in the data, the distinct function will ignore them and return
a DataFrame with only unique data:

val distinctStudents=allStudents.distinct
distinctStudents.foreach(println)

println(distinctStudents.count())

The following is the output:

[4,BelleDifferentName,1-246-894-6340,vitae.aliquet.nec@neque.
co.uk]

[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]

[2,KamalDifferentName,1-668-571-5046,pede.Suspendisse@
interdumenim.edu]

[999, LevUniqueToSecondRDD, 1-916-367-5608,Vivamus.nisi@ipsumdolor.
com]

[1,BurkeDifferentName,1-300-746-8446,ullamcorper.velit.in@
ametnullaDonec.co.uk]

[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim. edu]
[3,01ga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edul]
[7,Sara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edul
[8,Kaseem,1-881-586-2689, cursus.et.magna@Reuismod.org]
[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]
[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.ukl]
[6,Laurel,1-691-379-9921,adipiscing@consectetueripsum.edul]
[6,LaurelInvalidPhone, 000000000, adipiscing@consectetueripsum.edul]

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]

55}

Loading and Preparing Data - DataFrame

[3,01ga,1-956-311-1686,Aenean.eget.metus@
dictumcursusNuncDifferentEmail.edu]

[5,Trevor,1-300-527-4967,dapibusDifferentEmail.id@acturpisegestas.
netl]

[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edu]

Count output:
17

Sorting the DataFrame by casting an attribute value: Sometimes, our DataFrame
inferences an integer attribute as a string. Since, DataFrames are immutable, the
correct way of converting an attribute from one type to another is by creating another
DataFrame. In this recipe, we'll not only cast one attribute type to another, but also
sort the DataFrame based on that attribute. The simplest way to achieve this is by
using the Spark SQL expression:

val sortedCols=allStudents.selectExpr("cast(id as int) as id",
"studentName", "phone", "email") .sort("id")

println ("sorting")

sortedCols.show(sortedCols.count.toInt)

The output is shown here:

i it bttt mmmm o mmmmm—mm—m e — +
I idl studentName | phone| emaill
i it bttt mmmm o mmmmm—mm—m e — +
[11 Burke|1-360-746-8446|ullamcorper.velit...|
| 11 BurkeDifferentNamel|1-308-746-8446|ullamcorper.velit...|
I 21 KamalI1—668—571—5346Ipede.Susphndisse@...I
I 21 KamalDifferentName|l-668-571-50846|pede.Suspendisse@. .. |
I 31 Olgal1-956-311-16861Aenean. eget.metus. . . |
I 3l Olgal1-956-311-1686|Aenean.eget.metus. . . |
4] Bellell1l-246-894-6348	vitae.aliquet.nec...	
41 BelleDifferentNamel	l-246-894-6340	vitae.aliquet.nec...
5l Trevor	1-308-527-4967	dapibusDifferentE. . .
I 51 Trevor|1-300-527-4967 | dapibus. id@acturp. . .|
Y Laurel 11-691-379-9921 | adipiscing@consec. .. |
I 6] LaurelInvalidPhonel 00BRGORER | adipiscing@consec. . .|
I 71 Saral1-608-14@-1995|Donec.nibh@enimEt. .. |
I 71 Saral1-608-14@-1995|Donec.nibh@enimEt. .. |
I &l Kaseem|1-881-586-2689 | cursus.et.magna@e. . . |
I &l Kaseem|1-881-586-2689 | cursus.et.magna@e. . . |
I 9l Levl1-916-367-5608 | Vivamus.nisi@ipsu. .. |
I 9l Levl1-916-367-5608 | Vivamus.nisi@ipsu. .. |
I 181 Mayal1-271-683-2698 | accumsan. convalli. .. |
I 181 Mayal1-271-683-2698 | accumsan. convalli. . .|
9991 LevUniqueToSecondRDD 1 1-916-367-5688 | Vivamus . nisi@ipsu. . . |
+-——+-——========—== +-————==- +-———========== +

Chapter 3

Choosing a member from one dataset over another based on predicate: Let's
assume that for a given student ID across two different datasets, you would like to
pick only the one that has a longer name (or matches some predicate). The result
would be just one row per ID.

This involves three mini-steps:

1. Map the merged DataFrame (using unional1) and spit out an RDD of
pairs with the key as the ID (or any other field based on which you would
like to merge):

val
idStudentPairs=allStudents.rdd.map (eachRow=> (eachRow.
getString(0) ,eachRow))

2. The next step is to use a function called reduceByKey. It accepts a function
that takes two rows and returns a single row. In our case, we simply write the
logic to choose the row with the longer name:

//Removes duplicates by id and holds on to the row with
the longest name

val idStudentPairs=allStudents.rdd.map (eachRow=> (eachRow.
getString (0), eachRow))

val longestNameRdd=idStudentPairs.reduceByKey ((rowl, row2)
=>

if (rowl.getString(1l) .length()>row2.getString(1l).
length()) rowl else row2

)

3. Let's print the output:
longestNameRdd.values. foreach (println)
The output is as follows:
[4,BelleDifferentName,1-246-894-6340,vitae.aliquet.nec@neque.
co.ukl]
[8,Kaseem,1-881-586-2689, cursus.et.magna@Reuismod.org]
[6,LaurelInvalidPhone, 000000000, adipiscing@consectetueripsum.edul]

[2,KamalDifferentName,1-668-571-5046,pede.Suspendisse@
interdumenim.edu]

[7,Sara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edul

[5,Trevor,1-300-527-4967 ,dapibusDifferentEmail.id@acturpisegestas.
net]

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]

[3,01ga,1-956-311-1686,Aenean.eget.metus@
dictumcursusNuncDifferentEmail.edul]

[55]-

Loading and Preparing Data - DataFrame

[999, LevUniqueToSecondRDD, 1-916-367-5608,Vivamus.nisi@ipsumdolor.

com]

[1,BurkeDifferentName,1-300-746-8446,ullamcorper.velit.in@

ametnullaDonec.co.uk]

[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edu]

Parsing arbitary date/time inputs and convert an array into a comma-separated
string: While preparing the data, we see that, particularly, the date and time appear
in some crazy formats. As always, our aim is to standardize them. For this subrecipe,

we'll be using a JSON that looks like this:

"name"
"name"
"name" :
"name" :
"name"

:"Cecelia Duke","dob":"@9/06/2014 @5:25:39","tags":["reprehenderit”,"cupidatat"”,"elit","esse","exercitation”,"enim","sunt"]},
:"Conrad Lucas","dob":"04/08/2014 @5:54:02","tags":["occaecat”,"
"Tasha Duran","dob":"02/10/2014 00:29:27","tags":["voluptate",
"Faulkner Jackson","dob":"87/83/2014 15:13:08","tags":["anim","
:"Reed Joseph","dob":"03/07/2014 00:19:31","tags":["voluptate",

"consectetur","esse","ad","et", "dolor", "ea"]},

"enim","ullamco”, "incididunt”,"cillum”, "consectetur”,"velit"]}

amet","adipisicing”,"in","est", "reprehenderit"”, "reprehenderit"]} |

eiusmod","commodo"”, "consequat”, "aliqua”,"ad","non"]},

5]

As we saw in previous recipes, we could bring in this JSON as a DataFrame, but the
date format isn't ISO 8601, which means that it won't be considered as a timestamp
and would be treated as plain string. In this subrecipe, let's see how to convert a
string into a date format. This subrecipe involves four steps:

Performing arbitrary transformations is a work in progress
L (https://issues.apache.org/jira/browse/SPARK-4190).

1. Import JSON as a text file:

val stringRDD = sc.textFile("StrangeDate.json")

2. Createaneworg.joda.time.format.DateTimeFormat for the
specific pattern that our input is in:

val formatter = DateTimeFormat.forPattern ("MM/dd/yyyy

HH:mm:ss")

3. We add json4s as our dependency in build. sbt:

"org.json4s" % "jsond4s-core 2.10" % "3.2.11",

"org.jsonds" %

% "json4s-jackson 2.10" % "3.2.11"

4. For each line of the JSON string, parse, and convert the string to org.
jsonds.JsonValue. The advantage of Jsonvalue is that we can
traverse the JSON object with XPath-like expressions.

https://issues.apache.org/jira/browse/SPARK-4190

Chapter 3

Chaining the compact and render function will help us convert JsonvValue to String.
In the following code, we extract the name field as is, convert an array of tags into a
comma-separated string using the extract function, parse the date string using the
DateTimeFormat that we created earlier, and construct a Timestamp object. Finally,
we yield a case class called JsonDataModel out of the for comprehension that wraps
around the name, date, and tags:

case class JsonDateModel (name:String, dob:Timestamp, tags:String)

import org.jsonéds._
import org.json4s.jackson.JsonMethods.
implicit val formats = DefaultFormats

val dateModelRDD = for

json <- stringRDD

jsonValue = parse(json)

name = compact (render (jsonValue \ "name"))
dateAsString=compact (render (jsonValue \ "dob")) .replace("\"","")
date = new Timestamp (formatter.parseDateTime (dateAsString) .

getMillis())

tags = render (jsonValue \ "tags") .extract[List[String]l].

mkString (", ")

} yield JsonDateModel (name, date, tags)

After that, we construct a DataFrame out of this case class RDD and print the schema
to confirm:

import sqglContext.implicits.

val df=dateModelRDD. toDF ()

df.printSchema ()

df.show(df.count.toInt)

The output is as follows:

>

>

Schema:
[info] root
[infe] I-- name: string (nullable = true)
[info] |-~ dob: timestamp (nullable = true)
[infe] I-- tags: string (nullable = true)
Data:
[info] name dob tags
[info] "Cecelia Duke” 2014-89-806 85:25:... ["reprehenderit”,...
[info] "Conrad Lucas” 2014-24-08 @5:54:... [Moccaecat”,"amet...
[info] "Tasha Duran” Z014-92-180 @9:29: ... ["voluptate”,"con...
[info] "Faulkner Jackson” 2014-87-83 15:13:... ["anim”,"eiusmod”...
[info] "Reed Joseph” 2014-83-87 @9:19:... ["voluptate”,"eni...

Data Visualization

In this chapter, we will cover the following recipes:

» Visualizing using Zeppelin
» Creating scatter plots with Bokeh-Scala

» Creating a time series MultiPlot with Bokeh-Scala

Introduction

In all honesty, free / open source data visualization tools in Scala aren't that rich compared to
those in other mature data analysis languages, such as R or Python. We might partly attribute
this to the lack of rich charting frameworks in Java, and visualization has never been a strong
point for big data analytics.

That said, Scala (or more specifically the Hadoop world, including Spark) is catching up with
the presence of the Apache incubator project Zeppelin and the highly active Scala bindings
(https://github.com/bokeh/bokeh-scala) for the Bokeh project (http://bokeh.
pydata.org/en/latest/). With R becoming the first-class citizen in Spark—with the
availability of SparkR DataFrames from 1.4 onwards—Spark gets additional visualization
from R other than the already existing Python APIs.

As a side note, all existing Java libraries are accessible from Scala. Hence, we are free to
borrow any visualization library from Java.

https://github.com/bokeh/bokeh-scala
http://bokeh.pydata.org/en/latest/
http://bokeh.pydata.org/en/latest/

Data Visualization

Visualizing using Zeppelin

Apache Zeppelin is a nifty web-based tool that helps us visualize and explore large datasets.
From a technical standpoint, Apache Zeppelin is a web application on steroids. We aim to use
this application to render some neat, interactive, and shareable graphs and charts.

The interesting part of Zeppelin is that it has a bunch of built-in interpreters—ones that can
interpret and invoke all API functions in Spark (with a SparkContext) and Spark SQL (with a
SQLContext). The other interpreters that are built in are for Hive, Flink, Markdown, and Scala.
It also has the ability to run remote interpreters (outside of Zeppelin's own JVM) via Thrift. To
look at the list of built-in interpreters, you can go through conf/interpreter.jsonin the
zeppelin installation directory. Alternatively, you can view and customize the interpreters from
http://localhost:8080/#/interpreter once you start the zeppelin daemon.

How to do it...

In this recipe, we'll be using the built-in SparkContext and SQLContext inside Zeppelin
and transform data using Spark. At the end, we'll register the transformed data as a table
and use Spark SQL to query the data and visualize it.

The list of subrecipes in this section is as follows:

» Installing Zeppelin

» Customizing Zeppelin's server and websocket port
» Visualizing data on HDFS - parameterizing inputs
» Using custom functions during visualization

» Adding external dependencies to Zeppelin

» Pointing to an external Spark cluster

Installing Zeppelin

Zeppelin (http://zeppelin-project.org/) doesn't have a binary bundle yet. However,
just as its project site claims, it is pretty easy to build from source. We just ought to run one
command to install it on our local machine. At the end of this recipe, we'll take a look at how
to point our Zeppelin to an external Spark master:

git clone https://github.com/apache/incubator-zeppelin.git

cd incubator-zeppelin

mvn clean package -Pspark-1.4 -Dhadoop.version=2.2.0 -Phadoop-2.2
-DskipTests

100

http://zeppelin-project.org/

Chapter 4

[INFO] Reactor Summary:

[INFO]

[INFO] Zeppelin ... oo iine e e nsennesansannnnnnnn SUCCESS [3.364s]
[INFO] Zeppelin: Interpreter ... iiiiiiieeeeeennnnnn SUCCESS [15.299s]
[INFO] Zeppelin: Zendinec.uvuiueenononononsnsununanans SUCCESS [6.853s]
[INFO] Zeppelin: Sparkoeeiiiiiiernnnnnnnssssnnnnsnns SUCCESS [36.770s]
[INFO] Zeppelin: Markdown interpreterc.vviviinnnnns SUCCESS [2.342s]
[INFO] Zeppelin: Angular interpretercvevviiinanas SUCCESS [2.43@s]
[INFO] Zeppelin: Shell interpreterccvvinnrrrernnnnnns SUCCESS [2.855s5]
[INFO] Zeppelin: Hive interpreterc.eeviinnrrrrrnnnnnns SUCCESS [3.454s]
[INFO] Zeppelin: Tajo interpretercoiiiiiieiniinnanas SUCCESS [2.6245]
[INFO] Zeppelin: web Applicationccvvinnnrrennnnnnns SUCCESS [31.395s]
[INFO] Zeppelin: Serverueeiiiuirorsnsssnosssonssnnnss SUCCESS [16.9855]
[INFO] Zeppelin: Packaging distributionco00unan SUCCESS [©.548s]
[INFO] ===-=s= oo oo e e m oo o mmmmmmmmmmmmm e
[INFO] BUILD SUCCESS

[INFO] ===-=s= oo oo e e m oo o mmmmmmmmmmmmm e
[INFO] Total time: Z:83.650s

[INFO] Finished at: Fri May 229 23:18:52 SGT 2015

[INFO] Final Memory: 97M/1323M

[INFO] ===-=== oo oo m oo o mmmmmmmmmm—mm e

Once built, we can start the Zeppelin daemon using the following command:

bin/zeppelin-daemon.sh start

Gabriel@Gabriels-MacBook-Pro ~/A/incubator-zeppeline binszeppelin-daemon.sh
Log dir doesn't exist, create SsUsers/Gabriel/sApps/incubator-zeppelin/logs
Fid dir doesn't exist, create SUsers/Gobriel/Apps/incubator-zeppelin/run
Zeppelin start L]

To stop the daemon, we can use this command:

bin/zeppelin-daemon.sh stop

If you come across the following error, you can check with
rat . txt, only to find that it complains about your data file:

4 Failed to execute goal org.apache.rat:apache-rat-
% plugin:0.11:check (verify.rat) on project zeppelin: Too many
~ files with unapproved license: 3

Simply move your data file to a different location and initiate
e the build again.

Data Visualization

Customizing Zeppelin's server and websocket port

Zeppelin runs on port 8080 by default, and it has a websocket port enabled at the +1

port (8081) by default. We can customize the port by copying conf/zeppelin-site.
xml.template to conf/zeppelin-site.xml and changing the ports and various other
properties, if necessary. Since the Spark standalone cluster master web Ul also runs on 8080,
when we are running Zeppelin on the same machine as the Spark master, we have to change

the ports to avoid conflicts.

1.

102

[] [] ¥ zappelin-site.xml
T' @ | File Path ¥ ; ~/Apps/incubator-zeppelin/conf/zeppelin-site.xm|
1 zeppelin-site.xml % (no symbol selected) =
1 |e?xml wersion="1.8"7>
2 <?xml-stylesheet type="text/xs1" href="configuration.xsl"?=>
3 <lam
4 Licensed to the Apache Software Foundation {ASF) under one or more
5 contributor license agreements. See the NOTICE file distributed with
6 this work for additional information regarding copyright ownership.
7 The ASF licenses this file to You under the Apache License, Version 2.8
8 (the "License"); you may not use this file except in compliance with
9 the License. You may obtain a copy of the License at
10
11 http://www.apache.org/licenses/LICENSE-2.8
12
13 Unless required by applicable law or agreed to in writing, software
14 distributed under the License is distributed on an "AS IS" BASIS,
15 WITHOUT WARRANTIES OR COMDITIONS OF ANY KIND, either express or implied.
16 See the License for the specific language governing permissions and
17 limitations under the License.
18 —_—
19
28 |¥ | <configuration=
21
22 |¥ | <property=
23 =name=zeppelin.server.addr</name=
24 <value=@.8.8.8</value>
25 =description=Server address</description=
26 | - | </property>
27
28 |V | <property=
29 =name=zeppelin.server.port</name=
30 <value=8188</value=
31 =description=Server port. port+l is used for web socket.<=/description=
32 | - | </property>
33
34 |¥ | <property=
35 =name=>zeppelin.websocket.addr=/name=
36 <value=@.8.8.8</value>
37 <description=Testing websocket address</description=
38 - </property=
39
40 <!=— If the port value is negative, then it'll default to the server
41 port + 1.
42 —=
43 |¥ | =property=
44 <name=zeppelin.websocket.port=/name=
45 <value=-1</value=
46 =description=Testing websocket port</description=
47 | </property=
L 48

For now, let's change the port to 8180. In order for this to take effect, let's restart

Zeppelin using bin/zeppelin-daemon restart

Chapter 4

Visualizing data on HDFS - parameterizing inputs

Once we start the daemon, we can point our browser to http://localhost:8080 (change
the port as per your modified port configuration) to view the Zeppelin Ul. Zeppelin organizes
its contents as notes and paragraphs. A note is simply a list of all the paragraphs on a single
web page.

Using data from HDFS simply means that we point to the HDFS location instead of the local
filesystem location.

Before we consume the file from HDFS, let's quickly check the Spark version that Zeppelin
uses. This can be achieved by issuing sc.version on a paragraph. The sc is an implicit
variable representing the SparkContext inside Zeppelin, which simply means that we
need not programmatically create a SparkContext within Zeppelin.

sc.version
res@: String = 1.4.0

Next, let's load the profiles. json sample data file, convert it into a DataFrame, and
print the schema and the first 20 rows (show) for verification. Let's also finally register the
DataFrame as a table. Just like the implicit variable for SparkContext, SQLContext is
represented by the sglc implicit variable inside Zeppelin:

val profilesdsonRdd = sqglc.jsonFile("hdfs://localhost:9000/data/scalada/
profiles.json")

val profileDF=profilesJsonRdd.toDF ()

profileDF.printSchema ()

profileDF.show ()

profileDF.registerTempTable ("profiles")

_@ zeppelin Notebook - Interpreter

VisualizingHDFSData =~ =@ o

%mel
Let's see what we could do with the Profile.json that we have on HDFS

Let's see what we could do with HDFS

val profilesJsonRdd = sqlc.jsonFile(s"hdfs://localhost:9800/data/scalada/profiles.json™)
val profileDF=profiles]sonRdd.toDF()

profileDF.printSchema()
profileDF.show()

profileDF.registerTempTable("profiles")

Data Visualization

The output looks like this:

val profiles]sonRdd = sqlc.jsonFile(s"hdfs://localhost:9000/data/scalada/profiles. json™)
val profileDF=profiles]sonRdd.toDF()

profileDF.printSchema()
profileDF.show()

profileDF.registerTempTable("profiles")

ing, phone: string, registered: string, tags: array<string>]

hone: string, registered: string, tags: array<string>]
root

I-- _id: string (nullable = true)

|-- about: string (nullable = true)

|-- address: string (nullable = true)

|-- age: long (nullable = true)

|-- company: string (nullable = true)

|-- email: string (nullable = true)

|-- eyeColor: string (nullable = true)

|-- favoriteFruit: string (nullable = true)

|-- gender: string (hullable = true)

|-- name: string (nullable = true)

|-- phone: string (nullable = true)

|-- registered: string (nullable = true)

|-- tags: array (nullable = true)

| |-- element: string (containsNull = true)

_id about address age company email

55578ccb@cc5b350d. .. Eu excepteur esse... 694 Oriental Cour... 3@ ENDIPIN tracynguyen@endip... brown
55578ccb6975c4ela. .. Proident exercita... 267 Amber Street,... 23 WARETEL leannagarrett®war... brown
55578ccb33399a615... Aute proident Lor... 243 Bridgewater S5... 24 IMPERIUM blairwhite@imperi... brown
55578ccb@f1d5ab@9... Officia cillum nu... 647 Loring Avenue... 24 BEADZZA andrearay@beadzza... blue
55578ccb591a45d4e. .. Sit fugiat mollit... 721 Bijou Avenue,... 27 AUSTECH penningtongilbert... green
55578cch9f@cd2@c4 ... Minim do eiusmod ... 694 Llama Court, ... 21 PYRAMIA shelleyburns@yra... green
55578ccb8d@accc28... Qui proident ulla... 498 Perry Terrace... 4@ EDECINE nicolefigueroa@ed... green
55578ccbd682ccall... Labore exercitati... 243 Stillwell Ave... 32 SINGAVERA galealvarado@sing... blue
55578ccb@d9@25ddd . .. Velit cillum Lore... 649 Beard Street,... 36 FURNITECH melindaparker@fur... blue
55578ccbSbe7@de@dd. .. Laborum tempor mi... 972 Marconi Place... 36 DIGIAL byerscarson@digia... blue
55578ccbc5a1@850a5. .. Duis fugiat Lorem... 483 Hanson Place,... 31 ASSURITY kristiemckinney®a... green
55578ccb@7fa@2369... Consequat fugiat ... 54@ Woodpoint Roa... 4@ MICROLUXE salazarburks@micr... brown
55578ccb8@9e55bf@. .. Lorem culpa Lorem... 442 Ainslie Stree... 32 VIOCULAR hopkinspatterson®... green
55578ccb2@4ffBee6... Qui ad cillum mag... 444 Argyle Road, ... 23 IMKAN maysrosario®imkan... green
55578ccb4b@62fchl. .. Duis ex velit dui... 571 Sunnyside Ave... 38 HELIXO atkinshancock@hel... blue
55578ccba5ff361a9... Et magna laboris ... 385 Meeker Avenue... 4@ SLOFAST edwinarobertson®s... blue
55578ccb38694@ac3... Labore sit mollit... 936 Cheever Place... 37 FLEETMIX elsienoel@fleetmi... blue
55578ccbfc41ff7fe... Consequat eiusmod... 4@6 Lake Place, M... 36 EVENTAGE mirandamarsh@even... green
55578ccbfabb6c30@. .. Duis fugiat conse... 364 Metropolitan ... 31 BALOOBA sharronmcconnell@... brown
55578ccbdd6650d81. .. Consequat et magn... 113 Applegate Cou... 29 EURON mcdowellwelch@eur. .. blue

profiles]sonRdd: org.apache.spark.sql.DataFrame = [_id: string, about: string, address: string, age: bigint, c

profileDF: org.apache.spark.sql.DataFrame = [_id: string, about: string, address: string, age: bigint, company

eyeColor faw

app
str
ban
app
app
ban
app
ban
str
app
ban
str
app
app
str
str
app
app
app
str

Be careful not to explicitly create SQLContext or SparkContext.
- If we create a SQLContext explicitly and register our temporary

tables to it, it won't be accessible from the SQL queries that we
Y=

execute. We'll get this error:
no such table List ((YOUR TEMP TABLE NAME])

104

Chapter 4

Let's now run a simple query to understand eye colors and their counts for men in the dataset:

%sgl select eyeColor, count(eyeColor) as count from profiles where
gender='male' group by eyeColor

The $sgl at the beginning of the paragraph indicates to Zeppelin that we are about to
execute a Spark SQL query in this paragraph.

%sql select eyeColor, count(eyeColor) as count from profiles where gender='male’ group by eyeColor
Bl ¢ M L SETTINGS -

Al fields:

eyeColor count

Keys Groups Values

‘eyeColor %

@ brown green blue

brown

blue

green

Now, if we wish to share this chart with someone or link it to an external website, we can do
so by clicking on the gear icon in this paragraph and then clicking on Link this paragraph,
as shown in the following screenshot:

—Width | 12 %

@ Move Up

© Move Down

& Insert New

A Show title

[} Link this paragraph

X Remove

@blue brown green

Data Visualization

We can actually parameterize the input for gender instead of altering our query every time.
This is achieved by the use of ${ PARAMETER PLACEHOLDER}:

%sgl select eyeColor, count(eyeColor) as count from profiles where
gender="${gender}" group by eyeColor

%sql FINISHED [>
select eyeColor, count(eyeColor) as count from profiles where gender="${gender}" group by eyeColor

gender female

[:::] Lot [] [5= SETTINGS ~

@blue brown @ green

green

blue

brown

Finally, if parameterizing using free-form text isn't enough, we can use a dropdown instead:

%sgl select eyeColor, count(eyeColor) as count from profiles where gender
="${gender=male,male|female}" group by eyeColor

%sql FINISHED [>
select eyeColor, count(eyeColor) as count from profiles where gender="${gender=male,malelfemale}" group by eyeColor

gender |

female

-
B ol & e SETTINGS +

@blue brown @ green

brown

Running custom functions

While Spark SQL doesn't support a range of functions as wide as ANSI SQL does, it has an
easy and powerful mechanism for registering a normal Scala function and using it inside the
SQL context.

106

Chapter 4

Let's say we would like to find out how many profiles fall under each age group. We have
a simple function called ageGroup. Given an ageg, it returns a string representing the age
group:

def ageGroup(age: Long) = {

val buckets = Array("0-10", "11-20", "20-30", "31-40", "41-50", "51-
6o", "61-70", "71-80", "81-90", "91-100", ">100")

buckets (math.min((age.toInt - 1) / 10, buckets.length - 1))

}

Now, in order to register this function to be used inside Spark SQL, all that we need to do is
give it a name and call the register method of the SQLContext's user-defined function object:

sqglc.udf.register ("ageGroup", (age:Long)=>ageGroup (age.tolnt))
Let's fire our query and see the use of the function in action:

%sql select ageGroup(age) as group,
count (1) as total
from profiles
where gender:'${gender=ma1e,male|female}' group by ageGroup (age)

order by group

Here is the output:

def fnGroupAge(age:Int, bucket:Int=10)={
val buckets=Array("0-10","11-20","20-30","31-40","41-50","51-60","61-7@","71-80","81-90", "91-100",">100")
val bucket=buckets((age-1)/10)
bucket

}

sqlContext.udf.register("fnGroupAge", (age:Long)=>fnGroupAge(age.tolnt))

fnGroupAge: (age: Int, bucket: Int)String
resl2: org.apache.spark.sql.UserDefinedFunction = UserDefinedFunction(<functionls>,StringType)

%sql

select fnGroupAge(age) as ageGroup, count(gender) genderTotal from profiles where gender="${gender=male,malelfemale}" group by fnGroupAge
Cage), gender

gender male M
B o @ M ¥ E SETTINGS -

®31-40 20-30 11-20
11-20

20-30

Data Visualization

Adding external dependencies to Zeppelin

Sooner or later, we would be depending on external libraries than that come bundled with
Zeppelin, say for an efficient CSV import or RDBMS data import. Let's see how to load a
MySQL database driver and visualize data from a table.

In order to load a mysgl connector java driver, we just need to specify the group ID, artifact
ID, and version number, and the JAR gets downloaded from the maven repository. $dep
indicates that the paragraph adds a dependency, and the z implicit variable represents the
Zeppelin context:

%dep

z.load ("mysqgl:mysql-connector-java:5.1.35")

If we would like to point to our enterprise Maven repository or some other custom repository,
we can add them by calling the addrRepo method of the Zeppelin context available via the
same z implicit variable:

%dep
z .addRepo ("RepoName") .url ("RepoURL")

Alternatively, we can load the jar from the local filesystem using the overloaded 1oad
method:

%dep
z.load("/path/to.jar")

The only thing that we need to watch out for while using %$dep is that the dependency paragraph
should be used before using the libraries that are being loaded. So, it is generally advised to
load the dependencies at the top of the Notebook.

Let's see the use in action:

» Loading the dependency:

02eppelin Notebook ~ Interpreter Gonnested
MySQL SR En |e @ & dofaut~

%dep
2.load("mysql:mysql-connector-java:5.1.35")
res@: org.apache.zeppelin.spark.dep.Dependency = org.apache.zeppelin.spark.dep.Dependency®69c9f46a

val props = scala.collection.mutable.Map[String,String]Q;

props+=("driver” -> "com.mysql.jdbc.Driver™)

props+=C"url" -> "jdbc:mysqgl://localhost/scalada?user=root&password=orangel23")
props+=("dbtable" -> "(select id, name, phone, email, gender from scalada.student) as students")
props+=("partitionColumn" -> "id")

props+=("lonerBound’ -> "0")

props+=("upperBound’ -> "160")

propss=("numPartitions” -> "2")

props: scala.collection.mutable.Map[String,String] = Map()
res@: props.type = Map(driver -> com.mysql.jdbc.Driver)

108

Chapter 4

>

Once we have loaded the dependencies, we need to construct the options required to
connect to the MySQL database:

val props = scala.collection.mutable.Map[String,String] () ;
props+=("driver" -> "com.mysql.jdbc.Driver")

props+=("url" -> "jdbc:mysql://localhost/scalada?user=root&passw
ord=orangel23")

props+=("dbtable" -> "(select id, name, phone, email, gender
from scalada.student) as students")

props+=("partitionColumn" -> "id")
props+=("lowerBound" -> "0")
props+= ("upperBound" -> "100")

props+= ("numPartitions" -> "2")

Using the connection to create a DataFrame:

import scala.collection.JavaConverters._

val studentDf = sqlContext.load("jdbc", props.aslava)
studentDf.printSchema()
studentDf . show()
studentDf.registerTempTable("students")

import scala.collection.lavaConverters. _

warning: there were 1 deprecation warning(s); re-run with -deprecation for details

studentDf: org.apache.spark.sql.DataFrame = [id: string, name: string, phone: string, email: string, gender: s
tring]

root
|-
l--
--
--

e Hm——mm— - Fommmmmmmmmmm e m e +-———-= +
lidl name | phonel emaillgenderl
e e e Fo—mmmmmmmm - Fommmmmmmmmm e m e +-=-=-= +
1101 Mayall-271-683-2698 laccumsan.convalli...| Fl
1111 Emil1-467-270-13371 est@nunc. coml Fl
1121 Calebl1-683-212-889615Suspendisse@Quisqg. . .| MI
1131Florencel1-6@3-575-2444|sit.amet.dapibus@. . .| Fl

id: string (nullable = false)
name: string (nullable = true)
phone: string (nullable = true)
email: string (nullable = true)
gender: string (nullable = true)

import scala.collection.JavaConverters.

val studentDf = sglContext.load("jdbc", props.asJava)
studentDf.printSchema ()
studentDf.show ()
studentDf.registerTempTable ("students")

Data Visualization

» Visualizing the data:

B o ¢ M [

@ Grouped O Stacked @ null M F
46.0

40.0

30.0

20.0

10.0

0.0

Pointing to an external Spark cluster

Running Zeppelin with built-in Spark is all good, but in most of our cases, we'll be executing
the Spark jobs initiated by Zeppelin on a cluster of workers. Achieving this is pretty simple;

we need to configure Zeppelin to point its Spark master property to an external Spark master
URL. We'll be looking at how to install and run a Spark cluster on AWS, or a truly distributed
cluster, in a later chapter (Chapter 6, Scaling Up), but for this example, | have a simple and
standalone external Spark cluster running on my local machine. Please note that we will have
to run Zeppelin on a different port because of the Zeppelin Ul port's conflict with the Spark
standalone cluster master web Ul over 8080:

For this example, let's download the Spark source for 1.4.1 and build it for Hadoop version 2.2:

build/mvn -Pyarn -Phadoop-2.2 -Dhadoop.version=2.2.0 -DskipTests clean
package

Similarly, let's download the zeppelin incubator and build it, specifying the Hadoop version
to be 2.2:

mvn clean install -Pspark-1.4 -Dhadoop.version=2.2.0 -Phadoop-2.2
-DskipTests -Pyarn

Let's bring up the Spark cluster. From inside your Spark source, execute this:

sbin/start-all.sh

Chapter 4

Finally, let's modify conf/interpreter.json and conf/zeppelin-env. sh to point
the master property to the host on which the Spark VM is running. In this case, it will be

my localhost, with the port being 7077, which is the default master port.

1. The conf/interpreter.json file:

"ZARAMALGU": {

"id": "ZARAAAIGU",

"name"”: "spark",

"group”: "spark”,

"properties”: {
"spark.cores.max": "",
"spark.yarn.jar": "",
"master”: “spark://Gabriels-MacBook-Pro.local:7e7ve",
"zeppelin.spark.maxResult”: "1@0@",
"zeppelin.dep.localrepo”: "local-repo”,
"spark.app.name”: "Zeppelin”,
"spark.executor.memory”: "31Zm",
"zeppelin.spark.useHiveContext"”: "true",
"zeppelin.spark.concurrentSQL": "false",
"spark.home"; ""

"args”: X

2. The conf/zeppelin-env.sh file:

export JAVA_HOME=
export MASTER=spark://Gabriels-MacBook-Fro. local: 7877

Now, when we rerun Spark SQL from Zeppelin, we can see that the job runs on the external
Spark instance, as shown here:

Workers: 1
Cores: 8 Total, 8 Used

Drivers: 0 Running, 0 Completed
Status: ALIVE

Workers

Worker Id

Running Applications

Application ID
app-20150614205658-0000

Completed Applications

Application ID Name

worker-20150614200314-192.168.2.117-61797

Spark® .., Spark Master at spark://Gabriels-MacBook-Pro.local:7077

URL: spark://Gabriels-MacBook-Pro.local:7077
REST URL: spark://Gabriels-MacBook-Pro.local:6066 (cluster mode)

Memory: 15.0 GB Total, 512.0 MB Used
Applications: 1 Running, 0 Completed

Address State

ALIVE

Cores

192.168.2.117:61797 8 (8 Used)

Name Cores Memory per Node Submitted Time User
Zeppelin 8 512.0 MB 2015/06/14 20:56:58 Gabriel
Cores Memery per Node Submitted Time User

Memory
15.0 GB (512.0 MB Used)

State
RUNNING

State

Duration

25s

Duration

Data Visualization

Creating scatter plots with Bokeh-Scala

While Zeppelin is powerful enough to quickly execute our Spark SQLs and visualize data, it is
still an evolving platform. In this section, we'll take a brief look at the most popular visualizing
framework in Python, called Bokeh, and use its (also fast evolving) Scala bindings to the
framework. Breeze also has a visualization API called breeze-viz, which is built on JFreeChart.
Unfortunately, at the time of writing this book, the APl is not actively maintained, and therefore
we won't be discussing it here.

The power of Zeppelin lies in the ability to share and view graphics on the browser. This

is brought forth by the backing of the D3.js JavaScript visualization library. Bokeh is also
backed by another JavaScript visualization library, called BokehlJS. The Scala bindings library
(bokeh-scala) not only gives an easier way to construct glyphs (lines, circles, and so on)
out of Scala objects, but also translates glyphs into a format that is understandable by the
BokehJS JavaScript components.

There is a warning here: the Bokeh-Scala bindings are still evolving and act at a lower level.
Sometimes, this is more cumbersome than its Python counterpart. That said, | am still sure
that we all would be able to appreciate the amazing graphs that we can create right out

of Scala.

How to do it...

In this recipe, we will be creating a scatter plot using iris data (https://archive.ics.
uci.edu/ml/datasets/Iris), which has the length and width attributes of flowers
belonging to three different species of the same plant. Drawing a scatter plot on this dataset
involves a series of interesting substeps.

For the purpose of representing the iris data in a Breeze matrix, | have naively transformed the
species categories into numbers:

» ris setosa: O

» Iris versicolor: 1

» lris virginica: 2

This is available in irisNumeric.csv. Later, we'll see how we can load the original iris data
(iris.data) into a Spark DataFrame and use that as a source for plotting.

For the sake of clarity, let's define what the various terms in Bokeh actually mean:

» Glyph: All geometric shapes that we can think of—circles, squares, lines, and so
on—are glyphs. This is just the Ul representation and doesn't hold any data. All the
properties related to this object just help us modify the Ul properties: color, x, v,
width, and so on.

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris

Chapter 4

» Plot: A plot is like a canvas on which we arrange various objects relevant to the
visualization, such as the legend, x and y axes, grid, tools, and obviously, the core
of the graph—the data itself. We construct various accessory objects and finally add
them to the list of renderers in the plot object.

» Document: The document is the component that does the actual rendering.
It accepts the plot as an argument, and when we call the save method in the
document, it uses all the child renderers in the plot object and constructs a JSON
from the wrapped elements. This JSON is eventually read by the BokehlJS widgets to
render the data in a visually pleasing manner. More than one plot can be rendered
in the document by adding it to a grid plot (we'll look at how this is done in the next
recipe, Creating a time series MultiPlot with Bokeh-Scala).

A plot is a composition of multiple widgets/glyphs.
This consists of a series of steps:

1. Preparing our data.

Creating the Plot and Document objects.

Creating a point (marker object) and a renderer for it.
Setting the x and y axes' data range for the plot.
Drawing the x and the y axes.

Viewing the marker objects with varying colors.
Adding Grid lines.

Adding a legend to the plot.

® NP O s ®N

Preparing our data

Bokeh plots require our data to be in a format that it understands, but it's really easy to do it.
All that we need to do is create a new source object that inherits from ColumnDataSource.
The other options are AjaxDataSource and RemoteDataSource.

So, let's overlay our Breeze data source on ColumnDataSource:

import breeze.linalg.
object IrisSource extends ColumnDataSource {

private val colormap = Map[Int, Color] (0 -> Color.Red, 1 ->
Color.Green, 2 -> Color.Blue)

private val iris = csvread(file = new File("irisNumeric.csv"),
separator = ', ")

Data Visualization

val sepallength = column(iris(::, 0))
val sepalWidth = column(iris(::, 1))
val petallLength = column(iris(::, 2))
val petalWidth = column(iris(::, 3))
val species = column(iris(::, 4))

}

The first line just reads irisNumeric.csv using the csvread function of the Breeze library.
The color map is something that we'll be using later while plotting. The purpose of this map is
to translate each species of flower into a different color. The final piece is where we convert
the Breeze matrix into ColumnDataSource. As required by ColumnDataSource, we select
and map specific columns in the Breeze matrix to corresponding columns.

Creating Plot and Document objects

Let's have our image's title as Iris Petal Length vs Width and create a document
object so that we can save the final HTML by the name IrisBokehBreeze.html. Since
we haven't specified the full path of the target file in the save method, the file will be saved
in the same directory as the project itself:

val plot = new Plot().title("Iris Petal Length vs Width")

val document = new Document (plot)

val file = document.save("IrisBokehBreeze.html")

println(s"Saved the chart as ${file.url}")

Creating a marker object

Our plot has neither data nor any glyphs. Let's first create a marker object that marks the
data point. There are a variety of marker objects to choose from: Asterisk, Circle,
CircleCross, CircleX, Cross, Diamond, DiamondCross, InvertedTriangle
PlainX, Square, SquareCross, SquareX, and Triangle

Let's choose Diamond for our purpose:

val diamond = new Diamond ()
.x(petallLength)
.y (petalwidth)
.£fill color(Color.Blue)
.fill alpha(0.5)
.size(5)

val dataPointRenderer = new GlyphRenderer () .data source(IrisSource).
glyph (diamond)

114

Chapter 4

While constructing the marker object, other than the Ul attributes, we also say what the x and
the y coordinates for it are. Note that we have also mentioned that the color of this marker is
blue. We'll change that in a while using the color map.

Setting the X and Y axes' data range for the plot

The plot needs to know what the x and y data ranges of the plot are before rendering. Let's do

that by creating two DataRange objects and setting them to the plot:

val xRange =

val yRange =

new DataRangeld () .sources(petal length ::

new DataRangeld () .sources (petal width ::

plot.x range(xRange) .y range (yRange)

Let's try and run the first cut of this program.

The following is the output:

We see that this needs a lot of work to be done. Let's do it bit by bit.

Nil)
Nil)

o
®
o 000 <
*e0 0
¢ 000000 o
¢ 0@

Petal Length vs Width

000 & & &
¢ @
o000 ¢
o000
o0 o °
*e o e 0 0 @
® *
o o ° °
¢ 400 000
@ * s00 *
° 000000
e & o @
@ £X3

L *o

Data Visualization

Drawing the x and the y axes

Let's now draw the axes, set their bounds, and add them to the plot's renderers. We also need
to let the plot know which location each axis belongs to:

//X and Y Axis

val xAxis = new LinearAxis () .plot(plot).axis label ("Petal Length").
bounds ((1.0, 7.0))

val yAxis = new LinearAxis () .plot(plot).axis label ("Petal Width").
bounds ((0.0, 2.5))

plot.below <<= (listRenderer => (xAxis :: listRenderer))

plot.left <<= (listRenderer => (yAxis :: listRenderer))

//Add the renderer to the plot

plot.renderers := List(xAxis, yAxis, dataPointRenderer)

Here is the output:

o
Iris Petal Length vs Width
2.5+ e oo
E ° °
0000 ¢ 0 o °
° o ®
000 © @
2 4 0000 o o
o0 o ®
e 0 00 0 o o
° °
o0 o °
L 1.5 4 ¢ 400 Soo
_'E ° * 000 °
; 3 s000000
E . o:ooo °
()
o 14 ¢ 6 0 o0
E °
0.5 4 ®
o 400 ¢
000 o
¢ 044900 o
- o oe
o-ll‘llllll"Illllllll‘\llllll‘lll
1 2 3 4 5 6 7
Petal Length

Chapter 4

Viewing flower species with varying colors

All the data points are marked with blue as of now, but we would really like to differentiate the
species visually. This is a simple two-step process:

1.

Add new derived data (speciesColor) into our ColumnDataSource to hold colors
that represent the species:

object IrisSource extends ColumnDataSource {

private val colormap = Map[Int, Color] (0 -> Color.Red, 1
-> Color.Green, 2 -> Color.Blue)

private val iris = csvread(file = new
File("irisNumeric.csv"), separator = ',')
val sepallength = column(iris(::, 0))
val sepalWidth = column(iris(::, 1))
val petallLength = column(iris(::, 2))
val petalWidth = column(iris(::, 3))

val speciesColor = column(species.value.map(v =>
colormap (v.round.toInt)))

}

So, we assign red to Iris setosa, green to Iris versicolor and blue to Iris virginica.

Modify the diamond marker to take this as input instead of accepting a static blue:
val diamond = new Diamond ()

.x (petalLength)

.y (petalwidth)

.£fill color (speciesColor)

.£ill1 alpha(0.5)

.size(10)

Data Visualization

The output is as follows:

- = 8107
Iris Petal Length vs Width
2.5 1 &
1 ¢ @
WG CO¢ ¢
¢ ¢ <
OO0 <& <
2 QOO0 ¢ ¢
Lo gl ¢
e W O
¢ ¢
¢ ¢ ¢
£ 1.5 1 & 900 900
o LI R ¢ of ¢
= O Q000000
= WO ©
' i g
o 1+ SO W
1 <
0.5 4 <&
fepe velel
0 &
O 000000 O
¢
o-l T T T T T T T T 1
2 3 4 5 6 7
Petal Length

It looks fairly okay now. Let's add some tools to the image. Bokeh has some nice tools that can
be attached to the image: BoxSelectTool, BoxZoomTool, CrosshairTool, HoverTool,
LassoSelectTool, PanTool, PolySelectTool, PreviewSaveTool, ResetTool,
ResizeTool, SelectTool, TapTool, TransientSelectTool, and WheelZoomTool.

Let's add a few of them to see them for fun:

val panTool = new PanTool () .plot(plot)
val wheelZoomTool = new WheelZoomTool () .plot(plot)
val previewSaveTool = new PreviewSaveTool () .plot(plot)
val resetTool = new ResetTool() .plot(plot)
val resizeTool = new ResizeTool() .plot(plot)

val crosshairTool = new CrosshairTool () .plot(plot)

plot.tools := List(panTool, wheelZoomTool, previewSaveTool, resetTool,
resizeTool, crosshairTool)

118

Chapter 4

- & 0ioF
Iris Petal Length vs Width
2.5 ¢| 00
1 ¢ @
QW0 0 ¢ ¢
& &
1 Q000 & <
2 QOO0 ¢ ¢
1 Ro o &
¢ ¢
e ¢
£ 1.5+ & GO0 000
° ¢ e @
= S Q000000
= Woo o
o @ e
o 14 o
<
0.5 <
& W00 ¢
Lo ok
& 00 &
&
0-' r T
1 2 3 4 5 6 7
Petal Length

Adding grid lines

While we have the crosshair tool, which helps us locate the exact x and y values of a particular

data point, it would be nice to have a data grid too. Let's add two data grids, one for the x axis
and one for the y axis:

val xAxis = new LinearAxis () .plot(plot).axis label ("Petal Length").
bounds ((1.0, 7.0))

val yAxis = new LinearAxis() .plot(plot).axis label ("Petal Width").
bounds ((0.0, 2.5))

val xgrid = new Grid() .plot(plot) .axis (xAxis) .dimension(0)

val ygrid = new Grid() .plot(plot) .axis(yAxis) .dimension (1)

Data Visualization

Next, let's add the grids to the plot renderer list too:

plot.renderers := List(xAxis, yAxis, dataPointRenderer, xgrid, ygrid)
Y
b L .
Iris Petal Length vs Width
2.5 - & %
- o @
WO SO)
oo &
€000 ¢ ©
2 Q000 o @
w o @
e WO ¢
o ¢
oo © ©
£ 1.5 © 00 000
=} ¢ e ®
< O Q000000
= Woo o
5 ® e
o 1 o0 W
o
0.5 <
S0 O
0O
& 000000 ¢
1 ¢ ¢
[S S— — S
1 2 3 4 5 6 7
Petal Length

Adding a legend to the plot

This step is a bit tricky in the Scala binding of Bokeh due to the lack of high-level graphing
objects, such as scatter. For now, let's cook up our own legend. The 1legends property of
the Legend object accepts a list of tuples - a label and a GlyphRenderer pair. Let's explicitly
create three GlyphRenderer wrapping diamonds of three colors, which represent the

species. We then add them to the plot:
val setosa = new Diamond() .fill color(Color.Red) .size(10).£fill alpha(0.5)
val setosaGlyphRnd=new GlyphRenderer () .glyph(setosa)

val versicolor = new Diamond() .fill color(Color.Green) .size(10).£ill
alpha(0.5)

val versicolorGlyphRnd=new GlyphRenderer () .glyph(versicolor)

val virginica = new Diamond() .fill color (Color.Blue) .size(10).£fill
alpha(0.5)

val virginicaGlyphRnd=new GlyphRenderer () .glyph(virginica)

120

Chapter 4
val legends = List("setosa" -> List(setosaGlyphRnd),
"versicolor" -> List(versicolorGlyphRnd),

"virginica" -> List(virginicaGlyphRnd))

val legend = new Legend() .orientation(LegendOrientation.TopLeft).
plot (plot) .legends (legends)

plot.renderers := List(xAxis, yAxis, dataPointRenderer, xgrid, ygrid,
legend, setosaGlyphRnd, virginicaGlyphRnd, versicolorGlyphRnd)

o & 0or
Iris Petal Length vs Width
25 |setosa ¢ < 0
1 |versicolor ¢ ¢ A4
virginica ¢ e 00 *
¢ ¢ ¢
1 000 ¢ ¢
24 QOO0 o ¢
1 e ©
Woe Woe ¢
¢ ¢
¢ O &
£ 15 O 000 00O
o 1 ¢ 00 @
= O Y0000
ol Koo ¢
° 1 ¢ o8
o 14 00
L]
0.5 4 <
O 0O
0 O
& 0000 &
1 ¢ <
04— —t—r + Tt — {
1 2 3 4 5 6 7
Petal Length

. The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/
L chapter4-visualization/src/main/scala/com/
packt/scalada/viz/breeze

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze

Data Visualization

Creating a time series MultiPlot with

Bokeh-Scala

In this second recipe on plotting using Bokeh, we'll see how to plot a time series graph
with a dataset borrowed from https://archive.ics.uci.edu/ml/datasets/
Dow+Jones+Index. We will also see how to plot multiple charts in a single document.

How to do it...

We'll be using only two fields from the dataset: the closing price of the stock at the end of the
week, and the last business day of the week. Our dataset is comma separated. Let's take a
look at some samples, as shown here:

quarter,stock,date,open,high, low,close,volume,percent_change_price,percent_change_volume_over_last_wk, previous_weeks_vol
1,AA,1/7/2011,$15.82,$16.72,$15.78,%$16.42,239655616,3.79267, ,,$16.71,$15.97,-4.42849,26,0.182704
1,AA,1/14/2011,$16.71,$16.71,$15.64,$15.97,242963398,,-4. 42849 ,1.380223028 , 239655616, $16.19,$15.79,-2.47066,19,0.187852
1,AA,1/21/2011,916.19,$16.38,$15.60,$15.79,138428495,-2. 47066, -43. 02495926, 242963398, $15.87,$16.13,1.63831,12,0.189994
1,AA,1/28/2011,%15.87,$16.63,$15.82,$16.13,151379173,1.63831,9. 355500109, 138428495, $16.18,$17.14,5.93325,5,0. 185989
1,AA,2/4/2011,$16.18,%17.39,$16.18,%17.14,154387761,5.93325,1.987451735, 151379173, $17.33,$17.37,0.230814,97,0. 175029
1,AA,2/11/2011,$17.33,$17.48,$16.97,$17.37,114691279,0. 230814, - 25. 71219489, 154387761, $17.39,$17.28,-0.632547,90,0. 172712
1,AA,2/18/2011,$17.39,%17.68,$17.28,$17.28,80023895,-0.632547,-30.22669579,114691279, $16.98,%16.68,-1.76678,83,08.173611
1,AA,2/25/2011,916.98,$17.15,$15.96,$16.68,132981863,-1. 76678 ,66. 17769355, 80023895, $16.81,$16.58,-1.36823,76,0.179856
1,AA,3/4/2011,$16.81,$16.94,$16.13,916.58,109493077,-1.36823,-17. 66315005, 132981863, $16.58,$16.03,-3.31725,69,0. 180941
1,AA,3/11/2011,$16.58,$16.75,$15.42,$16.083,114332562,-3.31725,4.419900447, 109493077, $15.95,$16.11,1.00313,62,0. 187149
1,AA,3/18/2011,$15.95,$16.33,$15.43,$16.11,130374108,1.00313,14.03060136,114332562, $16.38,$17.09,4.33455,55,0.18622
1,AA,3/25/2011,$16.38,$17.24,916.26,%$17.89,95550392 433455, -26.71860729,130374108,$17.13,$17.47,1.08482,48,0.175541

Preparing our data

In contrast to the previous recipe, where we used the Breeze matrix to construct the
Bokeh columnDataSource, we'll use the Spark DataFrame to construct the source this
time. The getSource method accepts a ticker (MSFT-Microsoft and CAT-Caterpillar) and
a SQLContext. It runs a Spark SQL, fetches the data from the table, and constructs a
ColumnDataSource from it:

import org.joda.time.format.DateTimeFormat

object StockSource {
val formatter = DateTimeFormat.forPattern ("MM/dd/yyyy") ;
def getSource(ticker: String, sqglContext: SQLContext) = {

val stockDf = sglContext.sqgl (s"select stock, date, close from
stocks where stock= 'Sticker'")

stockDf . cache ()

122

https://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index
https://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index

Chapter 4

val dateData: Array[Double] =
stockDf.select ("date") .collect.map (eachRow =>
formatter.parseDateTime (eachRow.getString(0)) .getMillis () .toDouble)

val closeData: Array[Double] =
stockDf.select ("close") .collect.map (eachRow =>
eachRow.getString (0) .drop (1) .toDouble)

object source extends ColumnDataSource {

val date = column(dateData)
val close = column(closeData)
!
source

}
Earlier, we constructed sQLContext and registered the dataset as a table, like this:
val conf = new SparkConf () .setAppName ("csvDataFrame") .
setMaster ("local[2]")
val sc = new SparkContext (conf)
val sqglContext = new SQLContext (sc)

val stocks = sqglContext.csvFile(filePath = "dow jones index.data",
useHeader = true, delimiter = ',')

stocks.registerTempTable ("stocks")

The only tricky thing that we do here is convert the date value into milliseconds. This is
because the Plot point requires a double. We use the Joda-Time API to achieve this.

Creating a plot
Let's go ahead and create the P1ot object from the source:

//Create Plot
val plot = new Plot().title(ticker) .x range(xdr) .y range(ydr) .width(800).
height (400)

Let's have our image's title as the ticker name of the stock and create a Document object so
that we can save the final HTML by the name ClosingPrices.html:

val msDocument = new Document (microsoftPlot)
val msHtml = msDocument.save ("ClosingPrices.html")

Data Visualization

Creating a line that joins all the data points

As we saw earlier with the Diamond marker, we'll have to pass the x and the y positions of
the data points. Also, we will need to wrap the Line glyph into a renderer so that we can
add itto Plot:

val line = new Line() .x(date).y(close).line color(color) .line width(2)

val lineGlyph = new GlyphRenderer () .data source(source) .glyph(line)

Setting the x and y axes' data range for the plot

The plot needs to know what the x and y data ranges of the plot are before rendering.
Let's do that by creating two DataRange objects and setting them to the plot:

val xdr = new DataRangeld() .sources (List (date))

val ydr = new DataRangeld() .sources (List (close))

plot.x range(xdr) .y range(ydr)

Drawing the axes and the grids

Drawing the axes and the grids is the same as before. We added some labels to the axis,
formatted the display of the x axis, and then added them to the Plot:

val xformatter = new DatetimeTickFormatter () .formats (Map (DatetimeUnits.
Months -> List("%b %Y")))

val xaxis = new DatetimeAxis() .plot(plot).formatter (xformatter) .axis
label ("Month")

val yaxis = new LinearAxis () .plot(plot).axis label ("Price")
plot.below <<= (xaxis ::)
plot.left <<= (yaxis ::)
val xgrid = new Grid() .plot(plot) .dimension(0) .axis (xaxis)

val ygrid = new Grid() .plot(plot) .dimension (1) .axis(yaxis)

Adding tools
As before, let's add some tools to the image—and to the plot:

//Tools

val panTool = new PanTool () .plot (plot)

val wheelZoomTool = new WheelZoomTool () .plot (plot)

val previewSaveTool = new PreviewSaveTool () .plot (plot)
val resetTool = new ResetTool () .plot (plot)

val resizeTool = new ResizeTool () .plot (plot)

val crosshairTool = new CrosshairTool () .plot (plot)

plot.tools := List (panTool, wheelZoomTool, previewSaveTool,
resetTool, resizeTool, crosshairTool)

Adding a legend to the plot

Chapter 4

Since we already have the Glyph renderer for the 1ine, all we need to do is add it to the

legend. The properties of the line automatically propagate to the legend:

//Legend
val legends = List(ticker -> List(lineGlyph))
val legend = new Legend() .plot(plot) .legends(legends)

Next, let's add all the renderers that we created before to the plot:

plot.renderers <<= (xaxis :: yaxis :: xgrid :: ygrid :: lineGlyph
legend ::)

< & 0P
MSFT —
28]
27 4
@
9
|- 26 .
& 281 A
N] V\/
24]
Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011
Month

As the final step, let's try plotting multiple plots in the same document.

Data Visualization

Multiple plots in the document

Creating multiple plots in the same document is child's play. All that we need to do is create all
our plots and then add them into a grid. Finally, instead of passing our individual plot object
into the document, we pass in GridPlot:

val children = List(List (microsoftPlot, bofaPlot), List(caterPillarPlot,
mmmPlot))

val grid = new GridPlot() .children(children)

val document = new Document (grid)

val html = document.save("DJClosingPrices.html")

28
14
27
@ 3
L L2187
o * o
12
25
1"
24
Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011 Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011
Month Month
964
110
94 4
@ 3
Sos 8B
o o
100 %0
88
95
86
Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011 Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011
Month Month

) The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
i

chapter4-visualization/src/main/scala/com/
packt/scalada/viz/breeze.

In this chapter, we explored two methods of visualization and built some basic graphs and
charts using Scala. As | mentioned earlier, the visualization libraries in Scala are actively
being developed and cannot be compared to advanced visualizations that can be generated
using R or, for that sake, Tableau.

126

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze

Learning from Data

In this chapter, we will cover the following recipes:

» Predicting continuous values using linear regression

» Binary classification using LogisticRegression and SVM

» Binary classification using LogisticRegression with the Pipeline API
» Clustering using K-means

» Feature reduction using principal component analysis

Introduction

In previous chapters, we saw how to load, prepare, and visualize data. Now, let's start doing
some interesting stuff with it. In this chapter, we'll be looking into applying various machine
learning techniques on top of it. We'll look at a few examples for the two broad classifications
of machine learning techniques: supervised and unsupervised learning. Before that, however,
let's briefly see what these terms mean.

Supervised and unsupervised learning

If you are reading this book, you probably already know what supervised and unsupervised
learning are, but for the sake of completion, let's briefly summarize what they mean. In
supervised learning, we train the algorithms with labeled data. Labeled data is nothing but
input data along with the outcome variable. For example, if our intention is to predict whether
a website is about news, we would be preparing a sample dataset of website content with
"news" and "not news" as labels. This dataset is called the training dataset.

Learning from Data

With supervised learning, our end goal is to use the training dataset and come up with a
function that maps our input variables to an output variable with least margin of error. We
call input variables (or x variables) features or explanatory variables, and the output variable
(also known as the y variable or label) the target or dependent variable. In the news website
example, the text content in the website would be the input variable and "news" or "not news"
would be the target variable. The function, along with its parameters (or weights or theta), is
our hypothesis, or model.

In the case of unsupervised learning, we aim to find a structure within the data—groups and
relationships among these groups or the participants of a group. Unlike supervised learning,
we don't know any information about the data or even its subset. An example would be to see
whether there are similar buying patterns among a group of people (which helps cross-selling)
or to see which group of people is more likely to buy pizza from our newly opened store.

Gradient descent

With supervised learning, in order for the algorithm to learn the relationship between the input
and the output features, we provide a set of manually curated values for the target variable

(v) against a set of input variables (x). We call it the training set. The learning algorithm then
has to go over our training set, perform some optimization, and come up with a model that
has the least cost—deviation from the true values. So technically, we have two algorithms for
every learning problem: an algorithm that comes up with the function and (an initial set of)
weights for each of the x features, and a supporting algorithm (also called cost minimization
or optimization algorithm) that looks at our function parameters (feature weights) and tries to
minimize the cost as much as possible.

There are a variety of cost minimization algorithms, but one of the most popular is gradient
descent. Imagine gradient descent as climbing down a mountain. The height of the mountain
represents the cost, and the plain represents the feature weights. The highest point is your
function with the maximum cost, and the lowest point has the least cost. Therefore, our
intention is to walk down the mountain. What gradient descent does is as follows: for every
single step down the slope that it takes of a particular size (the step size), it goes through the
entire dataset (!) and updates all the values of the weights for x features. This goes on until

it reaches a state where the cost is the minimum. This flavor of gradient descent, in which

it sees all of the data per iteration and updates all the parameters during every iteration, is
called batch gradient descent. The trouble with using this algorithm against the size of the
data that Spark aims to handle is that going through millions of rows per iteration is definitely
not optimal. So, Spark uses a variant of gradient descent, called Stochastic Gradient Descent
(SGD), wherein the parameters are updated for each training example as it looks at it one by
one. In this way, it starts making progress almost immediately, and therefore the computational
effort is considerably reduced. The SGD settings can be customized using the optimizer
attribute inside each of the ML algorithm. We'll look at this in detail in the recipes.

128

Chapter 5

In the following recipes, we'll be looking at linear regression, logistic regression, and
support vector machines as examples of supervised learning and K-means clustering,
as well as dimensionality reduction using Principal Component Analysis (PCA) as an
example of unsupervised learning. We'll also briefly look at the Stanford NLP toolkit and
Scala NLP's Epic, popular natural language processing libraries, as examples of fitting a
third-party library into Spark jobs.

Predicting continuous values using linear

regression

At the risk of stating the obvious, linear regression aims to find the relationship between

an output (y) based on an input (x) using a mathematical model that is linear to the input
variables. The output variable, y, is a continuous numerical value. If we have more than one
input/explanatory variable (x), as in the example that we are going to see, we call it multiple
linear regression. The dataset that we'll use for this recipe, for lack of creativity, is lifted
from the UCI website at http://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/. This dataset has 1599 instances of various red wines, their
chemical composition, and their quality. We'll use it to predict the quality of a red wine.

How to do it...

Let's summarize the steps:

Importing the data.

Converting each instance into a LabeledPoint.
Preparing the training and test data.

Scaling the features.

Training the model.

Predicting against the test data.

Evaluating the model.

Regularizing the parameters.

Mini batching.

© ® N o o~ wDd PR

. The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/tree/master/
S chapter5-learning/src/main/scala/com/packt/
scalada/learning/LinearRegressionWine.scala.

http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala

Learning from Data

"Step zero" of this process is the creation of SparkConfig and the SparkContext. There is
nothing fancy here:

val conf new SparkConf () .setAppName ("linearRegressionWine") .
setMaster ("local[2]")

val sc new SparkContext (conf)

Importing the data

We then import the semicolon-separated text file. We map each line into an Array [String]
by splitting each of them using semicolons. We end up with RDD [Array [String]]:

val rdd sc.textFile ("winequality-red.csv") .map(line => line.split(";"))

Converting each instance into a LabeledPoint

As we discussed earlier, supervised learning requires training data to be provided. We are also
are required to test the model that we create for its accuracy against another set of data—the
test data. If we have two different datasets for this, we can import them separately and mark
them as a training set and a test set. In our example, we'll use a single dataset and split it into
training and test sets.

7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
7.8:0.88:0;2.6;0.098;25;67;0.9968;3.2;0.68:9.8:5
7.8:0.76:0.04;2.3;0.092;15;54:0.997;3.26:0.65;9.8;5
11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
7.4;0.7;0:1.9;0.076;11;34;0.9978;3.51;0.56;9.4:5
7.4:0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
7.9:0.6;0.06;1.6;0.069;15;59;0.9964;3.3;0.46;9.4;5
7.3;0.65;0;1.2;0.065;15;21;0.9946;3.39;0.47;10;7
7.8:0.58;0.02;2;0.073;0;18:0.9968:3.36:0.57;0.5;7
7.5:0.5;0.36;6.1;0.071;17;102;0.9978;3.35;0.8;10.5;5
6.7:0.58;0.08;1.8;0.097;15;65:0.0959; 3.28:0.54;9.2:5
7.5:0.5;0.36;6.1;0.071;17;1020.9978;3.35:0.8;10.5:5

Each of our training samples has the following format: the last field is the quality of the

wine, a rating from 1 to 10, and the first 11 fields are the properties of the wine. So, from our
perspective, the quality of the wine is the y variable (the output) and the rest of them are x
variables (input). Now, let's represent this in a format that Spark understands—a LabeledPoint.
A LabeledPoint is a simple wrapper around the input features (our x variables) and our pre-
predicted value (y variable) for these x input values:

val dataPoints=rdd.map (row=>new LabeledPoint (row.last.toDouble,Vectors.
dense (row. take (row.length-1) .map (str=>str.toDouble))))

The first parameter to the constructor of the LabeledPoint is the label (y variable), and the
second parameter is a vector of input variables.

130

Chapter 5

Preparing the training and test data

As we discussed earlier, we can have two different independent datasets for training and
testing. However, it is a common practice to split the dataset into training and test datasets.
In this recipe, we will be splitting the dataset into training and test sets in the ratio of 80:20,
with each of the elements being selected randomly. This random shuffling of data is one of
the prerequisites for better performance of the SGD too:

val dataSplit = dataPoints.randomSplit (Array (0.8, 0.2))

val trainingSet = dataSplit(0)

val testSet = dataSplit (1)

Scaling the features

Running a quick summary statistics reveals that our features aren't in the same range:

val featureVector = rdd.map(row => Vectors.dense(row.take(row.length-1).
map (str => str.toDouble)))

print(s"Max : ${stats.max}, Min : ${stats.min}, and Mean : ${stats.mean}
and Variance : ${stats.variance}")

println ("Min "+ stats.min)

println ("Max "+ stats.max)
Here is the output:

Min [4.6,0.12,0.0,0.9,0.012,1.0,6.0,0.99007,2.74,0.33,8.4]
Max [15.9,1.58,1.0,15.5,0.611,72.0,289.0,1.00369,4.01,2.0,14.9]

Variance : [3.031416388997815,0.0320623776515516,0.0379
4748313440582,1.987897132985963,0.002215142653300991,10
9.41488383305895,1082.1023725325845,3.56202945332629E-
6,0.02383518054541292,0.02873261612976197,1.135647395000472]

It is always recommended that the input variables have a mean of 0. This is easily achieved
with the help of the StandardScaler built into the Spark ML library itself. The one thing that
we have to watch out for here is that we have to scale the training and the test sets uniformly.
The way we do it is by creating a scaler for trainingSplit and using the same scaler to scale the
test set. Another side note is that feature scaling helps with faster convergence in SGD:

val scaler = new StandardScaler (withMean = true, withStd = true).

fit(trainingSet.map(dp => dp.features))

val scaledTrainingSet = trainingSet.map(dp => new LabeledPoint (dp.label,
scaler.transform(dp. features))) .cache()

val scaledTestSet = testSet.map(dp => new LabeledPoint (dp.label, scaler.
transform(dp.features))) .cache()

Learning from Data

Training the model

The next step is to use our training data to create a model. This just involves creating an
instance of LinearRegressionWithSGD and passing in a few parameters: one for the
LinearRegression algorithm and two for the SGD. The SGD parameters can be accessed
through the use of the optimizer attribute inside LinearRegressionWithSGD

» setIntercept: While predicting, we are more interested in the slope. This setting
will force the algorithm to find the intercept too.

» optimizer.setNumIterations: This determines the number of iterations that
our algorithm needs to go through on the training set before finalizing the hypothesis.
An optimal number would be 10”6 divided by the number of instances in your
dataset. In our case, we'll set itto 1000.

» setStepSize: This tells the gradient descent algorithm while it tries to reduce
the parameters how big a step it needs to take during every iteration. Setting this
parameter is really tricky because we would like the SGD to take bigger steps in the
beginning and smaller steps towards the convergence. Setting a fixed small number
would slow down the algorithm, and setting a fixed bigger number would not give us
a function that is a reasonable minimum. The way Spark handles our setStepSize
input parameter is as follows: it divides the input parameter by a root of the iteration
number. So initially, our step size is huge, and as we go further down, it becomes
smaller and smaller. The default step size parameter is 1.
val regression=new LinearRegressionWithSGD() .setIntercept (true)

regression.optimizer.setNumIterations (1000) .setStepSize(0.1)

//Let's create a model out of our training examples.

val model=regression.run(scaledTrainingSet)

Predicting against test data

This step is just a one-liner. We use the resulting model to predict the output (y) based on the
features of the test set:

val predictions:RDD[Double] =model.predict (scaledTestSet.map (point=>point.
features))

Evaluating the model

Let's evaluate our model against one of the most popular regression evaluation metrics—
mean squared error. Let's get the actual values that our test data has (the y variable
prepared manually) and then compare it with the predictions from our model:

val actuals:RDD[Double]=scaledTestSet.map(.label)

132

Chapter 5

Mean squared error

The mean squared error is given by this formula:

MSE:%E’IZ (yi — ¥)?

i=1

So, we take the difference between the actual and the predicted values (errors), square them,
and calculate the sum of them all. We then divide this sum by the number of values, thereby
calculating the mean:

val predictsAndActuals: RDD[(Double, Double)] = predictions.zip(actuals)

val sumSquaredErrors=predictsAndActuals.map{case (pred,act)=>
println (s"act, pred and difference $act, $pred ${act-pred}")
math.pow(act-pred, 2)

}.sum()
val meanSquaredError = sumSquaredErrors / scaledTestSet.count

println(s"SSE is $sumSquaredErrors")

println(s"MSE is $meanSquaredError")
Here is the output:

SSE is 162.21647197365706
MSE is 0.49607483783992984

In our example, we selected all the features that are present in our dataset. Later, we'll take
a look at dimensionality reduction, which helps us reduce the number of features while still
maintaining the variance of the dataset at a reasonably higher level.

Regularizing the parameters

Before we see what regularization is, let's briefly see what overfitting is. A model is said to be
overfit (or having high variance) when it memorizes the training set. The result of this is that
the algorithm fails to generalize and therefore performs badly with unseen datasets. One way
to solve the problem of overfitting is to manually select the important features that will be
used to create the model, but for a large-dimensional dataset, it is hard to decide which ones
to keep and which ones to throw away.

[vww allitebooks.cond

http://www.allitebooks.org

Learning from Data

The other popular option is to retain all the features but reduce the magnitudes of the feature
weights. Thus, even with a model that is complex (with higher degree polynomials), if the
feature weights are really small, the resulting model would be simple. In other words, given
two equally (or almost equally) performing models, with one model being complex (with
higher degree polynomial) and the other model being simple, regularization chooses the
simple model. The reasoning behind this is that models with simple parameters have a
higher probability of predicting unseen data (also known as generalization).

The Spark MLlib comes with implementations for the most common L1 and L2 regularizations.
As a side note, LinearRegressionWithSGD, by default, uses a SimpleUpdater, which
does not regularize the parameters. Interestingly, Spark has implementations of regression
algorithms that are based on top of the L1 and L2 updaters; they are called the Lasso (that
uses the L1 updater) and Ridge (that uses the L2 updater by default).

While the L1 regularizer offers some feature selection when the dataset that we have is
sparse (or if the dataset's rows are smaller than the feature itself), most of the time, it is
recommended is to use the L2 regularizer. The new Pipeline API also has out-of-the-box
support for ElasticNet regularization, which uses both the L1 and L2 regularizations internally.
Now, let's go over the code:

def algorithm(algo: String, iterations: Int, stepSize: Int) = algo
match {
case "linear" => {

val algo = new LinearRegressionWithSGD ()
algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setStepSize (stepSize)
algo
}
case "lasso" => {
val algo = new LassoWithSGD ()
algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setStepSize (stepSize)
algo
}
case "ridge" => {
val algo = new RidgeRegressionWithSGD ()
algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setStepSize (stepSize)
algo
}
}

Chapter 5

As discussed earlier, LassoWithSGD wraps an L1 updater and RidgeRegessionWithSGD
wraps an L2 updater. From a code perspective, all that we need to do is change the name

of the class. The optimizer (gradient descent) now accepts a regularization parameter that
penalizes larger parameters for the features. The default value of the regularization parameter
is 0.01 in Spark. A smaller regularization parameter would result in underfitting, and a large
parameter would result in overfitting.

The following output shows that regularizing the parameters has reduced our error values:

kkkkkkkkkkdk Printing metrics for Linear Regression with SGD
khkkhkkhkhkhkhkhkhkhkhkkkk

SSE is 132.39124792957116
MSE is 0.4124337941731189

kkkkkkkkkkkt*k* Printing metrics for Lasso Regression with SGD
khkkhkhkhkhkhkhkhkhkhkhkhkkk

SSE is 132.3943810653321
MSE is 0.4124435547206608

kkkkkkkkkkkd*k* Printing metrics for Ridge Regression with SGD
khkkhkkhkhkhkhkhkhkhkhkhkkkk

SSE is 132.44011034123344
MSE is 0.4125860135240917

Mini batching

Instead of going through our dataset one by one in the case of SGD, or seeing the entire
dataset for every iteration (in the case of batch gradient descent) while updating the
parameter vector, we can settle for something in the middle. With the mini batch fraction
parameter, for every single iteration, the SGD considers that fraction of the dataset to
process for the parameter update. Let's set the batch size to 5 percent:

algo.setIntercept (true) .optimizer.setNumIterations (iterations).
setStepSize (stepSize) .setRegParam(0.001) .setMiniBatchFraction(0.05)

The results are as follows:

*kkkkkkkkkkd*k* Printing metrics for Linear Regression with SGD
khkkhkkhkhkhkhkhkhkhkhkkkk

SSE is 112.96958667767147
MSE is 0.3574986920179477
SST is 183.05305027649794
Residual sum of squares is 0.38285875866568087

kkkkkkkkkkkt*k* Printing metrics for Lasso Regression with SGD
khkkhkkhkhkhkhkhkhkhhkhkkkk

Learning from Data

SSE is 112.95392101963424
MSE is 0.35744911715074124
SST is 183.05305027649794
Residual sum of squares is 0.3829443385454675

*kkkkkkkk***** Printing metrics for Ridge Regression with SGD
kkhkkkkkkkkkkkkkkkk

SSE is 112.9218089913291
MSE is 0.3573474968080035
SST is 183.05305027649794
Residual sum of squares is 0.3831197632557175

The advantage that we get from using mini batches is that this obviously gives better
performance than plain SGD without batches. This is because with plain SGD, for every
iteration, only one example is considered to update the parameters. However, with mini
batches, we consider a batch of examples. That said, the improvement in the mean
squared error from the previous run is not the result of using batches, but just a feature
of SGD—roaming around the minima and not converging at a fixed point.

Binary classification using

LogisticRegression and SVM

Unlike linear regression, wherein we predicted continuous values for the outcome (the y
variable), logistic regression and the Support Vector Machine (SVM) are used to predict
just one out of the n possibilities for the outcome (the y variable). If the outcome is one of
two possibilities, then the classification is called a binary classification.

Logistic regression, when used for binary classification, looks at each data point and estimates
the probability of that data point falling under the positive case. If the probability is less than a
threshold, then the outcome is negative (or 0); otherwise, the outcome is positive (or 1).

As with any other supervised learning techniques, we will be providing training examples

for logistic regression. We then add a bit of code for feature extraction and let the algorithm
create a model that encapsulates the probability of each of the features belonging to one of
the binary outcomes.

136

Chapter 5

What SVM tries to do is map all of the training data as points in the feature space.
The algorithm comes up with a hyperplane that separates the positive and negative
training examples in such a way that the distance (margin band) between them is
maximum. This is better illustrated with a diagram:

Support Vector Machine
Support Vectors
(each correspond to a training example)

‘/\
Margin band
)

* / >

Optimal hyperplane

x X
)
*
*
*
*

-

Canonical hyperplanes

When a new and unseen data point comes up for prediction, the algorithm looks at that point
and tries to find the closest point to the input data point. The label corresponding to that point
will be predicted as the label for the input point as well.

How to do it...

Both the implementations of LogisticRegression and SVM in Spark use L2 regularization by
default, but we are free to switch to L1 by setting the updater explicitly.

In this recipe, we'll classify a spam/ham dataset (https://archive.ics.uci.edu/ml/
datasets/SMS+Spam+Collection) against three variants of classification algorithms:

» Logistic regression with SGD as the optimization algorithm

» Logistic regression with BFGS as the optimization algorithm

» Support vector machine with SGD as the optimization algorithm

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

Learning from Data

The BFGS optimization algorithm provides the benefits of converging to the minimum
faster than SGD. Also, for BFGS, we need not break our heads coming up with an optimal
learning rate.

Let's summarize the steps:

Importing the data.

Tokenizing the data and converting it into LabeledPoints.
Factoring the Inverse Document Frequency (IDF).
Preparing the training and test data.

Constructing the algorithm.

Training the model and predicting the test data.
Evaluating the model.

No oA wp R

. The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/
s chapter5-learning/src/main/scala/com/packt/
scalada/learning/BinaryClassificationSpam.scala

Importing the data

As usual, our input data is in the form of a text fle—SMSSpamCollection. The data file looks
like this:

Ilham Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...

Zham Ok lar... Joking wif u oni...

3 spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&('s apply @845281007Soverl8's
4ham U dun say so early hor... U c already then say...

Sham Nah I don't think he goes to usf, he lives around here though

6 spam FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, £1.50 to rcv

7ham Even my brother is not like to speak with me. They treat me like aids patent.

Sham As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune
9 spam WINNER!! As a valued network customer you have been selected to receivea £90@ prize reward! To claim call @90617@1461. Claim code KL341. Valid 12 hours only.
0 spam Had your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030
Tham I'm gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried enough today.

2spam SIX chances to win CASH! From 100 to 20,008 pounds txt> CSH11 and send to 87575. Cost 15@p/day, 6days, 16+ TsandCs apply Reply HL 4 info

3 spam URGENT! You have won a 1 week FREE membership in our £100,000 Prize Jackpot! Txt the word: CLAIM to No: 81010 T&C www.dbuk.net LCCLTD POBOX 44@3LDNW1A7RA18
4ham T've been searching for the right words to thank you for this breather. I promise i wont take your help for granted and will fulfil my promise. You have been wonde

Lohom I HAVE A DATE ON SUNDAY WITH WILL!!

As we can see, the label and the data are separated by a tab. So, while reading each line,
we split the label and the content, and then populate a simple case class named Document.
This Document class is just a temporary placeholder. In the next step, we'll convert these
documents into LabeledPoints:

//Frankly, we could make this a tuple but this looks neat
case class Document (label: String, content: String)

val docs = sc.textFile("SMSSpamCollection") .map(line => {
val words = line.split ("\t")
Document (words.head.trim(), words.tail.mkString(" "))

Iy

138

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Chapter 5

Tokenizing the data and converting it into LabeledPoints

For the tokenization, instead of relying on the tokenizer provided inside Spark, we'll see how
to plug in two external NLP libraries—the Stanford CoreNLP and Scala NLP's Epic libraries.
These are the two most popular NLP libraries: one from the Java world and the other from
Scala. However, one thing that we ought to watch out for while using external libraries is that
the instantiation of these APIs, and therefore the creation of heavyweight objects required for
the use of these APIs (such as a tokenizer), should be done at the partition level. If we do it at
the level of a closure, such as a map over RDD, we'll end up creating new instance of the API
object for every single instance of the data.

In the case of Epic, we just split the documents into sentences and then tokenize them into
words. We also add two more restrictions. Only those tokens that contain letters or digits will
be considered, and the tokens should be of at least two characters:

import epic.preprocess.TreebankTokenizer
import epic.preprocess.MLSentenceSegmenter
//Use Scala NLP - Epic
val labeledPointsUsingEpicRdd: RDD[LabeledPoint] =
docs.mapPartitions { docIter =>

val segmenter = MLSentenceSegmenter.bundled() .get
val tokenizer = new TreebankTokenizer ()

val hashingTf new HashingTF (5000)

docIter.map { doc =>
val sentences = segmenter (doc.content)

val tokens = sentences.flatMap (sentence =>
tokenizer (sentence))

//consider only features that are letters or digits and
cut off all words that are less than 2 characters

val filteredTokens=tokens.tolList.filter (token =>
token.forall(.isLetterOrDigit)).filter(.length() > 1)

new LabeledPoint (if (doc.label=="ham") 0 else 1,
hashingTf.transform(filteredTokens))

}

} .cache ()

MLSentenceSegmenter splits the paragraph into sentences. The sentences are then split
into terms (or words) using the tokenizer. HashingTF creates a map of terms with their
frequency of occurrence. Finally, to construct a LabeledPoint for each document, we convert
these terms into a term frequency vector for that document using the transform function
of HashingTF. Also, we restrict the maximum number of interested terms to 5,000 by way
of setting the numFeatures in HashingTF.

Learning from Data

With Stanford CoreNLP, the process is a little more involved, in the sense that we reduce the
tokens to lemmas (https://en.wikipedia.org/wiki/Lemmatisation). In order to do
this, we create an NLP pipeline that splits sentences, tokenizes, and finally reduces the tokens
to lemmas:

def corePipeline(): StanfordCoreNLP = {
val props = new Properties/()
props.put ("annotators", "tokenize, ssplit, pos, lemma")

new StanfordCoreNLP (props)

}

def lemmatize (nlp: StanfordCoreNLP, content: String):

List[String]l = {

//We are required to prepare the text as 'annotatable'
before we annotate :-)

val document = new Annotation (content)

//Annotate

nlp.annotate (document)

//Extract all sentences

val sentences =
document .get (classOf [SentencesAnnotation]) .asScala

//Extract lemmas from sentences
val lemmas = sentences.flatMap { sentence =>
val tokens =
sentence.get (classOf [TokensAnnotation]) .asScala
tokens.map (token =>
token.getString(classOf [LemmaAnnotation]))

}

//Only lemmas with letters or digits will be considered.
Also consider only those words which has a length of at least 2

lemmas.tolList.filter (lemma =>
lemma.forall(_.isLetterOrDigit)).filter(_.length() > 1)

}

val labeledPointsUsingStanfordNLPRdd: RDD[LabeledPoint] =
docs.mapPartitions { docIter =»>
val corenlp = corePipeline()
val stopwords = Source.fromFile("stopwords.txt") .getLines ()
val hashingTf = new HashingTF (5000)

docIter.map { doc =>
val lemmas = lemmatize (corenlp, doc.content)
//remove all the stopwords from the lemma list
lemmas.filterNot (lemma => stopwords.contains (lemma))

140

https://en.wikipedia.org/wiki/Lemmatisation

Chapter 5

//Generates a term frequency vector from the features
val features = hashingTf.transform(lemmas)

//example : List (until, jurong, point, crazy, available,
only, in, bugi, great, world, la, buffet, Cine, there, get, amore,
wat)

new LabeledPoint (

if (doc.label.equals("ham")) 0 else 1,
features)

}

}.cache ()

Factoring the inverse document frequency

With HashingTF, we have a map of terms along with their frequency of occurrence in the
documents. Now, the problem with taking this metric is that common words such as "the"
and "a" get higher rankings compared to rare words. The inverse document frequency (IDF)
calculates the occurrences of a word in all the documents and gives higher weight to a term
that is uncommon. We'll now factor in the inverse document frequency so that we have

the TF-IDF score (https://en.wikipedia.org/wiki/Tf-idf) for each term. This is
easily achievable in Spark with the availability of org.apache.spark.mllib. feature.
IDFModel. We extract all term frequencies from LabeledPoints and pass them to the
transform function IDFModel to generate the TF-IDF:

val labeledPointsUsingStanfordNLPRdd=getLabeledPoints (docs,
"STANFORD")
val 1lpTfIdf=withIdf (labeledPointsUsingStanfordNLPRdd) .cache ()

def withIdf (1lPoints: RDD[LabeledPoint]): RDD[LabeledPoint] = {
val hashedFeatures = labeledPointsWithTf.map (lp =>
lp.features)
val idf: IDF = new IDF()
val idfModel: IDFModel = idf.fit (hashedFeatures)

val tfIdf: RDD[Vector] = idfModel.transform(hashedFeatures)

val 1pTfIdf= labeledPointsWithTf.zip (tfIdf) .map {

case (originalLPoint, tfIdfVector) => {
new LabeledPoint (originallLPoint.label, tfIdfVector)
1
1
lpTfIdf

}

val 1lpTfIdf=withIdf (labeledPointsWithTf) .cache ()

https://en.wikipedia.org/wiki/Tf-idf

Learning from Data

Prepare the training and test data

Our test data has a skewed distribution of spam and ham data. We just have to make sure
that when we split the data into training and test data into 80% and 20%, we first split the
training and test data into two subsets and then split it into the 80:20 ratio. At the end of
this, the training data and test data will have a ratio of 4:1 spam and ham samples.

The spam and ham counts in our dataset are 747 and 4827, respectively:

//Split dataset

val spamPoints = 1lpTfIdf.filter (point => point.label ==
1) .randomSplit (Array (0.8, 0.2))

val hamPoints = 1pTfIdf.filter(point => point.label ==
0) .randomSplit (Array (0.8, 0.2))

println ("Spam

count: "+ (spamPoints (0) .count) +": : "+ (spamPoints (1) .count))
println ("Ham count:"+ (hamPoints (0) .count)+"::"+ (hamPoints (1) .
count))
val trainingSpamSplit = spamPoints (0)

val testSpamSplit = spamPoints (1)

val trainingHamSplit = hamPoints (0)
val testHamSplit = hamPoints (1)

val trainingSplit = trainingSpamSplit ++ trainingHamSplit
val testSplit = testSpamSplit ++ testHamSplit

Constructing the algorithm

Now that we have our training and test sets, the next obvious step is to train a model out of
these examples. Let's create instances of the three variants of the algorithms that we would
like to experiment with:

val logisticWithSGD = getAlgorithm("logsgd", 100, 1, 0.001)

val logisticWithBfgs = getAlgorithm("logbfgs", 100, Double.Nan,
0.001)

val svmWithSGD = getAlgorithm("svm", 100, 1, 0.001)

def getAlgorithm(algo: String, iterations: Int, stepSize:
Double, regParam: Double) = algo match {
case "logsgd" => {
val algo = new LogisticRegressionWithSGD ()

142

Chapter 5

algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setStepSize (stepSize) .setRegParam(regParam)

algo
}
case "logbfgs" => {
val algo = new LogisticRegressionWithLBFGS ()

algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setRegParam (regParam)

algo
}
case "svm" => {
val algo = new SVMWithSGD ()

algo.setIntercept (true) .optimizer.setNumIterations (iterations) .
setStepSize (stepSize) .setRegParam(regParam)

algo

}

We can notice that the stepSize parameter isn't set for logistic regression with BFGS.

Training the model and predicting the test data

Like linear regression, training and predicting the labels for the test set is just a matter of
calling the run and predict methods of the classification algorithm.

Soon after the prediction is done, the next logical step is to evaluate the model.

In order to generate metrics for this, we extract the predicted and the actual labels.

Our runClassification function trains the model using the training data and makes
predictions against the test data. It then zips the predicted and the actual outcomes
into a value called predictsAndActuals. This value is returned from the function.

The runClassification accepts a GeneralizedLinearAlgorithm as the parameter,
which is the parent of LinearRegressionWithSGD, LogisticRegressionWithSGD,
and SVMWithSGD:

val
logisticWithSGDPredictsActuals=runClassification(logisticWithSGD,
trainingSplit, testSplit)

val
logisticWithBfgsPredictsActuals=runClassification(logisticWithBfgs,
trainingSplit, testSplit)

val svmWithSGDPredictsActuals=runClassification (svmWithSGD,
trainingSplit, testSplit)

Learning from Data

def runClassification(algorithm: GeneralizedLinearAlgorithm[<:

GeneralizedLinearModel], trainingData:RDD[LabeledPoint],
testData:RDD[LabeledPoint]) : RDD[(Double, Double)] = {
val model = algorithm.run(trainingData)

val predicted = model.predict (testData.map (point =>
point.features))

val actuals = testData.map (point => point.label)

val predictsAndActuals: RDD[(Double, Double)] =
predicted.zip(actuals)

predictsAndActuals

Evaluating the model

For generating the metrics, Spark has some inbuilt APIs. The two most common metrics used

to evaluate a classification model are the area under curve and the confusion matrix. The org.
apache.spark.mllib.evaluation.BinaryClassificationMetrics gives us the area
under the curve, and org.apache.spark.mllib.evaluation.MulticlassMetrics gives
us the confusion matrix. We also calculate the simple accuracy measure manually using the
values of predicated and actuals. The accuracy is simply the result of dividing the correctly
classified count of the test dataset by the total count of the test dataset. Refer to https://
en.wikipedia.org/wiki/Accuracy and precision#In binary classification
for more details:

def calculateMetrics (predictsAndActuals: RDD[(Double, Double)],
algorithm: String) {

val accuracy = l.0*predictsAndActuals.filter (predActs => predActs. 1
== predActs._2) .count() / predictsAndActuals.count ()

val binMetrics = new BinaryClassificationMetrics(predictsAndActuals)

println(s"*******xxkxx*x*** Printing metrics for $algorithm
***************“)

println(s"Area under ROC ${binMetrics.areaUnderROC}")

//println(s"Accuracy $accuracy")

val metrics = new MulticlassMetrics(predictsAndActuals)
val fl=metrics.fMeasure

println(s"F1 $£1")

println(s"Precision : ${metrics.precision}")
println(s"Confusion Matrix \n${metrics.confusionMatrix}“)

println(s"*******x*xxxx*x** ending metrics for $algorithm
*****************“)

https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification
https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification

Chapter 5

As we can see from the output, LogisticRegressionWithSGD and SVMWithSGD have a
slightly bigger area under curve than LogisticRegressionWithBFGS, which means that
the two models perform a tad bit better.

This is a sample output (your output could vary):

kkkkkkkkkkkdk* Printing metrics for Logistic Regression with SGD
khkkhkkhkkhkhkhkkhkkk

Area under ROC 0.9208860759493671
Accuracy 0.9769585253456221
Confusion Matrix

927.0 0.0

25.0 133.0

kkkkkkkkkkkt** ending metrics for Logistic Regression with SGD
khkkhkkhkhkhkhkhkhkhkkhkkkk

khkkhkkkkkkkkkkk Printing metrics for SVM With SGD khkkkkkkhkhkhkhkhkkkk
Area under ROC 0.9318656156156157

Precision : 0.9784845650140318

Confusion Matrix

921.0 4.0

19.0 125.0

kkkkkkkkkkkk** ending metrics for SVM with SGD ***kkkkkkkkkkkkkk

kkkkkkkkkkkd*k* Printing metrics for Logistic Regression with BFGS
khkkhkkhkhkhkhkhkkhkkkk

Area under ROC 0.8790559620074445
Accuracy 0.9596136962247586
Confusion Matrix

971.0 9.0

37.0 122.0

kkkkkkkkkkkt** ending metrics for Logistic Regression with BFGS #*#**%kkki#
khkhkhkhkhkhkhkhkhhkhkhkhhkhhkhkhkhhkhkkk

Learning from Data

Binary classification using

LogisticRegression with Pipeline API

Earlier, with the spam example on binary classification, we saw how we prepared the data,
separated it into training and test data, trained the model, and evaluated it against test data
before we finally arrived at the metrics. This series of steps can be abstracted in a simplified
manner using Spark's Pipeline API.

In this recipe, we'll take a look at how to use the Pipeline API to solve the same classification
problem. Imagine the pipeline to be a factory assembly line where things happen one after
another. In our case, we'll pass our raw unprocessed data through various processors before
we finally feed the data into the classifier.

How to do it...

In this recipe, we'll classify the same spam/ham dataset (https://archive.ics.uci.
edu/ml/datasets/SMS+Spam+Collection) first using the plain Pipeline, and then
using a cross-validator to select the best model for us given a grid of parameters.

Let's summarize the steps:

Importing and splitting data as test and training sets.
Constructing the participants of the Pipeline.
Preparing a pipeline and training a model.

Predicting against test data.

Evaluating the model without cross-validation.
Constructing parameters for cross-validation.

Constructing a cross-validator and fitting the best model.

O N o ok~ DN

Evaluating a model with cross-validation.

) The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/
s chapter5-learning/src/main/scala/com/packt/scalada/
learning/BinaryClassificationSpamPipeline.scala.

146

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Chapter 5

Importing and splitting data as test and training sets

This process is a little different from the previous recipe, in the sense that we don't construct
LabeledPoint now. Instead of an RDD of LabeledPoint, the pipeline requires a DataFrame. So,
we convert each line of text into a Document object (with the label and the content) and then
convert RDD [Document] into a DataFrame by calling the toDF () function on the RDD:

case class Document (label: Double, content: String)

val docs = sc.textFile("SMSSpamCollection") .map(line => {
val words = line.split("\t")
val label=if (words.head.trim()=="spam") 1.0 else 0.0

Document (label, words.tail.mkString(" "))

H

//Split dataset

val spamPoints = docs.filter (doc => doc.label==1.0).
randomSplit (Array (0.8, 0.2))

val hamPoints = docs.filter (doc => doc.label==0.0).
randomSplit (Array (0.8, 0.2))

println("Spam count:" + (spamPoints(0).count) + "::" + (spamPoints(1).
count))

println("Ham count:" + (hamPoints(0).count) + "::" + (hamPoints(1).
count))

val trainingSpamSplit = spamPoints(0)

val testSpamSplit = spamPoints (1)

val trainingHamSplit = hamPoints (0)

val testHamSplit = hamPoints (1)

val trainingSplit = trainingSpamSplit ++ trainingHamSplit

val testSplit = testSpamSplit ++ testHamSplit

import sqglContext.implicits.
val trainingDFrame=trainingSplit.toDF ()

val testDFrame=testSplit.toDF ()

Learning from Data

Construct the participants of the Pipeline

In order to arrange the pipeline, we need to construct its participants. There are three
unique participants (or pipeline stages) of this pipeline, and we have to line them up
in the right order:

» Tokenizer: This disintegrates the sentence into tokens
» HashingTF: This creates a term frequency vector from the terms
» IDF: This creates an inverse document frequency vector from the terms

» VectorAssembler: This combines the TF-IDF vector and the label vector to form a
single vector, which will form the input features for the classification algorithm

» LogisticRegression: This is the classification algorithm itself
Let's construct these first:

val tokenizer=new Tokenizer () .setInputCol ("content").
setOutputCol ("tokens")

val hashingTf=new HashingTF () .setInputCol (tokenizer.getOutputCol).
setOutputCol ("t£f")

val idf = new IDF () .setInputCol (hashingTf.getOutputCol).
setOutputCol ("tfid£f")

val assembler = new VectorAssembler () .setInputCols (Array("tfidf",
"label")) .setOutputCol ("features")

val logisticRegression=new LogisticRegression().
setFeaturesCol ("features") .setLabelCol ("label") .setMaxIter (10)

When RDD [Document] is run against the first pipeline stage, that is, Tokenizer, the
"content" field of the Document is taken as the input column, and the output of the
tokenizer is a bag of words that is captured in the "tokens" output column. HashingTF
takes the "tokens™" and converts them into a TF vector. Notice that the input column of
HashingTF is the same as the output column from the previous stage. IDF takes the tf
vector and returns a t£-1df vector. VectorAssembler merges the t£-1df vector and

the label to form a single vector. This will be used as an input to the classification algorithm.
Finally, for the LogisticRegression stage, we specify the features column and the label column.
However, if the input DataFrame has a column named "label" with a Double type and
"features" of type Vector, there is no need to explicitly mention that. So, in our case, since
we have "label" as an attribute of the Document case class and the output column of the
HashingTF is named "features", there is no need for us to specify them explicitly. The
following code would work just fine:

val logisticRegression=new LogisticRegression() .setMaxIter (10)

148

Chapter 5

Internally, this implementation of LogisticRegression constructs LabeledPoints for each
instance of the data, and uses some advanced optimization algorithms to derive a model
from the training data.

At every stage, each of these transformations occurs against the input DataFrame of that
particular stage, and the transformed DataFrame gets passed along until the final stage.

Preparing a pipeline and training a model

As the next step, we just need to form a pipeline out of the various pipeline stages that we
constructed in the previous step. We then train a model by calling the pipeline. fit function:

val pipeline=new Pipeline()

pipeline.setStages (Array (tokenizer, hashingTf, logisticRegression))

val model=pipeline.fit(trainingDFrame)

. Ifyouare getting java.lang.IllegalArgumentException:
% requirement failed: Column label must be of type
s DoubleType but was actually StringType, it just means

that your label isn't of the Double type.

Predicting against test data

Using the newly constructed model to predict the data is just a matter of calling the transform
method of the model. Then, we also extract the actual label and the predicted value to
calculate the metrics:

val predictsAndActualsNoCV:RDD [(Double,Double)] =model.
transform(testDFrame) .map(r => (r.getAs[Double] ("label"), r.getAs[Double]
("prediction"))) .cache

Evaluating a model without cross-validation

Cross-validation is a multiple-iteration model validation technique in which our training and
test sets are split into different partitions. The entire dataset is split into subsets, and for each
iteration, analysis is done on one subset and validation on a different subset. For this recipe,
we'll run the algorithm first without cross-validation, and then with cross-validation.

Learning from Data

Firstly, we'll use the same validation metric and method that we used in the previous recipe.
We will simply calculate the area under the ROC curve, the precision, and the confusion matrix:

def calculateMetrics (predictsAndActuals: RDD[(Double, Double)],
algorithm: String) {

val accuracy = 1.0 * predictsAndActuals.filter (predActs =>
predActs. 1 == predActs. 2).count() / predictsAndActuals.count ()

val binMetrics = new BinaryClassificationMetrics (predictsAndActuals)

println(s"*******%****** Printing metrics for $algorithm
***************“)

println(s"Area under ROC ${binMetrics.areaUnderROC}")

println(s"Accuracy $accuracy")

val metrics = new MulticlassMetrics (predictsAndActuals)
println(s"Precision : ${metrics.precision}")
println(s"Confusion Matrix \n${metrics.confusionMatrix}")

println(s"********kk***** ending metrics for $algorithm
*****************“)

}
A sample output of this pipeline without cross-validation is as follows:

kkkkkkkkkkr*** Printing metrics for Without Cross validation
khkkkkkhkhkkkkkkkk

Area under ROC 0.9676924738149228
Accuracy 0.9656357388316151
Confusion Matrix

993.0 36.0

4.0 131.0

*kkkkkkkk***** ending metrics for Without Cross validation
kkhkkkkkkkkkkkkkkkk

Constructing parameters for cross-validation

Before we use the cross-validator to choose the best model that fits the data, we would want
to provide each of the parameters a set of alternate values that the validator can choose from.

The way we provide alternate values is in the form of a parameter grid:

val paramGrid=new ParamGridBuilder ()

.addGrid (hashingTf .numFeatures, Array (1000, 5000, 10000))

150

Chapter 5

.addGrid(logisticRegression.regParam, Array(l, 0.1, 0.03, 0.01))
.build ()

So, we say that the number of term frequency vectors that we want HashingTF to generate
could be one of 1,000, 5,000, and 10,000, and the regularization parameter for logistic
regression could be one of 1, 0.1, 0.03, and 0.01. Thus, in essence, we are passinga 3 x4
matrix as the parameter grid.

Constructing cross-validator and fit the best model
Next, we construct a cross-validator and pass in the following parameters:

» The parameter grid that we constructed in the previous step.
» The pipeline that we constructed in step 3.
» An evaluator for the cross-validator to decide which model is better.

» The number of folds. Say, if we set the number of folds to 10, the training data would
be split into 10 blocks. For each iteration (10 iterations), the first block would be
selected as the cross-validation set, and the other nine would be the training sets:

val crossValidator=new CrossValidator ()
.setEstimator (pipeline)
.setEvaluator (new BinaryClassificationEvaluator())
.setEstimatorParamMaps (paramGrid)

.setNumFolds (10)

We finally let the cross-validator run against the training dataset and derive the best model
out of it. Contrast the following line with pipeline. fit, where we skipped cross-validation:

val bestModel=crossValidator.fit(trainingDFrame)

Evaluating the model with cross-validation

Now, let's evaluate the model that is generated against the actual test data set (rather than
the test dataset that the cross-validator uses internally):

val predictsAndActualsWithCV:RDD[(Double,Double)]=bestModel.
transform(testDFrame) .map(r => (r.getAs[Double] ("label"), r.getAs[Double]
("prediction"))) .cache

calculateMetrics (predictsAndActualsWithCV, "Cross validation")

A sample output of this pipeline with cross-validation is as follows:

kkkkkkkkkk**** Printing metrics for Cross validation *****kkkdkkkkkkx

Area under ROC 0.9968220338983051

Learning from Data

Accuracy 0.994579945799458
Confusion Matrix

938.0 6.0

0.0 163.0

kkkkkkkkkkkk** onding metrics for Cross validation ***kkkkkkkkkkkkdk

As we can see, the area under ROC is far better for this model than for any of our previously
generated models.

Clustering using K-means

Clustering is a class of unsupervised learning algorithms wherein the dataset is partitioned
into a finite number of clusters in such a way that the points within a cluster are similar to
each other in some way. This, intuitively, also means that the points of two different clusters
should be dissimilar.

K-means is one of the popular clustering algorithms, and in this recipe, we'll be looking at how
Spark implements K-means and how to use the algorithm to cluster a sample dataset. Since
the number of clusters is a crucial input for the K-means algorithm, we'll also see the most
common method of arriving at the optimal number of clusters for the data.

How to do it...

Spark provides two initialization modes for cluster center (centroid) initialization: the original
Lloyd's method (https://en.wikipedia.org/wiki/K-means clustering), and a
parallelizable and scalable variant of K-means++ (https://en.wikipedia.org/wiki/K-
means%2B%2B). K-means++ itself is a variant of the original K-means and differs in the way

in which the initial centroids of the clusters are picked up. We can switch between the original
and the parallelized K-means++ versions by passing KMeans . RANDOM Or KMeans . PARALLEL
as the initialization mode. Let's first look at the details of the implementation.

KMeans.RANDOM

In the regular K-means (the KMeans . RANDOM initialization mode in the case of Spark), the
algorithm randomly selects k points (equal to the number of clusters that we expect to see)
and marks them as cluster centers (centroids). Then it iteratively does the following:

» It marks all the points as belonging to a cluster based on the distance between a
point and its nearest centroid.

» The mean of all the points in a cluster is calculated. This mean is now set as the new
centroid of that cluster.

» The rest of the data points are reassigned their clusters based on this new centroid.

152

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means%2B%2B
https://en.wikipedia.org/wiki/K-means%2B%2B

Chapter 5

Since we generally deal with more than one feature in a dataset, each instance of the data
and the centroids are vectors. In Spark, we represent them as org.apache.spark.mllib.
linalg.Vector.

KMeans.PARALLEL

Scalable K-means or K-means| | is a variant of K-means++. Let's look at what these variants
of K-means actually do.

K-means++
Instead of choosing all the centroids randomly, the K-means++ algorithm does the following:

1. It chooses the first centroid randomly (uniform)

2. It calculates the distance squared of each of the rest of the points from the current
centroid

3. A probability is attached to each of these points based on how far they are. The farther
the centroid candidate is, the higher is its probability.

We choose the second centroid from the distribution that we have in step 3.

5. On the ith iteration, we have 1+i clusters. Find the new centroid by going over the
entire dataset and forming a distribution out of these points based on how far they
are from all the precomputed centroids.

These steps are repeated over k-1 iterations until k centroids are selected. K-means++ is
known for considerably increasing the quality of centroids. However, as we see, in order to
select the initial set of centroids, the algorithm goes through the entire dataset k times.
Unfortunately, with a large dataset, this becomes a problem.

K-means||

With K-means parallel (K-means| |), for each iteration, instead of choosing a single point after
calculating the probability distribution of each of the points in the dataset, a lot more points
are chosen. In the case of Spark, the number of samples that are chosen per step is 2 * k.
Once these initial centroid candidates are selected, a K-means++ is run against these data
points (instead of going through the entire dataset).

Let's now look at the most important parameters that are passed to the algorithm.

Max iterations

There are worst-case scenarios for both random and parallel. In the case of random, since
the points in K-means are chosen at random, there is a distinct possibility that the model
identifies two centroids from the same cluster. Say with k=3, there is a possibility of two
clusters becoming a part of a single cluster and a single cluster being separated into two.
A similar case applies to K-means++ with a bad choice of the initial set of centroids.

Learning from Data

The following figure proves that though we can see three clusters, a bad choice of centroids
separates a single cluster into two and makes two clusters one:

k=

To solve this problem, we run the same algorithm with a different set of randomly initialized
centroids. This is determined by the maxIterations parameter. The distance between the
centroid and the points in the cluster is calculated (a mean squared difference in distances).
This will be the cost of the model. The iteration with the least cost is chosen and returned.
The metric that Spark uses to calculate the distance is the Euclidean distance.

Epsilon

How does the K-means algorithm know when to stop? There will always be a small distance that
the centroid can move if the clusters aren't separated by a huge margin. If all the centroids have
moved by a distance less than the epsilon parameter, it's the cue to the algorithm that it has
converged. In other words, the epsilon is nothing but a convergence threshold.

Now that we have the parameters that need to be passed to the K-means cluster out of the
way, let's look at the steps needed to run this algorithm to find the clusters:

Importing the data and converting it into a vector.

Feature scaling the data.

Deriving the number of clusters.

Constructing the model.

IS R

Evaluating the model.

-
a
Iy

Chapter 5

) The code for this recipe can be found at https://github.com/
% arunma/ScalaDataAnalysisCookbook/blob/master/
i chapter5-learning/src/main/scala/com/packt/
scalada/learning/KMeansClusteringIris.scala

Importing the data and converting it into a vector

As usual, our input data is in the form of a text file—iris.data. Since we are clustering,
we can ignore the label (species) in the data. The data file looks like this:

@.2,Iris-setosa
6.2,Iris-setosa
0.2,Iris-setosa
0.2,Iris-setosa
0.2,Iris-setosa
,B 4, Iris-setosa
,B 3,Iris-setosa
9.
9.
8.
0.
0.
0.

-
-

¥

-
-

¥

-
-

¥

-
-

¥

-
-

¥

-
-

2,Iris-setosa
2,Iris-setosa
1,Iris-setosa
2,Iris-setosa
2,Iris-setosa
1,Iris-setosa

-
-

¥

-
-

¥

-
-

¥

-
-

¥

-
-

¥

R N A N T T
oo B IChONEO®O WO
WL W W W W

-

SrNROBRBROOR NS W
PRRRERRPRRPERERPRR

-

PonunbrunE BN WS B

¥

val data = sc.textFile("iris.data") .map(line => {
val dataArray = line.split(",").take(4)

Vectors.dense(dataArray.map(.toDouble))

H

Feature scaling the data

When we look at the summary statistics of the data, the data looks alright, but it is always
advisable perform do feature scaling before running a K-means:

val stats = Statistics.colStats(data)

println("Statistics before scaling")

print(s"Max : ${stats.max}, Min : ${stats.min}, and Mean : ${stats.mean}
and Variance : ${stats.variance}")

Here is the statistics before scaling:

Max : [7.9,4.4,6.9,2.5]
Min : [4.3,2.0,1.0,0.1]

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Learning from Data

Mean : [5.843333333333332,3.0540000000000003,3.7586666666666666,1.1986666
6666666681

Variance : [0.685693512304251,0.18800402684563744,3.113179418344516,0.582
4143176733783]

We run the data using StandardScaler and cache the resulting RDD. Since K-means
goes through the dataset multiple times, caching the data is strongly recommended to
avoid recomputation:

//Scale data

val scaler = new StandardScaler (withMean = true, withStd = true).
fit (data)

val scaledData = scaler.transform(data) .cache()
The following is the statistics after scaling:

Max : [2.483698580557868,3.1042842692548858,1.7803768862629268,1.70518904
10833728]

Min : [-1.8637802962695154,-2.4308436996988485,-1.5634973589465175, -
1.4396268133736672], and Mean : [1.6653345369377348E-15, -
7.216449660063518E-16,-1.1102230246251565E-16,-3.3306690738754696E-16]

Variance : [0.9999999999999997,1.0000000000000007,1.0000000000000013,0.99
999999999999971]

Deriving the number of clusters

Many times, we already know the number of clusters that are there in the dataset. But at
times, if we aren't sure, the general method is to plot the number of clusters against the
cost and watch out for the point from which the cost stops falling drastically. If the data is
large, running the entire set of data just to obtain the number of clusters is computationally
expensive. Instead, we can take a random sample and come up with the k value. In this
example, we have taken a random 20% sample, but the sample percentage depends
entirely on your dataset:

//Take a sample to come up with the number of clusters
val sampleData = scaledData.sample(false, 0.2) .cache()
//Decide number of clusters
val clusterCost = (1 to 7).map { noOfClusters =>

val kmeans = new KMeans()
.setK (noOfClusters)
.setMaxIterations(5)

.setInitializationMode (KMeans.K MEANS PARALLEL) //KMeans| |

val model = kmeans.run(sampleData)

156

(noOfClusters, model.computeCost (sampleData))

}

println ("Cluster cost on sample data")
clusterCost.foreach(println)

Cluster

1

2
3
4
5
&
7

Cost
98.34739863322832
38.07068957755217
20.357460464958457
14.755544266868153
15.923133807959202
11.165034661812456
7.794137577588026

Chapter 5

When we plot this, we can see that after cluster 3, the cost does not reduce drastically.
This point is called an Elbow bend, as shown here:

Cost

100

83.333

66.667

50

33.333

16.667

Clusters vs Cost

Elbow bend

3 4 5

Number of Clusters

Learning from Data

Constructing the model
Now that we have figured out the number of clusters, let's run the algorithm against the entire
dataset:
//Let's do the real run for 3 clusters
val kmeans = new KMeans ()
.setK(3)
.setMaxIterations (5)

.setInitializationMode (KMeans.K MEANS PARALLEL) //KMeans| |

val model = kmeans.run(scaledData)

Evaluating the model
The last step is to evaluate the model by printing the cost of this model. The cost is nothing
but the square of the distance between all points in a cluster to its centroid. Therefore, a good
model must have the least cost:
//Cost

println("Total cost " + model.computeCost (scaledData))

printClusterCenters (model)

def printClusterCenters (model:KMeansModel) {
//Cluster centers
val clusterCenters: Array[Vector] = model.clusterCenters
println("Cluster centers")

clusterCenters. foreach(println)

}
Here is the output:

Total cost 34.98320617204239
Cluster centers

[-0.011357501034038157, -
0.8699705596441868,0.3756258413625911,0.31061296276760191]

[1.1635361185919766,0.1532643388373168,0.999796072473665,1.02619470887105
72]

[-1.0111913832028123,0.839494408624649,-1.3005214861029282, -
1.2509378621062441]

158

Chapter 5

Feature reduction using principal

component analysis

Quoting the curse of dimensionality (https://en.wikipedia.org/wiki/Curse of
dimensionality), large number of features are computationally expensive. One way of
reducing the number of features is by manually choosing and ignoring certain features.
However, identification of the same features (represented differently) or highly correlated
features is laborious when we have a huge number of features. Dimensionality reduction
is aimed at reducing the number of features in the data while still retaining its variability.

Say, we have a dataset of housing prices and there are two features that represent the area of
the house in feet and meters; we can always drop one of these two. Dimensionality reduction
is very useful when dealing with text where the number of features easily runs into a few
thousands.

In this recipe, we'll be looking into Principal Component Analysis (PCA) as a means to reduce
the dimensions of data that is meant for both supervised and unsupervised learning.

How to do it...

As we have seen earlier, the only difference between the data for supervised and unsupervised
learning is that the training and the test data for supervised learning have labels attached to
them. This brings in a little complication, considering that we are interested only in reducing
the dimensions of the feature vector and would like to retain the labels as they are.

Dimensionality reduction of data for supervised learning

The only thing that we have to watch out for while reducing the dimensions of data to be used
as training data for supervised learning is that PCA must be applied on training data only. The
test set must not be used to extract the components. Using test data for PCA would bleed the
information in the test data into the components. This may result in higher accuracy numbers
while testing, but it could perform poorly on unseen production data.

The least number of components that can be chosen while maintaining a

sufficiently high variance is facilitated by the singular value vector available in the
SingularValueDecomposion object. The singular values, available by calling the svd. s,
show the amount of variance captured by the components. The first component will be the
most important (by contributing the highest variance), and the importance will slowly diminish.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality

Learning from Data

In order to come up with the probable number of dimensions, we can watch out for the
difference and the extent to which the singular values diminish. Alternatively, we can just
use simple heuristics and come up with a reasonable number if the features extend to a
few thousand:

val dimensionDecidingSample=new RowMatrix((trainingSplit.
randomSplit (Array(0.8,0.2)) (1)) .map (1lp=>1p.features))

val svd = dimensionDecidingSample.computeSVD (500, computeU = false)
val sum = svd.s.toArray.sum

//Calculate the number of principal components which retains a variance
of 95%

val featureRange=(0 to 500)

val placeholder=svd.s.toArray.zip (featureRange) .foldLeft (0.0) {

case (cum, (curr, component)) =>

val percent = (cum + curr) / sum
println(s"Component and percent ${component + 1} :: $percent
Singular value is : $curr")

cum + curr

}

The steps that are involved are as follows:

1. Mean-normalizing the training data.
Extracting the principal components.
Preparing the labeled data.
Preparing the test data.

ok 0N

Classify and evaluate the metrics.

. The code for this recipe can be found at https://github.com/
& arunma/ScalaDataAnalysisCookbook/blob/master/
s chapter5-learning/src/main/scala/com/packt/
scalada/learning/PCASpam.scala.

160

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Chapter 5

Mean-normalizing the training data
It is highly recommended that the data be centered before running it by PCA. We achieve this
using the fit and transform functions of StandardScaler. However, since the scaler
in Spark accepts a DenseVector as the argument, we'll use the Vectors.dense factory
method to convert the features in the labeled point into a DenseVector:
val docs = sc.textFile("SMSSpamCollection") .map(line => {

val words = line.split("\t")

Document (words.head.trim(), words.tail.mkString(" "))

}) .cache ()

val labeledPointsWithTf = getLabeledPoints (docs)
val 1pTfIdf = withIdf (labeledPointsWithTf) .cache()

//Split dataset

val spamPoints = 1pTfIdf.filter(point => point.label ==
1) .randomSplit (Array (0.8, 0.2))

val hamPoints = 1pTfIdf.filter (point => point.label ==
0) .randomSplit (Array (0.8, 0.2))

val trainingSpamSplit = spamPoints(0)

val trainingHamSplit = hamPoints (0)
val trainingData = trainingSpamSplit ++ trainingHamSplit

val unlabeledTrainData = trainingData.map (lpoint => Vectors.dense(lpoint.
features.toArray)) .cache()

//Scale data - Does not support scaling of SparseVector.

val scaler = new StandardScaler (withMean = true, withStd = false).
fit (unlabeledTrainData)

val scaledTrainingData = scaler.transform(unlabeledTrainData) .cache()

Learning from Data

Extracting the principal components

The computePrincipalComponents function is available in RowMatrix. So, we wrap
our scaled training data into a RowMatrix and then extract 100 principal components out
of it (as shown earlier, the number 100 is based on a run against a sample set of data and
on investigating the singular value vector of the SVD). Our training data is currently a 4419 x
5000 matrix—4419 instances of data * 5000 features restricted by us while generating the
term frequency using HashingTF. We then multiply this training matrix (4419 x 5000) by the
principal component matrix (5000 x 100) to arrive at a 4419 * 100 matrix—4419 instances
of data by 100 features (principal components). We can extract the feature vectors from this
matrix by calling the rows () function:

val trainMatrix = new RowMatrix(scaledTrainingData)

val pcomp: Matrix = trainMatrix.computePrincipalComponents (100)

val reducedTrainingData = trainMatrix.multiply (pcomp) .rows.cache ()

Preparing the labeled data

Now that we have reduced the data fifty-fold, the next step that we have to take is to use this
reduced data in our algorithm to see how it fares. The classification algorithm (in this case,
LogisticRegressionWithBFGS) requires an RDD of LabeledPoints. To construct the
LabeledPoint, we extract the label from the original trainingData and the feature vector
from the dimension-reduced dataset:

val reducedTrainingSplit = trainingData.zip (reducedTrainingData) .map {
case (labeled, reduced) => new LabeledPoint (labeled.label, reduced) }

Preparing the test data

Before predicting our test data against the algorithm, we need to bring the test data to the
same dimension as the training data. This is achieved by multiplying the principal components
with the test matrix. As discussed earlier, we just need to make sure that we don't compute
the principal components fresh here:

val unlabeledTestData=testSplit.map(lpoint=>lpoint.features)
val testMatrix = new RowMatrix(unlabeledTestData)

val reducedTestData=testMatrix.multiply (pcomp) .rows.cache ()

val reducedTestSplit=testSplit.zip(reducedTestData).map{case
(labeled, reduced) => new LabeledPoint (labeled.label, reduced)}

162

Chapter 5

Classify and evaluate the metrics

The final step is to classify and evaluate the results of the algorithm. This step is the same
as the classification recipe that we saw earlier. From the output, we can see that we not
only reduced the number of features from 5,000 to 100, but also managed to maintain
the accuracy of the algorithm at the same levels:

val logisticWithBFGS = getAlgorithm(10, 1, 0.001)

val logisticWithBFGSPredictsActuals = runClassification(logisticWithBF
GS, reducedTrainingSplit, reducedTestSplit)

calculateMetrics (logisticWithBFGSPredictsActuals, "Logistic with BFGS")

def getAlgorithm(iterations: Int, stepSize: Double, regParam: Double) =

{

val algo = new LogisticRegressionWithLBFGS ()

algo.setIntercept (true) .optimizer.setNumIterations(iterations).
setRegParam(regParam)

algo

def runClassification(algorithm: GeneralizedLinearAlgorithm[<:
GeneralizedLinearModel], trainingData: RDD[LabeledPoint],

testData: RDD[LabeledPoint]): RDD[(Double, Double)] = {

val model = algorithm.run(trainingData)

println ("predicting")

val predicted = model.predict (testData.map (point => point.features))
val actuals = testData.map(point => point.label)

val predictsAndActuals: RDD[(Double, Double)] = predicted.
zip (actuals)

println (predictsAndActuals.collect)
predictsAndActuals

def calculateMetrics (predictsAndActuals: RDD[(Double, Double)l],
algorithm: String) {

val accuracy = 1.0 * predictsAndActuals.filter (predActs =>
predActs. 1 == predActs. 2).count() / predictsAndActuals.count ()

val binMetrics = new BinaryClassificationMetrics (predictsAndActuals)

println(s"******kkkk*k*** Printing metrics for $algorithm
***************")

println(s"Area under ROC ${binMetrics.areaUnderROC}")

Learning from Data

println(s"Accuracy $accuracy")

val metrics = new MulticlassMetrics(predictsAndActuals)
println(s"Precision : ${metrics.precision}")
println(s"Confusion Matrix \n${metrics.confusionMatrix}“)

println(s"*******x*xxxx*x** ending metrics for $algorithm
*****************“)

}

This is the output:

Compared to the area under the ROC at around the same levels (95%), we have considerably
reduced the time of the run by reducing the dimensions of the features ten-fold:

kkkkkkkkkk**** Printing metrics for Logistic with BFGS ****k*kkkkkkkkx
Area under ROC 0.9428948576675849

Accuracy 0.9829136690647482

Confusion Matrix

965.0 3.0

16.0 128.0

*kkkkkkkkkkk** onding metrics for Logistic with BFGS ***kkkkkkkkkkkkk

. Note that the entire code for this recipe can be found at https://
% github.com/arunma/ScalaDataAnalysisCookbook/
e blob/master/chapter5-learning/src/main/scala/
com/packt/scalada/learning/PCASpam.scala

Dimensionality reduction of data for unsupervised learning

Unlike reducing the dimensions of data with labels, reducing the dimensionality of data for
unsupervised learning is very simple. We just apply the PCA to the entire dataset. This helps
a lot in improving the performance of algorithms such as K-means, where the entire set of
features has to be plotted on a higher dimension and the entire data must be visited multiple
times. A lesser number of features means a lesser number of dimensions and less data to be
held in the memory.

For this recipe, we use the Iris.data that we used for clustering earlier. The dataset
already has four features, and this isn't a great candidate for dimensionality reduction
as such. However, the process around reducing dimensions for unlabeled data is the
same as for any other dataset.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Chapter 5

The steps that are involved are as follows:

1. Mean-normalizing the training data.
Extracting the principal components.
Arriving at the number of components.

WD

Evaluating the metrics.

. The code for this recipe can be found at https://github.com/
& arunma/ScalaDataAnalysisCookbook/blob/master/
s chapter5-learning/src/main/scala/com/packt/
scalada/learning/PCAIris.scala.

Mean-normalizing the training data
As we saw earlier, scaling is a must before reducing dimensions:

val scaler = new StandardScaler (withMean = true, withStd = false).
fit (data)

val scaledData = scaler.transform(data) .cache()

Extracting the principal components
As we saw earlier, to compute the principal components, we need to wrap our scaled training
data into a RowMatrix. We then multiply the matrix by the principal component matrix to
arrive at the reduced matrix. We can extract the feature vector from this matrix by calling the
rows () function:

val pcomp: Matrix = matrix.computePrincipalComponents (3)

val reducedData = matrix.multiply (pcomp) .rows

Arriving at the number of components

While we would like to have the least number for the components, the other goal is to retain
the highest variance in the data. In this case, a run against three components was made, and
we could see that holding on to just two components out of the four, we retained 90% of the
variance. However, since we wanted at least 95%, 3 was chosen:

val svd = matrix.computeSVD(3)

val sum = svd.s.toArray.sum

svd.s.toArray.zipWithIndex.foldLeft (0.0) {

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala

Learning from Data

case (cum, (curr, component)) =>
val percent = (cum + curr) / sum

println(s"Component and percent ${component + 1}
Singular value is : $curr")

.
.

$percent

cum + curr

}
The output is as follows:
Component and percent 1 :: 0.6893434455825798 :::: Singular value is :
25.089863978899867

Component and percent 2 :: 0.8544090583609627 :::: Singular value is :
6.0078525425063365

Component and percent 3 :: 0.9483881906752903 :::: Singular value is :
3.4205353829523646

Component and percent 4 :: 1.0 :::: Singular value
is : 1.878502340103494

Evaluating the metrics
After we have reduced the dimensions of the data from four to three (! ?), for fun, we run the
data against a range of one to seven clusters to see the elbow bend. When we compare the
results of this with the K-means clustering without dimensionality reduction, the results looks
practically the same:
val clusterCost = (1 to 7).map { noOfClusters =>
val kmeans = new KMeans()
.setK (noOfClusters)
.setMaxIterations(5)

.setInitializationMode (KMeans.K MEANS PARALLEL) //KMeans| |

val model = kmeans.run(reducedData)

(noOfClusters, model.computeCost (reducedData))

}

Here is the output:

166

The following screenshot shows the cost across various numbers of clusters:

Here is a screenshot that shows strikingly similar results for the elbow bend:

Cluster

1

2
3
4
5
6
7

Cost
3
1

80.824
52.369
78.941
57.345
55.821
42,327
38.466

700

600

500

400

Cost

300

200

100

Clusters vs Cost

* x

3 4

Number of Clusters

Chapter 5

In this chapter, we first saw the difference between supervised and unsupervised learning.
Then we explored a sample of machine learning algorithms in Spark: LinearRegression

for predicting continuous values, LogisticRegression and SVM for classification, K-means
for clustering, and finally PCA for dimensionality reduction. There are a plenty of other
algorithms in Spark, and more algorithms are being added to Spark with every version,

both batch and streaming.

Scaling Up

In this chapter, we will cover the following recipes:

» Building the Uber JAR

» Submitting jobs to the Spark cluster (local)

» Running the Spark standalone cluster on EC2
» Running the Spark job on Mesos (local)

» Running the Spark job on YARN (local)

Introduction

In this chapter, we'll be looking at how to bundle our Spark application and deploy it on various
distributed environments.

As we discussed earlier in Chapter 3, Loading and Preparing Data - DataFrame the foundation
of Spark is the RDD. From a programmer's perspective, the composability of RDDs such as a
regular Scala collection is a huge advantage. RDD wraps three vital (and two subsidiary) pieces
of information that help in reconstruction of data. This enables fault tolerance. The other major
advantage is that while the processing of RDDs could be composed into hugely complex graphs
using RDD operations, the entire flow of data itself is not very difficult to reason with.

Other than optional optimization attributes, such as data location, an RDD at its core wraps
only three vital pieces of information:

» The dependent/parent RDD (empty if not available)
» The number of partitions

» The function that needs to be applied to each element of the RDD

Scaling Up

Spark spawns one task per partition. So, a partition is the basic unit of parallelism in Spark.
The number of partitions could be any of these:

» Dictated by the number of blocks in the case of reading files

» A number set by the spark.default.parallelism parameter (set while starting
the cluster)

» A number set by calling repartition or coalesce on the RDD

So far, we have just run our Spark application in the self-contained single JVM mode. While
the programs work just fine, we have not yet exploited the distributed nature of the RDDs.

As always, all the code snippets for this chapter can be downloaded from
https://github.com/arunma/ScalaDataAnalysisCookbook/
tad tree/master/chapter6-scalingup.

Building the Uber JAR

The first step for deploying our Spark application on a cluster is to bundle it into a single
Uber JAR, also known as the assembly JAR. In this recipe, we'll be looking at how to use
the SBT assembly plugin to generate the assembly JAR. We'll be using this assembly JAR
in subsequent recipes when we run Spark in distributed mode. We could alternatively set
dependent JARs using the spark.driver.extraClassPath property (https://spark.
apache.org/docs/1.3.1/configuration.html#runtime-environment). However,
for a large number of dependent JARs, this is inconvenient.

How to do it...

The goal of building the assembly JAR is to build a single, Fat JAR that contains all
dependencies and our Spark application. Refer to the following screenshot, which shows
the innards of an assembly JAR. You can see not only the application's files in the JAR,
but also all the packages and files of the dependent libraries:

170

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter6-scalingup
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter6-scalingup
https://spark.apache.org/docs/1.3.1/configuration.html#runtime-environment
https://spark.apache.org/docs/1.3.1/configuration.html#runtime-environment

Chapter 6

scalada-learning-assembly.jar 3

4 META-INF

EE assets.org.apache.commons.math3.excepti
EEr au.com.bytecode.opencsy

EE breeze

B com

1 adobe.xmp

EE databricks.spark.csy

EE‘ drew

1 github.fommil

EE packt.scalada.learning

4 ¥y ¥yryvyv

4 ¥y v¥vywy

|I| BinaryClassificationSpamEc2 s
|I| BinaryClassificationSpamEc?

EI BinaryClassificationSpamMesos$
|I| BinaryClassificationSpamMesos
|I| BinaryClassificationSpamyarn$

¥y vy vy

EI BinaryClassificationSpamYarn
EE sun.syndication

EE‘ thoughtworks.paranamer

EE typesafe.scalalogging

1 uwyn.jhighlight

EE de.l3s.boilerpipe

EE edu.emory.mathecs

£ epic

EE images

EE}java_cup_runtime

£ javax.xmi

£ jflex

L A A

¥y ¥y ¥y yyv

The assembly JAR can easily be built in SBT using the SBT assembly plugin
(https://github.com/sbt/sbt-assembly).

In order to install the sbt -assembly plugin, let's add the following line to our
project/assembly.sbt:

addSbtPlugin("com.eed3sidn" % "sbt-assembly" % "0.13.0")

Next, the most common issue that we face while trying to build the assembly JAR (or Uber JAR)
is the problem of duplicates—duplicate transitive dependency JARs, or simply duplicate files
located at the same location (such as MANIFEST . MF) in different bundled JARs. The easiest
way to figure out is to install the sbt -dependency-graph plugin (https://github.com/
jrudolph/sbt-dependency-graph) and check which two trees bring in the conflicting JAR.

https://github.com/sbt/sbt-assembly
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/jrudolph/sbt-dependency-graph

Scaling Up

In order to add the sbt -dependency-graph plugin, let's add the following line to our
project/plugins.sbt

°

addSbtPlugin("net.virtual-void" % "sbt-dependency-graph" %
"0.7.5")

Let's try to build the Uber JAR using sbt assembly. When we issue this command from the
root of the project, we get an error that tells us that we have duplicate files in our JAR.

Let's see an example of a duplicate error message that we might face:

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/DOMStringList.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/DOMStringList.class

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/TypeInfo.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/TypeInfo.class

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/UserDataHandler.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/UserDataHandler.class

This happens most commonly if:

» Two different libraries in our sbt dependencies depend on the same external library
(or libraries that have bundled the classes with the same package)

» We have explicitly stated the transitive dependency as a separate dependency in sbt

Whatever the case, it is always recommended to go through the entire dependency tree to
trim it down.

Transitive dependency stated explicitly in the SBT dependency

A simpler way is to export the dependency tree in an ASCII tree format and eyeball it to find
the two instances where the xmlbeans JAR is referred to. The sbt dependency graph
plugin lets us do that. Once we have installed the plugin as per the instructions, we can
export and inspect the dependency tree:

sbt dependency-tree > deptree.txt

172

Chapter 6

The graph can also be visualized using a real graph (however, this lacks the text search

capabilities). The sbt dependency graph helps us analyze that too. We can export the
same tree as a . dot file using this code:

sbt dependency-dot > depdot.dot

It outputs a depdot . dot file in our target directory, which can be opened using Graphviz

(http://www.graphviz.org/). Refer to the following screenshot to see what the
visualization of a . dot file in Graphviz looks like:

m packl
chaptert-scalingup 2.10
0.1-SNAPSHOT

com databricks.
;park csr 210
org.: apache commons.
1 1

de jilex
jflex
160

org.sealanlp
epic-parser-en-span_2.10
2015219

org scalanlp
epic. 2.10
031

org mapdb
mapdb
092

R
"o apache iika
ukapagsers

org apache commons
commoas Jang3

P
.’a
\.l

I;]

e

orgapacheant
i)

e 13s boilerpipe
boilerpipe
1D

comuwyn
jhighlight
10
com.googlecode juniversalchardet
niveralhirdet

rome
rome
09

org.ow2.asm
asm-debug-all
4.1
orgccll covan asonp

lzl

org.apache. geronimo.specs
geronimo-stax-api_1 0_spec
10.1

org.apache.ant
ant-launcher
170

jdom
jdom
10

domdj
domd;
161

org.apache.poi

org.apache poi
poi-ooxml-schemas
3.10-bela_ e

| =/ crpactzo
/ 3.6 %2

orgapache poi
po-scraichpad
3.10-beta2.

ol bounc)casﬂe

org bouncycastle
beprov-jdkls
145
org.apache pdfbox
jempbox
184

org.apache xmlbeans
230

commons-codec
commons-codec
15

As we can see in lines 96 and 573 of the dependency tree (refer to https://github.
com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/
depgraph xmlbeans duplicate.txt; its screenshot is given), there are two instances
of the import of xmlbeans: once in the tree that leads t0 org.scalanlp:epic-
parser-en-span_2.10:2015.2.19, and once in the tree that leads to org.

scalanlp:epic_2.10:0.3.1.If you notice the second level of the epic-parser library, you
will realize that it is the epic library itself.

So, we can resolve this error by removing scalanlp:epic_2.10:0.3.1 from the list of
dependencies in our build. sbt file.

http://www.graphviz.org/
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt

Scaling Up

Two different libraries depend on the same external library

Even after we have removed the epic library, we still see some issues with the xercesImpl
and xmlapi JARs. When we analyze the dependency tree, we see that two dependent
libraries of epic depend on xerces, the xml APl and the scala library itself!

[

+-org.mapdb:mapdb:0.9.2

+-org.scala-lang:scala-{library:2.10.3 (evicted by: 2.10.4)
+-org.scalanlp:breeze-config_2.10:0.9.1 [S]

+-com. thoughtworks.paranamer:paranamer:2.2
+-org.scala-lang:scala-libraryj:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.4 [S]
+-org.scala-lang:scala{library:2.10.3 (evicted by: 2.10.4)

—-org.scalanlp:breeze_2.10:0.11-M@ [S]
+-com.github.fommil.netlib:core:1.1.2
| +-net.sourceforge.f2j:arpack_combined_all:0.1

+-com.github.rwl:jtransforms:2.4.0
| +=junit:junit:4.8.2

+-net.sf.opencsv:opencsv:2.3
+-net.sourceforge.f2j:arpack_combined_all:@8.1
+-0rg.apache.commons : commons-math3:3.2
+-org.scala-lang:scala—libraryj:2.10.3 (evicted by: 2.10.4)
+-org.scalanlp:breeze-macros_2.10:0.11-M@ [S]

| +-org.scala-lang:scala-{library:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.4 [S]

| +-org.scala-lang:scala{library:2.10.3 (evicted by: 2.10.4)
I

+-org.scalamacros:quasiquotes_2.10:2.0.0 [S]

| +-org.scala-lang:scala-{library}:2.10.2 (evicted by:

| +-org.scala-lang:scala-{library}:2.10.3 (evicted by:

| +-org.scala-lang:scala-reflect:2.10.2 (evicted by:

| +-org.scala-lang:scala-reflect:2.10.3 (evicted by:

| +-org.scala-lang:scala-reflect:2.10.4 [S]

| +-org.scala-lang:scala-{library:2.10.3 (evicted by: 2.10.4)
|

|
|
I
I
|
|
|
I
I
|
|
| +-org.scalamacros:quasiquotes_2.10:2.0.0-M8 [S] (evicted by: 2.0.0)
| +-org.scala-lang:scala{library:2.10.2 (evicted by: 2.10.4)

| +-org.scala-lang:scala-{libraryi:2.10.3 (evicted by: 2.10.4)

| +-org.scala-lang:scala-reflect:2.10.2 (evicted by: 2.10.4)

| +-org.scala-lang:scala-reflect:2.10.3 (evicted by: 2.10.4)

| +-org.scala-lang:scala-reflect:2.10.4 [S]

| +-org.scala-lang:scala-{libraryj:2.10.3 (evicted by: 2.10.4)
+-0rg.slf4j:s1f4j-api:1.7.5 (evicted by: 1.7.7)
+-0rg.slf4j:s1lf4j-api:1.7.6 (evicted by: 1.7.7)
+-org.slf4j:slf4j-api:1.7.7

+-0rg.spire-math:spire_2.10:0.7.4 [S]
+-org.scala-lang:scala{library:2.10.2 (evicted by: 2.10.4)
+-0rg.scala-lang:scala- 1:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.2 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.3 (evicted by: 2.10.4)
+-org.scala-lang:scala-reflect:2.10.4 [S]

|
|
|
[
|
I
+
|
|
I 1
|
|
||
|
|
|
|
|
|
|
|
|
[
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
I 1
|
|
|
|
|
|
|
|
|

Chapter 6

We notice that the Epic library has a dependency on the Scala library, but we also know that
the Scala library should already be available on the master and the worker nodes. We can
exclude the Scala library altogether from getting bundled using the assemblyOption key:

assemblyOption in assembly := (assemblyOption in
assembly) .value.copy (includeScala = false)

Next, in order to exclude the xml -apis library from the epic library, we use the
exclude function:

+
+
1]

libraryDependencies Seq (

"org.apache.spark" "spark-core" % sparkVersion % "provided",

°

"org.apache.spark" "spark-sgl" % sparkVersion % "provided",

°

"spark-mllib" % sparkVersion % "provided",

o° o° o°
o o° o

"org.apache.spark"

spark-csv" % "1.0.3",

("org.scalanlp" % "epic-parser-en-span 2.10" % "2015.2.19").
exclude ("xml-apis", "xml-apis")

"com.databricks" %%
1

)

As for the rest of the conflicting files, we can use the assembly plugin's merge strategy
to resolve the conflict. Since we are merging contents of multiple JARs, there is a distinct
possibility of a similarly named file being available on the same path, for example,
MANIFEST.MF. The sbt-assembly plugin provides various strategies to resolve conflicts
if the contents of the file in the same location don't match. The default strategy is to throw
an error, but we can customize the strategy to suit our needs.

In the merge strategy, we append the contents of application.conf if there are multiple
conf files in the JARs, use the first matching class/file in the order of the class path for the
org.cyberneko.html package, and discard all the manifest files. For all others, we apply
the default strategy:

assemblyMergeStrategy in assembly := {

case "application.conf" =>
MergeStrategy.concat

case PathList ("org", "cyberneko", "html", xs @ *) =>
MergeStrategy.first a

case m if m.toLowerCase.endsWith("manifest.mf") =>
MergeStrategy.discard

case £ =>

(assemblyMergeStrategy in assembly) .value (f)

}

Scaling Up

The entire build. sbt looks like this:

organization := "com.packt"
name := "chapteré6-scalingup"
scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(

° o

"org.apache.spark" "spark-core" % sparkVersion % "provided",

"org.apache.spark"

oo
°©°
"org.apache.spark" %% "spark-sgl" % sparkVersion % "provided",
%% "spark-mllib" % sparkVersion % "provided",
1

"com.databricks" %% "spark-csv" % "1.0.3",
1

)

("org.scalanlp" % "epic-parser-en-span 2.10" % "2015.2.19").

exclude ("xml-apis", "xml-apis")
)
assemblyJarName in assembly := "scalada-learning-assembly.jar"
assemblyOption in assembly := (assemblyOption in

assembly) .value.copy (includeScala = false)

assemblyMergeStrategy in assembly := {

case "application.conf" =>
MergeStrategy.concat

case PathList ("org", "cyberneko", "html", xs @ *) =>
MergeStrategy.first a

case m if m.toLowerCase.endsWith("manifest.mf") =>
MergeStrategy.discard

case £ =>

(assemblyMergeStrategy in assembly) .value (f)

}

So finally, when we do an sbt assembly, scalada-learning-assembly.jar is created.
If you would like the JAR name to be picked up from the build. sbt file's name and version,
just delete the assemblyJarName key from build. sbt:

> sbt clean assembly

176

Chapter 6

Submitting jobs to the Spark cluster (local)

There are multiple components involved in running Spark in distributed mode. In the

self-contained application mode (the main program that we have run throughout this book
so far), all of these components run on a single JVM. The following diagram elaborates the
various components and their functions in running the Scala program in distributed mode:

/ Spark distributed mode \

Cache in
Worker Node memory

Task Scheduler calls the run method
(converts Stages to Tasks) on Tasks

No knowledge of dependencies among Stages Executor *
manages

_ and
e = I
Cluster tasks

Manager
DAG Scheduler

(converts RDD operations into (St&ndal;)/ne/
=2 Cache in
groups of tasks (Stages)) YARN) Worker Node oo
Knows about dependencies among Stages calls the run method
on Tasks

Builds and submits a

graph of RDD operations N Executor *
o

) knowledge
Driver of Stages -
(the main program that holds your Spark Just knows

context - one per application) Tasks

*Executor is one per application in Standalone cluster and is > | in case of YARN or Mesos. /

As a first step, the RDD graph that we construct using the various operations on our RDD
(map, filter, join, and so on) is passed to the Directed Acyclic Graph (DAG) scheduler. The
DAG scheduler optimizes the flow and converts all RDD operations into groups of tasks called
stages. Generally, all tasks before a shuffle are wrapped into a stage. Consider operations

in which there is a one-to-one mapping between tasks; for example, a map or filter operator
yields one output for every input. If there is a map on an element on RDD followed by a filter,
they are generally pipelined (the map and the filter) to form a single task that can be executed
by a single worker, not to mention the benefits of data locality. Relating this to our traditional
Hadoop MapReduce, where data is written to the disk at every stage, would help us really
appreciate the Spark lineage graph.

Scaling Up

These shuffle-separated stages are then passed to the task scheduler, which splits them into
tasks and submits them to the cluster manager. Spark comes bundled with a simple cluster
manager that can receive the tasks and run it against a set of worker nodes. However, Spark
applications can also be run on popular cluster managers, such as Mesos and YARN.

With YARN/Mesos, we can run multiple executors on the same worker node. Besides, YARN
and Mesos can host non-Spark jobs in their cluster along with Spark jobs.

/ Mesos/ YARN cluster Worker Node \

Cache in
memory

Worker Instance |

Executor
manages

and
schedules
Cluster tasks

Manager

(Standalone/
Mesos/

LAY Executor

L o/

In the Spark standalone cluster, prior to Spark 1.4, the number of executors per worker
node per application was limited to 1. However, we could increase the number of worker
instances per worker node using the SPARK_WORKER INSTANCES parameter. With Spark
1.4 (https://issues.apache.org/jira/browse/SPARK-1706), we are able to run
multiple executors on the same node, just as in Mesos/YARN.

_ Ifweintend to run multiple worker instances within a single
% machine, we must ensure that we configure the SPARK
L WORKER_CORES property to limit the number of cores that

can be used by each worker. The default is all!

178

https://issues.apache.org/jira/browse/SPARK-1706

Chapter 6

wber of worker instances per worker node is determined by the SPARK_WORKER_INSTANCES (spark.env.sh) parany

Spark standalone cluster (<v1.4)
Worker Node

Cache in
*
Worker Instance | memory

Executor
manages

schedules Ask
Cluster tasks
Manager

(Standalone/

Mesos/ Cache in
YARN) Worker Instance 2* memory

Executor

In this recipe, we will be deploying the Spark application on a standalone cluster running on

a single machine. For all the recipes in this chapter, we'll be using the binary classification app
that we built in the previous chapter as a deployment candidate. This recipe assumes that you
have some knowledge of the concepts of HDFS and basic operations on them.

How to do it...

Submitting a Spark job to the local cluster involves the following steps:

1.

ok w0

Downloading Spark.

Running HDFS on pseudo-clustered mode.
Running the Spark master and slave locally.
Pushing data into HDFS.

Submitting the Spark application on the cluster.

Scaling Up

Downloading Spark

Throughout this book, we have been using Spark version 1.4.1, as we can see in our
build.sbt. Now, let's head over to the download page (https://spark.apache.org/
downloads.html) and download the spark-1.4.1-bin-hadoop2.6.tgz bundle, as

.S‘po‘lgz

Download Libraries ~ Documentation ~ Examples Community ~ FAQ

Lightning-fast cluster computing

Download Spark

The latest release of Spark is Spark 1.4.1, released on July 15, 2015 (release notes) (git tag)
1. Choose a Spark release: | 1.4.1 (Jul152015) 4|

2. Choose a package type: | Pre-built for Hadoop 2.6 and later S

3. Choose a download type: | Select Apache Mirror & |
4. Download Spark: spark-1.4.1-bin-hadoop2.6.tgz
5. Verify this release using the 1.4.1 signatures and checksums.

Note: Scala 2.11 users should download the Spark source package and build with Scala 2.11 support.

Running HDFS on Pseudo-clustered mode

Instead of loading the file from the local filesystem for our Spark application, let's have the file
stored away in HDFS. In order to do this, let's have a locally running Pseudo-distributed cluster
(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleCluster.html#Pseudo-Distributed Operation) of Hadoop 2.6.0.

After formatting our name node using bin/hdfs namenode -format and bringing up our
data node and name node using sbin/start-dfs. sh, let's confirm that all the processes
that we need are running properly. We do this using Jps. The following screenshot shows
what you are expected to see once you start the df s daemon:

3747 DataNode

3627 NameNode

3953 SecondaryMNameNode
4857 Jps

180

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation

Chapter 6

Running the Spark master and slave locally

In order to submit our assembly JAR to a Spark cluster, we have to first bring up the Spark
master and worker nodes.

All that we need to do to run Spark on the local machine is go to the downloaded (and
extracted) spark folder and run sbin/start-all.sh from the spark home directory.
This will bring up the Master and a Worker node of Spark. The Master's web Ul is accessible
from port 8080. We use this port to check the status of the job. The default service port

of the Master is 7077. We'll be using this port to submit our assembly JAR as a job to the
Spark cluster.

bash-3.2% pwd
Jlsers/GabrielsApps/Sspark-1.4.1-bin-hadoopd. 6
bash-3.2% sbin/start-all.sh

Let's confirm the running of the Master and the Worker nodes using Jps:

4144 Master

3747 DataNode

3627 MNameNode

4435 Jps

4326 Worker

3953 SecondaryNameNode

Pushing data into HDFS
This just involves running the mkdir and put commands on HDFS:

bash-3.2$ hadoop fs -mkdir /scalada
bash-3.2$% hadoop fs -put /Users/Gabriel/Apps/SMSSpamCollection /scalada/
bash-3.2$ hadoop fs -1s /scalada

Found 1 items

-rw-r--r-- 1 Gabriel supergroup 477907 2015-07-18 16:59 /scalada/
SMSSpamCollection

Scaling Up

We can also confirm this via the HDFS web interface at 50070 and by going to Utilities |
Browse the file system, as shown here:

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

/scalada Go!

Permission Owner Group Size Replication Block Size Name

TW-r=-F-- Gabriel supergroup 466.71 KB 1 128 MB SMSSpamCollection

Hadoop, 2014.

Submitting the Spark application on the cluster

Before we submit the Spark application to be run against the local cluster, let's change the
classification program (BinaryClassificationSpam) to point to the HDFS location:

val docs =
sc.textFile ("hdfs://localhost:9000/scalada/SMSSpamCollection") .
map (line =>

val words = line.split ("\t")

Document (words.head.trim(), words.tail.mkString(" "))

1

By default, Spark 1.4.1 uses Hadoop 2.2.0. Now that we are trying to run the job on Hadoop
2.6.0, and are using the Spark binary prebuilt for Hadoop 2.6 and later, let's change build.
sbt to reflect that:

libraryDependencies ++= Seq(

)

"org.apache.spark" "spark-core" % sparkVersion % "provided",

°

"org.apache.spark" %% "spark-sqgl" % sparkVersion % "provided",
%% "spark-mllib" % sparkVersion % "provided",

"org.apache.spark"
"com.databricks" %% "spark-csv" % "1.0.3",
"org.apache.hadoop" % "hadoop-client" % "2.6.0",

("org.scalanlp" % "epic-parser-en-span 2.10" % "2015.2.19").
exclude ("xml-apis", "xml-apis")

182

Chapter 6

Run sbt clean assembly to build the Uber JAR, like this:

Gabriel@Gabriels-MacBook-Pro ~/D/0/5/C/s/chapteré-scalingup> sbht

[info] Leading glebal plugins from /sUsers/Gabriels.sbt/8.13/plugins

C 1 Multiple resolvers having different access mechanism configured with same name ‘sbt-plugin
lver (“publishTe™).

./bin/spark-submit \
--class com.packt.scalada.learning.BinaryClassificationSpam \
--master spark://localhost:7077 \
--executor-memory 2G \
--total-executor-cores 2 \

<project root>/target/scala-2.10/scalada-learning-assembly.jar
Here is the output:

The following screenshot shows that we have successfully run our classification job on a Spark
cluster as against the standalone app that we used in the previous chapter:

15/07/18 18:49:85 INFO DAGScheduler: Job 45 finished: collectAsMap at MulticlassMetrics.scala:5Z, took @.861985 s
Confusion Matrix

B87.0 7.0

23.0 129.0

FREEEXRRRXRE* ending metrics for Logistic Regression with BFGS *®**esssxskxssers

Running the Spark Standalone cluster on EC2

The easiest way to create a Spark cluster and run our Spark jobs in a truly distributed mode

is Amazon EC2 instances. The ec2 folder inside the Spark installation directory wraps all the
scripts and libraries that we need to create a cluster. Let's quickly go through the steps that
entail the creation of our first distributed cluster.

Scaling Up

This recipe assumes that you have a basic understanding of the Amazon EC2 ecosystem,
specifically how to spawn a new EC2 instance.

v | | spark-1.4.1-bin-hadoop2.6

» | | bin

» | conf

b || data

| vyMwec2
b || deploy.generic
> I lib
README

* | spark_ec2 py
B spark-ec2

» | | examples

P lib

| logs

» || python

> R

|| sbin

|| work

CHAMNGES txt
LICENSE
MOTICE
README.md
RELEASE

How to do it...

We'll have to ensure that we have the access key and the Privacy Enhanced Mail (PEM)
files for AWS before proceeding with the steps. In fact, we are required to have these before
launching any EC2 instance if we intend to log in to the machines.

Creating the AccessKey and pem file

Instructions for creating a key pair and the pem key are available at http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. Anyway, the following
are the relevant screenshots.

184

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Chapter 6

Select Security Credentials from the user menu, like this:

scalada @ arunma =

IAM User:
scalada

Account:
arunma

My Account
Billing & Cost Management
Security Credentials

Switch Role

Sign Out

Click on the Users menu and create an access key, as shown in the following screenshot.
Download the credentials. We'll be using this to create the EC2 instances for the Spark
master and the worker nodes:

W@ AWS -~ Serices v

Dashboard

4
Details Inline Policies
Groups
Users

~ Security Credentials

Roles
Policies Access Keys

Identity Providers
Use access keys to make secure REST or Query protocol requests to any AW|

Account Settings anyone. In addition, industry best practice recommends frequent key rotation
Credential Report Create Access Key
Access Key ID Created Last Used

Encryption Keys AKIAIZH3OFQZ5WEHAIBA | 2015-07-25 08:06 UTC+0800 N/A

Scaling Up

The key pair can be created from inside the EC2 instances page using the Key Pairs menu, as
shown in the next screenshot. Your browser will automatically download the pem file once you
create a pair:

B AWS -~ Services -

EC2 Dashboard (LY (STl Import Key Pair
Events 4
Tags Q
Reports
Limits Key pair name “ Fingerprint
= INSTANCES scalada 88:18:62:¢6:4d:e8:96:1
Instances sparkec2 cb:2c:ac:b3:8e:01:18:
Spot Requests

Reserved Instances

=] IMAGES
AMIs
Bundle Tasks

=] ELASTIC BLOCK STORE
Volumes

Snapshots

=] NETWORK & SECURITY
Security Groups
Elastic IPs
Placement Groups
Key Pairs
Network Interfaces

=] LOAD BALANCING
Load Balancers

=] AUTO SCALING
Launch Coenfigurations Select a key pair
Auto Scaling Groups

Once you have the pem file, ensure that the file permission for the pem file is 400. Otherwise,
an error message stating that your pem file's permissions are too open will be shown:

chmod 400 spark.pem
Launching and running our Spark application involves the following steps:

1. Setting the environment variables.
2. Running the launch script.

186

Chapter 6

Verifying installation.

Making changes to the code.
Transferring the data and job files.
Loading the dataset into HDFS.
Running the job.

o N O 0 bk w

Destroying the cluster.

Setting the environment variables

As the first step, let's export the access and the secret access keys as environment variables.
The ec2 script for launching our instances will use these commands:

export AWS ACCESS KEY ID=AKIAI7H3OFQZ5W6H4IBA

export AWS SECRET ACCESS KEY=[YOUR SECRET ACCESS KEY]

| have also copied the pem file to the spark installation root directory, just to make the launch
command shorter (by not specifying the entire path of the pem file), as marked here:

spark-1.4.1-bin-hadoop2.6

conf

@ spark-defaults.conf
| spark-env.sh
spark-env.sh.template
spark-defaults.conf.template
slaves template
metrics.properties.template
logdj.preperties.template
fairscheduler.xml.template
decker.properties.template
work
logs
sbin
R
python
lib
spark-examples-1.4.1-hadoop2.6.0.jar
spark-assembly-1.4.1-hadoop2.6.0. jar
spark-1.4.1-yarn-shuffle. jar
datanucleus-rdbms-3.2.9 jar
datanucleus-core-3.2.10.jar
2 datanucleus-api-jdo-3.2.6 jar
examples
ec2
data

vl fel) ol el el ol

Bin

RELEASE
README.md
MNOTICE
LICENSE
CHANGES. txt

Scaling Up

Running the launch script

Now that we have the access key (and the secret key) exported and the pem file in the root

folder, let's spawn a new cluster:

cd spark-1.4.1-bin-hadoop2.6

./ec2/spark-ec2 --key-pair=scalada --identity-file=scalada.pem --slaves=2
--instance-type=m3.medium --hadoop-major-version=2 launch scalada-cluster

The parameters, as is clearly evident, represent the following:

» key-pair: This is the name of the user to whom the access key and the secret
access key you exported as environment variables belong.

» identity-file: This is the location of the pem file.

» slaves: This is the number of worker nodes.

» instance-type: This is one of the AWS instance types (http://aws.amazon.
com/ec2/instance-types/). M3 medium has one core and 3.75 GB in memory.

» hadoop-major-version: This is the version of Hadoop that we want Spark
to be bundled with. The spark version itself is derived from our local installation

(which is 1.4.1).

We can also confirm this from the EC2 console, as shown in the following screenshot:

Name ~ Instance Type « Instance St~
scalada-cluster-master-i-34dc259f m3.medium @ running
scalada-cluster-slave-i-31dc259a m3.medium @& running
scalada-cluster-slave-i-30dc259b m3.medium @ running

Status Checks -
& 2/2checks ...
& 2/2checks ...
& 2/2checks ...

Public DNS
ec2-54-161-176-58.compute-1.amazonaws.com
ec2-54-147-209-103.compute-1.amazonaws.com

ec2-54-161-198-238.compute-1.amazonaws.com

~ KeyNa~

scalada
scalada

scalada

Launch Time -
August 8, 2015...
August 8, 2015...
August 8, 2015...

2l 1t03

Security Groups
scalada-cluster-master
scalada-cluster-slaves

scalada-cluster-siaves

Verifying installation

Let's log in to the Master to see the services that are running on each node:

ssh -i scalada.pem root@ec2-54-161-176-58.compute-1.amazonaws.com

188

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Chapter 6

Doing a jps on the master node shows that the Spark Master, the HDFS name node, and the
Secondary name node are running on the Spark master node, as depicted in this screenshot:

bash-3.2% ssh -i scalada.pem root@ecZ-54-161-176-58 . compute-1.amazonaws . com
Last login: Sat Aug & ©5:@0:86 2015 from 132.147.72.227

I C 4 Amazon Linux AMI

https://aws . amazon. comsamazon-linux-ami/ 2013 .83-release-notes/
Amazon Linux version Z2015.83 is available.
root&8ip-18-158-76-158 ~]5% jps

3436 MameMode

4556 Jps

4332 TachyonMaster

4006 Master

3620 SecondaryNameMode

Similarly, on the worker nodes, we see that the Spark Worker and the HDFS data nodes are
running, as follows:

bash-3.2% ssh -1 scalada.pem root@ecZ-54-147-209-103.compute-1.amazonaws . com
Last legin: Sat Aug & ©@5:01:58 2015 from 132.147V.72.227

I C /4 Amazon Linux AMI

https://aws.amazon. com/amazon-1linux-ami/2013,83-release-notes/
Amazon Linux version 2015.83 is available.
root®ip-18-63-156-126 ~]3% jps

3149 DataNode

3593 TachyonWorker

3373 Worker

3785 Jps

Scaling Up

Making changes to the code

There is a small change that is required in our code in order to make it run on this cluster—the
location of the dataset in HDFS. This, however, is not the recommended way of doing it, and
the URL should be sourced from an external configuration file:

val conf = new

SparkConf () .setAppName ("BinaryClassificationSpamEc2")
val sc = new SparkContext (conf)
val sglContext = new SQLContext (sc)

val docs = sc.textFile("hdfs://ec2-54-159-166-156.compute-1.
amazonaws.com:9000/scalada/SMSSpamCollection") .map(line => {
val words = line.split("\t")
Document (words.head.trim(), words.tail.mkString(" "))

|3)

Transferring the data and job files
As the next step, let's copy the dataset and the assembly JAR to the master node for
execution from the directory where you have the pem file:

scp -i scalada.pem <REPO DIR>/chapter5-learning/SMSSpamCollection root@
ec2-54-161-176-58.compute-1.amazonaws.com:~/.

scp -i scalada.pem <REPO DIR>/chapteré6-scalingup/target/scala-2.10/
scalada-learning-assembly.jar root@ec2-54-161-176-58.compute-1.amazonaws.
com:~/.

An 1s on the home folder of the master confirms this, as shown in the following screenshot:

root@ip-18-150-76-158 ~]% 1s
ephemeral-hdfs mapreduce scala SM5SpamCollection spark-ecZ
hadoop-native persistent-hdfs spark tachyon

Loading the dataset into HDFS

Now that we have uploaded our dataset to the master's local folder, let's push it to HDFS.

As we saw earlier when we verified the installation, the Spark EC2 script creates and runs

an HDFS cluster for us. Let's go to the ephemeral -hdfs folder in the root and format the
filesystem. Note that the files in this HDFS, as the name indicates, will be wiped off upon
restarting the cluster. Ideally, we should be installing a separate HDFS cluster on these nodes
instead of depending on the ephemeral installation that was created by the Spark EC2 script.

190

Chapter 6

Just as in our previous recipe, let's push the SMSSpamCollection dataset into the
/scalada folder in HDFS:

root@ip-10-150-76-158 ephemeral-hdfs] $./bin/hdfs namenode -format
root@ip-10-150-76-158 ephemeral-hdfs] $./bin/hadoop fs -mkdir /scalada

root@ip-10-150-76-158 ephemeral-hdfs] $./bin/hadoop fs -put ../
SMSSpamCollection /scalada/

root@ip-10-150-76-158 ephemeral-hdfs]$./bin/hadoop fs -1ls /scalada
Found 1 items

-rw-r--r-- 3 root supergroup 477907 2015-08-08 05:24 /scalada/
SMSSpamCollection

Running the job
As with the previous recipe, we'll use the spark-submit script to submit the job to the cluster.
Let's enter the spark home directory (/root /spark) and execute the following lines:
./bin/spark-submit \
--class com.packt.scalada.learning.BinaryClassificationSpamEc2 \
--master spark://ec2-54-161-176-58.compute-1.amazonaws.com:7077 \
- -executor-memory 2G \
--total-executor-cores 2 \

../scalada-learning-assembly.jar

We can see that the job runs on both worker nodes of the cluster, as shown in this screenshot:

<
SDQ'-KZ anq Jobs Stages Storage Environment Executors

Executors (3)

Memory: 0.0 B Used (2.3 GB Total)
Disk: 0.0 B Used

Executor RDD Storage Disk Active Failed Complete Total Task Shuffle Shuffle Thread
D Address Blocks Memory Used Tasks Tasks Tasks Tasks Time Input Read Write Logs Dump
0 10.63.21.174:35781 0 0.0B/1069.1 0.0B 1 0 0 1 0ms 0.0B 00B 00B stdout Thread
MB stderr Dump
1 10.63.156.126:34546 0O 0.0B/1069.1 00B 1 0 0 1 0ms 0.0B 00B 0.0B stdout Thread
MB stderr Dump
driver 10.150.76.158:47498 0 00B/2673 0.0B 0 0 0 0 0ms 0.0B 00B 0.0B Thread
MB Dump

Scaling Up

We can also see the various stages of this Job from the Stages tab, as shown in the
following screenshot:

& = C [} ec2-54-161-176-58.compute-1.amazonaws.com:4040/stages/ w a9 e @ v @y
2% apps % Bookmarks [Home [l Using Nutchand Sc [0 TPweb S Scalex | Scaladocu [Scalada [ATasteofthe ACac @ Amazon Web Servic || A composite Rest s¢ » (1] Other Bookmari
5poriz ane Jobs = Stages Storage Environment Executors BinaryClassificationSpaf
Stages for All Jobs

Active Stages: 1
Completed Stages: 8

Active Stages (1)

Stage Tasks: Shuffle Shuffle
Id Description Submitted Duration Succeeded/Total Input Output Read Write
8 count at LBFGS.scala:170 +details (kil) 2015/08/08 2s 2/4 234.5

05:27:45 KB
Completed Stages (8)
Stage Tasks: Shuffle Shuffle
Id Description Submitted Duration Succeeded/Total Input Output Read Write
7 treeAggregate at StandardScaler.scala:52 +details 2015/08/08 04s 4/4 1218.8

05:27:44 KB
6 count at DataValidators.scala:38 +details 2015/08/08 03s 4/4 23

05:27:44 MB
& first at GeneralizedLinearAlgorithm.scala: 182 +details 2015/08/08 01s 1/1 728.4

05:27:43 KB
4 count at BinaryClassificationSpamEc2.scala:53 +details 2015/08/08 01s 2/2 1456.1

Not surprisingly, the accuracy measure is approximately the same, except that now we can
use this cluster to handle much bigger data.

15/88/88 ©5:28:01 INFO BlockManagerInfo: Removed broadcast_77_piece® on 10.63.21.174:58477 in memory (size: 1363.8 B, free: 1066.9 MB)
15/@8/08 ©5:28:01 INFO BlockManagerInfo: Removed broadcast_77_piece@® on 10.63.156.126:58790 in memory (size: 1363.8 B, free: 1066.9 MB)
15/88/08 ©5:28:01 INFO ContextCleaner: Cleaned shuffle 3

Confusion Matrix

960.2 4.9

39.0 116.9

FrkkEHRREA*22*: onding metrics for Logistic Regression with BFGS **##sskdssksssss

Destroying the cluster

Finally, if you would like to destroy the cluster, you can use the same ec2 script with the
destroy action. From your local Spark installation directory, execute this line:

./ec2/spark-ec2 destroy scalada-cluster

192

Chapter 6

bash-3.2% ./ecd/spark-ecZ destroy scalada-cluster

Searching for existing cluster scalada-cluster in region us-east-1...
Found 1 master, 2 slaves.

The following instances will be terminated:

> 8c2-54-161-176-58. compute-1. amazonaws . Com

> 8C2-54-147-209-103 . compute-1. amazonaws . Com

> eC2-54-161-198-238. compute-1. anazonaws . Com

ALL DATA ON ALL MODES WILL BE LOST!!

Are you sure you want to destroy the cluster scalada-cluster? (y/N) ¥
Terminating master...

Terminating slaves...

Running the Spark Job on Mesos (local)

Unlike the Spark standalone cluster manager, which can run only Spark apps, Mesos is a
cluster manager that can run a wide variety of applications, including Python, Ruby, or Java EE
applications. It can also run Spark jobs. In fact, it is one of the popular go-to cluster managers
for Spark. In this recipe, we'll see how to deploy our Spark application on the Mesos cluster.
The prerequisite for this recipe is a running HDFS cluster.

How to do it...

Running a Spark job on Mesos is very similar to running it against the standalone cluster. It
involves the following steps:

1.

2
3.
4

Installing Mesos.

Starting the Mesos master and slave.

Uploading the Spark binary package and the dataset to HDFS.
Running the job.

Installing Mesos

Download Mesos on the local machine by following the instructions at http://mesos.
apache.org/gettingstarted/.

http://mesos.apache.org/gettingstarted/
http://mesos.apache.org/gettingstarted/

Scaling Up

After you have installed the OS-specific tools needed to build Mesos, you have to run the
configure and make commands (with root privileges) to build Mesos (this will take a long time)
unless you pass -j <number of cores> V=0 to your make command, as shown here:

bash-3.25 pwd
AUsers/Gabriel/Apps/mesos-0.22.1/build
bash-3.2% sudo make -j 2 V=0

Making all in .

make[1]: MNothing to be done for “all-am'.
Making all in 3rdparty

As a side note, just like Spark, the ec2 folder inside the mesos installation directory provides
scripts to spawn a new EC2 mesos cluster.

Starting the Mesos master and slave
Now that we have Mesos installed, the next step is to start the Mesos master and slave:

bash-3.2$ pwd
/Users/Gabriel/Apps/mesos-0.22.1/build

bash-3.2$ sudo ./bin/mesos-master.sh --ip=127.0.0.1 --work dir=/var/lib/
mesos

bash-3.2% pwd
FUsers/Gabriel/Apps/mesos-8.22.1/build

bash-3.23% sudo ./bin/mesos-master.sh --ip=127.8.0.1 --work_dir=/var/1ib/mesos

Password:

10725 17:29:27.133807 2005725952 main.cpp:181] Build: 2@15-@7-25 17:17:47 by Gabriel

18725 17:29:27.133202 20057259252 main.cpp:183] Version: 0.22.1

19725 17:29:27.136255 2085725952 leveldb.cpp:176] Opened db in 2558us

18725 17:29:27.136720 2085725952 leveldb.cpp:183] Compacted db in 44Bus

10725 17:29:27.136772 2005725952 leveldb.cpp:198] Created db iterator in 23us

18725 17:29:27.136806 2085725952 leveldb.cpp:2@4] Seeked to beginning of db in 1lus

18725 17:29:27.136821 2805725952 leveldb.cpp:273] Iterated through @ keys in the db in 1lus

18725 17:29:27.136898 2005725952 replica.cpp:744] Replica recovered with log pesitions @ -> @ with 1 holes and @ unlearned
18725 17:29:27.138012 284685312 recover.cpp:449] Starting replica recovery

19725 17:29:27.138303 204685312 recover.cpp:475] Replica is in EMPTY status

18725 17:29:27.138816 2805725952 main.cpp:3@6] Starting Mesos master

10725 17:29:27.132452 204148736 replica.cpp:641] Replica in EMPTY status received a breadcasted recover request

18725 17:29:27.139735 203612168 recover.cpp:195] Received a recover response from a replica in EMPTY status

10725 17:29:27.140017 205221888 recover.cpp:566] Updating replica stotus to STARTING

18725 17:29:27.140393 206295048 master.cpp:349] Master 20150725-172927-16777343-50850-86787 (localhost) started on 127.0.8.1:5050

In another terminal window, let's bring up a worker node:

Gabriel@Gabriels-MacBook-Pro ~/A/m/build> pwd
/Users/Gabriel/Apps/mesos-0.22.1/build

Gabriel@Gabriels-MacBook-Pro ~/A/m/build> ./bin/mesos-slave.sh
--master=127.0.0.1:5050

Chapter 6

Gabriel@Gabriels-MacBook-Pro ~/A/m/builds pwd

/Users/Gabriel/Apps/mesos-8.22.1/build

Gabriel@Gabriels-MacBook-Pro ~/A/m/build> ./bin/mesos-slave.sh --moster=127.0.0.1:5050

10725 17:29:47.496588 2005725952 main.cpp:156] Build: 2015-07-25 17:17:47 by Gabriel

10725 17:29:47.496911 2085725952 main.cpp:158] Version: @.22.1

10725 17:29:47.497195 2805725952 containerizer.cpp:110] Using isolation: posix/cpu,posix/mem

10725 17:29:47.504981 2805725952 main.cpp:2@@] Starting Mesos slave

18725 17:29:47.506161 256000000 slave.cpp:174] Slave started on 1)8192.168.2.117:5051

10725 17:29:47.506695 256000000 slave.cpp:322] Slave resources: cpus(*):8; mem(*):15360; disk(*):470808; ports(*):[31000-32000]
10725 17:29:47.507113 256000000 slave.cpp:351] Slave hostname: 192.168.2.117

10725 17:29:47.507129 256000000 slave.cpp:352] Slave checkpoint: true

10725 17:29:47.511113 255463424 state.cpp:35] Recovering state from '/tmp/mesos/meta’

10725 17:29:47.511363 253317120 status_update_manager.cpp:197] Recovering status update manager

10725 17:29:47.511508 255463424 contalnerizer.cpp:387] Recovering containerizer

10725 17:29:47.511998 256000000 slave.cpp:3888] Finished recovery

10725 17:29:47.512924 254926848 status_update_manager.cpp:171] Pausing sending status updates

10725 17:29:47.51296@ 254390272 slave.cpp:647] New master detected at master@l27.0.0.1:5050

10725 17:29:47.513219 254390272 slave.cpp:672] No credentials provided. Attempting to register without authentication
10725 17:29:47.513274 254398272 slave.cpp:683] Detecting new master

10725 17:29:48.369973 253317120 slave.cpp:815] Registered with master master@127.8.8.1:5@50; given slave ID 20150725-172927-16777343-5050-86787-50
10725 17:29:48.370090 252780544 status_update_manager.cpp:178] Resuming sending status updates

10725 17:30:47.507956 253317120 slave.cpp:3648] Current disk usage 94.85%. Max allowed age: @ns

We can now look at the Mesos status page at http://127.0.0.1:5050, and this is what
we will see:

Mesos Frameworks Slaves Offers

Cluster: (Unnamed) Active TaSkS
Server: 127.0.0.1:5050
Version: 0.22.1 ID Name State Started ¥

Built: 15 minutes ago by Gabrie/
Started: 3 minutes ago
Elected: 3 minutes ago

No active tasks.

LoG Completed Tasks
Slaves D Name State Started ¥
Activated 1

No completed tasks.
Deactivated 0

Uploading the Spark binary package and the dataset to HDFS

Mesos requires that all worker nodes have Spark installed on the machines. We can achieve
this either by configuring the spark.mesos.executor.home property in the spark
configuration, or by simply uploading the entire Spark tar bundle to HDFS and making it
available to the Mesos workers:

./bin/hadoop fs -mkdir /scalada

./bin/hadoop fs -put /Users/Gabriel/Apps/spark-1.4.l1-bin-hadoop2.6.tgz /
scalada/spark-1.4.1-bin-hadoop2.6.tgz

Scaling Up
Let's set the spark binary as the executor URI

export SPARK EXECUTOR URI=hdfs://localhost:9000/scalada/spark-1.4.1-bin-
hadoop2.6.tgz

Also, let's upload the dataset to HDFS:

./bin/hadoop fs -mkdir /scalada

./bin/hadoop fs -put /Users/Gabriel/Apps/SMSSpamCollection /scalada/

Running the job

There is one thing that we need to do before running the program itself— configure the
location of the 1ibmesos native library. This file can be found in the /usr/local/lib
folder as 1ibmesos.so or libmesos.dylib, depending on your operating system:

export MESOS NATIVE JAVA LIBRARY=/usr/local/lib/libmesos-0.22.1.dylib

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

fscalada Go!

Permission Owner Group Size Last Modified Replication Block Size Name
“TWer==r== Gabriel supergroup 466.71 KB 7/25/2015, 5:49:13 PM 1 128 MB SMSSpamCollection
drwxr-xr-x Gabriel supergroup 0B 5/21/2015, 4:20:26 AM 0 0B dataloading

-TW-r--r-- Gabriel supergroup 241.41 MB 7/25/2015, 6:05:37 PM 1 128 MB spark-1.3.1-bin-hadoop2.4.tgz

Now, let's use cd to enter the Spark installation directory, and then run the job:

cd /Users/Gabriel/Apps/spark-1.4.1l-bin-hadoop2.6

export MESOS NATIVE JAVA LIBRARY=/usr/local/lib/libmesos-0.22.1.dylib

./bin/spark-submit \
--class com.packt.scalada.learning.BinaryClassificationSpamMesos \
--master mesos://localhost:5050 \
- -executor-memory 2G \
--total-executor-cores 2 \

<REPO_FOLDER>/chapter6-scalingup/target/scala-2.10/scalada-learning-
assembly.jar

196

Chapter 6

As you can see in the following screenshot, the tasks run fine on this single-worker-node
cluster:

Cluster: (Unnamed) Active Tasks b 4

Servi 27.0.0.1:5050

Version: 0.22.1 ID Name State Started ¥ Host

Built: an hour ago by Gabriel .

Started: 48 minutes ago o] task 0.0 in stage 0.0 RUNNING just now 192.168.2.117
Elected: 48 minutes ago 1 task 1.0 in stage 0.0 RUNNING just now 192.168.2.117
LOG

Slaves Completed Tasks

Activated ! D Name State Started ¥ Stopped
Deactivated 0 No completed tasks.
Tasks

Staged 389

Started 0

Finished 380

Sandbox

Sandbox

Host

The next screenshot shows the list of tasks that are already completed:

Cluster: (Unnamed) Active Tasks v
Server: 127.0.0.1:5050
Version: 0.22.1 D Name State Started ¥ Host
Built: 2 weeks ago by Gabriel .
Started: 36 minutes ago 180 task 2.0 in stage 53.0 STAGING localhost
Elected: 36 minutes ago 181 task 3.0 in stage 53.0 STAGING localhost
LOG 179 task 1.0 in stage 53.0 STAGING localhost
Slaves 178 task 0.0 in stage 53.0 RUNNING just now localhost
Activated 1
Deactivated 0 Completed Tasks v
Tasks D Name State Started ¥ Stopped Host
177 task 3.0 in stage 52.0 FINISHED just now just now localhost
Staged 388
176 task 2.0 in stage 52.0 FINISHED just now just now localhost
Started o
175 task 1.0 in stage 52.0 FINISHED just now just now localhost
Finished 360
174 task 0.0 in stage 52.0 FINISHED just now just now localhost
Killed o
173 task 3.0 in stage 51.0 FINISHED just now just now localhost
Failed 0
172 task 2.0 in stage 51.0 FINISHED just now just now localhost
Lost 24
171 task 1.0 in stage 51.0 FINISHED just now just now localhost
Resources 170 task 0.0 in stage 51.0 FINISHED just now just now localhost
CPUs Mem 169 task 3.0 in stage 50.0 FINISHED just now just now localhost
Total 8 15.0 GB 168 task 2.0 in stage 50.0 FINISHED just now just now localhost
Used 5 2.4GB 167 task 1.0 in stage 50.0 FINISHED just now just now localhost
Offered 0 0B 166 task 0.0 in stage 50.0 FINISHED just now just now localhost
Idle 3 12.6 GB 165 task 0.0 in stage 49.0 FINISHED just now just now localhost
164 task 3.0 in stage 49.0 FINISHED just now just now localhost
163 task 2.0 in stage 49.0 FINISHED just now just now localhost
162 task 1.0 in stage 49.0 FINISHED just now just now localhost

Sandbox

Sandbox
Sandbox
Sandbox

Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox
Sandbox

Sandbox

Scaling Up

Running the Spark Job on YARN (local)

Hadoop has a long history, and in most cases, organizations have already invested in the
Hadoop infrastructure before they move their MR jobs to Spark. Unlike the Spark standalone
cluster manager, which can run only Spark jobs, and Mesos, which can run a variety of
applications, YARN runs Hadoop jobs as first-class. At the same time, it can run Spark jobs
as well. This means that when a team decides to replace some of their MR jobs with Spark
jobs, they can use the same cluster manager to run Spark jobs. In this recipe, we'll see how
to deploy our Spark application on the YARN cluster manager.

How to do it...

Running a Spark job on YARN is very similar to running it against a Spark standalone cluster.
It involves the following steps:
1. Installing the Hadoop cluster.
Starting HDFS and YARN.
Pushing the Spark assembly and dataset to HDFS.

Running the Spark Job in the yarn-client mode.

ok N

Running the Spark Job in the yarn-cluster mode.

Installing the Hadoop cluster

While the setup of the cluster itself is beyond the scope of this recipe, for the sake of
completeness, let's quickly look at the relevant site XML configurations that were made while
setting up a single-node pseudo-distributed cluster on a local machine. Refer to http://
www . bogotobogo . com/Hadoop/BigData hadoop Install on ubuntu_ single
node_cluster.php for the complete details on how to set up a local YARN/HDFS cluster:

The core-site.xml file:

<configuration>
<propertys>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
</property>
</configurations>

198

http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php

Chapter 6

The mapred-site.xml file:

<configuration>
<propertys>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
</property>
</configurations>

The hdfs-site.xml file:

<configurations>
<property>
<name>dfs.replication</name>
<values>l</value>
</propertys>
</configurations>

Starting HDFS and YARN
Once the setup of the cluster is done, let's format HDFS and start the cluster (dfs and yarn):

Format namenode

hdfs namenode -format
Start both HDFS and YARN:
sbin/start-all.sh

Let's confirm that the services are running through jps, and this is what we should see:

o hduser@arun-ubuntu: fusrflocal/hadoop
hduser@arun-ubuntu: fusrflocal/hadoops jps
3081 DataNode

11006 Ips

2965 NameMode

3547 NodeManager

3260 SecondaryNameNode

3427 ResourceManager

hduser@arun-ubuntu: fusr/local/hadoops |}

Scaling Up

Pushing Spark assembly and dataset to HDFS

Ideally, when we do a spark-submit, YARN should be able to pick our spark-assembly
JAR (or Uber JAR) and upload it to HDFS. However, this doesn't happen correctly and results
in the following error:

Error: Could not find or load main class org.apache.spark.deploy.yarn.
ExecutorLauncher

In order to work around this issue, let's upload our spark-assembly JAR manually to HDFS
and change our conf /spark-env. sh to reflect the location. The Hadoop config directory
should also be specified in spark-env. sh:

Uploading the spark assembly to HDFS.

hadoop fs -mkdir /sparkbinary

hadoop fs -put /Users/Gabriel/Apps/spark-1.4.1-bin-hadoop2.6/1lib/spark-
assembly-1.4.1-hadoop2.6.0.jar /sparkbinary/

hadoop fs -1s /sparkbinary
Uploading the Spam dataset to HDFS:

hadoop fs -mkdir /scalada
hadoop fs -put ~/SMSSpamCollection /scalada/
hadoop fs -1s /scalada

Entries in spark-env.sh

HADOOP CONF_DIR=/usr/local/hadoop/etc/hadoop

SPARK EXECUTOR_URI=hdfs://localhost:9000/sparkbinary/spark-assembly-
1.4.1-hadoop2.6.0.jar

hduser@arun-ubuntu: ~fspark-1.4.1-bin-hadoop2.6

hduser@arun-ubuntu:~/spark-1.4.1-bin-hadoop2.6$ head conf/spark-env.sh
#!/usr/binfenv bash

This file is sourced when running various Spark programs.
Copy it as spark-env.sh and edit that to configure Spark for your site.

HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
SPARK_EXECUTOR_URI=hdfs://localhost:9000/sparkbinary/spark-assembly-1.4.1-hadoop2.6.0.jar

Options read when launching programs locally with
./bin/run-example or ./bin/spark-submit

200

Chapter 6

Before we submit our Spark job to the YARN cluster, let's confirm that our setup is fine using
the Spark shell. The Spark shell is a wrapper arround the Scala REPL, with Spark libraries set
in the classpath. Configuring HADOOP_CONF_DIR to point to the Hadoop config directory
ensures that Spark will now use YARN to run its jobs. However, there are two modes in which
we can run the Spark job in YARN, namely yarn-client and yarn-cluster. Let's explore
both of them in this subrecipe. But before we do that, to validate our configuration, we'll
launch the Spark shell pointing the master to the yarn-client. After a rain of logs, we
should be able to see a Scala prompt. This confirms that our configuration is good:

bin/spark-shell --master yarn-client

hduser@arun-ubuntu: ~/spark-1.4.1-bin-hadoop2.6

hduser@arun-ubuntu:~/spark-1.4.1-bin-hadoop2.6% bin/spark-shell --master yarn-client
[15/08/07 21:21:46 WARN util.NativeCodelLoader: Unable to load native-hadoop library for your platform... using builtin-
java classes where applicable
[15/08/87 21:21:46 INFO spark.SecurityManager: Changing view acls to: hduser
[15/08/87 21:21:46 INFO spark.SecurityManager: Changing modify acls to: hduser
I15/08/87 21:21:46 INFO spark.SecurityManager: SecurityManager: authentication disabled; uil acls disabled; users with
liew permissions: Set(hduser); users with modify permissions: Set(hduser)
[15/08/07 21:21:47 INFO spark.HttpServer: Starting HTTP Server
15/08/87 21:21:47 INFO server.Server: jetty-8.y.z-SNAPSHOT
[15/08/07 21:21:47 INFO server.AbstractConnector: Started SocketConnector@e.®.0.0:39472
[15/08/07 21:21:47 INFO util.Utils: Successfully started service 'HTTP class server' on port 39472.
elcome to
Y S B
NN NS
Y ST A VP B A A A VA version 1.4.1
Using Scala version 2.10.4 (Open]DK 64-Bit Server VM, Java 1.7.0_79)

Type in expressions to have them evaluated.
Type :help for more information.

Running a Spark job in yarn-client mode

Now that we have confirmed that the shell loads up fine against the YARN master, let's head
over to deploying our Spark job on YARN.

As we discussed earlier, there are two modes in which we can run a Spark application on
YARN: the yarn-client mode and the yarn-cluster mode. In the yarn-client mode
the driver program resides on the client side and the YARN worker nodes are used only to
execute the job. All of the brain of the application resides in the client JVM that polls the
application master for the status. The application master does nothing except watching out
for failure of the executor nodes and reporting and requesting for resources accordingly to
the resource manager. This also means that the client (our driver JVM) needs to run as long
as the application executes:

./bin/spark-submit \
--class com.packt.scalada.learning.BinaryClassificationSpamYarn \

--master yarn-client \

201

Scaling Up

--executor-memory 1G \

~/scalada-learning-assembly.jar

/yarn-client mode \

Worker Node 1 Worker Node 2

YARN Container YARN Container YARN Container
Spark Master Spark Execu

Application Master

requests resources

YARN Resource
polls for status Manager

submits YARN application

Client / Driver

Heart beats, scheduling and failover arrows
are skipped for brevity

.

As we see from the YARN console, our job is running fine. Here is a screenshot that shows this:

RUNNING Applications - Mozilla Firefox

RUNNING Applications ~ x

_€) @ http://localhost:8088/cluster/apps/RUNNING ~ &|[Q search v Bm & & & =
7 Logged in as: drwho
CorinElalalaE)a) RUNNING Applications
~ Cluster Cluster Metrics
Apps Apps | Apps Apps Containers | Memory Memory =Memory VCores VCores VCores | Active Decommissioned Lost Unhealthy ~Rebooted
Submitted | Pending | Running Completed ~ Running = Used Total Reserved Used = Total | Reserved Nodes Nodes Nodes Nodes Nodes
|8 0 1 7 3 568 8GB 0B 3 8 [1 0] 0 [|
|show 20 | entries Search: |
D - Users Name = A‘;‘cs:t'ml Queue | StartTime | FinishTime | g0 o FinalStatus | proorece o rackingul ¢
application_1438940079068_0008 hduser BinaryClassificationSpamYarn SPARK default Sat, 08 N/A RUNNING UNDEFINED | | ApplicationMaster
Aug 2015
01:43:22
Scheduler oMT
» Tools Showing 1 to 1 of 1 entries First Previous 1 Next Last

202

Chapter 6

Finally, we can see the output on the client JVM (the driver) itself:

Confusion Matrix

913.0 7.0

35.0 127.0

kxkkkkkkkkkkkr anding metrics for Logistic Regression with BFGS ****dkkddddkkkkhdrsk

Running Spark job in yarn-cluster mode
In the yarn-cluster mode, the client JVM doesn't do anything at all. In fact, it just submits
and polls the Application master for status. The driver program itself runs on the Application
master, which now has all the brains of the program. Unlike the yarn-client mode, the
user logs won't be displayed on the client JVM because the driver, which consolidates the
results, is executing inside the YARN cluster:
./bin/spark-submit \
--class com.packt.scalada.learning.BinaryClassificationSpamYarn \
--master yarn-cluster \
--executor-memory 1lg \

~/scalada-learning-assembly.jar

ﬁn-cluster mode \

Worker Node | Worker Node 2

Spark Executor

Driver

YARN Container YARN Container YARN Container

Application Master ‘ Spark Executor

requests resources

YARN Resource
polls for status Manager

submits YARN application

Client

Heart beats, scheduling and failover arrows
are skipped for brevity

203

Scaling Up

As expected, the client JVM indicates that the job has run successfully. It doesn't, however,

show the user logs.

15/08/07
15/08/07
15/08/07
15/08/07

yarn.
yarn.
yarn.
yarn.

Client: Application
Client: Application
Client: Application
Client: Application

report for
report for
report for
report for

application_1438940079068_0009 (state:
application_1438940079068_0009 (state:
application_1438940079068_0009 (state:
application_1438940079068_0009 (state:

RUNNING)
RUNNING)
RUNNING)
FINISHED)

15/08/07 23: INFO yarn.Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 10.08.2.15
ApplicationMaster RPC port: ©
queue: default
start time: 1439004971922
final status: SUCCEEDED
tracking URL: http://arun-ubuntu:8088/proxy/application_1438940079068_0009/A
user: hduser
15/08/07 23:38:04 INFO util.Utils: Shutdown hook called
15/08/67 23:38:04 INFO util.Utils: Deleting directory /tmp/spark-08e26d88-e459-4c55-8813-5de0f35f6ad7

The following screenshot shows the final status of our client and the cluster mode runs:

7 U
K - -
S 1=l Bﬂp FINISHED Applications
~ Cluster Cluster Metrics
About Apps Apps | Apps Apps Containers | Memory = Memory | Memory | VCores VCores VCores | Active Decommissioned | Lost | Unhealthy
Nodes Submitted Pending = Running ~Completed Running Used | Total | Reserved = Used Total Reserved = Nodes Nodes Nodes
Applications 9 5} 0 9 0 0B 8GB 0B 0 8 0 1 0 0 0
NEW
NEW_SAVING Show 20 -|entries search
SUBMITTED .
ACCEPTED User . Application Queue StartTime FinishTime . Finalstatus |
RUNNING D - Name o[AREICRtIe] e e e state ¢ S progres
ESHED application_1438940079068.0009 hduser com.packt.scalada.learning.BinaryClassificationSpamvarn SPARK default Sat, 08 Sat, 08 FINISHED SUCCEEDED
KILLED Aug 2015 Aug 2015
03:36:11 03:38:04
Scheduler o ps
application_1438940079068 0008 hduser BinaryClassificationSpamYarn SPARK default sat, 08 Sat, 08 FINISHED SUCCEEDED
» Tools
Aug 2015 Aug 2015
01:43:22 01:47:00
GMT. GMT.

The actual output of this program is inside the Hadoop user logs. We can either go to the
logs directory of Hadoop, or check it out from the Hadoop console itself, when we click on
the application link and then on the logs link in the console.

As you can see in the following screenshot, the stdout file shows our embarrassing
println commands:

Logs for container_1438940079068_0009_01_000001 - Mozilla Firefox

r

Spam count:615::133

Ham count:3844::983

#kkkissssiisss Printing metrics for Logistic Regression with BFGS ##*#sssssssssss
Area under ROC 0.9894646585946045

F1 0.9722222222222222

Precision : 0.9722222222222222

Confusion Matrix

975.0 5.0

23.8 110.8

#xerrrrereeees ending metrics for Logistic Regression with BFGS *rrersrssrerrerss

~ ResourceManager
RM Home

» NodeManager
» Tools

204

Chapter 6

In this chapter, we took an example Spark application and deployed it on a Spark standalone
cluster manager, YARN, and Mesos. Along the way, we touched upon the internals of these
cluster managers.

205

Going Further

In this chapter, we will cover the following recipes:

» Using Spark Streaming to subscribe to a Twitter stream

» Using Spark as an ETL tool (pulling data from ElasticSearch and publishing it
to Kafka)

» Using StreamingLogisticRegression to classify a Twitter stream using Kafka
as a training stream

» Using GraphX to analyze Twitter data

» Watching other Scala libraries of interest

Introduction

So far, the entire book has concentrated a little around Breeze and a lot around Spark,
specifically DataFrames and machine learning. However, there are a whole lot of other
libraries, both in Java and Scala that could be leveraged while analyzing data from Scala.
This chapter goes a little more into Spark's other components, streaming and GraphX.
Note that each recipe in this chapter feeds into the next recipe.

All the code related to this chapter can be downloaded from
https://github.com/arunma/ScalaDataAnalysisCookbook/
tree/master/chapter7-goingfurther.

207

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter7-goingfurther
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter7-goingfurther

Going Further

Using Spark Streaming to subscribe to a

Twitter stream

Just like all the other components of Spark, Spark Streaming is also scalable and fault-tolerant,
it's just that it manages a stream of data instead of a large amount of data that Spark generally
does. The way that Spark Streaming approaches streaming is unique in the sense that it
accumulates streams into small batches called DStreams and then processes them as mini-
batches, an approach usually called micro-batching. The component that receives the stream
of data and splits it into time-bound windows of batches is called the receiver.

Once these batches are received, Spark takes these batches up, converts them into

RDDs, and processes the RDDs in the same way as static datasets. The regular framework
components such as the driver and executor stay the same. However, in terms of Spark
Streaming, a DStream or Discretized stream is just a continuous stream of RDDs. Also, just
like SQLContext served as an entry point to use SQL in Spark, there's StreamingContext
that serves as an entry point for Spark Streaming.

In this recipe, we will subscribe to a Twitter stream and index (store) the tweets into
ElasticSearch (https://www.elastic.co/).

How to do it...

The prerequisite to run this recipe is to have a running ElasticSearch instance on your machine.

1. Running ElasticSearch: Running an instance of ElasticSearch is as simple as it gets.
Just download the installable from https://www.elastic.co/downloads/
elasticsearch andrun bin/elasticsearch. This recipe uses the latest
version 1.7.1.

bash-3.2% pwd
SUsers/Gabriel/apps/elasticsearch-1.7.1
bash-3.25 binselasticsearch

[2015-88-15 13:47:33,047][INFO][node
[2015-08-15 13:47:33,847][INFO][node
[2015-88-15 13:47:33,156][INFO J[plugins
[2015-88-15 13:47:33,207][INFO J[env

e [15.3gb], net total_space [464.7gb], types [hfs]
[2015-88-15 13:47:35,86@][INFO][node
[2015-88-15 13:47:35,860][INFO][node
[2015-08-15 13:47:35,964][INFO][transport
et[/192.168.2.117:9300]}

[Harry Leland] version[1.7.1], pid[65232], build[bB8f43f/2015-07-29T02:54:16Z]
[Harry Leland] initializing ...

[Harry Leland] leaded [], sites []

[Harry Leland] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_spac

L

[

[Harry Leland] initialized
[Harry Leland] starting ...
[Harry Leland] bound_address {inet[/0:@:0:0:0:0:0:0:9308]}, publish_address {in

[

2. Creating a Twitter app: In order to subscribe to tweets, Twitter requires us to create
a Twitter app. Let's quickly set up a Twitter app in order to get the consumer key and
the secret key. Visit https://apps.twitter.com/ using your login and click
Create New App.

208

https://www.elastic.co/
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://apps.twitter.com/

Chapter 7

Create an application

Application Details
Name *

scalada

Your application name. This is used to attribute the source of a tweet and in user-facing
Description *

App for Twitter Streaming for Scalada

Your application description, which will be shown in user-facing authorization screens. 8

Website *

http://rerun.me

We will be using the consumer key, consumer secret key, the access token, and the
access secret in our application.

scalada

Details Settings Keys and Access Tokens Permissions

Application Settings

Keep the "Consumer Secret" a secret. This key should never be human-reada you

Consumer Key (APl Key) pwb1BHKR99eEK24DC74iF94Pg

Consumer Secret (AP Secret) 3uCYAxYVmWJjcudMp9PI6Hg9vUYFm8xFuw0x0RxBpHT3h7r1Gm
Access Level Read and write (modify app permissions)

Adding Spark Streaming and the Twitter dependency: There are two dependencies

that need to be added here, the spark-streaming and the spark-streaming-
twitter libraries:

"org.apache.spark" %% "spark-streaming" % sparkVersion %
"provided",

"org.apache.spark" %% "spark-streaming-twitter" %
sparkVersion

209

Going Further

4.

Creating a Twitter stream: Creating a Twitter stream is super easy in Spark. We just
need to use TwitterUtils.createStream for this. TwitterUtils wraps around
the twitter4j library (http://twitter4j.org/en/index.html) to provide
first-class support in Spark.

TwitterUtils.createStream expects a few parameters. Let's construct them
one by one.

[m]

StreamingContext: StreamingContext could be constructed by
passing in SparkContext and the time window of the batch:

val streamingContext=new StreamingContext (sc, Seconds
(5))

OAuthorization: The access and the consumer keys that comprise
the 0Auth credentials need to be passed in order to subscribe to the
Twitter stream:
val builder = new ConfigurationBuilder ()
.setOAuthConsumerKey (consumerKey)
.setOAuthConsumerSecret (consumerSecret)
.setOAuthAccessToken (accessToken)
.setOAuthAccessTokenSecret (accessTokenSecret)
.setUseSSL (true)

val twitterAuth = Some (new
OAuthAuthorization (builder.build()))

Filter criteria: You are free to skip this parameter if your intention is to
subscribe to (a sample of) the universe of the tweets. For this recipe,
we'll add some filter criteria to it:

val filter=List ("fashion", "tech", "startup", "spark")

StorageLevel: This is where our received objects that come in batches
need to be stored. The default is memory with a capability to overflow to
disk. Once this is constructed, let's construct the Twitter stream itself:

val stream=TwitterUtils.createStream(streamingContext,
twitterAuth, filter, StorageLevel.MEMORY AND DISK)

5. Saving the stream to ElasticSearch: Writing the Tweets to ElasticSearch involves
three steps:

1. Addingthe ElasticSearch-Spark dependency: Let's add the appropriate

version of ElasticSearch Spark to our build. sbt:

"org.elasticsearch" %% "elasticsearch-spark" % "2.1.0"

http://twitter4j.org/en/index.html

Chapter 7

2. Configuring the ElasticSearch server location in the Spark configuration:
ElasticSearch has a subproject called elasticsearch-spark that
makes ElasticSeach a first-class citizen in the Spark world. The org.
elasticsearch. spark package exposes some convenient functions that
convert a case class to JSON (deriving types) and indexes to ElasticSearch.
The package also provides some really cool implicits that provide functions
to save RDD into ElasticSearch and load data from ElasticSearch as an RDD.
We'll be looking at those functions shortly.

The ElasticSearch target node URL could be specified in the Spark
configuration. By default, it points to localhost and port 9200. If required,
we could customize it:

//Default is localhost. Point to ES node when required

val conf = new SparkConf ()
.setAppName ("TwitterStreaming")
.setMaster ("local[2]")
.set (ConfigurationOptions.ES NODES, "localhost")
.set (ConfigurationOptions.ES PORT, "9200")

3. Converting the stream into a case class: If we are not interested in pushing
the data to ElasticSearch and are interested only in printing some values in
twitter4j.Status, stream. foreach will help us iterate through the
RDD [Status]. However, in this recipe, we will be extracting some data from
twitter4j.Status and pushing it to ElasticSearch. For this purpose, a
case class SimpleStatus is created. The reason why we are extracting
data out as a case class is that twitter4j.Status has way too much
information that we don't want to index:

case class SimpleStatus(id:String, content:String,
date:Date, hashTags:Array[String]=Array[String] (),

urls:Array[String] =Array [String] (),

user:String, userName:String,
userFollowerCount : Long)

The twitter4j.Status is converted to SimpleStatus using a convertToSimple
function that extracts only the required information:

def convertToSimple (status: twitter4j.Status): SimpleStatus =
val hashTags: Array[String] =
status.getHashtagEntities () .map (eachHT => eachHT.getText ())

val urlArray = if (status.getURLEntities != null)
status.getURLEntities () .foldLeft ((Array[String] ())) ((r, c) => (r
:+ c.getExpandedURL())) else Array[String] ()

val user = status.getUser ()

Going Further

val utcDate = new
Date (dateTimeZone.convertLocalToUTC (status.getCreatedAt.getTime,
false))

SimpleStatus (id = status.getId.toString, content =
status.getText (), utcDate,

hashTags = hashTags, urls = urlArray,

user = user.getScreenName (), userName = user.getName,
userFollowerCount = user.getFollowersCount)

}

Once we map the twitter4j.Status to SimpleStatus, we now have a

RDD [SimpleStatus]. We can now iterate over the RDD [SimpleStatus] and push
every RDD to ElasticSearch's "spark" index. "twstatus" is the index type. In RDBMS
terms, an index is like a database schema and the index type is like a table:

stream.map (convertToSimple) . foreachRDD { statusRdd =>
println (statusRdd)
statusRdd.saveToEs ("spark/twstatus")

}

We could confirm the indexing by pointing to ElasticSearch's spark index using Sense,
a must-have Chrome plugin for ElasticSearch, or simply by performing a curl request:

curl -XGET "http://localhost:9200/spark/ search" -d!'

{
"query": {
"match all": {}

_ The Sense plugin for Chrome can be downloaded from
% the Chrome store at: https://chrome.google.
L com/webstore/detail/sense-beta/lhjgkmll
caadmopgmanpapmpjgmfcfig?hl=en.

https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en

Chapter 7

Server | lecalhost:9200/

59 GET _search
B 60- {
61 - "query": {
62 "match_all": {}
63 - }
64 - }

"http://www.mensshirts.org.uk/stores/visit.php?store=austin-reed"

Using Spark as an ETL tool

In the previous recipe, we subscribed to a Twitter stream and stored it in ElasticSearch.
Another common source of streaming is Kafka, a distributed message broker. In fact,

it's a distributed log of messages, which in simple terms means that there can be multiple
brokers that has the messages partitioned among them.

In this recipe, we'll be subscribing the data that we ingested into ElasticSearch in the previous
recipe and publishing the messages into Kafka. Soon after we publish the data to Kafka, we'll
be subscribing to Kafka using the Spark Stream API. While this is a recipe that demonstrates
treating ElasticSearch data as an RDD and publishing to Kafka using a KryoSerializer, the
true intent of this recipe is to run a streaming classification algorithm against Twitter, which is
our next recipe.

How to do it...

Let's look at the various steps involved in doing this.

1. Setting up Kafka: This recipe uses Kafka version 0.8.2.1 for Spark 2.10, which can
be downloaded from https://www.apache.org/dyn/closer.cgi?path=/
kafka/0.8.2.1/kafka 2.10-0.8.2.1.tgz.

https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz

Going Further

214

Once downloaded, let's extract, start the Kafka server, and create a Kafka topic
through three commands from inside our Kafka home directory:

1. Starting Zookeeper: Kafka uses Zookeeper (https://zookeeper.
apache.org/) to hold coordination information between Kafka servers.
It also holds the commit offset information of the data so that if a Kafka
node fails, it knows where to resume from. The Zookeeper data directory
and the client port (default 2181) is present in zookeeper.properties.
The zookeeper-server-start.sh expects this to be passed as a
parameter for it to start:

bin/zookeeper-server-start.sh config/zookeeper.properties

2. Starting the Kafka server: Again, in order to start Kafka, the configuration
file to be passed to it is server.properties. The server.properties,
among many things specifies the port on which the Kafka server listens
(9092) and the Zookeeper port it needs to connect to (2181). This is passed
to the kafka-server-start. sh startup script:

bin/kafka-server-start.sh config/server.properties

3. Creating a Kafka topic: In really simple terms, a topic can be compared
to a JMS topic with the difference that there could be multiple publishers
as well as a single subscriber in Kafka. Since we are running the Kafka in
a non-replicated and non-partitioned mode using just one Kafka server,
the topic named twtopic (Twitter topic) is created with a replication factor
of 1 and the number of partitions is 1 as well:

bin/kafka-topics.sh --create --zookeeper localhost:2181
--replication-factor 1 --partitions 1 --topic twtopic

Pulling data from ElasticSearch: The next step is to pull the data from ElasticSearch
and treat it as a Spark DataFrame other than the optional setting in Spark
configuration to point to the correct host and port. This is just a one-liner.

The configuration change (if needed) is:

//Default is localhost. Point to ES node when required
val conf = new SparkConf ()
. setAppName ("KafkaStreamProducerFromES")
.setMaster ("local [2]")
.set (ConfigurationOptions.ES_NODES, "localhost")
.set (ConfigurationOptions.ES_PORT, "9200")

The following line queries the "spark/twstatus" index (that we published to in the
last recipe) for all documents and extracts the data into a DataFrame. Optionally, you
can pass in a query as a second argument (for example, "?g=fashion"):

val twStatusDf=sglContext.esDF ("spark/twstatus")

https://zookeeper.apache.org/
https://zookeeper.apache.org/

Chapter 7

Let's try to sample the DataFrame using show () :
twStatusDf.show()

The output is:

IHEY GUYS there's ... 12015-88-14 10:3

|Honbok Import Kor...|2015-88-14 18: | Buffer()|632138602667305028 1 Buf fer(https:/fww. .. | hoppykoreamart| vzl Happy Korea Mart|
IFashion brands on...|2015-88-14 1@:33:...1 Buffer()1632137887492000048 | Buf fer(http://www. . . | thehonsindiomeb| 13871 The Hans Indial
|8ParkaLondonli we. .. |2015-@8-14 19:36:. .. |Buffer(mensmear, ... |1632138612847546368 Buffer()| riddlemogazinel 14771 Riddle Mogazine|
|Forget Retro. The...|2015-@8-14 10:36:...1 Buffer(fashion) | 6321386163792117761 Buffer(http://wor. .. INordLinkFASHION| 2871 WordLink #FASHIONI
IRT EMarketingliC: ... 12815-88-14 18:33:...1 Buffer()16321378914356510872 | Buf fer(http: //bit. .. | GrimwoodAssoc| 3zl Jane Grimwood|
|Summer Foshion So...12015-88-14 10:36:... Buffer()1632138611232653312 1 Buf fer(http://bit. .. | Tom_flemenkontil 4981 Lee kuom yewl
|Summer Fashion Sa...12015-88-14 10:36:...1 Buffer()|632138619394744320 | Buf fer(http: //bit. .. | ismalhol 5431 Still mel
|Fashion For Women...|2015-88-14 18: .. Buffer()632138612688166912 | Buffer(http://fb. ... | ibothmon| 5591 Ibrohim Othmani
IRT @SadHoppyAmazi . .. |2015-08-14 10:36:...1 Buffer()|632138604240850044 | Buffer()l TtsCristalBral 6361 Ceal
|#6: Champion Men'...|2015-88-14 18: .. |Buffer{fashion, o...|632138634078382144 |Buffer(http:/famz. .. | InstantTimeDeal | 8541 Instant Time Deals|
|Boots by #NancySi...12015-@8-14 19:36:...1Buffer(NancySinat. .. 1632138625275156526 | Buf fer(http://dlv...1 DealsMalls| 1551 Deals Mallsl
1#6; Champion Men'. .. |12015-@8-14 18:36:...|Buffer(fashion, a...|632138629662400512 |Buffer(http:/Yomz...| RS5SDealFeeds| 5271 RS5 Deol Feeds|
|Summer Foshion So...12015-@8-14 1@:36:...1 Buffer()1632138621135417344 | Buffer(http: //bit. .. | bojulous| 1321 Bajulu Olaitanl
|Summer Foshion So...12015-88-14 1@:36:... Buffer()|632138648767459328 | Buffer(http: //bit. .. | its_3lvyzl 971 & elVisl
1Jam Tongan Wonita. .. |2815-88-14 18:36:...1 Buffer()16321386574538383361 Buf fer(hittps://mw_ .| DUNIANETdotCOMI 5871 DUNTARET . com|
Ikttp: /7t co/422x8. . . 12015-08-14 10:36:. .. |Buffer(Deals, Fas...|6321386598111723521Buffer(http://ift. . .| Xu_D3_0a4| 51IFASHTON DEALS CHECK:|
|Summer Foshion Sa. .. 12615-88-14 18: | Buffer()|632138668690403329 | Buffer(http: //bit...| Hottest]| 32| IG:I'mtu:stqll
|#LatestNews: Summ. .. |2015-88-14 18:3 .. Buffer{LotestNews)|6321386016375756801 Buffer()| diomondnewsngr| 1871 DMamond Report|
IWomen's Retro fas...|2015-88-14 18:36:...1 Buffer()|632138777650176000 1 Buf fer(http://rov. . .| Doumhi__Siopkil 13561 Doumhi Siopkil

.............. e —
content | datel hashTogs| idl urlsl user |userFol lowerCount | userbome |
.............. e e e e e e o o e

.. |Buffer(Fashion, M...|632138685465612280 | Buffer(http:/ Fawe. .. | lowpricesuk| 4491 LewPrices.co.ukl

Preparing data to be published to Kafka: Before we do this step, let's go over what
we aim to achieve from this step. Like we discussed at the beginning of the recipe,
we will be running a classification algorithm against streaming data in the next recipe.
As you know, any supervised learning algorithm requires a training dataset. Instead
of us manually curating the dataset, we will be doing that in a very primitive fashion
by marking all the tweets that have the word fashion in them as belonging to the
fashion class and the rest of the tweets as not belonging to the fashion class.

We will just take the content of the tweet and convert it into a case class called
LabeledContent (similar to LabeledPoint in Spark MLIib):

case class LabeledContent (label: Double, content:
Array [Stringl])

LabeledContent only has two fields:

o label: This indicates whether the tweet is about fashion or not (1. 0 if the
tweet is on fashion and 0.0 if itis not)

o content: This holds a space-tokenized version of the tweet itself

def convertToLabeledContentRdd (twStatusDf: DataFrame) = {
//Convert the content alone to a (label, content) pair
val labeledPointRdd = twStatusDf.map{row =»>
val content =
row.getAs [String] ("content") .toLowerCase ()
val tokens = content.split(" ") //A very primitive
space based tokenizer

Going Further

val labeledContent=if (content.contains ("fashion"))
LabeledContent (1, tokens)

else LabeledContent (0, tokens)
println (labeledContent.label, content)
labeledContent

}

labeledPointRdd

}

4. Publishing data to Kafka using KryoSerializer: Now that we have the
publish candidate (LabeledContent) ready, let's publish it to the Kafka
topic. This involves just three lines.

Q

Constructing the connection and transport properties: In properties,
we configure the Kafka server port location and register the serializer that
we use 1o serialize LabeledContent:

val properties = Map[String,

Object] (ProducerConfig.BOOTSTRAP SERVERS CONFIG ->
"localhost:9092") .asJava B B

Constructing the Kafka producer using the connection properties and
the key and value serializer: The next step is to construct a Kafka producer
using the properties we constructed earlier. The producer also needs
a key and a value serializer. Since we don't have a key for our message, we
fall back to Kafka's default, which fills in the hashcode by default, which we
aren't interested on receipt.

val producer = new KafkaProducer [String,
Array [Bytel]] (properties, new StringSerializer, new
ByteArraySerializer)

Sending data to the Kafka topic using the send method: We then serialize
LabeledContent using KryoSerializer and send it to the Kafka topic
"twtopic" (the one that we created earlier) using the producer. send
method. The only purpose of using a KryoSerializer here is to speed up
the serialization process:

val serializedPoint = KryoSerializer.serialize (lContent)

producer.send (new ProducerRecord[String,
Array [Bytel]] ("twtopic", serializedPoint))

For the KryoSerializer, we use Twitter's chill library (https://github.com/
twitter/chill), which provides an easier abstraction over the serialization
for Scala.

https://github.com/twitter/chill
https://github.com/twitter/chill

Chapter 7

The actual KryoSerializer is just five lines of code:

object KryoSerializer
private val kryoPool = ScalaKryoInstantiator.defaultPool

def serialize[T] (anObject: T): Array[Byte]l =
kryoPool.toBytesWithClass (anObject)

def deserialize([T] (bytes: Array[Byte]): T =
kryoPool . fromBytes (bytes) .asInstanceOf [T]

}
The dependency for Twitter chil1 that needs to be added to our build. sbt is:

"com.twitter" %% "chill" % "0.7.0"
The entire publishing method looks like this:

def publishToKafka (labeledPointRdd: RDD [LabeledContent])

{

labeledPointRdd. foreachPartition { iterator =»>

val properties = Map[String, Object] (ProducerConfig.
BOOTSTRAP_SERVERS CONFIG ->
"localhost:9092", "serializer.class" ->
"kafka.serializer.DefaultEncoder") .asJava

val producer = new KafkaProducer [String,
Array [Bytel] (properties, new StringSerializer, new
ByteArraySerializer)

iterator.foreach { lContent =»>
val serializedPoint =
KryoSerializer.serialize (1Content)
producer.send (new ProducerRecord[String,
Array [Byte]] ("twtopic", serializedPoint))

}

Going Further

5. Confirming receipt in Kafka: We could confirm whether the data is in Kafka using
the JMX MBeans exposed by it. We'll use JConsole Ul to explore MBeans. As you
can see, the count of the messages is 24849, which matches the ElasticSearch
document count (that was published in the previous recipe).

[] [] Java Monitoring & Management Consale
Connection Window Help

80o pid: 42361 kafka.Kafka config/server.properties

| Overview | Memory = Threads Classes | WM Summary | 0EEEGE
~ I

b @ kafka.Log4]Controller Attribute values
v kafka.cluster Name Value
M Partition E\?:::T e fﬂiﬁ?&g es
¥ B UnderReplicated FifteenWinuteRate 20093 756306439107
v twtopic FiveMinuteRate 328.47745655471135
v @0 MeanRate 30.240843210466483
b Attributes OneMinuteRate 0.006268623684411613
» Operations RatelUnit SECONDS
kafka.commaon
kafka.controller
kafka.log
kafka.network
kafka.server
v BrokerTopicMetrics
¥ (3 BytesinPerSec
» Atributes
» Operations
» @ twiopic
@ BytesOutPerSec
» Attributes
» Operations
b @@ twiopic
@ BytesRejectedPerSec
@ FailedFetchRequestsPerSec
@ FailedProduceRequestsPerSec
@ MessagesinPerSec
b Attributes
» Operations
v @ wiopic
» I
» Operations
13 DelayedFetchRequestMetrics

4 vrvrvyvy

4

4d4vr vy

Refresh

Using StreaminglLogisticRegression to

classify a Twitter stream using Kafka
as a training stream

In the previous recipe, we published all the tweets that were stored in ElasticSearch to a
Kafka topic. In this recipe, we'll subscribe to the Kafka stream and train a classification
model out of it. We will later use this trained model to classify a live Twitter stream.

Chapter 7

How to do it...

This is a really small recipe that is composed of 3 steps:

1.

Subscribing to a Kafka stream: There are two ways to subscribe to a Kafka stream
and we'll be using the DirectStream method, which is faster. Just like Twitter
streaming, Spark has first-class support for subscribing to a Kafka stream. This is
achieved by adding the spark-streaming-kafka dependency. Let's add it to our
build. sbt file:

)

"org.apache.spark" %% "spark-streaming-kafka" %
sparkVersion

The subscription process is more or less the reverse of the publishing process even in
terms of the properties that we pass to Kafka:

val topics = Set("twtopic")

val kafkaParams = Map[String,

String] ("metadata.broker.list" -> "localhost:9092")

Once the properties are constructed, we subscribe to twtopic using KafkaUtils.
createDirectStream:

val kafkaStream = KafkaUtils.createDirectStream[String,
Array [Byte], StringDecoder,

DefaultDecoder] (streamingContext, kafkaParams,

topics) .repartition(2)

With the stream at hand, let's reconstruct LabeledContent out of it. We can do that
through KryoSerializer's deserialize function:

val trainingStream = kafkaStream.map {
case (key, value) =>
val labeledContent =
KryoSerializer.deserialize (value) .asInstanceOf [LabeledContent]

Training the classification model: Now that we are receiving the LabeledContent
objects from the Kafka stream, let's train our classification model out of them. We
will use StreaminglLogisiticRegressionWithSGD for this, which as the name
indicates, is a streaming version of the LogisticRegressionWithSGD algorithm we saw
in Chapter 5, Learning from Data. In order to train the model, we have to construct

a LabeledPoint, which is a pair of labels (represented as a double) and a feature
vector. Since this is a text, we'll use the HashingTF's transform function to generate
the feature vector for us:

val hashingTf = new HashingTF (5000)

val kafkaStream = KafkaUtils.createDirectStream[String,
Array [Byte], StringDecoder,

DefaultDecoder] (streamingContext, kafkaParams,

topics) .repartition(2)

Going Further

220

val trainingStream = kafkaStream.map {
case (key, value) =>
val labeledContent =
KryoSerializer.deserialize (value) .asInstanceOf [LabeledContent]
val vector =
hashingTf.transform(labeledContent.content)
LabeledPoint (labeledContent.label, vector)

}

trainingStream now is a stream of LabeledPoint, which we will be using to
train our model:

val model = new StreaminglLogisticRegressionWithSGD ()
.setInitialWeights (Vectors.zeros (5000))
.setNumIterations (25) .setStepSize(0.1) .setRegParam(0.001)

model.trainOn (trainingStream)

Since we specified the maximum number of features in our HashingTF to be 5000,
we set the initial weights to be 0 for all 5,000 features. The rest of the parameters
are the same as the regular LogisticRegressionWithSGD algorithm that trains on a
static dataset.

Classifying a live Twitter stream: Now that we have the model in hand, let's use
it to predict whether the incoming stream of tweets is about fashion or not. The
Twitter setup in this section is the same as the first recipe where we subscribed
to a Twitter stream:

val filter = List("fashion", "tech", "startup", "spark")

val twitterStream =
TwitterUtils.createStream(streamingContext, twitterAuth,
filter, StorageLevel.MEMORY AND DISK)

The crucial part is the invocation of model . predictOnValues, which gives us the
predicted label. Once the prediction is made, we save them as text files in our local
directory. It's not the best way to do it and we will probably want to push this data to
some appendable data source instead.

val contentAndFeatureVector=twitterStream.map { status =>
val tokens=status.getText () .toLowerCase () .split (" ")
val vector=hashingTf.transform(tokens)
(status.getText (), vector)

Chapter 7

val contentAndPrediction=model.predictOnValues (contentAndFeatu
reVector)

//Not the best way to store the results. Creates a whole
lot of files

contentAndPrediction.saveAsTextFiles ("predictions",
llt:}<t:ll)

In order to consolidate the predictions that are spread over multiple files, a really
simple aggregation command was used:

find predictions* -name "part*" |xargs cat >> output.txt

Gabriel@Gabriels-MacBook-Pro ~/0/0/5/C/s/chapter?-goingfurthers pwd
AUsers/Gabriel/Dropbox/arun/scalabatadnalysis/Code/scaladataanalysisCB-tower/chapter?-goingfurther
Gabriel@Gabriels-MacBook-Pro ~/0/0/5/C/s/chapter7-goingfurthers>

find predictions-1439587* -name Ixargs cat »» cutgut.txgl

Here is a sample of the prediction. The results are fairly okay considering the training
dataset itself was not classified in a very scientific way. Also, the tokenization is just
space-based, the data isn't scaled nor was the IDF used.

(RT vee_vetrano: its always the ppl that talk about fashion all the time that actually have no idea what it is theyre talking about. #stfu,1.@)
(RT @fieldsofvintage: Etsy #voguet #vintage #jewelry #fashion #silverware #homedecor #accessories http://t.co/mgr((9xCnC #etsyretwt #etsy ht..,1.0)
(New York City is getting a fleet of eco-friendly food carts http://t.co/2BlYdryxgk #tech,@.@)

(RT ZubizuBags: RT lefrenchgem: Summer Fashion Earrings, Sun Earrings, Long Dangle Earrings, Summer Jewlery for the,1.@)

(Which are the communal benefits in relation with stream of fashion lanyards: pUD,1.8)

(RT @darylelockhart: Red Planet Fashion: Mars Colony Project Inspires Sportswear Line http://t.co/BET12]ekbB,0.@)

(Tianjin explosion destroys over 8,000 new cars in China http://t.co/TVFFKECIA6 #tech | https://t.co/xWWLG9IpwM http://t.co/NatoZevHul,0.8)
(Read The Best Fashion,Travel, and Cuisine Coverage, at http://t.co/72e8yl6AKr https://t.co/OtpVbYqRe2,@.0)

(RT eclippings: Fashion Womens Envelope Clutch Purse Lady Handbag Tote Shoulder Evening on http://t.co/DbEErSeidp http://t.co/QFSloVwSun,1.8)
(1961 Schlitz Beer Ski Theme Blonde Man Sweater Skiing Vintage 6@'s Fashion Ad http://t.co/@cg2VLGK7o #Deals_US http://t.co/XMqUQHtDZL,1.8)
(Free Shipping !18PCS Original monster high dolls fashion clothing accessories b9@ - Only .. http://t.co/iy7171CaNV http://t.co/z71atl27my,1.8)
(Free Shipping !18PCS Original monster high dolls fashion clothing accessories b9@ - Only .. http://t.co/Kx3juvZVYp http://t.co/5G048dGqII,1.8)
(RT GetHiggyWit_it: Now this is fashion https://t.co/01ZNnDnpCf,1.@)

(#KCA #VotelKT48ID BusEconYMO_HGS: Documents confirm #Apple is building #self-driving #CARvsBUF #automotive #tech #business #economics,d.8)

(RT FlasherNight: #fashion "arbib cek Villarreal telah mencapai kesepakatan untuk merekrut penyerang Totten... http://t.co/4caquAhH8) Foll..,1.@)
(The ticket read "broke adapter while trying to move computer" via /r/techsupportgore http://t.co/hEolAVS50G #tech.. http://t.co/nwhdgjFeSwW,o.
(RT Nina_LaChapelle: From bananas to phones: How cheaper #yuan could reverberate http://t.co/ee96Nm84fA

#china #finance #fashion #lifestyl..,1.8)

(RT @BGMedia: Fashion meets function in Montblanc's e-strap @montblanc_world http://t.co/L9ZaN8ylzc http://t.co/sR6HCDWZMH,1.8)

(RT FlasherNight: #fashion "arbib cek Bayern Muenchen mengalahkan Hamburg dengan skor telak 5-@ pada laga p... http://t.co/UCFfBGUZTST Foll..,1.€)
(Gostei de um video @YouTube de @davyjonesrj http://t.co/ArYISITaln GTA V - QUEM E MAIS RIDICULO? PIRATAS FASHION WEEK,1.8)

(Dow tumbles on weak United Tech, IBM earnings,®@.@)

(@Got_Six ETourneySport That one is over https://t.co/MRptEchcG2,0.8)

(RT @BlingThings2011: A Mermaid's Tale by Lilli Carter http://t.co/og3a2kQcXY via @GrowthhackRt #growthhacking #entrepreneurship #startup,©.@)

221

Going Further

Using GraphX to analyze Twitter data

GraphX is Spark's approach to graphs and computation against graphs. In this recipe, we will
see a preview of what is possible with the GraphX component in Spark.

How to do it...

Now that we have the Twitter data stored in the ElasticSearch index, we will perform the
following tasks on this data using a graph:

1. Convert the ElasticSearch data into a Spark Graph.
Sample vertices, edges, and triplets in the graph.
Find the top group of connected hashtags (connected component).

2
3
4. List all the hashtags in that component.
1

Converting the ElasticSearch data into a graph: This involves two steps:

1. Converting ElasticSearch data into a DataFrame: This step, like we saw in
an earlier recipe, is just a one-liner:
def convertElasticSearchDataToDataFrame (sglContext:
SQLContext) = {
val twStatusDf = sqglContext.esDF ("spark/twstatus")
twStatusDf

}

2. Converting DataFrame to a graph: Spark Graph construction requires an
RDD for a vertex and an RDD of edges. Let's construct them one by one.

Vertex RDD requires an RDD of a tuple representing a vertexId and a
vertex property. In our case, we'll just do a primitive hash code on the
hashTag as the vertex ID and hashTag itself as the property:

val verticesRdd:RDD[(Long, String)] = df.flatMap { tweet =>

val hashTags =
tweet.getAs [Buffer [String]] ("hashTags")

hashTags.map { tag =>
val lowercaseTag = tag.toLowerCase ()
val tagHashCode=lowercaseTag.hashCode () .toLong
(tagHashCode, lowercaseTag)

222

Chapter 7

For the edges, we construct an RDD [Edge] , which wraps a pair of vertex IDs
and a property. In our case, we use the first URL (if present) as a property to
the edge (we aren't using it for this recipe so an empty string should also be
fine). Since there is a possibility of multiple hashtags for a tweet, we use the
combinations function to choose pairs and then connect them together as

an edge:

val edgesRdd:RDD [Edge [String]] =df.flatMap { row =>
val hashTags = row.getAs[Buffer[String]] ("hashTags")
val urls = row.getAs[Buffer[String]] ("urls")

val topUrl=if (urls.length>0) urls(0) else ""
val combinations=hashTags.combinations(2)

combinations.map{ combs=>
val firstHash=combs (0) .toLowerCase () .hashCode.toLong

val
secondHash=combs (1) . toLowerCase () .hashCode. toLong

Edge (firstHash, secondHash, topUrl)

}

Finally, we construct the graph using both RDDs:

val graph=Graph (verticesRdd, edgesRdd)

Sampling vertices, edges, and triplets in the graph: Now that we have our
graph constructed, let's sample and see what the vertices, edges, and triplets

of the Graph look like. A triple is a representation of an edge and two vertices
connected by that edge:

graph.vertices.take(20) . foreach (println)

223

Going Further

22

The output is:

(-980086641, rt< ficeighters A TRICER 2TEAHHZ)
(114820, thx)

(1288862560, statementneckpiece)
(789040 ,75%)

(-7@6379@56, shoppershour)
(165548515, s1ilversurfers)
(-1221262756, health)

(3155,bu)

(118132375, taste)

(231197415, ridnolals)
(109801725, supra)

(106006350 ,0rder)

({-121429366, shoebykidsnaaldwijk)
(3046020, cams)

(1444965940, sneakpreview)
(47780855, 2488y)

(108270, edm)

(98371450, gizmo)
({249@51115,blogmonetization)
({-1638853121, citycenterdc)

graph.edges.take(20) .foreach(println)

The output is:

Edge(-2137707@97, -1266394726 ,https://instagram. com/p/baGvalqbiv3/)
Edge(-2132286556, -1109908296 ,https://instagram. com/p/BXNLGZrrhy/)
Edge(-2132286556,-1077469768 ,https://instagram. com/p/6XNLGZrrhy/)
Edge(-2132286556, 108486107 ,https://instagram. com/p/EXNiGZrrhy/)
Edge(-2132286556,109201981, https://instagram. com/p/EXNLGZrrhy/)
Edge(-2132286556,109780401, https://instagram. com/p/6XNiG2rrhy/)
Edge(-2132286556,17289114@1 , https://instagram. com/p/BXNLGZrrhy./)
Edge(-2128842253,-2128633716,)

Edge(-2128842253, 844562933,)

Edge(-2128633716,844562933,)

Edge(-2128468089,1316818326,http://bit.ly/10UEvIz)

Edge(-2121085849,-1077469768 ,http://1dig.it/1LyY3nH)
Edge(-2121085849, 7295081500, http://1dig.it/1LyY3nH)
Edge(-212089@375,3267670,http://neuvoo.com/ job.php?id=dstcjShvsb&source=twitter&lang|
Edge(-212089@375, 1075463261, http://neuvoo. com/ job . php?id=dstcjShvsb&source=twitter&l
Edge(-2120156555, 3555998, http://trkt.co/1LbQLINRD
Edge(-2118473344,10927@, http://1ift. tt/1UHhQEN)
Edge(-2118473344 3555998, http://ift.tt/1UHhQBh)

Edge(-2116411129, -1392531550,https://instagram. com/p/6N-cBzFVNt/)
Edge(-2116411129, -1077469768 ,https://instagram. com/p/6N-c@zFVNt/)

graph.triplets.take(20) .foreach(println)

Chapter 7

The output is:

((-21377@7@97 ,traditional),(-1266394726, french),https://instagram. com/p/6aGvalqlv3/)

((-2132286556, instamakeup), (-1109908296, lashes) ,https://instagram. com/p/6XN1G2rrhy/)

((-2132286556, instamakeup), (-1877469768, fashion),https://instagram.com/p/6XNiG2rrhy/)
((-2132286556,instamakeup) , (108486107, glamour) ,https://instagram. com/p/6XNLGZrrhy/)
((-2132286556,instamakeup), (189201981, salon),https://instagram. com/p/6XNiGZ2rrhy/)
((-2132286556,instamakeup) , (109788401, style),https://instagram. com/p/6XNiGZ2rrhy/)

((-2132286556, instamakeup), (1728911481, natural),https://instagram. com/p/6XNiGZ2rrhy/)
((-2128842253,startcoin), (-2128633716, startjoin),)

((-2128842253,startcoin), (844562933 ,maxcoin),)

({(-2128633716,startjoin), (844562933 ,maxcoin),)
((-2128468089,startpath), (1316818326, startups),http://bit.ly/10UEvIz)

((-2121885849, earthtweet), (-1077469768, fashion),http://1dig. it/1LyY3nH)

((-2121885849, earthtweet), (729501500, ecof riendly),http://1dig.it/1LyY3nH)

((-212089@375, cardiovascular), (3267670, jobs) ,http://neuvoo. com/ job . php?id=dstcjShvsblsource=twitterd
((-212089@375, cardiovascular), (1875463261, technologist),http://neuvoo.com/job. php?id=dstcjShvsb&sour
((-2120156555,mobilenews), (355599@, tech) ,http://trkt.co/1LbQ1NR)

((-2118473344 ,happening), (1@9270,now) ,http://ift. tt/1UHhQEh)

((-2118473344 ,happening), (3555990, tech),http://1ft.tt/1UHhQEh)

{(-2116411129,ecofashion), (-13925315508,berlin),https://instagram. com/p/6N-c@zFVNt./)
({(-2116411129,ecofashion), (-1877469768, fashion),https://instagram. com/p/6N-cBz FVNt/)

3. Finding the top group of connected hashtags (connected component): As you
know, a graph is made of vertices and edges. A connected component of a graph
is just a part of the graph (a subgraph) whose vertices are connected to each other
by some edge. If there is a vertex that is not connected to another vertex directly or
indirectly through another vertex, then they are not connected and therefore don't
belong to the same connected component.

GraphX's graph . connectedComponents provides a graph of all the vertices
along with their component IDs:

val connectedComponents=graph.connectedComponents.cache ()

Let's take the component ID with the maximum number of vertices and then extract
the vertices (and eventually the hashtags) that belong to that component:
val ccCounts:Map [VertexId,

Long] =connectedComponents.vertices.map{case (_, vertexId)
=> vertexId}.countByValue

//Get the top component Id and count

val topComponent: (VertexId,
Long) =ccCounts.toSeq.sortBy{case (componentId, count) =>
count}.reverse.head

225

Going Further

226

Since topComponent just has the component ID, in order to fetch the hashTags
of the top component, we need to have a representation that maps hashTag

to a component ID. This is achieved by joining the graph's vertices to the
connectedComponent vertices:

//RDD of HashTag-Component Id pair. Joins using vertexId

val
hashtagComponentRdd:VertexRDD [(String, VertexId)]=graph.vertices.
innerJoin (connectedComponents.vertices){ case
(vertexId, hashTag, componentId)=>

(hashTag, componentId)

}

Now that we have componentId and hashTag, let's filter only the hashTags for the
top component ID:

val topComponentHashTags=hashtagComponentRdd
.filter{ case (vertexId, (hashTag,
componentId)) => (componentId==topComponent. 1)}

.map{case (vertexId, (hashTag,componentId)) =>
hashTag

}

topComponentHashTags

The entire method looks like this:
def getHashTagsOfTopConnectedComponent (graph:Graph[String, String])
:RDD [String] ={

//Get all the connected components

val connectedComponents=graph.connectedComponents.cache ()

import scala.collection.

val ccCounts:Map [VertexId,
Long] =connectedComponents.vertices.map{case (_, vertexId) =>
vertexId}.countByValue

//Get the top component Id and count

val topComponent: (VertexId,
Long) =ccCounts.toSeq.sortBy{case (componentId, count) =>
count } .reverse.head

Chapter 7

//RDD of HashTag-Component Id pair. Joins using
vertexId

val
hashtagComponentRdd:VertexRDD [(String, VertexId)]=graph.vertices.
innerJoin (connectedComponents.vertices){ case
(vertexId, hashTag, componentId)=>

(hashTag, componentId)

//Filter the vertices that belong to the top component alone
val topComponentHashTags=hashtagComponentRdd

.filter{ case (vertexId, (hashTag,
componentId)) => (componentId==topComponent. 1)}

.map{case (vertexId, (hashTag,componentId)) =>
hashTag

}

topComponentHashTags

}

List all the hashtags in that component: Saving the hashTags to a file is as simple
as calling saveAsTextFile. The repartition (1) is done just so that we have a
single output file. Alternatively, you could use collect () to bring all the data to the
driver and inspect it:

def saveTopTags (topTags:RDD[String]) {
topTags.repartition(1l) .saveAsTextFile ("topTags.txt")

227

Going Further

The number of hashtags in the top connected component for our run was 7,320. This shows

that in our sample stream there are about 7,320 tags related to fashion that are interrelated.
They could be synonyms, closely related, or remotely related to fashion. A snapshot of the file
looks like this:

plussize
empowerment

la

tagstagram
fredericksburg
macaraibo

fez
topnotchscholars
=i

paca

tshirt

homes
investment
indiegamelover
pregnancy
florence
mayoristas
Ztx|ot

uae

nba

search

forver
fifthfashionue
traceitchi
flagship
shrewsbury
garden
bloggerstyle
olshopmedan
property
americasnexttopmodel
newyork
j2tlaunchparty
winter

frrole
lookoftheday
pittsburgh
snow

In this chapter, we briefly touched upon Spark streaming, Streaming ML, and GraphX. Please
note that this is by no means an exhaustive recipe list for both topics and aims to just provide
a taste of what Streaming and GraphX in Spark could do.

228

A

Apache Spark
about 33
obtaining 35
tools 33
URL 34
apply method 7
arbitrary transformations
URL 96
Avro data model
Avro objects, generating with sbt-avro
plugin 80, 81
creating 79
RDD of generated object, constructing
from Students.csv 81
schema_complex, URL 79
schema_primitive, URL 79

URL 78
using, in Parquet 78, 79
B

binary classification
LogisticRegression, using with
Pipeline API 146
binary classification, with LogisticRegression
and SVM 136
Bokeh-Scala
document 113
glyph 112
plot 113
URL 99
used, for creating scatter plots 112, 113
used, for creating time series MultiPlot 122

Index

Breeze
about 2
breeze dependencies 2
breeze-native dependencies 2
obtaining 2
org.scalanlp.breeze dependency 3
org.scalanlp.breeze-natives package 4
org.scalanlp.breeze-natives package, URL 5
URL 2

breeze-viz 112

C

chill library

reference link 216
classes

more than 22 features, loading 54-62
clustering

about 152

K-means, using 152
continuous values

predicting, with linear regression 129, 130
CcSsv

DataFrame, creating from 35-37

files, reading 28-31

files, writing 28-31
csvread function 30

D

data
preparing, in Dataframes 90, 91
pulling, from ElasticSearch 214
DataFrame
columns, renaming 45
columns, selecting 40, 41

229

creating, from CSV 35-37
creating, from Scala case classes 49-52
data by condition, filtering 42, 43
data, preparing 90-97
data, sampling 39, 40
data, sorting in frame 44, 45
inner join 46, 47
JSON file, reading with
SQLContext.jsonFile 63-65
JSON, loading 63
left outer join 48
manipulating 38
right outer join 47
saving, as file 48
schema, explicitly specifying 66-68
schema, printing 38
text file, converting to JSON RDD 66
text file, reading 66
treating, as relational table 46
two DataFrame, joining 46
URL 35, 49
Directed Acyclic Graph (DAG) 177
Dow Jones Index Data Set
URL 122
Driver program 37
DStreams 208

E

EC2

Spark Standalone cluster, running 183, 184
ElasticSearch

data, pulling from 214

URL 208

URL, for downloading installable 208
ETL tool

Spark, using as 213-218

F

feature reduction
PCA, using 159

G

gradient descent 128, 129
Graphviz
URL 173

230

GraphX
about 222
used, for analyzing Twitter data 222-228

H

Hadoop cluster
URL 198
Hadoop Distributed File System (HDFS)
about 63
data, pushing 181
URL 63
head function 77
Hive table
URL 74

instance-type
URL 188
iris data
URL 112

J

Joda-Time API 123

K

Kafka

server, starting 214

setting up 213

topic, creating 214

version 0.8.2.1, for Spark 2.10, URL 213
K-means

about 152

data, converting into vector 155

data, feature scaling 155, 156

data, importing 155

epsilon 154, 155

KMeans.PARALLEL 153

KMeans.RANDOM 152

max iterations 153, 154

model, constructing 158

model, evaluating 158

number of clusters, deriving 156, 157

used, for clustering 152

KMeans.PARALLEL
about 153
K-means++ 153
K-means|| 153
Kryo 82
KryoSerializer
about 213
used, for publishing data to Kafka 216

L

legends property 120
Lempel-Ziv-Oberhumer (LZO) 78
linear regression
data. importing 130
each instance, converting into
LabeledPoint 130
features, scaling 131
mini batching 135, 136
model, evaluating 132, 133
model, training 132
parameters, regularizing 133, 135
test data, predicting against 132
test data, preparing 131
training, preparing 131
used, for predicting continuous
values 129, 130
LogisticRegression
used, for binary classification with
Pipeline API 146

matrices
appending 19
basic statistics, computing 22
concatenating 19
concatenating, horzcat function 19
concatenating, hvertcat function 19
creating 14
creating, from random numbers 17
creating, from values 14, 15
creating, out of function 16
data manipulation operations 20
identity matrix, creating 16
mean and variance 22

Scala collection, creating 17

standard deviation 23

with randomly distributed values 25, 26
working 25

working with 13, 14

zero matrix, creating 15

matrix

column vectors, obtaining 20

eigenvalues, calculating 24

eigenvectors, calculating 24

inside values, obtaining 21

inverse, obtaining 21

largest value, finding 23

log function 24

log of all values, finding 23

row vectors, obtaining 21

sqrt function 23

square root, finding 23

sum, finding 23

transpose, obtaining 21

with normally distributed random
values, creating 28

with random values with Poisson
distribution, creating 28

with uniformly random values, creating 27

matrix arithmetic

about 18
addition 18
multiplication 18

matrix of Int

converting, into matrix of Double 20

Mesos

dataset, uploading to HDFS 195

installing 193, 194

master and slave, starting 194, 195

Spark binary package, uploading to
HDFS 195

Spark job, running 193

URL 193

micro-batching 208

N
NumPy

URL 2

231

0

OpenBLAS
URL 4

P

PairRDD
URL 82
Parquet
Avro data model, using 78, 79
parquet-tools, URL 75
URL 70
Parquet files
compression, enabling for Parquet files 78
data, storing as 70-74
file back, reading for verification 85
inspecting. with tools 75-77
RDD[StudentAvro], saving 82-84
Snappy compression of data, enabling 78
Parquet-MR project
URL 71
Parquet tools
installing 75
using, for verification 86
PCA
about 129, 59
data, dimensionality reduction 164
dimensionality reduction, of data for
supervised learning 159, 160
labeled data, preparing 162
metrics, classifying 163, 164
metrics, evaluating 163-167
number of components 165, 166
principal components, extracting 162, 165
test data, preparing 162
training data, mean-normalizing 161, 165
used, for feature reduction 159
pem key
URL 184
Pipeline API, used for solving binary
classification problem
about 146
cross-validator, constructing 151
data, importing as test 147
data, importing as training sets 147
data, splitting as test 147

232

data, splitting as training sets 147
mode, evaluating without
cross-validation 149, 150
model, evaluating with
cross-validation 151, 152
model, training 149
parameters for cross-validation,
constructing 150, 151
participants, constructing 148, 149
pipeline, preparing 149
test data, predicting against 149
prerequisite, for running ElasticSearch
instance on machine
ElasticSearch, running 208
Spark Streaming, adding 209
stream, saving to ElasticSearch 210, 211
Twitter app, creating 208, 209
Twitter dependency, adding 209
Twitter stream, creating 210
Principal Component Analysis. See PCA
Privacy Enhanced Mail (PEM) 184
pseudo-clustered mode
HDFS, running 180
URL 180

RDBMS
loading 86-89
reduceByKey function 95
Resilient Distributed Dataset (RDD) 61
RowGroups 70

S

save method 74
sbt-avro plugin
URL 80
sbt-dependency-graph plugin
URL 171
sbteclipse plugin
URL 3
Scala Build Tool (SBT) 2
Scala case classes
DataFrame, creating from 49-52
scatter plots, creating with Bokeh-Scala
about 112, 113

data, preparing 113, 114
flower species with varying colors,
viewing 117, 118
grid lines, adding 119
legend, adding to plot 120, 121
marker object, creating 114, 115
plot and document objects, creating 114
URL 121
x and y axes' data ranges, setting for plot 115
x and y axes, drawing 116
Sense plugin
URL 212
Spark
downloading 180
URL, for download 180
using, as ETL tool 213-218
Spark application
building 169, 170
submitting, on cluster 182
Spark cluster
jobs, submittingto 177-179
spark.driver.extraClassPath property
URL 170
Spark job
running, in yarn-client mode 201-203
running, in yarn-cluster mode 203, 204
running, on Mesos 193-197
running, on YARN 198
submitting, to Spark cluster 177-179
Spark job, installing on YARN
about 198
dataset, pushing to HDFS 200, 201
Hadoop cluster, installing 198
HDFS, starting 199
Spark assembly, pushing to HDFS 200, 201
Spark master and slave
running 181
Spark Standalone cluster
AccessKey, creating 184-186
changes, making to code 190
dataset, loading into HDFS 190, 191
data, transferring 190
destroying 192
environment variables, setting 187
installation, verifying 188, 189
job files, transferring 190

job, running 191, 192

launch script, running 188

pem file, creating 184, 186

running, on EC2 183
Spark Streaming

used, for subscribing to Twitter stream 208
Stochastic Gradient Descent (SGD) 128
StreamingLogisticRegression, used for

classifying Twitter stream

about 218

classification model, training 219, 220

live Twitter stream, classifying 220, 221

subscription, to Kafka stream 219
supervised learning 127, 128
Support Vector Machine (SVM) 136

T

time series MultiPlot, creating with

Bokeh-Scala
about 122
and y axes' data ranges for plot, setting 124
axes, drawing 124
data, preparing 122, 123
grids, drawing 124
legend, adding to plot 125
line, creating 124
multiple plots, creating in document 126
plot, creating 123
tools, adding 124
URL 126

toDF() function 59
twitter4j library

URL 210

twitter-chill project

URL 82

Twitter data

analyzing, with GraphX 222-228

Twitter stream

subscribing to 208

U
Uber JAR

building 170-172
different libraries dependence, on same
library 174-176

233

transitive dependency stated explicitly,
in SBT dependency 172, 173
unsupervised learning 127,128

Vv

vector concatenation

about 11

basic statistics, computing 12

mean, calculating 12

variance, calculating 12

vector of Int, converting to vector
of Double 12

vectors

appending 11

arithmetic 9

Breeze vector, creating from Scala vector 8

concatenating 11

constructing, from values 6, 7

converting from one type to another 11

creating 6

creating, by adding two vectors 10

creating, out of function 7

dot product of two vectors, creating 9, 10

entire vector with single value, creating 8

largest value, finding 12

log, finding 13

Log function 13

scalar operations 9

sgrt function 13

square root, finding 13

standard deviation 12

sub-vector, slicing from bigger vector 8

sum, finding 13

vector of linearly spaced values, creating 7

vector with values, creating in specific
range 8

with normally distributed random values,
creating 26

with randomly distributed values 25, 26

with random values with Poisson distribution,

creating 27

with uniformly distributed random values,
creating 26

working with 5, 6

zero vector, creating 7

w

Worker nodes 37

Y

YARN
Spark job, running 198

y 4

Zeppelin
custom functions, running 106
data, visualizing on HDFS 103-106
external dependencies, adding 108-110
external Spark cluster, pointingto 110, 111
inputs, parameterizing 103-106
installing 100, 101
server, customizing 102
URL 100
used, for visualizing 100
websocket port, customizing 102
Zookeeper
starting 214
URL 214

234

open source

community experience distilled

PUBLISHING

Thank you for buying
Scala Data Analysis Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[open source

community experience distilled

PUBLISHING

Scala for Machine Learning
ISBN: 978-1-78355-874-2 Paperback: 520 pages

Leverage Scala and Machine Learning to construct and
study systems that can learn from data

1.

Explore a broad variety of data processing,
machine learning, and genetic algorithms
through diagrams, mathematical formulation,
and source code.

Leverage your expertise in Scala programming to
create and customize Al applications with your
own scalable machine learning algorithms.

Experiment with different techniques,

and evaluate their benefits and limitations
using real-world financial applications, in a
tutorial style.

Scala for Java Developers

PACKT i

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate Java
code with the power of Scala

1.

Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

Leverage the full power of modern web
programming by building scalable and
reactive applications.

Easy to follow instructions and real world
examples to help you integrate java code
and tackle big data challenges.

Please check www.PacktPub.com for information on our titles

community experience distilled

[open source

PUBLISHING

1.

R for Data Science
ISBN: 978-1-78439-086-0 Paperback: 364 pages

Learn and explore the fundamentals of data science
with R

Familiarize yourself with R programming packages
and learn how to utilize them effectively.

Learn how to detect different types of data
mining sequences.

A step-by-step guide to understanding R scripts
and the ramifications of your changes.

1.

Practical Data o)
Science Cookbook

. i .

Practical Data Science
Cookbook

ISBN: 978-1-78398-024-6 Paperback: 396 pages

89 hands-on recipes to help you complete real-world
data science projects in R and Python

Learn about the data science pipeline and use it
to acquire, clean, analyze, and visualize data.

Understand critical concepts in data science in
the context of multiple projects.

Expand your numerical programming skills
through step-by-step code examples and learn
more about the robust features of R and Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Breeze
	Introduction
	Getting Breeze – the linear algebra library
	Working with vectors
	Working with matrices
	Vectors and matrices with randomly distributed values
	Reading and writing CSV files

	Chapter 2: Getting Started with Apache Spark DataFrames
	Introduction
	Getting Apache Spark
	Creating a DataFrame from CSV
	Manipulating DataFrames
	Creating a DataFrame from Scala case classes

	Chapter 3: Loading and Preparing Data – DataFrame
	Introduction
	Loading more than 22 features into classes
	Loading JSON into DataFrames
	Storing data as Parquet files
	Using the Avro data model in Parquet
	Loading from RDBMS
	Preparing data in Dataframes

	Chapter 4: Data Visualization
	Introduction
	Visualizing using Zeppelin
	Creating scatter plots with Bokeh-Scala
	Creating a time series MultiPlot with
Bokeh-Scala

	Chapter 5: Learning from Data
	Introduction
	Supervised and unsupervised learning
	Gradient descent
	Predicting continuous values using linear regression
	Binary classification using LogisticRegression and SVM
	Binary classification using LogisticRegression with Pipeline API
	Clustering using K-means
	Feature reduction using principal component analysis

	Chapter 6: Scaling Up
	Introduction
	Building the Uber JAR
	Submitting jobs to the Spark cluster (local)
	Running the Spark Standalone cluster on EC2
	Running the Spark Job on Mesos (local)
	Running the Spark Job on YARN (local)

	Chapter 7: Going Further
	Introduction
	Using Spark Streaming to subscribe to a Twitter stream
	Using Spark as an ETL tool
	Using StreamingLogisticRegression to classify a Twitter stream using Kafka
as a training stream
	Using GraphX to analyze Twitter data

	Index

