
www.allitebooks.com

http://www.allitebooks.org

Selenium Testing
Tools Cookbook
Second Edition

Over 90 recipes to help you build and run automated tests
for your web applications with Selenium WebDriver

Unmesh Gundecha

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Selenium Testing Tools Cookbook
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-251-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Unmesh Gundecha

Reviewers
Alexander Afanasyev

Anuj Chaudhary

Oliver Gondža

Vatsala Dorairajan

Acquisition Editor
Tushar Gupta

Content Development Editor
Kirti Patil

Technical Editor
Rupali R. Shrawane

Copy Editor
Vatsal Surti

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Unmesh Gundecha has a master's degree in software engineering and over 13 years of
experience in software development and testing. He has architected functional test automation
projects using industry-standard, in-house, and custom test automation frameworks, along with
leading commercial and open source test automation tools. Presently, he is working as a test
architect for a multinational company in Pune, India. Unmesh has also authored a book called
Learning Selenium Testing Tools with Python, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Alexander Afanasyev is currently a Python developer and architect and a QA automation
lead at Avenues International Inc. This is a data and analytics company that provides consulting
solutions. He has completed his master's of science degree in electronics engineering. He has
several years of experience in development and testing at various companies across different
sectors, both in Russia and the United States. Alexander has always had a passion for testing,
code quality, and web technologies. In his free time, he is likely to be found contributing to
StackOverflow or GitHub, reading, or playing the guitar.

I would like to thank Daniel Lyakovetsky for "opening doors," for guidance,
and for the confidence that he has shown in me. A huge thank you to my
wonderful wife, Anna, and my little daughter, Kate, who have all been a
constant source of support.

www.allitebooks.com

http://www.allitebooks.org

Anuj Chaudhary is a software engineer who enjoys working on software testing and
automation. He has vast experience in different testing methodologies such as manual,
automated, performance, and security testing. He has worked as an individual contributor
and a technical lead on various software projects dealing with all stages of the application
development life cycle.

Anuj has been awarded a Microsoft MVP two times in a row. He posts blogs at
www.anujchaudhary.com. He has also reviewed the following books on Selenium:

 f Selenium WebDriver Practical Guide (http://www.packtpub.com/selenium-
webdriver-practical-guide/book)

 f Selenium Design Patterns and Best Practices (https://www.packtpub.com/
web-development/selenium-design-patterns-and-best-practices)

 f Mastering Selenium WebDriver (https://www.packtpub.com/web-
development/mastering-selenium-webdriver)

I would like to thank my wife Renu and son Arjun for always supporting me
and letting me spend extra time on reviewing this book.

Oliver Gondža is a Java enthusiast, extreme programmer, OSS contributor, and Red Hatter.

Vatsala Dorairajan is a budding software technologist. She has mostly worked with
"ideasmiths," transforming on-paper/in-concept ideas into working prototypes, which in
turn have evolved into products. Her technical experience so far has been in Java, Flex,
Python, PHP, and Ruby on Rails. She currently works with Jombay, an award-winning talent
measurement and analytics company that helps companies hire, promote, and retain the
right talent.

Vatsala has also reviewed the book Selenium Testing Tools Starter, Packt Publishing.

www.allitebooks.com

www.anujchaudhary.com
http://www.packtpub.com/selenium-webdriver-practical-guide/book
http://www.packtpub.com/selenium-webdriver-practical-guide/book
https://www.packtpub.com/web-development/selenium-design-patterns-and-best-practices
https://www.packtpub.com/web-development/selenium-design-patterns-and-best-practices
https://www.packtpub.com/web-development/mastering-selenium-webdriver
https://www.packtpub.com/web-development/mastering-selenium-webdriver
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: Getting Started 1

Introduction 1
Configuring the Selenium WebDriver test development environment
for Java with Eclipse and Maven 2
Using Ant for the Selenium WebDriver test execution 12
Configuring Microsoft Visual Studio for Selenium WebDriver
test development 15
Configuring Selenium WebDriver for Python and Ruby 19
Setting up Internet Explorer Driver Server 22
Setting up ChromeDriver for Google Chrome 27
Setting up Microsoft WebDriver for Microsoft Edge 30

Chapter 2: Finding Elements 33
Introduction 33
Using browser tools for inspecting elements and page structure 34
Finding an element using the findElement method 41
Finding elements using the findElements method 46
Finding links 47
Finding elements by tag name 48
Finding elements using XPath 49
Finding elements using CSS selectors 58
Locating elements using text 63
Finding elements using advanced CSS selectors 65
Using jQuery selectors 67

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Working with Elements 71
Introduction 71
Automating textboxes, text areas, and buttons 72
Checking an element's text 74
Checking an element's attribute and CSS values 76
Automating dropdowns and lists 77
Checking options in the Select element 81
Checking selected options in dropdowns and lists 83
Automating radio buttons and radio groups 86
Automating checkboxes 89
Working with WebTables 90

Chapter 4: Working with Selenium API 93
Introduction 93
Checking an element's presence 94
Checking an element's state 95
Using Advanced User Interactions API for mouse and keyboard events 96
Performing double-click on an element 98
Performing drag-and-drop operations 100
Working with context menus 101
Executing the JavaScript code 103
Capturing screenshots with Selenium WebDriver 105
Maximizing the browser window 107
Handling session cookies 108
Working with browser navigation 110
Working with WebDriver events 112

Chapter 5: Synchronizing Tests 117
Introduction 117
Synchronizing a test with an implicit wait 117
Synchronizing a test with an explicit wait 119
Synchronizing a test with custom-expected conditions 121
Synchronizing a test with FluentWait 123

Chapter 6: Working with Alerts, Frames, and Windows 127
Introduction 127
Handling a simple JavaScript alert box 128
Handling a confirm and prompt alert box 131
Identifying and handling frames 134
Working with IFRAME 139
Identifying and handling a child window 141
Identifying and handling a window by its title 144
Identifying and handling a pop-up window by its content 146

iii

Table of Contents

Chapter 7: Data-Driven Testing 149
Introduction 149
Creating a data-driven test using JUnit 151
Creating a data-driven test using TestNG 155
Reading test data from a CSV file using JUnit 158
Reading test data from an Excel file using JUnit and Apache POI 161
Creating a data-driven test in NUnit 165
Creating a data-driven test in MSTEST 169
Creating a data-driven test in Ruby using Roo 173
Creating a data-driven test in Python using DDT 178

Chapter 8: Using the Page Object Model 181
Introduction 181
Using the PageFactory class for exposing the elements on a page 182
Using the PageFactory class for exposing an operation on a page 187
Using the LoadableComponent class 190
Implementing nested Page Object instances 193
Implementing the Page Object model in .NET 199
Implementing the Page Object model in Python 203
Implementing the Page Object model in Ruby using the page-object gem 206

Chapter 9: Extending Selenium 209
Introduction 209
Creating an extension class for web tables 210
Creating an extension for the jQueryUI tab widget 214
Implementing an extension for the WebElement object to
set the element attribute values 219
Implementing an extension for the WebElement object to
highlight elements 220
Creating an object map for Selenium tests 222
Capturing screenshots of elements in the Selenium WebDriver 228
Comparing images in Selenium 230
Measuring performance with the Navigation Timing API 235

Chapter 10: Testing HTML5 Web Applications 239
Introduction 239
Automating the HTML5 video player 240
Automating interaction on the HTML5 canvas element 243
Web storage – testing local storage 245
Web storage – testing session storage 247
Cleaning local and session storage 250

iv

Table of Contents

Chapter 11: Behavior-Driven Development 251
Introduction 251
Using Cucumber-JVM and Selenium WebDriver in Java for BDD 252
Using SpecFlow.NET and Selenium WebDriver in .NET for BDD 261
Using Capybara, Cucumber, and Selenium WebDriver in Ruby 271
Using Behave and Selenium WebDriver in Python 274

Chapter 12: Integration with Other Tools 279
Introduction 279
Configuring Jenkins for continuous integration 280
Using Jenkins and Maven for Selenium WebDriver test execution
in continuous integration 282
Using Ant for Selenium WebDriver test execution 287
Using Jenkins and Ant for Selenium WebDriver test execution
in continuous integration 290
Automating a non-web UI in Selenium WebDriver with AutoIt 294
Automating a non-web UI in Selenium WebDriver with Sikuli 301

Chapter 13: Cross-Browser Testing 305
Introduction 305
Setting up Selenium Grid Server for parallel execution 307
Adding nodes to Selenium Grid for cross-browser testing 309
Creating and executing the Selenium script in parallel with TestNG 312
Creating and executing the Selenium script in parallel with Python 319
Using Cloud tools for cross-browser testing running tests in the Cloud 322
Running tests in headless mode with PhantomJS 325

Chapter 14: Testing Applications on Mobile Browsers 329
Introduction 329
Setting up Appium for testing mobile applications 330
Testing mobile web applications on iOS using Appium 332
Testing mobile web applications on Android using Appium 336

Index 343

v

Preface
Selenium is a set of tools used to automate browsers. It is largely used to test applications,
but its usages are not limited to testing. It can also be used to perform screen scraping and
automate repetitive tasks in a browser window. Selenium supports automation on all the major
browsers, including Firefox, Internet Explorer, Google Chrome, Safari, and Opera. Selenium
WebDriver is now a part of W3C standards and is supported by major browser vendors.

This book will help you learn advanced techniques to test web applications using the
Selenium WebDriver API and related tools. In this book, you will learn how to test web
applications effectively and efficiently with Selenium WebDriver on desktops, mobile
web browsers, and in a distributed environment.

Along with the core features of Selenium WebDriver, this book also covers design patterns
such as data-driven testing, page objects, and object maps, to design a highly maintainable
and reliable test automation framework. You will also learn how to integrate Selenium
WebDriver with ATDD/BDD, build and continuous integration tools, and perform mobile
web testing with Appium.

This book also covers techniques to extend Selenium for your specific needs. There are more
than 80 recipes that you can use to build or extend your existing test automation framework.

What this book covers
Chapter 1, Getting Started, demonstrates how to set up Selenium WebDriver with Eclipse,
Maven, or ANT for test development on a Java platform. Then it shows how to set up Visual
Studio, Ruby, and Python for test development. This chapter also shows how to set up various
browsers for testing.

Chapter 2, Finding Elements, introduces you to the locator techniques supported by Selenium
WebDriver to find elements on pages in your web applications. Selenium WebDriver provides a
number of techniques to find elements on web pages with multiple locator strategies such as
XPath, CSS, and DOM. We can also implement custom locator strategies to locate elements.
This chapter will also help you get started with the Selenium WebDriver locator API.

Preface

vi

Chapter 3, Working with Elements, demonstrates how to use the Selenium WebDriver API to
automate interaction with various types of UI elements used in web applications, including
textboxes, buttons, dropdowns, radio buttons, checkboxes, and tables.

Chapter 4, Working with Selenium API, demonstrates how to use the Selenium WebDriver API
to build tests. We will explore the API and investigate advanced user interactions to perform
complex mouse and keyboard operations and work with various types of UI elements used in
web applications.

Chapter 5, Synchronizing Tests, demonstrates how to use the Selenium WebDriver API to
handle synchronization with implicit and explicit waits to implement robust and reliable tests.

Chapter 6, Working with Alerts, Frames and Windows, demonstrates how to handle multiple
windows, pop-ups, and alerts that are displayed during test execution.

Chapter 7, Data-Driven Testing, introduces the data-driven testing approach—a widely used
methodology in test automation. Selenium WebDriver does not have built-in features to
support data-driven testing. However, we can extend the Selenium WebDriver API to support
data-driven testing. This chapter covers recipes to support data-driven testing using JUnit,
TestNG, and Apache POI to read data from spreadsheets.

Chapter 8, Using the Page Object Model, introduces the Page Object model pattern, which
is widely used for structuring Selenium WebDriver tests. This chapter provides examples
and tips on how to build testing frameworks using the Page Object model pattern.

Chapter 9, Extending Selenium, demonstrates how to extend the Selenium WebDriver API
and add features to build a scalable test automation framework. This chapter covers some of
the important recipes in extending Selenium WebDriver for various practical scenarios such
as to support custom UI controls, capture images of elements, and perform image-based
verifications.

Chapter 10, Testing HTML5 Web Applications, introduces you to using Selenium WebDriver to
test web applications using the HTML5 standard. This chapter explains how to test video and
canvas elements and the web storage API of HTML5.

Chapter 11, Behavior-Driven Development, introduces behavior-driven development with
Selenium WebDriver, using tools such as Cucumber-JVM, SpecFlow.NET for .NET, Behave
for Python, and Capybara for Ruby.

Chapter 12, Integration with Other Tools, demonstrates how to set up Selenium WebDriver
with Jenkins to run tests in Continuous Integration using Maven and ANR. This chapter also
covers recipes to use tools such as AutoIt and Sikuli to test non-web UI.

Preface

vii

Chapter 13, Cross-Browser Testing, demonstrates how to set up a distributed test environment
with Selenium Grid for cross-browser testing. We will add nodes with various browser and
operating system combinations. We will run tests in parallel using TestNG, which helps to
reduce the time of test execution and increases test coverage. This chapter also covers how
to use cloud-based services, such as Sauce Labs and BrowserStack, for cross browser testing.

Chapter 14, Testing Applications on Mobile Browsers, introduces you to testing mobile web
applications with the Apple iOS and Android platforms using Appium. This chapter covers
recipes to configure and use Selenium WebDriver to test a mobile web application on iPhone
and Android-based devices/simulators.

What you need for this book
You will need the following software to follow the recipes in this book:

 f Browsers: Mozilla Firefox, Google Chrome, or Microsoft Internet Explorer

 f Selenium browser drivers: Chrome Driver and InternetExplorerDriver

 f Selenium tools: The Selenium WebDriver client driver (based on your preference
of programming language) and Selenium Standalone Server

 f IDE: Eclipse, IntelliJ IDEA, and Microsoft Visual Studio (for .NET)

 f BDD framework tools: Cucumber-JVM, SpecFlow.NET (for .NET), and Capybara
(for Ruby)

 f Build and integration tools: Maven, ANT, and Jenkins

 f Other GUI automations tools: AutoIt and Sikuli

 f Mobile tools: Apple Xcode (for iOS mobile browser testing), Android SDK, Android
Server APK, and Appium

 f Language runtimes: JDK 1.7 or JDK 1.8 (for Java), Ruby 1.9+ (for Ruby), and Python
2.7+ (for Python)

Who this book is for
This book is for software quality assurance/testing professionals, test managers, and software
developers with prior experience in using Selenium and Java to test web-based applications.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

Preface

viii

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning:

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This will open the pom.xml file in the editor area."

A block of code is written as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

Preface

ix

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 <artifactId>SeleniumCookbook</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>

Any command-line input or output is written as follows:

gem install selenium-webdriver

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select the Create a simple
project (skip archetype selection) checkbox."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.packtpub.com/authors

Preface

x

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/SeleniumTestingToolsCookbookSecondEdition_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/SeleniumTestingToolsCookbookSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/SeleniumTestingToolsCookbookSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Started

In this chapter, we will see how to set up the Selenium WebDriver test development
environment. We will also see some basic settings to help get started with Selenium
WebDriver. You will learn the following:

 f Configuring the Selenium WebDriver test development environment for Java
with Eclipse and Maven

 f Using Ant for Selenium WebDriver test execution

 f Configuring Microsoft Visual Studio for Selenium WebDriver test development

 f Configuring Selenium WebDriver for Python and Ruby

 f Setting up Internet Explorer Driver Server

 f Setting up ChromeDriver for Google Chrome

 f Setting up Microsoft WebDriver for Microsoft Edge

Introduction
Selenium WebDriver has been widely used for automating web browsers in combination with
various tools due to its neat and clean object-oriented design. We can integrate Selenium
WebDriver with other tools to develop automated tests.

The initial sections of this chapter explore Selenium WebDriver's integration with development
and build tools such as Eclipse, Maven, and Microsoft Visual Studio. These tools provide
an easy way to develop test automation frameworks and extend the capabilities of Selenium
WebDriver API. The following recipes will explain how to set up and configure these tools
with Selenium.

Lastly, we will explore how to set up various browser drivers and initial settings for WebDriver.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

2

Configuring the Selenium WebDriver test
development environment for Java with
Eclipse and Maven

Selenium WebDriver is a simple API that can help with browser automation. However, much more
is needed when using it for testing and building a test framework. You will need an Integrated
Development Environment (IDE) or a code editor to create a new Java project and add
Selenium WebDriver and other dependencies in order to build a testing framework.

In the Java world, Eclipse is a widely used IDE, as well as IntelliJ IDEA and NetBeans. Eclipse
provides a feature-rich environment for Selenium WebDriver test development.

Along with Eclipse, Apache Maven provides support for managing the entire life cycle of a test
project. Maven is used to define project structure, dependencies, build, and test management.

You can use Eclipse and Maven to build your Selenium WebDriver test framework from a
single window. Another important benefit of using Maven is that you can get all the Selenium
library files and their dependencies by configuring the pom.xml file. Maven automatically
downloads the necessary files from the repository while building the project.

This recipe will explain how to configure Eclipse and Maven for the Selenium WebDriver test
development. Most of the code in this book has been developed in Eclipse and Maven.

Getting ready
You will need Eclipse and Maven to set up the test development environment. Download and
set up Maven from http://maven.apache.org/download.html. Follow the instructions
on the Maven download page (see the Installation Instructions section on the page).

Download and set up Eclipse IDE for Java Developers from https://eclipse.org/
downloads/.

The examples for this book are built in Eclipse version 4.4.2 (codenamed
Luna) for Java Developers. This comes with the Maven plugin bundled with
other packages.

http://maven.apache.org/download.html
https://eclipse.org/downloads/
https://eclipse.org/downloads/

Chapter 1

3

How to do it...
Let's configure Eclipse with Maven to develop Selenium WebDriver tests using the
following steps:

1. Launch the Eclipse IDE.

2. Create a new project by selecting File | New | Other from the Eclipse Main Menu.

3. On the New dialog, select Maven | Maven Project, as shown in the following
screenshot, and click Next:

Getting Started

4

4. Next, the New Maven Project dialog will be displayed. Select the Create a simple
project (skip archetype selection) checkbox and click on the Next button, as shown
in the following screenshot:

5. On the New Maven Project dialog box, enter com.secookbook.examples in the
Group Id: textbox and SeleniumCookbook in the Artifact Id: textbox. You can also
add a name and description optionally. Click on the Finish button, as shown in the
following screenshot:

Chapter 1

5

6. Eclipse will create the SeleniumCookbook project with a structure (in Package
Explorer) similar to the one shown in the following screenshot:

Getting Started

6

7. Select pom.xml from Package Explorer. This will open the pom.xml file in the editor
area with the Overview tab open. Select the pom.xml tab next to the Overview tab,
as shown in the following screenshot:

8. Add the WebDriver and JUnit dependencies highlighted in the following code snippet
to pom.xml in the <project> node:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.secookbook.examples</groupId>
 <artifactId>SeleniumCookbook</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>

Chapter 1

7

 <version>2.47.1</version>
<scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
<scope>test</scope>
 </dependency>
 </dependencies>
</project>

You can get the latest dependency information for Selenium WebDriver
and JUnit from http://seleniumhq.org/download/maven.html
and http://maven.apache.org/plugins/maven-surefire-plugin/
examples/junit.html respectively.

TestNG is another widely used unit-testing framework
in Java World. If you want to add TestNG support to the
project instead of JUnit, you can get its Maven entry at
http://testng.org/doc/maven.html.

9. Select src/test/java in Package Explorer and right-click to show the menu. Select
New | Class, as shown in the following screenshot:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://seleniumhq.org/download/maven.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://testng.org/doc/maven.html
http://www.packtpub.com
http://www.packtpub.com/support

Getting Started

8

10. Enter com.seleniumcookbook.examples.chapter01 in the Package: textbox
and GoogleSearchTest in the Name: textbox and click on the Finish button,
as shown in the following screenshot:

This will create the GoogleSearchTest.java class in the com.secookbook.
examples.chapter01 package.

11. Add the following code in the GoogleSearchTest class:
package com.secookbook.examples.chapter01;

import org.openqa.selenium.firefox.FirefoxDriver;

Chapter 1

9

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.junit.*;

import static org.junit.Assert.*;

public class GoogleSearchTest {

 private WebDriver driver;

 @Before
 public void setUp() {
 // Launch a new Firefox instance
 driver = new FirefoxDriver();
 // Maximize the browser window
 driver.manage().window().maximize();
 // Navigate to Google
 driver.get("http://www.google.com");
 }

 @Test
 public void testGoogleSearch() {
 // Find the text input element by its name
 WebElement element = driver.findElement(By.name("q"));
 // Clear the existing text value
 element.clear();

 // Enter something to search for
 element.sendKeys("Selenium testing tools cookbook");

 // Now submit the form
 element.submit();

 // Google's search is rendered dynamically with JavaScript.
 // wait for the page to load, timeout after 10 seconds
 new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 return d.getTitle().toLowerCase()
 .startsWith("selenium testing tools cookbook");
 }

Getting Started

10

 });

 assertEquals("Selenium testing tools cookbook - Google
Search",
 driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

Downloading the example code:
You can download the example code files for all the Packt books you have
purchased from your account at http://www.packtpub.com. If you have
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The example code is also hosted at https://github.com/
upgundecha/secookbook.

12. To run the tests in the Maven life cycle, select the SeleniumCookbook project in
Package Explorer. Right-click on the project name and select Run As | Maven test.
Maven will execute all the tests from the project.

How it works...
Eclipse provides the ability to create Selenium WebDriver test projects easily with its Maven
plugin, taking away the pain of project configurations, directory structure, dependency
management, and so on. It also provides a powerful code editor to write the test code.

When you set up a project using Maven in Eclipse, it creates the pom.xml file, which defines
the configuration of the project and its structure. This file also contains the dependencies
needed for building, testing, and running the code. For example, the following code shows
the dependency information about Selenium WebDriver that we added in pom.xml:

<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>2.47.1</version>
</dependency>

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/upgundecha/secookbook
https://github.com/upgundecha/secookbook

Chapter 1

11

Most open source projects publish this information on their websites. In this case, you
can check http://seleniumhq.org/download/maven.html; you can also get this
information from Maven Central at http://search.maven.org/#browse. Maven will
automatically download libraries and support files mentioned for all the dependencies and
add to the project without you needing to find, download, and install these files to the project.
This saves a lot of our time and effort while managing the dependency-related tasks.

Maven also generates a standard directory structure for your code, for easier management
and maintenance. In the previous example, it created the src/test/java folder for the test
code and the src/test/resources folder to maintain resources needed for testing, such
as test data files, utilities, and so on.

Maven provides life cycle steps such as building the test code and running the test. If you are
working with the Java development team, then you might find the application code and test
code together in Maven. Here, Maven supports building the application code, then firing the
tests, and releasing the software to production.

There's more…
Maven can also be used to execute the test from the command line. To run tests from the
command line, navigate to the SeleniumCookbook project folder through the command line
and type the following command:

mvn clean test

This command will traverse through all the subdirectories and run the clean command to
delete/remove earlier build files. It will then build the project and run the tests. You will see
the results at the end of execution on command line, as shown in the following screenshot:

www.allitebooks.com

http://seleniumhq.org/download/maven.html
http://search.maven.org/#browse
http://www.allitebooks.org

Getting Started

12

Using Ant for the Selenium WebDriver
test execution

Apache Ant is a popular build tool available for Java developers. It is similar to Apache Maven,
but does not support project management and dependency management features like
Maven. It's a pure build tool.

You can run Selenium WebDriver tests using Ant via command line or through continuous
integration (CI) tools such as Jenkins.

In this recipe, we will add Ant support to the SeleniumCookbook project created in the
Configuring Selenium WebDriver test development environment for Java with Eclipse and
Maven recipe.

Getting ready
You can also download and configure Ant from http://ant.apache.org/bindownload.
cgi for other OS platforms.

Windows users can download and install WinAnt on Windows. WinAnt comes with an
installer that will configure Ant through the installer. The WinAnt installer is available
at http://code.google.com/p/winant/.

This recipe uses WinAnt on the Windows OS.

You will also need Selenium WebDriver and JUnit JAR files. You can download Selenium JAR
file from http://selenium-release.storage.googleapis.com/ and JUnit JAR file
from https://github.com/junit-team/junit/wiki/Download-and-Install.

How to do it...
Let's set up the SeleniumCookbook created in the previous recipe project for Ant with the
following steps:

1. Create a lib folder and copy the JAR files for the dependencies used for this project,
that is, Selenium WebDriver and JUnit, to the lib folder, as shown in screenshot below:

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://code.google.com/p/winant/
http://selenium-release.storage.googleapis.com/
https://github.com/junit-team/junit/wiki/Download-and-Install

Chapter 1

13

2. Create the build.xml file in the project folder with the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<project name="test" default="exec" basedir=".">

 <property name="src" value="./src" />
 <property name="lib" value="./lib" />
 <property name="bin" value="./bin" />
 <property name="report" value="./report" />
 <path id="test.classpath">
 <pathelement location="${bin}" />
 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </path>

 <target name="init">
 <delete dir="${bin}" />
 <mkdir dir="${bin}" />
 </target>

 <target name="compile" depends="init">
 <javac source="1.8" srcdir="${src}" fork="true"
 destdir="${bin}" >
 <classpath>
 <pathelement path="${bin}" />
 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

Getting Started

14

 </javac>
 </target>

 <target name="exec" depends="compile">
 <delete dir="${report}" />
 <mkdir dir="${report}" />
 <mkdir dir="${report}/xml" />
 <junit printsummary="yes" haltonfailure="no">
 <classpath>
 <pathelement location="${bin}" />
 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <test name="com.secookbook.examples.chapter1.
GoogleSearchTest"
 haltonfailure="no" todir="${report}/xml"
 outfile="TEST-result">
 <formatter type="xml" />
 </test>
 </junit>
 <junitreport todir="${report}">
 <fileset dir="${report}/xml">
 <include name="TEST*.xml" />
 </fileset>
 <report format="frames"
 todir="${report}/html" />
 </junitreport>
 </target>
</project>

3. Navigate to the project directory through the command line and type the
following command:
ant

This will trigger the build process. You will see the test running. At the end, Ant will
create a report folder in the project folder. Navigate to the html subfolder in the
report folder and open the index.html file to view the results.

Chapter 1

15

How it works...
Ant needs a build.xml file with all the configurations and steps required to build the project.
We can add steps for report generation, sending e-mail notification, and so on to build.xml.
Ant provides a very dynamic framework for defining steps in the build process.

Ant also needs the necessary library/JAR files to be copied in the lib folder, which are
needed for building the project.

Ant scans for the complete set of tests in the project and executes these tests in a way similar
to Maven.

Configuring Microsoft Visual Studio for
Selenium WebDriver test development

Selenium WebDriver provides .NET bindings to develop Selenium tests with the .NET platform.
To use the Selenium WebDriver API along with .NET, you need to refer the Selenium WebDriver
libraries to the project. Microsoft Visual Studio being the major IDE used in the .NET world,
setting up the Selenium WebDriver support has become easier with NuGet Package Manager
(http://nuget.org/).

This recipe explains the process of setting up Selenium WebDriver in Microsoft Visual Studio
2013 using NuGet.

Getting ready
NuGet comes bundled with Microsoft Visual Studio 2012 onwards. However, for Microsoft
Visual Studio 2010, you will need to download and install NuGet from http://nuget.
codeplex.com.

How to do it...
Let's configure Microsoft Visual Studio 2013 to develop Selenium WebDriver tests using the
following steps:

1. Launch the Microsoft Visual Studio.

2. Create a new project by selecting File | New | Project from the main menu.

http://nuget.org/
http://nuget.codeplex.com
http://nuget.codeplex.com

Getting Started

16

3. In the New Project dialog box, select Visual C# | Test | Unit Test Project.
Name the project as SeleniumCookbook and click on the OK button, as shown
in the following screenshot:

4. Next, add Selenium WebDriver packages using NuGet. Right-click on the
SeleniumCookbook solution in Solution Explorer and select Manage NuGet
Packages…, as shown in the following screenshot:

Chapter 1

17

5. On the SeleniumCookbook - Manage NuGet Packages dialog box, select Online and
search for the WebDriver package. The search will result in the suggestions shown
in the following screenshot:

Getting Started

18

6. Select Selenium WebDriver from the list and click on the Install button. Repeat this
step for Selenium WebDriver Support Classes. Successful installation will show a
green tick mark for both the packages, as shown in the following screenshot:

7. Close the SeleniumCookbook - Manage NuGet Packages dialog box.

8. Expand the References tree for the SeleniumCookbook solution in Solution
Explorer. References for WebDriver are added to the project as shown in the
following screenshot:

9. The SeleniumCookbook project is ready for test development. You can go on adding
new tests as needed.

How it works...
NuGet Package Manager adds the external dependencies to Microsoft Visual Studio projects.
It lists all available packages and automatically downloads and configures packages to the
project. It also installs dependencies for the selected packages automatically. This saves a lot
of effort in configuring the projects initially.

Chapter 1

19

Configuring Selenium WebDriver for Python
and Ruby

Along with Java and C#, Selenium WebDriver can also be used with various other programming
languages. Among these, Python and Ruby are popular choices to create Selenium WebDriver
tests. In this recipe, you will see how to install Selenium WebDriver client libraries in Python
and Ruby.

Getting ready
You will need Python or Ruby installed before installing the Selenium WebDriver client library.

Installing Python
You can download and install the latest Python version from https://www.python.org/.
In this recipe, Python 3.4 is used.

Installing Ruby
Similarly, you can download and install the latest Ruby version from https://www.ruby-
lang.org/en/installation/. In this recipe, Ruby 2.1.3 is used.

How to do it...
Installation and setting up Selenium WebDriver with Python or Ruby is simple using
following steps.

Installing Selenium WebDriver with Python
You can install Selenium WebDriver with Python using the pip tool with the following
command line:

pip install selenium

This will get the latest version of Selenium WebDriver Python client library installed. That's it.

Let's create a simple test in Python using this installation. Create a google_search.py file
in your favorite editor or IDE and copy the following code:

import unittest
from selenium.webdriver.support import expected_conditions
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait

class GoogleSearch(unittest.TestCase):

https://www.python.org/
https://www.ruby-lang.org/en/installation/
https://www.ruby-lang.org/en/installation/

Getting Started

20

 def setUp(self):
 self.driver = webdriver.Firefox()
 self.driver.implicitly_wait(30)
 self.base_url = "https://www.google.com/"

 def test_google_search(self):
 driver = self.driver
 driver.get(self.base_url)

 element = driver.find_element_by_idname("q")
 element.clear()
 element.send_keys("Selenium testing tools
cookbook")
 element.submit()

 WebDriverWait(driver, 30)\
 .until(expected_conditions.title_contains("Selenium
testing tools cookbook"))
 self.assertEqual(driver.title, "Selenium testing
tools cookbook - Google Search")

 def tearDown(self):
 self.driver.quit()

if __name__ == "__main__":
 unittest.main(verbosity=2, warnings="ignore")

You can run this test using the following command line:

python google_search.py

The Python interpreter will execute the test and you will see a Firefox window being opened
and performing the search operation on Google.com. At the end of the execution you will
see the results, as shown in the following screenshot:

Chapter 1

21

Installing Selenium WebDriver with Ruby
You can install Selenium WebDriver with Ruby using the gem tool with following command line:

gem install selenium-webdriver

This will get the latest version of Selenium WebDriver Ruby client library installed. That's it.

Let's create a simple test in Ruby using this installation. Create a google_search.rb file in
your favorite editor or IDE and copy the following code:

require "selenium-webdriver"
gem "test-unit"
require "test/unit"

class GoogleSearch < Test::Unit::TestCase
 def setup
 @driver = Selenium::WebDriver.for :firefox
 @base_url = "https://www.google.com/"
 @driver.manage.timeouts.implicit_wait = 30
 end

 def test_google_search
 @driver.get(@base_url)

 element = @driver.find_element(:name, "q")
 element.clear
 element.send_keys "Selenium testing tools cookbook"
 element.submit()

 wait = Selenium::WebDriver::Wait.new(:timeout => 10)
 wait.until { @driver.title.include? "Selenium testing tools
cookbook" }

 assert_equal "Selenium testing tools cookbook - Google
Search", @driver.title
 end

 def teardown
 @driver.quit
 end
end

You can run this test using the following command line:

ruby google_search.rb

Getting Started

22

Ruby interpreter will execute the test and you will see a Firefox window being opened and
performing the search operation on Google.com. At the end of the execution you will see
the results, as shown in the following screenshot:

How it works...
Selenium WebDriver is supported on various programming languages. For each supported
language, a client library or language binding is published by the Selenium developers.
These client libraries have Selenium WebDriver classes and functions that are needed
to create automation scripts.

These libraries can be installed using package installers available with the respective
languages. In this case, we used pip for Python, which connected to the PyPI (Python
Package Index) source using the Internet, downloaded the latest Selenium WebDriver
Python client library and installed with the Python directory. Similarly, Selenium WebDriver
Ruby Gem is installed using the gem utility.

Setting up Internet Explorer Driver Server
We saw how to automate the Firefox browser in previous recipes. Using Firefox was
straightforward. In order to execute test scripts on the Internet Explorer browser, we need to use
InternetExplorerDriver and a standalone Internet Explorer Driver Server executable.

Let's setup InternetExplorerDriver and create tests for testing the search feature on
Internet Explorer.

Getting ready
You need to download Internet Explorer Driver Server from http://docs.seleniumhq.
org/download/. It is available in both 32bit and 64bit versions.

After downloading the IEDriver server, unzip and copy the file to the same directory in which
the scripts are stored.

http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/

Chapter 1

23

How to do it...
Let's create a test that uses Internet Explorer Driver Server with the following steps:

1. In Eclipse, create a new folder named drivers in the src/test/resources folder of
the SeleniumCookbook project. Copy the IEDriverServer.exe file to this folder,
as shown in the following screenshot:

2. Add a new test and name it as GoogleSearchTestOnIE, and add the following code:
package com.secookbook.examples.chapter01;

import org.openqa.selenium.ie.InternetExplorerDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.junit.*;

import static org.junit.Assert.*;

public class GoogleSearchTestOnIE {

 private WebDriver driver;

 @Before
 public void setUp() {

Getting Started

24

 System.setProperty("webdriver.ie.driver",
 "src/test/resources/drivers/IEDriverServer.exe");

 DesiredCapabilities caps =
DesiredCapabilities.internetExplorer();

 caps.setCapability(
 InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_IGNORING_
SECU
RITY_DOMAINS,
 true);

 // Launch Internet Explorer
 driver = new InternetExplorerDriver(caps);
 // Maximize the browser window
 driver.manage().window().maximize();
 // Navigate to Google
 driver.get("http://www.google.com");
 }

 @Test
 public void testGoogleSearch() {
 // Find the text input element by its name
 WebElement element = driver.findElement(By.name("q"));

 // Enter something to search for
 element.sendKeys("Selenium testing tools cookbook");

 // Now submit the form. WebDriver will find
 // the form for us from the element
 element.submit();

 // Google's search is rendered dynamically with
JavaScript.
 // Wait for the page to load, timeout after 10 seconds
 new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 return d.getTitle().toLowerCase()
 .startsWith("selenium testing tools cookbook");
 }
 });

Chapter 1

25

 assertEquals("Selenium testing tools cookbook - Google
Search",
 driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

Execute this test and you will see the Internet Explorer window being launched and all
the steps executed.

How it works...
Internet Explorer Driver Server is a stand-alone server executable that implements
WebDriver's JSON-wire protocol, which works as a glue between the test script and
Internet Explorer, as shown in following diagram:

The tests should specify the path of the IEDriverServer executable before creating the
instance of Internet Explorer. This is done by setting the webdriver.ie.driver property
as shown in following code:

System.setProperty("webdriver.ie.driver",
 "src/test/resources/drivers/IEDriverServer.exe");

We can also specify a path externally through the Dwebdriver.ie.driver
option using Maven command line options. In this case, we don't need to set
this property in test.

Internet Explorer Driver Server supports automating major IE versions on Windows XP, Vista,
Windows 7, and Windows 8 operating systems.

Getting Started

26

For more information on InternetExplorerDriver, please
visit https://code.google.com/p/selenium/wiki/
InternetExplorerDriver.

We need to create an instance of the InternetExplorerDriver class, which will connect to
the Internet Explorer Driver Server to launch the Internet Explorer, shown as follows. It will then
run the Selenium commands, which we will call by using various WebDriver and WebElement
methods from the test script:

DesiredCapabilities caps = new
DesiredCapabilities().internetExplorer();

caps.setCapability(
InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_IGNORING_SECU
RITY_DOMAINS,
true);

// Launch Internet Explorer
driver = new InternetExplorerDriver(caps);

We used the DesiredCapabilities class to set the INTRODUCE_FLAKINESS_BY_
IGNORING_SECURITY_DOMAINS capability, which defines to ignore the browser protected
mode settings during the start by IEDriverServer.

There's more…
Selenium provides the ability to run tests on remote machines by using the RemoteWebDriver
class. We can configure any browser that Selenium supports for executing tests on a remote
machine. To run tests on a remote machine, we need to run the Selenium Server and the
Internet Explorer Driver Server on a remote machine and use RemoteWebDriverClass,
as shown in the following code sample:

DesiredCapabilities caps = new
DesiredCapabilities().internetExplorer();

caps.setCapability(
InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_IGNORING_SECU
RITY_DOMAINS,
true);

// Connect with Remote Selenium Server with specified URL
and capabilities
driver = new RemoteWebDriver(new
URL("http://192.168.1.3:4444/hub/wd"), caps);

We can connect any browser to a remote server using the preceding method.

https://code.google.com/p/selenium/wiki/InternetExplorerDriver
https://code.google.com/p/selenium/wiki/InternetExplorerDriver

Chapter 1

27

Setting up ChromeDriver for Google Chrome
Similar to Internet Explorer, in order to execute test scripts on the Google Chrome browser,
we need to use ChromeDriver and a standalone ChromeDriver executable.

ChromeDriver is maintained by the Google Chromium team. You can find more information
at https://sites.google.com/a/chromium.org/chromedriver/.

Let's setup ChromeDriver and create a test for testing the search feature on Google Chrome.

Getting ready
You need to download ChromeDriver from https://sites.google.com/a/chromium.
org/chromedriver/downloads.

How to do it...
1. After downloading the ChromeDriver server, unzip and copy the file to the driver's

directory in the src/test/resources folder, as shown in the following screenshot:

On Linux and Mac operating systems, the chromdriver file
needs to be made executable using the chmod +x command
filename or the chmod 775filename command.

2. Add a new test and name it as GoogleSearchTestOnChrome.java, and add the
following code:
package com.secookbook.examples.chapter01;

import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.junit.*;

https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads

Getting Started

28

import static org.junit.Assert.*;

public class GoogleSearchTestOnChrome {

 private WebDriver driver;

 @Before
 public void setUp() {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver.exe");

 // Launch Chrome
 driver = new ChromeDriver();
 // Maximize the browser window
 driver.manage().window().maximize();
 // Navigate to Google
 driver.get("http://www.google.com");
 }

 @Test
 public void testGoogleSearch() {
 // Find the text input element by its name
 WebElement element = driver.findElement(By.name("q"));

 // Enter something to search for
 element.sendKeys("Selenium testing tools cookbook");

 // Now submit the form. WebDriver will find
 // the form for us from the element
 element.submit();

 // Google's search is rendered dynamically with
JavaScript.
 // Wait for the page to load, timeout after 10 seconds
 new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 return d.getTitle().toLowerCase()
 .startsWith("selenium testing tools cookbook");
 }
 });

 assertEquals("Selenium testing tools cookbook - Google
Search",

Chapter 1

29

 driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

Execute this test and you will see a Chrome window being launched and all the
steps executed.

How it works...
ChromeDriver is a standalone server executable that implements WebDriver's JSON-wire
protocol and works as a glue between the test script and Google Chrome, as shown in the
following diagram:

For more information on ChromeDriver please visit https://code.
google.com/p/selenium/wiki/ChromeDriver.

The tests should specify the path of the ChromeDriver executable before creating the instance
of Chrome. This is done by setting the webdriver.chrome.driver property as shown in
the following code:

System.setProperty("webdriver.chrome.driver","src/test/reso
urces/drivers/chromedriver.exe");
 "src/test/resources/drivers/chromedriver.exe");

We can also specify a path externally through the –Dwebdriver.chrome.driver option
using Maven command line options. In this case, we don't need to set up this property in test;
we need to create an instance of ChromeDriver class that will connect to the ChromeDriver
Server, as shown in the following code. It will then run the Selenium commands that we will
call by using various WebDriver and WebElement methods from the test script:

driver = new ChromeDriver();

https://code.google.com/p/selenium/wiki/ChromeDriver
https://code.google.com/p/selenium/wiki/ChromeDriver

Getting Started

30

Setting up Microsoft WebDriver for
Microsoft Edge

Microsoft Edge is a new web browser launched with Microsoft Windows 10. Microsoft Edge
implements the W3C WebDriver standard and provides in-built support for Selenium WebDriver.

Similar to Internet Explorer, in order to execute test scripts on the Microsoft Edge browser, we
need to use EdgeDriver class and a standalone Microsoft WebDriver Server executable.

Microsoft WebDriver Server is maintained by the Microsoft Edge development team.
You can find more information at https://msdn.microsoft.com/en-us/library/
mt188085(v=vs.85).aspx.

Let's set up Microsoft WebDriver Server and create a test for testing the search feature on
Microsoft Edge.

Getting ready
You need to download and install Microsoft WebDriver Server on Windows 10 from
https://www.microsoft.com/en-us/download/details.aspx?id=48212.

How to do it...
Add a new test and name it as GoogleSearchTestOnEdge.java and add the following code:

package com.secookbook.examples.chapter01;

import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.edge.EdgeDriver;
import org.openqa.selenium.edge.EdgeOptions;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;

public class GoogleSearchTestOnEdge {

 private WebDriver driver;

https://msdn.microsoft.com/en-us/library/mt188085(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/mt188085(v=vs.85).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=48212

Chapter 1

31

 @Before
 public void setUp() {
 System.setProperty("webdriver.edge.driver",
 "C:\\Program Files (x86)\\Microsoft Web
Driver\\MicrosoftWebDriver.exe");

 EdgeOptions options = new EdgeOptions();
 options.setPageLoadStrategy("eager");

 // Launch a new Edge instance
 driver = new EdgeDriver(options);

 // Navigate to Google
 driver.get("http://www.google.com");
 }

 @Test
 public void testGoogleSearch() {
 // Find the text input element by its name
 WebElement element = driver.findElement(By.name("q"));

 // Clear the existing text value
 element.clear();

 // Enter something to search for
 element.sendKeys("Selenium testing tools cookbook");

 WebElement button = driver.findElement(By.name("btnG"));
 button.click();

 // Google's search is rendered dynamically with JavaScript.
 // Wait for the page to load, timeout after 10 seconds
 new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 return d.getTitle().toLowerCase()
 .startsWith("selenium testing tools cookbook");
 }
 });

 assertEquals("Selenium testing tools cookbook - Google
Search",
 driver.getTitle());
 }

www.allitebooks.com

http://www.allitebooks.org

Getting Started

32

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

Execute this test and you will see a Microsoft Edge window being launched and all the
steps executed.

How it works...
Microsoft WebDriver Server is a standalone server executable that implements WebDriver's
JSON-wire protocol, that works as a glue between the test script and the Microsoft Edge
browser, as shown in the following diagram:

The tests should specify the path of Microsoft WebDriver Server executable before creating
the instance of Microsoft Edge. This is done by setting the webdriver.edge.driver
property as shown in the following code:

System.setProperty("webdriver.edge.driver",
 "C:\\Program Files (x86)\\Microsoft Web
Driver\\MicrosoftWebDriver.exe");

We can also specify a path externally through the –Dwebdriver.edge.
driver option using the Maven command line options. In this case,
we don't need to set up this property in test.

33

2
Finding Elements

In this chapter, we will see how to use Selenium WebDriver API to find elements on a Web
page and interact with these elements. We will explore various locator strategies supported
by Selenium WebDriver. You will learn about:

 f Using browser tools for inspecting elements and page DOM
 f Finding an element using the findElement method
 f Finding elements using the findElements method
 f Finding links
 f Finding elements by tag name
 f Finding elements using CSS selectors
 f Finding elements using XPath
 f Finding elements using tag text contents
 f Finding elements using advanced CSS selectors
 f Using jQuery selectors

Introduction
Web applications, and the web pages within these applications, are commonly written in a
mix of Hyper Text Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript
code. Based on user actions like navigating to a website Uniform Resource Locator (URL) or
clicking the submit button, a browser sends a request to a web server. Web server processes
this request and sends back a response with HTML and related resources, such as JavaScript,
CSS, Images, and so on, back to the Browser. The information received from a server is used
by the browser to render a web page with various visual elements, such as textboxes, buttons,
labels, tables, forms, checkboxes, radio boxes, lists, images, and so on, on the page. While doing
so, the browser hides the HTML code and related resources from the user. The user is presented
with a graphical user interface in the browser window.

Finding Elements

34

When we want to automate browser interaction using Selenium, we need to tell Selenium how
to find a particular element or set of elements on a web page programmatically and simulate
user actions on these elements. Selenium provides various selector or locator methods to find
elements based on the attribute/value criteria or selector value that we supply in the script.

Using browser tools for inspecting elements
and page structure

Before we start exploring how to find elements on a page, we need to analyze the page
to understand the Document Object Model (DOM) tree, what properties or attributes are
defined for the elements displayed on the page, how JavaScript or AJAX calls are made from
the application, and so on.

Browsers use the HTML code written for the page to render visual elements in the browser
window. It uses other resources, including JavaScript, CSS, images, and so on, to decide the
look, feel, and behavior of these elements.

Here is an example of a BMI Calculator application page and the HTML code written to render
this page in a browser, as displayed in the following screenshot:

Chapter 2

35

You can view the code written for a page by right-clicking in the browser window and selecting
the View Page Source option from the pop-up menu. This will display the HTML code of the
page in a separate window, as shown in the following screenshot:

We need tools that can display this information in a structured and easy to understand format.
In this recipe, we will briefly explore some of these tools before we dive into locators and
finding elements.

How to do it...
In the following sections, we will explore some of the tools that are available inbuilt in browsers
or as Plugins to analyze elements and page DOM trees, JavaScript calls, CSS Style attributes,
and so on.

Inspecting pages and elements with Mozilla Firefox using the
Firebug add-on
The newer versions of Mozilla Firefox provide in-built ways to analyze the page and elements;
however, we will use the Firebug add-on, which has more powerful features.

You need to install the Firebug add-on in Firefox from https://addons.mozilla.org/en-
us/firefox/addon/firebug/.

https://addons.mozilla.org/en-us/firefox/addon/firebug/
https://addons.mozilla.org/en-us/firefox/addon/firebug/

Finding Elements

36

To inspect an element from the page, move the mouse over the desired element and
right-click to open the pop-up menu. Select the Inspect Element with Firebug option,
as shown in the following screenshot:

This will display Firebug with HTML code in a tree format, as shown in the following screenshot:

Chapter 2

37

Using Firebug, we can also validate the XPath or CSS Selectors using the search box shown in
the Firebug section. Just enter the XPath or CSS Selector and Firebug will highlight element(s)
that match the expression, as shown in the following screenshot:

Firebug provides various other debugging features. It also generates XPath and CSS selectors
for elements. For this, select the desired element in the tree, right-click, and select the Copy
XPath or Copy CSS Path option from the pop-up menu, as shown in the following screenshot:

This will paste the Firebug-suggested XPath or CSS selector value to the clipboard.

Finding Elements

38

Inspecting pages and elements with Google Chrome
Google Chrome provides an in-built feature to analyze pages and elements. This is very
similar to Firebug but much more powerful. You can move the mouse over a desired element
on the page and right-click to open the pop-up menu, then select the Inspect element option.
This will open Developer tools in the browser, which displays information similar to that of
Firebug, as shown in the following screenshot:

Similar to Firebug in Firefox, we can also test XPath and CSS Selectors in Google Chrome
Developer tools. Press Ctrl + F (on Mac, use Command + F) in the Elements tab. This will
display a search box. Just enter the XPath or CSS Selector, and matching elements will be
highlighted in the tree, as shown in the following screenshot:

Chapter 2

39

Chrome Developer Tools also provide a feature where you can get XPath for an element by
right-clicking on the desired element in the tree and selecting the Copy XPath option from
the pop-up menu.

Inspecting pages and elements with Microsoft Internet Explorer
Similar to Google Chrome, Microsoft Internet Explorer also provides an in-built feature to
analyze pages and elements.

To open the Developer Tools, press the F12 key. The Developer tools section will be displayed,
as shown in the following screenshot:

Finding Elements

40

To inspect an element, click on the pointer () icon and hover over the desired element on the
page. Developer tools will highlight the element with a blue outline and display the HTML code
in a tree, as shown in the following screenshot:

How it works...
Browser Developer tools come in really handy during the test script development. These tools
will help you in finding the locator details for the elements with which you need to interact
as part of the test. These tools parse the code for a page and display the information in a
hierarchal tree. These tools also provide information on how styles have been applied, page
resources, page DOM, JavaScript code, and so on.

Some of these tools also provide the ability to run JavaScript code for debugging and testing.

In the following recipes, we will explore various types of locators that are supported by Selenium
WebDriver. These tools will help you in finding and deciding various locator strategies or methods
provided by Selenium WebDriver API.

Chapter 2

41

Finding an element using the findElement
method

Finding elements in Selenium WebDriver is done by using the findElement() and
findElements() methods provided by the WebDriver and WebElement interface.

The findElement() method returns an instance of a WebElement that is found in the page
DOM based on specified locators, also called search criteria. If it does not find an element using
the specified search criteria, it will throw the NoSuchElementFound exception.

The findElements() method returns a list of WebElements matching the search criteria.
If no elements are found, it returns an empty list.

Find methods take a locator or a query object as an instance of a By class as an argument.
Selenium WebDriver provides a By class to support various locator strategies. The following
table lists various locator strategies supported by Selenium WebDriver:

Strategy Syntax Description
By ID Java: driver.findElement(By.id(<element

ID>))

C#: driver.FindElement(By.
Id(<elementID>))

Python: driver.find_element_by_
id(<elementID>)

Ruby: driver.find_
element(:id,<elementID>)

This will find
element(s) using the
ID attribute

By Name Java: driver.findElement(By.
name(<element name>))

C#: driver.FindElement(By.Name(<element
name>))

Python: driver.find_element_by_
name(<element name>)

Ruby: driver.find_
element(:name,<element name>)

This will find
element(s) using the
Name attribute

Finding Elements

42

Strategy Syntax Description
By Class
name

Java: driver.findElement(By.
className(<element class>))

C#: driver.FindElement(By.
ClassName(<element class>))

Python: driver.find_element_by_class_
name(<element class>)

Ruby: driver.find_
element(:class,<element class>)

This will find
element(s) using the
Class attribute value

By Tag
name

Java: driver.findElement(By.
tagName(<htmltagname>))

C#: driver.FindElement(By.
TagName(<htmltagname>))

Python: driver.find_element_by_tag_
name(<htmltagname >)

Ruby: driver.find_element(:tag_name,<
htmltagname >)

This will find
element(s) using its
HTML tag

By Link text Java: driver.findElement(By.
linkText(<linktext>))

C#: driver.FindElement(By.
LinkText(<linktext >))

Python: driver.find_element_by_link_
text(<linktext >)

Ruby: driver.find_element(:link_text,<
linktext >)

This will find link(s)
using its text

By Partial
Link text

Java: driver.findElement(By.
partialLinkText(<linktext>))

C#: driver.FindElement(By.
PartialLinkText(<linktext >))

Python: driver.find_element_by_partial_
link_text(<linktext >)

Ruby: driver.find_element(:partial_
link_text,< linktext >)

This will find link(s)
using the link's partial
text

Chapter 2

43

Strategy Syntax Description
By CSS Java: driver.findElement(By.

cssSelector(<css selector>))

C#: driver.FindElement(By.
CssSelector(<css selector >))

Python: driver. find_elements_by_css_
selector (<css selector>)

Ruby: driver.find_element(:css,< css
selector >)

This will find
element(s) using the
CSS selector

By XPath Java: driver.findElement(By.xpath
(<xpath query expression>))

C#: driver.FindElement(By.XPath(<xpath
query expression>))

Python: driver. find_elements_by_xpath
(<xpath query expression>)

Ruby: driver.find_element(:xpath,<xpath
query expression>)

This will find
element(s) using the
XPath expression

In this recipe, we will use the findElement() method to locate elements.

How to do it...
Finding elements using the id, name, or class attributes is the preferred way to find elements.
Let's try using these methods to locate elements as described in the following sections.

Finding elements by the ID attribute
We can find elements using the value of the id attribute. While searching through the DOM,
browsers use id as the preferred way to identify the elements, and this provides the fastest
locator strategy.

Let's now look at how to use id attributes to find elements on a login form, as shown in the
following code:

<form name="loginForm">
 <label for="username">UserName: </label> <input type="text"
 id="username" />

 <label for="password">Password: </label> <input
 type="password" id="password" />

 <input name="login" type="submit" value="Login" />
</form>

Finding Elements

44

To locate the User Name and Password fields, we can use the id attribute in the following way:

WebElement username = driver.findElement(By.id("username"));
WebElement password = driver.findElement(By.id("password"));

Finding elements by the Name attribute

We might find situations where we cannot use the id attribute due to the following reasons:

 f Not all elements on a page have the id attribute specified

 f The id attributes are not specified for key elements on a page

 f The id attribute values are dynamically generated

In this example, the login form elements use the name attribute instead of the id attribute:

<form name="loginForm">
 <label for="username">UserName: </label> <input type="text"
 name="username" />

 <label for="password">Password: </label> <input
 type="password" name="password" />

 <input name="login" type="submit" value="Login" />
</form>

We can use the name attribute to find elements in the following way:

WebElement username = driver.findElement(By.name("username"));
WebElement password = driver.findElement(By.name("password"));

There could be multiple elements with similar name attributes. In such a case, the first
element on the page with the specified value will be returned, which may not be the
element we are looking for. This may cause the test to fail.

When building an application, you should recommend that the
developers add the id attribute for key elements as well as
other unique attributes to enable the easy search of elements.
This also brings greater testability.

Finding elements by the Class attribute
Apart from using the id and name attributes, we can also use the class attribute to find
elements. The class attribute is commonly used to apply CSS to an element.

In this example, the login form elements use the class attribute instead of the id attribute:

<form name="loginForm">
 <label for="username">UserName: </label> <input type="text"
 class="username" /></br>

Chapter 2

45

 <label for="password">Password: </label> <input
 type="password" class="password" /></br>
 <input name="login" type="submit" value="Login" />
</form>

We can use the class attribute to find elements in the following way:

WebElement username =
 driver.findElement(By.className("username"));
WebElement password =
 driver.findElement(By.className("password"));

Sometimes multiple CSS classes are given for an element. For example:

<input type="text"
 class="username textfield" />

In this case, use one of the class name with the className() method.

How it works...
Selenium WebDriver provides the findElement() method to locate the elements that are
required in a test script from the page under test.

When finding an element, this method will look through the DOM for matching elements with
the specified locator strategy and will return the first matching element to the test.

There's more...
The WebElement interface also supports find methods that find child elements. For example,
if there are some duplicate elements on a page but they are located in the separate <div>
elements, we can first locate the parent <div> element and then locate the child element
within the context of the <div> element in the following way:

WebElement div = driver.findElement(By.id("div1"));
WebElement topLink = div.findElement(By.linkText("top"));

You can also a use a shortcut method in the following way:

WebElement topLink = driver.findElement
 (By.id("div1")).findElement(By.linkText("top"));

Finding Elements

46

NoSuchElementFoundException
The findElement()methods will throw the NoSuchElementFoundException
exception when they fail to find the desired element using the specified locator strategy.
The findElements() method returns an empty list when it does not find elements
matching the locator.

See also
 f The Finding elements using findElements method recipe

Finding elements using the findElements
method

Selenium WebDriver provides the findElements() method, using which we can find more
than one element matching the specified search criteria. This method is useful when we want
to work with a group of similar elements. For example, we can get all the links displayed on a
page, or get all rows from a table, and so on.

In this recipe, we will get all the links and print their targets by using the findElements()
method.

How to do it...
Let's create a test that will get all the links from a page, verify the count of links, and print a
target for each link, as follows:

@Test
public void testFindElements() {
 //Get all the links displayed on Page
 List<WebElement> links = driver.findElements(By.tagName("a"));

 //Verify there are four links displayed on the page
 assertEquals(4, links.size());

 //Iterate though the list of links and print
 //target for each link
 for(WebElement link : links) {
 System.out.println(link.getAttribute("href"));
 }
}

Chapter 2

47

How it works...
The findElements() method returns all the elements matching the search criteria as a list
of WebElements.

List<WebElement> links = driver.findElements(By.tagName("a"));

The size() method of the List will tell us how many elements are there in the list:

assertEquals(4, links.size());

We can iterate by using this list in the following way, getting a link and printing its target value:

for(WebElement link : links) {
 System.out.println(link.getAttribute("href"));
}

See also
 f The Finding an element using the findElement method recipe

Finding links
Selenium WebDriver provides two special methods to find links on a page. Links can be
searched either by their text or by partial text.

Finding links with partial text comes in handy when links have dynamic text. In this recipe,
we will see how to use these methods to find links.

How to do it...
Let's create a simple test to see how finding links works in Selenium WebDriver with the
following options.

Finding a link by its text
Selenium WebDriver's By class provides the linkText() method to locate links using text
displayed for the link. In the following example, we will locate the Gmail link displayed on the
Google Home page:

WebElement gmailLink = driver.findElement(By.linkText("GMail"));
assertEquals("http://mail.google.com/",
 gmailLink.getAttribute("href"));

Finding Elements

48

Finding a link by partial text
Selenium WebDriver's By class also provides a method to locate links using partial text.
This method is useful where developers create links with dynamic text. In this example,
a link is provided to open the inbox. This link also displays the number of new e-mails, which
may change dynamically. Here, we can use the partialLinkText() method to locate
the link using a fixed or known portion of the link text, which in this case would be Index.
The following code shows an example:

WebElement inboxLink =
 driver.findElement(By.partialLinkText("Inbox"));
System.out.println(inboxLink.getText());

How it works...
The linkText and partialLinkText locator methods query the driver for all the links that
meet the specified text and return the matching link(s).

There's more...
You can also locate links using the id, name, or class attributes, if developers have provided
these attributes.

Locating elements based on text can cause issues while testing
applications in multiple locales. Using parameterized text locator
values could work in such scenarios.

See also
 f The Finding an element using the findElement method recipe

 f The Finding elements using findElements method recipe

Finding elements by tag name
Selenium WebDriver's By class provides a tagName() method to find elements by their HTML
tag name. This is similar to the getElementsByTagName() DOM method in JavaScript.

This is used when you want to locate elements using their tag name, for example, locating all
<tr> tags in a table.

In this recipe, we will briefly see how to use the tagName() locator method.

Chapter 2

49

How to do it...
Let's assume you have a single button element on a page. You can locate this button by using
its tag in the following way:

WebElement loginButton = driver.findElement(By.tagName("button"));
loginButton.click();

Take another example where we want to count how many rows are displayed in <table>.
We can do this in the following way:

WebElement table = driver.findElement(By.id("summaryTable"));
List<WebElement> rows = table.findElements(By.tagName("tr"));
assertEquals(10, rows.size());

How it works...
The tagName() locator method queries the DOM and returns a list of matching elements for
the specified tag name. This method may not be reliable while locating individual elements
and the page might have multiple instances of these elements.

See also
 f The Finding elements using findElements method recipe

Finding elements using XPath
XPath (the XML path language) is a query language used to select nodes from an XML
document. All the major browsers implement DOM Level 3 XPath (using http://www.
w3.org/TR/DOM-Level-3-XPath/) specification, which provides access to a DOM tree.

The XPath language is based on a tree representation of the XML document and provides the
ability to navigate around the tree and to select nodes using a variety of criteria.

Selenium WebDriver supports XPath to locate elements using XPath expressions, also known
as XPath query.

One of the important differences between XPath and CSS is that, with XPath, we can search
elements backwards or forwards in the DOM hierarchy, while CSS works only in a forward
direction. This means that using XPath we can locate a parent element using a child element
and vice versa.

In this recipe, we will explore some basic XPath queries to locate elements, and then examine
some advanced XPath queries.

http://www.w3.org/TR/DOM-Level-3-XPath/
http://www.w3.org/TR/DOM-Level-3-XPath/

Finding Elements

50

XML documents are treated as trees of nodes. The topmost element of the tree is called the
root element. When an HTML document is loaded in DOM, it provides a similar tree of nodes.
Here's an example of an HTML page:

<html>
 <head>
 <title>My Book List</title>
 </head>
<body>
 <h1>My Book List</h1>
 <div>
 <table class="main-list">
 <tr>
 <td>Title</td>
 <td>Author</td>
 <td>Publication Year</td>
 <td>Price</td>
 <td>Book Page</td>
 </tr>
 <tr id="book_1">
 <td>XML Developer's Guide</td>
 <td>Gambardella, Matthew</td>
 <td>Publication Year</td>
 <td class="price">44.95</td>
 <td><div class="desc">An in-depth look at creating applications
 with XML.</div></td>
 <td>

 </td>
 </tr>
 </table>
 </div>
</body>
</html>

Chapter 2

51

Let's understand some basic XPath terminology before we move on to using XPath, with the
following listed terms. We will use the previous HTML document as an example:

Term Description
Nodes DOM represents an HTML document as trees of nodes. Here are

examples of nodes from the previous HTML document:

 f html: This is the root element node

 f title: This is the element node

 f id="b00k_1": This represents the attributes and values

The topmost element of the tree is called the root node or element.
Atomic
Values

Atomic values are nodes with no children or parents. For example:

Gambardella, Matthew

XML Developer's Guide

44.95

Parents Each element and attribute has one parent. For example, the body
element is the parent of div. Similarly, div is the parent of the
table element.

Children Element nodes may have zero, one, or more children. For example,
there are two tr elements, which are children of the table element.

Siblings Nodes that have the same parent. For example, h1 and div are all
siblings and their parent is the body element.

Ancestors A node's parent, parent's parent, and so on. For example, ancestors of
the table element are div, body and html.

Descendants A node's children, children's children, and so on. For example, the
descendants of the table element are tr, td and div.

Finding Elements

52

Selecting nodes
XPath uses path expressions to select nodes from the tree. The node is selected by following a
path or steps. The most useful path expressions are listed as follows:

Expression Description
nodename This will select all nodes with the name "nodename". For example,

table will select all the table elements.
/ (slash) This will select element(s) relative to the root element. For example:

 f /html: This will select the root HTML element. A slash (/) is used in
the beginning and it defines an absolute path.

 f html/body/table: will select all table elements that are children
of HTML.

The slash (/) is used at the start of a code element, and it defines an
absolute path. It defines ancestor and descendant relationships if used
in the middle; for example, //div/table returns the div containing a
table object.

// (double
slash)

This will select node(s) in the document from the current node that match
the selection irrespective of its position. For example:

 f //table will select all the table elements no matter where they are
in the document

 f //tr//td will select all the td elements

 f //a//img will select all the img elements that are children of the
"a" (anchor) element

Double slash (//) defines a descendant relationship if used in the middle;
for example, /html//title returns the title element that is descendant of
the html element.

. (dot) This represents the current node.

.. (double
dot)

This will select the parent of the current node. For example, //table/..
will return the div element.

@ This represents an attribute. For example:

 f //@id: This will select all the elements where the id attribute are
defined no matter where they are in the document

 f //img/@alt: This will select all the img elements where the @alt
attribute is defined

Chapter 2

53

How to do it...
Let's explore some basic XPath expressions that can be used in Selenium WebDriver. Selenium
WebDriver provides the xpath() method to locate elements using XPaths.

Finding elements with an absolute path
XPath absolute paths refer to the very specific location of the element, considering its complete
hierarchy in the DOM. Here is an example where the Username Input field is located using the
absolute path. When providing an absolute path, a space is given between the elements:

WebElement userName =
 driver.findElement(By.xpath("/html/body/div/div/form/input"));

However, this strategy has limitations as it depends on the structure or hierarchy of the
elements on a page. If this changes, the locator will fail to get the element.

Finding elements with a relative path
With a relative path, we can locate an element directly irrespective of its location in the DOM.
For example, we can locate the Username Input field in the following way, assuming it is the
first <input> element in the DOM:

WebElement userName = driver.findElement(By.xpath("//input"));

Finding elements using predicates
A predicate is embedded in square brackets and is used to find out specific node(s) or a node
that contains a specific value.

In the previous example, the XPath query will return the first <input> element that it finds
in the DOM. There could be multiple elements matching the specified XPath query. If the
element is not the first element, we can also locate the element by using its index in the
DOM. For example, in our login form, we can locate the Password field, which is the second
<input> element on the page, in the following way:

WebElement userName = driver.findElement(By.xpath("//input[2]"));

Finding elements using attributes values with XPath
We can find elements using their attribute values in XPath. In the following example,
the Username field is identified using the ID attribute:

WebElement userName =
 driver.findElement(By.xpath("//input[@id='username']"));

Finding Elements

54

Here is another example where the image is located using the alt attribute:

WebElement previousButton =
 driver.findElement(By.xpath("//img[@alt='Previous']"));

You might come across situations where one attribute may not be sufficient to locate an
element and you need combined additional attributes for a precise match. In the following
example, multiple attributes are used to locate the <input> element for the Login button:

WebElement previousButton =
 driver.findElement(By.xpath
 ("//input[@type='submit'][@value='Login']"));

The same result can be achieved by using XPath and operator:

WebElement previousButton = driver.findElement
 (By.xpath("//input[@type='submit' and @value='Login']"));

In the following example, either of the attributes is used to locate the elements using XPath
or operator:

WebElement previousButton = driver.findElement
 (By.xpath("//input[@type='submit'or @value='Login']"));

Finding elements using attributes with XPath
This strategy is a bit different from the earlier strategy where we want to find elements based
only on the specific attribute defined for them but not attribute values. For example, we want
to lookup all the elements that have the alt attribute specified:

List<WebElement> imagesWithAlt = driver.findElements
 (By.xpath ("//img[@alt]"));

Here's another example where all the elements will be searched and where the alt
attribute is not defined. We will use the not function to check the negative condition:

List<WebElement> imagesWithAlt = driver.findElements
 (By.xpath ("//img[not(@alt)]"));

Performing partial match on attribute values XPath also provides a way to find elements
matching partial attribute values using XPath functions. This is very useful to test
applications where attribute values are dynamically assigned and change every time
a page is requested. For example, ASP.NET applications exhibit this kind of behavior
where IDs are generated dynamically.

Chapter 2

55

The following table explains the use of these XPath functions:

Syntax Example Description
starts-with() input[starts-with(@

id,'ctrl')]
Starting with:

For example, if the ID of an element
is ctrl_12, this will find and return
elements with ctrl at the beginning of
the ID.

ends-with() input[ends-with(@
id,'_userName')]

Ending with:

For example, if the ID of an element is
a_1_userName, this will find and return
elements with _userName at the end of
the ID.

contains() Input[contains(@
id,'userName')]

Containing:

For example, if the ID for an element
is panel_login_userName_
textfield, this will use the
userName part in the middle to match
and locate the element.

Matching any attribute using a value
XPath matches the attribute for all the elements for a specified value and returns the element.
For example, in the following XPath query, 'userName' is specified. XPath will check all the
elements and their attributes to see if they have this value and return the matching element.

WebElement userName =
 driver.findElement(By.xpath("//input[@*='username']"));

Here are more examples of using XPath predicates to find elements using their position
and contents:

Expression Description
/table/tr[1] This will select the first tr (row) element that is the child of

the table element.
/table/tr[last()] This will select the last tr (row) element that is the child of

the table element.
/table/tr[last()-1] This will select the second last tr (row) element that is the

child of the table element.
/table/tr[position()>4] This will select the three tr (rows) elements that are child

of the table element.
//tr[td>40] This will select all the tr (rows) elements that have one of

their children td with value greater than 40.

Finding Elements

56

Selecting unknown nodes
Apart from selecting the specific nodes, XPath also provides wildcards to select a group
of elements:

Wildcard Description Example
* Matches any element

node.
 f /table/*: This will select all child

elements of a table element

 f //*: This will select all elements in the
document

 f //*[@class='price']: This will select
any element in the document which has an
attribute named class with a specified
value, that is price

@ Matches any attribute
node.

 f //td[@*]: This will select all the td
elements that have any attribute

node() Matches any node of any
kind.

 f //table/node(): This will select all the
child elements of table

Selecting several paths
Using the union | operator in XPath expressions, we can select several paths together, as
shown in the following table:

Path Expression Action
//div|/p |
//div/span

This will select all the p (paragraph) and span elements of the div
element.

//p | //span This will select all the p (paragraph) and span elements in the document.

Locating elements with XPath axes
XPath axes help to find elements based on the element's relationship with other elements in
a document. The following screenshot shows some examples for some common XPath axes
used to find elements from a <table> element. This can be applied to any other element
structure from your application.

Chapter 2

57

The following image shows a graphical representation of the HTML elements:

Axis Description Example Result
ancestor Selects all ancestors

(parent, grandparent,
and so on) of the
current node.

//td[text()='Product
1']/ancestor::table

This will get the
table element.

descendant Selects all
descendants
(children,
grandchildren, and
so on) of the current
node.

/table/
descendant::td/input

This will get the
input element
from the third
column of the
second row from
the table.

following Selects everything in
the document after
the closing tag of the
current node.

//td[text()='Product
1']/following::tr

This will get the
second row from
the table.

following-
sibling

Selects all siblings
after the current
node.

//td[text()='Product
1']/following-
sibling::td

This will get the
second column
from the second
row immediately
after the
column that has
Product 1 as
the text value.

Finding Elements

58

preceding Selects all nodes
that appear before
the current node
in the document,
except ancestors,
attribute nodes, and
namespace nodes.

//td[text()='$150']/
preceding::tr

This will get the
header row.

preceding-
sibling

Selects all siblings
before the current
node.

//td[text()='$150']/
preceding-
sibling::td

This will get the
first column of
third row from
the table.

You can find more about XPath axes at http://www.w3schools.com/xpath/xpath_
axes.asp.

How it works...
XPath is a powerful language to query and process DOM trees in browsers. XPath is used
to navigate through elements and attributes in a DOM tree. XPath provides various rules,
functions, operators, and syntax to find the elements.

The majority of browsers support XPath, and Selenium WebDriver provides the ability to
find elements using the XPath language.

Using the xpath() method of the By class, we can locate elements using XPath syntax.

Finding elements using CSS selectors
The Cascading Style Sheets (CSS) is a style sheet language used to describe the presentation
semantics (the looks and formatting) of a document written in a markup language such as
HTML or XML.

Major browsers implement CSS parsing engines to format or style the pages using CSS
syntax. CSS was introduced to keep the presentation information separate from the markup
or content. For more information on CSS and CSS selectors, visit http://en.wikipedia.
org/wiki/Cascading_Style_Sheets.

In CSS, the pattern-matching rules determine which style should be applied to elements in
the DOM. These patterns, called selectors, may range from simple element names to rich
contextual patterns. If all conditions in the pattern are true for a certain element, the selector
matches the element, and the browser applies the defined style in CSS syntax.

In this recipe, we will explore some basic CSS selectors and then, later on, we will dive into
advanced CSS selectors.

http://www.w3schools.com/xpath/xpath_axes.asp
http://www.w3schools.com/xpath/xpath_axes.asp
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://en.wikipedia.org/wiki/Cascading_Style_Sheets

Chapter 2

59

How to do it...
Let's explore some basic CSS selectors that can be used in Selenium WebDriver. Selenium
WebDriver's By class provides the cssSelector() method to find elements using CSS
selectors.

Finding elements with an absolute path
CSS absolute paths refer to the very specific location of the element considering its complete
hierarchy in the DOM. Here is an example where the Username Input field is located using
the absolute path. When providing an absolute path, a space is given between the elements,
as shown in the following code example:

WebElement userName = driver.findElement(By.cssSelector("html body
 div div form input"));

You can also use the previous selector in the following way by describing the direct
parent-to-child relationships with the > separator:

WebElement userName = driver.findElement(By.cssSelector("html >
 body > div > div > form > input"));

However, this strategy has limitations as it depends on the structure or hierarchy of the
elements on a page. If this changes, the locator will fail to find the element.

Finding elements with a relative path
With a relative path, we can find an element directly, irrespective of its location in the DOM.
For example, we can find the Username Input field in the following way, assuming it is the
first <input> element in the DOM:

WebElement userName = driver.findElement(By.cssSelector("input"));

The following CSS selectors use Class and ID attributes to find elements using relative paths.
This is the same as the className() and id() locator methods. However, there is another
strategy where we can use any other attribute of the element that is not covered in the By class.

Finding elements using the Class selector
While finding elements using the CSS selector, we can use the Class attribute to locate an
element. This can be done by specifying the type of HTML tag, then adding a dot followed by
the value of the class attribute in the following way:

WebElement loginButton =
 driver.findElement(By.cssSelector("input.login"));

This will find the Login button's <input> tag whose Class attribute is login.

Finding Elements

60

Sometimes, multiple CSS classes are given for an element. For example:

<input type="text"
 class="username textfield" />

In this case, we can use multiple class names, as shown in the following example:

WebElement loginButton =
 driver.findElement(By.cssSelector("input.login.textfield"));

There is also a shortcut where you can put a "." (period) and class attribute value and ignore
the HTML tag. However, this will return all the elements with the class as login and the test
may not return the correct element, as shown in the following code example:

WebElement loginButton =
driver.findElement(By.cssSelector(".login"));

This method is similar to the className() locator method.

Finding elements using the ID selector
We can find an element using the ID attribute. This can be done by specifying the type of
HTML tag, then entering a # (hash) followed by the value of the Class attribute, as shown
in the following code:

WebElement userName =
 driver.findElement(By.cssSelector("input#username"));

This will return the username <input> element using its id attribute.

There is also a shortcut where you can enter # and a class attribute value and ignore the
HTML tag. However, this will return all the elements with the id set as username and the
test may not return the correct element. This has to be used very carefully:

WebElement userName =
 driver.findElement(By.cssSelector("#username"));

This method is similar to the id locator strategy.

Finding elements using the attributes selector
Apart from the class and id attributes, CSS selectors also enable the finding of elements
using other attributes of the element. In the following example, the Name attribute is used to
locate an <input> element:

WebElement userName =
 driver.findElement(By.cssSelector("input[name=username]"));

Using the name attribute to locate an element is similar to the name() locator method of the
By class.

Chapter 2

61

Let's use some other attributes to find an element. In the following example, the
element is located by using its alt attribute:

WebElement previousButton =
 driver.findElement(By.cssSelector("img[alt='Previous']"));

You might come across situations where one attribute may not be sufficient to find an element
and you need to combine additional attributes for a precise match. In the following example,
multiple attributes are used to locate the Login button's <input> element:

WebElement previousButton =
driver.findElement(By.cssSelector("input[type='submit']
[value='Login']"));

Finding elements using the attributes name selector
This strategy is a bit different from the earlier strategy where we want to find elements based
on only the specific attribute defined for them but not attribute values. For example, we want
to look up all the elements that have the alt attribute specified:

List<WebElement> imagesWithAlt =
 driver.findElements(By.cssSelector("img[alt]"));

A Boolean not() pseudo-class can also be used to find elements not matching the specified
criteria. For example, to find all the elements that do not have the alt attribute, the
following method can be used:

List<WebElement> imagesWithoutAlt =
 driver.findElements(By.cssSelector("img:not([alt])"));

Selecting several paths
Using the or selector "," in CSS selectors, we can select a single or several elements matching
the given criteria, as shown in the following code:

List<WebElement> elements =
 driver.findElements(By.cssSelector("div, p"));

This will select all the <div> and all the <p> elements:

List<WebElement> elements =
 driver.findElements(By.cssSelector("div.first, div.last"));

This will select <div> with class first and last.

Finding Elements

62

Performing a partial match on attribute values
CSS selector provides a way to find elements matching partial attribute values. This is very
useful for testing applications where attribute values are dynamically assigned and change
every time a page is requested. For example, ASP.NET applications exhibit this kind of
behavior, where IDs are generated dynamically. The following table explains the use of CSS
partial match syntax:

Syntax Example Description
^= input[id^='ctrl'] Starting with:

For example, if the ID of an element is
ctrl_12, this will find and return elements
with ctrl at the beginning of the ID.

$= input[id$='_userName'] Ending with:

For example, if the ID for an element is a_1_
userName, this will find and return elements
with _userName at the end of the ID.

= Input[id='userName'] Containing:

For example, if the ID of an element is panel_
login_userName_textfield, this will use
the userName part in the middle to match and
find the element.

How it works...
CSS selector is a pattern and the part of a CSS rule that matches a set of elements in an
HTML or XML document.

The majority of browsers support CSS parsing for applying styles to these elements. Selenium
WebDriver uses a CSS parsing engine to locate the elements on a page. CSS selectors provide
various methods, rules, and patterns to locate the element on a page.

Using CSS selector, the test can find elements in multiple ways using Class, ID, attribute
values, and text contents, as described in this recipe.

See also
 f The Finding elements using advanced CSS selectors recipe

Chapter 2

63

Locating elements using text
When testing web applications, you will also encounter situations where developers don't
assign any attributes to the elements and it becomes difficult to locate elements.

Using the CSS selectors or XPath, we can find elements based on their text contents. In this
recipe, we will explore methods to find elements using text values.

How to do it...
To find elements using their text contents, CSS selectors and XPath provide methods to find
text within the elements. If an element contains specific text, this will return the element in
the test.

Using XPath's text function
XPath provides the text() function, which can be used to see if an element contains the
specified text in the following way:

WebElement cell = driver.findElement
 (By.xpath("//td[contains(text(),'Item 1')]"));

We can also use a single period/dot, ".", instead of the text() function in following way:

WebElement cell = driver.findElement
 (By.xpath("//td[contains(.,'Item 1')]"));

Here, we are using the contains function along with the text() function. The text()
function returns the complete text from the element and the contains() function checks
for the specific value that we have mentioned.

XPath also offers the normalize-space(.) function to match the element using the
element's and its sub-element's text.

Finding elements using exact text value in XPath
With XPath, elements can be searched by exact text value in the following way:

WebElement cell = driver.findElement
 (By.xpath("//td[.='Item 1']"));

This will locate the <td> element matching the exact text.

Finding Elements

64

Using the CSS selector contains() pseudo-class
The CSS selectors provide the contains() pseudo-class which can be used to see if an
element contains the specified text. For example, a test wants to find the cell of a table
using its contents in the following way:

WebElement cell =
 driver.findElement(By.cssSelector("td:contains('Item 1')"));

The contains()pseudo-class accepts the text to be searched as a parameter. It then checks
all the <td> elements in DOM for the specified text.

The contains() pseudo-class may not work with browsers that
don't natively support CSS selectors. Also, it has been deprecated
from the CSS3 specification.

As an alternative to the contains() pseudo-class, you can use the innerText attribute
(does not work with Firefox) or textContent attribute (for Firefox) in the following ways:

WebElement cell =
 driver.findElement(By.cssSelector("td[innerText='Item 1']"));

Or:

WebElement cell = driver.findElement
 (By.cssSelector("td[textContent='Item 1']"));

You can also use jQuery selectors, which support the contains() pseudo-class.

How it works...
CSS selector and XPath provide methods with which to find elements based on their text
contents. This approach comes in handy when elements don't have enough attributes or
when no other strategies work when attempting to find these elements.

To find elements using their text, both CSS selector and XPath search through the DOM for
elements that have the specified text value and return the matching element(s).

Chapter 2

65

Finding elements using advanced CSS
selectors

We saw some basic CSS selectors in earlier recipes. In this recipe, we will explore some
advanced CSS selectors for finding elements.

How to do it...
In the Finding elements using CSS selectors recipe, we explored some basic CSS selectors.
Let's explore advanced CSS selectors such as adjacent sibling combinators and pseudo-
classes, as described in the following sections.

Finding child elements
The CSS selectors provide various ways to find child elements from parent elements.

For example, to find the Username field in the login form, we can use the following selector.
Here, > is used denote the parent and child relationship:

WebElement userName =
 driver.findElement(By.cssSelector("form#loginForm > input"));

Similarly, the nth-child() method can be used in the following way:

WebElement userName = driver.findElement
 (By.cssSelector("form#loginForm :nth-child(2)"));

Here, the second element in <form> is the Username field. The following table shows some
of the structural pseudo-classes used to find child elements:

Pseudo-class Example Description
:first-child form#loginForm

:first-child
This will find the first element under the form,
that is, the label for username.

:last-child form#loginForm
:last-child

This will find the last element under the form,
that is, the Login button.

:nth-child(2) form#loginForm
:nth-child(2)

This will find the second child element under
the form, that is, the Username field.

Finding Elements

66

Finding sibling elements
With the CSS selector, we can find sibling elements using the + operator. For example, on the
sample page, the <p> element with the Description for Product 2 text is selected in the
following way:

WebElement productDescription =
 driver.findElement(By.cssSelector("div#top5 > p + p"));

In this example, the first child of div#top5 will be <p> with Description for Product
1 and its immediate sibling will be Description for Product 2. Here are a few more
adjacent sibling combinations for finding siblings:

p + p div#top5 > p + p Immediately following sibling. This will
locate Description for Product 2.

p + * + p div#top5 > p + * + p Following sibling with one intermediary.
This will locate Description for
Product 3.

Using user action pseudo-classes
Using the user action :focus pseudo-class, we can find an element which currently has the
input focus in the following way:

WebElement productDescription =
 driver.findElement(By.cssSelector("input:focus"));

This will locate any element that currently has the input focus. You can also find elements
using the :hover and :active pseudo-classes.

Using UI state pseudo-classes
Using UI state pseudo-classes, we can find elements for various states, such as when control
is enabled, disabled, and checked. The following table describes these in detail:

Pseudo-class Example Description
:enabled input:enabled This will find all the elements that are enabled

for user input.
:disabled input:enabled This will find all the elements that are disabled

for user input.
:checked input:checked This will find all the elements (checkboxes) that

are checked.

Chapter 2

67

How it works...
Apart from the basic CSS selectors, you can also use various advanced CSS selector methods
such as pseudo-classes or adjacent sibling combinators to find the elements with Selenium
WebDriver API.

Visit http://www.w3schools.com/cssref/css_selectors.asp for an exhaustive list
of CSS selectors and their usage.

See also
 f The Finding elements using CSS selectors recipe

Using jQuery selectors
jQuery selectors are important features of the jQuery library. jQuery selectors are based on
CSS1-3 selectors along with some additional selectors. These selectors use the familiar CSS
Selector syntax to allow developers to quickly and easily identify page elements to operate
using the jQuery library methods. Similar to CSS selectors, these selectors allow us to find
and manipulate HTML elements as a single element or list of elements.

jQuery selectors can be used where CSS selectors are not supported natively by the browsers.

In this recipe, we will explore in brief how to use jQuery selectors with Selenium WebDriver.

How to do it...
Let's create a test that checks that specified checkboxes are selected when a page is displayed,
as follows:

@Test
 public void testDefaultSelectedCheckbox() {

 // Expected list of selected Checkbox
 List<String> checked = Arrays
 .asList("user128_admin", "user220_browser");

 // Create an instance of JavaScript Executor from driver
 JavascriptExecutor js = (JavascriptExecutor) driver;

 // Locate all the Checkbox which are checked by calling jQuery
find()
 // method.

http://www.w3schools.com/cssref/css_selectors.asp

Finding Elements

68

 // find() method returns elements in array
 @SuppressWarnings("unchecked")
 List<WebElement> elements = (List<WebElement>) js
 .executeScript("return jQuery.find(':checked')");

 // Verify two Checkbox are selected
 assertEquals(elements.size(), 2);

 // Verify correct Checkbox are selected
 for (WebElement element : elements) {
 assertTrue(checked.contains(element.getAttribute("id")));
 }
 }

How it works...
Selenium WebDriver can be enhanced by jQuery selectors using the jQuery API. However,
we need to make sure that the page has the jQuery API loaded before using these selectors.
The jQuery API provides the find() function through which we can search for elements.
We need to use the JavaScriptExecutor class to use jQuery's find() method. In this
example, we will find all the selected checkboxes on a page by calling the find() method:

//Locate all the Checkbox which are checked by calling jQuery
 find() method.
//find() method returns elements in array
List<WebElement> elements = (List<WebElement>)
 js.executeScript("return jQuery.find(':checked')");

The find() method returns a single WebElement or a list of WebElements matching
the selector criteria. For more details and a list of available jQuery selectors, please visit
http://api.jquery.com/category/selectors/.

You can also use the CSS Selectors described in this chapter with the jQuery find() method.

There's more...
To use jQuery selectors, the page under test should have the jQuery library loaded. If your
application does not use jQuery, you can load jQuery on the page by attaching the jQuery
library at runtime with the following methods:

private void injectjQueryIfNeeded() {
 if (!jQueryLoaded())
 injectjQuery();
}

http://api.jquery.com/category/selectors/

Chapter 2

69

public Boolean jQueryLoaded() {
 Boolean loaded;
 try {
 loaded = (Boolean) driver.executeScript("return
 jQuery()!=null");
 } catch (WebDriverException e) {
 loaded = false;
 }
 return loaded;
}

public void injectjQuery() {
 driver.executeScript(" var headID =
 document.getElementsByTagName(\"head\")[0];"
 + "var newScript = document.createElement('script');"
 + "newScript.type = 'text/javascript';"
 + "newScript.src = 'http://ajax.googleapis.com/
 ajax/libs/jquery/1.7.2/jquery.min.js';"
 + "headID.appendChild(newScript);");
}

The injectjQueryIfNeeded() method will internally call the jQueryLoaded() method
to see if the jQuery object is available on the page. If the page does not have the jQuery object
defined, the injectjQueryIfNeeded() method will call the injectjQuery() method to
attach the jQuery library to the page header at runtime. This is done by adding a <script>
element, which refers to the Google Content Delivery Network (CDN) for the jQuery library
file, to the page. You may change the version used in this example to the latest version of the
jQuery library.

71

Working with Elements

In this chapter, we will explore the various methods of Selenium WebDriver that interact with
HTML elements displayed on the page. We will cover the following recipes:

 f Automating textboxes, text areas, and buttons

 f Checking an element's text

 f Checking an element's attribute and CSS values

 f Automating dropdowns and lists

 f Checking options in dropdowns and lists

 f Checking selected options in dropdowns and lists

 f Automating radio buttons and radio groups

 f Automating checkboxes

 f Working with WebTables

Introduction
Selenium WebDriver provides a very comprehensive API for working with different types of
web elements performing User Interactions, executing JavaScript code, and supports various
types of controls such as list, dropdown, radio buttons, and checkboxes.

In this chapter, we will explore how these features can be used to build simple to complex test
steps. This chapter will also help you overcome some common issues faced while developing
automated scripts with Selenium WebDriver. The chapter examples are created with Selenium
WebDriver Java bindings. The sample code for this chapter contains some of these recipes
implemented with C#, Ruby, and Python.

3

www.allitebooks.com

http://www.allitebooks.org

Working with Elements

72

Automating textboxes, text areas,
and buttons

The textbox and button elements are the most common elements used in any web
application. Selenium WebDriver's WebElement interface provides methods to simulate
keyboard entry into textboxes or text areas and perform clicks on a button control.

In this recipe, we will explore these methods to automate textbox, text-area, and
button elements.

How to do it...
Here we will explore the clear(), sendKeys(), submit() and click() methods of the
WebElement interface.

Clearing text from textbox and text-area elements
To clear the existing text value from textbox and text-area elements, we can use the clear()
method, as shown in following code example:

// Find the text input element by its name
WebElement element = driver.findElement(By.name("q"));

// Clear the existing text value using clear method
element.clear();

Entering text in textbox and text-area elements
To enter text value in a textbox or a text-area element, we can use the sendKeys() method,
as shown in following code example:

// Enter something to search for
element.sendKeys("Selenium testing tools cookbook");

Submitting forms
Normally, HTML data entry forms are created using the <form> element. When user fills the
data and saves form, it is submitted on the remote web server to process the data. Here's an
example where a Google search form is submitted by calling the submit() method on the
search textbox shown on the Google homepage:

// Find the text input element by its name
WebElement element = driver.findElement(By.name("q"));

// Clear the existing text value

Chapter 3

73

element.clear();

// Enter something to search for
element.sendKeys("Selenium testing tools cookbook");

// Now submit the form. WebDriver will find
// the form for us from the element
element.submit();

Performing a click on a button element
To click on a button element, we can use the click() method of the WebElement interface:

// Find the button element by its name
WebElement element = driver.findElement(By.name("btnG"));

// Click on the button
element.click();

How it works...
The clear() method of the WebElement interface works only on a textbox <input> and
text area, having no effect on other types of elements. It will clear any previous value from
an element.

The sendKeys() method can be used on any element that accepts values by typing on
the element. This method simulates typing into an element that sets the given string as the
value of that element. The sendKeys() method accepts java.lang.CharSequence or
string value.

We can also simulate pressing non-text keys using the sendKeys() method by using the
Keys enum. For example, after entering a value in the textbox, we can press the TAB key
as shown in following code example:

element.sendKeys("123" + Keys.TAB);

For a complete list of keys visit http://selenium.googlecode.com/git/docs/api/
java/org/openqa/selenium/Keys.html.

The submit() method is applicable on the <form> element or any element that is under the
<form> element. Developers can create buttons or links for form submission. When a user
clicks on the submission element, the onsubmit event is fired. In Selenium WebDriver, any
element that is part of the form, or an element within a <form>, can call this event using the
submit() method of the WebElement interface.

http://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/Keys.html
http://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/Keys.html

Working with Elements

74

The click() method will click on an element. If clicking on an element causes the current
page displayed in a browser to change, then the script will wait until the new page is loaded.
However, if it causes a new page to be loaded via an event, or by sending a native event, then
the method will not wait for it to be loaded. In such cases, we will have to verify that a new
page has been loaded.

There are some preconditions for an element to be clicked using the click() method.
The element must be visible and it must have a height and width greater then 0. Clicking
on an invisible element will result in a ElementNotVisibleException exception.

See also
 f The Checking an element's text recipe

 f The Checking an element's attribute and CSS values recipe

Checking an element's text
While testing a web application, we need to verify that elements are displaying the correct
values or text on the page. Selenium WebDriver's WebElement interface provides methods
to retrieve and verify text from an element. Sometimes we need to retrieve text or values from
an element into a variable at runtime and later use it at some other place in the test flow.

In this recipe, we will retrieve and verify text from an element using the getText() method of
the WebElement interface.

How to do it...
Here, we will create a test that finds an element and then retrieves text from the element in a
string variable. We will verify the contents of this string for correctness using the following code:

@Test
public void testElementText() {
 // Get the message Element
 WebElement message = driver.findElement(By.id("message"));

 // Get the message elements text
 String messageText = message.getText();

 // Verify message element's text displays "Click on me and my
 // color will change"
 assertEquals("Click on me and my color will change",
 messageText);

 // Get the area Element

Chapter 3

75

 WebElement area = driver.findElement(By.id("area"));

 // Verify area element's text displays "Div's Text\nSpan's Text"
 assertEquals("Div's Text\nSpan's Text", area.getText());
}

How it works...
The getText() method of the WebElement interface returns the visible innerText of the
element, including sub-elements, without any leading or trailing whitespace.

If the element has child elements, the value of the innerText attribute of the child elements
will also be returned along with the parent element. In the following example, we have a
 element within a <div> element. While we are retrieving innerText from the
<div> element it also appends innerText of the element:

// Get the area Element
WebElement area = driver.findElement(By.id("area"));

// Verify element's text displays "Div's Text\nSpan's Text"
assertEquals("Div's Text\nSpan's Text",area.getText());

There's more...
The WebElement.getText() method does not work on hidden or invisible elements.
Retrieval of text from such elements is possible through the getAttribute() method using
the innerText or textContent attributes:

assertEquals("Div's Text\nSpan's
Text",area.getAttribute("innerText"));

The innerText attribute is not supported in Firefox and the textContent attribute is not
supported in Internet Explorer.

See also
 f The Checking an element's attribute and CSS values recipe

Working with Elements

76

Checking an element's attribute and CSS
values

Developers configure various attributes of elements displayed on the web page during design
or at runtime to control the behavior or style of elements when they are displayed in the
browser. For example, the <input> element can be set to read-only by setting the readonly
attribute.

We can retrieve and check an element's attribute using the getAttribute() method of the
WebElement interface.

Various styles are applied on elements displayed in a web application so that they look neat
and become more usable. Developers add these styles using Cascading Style Sheets (CSS).
This can be done using the WebElement class's getCSSValue() method, which returns the
value of a specified style attribute.

In this recipe, we will use the getCSSValue() function to check the style attribute defined
for an element.

In this recipe, we will check the attribute value of an element by using the getAttribute()
method.

How to do it...
The following code can be used to create a test that locates an element and checks its
attribute value:

@Test
public void testElementAttribute() {
 WebElement message = driver.findElement(By.id("message"));
 assertEquals("justify", message.getAttribute("align"));
}

Let's create a test that reads the CSS width attribute and verifies the value, using the
following code:

@Test
public void testElementStyle() {
 WebElement message = driver.findElement(By.id("message"));
 String width = message.getCssValue("width");
 assertEquals("150px", width);
}

Chapter 3

77

How it works...
By passing the name of the attribute to the getAttribute()method, it returns the value of
the attribute back to the test. In this example, we are checking that the align attribute of the
<p> element is set to justify:

assertEquals("justify", message.getAttribute("align"));

By passing the name of CSS attribute to the getCSSValue() method, it returns the value
of the CSS attribute. In this example, we are checking that the width attribute of the <div>
element is set to 150px:

String width = message.getCssValue("width");

Automating dropdowns and lists
Selenium WebDriver supports testing dropdown and list elements using a special Select
class.

The Select class provides various methods and properties to interact with dropdowns and
lists created with the HTML <select> element.

In this recipe, we will automate dropdown and list control using the Select class.

How to do it...
Let's create a test for a dropdown control. This test will perform some basic checks and will
then call various methods to select options in the dropdown:

@Test
public void testDropdown() {

 // Get the Dropdown as a Select using it's name attribute
 Select make = new Select(driver.findElement(By.name("make")));

 // Verify Dropdown does not support multiple selection
 assertFalse(make.isMultiple());
 // Verify Dropdown has four options for selection
 assertEquals(4, make.getOptions().size());

 // With Select class we can select an option in Dropdown using
Visible text
 make.selectByVisibleText("Honda");
 assertEquals("Honda", make.getFirstSelectedOption().getText());

Working with Elements

78

 // or we can select an option in Dropdown using value attribute
 make.selectByValue("audi");
 assertEquals("Audi", make.getFirstSelectedOption().getText());

 // or we can select an option in Dropdown using index
 make.selectByIndex(0);
 assertEquals("BMW", make.getFirstSelectedOption().getText());
}

Create another test for a list control that has multi-selection enabled. The test will perform
some basic checks and then call methods to select multiple options in a list. The test will
check the selected options and then deselect the options by calling various deselection
methods, namely, by visible text, by value, and by index respectively as shown in the following
code example:

@Test
public void testMultipleSelectList() {
 // Get the List as a Select using it's name attribute
 Select color = new Select(driver.findElement(By.name("color")));

 // Verify List support multiple selection
 assertTrue(color.isMultiple());

 // Verify List has five options for selection
 assertEquals(5, color.getOptions().size());

 // Select multiple options in the list using visible text
 color.selectByVisibleText("Black");
 color.selectByVisibleText("Red");
 color.selectByVisibleText("Silver");

 // Deselect an option using value attribute of the option
 color.deselectByValue("rd");
 // Verify selected options count
 assertEquals(1, color.getAllSelectedOptions().size());

 // Deselect an option using index of the option
 color.deselectByIndex(0);
 // Verify selected options count
 assertEquals(0, color.getAllSelectedOptions().size());
}

Chapter 3

79

How it works...
We can find dropdown or list elements in a similar way to finding other elements on a page.
However, we will use the Select class to interact with these elements. This is done in the
following way:

Select color = new Select(driver.findElement(By.name("color")));

The HTML <select> element supports dropdowns or lists with multi-select options.
We can check if the element supports multi-select by calling the isMultiple() method of
the Select class, shown as follows. It returns true if the control supports multi-selection,
and false if it does not:

assertFalse(make.isMultiple());

We can check the number of options available in the dropdown or list by calling the
getOptions() method of the Select class and querying the size of the returned
collection of WebElements:

assertEquals(4, make.getOptions().size());

The Select class provides three different ways to select and deselect the options from
dropdowns and lists, as shown in the following sections.

Selection/deselection by visible text
We can select an option by its visible text. For example, here is the code snippet for the
<select> element:

<select name="color" size="6" multiple="multiple"
 style="width:100px">
 <option value="bl">Black</option>
 <option value="wt">White</option>
 <option value="rd">Red</option>
 <option value="br">Brown</option>
 <option value="sl">Silver</option>
</select>

Each option in this <select> element has a value property as well as a text label specified
between <option> and </option>. We can select an option using this text label by calling
the selectByVisibleText() method of the Select class, as shown in the following code:

color.selectByVisibleText("Black");

Similarly, you can deselect an already selected option by calling the
deselectByVisibleText() method, as shown in the following code:

color.deselectByVisibleText("Black");

Working with Elements

80

Selection/deselection by value
We can also select an option using its value attribute. For example, the following option has
the value attribute "bl" and text label "Black":

<option value="bl">Black</option>

To select this option by value we need to call the selectByValue() method of the Select
class, as shown in the following line of code:

color.selectByValue("bl");

Similarly, you can deselect an already selected option by calling the deselectByValue()
method, as shown in the following code:

color.deselectByValue("bl");

Selection/deselection by index
This is another way by which we can select an option, this time by using its index. When
options are displayed on a page, they are indexed in the order in which they are defined on
the page. We can call the selectByIndex() method of the Select class by specifying
the index value, as shown in the following code:

color.selectByIndex("0");

Similarly, you can deselect an already selected option by calling the deselectByIndex()
method. The following code shows the complete syntax:

color.deselectByIndex(0);

This method may cause problems where options are dynamic and
their index changes frequently.

There's more...
We can select/deselect multiple options from a dropdown or list by calling the select/deselect
methods in a sequence. For example, in the color list that supports multiple selections, we
can select options in the following way:

color.selectByVisibleText("Black");
color.selectByVisibleText("Red");
color.selectByVisibleText("Silver");

This will select Black, Red, and Silver options in the list.

Chapter 3

81

See also
 f The Checking options in dropdowns and lists recipe

 f The Checking selected options in dropdowns and lists recipe

Checking options in the Select element
While testing the dropdowns and lists created with the <select> element, there will be a
need to check to see that correct options are displayed for user selection. These options may
be static or populated from a database via AJAX calls.

In this recipe, we will see how options can be checked against the expected values.

Getting ready
This recipe will need the test created from the earlier Automating dropdowns and lists recipe.
We will add additional steps for checking the options.

How to do it...
Let's modify the testDropdown() test method for checking the options. Add the following
highlighted code to the test:

@Test
public void testDropdown() {

 // Get the Dropdown as a Select using it's name attribute
 Select make = new Select(driver.findElement(By.name("make")));

 // Verify Dropdown does not support multiple selection
 assertFalse(make.isMultiple());
 // Verify Dropdown has four options for selection
 assertEquals(4, make.getOptions().size());

 // We will verify Dropdown has expected values as listed in a
array
 List<String> expectedOptions = Arrays.asList("BMW", "Mercedes",
"Audi",
 "Honda");
 List<String> actualOptions = new ArrayList<String>();

 // Retrieve the option values from Dropdown using getOptions()
method

Working with Elements

82

 for (WebElement option : make.getOptions()) {
 actualOptions.add(option.getText());
 }

 // Verify expected options array and actual options array match
 assertArrayEquals(expectedOptions.toArray(), actualOptions.
toArray());

 // With Select class we can select an option in Dropdown using
Visible
 // Text
 make.selectByVisibleText("Honda");
 assertEquals("Honda", make.getFirstSelectedOption().getText());

 // or we can select an option in Dropdown using value attribute
 make.selectByValue("audi");
 assertEquals("Audi", make.getFirstSelectedOption().getText());

 // or we can select an option in Dropdown using index
 make.selectByIndex(0);
 assertEquals("BMW", make.getFirstSelectedOption().getText());
}

How it works...
Checking options in a dropdown or list needs a slightly different approach, as there is no
in-built method available in the Select class. In this approach, we create a list of expected
values that we want to check in the dropdown or list, as shown in the following code:

List<String> expectedOptions = Arrays.asList("BMW",
 "Mercedes", "Audi","Honda");

The text labels for all the options will be retrieved in a similar list. For this, we will iterate
through all the options using the getOptions() method of the Select class. The
getOptions() method returns all the options as instances of the WebElement class in a
list. Using the getText() method of the WebElement class, the text label of all the options
will be added in the actualOptions array list:

List<String> act_options = new ArrayList<String>();

 //Retrieve the option values from Dropdown using getOptions()
 //method
 for(WebElement option : make.getOptions()) {
actualOptions.add(option.getText()); }

Chapter 3

83

We will compare the expectedOptions list with actualOptions for any mismatch at
the end:

assertArrayEquals(expectedOptions.toArray(),actualOptions.toArray());

There's more...
To check whether a specific option is available for selection, we can simply perform a check
on the actualOptions array list in the following way:

assertTrue(actualOptions.contains("BMW"));

See also
 f The Automating dropdowns and lists recipe

 f The Checking selected options in dropdowns and lists recipe

Checking selected options in dropdowns
and lists

In earlier recipes, we saw how to select options in the dropdown and list controls as well as
how to check what options are available for selection. We also need to verify that the correct
options are selected in these controls, either by default or by the user.

In this recipe, we will see how to check options that are selected in a dropdown or list.

Getting ready
This recipe will need the test created from the earlier Automating dropdowns and lists recipe.
We will add additional steps for checking the options.

How to do it...
Let's modify the testDropdown() test method for checking the options. Add the following
highlighted code to the test:

@Test
public void testDropdown()
{
 ...

 //With Select class we can select an option in Dropdown using
 //Visible Text

Working with Elements

84

 make.selectByVisibleText("Honda");
 assertEquals("Honda", make.getFirstSelectedOption().getText());

 //or we can select an option in Dropdown using value attribute
 make.selectByValue("audi");
 assertEquals("Audi", make.getFirstSelectedOption().getText());

 //or we can select an option in Dropdown using index
 make.selectByIndex(0);
 assertEquals("BMW", make.getFirstSelectedOption().getText());
}

Also, modify the testMultipleSelectList()test method for checking the options. Add
the following highlighted code to the test:

@Test
public void testMultipleSelectList()
{
 ...

 //Select multiple options in the list using visible text
 color.selectByVisibleText("Black");
 color.selectByVisibleText("Red");
 color.selectByVisibleText("Silver");

 //We will verify list has multiple options selected as listed
 //in a array
 List<String> expectedSelection = Arrays.asList
 ("Black", "Red", "Silver");
 List<String> actualSelection = new ArrayList<String>();

 for(WebElement option : color.getAllSelectedOptions())
 {actualSelection.add(option.getText()); }

 //Verify expected array for selected options match with actual
 //options selected
 assertArrayEquals
 (expectedSelection.toArray(),actualSelection.toArray());

 //Verify there 3 options selected in the list
 assertEquals(3,color.getAllSelectedOptions().size());

 //Deselect an option using visible text
 color.deselectByVisibleText("Silver");
 //Verify selected options count

Chapter 3

85

 assertEquals(2,color.getAllSelectedOptions().size());

 //Deselect an option using value attribute of the option
 color.deselectByValue("rd");
 //Verify selected options count
 assertEquals(1,color.getAllSelectedOptions().size());

 //Deselect an option using index of the option
 color.deselectByIndex(0);
 //Verify selected options count
 assertEquals(0,color.getAllSelectedOptions().size());
}

How it works...
When the user selects an option from a dropdown or list that supports only single option
selection, the selected option can be queried through the getFirstSelectedOption()
method of the Select class. It returns the option as an instance of WebElement. For example,
in the Make dropdown, we selected the Honda option using the selectByVisible() method.
To check this selection, we can use the getFirstSelectedOption() and the getText()
methods in the following way:

//With Select class we can select an option in Dropdown using
Visible Text
 make.selectByVisibleText("Honda");
 assertEquals("Honda", make.getFirstSelectedOption().getText());

Checking selected options in a multi-select dropdown or list
To check selected options in a multi-select dropdown or list, we can use the
getAllSelectedOptions() method of the Select class. It returns all the selected
options as a list of WebElement. In this test, we created a list of expected selected items
and then retrieved the selected options in a list by iterating WebElement, returned by
getAllSelectedOptions():

//We will verify list has multiple options selected as listed in a
//array
List<String> expectedSelection = Arrays.asList("Black",
 "Red", "Silver");
List<String> actualSelection = new ArrayList<String>();

for(WebElement option : color.getAllSelectedOptions()) {
 actualSelection.add(option.getText()); }

Working with Elements

86

Using the assertArrayEquals() method of JUnit, we will compare both
expectedSelection and actualSelection to check that correct options
are selected in the list, as shown in the following code:

//Verify expected array for selected options match with actual
 //options selected
assertArrayEquals(expectedSelection.toArray(),
 actualSelection.toArray());

We can also check the number of options selected in a list by querying the size from the
getAllSelectedOptions() method. For example, as shown in the following code, we
selected three options in the list, so the getAllSelectedOptions().size() method
should return 3:

assertEquals(3,color.getAllSelectedOptions().size());

There's more...
To check whether a specific option is selected, we can simply perform a check on the
actualSelection array list in the following way:

assertTrue(actualSelection.contains("Red"));

See also
 f The Checking options in dropdowns and lists recipe

 f The Checking selected options in dropdowns and lists recipe

Automating radio buttons and radio groups
The Selenium WebDriver supports radio buttons and radio group elements using the
WebElement interface. We can select and deselect the radio buttons using the click()
method of the WebElement class, and check whether a radio button is selected or
deselected using the isSelected() method.

In this recipe, we will see how to work with the radio button and radio group controls.

How to do it...
Let's create a test that will have radio buttons and the radio group controls. We will perform
select and deselect operations, the following code shows an example:

@Test
public void testRadioButton() {
 // Get the Radio Button as WebElement using it's value attribute

Chapter 3

87

 WebElement petrol = driver.findElement(By
 .xpath("//input[@value='Petrol']"));

 // Check if its already selected? otherwise select the Radio
Button
 // by calling click() method
 if (!petrol.isSelected()) {
 petrol.click();
 }

 // Verify Radio Button is selected
 assertTrue(petrol.isSelected());

 // We can also get all the Radio buttons from a Radio Group in a
list
 // using findElements() method along with Radio Group identifier
 List<WebElement> fuelType =
driver.findElements(By.name("fuel_type"));
 for (WebElement type : fuelType) {
 // Search for Diesel Radio Button in the Radio Group and
select it
 if (type.getAttribute("value").equals("Diesel")) {
 if (!type.isSelected()) {
 type.click();
 }
 assertTrue(type.isSelected());
 break;
 }
 }
}

How it works...
We can locate a radio button similar to any other element. In this example, XPath is used to
locate the radio button using its value attribute:

//Get the Radiobutton as WebElement using it's value attribute
WebElement petrol = driver.findElement(By.xpath
 ("//input[@value='Petrol']"));

Working with Elements

88

We can select or deselect a radio button by using the click() method. There are no
separate methods to perform these operations. When we want to select a radio button, we
need to be careful and see to it that it's not already selected, or else, calling the click()
method will deselect the radio button. We can check if a radio button is already selected by
calling the isSelected() method, which returns true if it's selected and false if it's not
selected. In the following example, the click() method will be called only when the radio
button is not selected:

//Check if its already selected? otherwise select the Radiobutton
//by calling click() method
if (!petrol.isSelected()) {
 petrol.click();
}

Working with radio groups
Instead of just locating a single radio button, we can also work with a group of radio buttons
by locating all the radio buttons from a group shown as a list of WebElement using the
findElements() method. In the following example, a radio button from fuel_type radio
group is retrieved in a list of WebElement:

//We can also get all the Radiobuttons from a Radio Group in a
//list using findElements() method along with Radio Group
//identifier
List<WebElement> fuelType =
 driver.findElements(By.name("fuel_type"));

We can then iterate through this list to find a specific radio button and select or deselect a
radio button as shown in the following example:

for (WebElement type : fuelType)
{
 //Search for Diesel Radiobutton in the Radio Group and select it
 if(type.getAttribute("value").equals("Diesel"))
 {
 if(!type.isSelected()) {
 type.click();
}

 assertTrue(type.isSelected());
 break;
 }
}

Chapter 3

89

Automating checkboxes
Selenium WebDriver supports the checkbox element using the WebElement interface. We
can select or deselect a checkbox using the click() method and check whether a checkbox
is selected or deselected using the isSelected() method.

In this recipe, we will see how to work with the checkbox element.

How to do it...
Here is the code for a test that has a checkbox and performs the select and deselect
operations:

@Test
public void testCheckBox() {
 //Get the Checkbox as WebElement using it's value attribute
 WebElement airbags = driver.findElement(By.xpath("//input[@
value='Airbags']"));

 //Check if its already selected? otherwise select the Checkbox
 //by calling click() method
 if (!airbags.isSelected()) {
 airbags.click();
 }

 //Verify Checkbox is Selected
 assertTrue(airbags.isSelected());

 //Check Checkbox if selected? If yes, deselect it
 //by calling click() method
 if (airbags.isSelected()) {
 airbags.click();
 }

 //Verify Checkbox is Deselected
 assertFalse(airbags.isSelected());
}

Working with Elements

90

How it works...
We can locate a checkbox in a way similar to locating any other element on a page. In this
example, XPath is used to locate the checkbox by its value attribute:

WebElement airbags = driver.findElement
 (By.xpath("//input[@value='Airbags']"));

We can select or deselect a checkbox by using the click() method. There are no separate
methods to perform these operations. When we want to select a checkbox, we need to be
careful that it's not already selected, otherwise calling the click() method will deselect
the checkbox. We can check if a checkbox is already selected by calling the isSelected()
method, which returns true if it's selected and false if it's not selected. Here, the click()
method will be called only when the checkbox is not selected:

if (!airbags.isSelected()) {
 airbags.click();
}

Similarly, to deselect the checkbox, we need to see if it is already selected:

if (airbags.isSelected()) {
 airbags.click();
}

Working with WebTables
Similar to other element types that we have seen in earlier sections, an HTML table is
represented as WebElement. However, there are no table-specific methods that are
available with the WebElement interface.

While working with tables, we can find the rows and cells effectively by using a set of the
By class methods. In this recipe, we will see how to get rows and columns in table.

How to do it...
Let's create a simple test that will print data from a table, as shown in the following code
example:

@Test
public void testWebTable() {

 WebElement simpleTable = driver.findElement(By.id("items"));

 // Get all rows

Chapter 3

91

 List<WebElement> rows =
simpleTable.findElements(By.tagName("tr"));
 assertEquals(3, rows.size());

 // Print data from each row
 for (WebElement row : rows) {
 List<WebElement> cols = row.findElements(By.tagName("td"));
 for (WebElement col : cols) {
 System.out.print(col.getText() + "\t");
 }
 System.out.println();
 }
}

How it works...
A table in HTML is a collection of the <tr> and <td> elements for rows and cells respectively.
In the sample test, the table can be found as a WebElement using its ID attribute, as follows:

WebElement simpleTable = driver.findElement(By.id("items"));

To get all the rows from a table, the findElements() method is called on simpleTable
and the tagName strategy is used to get all <tr> elements as shown in the following way:

List<WebElement> rows =
 simpleTable.findElements(By.tagName("tr"));

Each <tr> element then holds the <td> elements, which are the columns or cells of the
table. The test iterates through the rows and columns to print the data in the following way:

//Print data from each row
for (WebElement row : rows) {
 List<WebElement> cols = row.findElements(By.tagName("td"));
 for (WebElement col : cols) {
 System.out.print(col.getText() + "\t");
 }
 System.out.println();
}

This method is useful when you have a test that needs to verify data in a table.

Working with Elements

92

There's more…
We can also use CSS selectors or XPath to find table rows and cells using the index matching
technique. In the following example, CSS selector is used to find the first cell of the second
row in the table:

WebElement cell = driver.findElement
 (By.cssSelector("table#items tbody tr:nth-child(2) td"));

Similarly, using XPath, it can be done in the following way:

WebElement cell = driver.findElement
 (By.xpath("//table[@id='items']/tbody/tr[2]/td"));

93

Working with
Selenium API

In this chapter, we will cover:

 f Checking for an element's presence

 f Checking for an element's state

 f Using Advanced User Interactions API for mouse and keyboard events

 f Performing double-click on an element

 f Performing drag-and-drop operations

 f Working with context menus

 f Executing the JavaScript code

 f Capturing screenshots with Selenium WebDriver

 f Maximizing the browser window

 f Handling session cookies

 f Working with browser navigation

 f Working with WebDriver events

Introduction
Selenium WebDriver implements a very comprehensive API to work with web elements,
perform advanced user interactions such as complex mouse and keyboard events, execute
JavaScript code, capture screenshots, and so on.

4

Working with Selenium API

94

In this chapter, we will explore how these features can be used to build simple to complex test
steps. This chapter will also help in overcoming some common issues when building tests with
Selenium WebDriver.

Checking an element's presence
The Selenium WebDriver does not implement Selenium RC's isElementPresent() method
to check if an element is present on a page. This method is useful for building a reliable test
that checks an element's presence before performing any action on it.

In this recipe, we will write a method similar to the isElementPresent() method.

How to do it...
To implement the isElementPresent() method, follow these steps:

1. Create a method isElementPresent() and keep it accessible to your tests,
shown as follows:
private boolean isElementPresent(By by) {
 try {
 driver.findElement(by);
 return true;
 } catch (NoSuchElementException e) {
 return false;
 }
}

2. Now, implement a test that calls the isElementPresent() method. It will check
if the desired element is present on a page. If found, it will click on the element;
else it fails the test. This is done as follows:

@Test
public void testIsElementPresent() {
 // Check if element with locator criteria exists on Page
 if (isElementPresent(By.name("airbags"))) {
 // Get the checkbox and select it
 WebElement airbag =
driver.findElement(By.name("airbags"));
 if (!airbag.isSelected()) {
 airbag.click();
 }
 } else {
 fail("Airbag Checkbox doesn't exists!!");
 }
}

Chapter 4

95

How it works...
The isElementPresent() method takes a locator using an instance of By. It then calls
the findElement() method. If the element is not found, a NoSuchElementException
exception will be thrown. Using the try and catch block, the isElementPresent() method
will return true if the element is found and no exception is thrown; otherwise, it will return
false if NoSuchElementException is thrown by the findElement() method.

See also
 f The Checking an element's status recipe

Checking an element's state
Many a time a test fails to click on an element or enter text in a field, as the element is
disabled or exists in the DOM but is hidden on the page. This will result in an error being
thrown and the test resulting in failure. To build reliable tests that can run unattended,
a robust exception and error handling is needed in the test flow.

We can handle these problems by checking the state of elements. The WebElement interface
provides the following methods to check the state of an element:

Method Purpose
isEnabled() This method checks if an element is enabled. It returns true if

enabled, else false if disabled.
isSelected() This method checks if an element is selected (radio button, checkbox,

and so on). It returns true if selected, else false if deselected.
isDisplayed() This method checks if an element is displayed.

In this recipe, we will use some of these methods to check the status and handle possible
errors.

How to do it...
We will create a test where a checkbox for the LED headlamp option needs to be selected on
a page. This checkbox will be enabled or disabled based on the previously selected option.
Before selecting this checkbox, we will make sure that it's enabled for selection, as follows:

@Test
public void testElementIsEnabled() {
 // Get the Checkbox as WebElement using it's name attribute
 WebElement ledheadlamp = driver.findElement(By
 .name("ledheadlamp"));

Working with Selenium API

96

 // Check if its enabled before selecting it
 if (ledheadlamp.isEnabled()) {
 // Check if its already selected? otherwise select the
Checkbox
 if (!ledheadlamp.isSelected()) {
 ledheadlamp.click();
 }
 } else {
 fail("LED Lamp Checkbox is disabled!!");
 }
}

How it works...
We are selecting a checkbox by checking the two states of an element—first, it is enabled,
and second, it is not selected. We can use the isEnabled() function of the WebElement
interface, which returns true if the element is enabled or false if it's disabled. The test will
fail if the checkbox is disabled. If we do not check this condition, the test will possibly throw
an exception saying the object is disabled, as follows:

// Check if its enabled before selecting it
if (ledheadlamp.isEnabled()) {
 // Check if its already selected? otherwise select the Checkbox
 if (!ledheadlamp.isSelected()) {
 ledheadlamp.click();
 }
} else {
 fail("LED Lamp Checkbox is disabled!!");
}

Using Advanced User Interactions API for
mouse and keyboard events

The Selenium WebDriver's Advanced User Interactions API allows us to perform operations
from keyboard events and simple mouse events to complex events such as dragging-and-
dropping, holding a key and then performing mouse operations using the Actions class, and
building a complex chain of events exactly like a user doing these manually.

The Actions class implements the builder pattern to create a composite action containing a
group of other actions.

In this recipe, we will use the Actions class to build a chain of events to select rows in a
table.

Chapter 4

97

How to do it...
Let's create a test to select the multiple rows from different positions in a table using the
Ctrl key (Command key on a Mac). We can select multiple rows by selecting the first row,
then holding the Ctrl key (Command key on a Mac), and then selecting another row and
releasing the Ctrl key (Command key on a Mac). This will select the desired rows from the
table, as shown in the following code:

@Test
public void testRowSelectionUsingControlKey() {

 List<WebElement> tableRows = driver.findElements
 (By.xpath("//table[@class='iceDatTbl']/tbody/tr"));

 //Select second and fourth row from table using Control Key.
 //Row Index start at 0
 Actions builder = new Actions(driver);
 builder.click(tableRows.get(1))
 .keyDown(Keys.CONTROL)
 .click(tableRows.get(3))
 .keyUp(Keys.CONTROL)
 .build().perform();

 //Verify Selected Row table shows two rows selected
 List<WebElement> rows = driver.findElements
 (By.xpath("//div[@class='icePnlGrp
 exampleBox']/table[@class='iceDatTbl']/tbody/tr"));
 assertEquals(2,rows.size());
}

On a Mac OS X machine, you need to use the Command key syntax instead
of the Control key syntax. For example:

Actions builder = new Actions(driver);
builder.click(tableRows.get(1)).keyDown(Keys.COMMAND)
 click(tableRows.get(3)).keyUp(Keys.COMMAND).
perform();}

Working with Selenium API

98

How it works...
We need to create an instance of the Actions class by passing the instance of the driver
class to the constructor in the following way:

Actions builder = new Actions(driver);

We will build a chain of events that we need to perform to select the rows. This will require
performing a click() operation on the first row, then holding the Ctrl key (Command key on
Mac) using the keyDown() operation, clicking on the end row, and then releasing the Ctrl key
(Command key on Mac) by calling keyUp(). The Actions class provides various methods to
perform keyboard and mouse operations:

 Actions builder = new Actions(driver);
 builder.click(tableRows.get(1)).keyDown(Keys.CONTROL)
 .click(tableRows.get(3)).keyUp(Keys.CONTROL)
 .build().perform();

We can create a composite action that is ready to be performed by calling the perform()
method of the Actions class.

The Keys class will represent all non-textual keys on the keyboard, for example, the
Ctrl key, the Shift key, the function keys, and so on. In the previous example, we used
keyDown(Keys.CONTROL) to press and hold the Ctrl key (Command key on a Mac)
until the next operation was completed.

Actions may not work properly for elements that are not visible or
enabled. Before using these events, make sure that elements are
visible and enabled.

See also
 f The Performing double-click on an element recipe

Performing double-click on an element
There will be elements in a web application that need double-click events fired to perform
some actions. For example, double-clicking on a row of a table will launch a new window.
The Advanced User Interaction API provides a method to perform a double-click.

In this recipe, we will use the Actions class to perform double-click operations.

Chapter 4

99

How to do it...
Let's create a test that locates an element for which a double-click event is implemented.
When we double-click on this element, it changes its color:

package com.secookbook.examples.chapter04;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.interactions.Actions;
import static org.junit.Assert.*;
import org.junit.Test;

public class DoubleClickTest {
 @Test
 public void testDoubleClick() throws Exception {
 WebDriver driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/DoubleClickDemo.ht
ml");

 try {
 WebElement message = driver.findElement(By.id("message"));

 // Verify color is Blue
 assertEquals("rgba(0, 0, 255, 1)",
 message.getCssValue("background-color"));

 Actions builder = new Actions(driver);
 builder.doubleClick(message).perform();

 // Verify Color is Yellow
 assertEquals("rgba(255, 255, 0, 1)",
 message.getCssValue("background-color"));
 } finally {
 driver.quit();
 }
 }
}

Working with Selenium API

100

How it works...
To perform a double-click on an element, the doubleClick() method of the Actions class
is called. To call this method, we need to create an instance of the Actions class, as shown
in the following code:

Actions builder = new Actions(driver);

The doubleClick() method needs the element on which the double-click event will be fired.
We can call the doubleClick() method by passing the element, as follows:

builder.doubleClick(message).perform();

See also
 f The Using Advanced User Interactions API for mouse and keyboard events recipe

 f The Performing drag-and-drop operations recipe

Performing drag-and-drop operations
Selenium WebDriver implements Selenium RC's dragAndDrop command using the Actions
class. As seen in earlier recipes, the Actions class supports advanced user interactions
such as firing various mouse and keyboard events. We can build simple or complex chains
of events using this class.

In this recipe, we will use the Actions class to perform drag-and-drop operations.

How to do it...
Let's implement a test that will perform a drag-and-drop operation on a page using the
Actions class:

@Test
public void testDragDrop() {
 driver.get("http://cookbook.seleniumacademy.com/DragDropDemo.html");

 WebElement source = driver.findElement(By.id("draggable"));
 WebElement target = driver.findElement(By.id("droppable"));

 Actions builder = new Actions(driver);
 builder.dragAndDrop(source, target) .perform();
 assertEquals("Dropped!", target.getText());
}

Chapter 4

101

How it works...
To drag an element on to another element and drop it, we need to locate these elements
and pass them to the dragAndDrop() method of the Actions class. To call this method,
we need to create an instance of the Actions class in the following way:

Actions builder = new Actions(driver);

The dragAndDrop() method needs the source element and target element, where the
source element will be dragged and dropped. We can call the dragAndDrop() method
in the following way:

builder.dragAndDrop(source, target).perform();

While writing this book, drag & drop for HTML5 was not supported
by Selenium WebDriver. Please visit https://code.google.
com/p/selenium/issues/detail?id=3604 for more details.
There is a workaround available to simulate the drag & drop feature
on HTML5 web applications. Visit https://gist.github.com/
rcorreia/2362544 for more details.

See also
 f The Using Advanced User Interactions API for mouse and keyboard events recipe

 f The Performing double-click on an element recipe

Working with context menus
A context menu (also known as a shortcut, a popup, or a pop-up menu) is a menu displayed
on a web page that appears when a user performs a right-click mouse operation. For example,
here is a jQuery contextMenu plug-in from http://bit.ly/1CAV05I, which displays the
editing menu when a user performs a right-click operation.

The Selenium WebDriver Actions class provides the contextClick() method to
perform a right-click operation. In this recipe, we will explore how to automate interaction
on a context menu.

https://code.google.com/p/selenium/issues/detail?id=3604
https://code.google.com/p/selenium/issues/detail?id=3604
https://gist.github.com/rcorreia/2362544
https://gist.github.com/rcorreia/2362544
http://bit.ly/1CAV05I

Working with Selenium API

102

How to do it...
Let's implement a test that will open a context menu and select one of the menu options
using the Actions class:

@Test
public void testContextMenu() {
 WebElement clickMeElement =
 driver.findElement(By.cssSelector("div.context-menu-
one.box.menu-1"));
 WebElement editMenuItem =
 driver.findElement(By.cssSelector("li.context-menu-
item.icon-edit"));

 Actions builder = new Actions(driver);
 builder.contextClick(clickMeElement)
 .moveToElement(editMenuItem)
 .click()
 .perform();

 WebDriverWait wait = new WebDriverWait(driver, 10);

 Alert alert = wait.until(ExpectedConditions.alertIsPresent());
 assertEquals("clicked: edit", alert.getText());
 alert.dismiss();
}

How it works...
To open the context menu on right click, the Actions class provides the contextClick()
method. This method will perform a right click on a specified element:

WebElement clickMeElement =
 driver.findElement(By.cssSelector("div.context-menu-
one.box.menu-1"));
 WebElement editMenuItem =
 driver.findElement(By.cssSelector("li.context-menu-
item.icon-edit"));

 Actions builder = new Actions(driver);
 builder.contextClick(clickMeElement)
 .moveToElement(editMenuItem)
 .click()

 .perform();

Chapter 4

103

We can then move to the desired element, in this case a element, which represents
one of the menu items. To perform the menu action, the click() method is called. In this
example, when the click() method is called, an alert is displayed and a test checks the
message on the alert box.

There's more...
In the preceding example, the test finds the menu item and then performs the click operation.
You might come across menus with shortcut keys. Using the Actions class, we can use
a combination of mouse events and keyboard key press events to open the desired menu
option. For example, the Edit menu has "e" as a shortcut key. We can open the context menu
and then send the Alt + E key combination to open the menu option in following way:

@Test
public void testContextMenuWithKeys() {
 WebElement clickMeElement =
 driver.findElement(By.cssSelector("div.context-menu-
one.box.menu-1"));

 Actions builder = new Actions(driver);
 builder.contextClick(clickMeElement)
 .sendKeys(Keys.chord(Keys.ALT, "e"))
 .perform();

 WebDriverWait wait = new WebDriverWait(driver, 10);

 Alert alert = wait.until(ExpectedConditions.alertIsPresent());
 assertEquals("clicked: edit", alert.getText());
 alert.dismiss();
}

See also
 f The Using Advanced User Interactions API for mouse and keyboard events recipe

Executing the JavaScript code
The Selenium WebDriver API provides the ability to execute JavaScript code with the browser
window. This is a very useful feature when tests need to interact with the page using JavaScript.
Using this API, client-side JavaScript code can also be tested using Selenium WebDriver.
Selenium WebDriver provides a JavascriptExecutor interface that can be used to execute
arbitrary JavaScript code within the context of the browser.

Working with Selenium API

104

In this recipe, we will explore how to use JavascriptExecutor to execute JavaScript code.
This book has various other recipes where JavascriptExecutor has been used to perform
some advanced operations that are not yet supported by Selenium WebDriver.

How to do it...
Let's create a test that will call JavaScript code to return title and count of links (that is a count
of Anchor tags) from a page. Returning a page title can also be done by calling the driver.
getTitle() method. The following is an example code for this:

@Test
public void testJavaScriptCalls() throws Exception {
 WebDriver driver = new ChromeDriver();
 driver.get("http://www.google.com");
 try {
 JavascriptExecutor js = (JavascriptExecutor) driver;

 String title = (String) js.executeScript("return
document.title");
 assertEquals("Google", title);

 long links = (Long) js
 .executeScript("var links = document.
getElementsByTagName('A'); return links.length");
 assertEquals(42, links);
 } finally {
 driver.quit();
 }
}

How it works...
By casting the WebDriver instance to a JavascriptExecutor interface, we can execute the
JavaScript code in Selenium WebDriver:

JavascriptExecutor js = (JavascriptExecutor) driver;

In the following example, a single line of JavaScript code is executed to return the title
of the page displayed in the driver. The JavascriptExecutor interface provides the
executeScript() method to which we need to pass the JavaScript code:

String title = (String) js.executeScript("return document.title");

Chapter 4

105

When returning values from the JavaScript code, we need to use the
return keyword. Based on the type of return value, we need to cast the
executeScript() method. For decimal values, Double can be used;
for non-decimal numeric values, Long can be used; and for Boolean
values, Boolean can be used. If JavaScript code is returning an HTML
element, then WebElement can be used. For text values, String can
be used. If a list of objects is returned, then any of the values will work
based on the type of objects. Otherwise, a null will be returned.

In the following example, we execute a multiline JavaScript code to retrieve the count of links
on a page:

long links = (Long) js.executeScript("var links =
 document.getElementsByTagName('A'); return links.length");

There's more...
Arguments can also be a passed to the JavaScript code being executed by using the
executeScript() method. In the following example, we want to set the value of an
element. A special arguments array will be used inside the JavaScript code, as shown in the
following code:

js.executeScript("document.getElementByID('name').value =
 arguments[0]","John");

Capturing screenshots with Selenium
WebDriver

Selenium WebDriver provides the TakesScreenshot interface to capture a screenshot of a
web page. This helps in test runs, showing exactly what happened when an exception or error
has occurred during execution, and so on. We can also capture screenshots during verification
of element state, values displayed in elements, or state after an action is completed.

Capturing screenshots also helps in the verification of layouts, field alignments, and so on,
where we compare screenshots taken during test execution with baseline images.

In this recipe, we will use the TakesScreenshot interface to capture a screenshot of the
web page under test.

Working with Selenium API

106

How to do it...
Let's create a test that will open our test application and take a screenshot of the page in PNG
(Portable Network Graphics) format, as shown in the following code example:

@Test
public void testTakesScreenshot() throws Exception {
 File scrFile = ((TakesScreenshot) driver)
 .getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new File("target/main_page.png"));
}

How it works...
The TakesScreenshot interface provides the getScreenshotAs() method to capture
a screenshot of the page displayed in the driver instance. In the following example, we
specified OutputType.FILE as an argument to the getScreenshotAs() method, so that
it will return the captured screenshot in a file:

File scrFile =
 ((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);

We can save the file object returned by the getScreenshotAs() method using the
copyFile() method of the FileUtils class from the org.apache.commons.
io.FileUtils class.

TakesScreenshot relies on the browser API to capture
the screenshots. The HtmlUnit driver does not support
the TakesScreenshot interface.

There's more...
The OutputType class provides multiple ways to output the screenshot data using the
getScreenshotAs() method. In the previous example, we saw a screenshot captured in
a file. Screenshots can also be captured in a Base64 string format or in raw bytes. In the
following example, a screenshot is captured as Base64 string:

String base64 =
 ((TakesScreenshot)driver).getScreenshotAs(OutputType.BASE64);

Chapter 4

107

Capturing screenshots with RemoteWebDriver/Selenium Grid
While running tests with RemoteWebDriver or Selenium Grid, it is not possible to take the
screenshots, as the TakesScreenshot interface is not implemented in RemoteWebDriver.

However, we can use the Augmenter class, which adds the TakesScreenshot interface to
the remote driver instance, as shown in the following code example:

driver = new Augmenter().augment(driver);
File scrFile =
 ((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);
FileUtils.copyFile(scrFile, new File("c:\\tmp\\screenshot.png"));

The Augmenter class enhances the RemoteWebDriver by adding various interfaces to it,
including the TakesScreenshot interface:

driver = new Augmenter().augment(driver);

Later, we can use the TakesScreenshot interface from RemoteWebDriver to capture
the screenshot.

See also
 f The Capturing screenshots of elements in the Selenium WebDriver recipe in Chapter 9,

Extending Selenium

 f The Comparing images in Selenium recipe in Chapter 9, Extending Selenium

Maximizing the browser window
Selenium RC's windowMaximize() command was missing in Selenium WebDriver. However,
starting from release 2.21, Selenium WebDriver supports maximizing the browser window.

In this short recipe, we will see how to maximize the browser window.

Getting ready
Create a new test that will get an instance of WebDriver, navigate to a site, and perform some
basic actions and verifications.

Working with Selenium API

108

How to do it...
To maximize a browser window, we need to call the maximize() method of the Window
interface of the driver class. Add the second line of code from the following code; this is
where you define an instance of FirefoxDriver:

driver = new FirefoxDriver();
driver.manage().window().maximize();

Handling session cookies
Websites use cookies to store user preferences, login information, and various other details
of the client. The Selenium WebDriver API provides various methods to manage these cookies
during testing. Using these methods, we can read cookie values, add cookies, and delete
cookies during the test. This can be used to test how the application reacts when cookies are
manipulated. The WebDriver.Options interface provides the following methods to manage
cookies:

Method Description
addCookie(Cookie cookie) This method adds a cookie.
getCookieNamed(String name) This method returns the cookie with a

specified name.
getCookies() This method returns all the cookies for

current domain.
deleteCookieNamed(String name) This method deletes the cookie with a

specified name.
deleteCookie(Cookie cookie) This method deletes a cookie.
deleteAllCookies() This method deletes all the cookies for

current domain.

In this recipe, we will see how to read a cookie and check it's value.

Getting ready
Create a new test that will get an instance of WebDriver, navigate to a site, and perform
some basic actions and verifications.

Chapter 4

109

How to do it...
Let's create a test that reads a cookie and checks its value, as shown in the following
code example:

@Test
public void testCookies() {
 driver.get("http://demo.magentocommerce.com/");

 // Get the Your language dropdown as instance of Select class
 Select language = new Select(driver.findElement(By
 .id("select-language")));

 // Check default selected option is English
 assertEquals("English",
language.getFirstSelectedOption().getText());

 // Store cookies should be none
 Cookie storeCookie = driver.manage().getCookieNamed("store");
 assertEquals(null, storeCookie);

 // Select an option using select_by_visible text
 language.selectByVisibleText("French");

 // Store cookie should be populated with selected country
 storeCookie = driver.manage().getCookieNamed("store");
 assertEquals("french", storeCookie.getValue());
}

How it works...
The WebDriver.Options interface provides various methods to add, read, change, and
delete cookies. In this example, when we change the language of the store, a cookie is used
to store language preference. We can read this cookie and its value in following way:

Cookie storeCookie = driver.manage().getCookieNamed("store");
assertEquals("french", storeCookie.getValue());

We called the getCookieNamed() method by passing the name of the cookie. It returns an
instance of the Cookie object. The Cookie object has various methods of reading value,
domain, and so on.

Working with Selenium API

110

Working with browser navigation
Browsers provide various navigation methods to access web pages from the browser history
or by refreshing the current page with the back, forward, and refresh/reload buttons on the
browser window's toolbar. The Selenium WebDriver API provides access to these buttons with
various methods of WebDriver.Navigation interface. We can test the behavior of the
application when these methods are used.

Method Description
back() This method moves back to the page in browser

history.
forward() This method moves forward to the page in browser

history.
refresh() This method reloads the current page.
to(String url)

to(java.net.URL url)

This method loads the specified URL in the
current browser window.

In this recipe, we will see browser navigation methods.

Getting ready
Create a new test that will get an instance of WebDriver, navigate to a site, and perform
some basic actions and verifications.

How to do it...
Let's create a test that calls various navigation methods and checks the behavior of the
application in following code example:

@Test
public void testNavigation() {
 driver.get("http://www.google.com");

 // Get the search textbox
 WebElement searchField = driver.findElement(By.name("q"));
 searchField.clear();

 // Enter search keyword and submit
 searchField.sendKeys("selenium webdriver");
 searchField.submit();

Chapter 4

111

 WebElement resultLink = driver.findElement(By
 .linkText("Selenium WebDriver"));
 resultLink.click();

 new WebDriverWait(driver, 10).until(ExpectedConditions
 .titleIs("Selenium WebDriver"));

 assertEquals("Selenium WebDriver", driver.getTitle());

 driver.navigate().back();

 new WebDriverWait(driver, 10).until(ExpectedConditions
 .titleIs("selenium webdriver - Google Search"));

 assertEquals("selenium webdriver - Google Search", driver.
getTitle());

 driver.navigate().forward();

 new WebDriverWait(driver, 10).until(ExpectedConditions
 .titleIs("Selenium WebDriver"));

 assertEquals("Selenium WebDriver", driver.getTitle());

 driver.navigate().refresh();

 new WebDriverWait(driver, 10).until(ExpectedConditions
 .titleIs("Selenium WebDriver"));

 assertEquals("Selenium WebDriver", driver.getTitle());
}

How it works...
The WebDriver.Navigation interface provide back() and forward() to load pages from
browser history. These methods represent the back and forward arrow buttons available in
any web browser. We can also refresh or reload a page by calling the refresh() method.

Working with Selenium API

112

Working with WebDriver events
The Selenium WebDriver provides the EventFiringWebDriver class, which listens to
various events happening during the test execution. For example, events are raised when
we navigate to a page, when a click is performed on an element, or value is changed. The
following table lists all the events that we can track during the test execution:

Event Description
beforeNavigateTo This method is called before the get(String url) or the

navigate().to(String url) method is called.
afterNavigateTo This method is called after the get(String url) or the

navigate().to(String url) method is called.
beforeNavigateBack This method is called before the navigate().back()

method.
afterNavigateBack This method is called after the navigate().back()

method.
beforeNavigateForward This method is called before the navigate().

forward() method.
afterNavigateForward This method is called after the navigate().forward()

method.
beforeFindBy This method is called before the following methods:

 f WebDriver.findElement(...)

 f WebDriver.findElements(...)

 f WebElement.findElement(...)

 f WebElement.findElements(...)

afterFindBy This method is called after the following methods:

 f WebDriver.findElement(...)

 f WebDriver.findElements(...)

 f WebElement.findElement(...)

 f WebElement.findElements(...)

beforeChangeValueOf This method is called before the WebElement.clear()
or the WebElement.sendKeys(...) method.

afterChangeValueOf This method is called after the WebElement.clear() or
the WebElement.sendKeys(...) method.

beforeClickOn This method is called before the WebElement.click()
method.

afterClickOn This method is called after the WebElement.click()
method.

Chapter 4

113

Event Description
beforeScript This method is called before the RemoteWebDriver.

executeScript(java.lang.String, java.lang.
Object[]) method.

afterScript This method is called after the RemoteWebDriver.
executeScript(java.lang.String, java.lang.
Object[]) method.

onException This method is called whenever an exception would be
thrown.

We can use these event handlers to process extra commands. For example, before entering
a value into a textbox, we can clear the existing value or capture a screenshot even if an
exception is raised by WebDriver. This is done with the following steps:

 f Create your own user-defined event listener class. We can add the code that will be
invoked when specific events are called to this class

 f Create an EventFiringWebDriver instance using WebDriver instance

 f And register the event listener class to the EventFiringWebDriver instance

The event listener class can be created in two ways:

 f By implementing the WebDriverEventListener interface

 f By extending the AbstractWebDriverEventListener class

In this recipe, we will see how to use EventFiringWebDriver to listen to the WebDriver
events.

Getting ready
Create a new test that will get an instance of WebDriver, navigate to a site, and perform
some basic actions and verifications.

How to do it...
First, we will define an event listener class by implementing the WebDriverEventListener
interface in the following way:

package com.secookbook.examples.chapter04;

import org.openqa.selenium.*;
import org.openqa.selenium.support.events.WebDriverEventListener;

public class MyListener implements WebDriverEventListener {

Working with Selenium API

114

 public void beforeChangeValueOf(WebElement element, WebDriver
driver) {
 element.clear();
 }

}

Next, we will create a test that uses EventFiringWebDriver:

package com.secookbook.examples.chapter04;

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.events.EventFiringWebDriver;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class EventFiringTest {
 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 driver = new FirefoxDriver();
 }

 @Test
 public void testEventFiringWebDriver() throws Exception {

 EventFiringWebDriver eventDriver =
 new EventFiringWebDriver(driver);
 MyListener myListener = new MyListener();
 eventDriver.register(myListener);

 eventDriver.get("http://bit.ly/1DbdhsW");
 eventDriver.findElement(By.id("q"))
 .sendKeys("Selenium Testing Tools Cookbook");
 }

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }
}

Chapter 4

115

There's more...
Let's add one more event handler to the event listener class to capture a screenshot when an
exception is thrown:

public void onException(Throwable exception, WebDriver driver) {
 try {
 if
(driver.getClass().getName().equals("org.openqa.selenium.remote.Re
moteWebDriver")) {
 driver = new Augmenter().augment(driver);
 }
 File scrFile = ((TakesScreenshot)
driver).getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new
File("target/screenshots/error.png"));
 } catch (Exception e) {
 e.printStackTrace();
 }
}

117

5
Synchronizing Tests

In this chapter, we will cover the following:

 f Synchronizing a test with an implicit wait

 f Synchronizing a test with an explicit wait

 f Synchronizing a test with custom-expected conditions

 f Synchronizing a test with FluentWait

Introduction
While building automated scripts for a complex web application using Selenium WebDriver,
we need to ensure that the test flow is maintained for reliable test automation.

When tests are run, the application may not always respond with the same speed. For example,
it might take a few seconds for a progress bar to reach 100 percent, a status message to
appear, a button to become enabled, and a window or pop-up message to open.

You can handle these anticipated timing problems by synchronizing your test to ensure that
Selenium WebDriver waits until your application is ready before performing the next step.
There are several options that you can use to synchronize your test. In this chapter, we will
see various features of Selenium WebDriver to implement synchronization in tests.

Synchronizing a test with an implicit wait
The Selenium WebDriver provides an implicit wait for synchronizing tests. When an implicit
wait is implemented in tests, if WebDriver cannot find an element in the DOM, it will wait for
a defined amount of time for the element to appear in the DOM. Once the specified wait time
is over, it will try searching for the element once again. If the element is not found in specified
time, it will throw the NoSuchElement exception.

Synchronizing Tests

118

In other terms, an implicit wait polls the DOM for a certain amount of time when trying to find
an element or elements if they are not immediately available. The default setting is 0.

Once set, the implicit wait is set for the life of the WebDriver object's instance.

In this recipe, we will briefly explore the use of an implicit wait. However, it is recommended
that you avoid or minimize the use of an implicit wait.

How to do it...
Let's create a test on a demo AJAX-enabled application as follows:

@Test
public void testWithImplicitWait() {
 WebDriver driver = new FirefoxDriver();
 // Launch the sample Ajax application
 driver.get("http://cookbook.seleniumacademy.com/AjaxDemo.html");

 // Set the implicit wait time out to 10 Seconds
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 try {
 // Get link for Page 4 and click on it
 driver.findElement(By.linkText("Page 4")).click();

 // Get an element with id page4 and verify it's text
 WebElement message = driver.findElement(By.id("page4"));
 assertTrue(message.getText().contains("Nunc nibh tortor"));
 } finally {
 driver.quit();
 }
}

How it works...
The Selenium WebDriver provides the Timeouts interface to configure the implicit wait.
The Timeouts interface provides an implicitlyWait() method , which accepts the
time the driver should wait when searching for an element. In this example, driver will
wait for an element to appear in DOM for 10 seconds after an initial try:

driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

Until the end of a test, or until an implicit wait is set back to 0, every time an element is
searched for using the findElement() method, the test will wait for 10 seconds for an
element to appear.

Chapter 5

119

Using an implicit wait may slow down tests when an application
responds normally, as it will wait for each element appearing in
the DOM and increase the overall execution time. Minimize or
avoid using an implicit wait. Use an explicit wait, which provides
more control when compared with an implicit wait.

See also
 f The Synchronizing a test with an explicit wait recipe

 f The Synchronizing a test with custom-expected conditions recipe

 f The Synchronizing a test with FluentWait recipe

Synchronizing a test with an explicit wait
The Selenium WebDriver provides an explicit wait for synchronizing tests, which provides
a better way to wait over an implicit wait. Unlike an implicit wait, you can write and use
pre-defined conditions or custom conditions for wait before proceeding further in the code.

The Selenium WebDriver provides the WebDriverWait and ExpectedConditions classes
to implement an explicit wait.

The ExpectedConditions class provides a set of predefined conditions to wait
for before proceeding further in the code. The following table shows some common
conditions that we frequently come across when automating web browsers supported
by the ExpectedConditions class:

Predefined condition Selenium method
An element is visible and enabled elementToBeClickable(By locator)
An element is selected elementToBeSelected(WebElement element)
Presence of an element presenceOfElementLocated(By locator)
Specific text present in an
element

textToBePresentInElement(By locator,
java.lang.String text)

Element value textToBePresentInElementValue(By
locator, java.lang.String text)

Title titleContains(java.lang.String title)

For more conditions, visit http://seleniumhq.github.io/
selenium/docs/api/java/index.html.

In this recipe, we will explore some of these conditions with the WebDriverWait class.

http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html

Synchronizing Tests

120

How to do it...
Let's implement a test that uses the ExpectedConditions.titleContains() method to
implement an explicit wait, as follows:

@Test
public void testExplicitWaitTitleContains()
{
 //Go to the Google Home Page
 WebDriver driver = new FirefoxDriver();
 driver.get("http://www.google.com");

 //Enter a term to search and submit
 WebElement query = driver.findElement(By.name("q"));
 query.sendKeys("selenium");
 query.click();

 //Create Wait using WebDriverWait.
 //This will wait for 10 seconds for timeout before title is
updated with search term
 //If title is updated in specified time limit test will move to
the text step
 //instead of waiting for 10 seconds
 WebDriverWait wait = new WebDriverWait(driver, 10);
 wait.until(ExpectedConditions.titleContains("selenium"));

 //Verify Title
 assertTrue(driver.getTitle().toLowerCase().startsWith("selenium"));

 driver.quit();
}

How it works...
We can define an explicit wait for a set of common conditions using the ExpectedConditions
class. First, we need to create an instance of the WebDriverWait class by passing the driver
instance and timeout for a wait, as follows:

WebDriverWait wait = new WebDriverWait(driver, 10);

Next, the ExpectedCondition is passed to the wait.until() method, as follows:

wait.until(ExpectedConditions.titleContains("selenium"));

The WebDriverWait object will call the ExpectedConditions class object every 500
milliseconds until it returns successfully.

Chapter 5

121

See also
 f The Synchronizing a test with an implicit wait recipe

 f The Synchronizing a test with custom-expected conditions recipe

 f The Synchronizing a test with FluentWait recipe

Synchronizing a test with custom-expected
conditions

With the explicit wait mechanism, we can also build custom-expected conditions along with
common conditions using the ExpectedConditions class. This comes in handy when a
wait cannot be handled with a common condition supported by the ExpectedConditions
class.

In this recipe, we will explore how to create a custom condition.

How to do it...
We will create a test that will create a wait until an element appears on the page using the
ExpectedCondition class as follows:

@Test
public void testExplicitWait() {

 WebDriver driver = new FirefoxDriver();
 // Launch the sample Ajax application
 driver.get("http://cookbook.seleniumacademy.com/AjaxDemo.html");

 try {
 driver.findElement(By.linkText("Page 4")).click();
 WebElement message = new WebDriverWait(driver, 5)
 .until(new ExpectedCondition<WebElement>() {
 public WebElement apply(WebDriver d) {
 return d.findElement(By.id("page4"));
 }
 });
 assertTrue(message.getText().contains("Nunc nibh tortor"));
 } finally {
 driver.quit();
 }
}

Synchronizing Tests

122

How it works...
The Selenium WebDriver provides the ability to implement the custom ExpectedCondition
interface along with the WebDriverWait class to create a custom-wait condition, as needed
by a test. In this example, we created a custom condition, which returns a WebElement object
once the inner findElement() method locates the element within a specified timeout, as
follows:

WebElement message = new WebDriverWait(driver, 5)
.until(new ExpectedCondition<WebElement>(){
 @Override
 public WebElement apply(WebDriver d) {
 return d.findElement(By.id("page4"));
}});

There's more...
A custom wait can be created in various ways. In the following section, we will explore some
common examples to implement a custom wait.

Waiting for an element's attribute value update
Based on the events and actions performed, the value of an element's attribute might
change at runtime. For example, a disabled textbox gets enabled based on the user's
rights. A custom wait can be created on the attribute value of the element. In the following
example, ExpectedCondition waits for a Boolean return value, based on the attribute
value of an element:

new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 return
d.findElement(By.id("userName")).getAttribute("readonly").contains
("true");
}});

Waiting for an element's visibility
Developers can hide or display elements based on the sequence of actions, user rights, and
so on. The specific element might exist in the DOM but are hidden from the user, and when
the user performs a certain action, it appears on the page. A custom wait condition can be
created based on the element's visibility, as follows:

new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {

Chapter 5

123

 public Boolean apply(WebDriver d) {
 return d.findElement(By.id("page4")).isDisplayed();
}});

Waiting for DOM events
The web application may be using a JavaScript framework such as jQuery for AJAX and
content manipulation. For example, jQuery is used to load a big JSON file from the server
asynchronously on the page. While jQuery is reading and processing this file, a test can
check its status using the active attribute. A custom wait can be implemented by
executing the JavaScript code and checking the return value, as follows:

new WebDriverWait(driver, 10).until(new
ExpectedCondition<Boolean>() {
 public Boolean apply(WebDriver d) {
 JavascriptExecutor js = (JavascriptExecutor) d;
 return (Boolean)js.executeScript("return jQuery.active ==
0");
}});

See also
 f The Synchronizing a test with an implicit wait recipe

 f The Synchronizing a test with an explicit wait recipe

 f The Synchronizing a test with FluentWait recipe

Synchronizing a test with FluentWait
The FluentWait class is an implementation of Selenium WebDriver's Wait interface.
Using the FluentWait class, we can define the maximum amount of time to wait for
an element or condition as well as the frequency with which to check for the condition.
We can also configure it to ignore specific types of exceptions such as the NoSuchElement
exception while searching for an element.

Unlike implicit and explicit wait, FluentWait uses a maximum timeout value and polling
frequency. For example, if we set the maximum timeout value as 20 seconds and polling
frequency as 2 seconds, WebDriver will check for an element every 2 seconds until the
maximum value. In addition to this, we can configure FluentWait to ignore specific types
of exceptions while waiting for the condition.

The FluentWait class is helpful in automating AJAX applications or scenarios where element
load time varies often.

In this recipe, we will explore some of these conditions with the FluentWait class.

Synchronizing Tests

124

How to do it...
Let's implement a test that uses the FluentWait class to find and wait for an element,
as shown in following code example:

@Test
public void testFluentWait() {
 WebDriver driver = new ChromeDriver();
 // Launch the sample Ajax application
 driver.get("http://cookbook.seleniumacademy.com/AjaxDemo.html");

 try {
 driver.findElement(By.linkText("Page 4")).click();

 Wait<WebDriver> wait = new FluentWait<WebDriver>(driver)
 .withTimeout(10, TimeUnit.SECONDS)
 .pollingEvery(2, TimeUnit.SECONDS)
 .ignoring(NoSuchElementException.class);

 WebElement message = wait
 .until(new Function<WebDriver, WebElement>() {
 public WebElement apply(WebDriver d) {
 return d.findElement(By.id("page4"));
 }
 });

 assertTrue(message.getText().contains("Nunc nibh tortor"));
 } finally {
 driver.quit();
 }
}

How it works...
We can define a fluent wait by using the FluentWait class. We can configure the maximum
timeout for 10 seconds, polling frequency for every 2 seconds, and exceptions to be ignored
by setting up methods of the FluentWait class, as shown in following code example:

Wait<WebDriver> wait = new FluentWait<WebDriver>(driver)
 .withTimeout(10, TimeUnit.SECONDS)
 .pollingEvery(2, TimeUnit.SECONDS)
 .ignoring(NoSuchElementException.class);

Chapter 5

125

When we use this instance further to find an element, WebDriver will wait for 10 seconds,
polling for the given element every 2 seconds in the DOM:

 WebElement message = wait
 .until(new Function<WebDriver, WebElement>(){
 public WebElement apply(WebDriver d) {
 return d.findElement(By.id("page4"));
 }});

In this example, we are finding an element with FluentWait, and returning the found
element back to the test.

There's more...
Unlike the previous example where we returned the element, we can also wait for given
conditions. The FluentWait class can be configured in multiple ways to handle wait
conditions, as shown in the following code example:

@Test
public void testFluentWaitWithPredicate() {

 final WebDriver driver = new ChromeDriver();
 // Launch the sample Ajax application
 driver.get("http://cookbook.seleniumacademy.com/AjaxDemo.html");

 try {
 FluentWait<By> wait = new FluentWait<By>(By.linkText("Page
4"))
 .withTimeout(1000, TimeUnit.MILLISECONDS)
 .pollingEvery(200, TimeUnit.MILLISECONDS)
 .ignoring(NoSuchElementException.class);

 wait.until(new Predicate<By>() {
 public boolean apply(By by) {
 try {
 return driver.findElement(by).isDisplayed();
 } catch (NoSuchElementException ex) {
 return false;
 }
 }
 });
 driver.findElement(By.linkText("Page 4")).click();
 } finally {
 driver.quit();
 }
}

Synchronizing Tests

126

See also
 f The Synchronizing a test with an implicit wait recipe

 f The Synchronizing a test with an explicit wait recipe

 f The Synchronizing a test with custom-expected conditions recipe

127

6
Working with Alerts,

Frames, and Windows

In this chapter, we will cover the following:

 f Handling a simple JavaScript alert box

 f Handling a confirm and prompt alert box

 f Identifying and handling frames

 f Working with IFRAME

 f Identifying and handling a child window

 f Identifying and handling a window by its title

 f Identifying and handling a pop-up window by its content

Introduction
To build a great user interface, developers use features similar to desktop applications in the
form of pop-up windows and alerts. While testing complex workflows, tests need to flow from
the browser window to a pop-up window in order to alert the user and perform operations
as needed. This chapter will explain common issues that pertain to the handling of pop-up
windows and alerts, and how best to use Selenium WebDriver API for this.

Working with Alerts, Frames, and Windows

128

Handling a simple JavaScript alert box
Web developers use JavaScript alerts to inform users about validation errors, warnings,
getting a response for an action, accepting an input value, and so on. Alert's are modal
windows displayed by browsers where user has to take action before processing further.
You can find more about JavaScript alert() method at http://www.w3schools.com/
jsref/met_win_alert.asp.

JavaScript alerts are implemented differently by browsers compared to other dialog windows
such as Print, Save, File Download, and so on.

Tests will need to verify that the user is shown correct alerts while testing. It is also required to
handle alerts while performing an end-to-end workflow. The Selenium WebDriver provides an
Alert interface for working with JavaScript alerts.

In this recipe, we will automate interaction with a simple alert box that is often used to notify
the user with information such as errors, warnings, and success. When an alert box pops up,
the user will have to click on the OK button to proceed, as shown in the following screenshot:

How to do it...
We will use a simple page on which a simple alert box is displayed to the user after a button
is clicked. Let's create a test that checks that correct information is displayed in the alert box,
as shown in the following code example:

package com.secookbook.examples.chapter06;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.By;
import org.openqa.selenium.Alert;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;

http://www.w3schools.com/jsref/met_win_alert.asp
http://www.w3schools.com/jsref/met_win_alert.asp

Chapter 6

129

import static org.junit.Assert.*;

public class AlertsTest {

 private static WebDriver driver;

 @BeforeClass
 public static void setUp() {
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/Alerts.html");
 driver.manage().window().maximize();
 }

 @Test
 public void testSimpleAlert() {
 // Click Simple button to show an Alert box
 driver.findElement(By.id("simple")).click();

 // Optionally we can also wait for an Alert box using the
WebDriverWait
 new WebDriverWait(driver, 10)
 .until(ExpectedConditions.alertIsPresent());

 // Get the Alert
 Alert alert = driver.switchTo().alert();

 // Get the text displayed on Alert
 String textOnAlert = alert.getText();

 // Check correct message is displayed to the user on Alert box
 assertEquals("Hello! I am an alert box!", textOnAlert);

 // Click OK button, by calling accept method
 alert.accept();
 }

 @AfterClass
 public static void tearDown() {
 driver.quit();
 }
}

Working with Alerts, Frames, and Windows

130

How it works...
The Selenium WebDriver provides an Alert interface for handling alerts. It provides various
methods for interacting with an alert box. The driver.switchTo().alert() method
returns an instance of the Alert for the alert box displayed on the screen, as follows:

Alert alert = driver.switchTo().alert();

We might need to verify what message is displayed in an alert box. We can get the text from
an alert box by calling the getText() method provided by Alert, as follows:

String textOnAlert = alert.getText();

An alert box is closed by clicking on the OK button; this is be done by calling the accept()
method, as follows:

alert.accept();

An alert box can also be accessed by directly calling desired methods.
The following code shows an example:

driver.switchTo().alert().accept();

There's more...
We can also create an explicit wait condition for an alert to be displayed on the page using the
WebDriverWait class and the alertIsPresent() method of the ExpectedConditions
class, as shown in the following code example:

new WebDriverWait(driver, 10)
 .until(ExpectedConditions.alertIsPresent());

// Get the Alert
Alert alert = driver.switchTo().alert();

This is useful when there is a delay after a user performs an action and an alert is displayed.

The NoAlertPresentException
The driver.switchTo().alert() method throws a NoAlertPresentException
exception when it tries to access an alert box that doesn't exist.

See also
 f The Handling a Confirm and Prompt Alert Box recipe

Chapter 6

131

Handling a confirm and prompt alert box
A confirm box is often used to verify or accept something from the user. When a confirm alert
is displayed, the user will have to click on either the OK or the Cancel button to proceed,
as shown in the following screenshot:

If the user clicks on the OK button, the confirm box returns a true value response. If the user
clicks on the Cancel button, then it returns false.

The prompt alert box
A prompt box is often used to accept a value from a user. When a prompt box pops up, the
user will have to enter a value and click on either the OK or the Cancel button to proceed,
as shown in the following screenshot:

If the user clicks on the OK button, the box returns the input value. If the user clicks on
the Cancel button, the box returns null.

In this recipe, we will handle confirm and prompt boxes using the Selenium WebDriver's
Alert interface.

www.allitebooks.com

http://www.allitebooks.org

Working with Alerts, Frames, and Windows

132

How to do it...
Let's create a set of tests that can handle a confirm box displayed on a page, as follows:

1. In the testConfirmAccept test, we will accept the confirm box and verify a
message on the page when the confirm box is accepted, that is, when the OK
button is clicked, as shown in following code:
@Test
 public void testConfirmAccept() {
 // Click Confirm button to show Confirmation Alert box
 driver.findElement(By.id("confirm")).click();

 // Get the Alert
 Alert alert = driver.switchTo().alert();

 // Click OK button, by calling accept method
 alert.accept();

 // Check Page displays correct message
 WebElement message = driver.findElement(By.id("demo"));
 assertEquals("You Accepted Alert!", message.getText());
 }

2. In the testConfirmDismiss test as shown in the following code, we will dismiss
the confirm box by calling the dismiss() method; this is the same as clicking the
Cancel button:
@Test
 public void testConfirmDismiss() {
 // Click Confirm button to show Confirmation Alert box
 driver.findElement(By.id("confirm")).click();

 // Get the Alert
 Alert alert = driver.switchTo().alert();

 // Click Cancel button, by calling dismiss method
 alert.dismiss();

 // Check Page displays correct message
 WebElement message = driver.findElement(By.id("demo"));
 assertEquals("You Dismissed Alert!", message.getText());
 }

Chapter 6

133

Handling a prompt box
Let's create a test that handles a prompt box. We will enter text into the prompt box's input field
and later verify if the same value is displayed on the page, as shown in following code example:

@Test
 public void testPrompt() {
 // Click Confirm button to show Prompt Alert box
 driver.findElement(By.id("prompt")).click();

 // Get the Alert
 Alert alert = driver.switchTo().alert();

 // Enter some value on Prompt Alert box
 alert.sendKeys("Foo");

 // Click OK button, by calling accept method
 alert.accept();

 // Check Page displays message with value entered in Prompt
 WebElement message = driver.findElement(By.id("prompt_demo"));
 assertEquals("Hello Foo! How are you today?",
message.getText());
 }

How it works...
Handling a confirm box works in a similar way to handling a simple alert box. To cancel a
confirm box, the dismiss() method of Alert is used, as follows:

alert.dismiss();

To handle a prompt box, the Alert interface provides an extra sendKeys() method
to enter text in the prompt box's input field. We can enter the text and either accept or
dismiss a prompt box using the Alert method, as follows:

alert.sendKeys("Foo");
alert.accept();

See also
 f The Handling a simple JavaScript alert box recipe

Working with Alerts, Frames, and Windows

134

Identifying and handling frames
HTML frames allow developers to present documents in multiple views, which may be in a
separate child window or sub-window. Multiple views offer developers a way to keep certain
information visible while other views are scrolled or replaced. For example, within the same
window, one frame might display a static banner, the second a navigation menu, and the third
the main document that can be scrolled through or replaced by navigating in the second frame.

A page with frames is created using the <frameset> tag or the <iframe> tag. All frame tags
are nested with a <frameset> tag. In the following example, a page will display three frames,
each loading different HTML pages:

<html>
 <frameset cols="25%,*,25%" frameborder="NO" framespacing="0"
border="0">
 <frame id="left" src="frame_a.htm" />
 <frame src="frame_b.htm" />
 <frame name="right" src="frame_c.htm" />
 </frameset>
</html>

Frames can be identified by an ID or through the name attribute. In this recipe, we will
identify and work with frames using the driver.switchTo().frame() method of the
WebDriver.TargetLocator interface, which is used to locate a given frame or window
using the id, name, instance of WebElement, and the index.

How to do it...
Let's create a test on a simple page that has three frames. We will use id, name and
index to identify these frames and interact with contents of these frames, as shown in
the following examples:

1. In the testFrameWithIdOrName test, we will use the name and id attributes to
identify frames, as shown in the following code:
package com.secookbook.examples.chapter06;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;

import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;

Chapter 6

135

import static org.junit.Assert.*;

public class FramesTest {

 public static WebDriver driver;

 @BeforeClass
 public static void setUp() {
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/Frames.html");
 driver.manage().window().maximize();
 }

 @Test
 public void testFrameWithIdOrName() {
 try {

 // Activate the frame on left side using it's id
attribute
 driver.switchTo().frame("left");

 // Get an element from the frame on left side and
verify it's
 // contents
 WebElement msg = driver.findElement(By.tagName("p"));
 assertEquals("This is Left Frame", msg.getText());
 } finally {
 // Activate the Page, this will move context from
frame back to the
 // Page
 driver.switchTo().defaultContent();
 }

 try {
 // Activate the frame on right side using it's name
attribute
 driver.switchTo().frame("right");

 // Get an element from the frame on right side and
verify it's
 // contents
 WebElement msg = driver.findElement(By.tagName("p"));
 assertEquals("This is Right Frame", msg.getText());
 } finally {

Working with Alerts, Frames, and Windows

136

 // Activate the Page, this will move context from
frame back to the
 // Page
 driver.switchTo().defaultContent();
 }
 }

 @AfterClass
 public static void tearDown() {
 // Close the Parent Popup Window
 driver.close();
 driver.quit();
 }
}

2. In the second test, testFrameByIndex, we will use index for identifying the frame,
as shown in the following code:
@Test
public void testFrameByIndex() {
 try {
 // Activate the frame in middle using it's index. Index starts
at 0
 driver.switchTo().frame(1);

 // Get an element from the frame in the middle and verify it's
 // contents
 WebElement msg = driver.findElement(By.tagName("p"));
 assertEquals("This Frame doesn't have id or name", msg.
getText());
 } finally {
 // Activate the Page, this will move context from frame back
to the
 // Page
 driver.switchTo().defaultContent();
 }
}

How it works...
The Selenium WebDriver's WebDriver.TargetLocator interface provides the driver.
switchTo().frame() method to activate a frame on a page and perform operations. This
method takes the id or name attribute value or instance of a WebElement (the <frame>
element can be located using the driver.findElement() method).

Chapter 6

137

In the following example, the id attribute is used to identify a frame:

//Activate the frame on left side using it's id attribute
driver.switchTo().frame("left");

When frames do not have the id or name attributes defined, index can be used to identify
a frame. In the preceding example, the frame in the middle does not have the id or name
attributes. The middle frame's index will be 1, as it has a frame on the left-hand side with
the index as 0, and on the right-hand side with the index 2:

//Activate the frame in middle using it's index. Index starts at 0
driver.switchTo().frame(1);

Once a frame is activated, we can leave the driver instance to interact with the page loaded in
the frame. To return to the main page, use the driver.switchTo().defaultContent()
method.

Warning: While working with multiple frames, when an operation is
completed on a frame and a test flow needs to move to another frame,
calling the driver.switchTo().frame() method will not move the
context to the desired frame. The test will first need to activate the main
page by calling the driver.switchTo().defaultContent()
method and then later activating the desired frame.

There's more…
While working with frames, you will find that the id or name attributes are not defined. Still,
frames can be identified using their index. This may not be a reliable way when applications
are dynamic and there is a need to ensure that the correct frame is activated.

Let's look at an example in which we will identify frames by the contents of the page loaded in
these frames to make tests more reliable, as shown in following code example:

@Test
public void testFrameByContents() {
 // Get all frames on the Page, created with <frame> tag
 List<WebElement> frames =
driver.findElements(By.tagName("frame"));

 // In this example frame in the middle is activated by checking
the
 // contents
 // Activate frame and check if it has the desired content. If
found
 // perform the operations

Working with Alerts, Frames, and Windows

138

 // if not, then switch back to the Page and continue checking
next frame
 try {
 for (WebElement frame : frames) {
 // switchTo().frame() also accepts frame elements apart from
id,
 // name or index
 driver.switchTo().frame(frame);
 String title = driver.getTitle();
 if (title.equals("Frame B")) {
 WebElement msg = driver.findElement(By.tagName("p"));
 assertEquals("This is Left Frame", msg.getText());
 break;
 } else
 driver.switchTo().defaultContent();
 }
 } finally {
 // Activate the Page, this will move context from frame back
to the
 // Page
 driver.switchTo().defaultContent();
 }
}

In Selenium WebDriver, we can get multiple elements matching the same criteria in a list.
Here we will get all frame elements from the page using the tagName() method, as shown
in following code example:

//Get all frames on the Page, created with <frame> tag
List<WebElement> frames = driver.findElements(By.tagName("frame"));

The test will iterate through each frame element, passing this element to the driver.
switchTo().frame() method and checking its content. If the frame has matching
content, then we can continue operations on the frame and later switch back to the
main page, as shown in the following code example:

for (WebElement frame : frames) {
 // switchTo().frame() also accepts frame elements apart from
id,
 // name or index
 driver.switchTo().frame(frame);
 String title = driver.getTitle();
 if (title.equals("Frame B")) {
 WebElement msg = driver.findElement(By.tagName("p"));
 assertEquals("This is Left Frame", msg.getText());
 break;

Chapter 6

139

 } else
 driver.switchTo().defaultContent();
 }

You can create a utility method to switch between frames
using their content.

See also
 f The Working with IFRAME recipe

Working with IFRAME
Developers can also embed external documents or documents from another domain using the
<iframe> tag, also known as inline frames. Various social media websites provide buttons
that can be embedded in your web applications to link to these websites. For example, you
can add a Twitter-follow button in your application, as follows:

<iframe allowtransparency="true" frameborder="0" scrolling="no"
src="http://platform.twitter.com/widgets/follow_button.html?screen
_name=upgundecha" style="width:300px; height:20px;"></iframe>

Identifying and working with the <iframe> tag is similar to a frame that is created with
the <frameset> tag. In this recipe, we will identify the <iframe> tag that is nested in
another frame.

How to do it...
We will create a test on a sample page which embeds the <iframe> tag within a frame.
We will move to the parent frame first and then to the <iframe> tag. The test will click the
element within the <iframe> tag and operate on a pop-up window currently displayed.
Finally, it will switch back to the main document. This is implemented as shown in the
following code example:

@Test
public void testIFrame() {
 // Store the handle of current driver window
 String currentWindow = driver.getWindowHandle();

 // The frame on the right side has a nested iframe containing
'Twitter
 // Follow' Button

Working with Alerts, Frames, and Windows

140

 // Activate the frame on right side using it's name attribute
 try {
 driver.switchTo().frame("right");

 // Get the iframe element
 WebElement twitterFrame =
driver.findElement(By.tagName("iframe"));

 try {
 // Activate the iframe
 driver.switchTo().frame(twitterFrame);
 // Get and Click the follow button from iframe
 // a Popup Window will appear after click
 WebElement button = driver.findElement(By.id("follow-
button"));
 button.click();

 try {
 // The Twitter Popup does not have name or title.
 // Script will get handles of all open windows and
 // desired window will be activated by checking it's Title

 for (String windowId : driver.getWindowHandles()) {
 driver.switchTo().window(windowId);
 if (driver.getTitle().equals(
 "Unmesh Gundecha (@upgundecha) on Twitter")) {
 assertTrue("Twitter Login Popup Window Found", true);
 driver.close();
 break;
 }

 }
 } finally {
 // Switch back to original driver window
 driver.switchTo().window(currentWindow);
 }
 } finally {
 // switch back to Page from the frame
 driver.switchTo().defaultContent();
 }

 } finally {
 // switch back to Page from the frame
 driver.switchTo().defaultContent();
 }
}

Chapter 6

141

How it works...
Working with IFRAME or inline frame is similar to working with a normal frame. In this example,
the <iframe> element is located using the findElement() method by passing the tag:

WebElement twitterFrame =
driver.findElement(By.tagName("iframe"));

To activate the frame, the driver.switchTo().frame() method is called by passing it an
instance of the WebElement, as follows:

driver.switchTo().frame(twitterFrame)

See also
 f The Identifying and handling frames recipe

Identifying and handling a child window
In Selenium WebDriver, testing multiple windows involves identifying a window, switching the
driver context to the window, then executing steps on the window, and finally, switching back
to the browser.

The Selenium WebDriver allows us to identify a window by its name attribute or window
handle, and switching between the window and the browser window is done using the
WebDriver.switchTo().window() method of WebDriver.TargetLocator.

In this recipe, we will identify and handle a window by using its name attribute. Developers
provide the name attribute for a window that is different from its title. In the following example,
a user can open a window by clicking on the Help button. In this case, the developer has
provided HelpWindow as its name:

<button id="helpbutton" on
Click='window.open("help.html","HelpWindow","width=500,height=500"
);'>Help</button>

How to do it...
Let's create a test that identifies a window using its name attribute, as shown in the following
code example:

package com.secookbook.examples.chapter06;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebDriver;

Working with Alerts, Frames, and Windows

142

import org.openqa.selenium.By;

import static org.junit.Assert.*;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;

public class WindowTest {

 public static WebDriver driver;

 @BeforeClass
 public static void setUp() {
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/Config.html");
 driver.manage().window().maximize();
 }

 @Test
 public void testWindowUsingName() {
 // Store WindowHandle of parent browser window
 String parentWindowId = driver.getWindowHandle();

 // Clicking Help button will open Help Page in a new child window
 driver.findElement(By.id("helpbutton")).click();

 try {
 // Switch to the Help window using name
 driver.switchTo().window("HelpWindow");

 try {
 // Check the driver context is in Help window
 assertEquals("Help", driver.getTitle());
 } finally {
 // Close the Help window
 driver.close();
 }
 } finally {
 // Switch to the parent browser window
 driver.switchTo().window(parentWindowId);
 }
 // Check driver context is in parent browser window
 assertEquals("Build my Car - Configuration",
driver.getTitle());

Chapter 6

143

 }

 @AfterClass
 public static void tearDown() {
 driver.quit();
 }
}

How it works...
The Selenium WebDriver provides a way to switch between the browser and windows and
change the context of the driver. To move to a child window from the parent or the browser
window, the driver.switchTo().window() method is used. This method accepts the
name or handle attribute of the window. In the following example, the name attribute is used:

//Switch to the Help window
driver.switchTo().window("HelpWindow");

Now we can perform actions or verifications on the window through the driver instance as usual.

During a test, when you want to move to a window called from a parent window, save the
parent window's handle attribute in a variable so that, when operations on the pop-up
window are over and we want to switch back to the parent window, we can use the handle
attribute, as follows:

//Save the WindowHandle of parent browser window
String parentWindowId = driver.getWindowHandle();

A test can switch back to the parent window using its handle attribute, as follows:

//Move back to the parent browser Window
driver.switchTo().window(parentWindowId);

NoSuchWindowException: The driver.switchTo().window()
method throws the NoSuchWindowException exception when it
fails to identify the desired window.

There's more...
Windows can be closed by calling the driver.close() method. However, developers might
implement the closing of a window by clicking on a button or a link. In this case, closing a
window directly might lead to errors or exceptions.

Working with Alerts, Frames, and Windows

144

See also
 f The Identifying and handling a window by its title recipe

 f The Identifying and handling a window by its content recipe

Identifying and handling a window by
its title

Many a time, developers don't assign the name attribute to windows. In such cases, we
can use its window handle attribute. However, the handle attributes keep changing and
it becomes difficult to identify the window, especially when there is more than one window
open. Using the handle and title attributes of the page displayed in a window, we can
build a more reliable way to identify child windows.

In this recipe, we will use the title attribute to identify the window and then perform
operations on it.

How to do it...
We will create a test that retrieves the handles of all the open windows in the current driver
context. We will iterate through this list and check the title matching the criteria, as follows:

@Test
public void testWindowUsingTitle() {
 // Store WindowHandle of parent browser window
 String parentWindowId = driver.getWindowHandle();

 // Clicking Visit Us Button will open Visit Us Page in a new
child
 // window
 driver.findElement(By.id("visitbutton")).click();

 // Get Handles of all the open windows
 // iterate through list and check if tile of
 // each window matches with expected window title
 try {
 for (String windowId : driver.getWindowHandles()) {
 String title = driver.switchTo().window(windowId).getTitle();
 if (title.equals("Visit Us")) {
 assertEquals("Visit Us", driver.getTitle());
 // Close the Visit Us window
 driver.close();

Chapter 6

145

 break;
 }
 }
 } finally {
 // Switch to the parent browser window
 driver.switchTo().window(parentWindowId);
 }

 // Check driver context is in parent browser window
 assertEquals("Build my Car - Configuration", driver.getTitle());
}

How it works...
The driver.getWindowHandles() method returns the handles of all the open windows in
a list. We can then iterate through this list and find out the matching window by checking the
title of each window using the handle attribute, as follows:

for (String windowId : driver.getWindowHandles()) {
 String title =
driver.switchTo().window(windowId).getTitle();
 if (title.equals("Visit Us")) {
 assertEquals("Visit Us", driver.getTitle());
 // Close the Visit Us window
 driver.close();
 break;
 }
 }

You can create a reusable function for identifying pop-up windows
using the title attribute.

See also
 f The Identifying and handling windows recipe

 f The Identifying and handling a window by its content recipe

Working with Alerts, Frames, and Windows

146

Identifying and handling a pop-up window by
its content

In certain situations, developers neither assign a name attribute nor provide a title to the page
displayed in a window. This becomes more complex when a test needs to deal with multiple
windows open at the same time and identify the desired window.

As a workaround to this problem, we can check the contents of each window returned by the
driver.getWindowHandles() method to identify the desired window.

How to do it...
Let's create a test that retrieves the handles of all the open windows in the current driver
context. It will then iterate through this list, switching to the window and then checking
for the content, which will help in identifying the correct window, as shown in the following
code example:

@Test
public void testWindowUsingContents() {
 // Store WindowHandle of parent browser window
 String currentWindowId = driver.getWindowHandle();

 // Clicking Chat Button will open Chat Page in a new child
window
 driver.findElement(By.id("chatbutton")).click();

 // There is no name or title provided for Chat Page window
 // We will iterate through all the open windows
 // and check the contents to find out if it's Chat window
 try {
 for (String windowId : driver.getWindowHandles()) {
 driver.switchTo().window(windowId);

 // We will use the page source to check the contents
 String pageSource = driver.getPageSource();

 if (pageSource.contains("Configuration - Online Chat")) {

 // Check the page for an element displaying a expected
 // message
 assertTrue(driver.findElement(By.tagName("p")).getText()
 .equals("Wait while we connect you to Chat..."));

Chapter 6

147

 // Find the Close Button on Chat Window and close the
window
 // by clicking Close Button
 driver.findElement(By.id("closebutton")).click();
 break;
 }
 }
 } finally {
 // Switch back to the parent browser window
 driver.switchTo().window(currentWindowId);
 }
 // Check driver context is in parent browser window
 assertEquals("Build my Car - Configuration", driver.getTitle());
}

How it works...
By calling the driver.getWindowHandles() method, the test will iterate through each
open window, switching to the window and then checking if the desired content is present
in the window with the help of the following code snippet:

for (String windowId : driver.getWindowHandles()) {
 driver.switchTo().window(windowId);

 // We will use the page source to check the contents
 String pageSource = driver.getPageSource();

 if (pageSource.contains("Configuration - Online Chat")) {

 // Check the page for an element displaying a expected
 // message
 assertTrue(driver.findElement(By.tagName("p")).getText()
 .equals("Wait while we connect you to Chat..."));

 // Find the Close Button on Chat Window and close the
window
 // by clicking Close Button
 driver.findElement(By.id("closebutton")).click();
 break;
 }
 }

In this example, it checks for specific text appearing on a page by calling the driver.
getPageSource() method.

Working with Alerts, Frames, and Windows

148

If a window is found with the specific text, it will be closed by clicking on the Close button
instead of calling the driver.close() method. You can implement this in your test when
windows cannot be identified by using the name attribute or the title. This will help in building
more reliable tests.

See also
 f The Identifying and handling windows recipe

 f The Identifying and handling a window by its title recipe

149

7
Data-Driven Testing

In this chapter, we will cover:

 f Creating a data-driven test using JUnit

 f Creating a data-driven test using TestNG

 f Reading test data from a CSV file using JUnit

 f Reading test data from an Excel file using JUnit and Apache POI

 f Creating a data-driven test in NUnit

 f Creating a data-driven test in MSTEST

 f Creating a data-driven test in Ruby using Roo

 f Creating a data-driven test in Python using DDT

Introduction
The data-driven testing approach is a widely used methodology in software test automation.
We can use the same test script to check different test conditions by passing set of data to
the test script.

We will use the BMI calculator application as an example to understand the data-driven
testing approach.

When testing whether the BMI calculator application indicates BMI categories correctly,
instead of having a separate test script for each category, we can have one script that will
enter the height and weight by referring to a set of values and checking the expected values.

Data-Driven Testing

150

We can use the following combinations of test conditions to test the BMI calculator application:

Height (centimeters) Weight (kilograms) BMI Category
160 45 17.6 Underweight
168 70 24.8 Normal
181 89 27.2 Overweight
178 100 31.6 Obesity

In the simplest form, the tester supplies inputs from a row in the table and expected outputs,
which occur in the same row.

Data-driven approach – workflow
In the data-driven approach, we can maintain the test data in form tables in a variety of
formats, such as CSV files, Excel spreadsheets, and databases.

We implement test scripts after reading input and output values from data files row by row,
then passing the values to the main test code. Then, the test code navigates through the
application, executing the steps needed for the test case using the variables loaded with
data values.

Data-driven tests are great for applications involving calculations for testing ranges of values,
boundary values, and corner cases.

Benefits of data-driven testing
The benefits of data-driven testing are as follows:

 f With data-driven tests, we can get greater test coverage while minimizing the amount
of test code we need to write and maintain

 f Data-driven testing makes creating and running a lot of test conditions very easy

 f Test data can be designed and created before the application is ready for testing

 f Data tables can also be used in manual testing

Selenium WebDriver, being a pure browser automation API, does not provide built-in features
to support data-driven testing. However, we can add support for data-driven testing using
various options in Selenium WebDriver. In this chapter, we will create some basic data-driven
tests in JUnit and TestNG. Later, we will build some advanced data-driven tests using different
data sources in JUnit, and a data-driven test in Ruby using Roo and Python.

We will also create data driven tests for .NET bindings using NUnit and MSTest.

Chapter 7

151

Creating a data-driven test using JUnit
JUnit is a popular testing framework used to create Selenium WebDriver tests in Java.
We can create data-driven Selenium WebDriver tests using the JUnit 4 parameterization
feature. This can be done by using the JUnit parameterized class runner.

In this recipe, we will create a simple JUnit test case to test our BMI calculator application.
We will specify the test data within our JUnit test case class. We will use various JUnit
annotations to create a data-driven test.

Getting ready
The following are the things we need to do:

 f Set up a new project and add JUnit4 to the project's build path. You can set up the
project in an IDE of your choice.

 f Identify the set of values that need to be tested.

How to do it...
Let's create a data-driven test using JUnit by following these steps:

1. Create a new JUnit test class that uses a parameterized runner using
@RunWith(Parameterized.class):

package com.secookbook.examples.chapter07;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.junit.*;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized.Parameters;
import org.junit.runners.Parameterized;

import static org.junit.Assert.*;

import java.util.Arrays;
import java.util.List;

@RunWith(Parameterized.class)
public class SimpleDDT {

Data-Driven Testing

152

 private static WebDriver driver;

}

2. Declare instance variables for the parameterized values in the SimpleDDT class:
private String height;
private String weight;
private String bmi;
private String bmiCategory;

3. Define a method that will return the collection of parameters to the SimpleDDT class
by using the @Parameters annotation:
@Parameters
public static List<String[]> testData() {
 return Arrays.asList(new String[][] {
 { "160", "45", "17.6", "Underweight" },
 { "168", "70", "24.8", "Normal" },
 { "181", "89", "27.2", "Overweight" },
 { "178", "100", "31.6", "Obesity" } });
}

4. Add a constructor to the SimpleDDT class, which will be used by the test runner to
pass the parameters to the SimpleDDT class instance:
public SimpleDDT(String height, String weight, String bmi,
String bmiCategory)
{
 this.height = height;
 this.weight = weight;
 this.bmi = bmi;
 this.bmiCategory = bmiCategory;
}

5. Finally, add the test case method testBMICalculator() that uses parameterized
variables. Also, add the setup()and teardown() methods to the SimpleDDT class:
@Test
public void testBMICalculator() throws Exception {
 // Get the Height element and set the value using height
variable
 WebElement heightField =
driver.findElement(By.name("heightCMS"));
 heightField.clear();
 heightField.sendKeys(height);

Chapter 7

153

 // Get the Weight element and set the value using weight
variable
 WebElement weightField =
driver.findElement(By.name("weightKg"));
 weightField.clear();
 weightField.sendKeys(weight);

 // Click on Calculate Button
 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 // Get the Bmi element and verify its value using bmi
variable
 WebElement bmiLabel = driver.findElement(By.name("bmi"));
 assertEquals(bmi, bmiLabel.getAttribute("value"));

 // Get the Bmi Category element and verify its value
using
 // bmiCategory variable
 WebElement bmiCategoryLabel = driver.findElement(By
 .name("bmi_category"));
 assertEquals(bmiCategory,
bmiCategoryLabel.getAttribute("value"));
}

How it works...
When the test is executed for each row in the test data collection, the test runner will
instantiate the test case class, passing the test data as parameters to the SimpleDDT
class constructor. It will then execute all the tests in the SimpleDDT class.

Instance variables are declared to store the test data passed by the test runner, as shown
in the following code snippet:

private String height;
private String weight;
private String bmi;
private String bmiCategory;

Data-Driven Testing

154

In the test case class constructor, these variables are assigned with values at runtime by
the test runner from the test data collection, using the test method arguments as shown
in following code:

public SimpleDDT(String height, String weight, String bmi, String
bmiCategory)
{
 this.height = height;
 this.weight = weight;
 this.bmi = bmi;
 this.bmiCategory = bmiCategory;
}

In the testBMICalculator() method, we passed these variables to Selenium WebDriver
API. For example, to enter a value in the height field, we used the instance variable of the
test case class as follows:

WebElement heightField = driver.findElement(By.name("heightCMS"));
heightField.sendKeys(this.height);

The expected result is also parameterized using the instance variable for BMI value, as shown
in following code:

WebElement bmiLabel = driver.findElement(By.name("bmi"));
assertEquals(this.bmi, bmiLabel.getAttribute("value"));

JUnit will display results for each set of test data along with the time taken to execute it,
as shown in the following screenshot:

Chapter 7

155

This is one of the simplest ways to parameterize a test; however, test data is hardcoded within
the test case class, which could become difficult to maintain. It is always recommended that
we store the test data in an external source such as a CSV, Excel, or database file for easier
maintenance.

See also
 f The Reading test data from a CSV file using JUnit recipe

 f The Reading test data from an Excel file using JUnit and Apache POI recipe

Creating a data-driven test using TestNG
TestNG is another widely used testing framework with Selenium WebDriver. It is very similar
to JUnit. TestNG has rich features for testing, such as parameterization, parallel test execution,
and so on.

TestNG provides the DataProvider feature to create data-driven tests. In this recipe, we will
use the DataProvider feature to create a simple test. Creating data-driven tests in TestNG
is fairly easy when compared with JUnit.

Getting ready
The following are the steps we need to begin with:

 f Add TestNG dependency to the Maven pom.xml file:
<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.9.4</version>
 <scope>test</scope>
</dependency>

 f Identify the set of values that we need to test.

How to do it...
Let's create a new test and parameterize a TestNG test using the following steps:

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

Data-Driven Testing

156

import org.testng.annotations.*;
import static org.testng.Assert.*;

public class TestNGDDT {

 private WebDriver driver;

 @DataProvider
 public Object[][] testData() {
 return new Object[][] {
 new Object[] { "160", "45", "17.6", "Underweight"
},
 new Object[] { "168", "70", "24.8", "Normal" },
 new Object[] { "181", "89", "27.2", "Overweight" },
 new Object[] { "178", "100", "31.6", "Obesity" }, };
 }

 @BeforeTest
 public void setUp() {
 // Create a new instance of the Firefox driver
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/bmicalculat
or.html");

 }

 @Test(dataProvider = "testData")
 public void testBMICalculator(String height, String
weight, String bmi,
 String category) {
 WebElement heightField =
driver.findElement(By.name("heightCMS"));
 heightField.clear();
 heightField.sendKeys(height);

 WebElement weightField =
driver.findElement(By.name("weightKg"));
 weightField.clear();
 weightField.sendKeys(weight);

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 WebElement bmiLabel = driver.findElement(By.name("bmi"));
 assertEquals(bmiLabel.getAttribute("value"), bmi);

 WebElement bmiCategoryLabel = driver.findElement(By
 .name("bmi_category"));

Chapter 7

157

 assertEquals(bmiCategoryLabel.getAttribute("value"),
category);
 }

 @AfterTest
 public void tearDown() {
 driver.quit();
 }
}

How it works...
Unlike the JUnit, where parameterization is done on a class level, TestNG supports
parameterization at the test level.

In TestNG, we do not need a constructor and instance variable for
the test case class to pass the parameter values. TestNG does the
mapping automatically.

When a method is annotated with @DataProvider, it becomes a data feeder method
by passing the test data to the test case. In this example, the testData() method will
become the data feeder method, and TestNG will pass the array of data rows to the test
method one by one:

@DataProvider
public Object[][] testData() {
 return new Object[][] {
 new Object[] {"160","45","17.6","Underweight"},
 new Object[] {"168","70","24.8","Normal"},
 new Object[] {"181","89","27.2","Overweight"},
 new Object[] {"178","100","31.6","Obesity"},
 };
}

The test case method is linked to the data feeder method by passing the name of the
dataProvider method to the @Test annotation:

@Test(dataProvider = "testData")
public void testBMICalculator(String height, String weight, String
bmi, String category)

TestNG will execute the test four times with different test combinations. TestNG also
generates a well-formatted report at the end of the test execution.

Data-Driven Testing

158

There's more...
To run Selenium tests in parallel, the TestNG parameterization feature comes in very handy.
TestNG supports running Selenium tests parallel in a multithreading safe environment.

See also
 f The Reading test data from a CSV file using JUnit recipe

 f The Reading test data from an Excel file using JUnit and Apache POI recipe

Reading test data from a CSV file using JUnit
We saw a simple data-driven test using JUnit and TestNG. The test data was hardcoded in the
test script code. This could become difficult to maintain. It is recommended that we store the
test data separately from the test scripts.

Often we use data from the production environment for testing. This data can be exported
in CSV format. We will use OpenCSV library to read a CSV file. For more details on OpenCSV,
headon to http://opencsv.sourceforge.net/.

In this recipe, we will read data from a CSV file and use this data to execute the test script.

Getting ready
To begin, follow these steps:

 f Add OpenCSV dependency to the Maven pom.xml file:
<dependency>
 <groupId>com.opencsv</groupId>
 <artifactId>opencsv</artifactId>
 <version>3.4</version>
 <scope>test</scope>
</dependency>

 f Prepare a CSV file with the required data.

http://opencsv.sourceforge.net/

Chapter 7

159

How to do it...
Let's create a new JUnit test and CSV parametrization, as shown in the following example:

package com.secookbook.examples.chapter07;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.junit.*;
import org.junit.runner.*;
import org.junit.runners.*;
import org.junit.runners.Parameterized.Parameters;

import com.opencsv.CSVReader;

import static org.junit.Assert.*;

import java.io.*;
import java.util.*;

@RunWith(Parameterized.class)
public class CsvTestData {

 private static WebDriver driver;

 private String height;
 private String weight;
 private String bmi;
 private String bmiCategory;

 @Parameters
 public static List<String[]> testData() throws
IOException {
 return getTestData("./src/test/resources/testdata/data.csv");
 }

 public CsvTestData(String height, String weight, String
bmi,
 String bmiCategory) {
 this.height = height;
 this.weight = weight;
 this.bmi = bmi;

Data-Driven Testing

160

 this.bmiCategory = bmiCategory;
 }

 public static List<String[]> getTestData(String fileName)
 throws IOException {
 CSVReader reader = new CSVReader(new
FileReader(fileName));
 List<String[]> myEntries = reader.readAll();
 reader.close();
 return myEntries;
 }

 @BeforeClass
 public static void setUp() throws Exception {
 // Create a new instance of the Firefox driver
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/bmicalculat
or.html");
 }

 @Test
 public void testBMICalculator() throws Exception {
 WebElement heightField =
driver.findElement(By.name("heightCMS"));
 heightField.clear();
 heightField.sendKeys(height);

 WebElement weightField =
driver.findElement(By.name("weightKg"));
 weightField.clear();
 weightField.sendKeys(weight);

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 WebElement bmiLabel =
driver.findElement(By.name("bmi"));
 assertEquals(bmi, bmiLabel.getAttribute("value"));

 WebElement bmiCategoryLabel = driver.findElement(By
 .name("bmi_category"));
 assertEquals(bmiCategory,
bmiCategoryLabel.getAttribute("value"));
 }

Chapter 7

161

 @AfterClass
 public static void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

How it works...
When the test is executed, the testData() method will call the getTestData() helper
method by passing the path of the CSV file. Inside the getTestData() method, the
BufferedReader class from the java.io namespace is used to read the file line by line.
Lines are then split into an array of strings using the comma delimiter. This array is then added
to Collection or ArrayList, either of which is then returned to the testData() method.

For each row in the test data collection returned by the testData() method, the test runner
will instantiate the test case class, passing the test data as parameters to the test class
constructor, and it will then execute all the tests in the test class.

See also
 f The Creating a data-driven test using JUnit recipe

 f The Reading test data from an Excel file using JUnit and Apache POI recipe

Reading test data from an Excel file using
JUnit and Apache POI

To maintain test cases and test data, Microsoft Excel is the favorite tool used by testers.
Compared to the CSV file format, Excel gives numerous features and a structured way to store
data. A tester can create and maintain tables of test data in an Excel spreadsheet easily.

In this recipe, we will use an Excel spreadsheet as your data source. We will use the Apache
POI API, developed by the Apache Foundation, to manipulate the Excel spreadsheet. This
recipe also implements some negative test handling.

Getting ready
To begin, follow these steps:

 f Add OpenCSV dependency to the Maven pom.xml file:
<dependency>
 <groupId>com.opencsv</groupId>

Data-Driven Testing

162

 <artifactId>opencsv</artifactId>
 <version>3.4</version>
 <scope>test</scope>
</dependency>

 f Prepare an Excel spreadsheet with the required data

We will also need a SpreadsheetData helper class to read the Excel spreadsheets. This is
available in the source code bundle for this book. This class supports both the old .xls and
newer .xlsx formats.

How to do it...
Let's create a test that uses Excel spreadsheet test data for parameterization, as shown in the
following code example:

package com.secookbook.examples.chapter07;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

import org.junit.*;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized.Parameters;
import org.junit.runners.Parameterized;
import static org.junit.Assert.*;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Collection;

@RunWith(Parameterized.class)
public class ExcelTestData {

 private static WebDriver driver;

 private String height;
 private String weight;
 private String bmi;
 private String bmiCategory;
 private String error;

Chapter 7

163

 @Parameters
 public static Collection testData() throws Exception {
 InputStream spreadsheet = new FileInputStream("./src/test/
resources/testdata/Data.xlsx");
 return new SpreadsheetData(spreadsheet).getData();
 }

 public ExcelTestData(String height, String weight, String bmi,
 String bmiCategory, String error) {
 this.height = height;
 this.weight = weight;
 this.bmi = bmi;
 this.bmiCategory = bmiCategory;
 this.error = error;
 }

 @BeforeClass
 public static void setUp() throws Exception {

 // Create a new instance of the Chrome driver
 driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/bmicalculator.
html");
 }

 @Test
 public void testBMICalculator() throws Exception {
 WebElement heightField = driver.findElement(By.name("heightCMS"));
 heightField.clear();
 if (!height.equals("<Blank>")) {
 heightField.sendKeys(this.height);
 }

 WebElement weightField =
driver.findElement(By.name("weightKg"));
 weightField.clear();
 if (!weight.equals("<Blank>")) {
 weightField.sendKeys(this.weight);
 }

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

Data-Driven Testing

164

 if (error.equals("<Blank>")) {
 WebElement bmiField = driver.findElement(By.name("bmi"));
 assertEquals(this.bmi, bmiField.getAttribute("value"));

 WebElement bmiCategoryField = driver.findElement(By
 .name("bmi_category"));
 assertEquals(this.bmiCategory,
 bmiCategoryField.getAttribute("value"));
 } else {
 WebElement errorLabel =
driver.findElement(By.id("error"));
 assertEquals(this.error, errorLabel.getText());
 }
 }

 @AfterClass
 public static void tearDown() throws Exception {
 driver.quit();
 }
}

How it works...
When the test is executed, the testData() method will create an instance of the
SpreadsheetData class. The SpreadsheetData class reads the contents of the
Excel spreadsheet row by row in a collection and returns this collection back to the
testData() method:

InputStream spreadsheet = new
FileInputStream("./src/test/resources/testdata/Data.xlsx");
return new SpreadsheetData(spreadsheet).getData();

For each row in the test data collection returned by the testData() method, the test
runner will instantiate the test case class, passing the test data as parameters to the
test class constructor, and then execute all the tests in the test class.

See also
 f The Creating a data-driven test using JUnit recipe

 f The Reading test data from a CSV file using JUnit recipe

Chapter 7

165

Creating a data-driven test in NUnit
The NUnit framework has been widely used by the Selenium WebDriver community to create
test scripts with .NET bindings.

Similar to the JUnit framework, the NUnit framework also supports data-driven testing in the
simplest manner. In this recipe, we will create a Selenium WebDriver test using NUnit. We will
read the test data from an XML file used in the first recipe.

Getting ready
To begin, follow these steps:

1. Download and install NUnit from http://www.nunit.org/

2. Create the test data file in the XML format as follows:
 <testdata>
 <vars height="160" weight="45" bmi="17.6"
bmi_category="Underweight" />
 <vars height="168" weight="70" bmi="24.8"
bmi_category="Normal" />
 <vars height="181" weight="89" bmi="27.2"
bmi_category="Overweight" />
 <vars height="178" weight="100" bmi="31.6"
bmi_category="Obesity" />
</testdata>

3. Create a new C# class library project and name it BMICalculator

4. Add a reference to NUnit, WebDriver, .NET binding, System XML,
and System.Xml.Linq

How to do it...
Let's create a parameterized test in NUnit. Create a new C# class item with the name
BMICalculatorNUnitTest, as shown in the following code example, copy the following
code to the newly created class by replacing its contents:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using NUnit.Framework;
using System.Collections;
using System.Xml.Linq;

http://www.nunit.org/

Data-Driven Testing

166

using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;
using OpenQA.Selenium.Support;
using OpenQA.Selenium.Support.UI;

namespace BMICalculator
{
 [TestFixture]
 public class BMICalculatorNUnitTest
 {
 IWebDriver driver;

 [SetUp]
 public void TestSetup()
 {
 // Create a instance of the Firefox driver
using IWebDriver Interface
 driver = new FirefoxDriver();
 }

 [TestCaseSource("BmiTestData")]
 public void TestBmiCalculator(string height, string
weight, string expectedBmi, string expectedCategory)
 {
 driver.Navigate().GoToUrl("http://cookbook.
seleniumacademy.com/bmicalculator.html");

 IWebElement heightElement =
driver.FindElement(By.Name("heightCMS"));
 heightElement.SendKeys(height);

 IWebElement weightElement =
driver.FindElement(By.Name("weightKg"));
 weightElement.SendKeys(weight);

 IWebElement calculateButton =
driver.FindElement(By.Id("Calculate"));
 calculateButton.Click();

 IWebElement bmiElement =
driver.FindElement(By.Name("bmi"));
 Assert.AreEqual(expectedBmi,
bmiElement.GetAttribute("value"));

Chapter 7

167

 IWebElement bmiCatElement =
driver.FindElement(By.Name("bmi_category"));
 Assert.AreEqual(expectedCategory,
bmiCatElement.GetAttribute("value"));

 }

 [TearDown]
 public void TestCleanUp()
 {
 // Close the browser
 driver.Quit();
 }

 private IEnumerable BmiTestData
 {
 get { return GetBmiTestData(); }
 }
 private IEnumerable GetBmiTestData()
 {
 var doc = XDocument.Load(@"c:\data.xml");
 return
 from vars in doc.Descendants("vars")
 let height = vars.Attribute("height").Value
 let weight = vars.Attribute("weight").Value
 let expectedBmi =
vars.Attribute("bmi").Value
 let expectedCategory =
vars.Attribute("bmi_category").Value

 select new object[] { height, weight,
expectedBmi, expectedCategory };
 }
 }
}

Data-Driven Testing

168

How it works...
While creating a data-driven test in NUnit, we use the TestCaseSource attribute. We will
specify the name of the IEnumerable property that will provide test data to this test case
with the TestCaseSource attribute, as shown in the following code:

[TestCaseSource("BmiTestData")]
public void TestBmiCalculator(string height, string weight, string
expected_bmi, string expected_category)

When we execute the test, NUnit framework will generate test cases by calling the
BmiTestData property. This will return an array of arguments as IEnumerable by calling
the GetBmiTestData() method. An array of arguments is created by reading an XML file
using a LINQ Query in the GetBmiTestData() method. When we open the test in the NUnit
GUI, it shows the test cases for all the test data combinations provided in the input XML file,
as shown in the following screenshot:

Chapter 7

169

With this, we can get the test data from any source, such as CSV, Excel spreadsheet, or a
database. The NUnit GUI will show the results when all the tests are executed, as shown
in the following screenshot:

See also
 f The Creating a data-driven test in MSTEST recipe

Creating a data-driven test in MSTEST
To create a data-driven test in MSTEST, the unit testing framework provided by Microsoft
Visual Studio is the simplest way to parameterize the test scripts with .NET bindings.

MSTEST has in-built features to support data-driven testing, which can be configured very
easily. In this recipe, we will use MSTEST to create a data-driven Selenium test by reading
test data from an Excel spreadsheet.

Data-Driven Testing

170

Getting ready
To begin, follow these steps:

 f Create a new C# test project in Microsoft Visual Studio 2010 and name it
BMICalculator

 f Add a reference to the WebDriver .NET binding

How to do it...
You can parameterize a test in MSTEST by adding the Excel spreadsheet to deployment items
of the test project, using the following steps:

1. Click on Local.testsettings under Solution Items.

2. The Test Settings dialog will appear. We need to add the test data file by clicking the
Add File button in the Deployment section.

3. Once you add the file to the Deployment section, it will appear in the list.

4. Create a new test class and name it BMICalculatorTests. Copy the following code
to this class:
using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;
using OpenQA.Selenium.Support;
using OpenQA.Selenium.Support.UI;
using System.Data;

namespace BMICalculator
{
 [TestClass]
 public class BMICalculatorTests
 {
 IWebDriver driver;

 [TestInitialize]
 public void TestSetup()
 {

Chapter 7

171

 // Create a instance of the Firefox driver
using IWebDriver Interface
 driver = new FirefoxDriver();
 }

 private TestContext testContextInstance;

 /// <summary>
 ///Gets or sets the test context which provides
 ///information about and functionality for the
current test run.
 ///</summary>
 public TestContext TestContext
 {
 get
 {
 return testContextInstance;
 }
 set
 {
 testContextInstance = value;
 }
 }

 [TestMethod]
 [DeploymentItem("Data.xls")]
 [DataSource("System.Data.OleDb",
"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Data.xls;Persist
Security Info=False;Extended
Properties='Excel 12.0;HDR=Yes'", "Data$",
DataAccessMethod.Sequential)]
 public void TestBMICalculator()
 {
 driver.Navigate().GoToUrl("http://dl.dropbox.
com/u/55228056
/bmicalculator.html");

 IWebElement height =
driver.FindElement(By.Name("heightCMS"));
 height.SendKeys(TestContext.DataRow["Height"].
ToString());

 IWebElement weight =
driver.FindElement(By.Name("weightKg"));

Data-Driven Testing

172

 weight.SendKeys(TestContext.DataRow["Weight"].
ToString());

 IWebElement calculateButton =
driver.FindElement(By.Id("Calculate"));
 calculateButton.Click();

 IWebElement bmi =
driver.FindElement(By.Name("bmi"));
 Assert.AreEqual(TestContext.DataRow["Bmi"].ToString(),
bmi.GetAttribute("value"));

 IWebElement bmiCategory =
driver.FindElement(By.Name("bmi_category"));
 Assert.AreEqual(TestContext.DataRow["Category"].
ToString(),
bmiCategory.GetAttribute("value"));
 }

 [TestCleanup]
 public void TestCleanUp()
 {
 // Close the browser
 driver.Quit();
 }

 }
}

How it works...
When we add the DataSource attribute to a test in MSTEST, it provides data source-specific
information for data-driven testing to the framework:

[TestMethod]
[DeploymentItem("Data.xls")]
[DataSource("System.Data.OleDb",
"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Data.xls;Persist
Security Info=False;Extended Properties='Excel 12.0;HDR=Yes'",
"Data$", DataAccessMethod.Sequential)]
public void TestBMICalculator()

Chapter 7

173

It reads the test data from the source. In this example, the source is an Excel spreadsheet.
The framework internally creates a DataTable object to store the values from the source.
The TestContext test method provides a collection of data rows for parameterization.
We can access a field by specifying its name, as follows:

 IWebElement height =
driver.FindElement(By.Name("heightCMS"));
 height.SendKeys(TestContext.DataRow["Height"].ToString());

With the DataSource attribute, we can specify the connection string or a configuration
file to read data from a variety of sources, including CSV File, Excel spreadsheets, XML files,
or databases.

See also
 f The Creating a data-driven test in NUnit recipe

Creating a data-driven test in Ruby using Roo
In the previous recipes, we saw parameterization with Java and .NET. Ruby has also been
used widely to create Selenium WebDriver tests.

Again, Ruby does not have its own way to parameterize the script. However, we can use the
Roo (http://roo.rubyforge.org/) gem in Ruby to read spreadsheets. Roo supports
multiple formats, as follows:

 f A locally stored Excel (.xls) file

 f A locally stored OpenOffice (.ods) file

 f An Excel file (.xls) stored in a Confluence wiki page with Confluence Office Connector

 f A Google Docs spreadsheet

Roo is a great alternative to the Ruby Excel COM WIN32 API, as it does not need Excel or
OpenOffice installed on the machine. It reads both these files natively.

In this recipe, we will parameterize the Selenium WebDriver test created in Ruby bindings
using an Excel spreadsheet as a test data source.

Getting ready
You need to install the Roo gem using the following command:

gem install roo

This command will download and install all the dependencies required for Roo on your machine.

http://roo.rubyforge.org/

Data-Driven Testing

174

How to do it...
Let's create a simple Ruby test for parameterization using the following steps. This test
will read test data from the Excel spreadsheet used in the Reading test data from an
Excel file using JUnit and Apache POI recipe earlier. Create a Ruby test by importing
the following modules:

require 'rubygems'
require 'selenium-webdriver'
require 'roo'

Then, follow these steps:

1. Create an instance of WebDriver. We will use the Firefox browser, the following code
shows you how:
#Create an instance of WebDriver for Firefox
driver = Selenium::WebDriver.for :firefox

2. Declare the following variables to print a summary of test combinations executed
from the test data source:
#Variables for Printing Test Summary
test_executed = 0
test_passed = 0
test_failed = 0

3. Create an instance of Excel class from Roo to read a spreadsheet:
#Create an instance of a Excel Spreadsheet
data = Excel.new("C:\\Data.xls")
data.default_sheet = data.sheets.first

4. Add the following code, which will iterate through the spreadsheet, reading each
combination and then performing the operations and verifications:
#Iterate through the Sheet reading Rows line by line
data.first_row.upto(data.last_row) do |line|
 if data.cell(line,1) != "Height" #Ignore the first line
for Headers
 begin
 test_status = true
 test_executed = test_executed + 1
 puts "Test " + test_executed.to_s()

 driver.get "http://dl.dropbox.com/u/55228056/bmicalculator.
 html"

Chapter 7

175

 height = driver.find_element :name => "heightCMS"
 height.send_keys data.cell(line,1).to_s()

 weight = driver.find_element :name => "weightKg"
 weight.send_keys data.cell(line,2).to_s()

 calculateButton = driver.find_element :id
=>"Calculate"
 calculateButton.click

 bmi = driver.find_element :name =>"bmi"
 bmi_category = driver.find_element :name
=>"bmi_category"

 if bmi.attribute("value").to_s() ==
data.cell(line,3).to_s()
 puts "Pass, expected value for BMI <" +
data.cell(line,3).
 to_s() + ">, actual <" +
bmi.attribute("value").to_s() + ">"
 else
 puts "Fail, expected value for BMI <" +
data.cell(line,3).
 to_s() + ">, actual <" +
bmi.attribute("value").to_s() + ">"
 test_status=false
 end

 if bmi_category.attribute("value").to_s() == data.
 cell(line,4).to_s()
 puts "Pass, expected value for BMI Category <" +
 data.cell(line,4).to_s() + ">, actual <" +
bmi_category. attribute("value").to_s() + ">"
 else
 puts "Fail, expected value for BMI Category <" +
 data.cell(line,4).to_s() + ">, actual <" +
bmi_category. attribute("value").to_s() + ">"
 test_status=false
 end

 if test_status
 test_passed = test_passed + 1
 else
 test_failed = test_failed + 1

Data-Driven Testing

176

 end
 rescue
 puts "An error occurred: #{$!}"
 end
 end
end

5. Finally, we will print a summary of test combinations that were executed and passed,
or those that failed the test, using the following code:
puts "--"
puts "Total (" + test_executed.to_s() + ") Tests Executed"
puts "Total (" + test_passed.to_s() + ") Tests Passed"
puts "Total (" + test_failed.to_s() + ") Tests Failed"

driver.quit

How it works...
When we execute this test, Roo will read the contents of the Excel spreadsheet into the data
object, using the following code:

#Create an instance of a Excel Spreadsheet
data = Excel.new("C:\\Data.xls")
data.default_sheet = data.sheets.first

We can then iterate the data object from the first row to the last row using the following code:

data.first_row.upto(data.last_row) do |line|

This will copy the content from a row in a variable named line. The value from a data cell is
accessed using the data.cell() method by passing the line and position of the cell, using
the following code:

height = driver.find_element :name => "heightCMS"
height.send_keys data.cell(line,1).to_s()

Chapter 7

177

We also added a custom reporting code that will generate a nicely formatted report at the end
of the test execution, as shown in the following screenshot:

There's more...
We can also read the Google Docs spreadsheets from Roo. This can be done using the
Google.new()method by passing the key for the Google Docs spreadsheet, as shown
in the following command:

data = Google.new("0Al-3LZqhACsidFh1NmdnYktmTkREVEkzb3B0ZnYybHc")

If you want to use Google spreadsheets, you must either have set the environment variables
to GOOGLE_MAIL and GOOGLE_PASSWORD or passed the Google-username and password to
the Google#new method.

Many teams maintain Excel spreadsheets on Confluence Wiki. Using Roo, you can also read
a spreadsheet stored on Confluence Wiki. For more information, visit the Roo home page at
http://roo.rubyforge.org/.

http://roo.rubyforge.org/

Data-Driven Testing

178

Creating a data-driven test in Python
using DDT

Python is also a widely used language for building Selenium WebDriver tests. It offers various
ways to parameterize tests.

In this recipe, we will use the DDT module along with unittest to create a parameterized test.

Getting ready
You need to install the DDT module by using the following command:

pip install ddt

This command will download and install all the dependencies required for DDT on your machine.

How to do it...
Let's create a simple Python test for parameterization using the DDT module. Create a new
Python file named bmi_calc_ddt.py using the following code:

import unittest
from ddt import ddt, data, unpack
from selenium import webdriver

@ddt
class BmiCalcDDT(unittest.TestCase):
 def setUp(self):
 # create a new Firefox session
 self.driver = webdriver.Firefox()
 self.driver.implicitly_wait(30)
 self.driver.maximize_window()

 # navigate to the BMI Calculator page
 self.driver.get("http://bit.ly/1zdNrFZ")

 # specify test data using @data decorator
 @data(("160", "45", "17.6", "Underweight"),
 ("168", "70", "24.8", "Normal"),
 ("181", "89", "27.2", "Overweight"))
 @unpack
 def test_bmi_calc(self, height, weight, bmi, category):
 driver = self.driver

Chapter 7

179

 height_field = driver.find_element_by_name("heightCMS")
 height_field.clear()
 height_field.send_keys(height)

 weight_field = driver.find_element_by_name("weightKg")
 weight_field.clear()
 weight_field.send_keys(weight)

 calculate_button = driver.find_element_by_id("Calculate")
 calculate_button.click()

 bmi_label = driver.find_element_by_name("bmi")
 bmi_category_label =
driver.find_element_by_name("bmi_category")

 self.assertEqual(bmi, bmi_label.get_attribute("value"))
 self.assertEqual(category,
bmi_category_label.get_attribute("value"))

 def tearDown(self):
 # close the browser window
 self.driver.quit()

if __name__ == '__main__':
 unittest.main(verbosity=2)

How it works...
The DDT module is an extension for the Python unittest library. We can use this module to
parameterize unit tests in Python. We need to add a special decorator @ddt to parameterize
the test class:

@ddt
class BmiCalcDDT(unittest.TestCase):

Next, we need to describe the test data above the test method using the @data decorator:

 # specify test data using @data decorator
 @data(("160", "45", "17.6", "Underweight"),
 ("168", "70", "24.8", "Normal"),
 ("181", "89", "27.2", "Overweight"))
 @unpack

When we execute this test, Python will read the data tuples and pass each row to the test.

181

8
Using the Page

Object Model

In this chapter, we will cover the following topics:

 f Using the PageFactory class for exposing the elements on a page

 f Using the PageFactory class for exposing an operation on a page

 f Using the LoadableComponent class

 f Implementing nested Page Object instances

 f Implementing the Page Object model in .NET

 f Implementing the Page Object model in Python

 f Implementing the Page Object model in Ruby using the page-object gem

Introduction
Developing a maintainable automation code is one of the keys to a successful test-automation
project. Test-automation code should to be treated as production code, and similar standards
and patterns should be applied while developing this code.

While developing Selenium WebDriver tests, we can use the Page Object model pattern.
This pattern helps enhance the tests by making them highly maintainable, reducing the code
duplication, building a layer of abstraction, and hiding the inner implementation from tests.

Using the Page Object Model

182

By applying object-oriented development principles, we can develop a class that serves as an
interface to a web page in the application, modeling its properties and behavior. This helps in
creating a layer of separation between the test code and the code specific to the page by hiding
technical implementations such as locators used to identify elements on the page, layout, and
so on. The Page Object design pattern provides an interface where a test can operate on that
page in a manner similar to the user accessing the page, but by hiding its internals. For example,
if we build a Page Object for a login page, then it will provide a method to log in, which will accept
the username and password and take the user to the home page of the application. The test
need not worry about how input controls are used for the login page, their locator details, and so
on. It will instantiate the login page object and call the login method by passing the username
and password. Tests should use objects of a page at a high level, where any change in layout or
attributes used for the fields in the underlying page should not break the test.

This chapter covers recipes to build tests using the Page Object model and related designs.

Using the PageFactory class for exposing
the elements on a page

To implement the Page Object model in tests, we need to create a Page Object class for each
page that is being tested. For example, to test the BMI Calculator application, a BMI Calculator
page class will be defined, which will expose the internals of the BMI Calculator page to the
test, as shown in following diagram. This is done by using the PageFactory class of Selenium
WebDriver API:

Getting ready
Before exposing the elements of a page, we need to do the following:

 f Identify the locators that will be needed to find all the required elements
from a page uniquely

 f Define the structure of the package and classes for the page

Chapter 8

183

How to do it...
Let's implement a Page Object test for the BMI Calculator page using the PageFactory class
with the following steps:

1. Define and create a package for all the page objects from the application for logical
grouping. For example, seleniumcookbook.tests.pageobjects is created to
define all the page objects.

2. Create a new Java class file. Give the name of the page we will be testing from the
application to this class. For example, we will be creating a page object for the BMI
Calculator application, so the class name could be BmiCalcPage. This is a single
page application. The Java class file will have the following code:
package com.secookbook.examples.chapter08.pageobjects;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.PageFactory;

public class BmiCalcPage {
}

3. Define elements from the BMI Calculator page as instance variables in the
BmiCalcPage class created in step 1. Use the name or id attributes to name
these variables, as follows:
private WebElement heightCMS;
private WebElement weightKg;
private WebElement Calculate;
private WebElement bmi;

@FindBy(id = "bmi_category")
private WebElement bmiCategory;

private WebDriver driver;

4. Add a constructor to the BmiCalcPage class, which will call the PageFactory.
initElements() method to initialize the elements in the class. In other words,
map the elements to the variables in the BmiCalcPage class, as follows:
public BmiCalcPage(WebDriver driver) {
 this.driver = driver;
 PageFactory.initElements(driver, this);
}

Using the Page Object Model

184

5. We will add the accessor methods for Height, Weight, and Calculate button fields so
we can set values or perform operation like clicking a button:
 public void setHeight(String height) {
 heightCMS.sendKeys(height);
 }

 public void setWeight(String weight) {
 weightKg.sendKeys(weight);
 }

 public void calculateBmi() {
 Calculate.click();
 }

6. Also, add the accessor method to read the values from the Bmi and Bmi Category
fields, as shown in the following code:
public String getBmi() {
 return bmi.getAttribute("value");
}

public String getBmiCategory() {
 return bmiCategory.getAttribute("value");
}

7. Finally, create a test that will use the BmiCalcPage class to test the BMI Calculator
page, as follows:
package com.secookbook.examples.chapter08.tests;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

import static org.junit.Assert.*;

import com.secookbook.examples.chapter08.pageobjects.BmiCalcPage;

public class BmiCalculatorTests {

 private WebDriver driver;

 @Before
 public void setUp() {

Chapter 8

185

 driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/bmicalculat
or.html");
 }

 @Test
 public void testBmiCalculation() {
 // Create an instance of Bmi Calculator Page class
 // and provide the driver
 CopyOfBmiCalcPage bmiCalcPage = new
CopyOfBmiCalcPage(driver);

 // Set Height
 bmiCalcPage.setHeight("181");

 // Set Weight
 bmiCalcPage.setWeight("80");

 // Click on Calculate button
 bmiCalcPage.calculateBmi();

 // Verify Bmi & Bmi Category values
 assertEquals("24.4", bmiCalcPage.getBmi());
 assertEquals("Normal", bmiCalcPage.getBmiCategory());
 }

 @After
 public void tearDown() {
 driver.quit();
 }

How it works...
Using the Page Object model and the PageFactory class, the BMI Calculator page's
elements are exposed through the BmiCalcPage class to the test instead of the test
directly accessing the internals of the page.

When we initialize the page's object using the PageFactory class in the BmiCalcPage
class, the PageFactory class searches for the elements on the page with the name or
id attributes matching the name of the WebElement object declared in the BmiCalcPage
class, as follows:

public BmiCalcPage(WebDriver driver) {
 PageFactory.initElements(driver, this);
}

Using the Page Object Model

186

The initElements() method takes the driver object created in the test and initializes
the elements declared in the BmiCalcPage class. We can then directly call the methods
on these elements, as follows:

// Set Height
bmiCalcPage.setHeight("181");

// Set Weight
bmiCalcPage.setWeight("80");

// Click on Calculate button
bmiCalcPage.calculateBmi();

The FindBy annotations
Finding elements using the name or id attributes may not always work and we might need
to use advanced locator strategies such as XPath or CSS selectors. Using the FindBy
annotation, we can locate the elements within the PageFactory class, as follows:

@FindBy(id = "heightCMS")
public WebElement heightField;

We declared a public member for the height element and used the @FindBy annotation,
specifying the id as a locator for finding this element on the page.

The CacheLookUp attribute
One downside to using the @FindBy annotation is that every time we call a method on the
WebElement object, the driver will go and find it on the current page again. This is useful in
applications where elements are dynamically loaded, or AJAX-heavy applications.

However, in applications where we know that the element is always going to be there and
stay the same without any change, it would be handy if we could cache the element once we
find it. In order to do this, we use the @CacheLookUp annotation along with the @FindBy
annotation, as follows:

@FindBy(id = "heightCMS")
@CacheLookup
public WebElement heightField;

This tells the PageFactory.initElements() method to cache the element once it's
located. Tests work faster with cached elements when these elements are used repeatedly.

Chapter 8

187

Using the PageFactory class for exposing an
operation on a page

In the previous recipe, we created the BmiCalcPage class, which provides elements from
the BMI Calculator page to the test. Along with elements, we define operations or behaviors
on a page. In the BMI Calculator application, we are calculating the BMI by entering height
and weight values. We can create an operation named calculateBmi and call it directly
in a test, instead of calling individual elements and operations.

In this recipe, let's refine the BmiCalcPage class. And instead of elements, let's provide the
operations that are supported on the page, and some common properties. We will also move
the WebDriver instance of the test to the BmiCalcPage class to make the test generic.

Getting ready
Identify operations that will be required in a test and can be exposed from a page. This recipe
uses the BmiCalcPage class created in the previous recipe.

How to do it...
Let's modify the BmiCalcPage class created in the previous recipe and refactor it a bit to
provide operations and properties to the test through the following steps:

1. Make the page's elements private in the BmiCalPage class for better encapsulation.
Also, add an instance variable of the WebDriver class and a string variable for the
URL of the page, as follows:
package com.secookbook.examples.chapter08.tests;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.PageFactory;

public class BmiCalcPage {

 private WebElement heightCMS;
 private WebElement weightKg;
 private WebElement Calculate;
 private WebElement bmi;
 private WebElement bmi_category;
 private WebDriver driver;
 private String url = "http://dl.dropbox.com/u/55228056/
bmicalculator.html";
}

Using the Page Object Model

188

2. Update the BmiCalcPage class constructor so that it initializes the WebDriver
instance, as follows:
public BmiCalcPage() {
 driver = new ChromeDriver();
 PageFactory.initElements(driver, this);
}

3. Add the load() and close methods to the BmiCalcPage class, as follows:
public void load() {
 this.driver.get(url);
}
public void close() {
 this.driver.close();
}

4. Add the calculateBmi() method to the BmiCalcPage class, as follows:
public void calculateBmi(String height, String weight) {
 heightCMS.sendKeys(height);
 weightKg.sendKeys(weight);
 Calculate.click();
}

5. Add the getBmi and getBmiCategory() methods to the BmiCalcPage class,
as follows:
public String getBmi() {
 return bmi.getAttribute("value");
}

public String getBmiCategory() {
 return bmi_category.getAttribute("value");
}

6. Finally, create a test that will use the methods defined in the BmiCalcPage class to
test the BMI Calculator page, as follows:
package com.secookbook.examples.chapter08.tests;

import org.junit.Test;

import static org.junit.Assert.*;
import seleniumcookbook.tests.pageobjects.*;

public class BmiCalculatorTests {

@Test

Chapter 8

189

public void testBmiCalculation()
{
 //Create an instance of Bmi Calculator Page class
 //and provide the driver
 BmiCalcPage bmiCalcPage = new BmiCalcPage();

 //Open the Bmi Calculator Page
 bmiCalcPage.load();

 //Calculate the Bmi by supplying Height and Weight values
 bmiCalcPage.calculateBmi("181", "80");

 //Verify Bmi & Bmi Category values
 assertEquals("24.4", bmiCalcPage.getBmi());
 assertEquals("Normal", bmiCalcPage.getBmiCategory());

 //Close the Bmi Calculator Page
 bmiCalcPage.close();
}

How it works...
In this example, the BmiCalcPage class defines various methods for loading, closing the
page, calculation functionality, and providing access to elements as properties to the test.
This simplifies the test development by creating a layer of abstraction, hiding the internals
of a page, and exposing only the operations and fields needed for testing from the page.

When any change happens to the structure or behavior of the page, only the BmiCalcPage
class will be refactored, while the test will remain intact.

In this example, we created the load() method, which navigates the application using the
URL, as follows:

public void load() {
 this.driver.get(url);
}

Using this approach, we can also expose the elements as properties, which provide specific
attributes, such as the value attribute, instead of exposing elements fully. For example, the
getBmi() method provides only the value attribute of the bmi label to the test, as follows:

public String getBmi() {
 return bmi.getAttribute("value");
}

Selenium WebDriver provides a very neat and clean way to implement the Page Object model.

Using the Page Object Model

190

Using the LoadableComponent class
We can implement the objects of the Page Object model using the LoadableComponent
class of Selenium WebDriver. This helps in building a robust Page Object that provides a
standard way to ensure that the page is loaded and that the page load issues are easy
to debug.

In this recipe, we will further refactor the BmiCalcPage class created in the previous recipes
and extend it as a loadable component.

Getting ready
This recipe uses the BmiCalcPage class created in the previous recipe.

How to do it...
To implement an object of the Page Object model as the LoadableComponent class, we need
to extend it from the LoadableComponent base class, as shown in the following example:

package com.secookbook.examples.chapter08.pageobjects;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.PageFactory;
import org.openqa.selenium.support.ui.LoadableComponent;
import static org.junit.Assert.*;

public class BmiCalcPage extends LoadableComponent<BmiCalcPage> {

 private WebElement heightCMS;
 private WebElement weightKg;
 private WebElement calculate;
 private WebElement bmi;
 private WebElement bmiCategory;

 private WebDriver driver;

 private String url =
"http://cookbook.seleniumacademy.com/bmicalculator.html";
 private String title = "BMI Calculator";

 public BmiCalcPage(WebDriver driver) {
 this.driver = driver;

Chapter 8

191

 PageFactory.initElements(driver, this);
 }

 @Override
 protected void load() {
 this.driver.get(url);
 }

 @Override
 protected void isLoaded() throws Error {
 assertTrue("Bmi Calculator page not loaded",
 driver.getTitle().equals(title));
 }

 public void calculateBmi(String height, String weight) {
 heightCMS.sendKeys(height);
 weightKg.sendKeys(weight);
 calculate.click();
 }

 public String getBmi() {
 return bmi.getAttribute("value");
 }

 public String getBmiCategory() {
 return bmiCategory.getAttribute("value");
 }
}

Finally, in the test, change the call of the bmiCalcPage.load() method to the
bmiCalcPage.get() method, as follows:

package com.secookbook.examples.chapter08.tests;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

import static org.junit.Assert.*;

import
com.secookbook.examples.chapter08.pageobjects.BmiCalcPage;

Using the Page Object Model

192

public class BmiCalculatorTests {

 private WebDriver driver;

 @Before
 public void setUp() {
 driver = new ChromeDriver();
 }

 @Test
 public void testBmiCalculation() {
 // Create an instance of Bmi Calculator Page class
 // and provide the driver
 BmiCalcPage bmiCalcPage = new BmiCalcPage(driver);

 // Open the Bmi Calculator Page
 bmiCalcPage.get();

 // Calculate the Bmi by supplying Height and Weight values
 bmiCalcPage.calculateBmi("181", "80");

 // Verify Bmi & Bmi Category values
 assertEquals("24.4", bmiCalcPage.getBmi());
 assertEquals("Normal", bmiCalcPage.getBmiCategory());
 }

 @After
 public void tearDown() {
 driver.quit();
 }
}

How it works...
By extending the object of the Page Object model with the LoadableComponent base class,
we overrode the load() and isLoaded() methods to the BmiCalcPage class.

The load() method will load the URL of the page we encapsulated in the Page Object, and
when we create the instance of this Page Object in a test, we call the get() method on the
BmiCalcPage class, which will in turn call the load() method, as follows:

BmiCalcPage bmiCalcPage = new BmiCalcPage(driver);
bmiCalcPage.get();

The isLoaded() method will verify that the indented page is loaded by the load() method.

Chapter 8

193

Implementing nested Page Object instances
So far, we explored a very simple Page Object implementation for a single page web application.
We can use the Page Object model to implement the objects of a page in a complex web
application to simplify the testing.

In this recipe, we will create the objects of the Page Object model for the search functionality
in an e-commerce application found at http://demo.magentocommerce.com/. We can
implement a Page Object model even if the specific functionality is not a page of its own.

Each page of the application provides the user with the ability to search for products on the
site by entering a query and hitting the search button. When a search query is submitted,
the application returns a new page with a list of products matching the search query. Using
the approach described in this recipe, we can build a more modular framework as shown in
following diagram:

In this recipe, we will create this nested hierarchy, where the HomePage class implements the
Search class, which in turn returns an object of the SearchResults class to the test.

Getting ready
Identify the page and logical relationship between pages to build a nested component set.

http://demo.magentocommerce.com/

Using the Page Object Model

194

How to do it...
To implement nested Page Object instances, perform the following steps:

1. Create the Browser class, which will provide a static and shared WebDriver instance
for all the pages, as follows:
package com.secookbook.examples.chapter08.pageobjects;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

public class Browser {

 private static WebDriver driver = new ChromeDriver();

 public static WebDriver driver() {
 return driver;
 }

 public static void open(String url) {
 driver.get(url);
 }

 public static void close() {
 driver.quit();
 }
}

2. Create the HomePage class, which allows the test to navigate to the home page of
the application. It also provides access to the Search class, which is shared among
the various pages of the application, as follows:
package com.secookbook.examples.chapter08.pageobjects;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.support.PageFactory;
import org.openqa.selenium.support.ui.LoadableComponent;

import static org.junit.Assert.*;

public class HomePage extends LoadableComponent<HomePage> {

 private WebDriver driver;

Chapter 8

195

 static String url = "http://demo.magentocommerce.com/";
 private static String title = "Madison Island";

 public HomePage(WebDriver driver) {
 this.driver = driver;
 PageFactory.initElements(driver, this);
 }

 @Override
 public void load() {
 Browser.open(url);
 }

 @Override
 public void isLoaded() {
 assertEquals(title, driver.getTitle());
 }

 public Search Search() {
 Search search = new Search(driver);
 return search;
 }
}

3. Create the Search class. This class provides all the objects of the Page Object model
to search for products in the application, as follows:
package com.secookbook.examples.chapter08.pageobjects;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.PageFactory;

public class Search {

 private WebDriver driver;

 private WebElement search;

 @FindBy(css = "button.button")
 private WebElement searchButton;

 public Search(WebDriver driver) {
 this.driver = driver;

Using the Page Object Model

196

 PageFactory.initElements(driver, this);
 }

 public SearchResults searchInStore(String query) {
 search.sendKeys(query);
 searchButton.click();
 return new SearchResults(driver, query);
 }
}

4. Create the SearchResult class, which is nested in the Search class.
The SearchResult class represents the results page when the user submits
a search query, as discussed previously. The SearchResult class also provides
access to the Search class so that users can search again for a different query.
This is done as follows:
package com.secookbook.examples.chapter08.pageobjects;

import java.util.ArrayList;
import java.util.List;

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.PageFactory;
import org.openqa.selenium.support.ui.LoadableComponent;

import static org.junit.Assert.*;

public class SearchResults extends LoadableComponent<SearchResul
ts> {

 private WebDriver driver;
 private String query;

 public SearchResults(WebDriver driver, String query) {
 this.driver = driver;
 PageFactory.initElements(driver, this);
 }

 @Override
 public void isLoaded() {
 assertEquals("Search results for: '" + this.query +
"'", driver.getTitle());
 }

Chapter 8

197

 public List<String> getProducts() {
 List<String> products = new ArrayList<String>();
 List<WebElement> productList = driver.findElements(
 By.cssSelector("ul.products-grid > li"));

 for (WebElement item : productList) {
 products.add(item.findElement(By.cssSelector("h2 >
a")).getText());
 }
 return products;
 }

 public Search Search() {
 Search search = new Search(driver);
 return search;
 }

 @Override
 protected void load() {
 // TODO Auto-generated method stub
 }
}

5. Finally, create a test which tests the search functionality from the home page of the
application, as follows:
package com.secookbook.examples.chapter08.tests;

import org.junit.Test;

import com.secookbook.examples.chapter08.pageobjects.Browser;
import com.secookbook.examples.chapter08.pageobjects.HomePage;
import com.secookbook.examples.chapter08.pageobjects.
SearchResults;

import static org.junit.Assert.*;

public class SearchTest {

 @Test
 public void testProductSearch() {
 try {
 // Create an instance of Home page
 HomePage homePage = new HomePage(Browser.driver());

Using the Page Object Model

198

 // Navigate to the Home page
 homePage.get();

 // Search for 'phones', the searchInStore method will return
 // SerchResults
 SearchResults searchResult = homePage.Search().
searchInStore(
 "phones");

 // Verify there are 2 products available with this search
 assertEquals(2, searchResult.getProducts().size());
 assertTrue(searchResult.getProducts().contains(
 "MADISON OVEREAR HEADPHONES"));
 } finally {
 Browser.close();
 }
 }
}

How it works...
The test starts by creating an instance of the HomePage class. As you can see, the application
home page provides the user with the ability to search the site. In a similar way, the HomePage
class provides the ability to search by using the Search class, as follows:

HomePage homePage = new HomePage(Browser.driver());
homePage.get();
SearchResults searchResult = homePage.Search().searchInStore(
 "phones");

The searchInStore() method of the Search class takes the query string as arguments
and interacts with the search form to send the query. It returns the SearchResults class
as a page. The SearchResults class provides a list of products that match the query back
to the test using the getProducts() method, as follows:

public List<String> getProducts() {
 List<String> products = new ArrayList<String>();
 List<WebElement> productList = driver.findElements(
 By.cssSelector("ul.products-grid > li"));

 for (WebElement item : productList) {
 products.add(item.findElement(By.cssSelector("h2 >
a")).getText());
 }
 return products;
}

Chapter 8

199

The test can verify the number of products as well as the names of the products by checking
the return value of the getProducts() method, as follows:

assertEquals(2, searchResult.getProducts().size());
assertTrue(searchResult.getProducts().contains(
 "MADISON OVEREAR HEADPHONES"));

Using the nested objects of the Page Object model, we can build a logical chain of pages
within an application and build a robust and maintainable test automation framework.

See also
 f The Using the LoadableComponent class recipe

Implementing the Page Object model in .NET
Similar to Java bindings, Selenium WebDriver provides the PageFactory class in .NET bindings
to implement the Page Object model.

In this recipe, we will implement the Page Object model for the BMI Calculator page using the
PageFactory class in C#.

Getting ready
We need to identify the locators that will be needed to locate the elements uniquely.

How to do it...
To implement Page Object model .NET, perform the following steps:

1. Define a class for the Page Object model by creating a new C# class with the
name of the page. In this example, we will create the page's object for the
BMI Calculator application:
using System;
using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;
using OpenQA.Selenium.Support.PageObjects;

namespace PageFactoryTests
{
 public class BmiCalcPage
 {

Using the Page Object Model

200

 static string Url = " http://cookbook.seleniumacademy.com/
bmicalculator.html";
 private static string Title = "BMI Calculator";

 [FindsBy(How = How.Id, Using = "heightCMS")]
 [CacheLookup]
 private IWebElement HeightField;

 [FindsBy(How = How.Id, Using = "weightKg")]
 private IWebElement WeightField;

 [FindsBy(How = How.Id, Using = "Calculate")]
 private IWebElement CalculateButton;

 [FindsBy(How = How.Name, Using = "bmi")]
 private IWebElement BmiField;

 [FindsBy(How = How.Name, Using = "bmi_category")]
 private IWebElement BmiCategoryField;

 private IWebDriver driver;

 public BmiCalcPage() {
 driver = new ChromeDriver(@"C:\ChromeDriver");
 PageFactory.InitElements(driver, this);
 }

 public void Load()
 {
 driver.Navigate().GoToUrl(Url);
 }

 public void Close()
 {
 driver.Close();
 }

 public bool IsLoaded
 {
 get { return driver.Title.Equals(Title); }
 }

Chapter 8

201

 public void CalculateBmi(String height, String
weight)
 {
 HeightField.SendKeys(height);
 WeightField.SendKeys(weight);
 CalculateButton.Click();
 }

 public String Bmi
 {
 get { return BmiField.GetAttribute("value"); }
 }

 public String BmiCategory
 {
 get { return BmiCategoryField.GetAttribute("value"); }
 }
 }
}

2. Using the BmiCalcPage class, let's create a test for the calculation feature, as follows:
using NUnit.Framework;

namespace PageFactoryTests
{
 public class BmiCalcTests
 {
 [TestCase]
 public void TestBmiCalculator()
 {
 BmiCalcPage bmiCalcPage = new BmiCalcPage();
 bmiCalcPage.Load();
 Assert.IsTrue(bmiCalcPage.IsLoaded);
 bmiCalcPage.CalculateBmi("181", "80");
 Assert.AreEqual("24.4", bmiCalcPage.Bmi);
 Assert.AreEqual("Normal",
bmiCalcPage.BmiCategory);
 bmiCalcPage.Close();
 }
 }
}

Using the Page Object Model

202

How it works...
In this example, the BmiCalcPage class provides various operations and properties from
the BMI Calculator page to the test. The elements on the page are defined as instances of
the IWebDriver interface with a FindsBy annotation, as follows:

[FindsBy(How = How.Id, Using = "heightCMS")]
private IWebElement HeightField;

When the page is initialized by the PageFactory.InitElements() method, these
annotations are used to search the elements on the page.

The BmiCalcPage class implements methods to open and close the BMI Calculator page.
This will provide a high level of abstraction to the test.

The BmiCalcPage class also implements the IsLoaded property, which will tell a test if the
BMI Calculator page is loaded into the browser. This class also defines properties for the Bmi
and BmiCategory fields, which provide values from these fields to test rather than complete
access to the underlying elements, as follows:

public bool IsLoaded
{
 get { return driver.Title.Equals(Title); }
}

public String Bmi
{
 get { return BmiField.GetAttribute("value"); }
}

public String BmiCategory
{
 get { return BmiCategoryField.GetAttribute("value"); }
}

It also provides a CalculateBmi() method, which takes the height and weight as an
argument and interacts with underlying elements to perform actions.

Chapter 8

203

Implementing the Page Object model
in Python

Implementing the Page Object model in Python is similar to what we have done previously
in Java and C#. The Selenium WebDriver Python bindings provide support for objects of the
Page Object model.

In this recipe, we will implement the Page Object model using Python bindings.

Getting ready
Before implementing the Page Object model for Python bindings, we must do the following:

 f Identify pages and the elements from the application that will be required in the tests

 f Define locators that will be needed to identify the elements uniquely

How to do it...
To implement the Page Object model in Python, follow these steps:

1. Define a class for the Page Object model by creating a Python script with the name of
the page. In this example, we will be creating a Page Object model for the main page
of the BMI Calculator application, as follows:
class BmiCalcPage(object):
 def __init__(self, driver):
 self._driver = driver
 self._url = '
http://cookbook.seleniumacademy.com/bmicalculator.html'
 self._title = 'BMI Calculator'

 @property
 def is_loaded(self):
 return self._driver.title == self._title

 @property
 def bmi(self):
 bmi_field = self._driver.find_element_by_id('bmi')
 return bmi_field.get_attribute('value')

 @property
 def bmi_category(self):

Using the Page Object Model

204

 bmi_category_field =
self._driver.find_element_by_id('bmi_category')
 return bmi_category_field.get_attribute('value')

 def open(self):
 self._driver.get(self._url)

 def calculate(self, height, weight):
 height_field =
self._driver.find_element_by_id('heightCMS')
 weight_field =
self._driver.find_element_by_id('weightKg')
 calc_button =
self._driver.find_element_by_id('Calculate')

 height_field.send_keys(height)
 weight_field.send_keys(weight)
 calc_button.click()

2. Using the BmiCalcPage object, let's create a test for the calculation feature,
as follows:
import unittest
from selenium.webdriver.chrome.webdriver import WebDriver
from bmi_calc_page import bmicalcpage

class BmiCalcTest(unittest.TestCase):
 def test_calc(self):
 driver = WebDriver()
 bmi_calc = bmicalcpage(driver)
 bmi_calc.open()
 self.assertEqual(True, bmi_calc.is_loaded)
 bmi_calc.calculate('181','80')
 self.assertEqual('24.4', bmi_calc.bmi)
 self.assertEqual('Normal', bmi_calc.bmi_category)
 driver.close()

if __name__ == '__main__':
 unittest.main()

Chapter 8

205

How it works...
Implementing the Page Object model in Python is relatively simple. The Page Object model
can be implemented by creating classes, defining methods and properties, and only exposing
the functionality from the application page that needed it for testing.

In this example, the BmiCalcPage class is defined to represent the BMI Calculator application's
main page. This class needs an instance of WebDriver through which it will interact with the
main page, as follows:

class BmiCalcPage(object):
 def __init__(self, driver):
 self._driver = driver

The bmicalcpage class implements the is_loaded property, which will tell tests if the BMI
Calculator page is loaded into the browser. This class also defines properties for the bmi and
bmi_category fields, which provide values from these fields to test, rather than a complete
access to the underlying elements:

 @property
 def is_loaded(self):
 return self._driver.title == self._title

 @property
 def bmi(self):
 bmi_field = self._driver.find_element_by_id('bmi')
 return bmi_field.get_attribute('value')

 @property
 def bmi_category(self):
 bmi_category_field = self._driver.find_element_by_id('bmi_
category')
 return bmi_category_field.get_attribute('value')

It provides the calculate() method, which takes the height and weight as an argument and
interacts with underlying elements to perform actions.

The BmiCalcPage class also implements methods to open and close the BMI Calculator
page. This will provide a high level of abstraction to the test, hiding the underlying details of
page and elements. This makes writing tests, in a kind of domain-specific language, easier
and faster.

Using the Page Object Model

206

Implementing the Page Object model in
Ruby using the page-object gem

While developing tests in Ruby, we can use the page-object gem to implement the Page Object
model within the tests. The page-object gem provides simple features with which to build the
objects of a Page Object, along with Watir WebDriver.

In this recipe, we will see how to use the page-object gem to implement the Page Object
model for the BMI Calculator's main page.

Getting ready
You need to download and install the page-object gem with the help of the following command:

gem install page-object

How to do it...
To implement the Page Object model in Ruby using the page-object gem, perform the
following steps:

1. Define a class for the Page Object model by creating a Ruby script with the name of
the page. In this example, we will be creating a Page Object model for the main page
of the BMI Calculator application and including the page-object module:
require 'page-object'

class BmiCalcPage
 include PageObject

 text_field(:height, :id => 'heightCMS')
 text_field(:weight, :id => 'weightKg')
 button(:calculate, :value => 'Calculate')

 text_field(:bmi, :id => 'bmi')
 text_field(:bmi_category, :id => 'bmi_category')

 def calculate_bmi(height, weight)
 self.height = height
 self.weight = weight
 calculate
 end

Chapter 8

207

 def open()
 @browser.get '
http://cookbook.seleniumacademy.com/bmicalculator.html'
 end
end

2. Using the object of the BmiCalcPage class, create a test for the calculation feature,
as follows:
require 'rubygems'
require 'watir-webdriver'
require 'test/unit'
require_relative 'bmicalcpage.rb'

class BmiCalcTest < Test::Unit::TestCase
 def test_bmi_calculation
 @driver = Selenium::WebDriver.for :chrome
 bmi_calc = BmiCalcPage.new(@driver)
 bmi_calc.open()
 bmi_calc.calculate_bmi('181','80')
 assert_equal '24.4', bmi_calc.bmi
 assert_equal 'Normal', bmi_calc.bmi_category
 @driver.close()
 end
end

How it works...
We can use the Page Object model implemented with the page-object gem by creating
an instance of the BmiCalcPage class and passing the browser as an argument to the
constructor. The rest of the magic is performed by the page-object gem.

While defining the elements, we need to specify the type of element and the locator, as follows:

text_field(:Height, :id => 'heightCMS')

The page-object gem adds a few more methods automatically to these objects at runtime.
For example, we created an element for the Calculate button in the Page Object model,
as follows:

button(:Calculate, :value => 'Calculate')

Using the Page Object Model

208

The page-object gem creates a method called calculate, which will click the Calculate
button when called from the calculate_bmi() method, as follows:

def calculate_bmi(height, weight)
 self.height = height
 self.weight = weight
 calculate
end

You can find more information about the page-object gem API at http://rubydoc.info/
github/cheezy/page-object/master/PageObject/Accessors.

http://www.rubydoc.info/github/cheezy/page-object/master/PageObject/Accessors
http://www.rubydoc.info/github/cheezy/page-object/master/PageObject/Accessors

209

9
Extending Selenium

In this chapter, we will cover:

 f Creating an extension class for web tables

 f Creating an extension for the jQueryUI tab widget

 f Implementing an extension for the WebElement object to set the element
attribute values

 f Implementing an extension for the WebElement object to highlight elements

 f Creating an object map for Selenium tests

 f Capturing screenshots of elements in Selenium WebDriver

 f Comparing images in Selenium

 f Measuring performance with the Navigation Timing API

Introduction
Selenium WebDriver provides a highly flexible and robust API to extend the features
and commands and add customization to build a scalable test automation framework.
This chapter covers some of the important recipes to extend Selenium WebDriver for
various practical scenarios.

In this chapter, we will write Selenium WebDriver extensions that support web tables,
object maps, and image comparison features.

We will also build an extension for jQuery UI control. You can use this pattern to implement
support for a third-party or the custom controls used in your application by hiding technical
details from the tests. This makes test development a lot easier.

Extending Selenium

210

Creating an extension class for web tables
Selenium WebDriver provides the WebElement interface to work with various types of HTML
elements. It also provides helper classes to work with the Select element. However, there
is no built-in class to support the web tables or the <table> elements. In this recipe, we
will implement a helper class for web tables. Using this class, we will retrieve properties and
perform some basic operations on a web table element.

Getting ready
Create a new Java class WebTable.java, which we will use to implement support for the
table elements.

How to do it...
Let's implement the web table extension code with WebTable.java using the following steps:

1. Add a constructor for the WebTable class, and for the setter and getter property
methods as well. The WebTable constructor will accept the WebElement object,
as shown in the following code:
package com.secookbook.examples.chapter09;

import org.openqa.selenium.NoSuchElementException;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

import java.util.List;

public class WebTable {

 private WebElement _webTable;

 public WebTable(WebElement webTable) {
 set_webTable(webTable);
 }

 public WebElement get_webTable() {
 return _webTable;
 }

 public void set_webTable(WebElement _webTable) {
 this._webTable = _webTable;
 }
}

Chapter 9

211

2. Now, add methods to retrieve rows and columns from a table, as shown in
following code:
public int getRowCount() {
 List<WebElement> tableRows =
 _webTable.findElements(By.tagName("tr"));
 return tableRows.size();
}

public int getColumnCount() {
 List<WebElement> tableRows =
 _webTable.findElements(By.tagName("tr"));
 WebElement headerRow = tableRows.get(0);

 List<WebElement> tableCols =
 headerRow.findElements(By.tagName("td"));
 return tableCols.size();
}

3. Add a method getCellData() to retrieve data from a specific cell of the table:
public String getCellData(int rowIdx, int colIdx) {
 List<WebElement> tableRows =
 _webTable.findElements(By.tagName("tr"));
 WebElement currentRow = tableRows.get(rowIdx-1);
 List<WebElement> tableCols =
 currentRow.findElements(By.tagName("td"));
 WebElement cell = tableCols.get(colIdx-1);
 return cell.getText();
}

4. Add a method to retrieve the cell editor element; this is useful while working with
editable cells:
public WebElement getCellEditor(int rowIdx, int colIdx, int
editorIdx) throws NoSuchElementException {
 try {
 List<WebElement> tableRows =
_webTable.findElements(By.tagName("tr"));
 WebElement currentRow = tableRows.get(rowIdx-1);
 List<WebElement> tableCols =
currentRow.findElements(By.tagName("td"));
 WebElement cell = tableCols.get(colIdx-1);
 WebElement cellEditor =
cell.findElements(By.tagName("input")).get(editorIdx);
 return cellEditor;
 } catch (NoSuchElementException e) {

Extending Selenium

212

 throw new NoSuchElementException("Failed to get cell
editor");
 }
}

5. Let's create a test on a shopping cart page using a newly created WebTable class:
package com.secookbook.examples.chapter09;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class WebTableTests {
 WebDriver driver;

 @Before
 public void setUp() {
 // Create a new instance of the Firefox driver
 driver = new FirefoxDriver();
 driver.get("http:// cookbook.seleniumacademy.com/Locators.
html");
 }

 @Test
 public void testWebTableTest() {
 // Get the table element as WebTable instance using CSS
Selector
 WebTable table = new WebTable(driver.findElement(By
 .cssSelector("div.cart-info table")));

 // Verify that it has three rows
 assertEquals(3, table.getRowCount());
 // Verify that it has six columns
 assertEquals(5, table.getColumnCount());
 // Verify that specified value exists in second cell of
third row
 assertEquals("iPhone", table.getCellData(3, 1));

Chapter 9

213

 // Get in cell editor and enter some value
 WebElement cellEdit = table.getCellEditor(3, 3, 0);
 cellEdit.clear();
 cellEdit.sendKeys("2");
 }

 @After
 public void tearDown() {
 // Close the browser
 driver.quit();
 }
}

How it works...
The WebTable class accepts a WebElement object and extends it to provide table-specific
properties and operations.

To retrieve the number of rows from a table, we locate the <tr> elements from the
_webTable object. We used the tagName() method of the By class and collected all the
<tr> elements as a list of WebElement objects. Using the size() method, we can find
out how may rows are available in the table element, as shown in the following code:

List<WebElement> tableRows =
_webTable.findElements(By.tagName("tr"));

Similarly, we inspected a number of <td> elements in the first row of the table (normally the
header) to retrieve the number of columns available in the table element, as shown in the
following code:

List<WebElement> tableRows =
_webTable.findElements(By.tagName("tr"));
 WebElement headerRow = tableRows.get(0);
List<WebElement> tableCols =
headerRow.findElements(By.tagName("td"));

To retrieve data from a specific cell, the getCellData() function accepts row and column
number arguments. First, it gets the <tr> element from the list by using the row argument
as an index, as shown in the following code:

List<WebElement> tableRows =
_webTable.findElements(By.tagName("tr"));
WebElement currentRow = tableRows.get(rowIdx-1);

Extending Selenium

214

Then, it retrieves the <td> elements from currentRow using column argument as an index,
as shown in following code:

List<WebElement> tableCols =
currentRow.findElements(By.tagName("td"));
 WebElement cell = tableCols.get(colIdx-1);

To retrieve the text, it calls the cell object's getText() method, as shown in following code:

 return cell.getText();

Often we need to test tables with editable cells. These could be dynamic tables based on
database values. The getCellEditor() method of the WebTable object provides access
to the first input element of the cell. We can then use this input element and perform actions
such as Click() or SendKeys(). The getCellEditor() method uses a similar method
to reach the desired cell and then finds the first input element inside a cell, that is, a <td>
element, using the ByTagName locator strategy, as shown in the following code:

WebElement cellEditor =
cell.findElements(By.tagName("input")).get(0);

Creating an extension for the jQueryUI tab
widget

jQuery UI is a jQuery user-interface library. It provides interactions, widgets, effects, and
theming to build rich Internet applications. jQuery UI provides a number of UI widgets such
as accordion, datepicker, slider, dialog, and tabs.

These widgets are built using a number of low-level HTML elements, such as DIVs, unordered
lists, and input tags. While Selenium can recognize these elements individually, we can build
support for Selenium to recognize these controls as native jQuery UI widgets. We can then
perform native operations supported by jQuery framework.

In this recipe, we will implement support for the jQuery UI tab widget.

Getting ready
Visit http://jqueryui.com/demos/tabs/ to understand more about the jQuery UI tabs
widget. Explore how they are implemented along with various options, methods, and events
related to this widget.

http://jqueryui.com/demos/tabs/

Chapter 9

215

How to do it...
Similar to the WebTable extension class we created earlier, we will create a JQueryUITab
class to represent the tab widget in Selenium by following the ensuing steps:

1. First, create a JQueryUITab class with setter and getter properties:
package com.secookbook.examples.chapter09;

import org.openqa.selenium.By;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.internal.WrapsDriver;

import java.util.List;

public class JQueryUITab {

 private WebElement _jQueryUITab;

 public JQueryUITab(WebElement jQueryUITab) {
 set_jQueryUITab(jQueryUITab);
 }

 public WebElement get_jQueryUITab() {
 return _jQueryUITab;
 }

 public void set_jQueryUITab(WebElement _jQueryUITab) {
 this._jQueryUITab = _jQueryUITab;
 }
}

2. Add a method to retrieve the count of tabs available on tab widget, as shown in the
following code. We can use this to verify that the tab widget is displaying the expected
number of tabs:
public int getTabCount() {
 List<WebElement> tabs =
_jQueryUITab.findElements(By.cssSelector(".ui-tabs-nav >
li"));
 return tabs.size();
 }

Extending Selenium

216

3. Add a method to get the name of the selected tab, using the following code:
public String getSelectedTab() {
 WebElement tab = _jQueryUITab.findElement(By
 .cssSelector(".ui-tabs-nav > li[class*='ui-tabs-
selected']"));
 return tab.getText();
}

4. Add a method to select a tab. We will pass the name of the tab that we want to
select to this method by using the following code:
public void selectTab(String tabName) {
 int idx = 0;
 boolean found = false;
 List<WebElement> tabs = _jQueryUITab.findElements(By
 .cssSelector(".ui-tabs-nav > li"));

 for (WebElement tab : tabs) {
 if (tabName.equals(tab.getText().toString())) {
 WrapsDriver wrappedElement = (WrapsDriver)
_jQueryUITab;
 JavascriptExecutor driver = (JavascriptExecutor)
wrappedElement
 .getWrappedDriver();
 driver.executeScript(
 "jQuery(arguments[0]).tabs().
tabs('select',arguments[1]);",
 _jQueryUITab, idx);
 found = true;
 break;
 }
 idx++;
 }
 // Throw an exception if specified tab is not found
 if (found == false)
 throw new IllegalArgumentException("Could not find tab
'" + tabName
 + "'");
}

5. Let's implement the JQueryUITab class in a sample test, with the following code:
package com.secookbook.examples.chapter09;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;

Chapter 9

217

import org.openqa.selenium.By;
import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class JQueryUITabWidgetTest {

 private WebDriver driver;

 @Before
 public void setUp() {
 driver = new FirefoxDriver();
 driver.get("http://
cookbook.seleniumacademy.com/jQueryUITabDemo.html");
 }

 @Test
 public void testjQueryUITabWidget() {

 JQueryUITab tab = new JQueryUITab(driver.findElement(By
 .cssSelector("div[id=MyTab][class^=ui-tabs]")));

 // Verify Tab Widget has 3 Tabs
 assertEquals(3, tab.getTabCount());

 // Verify Home Tab is selected
 assertEquals("Home", tab.getSelectedTab());

 // Select Options Tab and verify it is selected
 tab.selectTab("Options");
 assertEquals("Options", tab.getSelectedTab());

 // Select Admin Tab and verify it is selected
 tab.selectTab("Admin");
 assertEquals("Admin", tab.getSelectedTab());

 // Select Home Tab
 tab.selectTab("Home");
 }

 @After
 public void tearDown() {

Extending Selenium

218

 // Close the browser
 driver.quit();
 }
}

How it works...
The JQueryUITab class was ready for use in testing the tab widget. The JQueryUITab class
accepts a WebElement object passed to its constructor. To retrieve the number of tabs in a
tab widget, we passed the tab element. Internally, the Tab widget defines an unordered list for
tab headers. We located these headers using the cssSelector() method of the By class
in a WebElement list using the findElements() method. We got the count of the tabs by
looking at the list size:

List<WebElement> tabs =
_jQueryUITab.findElements(By.cssSelector(".ui-tabs-nav > li"));
 return tabs.size();

To retrieve the selected tab name, we used a similar cssSelector() method with a filter
to locate the element whose class was ui-tabs-selected. When we select a tab
in the tab widget, the jQuery framework adds all these class attributes to the element
internally, as shown in the following code:

 WebElement tab = _jQueryUITab.findElement(By.cssSelector
 (".ui-tabs-nav > li[class*='ui-tabs-selected']"));
 return tab.getText();

Finally, to select a tab in the tab widget, we were required to execute the jQuery native API
functions. The tab widget has a method to select a tab by its index. However, selecting a tab
by its index may not be user-friendly. Therefore, we accept the name of the tab and then find
out its index internally, using the following code:

int idx=0;
List<WebElement> tabs =
_jQueryUITab.findElements(By.cssSelector(".ui-tabs-nav > li"));
Iterator<WebElement> itr = tabs.iterator();
while(itr.hasNext()) {
 WebElement element = itr.next();
 if(tabName.equals(element.getText().toString()))
 break;
 idx++;
}

Chapter 9

219

Then, we call the native jQuery API using JavaScriptExecutor and pass the index to the
select method of the Tab widget, using the following code:

WrapsDriver wrappedElement = (WrapsDriver) _jQueryUITab;
JavascriptExecutor driver = (JavascriptExecutor)
wrappedElement.getWrappedDriver();
 driver.executeScript("jQuery(arguments[0]).tabs().tabs('select',ar
guments[1]);",_jQueryUITab,idx);
}

There's more...
Using a similar approach, we can also build support for other widgets in jQuery UI or other UI
frameworks such as Yahoo UI, Doojo, and GWT. This provides a neat and clean way to work
with custom widgets and UI controls.

Implementing an extension for the
WebElement object to set the element
attribute values

Setting an element's attribute can be useful in various situations where the test needs to
manipulate properties of an element. For example, for a masked textbox, the sendKeys()
method may not work well, and setting the value of the textbox will help to overcome these
issues. The WebElement interface does not have a direct method that supports setting all
types of attributes.

In this recipe, we will create an extension for the WebElement and provide a method to set
the attribute value of an element at runtime.

Getting ready
Create a new Java class file for the WebElementExtender.java class. We will use this
class to host all the extension methods for elements.

How to do it...
Add the setAttribute() method to the WebElementExtender class, as follows:

import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.internal.WrapsDriver;

Extending Selenium

220

public class WebElementExtender {
 public static void setAttribute(WebElement element, String
 attributeName, String value)
 {
 WrapsDriver wrappedElement = (WrapsDriver) element;

 JavascriptExecutor driver = (JavascriptExecutor)
 wrappedElement.getWrappedDriver();
 driver.executeScript("arguments[0].setAttribute(arguments[1],
 arguments[2])", element, attributeName, value);
 }

}

How it works...
In the setAttribute() method, we created an object of JavaScriptExecutor and
retrieved WrappedDriver of the WebElement object on which we wanted to call the
setAttribute() method.

Using JavaScriptExecutor, we called the JavaScript setAttribute() method to set the
attribute value of an element. In this example, the contents of an input element are cleared
before calling the SendKeys() method. This can also be done by calling the clear()
method of the WebElement class:

WebElement email = driver.findElement(By.id("email"));
WebElementExtender.setAttribute(userName, "value", "");
userName.sendKeys("test@test.com");

See also
 f The Implementing an extension for the WebElement object to highlight

elements recipe

Implementing an extension for the
WebElement object to highlight elements

During the test execution, there is no way to highlight an element. This will help us to see what
is actually going on in the browser. This method will slow down the tests a bit, but sometimes
it's a useful way to debug tests.

In this recipe, we will create an extension for WebElement and provide the highlight
Elements() method at runtime.

Chapter 9

221

Getting ready
Create a new Java class file for the WebElementExtender.java class, or you can use the
class created in the previous recipe.

How to do it...
Add the highlightElement() method to the WebElementExtender class, as follows:

import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.internal.WrapsDriver;

public class WebElementExtender {

 public static void highlightElement(WebElement element) {
 for (int i = 0; i < 5; i++) {
 WrapsDriver wrappedElement = (WrapsDriver) element;
 JavascriptExecutor driver = (JavascriptExecutor)
 wrappedElement.getWrappedDriver();
 driver.executeScript("arguments[0].setAttribute('style',
 arguments[1]);",
 element, "color: green; border: 2px solid
yellow;");
 driver.executeScript("arguments[0].setAttribute('style',
 arguments[1]);",
 element, "");
 }
 }
}

How it works...
In the highlightElement() method, we created an instance of the JavaScriptExecutor
class and, from the element, got an instance of the WrappedDriver class on which we wanted
to call the highlightElement() method.

Using the JavaScriptExecutor class, we called the JavaScript setAttribute() method
to set the style attribute value to green and then back to original. We do this a few times
using a loop. During execution, the element is highlighted with a green flash. Here is an
example on using the highlightElement() method:

WebElement userName = driver.findElement(By.id("username"));
WebElementExtender.highlightElement(userName);
userName.sendKeys("test_user");

This comes in very handy while debugging or visualizing the test progress.

Extending Selenium

222

See also
 f The Implementing an extension for the WebElement object to set the element

attribute values recipe

Creating an object map for Selenium tests
So far, we have seen how the Selenium WebDriver API needs locator information to find the
elements on the page. When a large suite of tests is created, a lot of locator information is
duplicated in the test code. It becomes difficult to manage locator details when the number
of tests increases. If any changes happen in the element locator, we need to find all the tests
that use this locator and update these tests. This becomes a maintenance nightmare.

One way to overcome this problem is to use page objects and create a repository of pages as
reusable classes.

There is another way to overcome this problem—by using an object map. An object or a UI map
is a mechanism that stores all the locators for a test suite in one place for easy modification
when identifiers or paths to GUI elements change in the application under test. The test script
then uses the object map to locate the elements to be tested.

Object maps help in making test script management much easier. When a locator needs to
be edited, there is a central location for easily finding that object, rather than having to search
through the test script code. Also, it allows changing the identifier in a single place, rather
than having to make the change in multiple places within a test script, or for that matter,
in multiple test scripts. The object map files can also be version-controlled.

In this recipe, we will implement the ObjectMap class to maintain locator details obtained
from the tests.

Getting ready
Set up a new Java project for the ObjectMap class. This class will be used by Selenium tests
as an extension to read the ObjectMap file.

How to do it...
Let's implement an object map to store the locators used in a test with the following steps:

1. We will create a properties file named objectmap.properties. We will add the
locators in a key/value pair. The part before the equal-to sign (=) will be the key or
the logical name of the element, and the part after will be the locator details, in the
following format:
[logical_name]=[locator_type]>[locator_value]

Chapter 9

223

The following code is an example of the object map for the BMI calculator page:
height_field=name>heightCMS
weight_field=id>weightKg
calculate_button=id>Calculate
bmi_field=id>bmi

2. Implement the ObjectMap class to read the property file and provide the locator
information to the test:
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Properties;

public class ObjectMap {

 Properties properties;

 public ObjectMap(String mapFile)
 {
 properties = new Properties();
 try {
 FileInputStream in = new FileInputStream(mapFile);
 properties.load(in);
 in.close();
 }catch (IOException e) {
 System.out.println(e.getMessage());
 }

 }

}

3. Add a method to the ObjectMap class which will read the locator details from the
properties file and create and return the locator using the By class, as shown in
following code:
public By getLocator(String logicalElementName) throws
Exception
{
 //Read value using the logical name as Key
 String locator =
properties.getProperty(logicalElementName);

 //Split the value which contains locator type and locator
value
 String locatorType = locator.split(">")[0];

Extending Selenium

224

 String locatorValue = locator.split(">")[1];

 //Return a instance of By class based on type of locator
 if(locatorType.toLowerCase().equals("id"))
 return By.id(locatorValue);
 else if(locatorType.toLowerCase().equals("name"))
 return By.name(locatorValue);
 else if((locatorType.toLowerCase().equals("classname"))
||
 (locatorType.toLowerCase().equals("class")))
 return By.className(locatorValue);
 else if((locatorType.toLowerCase().equals("tagname")) ||
 (locatorType.toLowerCase().equals("tag")))
 return By.className(locatorValue);
 else if((locatorType.toLowerCase().equals("linktext")) ||
 (locatorType.toLowerCase().equals("link")))
 return By.linkText(locatorValue);
 else if(locatorType.toLowerCase().equals("partiallinktext"))
 return By.partialLinkText(locatorValue);
 else if((locatorType.toLowerCase().equals("cssselector"))
||
 (locatorType.toLowerCase().equals("css")))
 return By.cssSelector(locatorValue);
 else if(locatorType.toLowerCase().equals("xpath"))
 return By.xpath(locatorValue);
 else
 throw new Exception("Locator type '" + locatorType + "'
not defined!!");
}

4. Finally, create a test that uses the property file to store the locator information,
using the following code:
package com.secookbook.examples.chapter09;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebElement;

import org.junit.*;
import static org.junit.Assert.assertEquals;

public class ObjectMapTest {

 private WebDriver driver;
 private ObjectMap map;

Chapter 9

225

 @Before
 public void setUp() throws Exception {
 // Create a new instance of the Firefox driver
 driver = new FirefoxDriver();
 driver.get("http:// cookbook.seleniumacademy.com/
bmicalculator.html");
 }

 @Test
 public void testBmiCalculator() {
 // Get the Object Map File
 map = new
ObjectMap("src/test/resources/objectmap/objectmap.propertie
s");

 // Get the Height element
 WebElement height =
driver.findElement(map.getLocator("height_field"));
 ;
 height.sendKeys("181");

 // Get the Weight element
 WebElement weight =
driver.findElement(map.getLocator("weight_field"));
 weight.sendKeys("80");

 // Click on the Calculate button
 WebElement calculateButton = driver.findElement(map
 .getLocator("calculate_button"));
 calculateButton.click();

 // Verify the Bmi
 WebElement bmi =
driver.findElement(map.getLocator("bmi_field"));
 assertEquals("24.4", bmi.getAttribute("value"));
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

Extending Selenium

226

How it works...
First, we created a Java properties file with the key/value pair, storing a logical name for
an element and locator value. The properties files are flat text files, and the java.util.
Properties namespace provides the Properties class to access a property file:

properties = new Properties();

By passing a logical name or key to the getProperty() method of the Properties class,
we can retrieve a value from the pair.

The getLocator() method uses the value returned by the getProperty() method and
returns a matching By locator method, along with the value, to the test.

In the test, we created an instance of an object map and then passed the location of the
property file, as shown in the following code:

map = new
ObjectMap("src/test/resources/objectmap/objectmap.properties");

We passed the locator value to the findElement() method by passing the logical name or
key of the element to the getLocator() method of the ObjectMap class, as follows:

WebElement height =
driver.findElement(map.getLocator("height_field"));

We can have a single object map file to store all the locators and can use the same locators in
multiple tests.

There's more…
Object maps can also be created in XML files. The following code is an example of an
XML-based object map:

<elements>
 <element name="HeightField" locator_type="name"
locator_value="heightCMS"/>
 <element name="WeightField" locator_type="id"
locator_value="weightKg"/>
 <element name="CalculateButton" locator_type="xpath"
locator_value="//input[@value='Calculate']"/>
 <element name="BmiField" locator_type="id" locator_value="bmi"/>
 <element name="BmiCategoryField" locator_type="css"
locator_value="#bmi_category"/>
</elements>

Chapter 9

227

The following code is the C# implementation of the getLocator() method:

public By GetLocator(string locatorName)
{
 var element = from elements in _root.Elements("element")
 where elements.Attributes("name").First().Value ==
 locatorName
 select elements;
 try
 {
 string locatorType =
element.Attributes("locator_type").First().
 Value.ToString();
 string locatorValue =
element.Attributes("locator_value").First().
 Value.ToString();

 switch (locatorType.ToLower())
 {
 case "id":
 return By.Id(locatorValue);
 case "name":
 return By.Name(locatorValue);
 case "classname":
 return By.ClassName(locatorValue);
 case "linktext":
 return By.LinkText(locatorValue);
 case "partiallinktext":
 return By.PartialLinkText(locatorValue);
 case "css":
 return By.CssSelector(locatorValue);
 case "xpath":
 return By.XPath(locatorValue);
 case "tagname":
 return By.TagName(locatorValue);
 default:
 throw new Exception("Locator Type '" + locatorType + "'
 not supported!!");
 }
 }
 catch (Exception)
 {
 throw new Exception("Failed to generate locator for '" +
 locatorName + "'");
 }
}

A similar approach can be taken with other Selenium WebDriver language bindings, such as
Java, Python, or Ruby.

Extending Selenium

228

Capturing screenshots of elements in the
Selenium WebDriver

The TakesScreenshot interface captures the screenshot of the entire page, current
window, visible portion of the page, or of the complete desktop window in their respective
order as supported by the browser. It does not provide a way to capture an image of the
specific element.

We can extend the screen capture functionality to capture images of WebElement using the
Java Image API in addition to the TakesScreenshot interface.

In this recipe, we will implement a helper method to capture images of elements.

How to do it...
Let's implement the captureElementPicture() method to capture an image of
WebElement. We will pass a WebElement instance to this method; the following code
shows an example:

public static File captureElementPicture(WebElement element)
 throws Exception {

 // Get the WrapsDriver of the WebElement
 WrapsDriver wrapsDriver = (WrapsDriver) element;

 // Get the entire Screenshot from the driver of passed
WebElement
 File screen = ((TakesScreenshot)
wrapsDriver.getWrappedDriver())
 .getScreenshotAs(OutputType.FILE);

 // Create an instance of Buffered Image from captured
screenshot
 BufferedImage img = ImageIO.read(screen);

 // Get the Width and Height of the WebElement using getSize()
 int width = element.getSize().getWidth();
 int height = element.getSize().getHeight();

 // Create a rectangle using Width and Height
 Rectangle rect = new Rectangle(width, height);

 // Get the Location of WebElement in a Point.
 // This will provide X & Y co-ordinates of the WebElement

Chapter 9

229

 Point p = element.getLocation();

 // Create image by for element using its location and size.
 // This will give image data specific to the WebElement
 BufferedImage dest = img.getSubimage(p.getX(), p.getY(),
rect.width,
 rect.height);

 // Write back the image data for element in File object
 ImageIO.write(dest, "png", screen);

 // Return the File object containing image data
 return screen;
 }

How it works...
When the captureElementPicture() method is called with WebElement as an argument,
it gets the underlying driver instance of the element using the WrapsDriver class. Then it
captures the screenshot of the page displayed in the driver using the getScreenShotAs()
method of the TakesScreenshot interface using the location and size of the element. We
will crop the image of the element from the image of the entire page.

In the following example, the captureElementPicture() method is used to capture the
image of a button element:

@Test
public void testElementScreenshot() {
 WebElement searchButton = driver.findElement(By.name("btnK"));
 try {
 FileUtils.copyFile(
 WebElementExtender.captureElementPicture(searchButton),
 new File("target/searchButton.png"));
 } catch (Exception e) {
 e.printStackTrace();
 }
}

See also
 f The Capturing screenshots with Selenium WebDriver recipe in Chapter 4, Working

with Selenium API

Extending Selenium

230

Comparing images in Selenium
Many a time, our tests need image-based comparison. For example, verifying whether
correct icons are displayed, verifying whether correct images are displayed in web pages,
or comparing the baseline screen layout with the actual layout.

Selenium WebDriver does have features to capture screenshots or images from the
application under test; however, it does not have the feature to compare the images.

In this recipe, we will create an extension class to compare images and use it in our
Selenium tests.

Getting ready
Set up a new Java project for the CompareUtil class. This class will be used by Selenium
tests as an extension to compare images.

How to do it...
Let's implement the CompareUtil class with a method to compare two image files, as shown
in the following code:

package com.secookbook.examples.chapter09;

import java.awt.Image;
import java.awt.Toolkit;
import java.awt.image.PixelGrabber;

public class CompareUtil {

 public enum Result {
 Matched, SizeMismatch, PixelMismatch
 };

 public static Result CompareImage(String baseFile, String
actualFile) {
 Result compareResult = Result.PixelMismatch;
 Image baseImage = Toolkit.getDefaultToolkit().getImage(baseFile);
 Image actualImage = Toolkit.getDefaultToolkit().
getImage(actualFile);
 try {
 PixelGrabber baseImageGrab = new PixelGrabber(baseImage, 0,
0, -1,

Chapter 9

231

 -1, false);
 PixelGrabber actualImageGrab = new PixelGrabber(actualImage,
0, 0,
 -1, -1, false);

 int[] baseImageData = null;
 int[] actualImageData = null;

 if (baseImageGrab.grabPixels()) {
 int width = baseImageGrab.getWidth();
 int height = baseImageGrab.getHeight();
 baseImageData = new int[width * height];
 baseImageData = (int[]) baseImageGrab.getPixels();
 }

 if (actualImageGrab.grabPixels()) {
 int width = actualImageGrab.getWidth();
 int height = actualImageGrab.getHeight();
 actualImageData = new int[width * height];
 actualImageData = (int[]) actualImageGrab.getPixels();
 }

 if ((baseImageGrab.getHeight() !=
actualImageGrab.getHeight())
 || (baseImageGrab.getWidth() !=
actualImageGrab.getWidth()))
 compareResult = Result.SizeMismatch;
 else if (java.util.Arrays.equals(baseImageData,
actualImageData))
 compareResult = Result.Matched;

 } catch (Exception e) {
 e.printStackTrace();
 }
 return compareResult;
 }
}

How it works...
The CompareUtil class uses the java.awt.Image namespace to work with images. The
CompareImage() method takes the path of the base file and the actual file as an argument.
It then retrieves these images to the Image class:

Image baseImage = Toolkit.getDefaultToolkit().getImage(baseFile);
Image actualImage = Toolkit.getDefaultToolkit().getImage(actualFile);

Extending Selenium

232

Finally, it uses the PixelGrabber class to get the pixels from these images to an array,
as shown in the following code:

PixelGrabber baseImageGrab = new PixelGrabber(baseImage, 0, 0, -1,
-1, false);
PixelGrabber actualImageGrab = new PixelGrabber(actualImage, 0, 0,
-1, -1, false);

int[] baseImageData = null;
int[] actualImageData = null;

if(baseImageGrab.grabPixels()) {
 int width = baseImageGrab.getWidth();
 int height = baseImageGrab.getHeight();
 baseImageData = new int[width * height];
 baseImageData = (int[])baseImageGrab.getPixels();
}

if(actualImageGrab.grabPixels()) {
 int width = actualImageGrab.getWidth();
 int height = actualImageGrab.getHeight();
 actualImageData = new int[width * height];
 actualImageData = (int[])actualImageGrab.getPixels();
}

The images are first tested for size mismatch, and then for pixel mismatch, using the
following code:

if ((baseImageGrab.getHeight() != actualImageGrab.getHeight()) ||
(baseImageGrab.getWidth() != actualImageGrab.getWidth()))
 compareResult = Result.SizeMismatch;
else if(java.util.Arrays.equals(baseImageData, actualImageData))
 compareResult = Result.Matched;

The following code is a sample test, comparing the layout of the application being tested with
a base layout captured from an earlier release:

package com.secookbook.examples.chapter09;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.*;
import org.apache.commons.io.FileUtils;
import org.junit.*;
import static org.junit.Assert.*;
import java.io.File;

Chapter 9

233

public class BmiCalculatorTest {

 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 // Create a new instance of the Firefox driver
 driver = new FirefoxDriver();
 }

 @Test
 public void testBmiCalculatorLayout() throws Exception {

 String scrFile = "c:\\screenshot.png";
 String baseScrFile = "c:\\baseScreenshot.png";

 // Open the BMI Calculator Page and get a Screen Shot of Page
into a
 // File
 driver.get("http://dl.dropbox.com/u/55228056/bmicalculator.html");
 File screenshotFile = ((TakesScreenshot) driver)
 .getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(screenshotFile, new File(scrFile));

 // Verify baseline image with actual image
 assertEquals(CompareUtil.Result.Matched,
 CompareUtil.CompareImage(baseScrFile, scrFile));

 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

There's more...
The following code is the C# implementation of CompareUtil. You can use this class for
Selenium tests created with .NET bindings:

using System;
using System.Collections.Generic;

Extending Selenium

234

using System.Linq;
using System.Text;
using System.Drawing;
using System.Drawing.Imaging;

namespace CompareUtil
{
 public class CompareUtil
 {
 public enum Result { Matched, SizeMismatch, PixelMismatch
};

 public static Result CompareImage(string baseFile,
 string actualFile)
 {
 Result result = Result.Matched;

 Bitmap baseBmp = (Bitmap)Image.FromFile(baseFile);
 Bitmap actBmp = (Bitmap)Image.FromFile(actualFile);

 if (baseBmp.Size != actBmp.Size)
 result = Result.SizeMismatch;
 else
 {
 int height = Math.Min(baseBmp.Height,
actBmp.Height);
 int width = Math.Min(baseBmp.Width, actBmp.Width);

 bool are_identical = true;
 for (int x = 0; x <= width - 1; x++)
 {
 for (int y = 0; y <= height - 1; y++)
 {
 if (baseBmp.GetPixel(x, y).Equals(actBmp.
 GetPixel(x, y)))
 {
 }
 else
 {
 are_identical = false;
 }
 }
 }
 if (are_identical == true)

Chapter 9

235

 result = Result.Matched;
 else
 result = Result.PixelMismatch;
 }

 return result;
 }
 }
}

See also
 f The Capturing screenshots with Selenium WebDriver recipe in Chapter 4,

Working with the Selenium API

 f The Capturing screenshots of elements in the Selenium WebDriver recipe

Measuring performance with the Navigation
Timing API

Measuring and optimizing the client-side performance is essential for a seamless user
experience, and this is critical for web 2.0 applications using AJAX.

Capturing vital information, such as the time taken for page load, rendering of the elements,
and the JavaScript code execution, helps in identifying the areas where performance is slow,
and optimizes the overall client-side performance.

Sometimes, third-party controls, images, and media content also cause degradation in the
performance. Using Selenium WebDriver and various other tools together, we can measure
the performance and eliminate the weaker content.

Navigation Timing is a W3C Standard JavaScript API to measure performance on the Web.
The API provides a simple way to get accurate and detailed timing statistics natively for page
navigation and load events. It is available on Internet Explorer 9, Google Chrome, Firefox, and
WebKit-based browsers.

The API is accessed via the properties of the timing interface of the window.performance
object using JavaScript.

Each performance.timing attribute shows the time of a navigation event when the page
was requested or when the page load event was measured in milliseconds since midnight of
January 1, 1970 (UTC). A zero value means that an event did not occur.

Extending Selenium

236

The order of the performance.timing events is shown in the following diagram from the
Navigation Timing draft:

Getting ready
Identify a test where you want to measure the performance as well as decide what
performance counters you want to measure.

How to do it...
We need to access the window.performance object using JavascriptExecutor to
collect the timing metric; the following code shows an example for this:

// Open the BMI Calculator Mobile Application
driver.get("http://
cookbook.seleniumacademy.com/bmicalculator.html");

JavascriptExecutor js = (JavascriptExecutor) driver;

// Get the Load Event End
long loadEventEnd = (Long) js.executeScript("return
window.performance.timing.loadEventEnd;");

// Get the Navigation Event Start

Chapter 9

237

long navigationStart = (Long) js.executeScript("return
window.performance.timing.navigationStart;");

// Difference between Load Event End and Navigation Event Start is
// Page Load Time
System.out.println("Page Load Time is " + (loadEventEnd -
navigationStart)/1000 + " seconds.");

Refer to the NavTimingDemo.java section in the book's
sample code for a complete test.

How it works...
As discussed in the previous code, the window.performance object provides us with the
performance metric that is available within the Browser Window object. We need to use
JavaScript to retrieve this metric, using the following code:

JavascriptExecutor js = (JavascriptExecutor) driver;

// Get the Load Event End
long loadEventEnd = (Long) js.executeScript("return
window.performance.timing.loadEventEnd;");

Here, we are collecting the loadEventEnd time and the navigationEventStart time
and calculating the difference between them, which will give us the page load time.

239

10
Testing HTML5

Web Applications

In this chapter, we will cover:

 f Automating the HTML5 video player

 f Automating interaction on the HTML5 canvas element

 f Web storage – testing local storage

 f Web storage – testing session storage

 f Cleaning local and session storage

Introduction
As HTML5 is gaining popularity, major browsers are now equipped to support HTML5, extending
the scope of HTML combined with JavaScript and CSS3 into powerful, rich internet applications.
There are many applications being developed that use new HTML5 elements such as canvas
and video, as well as features such as web storage.

Selenium WebDriver supports testing HTML5 web applications on certain browsers out of
the box. However, we can also use JavaScript to test these features, which will work on all
the browsers supported by Selenium WebDriver.

In this chapter, we will focus on the most important features of HTML5, and see how to test
them using Selenium WebDriver.

Testing HTML5 Web Applications

240

Automating the HTML5 video player
HTML5 defines a new element that specifies a standard way to embed a video or movie clip
on a web page using the <video> element. Internet Explorer 9+, Firefox, Opera, Chrome,
and Safari support the <video> element.

In this recipe, we will explore how we can automate testing of the <video> element.
This automated testing provides a JavaScript interface with various methods and properties
for automation.

How to do it...
We will create a new test named testHTML5VideoPlayer for testing the <video> element.
We will use the JavaScriptExecutor class from Selenium WebDriver to interact with
the <video> element. We will control the video from our test code and also verify some
properties of the video in the following way:

package com.secookbook.examples.chapter10;

import java.io.File;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.OutputType;
import org.openqa.selenium.TakesScreenshot;
import org.apache.commons.io.FileUtils;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.*;

public class HTML5VideoPlayer {

 private WebDriver driver;

 @Before
 public void setUp() {
 System.setProperty("webdriver.chrome.driver",
 "src/test/resources/drivers/chromedriver.exe");

 driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/html5video.html");

Chapter 10

241

 }

 @Test
 public void testHTML5VideoPlayer() throws Exception {
 // Get the HTML5 Video Element
 WebElement videoPlayer = driver.findElement(By.id("vplayer"));

 // We will need a JavaScript Executor for interacting with
Video
 // Element's methods and properties for automation
 JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;

 // Get the Source of Video that will be played in Video Player
 String source = (String) jsExecutor.executeScript(
 "return arguments[0].currentSrc;", videoPlayer);
 // Get the Duration of Video
 long duration = (Long) jsExecutor.executeScript(
 "return arguments[0].duration", videoPlayer);

 // Verify Correct Video is loaded and duration
 assertEquals("http://html5demos.com/assets/dizzy.mp4",
source);
 assertEquals(25, duration);

 // Play the Video
 jsExecutor.executeScript("return arguments[0].play()",
videoPlayer);

 Thread.sleep(5000);

 // Pause the video
 jsExecutor.executeScript("arguments[0].pause()", videoPlayer);

 // Take a screenshot for later verification
 File scrFile = ((TakesScreenshot)
driver).getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new
File("target/screenshots/pause_play.png"));
 }

 @After
 public void tearDown() {
 driver.quit();
 }
}

Testing HTML5 Web Applications

242

How it works...
Firstly, we locate the <video> element so we can call its associated methods in JavaScript as
well as in the retrieve/set properties. We can locate the <video> element similar to another
HTML elements by using the findElement() method, as follows:

//Get the HTML5 Video Element
WebElement videoPlayer = driver.findElement(By.id("vplayer"));

We can verify which video file is being used with video player for playback, and duration of the
video, by looking at the currentSrc and duration properties. We retrieve these properties
by accessing the <video> element through JavaScript. For this, we created an instance of the
JavaScriptExecutor class, as follows:

JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;

Using the executeScript() method of the JavaScriptExecutor class of Selenium
WebDriver, we can execute the JavaScript code within the browser window. We can return
a value from the JavaScript code by assigning the value to a variable. However, we need to
cast this value appropriately based on the type of value being returned. In this case, the
currentSrc property will return a URL of the video file as a String:

String source = (String) jsExecutor.executeScript("return
arguments[0].currentSrc;", videoPlayer);

In the preceding example, arguments[0] was replaced by the videoPlayer WebElement
using the executeScript() method.

The video playback
As discussed earlier, we can also control the playback of a video using the methods of the
<video> element such as play() and pause(). We can call these methods using the
executeScript() method in the following way:

//Play the Video
jsExecutor.executeScript("return arguments[0].play()",
videoPlayer);

See also
 f Executing the JavaScript code recipe in Chapter 4, Working with Selenium API

Chapter 10

243

Automating interaction on the HTML5
canvas element

Web developers can now create cool drawing applications within web browsers using the new
HTML5 <canvas> element. This element is used to build drawing and charting applications
by using JavaScript. Canvas has several methods for drawing paths, boxes, circles, characters,
and adding images.

In this recipe, we will automate a simple drawing application through the Selenium WebDriver
action class for mouse movements. We will also implement an image comparison feature to
test the drawing on a canvas.

Internet Explorer 9+, Firefox, Opera, Chrome, and Safari support the <canvas> element.

How to do it...
Create a new test named testHTML5CanvasDrawing for testing the <canvas> element.
We will draw a shape by using a sequence of mouse movements on the <canvas> element.
We will verify the canvas with a previously captured image and check if the shape has been
redrawn, as follows:

package com.secookbook.examples.chapter10;

import java.io.File;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.support.ui.Select;
import org.apache.commons.io.FileUtils;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import com.secookbook.examples.chapter09.CompareUtil;
import com.secookbook.examples.chapter09.WebElementExtender;

import static org.junit.Assert.*;

public class HTML5CanvasDrawing {

Testing HTML5 Web Applications

244

 private WebDriver driver;

 @Before
 public void setUp() {
 driver = new FirefoxDriver();
 driver.get("http://cookbook.seleniumacademy.com/html5canvasdraw.ht
ml");
 }

 @Test
 public void testHTML5CanvasDrawing() throws Exception {
 // Get the HTML5 Canvas Element
 WebElement canvas = driver.findElement(By.id("imageTemp"));

 // Select the Pencil Tool
 Select drawTools = new
Select(driver.findElement(By.id("dtool")));
 drawTools.selectByValue("pencil");

 // Create a Action chain to draw a shape on Canvas
 Actions builder = new Actions(driver);
 builder.clickAndHold(canvas).moveByOffset(10,
50).moveByOffset(50, 10)
 .moveByOffset(-10, -50).moveByOffset(-50, -10).release()
 .perform();

 // Get a screenshot of Canvas element after drawing and
compare it to
 // the base version
 FileUtils.copyFile(WebElementExtender.captureElementPicture(canvas
),
 new File("target/screenshots/drawing.png"));

 assertEquals(CompareUtil.Result.Matched,
CompareUtil.CompareImage(
 "src/test/resources/testdata/base_drawing.png",
"target/screenshots/drawing.png"));
 }

 @After
 public void tearDown() {
 driver.quit();
 }
}

Chapter 10

245

How it works...
To draw on the canvas, we will first select a drawing tool by selecting the pencil option
from the Drawing Tool dropdown. Selenium WebDriver provides a Select class for working
with dropdowns and lists. In the test, the selectByValue() method is called to select the
pencil tool:

Select drawTools = new Select(driver.findElement(By.id("dtool")));
drawTools.selectByValue("pencil");

We then draw a shape on the canvas using the Selenium WebDriver actions generator. Selenium
WebDriver will perform a sequence of mouse movements by calling the moveByOffset()
method while the mouse button is held down to draw the shape, with the mouse button released
at the end:

builder.clickAndHold(canvas).moveByOffset(10, 50).
 moveByOffset(50,10).
 moveByOffset(-10,-50).
 moveByOffset(-50,-10).release().perform();

The Selenium actions generator mimics the mouse operations exactly like an end user
drawing a shape on the canvas.

Finally, we will capture an image of the canvas using the captureElementBitmap()
method of the WebElementExtender class. This image will be compared with a baseline
image to verify that the drawing operation works on the canvas as expected, using the
Selenium WebDriver.

See also
 f Executing the JavaScript code recipe in Chapter 4, Working with Selenium API

 f The Comparing images in Selenium recipe in Chapter 9, Extending Selenium

Web storage – testing local storage
HTML5 introduced a more secure and faster way of storing data locally within the user's
browser from the web application. Previously, this was done with cookies. This data is not
included with every server request, but used only when asked for. It is also possible to store
large amounts of data without affecting the website's performance. The data is stored in
key/value pairs, and a web application can only access data that is stored by itself.

HTML5 provides a localStorage interface through JavaScript that stores the data
with no expiration date. The data will not be deleted when the browser is closed, and
will be available at all times. You can view this data in Google Chrome by clicking on the
Inspect Element | Resources tab.

Testing HTML5 Web Applications

246

Internet Explorer 8+, Firefox, Opera, Chrome, and Safari support web storage.

In this recipe, we will verify if a web page stores data in local storage as expected.

How to do it...
We will create a test that will verify that the web page has created an entry in local storage
and stored a value. We will use the Selenium WebDriver JavaScriptExecutor class to
access the localStorage interface, as follows:

package com.secookbook.examples.chapter10;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.JavascriptExecutor;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.*;

public class HTML5LocalStorage {

 private WebDriver driver;

 @Before
 public void setUp() {
 System.setProperty("webdriver.chrome.driver",
 "src/test/resources/drivers/chromedriver.exe");

 driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/html5storage.html"
);
 }

 @Test
 public void testHTML5LocalStorage() throws Exception {
 JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;

 // Get the current value of localStorage.lastname, this should
be Smith
 String lastName = (String) jsExecutor
 .executeScript("return localStorage.lastname;");
 assertEquals("Smith", lastName);
 }

Chapter 10

247

 @After
 public void tearDown() {
 driver.quit();
 }
}

How it works...
While executing this test, Selenium WebDriver loads a page that will access the local storage,
and creates a new key/value pair as lastName = Smith. We can validate this by accessing
the lastName key from the localStorage interface using the executeScript() method of
the JavaScriptExecutor class. This will return the value of the lastName key as a String:

String lastName = (String) jsExecutor.executeScript("return
localStorage.lastname;");

There's more...
During testing, there might be a need to directly set the value of the key in local storage. We
can assign a new value to an existing key by directly assigning the value in the following way,
using JavaScript:

//Set the value of localStorage.lastname to Dustin
jsExecutor.executeScript("localStorage.lastname = arguments[0];",
"Dustin");

See also
 f The Cleaning local and session storage recipe in this chapter.

Web storage – testing session storage
Similar to local storage, session storage stores the data for only one session. The data is
deleted when the user closes the browser window. We can access the session storage using
the sessionStorage interface through JavaScript.

In this recipe, we will verify that a web page stores data in session storage as expected.

Testing HTML5 Web Applications

248

How to do it...
Let's create a test case that will load a web page that implements a counter and stores the
value of the counter every time a button is clicked in session storage. We will verify that a new
counter value is stored in session storage:

package com.secookbook.examples.chapter10;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.*;

public class HTML5SessionStorage {

 private WebDriver driver;

 @Before
 public void setUp() {
 System.setProperty("webdriver.chrome.driver",
 "src/test/resources/drivers/chromedriver.exe");

 driver = new ChromeDriver();
 driver.get("http://cookbook.seleniumacademy.com/html5storage.html"
);
 }

 @Test
 public void testHTML5SessionStorage() throws Exception {
 WebElement clickButton = driver.findElement(By.id("click"));
 WebElement clicksField = driver.findElement(By.id("clicks"));

 JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;

 // Get current value of sessionStorage.clickcount, should be
null
 String clickCount = (String) jsExecutor
 .executeScript("return sessionStorage.clickcount;");

Chapter 10

249

 assertEquals(null, clickCount);
 assertEquals("0", clicksField.getAttribute("value"));

 // Click the Button, this will increase the
sessionStorage.clickcount
 // value by 1
 clickButton.click();

 // Get current value of sessionStorage.clickcount, should be 1
 clickCount = (String) jsExecutor
 .executeScript("return sessionStorage.clickcount;");
 assertEquals("1", clickCount);
 assertEquals("1", clicksField.getAttribute("value"));
 }

 @After
 public void tearDown() {
 driver.quit();
 }
}

How it works...
While executing this test, whenever a button is clicked by Selenium WebDriver, a new session
storage key is created for the first time in session storage. For subsequent clicks, this value is
incremented by the web page.

Similar to local storage, we can validate this by accessing the clickCount key
from the sessionStorage interface using the executeScript() method of the
JavaScriptExecutor class. This will return the value of the clickCount key as a String:

//Click the Button, this will increase the
sessionStorage.clickcount //value by 1
clickButton.click();

//Get current value of sessionStorage.clickcount, should be 1
clickCount = (String) jsExecutor.executeScript("return
 sessionStorage.clickCount;");

When the browser is closed and the test has ended, the clickcount key will be removed
from session storage.

See also
 f The Cleaning local and session storage recipe in this chapter.

Testing HTML5 Web Applications

250

Cleaning local and session storage
When tests are run on HTML5 applications using local or session storage, lots of local and
session storage entries will be created. When running tests in a batch on an already used
environment, cleaning local and session storage is a good idea before you begin your tests.

In this recipe, we will briefly see how to remove local or session storage items and clean
the values.

How to do it...
To remove a specific item from local or session storage, you can use the removeItem()
method in the following way:

// We can use removeItem method to remove a specific Key along
with it's value from local storage
JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;
jsExecutor.executeScript("localStorage.removeItem(lastname);");

For session storage, the following code snippet is used:

JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;
jsExecutor.executeScript("sessionStorage.removeItem(lastname);");

To clear all items, in local or session storage, you can use the clear() method in the
following way:

//To Clear Storage values
JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;
jsExecutor.executeScript("localStorage.clear();");

For session storage, the following code snippet is used:

//To Clear Storage values
JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;
jsExecutor.executeScript("sessionStorage.clear();");

See also
 f The Web storage – testing session storage recipe

 f The Web storage – testing local storage recipe covered earlier in this chapter

251

11
Behavior-Driven

Development

In this chapter, we will cover:

 f Using Cucumber-JVM and Selenium WebDriver in Java for BDD

 f Using SpecFlow.NET and Selenium WebDriver in .NET for BDD

 f Using Capybara, Cucumber, and Selenium WebDriver in Ruby

 f Using Behave and Selenium WebDriver in Python

Introduction
Behavior-driven development (BDD) is an agile software development method that enhances
the paradigm of test driven development (TDD) and acceptance tests, and encourages the
collaboration between developers, QA, domain experts, and stakeholders. Behavior-driven
development was introduced by Dan North in 2003 in his seminal article Introducing BDD.
The article can be accessed at http://dannorth.net/introducing-bdd/.

Behavior-driven development focuses on obtaining a clear understanding of desired application
behavior through discussions with stakeholders using a ubiquitous language as described at
http://behaviour-driven.org/.

It extends TDD by writing test cases in a natural language that non-programmers can
read. Users describe features and scenarios to test these features in plain text files using
the Gherkin language in the Given, When, and Then structures. You can find out more
about Gherkin language at http://en.wikipedia.org/wiki/Behavior-driven_
development and https://github.com/cucumber/cucumber/wiki/Gherkin.

http://dannorth.net/introducing-bdd/
http://behaviour-driven.org/
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/cucumber/cucumber/wiki/Gherkin

Behavior-Driven Development

252

The Given, When, and Then structures in the Gherkin language are described as follows:

 f Given: This represents the initial context (precondition)

 f When: This represents the user performing a key action (actor + action)

 f Then: This ensures some kind of outcome (observable result)

In behavior-driven development, the process starts with users of the system and the
development team discussing features, user stories, and scenarios. These are documented in
feature or story files using the Gherkin language. Developers then use the red-green-refactor
cycle to run these features using the BDD framework, then write step definition files mapping
the steps from the scenarios to the automation code and re-running until all the acceptance
criteria are met.

Behavior-driven development is also known as acceptance test driven
development (ATDD) or story testing.

In this chapter, we will explore how to use frameworks like Cucumber-JVM, SpecFlow.NET, and
Capybara, Behave with Selenium WebDriver for behavior-driven development.

Using Cucumber-JVM and Selenium
WebDriver in Java for BDD

BDD/ATDD is gaining much popularity in agile software development, and Cucumber-JVM is
a mainstream tool used to implement this practice in Java. Cucumber-JVM is the Java port of
the Cucumber framework, widely used in Ruby.

Cucumber-JVM allows developers, QA, and non-technical or business participants to write
features and scenarios in a plain text file using Gherkin language. This is done with minimal
restrictions about grammar in a typical Given, When, and Then structure.

This feature file is then supported by a step definition file, which implements automated steps
to execute the scenarios written in the feature file. Apart from testing APIs with Cucumber-JVM,
we can also test UI level tests by combining Selenium WebDriver.

In this recipe, we will use Cucumber-JVM, Maven, and Selenium WebDriver to implement tests
for the fund transfer feature of an online banking application.

Chapter 11

253

Getting ready
1. Create a new Maven project named FundTransfer in Eclipse.

2. Add the following dependencies to POM.XML:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>FundTransfer</groupId>
 <artifactId>FundTransfer</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>1.2.4</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>1.2.4</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>2.47.1</version>
 </dependency>
 </dependencies>
</project>

Behavior-Driven Development

254

How to do it...
Perform the following steps to create BDD/ATDD tests with Cucumber-JVM:

1. Select the FundTransfer project in Package Explorer in Eclipse. Select and right-click
on src/test/resources in Package Explorer. Select New | Package from the menu
to add a new package, as shown in the following screenshot:

2. Enter fundtransfer.test in the Name: textbox and click on the Finish button.

3. Add a new file to this package. Name this file fundtransfer.feature, as shown in
the following screenshot:

Chapter 11

255

4. Add the Fund Transfer feature and scenarios to this file:
 Feature: Customer Transfer's Fund
 As a customer,
 I want to transfer funds
 so that I can send money to my friends and family

 Scenario: Valid Payee
 Given the user is on Fund Transfer Page
 When he enters "Jim" as payee name
 And he enters "100" as amount
 And he submits request for Fund Transfer
 Then ensure the fund transfer is complete with "$100
transferred successfully to Jim!!" message

Behavior-Driven Development

256

 Scenario Outline: Invalid conditions
 Given the user is on Fund Transfer Page
 When he enters "<payee>" as payee name
 And he enters "<amount>" as amount
 And he submits request for Fund Transfer
 Then ensure a transaction failure "<message>" is
displayed

 Examples:
 | payee | amount | message |
 | Unmesh | 100 | Transfer failed!! 'Unmesh' is not
registered in your List of Payees | | Tim | 100000 |
Transfer failed!! account cannot be overdrawn |

5. Select and right-click on src/test/java in Package Explorer. Select New | Package
from the menu to add a new package, as shown in the following screenshot:

Chapter 11

257

6. Create a class named FundTransferStepDefs in the newly created package.
Add the following code to this class:
package fundtransfer.test;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

import cucumber.api.java.*;
import cucumber.api.java.en.*;
import static org.junit.Assert.assertEquals;

public class FundTransferStepDefs {
 protected WebDriver driver;

 @Before
 public void setUp() {
 driver = new ChromeDriver();
 }

 @Given("the user is on Fund Transfer Page")
 public void theUserIsOnFundTransferPage() {
 driver.get("http://cookbook.seleniumacademy.com/fundTransfe
r.html");
 }

 @When("he enters \"([^\"]*)\" as payee name")
 public void heEntersPayeeName(String payeeName) {
 driver.findElement(By.id("payee")).sendKeys(payeeName);
 }

 @And("he enters \"([^\"]*)\" as amount")
 public void heEntersAmount(String amount) {
 driver.findElement(By.id("amount")).sendKeys(amount);
 }

 @And("he submits request for Fund Transfer")
 public void heSubmitsRequestForFundTransfer() {
 driver.findElement(By.id("transfer")).click();
 }

Behavior-Driven Development

258

 @Then("ensure the fund transfer is complete with
\"([^\"]*)\" message")
 public void ensureTheFundTransferIsComplete(String msg) {
 WebElement message =
driver.findElement(By.id("message"));
 assertEquals(message.getText(), msg);
 }

 @Then("^ensure a transaction failure \"([^\"]*)\" is
displayed$")
 public void ensureATransactionFailureMessage(String msg)
{
 WebElement message =
driver.findElement(By.id("message"));
 assertEquals(message.getText(), msg);
 }

 @After
 public void tearDown() {
 driver.close();
 }
}

7. Create a support class RunCukesTest, which will define the Cucumber-JVM
configurations:
package fundtransfer.test;

import cucumber.api.CucumberOptions;
import cucumber.api.junit.Cucumber;

import org.junit.runner.RunWith;

@RunWith(Cucumber.class)
@CucumberOptions(plugin = {"pretty",
"html:target/report/report.html",
 "json:target/report/cucu_json_report.json",
 "junit:target/report/cucumber_junit_report.xml"})
public class RunCukesTest {
}

8. To run the tests in Maven life cycle, select the FundTransfer project in Package
Explorer. Right-click on the project name and select Run As | Maven test.
Maven will execute all the tests from the project.

Chapter 11

259

9. At the end of the test, an HTML report will be generated, as shown in the following
screenshot. To view this report, open index.html in the target\report folder:

How it works...
Creating tests in Cucumber-JVM involves three major steps: writing a feature file, implementing
automated steps using the step definition file, and creating support code as needed.

To write features, Cucumber-JVM uses the Gherkin syntax. The feature file describes the
feature and then the scenarios to test the feature:

Feature: Customer Transfer's Fund
 As a customer,
 I want to transfer funds
 so that I can send money to my friends and family

You can write as many scenarios as needed to test the feature in the feature file. The scenario
section contains the name and steps to execute the defined scenario, along with test data
required to execute that scenario using the application:

Scenario: Valid Payee
 Given the user is on Fund Transfer Page
 When he enters "Jim" as payee name
 And he enters "100" as amount
 And he Submits request for Fund Transfer
 Then ensure the fund transfer is complete with "$100
 transferred successfully to Jim!!" message

Behavior-Driven Development

260

Team members use these feature files and scenarios to build and validate the system.
Frameworks like Cucumber provide an ability to automatically validate the features by allowing
us to implement automated steps. For this we need to create the step definition file that
maps the steps from the feature file to the automation code. Step definition files implement
a method for steps using special annotations. For example, in the following code, the @When
annotation is used to map the step "When he enters "Jim" as payee name" from the
feature file in the step definition file. When this step is to be executed by the framework, the
heEntersPayeeName() method will be called by passing the data extracted using regular
expressions from the step:

@When("he enters \"([^\"]*)\" as payee name")
public void heEntersPayeeName(String payeeName) {
 driver.findElement(By.id("payee")).sendKeys(payeeName);
}

In this method, the WebDriver code is written to locate the payee name textbox and enter the
name value using the sendKeys() method.

The step definition file acts like a template for all the steps from the feature file, while scenarios
can use a mix and match of the steps based on the test conditions.

A helper class RunCukesTest is defined to provide Cucumber-JVM configurations, such as
how to run the features and steps with JUnit, report format, and location, shown as follows:

@RunWith(Cucumber.class)
@CucumberOptions(plugin = {"pretty",
"html:target/report/report.html",
 "json:target/report/cucu_json_report.json",
 "junit:target/report/cucumber_junit_report.xml"})
public class RunCukesTest {
}

There's more…
In this example, step definition methods are calling Selenium WebDriver methods directly.
However, a layer of abstraction can be created using the Page object where a separate
class is defined with the definition of all the elements from FundTransferPage:

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.CacheLookup;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.PageFactory;

public class FundTransferPage {

Chapter 11

261

 @FindBy(id = "payee")
 @CacheLookup
 public WebElement payeeField;

 @FindBy(id = "amount")
 public WebElement amountField;

 @FindBy(id = "transfer")
 public WebElement transferButton;

 @FindBy(id = "message")
 public WebElement messageLabel;

 public FundTransferPage(WebDriver driver)
 {
 if(!"Online Fund Transfers".equals(driver.getTitle()))
 throw new IllegalStateException("This is not Fund
 Transfer Page");
 PageFactory.initElements(driver, this);
 }
}

See also
 f The Configuring Selenium WebDriver test development environment for Java with

Eclipse and Maven recipe in Chapter 1, Getting Started

 f The Using the PageFactory class for exposing the elements on a page recipe in
Chapter 8, Using the Page Object Model

Using SpecFlow.NET and Selenium
WebDriver in .NET for BDD

We saw how to use Selenium WebDriver with Cucumber-JVM for BDD/ATDD. Now let's try
using a similar combination in .NET using SpecFlow.NET. We can implement BDD in .NET
using the SpecFlow.NET and Selenium WebDriver .NET bindings.

SpecFlow.NET is inspired by Cucumber and uses the same Gherkin language to write specs.
In this recipe, we will implement tests for the Fund Transfer feature using SpecFlow.NET.
We will also use the Page objects for FundTransferPage in this recipe.

Behavior-Driven Development

262

Getting ready
This recipe is created with SpecFlow.NET Version 1.9.0 and Microsoft Visual Studio
Professional 2013; follow these steps:

 f Download and install SpecFlow from Visual Studio Gallery from
http://visualstudiogallery.msdn.microsoft.com/9915524d-7fb0-
43c3-bb3c-a8a14fbd40ee.

 f Download and install NUnit Test Adapter from http://visualstudiogallery.
msdn.microsoft.com/9915524d-7fb0-43c3-bb3c-a8a14fbd40ee.

This will install the project template and other support files for SpecFlow.NET in Visual
Studio 20132.

How to do it...
Let's test the fund transfer feature using SpecFlow.NET by performing the following steps:

1. Launch Microsoft Visual Studio.

2. In Visual Studio, create a new project by going to File | New | Project. Select Visual
C# Class Library Project. Name the project FundTransfer.specs, as shown in the
following screenshot:

http://visualstudiogallery.msdn.microsoft.com/9915524d-7fb0-43c3-bb3c-a8a14fbd40ee
http://visualstudiogallery.msdn.microsoft.com/9915524d-7fb0-43c3-bb3c-a8a14fbd40ee
http://visualstudiogallery.msdn.microsoft.com/9915524d-7fb0-43c3-bb3c-a8a14fbd40ee
http://visualstudiogallery.msdn.microsoft.com/9915524d-7fb0-43c3-bb3c-a8a14fbd40ee

Chapter 11

263

3. Next, add SpecFlow.NET, WebDriver, and NUnit using NuGet. Right-click on the
FundTransfer.specs solution in Solution Explorer and select Manage NuGet
Packages…, as shown in the following screenshot:

4. On the FundTransfer.specs - Manage NuGet Packages dialog box, select Online and
search for the SpecFlow packages. The search will result in the following suggestions:

Behavior-Driven Development

264

5. Select SpecFlow.NUnit from the list and click on the Install button. NuGet will
download and install SpecFlow.NUnit and any other package dependencies to
the solution. This will take a while.

6. Next, search for the WebDriver package on the FundTransfer.specs - Manage NuGet
Packages dialog box.

7. Select Selenium WebDriver and Selenium WebDriver Support Classes from the list
and click on the Install button.

8. Close the FundTransfer.specs - Manage NuGet Packages dialog box.

Creating a spec file
The steps to create a spec file are as follows:

1. Right-click on the FundTransfer.specs solution in Solution Explorer.
Select Add | New Item.

2. On the Add New Item – FundTransfer.specs dialog box, select SpecFlow Feature
File and enter FundTransfer.feature in the Name: textbox. Click on the Add
button, as shown in the following screenshot:

3. In the Editor window you will see the FundTransfer.feature tab.

Chapter 11

265

4. By default, SpecFlow will add a dummy feature in the feature file. Replace the
content of this file with the following feature and scenarios:
Feature: Customer Transfer's Fund
 As a customer,
 I want to transfer funds
 so that I can send money to my friends and family

Scenario: Valid Payee
 Given the user is on Fund Transfer Page
 When he enters "Jim" as payee name
 And he enters "100" as amount
 And he Submits request for Fund Transfer
 Then ensure the fund transfer is complete with "$100
 transferred successfully to Jim!!" message

Scenario: Invalid Payee
 Given the user is on Fund Transfer Page
 When he enters "Jack" as payee name
 And he enters "100" as amount
 And he Submits request for Fund Transfer
 Then ensure a transaction failure message "Transfer
 failed!! 'Jack' is not registered in your List of
Payees" is displayed

Scenario: Account is overdrawn past the overdraft limit
 Given the user is on Fund Transfer Page
 When he enters "Tim" as payee name
 And he enters "1000000" as amount
 And he Submits request for Fund Transfer
 Then ensure a transaction failure message "Transfer
 failed!! account cannot be overdrawn" is displayed

Creating a step definition file
The steps to create a step definition file are as follows:

1. To add a step definition file, right-click on the FundTransfer.sepcs solution in
Solution Explorer. Select Add | New Item.

2. On the Add New Item - FundTransfer.specs dialog box, select SpecFlow Step
Definition File and enter FundTransferStepDefs.cs in the Name: textbox.

Behavior-Driven Development

266

3. Click on the Add button. A new C# class will be added with dummy steps. Replace the
content of this file with the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using TechTalk.SpecFlow;
using NUnit.Framework;
using OpenQA.Selenium;

namespace FundTransfer.specs
{
 [Binding]
 public class FundTransferStepDefs
 {
 FundsTransferPage _ftPage = new
 FundsTransferPage(Environment.Driver);

 [Given(@"the user is on Fund Transfer Page")]
 public void GivenUserIsOnFundTransferPage()
 {
 Environment.Driver.Navigate().GoToUrl("http://
 cookbook.seleniumacademy.com/fundTransfer.html");
 }

 [When(@"he enters ""(.*)"" as payee name")]
 public void WhenUserEneteredIntoThePayeeNameField(string
 payeeName)
 {
 _ftPage.payeeNameField.SendKeys(payeeName);
 }

 [When(@"he enters ""(.*)"" as amount")]
 public void WhenUserEneteredIntoTheAmountField(string
 amount)
 {
 _ftPage.amountField.SendKeys(amount);
 }

 [When(@"he enters ""(.*)"" as amount above his
limit")]
 public void WhenUserEneteredIntoTheAmountFieldAboveLimit
 (string amount)
 {

Chapter 11

267

 _ftPage.amountField.SendKeys(amount);
 }

 [When(@"he Submits request for Fund Transfer")]
 public void WhenUserPressTransferButton()
 {
 _ftPage.transferButton.Click();
 }

 [Then(@"ensure the fund transfer is complete with
""(.*)""
 message")]
 public void ThenFundTransferIsComplete(string
message)
 {
 Assert.AreEqual(message,
_ftPage.messageLabel.Text);
 }

 [Then(@"ensure a transaction failure message
""(.*)"" is displayed")]
 public void ThenFundTransferIsFailed(string
message)
 {
 Assert.AreEqual(message, _ftPage.messageLabel.Text);
 }
 }

}

Defining a Page object and a helper class
The steps to define a Page object and a helper class are as follows:

1. Define a Page object for the Fund Transfer Page by adding a new C# class file.
Name this class FundTransferPage. Copy the following code to this class:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using OpenQA.Selenium;
using OpenQA.Selenium.Support.PageObjects;

namespace FundTransfer.specs
{

Behavior-Driven Development

268

 class FundTransferPage
 {
 public FundTransferPage(IWebDriver driver)
 {
 PageFactory.InitElements(driver, this);
 }

 [FindsBy(How = How.Id, Using = "payee")]
 public IWebElement payeeNameField { get; set; }

 [FindsBy(How = How.Id, Using = "amount")]
 public IWebElement amountField { get; set; }

 [FindsBy(How = How.Id, Using = "transfer")]
 public IWebElement transferButton { get; set; }

 [FindsBy(How = How.Id, Using = "message")]
 public IWebElement messageLabel { get; set; }
 }
}

2. We need a helper class that will provide a WebDriver instance and perform clean
up activity at the end. Name this class Environment and copy the following code
to this class:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;
using TechTalk.SpecFlow;

namespace FundTransfer.specs
{
 [Binding]
 public class Environment
 {
 private static ChromeDriver driver;

 public static IWebDriver Driver
 {
 get { return driver ?? (driver = new
 ChromeDriver(@"C:\ChromeDriver")); }
 }

Chapter 11

269

 [AfterTestRun]
 public static void AfterTestRun()
 {
 Driver.Close();
 Driver.Quit();
 driver = null;
 }
 }
}

3. Build the solution.

Running the tests
The steps to run the tests are as follows:

1. Open the Test Explorer window by clicking the Test Explorer option on Test |
Windows on Main Menu.

2. It will display the three scenarios listed in the feature file, as shown in the
following screenshot:

Behavior-Driven Development

270

3. Click on Run All to test the feature, as shown in the following screenshot:

How it works...
SpecFlow.NET first needs the feature files for the features we will be testing. SpecFlow.NET
supports the Gherkin language for writing features.

In the step definition file, we must create a method for each step written in a feature file using
the Given, When, and Then attributes. These methods can also take the parameter values
specified in the steps using the arguments. Following is an example of entering the name of
the payee:

[When(@"he enters ""(.*)"" as payee name")]
public void WhenUserEneteredIntoThePayeeNameField(string
payeeName)
{
 _ftPage.payeeNameField.SendKeys(payeeName);
}

In this example, we are automating the "When he enters "Jim" as
payee name" step. We used the When attribute and created a method:
WhenUserEneteredIntoThePayeeNameField. This method will need the value of the
payee name embedded in the step, which is extracted using the regular expression by the
SpecFlow.NET. Inside the method, we are using an instance of the FundTransferPage class
and calling its payeeNameField member's SendKeys() method, passing the name of the
payee extracted from the step. Using the Page object helps in abstracting locator and page
details from the step definition files, making it more manageable and easy to maintain.

Chapter 11

271

SpecFlow.NET automatically generates the NUnit test code when the project is built. Using the
Visual Studio Test Explorer and NUnit Test Adaptor for Visual Studio, these tests are executed
and the features are validated.

See also
 f The Configuring Selenium WebDriver test development environment for Java with

Eclipse and Maven in Chapter 1, Getting Started

Using Capybara, Cucumber, and Selenium
WebDriver in Ruby

Capybara is an acceptance test framework for web applications in Ruby. It integrates with
Ruby-based BDD frameworks such as Cucumber and RSpec, along with Selenium WebDriver,
for web testing capabilities. Capybara is widely used in testing Rails applications.

In this recipe, we will see how to use Capybara, Cucumber, and Selenium to test the BMI
Calculator application.

Getting ready
1. You need to install Capybara Gem by using the following command:

gem install capybara

2. Additionally, you also need to install Cucumber and RSpec Gem on a fresh Ruby
installation, as follows:
gem install cucumber

gem install rspec

How to do it...
In Capybara, we need to create a features file for the stories under test. These stories are
written in the Gherkin language with the Given, When, and Then structures in the Cucumber
format. Perform the following steps to create a feature and step definition file with Capybara:

1. Create a plain text file named BmiCalculate.feature, as follows:
Feature: BMI Calculator has a Calculate Function

Scenario: Calculate BMI
 Given I am on BMI Calculator
 When I fill in the following:

Behavior-Driven Development

272

 | heightCMS | 181 |
 | weightKg | 80 |
 When I press "Calculate"
 Then I should see following:
 | bmi | 24.4 |
 | bmi_category | Normal |

2. Next, we need to create a step file for the feature file created earlier. This file maps
each step from the feature file to a Capybara function to work on UI. Create a Ruby
file with the following code and name it BmiCalculate.rb:
Given /^I am on BMI Calculator$/ do
 visit "http:// cookbook.seleniumacademy.com/bmicalculator.
html"
end

When /^I fill in the following:$/ do |table|
 table.rows_hash.each {|field, value| fill_in field,
 :with => value }
end

When /^I press "([^"]*)"$/ do |button|
 click_button(button)
end

Then /^I should see following:$/ do |table|
 table.rows_hash.each {|field, value| find_field(field).
 value.should == value }
end

3. Finally, we need to create a configuration file that provides required support to run
the features with Cucumber. Create a new file with the following code and name it
env.rb:
require 'capybara'
require 'capybara/cucumber'
require 'selenium/webdriver'

Capybara.default_driver = :selenium
Capybara.register_driver :selenium do |app|
 Capybara::Selenium::Driver.new(app, :browser => :firefox)
end

Chapter 11

273

How it works...
We need to copy all of these files together in a directory named features, and use the
cucumber command, as follows:

cucumber

Since we are using Cucumber along with Capybara, it first needs feature files written in plain
English. In the following example, we have a step which will populate the height and weight
fields in the BMI Calculator application:

When I fill in the following:
 | heightCMS | 181 |
 | weightKg | 80 |

The steps from a feature file are then mapped to Capybara commands using a step file written
in Ruby. In the following example, the previously mentioned table format is mapped to the
Capybara command, fill_in:

When /^I fill in the following:$/ do |table|
 table.rows_hash.each {|field, value| fill_in field, :with =>
value }
end

To run these features with Cucumber, we need a configuration file that will tell Capybara to
use Selenium as a driver:

require 'capybara'
require 'capybara/cucumber'
require 'selenium/webdriver'

Capybara.default_driver = :selenium
Capybara.register_driver :selenium do |app|
 Capybara::Selenium::Driver.new(app, :browser => :firefox)
end

Behavior-Driven Development

274

When Cucumber runs the features, a default report is generated in the following format:

See also
 f The Using Cucumber-JVM and Selenium WebDriver in Java for BDD recipe

 f The Using SpecFlow.NET and Selenium WebDriver in .NET for BDD recipe

 f The Using Capybara, Cucumber, and Selenium WebDriver in Ruby recipe

Using Behave and Selenium WebDriver
in Python

Behave is a BDD framework available in Python. It provides a very similar approach to Cucumber.

In this recipe, we will see how to use Behave and Selenium WebDriver to test a fund
transfer application.

Getting ready
You need to install Behave using the following command:

pip install behave

Chapter 11

275

How to do it...
In Behave, we need to create a features file for the stories under test. These stories are
written in the Gherkin language with the Given, When, and Then structures in the Cucumber
format. Perform the following steps to create a feature and step definition file with Behave:

1. Create a folder named fundtransfer and then create two subfolders, features
and steps, in the fundtransfer folder.

2. In the feature folder, create a plain text file named fundtransfer.feature,
as follows:
Feature: Customer Transfer's Fund
 As a customer,
 I want to transfer funds
 so that I can send money to my friends and family

Scenario: Valid Payee
 Given the user is on Fund Transfer Page
 When he enters Jim as payee name
 And he enters 100 as amount
 And he Submits request for Fund Transfer
 Then ensure the fund transfer is complete with $100
transferred successfully to Jim!! message

Scenario: Invalid Payee
 Given the user is on Fund Transfer Page
 When he enters Unmesh as payee name
 And he enters 100 as amount
 And he Submits request for Fund Transfer
 Then ensure a transaction failure message Transfer
failed!! 'Unmesh' is not registered in your List of Payees
is displayed

Scenario: Account is overdrawn past the overdraft limit
 Given the user is on Fund Transfer Page
 When he enters Tim as payee name
 And he enters 1000000 as amount
 And he Submits request for Fund Transfer
 Then ensure a transaction failure message Transfer
failed!! account cannot be overdrawn is displayed

Behavior-Driven Development

276

3. Next, we need to create a step definition file for the feature file created earlier.
This file maps each step from the feature file to Python method, which then calls
the Selenium WebDriver API. Create a new Python script file in the steps folder
with the following code, and name it fundtransfer_steps.py:
from behave import given, when, then

@given('the user is on Fund Transfer Page')
def step_user_is_on_fund_transfer_page(context):
 context.driver.get("http://
cookbook.seleniumacademy.com/fundTransfer.html")

@when('he enters {name} as payee name')
def step_he_enters_payee_name(context, name):
 context.driver.find_element_by_id("payee").send_keys(name)

@when('he enters {amount} as amount')
def step_he_enters_amount(context, amount):
 context.driver.find_element_by_id("amount").send_keys(amoun
t)

@when('he Submits request for Fund Transfer')
def step_he_enters_amount(context):
 context.driver.find_element_by_id("transfer").click()

@then('ensure the fund transfer is complete with {text}
message')
def step_ensure_fund_transfer_is_complete(context, text):
 assert context.driver.find_element_by_id("message").text ==
text

@then('ensure a transaction failure message {text} is
displayed')
def step_ensure_fund_transfer_is_complete(context, text):
 assert
context.driver.find_element_by_id("message").text == text

4. Finally, we need to create a configuration file that provides required support to
run the features with Behave. Create a new file with the following code in the
fundtransfer folder and name it environment.py:
from selenium import webdriver

def before_all(context):
 context.driver = webdriver.Chrome()

Chapter 11

277

def after_all(context):
 context.driver.quit()

5. We need to copy all of these files together in the directory named fundtransfer
and use the Behave command, as follows:
behave

How it works...
Similar to Cucumber, for Behave we need to write feature files in the Gherkin language.
The feature files are then linked to step definitions using the step definition file.

To run these features with Behave, we need a configuration file that provides access
to the Selenium WebDriver instance:

from selenium import webdriver

def before_all(context):
 context.driver = webdriver.Chrome()

def after_all(context):
 context.driver.quit()

When Behave runs the features, a default report is generated in the following format:

Behavior-Driven Development

278

See also
 f The Using Cucumber-JVM and Selenium WebDriver in Java for BDD recipe

 f The Using SpecFlow.NET and Selenium WebDriver in .NET for BDD recipe

 f The Using Capybara, Cucumber, and Selenium WedDriver in Ruby recipe

279

12
Integration with

Other Tools

In this chapter, we will cover:

 f Configuring Jenkins for continuous integration

 f Using Jenkins and Maven for Selenium WebDriver test execution
in continuous integration

 f Using Ant for Selenium WebDriver test execution

 f Using Jenkins and Ant for Selenium WebDriver test execution in
continuous integration

 f Automating a non-web UI in Selenium WebDriver with AutoIt

 f Automating a non-web UI in Selenium WebDriver with Sikuli

Introduction
Selenium WebDriver has been widely used with a combination of various other tools to build
test automation frameworks.

The initial sections of this chapter explore Selenium WebDriver's integration with development
and build tools such Maven, Ant, and Jenkins CI server. These tools provide an easy way to
develop test automation frameworks and extend the capabilities of Selenium WebDriver API
to build a continuous testing approach. The following recipes will explain how to set up and
configure these tools with Selenium.

Integration with Other Tools

280

Lastly, we will explore how to automate non-web GUIs using tools such as AutoIt and Sikuli
with Selenium WebDriver. Both the tools are famous in the free and open-source software
world for automating user tasks and providing their own approaches to automating the GUI.

Configuring Jenkins for continuous
integration

Jenkins is a popular continuous integration server in the Java development community.
It is derived from the Hudson CI server. It supports SCM tools including CVS, Subversion,
Git, Mercurial, Perforce, and ClearCase, and can execute Apache Maven and Apache
Ant-based projects, as well as arbitrary shell scripts and Windows batch commands.

Jenkins can be deployed to set up an automated testing environment where you can run
Selenium WebDriver tests unattended based on a defined schedule, or every time changes
are submitted in SCM.

In this recipe, we will set up Jenkins Server to run Maven and Ant projects. Later recipes
describe how Ant and Maven is used to run Selenium WebDriver tests with Jenkins.

Getting ready
Download and install the Jenkins CI server from http://jenkins-ci.org/. For this recipe,
the Jenkins Windows installer is used to set up Jenkins on a Windows 7 machine.

How to do it...
Before using Jenkins, we need to set up the following options in the Jenkins configuration:

1. Navigate to Jenkins Dashboard (http://localhost:8080 by default) in the
browser window.

2. On Jenkins Dashboard, click on the Manage Jenkins link.

3. On the Manage Jenkins page, click on the Configure System link.

Adding JDK
The following are the steps for adding the JDK:

1. On the Configure System page, locate the JDK section.

2. Click on the Add JDK button in the JDK section.

3. Specify JDK8 in the Name field and unselect the Install automatically checkbox.

http://jenkins-ci.org/

Chapter 12

281

4. In the JAVA_HOME textbox, enter the path of the JDK folder from your system.
In the following screenshot, C:\Program Files\Java\jdk1.8.0_25 has
been specified:

Adding Ant
1. On the Configure System page, locate the Ant section.

2. Click on the Add Ant button in the Ant section.

3. Specify Ant in the Name field and unselect the Install automatically checkbox.

4. In the ANT_HOME textbox, enter the path of the Ant folder from your system. In the
following screenshot, C:\Program Files\WinAnt has been specified for the
WinAnt version:

Adding Maven
Follow the given steps to add Maven:

1. On the Configure System page, locate the Maven section.

2. Click on the Add Maven button in the Maven section.

3. Specify Maven in the Name field and unselect the Install automatically checkbox.

Integration with Other Tools

282

4. In the MAVEN_HOME textbox, enter the path of the Maven folder from your system.
In the following screenshot, MAVEN_HOME contains C:\apache-maven:

5. Click on the Save button to save the configuration.

There's more…
Jenkins also runs a Selenium standalone server that can be used as a remote web driver. Using
Jenkins master/slave architecture, we can build a distributed build and test environment for
large-scale test automation projects.

See also
 f The Using Jenkins and Maven for Selenium WebDriver test execution in continuous

integration recipe

 f The Using Jenkins and Ant for Selenium WebDriver test execution in continuous
integration recipe

Using Jenkins and Maven for Selenium
WebDriver test execution in continuous
integration

Jenkins supports Maven for building and testing a project in continuous integration. In this
recipe, we will set up Jenkins to run tests from a Maven project.

Getting ready
Running tests with Jenkins and Maven needs both the tools installed on the machine. In this
recipe, the SeleniumCookbook project is used from the earlier Configuring Eclipse and
Maven for Selenium WebDriver test development recipe.

Chapter 12

283

This recipe refers to Subversion as the Source Code Management (SCM) tool for the
SeleniumCookbook project.

You can use various SCM tools along with Jenkins. If Jenkins does not support the SCM tool
that you are using, please check the Jenkins plugin directory for specific SCM tool plugins.

How to do it...
1. Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the

browser window.

2. On Jenkins Dashboard, click on the New Job link to create a CI job.

3. Enter Selenium Cookbook in the Job name textbox.

4. Select the Build a maven2/3 project radio button, as shown in the
following screenshot:

5. Click on OK.

6. A new job will be created with the specified name.

7. On the job configuration page, go to the Source Code Management section and
select the Subversion radio button.

Integration with Other Tools

284

8. Enter the URL of your test code in the Repository URL textbox, as shown in the
following screenshot. Optionally, Jenkins will ask for the Subversion login details.
Provide user credentials as configured on your SVN server:

9. Go to the Build section. In the Root POM textbox, enter pom.xml, and in the Goals
and options textbox, enter clean test, as shown in the following screenshot:

10. On the Selenium Cookbook project page, click on the Build Now link. Go back to
Jenkins Dashboard.

11. Maven builds the project and executes tests from the project. Once the build process
has been completed, click on the Selenium Cookbook project from the list, as shown
in the following screenshot:

Chapter 12

285

The Selenium Cookbook project page displays the build history and links to the
results, as shown in the following screenshot:

12. Click on the Latest Test Result link to view the test results, as shown in the
following screenshot:

Scheduling build for an automatic execution
1. Go to the Selenium Cookbook project configuration in Jenkins.

2. In the Build Triggers section, select the Build periodically checkbox.

Integration with Other Tools

286

3. Enter 0 22 * * * in the Schedule textbox, as shown in the following screenshot.
This will trigger the build process every day at 10 p.m. and the test will run unattended:

4. Click on the Save button to save the configurations.

How it works...
Using the Build a Maven2/3 Project option, Jenkins supports building and testing
Maven projects.

Jenkins supports various SCM tools such as CVS and Subversion. To get the source code
from SCM, specify the repository location and check out the strategy. Since Maven is used
in this example, specify the path of root POM and Maven Goal.

While building the project, Jenkins gets the latest source from SCM to the Jenkins project
workspace. It will then call Maven with specified goals. When the build process is complete,
Jenkins gets the test results from Maven and displays these results on the project page.

Scheduling builds
One of the important features of Jenkins is that it automatically triggers the build, based on
defined criteria. Jenkins provides multiple ways to trigger the build process under the Build
Trigger configuration. Build Trigger can be set at a specific time. In the previous example,
it was set to trigger the process every day at 10 p.m. This provides the ability to nightly run
tests unattended, so that you can see the results the next morning.

Test results
Jenkins provides the ability to display test results by reading the results files generated by unit
test frameworks. It also archives these results, which can be used to generate various metrics
over time.

Chapter 12

287

See also
 f The Configuring Jenkins for continuous integration recipe

Using Ant for Selenium WebDriver test
execution

Apache Ant is a popular build management tool available for Java developers. It is similar to
Apache Maven, but does not support project management and dependency management
features like Maven. It's a pure build tool.

Ant is another choice to run Selenium WebDriver tests from the command line or through
continuous integration tools such as Jenkins.

In this recipe, we will add Ant support to the SeleniumCookbook project created in the
Configuring Eclipse and Maven for Selenium WebDriver test development recipe.

Getting ready
You can download and install WinAnt on Windows. WinAnt comes with an installer that
can configure Ant through the installer. The WinAnt installer is available at http://code.
google.com/p/winant/.

You can also download and configure Ant from http://ant.apache.org/bindownload.
cgi for other OS platforms. This recipe uses WinAnt on the Windows OS.

How to do it...
Let's set up the SeleniumCookbook project for Ant with the following steps:

1. Create a lib folder and copy the JAR files for the dependencies used for this project,
that is, Selenium WebDriver and JUnit.

2. Create the build.xml file in the project folder with the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<project name="test" default="exec" basedir=".">

 <property name="src" value="./src" />
 <property name="lib" value="./lib" />
 <property name="bin" value="./bin" />
 <property name="report" value="./report" />
 <path id="test.classpath">
 <pathelement location="${bin}" />

http://code.google.com/p/winant/
http://code.google.com/p/winant/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

Integration with Other Tools

288

 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </path>

 <target name="init">
 <delete dir="${bin}" />
 <mkdir dir="${bin}" />
 </target>

 <target name="compile" depends="init">
 <javac source="1.6" srcdir="${src}" fork="true"
 destdir="${bin}" >
 <classpath>
 <pathelement path="${bin}">
 </pathelement>
 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>
 </javac>
 </target>

 <target name="exec" depends="compile">
 <delete dir="${report}" />
 <mkdir dir="${report}" />
 <mkdir dir="${report}/xml" />
 <junit printsummary="yes" haltonfailure="no">
 <classpath>
 <pathelement location="${bin}" />
 <fileset dir="${lib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <test name="seleniumcookbook.
 examples.test.GoogleSearchTest"
 haltonfailure="no" todir="${report}/xml"
 outfile="TEST-result">

Chapter 12

289

 <formatter type="xml" />
 </test>
 </junit>
 <junitreport todir="${report}">
 <fileset dir="${report}/xml">
 <include name="TEST*.xml" />
 </fileset>
 <report format="frames"
 todir="${report}/html" />
 </junitreport>
 </target>
</project>

3. Navigate to the project directory through the command line and type the
following command:
ant

This will trigger the build process. You will see the test running. At the end, Ant will
create a report folder in the project folder. Navigate to the html subfolder in the
report folder and open the index.html file to view the results.

How it works...
Ant needs a build.xml file with all the configurations and steps that are needed to build
the project. We can add steps for report generation, sending e-mail notification, and so on to
build.xml. Ant provides a very dynamic framework to define steps in the build process.

Ant also needs the necessary library/JAR files that are needed to build the project to be
copied in the lib folder.

Ant scans for all the tests in the project and executes these tests in a way similar to Maven.

See also
 f The Using Jenkins and Ant for Selenium WebDriver test execution in continuous

integration recipe

Integration with Other Tools

290

Using Jenkins and Ant for Selenium
WebDriver test execution in continuous
integration

Ant can also be configured to run tests in continuous integration with Jenkins. In this recipe,
we will set up Jenkins to run tests with Ant.

Getting ready
Running tests with Jenkins and Ant needs both the tools installed on the machine. Refer to
the Using Ant for Selenium WebDriver test execution and Configuring Jenkins for continuous
integration recipes to install and configure Ant and Jenkins respectively.

How to do it...
Let's configure Jenkins and Ant to run tests in CI:

1. Navigate to Jenkins Dashboard (http://localhost:8080 by default) in the
browser window.

2. On Jenkins Dashboard, click on the New Job link to create a CI job.

3. Enter Selenium Cookbook in the Job name: textbox.

4. Select the Build a free-style software project radio button, as shown in the
following screenshot:

Chapter 12

291

5. Click on OK.

6. A new job will be created with the Selenium Cookbook name.

7. On the job configuration page, go to the Source Code Management section and
select the Subversion radio button.

8. Enter the URL of your test code in the Repository URL textbox, as shown in the
following screenshot. Optionally, Jenkins will ask for Subversion login details.
Provide user credentials as configured on your SVN server:

9. Go to the Build section. Click on the Add build step button once again and select the
Invoke Ant option from the drop-down list.

10. The Ant version textbox will display Default, as shown in the following screenshot:

Integration with Other Tools

292

11. Go to the Post-build Actions section.

12. Click on the Add post-build action button and select Publish JUnit test result
report from the drop-down list.

13. In the Test report XMLs textbox, enter **/report/*.xml, as shown in the
following screenshot:

14. Click on the Save button to save the configuration.

15. Go back to the Jenkins Dashboard page.

16. Click on the Schedule a Build button to trigger the build. Ant will execute the test.
Once the build process is complete, click on the Selenium Cookbook project from
the list, as shown in the following screenshot:

The project page displays the build history and links to the results, as shown in the
following screenshot:

Chapter 12

293

17. Click on the Latest Test Result link to view the test results, as shown in the
following screenshot:

Integration with Other Tools

294

Scheduling the build for an automatic execution
1. Go to the Selenium Cookbook project configuration in Jenkins.

2. In the Build Triggers section, select the Build periodically checkbox.

3. Enter 0 22 * * * in the Schedule textbox, as shown in the following screenshot.
This will trigger the build process every day at 10 p.m:

4. Click on the Save button to save the configurations.

See also
 f The Using Ant for Selenium WebDriver test execution recipe

 f The Configuring Jenkins for continuous integration recipe

Automating a non-web UI in Selenium
WebDriver with AutoIt

Selenium WebDriver is a pure browser automation API and works with HTML/web elements.
It does not support the native UI built with C++, .NET, Java, or any other desktop technologies.
It also does not support Flex, Flash, or Silverlight native controls out of the box.

While testing applications that interact with the native UI, it becomes difficult to automate the
functionality involved. For example, the web application provides a file upload feature that
invokes the native OS UI for selecting a file.

We can use tools such as AutoIt to handle the native UI. AutoIt is a freeware BASIC-like scripting
language designed to automate the Windows GUI and general scripting. Using AutoIt, we can
simulate a combination of keystrokes, mouse movement, and window/control manipulation
in order to automate. It is a very small, self-contained utility. It runs on all versions of Windows
operating system. AutoIt scripts can be compiled as self-contained executables.

Chapter 12

295

AutoIt has certain limitations in terms of OS support as it is not supported on Linux and Mac
OSX, and it will not work with RemoteWebDriver.

In this recipe, we will explore the integration of AutoIt with Selenium WebDriver to test the file
upload functionality on a sample page.

Getting ready
Download and install AutoIt tools from http://www.autoitscript.com/site/autoit/
downloads/.

How to do it...
To implement the file upload functionality, there are a number of libraries or plugins available
that provide a number of additional features for uploading files. We will use the jQuery File
Upload plugin. It offers multiple ways in which users can upload files on the server. Users can
either drag-and-drop a file on the browser or can click on the Add Files button, which opens
the native Open dialog box, as shown in the following screenshot:

We will automate a test where the user to upload a file by clicking on the Add Files button.
This invokes the Open dialog box, as shown in the preceding screenshot. We will create an
AutoIt script to automate interactions on this dialog box.

http://www.autoitscript.com/site/autoit/downloads/
http://www.autoitscript.com/site/autoit/downloads/

Integration with Other Tools

296

Creating the AutoIt script
Let's create an AutoIt script that works with the Open dialog box.

1. Launch SciTE Script Editor from Start | AutoIt.

2. Create a new script by selecting File | New from the SciTE Script Editor main menu.

3. Name and save this file as OpenDialogHandler.au3 (AutoIt scripts have .au3
extension) and copy the following code to the script, then save the script:
WinWaitActive("Open","","20")
If WinExists("Open") Then
 ControlSetText("Open","","Edit1",$CmdLine[1])
 ControlClick("Open","","&Open")
EndIf

4. Launch the Compile Script to .exe utility from Start | AutoIt. Using the
Compile Script to .exe utility, we will convert the AutoIt script into an
executable file.

5. On the Aut2Exe v3 - AutoIt Script to EXE Converter window, enter the path of the
AutoIt script in the Source (AutoIt .au3 file) textbox, and the path of the executable
in the Destination (.exe/.a3x file) textbox, and click on the Convert button, as shown
in the following screenshot:

Chapter 12

297

Using OpenDialogHandler in Selenium WebDriver script
1. Now create a test that allows us to click on the Add Files button and then call

OpenDialogHandler.exe and validate that the specified file is uploaded on
the page.

2. Create a new test class named FileUpload and copy the following code in it:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;

import org.junit.*;
import static org.junit.Assert.*;

public class FileUpload {
 protected WebDriver driver;

 @Before
 public void setUp() {
 driver = new ChromeDriver();
 driver.get("http://blueimp.github.com/jQuery-
 File-Upload/");
 }

 @Test
 public void testFileUpload() throws
 InterruptedException {
 try {

 // Click on Add Files button
 driver.findElement(By.className("fileinput-
 button")).click();

 // Call the OpenDialogHandler, specify the
 // path of the file to be uploaded
 Runtime.getRuntime().exec(new String[]
 {"C:\\Utils\\OpenDialogHandler.exe",
 "\"C:\\Users\\Admin\\Desktop\\
 Picture1.png\""});

 //Wait until file is uploaded
 boolean result = (new WebDriverWait
 (driver, 30)).until(new
 ExpectedCondition<Boolean>() {

Integration with Other Tools

298

 public Boolean apply(WebDriver d) {
 return d.findElement(By.xpath
 ("//table[@role='presentation']"))
 .findElements(By.tagName
 ("tr")).size() > 0;
 }});

 assertTrue(result);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @After
 public void tearDown() {
 driver.close();
 }
}

How it works...
AutoIt provides an API to automate a native Windows UI control. In this example, we used
the WinWaitActive() function, which waits for a window. It takes the title of the expected
window, text of the window, and timeout as parameters. We supplied the title as Open and
the timeout of 20 seconds. The text of the windows is passed as blank, as the title is enough
to identify the window:

WinWaitActive("Open","","20")

Once the open window is activated, the ControlSetText() function is called to enter the
text in the File name: textbox:

ControlSetText("Open","","Edit1",$CmdLine[1])

This function takes the title of the window, text of the window, control ID, and text that needs
to be entered in the textbox. Similar to locators in Selenium, AutoIt identifies controls using
control IDs. You can find control IDs using the AutoIt V3 Window Info tool installed with AutoIt.
You can spy on a window or control using this tool and find out various properties. In this
example, the ControlSetText() function takes the last parameter as $CmdLine[1].
Instead of hardcoding the path of the filename that we want to upload, we will pass the
filename to AutoIt script using command line arguments; $CmdLine[1] will hold this value.

To click on the Open button, the ControlClick() function is called. This function takes the
title of the window, text of the windows, and control ID as parameters:

ControlClick("Open","","&Open")

Chapter 12

299

You can find more about AutoIt API in AutoIt help documentation.

Using the Aut2Exe v3 - AutoIt Script to EXE Converter utility, AutoIt script is compiled as an
executable, that is, OpenDialogHandler.exe.

The Selenium WebDriver test calls this executable file using the exec() method of the
RunTime class, which allows the Java code to interact with the environment in which the code
is running. The complete path of OpenDialogHandler, as well as the path of the file to be
uploaded, is passed through the exec() method. Please note that OpenDialogHandler
needs quotes for arguments:

Runtime.getRuntime().exec(new String[]
 {"C:\\Utils\\OpenDialogHandler.exe",
 "\"C:\\Users\\Admin\\Desktop\\Picture1.png\""});

There's more…
You can use AutoIt scripts with other Selenium WebDriver bindings such as .NET, Ruby,
or Python, as long as these languages allow you to call external processes.

AutoIt also comes with a lightweight AutoItX COM library that can be used with languages
that support Component Object Model (COM). Using the COM API will save you from writing
the AutoIt script and compiling it into an executable.

You will come across web applications using HTTP authentication, which requires users to
authenticate before displaying the application. An HTTP authentication dialog is displayed,
as shown in the following screenshot:

Integration with Other Tools

300

This dialog box is displayed using the native UI. In addition, the layout and controls on this dialog
box may change for different browsers. In the following example, AutoItX API is called directly in
the Ruby script to automate the HTTP authentication dialog box displayed in Google Chrome:

require 'rubygems'
require 'selenium-webdriver'
require 'test/unit'
require 'win32ole'

class HttpAuthTest < Test::Unit::TestCase
 def setup
 @driver = Selenium::WebDriver.for :chrome
 @driver.get 'http://www.httpwatch.com/
 httpgallery/authentication'
 @verification_errors = []
 end

 def test_http_auth_window
 #Create instance of AutoItX3 control.
 #This will provide access to AutoItX COM API
 au3 = WIN32OLE.new("AutoItX3.Control")

 #Get the Display Image button and
 #click on it to invoke the Http Authentication dialog
 display_image_button = @driver.find_element :id =>
 "displayImage"
 display_image_button.click

 #Wait for couple of seconds for Http Authentication
 #dialog to appear
 sleep(2)

 #Check if Http Authentication dialog exists and
 #enter login details using send method
 result = au3.WinExists("HTTP Authentication -
 Google Chrome")
 if result then
 au3.WinActivate("HTTP Authentication -
 Google Chrome","")
 au3.Send("httpwatch{TAB}")
 au3.Send("jsdhfkhkhfd{Enter}")
 end
 assert_equal 1, result
 end

Chapter 12

301

 def teardown
 @driver.quit
 assert_equal [], @verification_errors
 end
end

In the previous example, Ruby's win32ole module was used to create an instance of AutoItX
COM interface:

au3 = WIN32OLE.new("AutoItX3.Control")

Using this interface, the AutoIt methods are called to interact with non-web UIs.

See also
 f The Automating a non-web UI in Selenium WebDriver with Sikuli recipe

Automating a non-web UI in Selenium
WebDriver with Sikuli

Sikuli is another tool that can be used along with Selenium WebDriver to automate a non-web
UI. It uses visual identification technology to automate and test graphical user interfaces (GUIs).
The Sikuli script automates anything you see as a user on the screen rather than an API.

Sikuli is supported on Windows, Linux, and Mac OSX operating systems. Similar to Selenium
IDE, Sikuli provides an IDE for script development and API that can be used within Java.

Sikuli works well for non-web UI. However, it also has certain limitations, as it is not supported
by RemoteWebDriver. The Sikuli script might fail if it does not find a captured image due to
overlapping windows at runtime.

In this recipe, we will explore the integration of the Sikuli API with Selenium WebDriver to test
a non-web UI.

Getting ready
Download and install Sikuli from http://sikuli.org/.

http://sikuli.org/

Integration with Other Tools

302

How to do it...
We will use the HTTP authentication example from the previous recipe to automate the steps
with Sikuli, as follows:

1. Before we automate the steps on the Authentication Required dialog box, we need to
capture images of the User Name: and Password: textboxes, and the Log In button:

2. Capture the screenshot of the Authentication Required dialog box and extract
images, as follows, for each control:

Control Screenshot
User Name: textbox

Password: textbox

Log In button

3. Save these extracted images separately in PNG (Portable Network Graphics) format
in a folder that can be accessed from tests easily.

4. Add the Sikuli-script.jar file to the test project. You can get this file from the
Sikuli installation folder.

5. Create a new test, name it HttpAuthTest, and copy the following code to this test:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

Chapter 12

303

import org.openqa.selenium.By;

import org.sikuli.script.FindFailed;
import org.sikuli.script.Screen;

import org.junit.*;
import static org.junit.Assert.fail;

public class HttpAuthTest {
 private WebDriver driver;
 private StringBuffer verificationErrors = new
 StringBuffer();

 @Before
 public void setUp() {
 driver = new ChromeDriver();
 driver.get("http://www.httpwatch.com/
 httpgallery/authentication/");
 }

 @Test
 public void testHttpAuth() throws
 InterruptedException {
 driver.findElement(By.id
 ("displayImage")).click();

 //Get the system screen.
 Screen s = new Screen();

 try {

 //Sikuli type command will use the image file
 //of the control
 //and text that needs to be entered in to the
 //control
 s.type("C:\\UserName.png", "httpwatch");
 s.type("C:\\Password.png","dhjhfj");

 //Sikuli click command will use the image
 //file of the control
 s.click("C:\\Login.png");

 } catch (FindFailed e) {
 //Sikuli raises FindFailed exception it fails

Integration with Other Tools

304

 //to locate the image on to the screen
 e.printStackTrace();
 }
 }

 @After
 public void tearDown() {
 driver.close();
 String verificationErrorString =
 verificationErrors.toString();
 if (!"".equals(verificationErrorString)) {
 fail(verificationErrorString);
 }
 }
}

How it works...
As Sikuli uses visual identification technology to identify and interact with windows and
controls, it requires images of the controls to perform the action. During the execution, it
locates the regions captured in the image on the screen and performs the specified action:

s.type("C:\\UserName.png", "httpwatch");

In this example, it searches the screen for a region that matches the image captured in
UserName.png, and performs the type () command. Sikuli replays these commands
as if a real user is working on the screen.

Sikuli may fail to interact with the application if the region captured in the image is not
displayed on the screen or is overlapped with other windows.

There's more…
By using Sikuli, you can automate RIA technologies such as Flash and Silverlight, along with
the Selenium WebDriver.

See also
 f The Automating a non-web UI in Selenium WebDriver with AutoIt recipe

305

13
Cross-Browser Testing

In this chapter, we will cover:

 f Setting up Selenium Grid Server for parallel execution

 f Adding nodes to Selenium Grid for cross-browser testing

 f Creating and executing the Selenium script in parallel with TestNG

 f Creating and executing the Selenium script in parallel with Python

 f Using Cloud tools for cross-browser testing

 f Running tests in headless mode with PhantomJS

Introduction
Organizations are adopting virtualization and cloud-based technologies to reduce costs and
increase efficiency. Virtualization and cloud-based infrastructure can also be used to scale
the test automation by reducing investment in physical hardware needed to set up the test
environment. Using these technologies, web applications can be tested on a variety of browser
and operating system combinations. Selenium WebDriver has unmatched support for testing
applications in virtual environment, executing tests in parallel, reducing costs, and increasing
speed and coverage. This chapter will cover recipes to configure and execute Selenium
WebDriver tests for parallel or distributed execution.

Running tests in parallel requires two things: an infrastructure to distribute the tests, and a
framework that will run these tests in parallel in the given infrastructure. In this chapter, we
will first create a distributed infrastructure, and then create some tests that will be executed
in this distributed test environment.

Selenium Grid transparently distributes our tests across multiple physical or virtual machines so
that we can run them in parallel, cutting down the time required to run tests. This dramatically
speeds up testing, giving us quick and accurate feedback.

Cross-Browser Testing

306

With Selenium Grid, we can leverage our existing computing infrastructure. It allows us
to easily run multiple tests in parallel, on multiple nodes or clients, in a heterogeneous
environment where we can have a mixture of OS and browser support. Here is an example
of the Selenium Grid architecture with the capabilities to run tests on Linux, Windows, Mac,
iOS, and Android platforms:

Selenium Grid allows us to run multiple instances of WebDriver or Selenium Remote Control
in parallel. It makes all these nodes appear as a single instance, so tests do not have to
worry about the actual infrastructure. Selenium Grid cuts down on the time required to run
Selenium tests to a fraction of the time that a single instance of Selenium would take to run,
and it is very easy to set up and use.

The Selenium Server standalone package includes the Hub, WebDriver, and Selenium RC that
are needed to run the Grid.

Chapter 13

307

Testing the framework for parallel execution
In this chapter, we need a testing framework that supports parallel runs of our tests. We will
use TestNG (http://testng.org/) to run parallel tests with Selenium WebDriver Java
bindings. TestNG has a threading model to support running multiple instances of the same
test using an XML-based configuration. TestNG is pretty similar to JUnit.

We will also use a raw method to run tests in parallel for Python bindings using the subprocess
module. However, you can also use nose for parallel execution in Python.

To run tests in parallel with .NET bindings, you can use PUnit or MSTEST, and for Ruby, you can
use DeepTest.

Setting up Selenium Grid Server for parallel
execution

To run Selenium WebDriver tests in parallel, we need to set up the Selenium Grid Server as
a Hub. The Selenium Server hub will provide the available configurations or capabilities to
the Selenium WebDriver tests. The slave machines, also called node, connect to the hub for
parallel execution. Selenium WebDriver tests use the JSON wire protocol to talk to the Hub to
execute Selenium commands.

The Hub acts like the central point that will receive the entire test request and distribute it to
the right nodes.

In this recipe, we will set up a Selenium Grid Server and then add nodes with different OS and
browser combinations. We will then use this setup to run tests in parallel using TestNG.

Getting ready
Download the latest Selenium Server standalone JAR file from http://docs.seleniumhq.
org/download/. For this recipe, the selenium-server-standalone-2.47.1 version is used.

How to do it...
Setting up a Hub is a fairly simple job. Launch the Selenium Server using the
following command:

java -jar selenium-server-standalone-2.46.0.jar -port 4444 -role hub
-nodeTimeout 600

http://testng.org/
http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/

Cross-Browser Testing

308

This command will start the Selenium Server in Hub role with the following output on the
command prompt:

How it works...
When we launch the Selenium Standalone Server in Hub role, it starts listening to nodes and
Selenium tests on port 4444. If you browse to http://localhost:4444/grid/console
on the Hub machine, it will display the following information in the browser:

There's more...
To run tests with Selenium Grid, Selenium WebDriver tests need to use the instance of the
RemoteWebDriver and DesiredCapabilities classes to define which browser, version,
and platform tests will be executed. Based on preferences set in the DesiredCapabilities
instance, the Hub will point the test to a node that matches these preferences. In this
example, Hub will point the test to a node running on the Windows operating system and
Firefox browser with the specified version:

DesiredCapabilities cap = new DesiredCapabilities();
 cap.setBrowserName("firefox");
 cap.setPlatform(org.openqa.selenium.Platform.WINDOWS);

Chapter 13

309

These preferences are set using the setBrowserName(), setVersion(), and
setPlatform() methods of the DesiredCapabillities class.

An instance of the DesiredCapabilities class is passed to RemoteWebDriver:

 driver = new RemoteWebDriver(new
 URL("http://192.168.1.100:4444/wd/hub"),cap);

In this example, the test is connecting to the Hub running on http://192.168.1.100:4444/
wd/hub with the instance of DesiredCapabilities named cap.

Adding nodes to Selenium Grid for cross-
browser testing

In this recipe, we will add nodes to the Selenium Hub that we set up in the previous recipe.
We will use multiple OS platforms and browser combinations for cross-browser testing

How to do it...
We will add nodes with the following OS and browser configurations to the Hub:

Adding an IE node
Let's begin with a node which provides Internet Explorer capabilities to run on Windows. Open
a new command prompt or terminal window and navigate to the location where Selenium
server jar is located. To launch and add a node to the Grid, type the following command:

java -Dwebdriver.ie.driver="C:\SeDrivers\IEDriverServer.exe" -jar
selenium-server-standalone-2.46.0.jar -role webdriver -browser
"browserName=internet
explorer,version=10,maxinstance=1,platform=WINDOWS" -hubHost
192.168.1.103 –port 5555

To add a node to the Grid, we need to use the –role argument and pass webdriver as the
value. We also need to pass the browser configuration for the node. This is passed through
the browser argument. In this example, we passed browserName as internet explorer,
the version as 10, maxinstance as 1, and platform as WINDOWS. The maxinstance value
tells the Grid how many concurrent instances of the browser will be supported by the node.

To connect the node to the hub or Grid server, we need to specify the –hubHost argument
with the hostname or IP address of the Grid server. Lastly, we need to specify the port on
which the node will be running.

Cross-Browser Testing

310

When we run the preceding command, and after the node is launched, the following
configuration will appear in the Grid console:

Alternatively, a node can be added by creating a configuration file in the JSON format and then
using the following command:

{
 "class": "org.openqa.grid.common.RegistrationRequest",
 "capabilities": [
 {
 "seleniumProtocol": "WebDriver",
 "browserName": "internet explorer",
 "version": "10",
 "maxInstances": 1,
 "platform" : "WINDOWS"
 }
],
 "configuration": {
 "port": 5555,
 "register": true,
 "host": "192.168.1.103",
 "proxy": "org.openqa.grid.selenium.proxy.
 DefaultRemoteProxy",
 "maxSession": 2,
 "hubHost": "192.168.1.100",
 "role": "webdriver",
 "registerCycle": 5000,
 "hub": "http://192.168.1.100:4444/grid/register",
 "hubPort": 4444,
 "remoteHost": "http://192.168.1.102:5555"
 }
}

We can now pass the selenium-node-win-ie10.cfg.json configuration file through
command-line arguments, as shown in the following command:

java -Dwebdriver.ie.driver="C:\SeDrivers\IEDriverServer.exe"-jar
selenium-server-standalone-2.46.0.jar -role webdriver -nodeConfig
selenium-node-win-ie10.cfg.json

Chapter 13

311

Adding a Firefox node
To add a Firefox node, open a new command prompt or terminal window and navigate to the
location where the Selenium server JAR file is located. To launch and add a node to the Grid,
type the following command:

java -jar selenium-server-standalone-2.47.1.jar -role webdriver -
browser
"browserName=firefox,version=38.0.5,maxinstance=2,platform=WINDOWS" -
hubHost localhost –port 6666

In this example, we set maxinstance to 2. This tells the Grid that this node will support
two instances of Firefox. Once the node is started, the following configuration will appear
in the Grid console:

Adding a Chrome node
To add a Chrome node, open a new command prompt or terminal window and navigate to the
location where the Selenium server jar is located. To launch and add a node to the grid, type
the following command:

java -Dwebdriver.chrome.driver="C:\SeDrivers\chromedriver.exe" -jar
selenium-server-standalone-2.47.1.jar -role webdriver -browser
"browserName=chrome,version=35,maxinstance=2,platform=WINDOWS" -
hubHost localhost -port 7777

Once the node is started, the following configuration will appear in the Grid console:

Cross-Browser Testing

312

Mac OS X with Safari
We added IE, Firefox, and Chrome instances on a Windows machine. Let's add a Safari node
from a Mac OS. Open a new terminal window and navigate to the location where Selenium
server jar is located. To launch and add a node to the Grid, type the following command:

java -jar selenium-server-standalone-2.47.1.jar -role webdriver -
browser "browserName=safari,version=7,maxinstance=1,platform=MAC" -
hubHost 192.168.1.104 -port 8888

Once the node is started, the following configuration will appear in the Grid console:

Creating and executing the Selenium script
in parallel with TestNG

Now that we have our Selenium Grid Hub and nodes ready and configured from previous
recipes, it's time to run tests in parallel with this distributed environment.

To run tests in parallel, we need a test framework that supports distributing tests on
these nodes. We will use TestNG to run tests in parallel for Selenium tests developed
with Java bindings.

TestNG (http://testng.org) is another popular unit testing frameworks used by the Java
community after JUnit. TestNG allows us to create tests that can be executed in parallel. We
can set up a group of tests or test suites and have parameters configured to run these tests
in parallel. It uses a multithreading model to run tests in parallel.

TestNG requires that we have an XML configuration file with details of configurations that are
needed to run the tests in parallel. Before starting the run, TestNG reads this configuration file
to set up the test.

http://testng.org

Chapter 13

313

In this recipe, we use TestNG to create tests that are parameterized for parallel runs.
This recipe is divided in two parts: in the first part, we will create a configuration file based
on the Hub and the nodes that we have configured so far; and then in the second part, we
will be creating a test case using TestNG annotations and parameterization features.

Getting ready
Make sure you have TestNG installed on the machine from where the tests will be launched.
You can download TestNG from http://testng.org/doc/index.html.

How to do it...
Let's create and execute a test in parallel with the following steps:

1. Before we create a test for parallel execution, we need to first create a configuration file,
which TestNG will need to run the tests in parallel. We will provide four parameters for
the tests, platform, browser, version, and URL.

Create a new conf.xml file in your projects source directory and add the following
code to this file:
<!DOCTYPE suite SYSTEM http://testng.org/testng-1.0.dtd>
<suite name="Parallel Tests" verbose="1" thread-count="3"
parallel="tests">
</suite>

2. Add the <test> node for a test that will be executed on the Windows and Internet
Explorer combination in the conf.xml file, as follows:
<tests>
 <test name="Windows+IE10 Test">
 <parameters>
 <parameter name="platform" value="Windows" />
 <parameter name="browser" value="Internet Explorer"
/>
 <parameter name="version" value="10" />
 <parameter name="url" value="http://bit.ly/1zdNrFZ"
/>
 </parameters>
 <classes>
 <class name="SeGridTest" />
 </classes>
 </test>
</tests>

http://testng.org/doc/index.html
http://testng.org/testng-1.0.dtd

Cross-Browser Testing

314

3. Add the following combinations to conf.xml. It should have the following entries:
<suite name="Parallel Tests" verbose="1" thread-count="3"
 parallel="tests">
 <tests>
 <test name="Windows+IE10 Test">
 <parameters>
 <parameter name="platform" value="Windows" />
 <parameter name="browser" value="Internet Explorer"
/>
 <parameter name="version" value="10" />
 <parameter name="url" value="http://bit.ly/1zdNrFZ"
/>
 </parameters>
 <classes>
 <class name="SeGridTest" />
 </classes>
 </test>
 <test name="Windows+Firefox Test">
 <parameters>
 <parameter name="platform" value="Mac" />
 <parameter name="browser" value="Firefox" />
 <parameter name="version" value="38.0.5" />
 <parameter name="url" value="http://bit.ly/1zdNrFZ" />
 </parameters>
 <classes>
 <class name="SeGridTest" />
 </classes>
 </test>
 <test name="Mac+Safari Test">
 <parameters>
 <parameter name="platform" value="Mac" />
 <parameter name="browser" value="Safari" />
 <parameter name="version" value="8.0.2" />
 <parameter name="url" value="http://bit.ly/1zdNrFZ" />
 </parameters>
 <classes>
 <class name="SeGridTest" />
 </classes>
 </test>
 </tests>
</suite>

Chapter 13

315

4. Now, we need to create a test using TestNG. We will create a parameterized test
using TestNG's parameterization features. We will create a test for the BMI calculator
application. We will use both the normal web and mobile web version of this application.
Create a new test with the name SeGridTest and copy the following code:
package com.secookbook.examples.chapter13;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;

import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;

import static org.testng.Assert.*;
import org.testng.annotations.AfterTest;
import org.testng.annotations.Parameters;
import org.testng.annotations.Test;
import org.testng.annotations.BeforeTest;

import java.net.MalformedURLException;
import java.net.URL;

public class SeGridTest {

 WebDriver driver = null;

 @Parameters({ "platform", "browser", "version", "url" })
 @BeforeTest(alwaysRun = true)
 public void setup(String platform, String browser, String
version,
 String url) throws MalformedURLException {
 DesiredCapabilities caps = new DesiredCapabilities();

 // Platforms
 if (platform.equalsIgnoreCase("Windows")) {
 caps.setPlatform(org.openqa.selenium.Platform.WINDOWS);
 }

 if (platform.equalsIgnoreCase("MAC")) {
 caps.setPlatform(org.openqa.selenium.Platform.MAC);
 }

Cross-Browser Testing

316

 // Browsers
 if (browser.equalsIgnoreCase("Internet Explorer")) {
 caps = DesiredCapabilities.internetExplorer();
 }

 if (browser.equalsIgnoreCase("Firefox")) {
 caps = DesiredCapabilities.firefox();
 }

 if (browser.equalsIgnoreCase("Chrome")) {
 caps = DesiredCapabilities.chrome();
 }

 if (browser.equalsIgnoreCase("Safari")) {
 caps = DesiredCapabilities.safari();
 }

 // Version
 caps.setVersion(version);

 driver = new RemoteWebDriver(new
URL("http://localhost:4444/wd/hub"),
 caps);

 // Open the BMI Calculator Application
 driver.get(url);

 }

 @Test(description = "Test Bmi Calculator")
 public void testBmiCalculator() throws
InterruptedException {

 WebElement height =
driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 WebElement weight =
driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

Chapter 13

317

 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals(bmi.getAttribute("value"), "24.4");

 WebElement bmiCategory =
driver.findElement(By.name("bmi_category"));
 assertEquals(bmiCategory.getAttribute("value"), "Normal");

 }

 @AfterTest
 public void afterTest() {
 driver.quit();
 }

How it works...
First, we created a test configuration file listing the combination of tests that we want to run in
parallel. Each instance of a test is listed in the <test> tag:

<tests>
 <test name="Windows+IE10 Test">
 <parameters>
 <parameter name="platform" value="Windows" />
 <parameter name="browser" value="Internet Explorer" />
 <parameter name="version" value="10" />
 <parameter name="url" value="http://bit.ly/1zdNrFZ" />
 </parameters>
 <classes>
 <class name="SeGridTest" />
 </classes>
 </test>
</tests>

In the <parameters> section, we provided the platform, browser, and the browser version.
Next, we added URL as we want to run this test both for normal and mobile web versions of
the application. Next, we need to specify the name of the test class in the <class> node.
If you are storing the test class in a package, then specify the complete path. For example,
if we keep SeGridTest in the package com.bmicalcapp.test, then the following will
be the value that we will pass:

 <classes>
 <class name="com.bmicalcapp.test.SeGridTest" />
 </classes>

Cross-Browser Testing

318

Next, we created a parameterized test in TestNG. We added a setup() method, which
accepts arguments to set the options for the DesiredCapabilities class to run tests
for each combination specified in the configuration file:

@Parameters({ "platform", "browser", "version", "url" })
 @BeforeTest(alwaysRun = true)
 public void setup(String platform, String browser, String version,
 String url) throws MalformedURLException {
 DesiredCapabilities caps = new DesiredCapabilities();

 // Platforms
 if (platform.equalsIgnoreCase("Windows")) {
 caps.setPlatform(org.openqa.selenium.Platform.WINDOWS);
 }

 if (platform.equalsIgnoreCase("MAC")) {
 caps.setPlatform(org.openqa.selenium.Platform.MAC);
 }

 // Browsers
 if (browser.equalsIgnoreCase("Internet Explorer")) {
 caps = DesiredCapabilities.internetExplorer();
 }

 if (browser.equalsIgnoreCase("Firefox")) {
 caps = DesiredCapabilities.firefox();
 }

 if (browser.equalsIgnoreCase("Chrome")) {
 caps = DesiredCapabilities.chrome();
 }

 if (browser.equalsIgnoreCase("Safari")) {
 caps = DesiredCapabilities.safari();
 }

 // Version
 caps.setVersion(version);

 driver = new RemoteWebDriver(new URL("http://localhost:4444/wd/
hub"),
 caps);

Chapter 13

319

 // Open the BMI Calculator Application
 driver.get(url);
 }

When we execute the tests, we need to tell TestNG to use the conf.xml file for test
configurations. TestNG will read this file and create a pool of threads (for this example, it will
create three threads) for each combination calling the test class. It will then create and assign
an instance of test class to each thread by passing the parameters from the configuration file
to the setup() method. TestNG will run the test concurrently for each combination, monitoring
and reporting the test status and the final results. The following is the report it generates after
running the test for combinations specified in the configuration file:

Creating and executing the Selenium script
in parallel with Python

In this recipe, we will create and execute tests in parallel with Python bindings using the
subprocess module. We will use the Hub and nodes configured in earlier recipes to run
these tests.

How to do it...
We will create two test scripts to test the application with Firefox and Internet Explorer using
the following steps. You can also create a single test and parameterize it similar to what we
did for TestNG:

1. For the first Python test, which will test the application functionality using the Firefox
browser, name this test as test_on_firefox.py and copy the following code:
import unittest

from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities
from selenium.webdriver.support.ui import WebDriverWait

class OnFirefox(unittest.TestCase):
 def setUp(self):
 self.driver = webdriver.Remote(
 command_executor='http://localhost:4444/wd/hub',

desired_capabilities=DesiredCapabilities.FIREFOX)

 def test_gogle_search_ie(self):

Cross-Browser Testing

320

 driver = self.driver
 driver.get("http://www.google.com")

 inputElement = driver.find_element_by_name("q")
 inputElement.send_keys("Cheese!")
 inputElement.submit()

 WebDriverWait(driver, 20).until(lambda driver:
driver.title.lower().startswith("cheese!"))
 self.assertEqual("cheese! - Google Search",
driver.title)

 def tearDown(self):
 self.driver.quit()

if __name__ == "__main__":
 unittest.main(verbosity=2)

2. For the second Python test, which will test the application functionality using
the Internet Explorer browser, name this test as test_on_ie.py and copy
the following code:
import unittest

from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities
from selenium.webdriver.support.ui import WebDriverWait

class OnFirefox(unittest.TestCase):
 def setUp(self):
 self.driver = webdriver.Remote(

command_executor='http://localhost:4444/wd/hub',
 desired_capabilities=DesiredCapabilities.
INTERNETEXPLORER)

 def test_google_search_ff(self):
 driver = self.driver
 driver.get("http://www.google.com")

 inputElement = driver.find_element_by_name("q")
 inputElement.send_keys("Cheese!")
 inputElement.submit()

Chapter 13

321

 WebDriverWait(driver, 20).until(lambda driver:
driver.title.lower().startswith("cheese!"))
 self.assertEqual("cheese! - Google Search",
driver.title)

 def tearDown(self):
 self.driver.quit()

if __name__ == "__main__":
 unittest.main(verbosity=2)

3. Finally, we need to create a Python script, which will use the subprocess module to
run these tests concurrently on different nodes. Name this script as runner.py and
copy the following code:
import glob

from subprocess import Popen

tests = glob.glob('test*.py')
processes = [Popen('python %s' % test, shell=True) for test
in tests]

for process in processes:
 process.wait()

How it works...
We need to place all three scripts in the same directory. When we execute runner.py,
it collects all the tests with names starting with test using the glob function. Then we
append each test using the Popen function from the subprocess module. The Popen()
function calls each test using Python as a subprocess of the main process and waits for
the script to complete.

There's more...
We can also use the nose module for Python to run the tests in parallel. First, we need to
install the nose unit testing framework using the following command:

pip nose

After the nose module is installed, you need to open the folder where all the tests are stored
and use the following command:

nosetests --processes=2

Cross-Browser Testing

322

This will call the nosetests scripts, which will locate all the files with a test prefix in the
current directory and start running tests concurrently. In this example we are running two
tests, so we need to specify the value for processes argumented as 2. The nose module
internally uses a multiprocessing module for concurrent execution.

See also
 f The Creating and executing the Selenium script in parallel with TestNG recipe

Using Cloud tools for cross-browser testing
running tests in the Cloud

We set up a local Grid in previous recipes to run the tests for cross-browser testing. This requires
setting up physical or virtual machines with different browsers and operating systems. There are
costs and efforts needed get the required hardware, software, and support to run the test lab.
You also need to put in effort to keep this infrastructure updated with the latest versions and
patches, and so on. Not everybody can afford these costs and effort.

Instead of investing and setting up a cross-browser test lab, you can easily outsource a virtual
test lab to a third-party cloud provider. The Sauce Labs and BrowserStack are leading cloud-
based cross-browser testing cloud providers. Both of these have support for over 400 different
browser and operating system configurations including mobile and tablet devices, and support
running Selenium WebDriver tests in their cloud.

In this section, we will set up and run a test in the Sauce Labs cloud. The steps are similar if
you want to run tests with BrowserStack.

Getting ready
Let's set up and run a test with Sauce Labs. You need a free Sauce Labs account to begin
with. Register for a free account on Sauce Labs at https://saucelabs.com/ and get
the user name and access key. Sauce Labs provides all the needed hardware and software
infrastructure to run your tests in the cloud.

You can get the access key from Sauce Labs dashboard after the login:

https://saucelabs.com/

Chapter 13

323

How to do it...
Let's modify the test we created earlier to run with grid, and add steps to run this test on
Sauce Labs cloud. We need to add the Sauce username and access key to the test and
change the Grid address to Sauce's Gird address, passing the username and access key,
as shown in the following code example:

package com.secookbook.examples.chapter13;

import static org.junit.Assert.*;
import static org.testng.Assert.assertEquals;

import java.net.URL;
import java.text.MessageFormat;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;

public class SauceTest {

 WebDriver driver;

 @Before
 public void setUp() throws Exception {
 String SAUCE_USER = "<your username>";
 String SAUCE_KEY = "<your key>";

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "OS X 10.9");
 caps.setCapability("browserName", "Safari");
 caps.setCapability("name", "BMI Calculator Test");
 driver = new RemoteWebDriver(new
URL(MessageFormat.format("http://{0}:{1}@ondemand.saucelabs.com:80
/wd/hub'", SAUCE_USER, SAUCE_KEY)), caps);
 driver.get("http://bit.ly/1zdNrFZ");

 }

Cross-Browser Testing

324

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }

 @Test
 public void testBmiCalc() {
 WebElement height = driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 WebElement weight = driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals(bmi.getAttribute("value"), "24.4");

 WebElement bmiCategory =
driver.findElement(By.name("bmi_category"));
 assertEquals(bmiCategory.getAttribute("value"), "Normal");
 }

}

You can get a list of platforms supported on Sauce Labs
at https://saucelabs.com/platforms.

While running the test, it will connect to Sauce Lab's hub and request the desired operating
system and bowser configuration. Sauce assigns a virtual machine for our test to run on
a given configuration. We can monitor this run on the Sauce dashboard, as shown in the
following screenshot:

https://saucelabs.com/platforms

Chapter 13

325

We can further drill down into the Sauce session and see exactly what happened during
the run. It provide details of the Selenium commands, screenshots, logs, and video of the
execution on multiple tabs, as shown in the following screenshot:

You can also test applications securely hosted on internal servers
by using the Sauce Connect utility. Sauce Connect creates a secure
tunnel between your machine and the Sauce cloud.

Running tests in headless mode with
PhantomJS

PhantomJS is a headless Webkit-based browser. We can use PhantomJS in conjunction with
Selenium WebDriver to run basic functional tests.

In this recipe, we will set up and use PhantomJS to run a simple test.

Getting ready
You will need PhantomJS binary for this example. You can download the appropriate binary
from http://phantomjs.org/.

In this example, the Windows version of PhantomJS is used.

http://phantomjs.org/

Cross-Browser Testing

326

You will also need to add a dependency in the maven pom.xml file, as follows:

 <dependency>
 <groupId>com.github.detro</groupId>
 <artifactId>phantomjsdriver</artifactId>
 <version>1.2.0</version>
 <scope>test</scope>
 </dependency>

How to do it...
Let's create a new test PhantomjsTest that uses PhantomJS to run a test in headless mode,
as shown in the following code example:

package com.secookbook.examples.chapter13;

import static org.junit.Assert.*;
import static org.testng.Assert.assertEquals;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.phantomjs.PhantomJSDriver;
import org.openqa.selenium.phantomjs.PhantomJSDriverService;
import org.openqa.selenium.remote.DesiredCapabilities;

public class PhantomjsTest {

 WebDriver driver;

 @Before
 public void setUp() throws Exception {
 DesiredCapabilities caps =
DesiredCapabilities.phantomjs();
 caps.setJavascriptEnabled(true);
 caps.setCapability(
 PhantomJSDriverService.PHANTOMJS_EXECUTABLE_PATH_
PROPERTY,
 "./src/test/resources/drivers/phantomjs.exe");
 driver = new PhantomJSDriver(caps);
 driver.get("http://bit.ly/1zdNrFZ");
 }

Chapter 13

327

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }

 @Test
 public void testBmiCalc() {
 WebElement height =
driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 WebElement weight = driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

 WebElement calculateButton = driver.findElement(By.
id("Calculate"));
 calculateButton.click();

 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals(bmi.getAttribute("value"), "24.4");

 WebElement bmiCategory =
driver.findElement(By.name("bmiCategory"));
 assertEquals(bmi_category.getAttribute("value"),
"Normal");
 }
}

How it works...
When tests are run with PhantomJS, you will not see graphical browser opening and actions
being performed. You will see the execution log on the console, that looks as shown in the
following screenshot:

Cross-Browser Testing

328

Using PhantomJS requires a new instance of the PhantomJSDriver class, as shown in the
following code snippet:

driver = new PhantomJSDriver(caps);

We need to pass the path of PhantomJS executable using DesiredCapabilities through
following way:

DesiredCapabilities caps = DesiredCapabilities.phantomjs();
caps.setJavascriptEnabled(true);
caps.setCapability(
 PhantomJSDriverServ-
ice.PHANTOMJS_EXECUTABLE_PATH_PROPERTY,
 "./src/test/resources/drivers/phantomjs.exe");

There's more...
We can also run PhantomJS as a Selenium node and connect to the Hub using PhantomJS
binary, using following command line:

phantomjs --webdriver=9090 --webdriver-selenium-grid-
hub=http://localhost:4444

This will register a new node to Selenium Grid. You can run tests with the following capabilities
using RemoteWebDriver:

DesiredCapabilities caps = DesiredCapabilities.phantomjs();
caps.setJavascriptEnabled(true);
driver = new RemoteWebDriver(new
URL("http://localhost:4444/wd/hub"), caps);

329

14
Testing Applications on

Mobile Browsers

In this chapter, we will cover:

 f Setting up Appium to test mobile applications

 f Testing mobile web applications on iOS using Appium

 f Testing mobile web applications on Android using Appium

Introduction
With ever-increasing number of mobile users, the adoption of smartphones and tablet
computers has increased significantly. Mobile apps have penetrated the consumer and
enterprise markets, replacing desktops and laptops with smart devices. Small businesses
and large scale enterprises has great potential to use the mobile platform as a channel to
connect with users. Testing mobile apps have become crucial for the various mobile platforms
available in the market. In this chapter, we will learn more about how to test mobile apps
using Selenium WebDriver, more specifically, with Appium.

Appium is an open source mobile automation framework used to test mobile apps on iOS
and Android platforms using the JSON wire protocol with Selenium WebDriver. Appium
replaces the iPhoneDriver and AndroidDriver APIs in Selenium 2 that were used to test
mobile web applications

Appium enables the use and extension of the existing Selenium WebDriver framework
to build mobile tests. As it uses Selenium WebDriver to drive the tests, we can use any
language to create tests for which a Selenium client library exists. Appium supports the
testing of native, hybrid, and mobile web apps. In this chapter, we will see how to use
Appium to test mobile web applications.

Testing Applications on Mobile Browsers

330

We will test a mobile web application developed using jQuery mobile on Android and iOS.

Setting up Appium for testing mobile
applications

Before we start testing mobile apps with Appium, we need to download and install Appium.
We will use the GUI version of Appium. If you wish to run tests for iOS on iPhone or iPad, you
need to install and set up Appium on a Mac OS X machine. To test Android applications, you
can set up the test environment on a Windows or Linux machine. Setting up Appium is fairly
easy with the new Appium App for Mac OS X.

In addition to the GUI version, you can also install the Appium server,
which runs with Node.js.

How to do it...
You can download the latest Appium binaries from http://appium.io/. Click on the
Download Appium button on the front page. It will download the version based on your
choice of operating system:

http://appium.io/

Chapter 14

331

In the following examples, we will be using Appium on Mac OS X:

1. You can install Appium on a Mac by launching the installer and copying Appium to the
applications folder.

When you launch Appium from the applications for the first time, it will ask for an
authorization to run the iOS simulators.

By default, Appium starts at http://127.0.0.1:4723 or localhost.
This is the URL to which your test should direct the test commands. We
will be testing a mobile version of the sample application that we used
in the book on the iPhone Safari browser.

2. On the Appium main window, click on the Apple icon to open iOS Settings, as shown
in the following screenshot:

Testing Applications on Mobile Browsers

332

3. On the iOS Settings dialog, select the Force Device checkbox and specify
(iPhone 4s) in the iOS section. Also, select the Use Mobile Safari checkbox,
as shown in the following screenshot:

4. Click on the Launch button in the Appium window to start the Appium server.

Testing mobile web applications on iOS
using Appium

Appium drives automation using a native automation framework and provides an API based
on Selenium's WebDriver JSON wire protocol. To automate an iOS application, it uses the UI
Automation feature offered as part of Apple Instruments.

Chapter 14

333

Appium works as an HTTP server and receives the commands from test scripts over the
JSON wire protocol. Appium sends these commands to Apple Instruments so that these
can be executed on the app that is launched in a simulator or real device. While doing so,
Appium translates the JSON commands into UI Automation JavaScript commands that are
understood by the Instruments. The Instruments take care of launching and closing the
app in the simulator or device. This process is shown in the following diagram:

When a command is executed against the app on the simulator or device, the target app
sends the response back to the Instruments, which then send it back to Appium in the
JavaScript response format. Appium translates the UI Automation JavaScript responses into
Selenium WebDriver JSON wire protocol responses and sends them back to the test script.

Getting ready
Before we start writing tests with Appium, we need to add the Appium client library to the
project. This example uses Maven for dependency management, so we will add the following
dependency for the Appium Java Client library to the POM.xml file:

<dependency>
 <groupId>io.appium</groupId>
 <artifactId>java-client</artifactId>
 <version>3.1.0</version>
 <scope>test</scope>
 </dependency>

How to do it...
Now we have Appium running, so let's create a test that will check the BMI Calculator
application on the iPhone Safari browser. Create a new test MobileBmiCalculator
with the following code:

package com.secookbook.examples.chapter14.ios;

import java.net.URL;

Testing Applications on Mobile Browsers

334

import io.appium.java_client.ios.IOSDriver;

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.junit.*;

import static org.junit.Assert.*;

public class MobileBmiCalculatorTest {

 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 // Set the desired capabilities for iOS- iPhone 6
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platformName", "iOS");
 caps.setCapability("platformVersion", "8.4");
 caps.setCapability("deviceName", "iPhone 6");
 caps.setCapability("browserName", "safari");

 // Create an instance of IOSDriver for testing on iOS platform
 // connect to the local Appium server running on a different
machine
 // We will use WebElement type for testing the Web application
 driver = new IOSDriver<WebElement>(new URL(
 "http://192.168.0.101:4723/wd/hub"), caps);

 // Open the BMI Calculator Mobile Application
 driver.get("http://cookbook.seleniumacademy.com/mobilebmicalculato
r.html");
 }

 @Test
 public void testMobileBmiCalculator() throws Exception {
 // Get the height field and set the value
 WebElement height = driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 // Get the weight field and set the value
 WebElement weight = driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

Chapter 14

335

 // Click on Calculate button
 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 // Check the Bmi Result
 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals("24.4", bmi.getAttribute("value"));

 // Check the Category Result
 WebElement bmi_category =
driver.findElement(By.name("bmi_category"));
 assertEquals("Normal", bmi_category.getAttribute("value"));
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

How it works...
The Appium Java Client library provides the IOSDriver class that supports executed tests
on the iOS platform to run the tests with Appium. However, for Appium to use the desired
platform, we need to pass a set of desired capabilities, as shown in the following code:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platformName", "iOS");
caps.setCapability("platformVersion", "8.4");
caps.setCapability("deviceName", "iPhone 6");
caps.setCapability("browserName", "safari");

The platformName capability is used by Appium to decide on which platform the test script
should get executed. In this example, we used the iPhone 6 Simulator. To run tests on an iPad,
we can specify the iPad Simulator.

When running tests on a real device, we need to specify the value of iPhone or iPad for the
device capability. Appium will pick the device that is connected to the Mac via USB.

The last desired capability that we used is browserName, which is used by Appium to launch
the Safari browser.

Testing Applications on Mobile Browsers

336

Finally, we need to connect to Appium server using IOSDriver and program the desired
capabilities that we need. This is done by creating an instance of IOSDriver, as shown in
the following code:

driver = new IOSDriver<WebElement>(new URL(
 "http://192.168.0.101:4723/wd/hub"), caps);

The rest of the test uses Selenium API to interact with the mobile web version of the application.
Run the test as normal. You will see that Appium will establish a session with the test's script
and launch the iPhone Simulator with the Safari app. Appium will execute all the test steps by
running commands on the Safari app in the simulator window.

Testing mobile web applications on Android
using Appium

Appium drives the automation of Android applications using a UI Automator bundled with
Andorid SDK. The process is pretty much the same as testing on iOS.

Appium works as an HTTP server and receives the commands from test scripts over the
JSON wire protocol. Appium sends these commands to the UI Automator so that these can
be executed on the app launched in an emulator or real device. While doing so, Appium
translates the JSON commands into UI Automator Java commands that are understood by
Android SDK. This process is shown in the following diagram:

When a command is executed on the app in the emulator or device, the target app sends
the response back to the UI Automator, which is sent back to the Appium. It translates the
UI Automator responses into Selenium WebDriver JSON wire protocol responses, and sends
them back to the test script.

Getting Ready
Testing apps on Android is similar to testing on iOS. For Android, we will use a real device
instead of an emulator (a simulator is called an emulator in the Android community). We will
use the same application to test in Chrome for Android.

Chapter 14

337

For this example, I am using the Samsung Galaxy S4 Android handset. We need to install the
Google Chrome browser on the device. You can get Google Chrome at Google's Play store if
case it is not pre-installed on your device. Next, we need to connect the device to the machine
on which Appium server is running.

Let's run the following command to get a list of emulator or devices connected to the machine:

./adb devices

The Android Debug Bridge (ADB) is a command line tool available in the Android SDK that
lets you communicate with an emulator instance or an actual Android device connected to
your computer.

The ./adb devices command will display a list of all the Android devices that are connected
to the host. In this example, we connected to a real device, which is listed as seen in the
following screenshot:

Testing Applications on Mobile Browsers

338

How to do it...
Let's change the test that we created for iOS and modify it for Android. We will change the
desired capabilities, as shown in the following code example, to run a test on Android:

package com.secookbook.examples.chapter14.android;

import java.net.URL;

import io.appium.java_client.android.AndroidDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.junit.*;

import static org.junit.Assert.*;

public class MobileBmiCalculatorTest {

 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 // Set the desired capabilities for Android Device
 DesiredCapabilities caps = DesiredCapabilities.android();
 caps.setCapability("deviceOrientation", "portrait");
 caps.setCapability("platformVersion", "4.4");
 caps.setCapability("platformName", "Android");
 caps.setCapability("browserName", "Chrome");

 // Create an instance of AndroidDriver for testing on Android
platform
 // connect to the local Appium server running on a different
machine
 // We will use WebElement type for testing the Web application
 driver = new AndroidDriver<WebElement>(new URL(
 "http://192.168.0.101:4723/wd/hub"), caps);

 // Open the BMI Calculator Mobile Application
 driver.get("http://cookbook.seleniumacademy.com/
mobilebmicalculator.html");
 }

Chapter 14

339

 @Test
 public void testMobileBmiCalculator() throws Exception {
 // Get the height field and set the value
 WebElement height = driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 // Get the weight field and set the value
 WebElement weight = driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

 // Click on Calculate button
 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 // Check the Bmi Result
 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals("24.4", bmi.getAttribute("value"));

 // Check the Category Result
 WebElement bmi_category =
driver.findElement(By.name("bmi_category"));
 assertEquals("Normal", bmi_category.getAttribute("value"));
 }

 @After
 public void tearDown() throws Exception {
 // Close the browser
 driver.quit();
 }
}

How it works...
In the preceding example, we assigned the platformName capability value to Android,
which will be used by Appium to run tests on Android.

As we want to run the tests in Chrome for Android, we have mentioned Chrome in the
browser capability section of the code. The other important change we made was using
the AndroidDriver class from the Appium Java client libraries.

Testing Applications on Mobile Browsers

340

Appium will use the first device from the list of devices that adb returns, as shown in the
following screenshot. It will use the desired capabilities that we mentioned and will launch
the Chrome browser on the device and start executing the test script commands, as shown
in the following screenshot:

Chapter 14

341

The following screenshot shows the test running on a real device:

343

Index
Symbols
.NET

Page Object model, implementing
in 199-202

Selenium WebDriver, using in 261-264
SpecFlow.NET, using in 261-264

A
absolute path

elements, finding with 53, 59
Acceptance Test Driven Development

(ATDD) 252
advanced CSS selectors

used, for finding elements 65
Advanced User Interactions API

about 96
using, for keyboard events 96-98
using, for mouse events 96-98

alert
about 128
explicit wait condition, creating for 130

ancestors 51
Android Debug Bridge (ADB) 337
AndroidDriver 329
Android platform 329
Ant

about 279, 287
for Selenium WebDriver test

 execution 12-15
URL 287
using, for Selenium WebDriver test

execution 287-289
using for Selenium WebDriver

test, in 290-293

Apache POI
test data, reading from Excel file 161-164

Appium
about 329
setting up, for testing mobile

applications 330-332
URL 330
used, for testing mobile web applications

on Android 336-341
used, for testing mobile web applications

on iOS 332-336
Apple Instruments 332
atomic values 51
attribute

checking, of element 76, 77
elements, finding with 54
matching, value used 55

attributes name selector
elements, finding with 61

attributes selector
elements, finding with 60

attributes values
elements, finding with 53
partial match, performing on 54, 62

AutoIt
about 280
non-web UI in Selenium WebDriver,

automating with 294, 295
URL 295
working 298

AutoIt script
creating 296
using 299-301

automatic execution
build, scheduling for 285, 294

344

B
Behave

about 274
using, in Python 274-277

Behavior-driven Development (BDD)
about 251
Cucumber-JVM, using in Java 252-260
references 251
Selenium WebDriver, using in .NET 261-264
SpecFlow.NET, using in .NET 261-264

BMI calculator application 149
Browser Developer tools 40
browser navigation

working with 110, 111
BrowserStack 322
browser tools

used, for inspecting elements 34, 35
used, for inspecting page structure 34, 35

browser window
maximizing 107

build
scheduling 286
scheduling, for automatic

execution 285, 294
button element

click, performing on 73
buttons

automating 72-74

C
CacheLookUp attribute 186
Capybara

about 271
using, in Ruby 271-274

Cascading Style Sheets (CSS) 33, 76
checkboxes

automating 89, 90
child elements

finding 65
children 51
child window

handling 141-143
identifying 141-143

ChromeDriver
about 27, 29
reference 27-29

setting up, for Google Chrome 27-29
Chrome node

adding to Selenium Grid, for cross-browser
testing 311

Class attribute
elements, finding by 44

Class selector
elements, finding with 59

ClearCase 280
click

performing, on button element 73
Cloud tools

using, for cross browser testing 322-324
Component Object Model (COM) 299
conditions

reference link 119
confirm box

handling 131-133
content

pop-up window, identifying by 146-148
Content Delivery Network (CDN) 69
contextMenu plug-in

reference link 101
context menus

working with 101-103
continuous integration

Jenkins, configuring for 280
cross browser testing

Cloud tools, using for 322-324
CSS selectors

reference link 58
used, for finding elements 58, 59
working 62

CSS values
checking, of element 76, 77

CSV file
test data, reading from 158-161

Cucumber
about 252
using, in Ruby 271-274

Cucumber-JVM
about 252
using in Java, for BDD 252-260

custom-expected conditions
test, synchronizing with 121, 122

custom wait, examples
waiting, for DOM events 123

345

waiting, for element's attribute value
update 122

waiting, for element's visibility 122
CVS 280

D
data-driven-approach

workflow 150
data-driven test, creating

in MSTEST 169-172
in NUnit 165, 168
in Python 178, 179
in Ruby 173-177
JUnit used 151-155
TestNG used 155-158

data-driven testing approach
about 149
benefits 150

DDT module
about 178
data-driven test, creating in

Python 178, 179
DeepTest 307
descendants 51
Document Object Model (DOM) 34
DOM Level 3 XPath

URL 49
Doojo 219
double-click

performing, on element 98-100
drag-and-drop operations

performing 100, 101
dropdowns

automating 77-79
selected options, checking in 83-85

E
Eclipse 1
e-commerce application

reference link 193
element

attribute, checking of 76, 77
CSS values, checking of 76, 77
double-click, performing on 98-100
finding, findElement method used 41-43

presence, checking 94, 95
state, checking 95, 96
text, checking of 74, 75

elements
finding, advanced CSS selectors used 65
finding, attributes name selector used 61
finding, attributes selector used 60
finding, attributes used 54
finding, attributes values used 53
finding, by Class attribute 44
finding, by ID attribute 43, 44
finding, by Name attribute 44
finding, by tag name 48, 49
finding, Class selector used 59
finding, CSS selectors used 58, 59
finding, exact text value used 63
finding, findElements method used 46, 47
finding, ID selector used 60
finding, predicates used 53
finding, UI state pseudo-classes used 66
finding, user action pseudo-classes used 66
finding, with absolute path 53, 59
finding, with relative path 53, 59
finding, XPath used 49, 51
inspecting, browser tools used 34, 35
inspecting, with Google Chrome 38, 39
inspecting, with Microsoft Internet

Explorer 39, 40
inspecting, with Mozilla Firefox 35-37
locating, text used 63
locating, with XPath axes 56-58
locating, XPath text function used 63

elements, exposing of page
PageFactory class used 182-186

exact text value
used, for finding elements 63

Excel file
test data, reading from 161-164

ExpectedConditions class
predefined conditions 119

explicit wait condition
creating, for alert 130
test, synchronizing with 119, 120

extension
creating, for jQueryUI tab widget 214-218

extension class
creating, for web tables 210-214

346

extension, for WebElement object
implementing, for highlighting

elements 220, 221
implementing, for setting element

attribute values 219, 220

F
FindBy annotations 186
findElement method

used, for finding element 41-43
findElements method

used, for finding elements 46, 47
Firebug add-in, in Firefox

URL 35
Firefox node

adding to Selenium Grid, for cross-browser
testing 311

FluentWait class
test, synchronizing with 123, 124

forms
submitting 72

frames
handling 134-137
identifying 134-137
working with 137, 138

framework
testing, for parallel execution 307

G
Gherkin

about 251
URL 251

Git 280
Google Chrome

about 38
elements, inspecting with 38, 39
pages, inspecting with 38, 39

GWT 219

H
headless mode

tests, running in 326, 327
helper class

defining 267, 268

HTML5 canvas elements
interaction, automating on 243-245

HTML5 video player
automating 240-242

HTML table 90
Hub 307
Hyper Text Markup Language (HTML) 33

I
ID attribute

elements, finding by 43, 44
ID selector

elements, finding with 60
IE node

adding to Selenium Grid, for cross-browser
testing 309, 310

IFRAME
working with 139-141

images
comparing, in Selenium 230-233

implicit wait
test, synchronizing with 117-119

index
option, deselecting by 80
option, selecting by 80

IntelliJ IDEA 2
interaction

automating, on HTML5 canvas
elements 243-245

Internet Explorer Driver Server
download link 22
reference link 26
setting up 22-26

iOS platform 329
iPhoneDriver 329
isElementPresent() method

implementing 94, 95

J
Java

Cucumber-JVM, using in 252-260
JavaScript alert box

handling 128-130
JavaScript code

executing 103-105

347

Jenkins
about 12, 280
configuring, for continuous integration 280
using for Selenium WebDriver test execution,

in continuous integration 282-285
using for Selenium WebDriver test, in

continuous integration 290-293
Jenkins CI server

about 279
URL 280

Jenkins configuration
Ant, adding 281
JDK, adding 280
Maven, adding 281, 282

jQuery selectors
URL 68
using 67, 68

jQuery UI 214
jQuery UI control 209
jQueryUI tab widget

extension, creating for 214-218
URL 214

JUnit
about 150, 151
test data, reading from CSV file 158-161
test data, reading from Excel file 161-164
used, for creating data-driven test 151-155

K
keyboard events

Advanced User Interactions API,
using for 96-98

Keys
reference link 73

L
links, finding

about 47
by partial text 48
by text 47

lists
automating 77-79
selected options, checking in 83-85

LoadableComponent class
using 190-192

local storage
cleaning 250
testing 245-247

M
Mac OS X, with Safari

adding to Selenium Grid, for cross-browser
testing 312

Maven
about 279
URL 2
using for Selenium WebDriver test execution,

in continuous integration 282-285
Maven Central

URL 11
Mercurial 280
methods, WebDriver.Navigation interface

back() 110
forward() 110
refresh() 110
to(java.net.URL url) 110
to(String url) 110

methods, WebDriver.Options interface
addCookie(Cookie cookie) 108
deleteAllCookies() 108
deleteCookie(Cookie cookie) 108
deleteCookieNamed(String name) 108
getCookieNamed(String name) 108
getCookies() 108

methods, WebElement interface
isDisplayed() 95
isEnabled() 95
isSelected() 95

Microsoft Edge 30
Microsoft Internet Explorer

elements, inspecting with 39, 40
pages, inspecting with 39, 40

Microsoft Visual Studio
configuring, for Selenium WebDriver test

development 15-18
Microsoft WebDriver

setting up, for Microsoft Edge 30-32
Microsoft WebDriver Server

references 30
working 32

348

mobile web applications, on Android
testing, with Appium 336-341

mobile web applications, on iOS
testing, with Appium 332-336

mouse events
Advanced User Interactions API,

using for 96-98
Mozilla Firefox

about 35
used, for inspecting elements 35-37
used, for inspecting pages 35-37

MSTEST
about 307
data-driven test, creating in 169-172

multi-select dropdown
selected options, checking in 85, 86

N
Name attribute

elements, finding by 44
Navigation Timing API

about 235
performance, measuring with 235-237

nested Page Object instances
implementing 193-199

NetBeans 2
NoAlertPresentException 130
nodes

about 51
adding to Selenium Grid, for cross-browser

testing 309
selecting, from tree 52

non-web UI in Selenium WebDriver
automating, with AutoIt 294, 295
automating, with Sikuli 301-304

NoSuchElementFoundException 46
NoSuchWindowException 143
NuGet

download link 15
NuGet Package Manager

about 18
URL 15

NUnit
about 150
data-driven test, creating in 165-168
URL 165

NUnit Test Adapter
URL, for downloading 262

O
object map

creating, for Selenium tests 222-226
creating, in XML files 226, 227

OpenCSV
URL 158

OpenDialogHandler
using, in Selenium WebDriver script 297

operations, exposing on page
PageFactory class used 187-189

option
checking, in Select element 81, 82
deselecting, by index 80
deselecting, by value 80
deselecting, by visible text 79
selecting, by index 80
selecting, by value 80
selecting, by visible text 79

P
PageFactory class

used, for exposing elements
from page 182-186

used, for exposing operation
on page 187-189

Page object
defining 267-269

page-object gem
Page Object model, implementing

in Ruby 206, 207
page-object gem API

URL 208
Page Object model, implementing

in .NET 199-202
in Python 203-205
in Ruby 206, 207

pages
inspecting, with Google Chrome 38, 39
inspecting, with Microsoft Internet

Explorer 39, 40
inspecting, with Mozilla Firefox 35-37

page structure
inspecting, browser tools used 34, 35

349

parallel execution
framework, testing for 307
Selenium Grid Server, setting up for 307, 308

parents 51
partial match

performing, on attribute values 54, 62
partial text

links, finding by 48
Perforce 280
performance

measuring, with Navigation
Timing API 235-237

PhantomJS
about 325
tests, running in headless mode 326, 327
URL 325

PNG (Portable Network Graphics) 106, 302
pop-up window

handling 146-148
identifying, by content 146-148

predicates
elements, finding with 53

prompt alert box
handling 131-133

PUnit 307
PyPI (Python Package Index) 22
Python

about 178
Behave, using in 274-277
data-driven test, creating in 178, 179
installing 19
Page Object model, implementing

 in 203-205
Selenium script, creating with 319-322
Selenium script, executing with 319-322
Selenium WebDriver, using in 274-277

R
radio buttons

automating 86, 87
radio groups

automating 86, 87
working with 88

relative path
elements, finding with 53, 59

RemoteWebDriver
screenshots, capturing with 107

Roo
data-driven test, creating in Ruby 173-177
URL 173

RSpec 271
Ruby

Capybara, using in 271-274
Cucumber, using in 271-274
data-driven test, creating in 173-177
installing 19
Page Object model, implementing

in 206, 207
Selenium WebDriver, using in 271-274

S
Sauce Connect utility 325
Sauce Labs

about 322
URL 322

screenshots
capturing, with RemoteWebDriver/Selenium

Grid 107
capturing, with Selenium WebDriver 105, 106

screenshots, of elements
capturing, in Selenium WebDriver 228, 229

selected options, checking
in dropdowns 83-85
in lists 83-85
in multi-select dropdown 85, 86

Select element
options, checking in 81, 82

selectors 58
Selenium

images, comparing in 230-233
Selenium Grid

about 305, 306
screenshots, capturing with 107

Selenium Grid Server
setting up, for parallel execution 307, 308

Selenium script
creating, with Python 319-322
creating, with TestNG 312-319
executing, with Python 319-322
executing, with TestNG 312-319

350

Selenium Server standalone JAR file
URL, for downloading 307

Selenium tests
object map, creating for 222-226

Selenium WebDriver
about 1
configuring, for Python and Ruby 19
installing, with Python 19, 20
installing, with Ruby 21, 22
screenshots, capturing with 105, 106
screenshots of elements,

capturing in 228, 229
using in .NET, for BDD 261-264
using, in Python 274-277
using, in Ruby 271-274

Selenium WebDriver script
OpenDialogHandler, using in 297

Selenium WebDriver test development
Microsoft Visual Studio,

configuring for 15-18
Selenium WebDriver test development

environment
configuring, for Java with Eclipse and

Maven 2-11
Selenium WebDriver test execution

Ant using for 12-14
Ant, using for 287-289

Selenium WebDriver test execution,
in continuous integration

Jenkins, using for 282-285
Maven, using for 282-285

session cookies
handling 108, 109

session storage
cleaning 250
testing 247-249

several paths
selecting 56, 61

sibling elements
finding 66

siblings 51
Sikuli

about 280, 301
non-web UI in Selenium WebDriver,

automating with 301-304
URL 301

Source Code Management (SCM) 283
spec file

creating 264
SpecFlow, from Visual Studio Gallery

URL, for downloading 262
SpecFlow.NET

using in .NET, for BDD 261-264
step definition file

creating 265
Story Testing 252
Subversion 280

T
tag name

elements, finding by 48, 49
test data, reading

from CSV file 158-161
from Excel file 161-164

Test Driven Development (TDD) 251
TestNG

about 7, 150, 155, 312
Selenium script, creating with 312-319
Selenium script, executing with 312-319
URL 7
used, for creating data-driven test 155-158

test results
displaying 286

tests, running
about 269, 270
in headless mode 326, 327

test, synchronizing
with custom-expected conditions 121, 122
with explicit wait 119, 120
with FluentWait class 123, 124
with implicit wait 117, 118

text
checking, of element 74, 75
clearing, from text-area element 72
clearing, from textbox 72
entering, in text-area element 72
entering, in textbox 72
links, finding by 47
used, for locating elements 63

text area
automating 72-74

351

text-area element
text, clearing from 72
text, entering in 72

textbox
automating 72-74
text, clearing from 72
text, entering in 72

title
window, identifying by 144, 145

U
UI state pseudo-classes

used, for finding elements 66
Uniform Resource Locator (URL) 33
unknown nodes

selecting 56
user action pseudo-classes

used, for finding elements 66

V
value

option, deselecting by 80
option, selecting by 80
used, for matching attribute 55

video playback 242
visible text

option, deselecting by 79
option, selecting by 79

W
Watir WebDriver 206
WebDriver events

afterChangeValueOf 112
afterClickOn 112
afterFindBy 112
afterNavigateBack 112
afterNavigateForward 112
afterNavigateTo 112
afterScript 113
beforeChangeValueOf 112
beforeClickOn 112
beforeFindBy 112
beforeNavigateBack 112
beforeNavigateForward 112

beforeNavigateTo 112
beforeScript 113
onException 113
working with 112-115

WebDriver.Navigation interface
methods 110

WebDriver.Options interface
methods 108

WebElement interface
about 72
methods 95

web tables
extension class, creating for 210-214

WebTables
working with 90-92

widgets, jQueryUI
accordion 214
datepicker 214
dialog 214
slider 214
tabs 214

WinAnt 287
window

handling 144, 145
identifying, by title 144, 145

X
XML files

object maps, creating in 226, 227
XPath

about 49, 58, 87
elements, finding with attributes 54
elements, finding with attributes values 53
exact text value, used for finding elements 63
used, for finding elements 49-51

XPath axes
elements, locating with 56-58

XPath text function
used, for locating elements 63

Y
Yahoo UI 219

Thank you for buying

Selenium Testing Tools Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Selenium Testing
Tools with Python
ISBN: 978-1-78398-350-6 Paperback: 216 pages

A practical guide on automated web testing with
Selenium using Python

1. Write and automate tests for your applications
with Selenium.

2. Explore the Selenium WebDriver API for easy
implementations of small to complex operations
on browsers and web applications.

3. Packed with easy and practical examples that get
you started with Selenium WebDriver.

Learning Selenium
Testing Tools
Third Edition
ISBN: 978-1-78439-649-7 Paperback: 318 pages

Leverage the power of Selenium to build your own
real-time test cases from scratch

1. Automate tests to ensure error free,
quality software.

2. A comprehensive guide with real-world examples
and screenshots to automate browser testing
using Selenium.

Please check www.PacktPub.com for information on our titles

Selenium WebDriver
Practical Guide
ISBN: 978-1-78216-885-0 Paperback: 264 pages

Interactively automate web applications using
Selenium WebDriver

1. Covers basic to advanced concepts of WebDriver.

2. Learn how to design a more effective automation
framework.

3. Explores all of the APIs within WebDriver.

4. Acquire an in-depth understanding of each
concept through practical code examples.

Selenium Design Patterns
and Best Practices
ISBN: 978-1-78398-270-7 Paperback: 270 pages

Build a powerful, stable, and automated test suite using
Selenium WebDriver

1. Keep up with the changing pace of your web
application by creating an agile test suite.

2. Save time and money by making your Selenium
tests 99% reliable.

3. Improve the stability of your test suite and your
programing skills by following a step-by-step
continuous improvement tutorial.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Configuring the Selenium WebDriver test
development environment for Java with Eclipse and Maven
	Using Ant for Selenium WebDriver test execution
	Configuring Microsoft Visual Studio for Selenium WebDriver test development
	Configuring Selenium WebDriver for Python and Ruby
	Setting up Internet Explorer Driver Server
	Setting up ChromeDriver for Google Chrome
	Setting up Microsoft WebDriver for
Microsoft Edge

	Chapter 2: Finding Elements
	Introduction
	Using browser tools for inspecting elements and page structure
	Finding an element using the findElement method
	Finding elements using the findElements method
	Finding links
	Finding elements by tag name
	Finding elements using XPath
	Finding elements using CSS selectors
	Locating elements using text
	Finding elements using advanced CSS selectors
	Using jQuery selectors

	Chapter 3: Working with Elements
	Introduction
	Automating textboxes, text areas,
and buttons
	Checking an element's text
	Checking an element's attribute and CSS values
	Automating dropdowns and lists
	Checking options in the Select element
	Checking selected options in dropdowns
and lists
	Automating radio buttons and radio groups
	Automating checkboxes
	Working with WebTables

	Chapter 4: Working with Selenium API
	Introduction
	Checking an element's presence
	Checking an element's state
	Using Advanced User Interactions API for mouse and keyboard events
	Performing double-click on an element
	Performing drag-and-drop operations
	Working with context menus
	Executing JavaScript code
	Capturing screenshots with Selenium WebDriver
	Maximizing the browser window
	Handling session cookies
	Working with browser navigation
	Working with WebDriver events

	Chapter 5: Synchronizing Tests
	Introduction
	Synchronizing a test with an implicit wait
	Synchronizing a test with an explicit wait
	Synchronizing a test with custom-expected conditions
	Synchronizing a test with FluentWait

	Chapter 6: Working with Alerts, Frames, and Windows
	Introduction
	Handling a simple JavaScript alert box
	Handling a confirm and prompt alert box
	Identifying and handling frames
	Working with IFRAME
	Identifying and handling a child window
	Identifying and handling a window by
its title
	Identifying and handling a pop-up window by its content

	Chapter 7: Data-driven Testing
	Introduction
	Creating a data-driven test using JUnit
	Creating a data-driven test using TestNG
	Reading test data from a CSV file using JUnit
	Reading test data from an Excel file using JUnit and Apache POI
	Creating a data-driven test in NUnit
	Creating a data-driven test in MSTEST
	Creating a data-driven test in Ruby using Roo
	Creating a data-driven test in Python
using DDT

	Chapter 8: Using the Page Object Model
	Introduction
	Using the PageFactory class for exposing the elements on a page
	Using the PageFactory class for exposing an operation on a page
	Using the LoadableComponent class
	Implementing nested Page Object instances
	Implementing the Page Object model in .NET
	Implementing the Page Object model
in Python
	Implementing the Page Object model in Ruby using the page-object gem

	Chapter 9: Extending Selenium
	Introduction
	Creating an extension class for web tables
	Creating an extension for the jQueryUI tab widget
	Implementing an extension for the WebElement object to set the element attribute values
	Implementing an extension for the WebElement object to highlight elements
	Creating an object map for Selenium tests
	Capturing screenshots of elements in the Selenium WebDriver
	Comparing images in Selenium
	Measuring performance with the Navigation Timing API

	Chapter 10: Testing HTML5 Web Applications
	Introduction
	Automating the HTML5 video player
	Automating interaction on the HTML5 canvas element
	Web storage – testing local storage
	Web storage – testing session storage
	Cleaning local and session storage

	Chapter 11: Behavior-Driven Development
	Introduction
	Using Cucumber-JVM and Selenium WebDriver in Java for BDD
	Using SpecFlow.NET and Selenium WebDriver in .NET for BDD
	Using Capybara, Cucumber, and Selenium WebDriver in Ruby
	Using Behave and Selenium WebDriver
in Python

	Chapter 12: Integration with Other Tools
	Introduction
	Configuring Jenkins for continuous integration
	Using Jenkins and Maven for Selenium WebDriver test execution in continuous integration
	Using Ant for Selenium WebDriver test execution
	Using Jenkins and Ant for Selenium WebDriver test execution in continuous integration
	Automating a non-web UI in Selenium WebDriver with AutoIt
	Automating a non-web UI in Selenium WebDriver with Sikuli

	Chapter 13: Cross-Browser Testing
	Introduction
	Setting up Selenium Grid Server for parallel execution
	Adding nodes to Selenium Grid for cross-browser testing
	Creating and executing Selenium script in parallel with TestNG
	Creating and executing Selenium script in parallel with Python
	Using Cloud tools for cross-browser testing running tests in the Cloud
	Running tests in headless mode with PhantomJS

	Chapter 14: Testing Applications on Mobile Browsers
	Introduction
	Setting up Appium for testing mobile applications
	Testing mobile web applications on iOS using Appium
	Testing mobile web applications on Android using Appium

	Index

