
[1]

www.allitebooks.com

http://www.allitebooks.org

Scala Functional Programming
Patterns

Grok and perform effective functional programming
in Scala

Atul S.Khot

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Scala Functional Programming Patterns

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-584-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Atul S. Khot

Reviewers
Subhajit Datta

Rui Gonçalves

Zahidul Islam

Steve Perkins

Hawk Weisman

Commissioning Editor
Julian Ursell

Acquisition Editor
Nikhil Karkal

Content Development Editor
Divij Kotian

Technical Editor
Pranjali Mistry

Copy Editor
Neha Vyas

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=80902fbf-0ffa-27a5-e5d8-5469d54c7aad
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7a01abf0-c659-413c-1794-51fbbd2c7001
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cf100f78-7b61-b8c4-9433-54aa55fe96e7
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=366400bc-1042-f287-6458-548a9f5fda73
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e0894944-b51d-019b-e017-53db7b60be21
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=338a884a-985c-9804-3d8c-53db72f95757
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=39819f69-e76f-88c6-cf2a-53db89b1c850
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=39819f69-e76f-88c6-cf2a-53db89b1c850
http://www.allitebooks.org

About the Author

Atul S. Khot learned programming by reading C code and figuring out how it
works. From there, he moved on to writing a lot of C++ code and then moved further
to Java and Scala. He is an avid open source advocate who loves scripting languages
and clean coding. He is ever ready to learn a new command-line trick. Atul currently
works at Webonise Labs, Pune. He was also a panelist for Dr. Dobb's Jolt Awards.
Last but not least, he is a trekking enthusiast and also a big foodie.

www.allitebooks.com

http://www.allitebooks.org

Aknowledgement

A big thanks to my late mother, Sushila S. Khot. Aai, you taught me human values.
You were a teacher all your life, and felt very deeply for young girls and their
education. I remember those countless occasions when you helped needy girls with
school supplies. You gave so much to the blind school and countless others. Looking
back, I feel so proud that you never differentiated between me and my sisters. I will
always be human, my dear mother, and will never let you down. I know in my heart
of hearts that you are just a prayer away!

A big thanks to my late father, Shriniwas V. Khot. Anna, to me you will always be
a hero who fought for a free and united India. I learned from you that freedom is
invaluable and life is not meant to be easy. Always a fierce fighter all your life, you
wanted me to stand up for what's right and just. You always encouraged me to take
the road less traveled. You are no more, but there are so many cherished moments.
Memories keep flooding back and I marvel at what gem of a father I had! You will
always live on in my memories!

I want to deeply thank the technical reviewers of this book, Rui Gonçalves, Steve
Perkins, Hawk Weisman, Zahidul Islam, and Shubhajit. I was continually amazed by
the depth of knowledge and insight your feedback carried. Needless to say, I learned
a lot from you all. It was simply great working with you all—y'all rock!

Hearthfelt thanks to the wonderful Scala community for all the support. I am
continually amazed by the spirit to help budding Scala programmers!

A special mention of my draft reviewer and editor, Divij Kotian. He has a super
sharp eye for detail, immense dedication, and has been a pillar of strength. In
addition to the meticulous reviews, Divij also coordinated all the review and
publishing phases. Divij you are a gem—you know your stuff!

A special thanks to Pranjali, Joanna, and Neha. I am continually amazed by all your
attention to detail in making sure that the book is error free. I feel privileged working
with you! Ever indebted.

www.allitebooks.com

http://www.allitebooks.org

Big thanks to Nikhil Karkal! Nikhil, you got us all together and gave me the
opportunity to work with all these amazing people. Without your support and help,
this book would not have been possible. Big thanks! You are the best!

Last but not least, thanks to my wife, Rupali. It is comforting to know you are
there always! And to Kalyani, my daughter—my precious, thanks for keeping
my hopes alive!

I would like to thank my colleagues at Webonise Lab for the wonderful environment,
support, and understanding. Working with you all has been a privilege!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Rui Gonçalves is an all round hardworking and dedicated software engineer.
He is an enthusiast of software architecture, programming paradigms, distributed
systems, algorithms, and data structures. He loves learning new stuff everyday and
working with state-of-the-art technologies. He loves the open source model and is an
active contributor. He has the ambition of building products and services that have a
great impact on society.

He currently works at ShiftForward, where he is a software engineer in the online
advertising field. He is focused on designing and implementing highly efficient,
concurrent, and scalable systems working in tandem with machine learning
solutions. In order to achieve this, he uses Scala as his main development language
on a day-to-day basis.

Steve Perkins is the author of Hibernate Search by Example and has over 15 years
of experience working with enterprise Java. He lives in Atlanta, GA, USA, with
his wife, Amanda, and their children, Drew and Katie. Steve currently works as an
architect at BetterCloud, where he writes software for Google Apps, Microsoft Office
365, and other cloud platforms.

When he is not writing code, Steve plays plays fiddle and guitar and enjoys working
with music production software. You can visit his technical blog at steveperkins.
com and follow him on Twitter at @stevedperkins.

www.allitebooks.com

http://www.allitebooks.org

Md Zahidul Islam is a software engineer working in a reporting team at
Confirmit, Inc. He specializes in stream processing, Apache Spark, and Scala.

He has a passion for large-scale distributed computing infrastructure (Hadoop),
messaging systems (RabbitMQ, Kafka), NoSQL databases (HBase, Cassandra,
MongoDB), and functional programing. He has also reviewed Scala for Machine
Learning, which is an excellent book on machine learning.

Currently, he is developing data-driven product features for reporting tools. Earlier
in his career, he worked with C#, ASP.NET, Web API, and everything around the
.NET ecosystem.

You can read his blog at http://zahidul-islam.com and follow him at
@zahidsharp or contact him directly at zahidsharp@outlook.com.

I would like to thank my wife, Sandra, who lovingly supports me in
everything I do. I'd also like to thank Packt Publishing and its staff
for giving me the opportunity to contribute to this book.

www.allitebooks.com

http://zahidul-islam.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Grokking the Functional Way 1

Abstractions 2
Concise expression 3
Functions 5
Immutable 7
Referential transparency 8
The problem – grouping continuous integers 10

Java code 11
Going scalaish 12
Thinking recursively... 13
Reusability – the commonality/variability analysis 14
The one-liner shockers 17

Scala idioms 18
Patterns and those aha! moments 19

The command design pattern 20
The strategy design pattern 21

Passing algorithms around 22
Summary 23

Chapter 2: Singletons, Factories, and Builders 25
Singletons – being one and only one 26
Null Objects – singletons in another garb 27

Null Objects – the Scala way 33
Options are container 36

Scala singletons 39
The apply() factory method 40
The factory method pattern 42
The Scala version 43

Table of Contents

[ii]

Builders 44
Ease of object creation 48
Scala shines again 49

Summary 51
Chapter 3: Recursion and Chasing your Own Tail 53

Recursive structures 54
Pattern matching 55

Deconstruction with case statements 56
Stack overflows 58

Tail recursion to the rescue 60
Getting the nth element of a list 61
An expression parser 63
Persistent data structures 70
Two forms of recursion 73
Summary 73

Chapter 4: Lazy Sequences – Being Lazy, Being Good 75
Illusion and reality – the proxy pattern 76
Hibernate's lazy loading 79
Lazy val – calling by need 80
Infinite sequences – Scala streams 81
Recursive streams 83
Memoization and the flyweight pattern 85
Call by name 87
Streams are collections 90
Sieve of Eratosthenes 92
A view to a collection 95
Summary 98

Chapter 5: Taming Multiple Inheritance with Traits 99
The iterator design pattern 100
Interfaces as types 104
The dreaded diamond 106
Traits – Scala's rich interfaces 108
Mix-ins – rich interfaces 110
Frills and thrills – the decorator pattern 111
Scala's easy and breezy decorations – stackable modifications 114
Dependencies injection pattern 116
A taste of the cake pattern 120
Sealed traits 123
Defeating the dreaded diamond 126
Summary 126

Table of Contents

[iii]

Chapter 6: Currying Favors with Your Code 127
Functions as first-class values 127
Roping in a scope 130
Local functions – hiding and biding their time 133
The underscore – Scala's Swiss army knife 135
A taste of the curry 138

Type inference 140
Of implicits and explicits 141
Stylish blocks 141

The loan pattern 142
Serving the curry 144
Frills and thrills – decorators again 150
Wrapping it up 152
Summary 153

Chapter 7: Of Visitors and Chains of Responsibilities 155
A tale of two hierarchies 156
The Visitor pattern 158

Many hues of pattern matching 161
De-structuring 163
Typed patterns 164
Pattern guards 165
Tuple explosion 165

Partial functions 167
Visitor pattern – the Scala way 169
Lifting it up 170

The chain of responsibility 171
Scalaish Chain Of Responsibilities 176
Match and mismatch – the collect idiom 178

Summary 180
Chapter 8: Traversals – Mapping/Filtering/Folding/Reducing 181

Iterating the Scala way 182
A validation problem 183

Setting the stage 183
First cut–using arrays 185
Second cut–using a map 187
Third cut–using a for expression 188
Fourth cut–using foldLeft 188
Fifth cut–using andThen 189
Sixth cut–using compose 191

Foreach–sugary sweetener 193
One generator 193
A generator and a filter 193

Table of Contents

[iv]

Two generators 194
Monads 196
Reduce 197
Summary 201

Chapter 9: Higher Order Functions 203
The strategy design pattern 204
A strategy in Scala land 206
Functors 208

Maps 209
Monads 211
FlatMap 212
Monoids 213
An inverted index 215
Pipes and filters 217
Pipes and filters – the Scala version 219
It is a Monoid 220
Lazy collections 221
Summary 225

Chapter 10: Actors and Message Passing 227
The recursive grep 228
The producer/consumer pattern 230
Threads – masters and slaves 232
Events 236
Immutability is golden 238
Akka actors take the stage 240
Summary 243

Chapter 11: It's a Paradigm Shift 245
Verbosity 246
Sorting it out! 247

Sorted 248
SortBy 248
SortWith 249
Scalaish Schwartzian transform 249

Functional error handling 253
Pattern matching 257

Threads and futures 257
Scala's Futures 259

Parser combinators 261
Summary 265

Index 267

[v]

Preface
This is a book on functional programming patterns using Scala. Functional
programming uses functions as basic building blocks. These are functions that don't
have any side effects. This challenges our notions about how to write programs. The
order of execution for such functions does not matter. We get to reason about them
in a referentially transparent manner. This can be a big help in proving correctness.
It feels just like a plain arithmetic problem, where (2+2)*(3+3) always equals 24. You
may evaluate the expression as 2+2 first, or as 3+3.

I got to know about the Unix culture early in my career. The Unix philosophy relies
on pipelining small programs, each doing functionally one and only one thing. One
can connect these processing nuggets together. In addition to these hundreds of
ready-made building blocks, you could write your own too. These could be easily
connected in the pipeline. These pipes and filters were a deeply influential concept as
a whole. When I saw Scala's combinators, options, and for comprehensions, I knew I
was looking at pipes and filters again. The nuggets in this case were Scala functions
instead of Unix processes. Understanding functional programming gives you a
new perspective on your code and programming in general. The other aspect of
pipelining is that you tend to reuse them intuitively, and you also write less. Though
you iterate lines of a text file in a Unix shell pipeline, you don't write any for loops.
These are done for you. You just specify which lines pass your criteria or how to
transform these lines or both.

Preface

[vi]

Scala allows you to do just that—albeit in a somewhat different form. You don't need
to write a for loop, and you keep away from loop counters. Instead, the language
invites you to write for comprehensions. Immutability is an actively advocated rule of
thumb. Another is avoiding side effects. Scala advocates both. As you probably know,
immutability paves the way for more robust concurrency. Why are these so important?
Simple, we need to reason about code. Any strategy that makes this activity controlled
and simpler is a godsend! Does going down the immutable route mean we end up
doing too much copying? How would this Copy On Write measure up against large
data structures? Scala has an answer for this in the form of structural sharing.

One-liners are very popular as they get a lot done in a line of code. Scala features
allow you to compose such one-liners. Instead of reiterating the same collection, you
can do it in one elegant expression. For example, creating an immutable class with
constructor and equality comparison defined that is bestowed with destructuring
powers is just a one-liner. We just define a case class. There are many situations
where Scala one-liners save a lot of programmer time and result in far less code.
Combinators such as map, flatMap, filter, and foreach are composed together to
express a lot of logic in a one-liner. How does it all affect a program design and
design patterns? Here are a few illustrative cases. The singleton design pattern
is used to ensure that only one instance of a class could ever exist. Null Objects
are specialized singletons that are used to avoid nulls and null checks. Scala's
Options give us a similar functionality. Scala's object keyword gives us ready-made
singletons. Singletons are specialized factories. A factory creates objects. Scala's
syntactic sugar give us a very succinct way to use the apply factory method.

The command design pattern encapsulates an object as a command. It invokes a
method on the object. Scala has parameters by name. These are not evaluated at
the call site but instead are evaluated at each use within the function. This feature
effectively replaces the command pattern with first-class language support. The
strategy pattern encapsulates algorithms and allows us to select one at runtime.
In Java, we could express the strategy as an interface and the varying algorithms
as concrete implementations. Scala's functions are first-class objects. You can pass
functions around as method arguments and return values. Functions can be very
effective substitutes for the strategy pattern. The ability to define anonymous
functions is really helpful here. The Decorator pattern is needed at times. It can be
used to decorate (that is, extend) the functionality of an object without modifying
it. Some design plumbing needs to be done though. Scala's stackable traits can
express the same design very elegantly. One use of the proxy design pattern is for
implementing lazy evaluation. When some computation is expensive, we do it only
when needed.

Preface

[vii]

As we are very familiar with eager evaluations, we create a list in memory and think
it is fully realized. However, just like eager lists, there are lazy lists too. If we think
of a typical OR (||) conditional statement, if the left operand is true, the right is not
evaluated. This is a very powerful concept. Scala's streams provide lazy lists.

Chain of responsibility is another handy pattern that is used to decouple the sender
of a request from its receiver and allows more than one object (a chain of objects) to
handle a request. If any object in the chain is not able to handle the request, it passes
the request to its next object in the chain. Scala's partial functions fit this bill nicely.
We can chain partial functions with Scala's orElse operator to realize the pattern.
When we write code, we need to handle errors. Scala's Try/Success/Failure again
allows us to write pipelines, and if any piece of the pipeline is an error, rest of the
pipeline processing is skipped.

We will look at all these concepts in greater detail. We will set up a problem, look at
the traditional Java solution, and then see how Scala changes the game.

Welcome to the Scala wonderland!

What this book covers
Chapter 1, Grokking the Functional Way, gives you an eagle's eye view of functional
programming and its advantages: succinct and readable code. Also, this chapter
compares the command pattern in Java and Scala.

Chapter 2, Singletons, Factories, and Builders, covers singletons and Null Objects as
specialized singletons. Scala Options are null objects. This also covers Scala's support
for factory method and builders.

Chapter 3, Recursion and Chasing Your Own Tail, discusses the concept of recursion
and Scala's support for it. It also looks at how recursion advocates immutability and
the concept of structural sharing.

Chapter 4, Lazy Sequences – Being Lazy, Being Good, talks about eager versus lazy
evaluation and the proxy design pattern. It also talks about Scala's streams and
infinite lists.

Chapter 5, Taming Multiple Inheritance with Traits, covers Scala traits, mix-ins, and
stackable modifications. It also covers dependency injection and the Cake pattern.

Chapter 6, Currying Favors with Your Code, covers lexical scope, closures, partially
applied functions, and currying. This chapter also discusses the loan pattern,
template method pattern, and another way to implement decorators.

Preface

[viii]

Chapter 7, Of Visitors and Chains of Responsibilities, covers the Visitor pattern and
its application. The other topics that are discussed are Scala's pattern matching
capabilities and the chain of responsibility pattern. We will also learn Scala
implementation using orElse and the collect idiom.

Chapter 8, Traversals – Mapping/Filtering/Folding/Reducing, covers iterators and
functional iteration using map, filter, fold, and reduce. This chapter introduces
Monads and explains ReduceLeft and ReduceRight.

Chapter 9, Higher Order Functions, discusses the strategy pattern and Scala version
using higher order functions. It covers map as a functor, flatMap as a Monad, and
foldLeft as Monoids. Here, you will also learn how to iterate lazy collections.

Chapter 10, Actors and Message Passing, showcases a case study to recursively grep a
directory for files that contain matching text. It also covers the producer consumer
pattern and the Master Slave pattern. It explains the concept of poison pills, event-
driven programming, immutability, and concurrency. It also talks about Akka and
Actors and how to reimplement recursive grep using Actors.

Chapter 11, It's a Paradigm Shift, teaches you how to sort in Scala and the
Schwarzian transform implemented in Scala. It discusses functional error handling
with Try/Success/Failure. And talks about Java Threads versus Scala's Futures.
Scala's Parser Combinators are also discussed here.

What you need for this book
You would need Scala installed—a version greater than or equal to 2.11. I refer to
pipelining a lot, so it would be pretty helpful if you are trying out the examples on
Linux or Mac. You can use cygwin too if it is a Windows box you are running.

Version 0.13 of the sbt tool (http://www.scala-sbt.org/) will also be needed.

A typical Java dev environment is assumed too. The examples are tested with Maven
version 3 and JDK 8.

Who this book is for
We assume that you have written Java code for a while. You also should have a
basic knowledge of Scala. A knowledge of Java and Scala fundamentals is assumed.
Familiarity with basic data structures such as binary trees and linked lists is assumed.

http://www.scala-sbt.org/

Preface

[ix]

This is a text about patterns and design ideas that you can use again and again. A
basic understanding of design patterns would be great. I have explained the problem
and the patterns and the typical object-oriented Java solution. The Scala solution
builds on top of all this know-how. The text also assumes that you have written
some multithreaded Java code. I have explained the necessary concepts, but haven't
explained multithreading from the ground up.

Most of the concepts are explained and pointers are provided for further reading.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

// Driver code
public static void main(String[] args) {
 Driver c = new Driver();
SomeInterface c1 = c.create(10); // 2
 SomeInterface c2 = c.create(20); // 3

 c1.printMsg(); // prints 10
c2.printMsg(); // prints 20
 }

Any command-line input or output is written as follows:

scala> def f(n: Int) = {

 | val k = (y: Int) => y < n // 1

 | k

 | }

f: (n: Int)Int => Boolean

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Grokking the Functional Way
Before we start learning Scala, let's first understand what functional programming
(FP) is. You may have used a spreadsheet while working. In a spreadsheet, there is a
bunch of equations and we enter values in the given cells for these equations. We get
the answers through these equations. When you enter the same values again, you get
the same answer and there are no fallouts.

At the core of FP is composition. Looking at a software system made up of parts,
we build bigger parts by composing smaller parts. If you think about it, most
complex systems are composed of parts, which in turn are composed of smaller
parts. Functional languages give us the means to make this composition. One of the
prominent functional languages that can be used for FP is Scala.

Scala in Italian means a staircase. If you look at the language's logo, you will see it's a
staircase. The language acts as a staircase through which we can ascend and become
better at programming. Scala also refers to the very many techniques that we can use
to control the complexity of large-scale systems.

We will begin to learn Scala by looking at abstractions. We will see why abstractions
are good and how Scala helps us to be abstract. Scala code is concise and expressive.
A lot of the concise expression is due to functions. Functions are an important
pillar of functional programming. In this chapter, we will look at pure and impure
functions. Reducing the number of moving parts to be used is an effective technique
to control programming complexity. Immutability is another pillar of FP that helps
us here. To see all this in effect, we will take a problem example and implement the
solution in Java. Then, we will solve the problem using Scala. Looking at a few Scala
one-liners will help us to get started with READ/EVALUATE/PRINT LOOP (REPL).
We will use Scala REPL extensively throughout the entire book.

Grokking the Functional Way

[2]

Finally, we will look at idioms and patterns. Traditional patterns in Scala look very
different from their Java counterparts. We will briefly look at the command and
strategy of Scala and see how functions are used to pass algorithms around.

Welcome to the Scala fun ride!

Abstractions
What do we mean by abstractions? Why are they important? To understand this,
we will compare two approaches. First, the "go to the wall and pull at one of the
wooden panels fitted into the rectangular hole" approach versus the "open the
door, please" approach.

A door is an abstraction. We really don't care whether it is made of wood or some
other material, or what type of a lock it has, or any other details. The details are
important, but not always. If we worry about the details always, we would quickly
get bogged down, and all the communication would effectively come to a halt.

A table is an abstraction, so is a chair, and so is a house. I hope you get the drift.
We want to be selectively ignorant of the details at times, and selective ignorance
is abstraction.

Now, you may ask why does it matter to us programmers? The reason is that it gets
things done in a compact manner.

For example, let's look at the following Scala code, which is used to count the
frequency of characters in a string:

scala> "hello world".toList.filter(_.isLetter).groupBy(x => x).map { y =>

 | y._1 -> y._2.size

 | }

res1: scala.collection.immutable.Map[Char,Int] = Map(e -> 1, l -> 3, h ->
1, r -> 1, w -> 1, o -> 2, d -> 1)

Isn't it compact?

On the Urban Dictionary website, http://www.urbandictionary.com/define.
php?term=cutie, the term "cutie" is defined as compact beauty—the kind you just
want to put in your pocket and keep beside you forever.

I was bowled over when I first saw it all. It is concise, short, packs a punch, and is
elegant. The Type Less Do More philosophy. Gets a lot done with less...

http://www.urbandictionary.com/define.php?term=cutie
http://www.urbandictionary.com/define.php?term=cutie

Chapter 1

[3]

To run the code snippet, fire up the Scala REPL. This looks a lot like
a command console, a prompt waiting for you to key in Scala code.
In a command terminal, typing just Scala fires up the REPL:
~> scala
It will give the following output:
Welcome to Scala version 2.11.7 (Java HotSpot(TM)
64-Bit Server VM, Java 1.8.0_25).

You can type in expressions to have them evaluated and type
help for more information. Let's try the following simple one line
commands:
scala> 1 + 1

res2: Int = 2

scala> "hello".length

res4: Int = 5

For me, Scala brought the thrill back to programming... You can do a great deal by
writing a few lines of code—less is more...

Scala gives you many tools, so the code is abstract and reusable...

Concise expression
You always want to be able to concisely express yourself. Let's try the following
command to create a string:

scala> val list = List("One", "two", "three", "Four", "five")

list: List[String] = List(One, two, three, Four, five)

We have created a list of strings. Note that we neither had to specify the type of the
list for this, nor any new keyword. We just expressed that we wanted a list assigned
to a read-only variable.

Code reviews do a lot of good to a code base. I keep looking for places where
I can replace a variable assignment with variable initialization. Refer to the
following URL for an example: http://www.refactoring.com/catalog/
replaceAssignmentWithInitialization.html.

http://www.refactoring.com/catalog/replaceAssignmentWithInitialization.html
http://www.refactoring.com/catalog/replaceAssignmentWithInitialization.html

Grokking the Functional Way

[4]

Scala helps us with the val keyword. With the use of this keyword, we can establish
the following:

• The initial value of variable must be specified (it is impossible for the variable
to remain uninitialized).

• The value of variable cannot ever be changed again (there is one less
moving part).

Why is this so important? A system with less moving parts is easier to understand
and explain. You will be knowing that Google is well known for its less-moving-parts
software. Let's try the following command to check for the uppercase in these characters:

scala> def hasUpperCaseChar(s: String) = s.exists(_.isUpper)

hasLowerCaseChar: (s: String)Boolean

What does s.exists(_.isUpper) do? In this code, I have a string and I am checking
whether it has one or more uppercase characters.

Note that I need to look at each character of the string to arrive at an answer as
output. However, I did not have to split the string into its constituent characters and
then work on each character.

I am just expressing the algorithm. The algorithm involves iterating all characters.
However, I did not write a loop. Instead, I expressed what I meant, concisely. Scala's
strings are collections of characters. We can try the following command to make use
of a filter method:

scala> list filter (hasUpperCaseChar)

res2: List[String] = List(One, Four)

Just like a string, List is again a collection, in this case, of strings. I used a list
method, filter, to weed out elements that did not satisfy the predicate.

If we were to write this imperatively, we would need a nested loop (a loop within
another loop). The first loop would take each string, and the inner loop would work
on each character of the string. We would need a list to collect the matching elements.

Instead of lists, we just declared what we wanted to happen. However, at some point
of time in the code the looping needs to happen! It does happen indeed, but behind
the scenes and in the filter method.

The filter method is a higher order function that receives the hasUpperCaseChar
function.

Chapter 1

[5]

Let's say, in addition to this method, we want only those string elements that have a
length greater than 3:

scala> list filter (x => hasLowerCaseChar(x) && x.size > 3)

res1: List[String] = List(Four)

We are again executing the algorithm; however, with a different match criteria. We
are passing a function in the form of a function literal. Each element in the list is
bound to x, and we run a check on x.

The preceding form of expression allows us to concisely express our intent. A large
part of this flexibility comes from the idea of sending small computations around
that are expressible without much ado. Welcome to functions!

Functions
Functional programming includes a lot about functions. There are different kinds of
functions in programming, for example, pure functions. A pure function depends
only on its input to compute the output. Let's try the following example to make use
of functions:

scala> val addThem = (x: Int, y: Int) => x + y + 1

addThem: (Int, Int) => Int = <function2>

scala> addThem(3,4)

res2: Int = 8

As long as the function lives, it will always give the result 8 given the input (3,4).
Take a look at the following example of a pure function:

Pure
function

x = 3

y = 4

x+y+1 8

Figure 1.1: Pure functions

Grokking the Functional Way

[6]

The functions worked on the input and produced the output, without changing any
state. What does the phrase "did not change any state" mean? Here is an example of a
not-so-pure function:

scala> var p = 1

p: Int = 1

scala> val addP = (x: Int, y: Int) => {

 | p += 1

 | x + y + p

 | }

addP: (Int, Int) => Int = <function2>

scala> addP(3, 4)

res4: Int = 9

scala> addP(3, 4)

res5: Int = 10

This addP function changes the world—this means that it affects its surroundings. In
this case, the variable p. Here is the diagrammatic representation for the preceding code:

impure
function

p+=1
x+y +p

Changes

P
value depends on

how many times mutated

???
depends on
value of p

x = 3

y = 4

Figure 1.2 :An impure function

Comparing addThem and addP, which of the two is clearer to reason about?
Remember that while debugging, we look for the trouble spot, and we wish to find it
quickly. Once found, we can fix the problem quickly and keep things moving.

For the pure function, we can take a paper and pen, and since we know that it is side
effects free, we can write the following:

addThem(3, 4) = 8

 addThem(1,1) = 3

 …

Chapter 1

[7]

For small numbers, we can do the function computation in our heads. We can even
replace the function call with the value:

scala> addThem(1,1) + addThem(3,4)

res10: Int = 11

scala> 3 + 8

res11: Int = 11

Both the preceding expressions are equivalent. When we replace the function, we
deal with referentially transparent expressions. If the function is a long running one,
we could call it just once and cache the results. The cached results would be used for
the second and subsequent calls.

The addP function, on the other hand, is referentially opaque.

Immutable
Each one of us has a name. Let's keep this simple—a first and last name. My first
name is Atul and my last name is Khot. If someone suddenly called me by the name
Prakash, things won't work!

Keeping aside cases such as writers taking a pen name (that is, Plum for PG
Wodehouse), commonly each one of us has a standard, official name. We simply
don't want parts of it changed to willy nilly. Let's try the following example:

scala> case class FullName(firstName: String, lastName: String)

defined class FullName

scala> val name = FullName("Bertie", "Wooster")

name: FullName = FullName(Bertie,Wooster)

scala> name.firstName = "Mrs. Bertie"

<console>:13: error: reassignment to val

 name.firstName = "Albert"

Scala stopped us changing the code of Woosters!! It just saved Bertie from getting
a wife!

In case you need a break and some light relief, Google The Code of the Woosters!

www.allitebooks.com

http://www.allitebooks.org

Grokking the Functional Way

[8]

Once a case class instance is created, it is sealed. You can read it, but you cannot
change it:

scala> name.firstName

res12: String = Bertie

scala> name.lastName

res13: String = Wooster

You can even look at the signified version of the instance that the compiler writes
for you:

scala> name

res14: FullName = FullName(Bertie,Wooster)

And you can destructure it using pattern matching. Immutability just reduces the
moving parts and helps us to restore sanity. This is a boon when threads enter the
picture.

Referential transparency
To understand referential transparency, let's first consider the following description:

Let me tell you a bit about India's capital, New Delhi. The Indian capital houses the
Indian Parliament. The Indian capital is also home to Gali Paranthe Wali, where you
get to eat the famous parathas.

We can also say the following instead:

Let me tell you a bit about India's capital, New Delhi. New Delhi houses the Indian
Parliament. New Delhi is also home to Gali Paranthe Wali, where you get to eat the
famous parathas.

Here, we substituted New Delhi with the Indian capital, but the meaning did not
change. This is how we would generally express ourselves.

The description is referentially transparent with the following commands:

scala> def f1(x: Int, y: Int) = x * y

f1: (x: Int, y: Int)Int

scala> def f(x: Int, y: Int, p: Int, q: Int)= x * y + p * q

f: (x: Int, y: Int, p: Int, q: Int)Int

scala> f(2, 3, 4, 5)

res0: Int = 26

Chapter 1

[9]

If we rewrite the f method as follows, the meaning won't change:

scala> def f(x: Int, y: Int, p: Int, q: Int)= f1(x, y) + f1(p, q)

f: (x: Int, y: Int, p: Int, q: Int)Int

The f1 method just depends upon its arguments, that is, it is pure.

Which method is not referentially transparent? Before we look at an example, let's
look at Scala's ListBuffer function:

scala> import scala.collection.mutable.ListBuffer

import scala.collection.mutable.ListBuffer

The ListBuffer is a mutable collection. You can append a value to the buffer and
modify it in place:

scala> val v = ListBuffer.empty[String]

v: scala.collection.mutable.ListBuffer[String] = ListBuffer()

scala> v += "hello"

res10: v.type = ListBuffer(hello)

scala> v

res11: scala.collection.mutable.ListBuffer[String] = ListBuffer(hello)

scala> v += "world"

res12: v.type = ListBuffer(hello, world)

scala> v

res13: scala.collection.mutable.ListBuffer[String] = ListBuffer(hello,
world)

Armed with this knowledge, let's now look at the following command:

scala> val lb = ListBuffer(1, 2)

lb: scala.collection.mutable.ListBuffer[Int] = ListBuffer(1, 2)

scala> val x = lb += 9

x: lb.type = ListBuffer(1, 2, 9)

scala> println(x.mkString("-"))

Grokking the Functional Way

[10]

1-2-9

scala> println(x.mkString("-"))

1-2-9

However, by substituting x with the expression (lb += 9), we get the following:

scala> println((lb += 9).mkString("-")) // 1

1-2-9-9

scala> println((lb += 9).mkString("-")) // 2

1-2-9-9-9

This substitution gave us different results. The += method of ListBuffer is not a
pure function as there is a side effect that occurred. The value of the lb variable
at 1 and 2 is not the same.

The problem – grouping continuous
integers
A while back, I wanted a simple and elegant way to solve the following problem:

Given: A sorted list of numbers

When: We group these numbers

Then: Each number in a group is higher by one than its predecessor. So, let's be good
and write a few tests first:

 @Test
 public void testFourGroup() {
 List<Integer> list = Lists.newArrayList(1, 2, 3, 4, 5, 9, 11,
 20, 21, 22);
 List<List<Integer>> groups = groupThem.groupThem(list);
 assertThat(groups.size(), equalTo(4));
 assertThat(groups.get(0), contains(1, 2, 3, 4, 5));
 assertThat(groups.get(1), contains(9));
 assertThat(groups.get(2), contains(11));
 assertThat(groups.get(3), contains(20, 21, 22));
 }
 @Test
 public void testNoGroup() {
 List<Integer> emptyList = Lists.newArrayList();
 List<List<Integer>> groups = groupThem.groupThem(emptyList,

Chapter 1

[11]

 new MyPredicate());
 assertThat(groups, emptyIterable());
}
 @Test
 public void testOnlyOneGroup() {
 List<Integer> list = Lists.newArrayList(1);
 List<List<Integer>> groups = groupThem.groupThem(list,
 new MyPredicate());
 assertThat(groups.size(), equalTo(1));
 assertThat(groups.get(0), contains(1));
 }

We will make use of the excellent Hamcrest matchers (and the excellent Guava
library) to help us express succinctly what we want our code to do.

Java code
You know the drill! Let's roll up our sleeves and dish out some code. The following
looks pretty good:

 public List<List<Integer>> groupThem(final List<Integer> list) {
 final List<Integer> inputList =
 Colletions.unmodifiableList(list);
 final List<List<Integer>> result = Lists.newArrayList();
 int i = 0;
 while(i < inputlist.size()){
 i = pickUpNextGroup(i, inputList, result); // i must progress
 }
 return result;
 }

 private int pickUpNextGroup(final int start, final
 List<Integer> inputList,
 final List<List<Integer>> result) {
 Validate.isTrue(!inputList.isEmpty(),
 "Input list should have at least one element");
 Validate.isTrue(start <= inputList.size(), "Invalid start
 index");

 final List<Integer> group = Lists.newArrayList();

 int currElem = inputList.get(start);

Grokking the Functional Way

[12]

 group.add(currElem); // We will have at least one element
 in the group

 int next = start + 1; // next index may be out of range

 while (next < inputList.size()) {
 final int nextElem = inputList.get(next); // next is in range
 if (nextElem - currElem == 1) { // grouping condition
 group.add(nextElem);
 currElem = nextElem; // setup for next iteration
 } else {
 break; // this group is done
 }
 ++next;
 }
 result.add(group); // add the group to result list
 Validate.isTrue(next > start); // make sure we keep moving
 return next; // next index to start iterating from
 // could be past the last valid index
 }

This code has a lot of subtlety. We use the Apache commons 3 validation API for
asserting the invariants. Download this book's source code to check out the unit test.

We are using the excellent Guava library to work with lists. Note the ease of this
library, with which we can create and populate the list in one line. Refer to https://
code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained
for more details.

We are careful to first make the input list an unmodifiable list—to protect ourselves
from stepping on our toes... We also need to carefully arrange the iteration to make
sure that it eventually terminates and we do not accidentally access a non-existent
list index (try to say it without gulping).

Going scalaish
Remember the sermon on being abstract? Our Java code is dealing with a lot of
higher level and lower level details—all at the same time... We really don't want to
do that; we wish to selectively ignore the details... We really don't want to deal with
all the corner cases of iteration—the Java code is worried stiff about looking at two
consecutive elements and the corner cases.

https://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained
https://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained

Chapter 1

[13]

What if this was somehow handled for us so we can focus on the business at hand?
Let's take a look at the following example:

def groupNumbers(list: List[Int]) = {
 def groupThem(lst: List[Int], acc: List[Int]): List[List[Int]] = lst
match {
 case Nil => acc.reverse :: Nil
 case x :: xs =>
 acc match {
 case Nil => groupThem(xs, x :: acc)
 case y :: ys if (x - y == 1) =>

 case _ =>
 acc.reverse :: groupThem(xs, x :: List())
 }
 }
 groupThem(list, List())
}
groupNumbers(x)

Thinking recursively...
This version looks a lot better—doesn't it? We use features such as nested functions
and recursion and get stuff such as immutability for free... A list in Scala is
immutable.In Java, we need to work a bit more to make things immutable. In Scala,
it is the other way around. You need to go a little further to bring in mutability... We
also use something called persistent data structures that have nothing to do with
databases here. We will look at it in detail in a while...

However, a bit better version follows—meaning a tail-recursive version. Take a look
at the following example of it:

def groupNumbers(list: List[Int])(f: (Int, Int) => Boolean) :
List[List[Int]] = {
 @tailrec
 def groupThem(lst: List[Int], result: List[List[Int]], acc:
List[Int]): List[List[Int]] = lst match {
 case Nil => acc.reverse :: result
 case x :: xs =>
 acc match {
 case Nil => groupThem(xs, result, x :: acc)

Grokking the Functional Way

[14]

 case y :: ys if (x - y == 1) =>

 groupThem(xs, result, x :: acc)

 case _ =>
 groupThem(xs, acc.reverse :: result, x :: List())
 }
 }
 val r = groupThem(list, List(), List())
 r.reverse
}

The @tailrec function does some good to our code. This is an annotation that we
put on a method. We use it to make sure that the method will be compiled with tail
call optimization (TCO). TCO converts the recursive form into a loop.

If the Scala compiler cannot apply TCO, it flags an error. Recursion and TCO are
covered in detail in Chapter 3, Recursion and Chasing Your Own Tail.

Now, having set the stage—let's look at the reusability feature...

Reusability – the commonality/variability
analysis
Instead of a fixed grouping criteria, could we make the Java version more dynamic?
Instead of the expressing the condition directly in the code, we could wrap up the
condition as a predicate:

if (nextElem - currElem == 1) { // grouping condition

A predicate is a function that returns a Boolean value. It should take two numbers
and tell whether the predicate is true or false?

Now there could be multiple predicates. For example, we might want to find
elements that differ by 2 or 3 numbers. We can define an interface as follows:

public interface Predicate {
 boolean apply(int nextElem, int currElem);
}

public class MyPredicate implements Predicate {

 public boolean apply(int nextElem, int currElem) {
 return nextElem - currElem == 1;
 }
}

Chapter 1

[15]

Why would we do this? We would do this for two reasons:

• We would want to reuse the algorithm correctly and pick up two consecutive
elements. This algorithm would handle all corner cases as in the previous
cases.

• The actual grouping criteria in our case is nextElem – currElem == 1, but
we can reuse the previous code to regroup the numbers using another criteria.

Here is how grouping would look; I am just showing the changed code:

public List<List<Integer>> groupThem(List<Integer> list, Predicate
myPredicate) {
 ...
 while (int i = 0; i < inputList.size();) {
 i = pickUpNextGroup(i, inputList, myPredicate, result); //
i must
 // progress
 ...
 }
}

private int pickUpNextGroup(int start, List<Integer> inputList,
Predicate myPredicate,
 List<List<Integer>> result) {
 ...
 final int nextElem = inputList.get(next); // next is in range
 // if (nextElem - currElem == 1) { // grouping condition
 if (myPredicate.apply(nextElem, currElem)) { // grouping condition
 group.add(nextElem);
 ...
 }
}

It is some work to define and use the predicate. Scala makes expressing this
variability pretty easy, as we can use functions. Just pass on your criteria as a
function and you are good to go:

def groupNumbers(list: List[Int])(f: (Int, Int) => Boolean) : // 1 = {

 def groupThem(lst: List[Int], acc: List[Int]): List[List[Int]] = lst
match {

 case Nil => acc.reverse :: Nil

 case x :: xs =>

 acc match {

 case Nil => groupThem(xs, x :: acc)

Grokking the Functional Way

[16]

 case y :: ys if (f(y, x)) =>

 // 2

 groupThem(xs, x :: acc)

 case _ =>

 acc.reverse :: groupThem(xs, x :: List())

 }

 }

 groupThem(list, List())

}

val p = groupNumbers(x) _ // 3

p((x, y) => y - x == 1) // 4

p((x, y) => y - x == 2) // 5

In 1, we use the function - (f: (Int, Int) => Boolean).

The f: (Int, Int) => Boolean syntax means that f is a function
parameter. The function takes two Int params and returns Boolean.
Here is a quick REPL session to understand this better:

scala> val x : (Int, Int) => Boolean = (x: Int, y: Int)
=> x > y
x: (Int, Int) => Boolean = <function2>

scala> x(3, 4)

res0: Boolean = false

scala> x(3, 2)

res1: Boolean = true

scala> :t x

(Int, Int) => Boolean

We are using the t feature of the REPL to look at the type of x.

This is a function—a bit of code we can pass around—that corresponds to the
previous Java predicate snippet. It is a function that takes two integers and
returns a Boolean.

(A function is in fact a class that mixes in a trait, function2 in our case).

At 2, we use it. Now comes the fun part.

Chapter 1

[17]

At 3, we hold on to everything else except the function. And at 4 and 5, we just pass
different functions. It would be more correct to say that we use function literals. lo
and behold —we get the answers right.

This code also shows some currying and partially applied functions in action… We
cover both of these features in Chapter 6, Currying Favors with Your code.

The one-liner shockers
Have you heard this phrase anytime: it is just a one-liner! You see all the work done
in a single line of code, it seems almost magical. The Unix shell thrives on these
one-liners. For example:

 seq 1 100 | paste -s -d '*' | bc

Phew! This single command line generates a sequence of numbers, 1 to 100,
generates a multiplication expression from these, and feeds the same to bca
calculator that does the actual multiplication.

Scala has a legion of these. Here is one applied to our problem by using scalaz library.

To try the following snippet, you need to install the scalaz library.
It is not part of the Scala standard library. Here are a few simple
instructions to install it.
Create a directory of your choice and switch to it. Next, download
and install the Simple Build Tool (sbt) from http://www.
scala-sbt.org/download.html.
/Users/Atulkhot/TryScalaz> sbt
[info] Set current project to tryscalaz (in build
file:/Users/Atulkhot/TryScalaz/)

> set scalaVersion := "2.11.7"

… // output elided

> set libraryDependencies += "org.scalaz" %%
"scalaz-core" % "7.1.0"

… // output elided

> console

…

http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/download.html

Grokking the Functional Way

[18]

Now the following snippet should work after installing the scalaz library:

scala> import scalaz.syntax.std.list._

import scalaz.syntax.std.list._

scala> List(1, 2, 3, 4, 6, 8, 9) groupWhen ((x,y) => y - x == 1)

res3: List[scalaz.NonEmptyList[Int]] = List(NonEmptyList(1, 2, 3, 4),
 NonEmptyList(6), NonEmptyList(8, 9))

Using functions the solution is just a one-liner:

scala> List(1, 3, 4, 6, 8, 9) groupWhen ((x,y) => y - x == 2)

res4: List[scalaz.NonEmptyList[Int]] = List(NonEmptyList(1, 3),
NonEmptyList(4, 6, 8), NonEmptyList(9))

So we are just not writing any of the supporting code—just stating our criteria
for grouping.

You can read more about Scalaz at http://eed3si9n.com/learning-scalaz/.

Scala idioms
When do we know a language? In English, when we say a penny for your thoughts,
we are using an idiom. We can express ourselves more succinctly and natively using
these. Beating around the bush is another one. If we pick up enough of these and
hurl them around at times, this will makes us fluent.

It is almost the same with programming languages. You see a construct time and
again and make use of notable features of a specific programming language. Here is
a sample of idioms from a few prominent languages.

For example, here is an idiomatic Scala way to sum up two lists of numbers:

scala> val d1 = List(1, 2, 3, 4, 5)

d1: List[Int] = List(1, 2, 3, 4, 5)

scala> val d2 = List(11, 22, 33, 44, 55)

d2: List[Int] = List(11, 22, 33, 44, 55)

scala> (d1, d2).zipped map (_ + _)

res0: List[Int] = List(12, 24, 36, 48, 60)

http://eed3si9n.com/learning-scalaz/

Chapter 1

[19]

We could do this in a roundabout way; however, note that your Scala colleagues
would quickly comprehend what is happening. Try the following command:

scala> (1 to 100).map(_ * 2).filter(x => x % 3 == 0 && x % 4 == 0 && x
% 5 == 0)

res2: scala.collection.immutable.IndexedSeq[Int] = Vector(60, 120, 180)

For numbers from 1 to 100, we multiply each number by 2. We select those numbers
that are divisible by 3, 4, and 5.

Here we are chaining method calls together. Each method returns a new value. The
input is left unmodified. The intermediate values are threaded from call to call.

We could also write the preceding command as follows

scala> val l1 = 1 to 100

… // output elided

scala> val l2 = l1.map(_ * 2)

 … // output elided

scala> val l3 = l2.filter(x => x % 3 == 0 && x % 4 == 0 && x % 5 == 0)

l3: scala.collection.immutable.IndexedSeq[Int] = Vector(60, 120, 180)

However, the fluent API style is more idiomatic.

You can learn more about fluent interfaces at http://www.
martinfowler.com/bliki/FluentInterface.html.

People relate easily to idiomatic code. When we learn and use various Scala idioms,
we will write code in the Scala way.

Patterns and those aha! moments
Patterns have more to do with a software design such as how to compose things
together, the kind of design template to be used, and so on. They are a lot more
about interactions between classes and objects. Patterns are design recipes, and they
illustrate a solution to a recurring design problem. However, idioms are largely
specific to a language and patterns are more general and at a higher level. Patterns
are also mostly language independent.

You can (and usually do) implement the same design patterns in the language you
are working with.

http://www.martinfowler.com/bliki/FluentInterface.html
http://www.martinfowler.com/bliki/FluentInterface.html

Grokking the Functional Way

[20]

The command design pattern
The command design pattern encapsulates an object. It allows you to invoke a method
on the object at a later point. For example, we are used to the following code line:

Given a Java object:

 a.someMethod(arg1, arg2);
 a.method1(arg1, arg2);
 a.method2(arg3);

We expect the call a.method1 to complete before the a.method2 call starts. On the
other hand, consider a real life situation.

Let's say you go to a restaurant, sit at a table, and order food. The waiter scribbles
down the order on a piece of paper. This piece of paper then goes to the kitchen,
someone cooks the food, and the food is served. It makes sense to prepare food for
someone who ordered earlier, so your order is queued.

In the preceding paragraph, the piece of paper holds the details of your order. This
is the command object. The preceding description also talks about a queue where the
someone who cooks is the invoker—he puts things in motion as per your command.
Add the undo() functionality and you have the essence of the command design
pattern. Database transactions need to undo the commands on failure—the rollback
semantics, for example.

Here is a simple first cut as example:

def command(i : Int) = println(s"---$i---")

def invokeIt(f : Int => Unit) = f(1)

invokeIt(command)

The def method gets converted to a function. This is called an ETA
expansion. We will soon be looking at the details.

This is a bit unpalatable though. I can possibly pass any function whatsoever and
possibly wreak havoc. So, to constrain the things we can possibly pass on to the
invoker, we take a bit of help from the compiler by typing the following commands:

scala> case class Command(f: Int => Unit)

defined class Command

scala> def invokeIt(i: Int, c: Command) = c.f(i)

Chapter 1

[21]

invokeIt: (i: Int, c: Command)Unit

scala> def cmd1 = Command(x => println(s"**${x}**"))

cmd1: Command

scala> def cmd2 = Command(x => println(s"++++${x}++++"))

cmd2: Command

scala> invokeIt(3, cmd1)

3

scala> invokeIt(5, cmd2)

++++5++++

It is so terse.

The strategy design pattern
Strategy helps us to define a set of algorithms, encapsulates each step, and selects
one as appropriate.

Oh boy! Here it is. We surely have used the java.util.Comparator strategy
interface at times that allows us to vary the compare algorithm as we see fit
so we can sort arrays at will. Let's try the following example:

 Integer[] arr = new Integer[] { 1, 3, 2, 4 };
 Comparator<Integer> comparator = new Comparator<Integer>() {
 @Override
 public int compare(Integer x, Integer y) {
 return Integer.compare(y, x); // the strategy algorithm –
 // for reverse sorting
 }
 };
 Arrays.sort(arr, comparator);
 System.out.println(Arrays.toString(arr));

Scala makes it a breeze by using these strategy... Type the following command to sort
an array:

scala> List(3, 7, 5, 2).sortWith(_ < _)

res0: List[Int] = List(2, 3, 5, 7)

Grokking the Functional Way

[22]

Passing algorithms around
We need this ability to plug in an algorithm as needed. When we start applying
a strategy, we really try to apply the Open/Closed principle (OCP). We don't
touch the sort algorithm internals, that is, the sort implementation is closed for
modification. However, by passing in a comparator, we can use the algorithm to sort
objects of various classes that are open for extension.

This open for extension feature is realized very easily in Scala, as it allows us to pass
functions around.

Here's another code snippet as an example of passing functions:

def addThem(a: Int, b: Int) = a + b // algorithm 1

def subtractThem(a: Int, b: Int) = a - b // algorithm 2

def multiplyThem(a: Int, b: Int) = a * b // algorithm 3

def execute(f: (Int, Int) => Int, x: Int, y: Int) = f(x, y)

println("Add: " + execute(addThem, 3, 4))

println("Subtract: " + execute(subtractThem, 3, 4))

println("Multiply: " + execute(multiplyThem, 3, 4))

Here, these various strategy algorithms are functions—no boilerplate. Imagine
writing this in Java. This code is possible because in Scala, we can pass functions
around as objects. Furthermore, we can use a method where a function is expected:

val divideThem = (x: Int, y: Int) => x / y

println("Divide: " + execute(divideThem, 11, 5))

Scala's functions are first-class objects, meaning they can be sent to a method and
returned from a method, just like a number or string. The ability to pass functions to
other functions is a very powerful concept. It is one of the major pillars of FP, as we
will soon see.

Chapter 1

[23]

Summary
Scala is expressive and rich with tools that help us to eliminate boilerplates. It allows
us to concisely express the intention of programming. Functions help us reuse the
common facilities, freeing us from coding them every time.

Pure functions are simpler to reason about, as there are lot less moving parts. We
can think of them in terms of referential transparency. Impure functions are hard
to reason with. We saw how making things immutable also helps in reducing these
moving parts.

Idioms are what make us use a language effectively. This is true for programming
languages. Scala is a feature-rich functional programming language. We got a bird's
eye view of a few Scala features, such as recursion and functions.

Design patterns are a programmer's vocabulary. Scala gives us a fresh perspective of
patterns, and we saw how the use of functions makes using design patterns so very
easy in Scala.

We implemented the solution to a problem in Java and Scala. We saw how succinct
and expressive the Scala code is compared to its Java counterpart.

We got our feet wet in the Scala land. Let's look at these features in detail and see
how Scala makes programming cool and fun again. We will start with singleton and
factories. Get, set, and go!

[25]

Singletons, Factories,
and Builders

It may sound funny—and I may be stating the obvious—but everyone needs to
be born at some point. Go ahead and have a good laugh at that. It is that obvious.
Objects, too, need to be born at some point to do useful work. Objects have a lifetime
as well. An object is constructed—and hopefully it does something useful before it
eventually dies.

In Java we can see the object such as:

 Point p = new Point(23, 94);

We know what is going on—an object of class point is created; its constructor-
invoked p is a reference to this newly created object.

At times, we want explicit control of the object-creation process. There are times
when we want to allow creation of only one instance of a class. Creational design
patterns deal with object-creation mechanisms. Refer to https://sourcemaking.
com/design_patterns/creational_patterns for more information on creational
patterns.

Creational patterns help create objects in a manner suitable to the situation. Some
expensive objects may need to be lazy-initialized. Refer to http://martinfowler.
com/bliki/LazyInitialization.html for a very nice introduction to lazy
initialization.

Scala provides some nifty ways for lazy initialization, as we will soon see.

https://sourcemaking.com/design_patterns/creational_patterns
https://sourcemaking.com/design_patterns/creational_patterns
http://martinfowler.com/bliki/LazyInitialization.html
http://martinfowler.com/bliki/LazyInitialization.html

Singletons, Factories, and Builders

[26]

We will first look at singletons and then Null Object, a specialized singleton, to
avoid null checks. We will use our understanding to implement a set of numbers
as a Binary Search Tree (BST). Scala Options are an alternative to null check-based
programming. We will rewrite the set implementation in Scala using Options. We
will also look at how singletons work in Scala and related idioms.

The next pattern we will look at is factories. We will look at the Java version first and
redo the solution in Scala. We will look at some related Scala idioms too.

Singletons – being one and only one
A singleton is a class of which only a single instance can exist. How do we prevent
anyone from creating yet another instance? The solution is to make the constructor
inaccessible. Here it is:

public class Singleton {
 // Eager initialization
 private static final Singleton instance = new Singleton(); // 1

 private Singleton() { // 2
 /* client code cannot create instance */
 }

 // Static factory method
 public static Singleton getInstance() { // 3
 return instance;
 }

 // Driver code
 public static void main(String[] args) {
 System.out.println(Singleton.getInstance());
 System.out.println(Singleton.getInstance());
 }
}

Dissecting the code:

• At 1, the static initializer creates the instance—also the final keyword ensures
that the instance cannot be redefined.

• At 2, the constructor access is private, so only the class methods can access it.
• At 3, the public factory method gives access to the client code.

If you run the Java program, you will see the same object reference printed twice.

Chapter 2

[27]

A singleton has many forms. There is a null check version and a double-checked
locking pattern version. The preceding version is a nicer way—it is the eager-
initialized version though.

There is a related pattern called Monostate. Refer to http://
www.objectmentor.com/resources/articles/
SingletonAndMonostate.pdf for more on this.

Null Objects – singletons in another garb
One popular form in which singletons are used is the Null Object pattern. Let's see
what a Null Object is.

Java gives us the null reference to indicate a missing value. We are not supposed to
call a method on it as there is no object. If, erroneously, we do, we are greeted with a
Null Pointer Exception (NPE). When we design methods to return nulls, the client
code that calls the method needs to check assiduously. This is what a typical null
check-based Java code looks like:

Point p = makeAPoint(); // a method that returns null in some
cases

if (p != null) { // the dreaded null check – onus is on us...
// We are on sure grounds

}

The problem is that the onus term is on us to check for a reference being null.
Every call to makeAPoint() needs to be checked, as shown earlier. This soon
becomes tedious.

The inventor of the null keyword called it his billion-dollar mistake!!!
Please see http://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-Hoare.

What is the way out? How do we return missing values? Instead of returning null,
return a Null Object. Why? The point being is that it is a kind of point and not a null
reference. So no NPEs are ever possible.

www.allitebooks.com

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf
http://www.allitebooks.org

Singletons, Factories, and Builders

[28]

Linked lists and trees are restricted forms of a graph. Trees have parent/child (and at
times sibling) relationships and they don't contain cycles. Hence, trees are Directed
Acyclic Graphs (DAG). A tree needs to end somewhere, the nodes without any
children. These are leaf nodes and they use null pointers to indicate termination.

However, instead of a null pointer, we can use a sentinel node. A sentinel node is
like a train terminus, a special node in a linked list or a tree, indicating termination.
It is used as an alternative over nulls. Sentinel nodes do not hold any meaningful
data. The traversal algorithms are slightly modified, so when a sentinel node is hit,
we know we are done.

For example, let's look at a BST, designed with a sentinel node instead of nulls. BSTs
are a well-known data structure, the nodes arranged such that the parent value is
greater than the left child and lesser than the right child. A BST can be used as a set.

A set is a collection of unique values. If we try inserting duplicate values, the values
are discarded. For example:

scala> val s = Set(1, 1, 2, 3, 4, 4, 2, 3)

s: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)

scala> println(s)

Set(1, 2, 3, 4)

scala> s + 4

res9: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)

scala> s + 5

res10: scala.collection.immutable.Set[Int] = Set(5, 1, 2, 3, 4)

We have got a new set. The old set is still as before.

scala> s

res11: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)

Chapter 2

[29]

We consider how to implement a set of numbers using BSTs. Note the terminating
sentinel node and both its left and right arms are pointing at itself. Here it is depicted
pictorially:

72

50 95

25 65 88 112

Sentinel

Figure 2.1: A Binary tree

First, an illustrative unit test; using those Hamcrest beauty matchers—the contains
helper method is statically imported—makes sure our INORDER expectation is
not violated.

The following test case adds some numbers—the insert call creates a tree. We
performed an INORDER traversal on the BST. An INORDER traversal gets us the
values in a sorted order:

package com.packt.chapter02;

import static org.hamcrest.Matchers.contains;
import static org.junit.Assert.assertThat;

import java.util.List;

import org.junit.Test;

import com.google.common.collect.Lists;

public class NodeTest {

 @Test
 public void testTraversal() {
 Node tree = Node.createTreeWithRoot(72);
 tree.insert(50);
 tree.insert(25);
 tree.insert(65);
 tree.insert(95);
 tree.insert(88);

Singletons, Factories, and Builders

[30]

 tree.insert(112);

 List<Integer> list = Lists.newArrayList();

 tree.traverseInOrder(list);

 assertThat(list, contains(25, 50, 65, 72, 88, 95, 112));
 }

}

The implementation of the tree algorithms implements the tree data structure. The
tree is terminated with a sentinel node. A Node is a binary search tree node. Our tree
represents a set of numbers. Each tree node contains a number. The tree is formed
by linking up child nodes. All values in the left sub-tree are less than the node value.
Values in the right sub-tree are greater. We don't allow for duplicates as essentially
our tree represents a set of numbers.

The sentinel node is represented by the nullNode. Note that it is never exposed to
the outside world.

The Node class encapsulates the NullNode, which is a Null Object:

import java.util.List;

public class Node {

 private static final Node nullNode = new NullNode();
 private final int val;
 protected Node left;
 protected Node right;

 public Node(final int val) {
 this.val = val;
 this.left = nullNode;
 this.right = nullNode;
 }

 public void insert(final int i) {
 final Node node = new Node(i);
 insert(node);
 }

 ;

 public void insert(final Node n) {

Chapter 2

[31]

 if (n.val < val) {
 left.insertLeft(n, this);
 } else if (n.val > val) {
 right.insertRight(n, this);
 }
 // else we found the value – do nothing, we
 // already have it
 }

 protected void insertLeft(final Node n, final Node
 parent) {
 insert(n);
 }

 protected void insertRight(final Node n, final Node
 parent) {
 insert(n);
 }

 public void traverseInOrder(final List<Integer> list) {
 left.traverseInOrder(list);
 list.add(val);
 right.traverseInOrder(list);
 }

 private static class NullNode extends Node {

 public NullNode() {
 super(Integer.MAX_VALUE); //
 this.left = this.right = this;
 }

 @Override
 public void traverseInOrder(final List<Integer>
 list) {
 // do nothing
 }

 @Override
 protected void insertLeft(final Node n, final
 Node parent) {
 parent.left = n; // Attach new node as

Singletons, Factories, and Builders

[32]

 // left child of parent
 }

 @Override
 protected void insertRight(final Node n, final
 Node parent) {
 parent.right = n; // Attach new node as right
 // child of parent
 }
 }

 // factory method to create the root node – and get
 // the ball rolling
 public static Node createTreeWithRoot(final int val) {
 return new Node(val);
 }
}

The big idea is to homogenize—a missing value is still a value, just a special value
accessible only to the Node class, just like a singleton.

The NullNode is a Null Object. Look at the traverseInOrder() method of
NullNode, it does nothing and so it terminates the recursion. We also override the
insertLeft(...) and insertRight(...) methods—these just link up the child
with its parent and thereby help grow the tree. Here it is depicted pictorially:

Node
val=72left right

Node
val=95left rightNode

val=50left right

Node
val=25left right Node

val=65left right Node
val=88left right Node

val=112left right

left rightNull Node
val never used

Figure 2.2: Binary Search Tree terminated with a sentinel node

Chapter 2

[33]

How many NullNodes do you see? Note that our NullNode has no state of its own,
it is a do nothing object—a place-holder! How many would we ever need? Just
one would suffice! By design we only ever want one instance—we should prohibit
creating more than one instance. Our null node is a singleton.

What value should the null node hold? Anything would do, as we don't use it.
However, we must initialize it as it is final in the super class. We use the maximum
number as a reminder to serve us that this is really a sentinel node. Its value does not
have any business importance though.

Null Objects – the Scala way
Instead of using null to indicate missing values, Scala provides an Option class to
represent optional values. Option can hold either Some value or None value. None
indicates missing values. Please see http://www.scala-lang.org/api/current/
index.html#scala.Option.

So instead of nulls, we return None. To see why, try the following code snippets
in REPL:

scala> val m = List(Some("on"), None, Some("us"), None)

m: List[Option[String]] = List(Some(on), None, Some(us), None)

scala> for {

 | Some(p) <- m

 | } println(p)

on

us

scala> val m = List(Some("on"), None, Some("us"), None)

m: List[Option[String]] = List(Some(on), None, Some(us), None)

scala> val p = m.flatten

p: List[String] = List(on, us)

Singletons, Factories, and Builders

[34]

See all the None getting filtered out? Let's continue further:

scala> val p = Some("one")

p: Some[String] = Some(one)

scala> val q = None

q: None.type = None

scala> val r = Option(null)

r: Option[Null] = None

scala> p.foreach(println(_)) // The _ is bound to the current element

one

scala> q.foreach(println(_))

scala> r.foreach(println(_))

How come the flatten and foreach calls are used with Options? These make sense
for a container. For example, a List:

scala> val p = List(List(1,2), List(3,4))

p: List[List[Int]] = List(List(1, 2), List(3, 4))

scala> p.flatten

res0: List[Int] = List(1, 2, 3, 4)

Aha! These work for Options, too—as Options are containers holding zero or
one object.

Chapter 2

[35]

The map and flatMap operations are defined on Options. For Options holding one
value that is. For a Some, these invoke the associated function. For a None, they do
nothing. Let's check the following command lines:

scala> def m(n : Option[Int]) = n.map(_ + 1) // Options provide the map
operation

m: (n: Option[Int])Option[Int]

scala> val c1 = Some(10)

c1: Some[Int] = Some(10)

scala> val c2 = None

c2: None.type = None

scala> m(c1)

res19: Option[Int] = Some(11)

scala> m(c2)

res20: Option[Int] = None

So the map operation, when invoked over a None, simply did nothing:

scala> def m(n : Int) = if (n >= 0 && n < 10) Some(n) else None

m: (n: Int)Option[Int]

scala> m(10) foreach(x => println (x+1))

scala> m(5) foreach(x => println (x+1))

The foreach increments and prints the number, if there is a Some. For a None, it
does nothing.

Singletons, Factories, and Builders

[36]

Options are container
Let's put all this together to write the Scala version of the sentinel-based tree node.
Let's first look at the picture:

Some

Node(72)

Some

Node(50)

Some

Node(95)

Some

Node(112)Node(88)

Some

Node(50)

Some

Node(50)

NONE

Some

Figure 2.3: Option as Null Object

Here is the Scala code. (Note that our TreeNode is now a case class, with left and
right fields as Option[TreeNode]. We also use ListBuffer instead of List):

object Tree extends App {

 case class TreeNode(v: Int, left: Option[TreeNode] = None,
 right: Option[TreeNode] = None) {
 def add(av: Int) = {
 insert(av).get
 }

 def insert(av: Int): Option[TreeNode] = {
 def insertLeft(av: Int) =
 left.flatMap(_.insert(av)) orElse
 Option(TreeNode(av)) // 1

 def insertRight(av: Int) =
 right.flatMap(_.insert(av)) orElse
 Option(TreeNode(av)) // 2

 av.compare(v) match {
 case 0 => Option(this) // 3

Chapter 2

[37]

 case -1 => Option(TreeNode(v, insertLeft(av),
 right)) // 4
 case 1 => Option(TreeNode(v, left, insertRight
 (av))) // 5
 }
 }
 def traverseItInOrder(): Option[List[TreeNode]] = {
 val leftList = left.flatMap(x => x
 .traverseItInOrder()).getOrElse(Nil)
 val rightList = right.flatMap(x => x
 .traverseItInOrder()). getOrElse(Nil)
 val result = (leftList :+ this) ++ rightList
 Option(result)
 }

 def traverseInOrder() = {
 val result: Option[List[TreeNode]] = traverseItInOrder()
 result.getOrElse(Nil)
 }
 }

 val p = TreeNode(4).add(3).add(0).add(1).add(99).
 add(1).add(4)

 for {
 q <- p.traverseInOrder() // 5
 } println(q.v)

}

Our TreeNode is a case class. The left and right child references are of type
Option[TreeNode]. There is only one constructor that sets the left and right children
to a None.

There is an insert method that we can use to add a value to the tree. As earlier, we
check the argument and if it is less than this .val we try inserting it into the left arm
otherwise in the right arm.

The left can be either an Some[TreeNode] or None.

Singletons, Factories, and Builders

[38]

Let's try to understand the flatMap call:

left.flatMap(_.insert(av)) orElse Option(TreeNode(av))

This form uses infix notation for method invocation. What does it mean?

Scala provides a special invocation syntax when we have a method with one
argument. The following method call:

 o.m(arg)

can be written as:

 o m arg

scala> val list = List.fill(5)(1) // we create a list of repeated 1

list: List[Int] = List(1, 1, 1, 1, 1)

scala> list.mkString("-") // invocation

res30: String = 1-1-1-1-1

scala> list mkString "-" // infix notation

res31: String = 1-1-1-1-1

Applying the same to our example:

scala> None.orElse(Some(10)) // invoking the orElse method on a None

res32: Option[Int] = Some(10)

scala> None orElse Some(10) // the infix notation

res33: Option[Int] = Some(10)

scala> Some(10) orElse Some(20)

res34: Option[Int] = Some(10)

Please see http://docs.scala-lang.org/style/method-invocation.html.

Let's try the following example:

scala> val left = None

left: None.type = None

http://docs.scala-lang.org/style/method-invocation.html

Chapter 2

[39]

scala> val right = Option("Hi")

right: Option[String] = Some(Hi)

scala> left orElse right

res7: Option[String] = Some(Hi)

In the left.flatMap(_.insert(av)) expression, if left is Some(TreeNode) it
reaches into the Some, which pulls out the TreeNode reference and invokes insert
on it.

On the other hand, if left is None, the entire expression results in a None or else
kicks into action—a new TreeNode is created and put into an Option and returned.

The salient points for the preceding code are as follows:

• Is symmetric—instead of left, it works on the right child reference.
• Works on the same principle—now for traversal, so if left is a None, nothing

happens else we recursively traverse the left sub-tree.
• Same as case 2, if right is a None, nothing happens else we recursively

traverse the right sub-tree.

Scala singletons
Scala has singleton objects called companion objects. A companion object is an
object with the same name as a class. A companion object also can access private
methods and fields of its companion class. Both a class and its companion object
must be defined in the same source file. The companion object is where the apply()
factory method may be defined. Let's have a look at the following example of a
companion class:

class Singleton { // Companion class
 def m() {
 println("class")
 }
}

Singletons, Factories, and Builders

[40]

And then its companion object as:

object Singleton { // Companion Object
 def m() {
 println("companion")
 }
}

It is that simple, when a case class is defined, Scala automatically generates a
companion object for it.

The apply() factory method
If a companion object defines an apply() method, the Scala compiler calls it when it
sees the class name followed by (). So, for example, when Scala sees something like:

 Singleton(arg1, arg2, …, argN) // syntactic sugar

It translates the call into:

 Singleton.apply(arg1, arg2,...,argN)

Open a Scala console and enter the following:

scala> val p = Map("one" -> 1, "two" -> 2)

p: scala.collection.immutable.Map[String,Int] = Map(one -> 1, two -> 2)

When we say Map("one" -> 1, "two" -> 2), it seems like we are calling a
function named Map with the arguments—however, this form is just syntactic sugar.
Under the hood, Map has a companion object whose apply method is being called,
then the apply() method creates the Map object and assigns it to p.

Every object can be called as a function, provided it has the apply method. For
example, we can add an apply method ourselves and get the benefit of the syntactic
sugar. The following uses REPL's paste mode. The paste mode, enabled via the
paste command, allows you to enter multiline code snippets for evaluation:

scala> :paste

// Entering paste mode (ctrl-D to finish)

class C(x: Int) {

 def print() = println(x)

}

Chapter 2

[41]

object C {

 def apply(n: Int) = {

 new C(n)

 }

}

press Ctrl + D here:

// Exiting paste mode, now interpreting.

defined class C

defined object C

scala> val k = C(9)

k: C = C@4b419a6b

scala> k.print()

9

The expression C(9) looks very much like a function call. As we see it is expanded to
C.apply(...).

Wait a minute! Does this apply to functions, too? Yes:

scala> val f = (l: List[Int]) => l.map(_ * 2)

f: List[Int] => List[Int] = <function1>

scala> f(List(1,2,3))

res0: List[Int] = List(2, 4, 6)

When we call f(arg) it gets translated to f.apply(arg).

Singletons, Factories, and Builders

[42]

The factory method pattern
A factory method can further hide the actual concrete class implementing an
interface. You have the factory method pattern, shown as follows:

Figure 2.4: Factory Method UML

Also let's try the following program:

public interface Currency {
 public String getConversionRateToIndianRupee();
}
public class CurrencyConverter {
 private static final String YEN = "Yen";
 private static final String EURO = "Euro";
 private static final String DOLLAR = "Dollar";

 private static final class EuroToRupee implements Currency {
 @Override
 public String getConversionRateToIndianRupee() {
 return "82";
 }
 }

 private static final class DollarToRupee implements Currency {
 @Override
 public String getConversionRateToIndianRupee() {
 return "60";
 }
 }
 private static Currency createCurrencyFor(final String currencyStr) {
 if (currencyStr.equals(DOLLAR)) {
 return new DollarToRupee();
 }

Chapter 2

[43]

 if (currencyStr.equals(EURO)) {
 return new EuroToRupee();
 }
 throw new IllegalArgumentException("Oops! no idea about <"
 + currencyStr + ">");
 }

 public static void main(String[] args) {
 System.out.println(createCurrencyFor(DOLLAR)
 .getConversionRateToIndianRupee());
 System.out.println(createCurrencyFor(EURO)
 .getConversionRateToIndianRupee());
 System.out.println(createCurrencyFor(YEN)
 .getConversionRateToIndianRupee());
 }
}

All the knowledge of the conversion rule is in one place and hidden by design from
the outside world. This hiding helps us edit existing rates and extend for more
currencies all in one place. The big advantage is we get a single point where we can
change, knowing the change will correctly reflect everywhere.

The Scala version
The Scala version is simpler, we just use the apply method:

trait Currency {

 def getConversionRateToIndianRupee: String

}

object CurrencyConverter {

 private object EuroToRupee extends Currency {

 override def getConversionRateToIndianRupee = "82"

 }

 private object DollarToRupee extends Currency {

 override def getConversionRateToIndianRupee = "60"

 }

 private object NoIdea extends Currency {

 override def getConversionRateToIndianRupee = "No Idea"

Singletons, Factories, and Builders

[44]

 }

 // the currency factory method

 // Note: Scala if statement is an expression.

 def apply(s: String):Currency = {

 if (s == "Dollar") // same as s.equals("Dollar") in Java

DollarToRupee

 else if (s == "Euro")

 EuroToRupee

 else

 NoIdea

 }

}

val c = CurrencyConverter("Dollar") // apply method in action

c.getConversionRateToIndianRupee // outputs "60"

Point to ponder: How could we rewrite the apply(...) method?

The apply method has one if expression, its value is the return value.

Difference from Java. In Scala, the if/else statement has a value.

This allows me to write:

scala> def m(x: Int) = if (x < 0) true else false
m: (x: Int)Boolean

scala> m(10)
res35: Boolean = false

scala> m(-10)
res36: Boolean = true

Builders
We need to model used cars for a resell shop. We want to rate a used car by
kilometers driven, year of manufacture, make, model, accessories installed such
as GPS, Air Conditioning (AC), and safety features such as air bags and anti-lock
brakes (ABS). The list goes on and on.

Chapter 2

[45]

Some of these attributes are mandatory and others are optional. For example, all cars
will have the year of manufacture, kilometers driven, make and model. A car may
not necessarily have GPS, AC, airbags or ABS.

We also need to validate the arguments. The kilometers are not negative, year of
manufacture is something sensible (for example, not 1425 A.D.), and the make and
model should match—make as Maruti and model as Corolla should be flagged as
an error.

To handle all these requirements, we use the Builder pattern. Here is the UML
diagram and then the code follows:

Figure 2.5: UML diagram for Builder

public class UsedCar {
 private String make;
 private String model;
 private int kmDriven;
 private int yearOfManufacturing;

 private boolean hasGps;

Singletons, Factories, and Builders

[46]

 private boolean hasAc;
 private boolean hasAirBags;
 private boolean hasAbs;
 // Setters/Getters not shown
}

public class UsedCarBuilder {

 private final UsedCar car;

 public UsedCarBuilder() {
 car = new UsedCar();
 }

 public UsedCarBuilder hasAirBags(final boolean b) {
 car.setHasAirBags(b);
 return this;
 }

 public UsedCarBuilder hasAbs(final boolean b) {
 car.setHasAbs(b);
 return this;
}

 public UsedCarBuilder hasAc(final boolean b) {
 car.setHasAc(b);
 return this;
 }

 public UsedCarBuilder hasGps(final boolean b) {
 car.setHasGps(b);
 return this;
 }

 public UsedCarBuilder yearOfManufacturing(final int year) {
 car.setYearOfManufacturing(year);
 return this;
 }

 public UsedCarBuilder kmDriven(final int km) {
 car.setKmDriven(km);

Chapter 2

[47]

 return this;
 }

 public UsedCarBuilder model(final String itsModel) {
 car.setModel(itsModel);
 return this;
 }

 public UsedCarBuilder make(final String itsMake) {
 car.setMake(itsMake);
 return this;
 }

 public UsedCar build() {
 // set sensible defaults for optional attributes - gps, ac, airbags,
abs
 // check make and model are consistent
 // check year of manufacturing is sensible
 // check kmDriven is not negative
 return car;
 }
}

public class Driver {
 public static void main(String[] args) {
 // Note the method chaining
 UsedCar car = new UsedCarBuilder().make("Maruti").model("Alto")
 .kmDriven(10000).yearOfManufacturing(2006).hasGps(false)
 .hasAc(false).hasAbs(false).hasAirBags(false).build();
 System.out.println(car);
 }
}

We design it like this for method chaining. Note the build() method of
UsedCarBuilder. We get one place where we can check all the parameters
rigorously before we return the UsedCar object. Making sure all fields satisfy the
preconditions ensures the client code is not violating the contract.

Please see: http://www.javaworld.com/article/2074956/learn-java/
icontract--design-by-contract-in-java.html for more information.

:
http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html
http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html

Singletons, Factories, and Builders

[48]

Ease of object creation
Let's say instead of using the builder pattern, could we use overloaded constructors?

Java allows us to overload constructors. And to promote reuse, we can always call
other constructors using this (arg1, arg2,...,argN) syntax:

 public UsedCar(String make, String model, int kmDriven,
 int yearOfManufacturing, boolean hasGps, boolean hasAc,
 boolean hasAirBags, boolean hasAbs) {
 super();
 this.make = make;
 this.model = model;
 this.kmDriven = kmDriven;
 this.yearOfManufacturing = yearOfManufacturing;
 this.hasGps = hasGps;
 this.hasAc = hasAc;
 this.hasAirBags = hasAirBags;
 this.hasAbs = hasAbs;
 }

 public UsedCar(String make, String model, int kmDriven,
 int yearOfManufacturing, boolean hasGps, boolean hasAc,
 boolean hasAirBags) {
 this(make, model, kmDriven, yearOfManufacturing, hasGps, hasAc,
hasAirBags, false); // no ABS
 }
 public UsedCar(String make, String model, int kmDriven,
 int yearOfManufacturing, boolean hasGps, boolean hasAc) {
 this(make, model, kmDriven, yearOfManufacturing, hasGps, hasAc,
false); // no Air Bags, no ABS
 }

Chapter 2

[49]

The overloaded constructors keep getting narrower, tapering like a telescope. The
fancy term for them is telescopic constructors:

UsedCar(String make,
string model, int kmDriven,
int yearOfManufacturing)

UsedCar(String make,
string model, int kmDriven,

int yearOfManufacturing, boolean
hasGps)

UsedCar(String make,
string model, int kmDriven,

int yearOfManufacturing, boolean
hasGps, boolean hasAc)

UsedCar(String make,
string model, int kmDriven,

int yearOfManufacturing, boolean
hasGps, boolean hasAc, boolean

hasAirBags)

UsedCar(String make,
string model, int kmDriven,

int yearOfManufacturing, boolean
hasGps, boolean hasAc, boolean

hasAirBags, boolean hasAbs)

calls calls calls calls

Figure 2.6: Telescopic constructors

Anytime you want to create a UserCar object, you need to look up the list and
use the right one. Now if you add some more optional parameters, the number of
constructors blows up this is hard to maintain. If you wanted any combination of
optional parameters, the number of constructors would exponentially increase.

One should be able to pick and choose any of the optional parameters in any order.
The builder pattern makes this possible.

The other alternative is providing setters. Not that appealing as the onus is on the
calling code to invoke the correct setters and to call the validate method to make sure
the object state is as expected. Someone can forget calling the validate method.

On the other hand, the builder's method chaining style makes our code more
readable and saves us from looking up the constructor args list by naming the
arguments. It is a small language (almost)—helping us with complex object
creation—called a Domain Specific Language (DSL).

Scala shines again
It is pretty easy (again) in Scala. Made easy by Scala's support for named arguments
and the wonderful case classes:

object Builder extends App {

 case class UsedCar(make: String, // 1

 model: String,

 kmDriven: Int,

 yearOfManufacturing: Int,

 hasGps: Boolean = false,

 hasAc: Boolean = false,

 hasAirBags: Boolean = false,

 hasAbs: Boolean = false) {

 require(yearOfManufacturing > 1970, "Incorrect year") // 2

Singletons, Factories, and Builders

[50]

 require(checkMakeAndModel(), "Incorrect make and model")

 def checkMakeAndModel() = if (make == "Maruti") {

 model == "alto"

 } else if (make == "Toyota") {

 model == "Corolla"

 } else {

 true

 }

 }

 val usedMaruti = UsedCar(model = "alto", make = "Maruti", kmDriven =
10000, yearOfManufacturing = 1980, hasAbs = true, hasAirBags = true) // 3

 println(usedMaruti)

 val usedCorolla = usedMaruti.copy(make = "Toyota", model = "Corolla")
// 4

 println(usedCorolla)

 // val wrongModel = usedCorolla.copy(model = "alto") // throws -
Incorrect make and model

}

The salient points for the preceding code are as follows:

• The case class creates immutable fields of the same name.
• We check the preconditions with require—require is defined in Predef—and

we use it to check the preconditions.
• Parameters can be named—so we don't need to look up the order. In fact,

IDEs can autocomplete parameters for you—this is quite convenient.
• We can create another, almost identical, object with a few changes with the

copy method.

The Predef is an object that provides many helpful goodies. It is imported
automatically. Predef provides implicit conversion, which makes the following
snippet work:

scala> "Hello World & Good Morning!".partition(x => x.isUpper ||
x.isLower)

res0: (String, String) = (HelloWorldGoodMorning," & !")

Predef also provides the println method we are using.

Chapter 2

[51]

Summary
We looked at three creational design patterns—Singleton, Factory method, and
builder— specifically the rationale behind them and the Java implementations. We
also learnt about a special singleton—Null Object. We saw how Scala helps avoid
null using Options. We looked at multiple Scala idioms with respect to Options
and saw how Options as a container theme helps. We also saw the special apply
method and learned how this syntactic sugar sweetens the code. Finally we looked
at builders—a design pattern for creating objects with many attributes. We also saw
how Scala's case classes help us with the creation of objects having many attributes.
Take a deep breath readers, grab a cup of your favorite hot beverage and settle down
to read about recursion.

[53]

Recursion and Chasing
your Own Tail

In the first chapter, we wrote a nested method, groupThem(), that called itself. In
the second chapter, the BST traversal method is similar to the nested method. We
saw that the method calls itself to traverse the children. A method calling itself is
recursion. In the previous chapter, we also touched upon tail recursion and Scala's
@tailrec annotation.

Let's look at these concepts more closely and see how all these help us write succinct
code, and how going recursive promotes immutability. In this chapter, we will first
look at recursive structures—a structure is recursive if the shape of the whole
recurs in the shape of the parts. We will then look at how Scala's pattern matching
helps us to work on the composing parts. Next, we will take a look at a possible
problem with very large structures and the mechanism to deal with them—namely
tail call optimization (TCO) and @tailrec annotations. Finally, we will get a handle
on persistent data structures and structural sharing to avoid needless copying while
preserving immutability.

Recursion and Chasing your Own Tail

[54]

Recursive structures
The find command on Linux (and the dir /s command on Windows) recursively
descends into a directory; if there are a few subdirectories within command, then
it descends into each subdirectory, one by one. If the subdirectories, in turn, have
subdirectories, command goes into each one and repeats the process all over again
till all the directories are traversed. Let's have a look at the following directory:

tmp

a c

b one.txt d two.txt three.txt

Figure 3.1: A directory tree is a recursive structure

Given this directory, try the following command:

 % find ./tmp -type f -exec wc -c {} \;

The find command starts at the tmp directory and applies the wc command to each
regular file (so for this example, skip directories).

The command enters in tmp and finds a and c. As these are directories, the flow
enters a first, and finds b and one.txt. As directory b is empty, it looks at one.txt
for which the predicate type f is true. So, the characters are counted for one.txt, and
then the flow comes back to a and recurs into c. The process continues till every node
in the directory tree is visited; also, every node is visited once and only once. Now, if
you look carefully, when we come to node a, we have the same problem to solve as
when we started with tmp. This problem is inherently recursive. This is the essence
of recursion—we keep reducing the problem by dividing the dataset into smaller
and smaller pieces. At some point though, we need to look at solving the problem
(counting characters in regular files in our case). In our case, when we don't have any
more directories to recur into, forms a base case with following cases:

• A subdirectory is empty—the flow just returns in this case.
• The note is not a directory at all but a regular file (one.txt). We perform the

operation (count characters) and return.

Chapter 3

[55]

The sub-problems that are solved directly without dividing it any further. Such base
cases allow the algorithm to terminate eventually.

In the previous chapter, we looked at the binary tree traversal method. When the
traversal flow hits the Null object, it terminates the traversal. This is a base case.
Similarly, when the insertion flow hits the Null object, it adds the new node,
forming another base case. When the traversal hits an intermediate node, we
have a recursive case.

Pattern matching
Slice and dice is defined as the process of breaking something down (for example,
information) into smaller parts to examine and understand it. You can get more
information about slice and dice at:

http://dictionary.reference.com/browse/slice-and-dice

Let's see this technique in action. We will try to count the number of elements in
List. There is already a length method defined on Lists:

scala> List(1,2,3).length

res0: Int = 3

Rolling out one of our own list teaches us something:

object Count extends App {

def count(list: List[Int]): Int = list match {

 case Nil => 0 // 1

 case head :: tail => 1 + count(tail) // 2

}

val l = List(1,2,3,4,5)

println(count(l)) // prints 5

 }

The preceding code counts the number of elements in the list. We match the list
against two possible cases, which are as follows:

• The base case: The list is Nil, and an empty list matches Nil as it has zero
elements, we return 0.

http://dictionary.reference.com/browse/slice-and-dice

Recursion and Chasing your Own Tail

[56]

• The general case: This is a list that has one or more elements. A list with at
least one element (head) plus possibly more elements (tail), we very well
could have none. We don't know (as yet). So, we call the same method
recursively with the tail. Here is the process shown pictorially:

head
1

tail
2,3,4,5

next
1

next
2

head
2

tail
3,4,5

head
3

tail
4,5

next
3

next
4

next
5

Nil

head
4

tail
5

Figure 3.2: Losing head at every iteration

Note how we've left head aside in the preceding figure. We have taken the head
value into account; in this case, we've incremented the count by 1. When we call the
method recursively, we have one less element to process. This losing of the head
and reducing finally land us with the case 1—letting us terminate the processing
eventually. We are iterating the list and visiting each node, albeit in a different way.
Here, we don't use any mutation. There are no variables (no var keyword) used as
loop counters. By avoiding loop counters (which would have to be var), recursion
promotes immutability. Immutability is a boon when we write concurrent code, as
we will soon see in the following chapters.

Deconstruction with case statements
Here is how we de-structure a list to get at the first element of the list. The following
case clause splits the list into the first element (the head) and the rest of the list (the tail):

case head :: tail => 1 + count(tail)

Chapter 3

[57]

These case matches when it is matched against a list with at least one element. Open
the REPL and type the following code:

scala> val head :: tail = List(1, 2, 3, 4) // 1

head: Int = 1

tail: List[Int] = List(2, 3, 4)

scala> val (x,y) = (7, 10) // 2

x: Int = 7

y: Int = 10

The salient points for the preceding code are as follows:

• Deconstructs a list into its head, 1, and its tail, List(2, 3, 4).
• Deconstructs a pair into its constituent values—assigns 7 to x and 10 to y

And the case clause using underscore is as shown:

scala> List(1, 2, 3, 4) match {

 | case head :: tail => println(head) // 3

 | case _ => println("Nothing")

 | }

The case clause with just an underscore. We use it as an unnamed
variable, just a placeholder.

The preceding command will print 1.

The :: symbol is a List extractor (refer to http://www.artima.com/pins1ed/
extractors.html for more information on extractors). The x :: y expression results
in a call to the unapply method of the :: object. You did read it right. The :: symbol
is a case class and its companion object is::. Like the apply method that we saw
earlier, the Scala compiler will call unapply in a pattern matching expression. When
we define a case class, we get both the apply and unapply methods written for us:

scala> case class MyClass (x: Int, y: Int)

defined class MyClass

scala> val p = MyClass(1, 2);

p: MyClass = MyClass(1,2)

scala> p match {

http://www.artima.com/pins1ed/extractors.html
http://www.artima.com/pins1ed/extractors.html

Recursion and Chasing your Own Tail

[58]

 | case MyClass(a, b) => println(s"a=$a, b=$b") // 1

 | }

a=1, b=2

scala> p match {

 | case a MyClass b => println(s"a=$a, b=$b") // 2

 | }

a=1, b=2

At the part in the code labeled as 2, the extractor expression is written in the infix form:

scala> val p = List(1, 2, 3, 4)

p: List[Int] = List(1, 2, 3, 4)

scala> p match {

 | case ::(head, tail) => println(s"head=$head, tail=$tail") // 1

 | case _ => println("What's up???")

 | }

head=1, tail=List(2, 3, 4)

The part of code labeled as 1, the unapply method of :: is called. The statement is
just rewritten in an infix notation as follows:

 case head :: tail => println(s"head=$head, tail=$tail")

Stack overflows
Our recursive solution works, however there is a problem waiting to strike us. The
code works fine for small lists with a few elements. Let's stress test it with a big list
that has 20000 elements:

1. Call the count method as shown in the following code:
val l = 1 to 20000 // A range object

count(l.toList) // Converts the range into a list

2. Run the code, and you will get the java.lang.StackOverflowError error. The
problem here is the recursive call 1 + count (tail).

Chapter 3

[59]

Each intermediate context is remembered on a stack frame. The intermediate context
here is Get me a count of the tail, and add one to it. How many such intermediate
contexts are there? I think you already guessed it right, they are equal to the number
of elements in a list.

In other words, the numbers of contexts to remember are proportional to n. In
algorithmic sense, these are equal to O(n). So for this example list, we need 20,000
stack frames for a list that has 20,000 elements; so, we need these many stack frames.
The system usually cannot allocate these many. Hence, the routine looks broken.

Now, what good is the technique if it does not work for large lists? We are in a
logjam, as you can see in the following figure:

count()=01+

count(5)1+

count(4,5)1+

count(3,4,5)1+

count(2,3,4,5)1+

stackframes

Returns 1

Returns 2

Returns 3

Returns 4

calls

calls

calls

calls

Figure 3.3: An example of stack overflow

Recursion and Chasing your Own Tail

[60]

Tail recursion to the rescue
There is a technique, an optimization really, that helps us get out of the logjam.
However, we need to tweak the code a bit for this. We will make the recursive call as
the last and only call. This means that there is no intermediate context to remember.
This last and only call is called the tail call. Code in this tail call form is amenable to
TCO. Scala generates code that, behind the scenes, uses a loop—the generated code
does not use any stack frames:

import scala.annotation.tailrec

def count(list: List[Int]): Int = {

 @tailrec // 1

 def countIt(l: List[Int], acc: Int): Int = l match {

 case Nil => acc // 2

 case head :: tail => countIt(tail, acc+1) // 3

 }

 countIt(list, 0)

}

The changes are like this:

We have a nested workhorse method that is doing all the hard work. The count
method calls the countIt nested recursive method, with the list it got in the
argument, and an accumulator. The earlier intermediate context is now expressed as
an accumulator expression with the help of the following steps:

1. The @tailrec annotation makes sure that we are doing the right things
so that we benefit from the TCO. Without @tailrec, Scala may apply the
optimization or it may not. The @tailrec annotation is a helping hand to
ensure that the function call is optimized. Try the same annotation on our
first version. You will get a compilation error.

2. Play time: Change the second case in the previous code as shown:
case head :: tail => {

 val cnt: Int = countIt(tail, acc + 1)

 println(cnt)

 cnt

}

Chapter 3

[61]

3. You will get a compilation error after changing the second case:
Error: could not optimize @tailrec annotated method countIt: it
contains a recursive call not in tail position

4. When the execution lands in this clause, we are at the end of the list. We
are not going to find any more elements, so the base case just returns the
accumulator.

5. There is no intermediate context now—just a tail call. This is the only and last
recursive call. We found one more element. We increment the accumulator to
record the fact and pass it on.

Compared to the earlier version, why does this version work? If the compiler can
use tail call optimization, then it does not need to stack up the context. So, no stack
frames are needed as the resulting executable code uses loops behind the scenes.

Getting the nth element of a list
A list holds a certain number of elements. The first element is at index 0, and the
second element at index 1. If the index is out of range, we get an exception.

We will write a method to find the nth element of a list. This method will return
an option. If n is out of bounds, we will return None. Otherwise, we will return
Some(elem). Let's look at the code and then a diagram to understand it better:

import scala.annotation.tailrec
object NthElemOfList extends App {
 def nth(list: List[Int], n: Int): Option[Int] = {
 @tailrec
 def nthElem(list: List[Int], acc: (Int, Int)): Option[Int] = list
match {
 case Nil => None
 case head :: tail => {
 if (acc._1 == acc._2) // 1
 Some(head)
 else
 nthElem(tail, (acc._1 + 1, acc._2)) // 2
 }
 }
 nthElem(list, (0, n)) // 3
 }
 val bigList = 1 to 100000 toList // 4
 println(nth(List(1, 2, 3, 4, 5, 6), 3).getOrElse("No such elem"))
 println(nth(List(1, 2, 3, 4, 5, 6), 300).getOrElse("No such elem"))
 println(nth(bigList, 2333).getOrElse("No such elem"))
}

Recursion and Chasing your Own Tail

[62]

Here is a diagrammatic representation of the flow:

List(4,5,6...) acc(3,n)

List(m,n,o...) acc(n,n) List() acc(k,n)

List(3,4,5...) acc(2,n)

List(2,3,4...) acc(1,n)

List(1,2,3,...) acc(0,n)

NoneSame(Int)

Calls

Returns Some
(Int) or None

Returns Some
(Int) or None

Returns Some
(Int) or None

Calls

Calls

Stack Frames are conceptual
Note the @Tailrec

Figure: 3.4: Conceptual stack frames

The description of the preceding diagram is as follows:

• Our accumulator is a pair. The first element is a running index and holds
the index of the current node, starting from 0. The second element is always
fixed at n.

• If index == n, we have found the element. Now, we will return it wrapped in
a some. else we increase the running index and recursively call the method
again on the tail of the list.

• We wish to hide the accumulator from the client code. Keeping an
accumulator is an implementation detail.

• We will test the index with a very big list as @tailrec is in effect, the TCO
kicks in and we don't get any stack overflows. Try to rewrite the preceding
code without using a pair of element for the accumulator. Compare your
version with it and check which one is better.

The following are a few points that we need to ponder:

• Could we simply use acc as Int? Do we really need the pair?
• Try writing the code so that we decrement the accumulator instead of

incrementing it.

Chapter 3

[63]

An expression parser
We will look at an instructive example of how recursion and immutability go hand
in hand. We will look at an infix expression parser.

An infix notation is where the operator comes in between
two operands, for example, 3+4+5-6 is the infix notation.

We will look at the iterative Java version and then at the recursive Scala version. We
support only operators + and * and also provide bracketed sub-expressions.

Evaluating (1+2)*3*(2+4) expression should give us the output as 54 and evaluating
(1+2)*3+4 expression should give us the output as 13. The grammar for our
expression parser looks as shown in the following code. Note how each sub-
expression is an expression composed of other sub-expressions, terms, and factors. In
short, the grammar is recursively defined. Here is the grammar:

Expr: Term | Term + Expr

Term: Factor | Factor * Term

Factor: [0-9][0-9]+ | '(' Expr ')'

Here is a diagrammatic representation of the flow:

Expr

Expr

Term

Factor

Number

7

Term

Factor

Number

5

Term

*

+

Factor

Number

8

Figure 3.5: The expression tree

Recursion and Chasing your Own Tail

[64]

Look at the bracketed expression node in the bottom-right corner of the preceding
image. The grammar also tells us that multiplication (*) is given precedence over
addition (+). A bracketed expression has the highest precedence. Here is the Java
code which makes use of an tokenizer:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.commons.lang3.Validate;

public class Parser {

 private static final String L_BRACKET = "(";
 private static final String R_BRACKET = ")";

 private class Tokenizer {

 private static final String NUM_PATTERN = "(\\d+).*";
 private String s;
 private final Pattern p;

 public Tokenizer(final String s) {
 this.s = s;
 this.p = Pattern.compile(NUM_PATTERN);
 }

 public boolean nextTokenIs(final String tok) {
 if (s.isEmpty()) {
 return false;
 }
 return s.startsWith(tok);
 }

 public void consume(final String tok) {
 s = s.replaceFirst(Pattern.quote(tok), "");
 }

 public boolean nextTokenIsNumber() {
 return s.matches(NUM_PATTERN);
 }

 public int consumeANumber() {
 if (s.matches(NUM_PATTERN)) {
 final Matcher m = p.matcher(s);

Chapter 3

[65]

 Validate.isTrue(m.matches(), "Could not extract number
from <"+ s + ">");
 final String numStr = m.group(1);
 s = s.replaceFirst(Pattern.quote(numStr), "");
 return Integer.valueOf(numStr);
 }

 throw new IllegalArgumentException("Number expected");
 }

 };

 private final Tokenizer tokenizer;

 public Parser(final String s) {
 tokenizer = new Tokenizer(s);
 }

 private int factor() {
 if (tokenizer.nextTokenIsNumber()) {
 final int num = tokenizer.consumeANumber(); // 1
 return num;
 }
 if (tokenizer.nextTokenIs(L_BRACKET)) {
 tokenizer.consume(L_BRACKET); // 2
 final int num = expr();
 if (!tokenizer.nextTokenIs(R_BRACKET)) {
 throw new IllegalArgumentException("Syntax error -) missing");
 }
 tokenizer.consume(R_BRACKET); // 3
 return num;
 }
 throw new IllegalArgumentException("Either number or (expected");
 }

 private int term() {
 int val = factor(); // 4
 while (tokenizer.nextTokenIs("*")) { // 5
 tokenizer.consume("*");
 val *= factor(); // 6
 }
 return val;
 }

 public int expr() {

Recursion and Chasing your Own Tail

[66]

 int val = term(); // 7
 while (tokenizer.nextTokenIs("+")) { // 8
 tokenizer.consume("+");
 val += term(); // 9
 }
 return val;
 }
}

We have a very simple tokenizer class; it splits an input string into tokens, for
example, given the expression (111+222), it generates (, 111, +, 222,). Although it is a
pretty simple tokenizer, it is sufficient for our needs. We use Java's regular expression
matching facilities to tokenize our string with the help of the following steps:

1. The code obeys the preceding grammar. A factor is either a number or a
subexpression starting with '('.

2. If it is a number, we consume and return it. If it is a sub-expression instead,
we process the sub-expression first. So given the expression (9+4)*4, we first
evaluate 9+4.

3. Once we have reduced the subexpression into a number, we consume ')',
thereby consuming all the bracketed subexpressions, and return the number
to the caller.

4. After the bracketed subexpression, multiplication has a higher precedence.
However, any term (multiplication) starts with a factor.

5. Once we have consumed a factor, if the next token is a *, we consume it too.
6. We keep looking for more terms. Once all the terms are reduced to a number,

we return the resulting number.
7. This is the topmost method. It tries to reduce to a term. Term could be a

simple number though.
8. While we have + next in the stream, we keep looking for more addition

expressions.
9. We keep adding the reduced values to get the value of the overall expression.

Try the input (1+2)). How would you fix it?
Try rewriting the code using recursion. What could we say about
TCO the Java Virtual Machine?

Chapter 3

[67]

Here is the code for the Scala version:

import scala.annotation.tailrec

object Parser extends App {

 val Number = """^(\d+).*""".r // 1
 val LParen = """^[(].*""".r

 def factor(f: String): (String, Int) = f match {
 case Number(d) => (f.drop(d.length), d.toInt) // 2
 case LParen(_*) => {
 val p = expr(f.drop(1), 0) // 3
 val e = p._1
 if (e.take(1) == ")") { // 4
 (e.drop(1), p._2)
 } else {
 throw new IllegalArgumentException("Right bracket missing")
 }
 }
 case _ => throw new IllegalArgumentException("Number or sub-
expression expected")
 }

 @tailrec
 def term(t: String, acc: Int): (String, Int) = {
 val p = factor(t)
 val e = p._1

 if (e.take(1) == "*") { // 5
 term(e.drop(1), acc * p._2) // 6
 } else {
 (e, acc * p._2) // 7
 }
 }

 @tailrec
 def expr(s: String, acc: Int): (String, Int) = {
 val p = term(s, 1)
 val e = p._1

 if (e.take(1) == "+") { // 8
 expr(e.drop(1), acc + p._2) // 9
 } else {

www.allitebooks.com

http://www.allitebooks.org

Recursion and Chasing your Own Tail

[68]

 (e, acc + p._2) // 10
 }
 }

 def expr(s: String): Int = {
 val e = expr(s, 0)
 e._2
 }

 val p = expr("(1+2)*3*(2+4)")
 println(p)
}

Since the execution flow is a bit involved, the following diagram will help you
understand it:

Factor s=’1+2)’ consumes 1 Factor s=’2)’ consumes 2

Term s=’1+2)’ acc = 1 Term s=’2)’ acc = 1

Expr s=’1+2)’ acc = 0

Factor s=’(1+2)’ consumes ‘(’and’)’

Term s=’(1+2)’ acc=1

Expr s=’(1+2)’ acc=0

Returns
(”+2)”,1)

Returns
(”)”,2)

Returns
(”)”,2)

Returns
(”)”,3)

Returns
(””,3)

Returns
(””,3)

Flow for simple expression (1+2)

Returns
(”+2)”,1)

Figure 3.6: The flow for simple expression (1+2)

Chapter 3

[69]

We will create a regular expression pattern—Regex—to match a number. We use a
multiline string, so we don't need to escape the backslash character. To match digits,
we simply use \d instead of \\d.

To match and extract either a number or '(', we use Regex as an extractor in a
pattern match:

scala> val num = """(\d+)([.]\d+)?""".r

num: scala.util.matching.Regex = (\d+)([.]\d+)?

scala> "101.22" match {

 | case num(decimal, fractional) => s"decimal = $decimal,
fractional = $fractional"

 | }

res0: String = decimal = 101, fractional = .22

The salient points for the preceding code are as follows:

• This is a call to evaluate a sub-expression that is enclosed in brackets. For
2*(3+3), the 3+3 addition precedes multiplication.

• The closing ')' bracket is consumed. This indicates the completed evaluation
of a bracketed sub-expression.

• We are in the middle of a term.
• A term keeps evaluating itself and other subsequent terms. Refer to the

grammar diagram.
• Now, we that are done evaluating a term, we can return the remaining string

and the result of the term evaluation.
• We are in the middle of an expression.
• Keep evaluating—giving precedence to a term evaluation.
• Finally, return the pair of the leftover string and the result of the overall

expression.

Take a somewhat bigger expression and work through the code.

Recursion and Chasing your Own Tail

[70]

When we mix string and regular expressions, we often see the
leaning toothpick syndrome. The regular expression notation, \d,
matches a digit character. However, the backslash also works as an
escape character. You need to double the backslash so that the Regex
engine can see it, for example:
scala> val regex = "H\\dllo".r

regex: scala.util.matching.Regex = H\dllo

scala> regex findFirstIn("H1llo H2llo")

res0: Option[String] = Some(H1llo)

Scala's triple quote strings allow us to express the regular expression
in a natural way. Now, try using the following expression in the
preceding code snippet:
val regex = """H\dllo""".r

Persistent data structures
As you can guess by now, immutability is the underlying big theme. The following
Java code reverses a list in place:

List<Integer> list = Lists.newArrayList(1,2,3,4);
// List<Integer> refList = Lists.newArrayList(list); // 1
List<Integer> refList = list;
Collections.reverse(list);

System.out.println(list);
System.out.println(refList);

The problem is when we do the reversal in place, the code using the list as a
reference also sees the change. To prevent this, we need to use the statement at the
part labeled as 1—the defensive copy technique. The other problem with changing
the list in place is thread safety. We need to carefully synchronize the list access so
we stay away from heisenbugs. To know more about them, refer to

http://opensourceforu.efytimes.com/2010/10/joy-of-programming-types-
of-bugs/

http://opensourceforu.efytimes.com/2010/10/joy-of-programming-types-of-bugs/
http://opensourceforu.efytimes.com/2010/10/joy-of-programming-types-of-bugs/

Chapter 3

[71]

Scala, instead, advocates immutable lists; we cannot change the list structure in
place; instead, we create a new list:

import scala.annotation.tailrec

object ReverseAList extends App {

@tailrec

def reverseList(list: List[Int], acc: List[Int]) : List[Int] = list match
{

 case head :: tail => reverseList(tail, head :: acc)

 case Nil => acc

}

val l = 1 to 20000 toList

println(reverseList(l, Nil))

}

We will again use the accumulator idiom to make the list tail recursive. As Scala's
List is immutable, we need to create a new list each time a new node is added.
You may ask, won't it be expensive to create a brand new list each time? Not really,
as the lists are immutable and they could be structurally shared as shown in the
following figure:

next
4 next

3
next

2 next
1

Nil

Lists

List 4
List 3

List 2

List 1

Figure 3.7: An example of lists

As shown pictorially in the preceding diagram, we can traverse list 2. As the node
(value 3) is added, both list 3 and list 2 can share the node with the value 1 and the
node with value 2. As both these lists are immutable, the nodes could be safely shared.

Recursion and Chasing your Own Tail

[72]

Such a data structure that always preserves the previous version of itself when it is
modified is a persistent data structure. And no, it has nothing to do with persistence
as in disk/database persistence.

Let's look at the following list concatenation:

val l1 = List(1,2,3)

val l2 = List(4,5,6)

val l3 = l1 ++ l2 // List(1,2,3,4,5,6)

Here, we need to copy l1 nodes and structurally share l2 nodes.

We cannot just change l1 as it is immutable. We need to copy
l1 nodes to l3 and change the third node to point at l2 so that
anyone who is already referring to l1 is not affected.

Now, let's try our hand at an example. In following diagram, link up the left-hand
side dangling pointer of the node with value 4 so that the tree is structurally shared.
Draw the shared structure after inserting 22 in the tree:

Persistent tree after
inserting node 100

previous root next root

4

2 99

0 3

4

99

100

???

Figure 3.8: Persistent tree after inserting node 100

Chapter 3

[73]

Two forms of recursion
In the previous sections, we saw the tail recursive code to reverse a list. Take a look
at this form:

object ReverseAList1 extends App {

 def reverseList(list: List[Int]): List[Int] = list match {

 case head :: tail => reverseList(tail) :+ head

 case Nil => Nil

 }

 val l = (1 to 20000).toList

 println(reverseList(l))

}

I know. This form is not tail recursive. Hence, this form will not benefit from the tail
call optimization. Try to put the @tailrec annotation on the reverseList method.
You will get a compilation error.

This form is still useful though. There are times when we do not want all the list
elements. We just want to look at the first few elements of the result. We want to
make the recursive call evaluation deferred. Call is not computed upfront. Instead,
it is only evaluated when needed. We are talking of delayed evaluation in this case.
Scala's Streams implements lazy lists where elements are only evaluated when they
are needed. We will look in detail at the lazy evaluation in the upcoming chapter and
how solutions that are not tail recursive would be better candidates to build streams.

Summary
You learned about recursion and problems that are by nature, recursive. For
example, directories on a Linux filesystem are defined this way. You also learned
about recursive solutions, the general case, and the essential base case. The base case
is needed so that the process eventually gets terminates. We also looked at Scala's
slice and dice technique and how to split the list so that we can visit each element.
We saw how recursive calls and associated context are remembered on stack frames
and the need for tail recursion. We saw examples where tail recursion enables TCO.
We looked at a detail example of a small expression parser. We looked at how
recursive code promotes immutability, as we did not use var in our code. We looked
at persistent data structures and the two forms of recursion. Let's now move on to
the wonders of Scala's power features for delayed evaluation.

[75]

Lazy Sequences – Being
Lazy, Being Good

In life, we (hopefully) spend money only on things that we really need. For example,
I keep eyeing those ever powerful laptops being advertised every day. I drool over
those shiny machines with hefty RAM sizes and lightening processor speed. The buy
button is so inviting!

I am sure, at times, you must have felt similar buying urges. However, as you know
well, we just don't buy it willy nilly. We think, plan, and buy if we really need it.
Simply, because we have limited money, we need to spend it carefully.

A software system, too, has limited resources. When a system needs to acquire an
expensive resource, the resource should be obtained when it is really needed,that
is at its first use. If the system goes and acquire all expensive resources up front, a
reducing lot of overhead would be incurred. Deferring resource acquisition, till it
is needed, is an important design principle. For example, a while ago, we looked at
singletons. Singletons make sure that objects exist uniquely while the program is
running. Singletons are also used to lazy initialize the object they wrap. In case the
object is never needed, it is never initialized.

So, whenever we don't create objects upfront, but strictly on demand, are examples of
a generic pattern, Lazy Acquisition. We acquire something when we really need it.

Lazy Sequences – Being Lazy, Being Good

[76]

Lazy evaluation is a special case of Lazy Acquisition. We will look at lazy evaluation
in this chapter. Laziness is very useful when we compute only on demand. We may
not need all of the result—so why perform the expensive computation in advance?
We will look at the proxy design pattern used to implement laziness. We will also see
how a highly popular Object Relational Mapping (ORM) library, Hibernate, uses
proxies to lazy load entity objects. Next, you will learn about Scala's lazy keyword.
We will use our friend, the REPL, and play a bit with some examples first. It will
give us some practice of lazy evaluation. We will see a related theme, memoization.
Scala's by name evaluation comes next. Expressing parameters by name is yet one
more form of lazy evaluation. Finally, we will look at Scala Streams. Streams are lazy
lists, an implementation of infinite sequences. Traversing an infinite sequences just
keeps going forever, it never terminates.

Illusion and reality – the proxy pattern
Many of us have come across the term proxy server. At a large company, the
Internet access is restricted by a proxy server. The company may provide access to
work-related pages only. Social media sites may be blocked. The proxy server is
the place where all these rules are built. It is a checkpoint. A proxy is a class, hiding
the real thing. It essentially is an interface (not to confuse with Java interface) to an
expensive object. The real object could possibly be a remote object.

The proxy pattern is used to implement cross-cutting concerns. A cross-cutting
concern is:

• A functionality needed across many different modules of an application
• The functionality is not core to the application (it would be reused by another

application too)
• The functionality is necessary in most application (you need it very much—at

times simply cannot do without it)

You don't want to reinvent the wheel and reimplement the functionality every time.
Security, for example, is a cross-cutting concern. Transaction management is another
example. Caching is another cross-cutting concern.

The Spring framework uses the proxy pattern extensively to realize security and
transaction management. Refer to https://springframework.guru/proxy-
pattern/ for more information.

https://springframework.guru/proxy-pattern/
https://springframework.guru/proxy-pattern/

Chapter 4

[77]

The following is the UML diagram:

Image
<<Interface>>

+load():void
+renderImage():void

ActualImage

+load():void
+renderImage():void

-path TolmageFile:String

+load():void
+renderImage():void

-path Tolmage:String
-thumbNailLoaded:boolean

Thumbnail
actualImage

Figure 4.1: Proxy pattern - UML diagram

The code is as follows for the proxy pattern:

public interface Image {
 public void load();
 public void renderImage();
}

public class ActualImage implements Image { // 1
 private final String pathToImageFile;

 public ActualImage(final String pathToImageFile) {
 super();
 this.pathToImageFile = pathToImageFile;
 }
 @Override
 public void renderImage() {
 System.out.println("Rendering image <" + pathToImageFile + ">");
 }
 @Override
 public void load() {
 System.out.println("Loading image from file <" + pathToImageFile +
">");
 }
}

public class Thumbnail implements Image { // 2

 private final String pathToImage;

Lazy Sequences – Being Lazy, Being Good

[78]

 private final ActualImage actualImage;
 private boolean thumbNailLoaded;

 public Thumbnail(final String pathToImage) { // 3
 super();
 this.pathToImage = pathToImage;
 this.thumbNailLoaded = false;
 this.actualImage = new ActualImage(pathToImage);
 }

 @Override
 public void renderImage() {
 if (!thumbNailLoaded) { // 4
 load();
 thumbNailLoaded = true;
 System.out.println("Render the thumb nail");
 } else {
 actualImage.load(); // 5
 actualImage.renderImage();
 }
 }

 @Override
 public void load() {
 System.out.println("Loading Thumb Nail <" + pathToImage + ">");
 }
}

The salient points for the preceding code are as follows:

• This class holds the actual image. This image would take a lot of time to get
loaded into memory. We want to load it on demand.

• The proxy class, proxy to the actual image.
• We cache the path to the actual image.
• First time, we load the thumbnail image.

Chapter 4

[79]

• The next time someone asks us to render it again (maybe by clicking it again),
we load the actual image and render it. Refer to the following figure:

Accessing Objects Via Proxy
forward (marshalled)

result (will be unmarshalled)

forward

result

Proxy - Any one of
1. Load big objects
2. Check credentials
3. Remote calls

API call

Co-located Real Object
(i.e. Expensive to load image)

Remote Object

Client Code
calls proxy

Figure 4.2: Proxy—execution flow

Hibernate's lazy loading
Hibernate exposes persistence-related database access via an object API. A Java class
is mapped to a database table. A parent having many children is mapped as shown
in the following code:

@Entity
public class Parent {
…
@OneToMany(mappedBy = "parent")
private Set<Child> children;
…
}
@Entity
public class Child {
…
@ManyToOne
@JoinColumn(name = "parent_id")
private Parent parent;
…
}

Lazy Sequences – Being Lazy, Being Good

[80]

This maps the following table structure:

Hibernate Parent Child Relationship
@Entity

public class Parent{
...
}

@Entity
public class Child{

...
}

Child Table

Parent Table

id
id
id
id
id
id

col1
col1
col1
col1
col1
col1

col2
col2
col2
col2
col2
col2

col3...
col3...
col3...
col3...
col3...
col3...

coln
coln
coln
coln
coln
coln

parent_id
parent_id
parent_id
parent_id
parent_id
parent_id

id col1 col2 col3... coln
id col1 col2 col3... coln

Maps to

Maps to

Maps to

Figure 4.3: Proxying in Hibernate

The children are, by default, lazy loaded. This holds true for any mapped members
that are collections. You may not need them all the time you load the parent.
If you do, you can load them as needed. The set is actually a PersistenceSet, a
proxy. The catch is that this is not completely transparent though. You need
to have a hibernate session active to load the children. Otherwise, you get a
LazyInitializationException.

Why is this done? The children may have children of their own. The object graph,
parent → children → grand-children and so on, could be very large. So, it is loaded
as needed and not upfront. Proxies to the rescue!!

You can see more about a very popular library, CGLIB, for more on
proxying at http://jnb.ociweb.com/jnb/jnbNov2005.html.

Lazy val – calling by need
Enough wandering in the Java wonderland! Coming back to Scala, we have vals and
lazy vals. If some object creation is expensive, we can stick the lazy keyword before
val to initialize it on its first use.

http://jnb.ociweb.com/jnb/jnbNov2005.html

Chapter 4

[81]

Open the REPL and try out the following:

scala> lazy val p = {

 | println ("Initializing")

 | 9

 | }

p: Int = <lazy>

scala> println(p)

Initializing // p accessed for the first time

9

scala> println(p) // cached result of p

9

We stick the lazy keyword before the val keyword. We are using a block expression
to initialize p. In Scala, a block is a sequence of expressions enclosed in { }. The last
expression in the block is the value of the block. The value of the block here is 9.
On the other hand, the value of an assignment expression is Unit. The Unit type is
equivalent to the void type in Java.

Infinite sequences – Scala streams
We have seen many examples of Scala's list. Lists are sequences. Moreover, lists are
strict sequences. Meaning all elements of the list are constructed upfront. However,
there are non-strict sequences, whose elements are constructed as needed.

A list is formed by connecting cons cells. There are two cases:

1. 1 :: Nil

In this case, the cons cell has a value and the empty list as a tail. This list has
only one element. Let's fire up the REPL and try the following snippets:
scala> 1 :: Nil

res2: List[Int] = List(1)

2. 1 :: 2 :: Nil

Here, we have the cons cell having a value and another list as a tail:
scala> (1 :: (2 :: Nil)).tail

res11: List[Int] = List(2)

Lazy Sequences – Being Lazy, Being Good

[82]

A list with three elements looks like the following:

scala> val p = 4 :: 5 :: 6 :: Nil

p: List[Int] = List(4, 5, 6)

This version, could be rewritten as:

scala> val p = (4 :: (5 :: (6 :: Nil)))

p: List[Int] = List(4, 5, 6)

This version, in turn, could be written as:

scala> val p = (((Nil.::(6)).::(5)).::(4))

val p = (((Nil.::(6)).::(5)).::(4))

p: List[Int] = List(4, 5, 6)

The :: symbol is the cons (construct) operator. The second expression shows the
way the cons operator binds. Nil is a list and we invoke the cons operator and grow
the list.

Similarly, the operator + is used to append to a list:

scala> val list = List(1, 2, 3)

list: List[Int] = List(1, 2, 3)

scala> list :+ 4

res12: List[Int] = List(1, 2, 3, 4)

This appending needs to traverse all of the list to reach the last element and attach
the new value. In other words, appending to a list has O(n) complexity.

On the other hand, prepending using :: is O(1). We don't need to traverse all of the
list, as the head is readily available.

Hence, appending to the list is a costly operation as it takes time traversing the list
for every appending operation.

Now, look at the following:

scala> var k = 2

k: Int = 2

scala> def f() = { k += 1; k }

f: ()Int

scala> lazy val p = Stream.continually(f()) // 1

p: scala.collection.immutable.Stream[Int] = <lazy>

Chapter 4

[83]

scala> (p take 4) foreach {x => println(x)} // 2

3

4

5

6

scala> p

res27: scala.collection.immutable.Stream[Int] = Stream(3, 4, 5, ?)

The method f gets converted to a function. The Stream.continually() method
creates an infinite stream. It takes an a function. When we access each element, the
function is called to compute that element.

As shown, the function is only called when the value is accessed. This on-demand
executed function is also knows as a Thunk. Once the value is computed, it is cached
for further access. This caching goes by the fancy name, memoization.

delayed computation

Cached/Memoized

Thunk
{ k = k+1; k }3 4 5 ?

Streams

Figure 4.4: Thunks and Memoization

Recursive streams
We looked at recursion earlier. Recursive forms are defined in terms of themselves.
For example, folders can have subfolders, which, in turn, can have subfolders
themselves. Another example is recursive methods calling themselves.

We can use a similar form to define recursive streams. To define recursive streams,
consider the following case:

scala> lazy val r = Stream.cons(1, Stream.cons(2, Stream.empty))

r: Stream.Cons[Int] = <lazy>

scala> (r take 4) foreach {x => println(x)}

1

2

Lazy Sequences – Being Lazy, Being Good

[84]

How is this useful? The second cons call can be recursive. (Note we don't need
any var):

scala> def s(n: Int):Stream[Int] =

 | Stream.cons(n, s(n+1)) // 1

s: (n: Int)Stream[Int]

scala> lazy val q = s(0)

q: Stream[Int] = <lazy>

Here, we construct the lazy list by placing a recursive call to the method, s.

However, the following form is a succinct one:

scala> def succ(n: Int):Stream[Int] = n #:: succ(n+1)

succ: (n: Int)Stream[Int]

scala> lazy val r = succ(1)

r: Stream[Int] = <lazy>

Method parameters are val in Scala. Try the following REPL snippet:
scala> def m(s: Int) = s = s + 1

<console>:8: error: reassignment to val

 def m(s: Int) = s = s + 1

Why? Allowing assignment to input parameters is often seen as bad
style and makes it harder to reason about code. If really required, you
can assign the argument to var.
Refer to https://sourcemaking.com/refactoring/remove-
assignments-to-parameters for more on this code smell.
In case you want to use vars, you need a temporary variable:
scala> def m(s: Int) = {

 | var n = s + 1

 | n = n * 2

 | n

 | }

m: (s: Int)Int

https://sourcemaking.com/refactoring/remove-assignments-to-parameters
https://sourcemaking.com/refactoring/remove-assignments-to-parameters

Chapter 4

[85]

Memoization and the flyweight pattern
Memoization is caching of oft-repeated computation results. This is a way to avoid
recalculating the result again. Flyweight is a design pattern that uses memoization.
A flyweight is an object that minimizes memory use by sharing. A very good
example of a flyweight is Java's Integer.valueOf(int) method.

Java supports autoboxing of primitives to corresponding wrapper types. We should
always prefer. Let's have a look at the following snippet:

 int someInt = ...;
 Integer someInteger = someInt;

instead of the following:

 new Integer(someInt);

If we happen to auto-box (int → Integer) values in the range of 128 to 127, the
valueOf() method allows us to reuse the Integer object. As integer instances are
immutable, we can rest easy about sharing the same integer instance across the
application.

The following JUnit test case shows the memoization:

 @Test

 public void test() {

 Integer a1 = Integer.valueOf(12);

 Integer a2 = Integer.valueOf(12);

 Integer a3 = Integer.valueOf(12112);

 Integer a4 = Integer.valueOf(12112);

 assertSame(a1, a2); // a1 & a2 are the same object

 assertNotSame(a3, a4); // a3 & a4 need not be...

 }

Lazy Sequences – Being Lazy, Being Good

[86]

Refer to the following figure that shows the integer memoization:

Conceptual view of
Integer. valueOf()

memoization

IntegerCache

Integer(-128)

Integer(0)

Integer(-127)

Integer(126)

Integer(127)

-128

-127

....

0

126

127

....

Figure 4.5: Integer memoization

Crossing over to the Scala wonderland, a Stream caches results, to avoid re-computation.
The following is an REPL interaction:

scala> def f() = {

 | println("previous value = " + k)

 | k += 1;

 | k

 | }

f: ()Int

scala> val p = Stream.continually(f()) // 1

previous value = 3

p: scala.collection.immutable.Stream[Int] = Stream(4, ?)

scala> (p take 3) foreach { x => println(x) } // 2

4

previous value = 4

5

previous value = 5

6

scala> (p take 3) foreach { x => println(x) } // 3

Chapter 4

[87]

4

5

6

We get the following findings when we dissect the code:

1. The continually method of Stream creates an infinite stream. The
expression is a passed as an argument and is computed for each occurrence.
In simpler words, each element of the lazy list is produced by calling the f()
function. The continually method takes a by name parameter. We will soon
see what are by name parameters.

2. When a new element is accessed, by the name argument, our function is
called. We see the message printed from the function.

3. When the element is already computed, the stream cached the value. The
function is not called as it is already computed and cached. So, we don't see
the message anymore to avoid repetition.

Call by name
Typically, parameters are passed by value are by-value that is the value of the
parameter is determined before it gets passed to the function. In the REPL session
here, we have two functions, g and f.

We pass the value of calling getValue() to f and g:

scala> var k = 0

k: Int = 0

scala> def getVal() = {

 | k += 1

 | k

 | }

getVal: ()Int

scala> def g(i: Int) = {

 | println(s"${i}")

 | println(s"${i}")

 | println(s"${i}")

 | }

Lazy Sequences – Being Lazy, Being Good

[88]

g: (i: Int)Unit

scala> g(getVal())

1

1

1

Refer to the following figure:

getVal()
{
...
}

g(getVal())
g(i: int){

...
}

Call By Value

Return 1 g(1)

calls

Figure 4.6: Call By Value

The three println statements in g() print the same value, 1:

scala> def f(i: => Int) = {

 | println(s"${i}")

 | println(s"${i}")

 | println(s"${i}")

 | }

f: (i: => Int)Unit

scala> k = 0

k: Int = 0

scala> f(getVal())

1

2

3

Chapter 4

[89]

Refer to the following figure:

Call

getVal() {
...
}

f(getVal())

f(i: => Int) {
...
}

Call By Name

f(getVal())
lazy param evaluation

Call

Call

Returns 1

Returns 2

Returns 3

Figure 4.7: Call by name

The parameter, i, is evaluated every time you ask for the value. This is different
from the lazy val. Lazy vals are computed for the first time and then the value is
cached. If we don't refer to the parameter, it is never evaluated. The following is a
code snippet illustrating the point:

scala> def g(i: Int) = {

 | println("Not fine")

 | }

g: (i: Int)Unit

scala> def f(i: => Int) = {

 | println("Am fine")

 | }

f: (i: => Int)Unit

scala> f(1/0)

Am fine

scala> g(1/0)

java.lang.ArithmeticException: / by zero

 ... 33 elided

Lazy Sequences – Being Lazy, Being Good

[90]

We can get away with the illegal division by zero as long as we don't refer to the
parameter! Not so with the g() call, as the parameter is evaluated by a value. The
parameter value is evaluated beforehand, and the attempt to divide by the 0 results
in an exception.

Let's consider the following definition of f:

scala> def f(i: => Int) = {

 | lazy val k = i

 | println(s"${k}")

 | println(s"${k}")

 | println(s"${k}")

 | }

f: (i: => Int)Unit

scala> var k = 0

k: Int = 0

scala> def getVal() = {

 | // println("Yup!!!")

 | k += 1

 | k

 | }

getVal: ()Int

scala> f(getVal())

1

1

1

This is a common idiom. We get back the call of by value semantics by storing the
call by name parameter into a local lazy val. The variable k is only evaluated when
needed, and the value cached for subsequent use.

Uncomment the println line in getVal() and check the output. The message
"Yup!!!" should be printed only once, the first time k (and hence i) is evaluated.

Streams are collections
Scala collections shine as we almost never need to explicitly loop over them. Using
functional combinators like map, flatMap, and filter we get things done declaratively.
This comes very handy, as we will soon see.

Chapter 4

[91]

Streams are lazy lists. You guessed right—these are collections all right:

scala> def succ(n: Int):Stream[Int] = n #:: succ(n+1)

succ: (n: Int)Stream[Int]

scala> lazy val r = succ(0)

r: Stream[Int] = <lazy>

scala> println(r.take(10).mkString(" + "))

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

scala> val evenNums = r filter { x => x %2 == 0 } // 1

evenNums: scala.collection.immutable.Stream[Int] = Stream(0, ?)

We are jumping the gun a bit here. We are using filter, a functional combinator. We
will be taking a detailed look at combinators in a next chapter. Refer to the following
information box for a quick introduction.

scala> val p = List(1,2,3,4)

p: List[Int] = List(1, 2, 3, 4)

scala> p filter { x => x > 2 }

res40: List[Int] = List(3, 4)

The filter is called on the list p. Filter takes as argument a function.
This function returns a Boolean, that is, the function is a predicate.
It runs every element through the function, and filters out elements
for which the function returns false. The result is a new list.
Remember we are in the no-mutation side of the world. The original
list, p, is left untouched and is persistent.
A still shorter form of the filter combinator uses the place holder
syntax:

scala> p filter { _ > 2 }

which allows us to leave the parameter unnamed.

Let's check the following line:

scala> p filter { _ > 2 }

res41: List[Int] = List(3, 4)

We don't really need to name the element. The shorter form refers to the element via
a _ .

Lazy Sequences – Being Lazy, Being Good

[92]

Also note that we don't need to put. to qualify the method call. The following
are equivalent:

scala> p filter { _ > 2 }

res41: List[Int] = List(3, 4)

scala> p.filter { _ > 2 }

res42: List[Int] = List(3, 4)

Pattern matching also works as expected:

scala> lazy val r = t(1)

r: Stream[Int] = <lazy>

scala> r match {

 | case 1 #:: 2 #:: _ => println("match")

 | }

match

Sieve of Eratosthenes
Star gazing at night—we sometimes wonder—How many stars are there in the
universe? How many galaxies? How many natural numbers are there? All these
are really not finite. They are infinite! Prime numbers are also infinite. A brilliant
algorithm to find prime numbers was found by Eratosthenes of Cyrene, a Greek
mathematician. Named after him, the Sieve of Eratosthenes algorithm can be very
nicely expressed as follows:

scala> def numStream(n: Int): Stream[Int] =

 | Stream.from(n)// 1

numStream: (n: Int)Stream[Int]

scala> def sieve(stream: Stream[Int]): Stream[Int] =

 | stream.head #:: sieve((stream.tail) filter (x => x % stream.head
!= 0)) // 2

sieve: (stream: Stream[Int])Stream[Int]

scala> val p = sieve(numStream(2))

p: Stream[Int] = Stream(2, ?)

scala> (p take 5) foreach { println(_) }

2

3

5

7

11

Chapter 4

[93]

By dissecting the code, we get the following findings:

1. We have a stream that generates successive numbers, starting off from the
argument. We create the stream using the Stream.form() method:

2. The sieve is a method that takes a number stream. It lazily generates
successive elements by filtering out any elements.

Let's grok this business. The following is a complete code:

object Sieve extends App {
 def f(s: Stream[Int], head: Int) = { // 1
 val r = s filter {
 x => {
 if (x % head != 0) {
 println(s"${x} is not evenly divisible by ${head}")
 true // 2
 } else {
 println(s"${x} is evenly divisible by ${head}")
 println(s"Discarding ${x}")
 false // 3
 }
 }
 }
 r // 4
 }

 def numStream(n: Int): Stream[Int] =
 Stream.from(n)

 def sieve(stream: Stream[Int]): Stream[Int] =
 stream.head #:: sieve(f(stream.tail, stream.head)) // 5

 val p = sieve(numStream(2))

 (p take 5) foreach { // driver
 println(_)
 }
}

Running it, we get the following output:

2

3 is not evenly divisible by 2

3

Lazy Sequences – Being Lazy, Being Good

[94]

4 is evenly divisible by 2

Discarding 4

5 is not evenly divisible by 2

5 is not evenly divisible by 3

5

6 is evenly divisible by 2

Discarding 6

7 is not evenly divisible by 2

7 is not evenly divisible by 3

7 is not evenly divisible by 5

7

8 is evenly divisible by 2

Discarding 8

9 is not evenly divisible by 2

9 is evenly divisible by 3

Discarding 9

10 is evenly divisible by 2

Discarding 10

11 is not evenly divisible by 2

11 is not evenly divisible by 3

11 is not evenly divisible by 5

11 is not evenly divisible by 7

11

The following is a diagram:

filter out if_ %2==0

3,5,7,9,11,13,...
2

filter out if_ % 3==0

5,7,11,13,17,...
3

filter out if_ % 5==0

7,11,13,17,...
5

Next stream
filter out

if_%7==0
etc.

Figure 4.8: Stream wrapping another stream

We define a method f() that inserts debugging statements in the filter method.

When the stream finds a good element, that is, which is not evenly divisible by the
head, we print it and return true.

Chapter 4

[95]

Otherwise, we print the filtering out sequence. Note that when an element is
discarded by a stream, it is not seen by a downstream one.

Finally, we return the stream.

The sieve method is modified to use the stream creation method, f.

As earlier, the driver takes off elements from our recursive stream and prints it.

Try playing with it by extending the diagram to see what happens when we advance
to 7 (it is a prime number and hence selected).

Try to visualize why 8, 9, and 10 are discarded. The next number produced is 11,
which is again a prime number.

A view to a collection
Databases have views. A database view works just like a table; however, the table
never exists. It is just an illusion. A view is only a stored query, which is run when
the view name is referenced:

Mysql> CREATE VIEW first_last AS SELECT first_name, last_name FROM NAMES
WHERE last_name LIKE ('k%');

mysql> SELECT first_name FROM first_last;

The view first_last query is backed by the result set of a query, on a real table,
NAMES. We can select only the columns of interest and apply some transformations
on them.

Scala collection views are similar. We will soon be giving a close look to functional
transformation. However, to get a taste, the following is an example:

We need to assign a temporary password to a user. We have a list of randomly
generated passwords. We need to pick one.

Our validation rules are:

1. A password cannot be empty.
2. It must have at least an uppercase letter.
3. It should have a numeric character.
4. It must have a special character.
5. It must have five or more characters.

Lazy Sequences – Being Lazy, Being Good

[96]

We cobble together some transformations:

scala> val p = List("", "9#greaT", "is great", "greater", "23#pp",
"Aa#@4")

p: List[String] = List("", 9#greaT, is great, greater, 23#pp, Aa#@4)

scala> p filterNot (_.isEmpty) filter (_.exists(_.isDigit)) filter
(_.exists(_.isUpper)) filter (_.matches("""^.*[\W].*$""")) filter
(_.length >= 5)

res2: List[String] = List(9#greaT, Aa#@4)

The problem is that each filter is creating an intermediate list. This is in keeping
with what we are saying. We never change the list in place. Lists are immutable!
Remember our discussion on immutability and persistent data structures? The
following is how the transformation looks:

9#greaT
is great
greater
23#pp
Aa#@4

9#greaT
is great
greater
23#pp
Aa#@4

9#greaT
23#pp
Aa#@4 9#greaT

Aa#@4 9#greaT
Aa#@4

9#greaT
Aa#@4

isNotEmpty
has
Digit

has
Upper
Char

has
Special

(Non Word)
Char

num chars
>=5 Result

Receives
New List

Figure 4.9: The transformation pipeline

We can convert all these transformations to be applied lazily:

scala> val v = p.view

v: scala.collection.SeqView[String,List[String]] = SeqView(...)

scala> val pv = v.filterNot(_.isEmpty).filter (_.exists(_.isDigit)).
filter (_.exists(_.isUpper)).filter (_.matches("""^.*[\W].*$""")).filter
(_.length >= 5)

pv: scala.collection.SeqView[String,List[String]] = SeqViewFFFFF(...)

scala> val x = pv.take(1)

x: scala.collection.SeqView[String,List[String]] = SeqViewFFFFFS(...)

Chapter 4

[97]

scala> x.force

res7: List[String] = List(9#greaT)

scala>

We use a force call to convert the non-strict list of element 1 to a strict list. Strict data
structures are evaluated completely. Non-strict ones are evaluated on a need basis.

Note all FFFFFs when we define pv? The filter functions are stored and applied all at
once when we try to get at the first element.

The following is a version with trace statements that will help in understanding
the flow:

scala> def working(s: String) = println(s"Working on ${s}")

scala> def isEmpty(s: String) = {

 | working(s)

 | s.isEmpty

 | }

scala> def hasOneDigit(s: String) = {

 | working(s)

 | s.exists(_.isDigit)

 | }

scala> def hasOneUpperCaseChar(s: String) = {

 | working(s)

 | s.exists(_.isUpper)

 | }

scala> def matches(s: String) = {

 | working(s)

 | s.matches("""^.*[\W].*$""")

 | }

scala> def hasMinLen(s: String) = {

 | working(s)

 | s.length >= 5

 | }

Lazy Sequences – Being Lazy, Being Good

[98]

Now, have a look at the following statements:

scala> val pv = v.filterNot(isEmpty).filter(hasOneDigit).
filter(hasOneUpperCaseChar).filter(matches).filter(hasMinLen)

pv: scala.collection.SeqView[String,List[String]] = SeqViewFFFFF(...)

scala> val x = pv.take(4)

x: scala.collection.SeqView[String,List[String]] = SeqViewFFFFFS(...)

scala> x.force

Working on

Working on 9#greaT

Working on 9#greaT

Working on 9#greaT

Working on 9#greaT

Working on 9#greaT

All the filters are triggered on the first element. If the element satisfies all filters, it
makes into the result list. There are no intermediate lists as in the strict evaluation.

When our input list is huge, not creating intermediate results could get us
significant savings!

Summary
Lazy acquisition is a pretty commonly used pattern. The proxy design pattern is a nice
example of Lazy Acquisition. ORM frameworks like Hibernate use proxies for lazy
loading. Scala pushes the envelope by providing lazy vals and streams, which provide
for on-demand computation, using thunks. Memoization is a related pattern to avoid
computing the same value again. Instead, the value is cached. Java's autoboxing classes
use memoization to conserve memory. Scala's streams use memoization and strike a
balance between on-demand computation and memoization. Call by name is another
powerful technique for delayed evaluation of code.

Let's now try mixing in some traits to our bag of Scala techniques in next chapters.
Traits are Java interfaces and much more. Tighten your seat belts and let's deep dive
into yet another of the powerful Scala features.

[99]

Taming Multiple Inheritance
with Traits

When it is summer time in India and the heat is just unbearable, our hands
instinctively reach out for either the AC remote or the regulator knob. And in a
matter of minutes, we get bliss! An AC remote is pretty simple to operate and so
is a ceiling fan regulator. A handful of push buttons that are easily understood by
anyone. However, a remote is an interface. It is the system's way of allowing the
external world to interact with it. A regulator knob is another, and so is a TV remote
and the numeric keypad on your phone. As the air conditioner is a complex system,
it needs to expose a simple way in which the consumer can use it. A motorbike too is
a complex machine. You just need to know how to kick start it into life, change gears,
and off you go. The bike also comes equipped with useful stuff, such as a fuel gauge
and a speedometer. An AC remote, a bike fuel gauge, and a fan regulator are all
interfaces. Think of a system and you will see an interface. Interfaces are everywhere!

Interfaces allow us, the external world, to help use complex systems. We cannot
even imagine driving a car without essential interfaces such as a gear box and a
speedometer. Interfaces are the touch points exposed by the system so that the world
can use them.

Interfaces are also contracts. When you implement one, you need to meet the
interface requirements. For example, the gear box of a car should work in the same
way no matter what type of car it is. The speedometer should also work in the same
way for all the cars. Interfaces provide a warranty for the caller (also known as the
external world), that the class implementing an interface can do some operation,
without knowing the internal details of exactly how it does the magic. A class can
implement multiple interfaces. If it does so, it needs to abide by multiple contracts
as well.

Taming Multiple Inheritance with Traits

[100]

In this chapter, we will look at the iterator design pattern in Java to understand
the contract aspect of interfaces better. We will also look at abstract classes and the
template method. We will then see why Java forbids us from extending multiple
abstract classes and shaking hands with the dreaded diamond. Armed with all this
knowledge, we will look at Scala traits. Traits are similar to Java interfaces, and with
more and some more features. Traits allow mix-ins, a composition mechanism. Next,
we will see what stackable traits are and get a taste of the cake pattern. Finally, we
will come to know about the linearization mechanism. This is how Scala defeats the
dreaded diamond. Let's get on to it!

The iterator design pattern
Surfing channels on a TV acts as a stress buster for me. Switching channels back and
forth is so soothing. This process of visiting channels in an order is called iteration.
When we are in a hotel room, away from home, the aired channels may be different.
However, the process of iteration remains the same. We visit a channel, we may
spend some time watching it, and if we feel bored again, we go to the next one.

In programming, visiting each element of a data structure is routinely required. To
make itself iterable, the data structures produce an iterator object. The iterator object
needs to obey a contract that is laid down by the interface. For example, if the data
structure produces an instance of java.lang.Iterable, then we can use Java's
foreach loop to visit each element, that is, we can iterate the data structure. Let's
look at the following figure:

iterator
hasNext()

next()

n o q p m

Tree
Depth First Traversal

on

m

p

q

w x yvv

w

x

y

List
Sequential traversal

iterates iterates iterates

e f g c d h

A custom
data structure

e

c f

d g

h

Figure 5.1: Iterator Abstraction

Chapter 5

[101]

The following Java code snippet shows how we can iterate various data structures.
Java's foreach loop can iterate our custom data structures as it obeys the iterable
contract:

// generic class to print elements
package chapter05;
public class PrintElems {
 public void print(Iterable<Integer> iterator) {
 System.out.println(""--- Start ---"");
 for (Integer i : iterator) { // 1
 System.out.println(i);
 }
 System.out.println(""--- End ---"");
 }
}
// Our own iterator implementation
package chapter05;
import java.util.Iterator;

public class MyDataStruct {
 public Iterable<Integer> values() {
 return new Iterable<Integer>() {
 private final int[] array = new int[]{ 5, 11, 22 };
 @Override
 public Iterator<Integer> iterator() {
 return new Iterator<Integer>() {

 private int i = 0;

 @Override
 public boolean hasNext() { // 2
 return i != array.length;
 }

 @Override
 public Integer next() {
 return array[i++]; // 3
 }
 // remove method not shown
 };
 }
 };
 }
}

Taming Multiple Inheritance with Traits

[102]

/////// Driver.java
package chapter05;

import java.util.Map;

import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;

public class Driver {
 public static void main(String[] args) {
 Map<String, Integer> lhmap = Maps.newLinkedHashMap();
 lhmap.put(""one"", 1);
 lhmap.put(""two"", 2);
 lhmap.put(""three"", 3);

 PrintElems pe = new PrintElems();
 pe.print(lhmap.values());

 pe.print(Maps.newHashMap(lhmap).values()); // 4

 pe.print(Sets.newHashSet((lhmap).values())); // 5

 pe.print(Lists.newArrayList((lhmap).values())); // 6

 MyDataStruct p = new MyDataStruct();

 pe.print(p.values()); // 7
 }
}

In the preceding code, both java.util.Set and java.util.Map are interfaces.
Here, we are creating HashSet and HashMap. The data structure that we've used
internally is a hash table. A java.util.ArrayList uses arrays. There is one more
implementation, java.util.LinkedList. This one uses a linked list internally.
Both of these implement the java.util.List interface. LinkedHashMap extends the
HashMap data structure. It uses an additional data structure, a doubly linked list. This
list keeps track of the insertion order. Note that the LinkedHashMap output is in the
same order in which we inserted the entries.

We use another technique, that is, programming to an interface. When I program to
an interface, I just need the functionality. I don't care where it comes from! When I
just care about the functionality, I can plug in various providers without affecting the
code that uses them.

Chapter 5

[103]

So, we need to avoid using the following code:
 private ArrayList<Integer> someList;

 public ArrayList getAList() {

 return someList; // 1
 }

And instead of using the preceding code, we should always use the
code given here:

 public List getAList() {

 return someList; // 2
 }

The advantage of the second form is that we can easily replace
one implementation of the interface with another, as shown in the
following code:

public List getAList() {
 return Collections.unmodifiable(someList);
}

That is just one line of code change. Now, we are going to expose a
read-only list so that no one can tamper with our class invariants.
Refer to http://people.cs.aau.dk/~normark/oop-csharp/
html/notes/contracts_themes-class-inv-sect.html for
more information on class invariants.

The salient points of the preceding code are as follows:

• The PrintElems.print(...) method uses the java.lang.Iterable
interface as a type. We need to send an argument that implements Iterable;
otherwise, the code won't be compiled.

• Next, we implement the Iterator interface. In order to satisfy the contract,
one of the methods that we need to implement is hasNext. This is used to
know whether there are any more elements that are left to be traversed.

• Similarly, the next method yields the next element. Our internal data is just
an array. However, the client code using the iterator does not know and care
about such details. This is an example of encapsulation.

• Then, we exercise the PrintElems.print(...) method by creating java.
util.HashMap. This class provides a values() method, which is an iterator.
The values() method returns a collection that implements Iterable.

• After this, we use java.util.HashSet, which implements the java.util.
Set interface. Sets, too, implement the Iterable interface. HashSet obeys the
contract and provides a suitable values() method, which returns Iterable.

http://people.cs.aau.dk/~normark/oop-csharp/html/notes/contracts_themes-class-inv-sect.html
http://people.cs.aau.dk/~normark/oop-csharp/html/notes/contracts_themes-class-inv-sect.html

Taming Multiple Inheritance with Traits

[104]

• Then, we create java.util.ArrayList, which implements the java.util.
List interface. As the List interface extends the Iterable interface, the
contract is obeyed by ArrayList. Then, we get Iterable.

• We pass in our Iterable data structure. which extends the Iterable
interface, the printElems can use the foreach loop on it too.

The Iterable interface specifies a contract. Any class implementing it promises
to provide appropriate hasNext() and next() methods. The print method of
PrintElems does not really know or care what the data structure really is. The
foreach loop exclusively uses the Iterable interface to visit each element.

Interfaces as types
Interfaces specify only what a class can do (or which contracts it obeys) and not how
the class does this. On the other hand, non-related classes can share some common
behavior. If we somehow could write this behavior in one place, we would be
following the Don't Repeat Yourself principle (DRY).

The DRY principle aims at reducing repetition. We can look at a
method, a function, or a class as a piece of knowledge. This means that
a function or method knows how to do something. The principle tells
us not to duplicate this know-how.
It is easier to change this one piece or replace it with another, as this
won't affect other logically unrelated elements. Brian Kernighan, the
legendary programmer, calls this the Single Point Of Truth (SPOT)
principle.
Refer to http://www.linuxtopia.org/online_books/
programming_books/art_of_unix_programming/ch04s02_2.
html for more on this important design principle.

Let's try the following code as an example of an interface:

// NameIt.java
public interface NameIt {
 public String name();
}
// GoodsMover.java
public interface GoodsMover extends NameIt {
 void moveGoods();
}
// Walks.java
public interface Walks extends NameIt {

http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch04s02_2.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch04s02_2.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch04s02_2.html

Chapter 5

[105]

 public void walk();
}
// Donkey.java
public class Donkey implements Walks, GoodsMover, NameIt {
 public void walk() {
 ProcessIt.walk(this);
 }
 public void moveGoods() {
 ProcessIt.moveGoods(this);
 }
 public String name() {
 return ""Donkey"";
 }
}
// Horse.java
public class Horse implements Walks, NameIt {
 public void walk() {
 ProcessIt.walk(this);
 }
 public String name() {
 return ""Horse"";
 }
}
// Driver.java
public class Driver {
 public static void main(String[] args) {
 Horse horse = new Horse();
 Donkey donkey = new Donkey();
 donkey.walk();
 donkey.moveGoods();
 horse.walk();
 }
}
// ProcessIt.java
public class ProcessIt {
 public static void moveGoods(GoodsMover goodsMover){// 1
 System.out.println(goodsMover.name() + "" busy moving heavy
 stuff"");
 }
 public static void walk(Walks walker) { // 2
 System.out.println(walker.name() + "" is having a stroll now"");
 }
}

Taming Multiple Inheritance with Traits

[106]

Here is a UML diagram for the preceding example:

NameIt
<<Interface>>

+name():String

Walks
<<Interface>>

+walk():void

+name():String
+walk():void

Horse+moveGoods():void
+name():String

+walk():void

Donkey

GoodsMover
<<Interface>>

Figure 5.2: A UML diagram for the Animal hierarchy

The salient points for the interface example are as follows:

• The moveGoods(GoodsMover goodsMover) method uses the GoodsMover
interface as a type

• Similarly, the walk(Walks walker) method uses the Walks interface as
a type

Now, we want to write the walk method only once and use it for any walkers.
However, we cannot write implementations in a Java interface. To share the
implementation code of an interface method, we need to write auxiliary classes
such as ProcessIt.

The dreaded diamond
Mules are hybrid animals. Charles Darwin found them most surprising. Mules
possess more reason, memory, obstinacy, social affection, powers of muscular
endurance, endurance, and length of life than either of their parents, namely
donkey and horse.

Chapter 5

[107]

Now, the question is how would we model mules in our system? Mules obviously
walk and move goods. So, we might be tempted to model mules by extending both
Horse and Donkey. Alas! We cannot! Java allows a class to extend from only one
class—also known as a single inheritance. We don't wish to rewrite the walk and
moveGoods methods again for mules. If the language allowed us to extend mules
from both Horse and Donkey, it would be just the thing! Let's see the following
diagrammatic representation for this example:

Interface
Walks

Interface
GoodsMover

Donkey

walk() moveGoods()

Horse

walk()

Mule

Figure 5.3: The dreaded diamond

The problem here is the walk() method. As the diagram shows, which walk method
implementation would Mule inherit? Would it be the one from Horse? Or the one
from Donkey?

You would think we are relying way too much on inheritance. Shouldn't we really
favor composition over inheritance? Sure, point taken. However, we very much
want to send a Mule object where the expected argument type is, Walks. If we favor
composition, the compiler precisely won't allow us to do this.

"Composition over inheritance" is a core object-oriented
programming principle. The design pattern's movement advocates
favoring composition over inheritance. The bridge design pattern
is an application of this idea. Say, you want to draw colored
shapes. You won't define the patterns you've made as RedCircle,
YellowEclipse, and BlueRectangle. Rather, you would define a shape
hierarchy and a color hierarchy. You can then define an abstract color
in a shape. In this case, a composition wins hands down! Composing
a shape with color helps us tame a class explosion.
Refer to https://www.thoughtworks.com/insights/blog/
composition-vs-inheritance-how-choose for more on
this theme to see an example of composition over inheritance.

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose for more on this theme
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose for more on this theme
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose for more on this theme

Taming Multiple Inheritance with Traits

[108]

Traits – Scala's rich interfaces
It would be super cool if we could write reusable code as well as get rid of the
dreaded diamond. Scala's traits is the answer if we want to do this.

Here is how we could implement the preceding hierarchy in Scala:

object RichInterfaces extends App {

 trait NameIt { // 1

 def name(): String // 2

 }

 trait Walks extends NameIt { // 3

 def walk() = // 4

 println(name() + "" is having a stroll now"")

 }

 trait GoodsMover extends NameIt {

 def moveGoods() =

 println(name() + "" busy moving heavy stuff"")

 }

 class Horse extends Walks { // 5

 override def name(): String = ""Horse""

 }

 class Donkey extends Walks with GoodsMover { // 6

 override def name(): String = ""Donkey""

 }

 val horse = new Horse

 val donkey = new Donkey

 horse.walk() // 7

 donkey.walk()

 donkey.moveGoods()

}

The salient points of the preceding code are as follows:

• In the code, we defined a NameIt trait. This is very similar to a Java interface
• We then declared a name() method, again, in Java interfaces
• After this, the Walks trait extends the NameIt trait

Chapter 5

[109]

• The Walks trait then defines the reusable walk() method implementation
• The Horse class mixes in the Walks trait
• The Donkey class then mixes in the Walks and GoodsMover traits
• After this, we call horse.walk() that executes the walk() method defined in

Walks trait

Look again at the walk() method of the Walks trait. Earlier, in the Java
implementation, we had to provide an implementation that just delegated to the
ProcessIt class. In the Scala solution, we could add this same code as a concrete
method in the trait itself.

Our NameIt trait has a thin interface. NameIt is mixed into Walks and GoodsMover,
as both have concrete methods and a rich interface.

Rich interfaces do more work by themselves, so the clients (Horse,
Donkey) need to write less code. On the other hand, thin interfaces
make clients write more code to implement them. Needless to say,
Java interfaces are thin, as they made us write more code. We had to
implement walk() and moveGoods() to implement the interfaces.

You can mix in traits with an object too. Let's go to the REPL and try the following
command to do so:

scala> import RichInterfaces._

import RichInterfaces._

scala> val gmHorse = new Horse with GoodsMover

gmHorse: RichInterfaces.Horse with RichInterfaces.GoodsMover =
$anon$1@1cc7580f

scala> gmHorse.moveGoods

Horse busy moving heavy stuff

scala> val h = new Horse

h: RichInterfaces.Horse = RichInterfaces$Horse@3f1d2e23

scala> h.moveGoods

<console>:13: error: value moveGoods is not a member of RichInterfaces.
Horse

 h.moveGoods

 ^

Here, we created Horse and gmHorse, and we gave it good moving powers. As h is a
normal horse, it won't move goods for you!

Taming Multiple Inheritance with Traits

[110]

Our mules can be created as shown in the following code:

scala> val mule = (new Walks with GoodsMover {

 | override def name(): String = ""Mule""

 | })

mule: RichInterfaces.Walks with RichInterfaces.GoodsMover =
$anon$1@4823400e

scala> mule.walk()

Mule is having a stroll now

scala> mule.moveGoods()

Mule busy moving heavy stuff

scala>

The mule method points to an anonymous object with the traits attached to it.

Mix-ins – rich interfaces
Let's add a funny twist to the tale. We will now remove the NameIt trait and change
both the traits, as shown in the following code:

 trait Walks {

 def name : String

 def walk() =

 println(name + "" is having a stroll now"")

 }

 trait GoodsMover {

 def name : String

 def moveGoods() =

 println(name + "" busy moving heavy stuff"")

 }

The name() method, referred to by the traits, must be defined somewhere. As long as
Horse and Donkey define the name() method, it works.

Writing a rating comparison algorithm for our animals illustrates one major use of
the traits. Our rating is a simple number. Try the following snippet to implement the
compare method:

object CompareAnimals extends App {
 // traits Walks and GoodsMover not shown

Chapter 5

[111]

 abstract class Animal(val rating: Int) extends Ordered[Animal]

 class Horse(rating: Int) extends Animal(rating) with Walks { // 1
 override def name(): String = ""Horse""
 override def compare(that: Animal): Int = rating – that.rating //
2
 }

 class Donkey(rating: Int) extends Animal(rating) with Walks with
GoodsMover {
 override def name(): String = ""Donkey""
 override def compare(that: Animal): Int = rating - that.rating
 }
 val horse = new Horse(1)
 val donkey = new Donkey(2)
 if (horse < donkey) { // 3
 println(""Donkeys are more useful than horses - breed Donkeys"")
 } else if (horse > donkey) {
 println(""Horses are more useful than donkeys - breed Horses"")
 }

 // we don't get == though
}

The salient points for the preceding code are as follows:

• Here, we are using the standard ordered trait. This trait forces us to
implement the compare method.

• The compare method returns 0 if the objects are equal, negative if the receiver
is less than the argument, and positive otherwise.

• We have not defined any < method in the code. The ordered trait has
enriched our interface by defining the < method in terms of the compare
method that we provided.

More fun awaits us.

Frills and thrills – the decorator pattern
We need to add the functionality whereby animals get inoculated by a vet. Also, an
animal should be inoculated only once. In practice, we would normally inoculate
them at intervals. However, we simplify things to make our point. We want to
wrap the logic "if already inoculated, then skip" without touching the animal code. The
decorator pattern now comes to our rescue.

Taming Multiple Inheritance with Traits

[112]

A decorator is a design pattern that wraps an object. It mimics the interface of the
object that it is decorating. Here is the Java code in which we will look at how Scala
makes the pattern easy and breezy.

The Java listing here has just the necessary changes. Refer to the book source code for
the complete listing:

public class AnimalDecorator extends Animal { // 1
 protected Animal animal; // 2
 public AnimalDecorator(Animal animal) {
 this.animal = animal;
 }
 public void getInoculated() {
 animal.getInoculated(); // 3 // delegate to next decorator
 // or animal
 }
 @Override
 public boolean isAlreadyInnoculated() {
 return animal.isAlreadyInnoculated(); // 4
 }
 @Override
 public String name() {
 return animal.name();
 }
}
public class SkipIfInnoculated extends AnimalDecorator {
 // constructor code not shown…
 public void getInoculated() { // 5
 System.out.println("Checking if decorated");
 if (animal.isAlreadyInnoculated()) {
 System.out.println(name() + " already ioculated -
 Skipping");
 } else {
 super.getInoculated();
 }
 }
 // Driver.java
 public static void main(String[] args) {
 Horse horse = new Horse();
 Doctor doctor = new Vet();
 horse.setDoctor(doctor); // inject the doctor dependency
 AnimalDecorator decoratedHorse = new SkipIfInnoculated(new
 InnoculateAnimal(horse)); // 6 // horse with frills
 decoratedHorse.getInoculated(); // outputs message
 decoratedHorse.getInoculated(); // skips inoculation
 }

Chapter 5

[113]

The salient points of the preceding code are as follows:

• The Animal Decorator class is completely substitutable (it is an animal).
• However, it is just a wrapper. It does its bit and delegates to the real stuff—

which could be a decorator again.
• Then, the getInoculated() call gets delegated.
• The Boolean status if the animal is already inoculated. Note that this call is

really satisfied by the actual animal (horse in the example case).
• This is the logic that we need to execute. Skip inoculation if the animal is

already inoculated.
• The decorator is created by composing other decorators and the target object.
• The crux to understand the preceding example is to know that each method

call is terminated at the target object.

Here is a UML diagram that shows you how the classes relate to each other:

+name():String
+walk():void

Horse

Animal
<<Abstract>>

-alreadyInnoculated:boolean
-doctor:Doctor
+name():String

+name():String

AnimalDecorator

animal
1

SkipIfInnoculated

InnoculateAnimal

Figure 5.4: Decorating Animals

Taming Multiple Inheritance with Traits

[114]

Scala's easy and breezy decorations –
stackable modifications
As we know well by now, programming in Scala is super simple. Actually, this is
one major use of traits, namely to modify the existing class methods of an object. I
am just giving the new methods now. You can refer to the following sample code for
a working example:

 abstract class Animal(val rating: Int) {

 def giveInoculation(): Unit // abstract method

 def alreadyInoculated() : Boolean // abstract method

 }

 trait FilterOutAlreadyInoculated extends Animal {

 abstract override def giveInoculation(): Unit = // 1

 if (!alreadyInoculated())

 super.giveInoculation()

 }

 class Horse(rating: Int, var inoculated: Boolean = false) extends
Animal(rating) with Walks with Ordered[Animal] {

…

 override def giveInoculation(): Unit = {

 println(name() + "" Getting inoculated"")

 inoculated = true

 }

 override def alreadyInoculated(): Boolean = inoculated

}

Going to the REPL:

scala> import Stackable._

scala> val horse = new Horse(1) with FilterOutAlreadyInoculated

... // mix in the filtering trait

scala> horse.giveInoculation // invoke

Horse Getting inoculated

scala> horse.giveInoculation

// Nothing printed here

Chapter 5

[115]

The abstract override method tells the compiler that the trait sporting it must be
mixed into a class that has a concrete definition.

The trait intercepts the giveInoculation() method on the object, and if it is already
inoculated, the inoculation is skipped. Here is the diagrammatic representation of
this example:

FilterOutAlreadyInoculated if(!alreadyInoculated())
super.giveInoculation()

Horse printIn(name() + "Getting inoculated")

Stacked Up super.giveInoculation

Invoke method
horse.giveInoculation()

Stackable modification
traits

Figure 5.5: Stackable modifications

What do we mean by the term stackable? Let's introduce another trait, nullifying the
filter, as shown in the following code:

 trait NullifyFiltering extends Animal {

 override def alreadyInoculated() = false

 }

scala> val horse = new Horse(1) with NullifyFiltering with
FilterOutAlreadyInoculated

...

scala> horse.giveInoculation

Horse Getting inoculated

scala> horse.giveInoculation

Horse Getting inoculated

Taming Multiple Inheritance with Traits

[116]

The alreadyInoculated()method in horse is not called. Rather, the
NullifyFiltering's alreadyInoculated() method is called! This sets back the flag
to false, so the if condition in the filtering trait is never true! Refer to the following
figure of call order to understand this:

FilterOutAlreadyInoculated if(!alreadyInoculated())
super.giveInoculation()

NullifyFiltering def alreadyInoculated() = false

Stacked Up

Stacked Up

Invoke method
horse.giveInoculation()

Horse printIn(name() + "Getting inoculated")

Figure6: Mix-in Left to Right Call Order

Dependencies injection pattern
The Hollywood principle (https://en.wikipedia.org/wiki/Hollywood_
principle) is stated as "don't call us, we'll call you". One might hear this response
after auditioning for a role in a movie. It won't work if the candidates call the
recruiting agency every day. The agency would get swamped with calls if there were
many candidates.

Instead, the agency will call back if they find someone suitable and want to take
it forward.

This Inversion Of Control (IoC) applies to software designs too. IoC is different
from other more traditional forms of programming.

Refer to https://techbizcurry.wordpress.com/2014/04/07/hollywood-
principle-inversion-of-control-design-pattern/ for an excellent explanation.

Here is a real-world scenario. Test-first development advocates writing tests before
you write the production code. Following this advice makes for better code, as it
gives us a test harness. A test harness, in turn, would make us more confident in
refactoring the code base and help us keep it clean.

https://en.wikipedia.org/wiki/Hollywood_principle
https://en.wikipedia.org/wiki/Hollywood_principle
https://techbizcurry.wordpress.com/2014/04/07/hollywood-principle-inversion-of-control-design-pattern/
https://techbizcurry.wordpress.com/2014/04/07/hollywood-principle-inversion-of-control-design-pattern/

Chapter 5

[117]

The advice seems a little odd though. Surely, programming by intention (refer to the
following example) helps, but what about collaborators of an object? Any class object
typically works in tandem with other objects.

Programming by intention is a productivity booster technique that
is used while you are cutting code. This is one major benefit of using
IDEs such as Eclipse and IntelliJ. For example, in our Java version,
you can express your intention by writing the following code:

Mule mule = new Mule();

As there is no Mule class present, the compiler complains. In Eclipse,
you see a red mark indicating the error. Now, pressing Ctrl + 1, the
quick fix shortcut, Eclipse pops up a suggestion to fix this error. The
suggestion is "Create class "Mule". By clicking on this, Eclipse guides
you to the class creation.
Next, really want to read the preceding line as:

Animal animal = new Mule();

Again, you will see the red mark. For quick fixing, we choose a
suggestion to create the Animal interface. However, Mule still
does not implement Animal. Quick fixing allows us to "Let "Mule''
implement "Animal''".
You can create missing class methods in this way. You implement
interface contract methods too via quick fix. I don't remember the last
time I coded a method itself. This quick fix is one great reason to start
using an IDE.

Now, our animals will have an owner. The owner is a person who, in turn, will have
collaborators such as an address. Animals will also have a caretaker, who is yet
another person. The caretaker too will have an address collaborator object. Animals
also have an associated doctor. You get the idea, right? We rarely deal with single
objects. We instead deal with object graphs!

DEPENDENCY

DEPENDENCY

DEPENDENCY

DEPENDENCY

DEPENDENCY

DEPENDENCY

DEPENDENCY

Object graph

DEPENDENCY

DEPENDENCY

Animal

Owner OwnerAddress

CareTakeAddress

Nurse1
Nurse2
Nurse3
Nurse4

...

Doctor1
Doctor2
Doctor3
Doctor4

...

HospitalAddress

Hospital
Many other dependencies

(Admin, Suppliers etc)
Not shown

CareTaker

Doctor

Figure 5.7: An animal objects graph

Taming Multiple Inheritance with Traits

[118]

These collaborators, such as the Owner for an Animal is a dependency. When asked
the name of its owner, the animal, in turn, needs to ask the owner. Similarly, to fulfill
the "get inoculated" message, the Animal needs to depend on the Doctor dependency.

So far, so good. Now, suppose that we need to create the dependencies at
construction time:

 Animal() {
 this.doctor = new Doctor(); // Coupling

 // … initialization of other members
 }

The problem with this code is that the Animal's doctor field is hard wired to the
Doctor class. In other words, the doctor field is tightly coupled with the Doctor
class. However, we are violating one important mantra here. The systems should
now have loose coupling and high cohesion.

Why? One reason for this is that we cannot test this easily. More specifically, we need
to develop the Doctor class first (which could be fairly complicated itself as it will
need its own collaborator and hospital defined first) and then only we can reliably
construct Animal. The test-first paradigm tells us to write tests before we write any
production code. Quite a chicken and egg situation!

The other reason is that we would want the Hospital, Doctor, and Animal classes to
evolve separately. The way out is to first perform extract interface refactoring. Refer
to http://www.refactoring.com/catalog/extractInterface.html for more
information on refactoring.

Secondly, we can use the test double technique, namely a mock object. Refer to
http://xunitpatterns.com/Test%20Double.html and http://martinfowler.
com/articles/mocksArentStubs.html for more information.

I am showing only the relevant changes here. The book source code has the complete
example. Take a look at the changes in the following example:

Public interface Doctor {

 void noculate(Animal animal);

}

public abstract class Animal {

 private Doctor doctor;

 public void getInoculated() {

 doctor.innoculate(this);

http://www.refactoring.com/catalog/extractInterface.html
http://xunitpatterns.com/Test%20Double.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

Chapter 5

[119]

 }

 public void setDoctor(Doctor doctor) {

 this.doctor = doctor;

 }

}

public class AnimalsTest {

 @Test

 public void testInnoculation() {

 Doctor doctor = mock(Doctor.class); // 1

 Animal animal = new Horse();

 animal.setDoctor(doctor); // 2

 animal.getInoculated();

 verify(doctor).innoculate(animal); // 3

 }

}

The salient points of the preceding code are as follows:

• We create the test double, also known as The mock.
• We set the doctor dependency of the animal object to the mock object, which

was created in the line labeled as 1.
• We verified the expectation that the mock method, getInoculated(),

was invoked.

We are using a popular mocking library, Mockito (http://mockito.
org/). Other popular mock libraries, powermock and jMock are
available too. We can define a mock and inject it as a dependency for
the class under test. We use the setter injection (that is, call the setter
method) and verify that the expectations are met.

The crux is that instead of the animal controlling which dependency to use, we
control it from the outside. This, again, is IoC. Dependency injection is a form of IoC.

http://mockito.org/
http://mockito.org/

Taming Multiple Inheritance with Traits

[120]

Spring is a great DI framework. We write code in the form of beans. Beans are
Spring-managed objects. We configure beans in an application context and you can
wire up bean dependencies using XML or Java annotations. For example:

@Component
public class Animal {
 @Autowire
 private Doctor doctor;
…
}

The Animal is a Spring-managed bean indicated by the @Component annotation.
Animal has a Doctor dependency. We express the dependency using the @Autowire
annotation. Spring finds a Doctor bean (a Spring-managed Java object) and injects
the bean as a dependency via a setter injection, that is, Spring invokes the Animal's
setDoctor(Doctor doctor) method.

In Scala, we can use the cake pattern to inject dependencies.

A taste of the cake pattern
Scala provides a nice way to inject dependencies via a feature called self-annotation.
This is useful to inject dependencies. Consider the giveInnoculation() method in
Animal, as shown here:

object ScalaDepInj extends App {

 abstract class Animal(val rating: Int, var inoculated:

 Boolean = false) {

 def name(): String

 def alreadyInoculated() = inoculated

 def setInoculated(b: Boolean) = {

 inoculated = b

 }

 }

 trait Vet { // 1

Chapter 5

[121]

 def name(): String

 def inoculate(animal: Animal) = {

 println(""Innoculating "" + animal.name)

 }

 }

 trait ChoosyVet extends Vet { // 2

 def alreadyInoculated(): Boolean

 abstract override def inoculate(animal: Animal) = {

 if (!alreadyInoculated()) // filter out already

 // inoculated animals

 println(""Innoculating "" + animal.name)

 }

 }

 trait Inoculate {

 this: Animal with Vet => // 3

 def setInoculated(b: Boolean)

 def giveInoculation() = {

 inoculate(this)

 setInoculated(true)

 }

 def name(): String

 }

 class Horse(rating: Int) extends Animal(rating) {

 override def name(): String = ""Horse""

 }

 // driver

Taming Multiple Inheritance with Traits

[122]

 val h = new Horse(1) with ChoosyVet with Inoculate // 4

 h.giveInoculation() // prints message

 h.giveInoculation() // filtered out

}

Here is the diagrammatic representation of this example:

service

mixes in

mixes in

mixes in

injected

injected
Vet

Horse

name()

Choosy Vet

this=> Vet & Animal
are dependencies

Inoculate

giveInoculation()

setInoculated(b: Boolean)

inoculate (Animal)

inoculate (Animal)

Figure 5.8: The Scalaish dependency injection

The salient points of this example are as follows:

• Here, we move the inoculation logic into a Vet trait
• We then define another Vet trait, ChoosyVet, which filters out the already

inoculated animals
• This is a self-annotation. The Inoculate trait depends on a Vet trait
• We are mixing in a ChoosyVet trait, which skips the already inoculated animals

Try replacing ChoosyVet with Vet and check the output.
Why the pattern name has a cake? Cakes have many ingredients and
you can add many more to get a unique flavor. We can use traits to
configure the objects the way we want. Secondly, cakes have layers.
Our traits are layered up too. This is the reason why.

Chapter 5

[123]

Sealed traits
A trait can be sealed, meaning it can be extended only in the same file in which it
is declared. Sealed traits are useful as the compiler can do exhaustiveness checks.
What does being exhaustive mean? It is pretty simple. Try out the following example
to know more:

scala> def m(n : Int) = n < 10

m: (n: Int)Boolean

scala> :t m _

Int => Boolean

scala> m(9) match {

 | case true => println(""True"")

 | }

<console>:12: warning: match may not be exhaustive.

It would fail on the following input: false

 m(9) match {

 ^

True

The compiler can reason about the pattern match. It knows that the return type of
m is Boolean. Note that we are calling the method and matching the result against
true. What if the method returns false? This is the reason a cautionary warning
is issued.

If we include the false clause, the warning would go away, as the code would
never fail to match.

Let's take a look at another example in which we are matching against the Option type:

scala> val p = Option(1)

p: Option[Int] = Some(1)

scala> p match {

 | case Some(x) => ""Ok""

 | }

<console>:9: warning: match may not be exhaustive.

It would fail on the following input: None

 p match {

 ^

res1: String = Ok

Taming Multiple Inheritance with Traits

[124]

We have missed the case clause for None. How is the compiler able to do this?

Let's run to REPL and try out the following commands. Here, note that most of the
output is elided to save space:

object SealedTraits extends App {

 trait Num // 1

 final case class One() extends Num

 final case class Two() extends Num

 p match {

 case _: One => println(""1"")

 }

}

%> scalac SealedTraits.scala

// look ma, no warning!

Now, change the line labeled as 1 with the following:

sealed trait Num

Just tack on the sealed keyword before trait.

By recompiling the preceding code, we will get:

 % scalac SealedTraits.scala

The SealedTraits.scala:11: warning: match may not be exhaustive.

The match would fail on the following input:

Two()

 p match {

 ^

one warning found

What happens when we tack on the sealed keyword? A sealed trait can only be
extended within the file in which it is defined. The compiler can use this to perform
exhaustiveness checking. Another idiom related to sealed traits is to provide an
alternative to enums. And as we know, Java has enums.

Refer to https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
for more information on enum types.

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Chapter 5

[125]

We can implement enums in Scala using the sealed traits, as shown in the
following code:

object ScalaEnum extends App {
 sealed trait WeekDay
 case object Sun extends WeekDay
 case object Mon extends WeekDay
 case object Tue extends WeekDay
 case object Wed extends WeekDay
 case object Thu extends WeekDay
 case object Fri extends WeekDay
 case object Sat extends WeekDay

 def m(p: WeekDay) = println(p)

 m(Sat) // prints Sat
}

Here, the case object is yet another idiom. It is used when there is no instance-specific
state! It is a kind of a singleton.

In the preceding code, WeekDay is an algebraic data type. All values of the WeekDay
type are finite (the sealed keyword). WeekDay is taken as a sum type as it can be
characterized as the sum of all unique, enumerated values.

Let's consider another sum type, Month:
 sealed trait Month

 case object Jan extends Month

 … // define Feb, Mar, Apr,..., Dec

The sum, in this case would be 7.

 sealed case class WeekDayOfMonth(dayOfWeek: WeekDay,
month: Month) // 1

Here, WeekDayOfMonth is a product type. And the number of
WeekDayOfMonth instances is 7*12 = 84.
The algebraic data type is a pure data type, and only wraps some values
of other data types.
The line labeled as 1 is a value constructor. A value constructor just holds
the values. Jan (that is, the month of January) is a case object here.
You can now define only a restricted number of instances of the class,
WeekDayOfMonth, namely 84.

Taming Multiple Inheritance with Traits

[126]

Defeating the dreaded diamond
We saw that the diamond prevented us from reusing the code. In C++ though, you
can use Multiple inheritance (MI), as it is sparingly used. In Java, you cannot use MI
at all. In Scala, what happens when we mix in traits with two or more traits that have
the same method? We saw earlier that the rightmost trait method gets called.

Here, there is an elaborate process, linearization, that flattens out the hierarchy.
The process is described in all its nitty-gritty detail in the code labeled as 1. The
mechanism effectively results in a single-method resolution. This avoids the method
ambiguity, also known as, the dreaded diamond.

You get to reuse an implementation, add dependencies, and stack up behaviors in
this method. This is an incredibly powerful way to design loosely coupled code. And
we never ever have to fear the dreaded diamond rearing its head.

Summary
We had a pretty detailed look at Java interfaces and got to know that interfaces are
contracts. When a class implements the contract, we can reuse the existing code. The
iterator pattern is an example of such a contract. By following the interface iterable's
contract, we were able to reuse the Java code for each loop with our own custom class.

When a language supports multiple inheritances, the method resolution might
get ambiguous. Java does not support multiple inheritance, hence, we don't see
this problem.

Scala traits resolve many of these problems. We can put in reusable code in traits and
then mix-in traits into our classes or objects as needed. We looked at how mix-ins
enable rich interfaces. Traits are stackable and allow us to change the existing object
methods, namely stackable modifications.

Dependencies injection is a very popular pattern. The general theme behind it is
inversion of control. Scala traits allow us to come up with their own dependencies
injection and the cake pattern. Lastly, you learned about the pure algebraic data
types and how to implement them in Scala.

The stage is pretty well set, dear reader, to tinker more and learn about currying and
closures. Currying is a fundamental tenet of the functional way of things. Let's get on
to it!

[127]

Currying Favors with
Your Code

The word "curry" perks me up. The heavenly aromas wafting from the kitchen, the
sheer magic worked out of legendary spices, and the right dash of salt—bliss! Life
starts looking up again.

Scala, too, gives us constructs to liven up programming. We have used functions
till now. However, in this chapter, we take a real good and close look at how
easily we can pass around functions. We also look at some basic concepts such as
lexical scopes and name binding. A discussion of local functions comes next. A
discussion on closures comes after it. All these basics will help you to learn about
two important techniques. The first is partially applied functions, with a nice detour
into the intricacies of the underscore. The second exotic technique is currying. We
will also look at some common currying usage. All this discussion lays down a nice
groundwork on which patterns tread!

In this chapter, we will look at the loaner pattern, the template method design
pattern, the java implementation and then the easy and breezy Scala version. Finally,
we wrap up with a discussion on decorators and builders (again!) to see how these
techniques make implementing these patterns super simple. And as usual, idioms
and patterns are best learned by looking at code, so fire up the Scala REPL console,
grab a cup of your favorite hot beverage, and off we go!

Functions as first-class values
Let's run to the REPL and try out the following command:

scala> val pred = (y: Int) => y < 10

pred: Int => Boolean = <function1>

www.allitebooks.com

http://www.allitebooks.org

Currying Favors with Your Code

[128]

The REPL here is saying that pred is a function (<function1>). Scala functions are
first-class values. What does this term mean? We can send a first-class value as a
parameter to another function, just like we send an integer, a list, or string.

For example, we can find the type of pred just like we can of Int:

scala> val q = 9

q: Int = 9

scala> :t q

Int

scala> :t pred

Int => Boolean

We can send the function pred to a function combinator, as shown in this code snippet:

scala> List(1,11,2,22,3,33) filter(pred)

res3: List[Int] = List(1, 2, 3)

We can send a function to another function and return a function from another
function as follows:

scala> val pred1 = (y: Int) => y < 11 // 1

pred1: Int => Boolean = <function1>

scala> val higher: (Int => Boolean) => (Int => Boolean) = (k : Int =>
Boolean) => pred1 // 2

higher: (Int => Boolean) => (Int => Boolean) = <function1>

scala> val aFunc = higher(pred) // 3

aFunc: Int => Boolean = <function1>

scala> aFunc(12)

res4: Boolean = false

scala> aFunc(10)

res5: Boolean = true

Chapter 6

[129]

The salient points for the preceding code are as follows:

• We define a function, pred1, that takes the parameter y. The type of the
function is Int => Boolean.
There is yet another function, higher, that takes a function as a parameter
and returns a function.

• The type of higher is (Int => Boolean) => (Int => Boolean).
• Let's break it down for better understanding. We can look at the type as f1

=> f2.
Here, both f1 and f2 are functions.

• The type of the f1 function is Int => Boolean. The function takes an Int
parameter and returns a Boolean value. The type of the function f2 is the
same: Int => Boolean. These points are pictorially represented in the
following diagram:

accepts as param

Higher Order Function

Function m
type

Int =>Boolean

Function f

returns as value

Function n
type

Int => Boolean

Figure 6.1:Disecting a higher order function

By the way, a function taking another as a parameter is a higher order function. The
function f is a higher order function.

Let's look closely at a simple function:

scala> val f = (s: String) => s + s

f: String => String = <function1>

Here, the function f is taking in a String object as a parameter. What is a Scala
function really? A Scala function is just an object, implementing one of the function
traits. A function trait has an abstract apply method, which the object implements as
shown in this code:

scala> val f : (String) => String = new Function1[String,

 | String] {

Currying Favors with Your Code

[130]

 | override def apply(s: String): String = s + s

 | }

f: String => String = <function1>

You can write n as shown in the following code:

scala> val n = new Function1[Int, Boolean] {

 | def apply(y: Int): Boolean = y < 11

 | }

n: Int => Boolean = <function1>

scala> n(10)

res1: Boolean = true

scala> n(12)

res2: Boolean = false

Voila! We hit another Scala sweet spot! Instead of this long and wordy version, Scala
sugars the pill and you can get away with just the following command:

val n = (y: Int) => y < 11

Roping in a scope
A variable lives in a scope. A scope defines an area, for example, the body of a
function where variables exist. A lexical scope (also known as static scope) defines
how variable names are resolved in nested functions. Inner functions contain the
scope of enclosing (parent) functions.

Variables defined in the parent functions are available to the inner functions.
Variables have the habit of coming in and going out of a scope.

For example, consider the following Java code snippet:

…
int v = 9;
…
for (int v = 0; v < 10; ++v) { // compilation error
 // Do something
}

The compiler will flag an error, as there is already another variable v in the scope.

Chapter 6

[131]

Why does the following, slightly weird, Java code compile though? Let's check:

 int k = 0;
 {
 int i = 1; // 1
 k += i;
 }
 {
 int i = 1; // 2
 k += i;
 }
 System.out.println(k);

It compiles fine because blocks introduce a scope. Both the variables, on 1 and 2,
are different although they are both named i. When a new block starts, a new scope
starts. When the block ends, the scope ends, and all variables living in that scope
cease to exist. Refer to the following figure for an example of scope:

Two different i in
two different

scope

Hides the parent
scope variable of
the same name

(i.e. i)

int k = 0;

int k = 1;
k+=1;

int i = 2;
k+=i;

same k - parent
scope is inherited

by child

Figure 6.2: Variables and their scopes

Currying Favors with Your Code

[132]

Note that k is accessible as it is in an enclosing scope. A variable not defined in
the current scope is a free variable. A free variable needs to be found and bound
eventually. Consider the following code snippet as an example:

public interface SomeInterface {
 public void printMsg();
}
...
private SomeInterface create (final int k) {
 SomeInterface p = new SomeInterface() {

 @Override
 public void printMsg() {
 System.out.println(k); // 1
 }

 };
 return p;
 }
…
// Driver code
public static void main(String[] args) {
 Driver c = new Driver();
SomeInterface c1 = c.create(10); // 2
 SomeInterface c2 = c.create(20); // 3

 c1.printMsg(); // prints 10
c2.printMsg(); // prints 20
 }

The salient points for the preceding code are as follows:

• Note that the variable k is defined in an enclosing scope. It is a method
parameter, that is, k exists in the method scope. The method scope encloses
the variable p and the printMsg() method body.

• The variable k remains accessible even after the someMethod() method ends.
Even if the variable falls out of scope because the method ended, it is alive
and accessible.

• We return an instance of SomeInterface. The instance is stored in c1. When
we invoke the printMsg() method, it prints 10, as k is bound to 10.

• The c2 closure is another SomeInterface instance. It prints 20, as k is bound
to 20.

Chapter 6

[133]

A best practice is to declare a variable at first use. Following this practice
makes the code more readable. The following declaration is a bad style:

int j = 0;
int k = 0;
for(; j < 10; ++j)

For more information on declaring the variable at first, refer to http://
c2.com/cgi/wiki?DeclareVariablesAtFirstUse.
There is a related refactoring too (Replace Assignment With
Initialization), which you can find at:
http://www.refactoring.com/catalog/
replaceAssignmentWithInitialization.html

In Eclipse, this refactoring is available as the Join variable declaration.

Local functions – hiding and biding their
time
Java classes have private methods. These private methods hide implementation
details. Scala supports this way of hiding but also allows us to nest functions by
making it easy to create local functions. We have already seen an example earlier
when we looked at recursion. Our count function hid implementation details by
nesting the work horse function:

def count(list: List[Int]): Int = { // the facade
 @tailrec
 def countIt(l: List[Int], acc: Int): Int = l match { // The work
horse
 // omitting body...
 }
 countIt(list, 0) // call the real thing
}

As good kids, we should hide the innards of how we really implemented the
counting. The caller is not really interested in whether we are using tail recursion
and the accumulator idiom.

The local function has a scope of its own. Let's try the following commands:

scala> def f(n: Int) = {

 | val k = (y: Int) => y < n // 1

 | k

http://c2.com/cgi/wiki?DeclareVariablesAtFirstUseDeclareVariablesAtFirstUse
http://c2.com/cgi/wiki?DeclareVariablesAtFirstUseDeclareVariablesAtFirstUse
http://www.refactoring.com/catalog/replaceAssignmentWithInitialization.html
http://www.refactoring.com/catalog/replaceAssignmentWithInitialization.html

Currying Favors with Your Code

[134]

 | }

f: (n: Int)Int => Boolean

scala> val p = f(10) // n is 10 // 2

p: Int => Boolean = <function1>

scala> p(4)

res0: Boolean = true

scala> p(11)

res1: Boolean = false

The salient points for the preceding code are as follows:

• We have the val, k, which is a function. It takes an Int parameter, y,
and compares it with n. If y is lower than n it returns true, otherwise false.

• We pass in the value 10. The result is a predicate function. A predicate is
a function that returns a Boolean value. This predicate function accepts an
integer argument and compares it with 10.

Now, let's try the following commands to make use of a filter method:

scala> def between(n: Int, m: Int) = {

 | val k = (y: Int) => y >= n && y <= m // 1

 | k

 | }

between: (n: Int, m: Int)Int => Boolean

scala> val nums: List[Int] = List(10, 20, 30, 40, 50)

nums: List[Int] = List(10, 20, 30, 40, 50)

scala> nums filter(between(20, 40))

res2: List[Int] = List(20, 30, 40)

scala> nums filter(between(1, 100))

res3: List[Int] = List(10, 20, 30, 40, 50)

scala> nums partition(between(20,40))

res4: (List[Int], List[Int]) = (List(20, 30, 40),List(10, 50))

Chapter 6

[135]

We very much want to use the collection filter method. However, in this case,
as it is applied to nums, filter expects a function that takes a number and returns
a Boolean.

Local functions have their own scope. A simple thing to remember is whenever we
use the curly braces { }, we are creating a scope. Though we don't use any braces
while defining the local function, the scope is still there. The variables, n and m, are
free variables in the local function. These are bound to the variables that are in an
enclosing scope.

Here is how the pictorial representation looks:

Enclosing scope

bound
to

bound
to

def f(

y >= n &&y<= m

n: Int, m: Int)

Free variables boundNested scope

Figure 6.03: The free variables scope

The underscore – Scala's Swiss army
knife
The underscore is an amazing thing that comes in handy in many situations. Here
are some uses of the underscore that we need to know about. We will deal with other
exotic uses as we come across them.

A Scala method is a part of a class. A method has a name and a signature. You can
also put annotations in a method. We have already seen the @tailrec annotation in
Chapter 3, Recursion and Chasing Your Own Tail.

On the other hand, a function in Scala is an object or, moreover, an object
implementing one of the function traits. A one parameter function implements
Function1, a two parameter function implements Function 2 and so on.

When we create a variable whose value is a function object and when we call this
function, the call gets converted into a call to the apply method.

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=294cad1b-3ad9-5511-b007-54c9a379eaf4
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=294cad1b-3ad9-5511-b007-54c9a379eaf4

Currying Favors with Your Code

[136]

Methods in Scala are not values, but functions in Scala are values. And as we know,
we can pass these around. A method can also be converted to a function through Eta
expansion, which is the fancy term used for this conversion. Let's type the following
commands, for example, to try out this conversion:

scala> def m() = 3

m: ()Int

scala> val k = m // m is invoked

k: Int = 3

When we just mention m, the method is invoked. Now, let's see how to assign the
function itself. One way to do this is to specify an explicit type annotation as shown
in this code:

scala> val k: () => Int = m

k: () => Int = <function0>

The other way is to apply the underscore with the method, as shown here:

scala> val k = m _

k: () => Int = <function0>

scala> k()

res2: Int = 3

This is also known as lifting a method into a function. Here is a method that
multiplies its argument by 2 and returns the result:

scala> def mult(n: Int) = n * 2

mult: (n: Int)Int

scala> val mult_fun = mult _

mult_fun: Int => Int = <function1>

This is the Eta expansion that is used to lift a method:

scala> mult_fun(9)

res8: Int = 18

The conversion is as if we have written the following:

scala> val exp_multi_fun = new Function[Int, Int] {

 | override def apply(n: Int): Int = mult(n)

 | }

exp_multi_fun: Function[Int,Int] = <function1>

Chapter 6

[137]

scala> exp_multi_fun(9)

res9: Int = 18

Anonymous functions use the underscore as an unnamed parameter for brevity.
For example:

scala> List(1, 2, 3, 4) map { x => x * 2 }

res2: List[Int] = List(2, 4, 6, 8)

We can just type the following command with anonymous function:

scala> List(1, 2, 3, 4) map { _ * 2 }

res6: List[Int] = List(2, 4, 6, 8)

The underscore, _, acts as a placeholder for parameters. Each time an underscore is
used, it refers to a different parameter:

scala> val sum = List(1,2,3).reduceLeft((a,b) => a + b)

sum: Int = 6

can be expressed more concisely as

scala> val sum = List(1,2,3).reduceLeft(_+_)

sum: Int = 6

The underscore is also used to match and throw away the uninteresting parts. For
example, to pick up the first two elements of a tuple:

scala> val (x, y, _, _) = (7, 3, 9, 15)

x: Int = 7

y: Int = 3

The first two elements are taken from the right-hand side list and assigned to x and
y. The third and fourth elements are ignored through the use of the _ element.

When we specify one or more arguments to a function and leave one or more
arguments unspecified, we get another function. More specifically, we get a partially
applied function, for example:

scala> def modBy(n: Int, d: Int) = n % d

modBy: (n: Int, d: Int)Int

We've seen nothing surprising so far. Just a method taking two parameters, n and d
and computing the modulus of n divided by d.

Currying Favors with Your Code

[138]

Check out the following example where modBy is assigned to the funModBy function:

scala> val funMobBy = modBy _

funMobBy: (Int, Int) => Int = <function2>

Let's fix the value of d, at 2, thereby converting a two-argument function into a
one-argument function. Can you see the <function1>? This modBy2 function is
a partially applied function:

scala> val modBy2 = modBy(_: Int, 2)

modBy2: Int => Int = <function1>

It is as if we have written something like this command:

scala> val modBy2 = (n:Int) => n % 2

modBy2: Int => Int = <function1>

Instead of 2, if we now pass 3, we get another partially applied function:

scala> val modBy3 = modBy(_: Int, 3)

modBy3: Int => Int = <function1>

So now, we fix d at 3. Using the underscore, we can leave the parameter open. Now,
you can pass in any integer number as the first argument.

Using _ in place of a parameter, we have converted a two-argument function into
a one-argument function. In other words, we specified the argument list partially.
Hence, the functions modBy2 and modBy3 are partially defined.

Does this sound familiar? Remember we discussed factories in from Chapter 2,
Singletons, Factories, and Builders? Yes, the mechanism looks a lot like a factory.
The underscore really scores!

A taste of the curry
There is another way we can write the method, where each parameter is enclosed in
parenthesis. For example, the modBy2 method can also be written as follows:

scala> def modBy2(n: Int)(d: Int) = n % d

modBy2: (n: Int)(d: Int)Int

scala> modBy2(10)(3)

res0: Int = 1

This form is called currying. Currying allows us to turn a function that expects two
arguments into a function that expects only one.

Chapter 6

[139]

By applying currying to modBy2, we get back another function:

scala> modBy2 _

res3: Int => (Int => Int) = <function1>

This is a function that takes in an Int parameter, n. It returns another function,
which takes yet another Int parameter, d. This function finally returns the result,
which is Int. Well, here is the diagrammatic representation of currying:

modBy2
param n

returns a function param d

returns n % d
Function

Figure 6.4: The currying function

If we just specify the value for n, we get a partially applied function again:

scala> modBy2(10) _

res5: Int => Int = <function1>

scala> val p = modBy2(10) _ // n is fixed to 10

p: Int => Int = <function1>

scala> p(2)

res6: Int = 0 // 10 % 2

scala> p(3) // 10 % 3

res7: Int = 1

You can convert a method to a curried form as shown in this code snippet:

scala> def m(m: Int, n: Int, o: Int, p: String) = s"${m % n + o}" + p

m: (m: Int, n: Int, o: Int, p: String)String

scala> val p = (m _).curried

Currying Favors with Your Code

[140]

p: Int => (Int => (Int => (String => String))) = <function1>

scala> p(10)(4)(2)("th")

res9: String = 4th

Here are some examples, where the currying form is a clear winner.

Type inference
The following snippet shows a method, firstMatching, that takes a List of the
type T elements and a predicate function. This is a generic method that returns [T],
which holds the first element that satisfies the predicate. If there is no such element,
it returns None:

object NoTypeInference extends App {
 def firstMatching[T](xs: List[T], f: (T) => Boolean): Option[T] = xs
match {
 case Nil => None
 case x :: ts => if (f(x)) Some(x) else firstMatching(ts, f)
 }

 println(firstMatching(List(1,2,3,4), (x: Int) => x < 2)) // Some(1)
 println(firstMatching(List("hi", "hello", "some", "one"), (x:String)
=> x.length >= 5)) // Some(hello)
}

We need to pass the function, specifying the parameter type, Int, or string for x:

object CurriedTypeInference extends App {
 def firstMatching[T](xs: List[T])(f: (T) => Boolean): Option[T] = xs
match {
 case Nil => None
 case x :: ts => if (f(x)) Some(x) else firstMatching(ts)(f)
 }

 println(firstMatching(List(1, 2, 3, 4))(_ < 2))
 println(firstMatching(List("hi", "hello", "some", "one"))(_.length
>= 5))
}

When we use the curried form, the compiler infers (figures out) the type, T, which is
an Int. We can even elide the name of the parameter, x, and have a short, succinct,
and sweet definition of the predicate function.

Chapter 6

[141]

Of implicits and explicits
We are soon going to talk a lot about moms and their kids. Here is a small example
of a case where currying comes in useful:

scala> implicit def housewife = "Housewife"

housewife: String

scala> def f(momName: String)(implicit worksAs: String) =

 | println(s"Mom ${momName} works as ${worksAs}")

f: (momName: String)(implicit worksAs: String)Unit

scala> f("Sheela")

Mom Sheela works as Housewife

scala> f("Nisha")("Software Engineer")

Mom Nisha works as Software Engineer

Scala supports marking parameters as implicit. However, we don't want the momName
implicit. The following simply does not work!

scala> implicit val housewife = "Housewife"

housewife: String = Housewife

scala> def f(implicit momName: String, worksAs: String) =

 | println(s"Mom ${momName} works as ${worksAs}")

f: (implicit momName: String, implicit worksAs: String)Unit

scala> f

Mom Housewife works as Housewife // OOPS!

Both the parameters got marked for an implicit resolution.

Stylish blocks
Style matters! Easy-to-read code is always sporty, looks nicer, and is easier to grok.
Here is a method that takes two parameters: an integer and a predicate function. The
method calls the predicate with the integer parameter as an argument:

scala> def matches(n: Int)(f: (Int) => Boolean) = {

 | if(f(n))

Currying Favors with Your Code

[142]

 | println("Matches")

 | else

 | println("Nope")

 | }

matches: (n: Int)(f: Int => Boolean)Unit

scala> matches(4)(_ == 4) // 1

Matches

scala> matches(4) { x => // 2

 | x == 4

 | }

Matches

scala> matches(4) { _ == 4 } // works too

Matches

The cases marked as 1 and 2 are the same. Scala usually allows braces instead of
parentheses, and in this case, they perk the code up.

The loan pattern
C++ programmers chant a mantra—Resource Acquisition Is Initialization (RAII).
The constructor of an object acquires a finite resource (for example, files, heap
memory, db connection, mutex locks), and the destructor, frees them.

RAII is a resource-management technique. No matter how a control
flow returns, a control flow returns the destructor that is guaranteed
to be invoked. A method/function could exit its scope via an earlier
return or due to an exception thrown.
In C++, an object's lifetime is bound by its scope. When a scope is
entered, the object is created, that is, its constructor is invoked. In
the constructor invocation, we acquire the resource. When the scope
is finally exited either via an early return or due to an exception, the
object destructor is invoked. In the destructor code, we can release the
resource.
For more information on RAII, refer to https://www.hackcraft.
net/raii/.
One famous use of this technique is the auto_ptr template and its
friends, such as shared_ptr. For more on this, refer to http://
en.cppreference.com/w/cpp/memory/auto_ptr.

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization#Typical_uses
https://www.hackcraft.net/raii/
https://www.hackcraft.net/raii/
https://en.wikipedia.org/wiki/Auto_ptr
http://en.cppreference.com/w/cpp/memory/auto_ptr
http://en.cppreference.com/w/cpp/memory/auto_ptr

Chapter 6

[143]

If we look at the pattern closely, we can see two parts—a common part and a
variable part, which is unspecified and left blank that would be filled as the situation
demands. The common part is a boilerplate. The variable part is, well, unspecified.

Scala is super good at eliminating the boilerplate. But what about the variable part?
You guessed it right, the variable part is a function!

Take a look at the following example. Here, we read lines from a text file, reverse
each line, and print it back on the console:

object ReadAFile extends App {
 import scala.io.Source
 val bufferedSource = Source.fromFile("example.txt")
 for (line <- bufferedSource.getLines) {
 println(line.reverse)
 }
 bufferedSource.close() // 1
}

We are using Scala's source to read a text file. The problem is at 1. Someone could
forget to add these cleanup statements on some possible exit path from the method.

The loan pattern ensures that resources are cleaned up fine, now matter how we exit
the code. The resource is just borrowed and used. Here is the pattern in action:

import scala.io.Source

object AutoCleanup extends App {

 def autoCleanUp[T](f: Source)(handler: Source => T): T = {
 try { // 1
 handler(f) // 2
 } finally {
 println("Closing resource")
 f.close()
 }
 }

 val s1 = Source.fromFile("/home/atul/myScala/example.txt")
 val s2 = Source.fromFile("/home/atul/myScala/example.txt")

 autoCleanUp(s1) { h =>
 for (line <- h.getLines) { // 3
 println(line.reverse)

Currying Favors with Your Code

[144]

 }
 }

 autoCleanUp(s2) { h =>
 for (line <- h.getLines) { // 4
 println(line.toCharArray.length + ":" + line)
 }
 }
}

how the flow looks pictorially:

borrows resource
owns resource

Control resource lifetime
Open File
Close File

Resource
A Fileborrows resource

Function
Uses resource

Another Function
Uses resource

Figure 6.5: Borrowing resources -The loan pattern

This is pretty simple; the salient points of the preceding code are as follows:

• The try/catch method is the boilerplate. For any resource of the source
type, this method takes on the mantle of releasing it after invoking the
function.

• The handler function is called when we pass f as an argument.
• Now, we pass in a function that reads lines of a file, reverses each line, and

prints it.
• Then, we pass in another function that reads lines of a file and prints each

line that is prefixed with the length of the line.

Serving the curry
Duplicated code is a major code smell. We need to apply the extract method
refactoring to remove this smell. For more information, refer to https://
sourcemaking.com/refactoring/extract-method.

Instead of copying and pasting, we should reuse the code. One example of such
code reuse is the template method design pattern. We have a common algorithm
shell. This shell has blanks, that is, unspecified behavior. The blanks are filled with
a specific behavior as needed. Too formal and pedantic? Let's come back to our
real-world example and look at moms and their kids.

https://sourcemaking.com/refactoring/extract-method
https://sourcemaking.com/refactoring/extract-method

Chapter 6

[145]

In our example, there are moms who have different professions. There are working
moms, engineer moms, doctor moms, and teacher moms. All moms love their kids.
This is the common part. However, an engineer mom will fix machines, design
algorithms, and build houses. On the other hand, a doctor mom will perform
surgeries, prescribe medicines to the patients, and take care of newborn babies. A
teacher mom will teach children how to read and write. (And I am not even talking
of professor moms!). A defense scientist mom won't want to talk about her work. At
the end of the day, most moms love to cook for their kids and feed them. This is the
common part. And all moms surely will talk nonstop about their kids. This again is
the common part.

An algorithm to map out a mom's day will be a mix of this common part, and many
additional specialized bits thrown in. Refer to the following diagram as an example
of a template method that shows a mom's regular day:

common
wakeUpEarly()

implementation

common
cookFoodForKids()

implementation

common
feedKidsInEvening()

implementation

WakeUpEarly()

cookFoodForKids()

workInOffice()
BLANK/ABSTRACT

feedKidsInEvening()

Doctor Mom
Fills in

the BLANK

Mom’s
Daily Routine

Algorithm

Teacher Mom
Fills in

the BLANK

Figure 6.6: The template method

Currying Favors with Your Code

[146]

Here is the Java code for the preceding method:

// Mom.java

package chapter06;

import java.util.List;

import com.google.common.base.Joiner;
import com.google.common.collect.Lists;

public abstract class Mom {

 protected abstract List<String> mumsOfficeTaskList(); // 1

 public String getHerDailyRoutine() {
 final List<String> commonMumTasks =
Lists.newArrayList(wakesUpEarly(),
 cooksFoodForKids(), feedKidsInEvening());
 final List<String> herOfficeTasks = mumsOfficeTaskList();

 return makeADailyRoutineMsg(commonMumTasks, herOfficeTasks);
 }

 private String makeADailyRoutineMsg(final List<String>
commonMumTasks,
 final List<String> herOfficeTasks) { // 2
 final List<String> allTasks = Lists
 .newArrayList("---Daily Routine For a mum---");
 allTasks.addAll(commonMumTasks);
 allTasks.addAll(formatOfficeRoutine(herOfficeTasks));
 allTasks.add("---Thats all a mum can do in a day!---");

 final String allTasksMsgList = Joiner.on("\n").join(allTasks);
 return allTasksMsgList;
 }

 private List<String> formatOfficeRoutine(final List<String> workMsg)
{
 final List<String> formattedMsgList = Lists
 .newArrayList("My office routine");
 for (final String msg : workMsg) {
 formattedMsgList.add("\t" + msg);
 }
 formattedMsgList.add("No more shop talk");

Chapter 6

[147]

 return formattedMsgList;
 }

 private String feedKidsInEvening() {
 return "Feeding kids in the evening";
 }

 private String cooksFoodForKids() {
 return "Cooking Food for my kids";
 }

 private String wakesUpEarly() {
 return "Sprightly mum I am - waking up!!!";
 }

}

As you can see, the template method is an algorithmic shell. The salient points for
the preceding code are as follows:

• This is the blank that a subclass needs to fill. Every mom's office tasks are
different and depend on where she works. A doctor mom can tell us about
her daily office chores, but a defense scientist mom would rather keep mum,
if you may!

• This is the algorithm that takes the common tasks that each mom performs.
It takes this common part, combines it with the specifics of her office chores
(this part varies), formats it all nicely, and prints it.

The DoctorMom implementation is shown in the following code. Here, you can check
out the source code for a running example:

import java.util.List;

import com.google.common.collect.Lists;

public class DoctorMom extends Mom {

 @Override
 protected final List<String> mumsOfficeTaskList() {
 final List<String> dailyOfficeTasks = Lists.newArrayList(
 "Get to the hospital", "Talk To Patients", "Perform
Sugeries");
 return dailyOfficeTasks;
 }

}

Currying Favors with Your Code

[148]

Note that a mom's office task list is an internal implementation detail. It is just
overridable, but is not exposed to the outside world.

Here is how we can express a similar design in Scala:

object MomAndKids extends App {

 def feedKidsInEvening() = "Feeding kids in the evening"

 def cookFoodForKids() = "Cooking food for my kids"

 def wakeUpEarly() = "Sprightly mum I am - waking up!!!\""

 case class DoctorMom() {
 def herOfficeRoutine = List("Go to hospital", "See patients",
"Perform surgeries") // variable part
 }

 case class DefenceScientistMom() {
 def herOfficeRoutine = List("This mum", "Will keep mum") // Need
to maintain secrecy! Can't talk about it!
 // variable part
 }

 def makeADailyRoutineMsg(commonTasks: () => List[String])
(officeTasks: () => List[String]) = { // 1
 // the 'template method' algorithm
 val herOfficeTasks = officeTasks() map { x => s"\t${x}" } // 2
 commonTasks() ::: List("My office routine") ::: herOfficeTasks :::
List("No more shop talk")
 }

 def printDailyRoutine(msgList: List[String]) = {
 println("---Daily Routine For a mum---")
 msgList foreach (println(_))
 println("---Thats all a mum can do in a day!---")
 }

 def commonMumTasks = List(wakeUpEarly(), cookFoodForKids(),
feedKidsInEvening())

 val mom1 = DoctorMom()

Chapter 6

[149]

 printDailyRoutine(makeADailyRoutineMsg(commonMumTasks _)(mom1.
herOfficeRoutine _)) // 3

 val mom2 = DefenceScientistMom()
 printDailyRoutine(makeADailyRoutineMsg(commonMumTasks _)(mom2.
herOfficeRoutine _))

}

Here are the salient points of the preceding code:

• The commonTasks parameter is a function that takes no arguments and
returns List[String]. Similarly, officeTasks is a parameter that is yet
another function that takes no arguments and returns List[String]. Both
these parameters have the same type.

• We invoke the officeTasks function, and prepend a tab to each result
line. In the next line, we assemble all the parts. This is the template method
wherein we piece together the common part and the variable part.

• Note the use of underscore again. It is converting methods into functions.

However, we still have some duplication. Note the use of the two calls shown here:

 printDailyRoutine(makeADailyRoutineMsg(commonMumTasks _)(mom1.
herOfficeRoutine _))
 printDailyRoutine(makeADailyRoutineMsg(commonMumTasks _)(mom2.
herOfficeRoutine _))

Yes, the highlighted part is a fixture, and the variable part is a function. Pretty
quaint, isn't it? Not yet! We are specifying the common fixture twice! Here is an
improved version:

 val commonTasks = makeADailyRoutineMsg(commonMumTasks _) _
// printDailyRoutine(makeADailyRoutineMsg(commonMumTasks _)(mom1.
herOfficeRoutine _))
 printDailyRoutine(commonTasks(mom1.herOfficeRoutine _))
 printDailyRoutine(commonTasks(mom2.herOfficeRoutine _))

The common algorithm, also known as the template method, is now held in
commonTasks. The variable part, mom's office routine, is a function that is tacked on
to realize the complete flow!

Currying Favors with Your Code

[150]

Frills and thrills – decorators again
In the last chapter, we looked at the decorator pattern and Scala's stackable
modifications. Here is another way to use expression decorators. As we have
had some curry, let's round it out with ice creams! Quite a feast there is today!

As if an ice cream itself is not enough a temptation, we have toppings as well. We
will have nuts, jelly, and honey toppings. Feeling sinful already? Here comes the
Scala version:

import scala.language.implicitConversions

object IceCreams extends App {

 sealed trait IceCreamType { // 1

 def price: Double

 }

 case object Vanilla extends IceCreamType { // 2

 val price = 10.0

 }

 case object Mango extends IceCreamType {

 val price = 20.0

 }

 implicit def iceCreamPriceWrapper(iceCreamType: IceCreamType): Double =

 iceCreamType.price // 3

 case class IceCream(price: Double) // 4

 def add(c: IceCream)(p: Double) =

 c.copy(price = c.price + p) // 5

 def addNuts(c: IceCream) = add(c)(15) // 6

 def addJelly(c: IceCream) = add(c)(25)

 def addHoney(c:IceCream) = add(c)(30)

 val withNuts = addNuts _ // 7

 val withJelly = addJelly _

Chapter 6

[151]

 val withHoney = addHoney _

 val order1 = withJelly(withNuts(withHoney(IceCream(Vanilla))))

 println(order1.price) // prints 80

 val order2 = withJelly(withNuts(IceCream(Mango)))

 println(order2.price) // prints 60

}

Pictorially, the example looks as shown in the following figure:

MANGO (price=20 Rs.)

Nuts (price=15 Rs.)

Jelly (price=25 Rs.)

Honey (price=30 Rs.)

Total price=90 Rs.

Figure 6.7: Decorating an ice cream with toppings

Here is how the code works:

• We have a sealed trait method that defines iceCreamType.
• There are two types of ice cream, Vanilla and Mango. You are right, these are

enumerations. We also see how Scala allows us to override def with val.
• There is an implicit conversion from an ice cream type to double. Here,

double is required, and as we pass in the ice cream type, the conversion
kicks in. The price encoded in the type is used as the base price.

• A case class class takes the base price in its constructor.
• We have the price algorithm here. This is again the common part. It takes an

ice cream, adds the topping price, and creates a new ice cream object. Note
that the price attribute is immutable. As we have seen earlier, the copy idiom
creates a copy of the IceCream object by just overriding the price attribute.

• Some toppings and their prices are expressed in terms of the common add
algorithm. Note that the add algorithm is curried. The variable part is the
topping's price. The nuts toppings are for Rs. 15 and the jelly toppings come
at Rs. 25.

Currying Favors with Your Code

[152]

• We have partially applied functions for the toppings. Now, we leave the
IceCream parameter open, as it is the variable part. However, we've fixed
the topping price.

• Finally, we serve the ice creams. The the line withJelly(withNuts(IceC
ream(MANGO))) decorates a base ice cream with toppings as specified. The
toppings are decoupled from each other, just like in the Java implementation
we saw earlier. Note also that you can mix toppings in any order!

This is a pretty sweet way to end the feast!

Wrapping it up
We need to add additional behavior to the existing code so as to address cross-cutting
concerns. Logging is a cross-cutting concern, for example. We have an existing method
whose arguments we need to log without modifying the method itself. Don't worry,
we have currying to the rescue! Here is how the code looks:

object WrapItUp extends App {

 def attach_logger[X, Y](f: (X) => Y)(arg: X): Y = { // 1

 println("arg = " + arg.toString)

 println("Calling the function...")

 val result = f(arg) // 2

 println("function call returned...")

 result

 }

 def f1(i: Integer): Integer = i + 10 // 3

 def f2(s: String): String = s + " " + s // 4

 val f1WithArgsLogged = attach_logger(f1) _ // 5 - attach argument
loggin

 val f2WithArgsLogged = attach_logger(f2) _ // without touching the
function

 println(s"Evaluating just f1 itself = ${f1(2)}\n")

 println(s"Evaluating f1 with logging = ${f1WithArgsLogged(2)}\n") // 6

Chapter 6

[153]

 println(s"Evaluating just f2 itself = ${f2("hello")}\n")

 println(s"Evaluating f2 with logging ${f2WithArgsLogged("hello")}\n")

}

The salient points for the preceding code are as follows:

• Here, we have a curried method that takes two parameters. The first is a
generic function itself, taking a single argument of the type X. This function
returns a result of the type Y. The second parameter is an argument of the
type X.

• Then, the logging statements are added. In real life, we would use a logging
library such as Logback or Log4J. To keep it simple, we use the println
statement.

• The actual method whose arguments we wish to log. This method takes an
Integer and returns an Integer.

• Another method that takes String and returns String. The arguments of
this method will be logged too.

• Then, we attach the logger to the function. The f1WithArgsLogged and
f2WithArgsLogged functions are partially defined. The function itself is the
common part, and the actual argument is a variable.

• After this, the method itself is called. Next, we call the method with the
logging attached.

Summary
In this chapter, you learned about functions. We talked about Scala functions that are
first-class values. This means that we can pass them as arguments and return them
as values. You learned about variable scopes and bindings and an important concept
called closure. We looked at some amazing uses for the underscore, which is termed
as Scala's Swiss army knife. Armed with the know-how of local functions, closures,
and scope, we looked at partially applied functions and currying. We also saw how
currying and partially applied forms are compared with each other.

These are very useful techniques as illustrated by the loan pattern. This is a resource
lifecycle pattern similar to the RAII idiom in C++. Next, we looked at the template
method design pattern, its applicability, and the Java version. The Scala version is
short and sweet, thanks to the partially applied functions.

Currying Favors with Your Code

[154]

In the last chapter, we looked at the decorator design pattern, and how Scala's
stackable modifications help us achieve the same effect. Decorators can also be
expressed using partially applied functions, as we saw in the ice cream example.

Finally, we had a taste of the aspects philosophy and how to add a behavior without
touching the underlying method.

With all this know-how under the belt, let's look at the visitor pattern next. This is
the recurring theme of the open/closed principle. We will see how pattern matching
helps us implement visitor and other related idioms. Off we go!

[155]

Of Visitors and Chains of
Responsibilities

In this chapter, we will look at two important design patterns, namely visitors and
chains of responsibilities. These patterns help us model real-world scenarios in a
pretty neat fashion. Let's first look at the problem domain.

Rakesh and Nita are happily married. One fine evening, Rakesh gets pleasantly
surprised as Prakash comes visiting. Prakash is his childhood buddy and is in town
on business. Prakash gets to know of Rakesh living in the same town and comes
home, and the buddies meet after a span of many years. Prakash is meeting his
friend's wife for the first time, though. They greet each other, well, a little formally.
Prakash and Rakesh, on the other hand, back slap each other and enquire about each
other's family and have a lot of memories to reminisce about.

We can imagine a similar situation ensuing when Nita's schoolmates come visiting
the couple. Rakesh and Nita's mates would greet each other a little formally. The
behavior depends on who is greeting whom. We could model Rakesh and Nita as
subclasses of FamilyMembers (Husband and Wife) and their mates as Friends. Using
the FamilyMember and Friend abstractions, we need to write code so that the correct
greetings are exchanged. We will see how the visitor design pattern helps here.

The other problem we will look at is how to handle responsibilities. An employee
alone cannot cope with all the work at an office, for example. Workplaces have
intuitively built the chains of responsibilities so that a task is passed on to the
employee who has the necessary skills.

This division of labor is the underlying theme for the chain of responsibility
pattern. Software systems, too, use the division of labor pattern to create processing
pipelines. This pipelining is a very powerful construct that promotes reuse and
allows us to spend time assembling the processing instead of rebuilding everything
from scratch.

Of Visitors and Chains of Responsibilities

[156]

We will see how we can build processing pipe lines with Scala functions. However,
we will need some know-how of related techniques, namely, pattern matching and
partial functions. We will take a detour through them, trying out examples in the
REPL, to get a good footing.

The chain of responsibilities Java implementation will let us appreciate the benefits
of chaining objects together. We will see how partial functions help us realize the
chain of responsibilities in Scala. You will also learn about the collect idiom in the
context of partial functions. Let's get going!

A tale of two hierarchies
Let's look at two class hierarchies, a family member and its friends. A family member's
hierarchy is kind of fixed over time. It includes a husband, wife, and kids. However,
friends get added at some point of time in their life. A wife may suddenly meet her
college friend after many years, or a husband comes across his childhood buddy after a
span of many years. Let's have a look at the pictorial representation of this:

FamilyMember

FamilyHierarchy

Wife Husband Husband’s Aunt Wife’s Uncle

Friends Hierarchy

Wife’s Friend

Friend

Husband’s Friend

Figure 7.1: The two hierarchies

The question is how do we know who is greeting whom, for example, a friend of the
husband will be somewhat formal in greeting the wife. On the other hand, the same
friend can go back slapping the husband, as they are old buddies. To resolve this,
we need to know both the concrete instances of FamilyMember and Friend. Here is a
first cut, using instanceof:

 if (friend instanceof HusbandsFriend && familyMember
 instanceof Wife) {
 System.out.println("How do you do, Mr. " +
 friend.getName());
 }
 else if (friend instanceof HusbandsFriend && familyMember
 instanceof Husband) {
 System.out.println("Hey budd, " + friend.getName() + ", how is
life old man!!!");
 }-.

Chapter 7

[157]

Testing for concrete object types, using the instanceof operator, is a code smell.
When we plan to support WifesFriend, we need to remember changing this code
to accommodate the new friend. In a big system, there might be many such places.
If we forget to add the requisite clauses even in one place, we have a broken system.

How could we better this? Instead of asking an object about its state or type and then
performing actions based on this, we tell the object to do something and let the object
decide how to do it. This is the the Tell-Don't-Ask principle.

In this way, if the object changes the algorithm, the changes need to happen in one
place, that is, in the class method(s).

The design should also allow us to add newer types of friends, that is, subclasses
of Friend. In our case, we wish to stay away from hunting down the base class
references.

In other words, for the preceding code based on instanceof, we should perform the
Replace conditional with polymorphism refactoring.

Instead of testing for object types, we should use polymorphism. For this, we simply
need to put the conditional behavior in the subclass method.

For more information on the same, you can refer to the following
links:

• http://www.javapractices.com/topic/
TopicAction.do?Id=31

and
https://sourcemaking.com/refactoring/replace-
conditional-with-polymorphism

One alternative design is to add an overloaded method for each concrete subclass
of Friend:

public abstract class FamilyMember {
 public abstract void greet(HusbandsFriend husbandsFriend);
 public abstract void greet(WifesFriend wifesFriend);
 ...
public class Husband extends FamilyMember {
 @Override
 public void greet(HusbandsFriend husbandsFriend) {
 …
 }

http://www.javapractices.com/topic/TopicAction.do?Id=31
http://www.javapractices.com/topic/TopicAction.do?Id=31
https://sourcemaking.com/refactoring/replace-conditional-with-polymorphism
https://sourcemaking.com/refactoring/replace-conditional-with-polymorphism

Of Visitors and Chains of Responsibilities

[158]

 @Override
 public void greet(WifesFriend wifesFriend) {
 ...
 }
}

Now, at any point, when we have a new type of friend, the FamilyMember class
needs to be change.

Instead of this, could we send a polymorphic dispatch to both FamilyMember and its
Friend? The greetings depend on their dynamic types. However, how can we get a
dispatch on two references? The language provided dynamic dispatch works on a
single reference only. When we need a dynamic dispatch on two references, we need
a way to simulate double dispatch, such as using the visitor pattern.

The Visitor pattern
We have a FamilyMember hierarchy, as shown in the following figure, which is
pretty stable. We have another hierarchy, Friends, which is pretty open ended. So
now, a FamilyMember needs to accept a Friend.

FamilyMember
"Asbtract"

-name:String
+accept(Friend):void

Friend
"Asbtract"

-name:String
+visit(Wife):void
+visit(Husband)

Husband

+accept(Friend):void

Wife

+accept(Friend):void

HusbandsFriend

+visit(Wife):void

WifesFriend

+visit(Wife):void

Figure 7.2: A UML diagram—Visitors

Chapter 7

[159]

When we have a hierarchy and we need to add a new method to it without
modifying it, we use the visitor pattern. Here is the code snippet for this example:

public abstract class FamilyMember {
 .
 private String name;

 public FamilyMember(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public abstract void accept(Friend friend); // 1
}

public class Husband extends FamilyMember {

 public Husband(String name) {
 super(name);
 }

 @Override
 public void accept(Friend friend) { // 2
 friend.greet(this); // 3
 }

}

The salient points of the preceding example are as follows:

• Here, we have an accept method, accepting all friends. The FamilyMember
hierarchy opens up its doors for Friends to visit.

• The visit takes place—the Friend object is greetedBy the FamilyMember
concrete instance. I am showing only the abstraction, Friend, and the
concrete HusbandsFriend class. For the complete example, refer to the book's
source code.

Of Visitors and Chains of Responsibilities

[160]

The Friend hierarchy looks as the following snippet:

 public abstract class Friend { // 1
 private String name;

 public Friend(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public abstract void greet(Husband husband); // 2

 public abstract void greet(Wife wife); // 3
}

public class HusbandsFriend extends Friend {

 public HusbandsFriend(String name) {
 super(name);
 }

 @Override
 public void greet(Husband husband) { // 4
 System.out.println("Hey budd, " + husband.getName() + ", how
 is life old man!!!"); // and lots of
 // back slapping etc. etc.
 }

 @Override
 public void greet(Wife wife) { // 5
 System.out.println("How do you do, Mrs. " + wife.getName());
 }

}

The salient points of the preceding example are as follows:

• The Friend hierarchy is a root class
• The abstraction where the friend greets Husband—note the concrete

parameter type, Husband, is concrete
• A friend greets Wife—again, the parameter is concrete

Chapter 7

[161]

• Friend and husband meet—by this time, we have figured out both, Friend
and FamilyMember (Husband)

• Friend greets wife. We know now both Friend and FamilyMember (Wife)

The crux of this is the first dispatch in the accept call. This call resolves
FamilyMember. Even though we don't know the type at compile time, the method of
the concrete runtime object is called.

We know the static type of the FamilyMember class when we are executing in the
accept method. When we call greet, the dynamic dispatch again kicks in! After
this, we land into a concrete overloaded Friend.greet(...) method. Here is a
diagram to understand this better:

overloaded
method

overloaded
method

Husband

accept(Friend f)
calls f.greet(this)

Wife

accept(Friend f)
calls f.greet(this)

HusbandsFriends

greet(Husband)

greet(Wife)

Figure 7.3: The double dispatch

Many hues of pattern matching
Before we get into the Scalaish way of doing double dispatching, we need to know
and appreciate Scala's pattern matching. Pattern matching is Scala's Swiss army knife
feature, as it is that handy! We can use it instead of conditional statements. Pattern
matching is also used to destructure an object. We have already seen how a list is
destructured into its head and tail in Chapter 3, Tail Recursion – and Chasing Your Own
Tail. Instead of type casting, you can pattern match on the type of an object. Pattern
matches can be used with these objects. Code using tuples can be made pleasantly
readable with the help of pattern matches. We will see all these usages by playing
with small code snippets in the REPL.

Of Visitors and Chains of Responsibilities

[162]

Case classes are blessed with convenient methods, making them amenable to pattern
matching. Also, there is a deep connection between pattern matching and partial
functions as we will soon see. So, let's get our hands dirty by running to the REPL.

Just like if/else, pattern matching matches any sort of data, and the first match is
returned as shown here:

scala> val k = 1

k: Int = 1

scala>

scala> k match {

 | case 1 => "One"

 | case 2 => "Two"

 | case _ => "Anything other than One or Two"

 | }

String = One

The third pattern is a wildcard pattern. It is a catch-all pattern. What happens if we
omit it? Try it. Just omit the wildcard pattern match and assign 3 to k. You will get a
MatchError error.

The match also takes into account the type, for example:

scala> def stringify(k: Any): String = {

 | k match {

 | case 1 => "One"

 | case "One" => "1"

 | case _ => "Not a one"

 | }

 | }

stringify: (k: Any)String

scala>

scala> stringify(1)

res3: String = One

scala> printIt("One")

res4: String = 1

Chapter 7

[163]

De-structuring
We have already seen the destructuring feature for lists. The cons operator (::)
is used both to create a list and to destructure it. Destructuring a list refer to
separating the head (the first element) of the list and the tail (the remaining
elements), as shown here:

scala> val list = 1 :: 2 :: 3 :: Nil // cons operator constructs the list

list: List[Int] = List(1, 2, 3)

scala>

scala> list match {

 | case x :: xs => println("Head = " + x) //cons operator for de-
structuring

 | // case _ => println("Headless!")

 | }

<console>:12: warning: match may not be exhaustive.

It would fail on the following input: Nil

 list match {

 ^

Head = 1

The nice part here is the warning. We get it at the compilation time instead of the
unwelcome message at runtime. Earlier, it was mentioned that the case classes are
amenable to pattern matching. Here is an example of restructuring an object:

scala> abstract class Parent

defined class Parent

scala> case class Mom(worksAs: String) extends Parent

defined class Mom

scala> case class Dad(worksAs: String) extends Parent

defined class Dad

scala> def tellUsAboutYourParents(p: Parent) =

 | p match {

 | case Dad(worksAs) => println(s"Dad is a ${worksAs}") // 1

Of Visitors and Chains of Responsibilities

[164]

 | case Mom(worksAs) => println(s"Mom is a ${worksAs}")

 | case _ => println("???")

 | }

tellUsAboutYourParents: (p: Parent)Unit

scala> tellUsAboutYourParents(Dad("Lawyer"))

Dad is a Lawyer

At the part of code labeled as 1, the case expression destructures the object. After
this, we can reach into the innards of the Dad object and access the worksAs attribute.

Typed patterns
We can reach at the runtime type of an object with the help of pattern matching. In
the following snippet, we match on the runtime, concrete type of the parameter, p:

scala> def typeMe(p: Any) = p match {

 | case s: String => println(s.reverse)

 | case i: Int => println(i*i)

 | case _ => println("???")

 | }

typeMe: (p: Any)Unit

scala> typeMe("Hi")

iH

scala> typeMe(23)

529

scala> typeMe(23.32)

???

We will be using this feature to code our double dispatch (in the next section).

Chapter 7

[165]

Pattern guards
If we put an if condition after the pattern, the condition becomes a pattern guard.
Here an example of pattern guards

scala> val k = 1

k: Int = 1

scala>

scala> k match {

 | case i: Int if i >= 1 && i <= 9 => println("Within Range")

 | case _ => println("Huh?")

 | } Within Range

The first clause is only matched if the condition is met; otherwise, the wildcard
takes over.

Tuple explosion
You can de-structure a tuple with pattern matching. This allows us to bind variables
to the tuple's members:

scala> def explodeTuple(t: (Int, Int, Int)) = t match {

 | case (x, y, z) => println(s"x = ${x}, y = ${y}, z = ${z}")

 | }

explodeTuple: (t: (Int, Int, Int))Unit

scala>

scala> explodeTuple((1,2,3))

x = 1, y = 2, z = 3

This helps us to avoid the t._1, t._2 syntax and makes the code a little readable.

You can also use patterns to define multiple variables at the same time, as shown
here:

scala> val (n, s) = (1, "hi")

n: Int = 1

s: String = hi

Of Visitors and Chains of Responsibilities

[166]

Here is an interesting case where we have a case class and a tuple:

scala> case class C(x: Int, y: String)

defined class C

scala> val c1 = C(2, "two")

c1: C = C(2,two)

This is the usual apply method that is invoked to construct the object:

scala> val C(p, q) = c1

p: Int = 2

q: String = two

Picking up only one member works too, as shown in the following code:

scala> val C(p, _) = c1

p: Int = 2

scala> val C(_, q) = c1

q: String = two

Now, here is a very interesting case of the nested list:

scala> case class C(x: Int, y: List[List[Int]])

defined class C

The y nested list is a list within a list that has the unapply method:

scala> val c1 = C(1, List(List(11,22,33,44)))

c1: C = C(1,List(List(11, 22, 33, 44)))

scala> val (_, (_ :: q :: _) :: _) = C.unapply(c1).get

q: Int = 22

A case class has an unapply method. This method returns Option with Tuple
inside.

Now we will pick up the second element (Int) of the first list.

Chapter 7

[167]

Partial functions
In the previous chapter, we looked at partially applied functions. We left one or more
arguments unspecified, and as a result, we got another function. There are partially
applied functions and there are partial functions. So, what do we mean by the
term partial functions? It simply means that such a function is not defined for some
values. Let's try the following example of a partial function:

scala> val f = (x: Int, y: Int) => x / y

f: (Int, Int) => Int = <function2>

scala> f(12, 3)

res0: Int = 4

scala> f(12, 0)

java.lang.ArithmeticException: / by zero

 at $anonfun$1.apply$mcIII$sp(<console>:10)

 ... 33 elided

Here, we have a function that takes two integer parameters, x and y. It divides x by
y. When we pass 0 as the value of y, we get a division by 0. The function f is not
defined for a subset of possible values. Or rather, as it is partially defined for some
values, it is a partially defined function. It is defined only for some values. Scala
allows us to express a partial function as shown in the following code snippet:

scala> val f: PartialFunction[(Int, Int), Int] = {

 | case (i, j) if j != 0 => i / j

 | }

f: PartialFunction[(Int, Int),Int] = <function1>

scala> f.isDefinedAt(10, 0) // 1

res5: Boolean = false

scala> f.isDefinedAt(10, 10)

res6: Boolean = true

Note the partial function syntax in the preceding code. Here, we can check whether
the function is defined for some input values.

Of Visitors and Chains of Responsibilities

[168]

The following pattern match is also partially defined:

val list = List(1,2,3)

list match {

 case x::xs => println("Head of the list " + x)

}

This pattern match does not take into account the case when a list will be empty! If
the list is empty, then you will get a match error.

List[A] is also PartialFunction[Int, A] that maps indices to elements. The
access is partially defined, only for indices which are within bounds.

scala> val list = List(1, 2, 3)
list: List[Int] = List(1, 2, 3)

If we try accessing the 99th element, we get an IndexOutOfBoundsException error.

Here is an interesting idiom illustrating how partial functions come handy!

In this example, we have a list of pairs where each pair holds an employee's name
and his/her bonus:

scala> val empList = List(("Roy", 100), ("Sunil", 200), ("Atul", 120))

empList: List[(String, Int)] = List((Roy,100), (Sunil,200), (Atul,120))

Now, we need to find out the employee names whose bonus is greater than 100:

scala> empList filter (e => e._2 > 100) map (e => e._1)

res8: List[String] = List(Sunil, Atul)

All these underscores are going to make the code, well, a little unreadable. A partial
function comes handy in this case:

scala> empList filter { case (_, bonus) => bonus > 100 } map { case(name,
_) => name }

res9: List[String] = List(Sunil, Atul)

The preceding one-liner filters out instances that we don't care about and selects just
the names for whom the bonus is greater that 100.

Here, Filter and map are passed as partial functions. However, filter and map
expect a function. As PartialFunction is a subtype of a function, we can pass it in
without any issues. Here's yet another idiom to keep in your pocket!

Chapter 7

[169]

Visitor pattern – the Scala way
Armed with all this knowledge from the preceding sections, we can write the
following sweet and succinct Scala version:

object FamilyAndFriends extends App {

 abstract class Friend(name: String) { // 1

 def greet(husband: Husband): Unit

 def greet(wife: Wife): Unit

 }

 case class HusbandsFriend(name: String) extends Friend(name) { // 2

 override def greet(husband: Husband): Unit = println("Hey Buddy, " +
husband.name)

 override def greet(wife: Wife): Unit = println("Hello Mrs. " + wife.
name)

 }

 abstract class FamilyMember(name: String) // 3

 case class Husband(name: String) extends FamilyMember(name)

 case class Wife(name: String) extends FamilyMember(name)

 val husband = Husband("Ritesh")

 val wife = Wife("Nita")

 val husbandsFriend = HusbandsFriend("Prakash")

 def greetEachOther(familyMember: FamilyMember, friend: Friend) =
familyMember match { // 4

 case h: Husband => friend.greet (h) // 5

 case w: Wife => friend.greet(w)

 case _ => println("Hi")

 }

 greetEachOther(husband, husbandsFriend)

 greetEachOther(wife, husbandsFriend)

}

Of Visitors and Chains of Responsibilities

[170]

The salient points of the preceding code are as follows:

• Here, we defined the abstract Friend class
• We concrete instance, HusbandsFriend, of the Friend class
• Our stable hierarchy here is the FamilyMember abstraction, and its concrete

instances, Husband and Wife, are defined just after it

The visit takes place here and greetings are exchanged. A pattern match can be
matched against an object's runtime type.

We know that FamilyMember is Husband. We perform a dynamic dispatch to find
the concrete friend. This is the same as what we have in the Java version.

The important thing is that we don't need any accept(Friend) call. The pattern
matching allows us to do this as needed. This shows both the Functional and
Object-oriented personalities of Scala to us. This dual personality is used very
effectively here. This pattern will be seen again when you come to learn about
the Actor paradigm.

Lifting it up
As a partial function is undefined for some values, how best do we deal with it? You
guessed it right, we have a nice option, Option[T]. A Some value is defined, whereas
a None is undefined. In fact, there is an isDefined method on Options. It returns
true when invoked on Some and false on None.

PartialFunction provides the lift method. For a well-defined input, we get the
result wrapped in Some. For a not so well-defined input, we get None. As List[A] is
an instance of PartialFunction, it has a lift() method, as shown here:

scala> list.lift(99)

res0: Option[Int] = None

By lifting PartialFunction[A, B], we get Function[A, Option[B]].

Similarly, note the partial function syntax here:

scala> val f: PartialFunction[Int, Int] = { case i if i > 0 => i * i } //
1

f: PartialFunction[Int,Int] = <function1>

scala> f(10)

res8: Int = 100

scala> f(-1)

scala.MatchError: -1 (of class java.lang.Integer) -1

Chapter 7

[171]

…

scala> f.lift(10)

res1: Option[Int] = Some(100)

res1: Option[Int] = Some(100)

scala> f.lift(-1)

res10: Option[Int] = None

Here is the diagrammatic representation of this example:

apply f

i<=0

i>0

Some(i*i)

i * i

None

Exception

apply f.lift

apply f

apply f.lift

Figure 7.4 Lifting the partial function

The chain of responsibility
We looked at the command design pattern in Chapter 1, Grokking the Functional Way.
There, the sender and executor are decoupled. Taking the idea further, we could
have a pipeline of command objects that are linked together in a list. As in command,
the sender submits a request. However, the request could be handled by any of the
command objects in the pipeline.

Of Visitors and Chains of Responsibilities

[172]

We talked of moms and their kids and of kids and their mums. So the dads of the
world united and started feeling left out. No worries, there is a place under the Sun for
dads too! Dads have big responsibilities of dealing with stuff, in a world-wise fashion.
In a family, thus, we have roles and responsibilities. Dads are used to fix broken things
around the house, cut firewood, hunt, fish, and sow the land. Moms cook, sew, and
keep the house clean. Kids have a big business of growing up, and when they get some
time away from their never-ending pranks, they study and play. And in an effort to
make themselves useful, they mess things up, which again will have to be fixed by
the moms and dads. Every mom knows she would rather cook food instead of cutting
wood. On the other hand, a dad knows that it is tough to sew up a torn button. Kids
can lend a hand and help with walking the dogs. So everyone in the family knows
what each family member can do—or rather not do. Tasks line up every day and the
family as a whole intuitively handles or passes on these as appropriate.

The family members could be thought of as forming a chain of tasks that each one is
responsible for. The chain, as a whole, is responsible for handling those myriad tasks.
The beauty of this arrangement is that if a grand mom comes to stay for a while and
loves to water plants, she can pick up some gardening tasks! So now we have a chain
wherein multiple responsibilities are handled. This chain of responsibilities pattern
decouples the handler from a task pretty nicely, as shown in the following code:

public abstract class FamilyMember {

 protected final FamilyMember next; // 1

 public FamilyMember(final FamilyMember next) {

 super();

 this.next = next;

 }

 public abstract boolean canHandle(Task task);

 public abstract void handleIt(Task task);

 public void doSomeWork(Task task) {

 if (canHandle(task)) { // 2

 handleIt(task);

 } else if (next != null) {

 next.doSomeWork(task);

 }

Chapter 7

[173]

 }

}

public class Task {

 private final String name;

 public String getName() {

 return name;

 }

 public Task(String name) {

 this.name = name;

 }

 private boolean containsOneOf(String... phraseList) {

 for (String phrase : phraseList) {

 if (contains(phrase)) {

 return true;

 }

 }

 return false;

 }

 private boolean contains(String phrase) {

 return name.toLowerCase().contains(phrase);

 }

 public boolean needsHardLabor() {

 return containsOneOf("wood", "Fell", "hunt");

 }

 public boolean needsHouseHoldSkills() {

 return containsOneOf("sew", "cook");

Of Visitors and Chains of Responsibilities

[174]

 }

 public boolean isLightWeight() {

 return containsOneOf("dog", "cat", "playground");

 }

}

public class Dad extends FamilyMember {

 public Dad(FamilyMember next) {

 super(next);

 }

 @Override

 public boolean canHandle(Task task) {

 return task.needsHardLabor(); // 3

 }

 @Override

 public void handleIt(Task task) { // 4

 System.out.println("Dad Handling: " + task.getName());

 }

}

public class Mom extends FamilyMember {

 public Mom(FamilyMember next) {

 super(next);

 }

 @Override

 public boolean canHandle(Task task) {

 return task.needsHouseHoldSkills();

Chapter 7

[175]

 }

 @Override

 public void handleIt(Task task) {

 System.out.println("Mom Handling: " + task.getName());

 }

}

The code for the Kid class is not shown here, as it is on the similar lines. Refer to the
book's source code for more details.

The salient points of the preceding code are as follows:

• The FamilyMember class holds the next member in a chain.
• If the current member can handle the task, it does so. Otherwise, it hands

over the task to the next member in the chain.
• In the chain, a dad (Dad) knows what he can handle and handles the task.
• A mom (Mom) knows what she can handle and handles the task.

Here is the UML diagram showing how the pieces fit together:

FamilyMember
"Asbtract"

+canHandle(Task):boolean
+doSomeWork(Task):void
+handlelt(Task):void

next 1

Mom

+canHandle(Task):boolean
+handlelt(Task):void

Dad

+canHandle(Task):boolean
+handlelt(Task):void

Kid

+canHandle(Task):boolean
+handlelt(Task):void

Figure 7.5: Chain of responsibilities

Of Visitors and Chains of Responsibilities

[176]

Scalaish Chain Of Responsibilities
Here is how we would express this chain in Scala. The chain will be formed by
partial functions that are chained together with the orElse method:

object ChainOfResponsibility extends App {

 case class Task(description: String) // 1

 type TaskHandler = PartialFunction[Task, Unit] // 2

 def canHandle(phrases: List[String], task: Task) = // 3

 phrases exists (task.description.toLowerCase.contains(_))

 def handleIt(name: String, task: Task) = println(s"${name} Handling: "
+ task.description)

 val dad: TaskHandler = { // 4

 case task: Task if canHandle(List("wood", "hunt"), task) =>
handleIt("Dad", task)

 }

 val mom: TaskHandler = { // 5

 case task: Task if canHandle(List("sew", "cook"), task) =>
handleIt("Mom", task)

 }

 val kid: TaskHandler = {

 case task: Task if canHandle(List("dog", "cat"), task) =>
handleIt("Kid", task)

 }

 val f = dad orElse mom orElse kid // 6

 f(Task("feed the cat")) // 7

 val taskList = List("sew up a shirt button",

Chapter 7

[177]

 "Walk the Dog", "cut some firewood", "feed the cat")

 taskList map (Task(_)) map f // 8

}

The code is expressive, to the point, and pretty succinct when compared to the
equivalent Java version.

The salient features of the preceding code are as follows:

• Our task is expressed as a case class.
• We can use the type alias instead of the verbose PartialFunction type.
• The canHandle() method for every member knows about, defining tasks the

member can handle.
• Our dad with his responsibilities is expressed as a partial function.
• Our mom with her responsibilities is expressed as a partial function. The kid

follows on the next line.
• Our chain of responsibilities is joined with the orElse statement. So if dad

cannot do some task, it is given to the mom. If mom can't handle it, it goes to
the kid.

• An example invocation, the task is to feed the cat, and only the kid handles it.
• Then, we go over a list of phrases that are expressed as List[String]. Each

list element is converted to a task, and then, f is invoked on each of these tasks.

Here is how this example looks pictorially:

sew up a shirt button
walk the dog

cut some firewood
feed the cat

map (Task(_))
Task(sew up a shirt button)

Task (walk the dog)
Task(cut some firewood)

Task(feed the cat)

Chain Of Responsibility

invoke f(task)
for each task

Dad
Handles

Task (cut some firewood))

Mom
Handles

Task (sew up a shirt button))

Kid
Handles

Task (walk the dog)
Task (feed the cat)

hand over

hand over

Figure 7.6: The chain of responsibility

Of Visitors and Chains of Responsibilities

[178]

Chains are everywhere
The underlying theme behind this design is object composition. We are
essentially composing a pipeline of handlers. The objects (dad, mom,
and kid) are chained together. We can also add more objects, such as
grandmother, grandfather, uncles, and aunts to the mix. This is similar
to the Unix way of chaining small utilities together to form a pipeline.
In functional programming, you have a lot of small functions that all
do one specific thing, and they do it well. Unix pipelines really are a
filtering mechanism where we chain filters together. Filters are blissfully
unaware of the pipeline. Each filter simply reads a text stream from an
input, works on it, and outputs some text. The shell connects the filters
together. This allows us to connect filters in any way of our choosing.
Note the similarity in the following Scala and Shell snippets:

scala> List("filtering", "is", "great", "fun") filter(
_.length >= 3)

versus
~> echo "filtering

is

great

fun" | awk 'length >= 3'

We will be seeing many examples of compositions as the book
progresses further.
In the chain of responsibility pattern, one of the object handles the
request. On the other hand, in pipes and filters, every command in the
pipeline participates in the overall processing. For more information,
refer to http://stackoverflow.com/questions/27174703/
difference-between-pipe-filter-and-chain-of-
responsibility for more on the differences.

Match and mismatch – the collect idiom
There is one catch with our chain implementation, though. If the chain cannot handle
the task, it throws throws an exception. For example, let's create a task to try feeding
the parrot:

scala> f(Task("feed the parrot"))

scala.MatchError: Task(feed the parrot) (of class Task)

 at scala.PartialFunction$$anon$1.apply(PartialFunction.scala:253)

… etc... etc...

http://stackoverflow.com/questions/27174703/difference-between-pipe-filter-and-chain-of-responsibility for more on the differences
http://stackoverflow.com/questions/27174703/difference-between-pipe-filter-and-chain-of-responsibility for more on the differences
http://stackoverflow.com/questions/27174703/difference-between-pipe-filter-and-chain-of-responsibility for more on the differences

Chapter 7

[179]

The chain could not handle this. The task traveled down the chain and reached
the kid. As the kid is also not programmed to handle it, we get an error.
PartialFunction provides a convenience method, isDefined(), for such cases:

scala> if (f.isDefinedAt(Task("feed the parrot"))) {

 | f(Task("feed the parrot"))

 | }

scala> if (f.isDefinedAt(Task("feed the dog"))) {

 | f(Task("feed the dog"))

 | }

Kid Handling: feed the dog

Now, when the combinators are chained, it would be cool if the isDefinedAt is used
behind the scenes. So in case a partial function is not defined for the input, we should
skip it and try the next function (if any).

scala> val list = List("Feed the parrot", "feed the cat", "sew the
button")

list: List[String] = List(Feed the parrot, feed the cat, sew the button)

scala> list map (Task(_))

res7: List[Task] = List(Task(Feed the parrot), Task(feed the cat),
Task(sew the button))

scala> list map (Task(_)) map f

scala.MatchError: Task(Feed the parrot) (of class Task)

… etc... etc...

We need to just use collect instead of map and it works. A Collect first checks
whether the function is defined for the input:

scala> list map (Task(_)) collect f

Kid Handling: feed the cat

Mom Handling: sew the button

So now we know the difference between map and collect. By the way, there is one
more way to weed out the unsupported tasks:

scala> list map (Task(_)) flatMap { x => f.lift(x) }

Kid Handling: feed the cat

Mom Handling: sew the button

res13: Lisnit] = List((), ())

Of Visitors and Chains of Responsibilities

[180]

As we know, lifting the partial function gives us either Some(String) or None. The
flatMap filters our the None elements and flattens the Some elements.

Here is another example in a similar vein:

scala> val listOfAnys = List("x", 33, 21, "y", 55, 2.0, "z")

listOfAnys: List[Any] = List(x, 33, 21, y, 55, 2.0, z)

scala> listOfAnys collect { case s: String => s }

res12: List[String] = List(x, y, z)

This is a typed pattern match, as shown in the preceding example. The pattern
matches only for string elements so that they are collected and returned.

Summary
In this chapter, we looked at two very important concepts in Scala, namely pattern
matching and partial functions. We saw many examples where pattern matching
comes handy, and its application to get the double dispatch works for us. We
implemented the chain of responsibilities design pattern in Java. Partial functions
are a very useful concept in their own right, and we saw how to implement the
chain of responsibilities using partial functions in Scala. Along the way, we looked
at the collect functions. The stage is set now for you to get into the thick of functional
programming. We have already briefly touched upon the theme of composition and
how to create a pipeline. In the upcoming chapter, we will see various functional
combinators and put them to use in order to compose large behavior from smaller
parts. So, tighten your seat belts, and let's fly into the functional wonderland!

[181]

Traversals – Mapping/
Filtering/Folding/Reducing

We, software developers, love creating data structures and traversing them. We
traverse structures so as to visit elements therein. A traversal typically uses a loop.

However, doesn't writing a for loop (or a foreach loop) seem like a routine job,
also known as a boilerplate? I would rather concentrate on the element and let the
language figure out and write the looping for me. Again, what I wish to do with each
element depends on the context (that is, it varies). On the other hand, writing a for
loop seems like typing the same chars again and again.

IDEs like Eclipse provide helpful completions for such routine and boring stuff.
However, could we have the loop abstracted away, and instead let it happen behind
the scenes? Answer: yes, use the combinators. In fact, we have already used some in
earlier chapters, foreach and map.

Combinators and functions come together and make the magic happen. Using
combinators helps cut down on repetitive looping code. The code becomes small,
succinct, and more readable.

We will be looking at multiple flavors of combinators. Walking through a simple
example, we will see how powerful combinators are. We will look at each combinator
in detail and understand where those apply. We will look at the flatMap in greater
detail and see how this combinator helps realize the monad pattern in Scala.

Traversals – Mapping/Filtering/Folding/Reducing

[182]

Iterating the Scala way
In the imperative Java world, we are used to writing loops. For example:

int[] arr = new int[10];
for (int i = 0; i < 10; ++i) {
 arr[i] = arr[i] + 1;
}
System.out.println(Arrays.toString(arr));

This changes the array in place (that is, the original data structure is being mutated).
The Scala way is:

scala> val list = List.fill(10)(0)

list: List[Int] = List(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

scala> list map (a => a + 1) foreach { a => print(" " + a) }

 1 1 1 1 1 1 1 1 1 1

scala> list

res3: List[Int] = List(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Instead of coding the loop, we pass in a function to a construct, to building blocks
called combinators. These building blocks aka combinators allow themselves to be
composed into a higher-level combinator. These combinators allow you to think in
terms of higher-level operations and their interactions, instead of low-level details.
This is an example of the power of higher order functions.

Also note that the original list remains unchanged! The output of a combinator is a
brand new list. We have already touched on this immutable way of things, as well
as structural sharing. Being immutable, we have less moving parts to worry about.

For example, consider the following UNIX command line:

/home/atul> sed -ne '/\(.\)\1/p' bigfile.txt | wc -l

 14343

This pipeline does quite a lot–sed opens up a text file, reads the lines one by one, and
outputs lines in which there are two (or more) of the same characters side by side.
These lines are counted by the word counter program wc. If you put this pipeline in a
shell script, or a shell function, you have just created a new building block!

The Scala way is functional. We make each element of the list go through a function,
a => a+1, via the map invocation, creating a new list. Each element of this new list
is printed by another function, a => print(" " + a). We make this pipe lining
happen with the help of combinators, like map and foreach. This is a very different
(and succinct) way of looping.

Chapter 8

[183]

Note the Java version. We are really interested in incrementing each element,
and then printing all of the array. At the same time, we need to code the loop and
make sure the loop does not overshoot the array. This is the boilerplate that Scala
helps eliminate. Just concentrate on what you wish to do (that is. functions) and
a side-effect free way (functions again). (Note: The function given to the foreach
combinator is not side-effect free).

Another important theme is the pipelining. We take the result of the map
combinator and pass it on to the foreach.

We will run through an example, comparing and contrasting the various ways to
iterate and combine expressions.

A validation problem
We need to validate incoming data. Consider an online banking application. Users
have already registered and their passwords are with the bank.

The bank security team changed their requirements, so each password must now
have at least six characters and a mix of upper and lowercase letters. We need to pull
out the already existing passwords and see if these qualify with the new rules.

So, given a list of password strings, we need to compute a corresponding list of
Booleans that will return true if the password qualifies, and otherwise false. In
other words, given this list of password strings, we need a Tuple2(List[String],
List[Boolean]).

Setting the stage
The following is the example list of passwords:

scala> val passwords = List("oddoddboy@thedoor", "likelynew",
"alwaysThinkOfMyself", "naughty")

passwords: List[String] = List(oddoddboy@thedoor, likelynew,
alwaysThinkOfMyself, naughty)

Let's define our length-checking function as shown:

scala> def lengthGreaterThan(minLen: Int)(s: String) = s.length >= minLen

lengthGreaterThan: (minLen: Int)(s: String)Boolean

scala> val validatePasswdLen = lengthGreaterThan(6) _

validatePasswdLen: String => Boolean = <function1>

Traversals – Mapping/Filtering/Folding/Reducing

[184]

We are on known grounds. This is currying at work:

scala> validatePasswdLen("hi")

res0: Boolean = false

scala> validatePasswdLen("hithere")

res1: Boolean = true

Next, let's write the functions for character validation:

scala> def containsChar(c: Char, s: String) = s.contains(c)

containsChar: (c: Char, s: String)Boolean

scala> def containsOneOf(set: Seq[Char])(s: String) = set exists(c =>
containsChar(c, s))

containsOneOf: (set: String)(s: String)Boolean

scala> val containsUpperCaseChar = containsOneOf('A' to 'Z') _

containsUpperCaseChar: String => Boolean = <function1>

scala> val containsLowerCaseChar = containsOneOf('a' to 'z') _

containsLowerCaseChar: String => Boolean = <function1>

The expression ('a' to 'z').toList.mkString results in the string
abcdefghijklmnopqrstuvwxyz. The a to z is a character range. We will deal with
ranges when we come to the for comprehension. The range object is converted to a
list and then a string is made out of it:

scala> containsLowerCaseChar("Hi")

res0: Boolean = true

scala> containsLowerCaseChar("HEY")

res1: Boolean = false

Now, we need to combine these three functions, namely, validatePasswdLen,
containsLowerChar, and containsUpperChar, and apply them to each element
of the input word list. The expected output for our passwords list is:

List((oddoddboy@thedoor,false), (likelynew,false),
(alwaysThinkOfMyself,true), (naughty,false))

Chapter 8

[185]

First cut–using arrays
Let's try solving this using arrays:

scala> val arr = Array.fill(passwords.length)(false)

scala> passwords.indices.foreach { i =>

 | arr(i) = validatePasswdLen(passwords(i)) && containsLowerCaseCha
r(passwords(i)) && containsUpperCaseChar(passwords(i))

 | }

We iterate over the list, using foreach. The foreach combinator takes a function,
passing in every element as an argument to the function. Foreach returns nothing.
Even if you try returning a value, you get back a unit:

scala> val p = passwords.indices.foreach { i => i + 1 }

p: Unit = ()

We are using foreach for its side effects. We take each element in the list, invoke
each function on it, and store the result in the array arr:

scala> (passwords zip arr)

res2: List[(String, Boolean)] = List((oddoddboy@thedoor,false),
(likelynew,false), (alwaysThinkOfMyself,true), (naughty,false))

The Zip creates a list of tuples. It creates the tuple elements by combining elements
from each list as shown in the following figure:

false

false

false

true

oddoddboy@thedoor

likelynew

alwaysThinkOfMyself

naughty

zip

(oddoddboy@thedoor, false)

(likelynew, false)

(alwaysThinkOfMyself, true)

(naughty, false)

Figure 8.1: Zipping up two collections

Traversals – Mapping/Filtering/Folding/Reducing

[186]

This code works; however, it has a problem. Accessing random elements of a list is
not efficient. To reach the 99th element of a list, the code can't jump to it directly. It
first hops to the 0th element, then to the 1st element, then to the 2nd, until it reaches
the 99th node.

We could have applied http://refactoring.com/catalog/extractVariable.
html to extract the passwords(i) expression into a temporary variable. This would
cache the list value. Instead of traversing the list again and again, we traverse only
once and save the value for subsequent use. It is better but still suboptimal.

Indexing into an array is alright, though, so the arr(i) expression on the left-hand
side is fine.

We can eliminate indexing into the list, however. Here is an improved version:

scala> var i = 0

i: Int = 0

scala> passwords.foreach { w =>

 | array(i) = validatePasswdLen(w) && containsLowerCaseChar(w) &&
containsUpperCaseChar(w)

 | i += 1

 | }

Voilà! We have eliminated list indexing! This is a much better version. Sporting an
index with list elements is commonly needed, so Scala provides zipWithIndex.

Now, we can rewrite it as shown here:

scala> passwords.zipWithIndex foreach { case (w, i) =>

 | array(i) = validatePasswdLen(w) && containsLowerCaseChar(w) &&
containsUpperCaseChar(w)

 | }

We have eliminated the var! We now have the index and use it for the array access.

http://refactoring.com/catalog/extractVariable.html
http://refactoring.com/catalog/extractVariable.html

Chapter 8

[187]

Second cut–using a map
It seems there is a more functional way to solve the above. We can use a map instead
of coding an explicit foreach loop.

A map works with both a collection and function. It invokes the given function
on each element of the collection and returns a new collection with the mapped
elements as a result.

For example, we can make a list of string greetings uppercase, as shown:

 scala> val greetings = List("hello", "salaam", "namaste", "salud",
"bonjour")

greetings: List[String] = List(hello, salaam, namaste, salud, bonjour)

scala> greetings map (x => x.toUpperCase)

res9: List[String] = List(HELLO, SALAAM, NAMASTE, SALUD, BONJOUR)

The original list is left untouched.

Let's compose our functions together so we can use them easily:

scala> val checker = (w: String) => (w, validatePasswdLen(w) &&
containsLowerCaseChar(w) && containsUpperCaseChar(w))

checker: String => (String, Boolean)

scala> passwords.map (x => checker(x))

res7: List[(String, Boolean)] = List((oddoddboy@thedoor,false),
(likelynew,false), (alwaysThinkOfMyself,true), (naughty,false))

This is really a nice version. The map combinator invokes the anonymous function, x
=> checker(x) on each element of the passwords list, resulting in a new list:

scala> passwords.map (x => checker(x)).unzip

res6: (List[String], List[Boolean]) = (List(oddoddboy@thedoor, likelynew,
alwaysThinkOfMyself, naughty),List(false, false, true, false))

The unzip takes the list of tuples and creates two separate lists.

Traversals – Mapping/Filtering/Folding/Reducing

[188]

Pictorially, it looks exactly opposite to the preceding zipping process:

oddoddboy@thedoor

naughty

alwaysThinkOfMyself

likelynew

oddoddboy@thedoor

naughty

alwaysThinkOfMyself

likelynew

false

false

true

false

(oddoddboy@thedoor,false)

(naughty, false)

(alwaysThinkOfMyself, false)

(likelynew, false)
map unzip

Figure 8.2: The mapping and unzipping

Third cut–using a for expression
Scala has for expressions, and they return values. For example:

scala> for (p <- List(1,2,3)) yield(p+1)

res8: List[Int] = List(2, 3, 4)

The clause p ← List(1,2,3) is a generator. The variable p is set to each element of
the list, yielded by the expression. Using a for expression, our version looks like:

scala> val result = for (w <- passwords) yield checker(w)

scala> result.unzip

Shortening it, we get the following smaller version:

scala> (for (w <- passwords) yield checker(w)).unzip

This is very similar to the preceding map version. We will soon see how similar
they are.

Fourth cut–using foldLeft
We could use foldLeft instead. Here is how foldLeft works:

scala> val l = List(7,8,9)

l: List[Int] = List(7, 8, 9)

scala> l.foldLeft(0)(_+_)

res1: Int = 24

Chapter 8

[189]

The foldLeft method starts with an accumulator, which is initialized to 0 in this
case, and a collection. It adds the first value of the collection to the accumulator,
and that becomes the next accumulator. The process is repeated for all remaining
elements of the collection. The preceding foldLeft does the summation 0+7+8+9
and gives back 24.

To press foldLeft in service, we need to tweak the definition of the checker
function a bit:

scala> def checker = (w: String) => (validatePasswdLen(w) &&
containsLowerCaseChar(w) && containsUpperCaseChar(w))

checker: String => Boolean

scala> passwords.foldLeft(List.empty[String], List.empty[Boolean])((b, a)
=> (a :: b._1, checker(a) :: b._2))

This, too, is a very succinct version, using just one combinator, foldLeft.

Fifth cut–using andThen
Scala gives us andThen. This combinator combines functions by taking one
parameter–that is a Functiona1.

Please visit the following link for more information:
 http://www.scala-lang.org/api/current/index.
html#scala.Function1

Here is an illustrative example:

scala> val p1 = (x: Int) => x * 2

p: Int => Int = <function1>

scala> val p2 = (x: Int) => x + 1

p2: Int => Int = <function1>

scala> val p3 = (x: Int) => x + 2

p3: Int => Int = <function1>

scala> val p = p1 andThen p2 andThen p3

http://www.scala-lang.org/api/current/index.html#scala.Function1
http://www.scala-lang.org/api/current/index.html#scala.Function1

Traversals – Mapping/Filtering/Folding/Reducing

[190]

p: Int => Int = <function1>

scala> p(10)

res1: Int = 23

The example is explained with the help of following figure:

andThen

10

20

21

23

x*2
[x=10]

x+1
[x=20]

x+2
[x=21]

Figure 8.3: chaining function with andThen

So, f is realized by composing f1, f2, and f3 together. To solve our problem, we can
press andThen into service as shown here:

scala> type PassWdChecker = (String, Boolean) => (String, Boolean)

defined type alias PassWdChecker

We then define a type alias. This helps with readability:

scala> val f1: PassWdChecker = (x: String, b: Boolean) => (x,
containsLowerCaseChar(x))

f1: PassWdChecker = <function2>

scala> val f2: PassWdChecker = (x: String, b: Boolean) => (x,
containsUpperCaseChar(x))

f2: PassWdChecker = <function2>

scala> val f3: PassWdChecker = (x: String, b: Boolean) => (x,
validatePasswdLen(x))

Chapter 8

[191]

f3: PassWdChecker = <function2>

scala> val f = f1.tupled andThen f2.tupled andThen f3.tupled

f: ((String, Boolean)) => (String, Boolean) = <function1>

We have functions f1, f2, and f3 each taking and returning a PassWdChecker. As
all three are of the type Function2 (they take two parameters), the andThen method
is not available. So, we convert each to a Function1 form by calling the tupled
method.

The tupled method converts the two-parameter version into a one-parameter
version by stashing the parameters into a tuple and accepting that instead.

This conversion enables us to use the andThen method. take a look at the following
figure as an example:

f(x, y, z)
Function3

tupled f((x, y, z))
Functiona1

Figure 8.4: Tupling a multi-parameter function

A nice Scala convenience is at work, making it easier to call this tupled version:

scala> def m(x: (Int, Int)) = x._1 * x._2

m: (x: (Int, Int))Int

scala> m(2, 3)

res1: Int = 6

Scala coalesces multiple function call parameters into a tuple.

Sixth cut–using compose
This is similar to the andThen version. The difference is the order in which the
composed functions get called.

Applying compose to functions p1, p2, and p3 above, the composition looks like the
following:

scala> val p1 = (x: Int) => x * 2

p1: Int => Int = <function1>

scala> val p2 = (x: Int) => x + 1

Traversals – Mapping/Filtering/Folding/Reducing

[192]

p2: Int => Int = <function1>

scala> val p3 = (x: Int) => x + 2

p3: Int => Int = <function1>

scala> val p = p1 compose p2 compose p3

p: Int => Int = <function1>

scala> p(10)

res0: Int = 26

compose

x+2
[x=12]

10

p3

p2

p1

12

x+1
[x=13]

13

x*2
[x=26]

26

Figure 5–composing a pipeline of functions

So, in composing functions f1, f2, and f3, the checking is done in reverse order
compared to the andThen version:

scala> val f = f1.tupled compose f2.tupled compose f3.tupled

f: ((String, Boolean)) => (String, Boolean) = <function1>

scala> f("HTHERe", false)

res1: (String, Boolean) = (HTHERe,true)

In this particular case, the calling order of functions does not matter, because if any
one function fails, the entire validation will also fail. So, either andThen or compose
would work well for us.

Chapter 8

[193]

Foreach–sugary sweetener
We briefly touched on the for expression. We also noted how the for expressions
are similar to the map version. In fact, the Scala compiler translates the for
expression into a form using map, flatMap, and filter. The following are how the
forms of the expression are translated.

One generator
This is a simple case that can be readily translated into a form that uses a map:

scala> for (p <- List(1,2,3)) yield(p+1)

res10: List[Int] = List(2, 3, 4)

Gets translated into the following:

scala> List(1,2,3) map (p => p + 1)

res11: List[Int] = List(2, 3, 4)

A generator and a filter
Let's try printing pretty numbers from a list, such that each number is divisible by 3:

scala> val p = (1 to 20).toList

p: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

scala> for (k <- p if k % 3 == 0) yield("<" + k + ">")

res12: List[String] = List(<3>, <6>, <9>, <12>, <15>, <18>)

This expression gets translated as below. Note that I can always rewrite the for
expression by replacing the if element with a call to a filter:

scala> for (k <- p filter(x => x % 3 == 0)) yield("<" + k + ">")

As the filter expression will result in a collection, we can use the map to work on
the filtered collection:

scala> p filter (_ % 3 == 0) map (x => "<" + x + ">")

res14: List[String] = List(<3>, <6>, <9>, <12>, <15>, <18>)

If there are two filters, the same translation is done one after another. For example:

scala> for (k <- p if k % 3 == 0; if k % 2 == 0) yield("<" + k + ">")

res15: List[String] = List(<6>, <12>, <18>)

Traversals – Mapping/Filtering/Folding/Reducing

[194]

Is translated into the following:

scala> p filter (_ % 3 == 0) filter (_ % 2 == 0) map (x => "<" + x + ">")

res16: List[String] = List(<6>, <12>, <18>)

The conditions in for comprehension are converted into a call to
withFilter instead of filter. If filter were used, it would
create an intermediate collection for each condition applied.
withFilter is a lazy combinator. The above discussion
mentions filter for an ease of understanding.
The withFilter combinator delays evaluation until absolutely
necessary. We learned about lazy evaluation and views in
Chapter 4, Lazy Sequences - Being Lazy, Being Good. For a chain of
withFilter calls, each withFilter invocation passes down a
view to the next withFilter in line.
Only when the element is necessary are all the filters invoked.
Please see the following websites for more information:
http://tataryn.net/whats-in-a-scala-for-
comprehension/

https://gist.github.com/ruippeixotog/25110822eba
d1217adc8

Two generators
Generating a cartesian product of two (or more) vectors is pretty easy:

scala> val m = (1 to 3).toList

m: List[Int] = List(1, 2, 3)

scala> val n = (1 to 3).toList

n: List[Int] = List(1, 2, 3)

scala> for (i <- m; j <- n) yield (i + "" + j)

res17: List[String] = List(11, 12, 13, 21, 22, 23, 31, 32, 33)

Could we translate it with two maps? Let's try the following command:

scala> m map (i =>

 | n map (j =>

 | i + "" + j))

res18: List[List[String]] = List(List(11, 12, 13), List(21, 22, 23),
List(31, 32, 33))

http://tataryn.net/whats-in-a-scala-for-comprehension/
http://tataryn.net/whats-in-a-scala-for-comprehension/
https://gist.github.com/ruippeixotog/25110822ebad1217adc8
https://gist.github.com/ruippeixotog/25110822ebad1217adc8

Chapter 8

[195]

We are pretty close, but not quite there. We need to flatten out the list of lists. There
is already a combinator, flatMap, we can use instead of the first map:

scala> m flatMap (i =>

 | n map (j =>

 | i + "" + j))

res19: List[String] = List(11, 12, 13, 21, 22, 23, 31, 32, 33)

This is the translation done by the Scala compiler for more than one generators in the
for expression.

What happens when we have more than two generator expressions? Let's check with
the following commands:

scala> val o = List(1,2)

o: List[Int] = List(1, 2)

scala> for (i <- m; j <- n; k <- o) yield (i + "" + j + "" + k)

res21: List[String] = List(111, 112, 121, 122, 131, 132, 211, 212, 221,
222, 231, 232, 311, 312, 321, 322, 331, 332)

This for expression is translated into the following:

scala> m flatMap (i =>

 | n flatMap (j =>

 | o map (k =>

 | i + "" + j + "" + k)))

res23: List[String] = List(111, 112, 121, 122, 131, 132, 211, 212, 221,
222, 231, 232, 311, 312, 321, 322, 331, 332)

It is easier to see why we need a series of flatMaps. Each internal combinator results
in a list, and the result needs to be flattened out. Try replacing the flatMap calls to
a map, and the understanding will click in. Refer to he the following figure as an
example:

m
List(1,2,3)

n
List(1,2,3)

o
List(1,2) function

map returns
List[String]flatMap returns

flattened List[String]
flatMap returns

flattened List[String]

i j k

Figure 8.6: chaining flatMaps and a map

There is a chaining of computations at work here. You are looking at a list monad.

Traversals – Mapping/Filtering/Folding/Reducing

[196]

Monads
In the above, flatMap binds stuff together. All the combinator blocks are closure
blocks. The map block, for example, is accessing variables from its enclosing scopes.
And all blocks are returning back a list of strings.

What does a flatMap do? It maps and then flattens the result. For example, the
following is a way to pick up numbers from List[Any]. Using a map does not fully
cut it:

scala> val l = List(1, "this", 2, 4.4, 'c')

l: List[Any] = List(1, this, 2, 4.4, c)

scala> l map {

 | case i: Int => Some(i)

 | case _ => None

 | }

res0: List[Option[Int]] = List(Some(1), None, Some(2), None, None)

We just need the numbers; however, we get them wrapped up in Some or we get
them wrapped up in None. We have already seen both how we could collect and a
partial function for picking up numbers:

scala> l flatMap {

 | case i: Int => Some(i)

 | case _ => None

 | }

res1: List[Int] = List(1, 2)

So, flatMap does both the mapping (invoking the provided function, passing in each
element) and the flattening of the result (extracting out the values from Some and
throwing out the None).

Lists are monads and so are options. Can we mix two monadic types? Let's try
the following:

scala> val m = (1 to 9).toList

m: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val n = Map(1 -> 7, 15 -> 11, 9 -> 22)

Chapter 8

[197]

n: scala.collection.immutable.Map[Int,Int] = Map(1 -> 7, 15 -> 11, 9 ->
22)

scala> for {

 | i <- m

 | k <- n.get(i)

 | } yield k

res0: List[Int] = List(7, 22)

We know by now that we can rewrite the de-sugared version as follows:

scala> m flatMap { i =>

 | n.get(i) map { k =>

 | k

 | }

 | }

res1: List[Int] = List(7, 22)

So, what makes a list or an option a monad?

Monads are containers. They support higher order functions and can be combined
together. We can provide these operations on our types and use the for comprehension
to manipulate them.

Reduce
Just like fold, there is a reduce combinator. And there are two versions: reduceLeft
and reduceRight. Here is an example:

scala> val l = List(1,2,3)

l: List[Int] = List(1, 2, 3)

scala> l reduceLeft { (acc, n) => acc + n }

res4: Int = 6

In fold, we provide the initial value for the accumulator. However, here the
accumulator is set to the first value of the collection.

If there is no first value, the reduce will fail as shown here:

scala> List[Int]() reduceLeft { (acc, n) => acc + n }

java.lang.UnsupportedOperationException: empty.reduceLeft

Traversals – Mapping/Filtering/Folding/Reducing

[198]

On the other hand, if invoked on an empty collection, fold returns the initial value
itself:

scala> val l = List[Int]()

l: List[Int] = List()

scala> l.fold(0) { (acc, n) => acc + n }

res17: Int = 0

Having got our feet wet, here is an interesting example that tells us some more about
reduce. We will also see what the differences are between the left and right versions
of reduce. Let's say we need to print a list of numbers, separated with a—sign:

scala> val nums = (1 to 10).toList map { _.toString }

nums: List[String] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val s = nums.reduceLeft { (acc, n) =>

 | acc + " - " + n

 | }

s: String = 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

Let's try it on a huge list of 20,000 elements:

scala> val nums = (1 to 20000).toList map { _.toString }

nums: List[String] = List(1, 2, 3, 4,…)

scala> val s = nums.reduceLeft { (acc, n) =>

 | acc + " - " + n

 | }

s: String = 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -
15 - 16 - 17 - 18 - 19 - 20 - 21 – 22…

As a bonus, this works pretty nicely as for a single value; no separator is printed. Try
it out!

Now, replace the reduceLeft call with reduceRight. For the list with 20 elements, it
works fine. But for the big list of 20,000 elements, we get a StackOverflowError:

scala> val s = nums.reduceRight { (acc, n) =>

 | acc + ", " + n

 | }

java.lang.StackOverflowError

 at scala.collection.LinearSeqOptimized$class.
reduceRight(LinearSeqOptimized.scala:142)

 at scala.collection.immutable.List.reduceRight(List.scala:84)

Chapter 8

[199]

Hark back, dear reader, to our discussion on the accumulator idiom, tail recursion,
and tail call optimization (TCO). The left version can use TCO and hence gets
rewritten to use loops. On the other hand, the right version cannot use TCO.

The left version goes from the first element to the last. The right version goes the
other way, from the last element to the first (remember, it is reduceRight).

Here is what reduceLeft would look like:

import scala.annotation.tailrec

object ReduceLeft extends App {

 def reduceLeft(l: List[String], f: (String, String) => String) = {

 @tailrec

 def reduceIt(acc: String, list: List[String]) : String = list match
{

 case Nil => acc

 case x :: xs => reduceIt(f(acc, x), xs)

 }

 reduceIt(l(0), l.drop(1)) // 1

 }

 val nums = (1 to 20).toList map { _.toString }

 def f(acc: String, s: String) = s"(${acc} - ${s})"

 val result = reduceLeft(nums, f) // 2

 println(result)

}

We have seen most of these concepts before–please refer back to Chapter 3, Recursion
and Chasing Your Own Tail. in case you need to jog your memory.

The standard library's reduceLeft looks different. Please see the following
documentation:

https://github.com/scala/scala/blob/v2.11.7/src/library/scala/
collection/TraversableOnce.scala#L1

https://github.com/scala/scala/blob/v2.11.7/src/library/scala/collection/TraversableOnce.scala#L1
https://github.com/scala/scala/blob/v2.11.7/src/library/scala/collection/TraversableOnce.scala#L1

Traversals – Mapping/Filtering/Folding/Reducing

[200]

The salient points for the preceding code are as follows:

• We call the internal workhorse function, which employs the accumulator
idiom. The accumulator is initialized to the first element of the list. It is clear
now why reduce cannot work with empty collections. The l(0)call will fail
with an empty list.

• We call reduceLeft and pass in f. The compiler converts the f method into a
function for us, the so-called eta expansion.

Pictorially, here is the processing order. Note the left-to-right accumulation:

(((1+"-"+2)+"-"+3)+"-"+4)

Figure 8.7: reduceLeft processing order

Our reduceRight would look like:

object ReduceRight extends App {

 def reduceRight(l: List[String], f: (String, String) => String): String
= l match {

 case Nil => throw new IllegalArgumentException("Bad List") // 1

 case y :: Nil => y // 2

 case x :: xs => f(x, reduceRight(xs, f)) // 3

 }

 val nums = (1 to 3).toList map { _.toString }

 def f(s: String, acc: String) = s"(${s} - ${acc})"

 val result = reduceRight(nums, f)

 println(result)

}

Chapter 8

[201]

The salient points for the preceding code are as follows:

• We cannot work on empty lists.
• If the list has a single element, then reduceRight returns that element.
• The f is always evaluated on the right elements first. We need to hold on to

all the left elements in the meantime. This costs us an expensive stack frames
and hence, we get the stack overflow error for large lists. Note also the
ordering of the evaluation is right first.

Note that we could simply have reversed the list and called reduceLeft on it! This is
what the Scala library's reduceRight does. Please see the following documentation
for more information:

https://github.com/scala/scala/blob/v2.11.7/src/library/scala/
collection/TraversableOnce.scala#L193

Our version could do with a bit of refactoring. We are repeatedly passing in the same
f in the recursive call. This refactoring is left as an exercise.

Pictorially, here is the processing order. Note the right-to-left accumulation:

(1+"-"+(2+"-"+(3+"-"+4)))

Figure 7.8: reduceRight processing order

Summary
We had a whirlwind tour of traversals in this chapter. We looked at functional
combinators and how looping is way different from the traditional Java for loop. We
also played with many examples of map, flatMap, filter, reduce, zip, and fold.

Scala for comprehension is a syntactic sugar that hides the complexity arising out of
combining combinators. A running validation example delved into the nitty-gritty of
the de-sugaring of the for comprehension.

This know-how prepared us to better appreciate flatMap, the glue that binds a
pipeline of computations, aka the monad pattern. We saw how the for comprehension
realizes monad and what happens behind the scenes. In addition, we had a detailed
look at the reduce combinator and its left and right variants. A peek behind the curtain
showed us the differences between reduceLeft and reduceRight.

https://github.com/scala/scala/blob/v2.11.7/src/library/scala/collection/TraversableOnce.scala#L193
https://github.com/scala/scala/blob/v2.11.7/src/library/scala/collection/TraversableOnce.scala#L193

Traversals – Mapping/Filtering/Folding/Reducing

[202]

This is the functional style where we could compose pure functions and reason better
and at a higher level of abstraction. Pure functions and combinators vastly reduce the
boilerplate and promote immutability.

All this information prepares us, my dear reader, to take the next ambitious steps in
looking at higher order functions. We have already had a taste of this in this chapter
however, the next chapter will help you appreciate the power higher order functions
give us. On to it!

[203]

Higher Order Functions
In the last chapter, we saw how the use of combinators simplifies code. We just
have to pass in functions and not worry about the boilerplate of writing loops or
creating pipelines.

The idea behind all this is that higher order functions can take other functions as
parameters, return a function as a result, or do both. In Scala, as we already know,
functions are first-class citizens. This is a rather neat idea, as we will soon see.

In this chapter, we will start with the strategy pattern and see the Java
implementation. Then, we will change gears and see how this pattern is really not
needed when you talk about Scala. This is largely the effect of being able to send
across functions and function literals. Once we get used to passing around functions,
we will look at three patterns that are related to high-order functions. In the same
context, we will also take a closer look at the map method.

The first pattern is Functor. We will see what it is and how it is useful in our day-
to-day programming. The second pattern is Monad. We have already seen some
of it in the previous chapter. Here, we will look at it from the angle of higher order
functions. Once the context is set, we will look at flatMap.

The third pattern is Monoid. We will see what it is and then look at foldLeft. We
will apply what we have seen so far to an example in order to create an inverted
index. Here, we will look at both the Java and Scala versions. We will again see how
small, expressive, and succinct the Scala code is.

In the context of this example, we will look at the groupBy combinator and then again
see an interesting application of foldLeft, while operating on Monoid.

We will wrap up with a discussion of the lazy collections. It is all pretty simple, dear
reader. Don't let these big terms unnerve you. We will get it all. Get, set, go!

Higher Order Functions

[204]

The strategy design pattern
The strategy design pattern encapsulates an algorithm and lets you choose the
right one. It is really pretty simple. For example, going back to our family example,
everyone loves to watch a movie over a weekend. However, dads love action flicks,
moms love romantic movies, and kids being kids, love cartoons.

In Java, we would express the strategy pattern as follows:

public interface MovieGenre {
 public String describeABit();
}

public class ActionFlick implements MovieGenre {

 @Override
 public String describeABit() {
 return "guns firing, fights, wild chases etc.";
 }

}
public class Animation implements MovieGenre {

 @Override
 public String describeABit() {
 return "cartoons! What else?";
 }

}

public class RomanticMovie implements MovieGenre {

 @Override
 public String describeABit() {
 return "some romantic flick";
 }

}

Here, our family members are input as a class:

public abstract class FamilyMember {
 private final String name;

Chapter 9

[205]

 private final MovieGenre movieGenre;

 public FamilyMember(String name, MovieGenre movieGenre) {
 super();
 this.name = name;
 this.movieGenre = movieGenre;
 }

 public String getName() {
 return name;
 }

 public MovieGenre getMovieGenre() {
 return movieGenre;
 }

 public void letUsGoForAMovie() { // 1
 System.out.println(getName() + " would love to watch " +
 movieGenre.describeABit()); // 2
 }
}

public class Dad extends FamilyMember {

 public Dad() {
 super("Dad", new ActionFlick()); // 3
 }

}

public class Mom extends FamilyMember {

 public Mom() {
 super("Mom", new RomanticMovie()); // 4
 }

}
public class Kid extends FamilyMember {

 public Kid() {
 super("Kid", new Animation()); // 5
 }

}

Higher Order Functions

[206]

And finally, we express the driver class:

public class Driver {
 public static void main(String[] args) {
 FamilyMember[] allInTheFamily = new FamilyMember[] { new
 Dad(), new Mom(), new Kid() };

 for (FamilyMember familyMember : allInTheFamily) {
 familyMember.letUsGoForAMovie();
 }
 }
}

The salient points of this pattern are as follows:

• The FamilyMember class method, letUsGoForAMovie(), iterates all the
family members and checks out what each member would like to watch

• It calls the describeABit() method on the movieGenre strategy
• As Dad loves action flicks, this is the movie genre strategy that is specified in

the constructor
• And since Mom loves romantic movies, the strategy is defined accordingly
• Similarly, for Kid, we specify animation movies as the movie genre

A strategy in Scala land
By now you must have guessed that in Scala, things are far simpler. Let's try the
following commands with creating an object:

object MovieStrategy extends App {

 type MoviePref = () => String // 1

 abstract class FamilyMember {

 def name: String

 def moviePref: MoviePref

 }

 case class Mom(name: String, moviePref: MoviePref) extends

 FamilyMember

 case class Dad(name: String, moviePref: MoviePref) extends

Chapter 9

[207]

 FamilyMember

 case class Kid(name: String, moviePref: MoviePref) extends

 FamilyMember

 def letUsGoForAMovie[T <: FamilyMember](familyMember: T) = { // 2

 val mp = s"${familyMember.name} : ${familyMember

 .moviePref() } "

 println(mp)

 }

 val mom = Mom("Mom", () => "some romantic flick") // 3

 val dad = Dad("Dad", () => "Action! Guns! Chase")

 val kid = Kid("Kid", () => "Animation for me")

 letUsGoForAMovie(mom) // 4

 letUsGoForAMovie(dad)

 letUsGoForAMovie(kid)

}

It is just a pageful.

The salient points of this strategy are as follows:

• We use a type definition to indicate the type of the strategy that we would
accept. MoviePref describes a type of the function that takes no parameters
and returns a String.

• The expression [T <: FamilyMember] is an upper type bound allows only
the subtypes of the FamilyMember base type.

• The strategy algorithm is sent as constructor parameter, for the respective
case class. The movieStrategy parameter is a function that takes no
parameters and returns a String.

• We call the letUsGoForAMovie method and the specific strategy gets executed.

In this particular case, we could have just passed in a String. However, some moms
may decide to go for an action flick on Fridays—so the strategy function could check
the day of the week and act accordingly.

We are implementing the strategy by passing in functions. Functions are first-class
objects in Scala (something is first class if it can be passed to functions, returned from
functions, stored in variables, and so on. We can use it just like any other entities.)

Higher Order Functions

[208]

Here are three underlying patterns that are related to higher order functions. Armed
with the combinators know-how obtained in the previous chapter, we are now well
poised to understand these patterns.

Functors
Let's say we have a function, X => Y. This function is transformed to another
function List[X] => List[Y]. A higher order function that does this
transformation is Functor, as shown in the following diagram:

Figure 9.1: Functor translation

Here, we chose the List collection for ease of understanding. Instead of List, any
collection will work (Refer to the next section for this):

object Functor extends App {

 def functor[X, Y](f: X => Y): List[X] => List[Y] = { // 1

 def fun : (List[X]) => List[Y] = (arg: List[X]) => arg match {

 case Nil => Nil

 case x :: xs => f(x) :: fun(xs)

 }

 fun

 }

 val p = List("Hi", "there")

 def doubleEachChar(s: String) = (for (c <- s) // 2

 yield c + "" + c).toList.mkString

 def numberOfLowerCaseChars(s: String) = s.filter(c => c.isLower).length
// 3

 val f1 = functor(doubleEachChar) // 4

Chapter 9

[209]

 val f2 = functor(numberOfLowerCaseChars) // 5

 println(f1(p)) // 6

 println(f2(p)) // 7

}

The salient points of the preceding code are as follows:

• Here, the higher order function, functor, is defined. It has two type
parameters, X and Y. It takes as input, f, a function that converts X into Y. The
functor returns a function that takes List[X], invokes f on each element,
and returns List[Y].

• We have a function that takes an input string and doubles each character.
• We have another function that takes an input string and returns the number

of lowercase characters in it.
• The List[String] => List[String] function is returned. Note that the

doubleEachChar method is of the type String => String.
• The List[String] => List[Int] function is now returned. Note that the

numberOfLowerCaseChars method is of the type String => Int.
• The List(HHii, tthheerree) list is now printed.
• After this, the List(1, 5) list is printed.

Maps
The map method takes a function as a parameter and applies it to each element in
a container in order to return a new container. If the input container is List, the
output container will be list too. If the input container is Map, the output container
will be map too. If the input container is Some, the output container will also be Some.
Remember that an option in Scala is a container too—holding one value—some—or
holding nothing, that is, None).

Scala's map works like Functor, as shown in the following code:

scala> List(1, 2, 3) map { _ + 1 }

res0: List[Int] = List(2, 3, 4)

scala> Some(4) map { x => x+1 }

res1: Option[Int] = Some(5)

scala> Map(1 -> 2, 3 -> 4) map { z => (z._2, z._1) }

res2: scala.collection.immutable.Map[Int,Int] = Map(2 -> 1, 4 -> 3)

Higher Order Functions

[210]

Something bugs you when you see them like this. The map method is defined in the
traversable trait. How could map create the right type of container? The answer is
using a builder, canBuildFrom. What does it build? It builds a builder.

You read right. This builds an appropriate builder for the type of input collection. So,
for example, it builds Map for a map and List for a list:

import scala.collection.generic.CanBuildFrom

import scala.collection.mutable.ListBuffer

object MyMap extends App {

 def myMap[X, Y, Container[A] <: Traversable[A]](collection:
Container[X])(f: X ⇒ Y)(// 1

 implicit builderSpec: CanBuildFrom[Container[Y], Y, Container[Y]]):
Container[Y] = {

 val buildIt = builderSpec() // 2

 collection.foreach { x => // 3

 buildIt += f(x) // 4

 }

 buildIt.result // 5

 }

 println(myMap(Seq(1,2)) { _ > 1 })

 println(myMap(List(1,2)) { _ < 1 })

 println(myMap(Vector(7, 8, 9)) { _ * 2 })

 println(myMap(ListBuffer(11, 12, 13)) { _ + 1 })

 println(myMap(Set(11, 12, 13)) { _ + 1 })

}

The salient points of the preceding code are as follows:

• We have the type parameters X and Y here. The method expects a function
that takes a value of the type X and returns a value of the type Y. The method
also takes a container that is traversable.

• We use the builder of builders in this case. Then, we in turn get a builder of
the right type.

• The collection is a kind of traversable. Traversable is a trait that has the
foreach method. As the collection objects, such as List, Vector, and Set are
traversable, they use this method.

Chapter 9

[211]

• We transform the input value, x, by passing it to the f function. The result
of the transformation that is the return value of the function, is stored in the
result collection.

• Finally, we return the accumulated result collection.

Monads
Let's say we have a function, X => List[Y]. This function is transformed to
another function, List[X] => List[Y]. A higher order function that does this
transformation is Monad.

X=>List[Y] Monad List[X]=>List[Y]

Figure 9.2: Monad translation

Again, choosing the List container for ease of understanding, we go with the
following commands:

object Monad extends App {

 def monad[X, Y](f: X => List[Y]): List[X] => List[Y] = {

 def fun : (List[X]) => List[Y] = (arg: List[X]) => arg match { // 1

 case Nil => Nil

 case x :: xs => f(x) ::: fun(xs) // 2

 }

 fun

 }

 def f1(n: Int) = (1 to n).toList // 3

 val f = monad(f1) // 4

 println(f(List(7,8,9))) // 5

}

The salient points of the preceding code are as follows:

• We define a function, fun, that takes an argument, arg, of the type List[X].
• We iterate each element, x, of the input list. We invoke f(x) and get

List[Y]. We flatten each list by concatenating the resulting lists together
with the ::: operator.

Higher Order Functions

[212]

• We have a function f1 that takes a number and creates a list of numbers.
• We create the monadic function into the variable f.
• The function f is invoked on an example list. Note that we get a flattened list

as the output.

FlatMap
The flatMap method takes a function as a parameter, applies it to each element in a
container, and flattens the overall result as shown in the following code:

scala> val f1 = (n: Int) => (1 to n).toList map { _ % 2 == 0 }

f1: Int => List[Boolean] = <function1>

scala> :t f1

Int => List[Boolean]

scala> List(2,3) flatMap f1

res4: List[Boolean] = List(false, true, false, true, false)

As earlier, f1 is of the type X => List[Y], where X is bound to Int and Y is
bound to Boolean. Applying flatMap to List(2,3), which is List[Int], we
get List[Boolean]. So, given the function, X => List[Y] we were able to get a
transformation, List[Int] => List[Boolean].

Where does this come in useful? To know this, let's look at the following example:

scala> def f(x: Int) = if (x % 2 == 0) Some(x) else None

f: (x: Int)Option[Int]

The result of evaluating the function is Option, as shown in the following code.
However, we wish to do something about this. Let's say, we add 1, if there is the
Some value. If there is None, of course, there is no point adding 1 to nothing.

scala> f(10) match {

 | case None => None

 | case Some(x) => Some(x + 1)

 | }

res5: Option[Int] = Some(11)

Pattern matching does this. However, the following method is simpler as shown:

scala> f(10) flatMap (x => Some(x+1))

res6: Option[Int] = Some(11)

scala> f(11) flatMap (x => Some(x+1))

res7: Option[Int] = None

Chapter 9

[213]

This looks succinct and simple. The preceding code roughly corresponds to the
following Java code:

Integer x = f(11)
if (x != null) {
return x + 1;
}

In Chapter 02, Singletons, Factories, and Builders, we talked about singletons, Null
Objects, and Scala's Options that are Null Objects.

In addition to being Null Objects, Options also encapsulate the application of a
function based on the type of the argument, as Options come armed with map
and flatMap:

 def map[B](f: A => B): Option[B] =

 if (isEmpty) None else Some(f(this.get))

def flatMap[B](f: A => Option[B]): Option[B] =

 if (isEmpty) None else f(this.get)

The map applies the A => B input function to get Option[A] => Option[B].
The flatMap applies the A => Option[B] input function to get Option[A] =>
Option[B]. Like List, an Option is Monad.

Monoids
It is again pretty simple. From school math, we know that number multiplication
is associative. And there is something like an identity element, 1 in case of
multiplication. For example, the following expressions are equivalent:

(9*7)*2 = 9*(7*2)

Even if we do the multiplication in any order, we get back 126. The identity element
now is 1. Concatenating strings is also associative. In the following code, the identity
element is "". The "Singing" + "" string is the same as "" + "Singing", and the
line contains multiple strings:

((("Singing" + " In") + " The") + " Rain")

This is the same as the one shown here:

 ("Singing" + " In") + (" The" + " Rain").

Higher Order Functions

[214]

A data structure that obeys these rules is Monoid, and we have a natural way to use
foldLeft in it, as shown in the following code:

scala> class MyMonoid {

 | def iden = ""

 | def f(x: String, y: String) = x.concat(y)

 | }

defined class MyMonoid

scala> val p = new MyMonoid

p: MyMonoid = MyMonoid@4e9658b5

scala> val list = List("Singing", " In", " The", " Rain")

list: List[String] = List(Singing In The Rain)

scala> list.foldLeft(p.iden)(p.f)

res1: String = Singing In The Rain

What is this big deal with being associative? It paves the way to parallelize
operations. Though it does not make much sense in our singing in the rain example,
for a collection that has thousands of entries, you could benefit from a parallel
computation. Take a look at the following diagram as an example of Monoids:

Monoid
identity=1

function=multiply

List(2, 3, 4, 5)

foldLeft 120

Figure 9.3: Monoids and foldLeft

What does all this buy for us programmers? Simple answer: simplicity of expression.
Let's consider some illustrative examples to understand this.

Chapter 9

[215]

An inverted index
I collect classic mystery novels, traditional British detective tales. These quaint,
almost a century old puzzles have a soothing effect on me.

I do maintain a text file catalogue though (arrgh… no database for such a simple
thing; a text file would do). The database I have is a csv file with the author
surnames and then the book titles. Now, what if I want to reread a book again but
can't remember its full name or the author name? In such a scenario, we would use
an inverted index to find the complete name.

An inverted index is when you remember a word in the title and seem to look up
the author's name. The following Java program prints the inverted index for a few
of these books:

class AuthorAndTitle { // 1

 private final String authName;

 private final String title;

 public AuthorAndTitle(String authName, String title) {

 super();

 this.authName = authName;

 this.title = title;

 }

 public String getAuthName() {

 return authName;

 }

 public String getTitle() {

 return title;

 }

};

// imports elided – please see the source for the entire code

public class InvertedIndex {

 public static void main(final String[] args) {

Higher Order Functions

[216]

 final List<AuthorAndTitle> authorsToTitles = new
 ArrayList<>(); // 2

 authorsToTitles.add(new AuthorAndTitle("Carr",
 "And So To Murder"));

 authorsToTitles.add(new AuthorAndTitle("Carr",
 "The Arabian Nights Murder"));

 authorsToTitles.add(new AuthorAndTitle("Christie",
 "The Murder Of Roger Ackroyd"));

 authorsToTitles.add(new AuthorAndTitle("Christie",
 "The Sittaford Mystery"));

 authorsToTitles.add(new AuthorAndTitle("Carr",
 "The Mad Hatter Mystery"));

 authorsToTitles.add(new AuthorAndTitle("Carr",
 "The Plague Court Murders"));

 Set<String> ignoreWordsSet = new HashSet<>(); // 3

 ignoreWordsSet.add("To");

 ignoreWordsSet.add("The");

 ignoreWordsSet.add("And");

 ignoreWordsSet.add("So");

 ignoreWordsSet.add("Of");

 final Map<String, List<String>> invertedIdx = new HashMap<>();

 for (final AuthorAndTitle aTot: authorsToTitles) { // 4

 final String title = aTot.getTitle();

 final String[] words = title.split("\\W"); // 5

 for (final String w: words) {

 if (ignoreWordsSet.contains(w)) { // 6

 continue; // skip the word

 }

 if (!invertedIdx.containsKey(w)) { // 7

 invertedIdx.put(w, new ArrayList<String>());

 }

 final List<String> authNameList = invertedIdx.get(w);

Chapter 9

[217]

 final String authName = aTot.getAuthName();

 authNameList.add(authName);

 }

 }

 for (Map.Entry<String, List<String>> e:
 invertedIdx.entrySet()) { // 8

 System.out.println(e.getKey() + " -> " + e.getValue());

 }}

}

The salient points of the preceding code are as follows:

• We have a class that represents a book's author and title.
• We also have the input list.
• We don't want to put common words such as The, Of, and For in the index.

These are far too common and don't tell us anything valuable. We maintain a
Set<String> type of these words.

• The actual algorithm for generating the inverted index, begins here.
• We split the title into words and iterate them.
• While iterating, if any of the words are marked to be ignored (that is, they are

in ignoreWordsSet), we skip them.
• We initialize the list for the word if this is the first time we are seeing the word.
• We print the inverted index.

Quite a lot, isn't it?

Pipes and filters
Unix and Linux shells approach problems with the use of the pipes and filters
pattern. Here is how we could implement the inverted index in GNU awk, gawk:

BEGIN {
 FS = "->"
}
{
 split($2, a, " ")
 for (x in a) {
 w = a[x]

Higher Order Functions

[218]

 # print w
 iidx[w] = iidx[w] $1
 }
}
END {
 for(w in iidx) {
 print w " -> " iidx[w]
 }
}

Here is an example of pipes and filters:

echo 'Carr -> And So To Murder

Carr -> The Arabian Nights Murder

Carr -> The Mad Hatter Mystery

Christie -> The Murder Of Roger Ackroyd

Christie -> The Sittaford Mystery

Carr -> The Plague Court Murders' | sed -E 's/The|Of|And|To|So//g' | gawk
-f iidx.awk

Note that we pipe in the input text to sed. Sed filters out uninteresting words and
passes on the rest of the text to awk. Awk generates the inverted index using features
such as field splitting and associative arrays (which are similar to hash maps).

Note that I can combine these tools in many ways. For example, I could implement
the logic of ignoring common words in the awk script itself. However, the use of the
sed filter simplifies my awk script, which is a big gain.

The pipe line effectively iterates the input lines. However, the loops are implicit.
Hence, both Awk and Sed iterate the input lines, do a bit of work, and pass on the
intermediate result down the pipe line. This is an incredibly powerful mechanism.

Refer to http://martinfowler.com/articles/collection-
pipeline/ to learn how prevalent this pattern is in programming.
Also, you can refer to http://www.tuxradar.com/content/
exploring-filters-and-pipes and https://en.wikipedia.
org/wiki/Pipeline_(Unix) for more information on the pipes and
filters pattern.

http://martinfowler.com/articles/collection-pipeline/
http://martinfowler.com/articles/collection-pipeline/
http://www.tuxradar.com/content/exploring-filters-and-pipes
http://www.tuxradar.com/content/exploring-filters-and-pipes
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Pipeline_(Unix)

Chapter 9

[219]

Pipes and filters – the Scala version
Here is the Scala version. The for comprehension is similar in spirit to the preceding
Unix shell pipe line:

object InvertedIdx extends App {

 val m = List("Carr" -> "And So To Murder",

 "Carr" -> "The Arabian Nights Murder",

 "Carr" -> "The Mad Hatter Mystery",

 "Christie" -> "The Murder Of Roger Ackroyd",

 "Christie" -> "The Sittaford Mystery",

 "Carr" -> "The Plague Court Murders") // 1

 val ignoreWordsSet = Set("To", "The", "And", "So", "Of") // 2

 val invertedIdx = (for { // 3

 (k, v) <- m // 4

 w <- v.split("\\W") // 5

 if !ignoreWordsSet.contains(w) // 6

 }

 yield(w -> k)).groupBy(_._1).map { case (k,v) => (k,v.map(_._2))} //
7

 println(invertedIdx)

}

The code is simple. We just write the code for comprehension, and the rest of it is so
simple that it mostly works the first time you write it. If you ignore the setup of the
input data, the code is effectively a five liner!

The salient points of the preceding code are as follows:

• In the preceding code, we set up the input data, where each author and title
are a pair

• We set the words that are to be ignored
• The for comprehension computes the inverted index
• The pair is exploded into a key, k, and a value, v
• Each value, which is the book title string, is split on white space. The

resulting words are iterated by the variable w
• We skip the word, w, if it is to be ignored
• Then, we go ahead to index the word that is paired with the author name

Higher Order Functions

[220]

The groupBy combinator regroups the pairs by their first elements. Here is an
example to better understand this:

scala> val list = List("x" -> "y", "z" -> "c", "x" -> "p")

list: List[(String, String)] = List((x,y), (z,c), (x,p))

scala> list.groupBy(_._1)

res0: scala.collection.immutable.Map[String,List[(String, String)]] =
Map(z -> List((z,c)), x -> List((x,y), (x,p)))

So, all the pairs with the x key are grouped under the key x.

We map the grouped map so that the repeated first element is eliminated, just
leaving us with the second. Here is an illustration, applying to the preceding list:

scala> Map("x" -> List(("x","y"), ("x", "z"))).map { case (k,v) => (k,v.
map(_._2)) }

res5: scala.collection.immutable.Map[String,List[String]] = Map(x ->
List(y, z))

This may seem pretty dense at first; however, separating out and playing with the
parts of the code will help you understand it better.

It is a Monoid
Hark back a bit dear reader. If you recall, we had said that a Monoid needs to be
associative and should have an identity value.

Instead of using groupBy and friends, we can instead think of the collections as
monoids and use foldLeft. Here is an example of how we do this:

scala> val list = List("x" -> "y", "z" -> "c",
"x" -> "p", "z" -> "d") // 1

list: List[(String, String)] = List((x,y), (z,c), (x,p), (z,d))

scala> Map[String, List[String]]() // 2

acc: scala.collection.immutable.Map[String,List[String]] = Map()

scala> list.foldLeft(acc) { (a, b) =>

 | a + (b._1 -> (b._2 :: a.getOrElse(b._1, Nil)))

 | } // 3

res0: scala.collection.immutable.Map[String,List[String]] = Map(x ->
List(p, y), z -> List(d, c))

Chapter 9

[221]

The salient points of the preceding code are as follows:

• Here, we have an input list of pairs that we need to convert into a map.
• As the identity value, we have an empty HashMap function.
• We use the foldLeft accumulator in the preceding HashMap method. For

each key, if we don't have an entry as yet, we start with Nil. Otherwise, we
take the already existing value, which is List. We add on the value to List
that effectively grows by 1.

Here is a diagram that clarifies this:

Monoid
identity=HashMap[String, List[String]]()
function=add/replace a (key, value) pair

List("x"->"y","z"->"c",''x"->"p","z"->"d")

foldLeft Map(x->List(p,y),z->List(d,c))

Figure 9.4: Converting a list of pairs to a map

So, using this idiom, we can write our inverted index code as shown in the
following code:

scala> (for ((k, v) <- m; w <- v.split("\\W"); if !ignoreWordsSet.
contains(w))

 | yield(w -> k)).foldLeft(Map[String, List[String]]()) { (a, b) =>

 | a + (b._1 -> (b._2 :: a.getOrElse(b._1, Nil)))

 | }

Now, replace the code, run it, and make sure that the outputs tally.

Lazy collections
All these combinators chaining are lovely, but there is a problem. For very large
input data structures, this ends up creating intermediate copies.

Higher Order Functions

[222]

Let's look at this aspect closely; you'll find that the solution is pretty revealing. Here
is the Java code, just to set the stage:

public class LargeLists {
 public static void main(final String[] args) {
 final int take = 5;
 for (int i = 1000, n = 0; i < 1000000 && n < take; ++i) {
 final int j = i + 1;
 final int k = j * 2;
 if (k % 4 != 0) {
 System.out.println(k);
 ++n;
 }
 }
 }
}

Here, we iterate a range of numbers from 1000 to 1000000. And for each number, we
add 1 and then multiply the result by 2. If the result is divisible by 4, we discard it.
Otherwise, we print the first five numbers from the result.

For example:

scala> val list = (1000 to 1000000).toList

scala> list.map(_ + 1).map(_ * 2).filter(_ % 4 != 0).take(5)

res0: List[Int] = List(2002, 2006, 2010, 2014, 2018)

The problem here is that every combinator creates an intermediate list. The Java code
on the other hand, just does enough. Could we retain this spirit of immutability and
still do enough? In other words, could we have the best of both worlds?

Chapter 9

[223]

The way out is to use lazy collections. Let's have a look at the pictorial representation
first, and then at the code.

huge
intermediate

lists

most of the list
thrown away

Map
-*2

Filter
_%4!=0

Map
_+1

1000
1001

...
1000000

1001
1002

...
1000001

2002
2004

...
2000002

2002
2006
2010
2014
2018

2002
2006

...
2000002

Figure 9.5: A big list processed immutably

Higher Order Functions

[224]

Here the code operates on a list view:

object LazyLists extends App {

 def addOne(x: Int) = {

 println(s"addOne(${x}))")

 x + 1

 }

 def multByTwo(x: Int) = {

 println(s"multByTwo(${x}))")

 x * 2

 }

 def weedOutDivisibleByFour(x: Int) = {

 println(s"weedOutDivisibleByFour(${x}))")

 x % 4 != 0

 }

 val list = (1000 to 1000000).toList.view // 1

 list.map(addOne).map(multByTwo).filter(weedOutDivisibleByFour).

 take(5).foreach { println }

}

The only change is at code labeled 1. We are operating on a list view. This evaluates
the list in a lazy manner. The mapping of the addOne function is noted and
remembered and the view is passed on. Next, the mapping of multByTwo and the
filtering using weedOutDivisibleByFour is just remembered. Note that as yet,
taking off elements from the collection is not absolutely required.

However, when we start printing, the evaluation cannot be delayed anymore.
Then, all the mapping and filtering executables, and the resulting elements are
printed one by one.

Note that this is the usual lazy list processing that we saw in Chapter 04, Lazy
Sequences – being lazy, being good, and there is nothing magical about it.

Chapter 9

[225]

If you run the program and look at the trace statements, you will see that this version
works like its Java counterpart, as shown in the following code:

addOne(1000))
multByTwo(1001))
weedOutDivisibleByFour(2002))
2002
addOne(1001))
multByTwo(1002))
weedOutDivisibleByFour(2004))

The number 1000 is given to addOne(), and the result is passed to multByTwo. The
result, 2002, is then passed to the filtering function, weedOutDivisibleByFour. As
2002 is not divisible by 4, it is the output.

Here, no intermediate lists were created. Instead, lists start on a number, processes it,
and either prints or skips it. Only then does it start with the next number.

Summary
In this chapter, we looked at higher order functions, namely functions that take other
functions as parameters, return a function as a result, or both.

We looked at the strategy pattern's Java implementation. We used Scala's higher
order functions instead, to implement the algorithm encapsulation. Instead of Java
classes implementing an interface, we passed in function literals. Then, we looked at
three important patterns related to higher order functions.

We looked at Functors and then at the collection's map method. The second pattern
was a Monad. We also looked at the flatMap method. The third pattern was
monoids. In a related context, we also looked at foldLeft.

We applied the know-how to write an inverted index program. We looked at both
the Java and Scala versions. The Scala code was short and idiomatic. We discussed
the groupBy method and related idioms. Then, we used the foldLeft method
instead of groupBy and saw how it works on a Monoid.

We wrapped up with a discussion on the lazy collections, and how they help us
with just enough computation. In the upcoming chapter, we will look at what
message-driven concurrency is, and actors. On to it!

[227]

Actors and Message Passing
"All the world's a stage, and all the men and women merely players: they have
their exits and their entrances; and one man in his time plays many parts, his acts
being seven ages."

 - William Shakespeare

Consider a simple, almost everyday use case—going to the market and buying
vegetables. Do we know who grew the produce? Do we know which patch of
land gave us this leafy food? We usually don't know about this.

On the other side of the coin, does the farmer who grew the crop and took such
loving care of it know who bought his produce ultimately? He does not. He is
content enough in knowing that his produce goes to the market.

This is essentially decoupling. The producer does know that there is a consumer
somewhere (otherwise, why would he produce in the first place?). The consumer,
on the other hand, knows that the produce needs to be sown in the field first. This
definitely happens somewhere. However, the consumer is not interested in the details.

The other startling aspect of this nature of transaction is that the number of
producers and consumers is also unpredictable. As long as there is a place in the
market for the produce to be kept, it really does not matter how many people take to
farming and start producing food. It is always great that we have consumers for the
food produced—the more the better!

Producers themselves are consumers of other things. A farmer is a consumer of
fertilizers, and the factory is the producer.

In software, too, this strategy of producers not knowing about consumers and
vice versa is used prominently. Hence , in this chapter, we will look at the Unix
philosophy where we can connect producers and consumers together in the pipeline.

Actors and Message Passing

[228]

We will look at an example for this, a recursive grep. This will search a directory for
files that have .txt extensions. In each file, it will search for a pattern.

The Unix pipeline solution is discussed to see how two processes work together
and in parallel. This is an example of the producer consumer pattern. We will take a
look at the pattern itself. The traditional Java solution of using threads comes next.
We will implement the solution using the master slave pattern. We will also see the
concept of a poison pill for orderly thread shutdown.

Next, we will discuss the event-driven way of things. Instead of polling for an
interesting event, the idea is to register a callback that is fired when the event takes
place. Immutability is golden when we try to design robust concurrent systems.
Here, we will look at the leaky abstractions problem and the traditional solution.
Finally, we will introduce Akka actors and present an actor-based solution for the
problem. We will look at the advantages of the actors paradigm over threads.

So, here comes the Unix pipeline solution.

The recursive grep
Using the egrep program, we can recursively search a directory for a certain pattern.
Here is a command line that is used to search a directory recursively for text files that
contain a pattern:

~> find ./data -name '*.txt' -type f -print | xargs egrep 'this' /dev/
null

./data/a/a.txt:this is

./data/a/b/b.txt:this is file

./data/a/b/c/c.txt:this is file

Before we start grokking the command line, let's see what the xargs argument does.
Xargs takes the egrep command, in this case, and invokes it with the arguments that
it reads from the standard input.

For example, the following command searches for the pattern with help of the
argument:

 ~> echo 'data.txt' | xargs egrep 'this'

Chapter 10

[229]

The xargs argument invokes egrep on the data.txt file and searches for the this
pattern. Xargs packs in as many arguments as possible (there is a limit) to minimize
the number of egrep invocations. Refer to 'man xargs' for more information.

Going back to our command, which has two parts:

• The find command recurs in the current directory. It matches files that
satisfy a certain criteria. The criteria in this case is that the filename should
have the extension .txt. Also, it should be a regular file as opposed to a
directory named laugh.txt.

• The previous action prints the names of the files found in the standard
output. These names are taken up by the egrep utility, and the files are
searched for the 'this' pattern in this case. In case the find command
finds only one file that qualifies its criteria, egrep will work on only one
file. In that case, egrep won't print the filename prefix; it thinks that you
are searching for the file itself, so you already know about it. Egrep has no
way of knowing that it is executed as a part of the pipeline. To fool it, we
tack on /dev/null, which works as an empty file, and egrep will never find
anything there.

There is an elaborate framework at work here. In case we are dealing with a huge
directory, and find produces output too fast (fast producer) and the pipe fills up, the
producer is blocked till the consumer has a chance to consume.

This scheme decouples find (producer) from the egrep (the consumer). The find
command does not know that it is talking to anything like egrep. On the other hand,
the consumer, egrep, does not know that it is getting the data from find.

Note that the programming language in which the find and egrep are written does
not matter at all. Both these are written in C for performance reasons, however, the
tool could be implemented in any language. We could write a tool in any language
as long as it reads from standard input, transforms the line in some way, and writes
to the standard output. A line is a string that is terminated by a new line. The line is
the basic unit of work.

Actors and Message Passing

[230]

We can connect these tools together in any number of ways. In case we don't have
something ready, we could always write a filter of our own. If the filter abides by
certain simple rules (such as reading from a standard input as mentioned earlier), it
can be a part of the pipeline. Take a look at the following figure of a shell pipeline:

The shell
1. creates them

2. connects the two
3. Monitors them

Produces
./data/a/a.txt

...

./data/a/a.txt... Produces
../data/a/a.txt:this is

...

Figure 10.1: The shell pipeline

Another big theme is that a tool should do one thing and do it well. The Find command
does the job of finding files, and it is quite powerful in what it does, for example,
selecting files based on their types and name patterns use man find to refer to the
manual page of the find command, for more information). The egrep command
does text search, both case sensitive and case insensitive searches, and matches lines
against regular expressions.

This is again the single responsibility principle (SRP) at work. This designs tools in
such a way that they are highly cohesive. The advantage for this can be readily seen.
Here, instead of searching for those files, I could instead inspect them one by one.

For example, the following command gives the output with the vim editor:

find ./data -name ''*.txt'' -type f -print | xargs -o vim

We have reused the find command and combined its results with the vim editor.

The producer/consumer pattern
This decoupling of the find command from the egrep command is intentional.
Consumer not knowing about producers and vice versa has the following advantages:

• If we use a real message broker, such as the RabbitMQ server, we can even
have producers and consumers written in different programming languages.
For example, we can have a producer in Java and a consumer in Python. For
the Unix example too, we can write filters in different languages and connect
them together.

Chapter 10

[231]

• We can have any number of producers and consumers.
• If some producers or consumers fail, the system keeps operating, although

less effectively.

The last point is what makes us integrate different existing systems together. This is a
very powerful concept.

Brokers offer many other conveniences too, such as storing, forwarding, and reliably
delivering messages. Message brokers support patterns like point-to-point messaging
or publish/subscribe. Refer to https://www.rabbitmq.com/getstarted.html
for more information. The crisp examples at this link explain the concept via code
snippets that you can play with. Take a look at the pictorial representation of this
concept first:

Producer

Consumer

Producer

F

I

F

O

QUEUE ...

Figure 10.2: Producer/consumers and the FIFO queue

The consumer keeps waiting for the unit of work at one end of the pipe. The
producers keep pushing the work units at the other end. This pipe can be realized by
a First In First Out (FIFO) queue, which is a data structure that guarantees the first
produced, first consumed order.

Refer to https://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20
and%20Queues/Stacks%20and%20Queues.html for a nice description of how FIFO
queues work.

Now, let's look at an example in Java that uses all the preceding concepts that were
outlined to perform the recursive grep program on a directory.

https://www.rabbitmq.com/getstarted.html
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/Stacks%20and%20Queues.html
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/Stacks%20and%20Queues.html

Actors and Message Passing

[232]

Threads – masters and slaves
One more concept at play here is of masters and slaves (also known as workers). The
master spawns off a bunch of workers that are connected via a queue.

Then, a worker thread recurs in the directory. Once it finds a file with a .txt
extension, it hands over the file to the egrep worker thread, as shown in the
following figure. The egrep worker searches for the pattern in the file and
prints out the matching lines:

search word=this

result queue

request queue

file1, file2, ...

lines /a/b/c/.../a.txt

Slave
Thread

Master
Thread

c.txt

...

file:line

file:line

a.txt

b.txt

...

Slave
Thread

/a/b/c/.../b.txt

lines

lines

Figure 10.3: Master/slave threads

The master thread recursively traverses the directory, looking for files with the .txt
extension. Here is an example of the Java code. We've used the excellent Apache
commons io library for the file operations.

Here is how the Java code looks:

public class FilesFinder extends DirectoryWalker
 implements Runnable { // 1

 private final String directory;
 private final BlockingQueue<File> inputQueue; // 2

 public FilesFinder(final String directory, final
 BlockingQueue<File> inputQueue) {
 this.directory = directory;

Chapter 10

[233]

 this.inputQueue = inputQueue;
 }

 @Override
 protected void handleFile(final File file, final int depth,
 final Collection results) throws IOException { // 3
 try {
 inputQueue.put(file);
 } catch (final InterruptedException e) {
 e.printStackTrace();
 }
 }

 public void run() {
 final File startDir = new File(directory);
 try {
 walk(startDir, null); // 4
 } catch (final IOException e) {
 e.printStackTrace();
 }
 }

}

The salient points of the preceding code are as follows:

• In the preceding code, we saw that the FilesFinder class finds the files. It
extends DirectoryWalker from Apache's commons io library.

• The inputQueue is of type java.util.concurrent.BlockingQueue, which
is shared by both the producer and the consumer. Producer(s) pushes a unit
of work (a file here) on this queue so that some consumer(s) can work on the
file. In our case, this consumer is the GrepAFile class.

• For each file found, the handleFile callback is invoked. The file is passed
in as an argument so that we can visit the file. In this example, our visit
amounts to pushing the file on the queue.

• After this, the directory walk takes place.

Here is the code that is used to search for patterns in the file:

// import elided
public class GrepAFile implements Runnable { // 1
 private final String pat;

Actors and Message Passing

[234]

 private final BlockingQueue<File> inputQueue;

 public GrepAFile(final String pat, final BlockingQueue<File>
 inputQueue) {
 super();
 this.pat = pat;
 this.inputQueue = inputQueue;
 }

 public void run() {
 while(true) {
 try {
 final File file = inputQueue.take(); // 2
 if (itsAPoisonPill(file)) { // 3
 return;
 }
 final List<String> lines = FileUtils.readLines(file,
 ""UTF-8"");
 for (final String line: lines) { // 4
 if (line.contains(pat)) {
 System.out.println(file.getName() + "" : "" + line);
 }
 }
 } catch (final InterruptedException e) {
 e.printStackTrace();
 } catch (final IOException e) {
 e.printStackTrace();
 }
 }
 }

 private boolean itsAPoisonPill(final File file) { // 5
 return file.getName().equals(""last.txt"");
 }

}

The salient points of the preceding code are as follows:

• This is the consumer of files. It searches for the pattern in the file and prints
the matching lines on the console.

• The unit of work, File, is picked up from the queue. If there is no work
available, the call gets blocked.

Chapter 10

[235]

• The poison pill is a way to tell the thread to stop what it is doing and die.
It is a pretty melodramatic name. This needs to be the last item to be used.
In our case, we just go by the filename last.txt. This works well for us to
illustrate the concept.

• The work of searching the file for the pattern takes place here. We also print
the matching files on the console.

• The poison pill is then defined.

Here is the driver code:

public class GrepRecursive {
 private final String pattern;
 private final String directory;
 private final BlockingQueue<File> requestQueue;

 public GrepRecursive(final String pattern, final String
 directory) {
 super();
 this.pattern = pattern;
 this.directory = directory;
 this.requestQueue = new LinkedBlockingDeque<File>();

 }

 private void grep() throws InterruptedException {
 final FilesFinder ff = new FilesFinder(directory,
 requestQueue); // 1
 final GrepAFile gaf = new GrepAFile(pattern,
 requestQueue); // 2

 final Thread producer = new Thread(ff);
 final Thread consumer = new Thread(gaf);

 consumer.start();
 producer.start();

 producer.join();
 consumer.join(); // 3
 }

 public static void main(final String[] args) throws
 InterruptedException {
 final GrepRecursive gr = new GrepRecursive(""this"",
 ""../../code/data"");
 gr.grep(); // 4
 }

}

Actors and Message Passing

[236]

Finally, we have the driver that creates the workers and kicks off things.

The salient points for preceding code are as follows:

• It creates a File Finder worker
• It creates the grep worker
• It starts both and then waits for them to finish
• Then, we call the grep() method after setting up the pattern and the

root directory

Events
We all use keyboards in our everyday work life. We use them to write code and
compose e-mails. There is no knowing when a certain key will be pressed. However,
when a key is pressed, the user expects certain action to happen—for example, the
letter indicated by the key should appear in the editor when we are writing code.

This seems natural enough, doesn't it? However, note that there is an elaborate
mechanism at work here. The operating system piece needs to know which key
was pressed. So, one way to find this out is to go and ask periodically whether any
key was pressed, and if so, which one. This is called "polling" for any interesting
information. When we poll, we go and ask the driver, at intervals about any status
regarding whether a key was pressed or not, as shown in the following figure:

Poll keypress
every second

a

b

c

d

e

f

g

h

...

pressed?

pressed?

pressed?

pressed?

pressed?

pressed?

pressed?

pressed?

Figure 10.4: Polling for key presses

Chapter 10

[237]

This polling approach is problematic for the following reasons:

• We really don't know whether the polling interval of a second is enough
• In case someone is not using a keyboard for an hour or more, we would

end up wasting precious computing cycles just checking for possible
key presses

Instead of using this approach, we should model the key presses as events and the
operating system piece as an observer. The moment a key is pressed, an event takes
place. This event is sent across to the interested parties who have expressed an
interest (the observers).

Refer to https://sourcemaking.com/design_patterns/observer for more
information on observers. Here, we are essentially observing and reacting to an
external stimulus. Take a look at the following figure where the key presses are
modeled as events:

a

b

c

d

e

f

g

h

...

 'd' pressed

 'e' pressed

 'f' pressed

 'g' pressed

 'h' pressed

 'c' pressed

 'b' pressed

 'a' pressed

keypress events
as they happen

Figure 10.5: Reacting to key presses

https://sourcemaking.com/design_patterns/observer

Actors and Message Passing

[238]

Immutability is golden
Time and again, we have talked of making data structures immutable. We can pass
them around without two threads changing the shared state (that is, data structure)
at the same time. Immutability makes up for less moving parts, and hence the
reasoning about such systems is simpler.

The issue here is when two (or more) threads update a shared object, a
race condition is said to happen. Refer to http://stackoverflow.com/
questions/34510/what-is-a-race-condition to know more about races.

If we make the objects immutable, race conditions are not possible, as no thread can
update it.

To make a mutable instance immutable, we could wrap it up. However, we should
not leak any references out. Here is an example Java snippet that illustrates this
problem:

public class Wrapper {
 private final List<Integer> value;

 public Wrapper() {
 value = new ArrayList<Integer>();
 //...
 }

 public List<Integer> getValue() {
 return value;
 }

 public synchronized void someAlgorithm() {
 // mutate the list
 }
}

We have created an abstraction all right. However, this is a leaky abstraction. Take
a look at http://simpleprogrammer.com/2013/10/14/leaky-abstractions-
holding-us-back/ for a great explanation of leaky abstractions.

Someone could set the value using the reference obtained via the getter. This
problem gets exacerbated as IDEs like Eclipse allow you to generate getters and
setters. Though in this case, Eclipse would be smart enough to generate a getter only,
as the getter itself leaks out the list reference.

http://stackoverflow.com/questions/34510/what-is-a-race-condition
http://stackoverflow.com/questions/34510/what-is-a-race-condition
http://simpleprogrammer.com/2013/10/14/leaky-abstractions-holding-us-back/
http://simpleprogrammer.com/2013/10/14/leaky-abstractions-holding-us-back/

Chapter 10

[239]

Note that if we could somehow make sure that the list itself is unmodifiable, it would
solve the problem. The solution is to expose a read-only view of the collection. If we
write the getter as follows, the problem is solved:

 public List<Integer> getValue() {
 return unmodifiableList(value);
}

This version is better for two reasons:

• It is easier to reason about race conditions—only the thread holding the
object lock (meaning in a synchronized method) can change the list.

• It is easier to guarantee class invariants. Note that, here, we have marked the
value field as private. We want to control the updates made to it, as it is
really an internal state. The outside world is welcome to read it (for example,
print it to a console).

Wouldn't it have been better if the default list were immutable? In that case, we
could expose it directly and not need to wrap it up. Moreover, Someone could set
the mutate the list reference obtained via the getter. Adding setters willy-nilly would
exacerbate the problem.

You got it right, this is what Scala does. The List class is immutable now.

The threading example has its shares of problems though. Here are some of them:

• What if the egrep worker thread fails for some reason? We will have to code
in order to restart it.

• What if we fail to account for some shared state update? Unknowingly,
someone may leak a mutable reference or use an unsafe API.

• There is an inherent limit of how many threads we can create. Umm—around
4,096 threads for 1 GB of memory. This could be severely limiting as our load
grows.

• Failing to lock correctly can give us the dreaded heisenbugs. It is very hard
or, at times, impractical to debug race condition bugs. Refer to http://
swreflections.blogspot.in/2012/08/fixing-bugs-that-cant-be-
reproduced.html for more information on concurrency heisenbugs.

However, there is a much better way to do this. Please welcome in Actors and Akka!

http://swreflections.blogspot.in/2012/08/fixing-bugs-that-cant-be-reproduced.html
http://swreflections.blogspot.in/2012/08/fixing-bugs-that-cant-be-reproduced.html
http://swreflections.blogspot.in/2012/08/fixing-bugs-that-cant-be-reproduced.html

Actors and Message Passing

[240]

Akka actors take the stage
Akka is a Scala library, which let's us implement the message-based concurrency
systems. An actor is like a small program with a message queue of its own. You can
only get an actor to do some work by passing it a message.

Here is our FileFinder object as an actor:

import akka.actor._

import akka.util.Timeout

import scala.io.Source

object FileFinder { // 1

 def props() = Props(new FileFinder)

 case class FileFinderMsg(pat: String, rootDir: String)

}

class FileFinder extends Actor { // 2

 import FileFinder._

 import context._

 import java.io.File

 val grepActor = system.actorOf(Props(new GrepAFile), ""GrepAFile"") //
3

 def recurseIntoDir(dir: File): Iterable[File] = { // 4

 val itsChildren = new Iterable[File] {

 def iterator = if (dir.isDirectory) dir.listFiles.iterator else
Iterator.empty

 }

 Seq(dir) ++: itsChildren.flatMap(recurseIntoDir(_))

 }

 def receive = { // 5

 case FileFinderMsg(pat, rootDir) => {

 val d = new File(rootDir)

 for(f <- recurseIntoDir(d) if f.getName.endsWith("".txt"")) {

Chapter 10

[241]

 import GrepAFile.GrepMsg

 grepActor ! GrepMsg(pat, f) // 6

 }

 }

 case _ => self ! PoisonPill // 7

 }

}

The salient points of the preceding code are as follows:

• In the preceding code, we saw that the FileFinder object is a companion
object. It defines the FileFinderMsg class that the actor handles.

• After this, the FileFinder object becomes an actor. It can receive messages
and does useful work.

• GrepActor, which is a child actor, is created after this.
• The method, recurseIntoDir, recursively traverses a directory tree, and

searches for qualifying files.
• After the actor message loop for each file is found (with the extension .txt),

the grep actor is given the pattern and the file.
• The ! send operator is used to send a message to another actor. More

specifically, we tell the actor to do something. This is the "fire-and-
forget" way of passing a message to another actor. The message is sent
asynchronously, and the control returns immediately.

• The message loop is exhaustive. If we get any other type of message, the
actor is fed a poison pill and the actor dies as a result.

Here is the Java code where grepFile becomes an actor:

import java.io.File

import akka.actor.{ Actor, Props, PoisonPill }

import scala.io.Source

object GrepAFile {
 def props() = Props(new GrepAFile)
 case class GrepMsg(pat: String, file: File)
}

class GrepAFile extends Actor { // 1

Actors and Message Passing

[242]

 import GrepAFile._

 def receive = { // 2
 case GrepMsg(pat, file) => { // 3
 for (line <- Source.fromFile(file).getLines()) {
 if (line.contains(pat)) {
 println(s""${file.getName} : ${line}"")
 }
 }
 }

 case _ => { // 4
 println(""GrepAFile exitting"")
 self ! PoisonPill
 }
 }
}

The salient points of the preceding code are as follows:

• We saw that the GrepAFile object becomes an actor.
• The message loop—note again—is exhaustive.
• Upon receipt of the GrepMsg message, we get the unit of work to do stuff. We

iterate the lines of the file and print the matching ones.
• If we receive any other message that the actor cannot deal with, the actors

swallow a poison pill.

Here is the driver through which we put the actors to work:

import akka.actor.{ ActorSystem , Actor, Props }

object Main extends App {

 implicit val system = ActorSystem(""packt"") // 1

 val fileFinder = system.actorOf(Props(new FileFinder),
""FileFinder"")

 import FileFinder.FileFinderMsg

 fileFinder ! FileFinderMsg(""this"", ""../data"") // 2
}

Chapter 10

[243]

The salient points of this example are as follows:

• In the preceding code, we saw that the top-level actor, FileFinder, is created
using the ActorSystem variable

• Now, the ball starts rolling, and we send the pattern and the directory root to
grep in

Advantages
• We did not set up any queues but just wrote simple Scala

code, in particular, a message loop. There was no explicit
locking, as there is no shared state

• The FileFinder actor communicated with the GrepAFile
actor purely via message passing. It is very similar to how we
distribute work among people. We can reason about the code
easily. Both the actors are executed in parallel. Also, we could
have a GrepFile actor per file, as actors are not costly

Summary
We had a whirlwind tour of concurrency mechanisms. It started with the
producer/consumer pipeline of Unix. Then we saw the inherent principles behind
the pipeline, namely decoupling and each tool doing at least one thing. This is the
essential Unix philosophy.

We looked at the recursive grep worker as an example. After the pipeline solution,
we looked at the producer/consumer implementation in Java. We looked at the
problems of performing multithreading by ourselves. We also saw how we need to
take extreme care not to introduce race conditions.

Races can take place when there is a possibility of the same state getting updated by
multiple threads. We saw one example of a leaky abstraction and how immutability
helps us gain the ground back.

Keeping in mind the perils of multithreading, we looked at Akka, Scala's popular
actor library. We implemented the solution using Akka actors and saw the simplicity
of the messge driven concurrency paradigms.

With all this know-how under our belt, let's look at the paradigm shift that all these
new techniques have brought about.

[245]

It's a Paradigm Shift
We have come a long way, dear reader, having dabbled with many Scala features.
Hopefully, it was an exciting and fruitful journey. All along, we witnessed a novel
approach to the programming process. Scala provides startlingly unconventional
ways to help us become more effective. Ultimately, we have witnessed a
fundamental change in approach, a paradigm shift.

What we need to do remains mostly the same, though. The idea is to cut down the
boilerplate and write code at a higher level of abstraction, for example, the need
to pass around bits of code, as a comparator to sort things. We will see how the
functional way makes sorting a snappy affair.

Java code is pretty verbose when we compare it with Scala. Functions play an
important part in being expressive and succinct.

Error handling has always been a tedious chore. Scala's Try (yes that is a capital T)
helps us handle errors in a functional way.

Futures and Promises come after that. These are tools to write asynchronous code.
These tools are very different from Java threads and allow us to work at a higher
level of abstraction.

Domain-Specific Languages (DSLs) are extremely useful tools. We wrap up with a
look at Scala's Parser combinators and how easily we can parse text.

Let's ring the curtain up for the grand finale!

It's a Paradigm Shift

[246]

Verbosity
The imperative way of things is pretty verbose. Here is a case in point. The filtering
and flattening is pretty long:

import java.util.List;

public class Books {
 private final String author;
 private final List<String> titles;

 public Books(String author, List<String> titles) {
 super();
 this.author = author;
 this.titles = titles;
 }

 public String getAuthor() {
 return author;
 }

 public List<String> getTitles() {
 return titles;
 }
}
------------------- PickUpInterestingStuff.java -----------------

import java.util.List;

import com.google.common.collect.Lists;

public class PickUpInterestingStuff {
 public static void main(String[] args) {
 List<Books> listOfBooks = Lists.newArrayList();
 listOfBooks.add(new Books("Carr", Lists.newArrayList("The Mad
Hatter Mystery",
 "The Blind Barber")));
 listOfBooks.add(new Books("Christie",
 Lists.newArrayList("Death On The Nile",
 "Murder in Mesopotamia")));

 // pre Java 8

Chapter 11

[247]

 List<String> titlesFor = Lists.newArrayList();

 for(Books books: listOfBooks) {
 if (books.getAuthor().equals("Carr")) {
 titlesFor.addAll(books.getTitles());
 }
 }
 System.out.println(titlesFor);
 // if using Java 8
 listOfBooks.stream().filter(book -> book.getAuthor().
equals("Carr")).forEach(b -> System.out.println(b.getTitles()));
 }
}

If we use Java Version 8, the code is more succinct and shorter. Here is the Scala
version:

case class Books(author: String, titles: List[String])

val list = List(Books("Carr", List("The Mad Hatter Mystery",

 "The Blind Barber")), Books("Christie", List("Death On The Nile",

 "Murder in Mesopotamia")))

list.filter(_.author == "Carr").flatMap(_.titles).foreach { println }

This is much better! Note also that you cannot change the Books attribute once the
object is created. Both the list and its elements cannot be modified.

The number of bugs go down as there are less moving parts! A big reason for this
succinctness is we can so easily pass around bits of code, aka functions. In Java,
we need to extend an interface and that is some code. In C, we can pass around
functions (function pointers), but we don't have much type safety.

Sorting it out!
Scala provides sorted, sortBy and sortWith methods. We will take a quick look at
them and then tackle an interesting memoization problem.

It's a Paradigm Shift

[248]

Sorted
The sorted method uses natural ordering amongst the elements of the collection.
Natural ordering well, seems natural.

For example, given the following numbers:

1, 11, 22, 2

The natural ordering would be:

1, 2, 11, 22

And the alphanumeric ordering would be:

1, 11, 2, 22

Alternatively, please see http://blog.codinghorror.com/sorting-for-humans-
natural-sort-order/ for more on natural ordering.

Here is sorted in action:

scala> import scala.util.Random

import scala.util.Random

scala> val list = List.fill(10)(Random.nextInt(100))

list: List[Int] = List(5, 49, 37, 56, 54, 64, 9, 85, 76, 28)

scala> list.sorted

res0: List[Int] = List(5, 9, 28, 37, 49, 54, 56, 64, 76, 85)

This, of course, creates a new list as the original list is immutable.

SortBy
This method sorts on an attribute of the compound type. For example, given a list of
tuples:

scala> val l = List((2,3), (1,9), (4,7))

l: List[(Int, Int)] = List((2,3), (1,9), (4,7))

scala> l sortBy (_._1)

res0: List[(Int, Int)] = List((1,9), (2,3), (4,7))

scala> l sortBy (_._2)

res1: List[(Int, Int)] = List((2,3), (4,7), (1,9))

http://blog.codinghorror.com/sorting-for-humans-natural-sort-order/
http://blog.codinghorror.com/sorting-for-humans-natural-sort-order/

Chapter 11

[249]

Or given a list of objects, you can sort by any attribute of the object:

scala> case class Record(num: Int, str: String)

scala> val list = List(Record(9, "zeroth"), Record(4, "first"),
Record(11, "second"), Record(3, "third"), Record(22, "fourth"))

list: List[Record] = List(Record(9,zeroth), Record(4,first),
Record(11,second), Record(3,third), Record(22,fourth))

scala> list.sortBy(r => r.num)

res0: List[Record] = List(Record(3,third), Record(4,first),
Record(9,zeroth), Record(11,second), Record(22,fourth))

This sorts the objects by its num attribute. It is short as most of the boilerplate
is eliminated.

What if we want to sort in descending order? Well, you can always resort to
comparators and sort with them.

SortWith
This version allows us to pass a function to be used as a comparator. Note how
succinct and expressive the code is:

scala> list.sortWith { (first, second) =>

 | first.num > second.num

 | }

res2: List[Record] = List(Record(22,fourth), Record(11,second),
Record(9,zeroth), Record(4,first), Record(3,third))

Comparing it with the Java sort, see how simple it is when we use functions.

Scalaish Schwartzian transform
The Perl language has a fantastic memoization idiom, the Schwartzian transform.
When we are sorting a list of objects, the sorting efficiency is improved. This is a
generalized algorithm, though.

Here is the problem. Given a list of pairs of strings:

scala> val list = List(("one", "First"), ("two", "Second"), ("three",
"third"))

It's a Paradigm Shift

[250]

We wish to sort the list:

• In lexicographical ordering by the first entry and in case of a tie by the
second entry

• In lexicographical ordering by the second entry and in case of a tie by the
first entry

• Just by the length of the first entry
• By the string length of the first entry and in case of a tie by the second entry

We could do any of these by passing in the comparison criteria as a function.

For example, by sorting the list by the length of the second element:

scala> list.sortWith(_._2.length < _._2.length)

res4: List[(String, String)] = List((one,First), (three,third),
(two,Second))

The problem is the length of the strings is computed again and again. When we are
sorting a collection of objects with a complex sort criteria involving many fields, this
becomes a concern.

Run the following snippet and see how many times the length of the same string
gets computed:

scala> case class Name(firstName: String, lastName: String)

defined class Name

scala> def cmp(first: Name, second: Name) = {

 | println(s"Computing length of <${first.firstName}>")

 | val len1 = first.firstName.length

 | println(s"Computing length of <${second.firstName}>")

 | val len2 = second.firstName.length

 |

 | len1 < len2

 | }

cmp: (first: Name, second: Name)Boolean

scala> val list = List(Name("one", "First"), Name("two", "Second"),
Name("three", "third"))

Chapter 11

[251]

list: List[Name] = List(Name(one,First), Name(two,Second),
Name(three,third))

scala> list.sortWith(cmp)

Computing length of <two>

Computing length of <one>

Computing length of <one>

Computing length of <two>

Computing length of <three>

Computing length of <two>

Computing length of <two>

Computing length of <three>

The output shows we are wasting CPU cycles and recomputing string lengths. Could
we somehow compute the string length and cache it?

The Schwarzian transform is an elegant solution to this problem. It memoizes
the intermediate computation that is, cahces the results thereby avoiding the
redundant scalls.

Before we look at the algorithm, we need to know a bit more about sorting pairs:

scala> val list = List(

 | ("Reggie Tennyson", 1),

 | ("Mabel Spence", 3),

 | ("Monty Bodkin", 12),

 | ("Albert Peacemarch", 2)

 |)

scala> list.sorted

res1: List[(String, Int)] = List((Albert Peacemarch,2), (Mabel Spence,3),
(Monty Bodkin,12), (Reggie Tennyson,1))

Whoa! I could sort by pairs if the individual pieces forming
it were ordered. (Refer to http://www.scala-lang.
org/api/2.11.2/index.html#scala.math.Ordered
for more information).

http://www.scala-lang.org/api/2.11.2/index.html#scala.math.Ordered
http://www.scala-lang.org/api/2.11.2/index.html#scala.math.Ordered

It's a Paradigm Shift

[252]

Given all of the preceding, let's piece together the transform algorithm:

scala> def nameLens(name: Name) = (name.firstName.length, name.lastName.
length)

nameLens: (name: Name)(Int, Int)

It is just a method—converting the Name object to a tuple, each element of which is
the length of the first and last names.

This is the list we need to sort:

scala> val list = List(Name("Always the", "First"), Name("A second",
"Helping"), Name("A thumping", "third"))

Mapping the nameLens function over the list gives the following output:

scala> list map nameLens

res1: List[(Int, Int)] = List((10,5), (8,7), (10,5))

We applied the function to the input list. Note that we have precomputed the lengths
(that is, we have cached the lengths of the strings):

scala> list map nameLens zip list

res2: List[((Int, Int), Name)] = List(((10,5),Name(Always the,First)),
((8,7),Name(A second,Helping)), ((10,5),Name(A thumping,third)))

We zipped the list of name lengths with the input list. It is a new list with the name
lengths clubbed with the input Name element:

scala> list map nameLens zip list sortWith {

 | (x, y) =>

 | x._1._1 < y._1._1

 | }

res3: List[((Int, Int), Name)] = List(((8,7),Name(A second,Helping)),
((10,5),Name(Always the,First)), ((10,5),Name(A thumping,third)))

We sort the list, and the criteria now works on the precomputed cached length data.
Retrieving the interesting part is simple now; we just go and pull it out with a map:

scala> list map nameLens zip list sortWith {

 | (x, y) =>

 | x._1._1 < y._1._1

 | } map (_._2)

res2: List[Name] = List(Name(A second,Helping), Name(Always the,First),
Name(A thumping,third))

Chapter 11

[253]

Here is a figure illustrating the flow:

Name("Always the", "First")

Name("A second", "Helping")

Name("A thumping", "third")

((8,7),Name(A second,Helping))

((10,5),Name(Always the,First))

((10,5),Name(A thumping,third))

drop the auxiliary data

Convert

sortWith (_._1<_._1)

((8,7),Name(A second,Helping))

((10,5),Name(Always the,First))

((10,5),Name(A thumping,third))

(Name(A second,Helping))

(Name(A thumping,third))

(Name(Always the,First))

Figure 11.1: Sorting the list

We have tacked on the precomputed lengths as a tuple. As the tuples are ordered
(that is, we can use < and > to compare elements of a tuple), we sort using it.

We have seen this principle in action before. We are caching the lengths of the
fields, so we avoid computing them again and again. You guessed it right—this is
memorization in action.

Functional error handling
Handling errors is one tricky aspect of writing code. Error handling is the essential
devil we simply can't do without.

The procedural world relies on returning error codes from functions, suffering from
the same problem because of null checks. We could possibly miss checking. Also, the
actual business logic gets lost in the tangled error handling code.

A case in point is file handling. Opening files and reading the contents, for example,
could result in exceptions. As another example, the file may not exist (perhaps there
is a typo in the filename), or it may not have requisite permissions.

Throwing an exception is a much better idea. The calling code cannot ignore it, at the
very least it has to catch the exception.

It's a Paradigm Shift

[254]

You can, off course, use Java style try/catch blocks in Scala. As the try/catch block is
an expression, you can assign its value to a variable:

scala> case class HandsUp(msg: String) extends Exception(msg)

defined class HandsUp

scala> def warnThem = throw HandsUp("Hands Up!!!")

warnThem: Nothing

scala> val p = try {

 | warnThem

 | } catch {

 | case HandsUp(msg) => msg

 | }

p: String = Hands Up!!!

However, there is a more functional way. Here is a snippet that checks if a file's
contents are the same when read backwards (that is, if the file content is a palindrome):

import java.io.{FileNotFoundException, File}
import scala.util.{Failure, Success, Try}
import scala.io.Source._

object PalindromeFiles extends App {
 def checkFileExt(f: File, ext: String) = Try { // 1
 if (f.getName.endsWith(ext))
 f
 else
 throw new RuntimeException("Wrong extension")
 }
 def fileIsPalindrome(f: File) = Try { // 2
 val lines = fromFile(f).mkString.stripLineEnd
 if (lines == lines.reverse)
 f
 else
 throw new RuntimeException("Not a palindrome")
 }
 def checkFileIfItIsAPalindrome(f: File) = checkFileExt(f, ".txt").
flatMap(fileIsPalindrome(_))

Chapter 11

[255]

 val checkOne = checkFileIfItIsAPalindrome(
 new File("./two.txt")) // 3
 val checkTwo = checkFileIfItIsAPalindrome(
 new File("./abrakakarba.txt")) // 4
 val checkThree = checkFileIfItIsAPalindrome(
 new File("./fileDoesNotExist.txt")) // 5
 checkOne.foreach(println)
 checkTwo.foreach(println)
}

The salient points for the preceding code are as follows:

• We check for the file extension. If it is something other than what we need,
we throw an exception.

• We read all contents of the text file as a string, minus the last newline
character, if any. We reverse the string check in order for the strings to
be palindromes of each other. If the check fails, we again throw another
exception.

• The pipelining of checks is run on two.txt, which is not a palindrome.
Again, the file name is not printed.

• A successful pipeline occurs when the file name is printed.
• We try the pipeline on a file that simply does not exist–the pipeline keeps

silent. The file name is not printed.

Try is very much like Scala's Option. Did you notice the absence of any try/catch code?
When the pipeline is in error, the combinators following it simply don't touch it. but
instead pass it on. Only when it gets a Success(File) does the real work happen.

Note that in the event any combinator receives a failure, it does nothing but just
pushes the failure on to the next one in line. The overall effect is if there is an
exception anywhere, the rest of the pipeline simply does nothing!

It's a Paradigm Shift

[256]

Here comes a flow chart depicting the flow:

File Name

Open File

contents
are

palindrome?
skip

Check Extension

print
filename

Failure

Success

Success

Success

Failure

Failure

Figure 11.2: Error handling flowchart

Chapter 11

[257]

Pattern matching
If you want to check out the exact error, then you can pattern match the Try. Change
the code as shown:

 def printResult(x: Try[File]) = x match {

 case Success(f) => println(f) // 1

 case Failure(e) => println(e) // 2

 }

 printResult(checkOne)

 printResult(checkTwo)

 printResult(checkThree)

This prints the error messages. At code labeled as 1, we print the filename and at
code labeled as 2, we print the error message. At 2, the variable e is the exception
caught by the Try.

Threads and futures
You can use threads in Scala, however, there is a better way. You can use threads
the same way in Scala, too, but there are alternative approaches. It is yet one other
important paradigm shift.

We have seen an example of message-driven concurrency using actors and the
Akka framework.

Here is a contrived example, which sums up a list of numbers. The code forks a
thread to compute the summation, simulates a delay, and returns the answer to
the main thread:

 --------ListSumTask.java--------
import java.util.List;
import java.util.concurrent.TimeUnit;

public class ListSumTask implements Runnable {

 private final List<Integer> list;
 private volatile int acc; // 1

 public ListSumTask(List<Integer> list) {
 super();
 this.list = list;
 this.acc = 0;

It's a Paradigm Shift

[258]

 }

 public void run() {
 sleepFor(4);
 for (Integer i : list) {
 acc += i;
 }
 }
 private void sleepFor(long secs) {
 try {
 TimeUnit.SECONDS.sleep(secs);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public int getAcc() {
 return acc;
 }
}
--------TaskDriver.java--------
import java.util.Arrays;
import java.util.List;

public class TaskDriver {
 public static void main(String[] args) throws InterruptedException
{
 List<Integer> list1 = Arrays.asList(10, 11, 12, 13);
 List<Integer> list2 = Arrays.asList(14, 15, 16);

 ListSumTask task1 = new ListSumTask(list1); // 2
 Thread t1 = new Thread(task1);
 ListSumTask task2 = new ListSumTask(list2); // 3
 Thread t2 = new Thread(task2);

 t1.start();
 t2.start();
 t1.join();
 t2.join();

 int total = task1.getAcc() + task2.getAcc();
 System.out.println("Total sum = " + total);
 }
}

Chapter 11

[259]

Most of this code should not pose any problem for you. However, there are a couple
of things to be aware of.

The following are the salient points foe the preceding code are as follows:

• Note the accumulator variable acc in the thread class. We need to mark this
as volatile so when the parent thread reads it, correct memory visibility is
enforced.

• A task is necessary to process the first list. This sums up the list, and the
delay is simulated via the sleep method.

• Another task on the same line is needed to process the second list.

A computation is synchronous or asynchronous. When we invoke a method, we wait
until its execution is complete. This is the sequential flow model we intuitively think
of while writing code. However, consider sending a piece of mail via the application.

We usually cannot block the calling thread, waiting for the mail delivery to complete.
The rest of the system could get starved (the thread is blocked instead of doing some
useful work), so we instead follow the asynchronous model.

A good example is a telephone call versus sending a letter by surface mail. We wait
for the call to get connected with the other party and follow the synchronous way.
On the other hand, we do not wait for the letter to reach the intended party at the
sent address. This would be highly wasteful.

Scala's Futures
We have seen Akka, actors, and the message-driven concurrency model. However,
actors are long-running objects, resilient with the monitoring and supervision built in.

With this being said, at times, we will need something simpler, without all the power
and setup complexity, and still be able to do asynchronous computation.

Scala Futures is the answer. Note that these are way ahead of Java's Futures (java.
util.concurrent.Future). Using Java's Futures, we can either block or need to poll
it frequently, and that becomes a pretty awkward computing model.

It's a Paradigm Shift

[260]

So, with a bit of all that under our belt, here we go:

import scala.concurrent.{ExecutionContext, Future, Promise, Await}

import scala.concurrent.duration._

import ExecutionContext.Implicits.global

object Futures extends App {

 def from(n: Int): Stream[Int] = { // 1

 Thread.sleep(2000)

 n #:: from(n + 1)

 }

 val printNumbers = Future { // 2

 val start = from(10).take(4)

 start.foldLeft(0) { _ + _ }

 }

 val f = printNumbers map { // 3

 case 46 => {

 println("Got it")

 }

 case _ => println("Huh?")

 }

 Await.ready(f, 60 seconds) // 4

}

The following are the salient points for the preceding code are as follows:

• We simulate a long-running activity via Scala streams. The thread sleeps for
2 seconds and then returns the next number.

• We collect the result 10, 11, 12, 13. We take four elements from the stream,
sum them up, and return the result. This creates a future.

• We create a new future by applying a function to the successful result. You
can also use flatMap if the computation on one future depends on the result
of another.

• We wait 60 seconds for the future to complete. Note the literal 60 seconds
method invocation. Please see the information box for more on why this works.

Chapter 11

[261]

The syntax 60 seconds is the same as 60.seconds(); however,
Scala allows dots and parents to be omitted. Now, we are invoking
a method, seconds() on 60 which is an Int. The Int variable
does not have any seconds() method. The compiler searches for
an implicit conversion that takes an Int and returns something
that has the missing method defined.
As the code imports DurationInt, the expression is rewritten as
DurationInt(60).seconds(). This is the implicit conversions
magic we have seen earlier.
Please refer to https://github.com/scala/scala/blob/
v2.11.5/src/library/scala/concurrent/duration/
package.scala#L1 for more information.

Parser combinators
Parsers are everywhere. A Scala program text needs to be parsed first for it to run.
We parse a JSON to get at the data structure. We then try to make sense of the text
and pull out something useful from it.

Parsing may succeed or fail. For example, the text may not have what we are looking
for. It may have something else equally interesting. At times, we'll want to retry
different parsers on a piece of text, hoping that one of them might succeed.

A parser looking for a number in the string how do you do? will fail as there is no
number. However, a parser looking for greetings will succeed.

The idea behind Scala's Parser combinators is to compose more complex parsers
from simpler ones. We compose parsers that can be tried one after another or one
instead of another.

Here is a simple example of parsing a double from a string:

scala> :paste // 1

// Entering paste mode (ctrl-D to finish)

import scala.util.parsing.combinator._ // 2

object ParseANumber extends RegexParsers { // 3

 def number: Parser[Double] = """\d+[.]?\d*""".r ^^ { _.toDouble } // 4

}

^D (control-d) here…

The regular expression is followed by a function. The operator ^^ says that if the
pattern is recognized, then apply the following function.

https://github.com/scala/scala/blob/v2.11.5/src/library/scala/concurrent/duration/package.scala#L1
https://github.com/scala/scala/blob/v2.11.5/src/library/scala/concurrent/duration/package.scala#L1
https://github.com/scala/scala/blob/v2.11.5/src/library/scala/concurrent/duration/package.scala#L1

It's a Paradigm Shift

[262]

Here is a sample run of the preceding parser:

scala> ParseANumber.parse(ParseANumber.number, "9.3445")

res12: ParseANumber.ParseResult[Double] = [1.7] parsed: 9.3445

scala> ParseANumber.parse(ParseANumber.number, "9.")

res13: ParseANumber.ParseResult[Double] = [1.3] parsed: 9.0

scala> ParseANumber.parse(ParseANumber.number, "9")

res14: ParseANumber.ParseResult[Double] = [1.2] parsed: 9.0

This parser parses a double from an input string.

The salient points for the preceding code are as follows:

• You need to paste code into the Scala REPL. The :paste command starts the
paste mode. You break out of the paste mode back to the REPL command
prompt by pressing Ctrl + D.

• We import the parsing machinery.
• We extend a RegexParser. Regular expressions are a basis for our parsing.

There is also a JavaTokenParser, which provides convenient methods like
ident to parse Java identifiers.

• We define a method number, which is a small parser itself. It parses a double
from an input string.

The parser is exercised on example input and illustrates how the parser works for
different input strings.

Here is more fun, as we try parsing a sequence of words, in order:

scala> :paste

// Entering paste mode (ctrl-D to finish)

import scala.util.parsing.combinator._

object ParseHowDoYouDo extends RegexParsers {

 def sequence1 = "how" ~ "do" ~ "you" ~ "do" // 1

 def sequence2 = ("how" | "do") ~ ("you" | "do") ^^ { // 2

 case t => println(t)

 }

}

// Ctrl-D here…

Chapter 11

[263]

The salient points for the preceding code are as follows:

• The ~ is a parser combinator. It combines the parsers; each parser is a
literal string. There is an implicit conversion from java.lang.String to
Parser[String]. These string literal parsers match just themselves. When
all these parsers are combined, we get a parser that parses "how do you do?"
The input howdoyoudo my friend also works.

• This is another little complex parser made by combining smaller parsers. In
addition to the ~ combinator, it uses the | combinator. If the parser cannot
find how, it gives another try to see if do matches. The ^^ is used to marry a
function to the parser, which is invoked if the parsing is successful:
scala> ParseHowDoYouDo.parse(ParseHowDoYouDo.sequence1, "how do "
+

 | "you do my friend")

res0: ParseHowDoYouDo.ParseResult[ParseHowDoYouDo.~[ParseHowDoYo
uDo.~[ParseHowDoYouDo.~[String,String],String],String]] = [1.14]
parsed: (((how~do)~you)~do)

scala> ParseHowDoYouDo.parse(ParseHowDoYouDo.sequence2, "do " +

 | "do my friend")

(do~do)

res1: ParseHowDoYouDo.ParseResult[Unit] = [1.6] parsed: ()

Here is a slightly complex parser, which takes a string of numbers and an operator.
The parser runs the operator on the list and returns the result:

import scala.util.parsing.combinator._

class Calcy extends RegexParsers {

 def add(x: Int, y: Int) = x + y

 def mul(x: Int, y: Int) = x * y

 def num: Parser[Int] = """(0|[1-9]\d*)""".r ^^ { // 1

 _.toInt

It's a Paradigm Shift

[264]

 }

 def numList: Parser[List[Int]] = rep(num) // 2

 def op: Parser[(Int, Int) => Int] = ("+" | "*") ^^ { // 3

 case "+" => add _

 case "*" => mul _

 }

 def expr: Parser[Int] = (numList ~ op) ^^ { // 4

 case t => {

 val list = t._1 // 5

 val f = t._2

 list.reduceLeft((x,y) => f(x,y)) // 6

 }

 }

}

object TestCalcy extends Calcy {

 def tryParsing(s: String) = {

 parse(expr, s)

 }

}

object AnAssignmentParser extends App {

 println(TestCalcy.tryParsing("1 2 3 4 +")) // Outputs 10

 println(TestCalcy.tryParsing("1 2 3 4 *")) // Outputs 24

}

The salient points for the preceding code are as follows:

• This is a simple number parser. We try to pull out a numeric string and
invoke toInt() on it.

• The rep method repeatedly uses the given parser to parse the input. The num
parser is used repeatedly to pick up as many numbers as it can.

Chapter 11

[265]

• The op parser parses an operator, either an addition operator (+) or a
multiplication operator (*). We return a function of type (Int, Int) =>
Int when we see an operator.

• The expr parser is the final parser we have. It combines the numList and op
parsers and expects the operator to follow the list of numbers.

• The function, associated with the expr parser, destructures the parsers and
gets the list of numbers and the operator function.

• We reduce the list of numbers by applying the function.

Note that we have just expressed the grammar and what should happen when the
parsing is successful. We have not written much of anything else. All the boilerplate
of the actual parsing process is hidden from us. For example, if one parser fails,
another is applied (if there is any).

Summary
Paradigm shift is a fundamentally alternate approach to program design. It invites
us to think in radically different ways. Sorting, parsing, error handling, and
concurrency have very different forms in Scala compared to Java.

Scala provides some stock sorting methods. We took a look at them and then came
up against a problem of needless computation when sorting objects. The solution is
the Schwartzian transform, a memorization technique. This is a Perl idiom, however,
the idea is pretty general. We saw its Scala implementation.

Error handling is usually messy. The scheme of returning error codes always has
the risk of us forgetting to check for errors. Exceptions are an improvement. Scala
provides a nice solution so the error handling blends into the computation pipeline.
We looked at the Try/Success/Failure family with an example.

We can use threads; however, Scala provides Futures and Promises. These are
much easier to use when performing asynchronous computations. We can approach
concurrency in a much more functional way. Futures are pretty handy for pipelining.

Parsing texts is a very common programming activity. Scala's parser combinators
provide the framework so one can compose complex parses out of simpler ones. We
have seen higher order parsers being composed from smaller parsers.

So, hopefully you have, by now, gotten a sense of the paradigm shift. The best way is
to apply what we have learned and experience the paradigm shift firsthand.

Happy learning!

[267]

Index
A
abstractions 2, 3
abstract override method 115
accumulator idiom 71
Akka

about 240
actors 240-242

apply() factory method
using 40, 41

autoboxing 85-87
auto_ptr template

reference link 142

B
base case 55
Binary Search Tree (BST) 26
boilerplate 143
Builder pattern

case class, using 49, 50
named arguments, using 49, 50
overloaded constructors, using 48, 49
using 45-47

buy button 75

C
cached 89
cake pattern 120-122
call by name technique 87-89
case statements

used, for deconstruction 56-58
CGLIB

URL 80

chain of responsibility
about 171
chain 175
collect idiom 178, 179
scalaish 176, 177
URL 178

ChoosyVet 122
class invariants

URL 103
combinators 181
command design pattern 20
companion objects

about 39, 40
apply() factory method 40, 41
apply method, using 43
factory method 42, 43

composition over inheritance
about 107
URL 107

concise expression 3-5
concurrency heisenbugs

URL 239
creational patterns

reference link 25
criteria 229
cross-cutting concern 76
currying

about 138, 139
code block style 141, 142
explicit resolution 141
implementing 152, 153
implicit resolution 141
type inference 140

[268]

D
database view 95
data structures

making immutable 238, 239
decorator pattern

using 111-113
decorators

implementing 150-152
dependencies injection pattern 116-120
Directed Acyclic Graphs (DAG) 28
Domain-Specific-Languages (DSL) 49, 245
Don't Repeat Yourself principle (DRY) 104
dreaded diamond

about 106, 107
defeating 126

duration
URL 261

E
enclosing scope 132
enum types

URL 124
essence of recursion 54
Eta expansion 136
events 236, 237
exhaustiveness checks 123
expression parser 63-69
external stimulus

reacting 237
extract method refactoring

reference link 144

F
factory method 42, 43
FileFinder actor 243
filters

about 230
implementing 217, 218
implementing, in Scala 219, 220
reference link 218

filters out elements 91
find command

about 54, 230
decoupling, from egrep command 229

first-class objects 207
First In First Out (FIFO) queue 231
flatMap method 212, 213
fluent interfaces

URL 19
flyweight pattern 85-87
force call 97
for expression

about 193
generator and filter 193, 194
one generator 193
two generators 194, 195
URL 194

free variable 132
Functiona1

URL 189
functional error handling

about 253-256
pattern matching 257

functional programming (FP) 1
functional transformation 95-98
functions 5, 6, 128, 129, 130
Functors

about 208, 209
maps 209, 210

futures 259, 260

G
grouping continuous integers

commonality/variability analysis 14-17
issues 10, 11
Java code 11, 12
one-liner shockers 17
recursively 13, 14
reusability 14

H
heisenbugs

URL 71
Hibernate

lazy loading 79
higher order functions 203
Hollywood principle

URL 116

[269]

I
iContract

reference link 47
immutable 7, 8
implicit conversion 50
infinite sequences

implementing 81-83
initialization

URL 3
Inoculate trait 122
interfaces

about 99
as types 104-106
moveGoods(GoodsMover goodsMover)

method 106
walk(Walks walker) method 106

Inversion Of Control (IoC)
about 116
URL 116

inverted index 215, 217
iterator design pattern 100-103

J
Java

verbosity 246, 247

L
Lazy Acquisition 75
lazy collections 221-225
lazy evaluation 76
lazy initialization

reference link 25
lazy keyword 80
lazy loading, Hibernate 79, 80
lazy vals 80
leaky abstractions

URL 238
lexical scope 130
lifting, method 136
linearization 126
list

forming 81, 82
iterating 56
nth element, obtaining 61, 62

List extractor
URL 57

loan pattern
about 142
example 143, 144

local functions
defining 133-135

M
maps 209, 210
master thread 232-236
memoization 85, 86
method invocation

reference link 38
Mockito

URL 119
mock object

URL 118
Monads 196, 197, 211
Monoids

about 213, 214
foldLeft method, using 220, 221

Monostate
URL 27

Multiple inheritance (MI) 126

N
NameIt trait

about 109
removing 110

natural ordering
about 248
URL 248

node
visiting 56

non-strict sequences 81
nth element, of list

obtaining 61, 62
Null Object

about 27-32
Option class, using 33, 34
reference link 27
sentinel-based tree node, writing 36-39

Null Pointer Exception (NPE) 27

[270]

O
Object Relational Mapping (ORM) 76
observer

about 237
URL 237

Open/Closed principle (OCP) 22
Option class

reference link 33
using 33, 34

overloaded constructors
using 48, 49

P
parser combinators 261-265
partial functions

about 167, 168
visitor pattern 169, 170

partially applied function 138
pattern guard 165
pattern matching

about 55, 56, 161, 162
deconstruction, with case statements 56-58
de-structuring 163
partial functions 167
pattern guards 165
stack overflows 58
tuple explosion 165, 166
typed patterns 164

patterns
about 19
command design pattern 20
strategy design pattern 21

persistent data structures 53, 70, 72
pipes

implementing 217, 218
implementing, in Scala 219, 220
reference link 218

poison pill 235
polling 236
producer/consumer pattern 230, 231
proxy pattern

URL 76
using 76-78

proxy server 76

Q
queues

URL 231

R
RabbitMQ

URL 231
race condition

URL 238
READ/EVALUATE/PRINT LOOP (REPL) 1
read-only view, of collection

URL 239
recursion

about 53
forms 73

recursive case 55
recursive grep 228-230
recursive streams 83, 84
recursive structures 53-55
reduce combinator 197-201
refactoring

reference link 133
URL 84, 118

referential transparency 8-10
Replace Conditional with Polymorphism

refactoring
URL 157

Resource Acquisition Is
Initialization (RAII)

about 142
reference link 142

rich interfaces, Scala 108-110

S
Scala

about 1
rich interfaces 108-110
stackable modifications 114
streams 81

scalaidioms 18, 19
Scalaish Schwartzian transform 249-253
Scala way

iterating by 182, 183
Scalaz

URL 18

[271]

scope
about 130-133
lexical scope 130

sealed traits 123-125
self-annotation feature 120
sentinel node 28
side effects free 6
sieve method 95
Sieve of Eratosthenes algorithm 92-94
Simple Build Tool (sbt)

URL 17
Single Point Of Truth (SPOT) principle

about 104
URL 104

Single Responsibility Principle (SRP) 230
singleton 26
slave thread 232-236
slice and dice

about 55
URL 55

SortBy method 248, 249
sorted method 248
SortWith method 249
stackable modifications 114-116
stack overflows 58
stacks

URL 231
static scope. See lexical scope
strategy design pattern

about 21, 204-206
in Scala 206, 207

Stream.continually() method 83
Streams 73, 76, 90
strict sequences 81
structural sharing 53

T
tail call 60
tail call optimization (TCO) 53
tail recursion

using 60, 61

template method
implementing 144-149

test double technique
URL 118

threads 257-259
Thunk 83
traits

using 110, 111
transformations 95

U
underscore 135-138
Unix pipeline solution 228
upper type bound 207
Urban Dictionary

URL 2

V
validation, issues

about 183
andThen, using 189-191
arrays, using 185, 186
compose, using 191, 192
foldLeft, using 188
for expression, using 188
map, using 187
stage, setting 183, 184

value of the block 81
variable

declaring 133
reference link 133

view 95
visitor pattern 155-160

W
walk() method 107
worker thread 232-236

Thank you for buying
Scala Functional Programming Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Play Framework for
Scala
ISBN: 978-1-78398-380-3 Paperback: 274 pages

Leverage the awesome features of Play Framework to
build scalable, resilient, and responsive applications

1. Demystify the quandaries of web development
using Play Framework.

2. Test and debug your apps by using Play's built
in testing framework.

3. Master the core features of Scala through a
comprehensive coverage of code and examples
for different scenarios.

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate
Java code with the power of Scala

1. Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

2. Leverage the full power of modern web
programming by building scalable and
reactive applications.

3. Easy to follow instructions and real world
examples to help you integrate java code and
tackle big data challenges.

Please check www.PacktPub.com for information on our titles

Learning Concurrent
Programming in Scala
ISBN: 978-1-78328-141-1 Paperback: 366 pages

Learn the art of building intricate, modern, scalable
concurrent applications using Scala

1. Design and implement scalable and
easy-to-understand concurrent applications.

2. Make the most of Scala by understanding
its philosophy and harnessing the power
of multicores.

3. Get acquainted with cutting-edge technologies
in the field of concurrency, with a particular
emphasis on practical, real-world applications.

Test-Driven Java Development
ISBN: 978-1-78398-742-9 Paperback: 284 pages

Invoke TDD principles for end-to-end application
development with Java

1. Explore the most popular TDD tools and
frameworks and become more proficient in
building applications.

2. Create applications with better code design,
fewer bugs, and higher test coverage, enabling
you to get them to market quickly.

3. Implement test-driven programming methods
into your development workflows.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Aknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Grokking the Functional Way
	Abstractions
	Concise expression
	Functions
	Immutable
	Referential transparency
	The problem – grouping continuous integers
	Java code
	Going scalaish
	Thinking recursively...
	Reusability – the commonality/variability analysis
	The one-liner shockers

	Scala idioms
	Patterns and those aha! moments
	The command design pattern
	The strategy design pattern
	Passing algorithms around

	Summary

	Chapter 2: Singletons, Factories,
and Builders
	Singletons – being one and only one
	Null Objects – singletons in another garb
	Null Objects – the Scala way
	Options are container

	Scala singletons
	The apply() factory method
	The factory method pattern
	The Scala version

	Builders
	Ease of object creation
	Scala shines again

	Summary

	Chapter 3: Recursion and Chasing
your Own Tail
	Recursive structures
	Pattern matching
	Deconstruction with case statements
	Stack overflows

	Tail recursion to the rescue
	Getting the nth element of a list
	An expression parser
	Persistent data structures
	Two forms of recursion
	Summary

	Chapter 4: Lazy sequences – Being Lazy, Being Good
	Illusion and reality – the proxy pattern
	Hibernate's lazy loading
	Lazy val – calling by need
	Infinite sequences – Scala streams
	Recursive streams
	Memoization and the flyweight pattern
	Call by name
	Streams are collections
	Sieve of Eratosthenes
	A view to a collection
	Summary

	Chapter 5: Taming Multiple Inheritance with Traits
	The iterator design pattern
	Interfaces as types
	The dreaded diamond
	Traits – Scala's rich interfaces
	Mix-ins – rich interfaces
	Frills and thrills – the decorator pattern
	Scala's easy and breezy decorations – stackable modifications
	Dependencies injection pattern
	A taste of the cake pattern
	Sealed traits
	Defeating the dreaded diamond
	Summary

	Chapter 6: Currying Favors with
Your Code
	Functions as first-class values
	Roping in a scope
	Local functions – hiding and biding their time
	The underscore – Scala's Swiss army knife
	A taste of the curry
	Type inference
	Of implicits and explicits
	Stylish blocks

	The loan pattern
	Serving the curry
	Frills and thrills – decorators again
	Wrapping it up
	Summary

	Chapter 7: Of Visitors and Chains of Responsibilities
	A tale of two hierarchies
	The Visitor pattern
	Many hues of pattern matching
	De-structuring
	Typed patterns
	Pattern guards
	Tuple explosion

	Partial functions
	Visitor pattern – the Scala way
	Lifting it up

	The chain of responsibility
	Scalaish Chain Of Responsibilities
	Match and mismatch – the collect idiom

	Summary

	Chapter 8: Traversals – Mapping/Filtering/Folding/Reducing
	Iterating the Scala way
	A validation problem
	Setting the stage
	First cut–using arrays
	Second cut–using a map
	Third cut–using a for expression
	Fourth cut–using foldLeft
	Fifth cut–using andThen
	Sixth cut–using compose

	Foreach–sugary sweetener
	One generator
	A generator and a filter
	Two generators

	Monads
	Reduce
	Summary

	Chapter 9: Higher Order Functions
	The strategy design pattern
	A strategy in Scala land
	Functors
	Maps

	Monads
	FlatMap
	Monoids
	An inverted index
	Pipes and filters
	Pipes and filters – the Scala version
	It is a Monoid
	Lazy collections
	Summary

	Chapter 10: Actors and Message Passing
	The recursive grep
	The producer/consumer pattern
	Threads – masters and slaves
	Events
	Immutability is golden
	Akka actors take the stage
	Summary

	Chapter 11: It's a Paradigm Shift
	Verbosity
	Sorting it out!
	Sorted
	SortBy
	SortWith
	Scalaish Schwartzian transform

	Functional error handling
	Pattern matching

	Threads and futures
	Scala's Futures

	Parser combinators
	Summary

	Index

