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Preface
JVM has become a clear winner in the race between different methods of scalable data 
analysis. The power of JVM, strong typing, simplicity of code, composability, and availability of 
highly abstracted distributed and machine learning frameworks make Scala a clear contender 
for the top position in large-scale data analysis. Thanks to its dynamic-looking, yet static type 
system, scientists and programmers coming from Python backgrounds feel at ease with Scala.

This book aims to provide easy-to-use recipes in Apache Spark, a massively scalable 
distributed computation framework, and Breeze, a linear algebra library on which Spark's 
machine learning toolkit is built. The book will also help you explore data using interactive 
visualizations in Apache Zeppelin.

Other than the handful of frameworks and libraries that we will see in this book, there's a  
host of other popular data analysis libraries and frameworks that are available for Scala.  
They are by no means lesser beasts, and they could actually fit our use cases well. 
Unfortunately, they aren't covered as part of this book.

Apache Flink
Apache Flink (http://flink.apache.org/), just like Spark, has first-class support  
for Scala and provides features that are strikingly similar to Spark. Real-time streaming  
(unlike Spark's mini-batch DStreams) is its distinctive feature. Flink also provides a machine 
learning and a graph processing library and runs standalone as well as on the YARN cluster.

Scalding
Scalding (https://github.com/twitter/scalding) needs no introduction—Scala's 
idiomatic approach to writing Hadoop MR jobs.

http://flink.apache.org/
https://github.com/twitter/scalding
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Saddle
Saddle (https://saddle.github.io/) is the "pandas" (http://pandas.pydata.org/) 
of Scala, with support for vectors, matrices, and DataFrames.

Spire
Spire (https://github.com/non/spire) has a powerful set of advanced numerical  
types that are not available in the default Scala library. It aims to be fast and precise in  
its numerical computations.

Akka
Akka (http://akka.io) is an actor-based concurrency framework that has actors as its 
foundation and unit of work. Actors are fault tolerant and distributed.

Accord
Accord (https://github.com/wix/accord) is simple, yet powerful, validation library  
in Scala.

What this book covers
Chapter 1, Getting Started with Breeze, serves as an introduction to the Breeze linear algebra 
library's API.

Chapter 2, Getting Started with Apache Spark DataFrames, introduces powerful, yet intuitive 
and relational-table-like, data abstraction.

Chapter 3, Loading and Preparing Data – DataFrame, showcases the loading of datasets  
into Spark DataFrames from a variety of sources, while also introducing the Parquet 
serialization format.

Chapter 4, Data Visualization, introduces Apache Zeppelin for interactive data visualization 
using Spark SQL and Spark UDF functions. We also briefly discuss Bokeh-Scala, which is a 
Scala port of Bokeh (a highly customizable visualization library).

Chapter 5, Learning from Data, focuses on machine learning using Spark MLlib.

Chapter 6, Scaling Up, walks through various deployment alternatives for Spark applications: 
standalone, YARN, and Mesos.

Chapter 7, Going Further, briefly introduces Spark Streaming and GraphX.

https://saddle.github.io/
http://pandas.pydata.org/
https://github.com/non/spire
http://akka.io
https://github.com/wix/accord
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What you need for this book
The most important installation that your machine needs is the Java Development Kit (JDK 1.7), 
which can be downloaded from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html.

To run most of the recipes in this book, all you need is SBT. The installation instructions for 
your favorite operating system are available at http://www.scala-sbt.org/release/
tutorial/Setup.html.

There are a few other libraries that we will be using throughout the book, all of which will be 
imported through SBT. If there is any installation required (for example, HDFS) to run a recipe, 
the installation URL or the steps themselves will be mentioned in the respective recipe.

Who this book is for
Engineers and scientists who are familiar with Scala and would like to exploit the Spark 
ecosystem for big data analysis will benefit most from this book.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it…, 
How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.scala-sbt.org/release/tutorial/Setup.html
http://www.scala-sbt.org/release/tutorial/Setup.html
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There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

organization := "com.packt"

name := "chapter1-breeze"

scalaVersion := "2.10.4"

libraryDependencies  ++= Seq(
  "org.scalanlp" %% "breeze" % "0.11.2",
  //Optional - the 'why' is explained in the How it works  
section
  "org.scalanlp" %% "breeze-natives" % "0.11.2"
)

Any command-line input or output is written as follows:

sudo apt-get install libatlas3-base libopenblas-base

sudo update-alternatives --config libblas.so.3

sudo update-alternatives --config liblapack.so.3

New terms and important words are shown in bold. Words that you see on the screen, for 
example, in menus or dialog boxes, appear in the text like this: "Now, if we wish to share this 
chart with someone or link it to an external website, we can do so by clicking on the gear icon 
in this paragraph and then clicking on Link this paragraph."
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention  
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
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To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works in any form on the Internet, please provide us with  
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at  
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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1
Getting Started  

with Breeze

In this chapter, we will cover the following recipes:

 f Getting Breeze—the linear algebra library

 f Working with vectors

 f Working with matrices

 f Vectors and matrices with randomly distributed values

 f Reading and writing CSV files

Introduction
This chapter gives you a quick overview of one of the most popular data analysis libraries in 
Scala, how to get them, and their most frequently used functions and data structures.

We will be focusing on Breeze in this first chapter, which is one of the most popular and 
powerful linear algebra libraries. Spark MLlib, which we will be seeing in the subsequent 
chapters, builds on top of Breeze and Spark, and provides a powerful framework for scalable 
machine learning.
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Getting Breeze – the linear algebra library
In simple terms, Breeze (http://www.scalanlp.org) is a Scala library that extends the 
Scala collection library to provide support for vectors and matrices in addition to providing a 
whole bunch of functions that support their manipulation. We could safely compare Breeze  
to NumPy (http://www.numpy.org/) in Python terms. Breeze forms the foundation of 
MLlib—the Machine Learning library in Spark, which we will explore in later chapters.

In this first recipe, we will see how to pull the Breeze libraries into our project using Scala 
Build Tool (SBT). We will also see a brief history of Breeze to better appreciate why it  
could be considered as the "go to" linear algebra library in Scala.

For all our recipes, we will be using Scala 2.10.4 along with Java 1.7. I 
wrote the examples using the Scala IDE, but please feel free to use your 
favorite IDE.

How to do it...
Let's add the Breeze dependencies into our build.sbt so that we can start playing with 
them in the subsequent recipes. The Breeze dependencies are just two—the breeze (core) 
and the breeze-native dependencies.

1. Under a brand new folder (which will be our project root), create a new file called 
build.sbt.

2. Next, add the breeze libraries to the project dependencies:
organization := "com.packt"

name := "chapter1-breeze"

scalaVersion := "2.10.4"

libraryDependencies  ++= Seq(
  "org.scalanlp" %% "breeze" % "0.11.2",
  //Optional - the 'why' is explained in the How it works  
section
  "org.scalanlp" %% "breeze-natives" % "0.11.2"
)

3. From that folder, issue a sbt compile command in order to fetch all your 
dependencies.

http://www.scalanlp.org
http://www.numpy.org/
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You could import the project into your Eclipse using sbt eclipse 
after installing the sbteclipse plugin https://github.com/
typesafehub/sbteclipse/. For IntelliJ IDEA, you just need to import 
the project by pointing to the root folder where your build.sbt file is.

There's more...
Let's look into the details of what the breeze and breeze-native library dependencies we 
added bring to us.

The org.scalanlp.breeze dependency
Breeze has a long history in that it isn't written from scratch in Scala. Without the native 
dependency, Breeze leverages the power of netlib-java that has a Java-compiled version 
of the FORTRAN Reference implementation of BLAS/LAPACK. The netlib-java also 
provides gentle wrappers over the Java compiled library. What this means is that we could still 
work without the native dependency but the performance won't be great considering the best 
performance that we could leverage out of this FORTRAN-translated library is the performance 
of the FORTRAN reference implementation itself. However, for serious number crunching with 
the best performance, we should add the breeze-natives dependency too.

www.allitebooks.com

https://github.com/typesafehub/sbteclipse/
https://github.com/typesafehub/sbteclipse/
http://www.allitebooks.org
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The org.scalanlp.breeze-natives package
With its native additive, Breeze looks for the machine-specific implementations of the 
BLAS/LAPACK libraries. The good news is that there are open source and (vendor provided) 
commercial implementations for most popular processors and GPUs. The most popular open 
source implementations include ATLAS (http://math-atlas.sourceforge.net) and 
OpenBLAS (http://www.openblas.net/).

If you are running a Mac, you are in luck—Native BLAS libraries come out of the box on Macs. 
Installing NativeBLAS on Ubuntu / Debian involves just running the following commands:

sudo apt-get install libatlas3-base libopenblas-base

sudo update-alternatives --config libblas.so.3

sudo update-alternatives --config liblapack.so.3

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books you 
have purchased. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the 
files e-mailed directly to you.

http://math-atlas.sourceforge.net
http://www.openblas.net/
http://www.packtpub.com
http://www.packtpub.com/support
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For Windows, please refer to the installation instructions on https://github.com/
xianyi/OpenBLAS/wiki/Installation-Guide.

Working with vectors
There are subtle yet powerful differences between Breeze vectors and Scala's own scala.
collection.Vector. As we'll see in this recipe, Breeze vectors have a lot of functions that 
are linear algebra specific, and the more important thing to note here is that Breeze's vector is 
a Scala wrapper over netlib-java and most calls to the vector's API delegates the call to it.

Vectors are one of the core components in Breeze. They are containers of homogenous 
data. In this recipe, we'll first see how to create vectors and then move on to various data 
manipulation functions to modify those vectors.

In this recipe, we will look at various operations on vectors. This recipe has been organized  
in the form of the following sub-recipes:

 f Creating vectors:

 � Creating a vector from values

 � Creating a zero vector

 � Creating a vector out of a function

 � Creating a vector of linearly spaced values

 � Creating a vector with values in a specific range

 � Creating an entire vector with a single value

 � Slicing a sub-vector from a bigger vector

 � Creating a Breeze vector from a Scala vector

 f Vector arithmetic:

 � Scalar operations

 � Calculating the dot product of a vector

 � Creating a new vector by adding two vectors together

https://github.com/xianyi/OpenBLAS/wiki/Installation-Guide
https://github.com/xianyi/OpenBLAS/wiki/Installation-Guide
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 f Appending vectors and converting a vector of one type to another:

 � Concatenating two vectors

 � Converting a vector of int to a vector of double

 f Computing basic statistics:

 � Mean and variance

 � Standard deviation

 � Find the largest value

 � Finding the sum, square root and log of all the values in the vector

Getting ready
In order to run the code, you could either use the Scala or use the Worksheet feature available 
in the Eclipse Scala plugin (or Scala IDE) or in IntelliJ IDEA. The reason these options are 
suggested is due to their quick turnaround time.

How to do it...
Let's look at each of the above sub-recipes in detail. For easier reference, the output of the 
respective command is shown as well. All the classes that are being used in this recipe are 
from the breeze.linalg package. So, an "import breeze.linalg._" statement at  
the top of your file would be perfect.

Creating vectors
Let's look at the various ways we could construct vectors. Most of these construction 
mechanisms are through the apply method of the vector. There are two different flavors  
of vector—breeze.linalg.DenseVector and breeze.linalg.SparseVector—the 
choice of the vector depends on the use case. The general rule of thumb is that if you have 
data that is at least 20 percent zeroes, you are better off choosing SparseVector but then 
the 20 percent is a variant too.

Constructing a vector from values
 f Creating a dense vector from values: Creating a DenseVector from values is just  

a matter of passing the values to the apply method:
  val dense=DenseVector(1,2,3,4,5)

  println (dense) //DenseVector(1, 2, 3, 4, 5)
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 f Creating a sparse vector from values: Creating a SparseVector from values is also 
through passing the values to the apply method:
  val sparse=SparseVector(0.0, 1.0, 0.0, 2.0, 0.0)

  println (sparse) //SparseVector((0,0.0), (1,1.0), (2,0.0), 
(3,2.0), (4,0.0))

Notice how the SparseVector stores values against the index.

Obviously, there are simpler ways to create a vector instead of just throwing all the data into 
its apply method.

Creating a zero vector
Calling the vector's zeros function would create a zero vector. While the numeric types would 
return a 0, the object types would return null and the Boolean types would return false:

  val denseZeros=DenseVector.zeros[Double](5)  //DenseVector(0.0,  
0.0, 0.0, 0.0, 0.0)

  val sparseZeros=SparseVector.zeros[Double](5)  //SparseVector()

Not surprisingly, the SparseVector does not allocate any memory for the contents of  
the vector. However, the creation of the SparseVector object itself is accounted for in  
the memory.

Creating a vector out of a function
The tabulate function in vector is an interesting and useful function. It accepts a size 
argument just like the zeros function but it also accepts a function that we could use to 
populate the values for the vector. The function could be anything ranging from a random 
number generator to a naïve index based generator, which we have implemented here.  
Notice how the return value of the function (Int) could be converted into a vector of  
Double by using the type parameter:

val  
denseTabulate=DenseVector.tabulate[Double](5)(index=>index*index)  
//DenseVector(0.0, 1.0, 4.0, 9.0, 16.0)

Creating a vector of linearly spaced values
The linspace function in breeze.linalg creates a new Vector[Double] of linearly 
spaced values between two arbitrary numbers. Not surprisingly, it accepts three arguments—
the start, end, and the total number of values that we would like to generate. Please note  
that the start and the end values are inclusive while being generated:

val spaceVector=breeze.linalg.linspace(2, 10, 5)
//DenseVector(2.0, 4.0, 6.0, 8.0, 10.0)
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Creating a vector with values in a specific range
The range function in a vector has two variants. The plain vanilla function accepts a start  
and end value (start inclusive):

val allNosTill10=DenseVector.range(0, 10)
//DenseVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

The other variant is an overloaded function that accepts a "step" value:

val evenNosTill20=DenseVector.range(0, 20, 2)
// DenseVector(0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

Just like the range function, which has all the arguments as integers, there is also a rangeD 
function that takes the start, stop, and the step parameters as Double:

val rangeD=DenseVector.rangeD(0.5, 20, 2.5)
// DenseVector(0.5, 3.0, 5.5, 8.0, 10.5, 13.0, 15.5)

Creating an entire vector with a single value
Filling an entire vector with the same value is child's play. We just say HOW BIG is this vector 
going to be and then WHAT value. That's it.

val denseJust2s=DenseVector.fill(10, 2)
// DenseVector(2, 2, 2, 2, 2, 2 , 2, 2, 2, 2)

Slicing a sub-vector from a bigger vector
Choosing a part of the vector from a previous vector is just a matter of calling the slice method 
on the bigger vector. The parameters to be passed are the start index, end index, and an 
optional "step" parameter. The step parameter adds the step value for every iteration until  
it reaches the end index. Note that the end index is excluded in the sub-vector:

val allNosTill10=DenseVector.range(0, 10)
//DenseVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
val fourThroughSevenIndexVector= allNosTill10.slice(4, 7)
//DenseVector(4, 5, 6)
val twoThroughNineSkip2IndexVector= allNosTill10.slice(2, 9, 2)
//DenseVector(2, 4, 6)

Creating a Breeze Vector from a Scala Vector
A Breeze vector object's apply method could even accept a Scala Vector as a parameter and 
construct a vector out of it:

val  
vectFromArray=DenseVector(collection.immutable.Vector(1,2,3,4))
// DenseVector(Vector(1, 2, 3, 4))
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Vector arithmetic
Now let's look at the basic arithmetic that we could do on vectors with scalars and vectors.

Scalar operations
Operations with scalars work just as we would expect, propagating the value to each element 
in the vector.

Adding a scalar to each element of the vector is done using the + function (surprise!):

val inPlaceValueAddition=evenNosTill20 +2
//DenseVector(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Similarly the other basic arithmetic operations—subtraction, multiplication, and division 
involves calling the respective functions named after the universally accepted symbols  
(-, *, and /):

//Scalar subtraction
val inPlaceValueSubtraction=evenNosTill20 -2
//DenseVector(-2, 0, 2, 4, 6, 8, 10, 12, 14, 16)

 //Scalar multiplication
val inPlaceValueMultiplication=evenNosTill20 *2
//DenseVector(0, 4, 8, 12, 16, 20, 24, 28, 32, 36)

//Scalar division
val inPlaceValueDivision=evenNosTill20 /2
//DenseVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Calculating the dot product of two vectors
Each vector object has a function called dot, which accepts another vector of the same 
length as a parameter.

Let's fill in just 2s to a new vector of length 5:

val justFive2s=DenseVector.fill(5, 2)
 //DenseVector(2, 2, 2, 2, 2)

We'll create another vector from 0 to 5 with a step value of 1 (a fancy way of saying 0  
through 4):

 val zeroThrough4=DenseVector.range(0, 5, 1)
 //DenseVector(0, 1, 2, 3, 4)



Getting Started with Breeze

10

Here's the dot function:

 val dotVector=zeroThrough4.dot(justFive2s)
 //Int = 20

It is to be expected of the function to complain if we pass in a vector of a different length  
as a parameter to the dot product - Breeze throws an IllegalArgumentException if  
we do that. The full exception message is:

Java.lang.IllegalArgumentException: Vectors must be the same  
length!

Creating a new vector by adding two vectors together
The + function is overloaded to accept a vector other than the scalar we saw previously. The 
operation does a corresponding element-by-element addition and creates a new vector:

val evenNosTill20=DenseVector.range(0, 20, 2)
//DenseVector(0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

val denseJust2s=DenseVector.fill(10, 2)
//DenseVector(2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

val additionVector=evenNosTill20 + denseJust2s
// DenseVector(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

There's an interesting behavior encapsulated in the addition though. Assuming you try to add 
two vectors of different lengths, if the first vector is smaller and the second vector larger, the 
resulting vector would be the size of the first vector and the rest of the elements in the second 
vector would be ignored!

val fiveLength=DenseVector(1,2,3,4,5)
//DenseVector(1, 2, 3, 4, 5)
val tenLength=DenseVector.fill(10, 20)
//DenseVector(20, 20, 20, 20, 20, 20, 20, 20, 20, 20)

fiveLength+tenLength
//DenseVector(21, 22, 23, 24, 25)

On the other hand, if the first vector is larger and the second vector smaller, it would result  
in an ArrayIndexOutOfBoundsException:

tenLength+fiveLength
// java.lang.ArrayIndexOutOfBoundsException: 5
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Appending vectors and converting a vector of one type to 
another
Let's briefly see how to append two vectors and convert vectors of one numeric type  
to another.

Concatenating two vectors
There are two variants of concatenation. There is a vertcat function that just vertically 
concatenates an arbitrary number of vectors—the size of the vector just increases to the  
sum of the sizes of all the vectors combined:

val justFive2s=DenseVector.fill(5, 2)
 //DenseVector(2, 2, 2, 2, 2)

 val zeroThrough4=DenseVector.range(0, 5, 1)
 //DenseVector(0, 1, 2, 3, 4)

val concatVector=DenseVector.vertcat(zeroThrough4, justFive2s)
//DenseVector(0, 1, 2, 3, 4, 2, 2, 2, 2, 2)

No surprise here. There is also the horzcat method that places the second vector 
horizontally next to the first vector, thus forming a matrix.

val concatVector1=DenseVector.horzcat(zeroThrough4, justFive2s)

//breeze.linalg.DenseMatrix[Int]

0  2

1  2

2  2

3  2

4  2

While dealing with vectors of different length, the vertcat function happily 
arranges the second vector at the bottom of the first vector. Not surprisingly, 
the horzcat function throws an exception:
java.lang.IllegalArgumentException, meaning all vectors must be 
of the same size!
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Converting a vector of Int to a vector of Double
The conversion of one type of vector into another is not automatic in Breeze. However, there is 
a simple way to achieve this:

val evenNosTill20Double=breeze.linalg.convert(evenNosTill20,  
Double)

Computing basic statistics
Other than the creation and the arithmetic operations that we saw previously, there are  
some interesting summary statistics operations that are available in the library. Let's look  
at them now:

Needs import of breeze.linalg._ and breeze.numerics._. The 
operations in the Other operations section aim to simulate the NumPy's 
UFunc or universal functions.

Now, let's briefly look at how to calculate some basic summary statistics for a vector.

Mean and variance
Calculating the mean and variance of a vector could be achieved by calling the 
meanAndVariance universal function in the breeze.stats package. Note that  
this needs a vector of Double:

meanAndVariance(evenNosTill20Double)
//MeanAndVariance(9.0,36.666666666666664,10)

As you may have guessed, converting an Int vector to a Double vector 
and calculating the mean and variance for that vector could be merged 
into a one-liner:

meanAndVariance(convert(evenNosTill20, Double))

Standard deviation
Calling the stddev on a Double vector could give the standard deviation:

stddev(evenNosTill20Double)
//Double = 6.0553007081949835

Find the largest value in a vector
The max universal function inside the breeze.linalg package would help us find the 
maximum value in a vector:

val intMaxOfVectorVals=max (evenNosTill20)
//18
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Finding the sum, square root and log of all the values  
in the vector
The same as with max, the sum universal function inside the breeze.linalg package 
calculates the sum of the vector:

val intSumOfVectorVals=sum (evenNosTill20)
//90

The functions sqrt, log, and various other universal functions in the breeze.numerics 
package calculate the square root and log values of all the individual elements inside  
the vector:

The Sqrt function
val sqrtOfVectorVals= sqrt (evenNosTill20)
// DenseVector(0.0, 1. 4142135623730951, 2.0, 2.449489742783178, 

2.8284271247461903, 3.16227766016 83795, 3.4641016151377544,  
3.7416573867739413, 4.0, 4.242640687119285)

The Log function
val log2VectorVals=log(evenNosTill20)
// DenseVector(-Infinity , 0.6931471805599453, 1.3862943611198906, 
1.791759469228055, 2.079441541679 8357, 2.302585092994046,  
2.4849066497880004, 2.6390573296152584, 2.77258872 2239781,  
2.8903717578961645)

Working with matrices
As we discussed in the Working with vectors recipe, you could use the Eclipse or IntelliJ IDEA 
Scala worksheets for a faster turnaround time.

How to do it...
There are a variety of functions that we have in a matrix. In this recipe, we will look at some 
details around:

 f Creating matrices:

 � Creating a matrix from values

 � Creating a zero matrix

 � Creating a matrix out of a function

 � Creating an identity matrix

 � Creating a matrix from random numbers

 � Creating from a Scala collection

www.allitebooks.com

http://www.allitebooks.org
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 f Matrix arithmetic:

 � Addition

 � Multiplication (also element-wise)

 f Appending and conversion:

 � Concatenating a matrix vertically

 � Concatenating a matrix horizontally

 � Converting a matrix of Int to a matrix of Double

 f Data manipulation operations:

 � Getting column vectors

 � Getting row vectors

 � Getting values inside the matrix

 � Getting the inverse and transpose of a matrix

 f Computing basic statistics:

 � Mean and variance

 � Standard deviation

 � Finding the largest value

 � Finding the sum, square root and log of all the values in the matrix

 � Calculating the eigenvectors and eigenvalues of a matrix

Creating matrices
Let's first see how to create a matrix.

Creating a matrix from values
The simplest way to create a matrix is to pass in the values in a row-wise fashion into the 
apply function of the matrix object:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13),(21,22,23))

//Returns a DenseMatrix[Int]

 1   2   3

11  12  13

21  22  23
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There's also a Sparse version of the matrix too—the Compressed Sparse Column Matrix 
(CSCMatrix):

val sparseMatrix=CSCMatrix((1,0,0),(11,0,0),(0,0,23))

//Returns a SparseMatrix[Int]

(0,0) 1

(1,0) 11

(2,2) 23

Breeze's Sparse matrix is a Dictionary of Keys (DOK) representation with 
(row, column) mapped against the value.

Creating a zero matrix
Creating a zero matrix is just a matter of calling the matrix's zeros function. The first integer 
parameter indicates the rows and the second parameter indicates the columns:

val denseZeros=DenseMatrix.zeros[Double](5,4)

//Returns a DenseMatrix[Double]

0.0  0.0  0.0  0.0

0.0  0.0  0.0  0.0

0.0  0.0  0.0  0.0

0.0  0.0  0.0  0.0

0.0  0.0  0.0  0.0

val compressedSparseMatrix=CSCMatrix.zeros[Double](5,4)

//Returns a CSCMatrix[Double] = 5 x 4 CSCMatrix

Notice how the SparseMatrix doesn't allocate any memory for the 
values in the zero value matrix.
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Creating a matrix out of a function
The tabulate function in a matrix is very similar to the vector's version. It accepts a row and 
column size as a tuple (in the example (5,4)). It also accepts a function that we could use to 
populate the values for the matrix. In our example, we generated the values of the matrix by 
just multiplying the row and column index:

val denseTabulate=DenseMatrix.tabulate[Double](5,4)((firstIdx,secondIdx)=
>firstIdx*secondIdx)

Returns a DenseMatrix[Double] =

0.0  0.0  0.0  0.0

0.0  1.0  2.0  3.0

0.0  2.0  4.0  6.0

0.0  3.0  6.0  9.0

0.0  4.0  8.0  12.0

The type parameter is needed only if you would like to convert the type of the matrix from  
an Int to a Double. So, the following call without the parameter would just return an  
Int matrix:

val denseTabulate=DenseMatrix.tabulate(5,4)((firstIdx,secondIdx)=>firstId
x*secondIdx)

0  1  2  3

0  2  4  6

0  3  6  9

0  4  8  12

Creating an identity matrix
The eye function of the matrix would generate an identity square matrix with the given 
dimension (in the example's case, 3):

val identityMatrix=DenseMatrix.eye[Int](3)

Returns a DenseMatrix[Int]

1  0  0

0  1  0

0  0  1
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Creating a matrix from random numbers
The rand function in the matrix would generate a matrix of a given dimension (4 rows * 4 
columns in our case) with random values between 0 and 1. We'll have an in-depth look into 
random number generated vectors and matrices in a subsequent recipe.

val randomMatrix=DenseMatrix.rand(4, 4)

Returns DenseMatrix[Double]

0.09762565779429777   0.01089176285376725  0.2660579009292807 
0.19428193961985674

0.9662568115400412    0.718377391997945    0.8230367668470933 
0.3957540854393169

0.9080090988364429    0.7697780247035393   0.49887760321635066 
0.26722019105654415

3.326843165250004E-4  0.447925644082819    0.8195838733418965 
0.7682752255172411

Creating from a Scala collection
We could create a matrix out of a Scala array too. The constructor of the matrix accepts three 
arguments—the rows, the columns, and an array with values for the dimensions. Note that the 
data from the array is picked up to construct the matrix in the column first order:

val vectFromArray=new DenseMatrix(2,2,Array(2,3,4,5))

Returns DenseMatrix[Int]

2  4

3  5

If there are more values than the number of values required by the dimensions of the matrix, 
the rest of the values are ignored. Note how (6,7) is ignored in the array:

val vectFromArray=new DenseMatrix(2,2,Array(2,3,4,5,6,7))

DenseMatrix[Int]

2  4

3  5

However, if fewer values are present in the array than what is required by the dimensions of 
the matrix, then the constructor call would throw an ArrayIndexOutOfBoundsException:

val vectFromArrayIobe=new DenseMatrix(2,2,Array(2,3,4))

//throws java.lang.ArrayIndexOutOfBoundsException: 3
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Matrix arithmetic
Now let's look at the basic arithmetic that we could do using matrices.

Let's consider a simple 3*3 simpleMatrix and a corresponding identity matrix:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13),(21,22,23))

//DenseMatrix[Int]

1   2   3

11  12  13

21  22  23

val identityMatrix=DenseMatrix.eye[Int](3)

//DenseMatrix[Int]

1  0  0

0  1  0

0  0  1

Addition
Adding two matrices will result in a matrix whose corresponding elements are summed up.

val additionMatrix=identityMatrix + simpleMatrix

// Returns DenseMatrix[Int]

2   2   3

11  13  13

21  22  24

Multiplication
Now, as you would expect, multiplying a matrix with its identity should give you the matrix 
itself:

val simpleTimesIdentity=simpleMatrix * identityMatrix

//Returns DenseMatrix[Int]

1   2   3

11  12  13

21  22  23
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Breeze also has an alternative element-by-element operation that has the format of prefixing 
the operator with a colon, for example, :+,:-, :*, and so on. Check out what happens when 
we do an element-wise multiplication of the identity matrix and the simple matrix:

val elementWiseMulti=identityMatrix :* simpleMatrix

//DenseMatrix[Int]

1  0   0

0  12  0

0  0   23

Appending and conversion
Let's briefly see how to append two matrices and convert matrices of one numeric type  
to another.

Concatenating matrices – vertically
Similar to vectors, matrix has a vertcat function, which vertically concatenates an arbitrary 
number of matrices—the row size of the matrix just increases to the sum of the row sizes of  
all matrices combined:

val vertConcatMatrix=DenseMatrix.vertcat(identityMatrix, simpleMatrix)

//DenseMatrix[Int]

1   0   0

0   1   0

0   0   1

1   2   3

11  12  13

21  22  23

Attempting to concatenate a matrix of different columns would, as expected, throw an 
IllegalArgumentException:

java.lang.IllegalArgumentException: requirement failed: Not all  
matrices have the same number of columns

Concatenating matrices – horizontally
Not surprisingly, the horzcat function concatenates the matrix horizontally—the column size 
of the matrix increases to the sum of the column sizes of all the matrices:

val horzConcatMatrix=DenseMatrix.horzcat(identityMatrix, simpleMatrix)

// DenseMatrix[Int]

1  0  0  1   2   3



Getting Started with Breeze

20

0  1  0  11  12  13

0  0  1  21  22  23

Similar to the vertical concatenation, attempting to concatenate a matrix of a different row 
size would throw an IllegalArgumentException:

java.lang.IllegalArgumentException: requirement failed: Not all 
matrices have the same number of rows

Converting a matrix of Int to a matrix of Double
The conversion of one type of matrix to another is not automatic in Breeze. However, there is  
a simple way to achieve this:

import breeze.linalg.convert

val simpleMatrixAsDouble=convert(simpleMatrix, Double)

// DenseMatrix[Double] =

1.0   2.0   3.0

11.0  12.0  13.0

21.0  22.0  23.0

Data manipulation operations
Let's create a simple 2*2 matrix that will be used for the rest of this section:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))

//DenseMatrix[Double] =

4.0  7.0

3.0  -5.0

Getting column vectors out of the matrix
The first column vector could be retrieved by passing in the column parameter as 0 and using 
:: in order to say that we are interested in all the rows.

val firstVector=simpleMatrix(::,0)
//DenseVector(4.0, 3.0)

Getting the second column vector and so on is achieved by passing the correct zero-indexed 
column number:

val secondVector=simpleMatrix(::,1)
//DenseVector(7.0, -5.0)

Alternatively, you could explicitly pass in the columns to be extracted:

val firstVectorByCols=simpleMatrix(0 to 1,0)
//DenseVector(4.0, 3.0)
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While explicitly stating the range (as in 0 to 1), we have to be careful not to exceed the matrix 
size. For example, the following attempt to select 3 columns (0 through 2) on a 2 * 2 matrix 
would throw an ArrayIndexOutOfBoundsException:

val errorTryingToSelect3ColumnsOn2By2Matrix=simpleMatrix(0,0 to 2)
//java.lang.ArrayIndexOutOfBoundsException

Getting row vectors out of the matrix
If we would like to get the row vector, all we need to do is play with the row and column 
parameters again. As expected, it would give a transpose of the column vector, which is  
simply a row vector.

Like the column vector, we could either explicitly state our columns or pass in a wildcard (::) 
to cover the entire range of columns:

val firstRowStatingCols=simpleMatrix(0,0 to 1)
//Transpose(DenseVector(4.0, 7.0))

val firstRowAllCols=simpleMatrix(0,::)
//Transpose(DenseVector(4.0, 7.0))

Getting the second row vector is achieved by passing the second row (1) and all the columns 
(::) in that vector:

val secondRow=simpleMatrix(1,::)
//Transpose(DenseVector(3.0, -5.0))

Getting values inside the matrix
Assuming we are just interested in the values within the matrix, pass in the exact row and the 
column number of the matrix. In order to get the first row and first column of the matrix, just 
pass in the row and the column number:

val firstRowFirstCol=simpleMatrix(0,0)
//Double = 4.0

Getting the inverse and transpose of a matrix
Getting the inverse and the transpose of a matrix is a little counter-intuitive in Breeze. Let's 
consider the same matrix that we dealt with earlier:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))

On the one hand, transpose is a function on the matrix object itself, like so:

val transpose=simpleMatrix.t

4.0  3.0

7.0  -5.0
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inverse, on the other hand is a universal function under the breeze.linalg package:

val inverse=inv(simpleMatrix)

0.12195121951219512  0.17073170731707318

0.07317073170731708  -0.0975609756097561

Let's do a matrix product to its inverse and confirm whether it is an identity matrix:

simpleMatrix * inverse

1.0  0.0

-5.551115123125783E-17  1.0

As expected, the result is indeed an identity matrix with rounding errors when doing floating 
point arithmetic.

Computing basic statistics
Now, just like vectors, let's briefly look at how to calculate some basic summary statistics  
for a matrix.

This needs import of breeze.linalg._, breeze.numerics._ 
and, breeze.stats._. The operations in the "Other operations" 
section aims to simulate the NumPy's UFunc or universal functions.

Mean and variance
Calculating the mean and variance of a matrix could be achieved by calling the 
meanAndVariance universal function in the breeze.stats package. Note that  
this needs a matrix of Double:

meanAndVariance(simpleMatrixAsDouble)
// MeanAndVariance(12.0,75.75,9)

Alternatively, converting an Int matrix to a Double matrix and calculating the mean and 
variance for that Matrix could be merged into a one-liner:

meanAndVariance(convert(simpleMatrix, Double))
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Standard deviation
Calling the stddev on a Double vector could give the standard deviation:

stddev(simpleMatrixAsDouble)
//Double = 8.703447592764606

Next up, let's look at some basic aggregation operations:

val simpleMatrix=DenseMatrix((1,2,3),(11,12,13),(21,22,23))

Finding the largest value in a matrix
The (apply method of the) max object (a universal function) inside the breeze.linalg 
package will help us do that:

val intMaxOfMatrixVals=max (simpleMatrix)
//23

Finding the sum, square root and log of all the values in the matrix
The same as with max, the sum object inside the breeze.linalg package calculates the 
sum of all the matrix elements:

val intSumOfMatrixVals=sum (simpleMatrix)
//108

The functions sqrt, log, and various other objects (universal functions) in the breeze.
numerics package calculate the square root and log values of all the individual values  
inside the matrix.

Sqrt
val sqrtOfMatrixVals= sqrt (simpleMatrix)

//DenseMatrix[Double] =

1.0              1.4142135623730951  1.7320508075688772

3.3166247903554   3.4641016151377544  3.605551275463989

4.58257569495584  4.69041575982343    4.795831523312719

Log
val log2MatrixVals=log(simpleMatrix)

//DenseMatrix[Double]

0.0                 0.6931471805599453  1.0986122886681098

2.3978952727983707  2.4849066497880004  2.5649493574615367

3.044522437723423   3.091042453358316   3.1354942159291497
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Calculating the eigenvectors and eigenvalues of a matrix
Calculating eigenvectors is straightforward in Breeze. Let's consider our simpleMatrix from 
the previous section:

val simpleMatrix=DenseMatrix((4.0,7.0),(3.0,-5.0))

Calling the breeze.linalg.eig universal function on a matrix returns a breeze.linalg.
eig.DenseEig object that encapsulate eigenvectors and eigenvalues:

val denseEig=eig(simpleMatrix)

This line of code returns the following:

Eig(

DenseVector(5.922616289332565, -6.922616289332565),

DenseVector(0.0, 0.0)

,0.9642892971721949   -0.5395744865143975  0.26485118719604456 
0.8419378679586305)

We could extract the eigenvectors and eigenvalues by calling the corresponding functions on 
the returned Eig reference:

val eigenVectors=denseEig.eigenvectors

//DenseMatrix[Double] =

0.9642892971721949   -0.5395744865143975

0.26485118719604456  0.8419378679586305

The two eigenValues corresponding to the two eigenvectors could be captured using the 
eigenvalues function on the Eig object:

val eigenValues=denseEig.eigenvalues

//DenseVector[Double] = DenseVector(5.922616289332565, 
-6.922616289332565)

Let's validate the eigenvalues and the vectors:

1. Let's multiply the matrix with the first eigenvector:
val matrixToEigVector=simpleMatrix*denseEig.eigenvectors (::,0)
//DenseVector(5.7111154990610915, 1.568611955536362)

2. Then let's multiply the first eigenvalue with the first eigenvector. The resulting vector 
will be the same with a marginal error when doing floating point arithmetic:
val vectorToEigValue=denseEig.eigenvectors(::,0) *  
denseEig.eigenvalues (0)
//DenseVector(5.7111154990610915, 1.5686119555363618)
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How it works...
The same as with vectors, the initialization of the Breeze matrices are achieved by way of the 
apply method or one of the various methods in the matrix's Object class. Various other 
operations are provided by way of polymorphic functions available in the breeze.numeric, 
breeze.linalg and breeze.stats packages.

Vectors and matrices with randomly 
distributed values

The breeze.stats.distributions package supplements the random number generator 
that is built into Scala. Scala's default generator just provides the ability to get the random 
values one by one using the "next" methods. Random number generators in Breeze provide 
the ability to build vectors and matrices out of these generators. In this recipe, we'll briefly  
see three of the most common distributions of random numbers.

In this recipe, we will cover at the following sub-recipes:

 f Creating vectors with uniformly distributed random values

 f Creating vectors with normally distributed random values

 f Creating vectors with random values that have a Poisson distribution

 f Creating a matrix with uniformly random values

 f Creating a matrix with normally distributed random values

 f Creating a matrix with random values that has a Poisson distribution

How it works...
Before we delve into how to create the vectors and matrices out of random numbers, let's 
create instances of the most common random number distribution. All these generators are 
under the breeze.stats.distributions package:

//Uniform distribution with low being 0 and high being 10
val uniformDist=Uniform(0,10)

//Gaussian distribution with mean being 5 and Standard deviation  
being 1
val gaussianDist=Gaussian(5,1)

//Poission distribution with mean being 5
val poissonDist=Poisson(5)
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We could actually directly sample from these generators. Given any distribution we created 
previously, we could sample either a single value or a sequence of values:

//Samples a single value
println (uniformDist.sample())
//eg. 9.151191360491392

//Returns a sample vector of size that is passed in as parameter
println (uniformDist.sample(2))
//eg. Vector(6.001980062275654, 6.210874664967401)

Creating vectors with uniformly distributed random values
With no generator parameter, the DenseVector.rand method accepts a parameter for 
the length of the vector to be returned. The result is a vector (of length 10) with uniformly 
distributed values between 0 and 1:

val uniformWithoutSize=DenseVector.rand(10)

println ("uniformWithoutSize \n"+ uniformWithoutSize)

//DenseVector(0.1235038023750481, 0.3120595941786264, 0.3575638744660876, 
0.5640844223813524, 0.5336149399548831, 0.1338053814330793, 
0.9099684427908603, 0.38690724148973166, 0.22561993631651522, 
0.45120359622713657)

The DenseVector.rand method optionally accepts a distribution object and generates 
random values using that input distribution. The following line generates a vector of 10 
uniformly distributed random values that are within the range 0 and 10:

val uniformDist=Uniform(0,10)

val uniformVectInRange=DenseVector.rand(10, uniformDist)

println ("uniformVectInRange \n"+uniformVectInRange)

//DenseVector(1.5545833905907314, 6.172564377264846, 8.45578509265587, 
7.683763574965107, 8.018688137742062, 4.5876187984930406, 
3.274758584944064, 2.3873947264259954, 2.139988841403757, 
8.314112884416943)

Creating vectors with normally distributed random values
In the place of the uniformDist generator, we could also pass the previously created 
Gaussian generator, which is configured to yield a distribution that has a mean of 5 and 
standard deviation of 1:

val gaussianVector=DenseVector.rand(10, gaussianDist)

println ("gaussianVector \n"+gaussianVector)



Chapter 1

27

//DenseVector(4.235655596913547, 5.535011377545014, 6.201428236839494, 
6.046289604188366, 4.319709374229152,

4.2379652913447154, 2.957868021601233, 3.96371080427211, 
4.351274306757224, 5.445022658876723)

Creating vectors with random values that have a Poisson 
distribution
Similarly, by passing the previously created Poisson random number generator, a vector of 
values that has a mean of 5 could be generated:

val poissonVector=DenseVector.rand(10, poissonDist)

println ("poissonVector \n"+poissonVector)

//DenseVector(5, 5, 7, 11, 7, 6, 6, 6, 6, 6)

We saw how easy it is to create a vector of random values. Now, let's proceed to create a 
matrix of random values. Similar to DenseVector.rand to generate vectors with random 
values, we'll use the DenseMatrix.rand function to generate a matrix of random values.

Creating a matrix with uniformly random values
The DenseMatrix.rand defaults to the uniform distribution and generates a matrix of 
random values given the row and the column parameter. However, if we would like to have  
a distribution within a range, then as in vectors, we could use the optional parameter:.

//Uniform distribution, Creates a 3 * 3 Matrix with random values from 0 
to 1

val uniformMat=DenseMatrix.rand(3, 3)

println ("uniformMat \n"+uniformMat)

0.4492155777289115  0.9098840386699856    0.8203022252988292

0.0888975848853315  0.009677790736892788  0.6058885905934237

0.6201415814136939  0.7017492438727635    0.08404147915159443

//Creates a 3 * 3 Matrix with uniformly distributed random values with 
low being 0 and high being 10

val uniformMatrixInRange=DenseMatrix.rand(3,3, uniformDist)

println ("uniformMatrixInRange \n"+uniformMatrixInRange)

7.592014659345548  8.164652560340933    6.966445294464401

8.35949395084735   3.442654641743763    3.6761640240938442

9.42626645215854   0.23658921372298636  7.327120138868571
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Creating a matrix with normally distributed random values
Just as in vectors, in place of the uniformDist generator, we could also pass the previously 
created Gaussian generator to the rand function to generate a matrix of random values that 
has a mean of 5 and standard deviation of 1:

//Creates a 3 * 3 Matrix with normally distributed random values  
with mean being 5 and Standard deviation being 1

val gaussianMatrix=DenseMatrix.rand(3, 3,gaussianDist)

println ("gaussianMatrix \n"+gaussianMatrix)

5.724540885605018   5.647051873430568  5.337906135107098

6.2228893721489875  4.799561665187845  5.12469779489833

5.136960834730864   5.176410360757703  5.262707072950913

Creating a matrix with random values that has a Poisson 
distribution
Similarly, by passing the previously created Poisson random number generator, a matrix  
of random values that has a mean of 5 could be generated:

//Creates a 3 * 3 Matrix with Poisson distribution with mean being 5

val poissonMatrix=DenseMatrix.rand(3, 3,poissonDist)

println ("poissonMatrix \n"+poissonMatrix)

4  11  3

6  6   5

6  4   2

Reading and writing CSV files
Reading and writing a CSV file in Breeze is really a breeze. We just have two functions  
in breeze.linalg package to play with. They are very intuitively named csvread  
and csvwrite.

In this recipe, you'll see how to:

1. Read a CSV file into a matrix

2. Save selected columns of a matrix into a new matrix

3. Write the newly created matrix into a CSV file

4. Extract a vector out of the matrix

5. Write the vector into a CSV
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How it works...
There are just two functions that we need to remember in order to read and write data from 
and to CSV files. The signatures of the functions are pretty straightforward too:

csvread(file, separator, quote, escape, skipLines)
csvwrite(file, mat, separator, quote, escape, skipLines)

Let's look at the parameters by order of importance:

 f file: java.io.File: Represents the file location.

 f separator: Defaults to a comma so as to represent a CSV. Could be overridden 
when needed.

 f skipLines: This is the number of lines to be skipped while reading the file. 
Generally, if there is a header, we pass a skipLines=1.

 f mat: While writing, this is the matrix object that is being written.

 f quote: This defaults to double quotes. It is a character that implies that the value 
inside is one single value.

 f escape: This defaults to a backspace. It is a character used to escape  
special characters.

Let's see these in action. For the sake of clarity, I have skipped the quote and the escape 
parameter while calling the csvread and csvwrite functions. For this recipe, we will do 
three things:

 f Read a CSV file as a matrix

 f Extract a sub-matrix out of the read matrix

 f Write the matrix
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Read the CSV as a matrix:

1. Let's use the csvread function to read a CSV file into a 100*3 matrix. We'll also skip 
the header while reading and print 5 rows as a sample:

val usageMatrix=csvread(file=new File("WWWusage.csv"),  
separator=',', skipLines=1)

//print first five rows

println ("Usage matrix \n"+ usageMatrix(0 to 5,::))

Output :

1.0  1.0  88.0

2.0  2.0  84.0

3.0  3.0  85.0

4.0  4.0  85.0

5.0  5.0  84.0

6.0  6.0  85.0

2. Extract a sub-matrix out of the read matrix:

For the sake of generating a submatrix let's skip the first column and save the second 
and the third column into a new matrix. Let's call it firstColumnSkipped:

val firstColumnSkipped= usageMatrix(::, 1 to  
usageMatrix.cols-1)

//Sample some data so as to ensure we are fine
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println ("First Column skipped \n"+ firstColumnSkipped(0 to  
5, ::))

Output :

1.0  88.0

2.0  84.0

3.0  85.0

4.0  85.0

5.0  84.0

6.0  85.0

3. Write the matrix:

As a final step, let's write the firstColumnSkipped matrix to a new CSV file named 
firstColumnSkipped.csv:
//Write this modified matrix to a file
csvwrite(file=new File ("firstColumnSkipped.csv"),  
mat=firstColumnSkipped, separator=',')
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2
Getting Started 

with Apache Spark 
DataFrames

In this chapter, we will cover the following recipes:

 f Getting Apache Spark

 f Creating a DataFrame from CSV

 f Manipulating DataFrames

 f Creating a DataFrame from Scala case classes

Introduction
Apache Spark is a cluster computing platform that claims to run about 10 times faster than 
Hadoop. In general terms, we could consider it as a means to run our complex logic over 
massive amounts of data at a blazingly fast speed. The other good thing about Spark is that 
the programs that we write are much smaller than the typical MapReduce classes that we write 
for Hadoop. So, not only do our programs run faster but it also takes less time to write them.

Spark has four major higher level tools built on top of the Spark Core: Spark Streaming, Spark 
MLlib (machine learning), Spark SQL (an SQL interface for accessing the data), and GraphX 
(for graph processing). The Spark Core is the heart of Spark. Spark provides higher level 
abstractions in Scala, Java, and Python for data representation, serialization, scheduling, 
metrics, and so on.

www.allitebooks.com

http://www.allitebooks.org
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At the risk of stating the obvious, a DataFrame is one of the primary data structures  
used in data analysis. They are just like an RDBMS table that organizes all your attributes 
into columns and all your observations into rows. It's a great way to store and play with 
heterogeneous data. In this chapter, we'll talk about DataFrames in Spark.

Getting Apache Spark
In this recipe, we'll take a look at how to bring Spark into our project (using SBT) and how 
Spark works internally.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter1-spark-csv/build.sbt.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/build.sbt
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How to do it...
Let's now throw some Spark dependencies into our build.sbt file so that we can start 
playing with them in subsequent recipes. For now, we'll just focus on three of them: Spark 
Core, Spark SQL, and Spark MLlib. We'll take a look at a host of other Spark dependencies  
as we proceed further in this book:

1. Under a brand new folder (which will be your project root), create a new file called 
build.sbt.

2. Next, let's add the Spark libraries to the project dependencies.

3. Note that Spark 1.4.x requires Scala 2.10.x. This becomes the first section of our 
build.sbt:
organization := "com.packt"

name := "chapter1-spark-csv"

scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "org.apache.spark" %% "spark-sql" % sparkVersion,
  "org.apache.spark" %% "spark-mllib" % sparkVersion
)

Creating a DataFrame from CSV
In this recipe, we'll look at how to create a new DataFrame from a delimiter-separated  
values file.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter1-spark-csv/src/main/scala/com/packt/
scaladata/spark/csv/DataFrameCSV.scala.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
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How to do it...
This recipe involves four steps:

1. Add the spark-csv support to our project.

2. Create a Spark Config object that gives information on the environment that we are 
running Spark in.

3. Create a Spark context that serves as an entry point into Spark. Then, we proceed  
to create an SQLContext from the Spark context.

4. Load the CSV using the SQLContext.

5. CSV support isn't first-class in Spark, but it is available through an external library 
from Databricks. So, let's go ahead and add that to our build.sbt.

After adding the spark-csv dependency, our complete build.sbt looks like this:
organization := "com.packt"

name := "chapter1-spark-csv"

scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "org.apache.spark" %% "spark-sql" % sparkVersion,
"com.databricks" %% "spark-csv" % "1.0.3"
)

6. SparkConf holds all of the information required to run this Spark "cluster." For this 
recipe, we are running locally, and we intend to use only two cores in the machine—
local[2]. More details about this can be found in the There's more… section of  
this recipe:
import org.apache.spark.SparkConf

 val conf = new  
SparkConf().setAppName("csvDataFrame").setMaster("local[2]")

When we say that the master of this run is "local," we mean that we 
are running Spark on standalone mode. We'll see what "standalone" 
mode means in the There's more… section.
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7. Initialize the Spark context with the Spark configuration. This is the core entry point 
for doing anything with Spark:
import org.apache.spark.SparkContext
val sc = new SparkContext(conf)

The easiest way to query data in Spark is by using SQL queries:
import org.apache.spark.sql.SQLContext
val sqlContext=new SQLContext(sc)

8. Now, let's load our pipe-separated file. The students is of type org.apache.
spark.sql.DataFrame:
import com.databricks.spark.csv._
val students=sqlContext.csvFile(filePath="StudentData.csv",  
useHeader=true, delimiter='|')

How it works...
The csvFile function of sqlContext accepts the full filePath of the file to be loaded.  
If the CSV has a header, then the useHeader flag will read the first row as column names. 
The delimiter flag defaults to a comma, but you can override the character as needed.

Instead of using the csvFile function, we could also use the load function available in 
SQLContext. The load function accepts the format of the file (in our case, it is CSV) and 
options as Map. We can specify the same parameters that we specified earlier using Map,  
like this:

val options=Map("header"->"true", "path"->"ModifiedStudent.csv")

val  
newStudents=sqlContext.load("com.databricks.spark.csv",options)

There's more…
As we saw earlier, we now ran the Spark program in standalone mode. In standalone mode, 
the Driver program (the brain) and the Worker nodes all get crammed into a single JVM.  
In our example, we set master to local[2], which means that we intend to run Spark  
in standalone mode and request it to use only two cores in the machine.

Spark can be run on three different modes:

 f Standalone

 f Standalone cluster, using its in-built cluster manager

 f Using external cluster managers, such as Apache Mesos and YARN
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In Chapter 6, Scaling Up, we have dedicated explanations and recipes for how to run Spark 
on inbuilt cluster modes on Mesos and YARN. In a clustered environment, Spark runs a Driver 
program along with a number of Worker nodes. As the name indicates, the Driver program 
houses the brain of the program, which is our main program. The Worker nodes have the  
data and perform various transformations on it.

Manipulating DataFrames
In the previous recipe, we saw how to create a DataFrame. The next natural step, after 
creating DataFrames, is to play with the data inside them. Other than the numerous functions 
that help us to do that, we also find other interesting functions that help us sample the data, 
print the schema of the data, and so on. We'll take a look at them one by one in this recipe.

The code and the sample file for this recipe could be found at  
https://github.com/arunma/ScalaDataAnalysisCookbook/
blob/master/chapter1-spark-csv/src/main/scala/com/
packt/scaladata/spark/csv/DataFrameCSV.scala.

How to do it...
Now, let's see how we can manipulate DataFrames using the following subrecipes:

 f Printing the schema of the DataFrame

 f Sampling data in the DataFrame

 f Selecting specific columns in the DataFrame

 f Filtering data by condition

 f Sorting data in the frame

 f Renaming columns

 f Treating the DataFrame as a relational table to execute SQL queries

 f Saving the DataFrame as a file

Printing the schema of the DataFrame
After creating the DataFrame from various sources, we would obviously want to quickly check 
its schema. The printSchema function lets us do just that. It prints our column names and 
the data types to the default output stream:

1. Let's load a sample DataFrame from the StudentData.csv file:
//Now, lets load our pipe-separated file
  //students is of type org.apache.spark.sql.DataFrame

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
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  val  
students=sqlContext.csvFile(filePath="StudentData.csv",  
useHeader=true, delimiter='|')

2. Let's print the schema of this DataFrame:
students.printSchema

Output

root

 |-- id: string (nullable = true)

 |-- studentName: string (nullable = true)

 |-- phone: string (nullable = true)

 |-- email: string (nullable = true)

Sampling the data in the DataFrame
The next logical thing that we would like to do is to check whether our data got loaded into the 
DataFrame correctly. There are a few ways of sampling the data in the newly created DataFrame:

 f Using the show method. This is the simplest way. There are two variants of the show 
method, as explained here:

 � One with an integer parameter that specifies the number of rows to be 
sampled.

 � The second is without the integer parameter. In it, the number of rows 
defaults to 20.

The distinct quality about the show method as compared to the other functions that 
sample data is that it displays the rows along with the headers and prints the output 
directly to the default output stream (console):
//Sample n records along with headers

  students.show (3)

  

  //Sample 20 records along with headers

  students.show ()

//Output of show(3)

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|
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+--+-----------+--------------+--------------------+

| 1|      Burke|1-300-746-8446|ullamcorper.velit...|

| 2|      Kamal|1-668-571-5046|pede.Suspendisse@...|

| 3|       Olga|1-956-311-1686|Aenean.eget.metus...|

+--+-----------+--------------+--------------------+

 f Using the head method. This method also accepts an integer parameter representing 
the number of rows to be fetched. The head method returns an array of rows. To print 
these rows, we can pass the println method to the foreach function of the arrays:
  //Sample the first 5 records

  students.head(5).foreach(println)

If you are not a great fan of head, you can use the take function, which is common 
across all Scala sequences. The take method is just an alias of the head method 
and delegates all its calls to head:
  //Alias of head

  students.take(5).foreach(println)

//Output

[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]

[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim.edu]

[3,Olga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu]

[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.uk]

[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]

Selecting DataFrame columns
As you have seen, all DataFrame columns have names. The select function helps us pick 
and choose specific columns from a previously existing DataFrame and form a completely  
new one out of it:

 f Selecting a single column: Let's say that you would like to select only the email 
column from a DataFrame. Since DataFrames are immutable, the selection returns  
a new DataFrame:
  val emailDataFrame:DataFrame=students.select("email")
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Now, we have a new DataFrame called emailDataFrame, which has only the e-mail 
as its contents. Let's sample and check whether that is true:
  emailDataFrame.show(3)

//Output

+--------------------+

|               email|

+--------------------+

|ullamcorper.velit...|

|pede.Suspendisse@...|

|Aenean.eget.metus...|

+--------------------+

 f Selecting more than one column: The select function actually accepts an arbitrary 
number of column names, which means that you can easily select more than one 
column from your source DataFrame:
val studentEmailDF=students.select("studentName", "email")

The only requirement is that the string parameters that specify must 
be a valid column name. Otherwise, an org.apache.spark.sql.
AnalysisException exception is thrown. The printSchema 
function serves as a quick reference for the column names.

Let's sample and check whether we have indeed selected the studentName and 
email columns in the new DataFrame:
studentEmailDF.show(3)

Output

+-----------+--------------------+

|studentName|               email|

+-----------+--------------------+

|      Burke|ullamcorper.velit...|

|      Kamal|pede.Suspendisse@...|

|       Olga|Aenean.eget.metus...|

+-----------+--------------------+



Getting Started with Apache Spark DataFrames

42

Filtering data by condition
Now that we have seen how to select columns from a DataFrame, let's see how to filter the 
rows of a DataFrame based on conditions. For row-based filtering, we can treat the DataFrame 
as a normal Scala collection and filter the data based on a condition. In all of these examples, 
I have added the show method at the end for clarity:

1. Filtering based on a column value:
//Print the first 5 records that has student id more than 5

  students.filter("id > 5").show(7)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

| 6|     Laurel|1-691-379-9921|adipiscing@consec...|

| 7|       Sara|1-608-140-1995|Donec.nibh@enimEt...|

| 8|     Kaseem|1-881-586-2689|cursus.et.magna@e...|

| 9|        Lev|1-916-367-5608|Vivamus.nisi@ipsu...|

|10|       Maya|1-271-683-2698|accumsan.convalli...|

|11|        Emi|1-467-270-1337|        est@nunc.com|

|12|      Caleb|1-683-212-0896|Suspendisse@Quisq...|

+--+-----------+--------------+--------------------+

Notice that even though the id field is inferenced as a String type, it does the 
numerical comparison correctly. On the other hand, students.filter("email > 
'c'") would give back all the e-mail IDs that start with a character greater than 'c'.

2. Filtering based on an empty column value. The following filter selects all students 
without names:
students.filter("studentName =''").show(7)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

|21|           |1-598-439-7549|consectetuer.adip...|

|32|           |1-184-895-9602|accumsan.laoreet@...|
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|45|           |1-245-752-0481|Suspendisse.eleif...|

|83|           |1-858-810-2204|sociis.natoque@eu...|

|94|           |1-443-410-7878|Praesent.eu.nulla...|

+--+-----------+--------------+--------------------+

3. Filtering based on more than one condition. This filter shows all records whose 
student names are empty or student name field has a NULL string value:
students.filter("studentName ='' OR studentName = 'NULL'").show(7)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

|21|           |1-598-439-7549|consectetuer.adip...|

|32|           |1-184-895-9602|accumsan.laoreet@...|

|33|       NULL|1-105-503-0141|Donec@Inmipede.co.uk|

|45|           |1-245-752-0481|Suspendisse.eleif...|

|83|           |1-858-810-2204|sociis.natoque@eu...|

|94|           |1-443-410-7878|Praesent.eu.nulla...|

+--+-----------+--------------+--------------------+

We are just limiting the output to seven records using the show(7) function.

4. Filtering based on SQL-like conditions.

This filter gets the entries of all students whose names start with the letter 'M'.

students.filter("SUBSTR(studentName,0,1) ='M'").show(7)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

|10|       Maya|1-271-683-2698|accumsan.convalli...|

|19|    Malachi|1-608-637-2772|Proin.mi.Aliquam@...|

|24|    Marsden|1-477-629-7528|Donec.dignissim.m...|

|37|      Maggy|1-910-887-6777|facilisi.Sed.nequ...|

|61|     Maxine|1-422-863-3041|aliquet.molestie....|

|77|      Maggy|1-613-147-4380| pellentesque@mi.net|

|97|    Maxwell|1-607-205-1273|metus.In@musAenea...|

+--+-----------+--------------+--------------------+
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Sorting data in the frame
Using the sort function, we can order the DataFrame by a particular column:

1. Ordering by a column in descending order:
  students.sort(students("studentName").desc).show(7)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

|50|      Yasir|1-282-511-4445|eget.odio.Aliquam...|

|52|       Xena|1-527-990-8606|in.faucibus.orci@...|

|86|     Xandra|1-677-708-5691|libero@arcuVestib...|

|43|     Wynter|1-440-544-1851|amet.risus.Donec@...|

|31|    Wallace|1-144-220-8159| lorem.lorem@non.net|

|66|      Vance|1-268-680-0857|pellentesque@netu...|

|41|     Tyrone|1-907-383-5293|non.bibendum.sed@...|

| 5|     Trevor|1-300-527-4967|dapibus.id@acturp...|

|65|      Tiger|1-316-930-7880|nec@mollisnoncurs...|

|15|      Tarik|1-398-171-2268|turpis@felisorci.com|

+--+-----------+--------------+--------------------+

2. Ordering by more than one column (ascending):
students.sort("studentName", "id").show(10)

Output

+--+-----------+--------------+--------------------+

|id|studentName|         phone|               email|

+--+-----------+--------------+--------------------+

|21|           |1-598-439-7549|consectetuer.adip...|

|32|           |1-184-895-9602|accumsan.laoreet@...|

|45|           |1-245-752-0481|Suspendisse.eleif...|

|83|           |1-858-810-2204|sociis.natoque@eu...|

|94|           |1-443-410-7878|Praesent.eu.nulla...|

|91|       Abel|1-530-527-7467|    urna@veliteu.edu|
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|69|       Aiko|1-682-230-7013|turpis.vitae.puru...|

|47|       Alma|1-747-382-6775|    nec.enim@non.org|

|26|      Amela|1-526-909-2605| in@vitaesodales.edu|

|16|      Amena|1-878-250-3129|lorem.luctus.ut@s...|

+--+-----------+--------------+--------------------+

Alternatively, the orderBy alias of the sort function can be used to achieve this. Also, 
multiple column orders could be specified using the DataFrame's apply method:

students.sort(students("studentName").desc, students("id").asc).show(10)

Renaming columns
If we don't like the column names of the source DataFrame and wish to change them  
to something nice and meaningful, we can do that using the as function while selecting  
the columns.

In this example, we rename the "studentName" column to "name" and retain the "email" 
column's name as is:

val copyOfStudents=students.select(students("studentName").as("name"), 
students("email"))

copyOfStudents.show()

Output

+--------+--------------------+

|    name|               email|

+--------+--------------------+

|   Burke|ullamcorper.velit...|

|   Kamal|pede.Suspendisse@...|

|    Olga|Aenean.eget.metus...|

|   Belle|vitae.aliquet.nec...|

|  Trevor|dapibus.id@acturp...|

|  Laurel|adipiscing@consec...|

|    Sara|Donec.nibh@enimEt...|
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Treating the DataFrame as a relational table
The real power of DataFrames lies in the fact that we can treat it like a relational table and 
use SQL to query. This involves two simple steps:

1. Register the students DataFrame as a table with the name "students" (or any 
other name):
students.registerTempTable("students")

2. Query it using regular SQL:
val dfFilteredBySQL=sqlContext.sql("select * from students where 
studentName!='' order by email desc")

  dfFilteredBySQL.show(7)

id studentName phone          email

87 Selma       1-601-330-4409 vulputate.velit@p

96 Channing    1-984-118-7533 viverra.Donec.tem

4  Belle       1-246-894-6340 vitae.aliquet.nec

78 Finn        1-213-781-6969 vestibulum.massa@

53 Kasper      1-155-575-9346 velit.eget@pedeCu

63 Dylan       1-417-943-8961 vehicula.aliquet@

35 Cadman      1-443-642-5919 ut.lacus@adipisci

The lifetime of the temporary table is tied to the life of the SQLContext 
that was used to create the DataFrame.

Joining two DataFrames
Now that we have seen how to register a DataFrame as a table, let's see how to perform SQL-
like join operations on DataFrames.

Inner join
An inner join is the default join and it just gives those results that are matching on both 
DataFrames when a condition is given:

val students1=sqlContext.csvFile(filePath="StudentPrep1.csv", 
useHeader=true, delimiter='|')

val students2=sqlContext.csvFile(filePath="StudentPrep2.csv", 
useHeader=true, delimiter='|')
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val studentsJoin=students1.join(students2, students1("id")===students2("
id"))

studentsJoin.show(studentsJoin.count.toInt)

The output is as follows:

Right outer join
A right outer join shows all the additional unmatched rows that are available in the right-hand-
side DataFrame. We can see from the following output that the entry with ID 999 from the 
right- hand-side DataFrame is now shown:

val studentsRightOuterJoin=students1.join(students2, students1("id")===st
udents2("id"), "right_outer")

studentsRightOuterJoin.show(studentsRightOuterJoin.count.toInt)
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Left outer join
Similar to a right outer join, a left outer join returns not only the matching rows, but also the 
additional unmatched rows of the left-hand-side DataFrame:

 val studentsLeftOuterJoin=students1.join(students2, students1("id")===st
udents2("id"), "left_outer")

 studentsLeftOuterJoin.show(studentsLeftOuterJoin.count.toInt)

Saving the DataFrame as a file
As the next step, let's save a DataFrame in a file store. The load function, which we used in 
an earlier recipe, has a similar-looking counterpart called save.

This involves two steps:

1. Create a map containing the various options that you would like the save method to 
use. In this case, we specify the filename and ask it to have a header:
val options=Map("header"->"true", "path"->"ModifiedStudent.csv")

To keep it interesting, let's choose column names from the source DataFrame. 
In this example, we pick the studentName and email columns and change the 
studentName column's name to just name.
val copyOfStudents=students.select(students("studentName").
as("name"), students("email"))

2. Finally, save this new DataFrame with the headers in a file named 
ModifiedStudent.csv:
copyOfStudents.save("com.databricks.spark.csv", SaveMode.
Overwrite, options)

The second argument is a little interesting. We can choose Overwrite (as we did here), 
Append, Ignore, or ErrorIfExists. Overwrite— as the name implies—overwrites the  
file if it already exists, Ignore ignores writing if the file exists, ErrorIfExists complains  
for pre-existence of the file, and Append continues writing from the last edit location. 
Throwing an error is the default behavior.
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The output of the save method looks like this:

Creating a DataFrame from Scala case 
classes

In this recipe, we'll see how to create a new DataFrame from Scala case classes.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-
spark-csv/src/main/scala/com/packt/scaladata/spark/
csv/DataFrameFromCaseClasses.scala.

How to do it...
1. We create a new entity called Employee with the id and name fields, like this:

case class Employee(id:Int, name:String)

Similar to the previous recipe, we create SparkContext and SQLContext.
val conf = new SparkConf().setAppName("colRowDataFrame").
setMaster("local[2]")

//Initialize Spark context with Spark configuration.  This is the 
core entry point to do anything with Spark

val sc = new SparkContext(conf)

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter1-spark-csv/src/main/scala/com/packt/scaladata/spark/csv/DataFrameCSV.scala
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//The easiest way to query data in Spark is to use SQL queries.

val sqlContext=new SQLContext(sc)

2. We can source these employee objects from a variety of sources, such as an  
RDBMS data source, but for the sake of this example, we construct a list of 
employees, as follows:
  val listOfEmployees =List(Employee(1,"Arun"), Employee(2, 
"Jason"), Employee (3, "Abhi"))

3. The next step is to pass the listOfEmployees to the createDataFrame function 
of SQLContext. That's it! We now have a DataFrame. When we try to print the schema 
using the printSchema method of the DataFrame, we will see that the DataFrame has 
two columns, with names id and name, as defined in the case class:
  //Pass in the Employees into the `createDataFrame` function.

  val empFrame=sqlContext.createDataFrame(listOfEmployees)

 empFrame.printSchema

Output:

root

 |-- id: integer (nullable = false)

 |-- name: string (nullable = true)

As you might have guessed, the schema of the DataFrame is inferenced from the 
case class using reflection.

4. We can get a different name for the DataFrame—other than the names specified in 
the case class—using the withColumnRenamed function, as shown here:
  val empFrameWithRenamedColumns=sqlContext.createDataFrame(listOf
Employees).withColumnRenamed("id", "empId")

  empFrameWithRenamedColumns.printSchema

Output:

root

|-- empId: integer (nullable = false)

|-- name: string (nullable = true)
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5. Let's query the DataFrame using Spark's first-class SQL support. Before that, however, 
we'll have to register the DataFrame as a table. The registerTempTable, as we saw 
in the previous recipe, helps us achieve this. With the following command, we will have 
registered the DataFrame as a table by name "employeeTable"
 "employeeTable"

  empFrameWithRenamedColumns.registerTempTable("employeeTable")

6. Now, for the actual query. Let's arrange the DataFrame in descending order of names:
val sortedByNameEmployees=sqlContext.sql("select * from 
employeeTable order by name desc")

  sortedByNameEmployees.show()

Output:

+-----+-----+

|empId| name|

+-----+-----+

|    2|Jason|

|    1| Arun|

|    3| Abhi|

+-----+-----+

How it works...
The createDataFrame function accepts a sequence of scala.Product. Scala case 
classes extend from Product, and therefore it fits in the budget. That said, we can actually 
use a sequence of tuples to create a DataFrame, since tuples implement Product too:

val mobiles=sqlContext.createDataFrame(Seq((1,"Android"), (2, "iPhone")))

  mobiles.printSchema

  mobiles.show()

Output:

//Schema

root

|-- _1: integer (nullable = false)

|-- _2: string (nullable = true)
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//Data

+--+-------+

|_1|     _2|

+--+-------+

| 1|Android|

| 2| iPhone|

+--+-------+

Of course, you can rename the column using withColumnRenamed.
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3
Loading and Preparing 

Data – DataFrame

In this chapter, we will cover the following recipes:

 f Loading more than 22 features into classes

 f Loading JSON into DataFrames

 f Storing data as Parquet files

 f Using the Avro data model in Parquet

 f Loading from RDBMS

 f Preparing data in DataFrames

Introduction
In previous chapters, we saw how to import data from a CSV file to Breeze and Spark 
DataFrames. However, almost all the time, the source data that is to be analyzed is available 
in a variety of source formats. Spark, with its DataFrame API, provides a uniform API that 
can be used to represent any source (or multiple sources). In this chapter, we'll focus on the 
various input formats that we can load from in Spark. Towards the end of this chapter, we'll 
also briefly see some data preparation recipes.
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Loading more than 22 features into classes
Case classes have an inherent limitation. They can hold only 22 attributes—Catch 22, 
if you will. While a reasonable percentage of datasets would fit in that budget, in many 
cases, the limitation of 22 features in a dataset is a huge turnoff. In this recipe, we'll 
take a sample Student dataset (http://archive.ics.uci.edu/ml/datasets/
Student+Performance), which has 33 features, and we'll see how we can work around this.

The 22-field limit is resolved in Scala version 2.11. 
However, Spark 1.4 uses Scala 2.10.

How to do it...
Case classes in Scala cannot go beyond encapsulating 22 fields because the companion 
classes that are generated (during compilation) for these case classes cannot find the 
matching FunctionN and TupleN classes. Let's take the example of the Employee case 
class that we created in Chapter 2, Getting Started with Apache Spark DataFrames:

case class Employee(id:Int, name:String)

When we look at its decompiled companion object, we notice that for the two constructor 
parameters of the case class, the companion class uses Tuple2 and AbstractFunction2 
in its unapply method, the method that gets invoked when we pattern-match against a 
case class. The problem we face is that the Scala library has objects only until Tuple22 and 
Function22 (probably because outside the data analysis world, having an entity object with 
10 fields is not a great idea). However, there is a simple yet powerful workaround, and we will 
be seeing it in this recipe.

http://archive.ics.uci.edu/ml/datasets/Student+Performance
http://archive.ics.uci.edu/ml/datasets/Student+Performance
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We saw in Chapter 2, Getting Started with Apache Spark DataFrames (in the Creating 
a DataFrame from CSV recipe), that the requirement for creating a DataFrame using 
SQLContext.createDataFrame from a collection of classes is that the class must  
extend scala.Product. So, what we intend to do is write our own class that extends  
from scala.Product.

This recipe consists of four steps:

1. Creating SQLContext from SparkContext and Config.

2. Creating a Student class that extends Product and overrides the necessary 
functions.

3. Constructing an RDD of the Student classes from the sample dataset  
(student-mat.csv).

4. Creating a DataFrame from the RDD, followed by printing the schema and  
sampling the data.

Refer to the How it works… section of this recipe for a basic 
introduction to RDD.
The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/tree/master/
chapter3-data-loading.

Let's now cover these steps in detail:

1. Creating SQLContext: As with our recipes from the previous chapter, we construct 
SparkContext from SparkConfig and then create an SQLContext from 
SparkContext:
val conf=new  
SparkConf().setAppName("DataWith33Atts").setMaster("local[2]")
val sc=new SparkContext(conf)
val sqlContext=new SQLContext(sc)

2. Creating the Student class: Our next step is to create a simple Scala class that 
declares its constructor parameters, and make it extend Product.

Making a class extend Product requires us to override two functions from  
scala.Product and one function from scala.Equals (which scala.Product, 
in turn, extends from). The implementation of each of these functions is pretty 
straightforward.

Refer to the API docs of Product (http://www.scala-lang.
org/api/2.10.4/index.html#scala.Product) and 
Equals (http://www.scala-lang.org/api/2.10.4/
index.html#scala.Equals) for more details.

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
http://www.scala-lang.org/api/2.10.4/index.html#scala.Product
http://www.scala-lang.org/api/2.10.4/index.html#scala.Product
http://www.scala-lang.org/api/2.10.4/index.html#scala.Equals
http://www.scala-lang.org/api/2.10.4/index.html#scala.Equals
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Firstly, let's make our Student class declare its fields and extend Product:
class Student (school:String,
    sex:String,
    age:Int,
    address:String,
    famsize:String,
    pstatus:String,
    medu:Int,
    fedu:Int,
    mjob:String,
    fjob:String,
    reason:String,
    guardian:String,
    traveltime:Int,
    studytime:Int,
    failures:Int,
    schoolsup:String,
    famsup:String,
    paid:String,
    activities:String,
    nursery:String,
    higher:String,
    internet:String,
    romantic:String,
    famrel:Int,
    freetime:Int,
    goout:Int,
    dalc:Int,
    walc:Int,
    health:Int,
    absences:Int,
    g1:Int,
    g2:Int,
    g3:Int) extends Product{

Next, let's implement these three functions after briefly looking at what they are 
expected to do:

 � productArity():Int: This returns the size of the attributes. In our case, 
it's 33. So, our implementation looks like this:
override def productArity: Int = 33
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 � productElement(n:Int):Any: Given an index, this returns the  
attribute. As protection, we also have a default case, which throws  
an IndexOutOfBoundsException exception:
@throws(classOf[IndexOutOfBoundsException])
  override def productElement(n: Int): Any = n match {
    case 0 => school
    case 1 => sex
    case 2 => age
    case 3 => address
    case 4 => famsize
    case 5 => pstatus
    case 6 => medu
    case 7 => fedu
    case 8 => mjob
    case 9 => fjob
    case 10 => reason
    case 11 => guardian
    case 12 => traveltime
    case 13 => studytime
    case 14 => failures
    case 15 => schoolsup
    case 16 => famsup
    case 17 => paid
    case 18 => activities
    case 19 => nursery
    case 20 => higher
    case 21 => internet
    case 22 => romantic
    case 23 => famrel
    case 24 => freetime
    case 25 => goout
    case 26 => dalc
    case 27 => walc
    case 28 => health
    case 29 => absences
    case 30 => g1
    case 31 => g2
    case 32 => g3
    case _ => throw new  
IndexOutOfBoundsException(n.toString())
  }
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 � canEqual (that:Any):Boolean: This is the last of the three functions, 
and it serves as a boundary condition when an equality check is being done 
against this class:

    override def canEqual(that: Any): Boolean =  
that.isInstanceOf[Student]

3. Constructing an RDD of students from the student-mat.csv file: Now that we  
have our Student class ready, let's convert the "student-mat.csv" input file  
into a DataFrame:
  val rddOfStudents=convertCSVToStudents("student-mat.csv", sc)

  def convertCSVToStudents(filePath: String, sc: SparkContext): 
RDD[Student] = {
    val rddOfStudents: RDD[Student] = sc.textFile(filePath).
flatMap(eachLine => Student(eachLine))
    rddOfStudents
  }

As you can see, we have an apply method for Student that accepts a String and 
returns an Option[Student]. We use flatMap to filter out None thereby resulting 
in RDD[Student].

Let's look at the Student companion object's apply function. It's a very simple 
function that takes a String, splits it based on semicolons into an array, and then 
passes the parameters to the Student's constructor. The method returns None if 
there is an error:
      object Student {

      def apply(str: String): Option[Student] = {
        val paramArray = str.split(";").map(param =>  
param.replaceAll("\"", "")) //Few values have extra double  
quotes around it
        Try(
          new Student(paramArray(0),
            paramArray(1),
            paramArray(2).toInt,
            paramArray(3),
            paramArray(4),
            paramArray(5),
            paramArray(6).toInt,
            paramArray(7).toInt,
            paramArray(8),
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            paramArray(9),
            paramArray(10),
            paramArray(11),
            paramArray(12).toInt,
            paramArray(13).toInt,
            paramArray(14).toInt,
            paramArray(15),
            paramArray(16),
            paramArray(17),
            paramArray(18),
            paramArray(19),
            paramArray(20),
            paramArray(21),
            paramArray(22),
            paramArray(23).toInt,
            paramArray(24).toInt,
            paramArray(25).toInt,
            paramArray(26).toInt,
            paramArray(27).toInt,
            paramArray(28).toInt,
            paramArray(29).toInt,
            paramArray(30).toInt,
            paramArray(31).toInt,
            paramArray(32).toInt)) match {
            case Success(student) => Some(student)
            case Failure(throwable) => {
              println (throwable.getMessage())
              None
            }
          }
      }

4. Creating a DataFrame, printing the schema, and sampling: Finally, we create  
a DataFrame from RDD[Student]. Converting an RDD[T] to a DataFrame  
of the same type is just a matter of calling the toDF() function. You are  
required to import sqlContext.implicits._. Optionally, you can use  
the createDataFrame method of sqlContext too.

The toDF() function is overloaded so as to accept custom 
column names while converting to a DataFrame.
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We then print the schema using the DataFrame's printSchema() method and 
sample data for confirmation using the show() method:
import sqlContext.implicits._

//Create DataFrame
val studentDFrame = rddOfStudents.toDF()
  studentDFrame.printSchema()
  studentDFrame.show()

The following is the output of the preceding code:

root
 |-- school: string (nullable = true)
 |-- sex: string (nullable = true)
 |-- age: integer (nullable = false)
 |-- address: string (nullable = true)
 |-- famsize: string (nullable = true)
 |-- pstatus: string (nullable = true)
 |-- medu: integer (nullable = false)
 |-- fedu: integer (nullable = false)
 |-- mjob: string (nullable = true)
 |-- fjob: string (nullable = true)
 |-- reason: string (nullable = true)
 |-- guardian: string (nullable = true)
 |-- traveltime: integer (nullable = false)
 |-- studytime: integer (nullable = false)
 |-- failures: integer (nullable = false)
 |-- schoolsup: string (nullable = true)
 |-- famsup: string (nullable = true)
 |-- paid: string (nullable = true)
 |-- activities: string (nullable = true)
 |-- nursery: string (nullable = true)
 |-- higher: string (nullable = true)
 |-- internet: string (nullable = true)
 |-- romantic: string (nullable = true)
 |-- famrel: integer (nullable = false)
 |-- freetime: integer (nullable = false)
 |-- goout: integer (nullable = false)
 |-- dalc: integer (nullable = false)
 |-- walc: integer (nullable = false)
 |-- health: integer (nullable = false)
 |-- absences: integer (nullable = false)
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 |-- g1: integer (nullable = false)
 |-- g2: integer (nullable = false)
 |-- g3: integer (nullable = false)

How it works...
The foundation of Spark is the Resilient Distributed Dataset (RDD). From a programmer's 
perspective, the composability of RDDs just like a regular Scala collection is a huge 
advantage. An RDD wraps three vital (and two subsidiary) pieces of information that help in 
the reconstruction of data. This enables fault tolerance. The other major advantage is that 
while RDDs can be composed into hugely complex graphs using RDD operations, the entire 
flow of data itself is not very difficult to reason with.

Other than optional optimization attributes (such as data location), at its core, RDD just  
wraps three vital pieces of information:

 f The dependent/parent RDD (empty if not available)

 f The number of partitions

 f The function that needs to be applied to each element of the RDD



Loading and Preparing Data – DataFrame

62

In simple words, RDDs are just collections of data elements that can exist in the memory or  
on the disk. These data elements must be serializable in order to have the capability to be 
moved across multiple machines (or be serialized on the disk). The number of partitions or 
blocks of data is primarily determined by the source of the input data (say, if the data is in 
HDFS, then each block would translate to a single partition), but there are also other ways  
of playing around with the number of partitions.

So, the number of partitions could be any of these:

 f Dictated by the input data itself, for example, the number of blocks in the case  
of reading files from HDFS

 f The number set by the spark.default.parallelism parameter (set while 
starting the cluster)

 f The number set by calling repartition or coalesce on the RDD itself

Note that currently, for all our recipes, we are running our Spark application in the self-
contained single JVM mode. While the programs work just fine, we are not yet exploiting 
the distributed nature of the RDDs. In Chapter 6, Scaling Up, we'll explore how to bundle 
and deploy our Spark application on a variety of cluster managers: YARN, Spark standalone 
clusters, and Mesos.

There's more…
In the previous chapter, we created a DataFrame from a List of Employee case classes:

val listOfEmployees =List(Employee(1,"Arun"), Employee(2, "Jason"), 
Employee (3, "Abhi"))

val empFrame=sqlContext.createDataFrame(listOfEmployees)

However, in this recipe, we loaded a file, converted them to RDD[String], transformed them 
into case classes, and finally converted them into a DataFrame.

There are subtle, yet powerful, differences in these approaches. In the first approach (converting 
a List of case classes into a DataFrame), we have the entire collection in the memory of the 
driver (we'll look at drivers and workers in Chapter 6, Scaling Up). Except for playing around 
with Spark, for all practical purposes, we don't have our dataset as a collection of case classes. 
We generally have it as a text file or read from a database. Also, requiring to hold the entire 
collection in a single machine before converting it into a distributed dataset (RDD) will unfold 
itself as a memory issue.
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In this recipe, we loaded an HDFS distributed file as an RDD[String] that is distributed 
across a cluster of worker nodes, and then serialized each String into a case class, making 
the RDD[String] into an RDD[Student]. So, each worker node that holds some partitions 
of the dataset handles the computation around transforming RDD[String] to the case class, 
while making the resulting dataset conform to a fixed schema enforced by the case class 
itself. Since the computation and the data itself are distributed, we don't need to worry about 
a single machine requiring a lot of memory to store the entire dataset.

Loading JSON into DataFrames
JSON has become the most common text-based data representation format these days. In 
this recipe, we'll see how to load data represented as JSON into our DataFrame. To make it 
more interesting, let's have our JSON in HDFS instead of our local filesystem.

The Hadoop Distributed File System (HDFS) is a highly distributed filesystem that is both 
scalable and fault tolerant. It is a critical part of the Hadoop ecosystem and is inspired by 
the Google File System paper (http://research.google.com/archive/gfs.html). 
More details about the architecture and communication protocols on HDFS can be found at 
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

How to do it…
In this recipe, we'll see three subrecipes:

 f How to create a schema-inferenced DataFrame from JSON using  
sqlContext.jsonFile

 f Alternatively, if we prefer to preprocess the input file before parsing it into JSON, we'll 
parse the input file as text and convert it into JSON using sqlContext.jsonRDD

 f Finally, we'll take a look at declaring an explicit schema and using it to create  
a DataFrame

Reading a JSON file using SQLContext.jsonFile
This recipe consists of three steps:

1. Storing our json (profiles.json) in HDFS: A copy of the data file is added to our 
project repository, and it can be downloaded from https://github.com/arunma/
ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/
profiles.json:
  hadoop fs -mkdir -p /data/scalada
  hadoop fs -put profiles.json /data/scalada/profiles.json
  hadoop fs -ls /data/scalada
  -rw-r--r--   1 Gabriel supergroup     176948 2015-05-16 22:13 /
data/scalada/profiles.json

http://research.google.com/archive/gfs.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading/profiles.json
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The following screenshot shows the HDFS file explorer available at  
http://localhost:50070, which confirms that our upload is successful:

2. Creating contexts: We do the regular stuff—create SparkConfig, SparkContext, 
and then SQLContext:
val conf = new  
SparkConf().setAppName("DataFromJSON").setMaster("local[2]")

    val sc = new SparkContext(conf)

    val sqlContext = new SQLContext(sc)

3. Creating a DataFrame from JSON: In this step, we use the jsonFile function of 
SQLContext to create a DataFrame. This is very similar to the sqlContext.
csvFile function that we used in Chapter 2, Getting Started with Apache Spark 
DataFrames. There's just one thing that we need to watch out here; our .json 
should be formatted as one line per record. It is unusual to store JSON as one line 
per record considering that it is a structured format, but the jsonFile function 
treats every single line as one record, failing to do which it would throw a scala.
MatchError error while parsing:
  val  
dFrame=sqlContext.jsonFile("hdfs://localhost:9000/data/scalada/
profiles.json")



Chapter 3

65

That's it! We are done! Let's just print the schema and sample the data:

    dFrame.printSchema()

    dFrame.show()

The following screenshot shows the schema that is inferenced from the JSON file. Note that now 
the age is resolved as long and tags are resolved as an array of string, as you can see here:

The next screenshot shows you a sample of the dataset:
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Reading a text file and converting it to JSON RDD
In the previous section, we saw how we can directly import a textFile containing JSON 
records as a DataFrame using sqlContext.jsonFile. Now, we'll see an alternate approach, 
wherein we construct an RDD[String] from the same profiles.json file and then convert 
them into a DataFrame. This has a distinct advantage from the previous approach—we can have 
more control over the schema instead of relying on the one that is inferenced:

    val strRDD=sc.textFile("hdfs://localhost:9000/data/scalada/profiles.
json")

    val jsonDf=sqlContext.jsonRDD(strRDD)

    jsonDf.printSchema()

The following is the output of the preceding command:

Explicitly specifying your schema
Using jsonRDD and letting it resolve the schema by itself is clean and simple. However, 
it gives less control over the types; for example, the age field must be Integer and not 
Long. Similarly, the `registered` column is inferenced as a String while it is actually a 
TimeStamp. In order to achieve this, let's go ahead and declare our own schema. The way we 
do this is by constructing a StructType and StructField:

  val profilesSchema = StructType(

      Seq(

      StructField("_id",StringType, true),

    StructField("about",StringType, true),

    StructField("address",StringType, true),

    StructField("age",IntegerType, true),
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    StructField("company",StringType, true),

    StructField("email",StringType, true),

    StructField("eyeColor",StringType, true),

    StructField("favoriteFruit",StringType, true),

    StructField("gender",StringType, true),

    StructField("name",StringType, true),

    StructField("phone",StringType, true),

    StructField("registered",TimestampType, true),

    StructField("tags",ArrayType(StringType), true)

      )

    )

  val jsonDfWithSchema=sqlContext.jsonRDD(strRDD, profilesSchema)

  jsonDfWithSchema.printSchema() //Has timestamp

  jsonDfWithSchema.show()

Another advantage of specifying our own schema is that all the columns 
need not be specified in the StructType. We just need to specify the 
columns that we are interested in, and only those columns will be available 
in the target DataFrame. Also, any column that is declared in the schema 
but is not available in the dataset will be filled in with null values.

The following is the output.

We can see that the registered feature is considered to have a timestamp data type and 
age as integer:



Loading and Preparing Data – DataFrame

68

Finally, just for kicks, let's fire a filter query based on the timestamp. This involves three steps:

1. Register the schema as a temporary table for querying, as has been done several 
times in previous recipes. The following line of code registers a table by the name of 
profilesTable:
  jsonRDDWithSchema.registerTempTable("profilesTable")

2. Let's fire away our filter query. The following query returns all profiles that have been 
registered after August 26, 2014. Since the registered field is a timestamp, we 
require an additional minor step of casting the parameter into a TimeStamp:
  val filterCount = sqlContext.sql("select * from profilesTable 
where registered> CAST('2014-08-26 00:00:00' AS TIMESTAMP)").count

3. Let's print the count:
  println("Filtered based on timestamp count : " + filterCount) 
//106

There's more…
If you aren't comfortable with having the schema in the code and would like to save the 
schema in a file, it's just a one-liner for you:

  import scala.reflect.io.File

  import scala.io.Source

  //Writes schema as JSON to file

  File("profileSchema.json").writeAll(profilesSchema.json)

Obviously, you would want to reconstruct the schema from JSON, and that's also a one-liner:

  val loadedSchema = DataType.fromJson(Source.fromFile("profileSchema.
json").mkString)

Let's check whether the loadedSchema and the profileSchema encapsulate the same 
schema by doing an equality check on their json:

println ("ProfileSchema == loadedSchema :"+(loadedSchema.
json==profilesSchema.json))

The output is shown as follows:

ProfileSchema == loadedSchema :true
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If we would like to eyeball the json, we have a nice method called prettyJson that formats 
the json:

  //Print loaded schema

  println(loadedSchema.prettyJson)

The output is as follows:
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Storing data as Parquet files
Parquet (https://parquet.apache.org/) is rapidly becoming the go-to data storage 
format in the world of big data because of the distinct advantages it offers:

 f It has a column-based representation of data. This is better represented in a picture, 
as follows:

As you can see in the preceding screenshot, Parquet stores data in chunks of 
rows, say 100 rows. In Parquet terms, these are called RowGroups. Each of these 
RowGroups has chunks of columns inside them (or column chunks). Column chunks 
can hold more than a single unit of data for a particular column (as represented 
in the blue box in the first column). For example. Jai, Suri, and Dhina form a single 
chunk even though they are composed of three single units of data for Name.

Another unique feature is that these column chunks (groups of a single column's  
information) can be read independently. Let's consider the following image:

https://parquet.apache.org/


Chapter 3

71

We can see that the items of column data are stored next to each other in a 
sequence. Since our queries are focused on just a few columns (a projection)  
most of the time and not on the entire table, this storage mechanism enables  
us to retrieve data much faster than reading the entire row data that is stored 
and filtering for columns. Also, with Spark's in-memory computations, the memory 
requirements are reduced in this way.

 f The second advantage is that there is very little that is needed for our transition from 
the existing data models that we already use to represent the data. While Parquet 
has its own native object model, we are pretty much free to choose Avro, ProtoBuf, 
Thrift, and a variety of existing object models, and use an intermediate converter to 
serialize our data in Parquet. Most of these converters are readily available at the 
Parquet-MR project (https://github.com/Parquet/parquet-mr).

In this recipe, we'll cover the following steps:

1. Load a simple CSV file and convert it into a DataFrame.

2. Save it as a Parquet file.

3. Install Parquet tools.

4. Use the tools to inspect the Parquet file.

5. Enable compression for the Parquet file.

The entire code for this recipe can be found at https://github.
com/arunma/ScalaDataAnalysisCookbook/tree/master/
chapter3-data-loading-parquet.

https://github.com/Parquet/parquet-mr
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading-parquet
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How to do it…
Before we dive into the  steps, let's briefly look at our build.sbt file, specifically the library 
dependencies and Avro settings (which we'll talk about in the following sections):

organization := "com.packt"

name := "chapter3-data-loading-parquet"

scalaVersion := "2.10.4"

val sparkVersion="1.4.1"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "org.apache.spark" %% "spark-sql" % sparkVersion,
  "org.apache.spark" %% "spark-mllib" % sparkVersion,
  "org.apache.spark" %% "spark-hive" % sparkVersion,
  "org.apache.avro" % "avro" % "1.7.7",
  "org.apache.parquet" % "parquet-avro" % "1.8.1",
  "com.twitter" %% "chill-avro" % "0.6.0"
)

resolvers ++= Seq(
  "Apache HBase" at  
"https://repository.apache.org/content/repositories/releases",
  "Typesafe repository" at  
"http://repo.typesafe.com/typesafe/releases/",
  "Twitter" at "http://maven.twttr.com/"
)

fork := true

seq( sbtavro.SbtAvro.avroSettings : _*)

(stringType in avroConfig) := "String"

javaSource in sbtavro.SbtAvro.avroConfig <<= (sourceDirectory in  
Compile)(_ / "java")

Now that we have build.sbt out of the way, let's go ahead and look at the code behind each 
of the listed steps.
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Load a simple CSV file, convert it to case classes, and create a 
DataFrame from it
We can actually create a  DataFrame directly from CSV using the com.databricks/spark-
csv file, as we saw in Chapter 2, Getting Started with Apache Spark DataFrames, but for this 
recipe, we'll just tokenize the CSV and create classes from it. The input CSV has a header 
column. So, the conversion process involves skipping the first row.

The class file that we will discuss in this section is the https://
github.com/arunma/ScalaDataAnalysisCookbook/blob/
master/chapter3-data-loading-parquet/src/main/
scala/com/packt/dataload/ParquetCaseClassMain.scala.

There are just two interesting things that you might notice in the code:

sqlContext.setConf("spark.sql.parquet.binaryAsString","true")

Some Parquet producing systems, such as Impala, binary encode the strings. In order to work 
around this issue, we set the following configuration, which says that if it sees binary data,  
it should be treated as a string:

Instead of using sqlContext.createDataFrame, we just use a toDF() on the 
RDD[Student]. The SQLContext.Implicits object has a number of implicit conversions 
that help us convert an RDD[T] to a DataFrame directly. The only requirement for us, as 
expected, is to import the implicits:

  import sqlContext.implicits._

The rest of the code is the same as we saw earlier:

val conf = new  
SparkConf().setAppName("CaseClassToParquet").setMaster("local[2]")
  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)

  //Treat binary encoded values as Strings
  sqlContext.setConf("spark.sql.parquet.binaryAsString","true")

  import sqlContext.implicits._

  //Convert each line into Student
  val rddOfStudents = convertCSVToStudents("StudentData.csv", sc)

  //Convert RDD[Student] to a Dataframe using sqlContext.implicits
  val studentDFrame = rddOfStudents.toDF()

www.allitebooks.com

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter3-data-loading-parquet/src/main/scala/com/packt/dataload/ParquetCaseClassMain.scala
http://www.allitebooks.org
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The convertCSVToStudents method, which converts each line into a Student object, 
looks like this:

def convertCSVToStudents(filePath: String, sc: SparkContext):  
RDD[Student] = {
    val rddOfStudents: RDD[Student]  
=sc.textFile(filePath).flatMap(line => {
      val data = line.split("\\|")
      if (data(0) == "id") None else Some(Student(data(0),  
data(1), data(2), data(3)))
    })
    rddOfStudents
  }

Save it as a Parquet file
This is just a one-liner once  we have the DataFrame. This can be done using either  
the saveAsParquetFile or the save method. If you wish to save it in a Hive table 
(https://hive.apache.org/), then there is also a saveAsTable method for you:

//Save DataFrame as Parquet using saveAsParquetFile
studentDFrame.saveAsParquetFile("studentPq.parquet")

//OR

//Save DataFrame as Parquet using the save method
studentDFrame.save("studentPq.parquet", "parquet",  
SaveMode.Overwrite)

The save method allows the usage of SaveMode, which has the following 
alternatives: Append, ErrorIfExists, Ignore, or Overwrite.

The save methods create a directory in the location that you specify (here, we simply store  
it in our project directory). The directory holds the files that represent the serialized data.  
It is not entirely human readable, but you may notice that the data of a single column is  
stored together.

Just as we do for the rest of the recipes, let's read the file and sample the data for 
confirmation:

//Read data for confirmation

  val pqDFrame=sqlContext.parquetFile("studentPq.parquet")

  pqDFrame.show()

https://hive.apache.org/
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The following is the output:

Install Parquet tools
Other than using the printSchema method of the DataFrame to inspect the schema, we can 
use some interesting parquet tools provided as part of the parquet project to get a variety of 
other information.

The parquet-tools is a subproject of Parquet and is available at 
https://github.com/Parquet/parquet-mr/tree/master/
parquet-tools.

Since Spark 1.4.1 uses Parquet 1.6.0rc3, we'll need to download that version of the tools from 
the Maven repository. The executables and the JARs can be downloaded as one bundle from 
https://repo1.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/
parquet-tools-1.6.0rc3-bin.tar.gz.

Using the tools to inspect the Parquet file
Let's put the tools into action. Specifically, we'll do three things in this step:

 f Display the schema in Parquet format

 f Display the meta information that is stored in Parquet's footer

https://github.com/Parquet/parquet-mr/tree/master/parquet-tools
https://github.com/Parquet/parquet-mr/tree/master/parquet-tools
https://repo1.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/parquet-tools-1.6.0rc3-bin.tar.gz
https://repo1.maven.org/maven2/com/twitter/parquet-tools/1.6.0rc3/parquet-tools-1.6.0rc3-bin.tar.gz
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 f Sample the data using head and cat

 f Displaying the schema: This can be achieved by calling the parquet-tools 
command with schema and the parquet file as the parameter. As an example,  
let's print the schema using one of the part files:
bash-3.2$ parquet-tools-1.6.0rc3/parquet-tools meta part-r-00000-
20a8b58c-fe1d-43e7-b148-f874b78eb5ec.gz.parquet

message root {

  optional binary id (UTF8);

  optional binary name (UTF8);

  optional binary phone (UTF8);

  optional binary email (UTF8);

}

We see that the schema is indeed available in Parquet format and is derived from our 
case classes.

 f Displaying the meta information of a particular Parquet file: As we saw earlier, 
meta information is stored in the footer. Let's print it to see it.

We see that the extra information has the schema that is specific to the data model 
we used. This information is used when the data is deserialized. The meta parameter 
of parquet-tools will help achieve this:

bash-3.2$  parquet-tools-1.6.0rc3/parquet-tools meta part-r-00000-
20a8b58c-fe1d-43e7-b148-f874b78eb5ec.gz.parquet

creator:     parquet-mr version 1.6.0rc3 (build 
d4d5a07ec9bd262ca1e93c309f1d7d4a74ebda4c)

extra:       org.apache.spark.sql.parquet.row.metadata = {"type"
:"struct","fields":[{"name":"id","type":"string","nullable":true
,"metadata":{}},{"name":"name","type":"string","nullable":true, 
[more]...

file schema: root

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------
---

id:          OPTIONAL BINARY O:UTF8 R:0 D:1

name:        OPTIONAL BINARY O:UTF8 R:0 D:1

phone:       OPTIONAL BINARY O:UTF8 R:0 D:1
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email:       OPTIONAL BINARY O:UTF8 R:0 D:1

row group 1: RC:50 TS:3516

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------
---

id:           BINARY GZIP DO:0 FPO:4 SZ:140/326/2.33 VC:50 
ENC:RLE,BIT_PACKED,PLAIN

name:         BINARY GZIP DO:0 FPO:144 SZ:313/483/1.54 VC:50 
ENC:RLE,BIT_PACKED,PLAIN

phone:        BINARY GZIP DO:0 FPO:457 SZ:454/961/2.12 VC:50 
ENC:RLE,BIT_PACKED,PLAIN

email:        BINARY GZIP DO:0 FPO:911 SZ:929/1746/1.88 VC:50 
ENC:RLE,BIT_PACKED,PLAIN

 f Sampling data using head and cat: Let's now have a sneak peek at the first few 
rows of the data. The head function will help us do that. It accepts an additional -n 
parameter, where you can specify the number of records to be displayed:

bash-3.2$ parquet-tools-1.6.0rc3/parquet-tools head -n 2  
part-r-00001.parquet

The preceding command will display only two rows because of the additional -n 2 parameter.

The following is the output of this command:

id = 1

name = Burke

phone = 1-300-746-8446

email = ullamcorper.velit.in@ametnullaDonec.co.uk

id = 2

name = Kamal

phone = 1-668-571-5046

email = pede.Suspendisse@interdumenim.edu

Optionally, if you wish to display all the records in the file, you can use the cat parameter with 
the parquet-tools command:

parquet-tools cat part-r-00001.parquet
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Enable compression for the Parquet file
As you can see from the meta information, the data is gzipped by default. In order to  
use Snappy compression, all that we need to do is set a configuration to our SQLContext 
(actually the SQLConf of SQLContext). There's just one catch with regard to enabling 
Lempel–Ziv–Oberhumer (LZO) compression—we are required to install native-lzo on all 
the machines where this data is stored. Otherwise, we get a "native-lzo library not 
available" error message.

Let's enable Snappy (http://google.github.io/snappy/) compression by passing the 
configuration parameter of Parquet compression to Snappy:

sqlContext.setConf("spark.sql.parquet.compression.codec", "snappy")

After running the program, let's use the parquet-tools meta command to verify it:

parquet-tools meta part-r-00000-aee54b77-288e-44b2-8f36-53b38a489e8d.
snappy.parquet

Using the Avro data model in Parquet
Parquet is a kind of highly efficient columnar storage, but it is also relatively new. Avro 
(https://avro.apache.org) is a widely used row-based storage format. This recipe 
showcases how we can retain the older and flexible Avro schema in our code but still use  
the Parquet format during storage.

The Spark MR project (yes, the one that has the Parquet tools we saw in the previous recipe) 
has converters for almost all the popular data formats. These model converters take your 
format and convert it into Parquet format before causing it to persist.

http://google.github.io/snappy/
https://avro.apache.org
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How to do it…
In this recipe, we'll use the Avro data model and serialize the data in a Parquet file. The recipe 
involves the following steps:

1. Create the Avro Model.

2. Generate Avro objects using the sbt avro plugin.

3. Construct the RDD of your generated object (StudentAvro) from Students.csv.

4. Save the RDD[StudentAvro] in a Parquet file.

5. Read the file back for verification.

6. Use Parquet-tools to verify.

Creation of the Avro model
The Avro schema is defined using JSON. In our case, we'll just use the same Student.csv  
as the input file. So, let's code the four fields— id, name, phone, and email—in the schema:

{"namespace": "studentavro.avro",
 "type": "record",
 "name": "StudentAvro",
 "fields": [
     {"name": "id", "type": ["string", "null"]},
     {"name": "name",  "type": ["string", "null"]},
     {"name": "phone", "type": ["string", "null"]},
     {"name": "email", "type": ["string", "null"]}
 ]
}

Probably, you are already familiar with Avro, or you have already understood the schema just 
by taking a look at it, but let me bore you with some explanation of the schema anyway.

The namespace and name attributes in the JSON translate into our package name and class 
name in our world, respectively. So, our generated class will have a fully qualified name as 
studentavro.avro.StudentAvro. The "record" (of the type attribute) is one of the 
complex types in Avro (http://avro.apache.org/docs/1.7.6/spec.html#schema_
complex). Let me rephrase this again. A record roughly translates to classes in Java/
Scala. It is at the topmost level in the schema hierarchy. A record can have multiple fields 
encapsulated inside it, and these fields can be primitives (https://avro.apache.org/
docs/1.7.7/spec.html#schema_primitive) or other complex types. The last bit about 
the type having an array of types is interesting ("type": ["string", "null"]). It just 
means that the field can be more than one type. In Avro terms, it is called a union.

Now that we are done with the schema, let's save this file with an extension of .avsc. I have 
saved it as student.avsc in the src/main/avro directory.

http://avro.apache.org/docs/1.7.6/spec.html#schema_complex
http://avro.apache.org/docs/1.7.6/spec.html#schema_complex
https://avro.apache.org/docs/1.7.7/spec.html#schema_primitive
https://avro.apache.org/docs/1.7.7/spec.html#schema_primitive
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Generation of Avro objects using the sbt-avro plugin
The next step is to generate a class from the schema. The reason we stored the avro  
schema file in the src/main/avro folder is this: we'll be using an sbt-avro plugin 
(https://github.com/cavorite/sbt-avro) to generate a Java class from the  
schema. Configuring the plugin is as easy as configuring any other plugin for SBT:

 f Let's add the plugin to project/plugins.sbt:
addSbtPlugin("com.cavorite" % "sbt-avro" % "0.3.2")

 f Add the default settings of the plugin to our build.sbt:
seq( sbtavro.SbtAvro.avroSettings : _*)

 f Let's generate the Java class now. We can do this by calling sbt avro:generate. 
You can see the generated Java file at target/scala-2.10/src_managed/
main/compiled_avro/studentavro/avro/StudentAvro.java.

https://github.com/cavorite/sbt-avro
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 f We also need the following library dependencies. Finally, let's perform an SBT compile 
to compile the class so that the rest of the project picks up the generated Java file:
libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "org.apache.spark" %% "spark-sql" % sparkVersion,
  "org.apache.spark" %% "spark-mllib" % sparkVersion,
  "org.apache.spark" %% "spark-hive" % sparkVersion,
  "org.apache.avro" % "avro" % "1.7.7",
  "org.apache.parquet" % "parquet-avro" % "1.8.1",
  "com.twitter" %% "chill-avro" % "0.6.0"
)
  sbt compile

Constructing an RDD of our generated object from Students.csv
This step is very similar to the previous recipe in the sense that we use the 
convertCSVToStudents function to generate an RDD of the StudentAvro object. Also, 
since this isn't a Scala class and the generated Java object comes up with a builder inside 
it, we use the  builder to construct the class fluently (http://en.wikipedia.org/wiki/
Fluent_interface):

val conf = new  
SparkConf().setAppName("AvroModelToParquet").setMaster("local[2]")

  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)
  sqlContext.setConf("spark.sql.parquet.binaryAsString", "true")
  val rddOfStudents = convertCSVToStudents("StudentData.csv", sc)

//The CSV has a header row.  Zipping with index and skipping the  
first row
  def convertCSVToStudents(filePath: String, sc: SparkContext):  
RDD[StudentAvro] = {
    val rddOfStudents:  
RDD[StudentAvro]=sc.textFile(filePath).flatMap(eachLine => {
      val data = eachLine.split("\\|")
      if (data(0) == "id") None
      else Some(StudentAvro.newBuilder()
        .setId(data(0))
        .setName(data(1))
        .setPhone(data(2))
        .setEmail(data(3)).build())
    })
    rddOfStudents
  }

http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Fluent_interface
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Saving RDD[StudentAvro] in a Parquet file
This is a tricky step and involves multiple substeps. Let's decipher this step backwards.  
We fall back to RDD[StudentAvro] in this example instead of a DataFrame because 
DataFrames can be constructed only from an RDD of case classes (or classes that extend 
Product, as we saw earlier in this chapter) or from RDD[org.apache.spark.sql.Row].  
If you prefer to use DataFrames, you can read the CSV as an array of values, and  
use RowFactory.create for each array of values. Once an RDD[Row] is available,  
we can use sqlContext.createDataFrame to convert it to a DataFrame:

 f In order to save the RDD as a Hadoop SequenceFile, we can use 
saveAsNewAPIHadoopFile. A sequence file is simply a text file that holds  
key-value pairs. We could have chosen one of the Student attributes as a key,  
but for the sake of it, let's have it as a Void in this example.

To represent a pair (key-value) in Spark, we use PairRDD (https://spark.
apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.
rdd.PairRDDFunctions). Not surprisingly, saveAsNewAPIHadoopFile is 
available only for PairRDDs. To convert the existing RDD[StudentAvro] to a 
PairRDD[Void,StudentAvro], we use the map function:

val pairRddOfStudentsWithNullKey = rddOfStudents.map(each  
=> (null, each))

 f Spark uses Java serialization by default to serialize the RDD to be distributed  
across the cluster. However, the Avro model doesn't implement the serializable 
interface, and hence it won't be able to leverage Java serialization. That's no reason 
for worry, however, because Spark provides another 10x performant serialization 
mechanism called Kryo. The only downside is that we need to explicitly register our 
serialization candidates:
  val conf = new  
SparkConf().setAppName("AvroModelToParquet").setMaster("local[2]")
  conf.set("spark.kryo.registrator",  
classOf[StudentAvroRegistrator].getName)
    conf.set("spark.serializer",  
"org.apache.spark.serializer.KryoSerializer")

So, we say using the "spark.serializer" configuration that we intend to use 
KryoSerializer, and that our registrator is StudentAvroRegistrator. As 
you may expect, what the Registrator does is register our StudentAvro class as 
a candidate for Kryo serialization. The twitter-chill project (https://github.
com/twitter/chill) provides a nice extension to delegate the Kryo serializer to 
use the Avro serialization:
class StudentAvroRegistrator extends KryoRegistrator {
  override def registerClasses(kryo: Kryo) {

https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
https://github.com/twitter/chill
https://github.com/twitter/chill
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    kryo.register(classOf[StudentAvro],  
AvroSerializer.SpecificRecordBinarySerializer[StudentAvro])
  }
}

 f The intent of this recipe is to write a Parquet file, but the data model (schema) is Avro. 
Since we are going to write this down as a sequence file, we'll be using a bunch of 
Hadoop APIs. The org.apache.hadoop.mapreduce.OutputFormat specifies 
the output format of the file that we are going to write, and as expected, we use 
ParquetOutputFormat (this is available in the parquet-hadoop subproject in 
the parquet-mr project). There are two things that an OutputFormat requires:

 � The WriteSupport class, which knows how to convert the Avro data model 
to the actual format. This is achieved with the following line:
  ParquetOutputFormat.setWriteSupportClass(job, 
classOf[AvroWriteSupport])

 � The schema needs to be written to the footer of the Parquet file too. The 
schema of StudentAvro is accessible by using the getClassSchema 
function. This line of code achieves that:

  AvroParquetOutputFormat.setSchema(job, StudentAvro.
getClassSchema)

Now, what's that job parameter doing here in these two lines of code? The job 
object is just an instance of org.apache.hadoop.mapreduce.Job:
  val job = new Job()

When we call the setWriteSupportClass and setSchema methods of 
ParquetOutputFormat and AvroParquetOutputFormat, the resulting 
configuration is captured inside the JobConf encapsulated inside the Job object. 
We'll be using this job configuration while saving the data in a sequence file.

 f Finally, we save the file by calling saveAsNewAPIHadoopFile. The save method 
requires a bunch of parameters, each of which we have already discussed. The first 
parameter is the filename, followed by the key and the value classes. The fourth is 
the OutputFormat of the file, and finally comes the job configuration itself:

pairRddOfStudentsWithNullKey.saveAsNewAPIHadoopFile("studentAvro
Pq",
    classOf[Void],
    classOf[StudentAvro],
    classOf[AvroParquetOutputFormat],
    job.getConfiguration())
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We saw the entire program in bits and pieces, so for the sake of completion, let's see 
it completely:

object ParquetAvroSchemaMain extends App {

  val conf = new  
SparkConf().setAppName("AvroModelToParquet").setMaster("local[2]")
  conf.set("spark.kryo.registrator",  
classOf[StudentAvroRegistrator].getName)
  conf.set("spark.serializer",  
"org.apache.spark.serializer.KryoSerializer")

  val job = new Job()

  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)
  sqlContext.setConf("spark.sql.parquet.binaryAsString",  
"true")
  val rddOfStudents =  
convertCSVToStudents("StudentData.csv", sc)

  ParquetOutputFormat.setWriteSupportClass(job,  
classOf[AvroWriteSupport])
  AvroParquetOutputFormat.setSchema(job,  
StudentAvro.getClassSchema)

  val pairRddOfStudentsWithNullKey = rddOfStudents.map(each  
=>  
(null, each))

pairRddOfStudentsWithNullKey.saveAsNewAPIHadoopFile("studentAvro
Pq",
    classOf[Void],
    classOf[StudentAvro],
    classOf[AvroParquetOutputFormat],
    job.getConfiguration())

  //The CSV has a header row.  Zipping with index and  
skipping the first row
  def convertCSVToStudents(filePath: String, sc:  
SparkContext):  
RDD[StudentAvro] = {
    val rddOfStudents:  
RDD[StudentAvro]=sc.textFile(filePath).flatMap(eachLine =>  
{
      val data = eachLine.split("\\|")
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      if (data(0) == "id") None
      else Some(StudentAvro.newBuilder()
        .setId(data(0))
        .setName(data(1))
        .setPhone(data(2))
        .setEmail(data(3)).build())
    })
    rddOfStudents
  }

}

class StudentAvroRegistrator extends KryoRegistrator {
  override def registerClasses(kryo: Kryo) {
    kryo.register(classOf[StudentAvro],  
AvroSerializer.SpecificRecordBinarySerializer[StudentAvro])
  }
}

Reading the file back for verification
As always, let's read the file back for confirmation. The function to be called 
for this is newAPIHadoopFile, which accepts a similar set of parameters as 
saveAsNewAPIHadoopFile: the name of the file, InputFormat, the key class, the value 
class, and finally the job configuration. Note that we are using newAPIHadoopFile instead 
of the previously used the parquetFile method. This is because we are reading from a 
Hadoop sequence file:

//Reading the file back for confirmation.

  ParquetInputFormat.setReadSupportClass(job, classOf[AvroWriteSupport])

  val readStudentsPair = sc.newAPIHadoopFile("studentAvroPq", classOf[Av
roParquetInputFormat[StudentAvro]], classOf[Void], classOf[StudentAvro], 
job.getConfiguration())

  val justStudentRDD: RDD[StudentAvro] = readStudentsPair.map(_._2)

  val studentsAsString = justStudentRDD.collect().take(5).mkString("\n")

  println(studentsAsString)

This is the output:
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Using Parquet tools for verification
We'll also use Parquet tools to confirm that the schema that is stored in the Parquet file is 
indeed an avro schema:

/Users/Gabriel/Dropbox/arun/ScalaDataAnalysis/git/parquet-mr/parquet-
tools/target/parquet-tools-1.6.0rc3/parquet-tools meta /Users/Gabriel/
Dropbox/arun/ScalaDataAnalysis/Code/scaladataanalysisCB-tower/chapter3-
data-loading-parquet/studentAvroPq

Yup! Looks like it is! The extra section in meta does confirm that the avro schema is stored:

creator:     parquet-mr

extra:       parquet.avro.schema = {"type":"record","name":"StudentAvro",
"namespace":"studentavro.avro","fields":[{"name":"id","type":[{"type":"st
ring","avro.java.string":"Stri [more]...

Loading from RDBMS
As the final recipe on loading, let's try to load data from an RDBMS data source, which is MySQL 
in our case. This recipe assumes that you have already installed MySQL in your machine.

How to do it…
Let's go through the prerequisite steps first. If you already have a MySQL table to play with,  
you can safely ignore this step. We are just going to create a new database and a table and 
load some sample data into it.

The prerequisite step (optional):

1. Creating a database and a table: This is achieved in MySQL by using the create 
database and the create table DDL:
create database scalada;

use scalada
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CREATE TABLE student (
id varchar(20),
`name` varchar(200),
phone varchar(50),
email varchar(200),
PRIMARY KEY (id));

2. Loading data into the table: Let's dump some data into the table. I wrote a very 
simple app to do this. Alternatively, you can use the load data infile command 
if you have "local-infile=1" enabled on your server and the client. Refer to 
https://dev.mysql.com/doc/refman/5.1/en/load-data.html for details 
about this command.

As you can see, the program loads the Student.csv that we saw in Chapter 
2, Getting Started with Apache Spark DataFrames, when we saw how to use 
DataFrames with Spark using the databricks.csv connector. Then, for each line, 
the data is inserted into the table using the plain old JDBC insert. As you might have 
already figured out, we need to add the MySQL connector java dependency to our 
build.sbt too:
"mysql" % "mysql-connector-java" % "5.1.34"

object LoadDataIntoMySQL extends App {

  val conf = new  
SparkConf().setAppName("LoadDataIntoMySQL").setMaster("local[2]")
  val config=ConfigFactory.load()
  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)

  val students = sqlContext.csvFile(filePath =  
"StudentData.csv", useHeader = true, delimiter = '|')

  students.foreachPartition { iter=>
      val conn =  
DriverManager.getConnection(config.getString("mysql.connection.
url"))
      val statement = conn.prepareStatement("insert into  
scalada.student (id, name, phone, email) values (?,?,?,?)  
")

      for (eachRow <- iter) {
        statement.setString(1, eachRow.getString(0))
        statement.setString(2, eachRow.getString(1))
        statement.setString(3, eachRow.getString(2))
        statement.setString(4, eachRow.getString(3))

https://dev.mysql.com/doc/refman/5.1/en/load-data.html
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        statement.addBatch()
      }

      statement.executeBatch()
      conn.close()
      println ("All rows inserted successfully")
  }

}

A "select * from scalada.student" on the MySQL client should confirm this, as 
shown here:

Steps for loading RDBMS data into DataFrame:

The recommended approach to loading data from RDBMS databases is using the 
SQLContext's load method:

1. Creating the Spark and SQLContext: You may have already become familiar with 
this step by looking at the previous recipes:
  val conf = new  
SparkConf().setAppName("DataFromRDBMS").setMaster("local[2]")
  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)

2. Constructing a map of options: This map is expected to have not only the driver  
and the connection URL, but also the query to be invoked in order to load the data.  
In this example, we'll store the parameter values in an external Typesafe config 
file and load the values into our program.

The Typesafe application.conf is located at src/main/resources as per 
standard SBT/Maven conventions. Here is a screenshot that shows the contents  
of application.conf:
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Now let's look at the code that constructs the map:
  val config = ConfigFactory.load()

  val options = Map(
    "driver" -> config.getString("mysql.driver"),
    "url" -> config.getString("mysql.connection.url"),
    "dbtable" -> "(select * from student) as student",
    "partitionColumn" -> "id",
    "lowerBound" -> "1",
    "upperBound" -> "100",
    "numPartitions"-> "2")

The first three parameters are straightforward. The numPartitions specifies the 
number of partitions for this job, and partitionColumn specifies the column 
in the table based on which the job has to be partitioned. The lowerBound and 
upperBound are values of the "id" field. The amount of data to be handled by  
a single partition is calculated using the number of partitions and the lower and 
upper bounds.

3. Loading data from the table: The load function of SQLContext expects two 
parameters. The first one specifies that the source of the data is through "jdbc", 
and the second parameter is the options that we constructed in step 2. Let's now 
print the schema and show the first 20 rows, as we always do:
  val dFrame=sqlContext.load("jdbc", options)

  dFrame.printSchema()

  dFrame.show()

This is the output:

root

 |-- id: string (nullable = false)

 |-- name: string (nullable = true)

 |-- phone: string (nullable = true)

 |-- email: string (nullable = true)

 |-- gender: string (nullable = true)

We see that the schema of the DataFrame is derived from the MySQL table definition by 
examining the not nullable constraint of the id field.
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The output is as follows:

Preparing data in Dataframes
Other than filtering, conversions, and transformations (with DataFrames which we saw  
in Chapter 2, Getting Started with Apache Spark DataFrames) , let's see a few more data 
preparation tricks in this recipe. We'll also be looking at specific data preparation in Chapter 5,  
Learning from Data, where we will focus on using various machine learning algorithms.

How to do it...
While preprocessing data, we may be required to:

 f Merge two different datasets

 f Perform set operations on two datasets

 f Sort the DataFrame by casting an attribute value

 f Choose a member from one dataset over another based on the predicate

 f Parse arbitrary date/time inputs

We'll use the StudentPrep1.csv and StudentPrep2.csv datasets for the first four tasks, 
and for the last one, we'll use StrangeDate.json, a JSON-based dataset. The CSV and the 
JSON dataset are chosen primarily for convenience—the input data could be anything.
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The StudentPrep1.csv dataset is shown in this screenshot:

The StudentPrep2.csv dataset is shown in the following screenshot:

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/tree/master/
chapter3-data-loading.

Let's convert them into a DataFrame using the databricks/spark-csv library, which we 
used in Chapter 2, Getting Started with Apache Spark DataFrames, when we talked about 
loading DataFrames from CSV:

import com.databricks.spark.csv.CsvContext

val students1=sqlContext.csvFile(filePath="StudentPrep1.csv",  
useHeader=true, delimiter='|')
val students2=sqlContext.csvFile(filePath="StudentPrep2.csv",  
useHeader=true, delimiter='|')

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter3-data-loading
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1. Merging datasets: The DataFrame provides a convenient way to merge another 
DataFrame—unionAll. The unionAll accepts another DataFrame as an argument. 
Not surprisingly, the merged DataFrame maintains duplicates inside it:
val allStudents=students1.unionAll(students2)

allStudents.show(allStudents.count().toInt)

The output is shown as follows:

2. Performing set operations: Just like unionAll, the DataFrame has functions for 
various set operations.

The intersection of two DataFrames would just entail calling the intersect function:
val intersection=students1.intersect(students2)

intersection.foreach(println)

[7,Sara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edu]

[8,Kaseem,1-881-586-2689,cursus.et.magna@euismod.org]

[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edu]

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]
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Deriving the difference of one DataFrame from another is done by calling the 
except() function with another DataFrame as the parameter:
val subtraction=students1.except(students2)

subtraction.foreach(println)

Here is the output:
[6,Laurel,1-691-379-9921,adipiscing@consectetueripsum.edu]

[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.uk]

[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim.edu]

[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]

[3,Olga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu]

[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]

If there are duplicates in the data, the distinct function will ignore them and return 
a DataFrame with only unique data:
val distinctStudents=allStudents.distinct

distinctStudents.foreach(println)

println(distinctStudents.count())

The following is the output:
[4,BelleDifferentName,1-246-894-6340,vitae.aliquet.nec@neque.
co.uk]

[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]

[2,KamalDifferentName,1-668-571-5046,pede.Suspendisse@
interdumenim.edu]

[999,LevUniqueToSecondRDD,1-916-367-5608,Vivamus.nisi@ipsumdolor.
com]

[1,BurkeDifferentName,1-300-746-8446,ullamcorper.velit.in@
ametnullaDonec.co.uk]

[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim.edu]

[3,Olga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu]

[7,Sara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edu]

[8,Kaseem,1-881-586-2689,cursus.et.magna@euismod.org]

[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]

[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.uk]

[6,Laurel,1-691-379-9921,adipiscing@consectetueripsum.edu]

[6,LaurelInvalidPhone,000000000,adipiscing@consectetueripsum.edu]

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]
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[3,Olga,1-956-311-1686,Aenean.eget.metus@
dictumcursusNuncDifferentEmail.edu]

[5,Trevor,1-300-527-4967,dapibusDifferentEmail.id@acturpisegestas.
net]

[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edu]

Count output:
17

3. Sorting the DataFrame by casting an attribute value: Sometimes, our DataFrame 
inferences an integer attribute as a string. Since, DataFrames are immutable, the 
correct way of converting an attribute from one type to another is by creating another 
DataFrame. In this recipe, we'll not only cast one attribute type to another, but also 
sort the DataFrame based on that attribute. The simplest way to achieve this is by 
using the Spark SQL expression:
val sortedCols=allStudents.selectExpr("cast(id as int) as id", 
"studentName", "phone", "email").sort("id")

  println ("sorting")

  sortedCols.show(sortedCols.count.toInt)

The output is shown here:
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4. Choosing a member from one dataset over another based on predicate: Let's 
assume that for a given student ID across two different datasets, you would like to 
pick only the one that has a longer name (or matches some predicate). The result 
would be just one row per ID.

This involves three mini-steps:

1. Map the merged DataFrame (using unionAll) and spit out an RDD of  
pairs with the key as the ID (or any other field based on which you would  
like to merge):
  val  
idStudentPairs=allStudents.rdd.map(eachRow=>(eachRow.
getString(0),eachRow))

2. The next step is to use a function called reduceByKey. It accepts a function 
that takes two rows and returns a single row. In our case, we simply write the 
logic to choose the row with the longer name:
  //Removes duplicates by id and holds on to the row with 
the longest name

  val idStudentPairs=allStudents.rdd.map(eachRow=>(eachRow.
getString(0),eachRow))

  val longestNameRdd=idStudentPairs.reduceByKey((row1, row2) 
=>

    if (row1.getString(1).length()>row2.getString(1).
length()) row1 else row2

  )

3. Let's print the output:
longestNameRdd.values.foreach(println)

The output is as follows:

[4,BelleDifferentName,1-246-894-6340,vitae.aliquet.nec@neque.
co.uk]

[8,Kaseem,1-881-586-2689,cursus.et.magna@euismod.org]

[6,LaurelInvalidPhone,000000000,adipiscing@consectetueripsum.edu]

[2,KamalDifferentName,1-668-571-5046,pede.Suspendisse@
interdumenim.edu]

[7,Sara,1-608-140-1995,Donec.nibh@enimEtiamimperdiet.edu]

[5,Trevor,1-300-527-4967,dapibusDifferentEmail.id@acturpisegestas.
net]

[9,Lev,1-916-367-5608,Vivamus.nisi@ipsumdolor.com]

[3,Olga,1-956-311-1686,Aenean.eget.metus@
dictumcursusNuncDifferentEmail.edu]
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[999,LevUniqueToSecondRDD,1-916-367-5608,Vivamus.nisi@ipsumdolor.
com]

[1,BurkeDifferentName,1-300-746-8446,ullamcorper.velit.in@
ametnullaDonec.co.uk]

[10,Maya,1-271-683-2698,accumsan.convallis@ornarelectusjusto.edu]

5. Parsing arbitary date/time inputs and convert an array into a comma-separated 
string: While preparing the data, we see that, particularly, the date and time appear 
in some crazy formats. As always, our aim is to standardize them. For this subrecipe, 
we'll be using a JSON that looks like this:

As we saw in previous recipes, we could bring in this JSON as a DataFrame, but the 
date format isn't ISO 8601, which means that it won't be considered as a timestamp 
and would be treated as plain string. In this subrecipe, let's see how to convert a 
string into a date format. This subrecipe involves four steps:

Performing arbitrary transformations is a work in progress  
(https://issues.apache.org/jira/browse/SPARK-4190).

1. Import JSON as a text file:
val stringRDD = sc.textFile("StrangeDate.json")

2. Create a new org.joda.time.format.DateTimeFormat for the  
specific pattern that our input is in:
val formatter = DateTimeFormat.forPattern("MM/dd/yyyy 
HH:mm:ss")

3. We add json4s as our dependency in build.sbt:

"org.json4s" % "json4s-core_2.10" % "3.2.11",

"org.json4s" % "json4s-jackson_2.10" % "3.2.11"

4. For each line of the JSON string, parse, and convert the string to org.
json4s.JsonValue. The advantage of JsonValue is that we can  
traverse the JSON object with XPath-like expressions.

https://issues.apache.org/jira/browse/SPARK-4190
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Chaining the compact and render function will help us convert JsonValue to String. 
In the following code, we extract the name field as is, convert an array of tags into a 
comma-separated string using the extract function, parse the date string using the 
DateTimeFormat that we created earlier, and construct a Timestamp object. Finally,  
we yield a case class called JsonDataModel out of the for comprehension that wraps  
around the name, date, and tags:

case class JsonDateModel (name:String, dob:Timestamp, tags:String)
  import org.json4s._
 import org.json4s.jackson.JsonMethods._
 implicit val formats = DefaultFormats
  
 val dateModelRDD = for {
    json <- stringRDD
    jsonValue = parse(json)
    name = compact(render(jsonValue \ "name"))
    dateAsString=compact(render(jsonValue \ "dob")).replace("\"","")
    date = new Timestamp(formatter.parseDateTime(dateAsString).
getMillis())
    tags = render(jsonValue \ "tags").extract[List[String]].
mkString(",")
  } yield JsonDateModel(name, date, tags)

After that, we construct a DataFrame out of this case class RDD and print the schema  
to confirm:

 import sqlContext.implicits._

 val df=dateModelRDD.toDF()

 df.printSchema()

 df.show(df.count.toInt)

The output is as follows:

 f Schema:

 f Data:
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4
Data Visualization

In this chapter, we will cover the following recipes:

 f Visualizing using Zeppelin

 f Creating scatter plots with Bokeh-Scala

 f Creating a time series MultiPlot with Bokeh-Scala

Introduction
In all honesty, free / open source data visualization tools in Scala aren't that rich compared to 
those in other mature data analysis languages, such as R or Python. We might partly attribute 
this to the lack of rich charting frameworks in Java, and visualization has never been a strong 
point for big data analytics.

That said, Scala (or more specifically the Hadoop world, including Spark) is catching up with 
the presence of the Apache incubator project Zeppelin and the highly active Scala bindings 
(https://github.com/bokeh/bokeh-scala) for the Bokeh project (http://bokeh.
pydata.org/en/latest/). With R becoming the first-class citizen in Spark—with the 
availability of SparkR DataFrames from 1.4 onwards—Spark gets additional visualization  
from R other than the already existing Python APIs.

As a side note, all existing Java libraries are accessible from Scala. Hence, we are free to 
borrow any visualization library from Java.

https://github.com/bokeh/bokeh-scala
http://bokeh.pydata.org/en/latest/
http://bokeh.pydata.org/en/latest/
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Visualizing using Zeppelin
Apache Zeppelin is a nifty web-based tool that helps us visualize and explore large datasets. 
From a technical standpoint, Apache Zeppelin is a web application on steroids. We aim to use 
this application to render some neat, interactive, and shareable graphs and charts.

The interesting part of Zeppelin is that it has a bunch of built-in interpreters—ones that can 
interpret and invoke all API functions in Spark (with a SparkContext) and Spark SQL (with a 
SQLContext). The other interpreters that are built in are for Hive, Flink, Markdown, and Scala. 
It also has the ability to run remote interpreters (outside of Zeppelin's own JVM) via Thrift. To 
look at the list of built-in interpreters, you can go through conf/interpreter.json in the 
zeppelin installation directory. Alternatively, you can view and customize the interpreters from 
http://localhost:8080/#/interpreter once you start the zeppelin daemon.

How to do it...
In this recipe, we'll be using the built-in SparkContext and SQLContext inside Zeppelin 
and transform data using Spark. At the end, we'll register the transformed data as a table  
and use Spark SQL to query the data and visualize it.

The list of subrecipes in this section is as follows:

 f Installing Zeppelin

 f Customizing Zeppelin's server and websocket port

 f Visualizing data on HDFS – parameterizing inputs

 f Using custom functions during visualization

 f Adding external dependencies to Zeppelin

 f Pointing to an external Spark cluster

Installing Zeppelin
Zeppelin (http://zeppelin-project.org/) doesn't have a binary bundle yet. However, 
just as its project site claims, it is pretty easy to build from source. We just ought to run one 
command to install it on our local machine. At the end of this recipe, we'll take a look at how 
to point our Zeppelin to an external Spark master:

git clone https://github.com/apache/incubator-zeppelin.git

cd incubator-zeppelin

mvn clean package -Pspark-1.4 -Dhadoop.version=2.2.0 -Phadoop-2.2 
-DskipTests

http://zeppelin-project.org/


Chapter 4

101

Once built, we can start the Zeppelin daemon using the following command:

bin/zeppelin-daemon.sh start

To stop the daemon, we can use this command:

bin/zeppelin-daemon.sh stop

If you come across the following error, you can check with 
rat.txt, only to find that it complains about your data file:
Failed to execute goal org.apache.rat:apache-rat-
plugin:0.11:check (verify.rat) on project zeppelin: Too many 
files with unapproved license: 3
Simply move your data file to a different location and initiate 
the build again.
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Customizing Zeppelin's server and websocket port
Zeppelin runs on port 8080 by default, and it has a websocket port enabled at the +1  
port (8081) by default. We can customize the port by copying conf/zeppelin-site.
xml.template to conf/zeppelin-site.xml and changing the ports and various other 
properties, if necessary. Since the Spark standalone cluster master web UI also runs on 8080, 
when we are running Zeppelin on the same machine as the Spark master, we have to change 
the ports to avoid conflicts.

1. For now, let's change the port to 8180. In order for this to take effect, let's restart 
Zeppelin using bin/zeppelin-daemon restart
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Visualizing data on HDFS – parameterizing inputs
Once we start the daemon, we can point our browser to http://localhost:8080 (change 
the port as per your modified port configuration) to view the Zeppelin UI. Zeppelin organizes 
its contents as notes and paragraphs. A note is simply a list of all the paragraphs on a single 
web page.

Using data from HDFS simply means that we point to the HDFS location instead of the local 
filesystem location.

Before we consume the file from HDFS, let's quickly check the Spark version that Zeppelin 
uses. This can be achieved by issuing sc.version on a paragraph. The sc is an implicit 
variable representing the SparkContext inside Zeppelin, which simply means that we  
need not programmatically create a SparkContext within Zeppelin.

Next, let's load the profiles.json sample data file, convert it into a DataFrame, and 
print the schema and the first 20 rows (show) for verification. Let's also finally register the 
DataFrame as a table. Just like the implicit variable for SparkContext, SQLContext is 
represented by the sqlc implicit variable inside Zeppelin:

val profilesJsonRdd = sqlc.jsonFile("hdfs://localhost:9000/data/scalada/
profiles.json")
val profileDF=profilesJsonRdd.toDF()
profileDF.printSchema()
profileDF.show()
profileDF.registerTempTable("profiles")
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The output looks like this:

Be careful not to explicitly create SQLContext or SparkContext. 
If we create a SQLContext explicitly and register our temporary 
tables to it, it won't be accessible from the SQL queries that we 
execute. We'll get this error:
no such table List ([YOUR TEMP TABLE NAME])
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Let's now run a simple query to understand eye colors and their counts for men in the dataset:

   %sql select eyeColor, count(eyeColor) as count from profiles where 
gender='male' group by eyeColor

The %sql at the beginning of the paragraph indicates to Zeppelin that we are about to 
execute a Spark SQL query in this paragraph.

Now, if we wish to share this chart with someone or link it to an external website, we can do  
so by clicking on the gear icon in this paragraph and then clicking on Link this paragraph,  
as shown in the following screenshot:
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We can actually parameterize the input for gender instead of altering our query every time. 
This is achieved by the use of ${PARAMETER PLACEHOLDER}:

%sql select eyeColor, count(eyeColor) as count from profiles where 
gender="${gender}" group by eyeColor

Finally, if parameterizing using free-form text isn't enough, we can use a dropdown instead:

%sql select eyeColor, count(eyeColor) as count from profiles where gender
="${gender=male,male|female}" group by eyeColor

Running custom functions
While Spark SQL doesn't support a range of functions as wide as ANSI SQL does, it has an 
easy and powerful mechanism for registering a normal Scala function and using it inside the 
SQL context.
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Let's say we would like to find out how many profiles fall under each age group. We have 
a simple function called ageGroup. Given an age, it returns a string representing the age 
group:

def ageGroup(age: Long) = {

    val buckets = Array("0-10", "11-20", "20-30", "31-40", "41-50", "51-
60", "61-70", "71-80", "81-90", "91-100", ">100")

    buckets(math.min((age.toInt - 1) / 10, buckets.length - 1))

  }

Now, in order to register this function to be used inside Spark SQL, all that we need to do is 
give it a name and call the register method of the SQLContext's user-defined function object:

  sqlc.udf.register("ageGroup", (age:Long)=>ageGroup(age.toInt))

Let's fire our query and see the use of the function in action:

%sql select ageGroup(age) as group,

          count(1) as total

from profiles

where gender='${gender=male,male|female}' group by ageGroup(age)

order by group

Here is the output:
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Adding external dependencies to Zeppelin
Sooner or later, we would be depending on external libraries than that come bundled with 
Zeppelin, say for an efficient CSV import or RDBMS data import. Let's see how to load a 
MySQL database driver and visualize data from a table.

In order to load a mysql connector java driver, we just need to specify the group ID, artifact 
ID, and version number, and the JAR gets downloaded from the maven repository.  %dep 
indicates that the paragraph adds a dependency, and the z implicit variable represents the 
Zeppelin context:

%dep

z.load("mysql:mysql-connector-java:5.1.35")

If we would like to point to our enterprise Maven repository or some other custom repository, 
we can add them by calling the addRepo method of the Zeppelin context available via the 
same z implicit variable:

%dep

z.addRepo("RepoName").url("RepoURL")

Alternatively, we can load the jar from the local filesystem using the overloaded load 
method:

%dep

z.load("/path/to.jar")

The only thing that we need to watch out for while using %dep is that the dependency paragraph 
should be used before using the libraries that are being loaded. So, it is generally advised to 
load the dependencies at the top of the Notebook.

Let's see the use in action:

 f Loading the dependency:
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Once we have loaded the dependencies, we need to construct the options required to 
connect to the MySQL database:
val props = scala.collection.mutable.Map[String,String]();

  props+=("driver" -> "com.mysql.jdbc.Driver")

  props+=("url" -> "jdbc:mysql://localhost/scalada?user=root&passw
ord=orange123")

  props+=("dbtable" -> "(select id, name, phone, email, gender 
from scalada.student) as students")

  props+=("partitionColumn" -> "id")

  props+=("lowerBound" -> "0")

  props+=("upperBound" -> "100")

  props+=("numPartitions" -> "2")

 f Using the connection to create a DataFrame:

import scala.collection.JavaConverters._

 val studentDf = sqlContext.load("jdbc", props.asJava)

  studentDf.printSchema()

  studentDf.show()

  studentDf.registerTempTable("students")
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 f Visualizing the data:

Pointing to an external Spark cluster
Running Zeppelin with built-in Spark is all good, but in most of our cases, we'll be executing 
the Spark jobs initiated by Zeppelin on a cluster of workers. Achieving this is pretty simple;  
we need to configure Zeppelin to point its Spark master property to an external Spark master 
URL. We'll be looking at how to install and run a Spark cluster on AWS, or a truly distributed 
cluster, in a later chapter (Chapter 6, Scaling Up), but for this example, I have a simple and 
standalone external Spark cluster running on my local machine. Please note that we will have 
to run Zeppelin on a different port because of the Zeppelin UI port's conflict with the Spark 
standalone cluster master web UI over 8080:

For this example, let's download the Spark source for 1.4.1 and build it for Hadoop version 2.2:

build/mvn -Pyarn -Phadoop-2.2 -Dhadoop.version=2.2.0 -DskipTests clean 
package

Similarly, let's download the zeppelin incubator and build it, specifying the Hadoop version 
to be 2.2:

mvn clean install -Pspark-1.4 -Dhadoop.version=2.2.0 -Phadoop-2.2 
-DskipTests -Pyarn

Let's bring up the Spark cluster. From inside your Spark source, execute this:

sbin/start-all.sh
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Finally, let's modify conf/interpreter.json and conf/zeppelin-env.sh to point  
the master property to the host on which the Spark VM is running. In this case, it will be  
my localhost, with the port being 7077, which is the default master port.

1. The conf/interpreter.json file:

2. The conf/zeppelin-env.sh file:

Now, when we rerun Spark SQL from Zeppelin, we can see that the job runs on the external 
Spark instance, as shown here:
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Creating scatter plots with Bokeh-Scala
While Zeppelin is powerful enough to quickly execute our Spark SQLs and visualize data, it is 
still an evolving platform. In this section, we'll take a brief look at the most popular visualizing 
framework in Python, called Bokeh, and use its (also fast evolving) Scala bindings to the 
framework. Breeze also has a visualization API called breeze-viz, which is built on JFreeChart. 
Unfortunately, at the time of writing this book, the API is not actively maintained, and therefore 
we won't be discussing it here.

The power of Zeppelin lies in the ability to share and view graphics on the browser. This  
is brought forth by the backing of the D3.js JavaScript visualization library. Bokeh is also 
backed by another JavaScript visualization library, called BokehJS. The Scala bindings library 
(bokeh-scala) not only gives an easier way to construct glyphs (lines, circles, and so on) 
out of Scala objects, but also translates glyphs into a format that is understandable by the 
BokehJS JavaScript components.

There is a warning here: the Bokeh-Scala bindings are still evolving and act at a lower level. 
Sometimes, this is more cumbersome than its Python counterpart. That said, I am still sure 
that we all would be able to appreciate the amazing graphs that we can create right out  
of Scala.

How to do it...
In this recipe, we will be creating a scatter plot using iris data (https://archive.ics.
uci.edu/ml/datasets/Iris), which has the length and width attributes of flowers 
belonging to three different species of the same plant. Drawing a scatter plot on this dataset 
involves a series of interesting substeps.

For the purpose of representing the iris data in a Breeze matrix, I have naïvely transformed the 
species categories into numbers:

 f Iris setosa: 0

 f Iris versicolor: 1

 f Iris virginica: 2

This is available in irisNumeric.csv. Later, we'll see how we can load the original iris data 
(iris.data) into a Spark DataFrame and use that as a source for plotting.

For the sake of clarity, let's define what the various terms in Bokeh actually mean:

 f Glyph: All geometric shapes that we can think of—circles, squares, lines, and so 
on—are glyphs. This is just the UI representation and doesn't hold any data.  All the 
properties related to this object just help us modify the UI properties: color, x, y, 
width, and so on.

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
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 f Plot: A plot is like a canvas on which we arrange various objects relevant to the 
visualization, such as the legend, x and y axes, grid, tools, and obviously, the core 
of the graph—the data itself. We construct various accessory objects and finally add 
them to the list of renderers in the plot object.

 f Document: The document is the component that does the actual rendering. 
It accepts the plot as an argument, and when we call the save method in the 
document, it uses all the child renderers in the plot object and constructs a JSON 
from the wrapped elements. This JSON is eventually read by the BokehJS widgets to 
render the data in a visually pleasing manner. More than one plot can be rendered 
in the document by adding it to a grid plot (we'll look at how this is done in the next 
recipe, Creating a time series MultiPlot with Bokeh-Scala).

A plot is a composition of multiple widgets/glyphs.

This consists of a series of steps:

1. Preparing our data.

2. Creating the Plot and Document objects.

3. Creating a point (marker object) and a renderer for it.

4. Setting the x and y axes' data range for the plot.

5. Drawing the x and the y axes.

6. Viewing the marker objects with varying colors.

7. Adding Grid lines.

8. Adding a legend to the plot.

Preparing our data
Bokeh plots require our data to be in a format that it understands, but it's really easy to do it. 
All that we need to do is create a new source object that inherits from ColumnDataSource. 
The other options are AjaxDataSource and RemoteDataSource.

So, let's overlay our Breeze data source on ColumnDataSource:

import breeze.linalg._

object IrisSource extends ColumnDataSource {

  private val colormap = Map[Int, Color](0 -> Color.Red, 1 ->  
Color.Green, 2 -> Color.Blue)

  private val iris = csvread(file = new File("irisNumeric.csv"),  
separator = ',')
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  val sepalLength = column(iris(::, 0))
  val sepalWidth = column(iris(::, 1))
  val petalLength = column(iris(::, 2))
  val petalWidth = column(iris(::, 3))
  val species = column(iris(::, 4))
}

The first line just reads irisNumeric.csv using the csvread function of the Breeze library. 
The color map is something that we'll be using later while plotting. The purpose of this map is 
to translate each species of flower into a different color. The final piece is where we convert 
the Breeze matrix into ColumnDataSource. As required by ColumnDataSource, we select 
and map specific columns in the Breeze matrix to corresponding columns.

Creating Plot and Document objects
Let's have our image's title as Iris Petal Length vs Width and create a document 
object so that we can save the final HTML by the name IrisBokehBreeze.html. Since  
we haven't specified the full path of the target file in the save method, the file will be saved  
in the same directory as the project itself:

val plot = new Plot().title("Iris Petal Length vs Width")

val document = new Document(plot)

val file = document.save("IrisBokehBreeze.html")

println(s"Saved the chart as ${file.url}")

Creating a marker object
Our plot has neither data nor any glyphs. Let's first create a marker object that marks the 
data point. There are a variety of marker objects to choose from: Asterisk, Circle, 
CircleCross, CircleX, Cross, Diamond, DiamondCross, InvertedTriangle, 
PlainX, Square, SquareCross, SquareX, and Triangle.

Let's choose Diamond for our purpose:

val diamond = new Diamond()
    .x(petalLength)
    .y(petalWidth)
    .fill_color(Color.Blue)
    .fill_alpha(0.5)
    .size(5)

val dataPointRenderer = new GlyphRenderer().data_source(IrisSource).
glyph(diamond)
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While constructing the marker object, other than the UI attributes, we also say what the x and 
the y coordinates for it are. Note that we have also mentioned that the color of this marker is 
blue. We'll change that in a while using the color map.

Setting the X and Y axes' data range for the plot
The plot needs to know what the x and y data ranges of the plot are before rendering. Let's do 
that by creating two DataRange objects and setting them to the plot:

val xRange = new DataRange1d().sources(petal_length :: Nil)

val yRange = new DataRange1d().sources(petal_width :: Nil)

plot.x_range(xRange).y_range(yRange)

Let's try and run the first cut of this program.

The following is the output:

We see that this needs a lot of work to be done. Let's do it bit by bit.
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Drawing the x and the y axes
Let's now draw the axes, set their bounds, and add them to the plot's renderers. We also need 
to let the plot know which location each axis belongs to:

//X and Y Axis

  val xAxis = new LinearAxis().plot(plot).axis_label("Petal Length").
bounds((1.0, 7.0))

  val yAxis = new LinearAxis().plot(plot).axis_label("Petal Width").
bounds((0.0, 2.5))

  plot.below <<= (listRenderer => (xAxis :: listRenderer))

  plot.left <<= (listRenderer => (yAxis :: listRenderer))

  //Add the renderer to the plot

  plot.renderers := List(xAxis, yAxis, dataPointRenderer)

Here is the output:
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Viewing flower species with varying colors
All the data points are marked with blue as of now, but we would really like to differentiate the 
species visually. This is a simple two-step process:

1. Add new derived data (speciesColor) into our ColumnDataSource to hold colors 
that represent the species:
object IrisSource extends ColumnDataSource {

  private val colormap = Map[Int, Color](0 -> Color.Red, 1  
-> Color.Green, 2 -> Color.Blue)

  private val iris = csvread(file = new  
File("irisNumeric.csv"), separator = ',')

  val sepalLength = column(iris(::, 0))
  val sepalWidth = column(iris(::, 1))
  val petalLength = column(iris(::, 2))
  val petalWidth = column(iris(::, 3))
val speciesColor = column(species.value.map(v =>  
colormap(v.round.toInt)))
}

So, we assign red to Iris setosa, green to Iris versicolor and blue to Iris virginica.

2. Modify the diamond marker to take this as input instead of accepting a static blue:
val diamond = new Diamond()

    .x(petalLength)

    .y(petalWidth)

    .fill_color(speciesColor)

    .fill_alpha(0.5)

    .size(10)
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The output is as follows:

It looks fairly okay now. Let's add some tools to the image. Bokeh has some nice tools that can 
be attached to the image: BoxSelectTool, BoxZoomTool, CrosshairTool, HoverTool, 
LassoSelectTool, PanTool, PolySelectTool, PreviewSaveTool, ResetTool, 
ResizeTool, SelectTool, TapTool, TransientSelectTool, and WheelZoomTool.

Let's add a few of them to see them for fun:

val panTool = new PanTool().plot(plot)

  val wheelZoomTool = new WheelZoomTool().plot(plot)

  val previewSaveTool = new PreviewSaveTool().plot(plot)

  val resetTool = new ResetTool().plot(plot)

  val resizeTool = new ResizeTool().plot(plot)

  val crosshairTool = new CrosshairTool().plot(plot)

plot.tools := List(panTool, wheelZoomTool, previewSaveTool, resetTool, 
resizeTool, crosshairTool)
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Adding grid lines
While we have the crosshair tool, which helps us locate the exact x and y values of a particular 
data point, it would be nice to have a data grid too. Let's add two data grids, one for the x axis 
and one for the y axis:

 val xAxis = new LinearAxis().plot(plot).axis_label("Petal Length").
bounds((1.0, 7.0))

  val yAxis = new LinearAxis().plot(plot).axis_label("Petal Width").
bounds((0.0, 2.5))

  val xgrid = new Grid().plot(plot).axis(xAxis).dimension(0)

  val ygrid = new Grid().plot(plot).axis(yAxis).dimension(1)
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Next, let's add the grids to the plot renderer list too:

  plot.renderers := List(xAxis, yAxis, dataPointRenderer, xgrid, ygrid)

Adding a legend to the plot
This step is a bit tricky in the Scala binding of Bokeh due to the lack of high-level graphing 
objects, such as scatter. For now, let's cook up our own legend. The legends property of 
the Legend object accepts a list of tuples - a label and a GlyphRenderer pair. Let's explicitly 
create three GlyphRenderer wrapping diamonds of three colors, which represent the 
species. We then add them to the plot:

val setosa = new Diamond().fill_color(Color.Red).size(10).fill_alpha(0.5)

  val setosaGlyphRnd=new GlyphRenderer().glyph(setosa)

  val versicolor = new Diamond().fill_color(Color.Green).size(10).fill_
alpha(0.5)

  val versicolorGlyphRnd=new GlyphRenderer().glyph(versicolor)

  val virginica = new Diamond().fill_color(Color.Blue).size(10).fill_
alpha(0.5)

  val virginicaGlyphRnd=new GlyphRenderer().glyph(virginica)
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  val legends = List("setosa" -> List(setosaGlyphRnd),

            "versicolor" -> List(versicolorGlyphRnd),

            "virginica" -> List(virginicaGlyphRnd))

  val legend = new Legend().orientation(LegendOrientation.TopLeft).
plot(plot).legends(legends)

plot.renderers := List(xAxis, yAxis, dataPointRenderer, xgrid, ygrid, 
legend, setosaGlyphRnd, virginicaGlyphRnd, versicolorGlyphRnd)

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter4-visualization/src/main/scala/com/
packt/scalada/viz/breeze.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
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Creating a time series MultiPlot with  
Bokeh-Scala

In this second recipe on plotting using Bokeh, we'll see how to plot a time series graph 
with a dataset borrowed from https://archive.ics.uci.edu/ml/datasets/
Dow+Jones+Index. We will also see how to plot multiple charts in a single document.

How to do it...
We'll be using only two fields from the dataset: the closing price of the stock at the end of the 
week, and the last business day of the week. Our dataset is comma separated. Let's take a 
look at some samples, as shown here:

Preparing our data
In contrast to the previous recipe, where we used the Breeze matrix to construct the 
Bokeh ColumnDataSource, we'll use the Spark DataFrame to construct the source this 
time. The getSource method accepts a ticker (MSFT-Microsoft and CAT-Caterpillar) and 
a SQLContext. It runs a Spark SQL, fetches the data from the table, and constructs a 
ColumnDataSource from it:

import org.joda.time.format.DateTimeFormat

object StockSource {

  val formatter = DateTimeFormat.forPattern("MM/dd/yyyy");

  def getSource(ticker: String, sqlContext: SQLContext) = {
    val stockDf = sqlContext.sql(s"select stock, date, close from  
stocks where stock= '$ticker'")
    stockDf.cache()

https://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index
https://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index


Chapter 4

123

    val dateData: Array[Double] =  
stockDf.select("date").collect.map(eachRow =>  
formatter.parseDateTime(eachRow.getString(0)).getMillis().toDouble)
    val closeData: Array[Double] =  
stockDf.select("close").collect.map(eachRow =>  
eachRow.getString(0).drop(1).toDouble)

    object source extends ColumnDataSource {
      val date = column(dateData)
      val close = column(closeData)
    }
    source
  }
}

Earlier, we constructed SQLContext and registered the dataset as a table, like this:

val conf = new SparkConf().setAppName("csvDataFrame").
setMaster("local[2]")

val sc = new SparkContext(conf)

val sqlContext = new SQLContext(sc)

val stocks = sqlContext.csvFile(filePath = "dow_jones_index.data", 
useHeader = true, delimiter = ',')

stocks.registerTempTable("stocks")

The only tricky thing that we do here is convert the date value into milliseconds. This is 
because the Plot point requires a double. We use the Joda-Time API to achieve this.

Creating a plot
Let's go ahead and create the Plot object from the source:

//Create Plot

val plot = new Plot().title(ticker).x_range(xdr).y_range(ydr).width(800).
height(400)

Let's have our image's title as the ticker name of the stock and create a Document object so 
that we can save the final HTML by the name ClosingPrices.html:

val msDocument = new Document(microsoftPlot)
val msHtml = msDocument.save("ClosingPrices.html")
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Creating a line that joins all the data points
As we saw earlier with the Diamond marker, we'll have to pass the x and the y positions of 
the data points. Also, we will need to wrap the Line glyph into a renderer so that we can  
add it to Plot:

val line = new Line().x(date).y(close).line_color(color).line_width(2)

val lineGlyph = new GlyphRenderer().data_source(source).glyph(line)

Setting the x and y axes' data range for the plot
The plot needs to know what the x and y data ranges of the plot are before rendering.  
Let's do that by creating two DataRange objects and setting them to the plot:

val xdr = new DataRange1d().sources(List(date))

val ydr = new DataRange1d().sources(List(close))

plot.x_range(xdr).y_range(ydr)

Drawing the axes and the grids
Drawing the axes and the grids is the same as before. We added some labels to the axis, 
formatted the display of the x axis, and then added them to the Plot:

val xformatter = new DatetimeTickFormatter().formats(Map(DatetimeUnits.
Months -> List("%b %Y")))

val xaxis = new DatetimeAxis().plot(plot).formatter(xformatter).axis_
label("Month")

val yaxis = new LinearAxis().plot(plot).axis_label("Price")

plot.below <<= (xaxis :: _)

plot.left <<= (yaxis :: _)

val xgrid = new Grid().plot(plot).dimension(0).axis(xaxis)

val ygrid = new Grid().plot(plot).dimension(1).axis(yaxis)

Adding tools
As before, let's add some tools to the image—and to the plot:

//Tools
val panTool = new PanTool().plot(plot)
val wheelZoomTool = new WheelZoomTool().plot(plot)
val previewSaveTool = new PreviewSaveTool().plot(plot)
val resetTool = new ResetTool().plot(plot)
val resizeTool = new ResizeTool().plot(plot)
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val crosshairTool = new CrosshairTool().plot(plot)

plot.tools := List(panTool, wheelZoomTool, previewSaveTool,  
resetTool, resizeTool, crosshairTool)

Adding a legend to the plot
Since we already have the Glyph renderer for the line, all we need to do is add it to the 
legend. The properties of the line automatically propagate to the legend:

//Legend

    val legends = List(ticker -> List(lineGlyph))

    val legend = new Legend().plot(plot).legends(legends)

Next, let's add all the renderers that we created before to the plot:

plot.renderers <<= (xaxis :: yaxis :: xgrid :: ygrid :: lineGlyph :: 
legend :: _)

As the final step, let's try plotting multiple plots in the same document.



Data Visualization

126

Multiple plots in the document
Creating multiple plots in the same document is child's play. All that we need to do is create all 
our plots and then add them into a grid. Finally, instead of passing our individual plot object 
into the document, we pass in GridPlot:

val children = List(List(microsoftPlot, bofaPlot), List(caterPillarPlot, 
mmmPlot))

val grid = new GridPlot().children(children)

val document = new Document(grid)

val html = document.save("DJClosingPrices.html")

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter4-visualization/src/main/scala/com/
packt/scalada/viz/breeze.

In this chapter, we explored two methods of visualization and built some basic graphs and 
charts using Scala. As I mentioned earlier, the visualization libraries in Scala are actively  
being developed and cannot be compared to advanced visualizations that can be generated 
using R or, for that sake, Tableau.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter4-visualization/src/main/scala/com/packt/scalada/viz/breeze
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5
Learning from Data

In this chapter, we will cover the following recipes:

 f Predicting continuous values using linear regression

 f Binary classification using LogisticRegression and SVM

 f Binary classification using LogisticRegression with the Pipeline API

 f Clustering using K-means

 f Feature reduction using principal component analysis

Introduction
In previous chapters, we saw how to load, prepare, and visualize data. Now, let's start doing 
some interesting stuff with it. In this chapter, we'll be looking into applying various machine 
learning techniques on top of it. We'll look at a few examples for the two broad classifications 
of machine learning techniques: supervised and unsupervised learning. Before that, however, 
let's briefly see what these terms mean.

Supervised and unsupervised learning
If you are reading this book, you probably already know what supervised and unsupervised 
learning are, but for the sake of completion, let's briefly summarize what they mean. In 
supervised learning, we train the algorithms with labeled data. Labeled data is nothing but 
input data along with the outcome variable. For example, if our intention is to predict whether 
a website is about news, we would be preparing a sample dataset of website content with 
"news" and "not news" as labels. This dataset is called the training dataset.
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With supervised learning, our end goal is to use the training dataset and come up with a 
function that maps our input variables to an output variable with least margin of error. We 
call input variables (or x variables) features or explanatory variables, and the output variable 
(also known as the y variable or label) the target or dependent variable. In the news website 
example, the text content in the website would be the input variable and "news" or "not news" 
would be the target variable. The function, along with its parameters (or weights or theta), is 
our hypothesis, or model.

In the case of unsupervised learning, we aim to find a structure within the data—groups and 
relationships among these groups or the participants of a group. Unlike supervised learning, 
we don't know any information about the data or even its subset. An example would be to see 
whether there are similar buying patterns among a group of people (which helps cross-selling) 
or to see which group of people is more likely to buy pizza from our newly opened store.

Gradient descent
With supervised learning, in order for the algorithm to learn the relationship between the input 
and the output features, we provide a set of manually curated values for the target variable 
(y) against a set of input variables (x). We call it the training set. The learning algorithm then 
has to go over our training set, perform some optimization, and come up with a model that 
has the least cost—deviation from the true values. So technically, we have two algorithms for 
every learning problem: an algorithm that comes up with the function and (an initial set of) 
weights for each of the x features, and a supporting algorithm (also called cost minimization 
or optimization algorithm) that looks at our function parameters (feature weights) and tries to 
minimize the cost as much as possible.

There are a variety of cost minimization algorithms, but one of the most popular is gradient 
descent. Imagine gradient descent as climbing down a mountain. The height of the mountain 
represents the cost, and the plain represents the feature weights. The highest point is your 
function with the maximum cost, and the lowest point has the least cost. Therefore, our 
intention is to walk down the mountain. What gradient descent does is as follows: for every 
single step down the slope that it takes of a particular size (the step size), it goes through the 
entire dataset (!) and updates all the values of the weights for x features. This goes on until 
it reaches a state where the cost is the minimum. This flavor of gradient descent, in which 
it sees all of the data per iteration and updates all the parameters during every iteration, is 
called batch gradient descent. The trouble with using this algorithm against the size of the 
data that Spark aims to handle is that going through millions of rows per iteration is definitely 
not optimal. So, Spark uses a variant of gradient descent, called Stochastic Gradient Descent 
(SGD), wherein the parameters are updated for each training example as it looks at it one by 
one. In this way, it starts making progress almost immediately, and therefore the computational 
effort is considerably reduced. The SGD settings can be customized using the optimizer 
attribute inside each of the ML algorithm. We'll look at this in detail in the recipes.
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In the following recipes, we'll be looking at linear regression, logistic regression, and  
support vector machines as examples of supervised learning and K-means clustering,  
as well as dimensionality reduction using Principal Component Analysis (PCA) as an  
example of unsupervised learning. We'll also briefly look at the Stanford NLP toolkit and  
Scala NLP's Epic, popular natural language processing libraries, as examples of fitting a  
third-party library into Spark jobs.

Predicting continuous values using linear 
regression

At the risk of stating the obvious, linear regression aims to find the relationship between 
an output (y) based on an input (x) using a mathematical model that is linear to the input 
variables. The output variable, y, is a continuous numerical value. If we have more than one 
input/explanatory variable (x), as in the example that we are going to see, we call it multiple 
linear regression. The dataset that we'll use for this recipe, for lack of creativity, is lifted 
from the UCI website at http://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/. This dataset has 1599 instances of various red wines, their 
chemical composition, and their quality. We'll use it to predict the quality of a red wine.

How to do it...
Let's summarize the steps:

1. Importing the data.

2. Converting each instance into a LabeledPoint.

3. Preparing the training and test data.

4. Scaling the features.

5. Training the model.

6. Predicting against the test data.

7. Evaluating the model.

8. Regularizing the parameters.

9. Mini batching.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/tree/master/
chapter5-learning/src/main/scala/com/packt/
scalada/learning/LinearRegressionWine.scala.

http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/LinearRegressionWine.scala
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"Step zero" of this process is the creation of SparkConfig and the SparkContext. There is 
nothing fancy here:

val conf = new SparkConf().setAppName("linearRegressionWine").
setMaster("local[2]")

val sc = new SparkContext(conf)

Importing the data
We then import the semicolon-separated text file. We map each line into an Array[String] 
by splitting each of them using semicolons. We end up with RDD[Array[String]]:

val rdd = sc.textFile("winequality-red.csv").map(line => line.split(";"))

Converting each instance into a LabeledPoint
As we discussed earlier, supervised learning requires training data to be provided. We are also 
are required to test the model that we create for its accuracy against another set of data—the 
test data. If we have two different datasets for this, we can import them separately and mark 
them as a training set and a test set. In our example, we'll use a single dataset and split it into 
training and test sets.

Each of our training samples has the following format: the last field is the quality of the  
wine, a rating from 1 to 10, and the first 11 fields are the properties of the wine. So, from our 
perspective, the quality of the wine is the y variable (the output) and the rest of them are x 
variables (input). Now, let's represent this in a format that Spark understands—a LabeledPoint. 
A LabeledPoint is a simple wrapper around the input features (our x variables) and our pre-
predicted value (y variable) for these x input values:

val dataPoints=rdd.map(row=>new LabeledPoint(row.last.toDouble,Vectors.
dense(row.take(row.length-1).map(str=>str.toDouble))))

The first parameter to the constructor of the LabeledPoint is the label (y variable), and the 
second parameter is a vector of input variables.
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Preparing the training and test data
As we discussed earlier, we can have two different independent datasets for training and 
testing. However, it is a common practice to split the dataset into training and test datasets.  
In this recipe, we will be splitting the dataset into training and test sets in the ratio of 80:20, 
with each of the elements being selected randomly. This random shuffling of data is one of 
the prerequisites for better performance of the SGD too:

val dataSplit = dataPoints.randomSplit(Array(0.8, 0.2))

val trainingSet = dataSplit(0)

val testSet = dataSplit(1)

Scaling the features
Running a quick summary statistics reveals that our features aren't in the same range:

val featureVector = rdd.map(row => Vectors.dense(row.take(row.length-1).
map(str => str.toDouble)))

print(s"Max : ${stats.max}, Min : ${stats.min}, and Mean : ${stats.mean} 
and Variance : ${stats.variance}")

println ("Min "+ stats.min)

println ("Max "+ stats.max)

Here is the output:

Min [4.6,0.12,0.0,0.9,0.012,1.0,6.0,0.99007,2.74,0.33,8.4]

Max [15.9,1.58,1.0,15.5,0.611,72.0,289.0,1.00369,4.01,2.0,14.9]

Variance : [3.031416388997815,0.0320623776515516,0.0379
4748313440582,1.987897132985963,0.002215142653300991,10
9.41488383305895,1082.1023725325845,3.56202945332629E-
6,0.02383518054541292,0.02873261612976197,1.135647395000472]

It is always recommended that the input variables have a mean of 0. This is easily achieved 
with the help of the StandardScaler built into the Spark ML library itself. The one thing that 
we have to watch out for here is that we have to scale the training and the test sets uniformly. 
The way we do it is by creating a scaler for trainingSplit and using the same scaler to scale the 
test set. Another side note is that feature scaling helps with faster convergence in SGD:

val scaler = new StandardScaler(withMean = true, withStd = true).
fit(trainingSet.map(dp => dp.features))

val scaledTrainingSet = trainingSet.map(dp => new LabeledPoint(dp.label, 
scaler.transform(dp.features))).cache()

val scaledTestSet = testSet.map(dp => new LabeledPoint(dp.label, scaler.
transform(dp.features))).cache()
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Training the model
The next step is to use our training data to create a model. This just involves creating an 
instance of LinearRegressionWithSGD and passing in a few parameters: one for the 
LinearRegression algorithm and two for the SGD. The SGD parameters can be accessed 
through the use of the optimizer attribute inside LinearRegressionWithSGD:

 f setIntercept: While predicting, we are more interested in the slope. This setting 
will force the algorithm to find the intercept too.

 f optimizer.setNumIterations: This determines the number of iterations that 
our algorithm needs to go through on the training set before finalizing the hypothesis. 
An optimal number would be 10^6 divided by the number of instances in your 
dataset. In our case, we'll set it to 1000.

 f setStepSize: This tells the gradient descent algorithm while it tries to reduce 
the parameters how big a step it needs to take during every iteration. Setting this 
parameter is really tricky because we would like the SGD to take bigger steps in the 
beginning and smaller steps towards the convergence. Setting a fixed small number 
would slow down the algorithm, and setting a fixed bigger number would not give us 
a function that is a reasonable minimum. The way Spark handles our setStepSize 
input parameter is as follows: it divides the input parameter by a root of the iteration 
number. So initially, our step size is huge, and as we go further down, it becomes 
smaller and smaller. The default step size parameter is 1.
val regression=new LinearRegressionWithSGD().setIntercept(true)

regression.optimizer.setNumIterations(1000).setStepSize(0.1)

//Let's create a model out of our training examples.

val model=regression.run(scaledTrainingSet)

Predicting against test data
This step is just a one-liner. We use the resulting model to predict the output (y) based on the 
features of the test set:

val predictions:RDD[Double]=model.predict(scaledTestSet.map(point=>point.
features))

Evaluating the model
Let's evaluate our model against one of the most popular regression evaluation metrics—
mean squared error. Let's get the actual values that our test data has (the y variable 
prepared manually) and then compare it with the predictions from our model:

val actuals:RDD[Double]=scaledTestSet.map(_.label)
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Mean squared error

The mean squared error is given by this formula:

So, we take the difference between the actual and the predicted values (errors), square them, 
and calculate the sum of them all. We then divide this sum by the number of values, thereby 
calculating the mean:

val predictsAndActuals: RDD[(Double, Double)] = predictions.zip(actuals)

val sumSquaredErrors=predictsAndActuals.map{case (pred,act)=>

  println (s"act, pred and difference $act, $pred ${act-pred}")

  math.pow(act-pred,2)

}.sum()

val meanSquaredError = sumSquaredErrors / scaledTestSet.count

println(s"SSE is $sumSquaredErrors")

println(s"MSE is $meanSquaredError")

Here is the output:

SSE is 162.21647197365706

MSE is 0.49607483783992984

In our example, we selected all the features that are present in our dataset. Later, we'll take 
a look at dimensionality reduction, which helps us reduce the number of features while still 
maintaining the variance of the dataset at a reasonably higher level.

Regularizing the parameters
Before we see what regularization is, let's briefly see what overfitting is. A model is said to be 
overfit (or having high variance) when it memorizes the training set. The result of this is that 
the algorithm fails to generalize and therefore performs badly with unseen datasets. One way 
to solve the problem of overfitting is to manually select the important features that will be 
used to create the model, but for a large-dimensional dataset, it is hard to decide which ones 
to keep and which ones to throw away.

www.allitebooks.com

http://www.allitebooks.org
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The other popular option is to retain all the features but reduce the magnitudes of the feature 
weights. Thus, even with a model that is complex (with higher degree polynomials), if the 
feature weights are really small, the resulting model would be simple. In other words, given 
two equally (or almost equally) performing models, with one model being complex (with  
higher degree polynomial) and the other model being simple, regularization chooses the 
simple model. The reasoning behind this is that models with simple parameters have a  
higher probability of predicting unseen data (also known as generalization).

The Spark MLlib comes with implementations for the most common L1 and L2 regularizations. 
As a side note, LinearRegressionWithSGD, by default, uses a SimpleUpdater, which 
does not regularize the parameters. Interestingly, Spark has implementations of regression 
algorithms that are based on top of the L1 and L2 updaters; they are called the Lasso (that 
uses the L1 updater) and Ridge (that uses the L2 updater by default).

While the L1 regularizer offers some feature selection when the dataset that we have is 
sparse (or if the dataset's rows are smaller than the feature itself), most of the time, it is 
recommended is to use the L2 regularizer. The new Pipeline API also has out-of-the-box 
support for ElasticNet regularization, which uses both the L1 and L2 regularizations internally. 
Now, let's go over the code:

def algorithm(algo: String, iterations: Int, stepSize: Int) = algo  
match {
    case "linear" => {
      val algo = new LinearRegressionWithSGD()
algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize)
      algo
    }
    case "lasso" => {
      val algo = new LassoWithSGD()
algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize)
      algo
    }
    case "ridge" => {
      val algo = new RidgeRegressionWithSGD()
algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize)
      algo
    }
  }
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As discussed earlier, LassoWithSGD wraps an L1 updater and RidgeRegessionWithSGD 
wraps an L2 updater. From a code perspective, all that we need to do is change the name 
of the class. The optimizer (gradient descent) now accepts a regularization parameter that 
penalizes larger parameters for the features. The default value of the regularization parameter 
is 0.01 in Spark. A smaller regularization parameter would result in underfitting, and a large 
parameter would result in overfitting.

The following output shows that regularizing the parameters has reduced our error values:

************** Printing metrics for Linear Regression with SGD 
*****************

SSE is 132.39124792957116

MSE is 0.4124337941731189

************** Printing metrics for Lasso Regression with SGD 
*****************

SSE is 132.3943810653321

MSE is 0.4124435547206608

************** Printing metrics for Ridge Regression with SGD 
*****************

SSE is 132.44011034123344

MSE is 0.4125860135240917

Mini batching
Instead of going through our dataset one by one in the case of SGD, or seeing the entire 
dataset for every iteration (in the case of batch gradient descent) while updating the 
parameter vector, we can settle for something in the middle. With the mini batch fraction 
parameter, for every single iteration, the SGD considers that fraction of the dataset to  
process for the parameter update. Let's set the batch size to 5 percent:

algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize).setRegParam(0.001).setMiniBatchFraction(0.05)

The results are as follows:

************** Printing metrics for Linear Regression with SGD 
*****************

SSE is 112.96958667767147

MSE is 0.3574986920179477

SST is 183.05305027649794

Residual sum of squares is 0.38285875866568087

************** Printing metrics for Lasso Regression with SGD 
*****************



Learning from Data

136

SSE is 112.95392101963424

MSE is 0.35744911715074124

SST is 183.05305027649794

Residual sum of squares is 0.3829443385454675

************** Printing metrics for Ridge Regression with SGD 
*****************

SSE is 112.9218089913291

MSE is 0.3573474968080035

SST is 183.05305027649794

Residual sum of squares is 0.3831197632557175

The advantage that we get from using mini batches is that this obviously gives better 
performance than plain SGD without batches. This is because with plain SGD, for every 
iteration, only one example is considered to update the parameters. However, with mini 
batches, we consider a batch of examples. That said, the improvement in the mean  
squared error from the previous run is not the result of using batches, but just a feature  
of SGD—roaming around the minima and not converging at a fixed point.

Binary classification using 
LogisticRegression and SVM

Unlike linear regression, wherein we predicted continuous values for the outcome (the y 
variable), logistic regression and the Support Vector Machine (SVM) are used to predict  
just one out of the n possibilities for the outcome (the y variable). If the outcome is one of  
two possibilities, then the classification is called a binary classification.

Logistic regression, when used for binary classification, looks at each data point and estimates 
the probability of that data point falling under the positive case. If the probability is less than a 
threshold, then the outcome is negative (or 0); otherwise, the outcome is positive (or 1).

As with any other supervised learning techniques, we will be providing training examples  
for logistic regression. We then add a bit of code for feature extraction and let the algorithm 
create a model that encapsulates the probability of each of the features belonging to one of 
the binary outcomes.
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What SVM tries to do is map all of the training data as points in the feature space.  
The algorithm comes up with a hyperplane that separates the positive and negative  
training examples in such a way that the distance (margin band) between them is  
maximum. This is better illustrated with a diagram:

When a new and unseen data point comes up for prediction, the algorithm looks at that point 
and tries to find the closest point to the input data point. The label corresponding to that point 
will be predicted as the label for the input point as well.

How to do it...
Both the implementations of LogisticRegression and SVM in Spark use L2 regularization by 
default, but we are free to switch to L1 by setting the updater explicitly.

In this recipe, we'll classify a spam/ham dataset (https://archive.ics.uci.edu/ml/
datasets/SMS+Spam+Collection) against three variants of classification algorithms:

 f Logistic regression with SGD as the optimization algorithm

 f Logistic regression with BFGS as the optimization algorithm

 f Support vector machine with SGD as the optimization algorithm

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
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The BFGS optimization algorithm provides the benefits of converging to the minimum  
faster than SGD. Also, for BFGS, we need not break our heads coming up with an optimal 
learning rate.

Let's summarize the steps:

1. Importing the data.
2. Tokenizing the data and converting it into LabeledPoints.
3. Factoring the Inverse Document Frequency (IDF).
4. Preparing the training and test data.
5. Constructing the algorithm.
6. Training the model and predicting the test data.
7. Evaluating the model.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter5-learning/src/main/scala/com/packt/
scalada/learning/BinaryClassificationSpam.scala.

Importing the data
As usual, our input data is in the form of a text file—SMSSpamCollection. The data file looks 
like this:

As we can see, the label and the data are separated by a tab. So, while reading each line, 
we split the label and the content, and then populate a simple case class named Document. 
This Document class is just a temporary placeholder. In the next step, we'll convert these 
documents into LabeledPoints:

//Frankly, we could make this a tuple but this looks neat
  case class Document(label: String, content: String)

  val docs = sc.textFile("SMSSpamCollection").map(line => {
    val words = line.split("\t")
    Document(words.head.trim(), words.tail.mkString(" "))
  })

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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Tokenizing the data and converting it into LabeledPoints
For the tokenization, instead of relying on the tokenizer provided inside Spark, we'll see how 
to plug in two external NLP libraries—the Stanford CoreNLP and Scala NLP's Epic libraries. 
These are the two most popular NLP libraries: one from the Java world and the other from 
Scala. However, one thing that we ought to watch out for while using external libraries is that 
the instantiation of these APIs, and therefore the creation of heavyweight objects required for 
the use of these APIs (such as a tokenizer), should be done at the partition level. If we do it at 
the level of a closure, such as a map over RDD, we'll end up creating new instance of the API 
object for every single instance of the data.

In the case of Epic, we just split the documents into sentences and then tokenize them into 
words. We also add two more restrictions. Only those tokens that contain letters or digits will 
be considered, and the tokens should be of at least two characters:

import epic.preprocess.TreebankTokenizer
import epic.preprocess.MLSentenceSegmenter
//Use Scala NLP - Epic
      val labeledPointsUsingEpicRdd: RDD[LabeledPoint] =  
docs.mapPartitions { docIter =>

        val segmenter = MLSentenceSegmenter.bundled().get
        val tokenizer = new TreebankTokenizer()
        val hashingTf = new HashingTF(5000)

        docIter.map { doc =>
          val sentences = segmenter(doc.content)
          val tokens = sentences.flatMap(sentence =>  
tokenizer(sentence))

          //consider only features that are letters or digits and  
cut off all words that are less than 2 characters
          val filteredTokens=tokens.toList.filter(token =>  
token.forall(_.isLetterOrDigit)).filter(_.length() > 1)

          new LabeledPoint(if (doc.label=="ham") 0 else 1,  
hashingTf.transform(filteredTokens))
        }
      }.cache()

MLSentenceSegmenter splits the paragraph into sentences. The sentences are then split 
into terms (or words) using the tokenizer. HashingTF creates a map of terms with their 
frequency of occurrence. Finally, to construct a LabeledPoint for each document, we convert 
these terms into a term frequency vector for that document using the transform function  
of HashingTF. Also, we restrict the maximum number of interested terms to 5,000 by way  
of setting the numFeatures in HashingTF.
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With Stanford CoreNLP, the process is a little more involved, in the sense that we reduce the 
tokens to lemmas (https://en.wikipedia.org/wiki/Lemmatisation). In order to do 
this, we create an NLP pipeline that splits sentences, tokenizes, and finally reduces the tokens 
to lemmas:

def corePipeline(): StanfordCoreNLP = {
        val props = new Properties()
        props.put("annotators", "tokenize, ssplit, pos, lemma")
        new StanfordCoreNLP(props)
      }

      def lemmatize(nlp: StanfordCoreNLP, content: String):  
List[String] = {
        //We are required to prepare the text as 'annotatable'  
before we annotate :-)
        val document = new Annotation(content)
        //Annotate
        nlp.annotate(document)
        //Extract all sentences
        val sentences =  
document.get(classOf[SentencesAnnotation]).asScala

        //Extract lemmas from sentences
        val lemmas = sentences.flatMap { sentence =>
          val tokens =  
sentence.get(classOf[TokensAnnotation]).asScala
          tokens.map(token =>  
token.getString(classOf[LemmaAnnotation]))

        }
        //Only lemmas with letters or digits will be considered.  
Also consider only those words which has a length of at least 2
        lemmas.toList.filter(lemma =>  
lemma.forall(_.isLetterOrDigit)).filter(_.length() > 1)
      }

      val labeledPointsUsingStanfordNLPRdd: RDD[LabeledPoint] =  
docs.mapPartitions { docIter =>
        val corenlp = corePipeline()
        val stopwords = Source.fromFile("stopwords.txt").getLines()
        val hashingTf = new HashingTF(5000)

        docIter.map { doc =>
          val lemmas = lemmatize(corenlp, doc.content)
          //remove all the stopwords from the lemma list
          lemmas.filterNot(lemma => stopwords.contains(lemma))

https://en.wikipedia.org/wiki/Lemmatisation
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          //Generates a term frequency vector from the features
          val features = hashingTf.transform(lemmas)

          //example : List(until, jurong, point, crazy, available,  
only, in, bugi, great, world, la, buffet, Cine, there, get, amore,  
wat)
          new LabeledPoint(
            if (doc.label.equals("ham")) 0 else 1,
            features)

        }
      }.cache()

Factoring the inverse document frequency
With HashingTF, we have a map of terms along with their frequency of occurrence in the 
documents. Now, the problem with taking this metric is that common words such as "the" 
and "a" get higher rankings compared to rare words. The inverse document frequency (IDF) 
calculates the occurrences of a word in all the documents and gives higher weight to a term 
that is uncommon. We'll now factor in the inverse document frequency so that we have 
the TF-IDF score (https://en.wikipedia.org/wiki/Tf–idf) for each term. This is 
easily achievable in Spark with the availability of org.apache.spark.mllib.feature.
IDFModel. We extract all term frequencies from LabeledPoints and pass them to the 
transform function IDFModel to generate the TF-IDF:

val labeledPointsUsingStanfordNLPRdd=getLabeledPoints(docs,  
"STANFORD")
val lpTfIdf=withIdf(labeledPointsUsingStanfordNLPRdd).cache()

def withIdf(lPoints: RDD[LabeledPoint]): RDD[LabeledPoint] = {
    val hashedFeatures = labeledPointsWithTf.map(lp =>  
lp.features)
    val idf: IDF = new IDF()
    val idfModel: IDFModel = idf.fit(hashedFeatures)

    val tfIdf: RDD[Vector] = idfModel.transform(hashedFeatures)

    val lpTfIdf= labeledPointsWithTf.zip(tfIdf).map {
      case (originalLPoint, tfIdfVector) => {
        new LabeledPoint(originalLPoint.label, tfIdfVector)
      }
    }

    lpTfIdf
  }

  val lpTfIdf=withIdf(labeledPointsWithTf).cache()

https://en.wikipedia.org/wiki/Tf-idf
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Prepare the training and test data
Our test data has a skewed distribution of spam and ham data. We just have to make sure 
that when we split the data into training and test data into 80% and 20%, we first split the 
training and test data into two subsets and then split it into the 80:20 ratio. At the end of  
this, the training data and test data will have a ratio of 4:1 spam and ham samples.

The spam and ham counts in our dataset are 747 and 4827, respectively:

  //Split dataset
  val spamPoints = lpTfIdf.filter(point => point.label ==  
1).randomSplit(Array(0.8, 0.2))
  val hamPoints = lpTfIdf.filter(point => point.label ==  
0).randomSplit(Array(0.8, 0.2))

  println ("Spam  
count:"+(spamPoints(0).count)+"::"+(spamPoints(1).count))
  println ("Ham count:"+(hamPoints(0).count)+"::"+(hamPoints(1).
count))

  val trainingSpamSplit = spamPoints(0)
  val testSpamSplit = spamPoints(1)

  val trainingHamSplit = hamPoints(0)
  val testHamSplit = hamPoints(1)

  val trainingSplit = trainingSpamSplit ++ trainingHamSplit
  val testSplit = testSpamSplit ++ testHamSplit

Constructing the algorithm
Now that we have our training and test sets, the next obvious step is to train a model out of 
these examples. Let's create instances of the three variants of the algorithms that we would 
like to experiment with:

  val logisticWithSGD = getAlgorithm("logsgd", 100, 1, 0.001)
  val logisticWithBfgs = getAlgorithm("logbfgs", 100, Double.Nan,  
0.001)
  val svmWithSGD = getAlgorithm("svm", 100, 1, 0.001)

  def getAlgorithm(algo: String, iterations: Int, stepSize:  
Double, regParam: Double) = algo match {
    case "logsgd" => {
      val algo = new LogisticRegressionWithSGD()
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algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize).setRegParam(regParam)
      algo
    }
    case "logbfgs" => {
      val algo = new LogisticRegressionWithLBFGS()
algo.setIntercept(true).optimizer.setNumIterations(iterations).
setRegParam(regParam)
      algo
    }
    case "svm" => {
      val algo = new SVMWithSGD()
algo.setIntercept(true).optimizer.setNumIterations(iterations).
setStepSize(stepSize).setRegParam(regParam)
      algo
    }
  }

We can notice that the stepSize parameter isn't set for logistic regression with BFGS.

Training the model and predicting the test data
Like linear regression, training and predicting the labels for the test set is just a matter of 
calling the run and predict methods of the classification algorithm.

Soon after the prediction is done, the next logical step is to evaluate the model.  
In order to generate metrics for this, we extract the predicted and the actual labels.  
Our runClassification function trains the model using the training data and makes 
predictions against the test data. It then zips the predicted and the actual outcomes  
into a value called predictsAndActuals. This value is returned from the function.

The runClassification accepts a GeneralizedLinearAlgorithm as the parameter, 
which is the parent of LinearRegressionWithSGD, LogisticRegressionWithSGD,  
and SVMWithSGD:

val  
logisticWithSGDPredictsActuals=runClassification(logisticWithSGD,  
trainingSplit, testSplit)
val  
logisticWithBfgsPredictsActuals=runClassification(logisticWithBfgs, 
trainingSplit, testSplit)
val svmWithSGDPredictsActuals=runClassification(svmWithSGD,  
trainingSplit, testSplit)



Learning from Data

144

 def runClassification(algorithm: GeneralizedLinearAlgorithm[_ <:  
GeneralizedLinearModel], trainingData:RDD[LabeledPoint],  
testData:RDD[LabeledPoint]): RDD[(Double, Double)] = {
    val model = algorithm.run(trainingData)
    val predicted = model.predict(testData.map(point =>  
point.features))
    val actuals = testData.map(point => point.label)
    val predictsAndActuals: RDD[(Double, Double)] =  
predicted.zip(actuals)
    predictsAndActuals
  }

Evaluating the model
For generating the metrics, Spark has some inbuilt APIs. The two most common metrics used 
to evaluate a classification model are the area under curve and the confusion matrix. The org.
apache.spark.mllib.evaluation.BinaryClassificationMetrics gives us the area 
under the curve, and org.apache.spark.mllib.evaluation.MulticlassMetrics gives 
us the confusion matrix. We also calculate the simple accuracy measure manually using the 
values of predicated and actuals. The accuracy is simply the result of dividing the correctly 
classified count of the test dataset by the total count of the test dataset. Refer to https://
en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification 
for more details:

 def calculateMetrics(predictsAndActuals: RDD[(Double, Double)], 
algorithm: String) {

    val accuracy = 1.0*predictsAndActuals.filter(predActs => predActs._1 
== predActs._2).count() / predictsAndActuals.count()

    val binMetrics = new BinaryClassificationMetrics(predictsAndActuals)

    println(s"************** Printing metrics for $algorithm 
***************")

    println(s"Area under ROC ${binMetrics.areaUnderROC}")

    //println(s"Accuracy $accuracy")

    val metrics = new MulticlassMetrics(predictsAndActuals)

    val f1=metrics.fMeasure

    println(s"F1 $f1")

    println(s"Precision : ${metrics.precision}")

    println(s"Confusion Matrix \n${metrics.confusionMatrix}")

    println(s"************** ending metrics for $algorithm 
*****************")

  }

https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification
https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification
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As we can see from the output, LogisticRegressionWithSGD and SVMWithSGD have a 
slightly bigger area under curve than LogisticRegressionWithBFGS, which means that 
the two models perform a tad bit better.

This is a sample output (your output could vary):

************** Printing metrics for Logistic Regression with SGD 
***************

Area under ROC 0.9208860759493671

Accuracy 0.9769585253456221

Confusion Matrix

927.0  0.0

25.0   133.0

************** ending metrics for Logistic Regression with SGD 
*****************

************** Printing metrics for SVM with SGD ***************

Area under ROC 0.9318656156156157

Precision : 0.9784845650140318

Confusion Matrix

921.0  4.0

19.0   125.0

************** ending metrics for SVM with SGD *****************

************** Printing metrics for Logistic Regression with BFGS 
***************

Area under ROC 0.8790559620074445

Accuracy 0.9596136962247586

Confusion Matrix

971.0  9.0

37.0   122.0

************** ending metrics for Logistic Regression with BFGS *********
*************************
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Binary classification using 
LogisticRegression with Pipeline API

Earlier, with the spam example on binary classification, we saw how we prepared the data, 
separated it into training and test data, trained the model, and evaluated it against test data 
before we finally arrived at the metrics. This series of steps can be abstracted in a simplified 
manner using Spark's Pipeline API.

In this recipe, we'll take a look at how to use the Pipeline API to solve the same classification 
problem. Imagine the pipeline to be a factory assembly line where things happen one after 
another. In our case, we'll pass our raw unprocessed data through various processors before 
we finally feed the data into the classifier.

How to do it...
In this recipe, we'll classify the same spam/ham dataset (https://archive.ics.uci.
edu/ml/datasets/SMS+Spam+Collection) first using the plain Pipeline, and then  
using a cross-validator to select the best model for us given a grid of parameters.

Let's summarize the steps:

1. Importing and splitting data as test and training sets.

2. Constructing the participants of the Pipeline.

3. Preparing a pipeline and training a model.

4. Predicting against test data.

5. Evaluating the model without cross-validation.

6. Constructing parameters for cross-validation.

7. Constructing a cross-validator and fitting the best model.

8. Evaluating a model with cross-validation.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter5-learning/src/main/scala/com/packt/scalada/
learning/BinaryClassificationSpamPipeline.scala.

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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Importing and splitting data as test and training sets
This process is a little different from the previous recipe, in the sense that we don't construct 
LabeledPoint now. Instead of an RDD of LabeledPoint, the pipeline requires a DataFrame. So, 
we convert each line of text into a Document object (with the label and the content) and then 
convert RDD[Document] into a DataFrame by calling the toDF() function on the RDD:

case class Document(label: Double, content: String)

  val docs = sc.textFile("SMSSpamCollection").map(line => {

    val words = line.split("\t")

    val label=if (words.head.trim()=="spam") 1.0 else 0.0

    Document(label, words.tail.mkString(" "))

  })

  //Split dataset

  val spamPoints = docs.filter(doc => doc.label==1.0).
randomSplit(Array(0.8, 0.2))

  val hamPoints = docs.filter(doc => doc.label==0.0).
randomSplit(Array(0.8, 0.2))

  println("Spam count:" + (spamPoints(0).count) + "::" + (spamPoints(1).
count))

  println("Ham count:" + (hamPoints(0).count) + "::" + (hamPoints(1).
count))

  val trainingSpamSplit = spamPoints(0)

  val testSpamSplit = spamPoints(1)

  val trainingHamSplit = hamPoints(0)

  val testHamSplit = hamPoints(1)

  val trainingSplit = trainingSpamSplit ++ trainingHamSplit

  val testSplit = testSpamSplit ++ testHamSplit

  import sqlContext.implicits._

  val trainingDFrame=trainingSplit.toDF()

  val testDFrame=testSplit.toDF()
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Construct the participants of the Pipeline
In order to arrange the pipeline, we need to construct its participants. There are three  
unique participants (or pipeline stages) of this pipeline, and we have to line them up  
in the right order:

 f Tokenizer: This disintegrates the sentence into tokens

 f HashingTF: This creates a term frequency vector from the terms

 f IDF: This creates an inverse document frequency vector from the terms

 f VectorAssembler: This combines the TF-IDF vector and the label vector to form a 
single vector, which will form the input features for the classification algorithm

 f LogisticRegression: This is the classification algorithm itself

Let's construct these first:

val tokenizer=new Tokenizer().setInputCol("content").
setOutputCol("tokens")

  val hashingTf=new HashingTF().setInputCol(tokenizer.getOutputCol).
setOutputCol("tf")

  val idf = new IDF().setInputCol(hashingTf.getOutputCol).
setOutputCol("tfidf")

  val assembler = new VectorAssembler().setInputCols(Array("tfidf", 
"label")).setOutputCol("features")

val logisticRegression=new LogisticRegression().
setFeaturesCol("features").setLabelCol("label").setMaxIter(10)

When RDD[Document] is run against the first pipeline stage, that is, Tokenizer, the 
"content" field of the Document is taken as the input column, and the output of the 
tokenizer is a bag of words that is captured in the "tokens" output column. HashingTF 
takes the "tokens" and converts them into a TF vector. Notice that the input column of 
HashingTF is the same as the output column from the previous stage. IDF takes the tf 
vector and returns a tf-idf vector. VectorAssembler merges the tf-idf vector and 
the label to form a single vector. This will be used as an input to the classification algorithm. 
Finally, for the LogisticRegression stage, we specify the features column and the label column. 
However, if the input DataFrame has a column named "label" with a Double type and 
"features" of type Vector, there is no need to explicitly mention that. So, in our case, since 
we have "label" as an attribute of the Document case class and the output column of the 
HashingTF is named "features", there is no need for us to specify them explicitly. The 
following code would work just fine:

val logisticRegression=new LogisticRegression().setMaxIter(10)
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Internally, this implementation of LogisticRegression constructs LabeledPoints for each 
instance of the data, and uses some advanced optimization algorithms to derive a model  
from the training data.

At every stage, each of these transformations occurs against the input DataFrame of that 
particular stage, and the transformed DataFrame gets passed along until the final stage.

Preparing a pipeline and training a model
As the next step, we just need to form a pipeline out of the various pipeline stages that we 
constructed in the previous step. We then train a model by calling the pipeline.fit function:

val pipeline=new Pipeline()

pipeline.setStages(Array(tokenizer, hashingTf, logisticRegression))

val model=pipeline.fit(trainingDFrame)

If you are getting java.lang.IllegalArgumentException: 
requirement failed: Column label must be of type 
DoubleType but was actually StringType, it just means 
that your label isn't of the Double type.

Predicting against test data
Using the newly constructed model to predict the data is just a matter of calling the transform 
method of the model. Then, we also extract the actual label and the predicted value to 
calculate the metrics:

  val predictsAndActualsNoCV:RDD[(Double,Double)]=model.
transform(testDFrame).map(r => (r.getAs[Double]("label"), r.getAs[Double]
("prediction"))).cache

Evaluating a model without cross-validation
Cross-validation is a multiple-iteration model validation technique in which our training and 
test sets are split into different partitions. The entire dataset is split into subsets, and for each 
iteration, analysis is done on one subset and validation on a different subset. For this recipe, 
we'll run the algorithm first without cross-validation, and then with cross-validation.
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Firstly, we'll use the same validation metric and method that we used in the previous recipe.  
We will simply calculate the area under the ROC curve, the precision, and the confusion matrix:

def calculateMetrics(predictsAndActuals: RDD[(Double, Double)], 
algorithm: String) {

    val accuracy = 1.0 * predictsAndActuals.filter(predActs => 
predActs._1 == predActs._2).count() / predictsAndActuals.count()

    val binMetrics = new BinaryClassificationMetrics(predictsAndActuals)

    println(s"************** Printing metrics for $algorithm 
***************")

    println(s"Area under ROC ${binMetrics.areaUnderROC}")

    println(s"Accuracy $accuracy")

    val metrics = new MulticlassMetrics(predictsAndActuals)

    println(s"Precision : ${metrics.precision}")

    println(s"Confusion Matrix \n${metrics.confusionMatrix}")

    println(s"************** ending metrics for $algorithm 
*****************")

  }

A sample output of this pipeline without cross-validation is as follows:

************** Printing metrics for Without Cross validation 
***************

Area under ROC 0.9676924738149228

Accuracy 0.9656357388316151

Confusion Matrix

993.0  36.0

4.0    131.0

************** ending metrics for Without Cross validation 
*****************

Constructing parameters for cross-validation
Before we use the cross-validator to choose the best model that fits the data, we would want 
to provide each of the parameters a set of alternate values that the validator can choose from.

The way we provide alternate values is in the form of a parameter grid:

val paramGrid=new ParamGridBuilder()

    .addGrid(hashingTf.numFeatures, Array(1000, 5000, 10000))
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    .addGrid(logisticRegression.regParam, Array(1, 0.1, 0.03, 0.01))

    .build()

So, we say that the number of term frequency vectors that we want HashingTF to generate 
could be one of 1,000, 5,000, and 10,000, and the regularization parameter for logistic 
regression could be one of 1, 0.1, 0.03, and 0.01. Thus, in essence, we are passing a 3 x 4 
matrix as the parameter grid.

Constructing cross-validator and fit the best model
Next, we construct a cross-validator and pass in the following parameters:

 f The parameter grid that we constructed in the previous step.

 f The pipeline that we constructed in step 3.

 f An evaluator for the cross-validator to decide which model is better.

 f The number of folds. Say, if we set the number of folds to 10, the training data would 
be split into 10 blocks. For each iteration (10 iterations), the first block would be 
selected as the cross-validation set, and the other nine would be the training sets:
val crossValidator=new CrossValidator()

    .setEstimator(pipeline)

    .setEvaluator(new BinaryClassificationEvaluator())

    .setEstimatorParamMaps(paramGrid)

    .setNumFolds(10)

We finally let the cross-validator run against the training dataset and derive the best model 
out of it. Contrast the following line with pipeline.fit, where we skipped cross-validation:

val bestModel=crossValidator.fit(trainingDFrame)

Evaluating the model with cross-validation
Now, let's evaluate the model that is generated against the actual test data set (rather than 
the test dataset that the cross-validator uses internally):

  val predictsAndActualsWithCV:RDD[(Double,Double)]=bestModel.
transform(testDFrame).map(r => (r.getAs[Double]("label"), r.getAs[Double]
("prediction"))).cache

 calculateMetrics(predictsAndActualsWithCV, "Cross validation")

A sample output of this pipeline with cross-validation is as follows:

************** Printing metrics for Cross validation ***************

Area under ROC 0.9968220338983051
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Accuracy 0.994579945799458

Confusion Matrix

938.0  6.0

0.0    163.0

************** ending metrics for Cross validation *****************

As we can see, the area under ROC is far better for this model than for any of our previously 
generated models.

Clustering using K-means
Clustering is a class of unsupervised learning algorithms wherein the dataset is partitioned 
into a finite number of clusters in such a way that the points within a cluster are similar to 
each other in some way. This, intuitively, also means that the points of two different clusters 
should be dissimilar.

K-means is one of the popular clustering algorithms, and in this recipe, we'll be looking at how 
Spark implements K-means and how to use the algorithm to cluster a sample dataset. Since 
the number of clusters is a crucial input for the K-means algorithm, we'll also see the most 
common method of arriving at the optimal number of clusters for the data.

How to do it...
Spark provides two initialization modes for cluster center (centroid) initialization: the original 
Lloyd's method (https://en.wikipedia.org/wiki/K-means_clustering), and a 
parallelizable and scalable variant of K-means++ (https://en.wikipedia.org/wiki/K-
means%2B%2B). K-means++ itself is a variant of the original K-means and differs in the way 
in which the initial centroids of the clusters are picked up. We can switch between the original 
and the parallelized K-means++ versions by passing KMeans.RANDOM or KMeans.PARALLEL 
as the initialization mode. Let's first look at the details of the implementation.

KMeans.RANDOM
In the regular K-means (the KMeans.RANDOM initialization mode in the case of Spark), the 
algorithm randomly selects k points (equal to the number of clusters that we expect to see) 
and marks them as cluster centers (centroids). Then it iteratively does the following:

 f It marks all the points as belonging to a cluster based on the distance between a 
point and its nearest centroid.

 f The mean of all the points in a cluster is calculated. This mean is now set as the new 
centroid of that cluster.

 f The rest of the data points are reassigned their clusters based on this new centroid.

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means%2B%2B
https://en.wikipedia.org/wiki/K-means%2B%2B
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Since we generally deal with more than one feature in a dataset, each instance of the data 
and the centroids are vectors. In Spark, we represent them as org.apache.spark.mllib.
linalg.Vector.

KMeans.PARALLEL
Scalable K-means or K-means|| is a variant of K-means++. Let's look at what these variants 
of K-means actually do.

K-means++
Instead of choosing all the centroids randomly, the K-means++ algorithm does the following:

1. It chooses the first centroid randomly (uniform)

2. It calculates the distance squared of each of the rest of the points from the current 
centroid

3. A probability is attached to each of these points based on how far they are. The farther 
the centroid candidate is, the higher is its probability.

4. We choose the second centroid from the distribution that we have in step 3.

5. On the ith iteration, we have 1+i clusters. Find the new centroid by going over the 
entire dataset and forming a distribution out of these points based on how far they 
are from all the precomputed centroids.

These steps are repeated over k-1 iterations until k centroids are selected. K-means++ is 
known for considerably increasing the quality of centroids. However, as we see, in order to 
select the initial set of centroids, the algorithm goes through the entire dataset k times.  
Unfortunately, with a large dataset, this becomes a problem.

K-means||
With K-means parallel (K-means||), for each iteration, instead of choosing a single point after 
calculating the probability distribution of each of the points in the dataset, a lot more points 
are chosen. In the case of Spark, the number of samples that are chosen per step is 2 * k. 
Once these initial centroid candidates are selected, a K-means++ is run against these data 
points (instead of going through the entire dataset).

Let's now look at the most important parameters that are passed to the algorithm.

Max iterations
There are worst-case scenarios for both random and parallel. In the case of random, since 
the points in K-means are chosen at random, there is a distinct possibility that the model 
identifies two centroids from the same cluster. Say with k=3, there is a possibility of two 
clusters becoming a part of a single cluster and a single cluster being separated into two.  
A similar case applies to K-means++ with a bad choice of the initial set of centroids.
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The following figure proves that though we can see three clusters, a bad choice of centroids 
separates a single cluster into two and makes two clusters one:

To solve this problem, we run the same algorithm with a different set of randomly initialized 
centroids. This is determined by the maxIterations parameter. The distance between the 
centroid and the points in the cluster is calculated (a mean squared difference in distances). 
This will be the cost of the model. The iteration with the least cost is chosen and returned.  
The metric that Spark uses to calculate the distance is the Euclidean distance.

Epsilon
How does the K-means algorithm know when to stop? There will always be a small distance that 
the centroid can move if the clusters aren't separated by a huge margin. If all the centroids have 
moved by a distance less than the epsilon parameter, it's the cue to the algorithm that it has 
converged. In other words, the epsilon is nothing but a convergence threshold.

Now that we have the parameters that need to be passed to the K-means cluster out of the 
way, let's look at the steps needed to run this algorithm to find the clusters:

1. Importing the data and converting it into a vector.

2. Feature scaling the data.

3. Deriving the number of clusters.

4. Constructing the model.

5. Evaluating the model.
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The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter5-learning/src/main/scala/com/packt/
scalada/learning/KMeansClusteringIris.scala.

Importing the data and converting it into a vector
As usual, our input data is in the form of a text file—iris.data. Since we are clustering,  
we can ignore the label (species) in the data. The data file looks like this:

 val data = sc.textFile("iris.data").map(line => {

    val dataArray = line.split(",").take(4)

    Vectors.dense(dataArray.map(_.toDouble))

  })

Feature scaling the data
When we look at the summary statistics of the data, the data looks alright, but it is always 
advisable perform do feature scaling before running a K-means:

val stats = Statistics.colStats(data)

println("Statistics before scaling")

print(s"Max : ${stats.max}, Min : ${stats.min}, and Mean : ${stats.mean} 
and Variance : ${stats.variance}")

Here is the statistics before scaling:

Max : [7.9,4.4,6.9,2.5]

Min : [4.3,2.0,1.0,0.1]

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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Mean : [5.843333333333332,3.0540000000000003,3.7586666666666666,1.1986666
666666668]

Variance : [0.685693512304251,0.18800402684563744,3.113179418344516,0.582
4143176733783]

We run the data using StandardScaler and cache the resulting RDD. Since K-means  
goes through the dataset multiple times, caching the data is strongly recommended to  
avoid recomputation:

//Scale data

  val scaler = new StandardScaler(withMean = true, withStd = true).
fit(data)

  val scaledData = scaler.transform(data).cache()

The following is the statistics after scaling:

Max : [2.483698580557868,3.1042842692548858,1.7803768862629268,1.70518904
10833728]

Min : [-1.8637802962695154,-2.4308436996988485,-1.5634973589465175,-
1.4396268133736672], and Mean : [1.6653345369377348E-15,-
7.216449660063518E-16,-1.1102230246251565E-16,-3.3306690738754696E-16]

Variance : [0.9999999999999997,1.0000000000000007,1.0000000000000013,0.99
99999999999997]

Deriving the number of clusters
Many times, we already know the number of clusters that are there in the dataset. But at 
times, if we aren't sure, the general method is to plot the number of clusters against the 
cost and watch out for the point from which the cost stops falling drastically. If the data is 
large, running the entire set of data just to obtain the number of clusters is computationally 
expensive. Instead, we can take a random sample and come up with the k value. In this 
example, we have taken a random 20% sample, but the sample percentage depends  
entirely on your dataset:

 //Take a sample to come up with the number of clusters
val sampleData = scaledData.sample(false, 0.2).cache()
  //Decide number of clusters
  val clusterCost = (1 to 7).map { noOfClusters =>

    val kmeans = new KMeans()
      .setK(noOfClusters)
      .setMaxIterations(5)
      .setInitializationMode(KMeans.K_MEANS_PARALLEL) //KMeans||

    val model = kmeans.run(sampleData)
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    (noOfClusters, model.computeCost(sampleData))

  }

  println ("Cluster cost on sample data")
  clusterCost.foreach(println)

When we plot this, we can see that after cluster 3, the cost does not reduce drastically.  
This point is called an Elbow bend, as shown here:
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Constructing the model
Now that we have figured out the number of clusters, let's run the algorithm against the entire 
dataset:

 //Let's do the real run for 3 clusters

  val kmeans = new KMeans()

    .setK(3)

    .setMaxIterations(5)

    .setInitializationMode(KMeans.K_MEANS_PARALLEL) //KMeans||

  val model = kmeans.run(scaledData)

Evaluating the model
The last step is to evaluate the model by printing the cost of this model. The cost is nothing 
but the square of the distance between all points in a cluster to its centroid. Therefore, a good 
model must have the least cost:

//Cost

  println("Total cost " + model.computeCost(scaledData))

  printClusterCenters(model)

  def printClusterCenters(model:KMeansModel) {

    //Cluster centers

    val clusterCenters: Array[Vector] = model.clusterCenters

    println("Cluster centers")

    clusterCenters.foreach(println)

 }

Here is the output:

Total cost 34.98320617204239

Cluster centers

[-0.011357501034038157,-
0.8699705596441868,0.3756258413625911,0.3106129627676019]

[1.1635361185919766,0.1532643388373168,0.999796072473665,1.02619470887105
72]

[-1.0111913832028123,0.839494408624649,-1.3005214861029282,-
1.250937862106244]
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Feature reduction using principal 
component analysis

Quoting the curse of dimensionality (https://en.wikipedia.org/wiki/Curse_of_
dimensionality), large number of features are computationally expensive. One way of 
reducing the number of features is by manually choosing and ignoring certain features. 
However, identification of the same features (represented differently) or highly correlated 
features is laborious when we have a huge number of features. Dimensionality reduction  
is aimed at reducing the number of features in the data while still retaining its variability.

Say, we have a dataset of housing prices and there are two features that represent the area of 
the house in feet and meters; we can always drop one of these two. Dimensionality reduction 
is very useful when dealing with text where the number of features easily runs into a few 
thousands.

In this recipe, we'll be looking into Principal Component Analysis (PCA) as a means to reduce 
the dimensions of data that is meant for both supervised and unsupervised learning.

How to do it...
As we have seen earlier, the only difference between the data for supervised and unsupervised 
learning is that the training and the test data for supervised learning have labels attached to 
them. This brings in a little complication, considering that we are interested only in reducing  
the dimensions of the feature vector and would like to retain the labels as they are.

Dimensionality reduction of data for supervised learning
The only thing that we have to watch out for while reducing the dimensions of data to be used 
as training data for supervised learning is that PCA must be applied on training data only. The 
test set must not be used to extract the components. Using test data for PCA would bleed the 
information in the test data into the components. This may result in higher accuracy numbers 
while testing, but it could perform poorly on unseen production data.

The least number of components that can be chosen while maintaining a 
sufficiently high variance is facilitated by the singular value vector available in the 
SingularValueDecomposion object. The singular values, available by calling the svd.s, 
show the amount of variance captured by the components. The first component will be the  
most important (by contributing the highest variance), and the importance will slowly diminish.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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In order to come up with the probable number of dimensions, we can watch out for the 
difference and the extent to which the singular values diminish. Alternatively, we can just  
use simple heuristics and come up with a reasonable number if the features extend to a  
few thousand:

val dimensionDecidingSample=new RowMatrix((trainingSplit.
randomSplit(Array(0.8,0.2))(1)).map(lp=>lp.features))

  val svd = dimensionDecidingSample.computeSVD(500, computeU = false)

   val sum = svd.s.toArray.sum

  //Calculate the number of principal components which retains a variance 
of 95%

  val featureRange=(0 to 500)

  val placeholder=svd.s.toArray.zip(featureRange).foldLeft(0.0) {

    case (cum, (curr, component)) =>

      val percent = (cum + curr) / sum

      println(s"Component and percent ${component + 1} :: $percent :::: 
Singular value is : $curr")

      cum + curr

  }

The steps that are involved are as follows:

1. Mean-normalizing the training data.

2. Extracting the principal components.

3. Preparing the labeled data.

4. Preparing the test data.

5. Classify and evaluate the metrics.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter5-learning/src/main/scala/com/packt/
scalada/learning/PCASpam.scala.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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Mean-normalizing the training data
It is highly recommended that the data be centered before running it by PCA. We achieve this 
using the fit and transform functions of StandardScaler. However, since the scaler 
in Spark accepts a DenseVector as the argument, we'll use the Vectors.dense factory 
method to convert the features in the labeled point into a DenseVector:

val docs = sc.textFile("SMSSpamCollection").map(line => {

    val words = line.split("\t")

    Document(words.head.trim(), words.tail.mkString(" "))

  }).cache()

val labeledPointsWithTf = getLabeledPoints(docs)

val lpTfIdf = withIdf(labeledPointsWithTf).cache()

  //Split dataset

val spamPoints = lpTfIdf.filter(point => point.label == 
1).randomSplit(Array(0.8, 0.2))

val hamPoints = lpTfIdf.filter(point => point.label == 
0).randomSplit(Array(0.8, 0.2))

val trainingSpamSplit = spamPoints(0)

val trainingHamSplit = hamPoints(0)

val trainingData = trainingSpamSplit ++ trainingHamSplit

val unlabeledTrainData = trainingData.map(lpoint => Vectors.dense(lpoint.
features.toArray)).cache()

  //Scale data - Does not support scaling of SparseVector.

  val scaler = new StandardScaler(withMean = true, withStd = false).
fit(unlabeledTrainData)

  val scaledTrainingData = scaler.transform(unlabeledTrainData).cache()
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Extracting the principal components
The computePrincipalComponents function is available in RowMatrix. So, we wrap 
our scaled training data into a RowMatrix and then extract 100 principal components out 
of it (as shown earlier, the number 100 is based on a run against a sample set of data and 
on investigating the singular value vector of the SVD). Our training data is currently a 4419 x 
5000 matrix—4419 instances of data * 5000 features restricted by us while generating the 
term frequency using HashingTF. We then multiply this training matrix (4419 x 5000) by the 
principal component matrix (5000 x 100) to arrive at a 4419 * 100 matrix—4419 instances 
of data by 100 features (principal components). We can extract the feature vectors from this 
matrix by calling the rows() function:

  val trainMatrix = new RowMatrix(scaledTrainingData)

  val pcomp: Matrix = trainMatrix.computePrincipalComponents(100)

  val reducedTrainingData = trainMatrix.multiply(pcomp).rows.cache()

Preparing the labeled data
Now that we have reduced the data fifty-fold, the next step that we have to take is to use this 
reduced data in our algorithm to see how it fares. The classification algorithm (in this case, 
LogisticRegressionWithBFGS) requires an RDD of LabeledPoints. To construct the 
LabeledPoint, we extract the label from the original trainingData and the feature vector 
from the dimension-reduced dataset:

  val reducedTrainingSplit = trainingData.zip(reducedTrainingData).map { 
case (labeled, reduced) => new LabeledPoint(labeled.label, reduced) }

Preparing the test data
Before predicting our test data against the algorithm, we need to bring the test data to the 
same dimension as the training data. This is achieved by multiplying the principal components 
with the test matrix. As discussed earlier, we just need to make sure that we don't compute 
the principal components fresh here:

val unlabeledTestData=testSplit.map(lpoint=>lpoint.features)

  val testMatrix = new RowMatrix(unlabeledTestData)

  val reducedTestData=testMatrix.multiply(pcomp).rows.cache()

  val reducedTestSplit=testSplit.zip(reducedTestData).map{case 
(labeled,reduced) => new LabeledPoint (labeled.label, reduced)}
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Classify and evaluate the metrics
The final step is to classify and evaluate the results of the algorithm. This step is the same  
as the classification recipe that we saw earlier. From the output, we can see that we not  
only reduced the number of features from 5,000 to 100, but also managed to maintain  
the accuracy of the algorithm at the same levels:

val logisticWithBFGS = getAlgorithm(10, 1, 0.001)

  val logisticWithBFGSPredictsActuals = runClassification(logisticWithBF
GS, reducedTrainingSplit, reducedTestSplit)

  calculateMetrics(logisticWithBFGSPredictsActuals, "Logistic with BFGS")

  def getAlgorithm(iterations: Int, stepSize: Double, regParam: Double) = 
{

    val algo = new LogisticRegressionWithLBFGS()

algo.setIntercept(true).optimizer.setNumIterations(iterations).
setRegParam(regParam)

    algo

  }

  def runClassification(algorithm: GeneralizedLinearAlgorithm[_ <: 
GeneralizedLinearModel], trainingData: RDD[LabeledPoint],

    testData: RDD[LabeledPoint]): RDD[(Double, Double)] = {

    val model = algorithm.run(trainingData)

    println ("predicting")

    val predicted = model.predict(testData.map(point => point.features))

    val actuals = testData.map(point => point.label)

    val predictsAndActuals: RDD[(Double, Double)] = predicted.
zip(actuals)

    println (predictsAndActuals.collect)

    predictsAndActuals

  }

  def calculateMetrics(predictsAndActuals: RDD[(Double, Double)], 
algorithm: String) {

    val accuracy = 1.0 * predictsAndActuals.filter(predActs => 
predActs._1 == predActs._2).count() / predictsAndActuals.count()

    val binMetrics = new BinaryClassificationMetrics(predictsAndActuals)

    println(s"************** Printing metrics for $algorithm 
***************")

    println(s"Area under ROC ${binMetrics.areaUnderROC}")
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    println(s"Accuracy $accuracy")

    val metrics = new MulticlassMetrics(predictsAndActuals)

    println(s"Precision : ${metrics.precision}")

    println(s"Confusion Matrix \n${metrics.confusionMatrix}")

    println(s"************** ending metrics for $algorithm 
*****************")

  }

This is the output:

Compared to the area under the ROC at around the same levels (95%), we have considerably 
reduced the time of the run by reducing the dimensions of the features ten-fold:

************** Printing metrics for Logistic with BFGS ***************

Area under ROC 0.9428948576675849

Accuracy 0.9829136690647482

Confusion Matrix

965.0  3.0

16.0   128.0

************** ending metrics for Logistic with BFGS *****************

Note that the entire code for this recipe can be found at https://
github.com/arunma/ScalaDataAnalysisCookbook/
blob/master/chapter5-learning/src/main/scala/
com/packt/scalada/learning/PCASpam.scala.

Dimensionality reduction of data for unsupervised learning
Unlike reducing the dimensions of data with labels, reducing the dimensionality of data for 
unsupervised learning is very simple. We just apply the PCA to the entire dataset. This helps 
a lot in improving the performance of algorithms such as K-means, where the entire set of 
features has to be plotted on a higher dimension and the entire data must be visited multiple 
times. A lesser number of features means a lesser number of dimensions and less data to be 
held in the memory.

For this recipe, we use the Iris.data that we used for clustering earlier. The dataset  
already has four features, and this isn't a great candidate for dimensionality reduction  
as such. However, the process around reducing dimensions for unlabeled data is the  
same as for any other dataset.

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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The steps that are involved are as follows:

1. Mean-normalizing the training data.

2. Extracting the principal components.

3. Arriving at the number of components.

4. Evaluating the metrics.

The code for this recipe can be found at https://github.com/
arunma/ScalaDataAnalysisCookbook/blob/master/
chapter5-learning/src/main/scala/com/packt/
scalada/learning/PCAIris.scala.

Mean-normalizing the training data
As we saw earlier, scaling is a must before reducing dimensions:

  val scaler = new StandardScaler(withMean = true, withStd = false).
fit(data)

  val scaledData = scaler.transform(data).cache()

Extracting the principal components
As we saw earlier, to compute the principal components, we need to wrap our scaled training 
data into a RowMatrix. We then multiply the matrix by the principal component matrix to 
arrive at the reduced matrix. We can extract the feature vector from this matrix by calling the 
rows() function:

  val pcomp: Matrix = matrix.computePrincipalComponents(3)

  val reducedData = matrix.multiply(pcomp).rows

Arriving at the number of components
While we would like to have the least number for the components, the other goal is to retain 
the highest variance in the data. In this case, a run against three components was made, and 
we could see that holding on to just two components out of the four, we retained 90% of the 
variance. However, since we wanted at least 95%, 3 was chosen:

  val svd = matrix.computeSVD(3)

  val sum = svd.s.toArray.sum

  svd.s.toArray.zipWithIndex.foldLeft(0.0) {

https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter5-learning/src/main/scala/com/packt/scalada/learning/PCASpam.scala
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    case (cum, (curr, component)) =>

      val percent = (cum + curr) / sum

      println(s"Component and percent ${component + 1} :: $percent :::: 
Singular value is : $curr")

      cum + curr

  }

The output is as follows:

Component and percent 1 :: 0.6893434455825798 :::: Singular value is : 
25.089863978899867

Component and percent 2 :: 0.8544090583609627 :::: Singular value is : 
6.0078525425063365

Component and percent 3 :: 0.9483881906752903 :::: Singular value is : 
3.4205353829523646

Component and percent 4 :: 1.0                      :::: Singular value 
is : 1.878502340103494

Evaluating the metrics
After we have reduced the dimensions of the data from four to three (!?), for fun, we run the 
data against a range of one to seven clusters to see the elbow bend. When we compare the 
results of this with the K-means clustering without dimensionality reduction, the results looks 
practically the same:

 val clusterCost = (1 to 7).map { noOfClusters =>

    val kmeans = new KMeans()

      .setK(noOfClusters)

      .setMaxIterations(5)

      .setInitializationMode(KMeans.K_MEANS_PARALLEL) //KMeans||

    val model = kmeans.run(reducedData)

    (noOfClusters, model.computeCost(reducedData))

  }

Here is the output:
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The following screenshot shows the cost across various numbers of clusters:

Here is a screenshot that shows strikingly similar results for the elbow bend:

In this chapter, we first saw the difference between supervised and unsupervised learning. 
Then we explored a sample of machine learning algorithms in Spark: LinearRegression  
for predicting continuous values, LogisticRegression and SVM for classification, K-means  
for clustering, and finally PCA for dimensionality reduction. There are a plenty of other 
algorithms in Spark, and more algorithms are being added to Spark with every version,  
both batch and streaming.
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6
Scaling Up

In this chapter, we will cover the following recipes:

 f Building the Uber JAR

 f Submitting jobs to the Spark cluster (local)

 f Running the Spark standalone cluster on EC2

 f Running the Spark job on Mesos (local)

 f Running the Spark job on YARN (local)

Introduction
In this chapter, we'll be looking at how to bundle our Spark application and deploy it on various 
distributed environments.

As we discussed earlier in Chapter 3, Loading and Preparing Data – DataFrame the foundation 
of Spark is the RDD. From a programmer's perspective, the composability of RDDs such as a 
regular Scala collection is a huge advantage. RDD wraps three vital (and two subsidiary) pieces 
of information that help in reconstruction of data. This enables fault tolerance. The other major 
advantage is that while the processing of RDDs could be composed into hugely complex graphs 
using RDD operations, the entire flow of data itself is not very difficult to reason with.

Other than optional optimization attributes, such as data location, an RDD at its core wraps 
only three vital pieces of information:

 f The dependent/parent RDD (empty if not available)

 f The number of partitions

 f The function that needs to be applied to each element of the RDD
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Spark spawns one task per partition. So, a partition is the basic unit of parallelism in Spark.

The number of partitions could be any of these:

 f Dictated by the number of blocks in the case of reading files

 f A number set by the spark.default.parallelism parameter (set while starting 
the cluster)

 f A number set by calling repartition or coalesce on the RDD

So far, we have just run our Spark application in the self-contained single JVM mode. While 
the programs work just fine, we have not yet exploited the distributed nature of the RDDs.

As always, all the code snippets for this chapter can be downloaded from 
https://github.com/arunma/ScalaDataAnalysisCookbook/
tree/master/chapter6-scalingup.

Building the Uber JAR
The first step for deploying our Spark application on a cluster is to bundle it into a single 
Uber JAR, also known as the assembly JAR. In this recipe, we'll be looking at how to use 
the SBT assembly plugin to generate the assembly JAR. We'll be using this assembly JAR 
in subsequent recipes when we run Spark in distributed mode. We could alternatively set 
dependent JARs using the spark.driver.extraClassPath property (https://spark.
apache.org/docs/1.3.1/configuration.html#runtime-environment). However, 
for a large number of dependent JARs, this is inconvenient.

How to do it...
The goal of building the assembly JAR is to build a single, Fat JAR that contains all 
dependencies and our Spark application. Refer to the following screenshot, which shows  
the innards of an assembly JAR. You can see not only the application's files in the JAR,  
but also all the packages and files of the dependent libraries:

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter6-scalingup
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter6-scalingup
https://spark.apache.org/docs/1.3.1/configuration.html#runtime-environment
https://spark.apache.org/docs/1.3.1/configuration.html#runtime-environment
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The assembly JAR can easily be built in SBT using the SBT assembly plugin  
(https://github.com/sbt/sbt-assembly).

In order to install the sbt-assembly plugin, let's add the following line to our  
project/assembly.sbt:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.13.0")

Next, the most common issue that we face while trying to build the assembly JAR (or Uber JAR) 
is the problem of duplicates—duplicate transitive dependency JARs, or simply duplicate files 
located at the same location (such as MANIFEST.MF) in different bundled JARs. The easiest 
way to figure out is to install the sbt-dependency-graph plugin (https://github.com/
jrudolph/sbt-dependency-graph) and check which two trees bring in the conflicting JAR.

https://github.com/sbt/sbt-assembly
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/jrudolph/sbt-dependency-graph
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In order to add the sbt-dependency-graph plugin, let's add the following line to our 
project/plugins.sbt:

addSbtPlugin("net.virtual-void" % "sbt-dependency-graph" %  
"0.7.5")

Let's try to build the Uber JAR using sbt assembly. When we issue this command from the 
root of the project, we get an error that tells us that we have duplicate files in our JAR.

Let's see an example of a duplicate error message that we might face:

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/DOMStringList.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/DOMStringList.class

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/TypeInfo.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/TypeInfo.class

deduplicate: different file contents found in the following:

/Users/Gabriel/.ivy2/cache/org.apache.xmlbeans/xmlbeans/jars/xmlbeans-
2.3.0.jar:org/w3c/dom/UserDataHandler.class

/Users/Gabriel/.ivy2/cache/xml-apis/xml-apis/jars/xml-apis-1.4.01.
jar:org/w3c/dom/UserDataHandler.class

This happens most commonly if:

 f Two different libraries in our sbt dependencies depend on the same external library 
(or libraries that have bundled the classes with the same package)

 f We have explicitly stated the transitive dependency as a separate dependency in sbt

Whatever the case, it is always recommended to go through the entire dependency tree to 
trim it down.

Transitive dependency stated explicitly in the SBT dependency
A simpler way is to export the dependency tree in an ASCII tree format and eyeball it to find 
the two instances where the xmlbeans JAR is referred to. The sbt dependency graph 
plugin lets us do that. Once we have installed the plugin as per the instructions, we can  
export and inspect the dependency tree:

sbt dependency-tree > deptree.txt
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The graph can also be visualized using a real graph (however, this lacks the text search 
capabilities). The sbt dependency graph helps us analyze that too. We can export the  
same tree as a .dot file using this code:

sbt dependency-dot > depdot.dot

It outputs a depdot.dot file in our target directory, which can be opened using Graphviz 
(http://www.graphviz.org/). Refer to the following screenshot to see what the 
visualization of a .dot file in Graphviz looks like:

As we can see in lines 96 and 573 of the dependency tree (refer to https://github.
com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/
depgraph_xmlbeans_duplicate.txt; its screenshot is given), there are two instances 
of the import of xmlbeans: once in the tree that leads to org.scalanlp:epic-
parser-en-span_2.10:2015.2.19, and once in the tree that leads to org.
scalanlp:epic_2.10:0.3.1. If you notice the second level of the epic-parser library, you 
will realize that it is the epic library itself.

So, we can resolve this error by removing scalanlp:epic_2.10:0.3.1 from the list of 
dependencies in our build.sbt file.

http://www.graphviz.org/
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt
https://github.com/arunma/ScalaDataAnalysisCookbook/blob/master/chapter6-scalingup/depgraph_xmlbeans_duplicate.txt
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Two different libraries depend on the same external library
Even after we have removed the epic library, we still see some issues with the xercesImpl 
and xmlapi JARs. When we analyze the dependency tree, we see that two dependent 
libraries of epic depend on xerces, the xml API and the scala library itself!
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We notice that the Epic library has a dependency on the Scala library, but we also know that 
the Scala library should already be available on the master and the worker nodes. We can 
exclude the Scala library altogether from getting bundled using the assemblyOption key:

assemblyOption in assembly := (assemblyOption in  
assembly).value.copy(includeScala = false)

Next, in order to exclude the xml-apis library from the epic library, we use the  
exclude function:

libraryDependencies  ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-sql" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-mllib" % sparkVersion % "provided",
  "com.databricks" %% "spark-csv" % "1.0.3",
  ("org.scalanlp" % "epic-parser-en-span_2.10" % "2015.2.19").
    exclude("xml-apis", "xml-apis")
)

As for the rest of the conflicting files, we can use the assembly plugin's merge strategy 
to resolve the conflict. Since we are merging contents of multiple JARs, there is a distinct 
possibility of a similarly named file being available on the same path, for example, 
MANIFEST.MF. The sbt-assembly plugin provides various strategies to resolve conflicts  
if the contents of the file in the same location don't match. The default strategy is to throw  
an error, but we can customize the strategy to suit our needs.

In the merge strategy, we append the contents of application.conf if there are multiple 
conf files in the JARs, use the first matching class/file in the order of the class path for the 
org.cyberneko.html package, and discard all the manifest files. For all others, we apply 
the default strategy:

assemblyMergeStrategy in assembly := {
  case "application.conf"                            =>  
MergeStrategy.concat
  case PathList("org", "cyberneko", "html", xs @ _*) =>  
MergeStrategy.first
  case m if m.toLowerCase.endsWith("manifest.mf")    =>  
MergeStrategy.discard
  case f                                             =>  
(assemblyMergeStrategy in assembly).value(f)
}
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The entire build.sbt looks like this:

organization := "com.packt"

name := "chapter6-scalingup"

scalaVersion := "2.10.4"
val sparkVersion="1.4.1"

libraryDependencies  ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-sql" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-mllib" % sparkVersion % "provided",
  "com.databricks" %% "spark-csv" % "1.0.3",
  ("org.scalanlp" % "epic-parser-en-span_2.10" % "2015.2.19").
    exclude("xml-apis", "xml-apis")
)

assemblyJarName in assembly := "scalada-learning-assembly.jar"

assemblyOption in assembly := (assemblyOption in  
assembly).value.copy(includeScala = false)

assemblyMergeStrategy in assembly := {
  case "application.conf"                            =>  
MergeStrategy.concat
  case PathList("org", "cyberneko", "html", xs @ _*) =>  
MergeStrategy.first
  case m if m.toLowerCase.endsWith("manifest.mf")    =>  
MergeStrategy.discard
  case f                                             =>  
(assemblyMergeStrategy in assembly).value(f)
}

So finally, when we do an sbt assembly, scalada-learning-assembly.jar is created. 
If you would like the JAR name to be picked up from the build.sbt file's name and version, 
just delete the assemblyJarName key from build.sbt:

> sbt clean assembly
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Submitting jobs to the Spark cluster (local)
There are multiple components involved in running Spark in distributed mode. In the  
self-contained application mode (the main program that we have run throughout this book 
so far), all of these components run on a single JVM. The following diagram elaborates the 
various components and their functions in running the Scala program in distributed mode:

As a first step, the RDD graph that we construct using the various operations on our RDD 
(map, filter, join, and so on) is passed to the Directed Acyclic Graph (DAG) scheduler. The 
DAG scheduler optimizes the flow and converts all RDD operations into groups of tasks called 
stages. Generally, all tasks before a shuffle are wrapped into a stage. Consider operations 
in which there is a one-to-one mapping between tasks; for example, a map or filter operator 
yields one output for every input. If there is a  map on an element on RDD followed by a filter, 
they are generally pipelined (the map and the filter) to form a single task that can be executed 
by a single worker, not to mention the benefits of data locality. Relating this to our traditional 
Hadoop MapReduce, where data is written to the disk at every stage, would help us really 
appreciate the Spark lineage graph.
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These shuffle-separated stages are then passed to the task scheduler, which splits them into 
tasks and submits them to the cluster manager. Spark comes bundled with a simple cluster 
manager that can receive the tasks and run it against a set of worker nodes. However, Spark 
applications can also be run on popular cluster managers, such as Mesos and YARN.

With YARN/Mesos, we can run multiple executors on the same worker node. Besides, YARN 
and Mesos can host non-Spark jobs in their cluster along with Spark jobs.

In the Spark standalone  cluster, prior to Spark 1.4, the number of executors per worker 
node per application was limited to 1. However, we could increase the number of worker 
instances per worker node using the SPARK_WORKER_INSTANCES parameter. With Spark 
1.4 (https://issues.apache.org/jira/browse/SPARK-1706), we are able to run 
multiple executors on the same node, just as in Mesos/YARN.

If we intend to run multiple worker instances within a single 
machine, we must ensure that we configure the SPARK_
WORKER_CORES property to limit the number of cores that 
can be used by each worker. The default is all!

https://issues.apache.org/jira/browse/SPARK-1706
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In this recipe, we will be  deploying the Spark application on a standalone cluster running on  
a single machine. For all the recipes in this chapter, we'll be using the binary classification app 
that we built in the previous chapter as a deployment candidate. This recipe assumes that you 
have some knowledge of the concepts of HDFS and basic operations on them.

How to do it...
Submitting a Spark job to the local cluster involves the following steps:

1. Downloading Spark.

2. Running HDFS on pseudo-clustered mode.

3. Running the Spark master and slave locally.

4. Pushing data into HDFS.

5. Submitting the Spark application on the cluster.
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Downloading Spark
Throughout this book, we have been using Spark version 1.4.1, as we can see in our 
build.sbt. Now, let's head over to the download page (https://spark.apache.org/
downloads.html) and download the spark-1.4.1-bin-hadoop2.6.tgz bundle, as 
shown here:

Running HDFS on Pseudo-clustered mode
Instead of loading the file from the local filesystem for our Spark application, let's have the file 
stored away in HDFS. In order to do this, let's have a locally running Pseudo-distributed cluster 
(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleCluster.html#Pseudo-Distributed_Operation) of Hadoop 2.6.0.

After formatting our name node using bin/hdfs namenode -format and bringing up our 
data node and name node using sbin/start-dfs.sh, let's confirm that all the processes 
that we need are running properly. We do this using Jps. The following screenshot shows 
what you are expected to see once you start the dfs daemon:

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation
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Running the Spark master and slave locally
In order to submit our assembly JAR to a Spark cluster, we have to first bring up the Spark 
master and worker nodes.

All that we need to do to run Spark on the local machine is go to the downloaded (and 
extracted) spark folder and run sbin/start-all.sh from the spark home directory.  
This will bring up the Master and a Worker node of Spark. The Master's web UI is accessible 
from port 8080. We use this port to check the status of the job. The default service port  
of the Master is 7077. We'll be using this port to submit our assembly JAR as a job to the 
Spark cluster.

Let's confirm the running of the Master and the Worker nodes using Jps:

Pushing data into HDFS
This just involves running the mkdir and put commands on HDFS:

bash-3.2$ hadoop fs -mkdir /scalada

bash-3.2$ hadoop fs -put /Users/Gabriel/Apps/SMSSpamCollection /scalada/

bash-3.2$ hadoop fs -ls /scalada

Found 1 items

-rw-r--r--   1 Gabriel supergroup     477907 2015-07-18 16:59 /scalada/
SMSSpamCollection
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We can also confirm this via the HDFS web interface at 50070 and by going to Utilities | 
Browse the file system, as shown here:

Submitting the Spark application on the cluster
Before we submit the Spark application to be run against the local cluster, let's change the 
classification program (BinaryClassificationSpam) to point to the HDFS location:

val docs =  
sc.textFile("hdfs://localhost:9000/scalada/SMSSpamCollection").
map(line => {
    val words = line.split("\t")
    Document(words.head.trim(), words.tail.mkString(" "))
  })

By default, Spark 1.4.1 uses Hadoop 2.2.0. Now that we are trying to run the job on Hadoop 
2.6.0, and are using the Spark binary prebuilt for Hadoop 2.6 and later, let's change build.
sbt to reflect that:

libraryDependencies  ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-sql" % sparkVersion % "provided",
  "org.apache.spark" %% "spark-mllib" % sparkVersion % "provided",
  "com.databricks" %% "spark-csv" % "1.0.3",
  "org.apache.hadoop"  % "hadoop-client" % "2.6.0",
  ("org.scalanlp" % "epic-parser-en-span_2.10" % "2015.2.19").
    exclude("xml-apis", "xml-apis")
)
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Run sbt clean assembly to build the Uber JAR, like this:

./bin/spark-submit \

  --class com.packt.scalada.learning.BinaryClassificationSpam \

  --master spark://localhost:7077 \

  --executor-memory 2G \

  --total-executor-cores 2 \

   <project root>/target/scala-2.10/scalada-learning-assembly.jar

Here is the output:

The following screenshot shows that we have successfully run our classification job on a Spark 
cluster as against the standalone app that we used in the previous chapter:

Running the Spark Standalone cluster on EC2
The easiest way to create a Spark cluster and run our Spark jobs in a truly distributed mode 
is Amazon EC2 instances. The ec2 folder inside the Spark installation directory wraps all the 
scripts and libraries that we need to create a cluster. Let's quickly go through the steps  that 
entail the creation of our first distributed cluster.
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This recipe assumes that you have a basic understanding of the Amazon EC2 ecosystem, 
specifically how to spawn a new EC2 instance.

How to do it...
We'll have to ensure that we have the access key and the Privacy Enhanced Mail (PEM) 
files for AWS before proceeding with the steps. In fact, we are required to have these before 
launching any EC2 instance if we intend to log in to the machines.

Creating the AccessKey and pem file
Instructions for creating a key pair and the pem key are available at http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. Anyway, the following 
are the relevant screenshots.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
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Select Security Credentials from the user menu, like this:

Click on the Users menu and create an access key, as shown in the following screenshot. 
Download the credentials. We'll be using this to create the EC2 instances for the Spark  
master and the worker nodes:
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The key pair can be created from inside the EC2 instances page using the Key Pairs menu, as 
shown in the next screenshot. Your browser will automatically download the pem file once you 
create a pair:

Once you have the pem file, ensure that the file permission for the pem file is 400. Otherwise, 
an error message stating that your pem file's permissions are too open will be shown:

chmod 400 spark.pem

Launching and running our Spark application involves the following steps:

1. Setting the environment variables.

2. Running the launch script.
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3. Verifying installation.

4. Making changes to the code.

5. Transferring the data and job files.

6. Loading the dataset into HDFS.

7. Running the job.

8. Destroying the cluster.

Setting the environment variables
As the first step, let's export the access and the secret access keys as environment variables. 
The ec2 script for launching our instances will use these commands:

export AWS_ACCESS_KEY_ID=AKIAI7H3OFQZ5W6H4IBA

export AWS_SECRET_ACCESS_KEY=[YOUR SECRET ACCESS KEY]

I have also copied the pem file to the spark installation root directory, just to make the launch 
command shorter (by not specifying the entire path of the pem file), as marked here:
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Running the launch script
Now that we have the access key (and the secret key) exported and the pem file in the root 
folder, let's spawn a new cluster:

cd spark-1.4.1-bin-hadoop2.6

./ec2/spark-ec2 --key-pair=scalada --identity-file=scalada.pem --slaves=2 
--instance-type=m3.medium --hadoop-major-version=2 launch scalada-cluster

The parameters, as is clearly evident, represent the following:

 f key-pair: This is the name of the user to whom the access key and the secret 
access key you exported as environment variables belong.

 f identity-file: This is the location of the pem file.

 f slaves: This is the number of worker nodes.

 f instance-type: This is one of the AWS instance types (http://aws.amazon.
com/ec2/instance-types/). M3 medium has one core and 3.75 GB in memory.

 f hadoop-major-version: This is the version of Hadoop that we want Spark  
to be bundled with. The spark version itself is derived from our local installation 
(which is 1.4.1).

We can also confirm this from the EC2 console, as shown in the following screenshot:

Verifying installation
Let's log in to the Master to see the services that are running on each node:

ssh -i scalada.pem root@ec2-54-161-176-58.compute-1.amazonaws.com

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
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Doing a jps on the master node shows that the Spark Master, the HDFS name node, and the 
Secondary name node are running on the Spark master node, as depicted in this screenshot:

Similarly, on the worker nodes, we see that the Spark Worker and the HDFS data nodes are 
running, as follows:
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Making changes to the code
There is a small change that is required in our code in order to make it run on this cluster—the 
location of the dataset in HDFS. This, however, is not the recommended way of doing it, and 
the URL should be sourced from an external configuration file:

 val conf = new  
SparkConf().setAppName("BinaryClassificationSpamEc2")
  val sc = new SparkContext(conf)
  val sqlContext = new SQLContext(sc)

  val docs = sc.textFile("hdfs://ec2-54-159-166-156.compute-1.
amazonaws.com:9000/scalada/SMSSpamCollection").map(line => {
    val words = line.split("\t")
    Document(words.head.trim(), words.tail.mkString(" "))
  })

Transferring the data and job files
As the next step, let's copy the dataset and the assembly JAR to the master node for 
execution from the directory where you have the pem file:

scp -i scalada.pem <REPO_DIR>/chapter5-learning/SMSSpamCollection root@
ec2-54-161-176-58.compute-1.amazonaws.com:~/.

scp -i scalada.pem  <REPO_DIR>/chapter6-scalingup/target/scala-2.10/
scalada-learning-assembly.jar root@ec2-54-161-176-58.compute-1.amazonaws.
com:~/.

An ls on the home folder of the master confirms this, as shown in the following screenshot:

Loading the dataset into HDFS
Now that we have uploaded our dataset to the master's local folder, let's push it to HDFS. 
As we saw earlier when we verified the installation, the Spark EC2 script creates and runs 
an HDFS cluster for us. Let's go to the ephemeral-hdfs folder in the root and format the 
filesystem. Note that the files in this HDFS, as the name indicates, will be wiped off upon 
restarting the cluster. Ideally, we should be installing a separate HDFS cluster on these nodes 
instead of depending on the ephemeral installation that was created by the Spark EC2 script.
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Just as in our previous recipe, let's push the SMSSpamCollection dataset into the  
/scalada folder in HDFS:

root@ip-10-150-76-158 ephemeral-hdfs] $ ./bin/hdfs namenode -format

root@ip-10-150-76-158 ephemeral-hdfs] $ ./bin/hadoop fs -mkdir /scalada

root@ip-10-150-76-158 ephemeral-hdfs] $ ./bin/hadoop fs -put ../
SMSSpamCollection /scalada/

root@ip-10-150-76-158 ephemeral-hdfs]$ ./bin/hadoop fs -ls /scalada

Found 1 items

-rw-r--r--   3 root supergroup     477907 2015-08-08 05:24 /scalada/
SMSSpamCollection

Running the job
As with the previous recipe, we'll use the spark-submit script to submit the job to the cluster. 
Let's enter the spark home directory (/root/spark) and execute the following lines:

./bin/spark-submit \

  --class com.packt.scalada.learning.BinaryClassificationSpamEc2 \

  --master spark://ec2-54-161-176-58.compute-1.amazonaws.com:7077 \

  --executor-memory 2G \

  --total-executor-cores 2 \

  ../scalada-learning-assembly.jar

We can see that the job runs on both worker nodes of the cluster, as shown in this screenshot:
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We can also see the various stages of this Job from the Stages tab, as shown in the  
following screenshot:

Not surprisingly, the accuracy measure is approximately the same, except that now we can 
use this cluster to handle much bigger data.

Destroying the cluster
Finally, if you would like to destroy the cluster, you can use the same ec2 script with the 
destroy action. From your local Spark installation directory, execute this line:

./ec2/spark-ec2 destroy scalada-cluster
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Running the Spark Job on Mesos (local)
Unlike the Spark standalone cluster manager, which can run only Spark apps, Mesos is a 
cluster manager that can run a wide variety of applications, including Python, Ruby, or Java EE 
applications. It can also run Spark jobs. In fact, it is one of the popular go-to cluster managers 
for Spark. In this recipe, we'll see how to deploy our Spark application on the Mesos cluster. 
The prerequisite for this recipe is a running HDFS cluster.

How to do it...
Running a Spark job on Mesos is very similar to running it against the standalone cluster. It 
involves the following steps:

1. Installing Mesos.

2. Starting the Mesos master and slave.

3. Uploading the Spark binary package and the dataset to HDFS.

4. Running the job.

Installing Mesos
Download Mesos on the local machine by following the instructions at http://mesos.
apache.org/gettingstarted/.

http://mesos.apache.org/gettingstarted/
http://mesos.apache.org/gettingstarted/
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After you have installed the OS-specific tools needed to build Mesos, you have to run the 
configure and make commands (with root privileges) to build Mesos (this will take a long time) 
unless you pass -j <number of cores> V=0 to your make command, as shown here:

As a side note, just like Spark, the ec2 folder inside the mesos installation directory provides 
scripts to spawn a new EC2 mesos cluster.

Starting the Mesos master and slave
Now that we have Mesos installed, the next step is to start the Mesos master and slave:

bash-3.2$ pwd

/Users/Gabriel/Apps/mesos-0.22.1/build

bash-3.2$ sudo ./bin/mesos-master.sh --ip=127.0.0.1 --work_dir=/var/lib/
mesos

In another terminal window, let's bring up a worker node:

Gabriel@Gabriels-MacBook-Pro ~/A/m/build> pwd

/Users/Gabriel/Apps/mesos-0.22.1/build

Gabriel@Gabriels-MacBook-Pro ~/A/m/build> ./bin/mesos-slave.sh 
--master=127.0.0.1:5050



Chapter 6

195

We can now look at the Mesos status page at http://127.0.0.1:5050, and this is what 
we will see:

Uploading the Spark binary package and the dataset to HDFS
Mesos requires that all worker nodes have Spark installed on the machines. We can achieve 
this either by configuring the spark.mesos.executor.home property in the spark 
configuration, or by simply uploading the entire Spark tar bundle to HDFS and making it 
available to the Mesos workers:

./bin/hadoop fs -mkdir /scalada

./bin/hadoop fs -put /Users/Gabriel/Apps/spark-1.4.1-bin-hadoop2.6.tgz /
scalada/spark-1.4.1-bin-hadoop2.6.tgz
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Let's set the spark binary as the executor URI

export SPARK_EXECUTOR_URI=hdfs://localhost:9000/scalada/spark-1.4.1-bin-
hadoop2.6.tgz

Also, let's upload the dataset to HDFS:

./bin/hadoop fs -mkdir /scalada

./bin/hadoop fs -put /Users/Gabriel/Apps/SMSSpamCollection /scalada/

Running the job
There is one thing that we need to do before running the program itself— configure the 
location of the libmesos native library. This file can be found in the /usr/local/lib  
folder as libmesos.so or libmesos.dylib, depending on your operating system:

export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos-0.22.1.dylib

Now, let's use cd to enter the Spark installation directory, and then run the job:

cd /Users/Gabriel/Apps/spark-1.4.1-bin-hadoop2.6

export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos-0.22.1.dylib

./bin/spark-submit \

  --class com.packt.scalada.learning.BinaryClassificationSpamMesos \

  --master mesos://localhost:5050 \

  --executor-memory 2G \

  --total-executor-cores 2 \

  <REPO_FOLDER>/chapter6-scalingup/target/scala-2.10/scalada-learning-
assembly.jar
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As you can see in the following screenshot, the tasks run fine on this single-worker-node 
cluster:

The next screenshot shows the list of tasks that are already completed:
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Running the Spark Job on YARN (local)
Hadoop has a long history, and in most cases, organizations have already invested in the 
Hadoop infrastructure before they move their MR jobs to Spark. Unlike the Spark standalone 
cluster manager, which can run only Spark jobs, and Mesos, which can run a variety of 
applications, YARN runs Hadoop jobs as first-class. At the same time, it can run Spark jobs  
as well. This means that when a team decides to replace some of their MR jobs with Spark 
jobs, they can use the same cluster manager to run Spark jobs. In this recipe, we'll see how  
to deploy our Spark application on the YARN cluster manager.

How to do it...
Running a Spark job on YARN is very similar to running it against a Spark standalone cluster.  
It involves the following steps:

1. Installing  the Hadoop cluster.

2. Starting HDFS and YARN.

3. Pushing the Spark assembly and dataset to HDFS.

4. Running the Spark Job in the yarn-client mode.

5. Running the Spark Job in the yarn-cluster mode.

Installing the Hadoop cluster
While the setup of the cluster itself is beyond the scope of this recipe, for the sake of 
completeness, let's quickly look at the relevant site XML configurations that were made while 
setting up a single-node pseudo-distributed cluster on a local machine. Refer to http://
www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_
node_cluster.php for the complete details on how to set up a local YARN/HDFS cluster:

The core-site.xml file:

<configuration>
  <property>
    <name>fs.default.name</name>
    <value>hdfs://localhost:54310</value>
  </property>
</configuration>

http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
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The mapred-site.xml file:

<configuration>
   <property>
       <name>mapred.job.tracker</name>
       <value>localhost:54311</value>
   </property>
</configuration>

The hdfs-site.xml file:

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
</configuration>

Starting HDFS and YARN
Once the setup of the cluster is done, let's format HDFS and start the cluster (dfs and yarn):

Format namenode:

hdfs namenode -format

Start both HDFS and YARN:

sbin/start-all.sh

Let's confirm that the services are running through jps, and this is what we should see:
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Pushing Spark assembly and dataset to HDFS
Ideally, when we do a spark-submit, YARN should be able to pick our spark-assembly 
JAR (or Uber JAR) and upload it to HDFS. However, this doesn't happen correctly and results  
in the following error:

Error: Could not find or load main class org.apache.spark.deploy.yarn.
ExecutorLauncher

In order to work around this issue, let's upload our spark-assembly JAR manually to HDFS 
and change our conf/spark-env.sh to reflect the location. The Hadoop config directory 
should also be specified in spark-env.sh:

Uploading the spark assembly to HDFS.

hadoop fs -mkdir /sparkbinary

hadoop fs -put /Users/Gabriel/Apps/spark-1.4.1-bin-hadoop2.6/lib/spark-
assembly-1.4.1-hadoop2.6.0.jar /sparkbinary/

hadoop fs -ls /sparkbinary

Uploading the Spam dataset to HDFS:

hadoop fs -mkdir /scalada

hadoop fs -put ~/SMSSpamCollection /scalada/

hadoop fs -ls /scalada

Entries in spark-env.sh:

HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

SPARK_EXECUTOR_URI=hdfs://localhost:9000/sparkbinary/spark-assembly-
1.4.1-hadoop2.6.0.jar
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Before we submit our Spark job to the YARN cluster, let's confirm that our setup is fine using 
the Spark shell. The Spark shell is a wrapper arround the Scala REPL, with Spark libraries set 
in the classpath. Configuring HADOOP_CONF_DIR to point to the Hadoop config directory 
ensures that Spark will now use YARN to run its jobs. However, there are two modes in which 
we can run the Spark job in YARN, namely yarn-client and yarn-cluster. Let's explore 
both of them in this subrecipe. But before we do that, to validate our configuration, we'll 
launch the Spark shell pointing the master to the yarn-client. After a rain of logs, we 
should be able to see a Scala prompt. This confirms that our configuration is good:

bin/spark-shell --master yarn-client

Running a Spark job in yarn-client mode
Now that we have confirmed that the shell loads up fine against the YARN master, let's head 
over to deploying our Spark job on YARN.

As we discussed earlier, there are two modes in which we can run a Spark application on 
YARN: the yarn-client mode and the yarn-cluster mode. In the yarn-client mode, 
the driver program resides on the client side and the YARN worker nodes are used only to 
execute the job. All of the brain of the application resides in the client JVM that polls the 
application master for the status. The application master does nothing except watching out  
for failure of the executor nodes and reporting and requesting for resources accordingly to  
the resource manager. This also means that the client (our driver JVM) needs to run as long  
as the application executes:

./bin/spark-submit \

  --class com.packt.scalada.learning.BinaryClassificationSpamYarn \

  --master yarn-client \
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  --executor-memory 1G \

  ~/scalada-learning-assembly.jar

As we see from the YARN console, our job is running fine. Here is a screenshot that shows this:
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Finally, we can see the output on the client JVM (the driver) itself:

Running Spark job in yarn-cluster mode
In the yarn-cluster mode, the client JVM doesn't do anything at all. In fact, it just submits 
and polls the Application master for status. The driver program itself runs on the Application 
master, which now has all the brains of the program. Unlike the yarn-client mode, the 
user logs won't be displayed on the client JVM because the driver, which consolidates the 
results, is executing inside the YARN cluster:

./bin/spark-submit \

  --class com.packt.scalada.learning.BinaryClassificationSpamYarn \

  --master yarn-cluster \

  --executor-memory 1g \

  ~/scalada-learning-assembly.jar
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As expected, the client JVM indicates that the job has run successfully. It doesn't, however, 
show the user logs.

The following screenshot shows the final status of our client and the cluster mode runs:

The actual output of this program is inside the Hadoop user logs. We can either go to the  
logs directory of Hadoop, or check it out from the Hadoop console itself, when we click on  
the application link and then on the logs link in the console.

As you can see in the following screenshot, the stdout file shows our embarrassing  
println commands:
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In this chapter, we took an example Spark application and deployed it on a Spark standalone 
cluster manager, YARN, and Mesos. Along the way, we touched upon the internals of these 
cluster managers.
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7
Going Further

In this chapter, we will cover the following recipes:

 f Using Spark Streaming to subscribe to a Twitter stream

 f Using Spark as an ETL tool (pulling data from ElasticSearch and publishing it  
to Kafka)

 f Using StreamingLogisticRegression to classify a Twitter stream using Kafka  
as a training stream

 f Using GraphX to analyze Twitter data

 f Watching other Scala libraries of interest

Introduction
So far, the entire book has concentrated a little around Breeze and a lot around Spark, 
specifically DataFrames and machine learning. However, there are a whole lot of other 
libraries, both in Java and Scala that could be leveraged while analyzing data from Scala.  
This chapter goes a little more into Spark's other components, streaming and GraphX.  
Note that each recipe in this chapter feeds into the next recipe.

All the code related to this chapter can be downloaded from  
https://github.com/arunma/ScalaDataAnalysisCookbook/
tree/master/chapter7-goingfurther.

https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter7-goingfurther
https://github.com/arunma/ScalaDataAnalysisCookbook/tree/master/chapter7-goingfurther
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Using Spark Streaming to subscribe to a 
Twitter stream

Just like all the other components of Spark, Spark Streaming is also scalable and fault-tolerant, 
it's just that it manages a stream of data instead of a large amount of data that Spark generally 
does. The way that Spark Streaming approaches streaming is unique in the sense that it 
accumulates streams into small batches called DStreams and then processes them as mini-
batches, an approach usually called micro-batching. The component that receives the stream 
of data and splits it into time-bound windows of batches is called the receiver.

Once these batches are received, Spark takes these batches up, converts them into 
RDDs, and processes the RDDs in the same way as static datasets. The regular framework 
components such as the driver and executor stay the same. However, in terms of Spark 
Streaming, a DStream or Discretized stream is just a continuous stream of RDDs. Also, just 
like SQLContext served as an entry point to use SQL in Spark, there's StreamingContext 
that serves as an entry point for Spark Streaming.

In this recipe, we will subscribe to a Twitter stream and index (store) the tweets into 
ElasticSearch (https://www.elastic.co/).

How to do it...
The prerequisite to run this recipe is to have a running ElasticSearch instance on your machine.

1. Running ElasticSearch: Running an instance of ElasticSearch is as simple as it gets. 
Just download the installable from https://www.elastic.co/downloads/
elasticsearch and run bin/elasticsearch. This recipe uses the latest  
version 1.7.1.

2. Creating a Twitter app: In order to subscribe to tweets, Twitter requires us to create 
a Twitter app. Let's quickly set up a Twitter app in order to get the consumer key and 
the secret key. Visit https://apps.twitter.com/ using your login and click 
Create New App.

https://www.elastic.co/
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://apps.twitter.com/
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We will be using the consumer key, consumer secret key, the access token, and the 
access secret in our application.

3. Adding Spark Streaming and the Twitter dependency: There are two dependencies 
that need to be added here, the spark-streaming and the spark-streaming-
twitter libraries:
"org.apache.spark" %% "spark-streaming" % sparkVersion %  
"provided",
"org.apache.spark" %% "spark-streaming-twitter" %  
sparkVersion
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4. Creating a Twitter stream: Creating a Twitter stream is super easy in Spark. We just 
need to use TwitterUtils.createStream for this. TwitterUtils wraps around 
the twitter4j library (http://twitter4j.org/en/index.html) to provide 
first-class support in Spark.

TwitterUtils.createStream expects a few parameters. Let's construct them 
one by one.

 � StreamingContext: StreamingContext could be constructed by 
passing in SparkContext and the time window of the batch:
  val streamingContext=new StreamingContext(sc, Seconds  
(5))

 � OAuthorization: The access and the consumer keys that comprise  
the OAuth credentials need to be passed in order to subscribe to the  
Twitter stream:
  val builder = new ConfigurationBuilder()
        .setOAuthConsumerKey(consumerKey)
          .setOAuthConsumerSecret(consumerSecret)
          .setOAuthAccessToken(accessToken)
          .setOAuthAccessTokenSecret(accessTokenSecret)
          .setUseSSL(true)

  val twitterAuth = Some(new  
OAuthAuthorization(builder.build()))

 � Filter criteria: You are free to skip this parameter if your intention is to 
subscribe to (a sample of) the universe of the tweets. For this recipe,  
we'll add some filter criteria to it:
    val filter=List("fashion", "tech", "startup", "spark")

 � StorageLevel: This is where our received objects that come in batches 
need to be stored. The default is memory with a capability to overflow to 
disk. Once this is constructed, let's construct the Twitter stream itself:
  val stream=TwitterUtils.createStream(streamingContext,  
twitterAuth, filter, StorageLevel.MEMORY_AND_DISK)

5. Saving the stream to ElasticSearch: Writing the Tweets to ElasticSearch involves 
three steps:

1. Adding the ElasticSearch-Spark dependency: Let's add the appropriate 
version of ElasticSearch Spark to our build.sbt:
"org.elasticsearch" %% "elasticsearch-spark" % "2.1.0"

http://twitter4j.org/en/index.html
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2. Configuring the ElasticSearch server location in the Spark configuration: 
ElasticSearch has a subproject called elasticsearch-spark that 
makes ElasticSeach a first-class citizen in the Spark world. The org.
elasticsearch.spark package exposes some convenient functions that 
convert a case class to JSON (deriving types) and indexes to ElasticSearch. 
The package also provides some really cool implicits that provide functions 
to save RDD into ElasticSearch and load data from ElasticSearch as an RDD. 
We'll be looking at those functions shortly.

The ElasticSearch target node URL could be specified in the Spark 
configuration. By default, it points to localhost and port 9200. If required,  
we could customize it:
//Default is localhost. Point to ES node when required

val conf = new SparkConf()
    .setAppName("TwitterStreaming")
    .setMaster("local[2]")
    .set(ConfigurationOptions.ES_NODES, "localhost")
              .set(ConfigurationOptions.ES_PORT, "9200")

3. Converting the stream into a case class: If we are not interested in pushing 
the data to ElasticSearch and are interested only in printing some values in 
twitter4j.Status, stream.foreach will help us iterate through the 
RDD[Status]. However, in this recipe, we will be extracting some data from 
twitter4j.Status and pushing it to ElasticSearch. For this purpose, a 
case class SimpleStatus is created. The reason why we are extracting 
data out as a case class is that twitter4j.Status has way too much 
information that we don't want to index:
case class SimpleStatus(id:String, content:String,  
date:Date, hashTags:Array[String]=Array[String](),

                        urls:Array[String]=Array[String](),

                        user:String, userName:String,  
userFollowerCount:Long)

The twitter4j.Status is converted to SimpleStatus using a convertToSimple 
function that extracts only the required information:

 def convertToSimple(status: twitter4j.Status): SimpleStatus = {
    val hashTags: Array[String] =  
status.getHashtagEntities().map(eachHT => eachHT.getText())
    val urlArray = if (status.getURLEntities != null)  
status.getURLEntities().foldLeft((Array[String]()))((r, c) => (r  
:+ c.getExpandedURL())) else Array[String]()
    val user = status.getUser()
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    val utcDate = new  
Date(dateTimeZone.convertLocalToUTC(status.getCreatedAt.getTime,  
false))

    SimpleStatus(id = status.getId.toString, content =  
status.getText(), utcDate,
      hashTags = hashTags, urls = urlArray,
      user = user.getScreenName(), userName = user.getName,  
userFollowerCount = user.getFollowersCount)
  }

Once we map the twitter4j.Status to SimpleStatus, we now have a 
RDD[SimpleStatus]. We can now iterate over the RDD[SimpleStatus] and push  
every RDD to ElasticSearch's "spark" index. "twstatus" is the index type. In RDBMS 
terms, an index is like a database schema and the index type is like a table:

stream.map(convertToSimple).foreachRDD { statusRdd =>
    println(statusRdd)
    statusRdd.saveToEs("spark/twstatus")
}

We could confirm the indexing by pointing to ElasticSearch's spark index using Sense,  
a must-have Chrome plugin for ElasticSearch, or simply by performing a curl request:

curl -XGET "http://localhost:9200/spark/_search" -d'
{
    "query": {
        "match_all": {}
    }
}'

The Sense plugin for Chrome can be downloaded from 
the Chrome store at: https://chrome.google.
com/webstore/detail/sense-beta/lhjgkmll
caadmopgmanpapmpjgmfcfig?hl=en.

https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
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Using Spark as an ETL tool
In the previous recipe, we subscribed to a Twitter stream and stored it in ElasticSearch. 
Another common source of streaming is Kafka, a distributed message broker. In fact,  
it's a distributed log of messages, which in simple terms means that there can be multiple 
brokers that has the messages partitioned among them.

In this recipe, we'll be subscribing the data that we ingested into ElasticSearch in the previous 
recipe and publishing the messages into Kafka. Soon after we publish the data to Kafka, we'll 
be subscribing to Kafka using the Spark Stream API. While this is a recipe that demonstrates 
treating ElasticSearch data as an RDD and publishing to Kafka using a KryoSerializer, the 
true intent of this recipe is to run a streaming classification algorithm against Twitter, which is 
our next recipe.

How to do it...
Let's look at the various steps involved in doing this.

1. Setting up Kafka: This recipe uses Kafka version 0.8.2.1 for Spark 2.10, which can 
be downloaded from https://www.apache.org/dyn/closer.cgi?path=/
kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz.

https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz
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Once downloaded, let's extract, start the Kafka server, and create a Kafka topic 
through three commands from inside our Kafka home directory:

1. Starting Zookeeper: Kafka uses Zookeeper (https://zookeeper.
apache.org/) to hold coordination information between Kafka servers.  
It also holds the commit offset information of the data so that if a Kafka 
node fails, it knows where to resume from. The Zookeeper data directory 
and the client port (default 2181) is present in zookeeper.properties. 
The zookeeper-server-start.sh expects this to be passed as a 
parameter for it to start:
bin/zookeeper-server-start.sh config/zookeeper.properties

2. Starting the Kafka server: Again, in order to start Kafka, the configuration 
file to be passed to it is server.properties. The server.properties, 
among many things specifies the port on which the Kafka server listens 
(9092) and the Zookeeper port it needs to connect to (2181). This is passed 
to the kafka-server-start.sh startup script:
bin/kafka-server-start.sh config/server.properties

3. Creating a Kafka topic: In really simple terms, a topic can be compared  
to a JMS topic with the difference that there could be multiple publishers  
as well as a single subscriber in Kafka. Since we are running the Kafka in  
a non-replicated and non-partitioned mode using just one Kafka server,  
the topic named twtopic (Twitter topic) is created with a replication factor 
of 1 and the number of partitions is 1 as well:
bin/kafka-topics.sh --create --zookeeper localhost:2181 
--replication-factor 1 --partitions 1 --topic twtopic

2. Pulling data from ElasticSearch: The next step is to pull the data from ElasticSearch 
and treat it as a Spark DataFrame other than the optional setting in Spark 
configuration to point to the correct host and port. This is just a one-liner.

The configuration change (if needed) is:
//Default is localhost. Point to ES node when required
  val conf = new SparkConf()
    .setAppName("KafkaStreamProducerFromES")
    .setMaster("local[2]")
    .set(ConfigurationOptions.ES_NODES, "localhost")
    .set(ConfigurationOptions.ES_PORT, "9200")

The following line queries the "spark/twstatus" index (that we published to in the 
last recipe) for all documents and extracts the data into a DataFrame. Optionally, you 
can pass in a query as a second argument (for example, "?q=fashion"):
  val twStatusDf=sqlContext.esDF("spark/twstatus")

https://zookeeper.apache.org/
https://zookeeper.apache.org/
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Let's try to sample the DataFrame using show():
twStatusDf.show()

The output is:

3. Preparing data to be published to Kafka: Before we do this step, let's go over what
we aim to achieve from this step. Like we discussed at the beginning of the recipe,
we will be running a classification algorithm against streaming data in the next recipe.
As you know, any supervised learning algorithm requires a training dataset. Instead
of us manually curating the dataset, we will be doing that in a very primitive fashion
by marking all the tweets that have the word fashion in them as belonging to the
fashion class and the rest of the tweets as not belonging to the fashion class.

We will just take the content of the tweet and convert it into a case class called
LabeledContent (similar to LabeledPoint in Spark MLlib):
case class LabeledContent(label: Double, content:
Array[String])

LabeledContent only has two fields:

 � label: This indicates whether the tweet is about fashion or not (1.0 if the 
tweet is on fashion and 0.0 if it is not)

 � content: This holds a space-tokenized version of the tweet itself

def convertToLabeledContentRdd(twStatusDf: DataFrame) = {
    //Convert the content alone to a (label, content) pair
    val labeledPointRdd = twStatusDf.map{row =>

val content =  
row.getAs[String]("content").toLowerCase()
val tokens = content.split(" ") //A very primitive 
space based tokenizer
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        val labeledContent=if (content.contains("fashion"))  
        LabeledContent(1, tokens)
        else LabeledContent(0, tokens)
        println (labeledContent.label, content)
        labeledContent
    }
    labeledPointRdd
}

4. Publishing data to Kafka using KryoSerializer: Now that we have the  
publish candidate (LabeledContent) ready, let's publish it to the Kafka  
topic. This involves just three lines.

 � Constructing the connection and transport properties: In properties,  
we configure the Kafka server port location and register the serializer that 
we use to serialize LabeledContent:
val properties = Map[String,  
Object](ProducerConfig.BOOTSTRAP_SERVERS_CONFIG ->  
"localhost:9092").asJava

 � Constructing the Kafka producer using the connection properties and 
the key and value serializer: The next step is to construct a Kafka producer 
using the properties we constructed earlier. The producer also needs 
a key and a value serializer. Since we don't have a key for our message, we 
fall back to Kafka's default, which fills in the hashcode by default, which we 
aren't interested on receipt.
val producer = new KafkaProducer[String,  
Array[Byte]](properties, new StringSerializer, new  
ByteArraySerializer)

 � Sending data to the Kafka topic using the send method: We then serialize 
LabeledContent using KryoSerializer and send it to the Kafka topic 
"twtopic" (the one that we created earlier) using the producer.send 
method. The only purpose of using a KryoSerializer here is to speed up 
the serialization process:
val serializedPoint = KryoSerializer.serialize(lContent)
        producer.send(new ProducerRecord[String,  
Array[Byte]]("twtopic", serializedPoint))

For the KryoSerializer, we use Twitter's chill library (https://github.com/
twitter/chill), which provides an easier abstraction over the serialization  
for Scala.

https://github.com/twitter/chill
https://github.com/twitter/chill
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The actual KryoSerializer is just five lines of code:
object KryoSerializer {
  private val kryoPool = ScalaKryoInstantiator.defaultPool

  def serialize[T](anObject: T): Array[Byte] =  
kryoPool.toBytesWithClass(anObject)
  def deserialize[T](bytes: Array[Byte]): T =  
kryoPool.fromBytes(bytes).asInstanceOf[T]

}

The dependency for Twitter chill that needs to be added to our build.sbt is:

"com.twitter" %% "chill" % "0.7.0"

The entire publishing method looks like this:

  def publishToKafka(labeledPointRdd: RDD[LabeledContent])  
{
    labeledPointRdd.foreachPartition { iterator =>

      val properties = Map[String, Object](ProducerConfig.
BOOTSTRAP_SERVERS_CONFIG ->  
"localhost:9092", "serializer.class" ->  
"kafka.serializer.DefaultEncoder").asJava
      val producer = new KafkaProducer[String,  
Array[Byte]](properties, new StringSerializer, new  
ByteArraySerializer)

      iterator.foreach { lContent =>
        val serializedPoint =  
KryoSerializer.serialize(lContent)
        producer.send(new ProducerRecord[String,  
Array[Byte]]("twtopic", serializedPoint))
      }
    }
  }
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5. Confirming receipt in Kafka: We could confirm whether the data is in Kafka using 
the JMX MBeans exposed by it. We'll use JConsole UI to explore MBeans. As you 
can see, the count of the messages is 24849, which matches the ElasticSearch 
document count (that was published in the previous recipe).

Using StreamingLogisticRegression to 
classify a Twitter stream using Kafka  
as a training stream

In the previous recipe, we published all the tweets that were stored in ElasticSearch to a 
Kafka topic. In this recipe, we'll subscribe to the Kafka stream and train a classification  
model out of it. We will later use this trained model to classify a live Twitter stream.
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How to do it...
This is a really small recipe that is composed of 3 steps:

1. Subscribing to a Kafka stream: There are two ways to subscribe to a Kafka stream 
and we'll be using the DirectStream method, which is faster. Just like Twitter 
streaming, Spark has first-class support for subscribing to a Kafka stream. This is 
achieved by adding the spark-streaming-kafka dependency. Let's add it to our 
build.sbt file:
"org.apache.spark" %% "spark-streaming-kafka" %  
sparkVersion

The subscription process is more or less the reverse of the publishing process even in 
terms of the properties that we pass to Kafka:
val topics = Set("twtopic")
val kafkaParams = Map[String,  
String]("metadata.broker.list" -> "localhost:9092")

Once the properties are constructed, we subscribe to twtopic using KafkaUtils.
createDirectStream:
val kafkaStream = KafkaUtils.createDirectStream[String,  
Array[Byte], StringDecoder,  
DefaultDecoder](streamingContext, kafkaParams,  
topics).repartition(2)

With the stream at hand, let's reconstruct LabeledContent out of it. We can do that 
through KryoSerializer's deserialize function:
val trainingStream = kafkaStream.map {
        case (key, value) =>
          val labeledContent =  
KryoSerializer.deserialize(value).asInstanceOf[LabeledContent]

2. Training the classification model: Now that we are receiving the LabeledContent 
objects from the Kafka stream, let's train our classification model out of them. We 
will use StreamingLogisiticRegressionWithSGD for this, which as the name 
indicates, is a streaming version of the LogisticRegressionWithSGD algorithm we saw 
in Chapter 5, Learning from Data. In order to train the model, we have to construct 
a LabeledPoint, which is a pair of labels (represented as a double) and a feature 
vector. Since this is a text, we'll use the HashingTF's transform function to generate 
the feature vector for us:
val hashingTf = new HashingTF(5000)

val kafkaStream = KafkaUtils.createDirectStream[String,  
Array[Byte], StringDecoder,  
DefaultDecoder](streamingContext, kafkaParams,  
topics).repartition(2)
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val trainingStream = kafkaStream.map {
        case (key, value) =>
          val labeledContent =  
KryoSerializer.deserialize(value).asInstanceOf[LabeledContent]
          val vector =  
hashingTf.transform(labeledContent.content)
          LabeledPoint(labeledContent.label, vector)
}

trainingStream now is a stream of LabeledPoint, which we will be using to 
train our model:

val model = new StreamingLogisticRegressionWithSGD()
      .setInitialWeights(Vectors.zeros(5000))
      .setNumIterations(25).setStepSize(0.1).setRegParam(0.001)

model.trainOn(trainingStream)

Since we specified the maximum number of features in our HashingTF to be 5000, 
we set the initial weights to be 0 for all 5,000 features. The rest of the parameters 
are the same as the regular LogisticRegressionWithSGD algorithm that trains on a 
static dataset.

3. Classifying a live Twitter stream: Now that we have the model in hand, let's use  
it to predict whether the incoming stream of tweets is about fashion or not. The 
Twitter setup in this section is the same as the first recipe where we subscribed  
to a Twitter stream:
val filter = List("fashion", "tech", "startup", "spark")
    val twitterStream =  
TwitterUtils.createStream(streamingContext, twitterAuth,  
filter, StorageLevel.MEMORY_AND_DISK)

The crucial part is the invocation of model.predictOnValues, which gives us the 
predicted label.  Once the prediction is made, we save them as text files in our local 
directory. It's not the best way to do it and we will probably want to push this data to 
some appendable data source instead.

val contentAndFeatureVector=twitterStream.map { status =>
      val tokens=status.getText().toLowerCase().split(" ")
      val vector=hashingTf.transform(tokens)
      (status.getText(), vector)
    }
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    val contentAndPrediction=model.predictOnValues(contentAndFeatu
reVector)

//Not the best way to store the results. Creates a whole  
lot of files
    contentAndPrediction.saveAsTextFiles("predictions",  
"txt")

In order to consolidate the predictions that are spread over multiple files, a really 
simple aggregation command was used:
find predictions* -name "part*" |xargs cat >> output.txt

Here is a sample of the prediction. The results are fairly okay considering the training 
dataset itself was not classified in a very scientific way. Also, the tokenization is just 
space-based, the data isn't scaled nor was the IDF used.
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Using GraphX to analyze Twitter data
GraphX is Spark's approach to graphs and computation against graphs. In this recipe, we will 
see a preview of what is possible with the GraphX component in Spark.

How to do it...
Now that we have the Twitter data stored in the ElasticSearch index, we will perform the 
following tasks on this data using a graph:

1. Convert the ElasticSearch data into a Spark Graph.

2. Sample vertices, edges, and triplets in the graph.

3. Find the top group of connected hashtags (connected component).

4. List all the hashtags in that component.

1. Converting the ElasticSearch data into a graph: This involves two steps:

1. Converting ElasticSearch data into a DataFrame: This step, like we saw in 
an earlier recipe, is just a one-liner:
def convertElasticSearchDataToDataFrame(sqlContext:  
SQLContext) = {
    val twStatusDf = sqlContext.esDF("spark/twstatus")
    twStatusDf
}

2. Converting DataFrame to a graph: Spark Graph construction requires an 
RDD for a vertex and an RDD of edges. Let's construct them one by one.

Vertex RDD requires an RDD of a tuple representing a vertexId and a 
vertex property. In our case, we'll just do a primitive hash code on the 
hashTag as the vertex ID and hashTag itself as the property:
 val verticesRdd:RDD[(Long,String)] = df.flatMap { tweet =>
      val hashTags =  
      tweet.getAs[Buffer[String]]("hashTags")
      hashTags.map { tag =>
        val lowercaseTag = tag.toLowerCase()
        val tagHashCode=lowercaseTag.hashCode().toLong
        (tagHashCode, lowercaseTag)
      }
 }
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For the edges, we construct an RDD[Edge] , which wraps a pair of vertex IDs 
and a property. In our case, we use the first URL (if present) as a property to 
the edge (we aren't using it for this recipe so an empty string should also be 
fine). Since there is a possibility of multiple hashtags for a tweet, we use the 
combinations function to choose pairs and then connect them together as 
an edge:

val edgesRdd:RDD[Edge[String]] =df.flatMap { row =>
      val hashTags = row.getAs[Buffer[String]]("hashTags")

      val urls = row.getAs[Buffer[String]]("urls")
      val topUrl=if (urls.length>0) urls(0) else ""

      val combinations=hashTags.combinations(2)

      combinations.map{ combs=>
        val firstHash=combs(0).toLowerCase().hashCode.toLong
        val  
secondHash=combs(1).toLowerCase().hashCode.toLong
        Edge(firstHash, secondHash, topUrl)
      }
}

Finally, we construct the graph using both RDDs:
val graph=Graph(verticesRdd, edgesRdd)

2. Sampling vertices, edges, and triplets in the graph: Now that we have our  
graph constructed, let's sample and see what the vertices, edges, and triplets  
of the Graph look like. A triple is a representation of an edge and two vertices 
connected by that edge:
graph.vertices.take(20).foreach(println)
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The output is:

graph.edges.take(20).foreach(println)

The output is:

graph.triplets.take(20).foreach(println)
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The output is:

3. Finding the top group of connected hashtags (connected component): As you 
know, a graph is made of vertices and edges. A connected component of a graph 
is just a part of the graph (a subgraph) whose vertices are connected to each other 
by some edge. If there is a vertex that is not connected to another vertex directly or 
indirectly through another vertex, then they are not connected and therefore don't 
belong to the same connected component.

GraphX's graph.connectedComponents provides a graph of all the vertices  
along with their component IDs:
val connectedComponents=graph.connectedComponents.cache()

Let's take the component ID with the maximum number of vertices and then extract 
the vertices (and eventually the hashtags) that belong to that component:
val ccCounts:Map[VertexId,  
Long]=connectedComponents.vertices.map{case (_, vertexId)  
=> vertexId}.countByValue

    //Get the top component Id and count
    val topComponent:(VertexId,  
Long)=ccCounts.toSeq.sortBy{case (componentId, count) =>  
count}.reverse.head
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Since topComponent just has the component ID, in order to fetch the hashTags 
of the top component, we need to have a representation that maps hashTag 
to a component ID. This is achieved by joining the graph's vertices to the 
connectedComponent vertices:
//RDD of HashTag-Component Id pair. Joins using vertexId
    val  
hashtagComponentRdd:VertexRDD[(String,VertexId)]=graph.vertices.
innerJoin(connectedComponents.vertices){ case  
(vertexId, hashTag, componentId)=>
      (hashTag, componentId)
    }

Now that we have componentId and hashTag, let's filter only the hashTags for the 
top component ID:
val topComponentHashTags=hashtagComponentRdd
            .filter{ case (vertexId, (hashTag,  
componentId)) => (componentId==topComponent._1)}
            .map{case (vertexId, (hashTag,componentId)) =>  
hashTag
    }

    topComponentHashTags

The entire method looks like this:
def getHashTagsOfTopConnectedComponent(graph:Graph[String,String])
:RDD[String]={
    //Get all the connected components
    val connectedComponents=graph.connectedComponents.cache()

    import scala.collection._

    val ccCounts:Map[VertexId,  
Long]=connectedComponents.vertices.map{case (_, vertexId) => 
vertexId}.countByValue

    //Get the top component Id and count
    val topComponent:(VertexId,  
Long)=ccCounts.toSeq.sortBy{case (componentId, count) =>  
count}.reverse.head
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    //RDD of HashTag-Component Id pair. Joins using  
vertexId
    val  
hashtagComponentRdd:VertexRDD[(String,VertexId)]=graph.vertices.
innerJoin(connectedComponents.vertices){ case  
(vertexId, hashTag, componentId)=>
      (hashTag, componentId)
    }

    //Filter the vertices that belong to the top component alone
    val topComponentHashTags=hashtagComponentRdd
            .filter{ case (vertexId, (hashTag,  
componentId)) => (componentId==topComponent._1)}
            .map{case (vertexId, (hashTag,componentId)) =>  
hashTag
    }

    topComponentHashTags

  }

4. List all the hashtags in that component: Saving the hashTags to a file is as simple 
as calling saveAsTextFile. The repartition(1) is done just so that we have a 
single output file. Alternatively, you could use collect() to bring all the data to the 
driver and inspect it:
def saveTopTags(topTags:RDD[String]){
    topTags.repartition(1).saveAsTextFile("topTags.txt")
}
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The number of hashtags in the top connected component for our run was 7,320. This shows 
that in our sample stream there are about 7,320 tags related to fashion that are interrelated. 
They could be synonyms, closely related, or remotely related to fashion. A snapshot of the file 
looks like this:

In this chapter, we briefly touched upon Spark streaming, Streaming ML, and GraphX. Please 
note that this is by no means an exhaustive recipe list for both topics and aims to just provide 
a taste of what Streaming and GraphX in Spark could do.
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