
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Silverlight™ 3 Programmer’s Reference

Introduction . xxv

Part 1: Getting Started

Chapter 1: Introduction to Silverlight . 3
Chapter 2: XAML Basics . 29
Chapter 3: Silverlight Architectural Tour . 47
Chapter 4: Silverlight Developer Toolbox . 61

Part 2: Using Silverlight 3 Essentials

Chapter 5: Controls . 75
Chapter 6: Silverlight Text . 91
Chapter 7: Layout . 103
Chapter 8: Styling Your App and Dealing with Resources 119
Chapter 9: Using Graphics and Visuals . 147
Chapter 10: Making It Richer with Media . 193
Chapter 11: Using the Services . 235

Part 3: Building Applications

Chapter 12: Silverlight, the Browser, and the Server 269
Chapter 13: First Things First: Handling Cross-Cutting Concerns 295
Chpater 14: Dealing with Data . 321
Chapter 15: Designing and Styling the User Interface 351
Chapter 16: Making the Application Come Alive . 383
Chapter 17: Creating Custom Controls . 433

Appendices

Appendix A: Silverlight Base Class Libraries Reference 465
Appendix B: System .Windows Reference . 473
Appendix C: System .Windows .Media Reference . 495
Appendix D: System .Windows .Shapes Reference . 529
Appendix E: Additional Resources . 543
Index . 545

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Silverlight™ 3
Programmer’s Reference

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Silverlight™ 3
Programmer’s Reference

J. Ambrose Little
Jason Beres

Grant Hinkson
Devin Rader

Joseph Croney

www.allitebooks.com

http://www.allitebooks.org

Silverlight™ 3 Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-38540-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior writ-
ten permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be
liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as
a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Silverlight is a trademark
of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.allitebooks.com

http://www.allitebooks.org

Non nobis, Domine, non nobis, sed nomini Tuo da gloriam.

 — Ambrose Little

I dedicate this book to my beautiful wife, Sheri, and amazing daughter, Siena, who put up with
my crazy schedule and who forgive me every time I need to do things like write a book chapter or two

when I really should be having fun with them.

 — Jason Beres

To Ania, my wife and best friend, for supporting me through the long hours and late nights.

 — Grant Hinkson

For Kyle

 — Devin Rader

To Laura, my loving wife, and my two children, Joey and Annabelle, whose beaming smiles
and endless support give me the inspiration and strength to tackle big challenges.

 — Joseph Croney

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Ambrose Little lives in central New Jersey and works there for Infragistics, where he is working mainly
on new product development. As an INETA speaker and Microsoft MVP, he’s been known to show up
occasionally at user groups and write the occasional article and book. He’s been designing and develop-
ing real business applications for more than 10 years.

Jason Beres is the director of product management for Infragistics, the world’s leading publisher of
presentation layer tools. Jason is also one of the founders of Florida .NET User Groups, the founder of
the New Jersey .NET User Group, a Visual Basic .NET MVP, on the INETA Speakers Bureau, and on the
INETA board of directors. Jason is the author of several books on .NET development, an international
speaker, and a frequent columnist for several .NET publications. He also keeps very active in the .NET
community.

Grant Hinkson is director of the experience design group at Infragistics. He is passionate about design,
usability, and technology and is rewarded by working with a team of people who share similar passions.
Grant is a Microsoft Expression MVP, a contributing author of Silverlight 1.0, published by Wrox, and
Foundation Fireworks CS4, published by Friends of Ed, and a contributing author on Adobe DevNet. He
has spoken at Adobe MAX, Microsoft ReMIX, and DevScovery and is active in the WPF, Silverlight,
and Fireworks communities. He has authored several utilities for the designer/developer community,
including the Fireworks to XAML exporter. When not coding or designing, Grant enjoys playing both
the piano and the organ.

Devin Rader is a product manager on the Infragistics Web Client team, responsible for leading the
creation of Infragistics Silverlight and Data Visualization products. Devin is also an active proponent
and member of the .NET developer community, being a cofounder of the St. Louis .NET User Group,
an active member of the New Jersey .NET User Group, a former board member of the International
.NET Association (INETA), and a regular speaker at user groups. He is also a contributing author on
the Wrox titles Professional ASP.NET 2.0, Professional ASP.NET 3.5, and Wrox Silverlight 1.0, as well as
a technical editor for many other Wrox publications. He has also written columns for ASP.NET Pro
magazine and .NET technology articles for MSDN Online. You can find more of Devin’s ramblings at
www.geekswithblogs.com/devin.

Joseph Croney is director of product development at Infragistics, where he leads a worldwide team of
engineers that delivers cutting-edge software components for Silverlight, WPF, and ASP.NET. He is a
former Microsoft program manager, who led feature teams in the MSN, Mobility, and Developer divi-
sions. After leaving Microsoft, Joseph founded Calabash Technologies, a U.S. Virgin Islands Technology
start-up, which successfully built and introduced a revolutionary handheld GPS Tour Guide. While CEO
of Calabash, Joseph found time to share his passion for Computer Science with the next generation of
technology leaders as an advanced-placement computer science teacher. Joseph has spoken at a wide
range of events, including Microsoft PDC, ASP.NET Connections, Microsoft TechEd, and the College
Board’s National Convention.

Executive Editor
Bob Elliott

Senior Development Editor
Tom Dinse

Technical Editors
Jess Chadwick
Ed Blankenship
Todd Snyder
Ben Hoelting
Steven Murawski

Senior Production Editor
Debra Banninger

Copy Editors
Cate Caffrey
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator, Cover
Lynsey Stanford

Associate Publisher
Jim Minatel

Compositor
Craig Johnson, Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
J & J Indexing

Credits

Acknowledgments

Thanks first to my wife, Christiane, and four munchkins — Bridget, John, Brendan, and Thomas — for
letting me disappear down into the basement for so many hours to work on this book, being patient,
understanding, and supportive. Thanks to my coauthors for their hard work despite our ridiculously busy
schedules; to Tom, Debra, and Bob at Wrox for sponsoring and coordinating; and to all our editors, techni-
cal and otherwise, who helped make this book better. It has been a tremendous team effort.

 — Ambrose Little

I would like to take this opportunity to thank the Wrox team, especially Tom Dinse, who kept this book
on track and made sure we all did what we needed to do to keep our tight schedule. I would also like
to shout out a very special thanks to the great author team — Devin, Ambrose, Joe, and Grant — for
making this book happen. It was awesome doing this book and even more awesome working with you
guys at Infragistics every day.

 — Jason Beres

First, thanks to my wife, Ania, for your constant support and encouragement on yet another after-hours
project. Thanks also to my family for constantly encouraging and supporting me along the way. Finally,
thanks to my coauthors and fellow XDGer’s at Infragistics — it’s a pleasure working with you all!

 — Grant Hinkson

I thank my wife, Kathleen, for putting up with the late nights and working weekends. Once again, I say
this is the last one. Thanks also to my Mom and Dad for all of your support and advice.

Thanks to my coauthors who put so much time and effort into the book, who were a bit wiser this time
and yet still signed on. Thanks to all of those at Wiley, especially Bob Elliott and Jim Minatel, for giving
us the opportunity to do this book and for keeping us moving in the right direction through its creation.

 — Devin Rader

I would like to take a moment to recognize all the people who contributed to making this book a suc-
cess. First and foremost, I want to thank my coauthors and the staff at Wrox, who spent countless hours
dedicating their time and talent to the project. I also want to recognize my Silverlight development
team, especially Stephen Zaharuk, whose technical expertise and support proved invaluable while I was
exploring the depths of Silverlight. Finally, I thank my family for making the personal sacrifices that
allowed me the time to focus on making this book a reality.

 — Joseph Croney

Contents

Introduction xxv

Part 1: Getting Started 1

Chapter 1: Introduction to Silverlight 3

What Is Silverlight? 3
Silverlight Versions Explained 6
Application Development Scenarios 6
Getting the Silverlight Plug-In 7
Getting the Silverlight SDK 10
Building Silverlight Applications 11
Silverlight 3 Tour 11

XAML 12
.NET Framework Support 13
Graphics and Animations 14
Page Layout and Design 17
User Interface Controls 19
Using Media in Silverlight 20
Local Data Storage 21
Out-of-Browser Experiences 22
Navigation Framework 22
Annotation and Ink 22
Accessing the Network 24
Data Binding 25

Summary 27

Chapter 2: XAML Basics 29

Introducing XAML 29
Silverlight XAML Basics 30
Declaring Objects in XAML 32

Object or Content Element Syntax 32
Attribute Element Syntax 33
Property Element Syntax 33
Setting a Property Using Implicit Collection Syntax 33
Deciding When to Use Attribute or Property Element Syntax to Set a Property 35

xvi

Contents

XAML Hierarchy 35
Events and the Silverlight Control 37

Event Handlers and Partial Classes 37
Event Bubbling 40

Markup Extensions 42
Binding Markup Extensions 43
StaticResource Markup Extensions 44

Summary 45

Chapter 3: Silverlight Architectural Tour 47

Browser Host 48
Application Services 48
Networking 49
BOM and DOM 49
JavaScript 49

Presentation Core 49
Display 49
Input 51
Controls 51
Media 52

.NET 53
Common Language Runtime (CoreCLR) 53
Base Class Library (BCL) 54
Silverlight Class Library (SCL) 56
Networking 56
Data 58
Windows Presentation Foundation (WPF) 58
Dynamic Language Runtime (DLR) 59

Summary 59

Chapter 4: Silverlight Developer Toolbox 61

Silverlight 3 Tools 61
Silverlight 3 Tools for Visual Studio 2008 62
Expression Blend 3 62
Silverlight Runtime and SDK 62

Developing with Silverlight 3 Tools for Visual Studio 2008 SP1 63
Silverlight Project Templates 64
Visual Studio Silverlight Development Tools 67

xvii

Contents

Designing with Expression Blend 3 68
Creating Projects 68
Getting around Blend 70

Generating Video Using Expression Encoder 70
Using Expression Encoder 70

Summary 72

Part 2: Using Silverlight 3 Essentials 73

Chapter 5: Controls 75

Text Input 75
DataGrid	 76

Data Binding 76
Grid Columns 78
Sorting 80
Column Resizing 80
Column Freezing 81
Column Moving 81
Row Details 82

ListBox, ComboBox, and TabControl	 83
Button, HyperLinkButton, and ToggleButton	 87
Calendar and DatePicker	 88

GridSplitter	 89
Silverlight Controls Toolkit 90
Summary 90

Chapter 6: Silverlight Text 91

Text Support in Silverlight 91
Displaying Text with TextBlock	 92

Controlling Text Layout in TextBlock	 95
Text Decorations 96
Inline Text Formatting 96
Using Embedded Fonts 98
Glyphs 99
Transforming Text with RenderTransforms	 100

Summary 101

xviii

Contents

Chapter 7: Layout 103

Measure, Then Arrange 103
Bounding Box 104

Element Sizing Characteristics 104
Width and Height 104
Alignment 106
Margin and Padding 106

Layout Panels 108
Canvas	 108
StackPanel	 109
Grid	 110

Custom Panels 113
Silverlight Plug-In Sizing and Position 116
Summary 117

Chapter 8: Styling Your App and Dealing with Resources 119

Getting Started 119
Core Terminology 120
Defining the Working Environment: A XAML-Based Approach 120

Local Styling (Inline Styling) 121
Styling with Resources 122
Working with the Style Object 125

Property Resolution 126
Creating BasedOn Styles 127
Changing the Look of a Control with a Custom ControlTemplate	 127

Defining and Organizing Resources 142
Defining Stand-Alone ResourceDictionaries	 142
Merged Dictionaries 142
Resource Scope 143
Organizing Resources 144
Resource Naming 145

Summary 146

Chapter 9: Using Graphics and Visuals 147

The Basics 147
Rectangles and Borders 147
Rounded Corners 148
Ellipses 150
Paths 151

www.allitebooks.com

http://www.allitebooks.org

xix

Contents

Images and Media 154
Images 154
MediaElement	 158

Brushes 160
SolidColorBrush 160
LinearGradientBrush 160
RadialGradientBrush 161
ImageBrush 163
VideoBrush 164
Editing Brushes in Blend 164
ImageBrushes	 168
VideoBrush	 170

Fonts and Font Embedding 170
Font Embedding 171

Effects and Perspective 3D 174
Effects 174

Importing Artwork from Additional Design Tools 188
Designing with Blend/Silverlight in Mind 188
Exporting to XAML in Other Tools 190

Summary 191

Chapter 10: Making It Richer with Media 193

Supported Formats 193
Unsupported Windows Media Formats 194
H.264 and AAC Support 195
Using the MediaElement Control 195

Build Actions and Referencing Media 195
Adding a MediaElement in Blend 199
Sizing Video and Setting the Stretch Behavior 200
Transforming Video 202
Rotating Video in 3D 203
Clipping Video 204
Painting Elements with the VideoBrush	 205
Simulating Video Reflections 206
Enabling GPU Hardware Acceleration 208
Audio Settings 208
Buffering 209
Detecting Download Progress 210
Detecting Playback Quality 210
Controlling Playback 210
Responding to Video Markers 212

xx

Contents

Handling Failed Media 214
Responding to State Changes 215

Media Playlists 216
Server-Side Playlist Files 216
Advanced Stream Redirector (ASX) Files 217
Encoding Media with Expression Encoder 219
Using the Silverlight Streaming Service 230
Smooth Streaming and IIS7 233

Summary 234

Chapter 11: Using the Services 235

Communications 235
URL Access Restrictions 235
HTTP-Based Communications 236
Sockets 245

Storage 255
Using Isolated Storage for Local Logging 256
Out-of-Browser Applications 258

Installation and Updates 263
Summary 265

Part 3: Building Applications 267

Chapter 12: Silverlight, the Browser, and the Server 269

Silverlight All by Its Lonesome 269
Configuration 270
Resources 272

Silverlight with the Browser 273
Interacting with the Browser Object Model (BOM) 273
Interacting with the Document Object Model (DOM) 282
Calling Script from Managed Code 285
Calling Managed Code from Script 287
Silverlight and JavaScript Marshaling 289
Exceptions between Managed Code and Script 290
HTML Bridge Scenarios 290

Silverlight with the Server 290
Silverlight with ASP.NET 291

Summary 293

xxi

Contents

Chapter 13: First Things First: Handling Cross-Cutting Concerns 295

Security 295
Code Access Security Model 295
Network Access Security Model 296
Cryptography 296
Authentication 298
Authorization 311

Exception Handling and Logging 315
Summary 320

Chapter 14: Dealing with Data 321

Getting Data to Your Application 321
Fetching Data with the WebClient Class 321
Accessing Data through WCF 327

Binding a User Interface to Data 331
Establishing a Data-Binding Connection 331
Handling Data Updates 336
Converting Data Types 342

Persisting Data in Isolated Storage 345
Accessing the Isolated Store 345
Creating a New File 346
Reading and Writing to a File 347

Summary 349

Chapter 15: Designing and Styling the User Interface 351

The Players 351
Developers 352
Designers 352
Integrators 353

Gathering Requirements 353
Primary Objective 354
Features 354
Additional Thoughts 354

UI Brainstorming/UX Sessions 355
Design/Dev Part Ways 357

Design Creates Mockups 358
Development Creates Working Model 364

xxii

Contents

Integration Phase 365
Assessing the Pieces 366
Using the Fireworks to XAML Exporter 367
Exporting the Master Page 369
Exporting the Login Form 373
Additional UserControls	 379

Continuous Iteration 380
Final Polish/Cleanup 380
Summary 381

Chapter 16: Making the Application Come Alive 383

Events 383
Raising and Handling Managed Events in Script 384
Handling Scripted Events from Managed Code 389

Responding to User Activity 390
Mouse Events 390
Keyboard Events 401
Other Inputs: Ink 410

Personalization 412
Internationalization 424

Detecting Culture 424
Globalization 425
Localization 427

Dates and Times 427
Retrieving Current Time 428
Adjusting for Time Zones 428

Summary 431

Chapter 17: Creating Custom Controls 433

Setting Up a Control Project 433
Creating a Control Class 434
Defining a Default Control Template 434

Using a Custom Control in an Application 437
Styling the Custom Control 438

The Parts Control Model 439
Identifying Control Template Parts 440
Mapping Template Parts in OnApplyTemplate	 440
Using Template Parts in a Control Template 442

xxiii

Contents

Taking Advantage of Visual States 444
Identifying Visual States for a Control 445
Adjusting the Active Visual State 445
Visual States in a Control Template 448
End-User Customization 451

Including Dependency Properties 451
Registering a Dependency Property 451
Declaring the Property 452
Handling Updates 452

Building a Content Control 454
Extending ContentControl	 454

Summary 461

Appendices 463

Appendix A: Silverlight Base Class Libraries Reference 465

Appendix B: System.Windows Reference 473

System.Windows Classes 474
System.Windows Structures 478
System.Windows Enumerations 479

DependencyObject Class 482
System.Windows.VisualStateManagerDependencyObject Methods 484

UIElement Class 484
UIElement Class Methods 485
UIElement Class Properties 486
UIElement Class Events 487

FrameworkElement Class 488
FrameworkElement Class Methods 489
FrameworkElement Class Properties 491
FrameworkElement Class Events 493

Appendix C: System.Windows.Media Reference 495

System.Windows.Media	 495
System.Windows.Media Classes 495
System.Windows.Media Enumerations 523

xxiv

Contents

Appendix D: System.Windows.Shapes Reference 529

System.Windows.Shapes Classes 529
Shape Class 529
Ellipse Class 535
Line Class 535
Path Class 536
Polygon Class 540
PolyLine Class 540
Rectangle Class 541

Appendix E: Additional Resources 543

Index 545

Introduction

To abuse an already abused cliché, we are at a tipping point for the Web and application development
in general. The last several years have seen a notable shift away from basic full-page-based, postback-
intensive web applications that minimized the use of JavaScript in favor of server-side code for maximum
browser compatibility. Today, some amount of AJAX is assumed for any new web application, and every
day we see new “Web 2.0” applications and companies popping up.

At the same time, and in part because of this shift, the old “thin client” versus “rich client” dichotomy
has increasingly faded. It is entirely possible, and, indeed, it is often the case, for a Web-based application
using AJAX to truly have a richer experience than most desktop-based applications, be they Windows
Forms, Java, or MFC. In fact, one might say that web applications today set the bar (excluding games, of
course).

Enter Windows Presentation Foundation (WPF), the long-awaited, updated Microsoft desktop-application
user interface (UI) framework. WPF borrowed from what has been learned on the Web (such as markup-
based interface declaration and good separation of UI concerns), unified multiple Windows graphics
APIs, and introduced new capabilities to Windows-based applications and new platform features (such
as the enriched dependency property system, commanding, triggers, declarative animations, and more).
WPF re-established the desktop as the new “rich client,” although not without contest from fairly rich
Internet applications (RIAs) that were based on AJAX.

But this book is not about AJAX. Nor is it about WPF, at least not directly. It’s about bringing together
these two worlds of RIAs and rich WPF-based desktop applications, and that’s where Silverlight comes in.

Silverlight was originally codenamed WPF/e, meaning “WPF everywhere.” And that’s a pretty good
tagline for Silverlight — bringing the good stuff from WPF to all the major platforms today, including
OS X and flavors of Linux (via the Linux “Moonlight” implementation).

Silverlight 1.0 was an initial salvo. It brought with it the rich media, the rich UI declarative model, and
a subset of WPF’s presentation layer capabilities. But it still depends on JavaScript for the development
environment and browsers’ JavaScript execution engines. It does not have many of the basic application
development facilities that developers today have come to expect and rely on, such as a control model
(and controls), data binding facilities, and a solid development environment with reliable IntelliSense
and debugging. Building a truly rich application for Silverlight 1.0 was only marginally better than using
AJAX — the key advantages were in the high-quality media player and, of course, animation facilities.

The fall of 2008 brought Silverlight 2 and now, just a few months later, we’re seeing a respectable update
with Silverlight 3. Silverlight 3 and up will inevitably become the de facto Microsoft RIA development
platform, and not just for Internet but also (in this author’s opinion) for line-of-business solutions,
except in cases where the functional or experiential demands call for the greater power of WPF. That
said, although dramatically improved over Silverlight 1.0 and light-years better than building on AJAX
frameworks, in many ways, even Silverlight 3 is still something of a fledgling RIA platform. But hey,
that’s more because RIAs and the necessary infrastructure to support them are still relatively young.

Introduction

xxvi

Silverlight 3, in a broad sense, brings pretty much all the goodness of the .NET development platform
to the browser. Almost everything you need from the .NET Frameworks that would apply in a browser
environment is at your disposal. Oh, and did I mention, that includes a CLR especially crafted for RIAs?

So, why say that it is a fledgling RIA platform? Well, apart from the fact that what was essentially the
real 1.0 version of what Silverlight needs to be as a RIA platform (Silverlight 2) was just released last
fall, RIAs in themselves introduce a not-exactly-new but new-to-many-developers application model.
You are essentially forced into a three-tier model that many, perhaps most, Microsoft developers have
only given lip service to. You can no longer simply write ADO.NET code to directly access a database —
you must go through a network service, be that HTTP or TCP-based, and for many developers, this will
no doubt be a stumbling block. However, for those who have been developing true three-tier applica-
tions, while it may not be a stumbling block, they will appreciate the added complexity that this model
imposes. Silverlight 3 does little to alleviate this burden, although when .NET RIA Services come to
fruition, they will go a long way toward ameliorating this extra complexity.

On the flip side (architecturally speaking), there are no doubt client-side facilities that can and will
mature. Silverlight 2 added isolated storage, which is essentially a sandboxed local filesystem, and
that’s a great start. But there are architectural facilities — such as those provided by Enterprise Library
(e.g., enhanced exception handling and reporting, tracing, logging, caching) and those such as identity
authentication and authorization — that need to be developed for this application model and platform.

Certainly there will also be new facilities whose need emerges as more and more RIAs are built as well
with a focus on simplifying UI development itself. The raw power is there today, but it will require skill
sets that historically have been relegated to high-end software development. (We’re speaking here of
various kinds of designers, particularly visual designers and interaction designers.) Because, as they
say, with great power comes great responsibility, end-users have and will continue to expect more and
better user experiences that the RIA platforms can provide.

Yet, despite how far there is to go to mature Silverlight into the rich application platform it needs to be,
Silverlight 3 is, as noted, light-years ahead of developing RIAs on AJAX. In some ways, Silverlight does
not add much in the way of experiential capability over a rich AJAX framework (or a combination of
them). A lot of the basic and not-so-basic animations and, of course, asynchronous capabilities can be
had without Silverlight, and certainly it is easier today to build rich AJAX-based applications than in
even very recent years past.

But it is still terribly difficult not only to build but also to maintain a truly rich Internet application on
AJAX. Although we developers might enjoy the immense technological challenge; the exciting intel-
lectual stimulation of dancing between CSS, HTML, XML, and JavaScript; the sheer joy of screaming at
the monitor when the beautiful set of functionality you finally got working in Firefox totally falls apart
in Internet Explorer; the exhilaration of dealing with angry customers who have somehow disabled (or
had disabled by corporate policy) one of the several technical puzzle pieces your application relies on —
we, in the end, could be putting our collective intelligence and valuable time into far more valuable and
rewarding — for everybody — enterprises.

And this is one of the chief areas where Silverlight 3 rushes to the rescue. By giving you a reliable
CLR; .NET Frameworks; the WPF-based presentation core (including controls, data binding, and much
more); a better networking stack; local, isolated storage; a rich IDE with rich debugging, IntelliSense,

Introduction

xxvii

and LINQ (and even a Dynamic Language Runtime, DLR); Silverlight makes developing rich interactive
applications far more feasible for everybody, especially our patrons (businesses), who are concerned
with the total cost of ownership, not just what’s technically feasible. And for developers, except for
those few die-hard JavaScripters, Silverlight will undoubtedly be a source of newfound joy in produc-
tivity and empowerment.

Why Write This Book?
So that’s all fine and dandy. Silverlight is just awesome. But why bother writing a book about it?

The reason is simple. Silverlight 2 was the first and biggest step toward fundamentally changing the
future of web (and, indeed, all) application development, and Silverlight 3 carries that forward. It is
one of the first pure Internet (cloud, if you will) development platforms. It is the culmination of years of
technological evolution toward a new future where computing will truly be ubiquitous. It will be a key
enabler in this new world of better user experiences with ubiquitous computing devices.

It is obviously just one piece of that puzzle, but it is a crucial one. The world is moving away from the
desktop, and therefore we can’t be restricted to it for rich software experiences. We want to help devel-
opers make this crucial step toward that future.

Will learning Silverlight make you magically able to develop these great experiences? No. There are
other skills to learn and certainly other professionals who will need to take part in making that future.
But Silverlight (and platforms like it) is the future of software, and if you don’t want to get left behind,
this is about as good a place to go next as you can pick.

This book will help you take that step. We propose to cover most, if not all, of this new platform as it
stands in its current incarnation. While doubtless, given the rapid nature of change, some of this book
will soon become obsolete, nearly all of it will be applicable as the Silverlight platform matures.

You may not need to use Silverlight today, but you will soon. What this book provides both by way of
tutorial and reference will be an invaluable guide from seasoned developers and designers. It will help
you see past the fluff and the marketing hype to the real challenges and problems that you as a pro-
grammer will face in developing applications on the Silverlight platform.

So what are you waiting for? Don’t become the next COBOL dinosaur — dive into this book and make
yourself relevant now and for years to come!

Who This Book Is For
This book embodies the Wrox philosophy of programmer to programmer. We are experienced pro-
grammers writing for other programmers. We wrote the book with the average business application
developer in mind. Certainly, others can derive value — anyone trying to build on or even just under-
stand the architectural concerns and realities of Silverlight — but this is at its heart a true programmer’s
reference.

Introduction

xxviii

What This Book Covers
While other books on Silverlight may spend inordinate amounts of time on the finer points of shapes,
brushes, and styling — the fancy UI glitz that WPF and Silverlight do, indeed, bring to the table — we
recognize that most application developers need a more holistic understanding of this new platform
and what it offers and does not offer for building real, especially business-oriented, applications. We do
cover the UI glitz (which is really great), but at a fundamental level that most devs need; what we strive
to do is put that in perspective and offer not only the technical details, but also a sort of wisdom that we
hope will help you better build on this platform.

This book, obviously, focuses in on Silverlight 3 (Build 40522), but we cover related technologies and
concerns that developers will need to know about when building on Silverlight 3, and, as noted previ-
ously, most of what is covered here will remain relevant even as the platform matures.

How This Book Is Structured
This book is broken into four main parts. The first part is an introduction and provides an overview of
Silverlight 3 and how to get started with it. It’s safe to say that if you read nothing else, you’d probably
want to read this part, but the other parts are where this book’s value really shines.

Part 2 covers the essentials of what Silverlight 3 gives developers in the box. Its focus is on the presenta-
tion core of Silverlight, which is more or less the “new” stuff in Silverlight that most .NET developers
will have to learn in terms of new APIs, objects, services, and concepts.

Part 3 builds on the basics from the first parts but does not necessarily presume that you have read it.
The purpose of this third part is to walk through the various concerns that an application developer
would have in building a real application on Silverlight. This is the real meat of the book. While we do
reference relevant parts of an application called Lumos throughout, we do not assume that you have
read prior chapters in most parts. The book is more like a generic front-to-back application tutorial, so if
you only need to read up on or reference how certain application-building concerns (e.g., data binding)
can be addressed in Silverlight, you can safely dive into that particular chapter or section with minimal
difficulty. The chapters are ordered more or less in terms of how you should think about building appli-
cations, starting with architectural, cross-cutting concerns and moving through the other concerns in a
manner that would make sense to a developer building a real application on this platform.

Part 4 contains reference Appendixes. These are for your use when you need to consult a specific API.
We try to add value here over the MSDN library reference, and certainly we focus in on Silverlight-
specific APIs.

The high-level approach we suggest is to read Parts 1 and 2 once through. This will give you a good
foundation to start playing around in Silverlight. Part 3 is especially valuable as a holistic application
building reference — you can jump to sections you are currently dealing with in the applications you
are building; however, it can (and perhaps should) be read straight through to give you a more holistic
understanding of what it takes to build solid applications in Silverlight. Part 4 is not intended to be
read through; we recommend just using it as needed, but it may offer insights and details that the other
parts only touch on, so you shouldn’t ignore it!

www.allitebooks.com

http://www.allitebooks.org

Introduction

xxix

What You Need to Use This Book
You need your hands and eyes to use this book unless, of course, you have the highly secret audio ver-
sion! Seriously, we try to list all relevant code along with supplemental text to explain it, so you don’t
need to lug a computer with you to get value from reading this. We even have color for most of the book
to make the code listings that much easier to read and to give you a better sense of what the underlying
code results in when run. (This is a rich UI technology, after all!)

But if you do have your computer handy, you can download the samples (or recreate them) using the
tools outlined in Chapter 4. In short, there’s nothing required that you shouldn’t be able to download
freely from the Internet.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used several conven-
tions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑❑ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: [Ctrl]+A.❑❑

We show URLs and code within the text like so: ❑❑ persistence.properties.

We present code in two different ways:❑❑

We use a monofont type with no highlighting for most code examples.
We use highlighting to emphasize code that’s particularly important in the
present context.

Also, Visual Studio’s code editor provides a rich color scheme to indicate various parts of code syntax.
That’s a great tool to help you learn language features in the editor and to help prevent mistakes as you
code. To reinforce Visual Studio’s colors, the code listings in this book are colorized using colors similar
to what you would see on screen in Visual Studio working with the book’s code. In order to optimize
print clarity, some colors have a slightly different hue in print from what you see on screen. But all of
the colors for the code in this book should be close enough to the default Visual Studio colors to give
you an accurate representation of the colors.

Introduction

xxx

Source Code
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists), and click on the Download Code link on the book’s
detail page to obtain all the source code for the book. \

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-38540-1.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in errata, you may save another reader
hours of frustration, and at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the Book Details page, click on the Book Errata link. On this page, you can
view all errata that have been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml,
and complete the form there to send us the error you have found. We’ll check the information and, if appro-
priate, post a message to the book’s Errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find several different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click on the Register link.

 2. Read the terms of use and click Agree.

Introduction

xxxi

 3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click on the “Subscribe to This Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Silverlight™ 3
Programmer’s Reference

Part I: Getting Started

Chapter 1: Introduction to Silverlight

Chapter 2: XAML Basics

Chapter 3: Silverlight Architectural Tour

Chapter 4: Silverlight Developer Toolbox

Introduction to Silverlight

Silverlight 3, the third iteration of the Silverlight platform, continues to deliver on the promise of
Adobe Flash–like and Flex-like rich Internet applications (RIAs) built using a standards-based, open
approach with HTML and XAML using tools like Visual Studio 2008 and Microsoft Expression
Blend. Silverlight 3 adds more excitement to RIA development with the inclusion of a subset of the
Base Class Libraries (BCLs) from the .NET Framework, new user interface controls, and new librar-
ies for building line-of-business applications. The result is that not only do you have the rich, XAML
markup to describe expressive user interfaces, but you also have the power of the .NET Framework
and your language of choice (C#, VB, etc.) to build Silverlight applications. Even with the .NET
Framework libraries, Silverlight still retains the cross-browser and cross-platform compatibility
that it has had since the beginning. This includes Windows 2000, Windows XP, Windows Vista,
Windows 7, Macintosh, and, through the Mono Project, various Linux distributions. You can build
a Silverlight application and run it in a Safari Web browser on an Apple Macintosh, while being
served up from an Apache Web Server running on Linux. There is a lot to learn about Silverlight,
and you’ll gain more and more insight with each chapter in this book.

This chapter does two basic things:

It gives you an introduction to Silverlight.❑❑

It sets the groundwork, with the essentials on creating Silverlight applications, that will ❑❑

help you move on to the next chapter and the rest of the book.

What Is Silverlight?
Silverlight is a Web-based platform for building and running RIAs. The Web-based platform part
of that equation is essentially the plug-in that runs inside the Web browser. Silverlight applications
execute within an ActiveX browser plug-in that installs onto the local machine via the Web browser
in the exact same manner that you install Adobe Flash to run Flash-based animations on Web pages.
The Silverlight plug-in supports the entire wow factor that you’d expect from an RIA, such as vector-
based graphics and animations and full video integration, including Digital Rights Management

1

4

Part I: Getting Started

(DRM) secured audio/video and hi-definition video, as well as the tools for building rich line-of-
business applications. You can boil down the coolness of Silverlight to the following points:

Silverlight is a cross-platform, cross-browser platform for delivering rich interactive ❑❑

applications.

Silverlight 3 applications can be built using Expression Blend, Visual Studio, or Eclipse on ❑❑

Windows, and with Eclipse on Apple Macintosh computers.

Silverlight supports playback of native Windows Media VC-1/WMA (with Digital Rights ❑❑

Management) as well as MPEG-4-based H-264 and AAC audio on PCs and Macs with no
dependency on Windows Media Player.

Silverlight supports playback of 720p+ full-screen HD Video.❑❑

Using XAML, HTML, JavaScript, C#, VB (or your managed language of choice, including ❑❑

dynamic languages like Ruby and Python), Silverlight delivers rich multimedia, vector graph-
ics, animations, and interactivity beyond what AJAX can deliver.

With the Base Class Libraries (BCLs), you have access to common classes for generics, collec-❑❑

tions, and threading that you are accustomed to using in Windows client development.

There are more than 60 controls in the toolbox, with many more from third-party vendors.❑❑

You can deliver out-of-browser experiences that can run any Silverlight 3 application as a desk-❑❑

top application with complete network detection for graceful exception handling.

The installation package is less than 6 MB on Windows and less than 12 MB on Macintosh.❑❑

Almost all of the same XAML created for Silverlight can be used in WPF applications with no ❑❑

changes.

The Silverlight player (or plug-in, or control — those terms are used interchangeably in the book and you
will see those variances when others talk about Silverlight as well) itself is a completely stand-alone
environment; there is no dependency version of the .NET Framework on the client or the server to run
Silverlight 3 applications. When developing applications for Silverlight 3, you are using tools (like
Visual Studio 2008 or Expression Blend) that require or are based on a version of the Common
Language Runtime (CLR), but the compiled Intermediate Language (IL) of your Silverlight applications
that is parsed by the Silverlight 3 player is not using a specific client version of the .NET Framework.
The BCL for Silverlight is entirely self-contained within the player itself. The XAML and BCL used by
the Silverlight 3 player are both subsets of their counterparts that are used when building full desktop-
based WPF applications.

You might ask why Microsoft is pushing out another Web-based, client-side technology when there is
already ASP.NET, ASP.NET AJAX Extensions, and, with CLR 3.5 and Visual Studio 2008, specific project
types that target the ASP.NET AJAX Framework. The simple answer is that users are demanding an
even richer experience on the Web. Even though AJAX does a lot for improved user experience — the
postback nightmare of Web 1.0 is finally going away — it does not do enough. There is demand for a
richer, more immersive experience on the Web. This has been accomplished with Windows Presentation
Foundation (WPF) on the Windows client side. WPF provides a unified approach to media, documents,
and graphics in a single run time. The problem with WPF is that it is a 30-MB run time that runs only

5

Chapter 1: Introduction to Silverlight

on the Windows OS. Microsoft needed to give the same type of experience that WPF offers, only in a
cross-platform, cross-browser delivery mechanism. So what Microsoft did was take the concept of a plug-in
model like Adobe Flash, mix it with the .NET Framework and the WPF declarative language in XAML,
and they came up with a way to develop highly rich, immersive, Web 2.0 applications.

The big picture of Silverlight from an architecture perspective is shown in Figure 1-1. Each area is covered
in more detail as you read along in the book.

Figure 1-1

As mentioned earlier, Silverlight can conceivably be fully supported across multiple browsers and oper-
ating systems. The current status for browser and OS support is identified in the following table:

Browser Internet Explorer 6, 7, and 8 on Windows

Safari, Firefox on Windows and Mac

Firefox 2 and Firefox 3 on Linux

Operating Systems Windows 2000, Windows 2003, Windows XP, Windows Vista, Windows 7

Mac OS 10.4/10.5 Intel

SUSE Linux Enterprise Desktop, openSUSE 11.0, openSUSE 11.1, Ubuntu
8.04, Fedora Core 9 via the Mono Project’s Moonlight implementation of
the Silverlight 2 player (a Silverlight 3 implementation of the Moonlight
player is not available as of this writing).

6

Part I: Getting Started

Silverlight Versions Explained
If you have been following Silverlight, you might be a little confused over the versions that are available:

Silverlight 1.0❑❑ — This is the first version of Silverlight and supports the JavaScript program-
ming model. This means that your language choice is simple — JavaScript. You use JavaScript
to interact with Silverlight objects that are executing within the Silverlight player in the
browser. There is no managed language support in Silverlight 1.0, which means no BCL for
Silverlight 1.0.

Silverlight 2❑❑ — Released in late 2008, Silverlight 2 brought the ability to create RIA applications
with the familiar code-behind programming model used in Windows Forms, ASP.NET, and
WPF development. Starting with Silverlight 2, you can use any CLR language to code Silverlight
applications, and you have the power of the .NET Framework to interact with Silverlight objects.
The ability to use the base class libraries and your .NET language of choice to build Silverlight
applications truly revolutionized the way developers and designers looked at this new RIA
platform.

Silverlight 3❑❑ — This is the third version of Silverlight and the topic of this book, following
the release of Silverlight 2 in late 2008. Silverlight 3 supports the familiar code-behind pro-
gramming model used in Windows Forms, ASP.NET, and WPF development. You can use
any CLR language to code Silverlight applications, and you have the power of the .NET
Framework to interact with Silverlight objects. Silverlight 3 includes extensive enhancements
to Silverlight 2 for building line-of-business applications as well as richer support for graphics
and media.

Silverlight uses an auto-update model for the player. When a new version of Silverlight is released, the
player running in the browser is updated to the latest version automatically. There is also the commit-
ment of backward compatibility, so your applications will not break when the player moves from ver-
sion 1.0 to 2, or 2 to 3, and so on.

Application Development Scenarios
When building Silverlight applications, there are two basic scenarios that occur:

Your entire application is written in Silverlight, the player takes up 100 percent of the height ❑❑

and width of the browser, and all UI interaction is done through Silverlight.

You implement an “Islands of Richness” scenario, in which your application is an ASP.NET ❑❑

application (or any other type of HTML-rendered application), and you build islands of your UI
with Silverlight. Thus, you are adding richness to your web applications but not building the
entire interaction using Silverlight.

I see the “Islands of Richness” scenario as being a very common way for Silverlight to find its way into
most applications. Silverlight is a simple way to add audio, video, or interactive data visualization to a
Web page without having to rebuild or re-design existing applications on a new platform. The area sur-
rounded with the red box in Figure 1-2 is an example of an “Islands of Richness” scenario in which
Silverlight has been added to an existing web application. In this case, the image strip is a Silverlight
control that will play a video in-page when an item is clicked on. Silverlight 3 enhances the “Islands of

7

Chapter 1: Introduction to Silverlight

Richness” scenarios by allowing multiple Silverlight plug-ins and an easy way to communicate with
each other in the browser. This also works across browsers; for example, a Silverlight 3 application run-
ning in a Firefox browser can talk to a Silverlight 3 application running in Internet Explorer 8 on the
same machine.

Figure 1-2

Getting the Silverlight Plug- In
The first time you navigate to a Web page that contains a Silverlight application, the Silverlight player is not
installed automatically; the installation is similar to the Adobe Flash experience. There is a nonintrusive
image on the page where the Silverlight content is placed to run that gives a link to download the player.
Silverlight has two different prompts for installation — the standard install and the in-place install.

In a standard install, the Get Microsoft Silverlight image tells you that you need to install Silverlight to
complete the experience on the Web page you have arrived at. Figure 1-3 illustrates a page with the
standard install images.

Once you click on the Get Microsoft Silverlight Installation image, one of two scenarios takes place. You
are taken to the Silverlight Installation page on the Microsoft site, as Figure 1-4 demonstrates.

8

Part I: Getting Started

Figure 1-3

Figure 1-4

Or you are prompted to install Silverlight in place with a download prompt, as shown in Figure 1-5.

After the Silverlight player is installed, you never have to install it again. Silverlight also has built into it
the knowledge of updates, so once a new version of Silverlight is available, you are asked if you would
like to install the update to get the latest version of the player. Once you refresh the browser, the
Silverlight content will be rendered correctly in the browser, as Figure 1-6 shows.

9

Chapter 1: Introduction to Silverlight

Figure 1-5

Figure 1-6

10

Part I: Getting Started

Getting the Silverlight SDK
To build Silverlight applications, you need more than the Silverlight player. If you have not arrived at a
page where you are prompted to install the Silverlight run time, you can easily get it on the Silverlight
SDK page. There are also supporting files, help files, samples, and quick starts in the Silverlight Software
Development Kit (SDK), which will give you the files you need to start building Silverlight applications.
To get the SDK, go to www.silverlight.net/getstarted/default.aspx, as shown in Figure 1-7.

Figure 1-7

On the Get Started page, you can download all of the tools that you need to create Silverlight 3
applications:

Silverlight run times for Mac and Windows operating systems❑❑

Silverlight tools for Visual Studio 2008❑❑

The latest version of Microsoft Expression Blend❑❑

A trial version of Visual Studio 2008❑❑

More importantly, this page has links to dozens of videos, tutorials, and samples that will help you
learn Silverlight.

11

Chapter 1: Introduction to Silverlight

Building Silverlight Applications
Now that you have the Silverlight player installed and you know how to get the tools for Visual Studio
that will give you the project templates, you can start building Silverlight applications. There are several
ways to create Silverlight applications:

Visual Studio 2008 Silverlight project templates, which include Silverlight Application, ❑❑

Silverlight Navigation Application, and Silverlight Class Library, as well as Silverlight Business
Application if you have .NET RIA Services installed

Expression Blend 3 ❑❑

Eclipse using the Eclipse plug-in. There is an Eclipse plug-in for both Windows- and Apple ❑❑

Macintosh–based operating systems.

In the next chapter, you will get a better understanding of the details for how to build applications
using Visual Studio 2008 and Expression Blend.

Silverlight 3 Tour
Silverlight 3 continues the improvements that Silverlight 2 delivered over Silverlight 1.0. In the next sec-
tion, we’ll look at some of the more important features of Silverlight 3, including:

XAML❑❑

.NET Framework support❑❑

Graphics and animations❑❑

Page layout and design❑❑

User interface controls❑❑

Audio and video ❑❑

Local data storage❑❑

Out-of-browser capability❑❑

Navigation Framework❑❑

Ink support❑❑

Network access❑❑

Data binding❑❑

Deep Zoom technology❑❑

Throughout the book, you will learn about each of the items listed in much more detail. The following
sections are designed to set the stage for what’s to come as you explore the full capability of Silverlight 3.

12

Part I: Getting Started

XAML
If you are not familiar with WPF, you are probably not familiar with XAML. Since the dawn of Visual
Studio, there has always been code and user interface design separation. This means that a developer
can write code, while a designer just works on the design and layout aspects of an application. This had
never been realized, mostly because developers and designers were always using different tools and
different languages. With the introduction of XAML, however, there was finally a unified markup that
could not only describe what a control is and how it fits into a page but also how layout and, more
importantly, the overall look and feel of the controls on a page are defined. A designer can use XAML to
create a mockup of a page or an application, and a developer can take that XAML markup and use it
directly in his project files. Because partial classes and code-behind files in Visual Studio 2008 allow
you to separate the code logic from the layout and control definitions, using XAML gives you the
opportunity to have this separation of the design from the code.

XAML elements are objects that map to classes in the Silverlight run time. So when you declare a XAML
TextBlock like this:

<TextBlock />

you are actually creating a new instance of the TextBlock class like this:

TextBlock t = new TextBlock();

The following code demonstrates a XAML snippet from a Silverlight application that shows Hello World
in a TextBlock:

<Canvas>
 <TextBlock>Hello World</TextBlock>
</Canvas>

The next code listing shows how the XAML can get more complex, demonstrating adding animations
to the TextBlock element. In this example, a RotateTransform is being applied to a TextBlock control
via a DoubleAnimation in a StoryBoard object. This action is triggered when the UserControl loads,
through the RoutedEvent Canvas.Loaded. If you run the XAML, you will see that the text Hello World
rotates in a 360-degree circle.

In Chapter 9, you will learn how animations work in Silverlight and how they are used to bring your
application to life in the Silverlight player.

<StackPanel Margin=”4”
 HorizontalAlignment=”Center”
 Orientation=”Horizontal”>
 <TextBlock Width=”200” Height=”150”
 FontSize=”24”>Hello World

 <TextBlock.Triggers>
 <EventTrigger RoutedEvent=”Canvas.Loaded”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard BeginTime=”0”
 RepeatBehavior=”Forever”>
 <DoubleAnimation

13

Chapter 1: Introduction to Silverlight

 Storyboard.TargetName=”rotate”
 Storyboard.TargetProperty=”Angle”
 To=”360”
 Duration=”0:0:10”/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </TextBlock.Triggers>

 <TextBlock.RenderTransform>
 <RotateTransform x:Name=”rotate”
 Angle=”0”
 CenterX=”300”
 CenterY=”200”/>
 </TextBlock.RenderTransform>
 </TextBlock>
</StackPanel>

In Chapter 2, you will get a more in-depth explanation of XAML and how you can use it to define and
create your Silverlight applications. You will also be getting your fair share of XAML throughout the
book, because it is how you will create most of the examples and applications that we have created.
Tools like Microsoft Expression Blend and Visual Studio 2008 are all Rapid Application Development
(RAD) tools that you can use to create your Silverlight applications. As you will learn when you start
building Silverlight applications using Visual Studio 2008, Microsoft Expression Blend is the only tool
that gives you a nice design-time experience, where you can drag-and-drop controls onto the design
surface and switch between the designer view and the XAML view. Visual Studio 2010 will have rich
support for RAD development of Silverlight 3 applications. At the time of this writing, Visual Studio
2010 is still in beta. Besides using Expression Blend or Visual Studio 2008, you can look to other XAML
tools like XAMLPad or Kaxaml to help you learn XAML. In Chapter 4, you will learn more of the spe-
cifics on building Silverlight 3 applications using Visual Studio.

.NET Framework Support
Two key aspects of Silverlight 3, and probably the most exciting aspects of this technology, are its sup-
port for the CLR and BCL of the .NET Framework. Although they are not the exact set of class libraries
you are familiar with using on the desktop and the CLR might handle memory management and opti-
mizations slightly differently than on the desktop or server, the fundamental capabilities of the .NET
Framework do exist for you to use to build rich Silverlight applications.

Execution of content targeting the Silverlight player is handled by the CoreCLR. The CoreCLR is a
smaller, refactored version of the CLR used in full .NET desktop applications. Although the Microsoft
Intermediate Language (MSIL) is exactly the same between the CLRs, the CoreCLR is stripped of the
unnecessary scenarios that are not needed for Silverlight 3 development. The CLR is still responsible for
managing memory in Silverlight applications, as well as enforcing the common type system (CTS).
Some examples of the differences in the CoreCLR versus the full CRL are:

The JIT Compiler in the CoreCLR is enhanced for fast startup time, while the full CLR is ❑❑

enhanced for more complex optimizations.

In ASP.NET applications, the garbage collection mode is tuned for multiple worker threads, ❑❑

while the CoreCLR is tuned for interactive applications.

14

Part I: Getting Started

Both the CoreCLR and CLR can run in the same process; therefore, for example, you can have an
embedded Silverlight player running in an Office Business application that also includes a full .NET 3.5
plug-in. The isolation of the CoreCLR is why you can run Silverlight applications on machines that do
not have any versions of the .NET Framework installed; this is further highlighted by the fact that
Silverlight can run on Macintosh operating systems.

The namespaces that contain all of the classes that you interact with in your Code window are the Base
Class Libraries, as you have learned. The Silverlight BCL does not contain namespaces and classes that
do not make sense for client development, such as code-access security, ASP.NET Web Server–specific
classes, and many others.

Chapter 3 delves into the specifics of the CoreCLR.

Graphics and Animations
A big part of why Silverlight is an exciting technology is that it provides a rich, vector-based draw-
ing system as well as support for complex animations. Some of the new additions in Silverlight 3
include:

Perspective 3D graphics❑❑

Pixel-Shader effects, including ❑❑ Blur and DropShadow

Bitmap Caching to increase the rendering performance❑❑

Animation effects like ❑❑ Spring and Bounce

Local font usage for rendering text❑❑

For vector-based drawing, Silverlight supports Geometry and Shape objects that include support for ren-
dering shapes, such as ellipse, line, path, polygon, polyline, and rectangle. These classes give you the
ability to render any type of visual display. For example, the following XAML displays an image in its
normal, square shape:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 </Image>
 </Canvas>

Using the EllipseGeomtry class, you can clip the image into whatever shape you desire. This XAML
clips the image into an oval:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 <Image.Clip>
 <EllipseGeometry
 RadiusX=”100”
 RadiusY=”75”
 Center=”100,75”/>

www.allitebooks.com

http://www.allitebooks.org

15

Chapter 1: Introduction to Silverlight

 </Image.Clip>
 </Image>
</Canvas>

with the results displayed in Figure 1-8.

Figure 1-8

Once you render your geometries or shapes into something meaningful, you can use Brushes,
VideoBrushes, or Transforms to further give life to your UI rendering. The following XAML takes a
basic TextBlock and adds a LinearGradientBrush for some nice special effects:

<TextBlock
 Canvas.Top=“100“
 FontFamily=“Verdana“
 FontSize=“32“
 FontWeight=“Bold“>
 Linear Gradient Brush
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleY=“4.0“ />
 </TextBlock.RenderTransform>
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint=“0,0“ EndPoint=“1,1“>
 <GradientStop Color=“Red“ Offset=“0.0“ />
 <GradientStop Color=“Blue“ Offset=“0.2“ />
 <GradientStop Color=“Green“ Offset=“0.4“ />
 <GradientStop Color=“Olive“ Offset=“0.6“ />
 <GradientStop Color=“DodgerBlue“ Offset=“0.8“ />
 <GradientStop Color=“OrangeRed“ Offset=“1.0“ />
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

You can also use an ImageBrush to paint an image on your TextBlock, as the following code
demonstrates:

<StackPanel>
 <!-- TextBlock without an ImageBrush -- >

16

Part I: Getting Started

 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 </TextBlock>

 <!-- TextBlock with an ImageBrush -- >
 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 <!-- Add an Image as the foreground -- >
 <TextBlock.Foreground>
 <ImageBrush ImageSource=”Images/rhino.jpg”
 Stretch=”Fill”/>
 </TextBlock.Foreground>
 </TextBlock>
</StackPanel>

The resulting content looks like Figure 1-9.

Figure 1-9

Later in this section, you will see a VideoBrush applied to text. In Chapter 9, we’ll cover graphics and
animations in full detail.

17

Chapter 1: Introduction to Silverlight

Page Layout and Design
Silverlight 3 includes several options for doing rich, resolution independent layout using a Canvas,
DockPanel, Grid, StackPanel, and WrapPanel element. These five major layout panels can be
described as:

Canvas❑❑ — An absolute positioning panel that gives you an area within which you can position
child elements by coordinates relative to the Canvas area. A Canvas can parent any number of
child Canvas objects.

DockPanel❑❑ — Is used to arrange a set of objects around the edges of a panel. You specify where
a child element is located in the DockPanel with the Dock property.

Grid❑❑ — Similar to an HTML table, a Grid is a set of columns and rows that can contain child
elements.

StackPanel❑❑ — A panel that automatically arranges its child elements into horizontal or
vertical rows

WrapPanel❑❑ — Allows the arrangement of elements in a vertical or horizontal list and have ele-
ments automatically wrap to the next row or column when the height or width limit of the
panel is reached.

One you decide how you are going to lay out your page using one of the layout types, you can use other
means of positioning individual elements as well. For example, you can change margins, set the ZOrder
or Border of an object, or perform RotateTranforms to change the position of an object. Chapter 7 cov-
ers all layout options in greater detail. Here we’ll look at the Canvas object and how it behaves.

The Canvas essentially becomes the container for other child elements, and all objects are positioned
using their X- and Y-coordinates relative to their location in the parent canvas. This is done with the
Canvas.Top and Canvas.Left attached properties, which provide the resolution-independent pixel
value of a control’s X- and Y-coordinates. The following code shows a Canvas object with several child
elements absolutely positioned within the Canvas.

<Canvas>
 <Rectangle
 Canvas.Top =”30”
 Canvas.Left=”30”
 Fill=”Blue”
 Height=”100” Width=”100”/>

 <Rectangle
 Canvas.Top =”75”
 Canvas.Left=”130”
 Fill=”Red”
 Height=”100” Width=”100”/>

 <Ellipse
 Canvas.Top =”100”
 Canvas.Left=”30”
 Fill=”Green”
 Height=”100” Width=”100”/>
</Canvas>

18

Part I: Getting Started

This XAML is explained in more detail in Figure 1-10, which shows the location of the objects in the
canvas.

Figure 1-10

In the following example from the SDK, you can see how a DockPanel can be configured to return the
results shown in Figure 1-11.

<StackPanel x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Margin=”5” Text=”Dock Panel” />
 <Border BorderBrush=”Red” BorderThickness=”2” >
 <controls:DockPanel LastChildFill=”true”
 Height=”265”>
 <Button Content=”Dock: Left”
 controls:DockPanel.Dock =”Left” />
 <Button Content=”Dock: Right”
 controls:DockPanel.Dock =”Right” />
 <Button Content=”Dock: Top”
 controls:DockPanel.Dock =”Top” />
 <Button Content=”Dock: Bottom”
 controls:DockPanel.Dock =”Bottom” />
 <Button Content=”Last Child” />
 </controls:DockPanel>
 </Border>
</StackPanel>

In Figure 1-11, notice the position of the elements based on the TextBlock and Border controls that wrap
the DockPanel in the XAML.

19

Chapter 1: Introduction to Silverlight

Figure 1-11

User Interface Controls
Silverlight 3 adds an even greater number of controls to the Toolbox for creating user interfaces. The
Toolbox in Visual Studio 2008 is now filled with controls that can be dragged onto forms to build the
user interface. The following controls are included for use by the core Silverlight 3 player:

AutoCompleteBox

Border

Button

Calendar

Canvas

CheckBox

ContentControl

DataForm

DataGrid

DataPager

DatePicker

DockPanel

Expander

Grid

GridSplitter

HeaderedContentControl

HeaderedItemsControl

HyperlinkButton

Image

InkPresenter

Label

ListBox

MediaElement

MultiScaleImage

Popup

RadioButton

RepeatButton

ScrollBar

ScrollViewer

Slider

StackPanel

TabControl

TextBlock

TextBox

TreeView

ViewBox

WrapPanel

In addition to the aforementioned controls, the Silverlight Toolkit, which is a separate download from
CodePlex, contains several very useful additions to the core list.

20

Part I: Getting Started

When working with any of the controls, remember they are just like any other control model: The
XAML controls in Silverlight can be instantiated in code, and properties can be retrieved or set on
them. Over the next several chapters, you will learn about the controls in more detail, as well as how
they can be used with Visual Studio 2008 or Expression Blend.

Using Media in Silverlight
One could argue that the entire reason for Silverlight was to provide rich, multimedia experiences on
Web pages, which essentially means audio and video on Web pages. If you take a look at the top 100
trafficked web sites on the Internet, almost all of them have video playing on the home page or use
video prevalently throughout. Silverlight 3 continues to add first-class media capability to the player.

Adding Video to Web Pages
To add video or audio to a Web page, you set the Source property on the MediaElement object. The fol-
lowing code demonstrates playing the video file car.wmv automatically when the canvas is loaded:

<UserControl x:Class=”SilverlightApplication3.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”600” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <MediaElement Source=”Images/video1.wmv” />
 </Grid>
</UserControl>

The Source property is the URI of a valid video or audio file. In the preceding code example, the source
file is located in the deployment directory of your Silverlight application. Your media files can be
located in various locations, including the web-site folder structure you are running the page from, or
from a remote site. In either case, in order to maintain cross-platform support, you must use “/” in place
of “\” in your URIs. For example:

 <MediaElement Source=”..\..\car.wmv”></MediaElement>

should read:

 <MediaElement Source=”../../car.wmv”></MediaElement>

If the Source property is pointing to a file on a Windows Media Server using the MMS protocol, the
player will automatically attempt to stream the video down to the client. The default behavior is a pro-
gressive download, which means that the audio or video will begin playing immediately and back-
ground-load as you are playing the media. The drawback to progressive downloads is that even if you
pause the video, it still downloads the media file, even if you never intended to continue playing it.
With streaming media, the only data that is downloaded is the data that you actually play, which is a
more efficient use of network resources.

Microsoft Live Services offers a free media streaming service for Silverlight applications, named
Silverlight Streaming Services. Using Silverlight Streaming Services, anyone can upload up to 4 GB
of Silverlight content to stream to their pages. To get a free account for this service, visit https://
silverlight.live.com.

21

Chapter 1: Introduction to Silverlight

Supported Audio and Video Formats
The MediaElement supports the Advanced Stream Redirector (ASX) playlist file format, as well as the
audio and video formats listed in the following table:

Video Formats Audio formats

WMV1: Windows Media Video 7

WMV2: Windows Media Video 8

WMV3: Windows Media Video 9

WMVA: Windows Media Video Advanced
Profile, non-VC-1

WMVC1: Windows Media Video Advanced
Profile, VC-1

H.264 — Can only be used for progressive
download, smooth streaming, and adaptive
streaming. Supports Base, Main, and High
Profiles.

WMA 7: Windows Media Audio 7

WMA 8: Windows Media Audio 8

WMA 9: Windows Media Audio 9

WMA 10: Windows Media Audio 10

AAC: Advanced Audio Coding — Can only be
used for progressive download, smooth stream-
ing, and adaptive streaming. AAC is the LC
variety and supports sampling frequencies up
to 48 kHz.

MP3: ISO/MPEG Layer-3 with the following
features:

Input — ISO/MPEG Layer-3 data stream❑❑

Channel configurations — Mono, stereo❑❑

Sampling frequencies — 8, 11.025, 12, 16, ❑❑

22.05, 24, 32, 44.1, and 48 kHz

Bitrates — 8–320 Kbps, variable bitrate❑❑

Limitations — ”Free format mode” (ISO/❑❑

IEC 11172-3, subclause 2.4.2.3) is not
supported.

Local Data Storage
Using the isolated storage concept in the full .NET Framework, you can use a client-side cache location to
store data. This means that you can take commonly needed data, and, instead of always having to go
back to the server to retrieve it, you can store it locally and access it locally. Examples might be a list of
states or countries, or buddy lists for instant messenger clients. This data is commonly needed for fast
access but does not change often enough to warrant constant round-trips back to the server to retrieve it.

By default, Silverlight gives you 1 MB of local storage. This can be increased by prompting the user to
allow for more local storage or can be accessed via the Silverlight Configuration screen. As its name
implies, this is isolated storage, so you cannot access the end-user’s filesystem or do anything that
would break the partial trust sandbox that Silverlight runs in. Storage is granted per application, so, for
example, you might have www.someapp.com, which is using 10 MB of storage, and another application
running on the same client computer from a different domain that has its own 20 MB of isolated stor-
age. The storage areas are independent of each other; there is no limit to the number of applications that
can have isolated storage on a client machine.

22

Part I: Getting Started

Out-of-Browser Experiences
With the new Out-of-Browser capability of any Silverlight application, an end-user can save your appli-
cation to the desktop on their Windows or Apple Macintosh computer. There is no need to install any
special assemblies or controls to make this work — it is part of the native Silverlight 3 experience. With
the new network detection APIs in Silverlight 3, an out-of-browser application can intelligently deter-
mine if it is connected to the network and react accordingly. In Chapter 11, you’ll learn how easy it is to
actually create this out-of-browser experience.

Navigation Framework
Silverlight 3 adds two new controls that enable complete browser-journal back/forward integration
with your application. Using the new Frame and Page controls, you can partition your views into sepa-
rate XAML files (instead of separate UserControl objects as you did in Silverlight 2) and navigate to
each view as simply as you would previously a Web page. The Navigation Framework also allows you
to implement deep linking support in your Silverlight application, which builds on the SEO (Search
Engine Optimization) enhancements added in Silverlight 3.

The following XAML shows the navigation control added to a UserControl:

<navigation:Frame x:Name=”Frame”
 Source=”/Views/HomePage.xaml”
 HorizontalContentAlignment=”Stretch”
 VerticalContentAlignment=”Stretch”
 Padding=”15,10,15,10”
 Background=”White”/>

And the following code demonstrates the Navigate method of the Frame class, which is how you move
from Page to Page.

private void NavButton_Click(object sender, RoutedEventArgs e)
{
 Button navigationButton = sender as Button;
 String goToPage = navigationButton.Tag.ToString();
 this.Frame.Navigate(new Uri(goToPage, UriKind.Relative));
}

As well as Navigate, the Frame class includes other useful methods such as Navigated,
NavigationFailed, and NavigationStopped that give you complete control over the navigation life
cycle of your Page object. Chapter 11 talks more about the Navigation and Frame classes.

Annotation and Ink
Like WPF, Silverlight has full support for ink input in the player. Using the InkPresenter object, you
can give users an input area where they can use the mouse or an input device to handwrite. Using the
application interface for the InkPresenter object, the application developer collects the Stroke objects
that are written and persists them to a location on the server for later use. An example of where ink
might be cool on a Web page is a simple blog, where text and ink can combine to create a great visual

23

Chapter 1: Introduction to Silverlight

output for whatever the blog is about. The XAML in the following code shows how to create an
InkPresenter object:

<InkPresenter x:Name=”inkInput” Cursor=”Stylus”
 MouseLeftButtonDown=”inkInput_MouseLeftButtonDown”
 MouseMove=”inkInput_MouseMove”
 MouseLeftButtonUp=”inkInput_MouseLeftButtonUp”/>

Notice that events are wired up for the various mouse behaviors. Each action of the mouse — the Move,
LeftButtonUp, and LeftButtonDown — has a method in the code-behind that acts on the strokes of the
input device. The following code gives an example of how you would collect the strokes from the
InkPresenter:

private Stroke MyStroke = null;

private void inkInput_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 inkInput.CaptureMouse();
 StylusPointCollection
 MyStylusPointCollection = new StylusPointCollection();
 MyStylusPointCollection.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 MyStroke = new Stroke(MyStylusPointCollection);
 inkInput.Strokes.Add(MyStroke);
}

private void inkInput_MouseMove
 (object sender, MouseEventArgs e)
{
 if (MyStroke != null)
 {
 MyStroke.StylusPoints.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 txtBlock.Text =
 “” + e.StylusDevice.GetStylusPoints(inkInput)[0].X;
 txtBlock.Text =
 “” + e.StylusDevice.GetStylusPoints(inkInput)[0].Y;
 }

}

private void inkInput_MouseLeftButtonUp
 (object sender, MouseButtonEventArgs e)
{
 MyStroke = null;
}

Once you have the ink data collected, you can store it locally on the client machine, put it into a data-
base, or even save the ink as an image.

24

Part I: Getting Started

Accessing the Network
To access network resources in Silverlight, you have the classes in the System.Net namespaces and the
System.Net.Sockets namespace. The namespace you choose would depend on the type of network
access you are trying to achieve. For basic HTTP or HTTPS access to URI-based resources, you can use
the WebClient class in the System.Net namespace. Some examples of this type of network access are:

Retrieving XML, JSON, RSS, or Atom data formats from a URI then parsing it on the client❑❑

Downloading resources such as media or data to the browser cache❑❑

Using WebClient, you can perform the types of asynchronous operations that are common in browser-
based applications. The following code demonstrates a simple method that grabs an image file from a
network resource and downloads it to the browser cache:

void DownloadFile(string imgPart)
{
 WebClient wc = new WebClient();
 wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler
 (wc_OpenReadCompleted);
 wc.OpenReadAsync(new Uri(“imgs.zip”,
 UriKind.Relative), imgPart);
}

If you need more flexibility in how you access HTTP or HTTPS resources, you can use the HttpWebRequest
and HttpWebResponse classes.

If you need more direct and constant access to network resources or if you are working in a situation in
which multiple clients are “listening” for the same server data, you would choose to use the classes in
the System.Net.Sockets namespace. Although both Sockets and WebClient allow asynchronous com-
munication using the TCP protocol, Sockets gives you the ability to write “push-style” applications,
where the server can communicate with the client in a more client-server manner. Imagine the unneces-
sary overhead when using basic AJAX timers (polling) to look for updated data on the server. If you
were using sockets instead of this type of timer-based polling, you would reduce the amount of wasted
bandwidth and would achieve tighter control of the data passing between the client and the server.

No matter how you choose to work with the network, both the System.Net and System.Net.Sockets
namespaces support the ability to access network resources from other URIs than the originating
domain. By default, a Silverlight 3 application can always access resources from its originating domain.
Using a policy file, an application can access resources from different domains from the one containing
its original URL. This cross-domain access is controlled by policy files that dictate the type of network
domain access an application has. For WebClient requests, the same format used by Adobe Flash is sup-
ported. The next code is an example of a crossdomain.xml file:

<?xml version=”1.0”?>
<! DOCTYPE cross-domain-policy
 SYSTEM “http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <allow-access-from domain=”*” />
</cross-domain-policy>

25

Chapter 1: Introduction to Silverlight

In Chapters 11 and 13, you will be fully exposed to various ways of accessing network resources.

Data Binding
Similarly to the data-binding features in WPF, Silverlight supports data-bound controls, XAML markup
extensions, and support for data context binding. Most of the time, your bindings will be set up in
XAML, which is where the markup extensions come into play. In the following XAML, the Text prop-
erty of the TextBlock element is using the Binding markup extension to bind the Title field from the
data source:

<TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay}” />

The field Title from the original data source is retrieved from the data content of the control’s parent
element; in this case, the TextBlock could be contained in a Canvas or Grid object. Once you set the
DataContext property for the parent element, the data contained in that object is available for binding
to anything it contains. A more complete example of this data binding looks like this:

<Canvas x:Name=”rootCanvas” Background=”White” >
 <TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay }” />

 <TextBlock x:Name=”Name”
 Text=”{Binding Title, Mode=OneWay }” />
</Canvas>

You would then set the context in the code like this:

LayoutRoot.DataContext = dataList;

where the dataList object is an object that contains the data you are binding to the controls. In the case
of simple TextBlock objects, you would have to handle the navigation between elements yourself. If you
want a richer, tabular data display, you could use the Grid that is included with Silverlight. The XAML
for the DataGrid control looks like this:

<data:DataGrid x:Name=”dataGrid1”
 Height=”120” Width=”450”
 AutoGenerateColumns=”True” />

The same dataList object can be bound to the grid in code like this:

dataGrid1.ItemsSource = dataList;

All of the binding could be accomplished in code, but using the combination of XAML and code gives you
greater flexibility when building Silverlight applications. An interesting area of data binding in Silverlight
is where the data actually comes from. Since the Silverlight player is a complete client-side solution, you
are not creating connections to SQL Server or other data sources, then dumping that data into a data set in
your code-behind. You are going to be using technologies like WCF to access services on the Internet and
then putting the data you retrieve into objects that are bound to controls in Silverlight. In Chapter 14, you

26

Part I: Getting Started

will learn about the various types of data access, how to interact with different data formats, and how the
data-binding mechanism works in Silverlight.

Deep Zoom Graphics
Deep Zoom is a multi-scale image-rendering technology that partitions a very large image, or set of
images, into smaller tiles that are rendered on demand to the Silverlight player. When an image is first
loaded, it is in the lowest-resolution tiles. As the user zooms into the image using the mouse wheel or
keyboard, higher-resolution images are loaded based on the area that is being zoomed into. The wow
factor of Deep Zoom was shown off at Mix ’08 in April 2008. The Hard Rock Cafe created a Deep Zoom
collection of their memorabilia. You can explore the site yourself at http://memorabilia.hardrock.com.
In Figure 1-12, you can see the initial page loaded into the browser.

Once you start zooming in with the mouse wheel, you can get from the lower-resolution images to
jthe higher-resolution images. Figure 1-13 shows the detail of a portion of the larger image seen in
Figure 1-12.

To build a Deep Zoom application, you don’t even need Visual Studio or Expression Blend. You can
do it all with the Deep Zoom Composer tool. To get a complete tutorial on how to use the Deep
Zoom Composer and integrate your own images into Deep Zoom, visit this URL: http://community
.infragistics.com/redirects/silverlight/deepzoom.aspx.

Figure 1-12

27

Chapter 1: Introduction to Silverlight

Figure 1-13

Summary
Silverlight brings a lot to the table for rich Internet application development. It has progressed from its
original release into much more than a simple media player. Silverlight is a platform for developing rich
line-of-business applications that have the data and input capability of ASP.NET with the media and
interactive capabilities usually reserved for Adobe Flex applications.

XAML Basics

Chapter 1 exposed you to the fundamentals of building Silverlight applications. You were intro-
duced to XAML, which is the glue between the interactive user interfaces you create and man-
aged code you write. This chapter explores more details of XAML and will give you the basics
that you need to understand the richer XAML concepts throughout the book.

Introducing XAML
As was indicated in Chapter 1, XAML finally provides a unified markup that can describe not
only what a control is and how it fits into a page, but also how layout and, more importantly, the
overall look and feel of the controls on a page are defined. A designer can use XAML to create
a mockup of a page or an application, and a developer can take that XAML markup and use it
directly in his project files. Because partial classes and code-behind files in Visual Studio allow
you to separate the code logic from the layout and control definitions, using XAML gives the
opportunity to have this separation of the design from the code. Let’s look at the following XAML
example, which demonstrates an animation on a TextBlock element:

<Canvas
 Width=“640“ Height=“480“
 Background=“White“>
 <Canvas.Triggers>
 <EventTrigger RoutedEvent=“Canvas.Loaded“>
 <BeginStoryboard>
 <Storyboard x:Name=“Timeline1“/>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>

 <TextBlock Width=“349“ Height=“67“
 Canvas.Top=“140“ Text=“Hello World“
 TextWrapping=“Wrap“
 RenderTransformOrigin=“0.5,0.5“
 x:Name=“textBlock“>
 <TextBlock.RenderTransform>

2

30

Part I: Getting Started

 <TransformGroup>
 <ScaleTransform ScaleX=“1“ ScaleY=“1“/>
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

This XAML may seem daunting, but learning XAML is like learning HTML; there are a lot of details, but
for most of your applications, you are using tools to build the XAML and not hand-coding it yourself. The
reason that it is important to understand XAML is the same reason that it is important to know HTML if
you are a web developer. There are times when you need to inspect the HTML of a file to understand or
debug a page, just as there will be times when you are looking at XAML and you need to understand why
something is happening in your Silverlight application.

Microsoft Expression Blend and Visual Studio are both Rapid Application Development (RAD) tools that
you can use to create the XAML in your Silverlight applications. However, as of this writing, Microsoft
Expression Blend is really the only tool that gives you a nice design-time experience, where you can
drag-and-drop controls onto the design surface and switch between the designer view and the XAML
view as you design your user interface. Your options will get better as the platform and tools mature,
but it’s important that you understand XAML now so you can save time later if you run into problems
and really need to dig into larger, more complex XAML files.

Before we delve deeper into XAML, there is an issue that’s important to understand: When using
XAML in Silverlight versus using XAML in WPF, not all things are created equal. Because Silverlight
is optimized for speed and the fast delivery of rich, interactive applications to the browser, the XAML
available to Silverlight applications is a subset of the XAML that can be used in a full desktop-based
WPF application. In WPF, each XAML element maps directly to a corresponding class in the .NET
Framework. In Silverlight, the XAML parser is part of the Silverlight player, so there is no dependency
on the .NET Framework for it to run. To you this means that if you are working in WPF now and you
are wondering why certain things are not working in Silverlight, you need to reference Appendix A,
which lists all of the objects that are available to you in Silverlight. The list is shorter than what a WPF
developer expects. Trade-offs needed to be made in order to keep a small run time, so the XAML avail-
able is not as complete.

Silverlight XAML Basics
XAML is a case-sensitive declarative language, based on XML that lets you design the user interface of
a Silverlight application in descriptive markup. Similar to the way ASP.NET or Windows Forms work
with the concept of a code-behind file, XAML files map to managed-code partial classes where you can
write in your language of choice. XAML is important for the evolution of how you create the user inter-
face because the user interface is separate from the code files. This means that a designer using tools like
Expression Blend can create a UI using XAML, and that same XAML can be used in Visual Studio and
integrated into a larger project. As a matter of fact, Expression Blend and Visual Studio share the same
project structure, so the .csproj and .vbproj files can be opened by either tool. The ability for a designer to
express a user interface and have it directly used without alteration in an application is something that
has never been possible with Microsoft tools. There has always been a large amount of throwaway art
work, because developers would get a mockup and try to duplicate it.

31

Chapter 2: XAML Basics

XAML files have a .xaml extension and, at first glance, might be confused with an XML data file. This
makes sense, because XML (Extensible Markup Language) is the basis for XAML (Extensible Application
Markup Language). The following code shows the default Silverlight XAML file when you create a
new Silverlight application using Visual Studio, which is also broken down in the table that follows
the code:

<UserControl x:Class=”SilverlightApplication6.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
<Grid x:Name=”LayoutRoot” Background=”White”>

</Grid>
</UserControl>

The following table describes the preceding code:

XAML Description

<UserControl x:Class=”SilverlightApplication6.Page” Opening object tag of the
root UserControl

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/
presentation”

Default Silverlight
namespace mapping

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” Default XAML namespace
mapping

Width=”400” Height=”300”> Default Height and
Width properties of the
UserControl

<Grid x:Name=”LayoutRoot” Background=”White”> Opening tag for the Grid
layout element

</Grid> Closing tag for the Grid
layout element

</UserControl> Closing tag for the root
UserControl object

In Chapter 1, you learned about the namespace declaration in Visual Studio for other assemblies than
the core Silverlight and code Silverlight XAML namespaces. If you had a compiled user control or class
file that you wanted to include in your opening UserControl declaration, you would use a custom prefix
and point to the fully qualified namespace and object you are adding to the page. For example, if you need
to access features in the System.Windows assembly, you would add the following namespace declaration
to your page:

xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”

32

Part I: Getting Started

where vsm is your custom prefix (which can be whatever prefix you would like), the clr-namespace you
are using is System.Windows, and the actual assembly name is System.Windows. Later in this chapter,
we will talk about the XAML namespace, whose objects are prefixed with the default x: identifier.

Declaring Objects in XAML
You can use either the object element syntax or the attribute syntax to declare objects in XAML:

Object Element Syntax❑❑ — Uses opening and closing tags to declare an object as an XML element.
You can use this syntax to declare root objects or set complex property values.

Attribute Syntax❑❑ — Uses an inline value to declare an object. You can use this syntax to set the
value of a property.

Object or Content Element Syntax
Most elements are created using the object (or content) element syntax, which is used in the
“Introducing XAML” section earlier in this chapter to create the TextBlock object:

<TextBlock>Hello World</TextBlock>

This syntax maps to:

<ObjectName> … </ObjectName>

where ObjectName is the name of the object that you are trying to instantiate. The following example
uses object element syntax to declare a Canvas:

<Canvas>
</Canvas>

Some objects, such as Canvas, can contain other objects, such as Rectangle or TextBlock:

<Canvas>
 <TextBlock>
 </TextBlock>
</Canvas>

If an object does not contain other objects, you can declare it using one self-enclosing tag instead of two:

<Canvas>
 <Rectangle />
</Canvas>

When you are creating objects, there really is no bad or good way. The hierarchy of the XAML documents,
which is covered later in this chapter, does not change.

33

Chapter 2: XAML Basics

Attribute Element Syntax
XAML also supports the less verbose attribute syntax for setting properties. The following markup cre-
ates a rectangle that has a green background (or Fill as the attributed property is named):

<Rectangle Fill=“Green“ Height=“100“ Width=“100“ />

Property Element Syntax
Attribute syntax is not possible on certain object properties because the object or information necessary
to provide the property value cannot be adequately expressed as a simple string. For these cases, the
property element syntax can be used. Property element syntax sets the referenced property of the con-
taining element with a new instance of the type that the property takes as its value, for example:

<objectName>
 <objectName.property>
 <setter propertyValue = “” />
 </objectName.property>
</objectName>

The following code uses property element syntax to add a Stroke with a LinearGradientBrush to a
Rectangle element:

<Rectangle Width=“485“ Height=“60“
 Canvas.Left=“99“ Canvas.Top=“55“>
 <Rectangle.Stroke>
 <LinearGradientBrush EndPoint=“1,0.5“ StartPoint=“0,0.5“>
 <GradientStop Color=“#FF483333“ Offset=“0.308“/>
 <GradientStop Color=“#FF514C4C“ Offset=“0.1070303“/>
 </LinearGradientBrush>
 </Rectangle.Stroke>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=“1,0.5“ StartPoint=“0,0.5“>
 <GradientStop Color=“#FF000000“ Offset=“0“/>
 <GradientStop Color=“#FFFFFFFF“ Offset=“1“/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

You can set properties on objects declared using object element syntax. You have three ways to set
properties in XAML:

Using implicit collection syntax❑❑

Using attribute syntax❑❑

Using property element syntax❑❑

Setting a Property Using Implicit Collection Syntax
When a property takes a collection, you can omit the collection element and simply specify its contents
instead. This is known as implicit collection syntax. The following code shows how you can omit the

34

Part I: Getting Started

GradientStopCollection for a LinearGradientBrush and simply specify its GradientStop objects.
The GradientStopCollection is included in the first LinearGradientBrush but omitted from the second.
The results are shown in Figure 2-1.

<Rectangle Width=“100“ Height=“100“
 Canvas.Left=“0“ Canvas.Top=“30“>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>

 <!-- Here the GradientStopCollection tag is used. -->
 <GradientStopCollection>
 <GradientStop Offset=“0.0“ Color=“Red“ />
 <GradientStop Offset=“1.0“ Color=“Blue“ />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

<Rectangle Width=“100“ Height=“100“
 Canvas.Left=“100“ Canvas.Top=“30“>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>

 <!-- Notice that the GradientStopCollection tag
 is omitted. -->
 <GradientStop Offset=“0.0“ Color=“Red“ />
 <GradientStop Offset=“1.0“ Color=“Blue“ />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Figure 2-1

35

Chapter 2: XAML Basics

There are times when the property collection indicates the type of collection being parsed. In these cases,
you can omit both the collection element and the property element tags, as the following code demonstrates:

<Rectangle Width=“100“ Height=“100“
 Canvas.Left=“200“ Canvas.Top=“30“>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset=“0.0“ Color=“Red“ />
 <GradientStop Offset=“1.0“ Color=“Blue“ />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Deciding When to Use Attribute or Property Element
Syntax to Set a Property

So far, you have learned that all properties support either the attribute or property element syntax. Some
properties, however, support other syntax, which is dependent on the type of object property it accepts.

Primitive types, such as a Double, Integer, or String, support only the attribute element syntax. The
following example uses attribute element syntax to set the width of a rectangle. The Width property
supports attribute syntax because the property value is a Double.

<Rectangle Width=“100“ />

Whether or not you can use attribute syntax to set a property depends on whether the object you use to
set that property supports attribute syntax. The following example uses attribute syntax to set the fill
of a rectangle. The Fill property supports attribute syntax when you use a SolidColorBrush to set it
because SolidColorBrush supports attribute syntax.

<Rectangle Fill=“Blue“ />

Whether or not you can use property element syntax to set a property depends on whether the object
you use to set that property supports object element syntax. If the object supports object element
syntax, the property supports property element syntax. The following example uses property ele-
ment syntax to set the fill of a rectangle. The Fill property supports attribute syntax when you use a
SolidColorBrush to set it because SolidColorBrush supports attribute syntax.

<Rectangle>
 <Rectangle.Fill>
 <SolidColorBrush Color=”Blue” />
 </Rectangle.Fill>
</Rectangle>

XAML Hierarchy
When you add XAML objects to the Silverlight control, you are defining a hierarchical tree structure
with a root object. All XAML files have a root element. In Silverlight, the root element is always the
container that has the x:Class attribute. The following XAML example creates an object hierarchy
containing a root UserControl object in the SilverlightApplication6 namespace Page class. When

36

Part I: Getting Started

the XAML is parsed by the player, the Canvas object, which has Rectangle and TextBlock elements, is
resolved, as well as the additional TextBlock element in the file. When the parsing is complete, there
is a tree-structured hierarchy of the elements in the file.

<!-- The top-most object in the XAML hierarchy is -->
<!-- referred to as the root object. -->
<UserControl x:Class=”SilverlightApplication6.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>

 <!-- Canvas objects can be a child of another Canvas object. -->
 <Canvas
 Canvas.Left=“20“ Canvas.Top=“20“>
 <Rectangle
 Width=“200“ Height=“35“
 Fill=“Red“ />
 <TextBlock
 Canvas.Left=“25“ Canvas.Top=“5“
 Foreground=“White“ FontFamily=“Verdana“
 FontSize=“18“ FontWeight=“Bold“
 Text=“Child Canvas TextBlock“ />
 </Canvas>

 <TextBlock
 Canvas.Left=“40“ Canvas.Top=“60“
 Foreground=“Black“ FontFamily=“Verdana“
 FontSize=“18“ FontWeight=“Bold“
 Text=“Hello Silverlight“ />
</UserControl>

When the Silverlight player attempts to render the XAML content, it is converted into a hierarchical tree
structure with a root object. The tree structure determines the rendering order of Silverlight objects.
The order of traversal starts with the root object, which is the topmost node in the tree structure — in
this case, the UserControl object. The root object’s children are then traversed, from left to right. If an
object has children, its children are traversed before the object’s siblings. This means the content of a
child object is rendered in front of the object’s own content. Figure 2-2 shows the rendered output from
the previous XAML example, showing the rendering order sequence.

Figure 2-2

37

Chapter 2: XAML Basics

Events and the Silverlight Control
The Silverlight object model defines a set of objects that allow you to create a Silverlight application. In
the unmanaged Silverlight 3 programming model, the Silverlight player itself had a limited number of
events that you could respond to in JavaScript functions, such as mouseMove, mouseLeftButtonUp, and so
forth. In the managed programming model of Silverlight 3, these same events, along with richer events
based on the type of object, are handled in the code-behind of the partial class that is associated with
the XAML file your objects are in. All interaction with the browser is handled through the normal
interaction processing of the browser, where inputs are accepted client-side. In the case of Silverlight,
the player responds to events and routes them to the appropriate event handler that you have defined.

This section discusses the Silverlight objects; how you reference them; and how you handle, add, and
remove events on those objects. Because you cannot create fully interactive applications in XAML alone,
it is important to understand how all of the elements — the objects in XAML, the HTML, and your
code-behind — work together to deliver the richness that Silverlight offers.

Event Handlers and Partial Classes
In Silverlight, the association of the XAML file with a code-behind file is set up with the x:Class attri-
bute at the top of your XAML files. The x: prefix indicates that the Class object is part of the XAML
namespace, and the Class object is declared as an attribute off the root element of a XAML file. The
x:Class attribute cannot be used on child elements in a page hierarchy; it can only be declared once and
on the root element. The syntax for declaring the x:Class is the same as for any other type declaration in
Silverlight:

 <object x:Class=”namespace.classname;assembly=assemblyname”...>
 ...
</object>

In default cases when you add new pages to your application, the assembly is left off and assumed to be
the current projects assembly.

<UserControl x:Class=”SilverlightApplication1.Page”

When you build your Silverlight application, the compiler builds the XAML, parses the XAML, and
creates instance objects of all of the uniquely identified elements in the file using x:Name. The associa-
tion of the class defined in the x:Class attribute and its partial class occur during the compile, and the
references for all of the objects with an x:Name are created so that they can be referenced at run time.
The x:Name attribute is used as a unique identifier to the elements you define. Similar to HTML, where
the id attribute denotes the uniqueness of an element, Silverlight needs a way to isolate and reference
elements in XAML so that they can be referenced in the code-behind files. In Silverlight 1.0, there were
no code-behind files because all coding was handled via JavaScript. But by using <script> tags in
HTML pages, you can define what code files should be able to access DOM for the page in which you
are running the Silverlight control. In Silverlight, the partial class files contain your managed code,
and thus they contain your event handlers. Objects are defined in XAML with an x:Name attribute, and
corresponding fields are created in the partial class, which can have event handlers that respond to the
input event.

38

Part I: Getting Started

The naming rules for the x:Name, x:Class, and x:Key attributes are:

They can contain numbers, letters, or underscore.❑❑

They cannot begin with a number.❑❑

Unicode characters are not supported.❑❑

The x:Key attributes are used in the child elements of ResourceDictionary objects. The child elements
are basically keyed by the XAML processor and can be used by the StaticResource markup extension,
which we cover later in this chapter.

The following XAML demonstrates a file where a button element has a unique identifier. Although
both x:Name and x:Key enforce uniqueness, you will get a compile error if you have an x:Name and
x:Key object using the same name.

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button x:Name=”button1” Click=”button1_Click”></Button>
 </Grid>

In the code-behind for this XAML file, the event handler looks like this:

private void button1_Click(object sender, RoutedEventArgs e)
{

}

In Visual Studio, the XAML Editor will give you hints for the attributes for the object that you are
typing against, including the object’s corresponding events. This makes it easier to wire events from
XAML to your code-behind. You can also manually wire events to objects:

button1 += new MouseButtonEventHandler(button1_Click);

And in Visual Basic, you can use the Handles keyword to associate XAML elements with class
functions:

Private Sub button1_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles button1.Click

End Sub

Your event handlers can be public or private. Objects with the x:Name attribute are scoped to the page
they are in. Similar to the way events are handled in ASP.NET or Windows Forms, the event handlers in
Silverlight have two parameters:

sender❑❑ — Identifies the Silverlight object that generated the event. You can retrieve the type
value of the object by calling the object’s API.

args❑❑ — Identifies the set of argument values for the specific event. An event, such as the Loaded
event, does not define any event arguments, so the value of eventArgs is null.

39

Chapter 2: XAML Basics

The next table is an example of the event parameters for the KeyDown event of the Silverlight player. This
example is typical of how you will see events described in the Silverlight 3.0 SDK.

Event
Parameter Description

sender Object
Identifies the object that invoked the event.

KeyEventArgs Object
keyEventArgs.key — Integer that indicates that a key is pressed. This value is
not operating-system-specific.
keyEventArgs.platformKeyCode — Integer that indicates that a key is pressed.
This value is operating-system-specific.
keyEventArgs.shift — Boolean value that indicates whether the [Shift] key is down.
keyEventArgs.ctrl — Boolean value that indicates whether the [Ctrl] key is down.

As an example of the KeyDown event, the following code demonstrates how you would define the event
on the Canvas element in XAML:

<TextBox Height=”100” Width=”200”
 KeyDown=”TextBox_KeyDown”></TextBox>
<TextBlock x:Name=”results”></TextBlock>

Next, the code here demonstrates the code-behind in Visual Basic that is used to handle the KeyDown
event on the Button object:

Private Sub TextBox_KeyDown(ByVal sender As System.Object, _
 ByVal e As System.Windows.Input.KeyEventArgs)

 results.Text = e.Key & “-” & e.PlatformKeyCode
End Sub

When you wire the event directly in the XAML to the method in your code-behind, the approach is no
different than if you were building a Windows Forms application.

Defining Events in JavaScript
If you choose not to use a managed programming model, which is the case if you omit the x:Class
attribute on your XAML file, then you must handle all events in JavaScript. When adding or removing
event handlers via JavaScript, you will use the AddEventListener and RemoveEventListener methods
on the elements on which you want to add or remove events. You use the following syntax:

Element.addEventListener(“EventName”, “EventHandler”);

For example, the following code demonstrates adding the onMouseEnter and onMouseLeave event handlers
to the TextBlock element named Status.

40

Part I: Getting Started

The following JavaScript example shows how to add events to a TextBlock object:

function onLoaded(sender, eventArgs)
{
 textBlock = sender.findName(“Status”);
 textBlock.addEventListener(“MouseEnter”, “onMouseEnter”);
 textBlock.addEventListener(“MouseLeave”, “onMouseLeave”);
}

To remove an existing event handler function, use the RemoveEventListener method, as demon-
strated next.

function removeEvents()
{
 textBlock.removeEventListener(“MouseEnter”, “onMouseEnter”);
 textBlock.removeEventListener(“MouseLeave”, “onMouseLeave”);
}

Finding a XAML Object Using findName
In JavaScript, you use the findName method and reference the object’s x:Name attribute value. The
findName function will search the entire object hierarchy of the DOM running in the Silverlight control,
so the location of an element in the hierarchy does not matter. If the element passed to the findName
function cannot be found, a null value is returned. The next code demonstrates using the findName func-
tion as well as how to properly check if the object being sought exists:

function onLoaded(sender, eventArgs)
{
 // Retrieve the object corresponding to the x:Name attribute value.
 var canvas = sender.findName(“rootCanvas”);

 // Determine whether the object was found.
 if (canvas != null)
 {
 alert(canvas.toString());
 }
 else
 {
 alert(“Object not found”);
 }
}

Event Bubbling
Since Silverlight supports the same routed event model that WPF uses, the concept of event bubbling
becomes important for some events. A routed event is an event that traverses the object hierarchy from
the root element that triggers the event up to each of its parent objects. Events are bubbled up.

The framework elements that support routed events are:

KeyDown ❑❑

KeyUp ❑❑

41

Chapter 2: XAML Basics

MouseEnter ❑❑

MouseLeftButtonDown ❑❑

MouseLeftButtonUp ❑❑

MouseMove ❑❑

BindingValidationError❑❑

The following code demonstrates an example in which event bubbling might come into play. Notice
there are MouseMove events on the root UserControl, as well as the child elements in the user control:

<UserControl x:Class=”SilverlightApplication1.Page”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
 Loaded=“onLoaded“
 MouseMove=“rootCanvasMouseMove“>

 <Rectangle
 x:Name=“rect1“
 MouseMove=“rect1MouseMove“
 Width=“100“ Height=“100“
 Fill=“PowderBlue“ />

 <Rectangle
 x:Name=“rect2“
 MouseMove=“rect2MouseMove“
 Canvas.Top=“50“ Canvas.Left=“50“
 Width=“100“ Height=“100“
 Fill=“Gold“ Opacity=“0.5“ />

 <TextBlock
 x:Name=“statusTextBlock“
 Canvas.Top=“180“ />

</UserControl>

Event bubbling means that there are multiple MouseMove events defined for an object and its ancestors.
The event is received by each object in the ancestor hierarchy, starting with the object that directly
receives the event.

The next code demonstrates this in a different fashion. Because both Rectangle elements have a
MouseMove event defined and the Canvas element has a MouseMove event defined, if the mouse is moved
over either rectangle, the onRectMouseMove event is fired. And because the Canvas is looking for a
MouseMove event, the mouse move over the rectangles is bubbled up through the object hierarchy to the
Canvas element.

<Canvas
 MouseMove=“onCanvasMouseMove“

42

Part I: Getting Started

 Loaded=“onLoaded“>

 <Rectangle
 x:Name=“RectA“
 MouseMove=“onRectMouseMove“
 Width=“100“ Height=“100“ Fill=“Red“ />

 <Rectangle
 x:Name=“RectB“
 MouseMove=“onRectMouseMove“
 Width=“100“ Height=“100“ Fill=“Blue“
 Canvas.Top=“25“ Canvas.Left=“25“ Opacity=“0.5“ />

</Canvas>

Markup Extensions
Since you can create static or instance objects in XAML, you need a way to use those objects as properties
on other XAML elements. This is where XAML markup extensions come in. Using an opening and a clos-
ing curly brace “{}” syntax, you can reference static object resources created elsewhere in your application
using an attribute or property element syntax. For example, if you created a static Style resource that
you planned to use to target multiple elements in your application, you would use the markup extension
syntax to set the style property on the target element. The following code is an example of a static style
resource:

<Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />
 <Setter Property=”Height” Value=”35” />
 <Setter Property=”FontSize” Value=”18” />
</Style>

To apply this resource to a target element, in this case the TargetType Button, you would use the attri-
bute syntax shown here:

<Button x:Name=”Button1” Style=”{StaticResource MainButton}” ... />
<Button x:Name=”Button2” Style=”{StaticResource MainButton}” ... />

When the XAML is parsed, the presence of the curly brace indicates that this is an extension and to pro-
cess the type of markup extension and the string value that follows the type. Silverlight supports three
markup extensions:

Binding❑❑

StaticResource❑❑

TemplateBinding❑❑

We’ll look at Binding and StaticResource in this chapter and TemplateBinding in Chapter 8.

43

Chapter 2: XAML Basics

Binding Markup Extensions
In Chapter 8, you will learn the details of data binding. In this section, we’ll look at the basic XAML
syntax. To understand the binding markup extension, you’ll need to understand how data retrieved in
a managed function ends up being displayed in XAML. Before we go into an example, let’s go over the
basic syntax. There are several ways you can set binding using the Binding markup extension:

<object property=”{Binding}” .../>

<object property=”{Binding propertyPath}” .../>

<object property=”{Binding oneOrMoreBindingProperties}” .../>

<object property=”{Binding propertyPath, oneOrMoreBindingProperties}” .../>

In all cases, object is an element such as a TextBlock, and property is an attribute property on that
element, such as Text. The remaining options are how you specify the properties of the binding, such
as the binding Mode (OneTime, OneWay, or TwoWay), Converter, Path, and so forth.

When you retrieve or build data, you normally set the data source to the DataContext of a XAML ele-
ment, such as a Canvas or Grid object, so it can be used by the containers’ child elements. For example,
if you had a basic Grid element named LayoutRoot, it would look something like this:

<Grid x:Name=”LayoutRoot” Background=”White”>

 <!-- grid definition, XAML children -->

</Grid>

In your code-behind, to bind data to the child elements of LayoutRoot, you would set the data source in
your code-behind to the DataContext of LayoutRoot:

LayoutRoot.DataContext = dataRecords;

In this case, dataRecords is a custom object that has various properties like Name, Address, and Email
that I set through code. Once the DataContext is set, the child elements have access to fields on the data
context of the parent element, as the following code demonstrates:

<Grid x:Name=”LayoutRoot” Background=”White”>

 <!-- Grid definition -->

 <Grid.RowDefinitions>
 <RowDefinition MaxHeight=”30” />
 <RowDefinition MaxHeight=”30” />
 <RowDefinition MaxHeight=”70” />
 <RowDefinition MaxHeight=”30” />
 <RowDefinition MaxHeight=”40” />
 <RowDefinition MaxHeight=”50” />
 </Grid.RowDefinitions>

44

Part I: Getting Started

 <Grid.ColumnDefinitions>
 <ColumnDefinition MaxWidth=”150”/>
 <ColumnDefinition MaxWidth=”200” />
 </Grid.ColumnDefinitions>

 <!-- XAML children -->

 <TextBlock x:Name=”NameLabel” Text=”Name: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”0” Grid.Column=”0” />

 <TextBlock x:Name=”Name”
 Text=”{Binding Name, Mode=OneWay }”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Grid.Row=”0” Grid.Column=”1” />

 <TextBlock x:Name=”AddressLabel” Text=”Address: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”1” Grid.Column=”0” />

 <TextBlock x:Name=”Address”
 Text=”{Binding Address, Mode=OneWay }”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Grid.Row=”1” Grid.Column=”1” />

 <TextBlock x:Name=”EmailLabel” Text=”Email: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”2” Grid.Column=”0” />

 < TextBlock x:Name=”Email”
 Text=”{Binding Email, Mode=OneWay}”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Height=”60” Width=”200”
 Grid.Row=”2” Grid.Column=”1” />

</Grid>

When the application runs, the data from the custom object is bound to the Grid element, and the grid’s
child TextBlock elements consume the available data by using the binding markup extension.

StaticResource Markup Extensions
The StaticResource markup extension is used to set the x:Key attribute on an object that is defined in
a ResourceDictionary object.

<Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />

45

Chapter 2: XAML Basics

The x:Key attribute is applied to the Style object to give it the unique name MainButton. This Style
object is in a ResourceDictionary, which in Silverlight is normally the outermost XAML element of
your XAML file:

<UserControl.Resources>
 <Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />
 <Setter Property=”Height” Value=”35” />
 <Setter Property=”FontSize” Value=”18” />
 </Style>
</UserControl.Resources>

x:Key gives the resource its uniqueness, so it can be applied to objects in the XAML file using the
StaticResource markup extension syntax you learned about earlier:

<Button x:Name=”Button1” Style=”{StaticResource MainButton}” ... />

In this case, the properties defined in the MainButton Style will be applied to any Button object using
the StaticResource markup extension.

Summary
This chapter gave you a good foundation for the various aspects of using XAML in Silverlight. There
are a few takeaways about Silverlight XAML that you need to remember:

Silverlight XAML is a subset of WPF XAML, so theoretically an application in Silverlight can ❑❑

move up to WPF. However, moving an application from WPF to Silverlight will not work (in
most cases).

The Silverlight player is an ActiveX browser plug-in, so the XAML you are using is built into ❑❑

the player; it is not based on .NET Framework objects.

XAML alone cannot build Silverlight applications. You need HTML to host the Silverlight ❑❑

player, which, in turn, hosts the XAML, and you need to use the managed coding model in
Silverlight 3 or the unmanaged coding model in Silverlight 1.0 to interact with the XAML.

XAML opens the doors for designers and developers to work closely together, because the same ❑❑

language (XAML) that is used to style applications is also used to define the user interface.

The ❑❑ X in XAML stands for extensible — so as Silverlight matures, with the capabilities of
the player such that you can add your own extensions, your applications will become more
powerful.

Silverlight Architectural Tour

Before diving too deeply into any one particular area of Silverlight 3, it’ll be helpful to get an overall
understanding of its architecture — the core building blocks, frameworks, and execution environ-
ments. In this chapter, you’ll take a look at these and come away with a high-level understanding of
Silverlight capabilities along with a good grasp of how all the pieces fit and play together.

Figure 3-1 gives a very high-level overview of the layout of a Silverlight application with respect
to major Silverlight architectural layers. Of course, Silverlight lives as a plug-in inside a browser
host. There is then a presentation core layer that takes care of both presenting and animating
visuals (images, text, video, and audio), as well as receiving input from the user in the form of
keyboard, mouse, or ink. It’s also responsible for the Digital Rights Management (DRM) capabili-
ties of Silverlight.

Applications

Browser
Host

Presentation Core

Common Language Runtime

.NET Frameworks

HTML Bridge

Figure 3-1

3

48

Part I: Getting Started

On top of the presentation core, Silverlight includes .NET features, chiefly the Common Language Runtime
(CLR), which is the execution environment for the .NET code (as it is with standard .NET applications). It’s
sometimes called the CoreCLR, as it is a selected subset deemed to be the core necessary for Silverlight
applications. And on this CLR hang all of the various .NET-based libraries that developers can use to create
rich, .NET-based applications in Silverlight.

The following sections delve into these in more depth.

Browser Host
Silverlight is technically just a browser plug-in. As such, it lives inside the browser host and is subject to
all that entails in terms of application activation, sandboxing, and deactivation.

Application Services
Silverlight has a few application-level facilities that help developers deal with application deployment
and life-cycle issues.

Installation and Updates
Silverlight scripts or the Silverlight ASP.NET controls can be used to detect if Silverlight is available in
the current browser and provide an installation experience. This can be the default, plain blue badge,
but it is recommended that developers customize this to provide a better experience, including a pre-
view and instructions.

Once installed, Silverlight will update itself if that is allowed by the host environment.

Out-of-Browser Experience
Silverlight gives end-users the option to install properly configured applications to their desktops and Start
menus as local applications. Using the new network APIs in Silverlight 3, you can detect network availabil-
ity in code to create a connected and disconnected experience of your out-of-browser applications.

Activation
How a Silverlight application gets activated depends largely on the browser host, but there is a common
means of activating it: either by using the OBJECT or EMBED tags in HTML or by creating the object in
JavaScript. Because it is activated in this way, Silverlight relies on the browser to parse the HTML or
JavaScript when it sees fit and do the loading at that time.

This implies, unfortunately, that you cannot count on an offline activation model; that is, you can’t
count on users being able to pull up the URL to a Silverlight application while offline and have it load,
as you can for technologies like ClickOnce or Adobe AIR. No doubt Microsoft is investigating this prob-
lem and will have a solution in due time. If it is important to you, be sure to make your voice heard.

Deactivation
As with activation, deactivation is largely dependent on the browser, but in general, once the page that
references the Silverlight object is disposed, so will the Silverlight object be. This means that if you have
data in volatile memory that you want to persist, you should consider using isolated storage for caching.

49

Chapter 3: Silverlight Architectural Tour

Networking
As with previous Silverlight versions and with AJAX, the browser facilities for HTTP requests and
responses are still available and can definitely be used with your applications. This will be a common
scenario for hybrid applications in which you are using AJAX and Silverlight side-by-side.

BOM and DOM
The Browser Object Model (BOM) and Document Object Model (DOM) are exposed through interop so
that you can manipulate and interact with the browser from managed code and vice versa. You can
even attach managed event handlers to DOM events. This tight integration capability between man-
aged code and Silverlight is a huge benefit for hybrid applications.

JavaScript
As with the BOM and DOM, JavaScript is still a first-class citizen for Silverlight 3 development, if you
want it to be. You can handle certain Silverlight object events like load, unload, and error in JavaScript
to create better experiences for your users and more meaningful integration with surrounding, more
typical client-side stuff in the browser.

Presentation Core
The Silverlight presentation core is the unmanaged (native) run time that much of the Silverlight low-
level, UI-oriented code executes in. This can’t be managed because it has to live on multiple platforms
with differing execution environments. From a developer perspective, this is pretty much anything you
can do, either with JavaScript or XAML, that does not require .NET code. Everything in this section can
be thought of as running in that execution environment.

Display
Although the presentation core is not .NET or WPF (Windows Presentation Foundation) per se, it has
many of the features that WPF provides. In fact, if you are familiar with WPF, you can think of
Silverlight as a subset of WPF in terms of its presentation layer capabilities.

In addition to occupying a place in the browser page, Silverlight supports a full-screen mode that will
take up the full screen of the monitor that the browser is in.

Vector and Bitmap Graphics
What UI technology would be complete without support for graphics? Silverlight has support for a
broad range of bitmap graphics (what most developers think of as images — JPEG, GIF, BMP, etc.), and
it loads them in familiar ways (by referencing their location), although the way it resolves image loca-
tions is different from what most web developers may be used to, so pay close attention to Chapter 8,
which discusses this topic.

In addition to bitmap image support, Silverlight is itself vector-based. The most notable benefit of this is
the ability to scale (grow bigger) without pixelation (loss of quality where images look blurry and blocky).

50

Part I: Getting Started

So any visuals you use in Silverlight (the built-in shapes, brushes, geometries, paths, controls, etc.) will
scale well by default, as will, of course, external vector-based images.

Bitmap Caching
Rendering performance is greatly enhanced in Silverlight 3 with the ability to cache vector content, text,
and controls into bitmaps. When elements are cached, they are passed to the GPU (Graphics Processing
Unit) for re-rendering, which can double or even triple the FPS (frames per second) when rendering
content.

Three Dimensions (3D)
The addition of perspective three dimensions (3D) in Silverlight 3 enables you to put any element on a
3D place and manipulate its X-, Y-, and Z-axis. Enabling 3D requires no code — it is completely
declarative.

Text
The text facilities in Silverlight are pretty basic, especially when compared to WPF or even HTML and
CSS. You aren’t going to run out and convert all your HTML content to Silverlight any time soon. That
said, it does have a fairly sufficient set of text facilities for less content-oriented needs.

Designers will definitely appreciate the ability to embed custom fonts, which are stored in the XAP file
and referenced there by the text controls, of which you have TextBlock (for text display) and TextBox
(for text input).

Text formatting is supported through the use of properties on the text objects or via styles.

Layout Engine
Silverlight layout functions very similarly to WPF, although there are differences, the details of which
are covered in Chapter 7. This engine handles the positioning of visuals based on several considerations
such as size, alignment, transforms, and, of course, the kind of layout, which is determined by the dif-
ferent layout controls.

Transforms
Transforms are likely a new concept to a lot of business application developers. The general idea is that
you can change the form (hence transform), which means changing the way a UI element looks without
altering its base configuration. So you can set, for example, a base width and height, and then you can
use a scale transform to make it bigger or smaller without actually changing the width and height
properties.

Some transforms do things that you can’t do using properties on most objects (like skew and rotate).
Probably the most common use for transforms is in animations.

Animations
We all understand animations at a gut level — making things come alive, usually moving, growing,
shrinking, fading, or otherwise dynamically altering the visual aspects of things. A good way to think
of it in terms of programming is changing the value of a property over time. Animation support in
Silverlight is huge in terms of helping take applications to the next level of richness for users; it really

51

Chapter 3: Silverlight Architectural Tour

starts to leverage the capabilities, from a UI point of view, that computers have to enhance interactions
that are otherwise static, uninteresting, and often difficult to use. Developers would be wise to invest
time in this area of Silverlight as it is one of the prime capabilities for enabling better user experiences.

XAML
Although XAML came into its own in WPF in .NET 3.0, it’s not inherently a .NET thing — it’s applica-
tion markup. And since it was used as the declarative UI specification language of WPF, it’s only natural
that it be used in Silverlight, which is a subset of WPF when it comes to its UI capabilities.

Input
As covered in detail in Chapter 16, Silverlight provides the standard input mechanisms that you’ve
come to expect in modern application platforms.

Mouse
Silverlight supports the standard mouse events like mouse enter, move, and leave as well as the left-
button click events. Notable exceptions are no right (or other) button click events and no scroll events,
although you can get past that through the browser interop bridge.

Keyboard
Silverlight supports the common key-down and -up events that enable keyboard input and control.
These are restricted to navigational keys when in full-screen mode because of security concerns.

Ink
Silverlight has an ink/stylus-based input mechanism including a familiar object model (for those who
are familiar with other ink OMs) to rationalize the user input as discrete objects that can be serialized
and re-drawn, which opens up interesting possibilities, for example, text recognition. Although it isn’t
inherently supported, you could do it via a service-based approach.

File
Silverlight provides a File Open dialog to facilitate the input of files from the user’s OS into an applica-
tion as well as a File Save dialog.

Controls
There is a base set of common controls in the presentation core that supports all of the various presenta-
tion functionalities from a developer perspective. In terms of the presentation core, these are created
primarily through XAML, although the new .NET facilities provide a managed API to do so. Both
JavaScript and .NET can manipulate the various UI controls, although custom .NET controls require
additional work to make them accessible via JavaScript.

Styling
The presentation core supports the styling framework that enables developers to share property set-
tings among multiple instances of controls to ease maintenance and help ensure consistency. Silverlight
3 adds the ability to theme entire applications at run times using an external XAML file called a

52

Part I: Getting Started

ResourceDictionary. Also new to Silverlight 3 is the ability to create a style based on another style,
using the BasedOn property.

Templating
As with styling, Silverlight has a WPF-based templating model that enables the complete re-design of
visual controls as well as the basic binding facilities for data-based templates.

Media
Unlike traditional web technologies (HTML, CSS, JavaScript), media is a first-class citizen in Silverlight;
it is, in fact, one of the primary motivators for the creation of Silverlight, as evidenced by Version 1, and
that doesn’t go away with Silverlight 3.

For both audio and video, Silverlight provides playback control, timeline markers, and server-side play-
lists, as well as Digital Rights Management. These can be progressively downloaded or downloaded on
demand via direct streaming using Windows Media Server.

Audio and Video
The audio and video formats in the following table are supported:

Video Formats Audio Formats

WMV1 — Windows Media Video 7

WMV2 — Windows Media Video 8

WMV3 — Windows Media Video 9

WMVA — Windows Media Video Advanced
Profile, non-VC-1

WMVC1 — Windows Media Video Advanced
Profile, VC-1

H.264 — Can only be used for progressive
download, smooth streaming, and adaptive
streaming. Supports Base, Main, and High
Profiles.

WMA 7 — Windows Media Audio 7

WMA 8 — Windows Media Audio 8

WMA 9 — Windows Media Audio 9

WMA 10 — Windows Media Audio 10

AAC — Advanced Audio Coding. Can only be
used for progressive download, smooth stream-
ing, and adaptive streaming. AAC is the LC
variety and supports sampling frequencies up
to 48 kHz.

MP3 — ISO/MPEG Layer-3 with the following
features:

Input❑❑ — ISO/MPEG Layer-3 data stream

Channel Configurations❑❑ — Mono, stereo

Sampling Frequencies❑❑ — 8, 11.025, 12, 16,
22.05, 24, 32, 44.1, and 48 kHz

Bitrates❑❑ — 8–320 Kbps, variable bitrate

Limitations — ❑❑ “Free format mode” (ISO/
IEC 11172-3, subclause 2.4.2.3) is not
supported.

53

Chapter 3: Silverlight Architectural Tour

Protocols
Silverlight essentially just supports HTTP(S), all of which, except for MMS, will default to progressive
downloading:

HTTP❑❑

HTTPS❑❑

mms (falls back to HTTP, but tells Silverlight to try streaming first)❑❑

rtsp (falls back to HTTP)❑❑

rstpt (falls back to HTTP)❑❑

Digital Rights Management
The Silverlight client can use two forms of DRM encryption/decryption: the traditional Windows
Media Digital Rights Management 10 (WMDRM 10) and the newer PlayReady with AES encryption.
This enables existing content encrypted using the WMDRM 10 SDK to play back within both Silverlight
and other Windows Media playback software that supports DRM (such as Windows Media Player), and
Silverlight-only media to offer a higher degree of security. Silverlight DRM only supports Windows
Media Audio (WMA), Windows Media Video (WMV), and PYA/PYV files for PlayReady.

For more information, go to www.microsoft.com/playready.

.NET
The previous section covered all the core facilities that are part of the native presentation core. In this
section, you’ll explore all that .NET for Silverlight has to offer, which sometimes is more like .NET
facades and other times like true .NET-specific value adds. By far, making the .NET platform (even the
subset that it is) available to run inside the popular, modern browsers is the biggest thing to hit web
development since, well, since maybe the browser itself, in our opinion.

Common Language Runtime (CoreCLR)
The CLR is a distinct run time from what most .NET developers have come to know and love. This is an
important point — it is not the same CLR as is in the main .NET platform. A nickname has emerged for it —
the CoreCLR, which may be just right in terms of communicating its difference from the full .NET CLR.

Microsoft has built a CoreCLR to run on top of Windows as well as Mac OS X. Microsoft is working
with the Linux community to support its efforts to develop the CLR for Moonlight, the Linux version of
the Silverlight run time, so that it hits a broad majority of current Internet users. In addition, Microsoft
is working on a Mobile version.

Now, having established that the CoreCLR is distinct from the main CLR, you can forget about it (or at
least file it away). From a developer perspective, there is little discernable difference, although it surely
will have implications in tricky debugging scenarios.

The following sections outline at a high level what you can expect from the CoreCLR.

54

Part I: Getting Started

Memory Management
The CoreCLR provides familiar garbage-collection memory management for .NET developers.

Common Type System and Type Safety
One of the benefits of using strong typing is the ability to specify types and rely on the run time to
enforce that for you, and it’s no different with the CoreCLR. The CLR relies on the common type system
to provide a framework for understanding types and ensuring that they play well together. This also
includes generics, which have become essential for .NET development since they were introduced in
.NET 2.0.

Exception Handling
You get the same, familiar try-catch-finally semantics for exception handling.

Threading
You get familiar threading experiences, although most developers should rarely need to go very deep
with this. It is a multithreaded environment, and the BCL provides classes for creating and controlling
threads as well as familiar synchronization mechanisms. That said, most work will be done on the UI
thread except when calling network services, which are asynchronous by default in Silverlight (as they
are, essentially, in AJAX). There is also a relatively easy API to do intensive work on the background
thread via the BackgroundWorker class.

Code Security
Good-bye, Code Access Security (CAS), and good riddance! While CAS was certainly one of the more
innovative aspects of .NET, it caused no end of confusion and headache for developers, particularly
when they were going to deploy applications and when they were trying to run them in the browser
(e.g., XBAP for WPF).

Silverlight does away with all that by simply limiting the libraries, that is, the things developers can do,
inherently. There is no way to request or demand elevated privileges — developers are completely
sandboxed. So there is no need for CAS. This greatly reduces one of the big pains in deployment and
troubleshooting.

There are certain attributes that code can use to get at protected resources, but the use of these is lim-
ited to Microsoft libraries; thus essentially, developers get free, invisible code security.

Base Class Library (BCL)
The Base Class Library (BCL) is quite a monster, but it provides the lifeblood of .NET applications.
Microsoft has gone through it with a fine-toothed comb to pick out the facilities that developers need to
develop rich applications on the Web, and that’s what you get in Silverlight.

Strings and Other Base Types
As you certainly should expect, the BCL gives you all the common base types that you’ve grown accus-
tomed to doing in .NET development — strings, integers, DateTime, TimeSpan, floating points, decimal,
and so on. As far as your code is concerned, not much should change here; however, there are some
minor distinctions on some of the utility methods for converting and parsing, for example. That said,

www.allitebooks.com

http://www.allitebooks.org

55

Chapter 3: Silverlight Architectural Tour

you do get pretty much all of the conversion and parsing utilities you’re used to for the common base
types.

Input/Output
For input/output (I/O), you’re pretty much limited to in-memory I/O streams, readers, and writers, as
well as the new Isolated Storage API for accessing a sandboxed filesystem. The nice thing is that work-
ing with the Isolated Storage API is very much like working with the standard filesystem API.

Cryptography
Cryptography is, of course, an important consideration for Silverlight since it is an inherently network-
based application platform. The BCL doesn’t let you down here, providing the standard symmetric and
asymmetric encryption/decryption algorithms you’re used to, as well as standard hashing algorithms.
The APIs should be familiar to .NET developers currently using them.

Reflection
The Silverlight BCL has support for standard .NET reflection over the Silverlight for a .NET type system.
No surprises there; however, you need to be aware of the boundaries such as when you cross over from
.NET to JavaScript or unmanaged types — you’ll get limited information in those cases.

The Silverlight BCL also supports the dynamic creation of new types and assemblies through the
Reflection.Emit classes as in the standard BCL.

Collections
As noted in the CLR section, .NET for Silverlight supports generics and is thus able to support all that
entails, including the new 3.5 language features like LINQ. This means that you can use generic collec-
tions and their built-in enumerators to easily group like types and perform queries over them, which is
a big leap over standard for-each approaches.

The main collections are arrays, lists, dictionaries, queues, and stacks, and the BCL has both the generic
and non-generic versions of these. Choosing between them is no different in Silverlight from in stan-
dard .NET.

Globalization
The globalization services are covered in more detail in Chapter 16, but suffice it to say here that
Silverlight supports the facilities that .NET developers have grown used to in terms of customized sort-
ing, formatting, parsing, and culture info types, including calendaring.

Serialization
Whether or not serialization belongs under the Base Class Library is debatable, depending on what is
meant. Silverlight supports essentially two kinds of serialization formats — XML and JSON. Of course,
XML has two options: POX and SOAP. The reasoning here, one can only assume, is that being a client-
side technology with access to only isolated storage, XML is pretty much the only format one needs,
although we can imagine a desire for binary blobs cached in isolated storage. In any case, you control
your two basic serialization formats using the Windows Communication Foundation (WCF) approach
of data contracts (and also message contracts), or you can use the new Silverlight “opt out” model,
which is reminiscent of the old standard XML serialization based on type/member names and access

56

Part I: Getting Started

modifiers (public/private). The converse of this is that there are no ISerializable, XmlElement, or Array
of type XmlNode or IXmlSerializable types that can be used in Silverlight 3 data contracts. In other
words, Silverlight is simplifying because it doesn’t require as high a degree of backward compatibility
(because it can, and it’s the right thing to do). New to Silverlight 3 is the ability to use a binary serializa-
tion for service data. Using binary writers and readers should further optimize the payloads from
server to client and increase the overall performance of service calls.

Silverlight Class Library (SCL)
Don’t bother live-searching for SCL; we made Silverlight Class Library (SCL) up to describe the new
libraries that Silverlight provides to do new “Silverlighty” things. If you like it, blog about it, so it’ll
catch on.

Isolated Storage
As covered in more detail in other chapters of the book, Silverlight provides an isolated space on the
disk and exposes it via a virtual filesystem emulating the Windows filesystem that should be familiar to
.NET developers — it supports just simple single-file access (stored in a root folder) as well as a hierar-
chical tree of folders.

The actual location of the files will vary based on the Silverlight hosting environment. In terms of space,
all applications on a domain (e.g., wrox.com) share a single quota group, and applications must ask the
user to increase it if need be. By default, the quota is 1 MB.

Browser Interop
One of the big advantages of Silverlight is the tight integration with the browser and the ability to auto-
mate and execute code across the plug-in boundary; that is, JavaScript can fiddle around with managed
objects, respond to managed events, and call managed methods, and vice versa. This is done via this
thing they’re calling the HTML bridge. Not only is it a great tool for applications that are integrating
HTML-based stuff and Silverlight, but also it is currently the means of communication between
Silverlight instances on a page.

Packaging
Silverlight 3 deployment entails packaging the application and, potentially, related resources into a sin-
gle .xap file. The current format of the XAP file is simple ZIP packaging and compression, and
Silverlight supplies APIs to deal with this as well as accessing other resources and packages. This facili-
tates the ability to split up the application into chunks to reduce initial download size if so desired.
There is also support for splash screen customization.

To reduce the size of the XAP file in Silverlight 3, Microsoft has enabled the caching of System assem-
blies used for multiple projects on the client. You can set this up through your project’s Properties
options, and from then on, the Microsoft assemblies will be downloaded once from Microsoft, and they
will not be included in the XAP for your application.

Networking
Given that Silverlight lives in a browser, it comes naturally for it to rely heavily on HTTP for communi-
cations and understand the common wire formats. In addition to HTTP, Silverlight provides sockets.

57

Chapter 3: Silverlight Architectural Tour

Some general HTTP networking restrictions to keep in mind are:

Silverlight uses the browser’s networking stack, so authentication and things like cookies are ❑❑

managed by the browser.

Similarly, the number of open connections available is limited by the browser. Keep that in ❑❑

mind, especially if you’re using duplex binding, which essentially will tie up one of those.

Windows Communication Foundation (WCF)
The BCL section touched on some aspects of what could be considered part of Windows Communication
Foundation (WCF); the thing is that for serialization in Silverlight, WCF is not an add-on but really the
foundation, and, of course, serialization doesn’t have to be geared toward communication, although it
often is. This section highlights the features of WCF that are in Silverlight.

Silverlight uses WCF-based Web services clients for services that conform to the WS-I Basic Profile 1.0,
that is, SOAP 1.1 over HTTP. The bindings supported are BasicHttpBinding, BinaryHttpBinding (the
new default binding), and a derivative duplex binding for polling-based duplex services. There are a
few other notable limitations for SOAP-based and .NET-based services:

No other version of SOAP or any other WS-* protocols are inherently supported, so you could, ❑❑

for example, insert authentication headers into the message.

DataSets are right out. You can use direct HTTP access and get them as XML, but Microsoft ❑❑

does not recommend that.

Watch out for types that use the ❑❑ SerializableAttribute and the ISerializable interface;
these may not be consumable by Silverlight applications.

ASP.NET AJAX WCF services need to have a basic HTTP binding added along with metadata ❑❑

publishing.

ASMX AJAX services using ❑❑ Dictionary<string, object> for arbitrary JSON data must be re-
done to not use that approach.

Page methods and update panel-related services are not supported.❑❑

HTTP Request and Response
Silverlight provides generic HTTP request and response objects for accessing non-SOAP-based services.
In addition, the WebClient type provides a simplified wrapper that will serve most common scenarios.

REST and POX
Silverlight uses the basic HTTP request/response or WebClient objects and then parses the data appro-
priately using XML deserialization, XLINQ, or the generic XML reader.

RSS/Atom Syndication
Silverlight provides special classes to make consuming feeds easier.

JSON
Silverlight has special classes for handling JSON deserialization using data contract attributes and also
supplies special classes for dealing with weakly typed JSON as well.

58

Part I: Getting Started

Sockets
Silverlight provides a managed implementation of the appropriate sockets interface for the platform it is
run on (e.g., Winsock on Windows and the BSD UNIX interface on OS X). This enables you to have full
duplex communication over TCP using DNS or IP-based endpoints in the range of ports between 4502
and 4534.

Data
No application would be complete without data, and Silverlight has support for various kinds.

Objects — LINQ
Applications using custom objects or client proxies generated by service references can take full advan-
tage of LINQ to perform queries over those objects.

XML — LINQ to XML (XLINQ)
As noted in the networking and serialization sections, there are a few ways to deal with XML in
Silverlight. You have the basic XML readers, the XML deserializer for known types, and XLINQ for
more advanced free-form XML exploration and manipulation.

JSON
As noted in the networking section, Silverlight provides a few classes to manipulate JSON-based data
objects without needing to deserialize them to strongly typed objects.

ADO.NET (or .NOT)
Being the browser-based technology it is and living in that sandbox, currently there is zero support for
ADO.NET in Silverlight. Just glance over the list of namespaces in the MSDN Library class reference —
it is conspicuously missing System.Data. This means absolutely no direct connections to databases and
also no data readers, no data sets, no data adapters, and the like. Get used to it! So how would you
ADO.NET? Look to ADO.NET Data Services (formerly known as Astoria) to give you a solid data option
for your applications.

Windows Presentation Foundation (WPF)
Most of what Windows Presentation Foundation provides is built into the presentation core, but in
terms of what you might consider more specifically in the .NET layer, Silverlight provides several con-
trols to help out.

Layout
Silverlight 2 had the Canvas for absolute positioning, StackPanel for basic stack-based layout, and Grid
for everything else (well, for grid-based layout). Silverlight 3 has added the DockPanel and WrapPanel,
so the combined five layout options pretty much cover all of the scenarios for basic layout. Look to
third-party vendors for docking controls, animated layout controls, and other layout derivatives.

59

Chapter 3: Silverlight Architectural Tour

Data Binding
Data templates are provided so you can have reusable UI templates for your data-bound elements. As in
WPF, Silverlight uses the DataContext approach for data binding, and, since ADO.NET does not exist in
Silverlight, you’re always binding to objects or XML. New in Silverlight 3 is the element-to-element
binding found in WPF. For example, a bound value property of a Slider control can be linked (bound)
declaratively via XAML to filter values in a data grid. All of this can happen without a need to use
code-behind or any server calls.

Other Controls
There are many other controls that have been added in Silverlight 3 based on the new control model.
These are usually more complex controls like textboxes, date pickers, calendars, and so on targeted at
making full-fledged interactive applications more feasible in Silverlight. These will continue to be built-
out in add-on packs by Microsoft as time progresses and can be opted into, but there is a core set that is
installed in the Silverlight run time.

Dynamic Language Runtime (DLR)
The last area to think about in this whirlwind tour of Silverlight is the Dynamic Language Runtime
(DLR). This is an additive run time that sits on top of the CLR to interpret dynamic languages. Out-of-
the-box, though, you have to opt into both the DLR and languages in your applications. Microsoft is
providing IronPython, IronRuby, and Managed JScript.

Summary
That completes this 30,000-foot overview of Silverlight capabilities and how they all play together. The
three highest-level components are:

The Browser Host❑❑

The Silverlight Presentation Core❑❑

.NET for Silverlight❑❑

Within the last one, there are two main divisions — the run times (CLR and DLR) and the frameworks
that empower .NET developers to create rich web applications, leveraging the experience they’ve gained
over the last several years building .NET applications. If you’ve learned WPF, you have an even bigger
head start, and that’s a huge value proposition when considering Silverlight over other rich web applica-
tion technologies like Flash, Flex, and JavaFX.

You can see how Silverlight delivers the power of a rich interactive application platform that runs cross-
browser and cross-platform and will in the long run (and possibly in the short run) drastically reduce
TCO. For the rest of the book, you’ll be diving into the various components of Silverlight to learn how
you can build applications for this great platform.

Silverlight Developer
Toolbox

Microsoft has a long history of supporting developers not only by providing innovative and
powerful development platforms, but also through the significant investment it has made in pro-
viding developers with amazing development tools. These tools empower developers to make
the most of their chosen development platform, lower the barriers to developers learning a new
platform, and make developers dramatically more productive on their platform.

This tradition continues with the Silverlight 3 platform, which Microsoft has made available
with several developer productivity tools. Microsoft has also recognized the importance of user
experience in the platform and the role that designers are playing in software development, so
they have expanded their platform to include tools specifically designed for designers. Expression
Blend 3 extends the already impressive Blend design tools into the Silverlight 3 platform, allowing
designers to easily contribute their usability and design talents to a software development team.
Finally, media is becoming such an important part of the Web, and because Silverlight 3 includes
amazing media capabilities, Microsoft offers Expression Encoder as an easy-to-use tool for ready-
ing your media assets for the Web.

In this chapter, you will learn what you need to get started developing Silverlight 3–based appli-
cations, as well as learn about the tools available to you, whether you are a developer, a designer,
or wear both hats. The chapter gets started by discussing the minimum requirements for creating
a basic Silverlight 3 development or design environment. Next, the chapter introduces you to the
Silverlight 3 development tools available for Visual Studio 2008, then the Silverlight 3 designer
tool Expression Blend. Finally, the chapter walks you through a basic overview of the Expression
Encoder media-encoding application.

Silverlight 3 Tools
As with most other software platforms, there are several tools you need to download and install
before you can begin creating your own Silverlight 3 applications. Microsoft has packaged the
Silverlight platform tools in various ways that can be somewhat confusing, so the first section of

4

62

Part I: Getting Started

this chapter will walk you through the different options for acquiring and installing the basic tools
required for Silverlight 3 development.

Silverlight 3 Tools for Visual Studio 2008
If you are a developer using Visual Studio 2008, then the first and easiest option you have for setting up a
Silverlight 3 development environment is to download and install the Silverlight 3 Tools for Visual Studio
2008 SP1. This installation provides all of the tools you need to start creating Silverlight 3 applications inside
Visual Studio 2008, all in one convenient download available at the following URL: http://sn.im/ezw20.

The “Silverlight 3 Tools for Visual Studio 2008 SP1” package installs the Silverlight 3 Developers
Runtime, Silverlight 3 SDK, and, as the name implies, several developer tools that plug into Visual
Studio 2008 SP1. You will learn more about the tools provided later in this chapter.

Before installing the Silverlight 3 Tools for Visual Studio 2008 SP1, be aware that because Visual Studio
2008 does not support multitargeting for Silverlight projects, if you install the Silverlight 3 tools for
Visual Studio 2008, you will no longer be able to create applications that target Silverlight 2. If you open
an existing project written using the Silverlight 2 Tools for Visual Studio 2008 SP1, Visual Studio will
prompt you to upgrade those projects to Silverlight 3.

Developers can install the Silverlight 3 Tools for the Visual Studio 2008 SP1 package with any version of
Visual Studio 2008 SP1, or with Visual Web Developer 2008 Express with SP1.

Expression Blend 3
For designers, the easiest way to get a Silverlight 3 design environment up and running is to download
and install Blend 3, which is available at the following URL: http://sn.im/ezw2u.

Expression Blend 3 adds support for Silverlight 3 applications and provides user interface (UI) design-
ers with a familiar environment in which they can easily style Silverlight 3 applications. You will learn
more about the tools provided by Blend 3 later in this chapter.

Silverlight Runtime and SDK
Finally, for developers who want to use a different IDE or prefer a more lightweight development envi-
ronment, Microsoft does allow you to download the different Silverlight development components
individually.

To do this, begin by downloading and installing the Silverlight 3 Developers Runtime, using this URL:
http://sn.im/ezw39.

The standard Silverlight 3 run time is highly optimized in order to keep the download size of the
player to an absolute minimum. This comes at some cost to developers because part of the optimiza-
tions includes the removal of things that are helpful to developers such as exception messages. The
Developers Runtime differs from the standard runtime installation in that it can provide you with more
detailed debugging and error information but is a slightly larger download size.

Next, download and install the Silverlight 3 SDK using the following URL: http://sn.im/ezw3q.

63

Chapter 4: Silverlight Developer Toolbox

The SDK includes tools, libraries, documentation, and samples needed to develop for Silverlight 3. By
default, the SDK installs itself to C:\Program Files\Microsoft SDKs\Silverlight\v3.0. The SDK installs
the following folders:

Libraries❑❑ — Contains both Client and Server libraries. The Client libraries contain all of
the Silverlight Extensions and User Controls. The Server libraries contain Silverlight Server
Controls.

SDK Help❑❑ — Help using and navigating the SDK

Tools❑❑ — Contains several useful tools including a debug instance of the Silverlight client
script file (silverlight.js) and an instance of the Silverlight 3 service reference proxy generation
utility.

The Developer Runtime and SDK are the minimum requirements needed in order to build and pack-
age Silverlight 3 applications. Once you have that installed, you can use your favorite editor (such as
Notepad) to begin creating Silverlight 3 applications.

Developing with Silverlight 3 Tools for Visual
Studio 2008 SP1

For developers who are using Visual Studio 2008 SP1, the Silverlight 3 Tools for Visual Studio 2008
SP1 currently offer the best development Silverlight 3 environment. Furthermore, because they simply
extend the existing functionality of Visual Studio, which you probably are already familiar with, the
tools let you get started building applications quickly.

The Silverlight 3 Tools for Visual Studio 2008 SP1 contain all of the pieces you need to get started devel-
oping Silverlight 3 applications. Included in the installation package are:

Silverlight 3 Developers Runtime❑❑

Silverlight 3 SDK❑❑

Visual Studio 2008 project templates❑❑

Visual Studio development tools❑❑

You can install the tools with any version of Visual Studio 2008 SP1 or with Visual Web Developer
Express with SP1.

For developers who have installed any beta versions of the Silverlight 3 Tools for Visual Studio 2008
SP1, you will need to make sure you completely uninstall them before installing the release version of
the tools.

Let’s take a look at creating new Silverlight applications and the tools that Silverlight 3 Tools for Visual
Studio 2008 SP1 provides to you so that you will be familiar with them as you move through the rest of
the book.

64

Part I: Getting Started

Silverlight Project Templates
Once you have the Silverlight Tools for Visual Studio 2008 SP1 installed, you can get started creat-
ing your first Silverlight application. When you open the Visual Studio New Project dialog, shown
in Figure 4-1, you will see a new Silverlight project type in the “Project types” tree. Choosing the
Silverlight project type, you can see three Silverlight project templates: Silverlight Application,
Silverlight Class Library, and Silverlight Navigation Application.

Figure 4-1

The Silverlight Application project template sets up a new Silverlight application, which compiles to the
XAP file for deployment to your Web Server. A XAP file is the deployment package used by Silverlight 3,
which generally contains all of the assemblies and resources used by an application, as well as a mani-
fest file, which tells Silverlight about the contents of the XAP.

A XAP file is simply a ZIP archive. You can simply change the extension of the XAP file from .xap to
.zip, and you can then open the archive using your favorite ZIP utility.

The Silverlight Class Library project template sets up a basic Silverlight class library. A class library allows
you to create assemblies that are compiled against the Silverlight libraries and that you can reference in
other Silverlight application projects. When an external assembly is referenced by a Silverlight applica-
tion, it is by default automatically included in the XAP file generated by the Silverlight application.

65

Chapter 4: Silverlight Developer Toolbox

A Silverlight class library may appear to be very similar to a standard Class Library project; however,
there is one significant difference. The Silverlight class library references libraries that are specific
to Silverlight, so even though both projects have references to identically named assemblies (such as
System and System.Core), these references actually point to different assemblies. You can see this by
looking at the Path property of the assembly references. This is important because you cannot simply
reference an existing .NET class library in a Silverlight application. It must be explicitly compiled
against the Silverlight 3 framework assemblies.

The Silverlight Navigation Application project template sets up a new Silverlight application, but uses a
template that provides you with a project that leverages Silverlight 3’s new navigation framework. The
project’s main page includes the new Frame element, and the Views folder is where you would create
new XAML pages that should be included in your application’s navigation.

Generally, when beginning a new Silverlight project, you will want to start by choosing the Silverlight
Application or Silverlight Navigation Application project templates. Once you choose either of these
project types, provide a name for the project, and click OK, Visual Studio will provide you with the
opportunity to associate a new Silverlight application with a Web project. Because Silverlight applica-
tions are hosted as objects inside a Web page, associating a Silverlight application with a Web project
allows you to develop and debug both applications seamlessly.

The New Silverlight Application dialog, shown in Figure 4-2, allows you to configure exactly how the
Silverlight application should be hosted.

Figure 4-2

By default, Visual Studio assumes that you want to create a new ASP.NET Web Application Project
within your solution; however, you can have Visual Studio generate a new ASP.NET web site, or even to
not associate the Silverlight application with any Web project and simply have Visual Studio dynamically
generate a host Web page when you run the application.

Once you choose the web-site association, you are done configuring the Silverlight application and it
will be loaded in Visual Studio. Figure 4-3 shows the solution structure of a newly created Silverlight
Application Project type. In this case, a new Web Application Project has also been created and added
to the solution.

66

Part I: Getting Started

Figure 4-3

You can see that the Silverlight Application project template sets up a standard Silverlight application,
including default App.xaml and MainPage.xaml files. The web application created with Silverlight
Application includes an ASP.NET test host page, as well as a ClientBin folder, which is where Visual
Studio places the Silverlight Applications–compiled XAP file.

Should you ever want to change the Silverlight application associated with a Web project, or even asso-
ciate additional Silverlight applications with a Web project, you can do this by accessing the Silverlight
Applications section of the Web projects Properties dialog, which is shown in Figure 4-4.

Figure 4-4

67

Chapter 4: Silverlight Developer Toolbox

Visual Studio Silverlight Development Tools
As part of the Silverlight 3 Tools for Visual Studio 2008 SP1, several new developer tools are installed
inside Visual Studio that will help you be more productive in creating Silverlight applications. Tools like
the XAML Editor and Toolbox all are shown once a Silverlight application is opened in Visual Studio.

XAML Editor
The Silverlight XAML Editor allows you to edit your application’s XAML markup. To assist you in
writing the markup, the Editor includes IntelliSense, which will automatically show the properties of
any assemblies or objects referenced in the XAML markup. If you are familiar with the WPF XAML
Editor, the Silverlight XAML Editor may look and feel very familiar to you, however, remember
that Silverlight is considered a subset of WPF. When editing XAML in a Silverlight application, the
XAML Editor is smart enough to only display and allow you to enter Silverlight-specific markup, and
attempting to enter markup that may be valid in WPF but not in Silverlight will cause the Editor to
display errors.

By default, the XAML IntelliSense will work automatically for all of the native Silverlight objects; how-
ever, there will be times where you have created your own custom objects that you want to refer to in
the XAML. To do this, you need to make sure that you add a namespace reference to the top of your
UserControl. Doing this tells Silverlight about this new reference and assigns it a unique namespace
within the XAML markup.

Figure 4-5 demonstrates how Visual Studio assists you in adding additional namespace references to a
UserControl’s XAML.

Figure 4-5

The Editor will display namespace information for all .NET namespaces that are included as project
references as well as in the project itself. In this case, Figure 4-5 demonstrates adding a namespace ref-
erence to an object stored in the local project.

Once the namespace reference is added to the UserContol, the XAML Editor is able to offer IntelliSense
for that object automatically. Figure 4-6 demonstrates how, once the local namespace is added,
IntelliSense displays all of the objects in that namespace.

68

Part I: Getting Started

Figure 4-6

The XAML Editor can also assist you in creating event handlers within your XAML. Figure 4-7 dem-
onstrates how, when you add the Click event to the Button object in XAML, the Editor automatically
offers to create a new event handler for you in the XAML code-behind.

Figure 4-7

Designing with Expression Blend 3
Expression Blend is a design tool that was originally targeted to user interface and interaction designers
working with the WPF (Windows Presentation Foundation) platform. It is designed to provide a famil-
iar tool for designers who are transitioning to the XAML-based platforms that Microsoft now offers.
Because WPF and Silverlight share a common user interface definition language (XAML), it made sense
that Microsoft would simply extend Blend to support the design of Silverlight applications. With the
release of Blend 3, Blend now supports projects that target all of Microsoft’s XAML-based platforms: the
rich-client WPF platform, the original Silverlight 1.0 platform, and the new Silverlight 3 platform.

In this chapter, you will get a quick overview of the basic capabilities of Blend 3. Chapter 8 provides
a far more in-depth lesson on using the design tools provided by Blend to design your Silverlight
applications.

Creating Projects
To get started using Blend to design your Silverlight 3 application, you first need to make sure that
you have the Silverlight run time installed. Although Blend installs the portions of the Silverlight SDK
needed to create Silverlight applications, it does not install the actual Silverlight player. Running an
application without having the player installed will result in the normal installation prompts to occur
in the browser. However, Blend users can download and install the Silverlight 3 Developers Runtime,
as described earlier in this chapter, rather than using the standard run time in order to receive better
debugging and exception information from the run time.

Once you have the run time installed, you can install Blend 3. Once you have the Service Pack installed,
you will see a new project type called Silverlight 3 Application added to its New Project dialog, shown in
Figure 4-8.

69

Chapter 4: Silverlight Developer Toolbox

Figure 4-8

Choose this new project type to create a new Silverlight 3–based application.

Once you create a new Silverlight 3 application in Blend, you will immediately notice that Blend offers
much of the same tooling for Silverlight 3 applications as it does for other supported platforms, includ-
ing a simple design surface, property editor, and toolbox. The default Blend user interface with a
Silverlight 3 application loaded is shown in Figure 4-9.

A quick survey of the Blend tools includes the Project Explorer, which displays the files included in the
project, an interactive Silverlight 3 design surface, a XAML Editor, a powerful Properties pane, and a
toolbox that includes all of the drawing tools you will need to build your application.

Figure 4-9

70

Part I: Getting Started

If you are collaborating with a developer who is using Visual Studio 2008, Blend 2 uses the same
Solution and Project structure as Visual Studio, so sharing projects between the two environments is
possible. Either the designer or the developer can use his or her environment to create a new project.

Blend 3 includes integration for Microsoft’s Visual Studio Team System source control system, so
designers working in organizations using this to store their application resources can access and work
with resources stored in source control. Currently, Team System is the only source control system with
integrated Blend 3 support. If your team is using some other type of source control system, you will
need to use an external source control management application in order to work with resources stored
in source control.

Getting around Blend
Once you open a project inside Blend, you can start working with the design surface to create your applica-
tion’s user interface. The toolbox allows you to simply double-click on controls like the Grid and Button to
add them to your design surface. Once a control is added to the design surface, you can use the Properties
tool pane to change the style and behavior of the control, as well as create event handlers for the controls.

When creating event handlers, if you have Visual Studio 2008 also installed, Blend will attempt to open
the Silverlight application project in a new instance of Visual Studio to allow you to work with the
event-handling code right away. You can configure this behavior of Blend in the Options dialog.

Additionally, Blend 3 supports an improved code-editing experience, providing IntelliSense in XAML view.

Generating Video Using Expression Encoder
The role of audio and video on the Web has exploded in recent years, and Silverlight is designed to make
the integration of media assets a snap. Part of the process of getting media on the Web involves encod-
ing raw media files into a format that is suitable for the Web, and to help in this process, Microsoft has
introduced the Expression Encoder 2 application. Expression Encoder gives you the power to ready
your media files for the Web, including encoding media files at various bitrates based on your needs,
adding pre-rollers and post-rollers, overlaying images, adding marker information, and even publish-
ing files directly to the Microsoft Silverlight Streaming service. In this chapter, you will get a brief intro-
duction to Expression Encoder, and Chapter 10 will provide more detailed information on the product.

Using Expression Encoder
To begin getting your media ready for distribution with Expression Media Encoder, you first need to
download and install the application, which can be done using the following URL: http://sn.im/ezw58.

Once you have Encoder installed, take a quick look around its fairly simple UI. The primary focus of
the interface is the Preview area in the middle. The Preview area allows you to step through your media
frame-by-frame, using the Timeline and VCR buttons as well as the Preview function, and even lets you
compare the original video with a sample of encoded video side-by-side. The timeline allows you to
insert new markers, clip the media length, and add leaders and trailer video clips.

Below the Preview area is the Media Content List. This area lists all of the media files that are included
in your current encoding project. You can choose to import media (Encoder supports importing from

71

Chapter 4: Silverlight Developer Toolbox

17 different video formats and seven different audio formats), or you can choose to encode directly from
a live media feed such as a video camera. Figure 4-10 shows the Encoder application with a single media
file imported.

With a media file imported or a live stream configured, Encoder now allows you to choose how you
encode the files. There are 14 predefined video encoding profiles and seven predefined audio profiles
that allow you to select an encoding specific to your needs, whether that is high-quality HD video or
bandwidth-frugal audio. Of course, you can always customize the encoding settings and save them as
your own custom profile.

Publishing Encoded Video
Once your video has completed encoding, you next need to find some way to publish the video for oth-
ers to view. Microsoft has introduced a streaming video service that offers a simple and free way to
publish your videos to the Web.

For more information on the Microsoft Streaming Media service, check out http://sn.im/ezw5z.

Encoder takes advantage of this service by offering the Silverlight Streaming Publishing plug-in for
Expression Encoder, which can be downloaded from the following URL: http://sn.im/ezw6h.

Once installed, this simple plug-in allows you to encode your video and then publish it as a Silverlight
application directly to the Streaming service, allowing others to view it online.

Figure 4-10

72

Part I: Getting Started

Summary
In this chapter, you have been introduced to the tools that allow you to create amazing Silverlight appli-
cations and that will be demonstrated in greater detail through the rest of this book. The chapter started
by introducing you to the most basic tools needed to create a Silverlight development environment,
including the Silverlight Developers Runtime and Silverlight 3 SDK.

You then looked at some of the more advanced tools available for developers and designers of Silverlight 3
applications. For developers, the Silverlight 3 Tools for Visual Studio 2008 SP1 offer a great set of tools
that plug directly into the Visual Studio 2008 development environment, which most .NET developers
should already be familiar with. The project templates and XAML Editor all allow a developer to get up
and be coding new Silverlight 3 applications quickly.

Expression Blend 3 has added support for Silverlight 3 projects that allows designers to contribute their
talents to the creation of new Silverlight 3 applications easily. Because it offers many of the familiar styling
tools for Silverlight that are used for WPF, designers using Blend should be able to transition easily into
Silverlight.

Finally, as media continues to play a more dominant role in delivering content over the Web, Expression
Encoder provides even novice users with a simple and understandable way to encode video and audio
media elements, including live streams, into formats that can easily be delivered using the Silverlight
platform. Coupled with the Silverlight Streaming plug-in, Encoder is a compelling tool for readying
your media assets for online use.

Part II: Using Silverlight 3
Essentials

Chapter 5: Controls

Chapter 6: Silverlight Text

Chapter 7: Layout

Chapter 8: Styling Your App and Dealing with Resources

Chapter 9: Using Graphics and Visuals

Chapter 10: Making It Richer with Media

Chapter 11: Using the Services

Controls

While Silverlight 1.0 focused on many of the core features of Silverlight such as XAML, Silverlight 2
took the platform to the next level by adding a managed-code framework, and a benefit of that is
the ability to introduce controls to the platform. Silverlight 3 continues that trend by adding sev-
eral new controls.

For developers who need to be productive, controls provide encapsulated reusable chunks of
behavior and a UI that make it easy to add common user interface patterns to your application.
Rather than being responsible for drawing every minor detail and coding every behavior, con-
trols allow you to focus more on the specific requirements of your application and less on devel-
oping those lower-level capabilities.

This chapter will introduce you to many of the common and more complex controls that are
included in the default Silverlight 3 toolbox. The chapter is not intended to be an in-depth guide
to every single control included in Silverlight 3, simply because many of the controls are fairly
self-explanatory (e.g., Checkbox). Additionally, some controls such as MediaElement are discussed
in detail in other, more applicable chapters in this book.

Text Input
Silverlight 3 includes a TextBox control, which provides the same basic text input capabilities you
are used to receiving from the HTML <input> element. The control offers single-format, multiline
input capabilities with automatic text wrapping, as well as integration with the clipboard. An
undo/redo stack is also included. The following code demonstrates using the TextBox:

<UserControl x:Class=”SilverlightApplication4.SilverlightControl13”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBox Text=”Lorum Ipsum” />
 </Grid>
</UserControl>

5

76

Part II: Using Silverlight 3 Essentials

For those creating applications for international audiences, the control supports IME Level 3 when run
on Windows and Level 1 when run on a Mac. It also includes international keyboard support.

As you might expect, the TextBox exposes a TextChanged event that you can use to be notified when the
user changes the TextBox’s text.

Also included in Silverlight 3 is the PasswordBox. Related to the TextBox, the PasswordBox gives you a
convenient way to allow users to enter a password into your application. The control allows you to
change the password character displayed to the end-user. The following code demonstrates the use of
the PasswordBox:

<UserControl x:Class=”SilverlightApplication4.SilverlightControl14”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <PasswordBox PasswordChar=”#” Password=”password” />
 </Grid>
</UserControl>

As shown above, you can get or set the value of the PasswordBox by using the control’s Password
property.

Unlike the TextBox, the PasswordBox accepts only a single line of text, but like the TextBox, it includes a
PasswordChanged event that you can use to be notified when the end-user changes the PasswordBox
value.

DataGrid
Perhaps most important for application developers building line-of-business controls, Silverlight 3 includes
a powerful DataGrid control. This control allows you to easily bind a collection of data to it and have it
automatically display the data and allow the end-user to edit the data and manipulate the data display.

Data Binding
To get started using the DataGrid, you simply need to provide it with some data by setting its ItemsSource
property to some type of enumerable object, either in XAML or in code. The code that follows shows
how to set the property in XAML, using a StaticResource containing a list of employees:

<UserControl
xmlns:data=”clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Data”
x:Class=”SilverlightApplication4.SilverlightControl6”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:SilverlightApplication4”
 Width=”400” Height=”300”>
 <UserControl.Resources>
 <local:EmployeeData x:Key=”myData” />
 </UserControl.Resources>

77

Chapter 5: Controls

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <data:DataGrid
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}” />
 </Grid>
</UserControl>

Once you set the ItemsSource property, the DataGrid control will automatically interrogate the data
source and generate the appropriate column structure based on public members exposed by the objects
on the data source. The rendered DataGrid is shown in Figure 5-1.

Figure 5-1

Of course, you can also set the ItemsSource property in code.

You can control whether or not the control automatically generates columns for you by using the
AutoGenerateColumns property. If you choose to set this property to false, then you will need to manu-
ally define a set of columns for the DataGrid to display, using the control’s Columns collection.

The control also exposes the AutoGeneratingColumn event, which allows you to plug your own logic
into the column generation process. Using this event, you can access the column currently being created
and alter its properties.

The control also exposes the RowLoading event, which allows you to access each row as it is being cre-
ated in the grid.

Note that when the grid is rendered, it takes advantage of UI virtualization in order to maintain a high
level of performance. UI virtualization means that the control will only create the UI elements that are
needed to display information on the screen. If a row moves out of the visible area of the control, its
resources are freed.

78

Part II: Using Silverlight 3 Essentials

The grid also supports the selection of rows in the grid, supporting Single and Extended Selection
modes. Single Selection mode allows end-users to select only a single row at any given time. Extended
Selection mode allows them to select multiple rows by holding the [Ctrl] or [Shift] keys while clicking
rows. You can change the current selection mode by setting the control’s SelectionMode property, as
well as access the currently selected item(s) by using the SelectedItem or SelectedItems properties.

Grid Columns
The DataGrid control includes three different column types that you can add to the Columns collection:
Text, CheckBox, and Template. Each column allows you to bind a field from the data source to it, using
the Binding property.

The next code snippet shows how you can use the Columns collection to display data in the DataGrid
using the DataGridTextBoxColumn:

<data:DataGrid
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}”
 AutoGenerateColumns=”False” >
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding=”{Binding EmployeeName}” />
 <data:DataGridTextColumn Binding=”{Binding Address1}” />
 <data:DataGridTextColumn Binding=”{Binding Address2}” />
 <data:DataGridTextColumn Binding=”{Binding City}” />
 </data:DataGrid.Columns>
 </data:DataGrid>

Each column exposes a DisplayIndex property that allows you to control the order in which columns
are displayed.

Each column also exposes a Header property that allows you to provide text content for the column
header. Unfortunately, the DataGrid does not provide a DataTemplate for the header, but if you do want
to change the default style of a column header, you can create your own DataGridColumnHeader style
and assign it to the column’s HeaderStyle property.

If you are manually defining your own columns, you can also do this by using the
DataGridCheckBoxColumn in your Columns collection, as shown in the next listing, or if
AutoGenerateColumns is set to true, the control will automatically display a checkbox for properties
that return a Boolean type:

 <data:DataGrid
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}”
 AutoGenerateColumns=”False” >
 <data:DataGrid.Columns>
 <data:DataGridCheckBoxColumn Binding=”{Binding City}” />
 <data:DataGridTextColumn Binding=”{Binding EmployeeName}” />
 <data:DataGridTextColumn Binding=”{Binding Address1}” />
 <data:DataGridTextColumn Binding=”{Binding Address2}” />
 <data:DataGridTextColumn Binding=”{Binding City}” />
 </data:DataGrid.Columns>
 </data:DataGrid>

79

Chapter 5: Controls

Figure 5-2 shows the checkbox column in the DataGrid.

Figure 5-2

The DataGridCheckBoxColumn not only allows you to use a standard two-state checkbox, but also by
setting the IsThreeState property, you can have the checkbox behave like a tri-state checkbox. This
allows you to set the IsChecked property to true, false, or null.

Finally, if you want total control over the display of the contents of a column, you can use the
DataGridTemplateColumn in your Columns collection. This column type allows you to use its
CellTemplate property to set a DataTemplate that the column can use to define the cells’ display.

The following code snippet shows the use of the DataGridTemplateColumn:

<UserControl
xmlns:data=”clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Data”
x:Class=”SilverlightApplication4.SilverlightControl6”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:SilverlightApplication4”
 >
 <UserControl.Resources>
 <local:EmployeeData x:Key=”myData” />
 <DataTemplate x:Key=”myCellTemplate”>
 <Button Content=”{Binding State}” />
 </DataTemplate>
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>

80

Part II: Using Silverlight 3 Essentials

 <data:DataGrid
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}”
 AutoGenerateColumns=”False” >
 <data:DataGrid.Columns>
 <data:DataGridCheckBoxColumn Binding=”{Binding Active}” />
 <data:DataGridTextColumn Binding=”{Binding EmployeeName}” />
 <data:DataGridTextColumn Binding=”{Binding Address1}” />
 <data:DataGridTextColumn Binding=”{Binding Address2}” />
 <data:DataGridTextColumn Binding=”{Binding City}” />
 <data:DataGridTemplateColumn
 CellTemplate=”{StaticResource myCellTemplate}” />
 </data:DataGrid.Columns>
 </data:DataGrid>
 </Grid>
</UserControl>

The DataGridTemplateColumn also includes a CellEditingTemplate property that allows you to specify
a DataTemplate that the column should display when a cell enters Edit mode.

When running the DataGrid even in the simplest configuration, such as the one shown in the previous
listing, you will notice that it provides you with a lot of capabilities right out-of-the-box. For example,
clicking on a column header sorts the column data; dragging a column header allows you to change the
column display order; hovering over the edge of a column header allows you to resize the column
width; and double-clicking a cell places that cell into Edit mode, allowing you to change the cell data.
As you will see as you read through the rest of this section, the DataGrid exposes properties that allows
you to control all of these behaviors both at the control level and on a per-column level.

Sorting
As shown previously, the grid by default enables column sorting. Out-of-the-box, the user can sort indi-
vidual columns, or by holding down the [Ctrl] or [Shift] keys, the user can click on successive columns,
sorting each.

DataGrid exposes various properties that allow you to control the grid’s sorting behavior. At the root
level, you can change whether or not you want to enable sorting in the entire grid by using the
CanUserSortColumns property. You can also control the sorting behavior on an individual column,
using the column’s CanUserSort property.

Overriding the DataGridColumnHeader style as described earlier, you can also control the sort indicator
shown in the column header.

Finally, using SortMemberPath, you can configure a column to sort a column based on a different data
source field than the one configured in the column’s Binding property.

Column Resizing
DataGrid includes properties that allow you to set column widths on each column and heights on rows.
Like the standard Grid panel included in Silverlight, DataGrid gives you a number of different options
for specifying size units. When setting size properties on the DataGrid, you can give the Height and
Width properties a value from the DataGridLength object.

81

Chapter 5: Controls

The DataGridLengrth object includes four different size options:

Auto❑❑ — This option sizes the column or row to the size of the largest visible header or cell.

Because the DataGrid virtualizes its row UI, it, therefore, cannot know ahead of time what the largest
cell contents will be in the entire grid. This means that, as you scroll the rows, if the grid encounters a
cell with larger content, you may notice the column or row size increase. Once the size has increased,
however, the grid will not revert back to a smaller size once the row has scrolled out of view.

Size To Header❑❑ — Sizes the column or row to the size of the header, ignoring the size of the
cell contents.

Size To Cell❑❑ — Sizes the column or row to the size of the largest visible cell. This option also
behaves like the Auto option, meaning that the column or row size may change as rows are
scrolled.

Numeric❑❑ — Allows you to set a specific pixel base value.

You, the developer, can set sizes on columns, but the DataGrid allows not only you but also end-users to
resize columns at run time. Since this capability is on by default, you can control this behavior for the
entire grid by setting the CanUserResizeColumns property on the DataGrid. You can also control this
on a per-column basis by setting the CanUserResize property on an individual column.

The DataGrid also allows you to set minimum and maximum column width values, again both at the
grid level, using the DataGrid’s MinColumnWidth and MaxColumnWidth properties, and on the column
level, using the MinWidth and MaxWidth properties.

Column Freezing
The DataGrid supports freezing columns in the grid. This behavior replicates the Excel frozen columns
behavior, which allows you to freeze, or fix, a certain number of columns to the left side of the
DataGrid. This means that if the grid is displaying a horizontal scrollbar, the frozen columns will
remain fixed to the left side of the grid, while the remaining columns are free to scroll horizontally.

You can set the number of columns you want to be included in the freeze using the grid’s
FrozenColumnCount property. The grid will then freeze that number of columns, starting from the left
side of the grid.

Column Moving
As described earlier, DataGrid allows you to set the order in which columns are displayed by using the
DisplayIndex property. The control, also by default, allows users to reorder columns in the grid at run
time. To do this, the user simply clicks on and drags a column header to a new position in the headers.
They are given visual cues to help then determine where the column will be inserted when dropped.

If the user reorders columns at run time, this will reset the DisplayIndex property of all other grid
columns.

You can control this behavior for the entire grid by using the control’s CanUserReorderColumns property
on the root control or individually on a column, using its CanUserRender property. You can also use the
series of events exposed by the DataGrid to be notified when the end-user initiates and completes a
column move.

82

Part II: Using Silverlight 3 Essentials

Row Details
As shown earlier in the chapter, the DataGrid control includes three column types that you can use to
control how data is shown. Often, though, you may only want to show summary information in a grid
row and to have a separate area for displaying more detailed information about the currently selected
row. DataGrid includes a built-in mechanism for this, called the RowDetailsTemplate. This feature
allows you to specify a DataTemplate in which you can include additional details for the currently
selected row.

The following code demonstrates using the RowDetailsTemplate:

<UserControl
xmlns:data=”clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Data”
x:Class=”SilverlightApplication4.SilverlightControl15”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:SilverlightApplication4”
 Width=”500”
 >
 <UserControl.Resources>
 <local:EmployeeData x:Key=”myData” />
 <DataTemplate x:Key=”myCellTemplate”>
 <TextBlock Text=”{Binding State}” />
 </DataTemplate>
 <DataTemplate x:Key=”myRowDetailsTemplate”>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column=”0” Grid.Row=”0”>
 Original Hire Date:</TextBlock>
 <TextBlock Grid.Column=”1” Grid.Row=”0”
 Text=”{Binding OriginalHireDate}” />
 <TextBlock Grid.Column=”0” Grid.Row=”1”>Cell Number:</TextBlock>
 <TextBlock Grid.Column=”1” Grid.Row=”1”
 Text=”{Binding CellNumber}” />
 <TextBlock Grid.Column=”0” Grid.Row=”2”>Phone Number:</TextBlock>
 <TextBlock Grid.Column=”1” Grid.Row=”2”
 Text=”{Binding PhoneNumber}” />

83

Chapter 5: Controls

 <TextBlock Grid.Column=”2” Grid.Row=”0”>Street:</TextBlock>
 <TextBlock Grid.Column=”3” Grid.Row=”0”
 Text=”{Binding Address1}” />
 <TextBlock Grid.Column=”2” Grid.Row=”1”></TextBlock>
 <TextBlock Grid.Column=”3” Grid.Row=”1”
 Text=”{Binding Address2}” />
 <TextBlock Grid.Column=”2” Grid.Row=”2”>City:</TextBlock>
 <TextBlock Grid.Column=”3” Grid.Row=”2” Text=”{Binding City}” />
 <TextBlock Grid.Column=”2” Grid.Row=”3”>State:</TextBlock>
 <TextBlock Grid.Column=”3” Grid.Row=”3” Text=”{Binding State}” />
 <TextBlock Grid.Column=”2” Grid.Row=”4”>Zip Code:</TextBlock>
 <TextBlock Grid.Column=”3” Grid.Row=”4” Text=”{Binding Zip}” />
 </Grid>

 </DataTemplate>

 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <data:DataGrid FrozenColumnCount=”3”
 RowDetailsTemplate=”{StaticResource myRowDetailsTemplate}”
 RowDetailsVisibilityMode=”VisibleWhenSelected” AutoGenerateColumns=”False”
 ItemsSource=”{Binding Source={StaticResource myData},

 Path=EmployeeDataCollection}” >
 <data:DataGrid.Columns>
 <data:DataGridCheckBoxColumn Binding=”{Binding Active}”>

 </data:DataGridCheckBoxColumn>
 <data:DataGridTextColumn Binding=”{Binding EmployeeName}” />
 <data:DataGridTextColumn Binding=”{Binding Department}” />
 <data:DataGridTextColumn Binding=”{Binding Email}” />
 <data:DataGridCheckBoxColumn Binding=”{Binding Active}” />
 </data:DataGrid.Columns>
 </data:DataGrid>

 </Grid>
</UserControl>

Using the RowDetailsVisibilityMode property, the DataGrid allows you to configure when this tem-
plate is shown, having it be either always collapsed for every row, always visible for every row, or only
visible for the currently selected row. You can also use the RowDetailsVisibilityChanged event to be
notified when the RowDetailsTemplate is changed.

ListBox, ComboBox, and TabControl
Despite their quite different user interfaces, the ListBox, ComboBox, and TabControl controls are all
derived from the same base class (System.Windows.Controls.ltemsControl) and allow you to display
a list of items and select items in that list. Because they all share the same base class, the controls share
many of the same properties and basic behaviors.

The ListBox control allows you to display items in a single flat list, specifying the list items either man-
ually or bound from a data source, using the control’s ItemsSource property. The number of items visible
is dictated by the size of the control.

84

Part II: Using Silverlight 3 Essentials

By default, when items are bound using ItemsSource, the control will simply output the objects in that
list as strings. You can, however, create a DataTemplate and provide a far more complex layout for each list
item using the ItemTemplate property. The next code listing demonstrates the use of the ListBox,
including the use of a DataTemplate to define the list items display:

<UserControl x:Class=”SilverlightApplication4.SilverlightControl1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:SilverlightApplication4”
 Width=”400” Height=”300”>
 <UserControl.Resources>
 <local:EmployeeData x:Key=”myData” />
 <DataTemplate x:Key=”myTemplate”>
 <Grid>
 <TextBlock Text=”{Binding EmployeeName}” />
 </Grid>
 </DataTemplate>
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <ListBox ItemTemplate=”{StaticResource myTemplate}”
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}” />
 </Grid>
</UserControl>

Another interesting feature of the ListBox is the ItemsPanel property. This property allows you to
specify the layout panel you want the ListBox to use when arranging its children. By default, the ListBox
uses a simple StackPanel, but you can create your own layout panel and provide it to the ListBox. The
code below demonstrates this by providing the ListBox with a new StackPanel with
its Orientation property changed:

<UserControl x:Class=”SilverlightApplication4.SilverlightControl1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:SilverlightApplication4”
 Width=”400” Height=”300”>
 <UserControl.Resources>
 <local:EmployeeData x:Key=”myData” />
 <DataTemplate x:Key=”myTemplate”>
 <Grid>
 <TextBlock Text=”{Binding EmployeeName}” />
 </Grid>
 </DataTemplate>
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <ListBox ItemTemplate=”{StaticResource myTemplate}”
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}”>
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation=”Horizontal” />
 </ItemsPanelTemplate>

85

Chapter 5: Controls

 </ListBox.ItemsPanel>
 </ListBox>
 </Grid>
</UserControl>

The ComboBox works much in the same way as the ListBox, although rather than displaying items in a
flat list, the ComboBox displays them in a pop-up display.

The following code demonstrates the user of the ComboBox control using the same data source as the
previous code listing, and also using the same DataTemplate:

 <ComboBox x:Name=”ComboBox1” VerticalAlignment=”Top” HorizontalAlignment=”Center”
 ItemsSource=”{Binding Source={StaticResource myData},
 Path=EmployeeDataCollection}”
 DisplayMemberPath=”Address1”>
 </ComboBox>

You can access the currently selected item of either control by using the SelectedItem property, and both
controls can also notify you when the current selected item changes, using the SelectionChanged event.

The TabControl again works much the same way as the ComboBox and ListBox controls. By using the
ItemsSource property, you can assign a list of objects as the control’s tabs. However, unlike ListBox
and ComboBox, TabControl does require a bit of extra work. By default, TabControl does not know how
to convert the objects in your list into tabs. To help it out, you can create ValueConverter, which is
shown in the following code:

using System.Windows.Data;
using System.Collections.Generic;
using System.Windows.Controls;
using System;
using SilverlightApplication4;
using System.Collections.ObjectModel;
using System.Windows;

namespace SilverlightApplication4
{
 public class TabConverter : IValueConverter
 {
 public object Convert(object value,
 Type targetType, object parameter, System.Globalization.CultureInfo culture)
 {
 ObservableCollection<Employee> source =
 value as ObservableCollection<Employee>;

 FrameworkElement root =
 (FrameworkElement)Application.Current.RootVisual;

 if (root!=null)
 {
 DataTemplate template = (DataTemplate)root.Resources[“myTemplate”];

86

Part II: Using Silverlight 3 Essentials

 if (source != null)
 {
 List<TabItem> result = new List<TabItem>();
 foreach (Employee e in source)
 {
 result.Add(new TabItem()
 {
 Header = e.EmployeeName,
 ContentTemplate = template,
 DataContext = e
 });
 }
 return result;
 }
 }
 return null;
 }

 public object ConvertBack(object value,
 Type targetType, object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

The ValueConverter control converts each object in your collection into a tab and assigns the header
text, the DataTemplate, and a DataContext to each tab.

Once you have created the TabConverter, you can use it to bind your data to the TabControl. This is
shown in the following code:

 <basics:TabControl
 ItemsSource=”{Binding Converter={StaticResource myConverter},
 Source={StaticResource myData},

 Path=EmployeeDataCollection}”
 ItemTemplate=”{StaticResource myTemplate}”>

 </basics:TabControl>

Of course, as with the ListBox and ComboBox controls, you can also create tabs manually. The following
code demonstrates creating tabs directly in XAML using the TabItem object:

 <basics:TabControl>
 <basics:TabControl.Items>
 <basics:TabItem Header=”ADSASDA” Content=”asdasd” />
 </basics:TabControl.Items>
 </basics:TabControl>

As with ComboBox and ListBox, TabControl exposes a SelectedItem property that allows you to deter-
mine which tab is selected, as well as an event that allows you to be notified when the selected tab changes.

87

Chapter 5: Controls

Button, HyperLinkButton, and
ToggleButton

Silverlight includes the requisite Button control, and it offers the same basic behaviors that you would
expect a button to, such as Normal, Hover, Pressed, and Click states, and a click event, but like other
Silverlight controls, the Button control uses the power of XAML to allow you to transform the normal
gray button into something completely different.

You can first see this if you try to find a Text property on the button, which you would expect to be
there in order to allow you to set the button’s text. This is where the power of Silverlight begins to kick
in. Rather than a basic text property, the Button control offers a Content property that, unlike Text,
which only accepts a String, accepts a more generic Object. Using this, you can set the Content prop-
erty to very complex elements such as a checkbox or even another button!

A more realistic example might be placing an image as the button content rather than text. In platforms
like Windows Forms, you would need to draw this yourself, or in HTML, you would have to use an
Image button, both of which have significant drawbacks. The following code demonstrates using the
Content property to use an Image as the button’s content:

 <Button>
 <Button.Content>
 <Image Source=”/imagebutton.png” Height=”23” Width=”50” />
 </Button.Content>
 </Button>

This example only replaces the content area of the button, but the power of XAML will actually allow
you to replace the entire default user interface for Button.

Another interesting feature of the Button control is the ClickMode property. Using this property, you
can set when the button’s click event should fire, when the mouse is hovered, when the mouse is
pressed, or when the mouse is released.

Silverlight also includes two additional controls that extend the basic capabilities of the Button — the
HyperlinkButton and the ToggleButton.

The HyperlinkButton, as the name suggests, allows you to provide the button with a URL value using
the NavigateUri property. When the Button is clicked, Silverlight will automatically navigate the
browser to the provided URL.

The next code demonstrates the use of the HyperlinkButton:

 <HyperlinkButton
 ClickMode=”Release” NavigateUri=”http://www.silverlight.net”>
 <HyperlinkButton.Content>
 <TextBlock Text=”Click Me!” TextDecorations=”Underline” />
 </HyperlinkButton.Content>
 </HyperlinkButton>

Silverlight also contains a new ToggleButton control. This control combines the basic behaviors of a
button with the behavior of a checkbox, allowing your Button control to have a Checked state.

88

Part II: Using Silverlight 3 Essentials

The following code demonstrates the use of the ToggleButton:

 <ToggleButton Content=”No, Click ME!” IsChecked=”true” />

The ToggleButton control serves as the base for other controls that have a checked state such as
Check box and RadioButton and therefore supports the same capabilities, including supporting a
three-state checked option.

Calendar and DatePicker
Silverlight includes two controls that allow you to add date selection to your application — the Calendar
control and the DatePicker control.

The Calendar control, as the name implies, renders a calendar, which by default shows a Month view,
as shown in Figure 5-3.

Figure 5-3

The control also supports both Year and Decade calendar views, which can be set using the control’s
DisplayMode property. You can also control the selection behavior of the control by setting the
SelectionMode property. The control supports No Selection, Single Date Selection, Single Date Range
Selection, and Multiple Date Range Selection modes. Also, as with other controls, the control exposes
a variety of events that allow you to be notified when the currently displayed date changes, a selected
date changes, or the display mode changes.

The DatePicker control displays a simple TextBox entry with an attached calendar pop-up. This is
shown in Figure 5-4.

Unlike the Calendar control, which allows date ranges to be selected, the DatePicker control allows for
only a single date to be selected at one time. As with Calendar, there are events you can use to be noti-
fied when the selected date changes.

Figure 5-4

89

Chapter 5: Controls

GridSplitter
The Grid panel, which is discussed in detail in Chapter 7, is a great way to lay out your application’s
user interface. A common pattern when using a Grid is to allow the user to resize grid columns or rows.
While the Grid panel itself does not have this capability, Silverlight includes the GridSplitter control,
which allows you to add this capability to it.

The following code demonstrates the use of the GridSplitter control, splitting a column containing
two columns:

<UserControl
 xmlns:basics=”clr-namespace:System.Windows.Controls;

 assembly=System.Windows.Controls”
 x:Class=”SilverlightApplication4.SilverlightControl16”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <basics:GridSplitter></basics:GridSplitter>
 </Grid>
</UserControl>

To control the orientation of the GridSplitter control, use its horizontal and vertical alignment proper-
ties. If HorizontalAlignment is set to Stretch, then the grid will split between rows; if VerticalAlignment
is set to Stretch, then the control will split columns. The following code demonstrates using the
GridSplitter control in two different configurations, one splitting a grid vertically, and one splitting
a grid horizontally:

<Grid x:Name=”hLayout” Background=”Gray”
 Width=”258” Margin=”0,67,47,230” HorizontalAlignment=”Right”>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<basics:GridSplitter
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Stretch” />
</Grid>
<Grid x:Name=”vLayout” Background=”Gray”
 Width=”253” HorizontalAlignment=”Left” Margin=”47,76,0,230”>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<basics:GridSplitter
 VerticalAlignment=”Stretch”
 HorizontalAlignment=”Right” />
</Grid>

90

Part II: Using Silverlight 3 Essentials

If both are set to Stretch and GridSplitter has an actual height less than its actual width, then it will
split rows. If the actual height is greater than the width, then columns will be split.

Setting the alignment properties to Left, Right, Top, or Bottom, you can control the direction in which
the splitter will resize its column or row. Setting a property to Center means to resize in both directions.

GridSplitter always drags the entire Column or Row, even if it only visually appears in one cell. You can
use the Grid’s RowSpan and ColumnSpan properties on the GridSplitter to make it appear in multiple
cells.

Also, by default, when the GridSplitter is repositioned, the content of the grid is resized in real time.
You can use the GridSplitter’s ShowsPreview property to configure the control to show a preview first
of the new GridSplitter position, then resize it when the user releases the splitter.

Silverlight Controls Toolkit
In addition to the controls that Microsoft includes in the Silverlight SDK, it offers an additional set
of controls through the Silverlight Controls Toolkit. These controls are made available outside the
Silverlight release cycle and are made available with full source code via the Microsoft Codeplex web
site: www.codeplex.com/Silverlight.

Having a separate set of controls outside of Silverlight allows Microsoft to release new controls
more frequently and at differing levels of quality that are required for control in the SDK.
Controls in the toolkit include DataForm, HeaderedContentControl, AutoCompleteBox, Chart,
Accordian, ImplicitStyleManager, TimePicker, and 11 professionally designed themes.

Summary
This chapter has introduced you to many of the most important and complex controls that are available
in Silverlight. From the Silverlight TextBox, which makes it easy to begin to take data input from end-
users, to perhaps the most complex control, the DataGrid, you learned how you can take advantage of
all of these controls to make your applications more useful and make you more productive in your
development.

Silverlight Text

Although the graphical browser has made the Web a powerful platform for expressing ideas
using complex imagery, a core function of the Web remains to disseminate information, and text
remains a primary mechanism to achieve this function. The basic text capabilities of HTML and
CSS have improved dramatically, allowing designers significant control over the layout and
appearance of the text displayed in their web sites. Silverlight provides a designer with many of
the same powerful capabilities of HTML and CSS, and extends those basic capabilities with even
more functionality that can dramatically enhance designers’ abilities to control, to a fine point,
the way their web sites deliver their textual information.

This chapter looks at the basic mechanisms included in Silverlight for displaying and formatting text.

Text Support in Silverlight
Silverlight provides basic support for text directly in the platform. By default, Silverlight uses the
Portable User Interface font, which is a composite font that uses several different fonts to imple-
ment characters for the full range of international languages supported by Silverlight. The font is
primarily composed of Lucida Grand, which is used for most Western writing systems, and many
other fonts used for East Asian support.

Silverlight also includes support for 10 other local system Latin fonts (see Figure 6-1).

Figure 6-1

6

92

Part II: Using Silverlight 3 Essentials

Use of these local system fonts requires no files to be hosted on the Web Server or downloaded as part
of the application but does require that these fonts be available on the local system.

In addition to the 10 fonts in Figure 6-1, which are used primarily for Western languages, Silverlight
includes native support for 31 different East Asian fonts. A full list of natively supported East Asian
fonts can be found on Microsoft’s MSDN web site.

Displaying Text with TextBlock
The basic mechanism for displaying text in Silverlight is the TextBlock element. This basic element
encapsulates text display and serves as the core means of manipulating the text display. The following
code shows the most basic use of the TextBlock element in Silverlight:

<TextBlock>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Fusce porttitor, tellus id tristique viverra, ligula pede pulvinar
 purus, nec hendrerit urna justo et nulla. Cras condimentum nulla
 at ipsum. Nullam nulla. Sed elit lectus, hendrerit rhoncus,
 gravida id, tristique quis, justo. Vivamus et enim. Nunc accumsan.
 Curabitur ultrices dui ac tortor. Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi
 sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.</TextBlock>

Figure 6-2 shows this TextBlock rendered in a default Silverlight UserControl.

Figure 6-2

The TextBlock control also includes a Text property, shown in the following sample, that you can use
to provide the element’s content:

<TextBlock Text=”Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit. Fusce porttitor, tellus id tristique
 viverra, ligula pede pulvinar purus, nec hendrerit urna justo et
 nulla. Cras condimentum nulla at ipsum. Nullam nulla. Sed elit
 lectus, hendrerit rhoncus, gravida id, tristique quis, justo.
 Vivamus et enim. Nunc accumsan. Curabitur ultrices dui ac tortor.
 Nunc mollis, turpis quis consequat laoreet, nisl quam laoreet

93

Chapter 6: Silverlight Text

 justo, a euismod magna nisi sed orci. Etiam nec dui egestas elit
 pretium sodales. Etiam felis.”></TextBlock>

Note that there is a slight difference in the behavior of the TextBlock, depending on whether you
provide the text content using the Text property or as inline content. Using the Text property, the
TextBlock ignores any leading or trailing white space that may be present; however, this is preserved
by providing the content inline.

The TextBlock includes a variety of properties that allow you to control various font-related proper-
ties such as the family, weight, style, and size. The following code shows the TextBlock with additional
font-related properties set:

<TextBlock FontFamily=”Times New Roman” FontSize=”24”
 FontStyle=”Italic” FontWeight=”Bold”>Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit. Fusce porttitor, tellus id tristique
 viverra, ligula pede pulvinar purus, nec hendrerit urna justo et
 nulla. Cras condimentum nulla at ipsum. Nullam nulla. Sed elit
 lectus, hendrerit rhoncus, gravida id, tristique quis, justo.
 Vivamus et enim. Nunc accumsan. Curabitur ultrices dui ac tortor.
 Nunc mollis, turpis quis consequat laoreet, nisl quam laoreet
 justo, a euismod magna nisi sed orci. Etiam nec dui egestas elit
 pretium sodales. Etiam felis.</TextBlock>

The FontFamily property allows you to specify the specific family of fonts that the TextBlock should
use to display the text. A font family is a group of typefaces with the same name but differing in features
such as Bold or Italic.

You can provide a list of fallback fonts by providing a comma-delimited list of font family names:

<TextBlock
 FontFamily=”My Favorite Font, Times New Roman” FontSize=”24”>

In the preceding sample, if the font family named My Favorite Font cannot be found on the client,
Silverlight will automatically fall back to using Times New Roman as the font for this TextBlock.

The FontStyle property allows you to specify a style to apply to the font. Currently, Silverlight sup-
ports two FontStyle values: Normal, which is the default, and Italic.

The FontWeight property allows you to specify that a font be displayed as Bold.

Silverlight also includes the ability to algorithmically render Italic and Bold fonts, when a true Italic or
Bold font set is not available. If the FontStyle is set to Italic or the FontWeight is set to Bold, Silverlight
will first attempt to locate an Italic or Bold font set on the local system. If none is found, then it will
fall back to algorithmic font rendering and generate Italic and/or Bold glyphs for display. Unlike most
applications, which measure font size in points, the FontSize property in Silverlight is a numeric value
that represents the font size in pixels. This is done in order to maintain compatibility with Windows
Presentation Foundation (WPF); however, it can cause some confusion if you try to compare a font size
set in an application like Microsoft Word against the font size rendered by Silverlight. For example, set-
ting the FontSize property to 24 will not render a font of 24 points as you might expect; instead, this
value represents 24 pixels, which Silverlight converts to a point value. This is shown in Figure 6-3, which
shows a 24-point font rendered in Word (top) and a 24-pixel font rendered in Silverlight (bottom).

94

Part II: Using Silverlight 3 Essentials

Figure 6-3

Notice how much smaller the 24-pixel font appears in Silverlight because of the pixels-to-points conver-
sion. Silverlight renders text at a default 14.666 pixels, which converts to exactly 11 points.

The calculation from pixels to points is one of the few areas of Silverlight that contains a fixed value. To
run this conversion, Silverlight needs to know a dots-per-inch (dpi) value, which is hard-coded at 96 dpi.

In addition to font properties, the TextBlock also allows you to set the foreground of its text. Unlike
many other platforms, where you are limited to simply setting the foreground color of the font,
Silverlight allows you to provide any standard Brush type as the Foreground properties value. The fol-
lowing sample demonstrates using a simple SolidColorBrush to change the foreground color:

<TextBlock Foreground=”Aqua”>

Notice that you can simply provide the property with a named color, and it will automatically convert it
to the appropriate brush.

If you want to get more complex, you can provide more complex brushes such as a gradient brush or
even image or video brushes. The following code demonstrates how to provide a LinearGradientBrush
for the the TextBlock’s foreground property:

<TextBlock TextWrapping=”Wrap” >
 <TextBlock.Foreground>
 <LinearGradientBrush EndPoint=”0,0” StartPoint=”1,1”>
 <GradientStop Color=”#FFFF2300”/>
 <GradientStop Color=”#FFFB00FF” Offset=”1”/>
 <GradientStop Color=”#FFF0FF00”
 Offset=”0.25900000333786011”/>
 <GradientStop Color=”#FF1CFF00”
 Offset=”0.51800000667572021”/>
 <GradientStop Color=”#FF0B07FF”
 Offset=”0.75900000333786011”/>
 </LinearGradientBrush>
 </TextBlock.Foreground>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Fusce
 porttitor, tellus id tristique viverra, ligula pede pulvinar purus,
 nec hendrerit urna justo et nulla. Cras condimentum nulla at ipsum.
 Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida id,
 tristique quis, justo. Vivamus et enim. Nunc accumsan. Curabitur
 ultrices dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci. Etiam nec
 dui egestas elit pretium sodales. Etiam felis.
</TextBlock>

Figure 6-4 shows what your text will looks like after setting the Foreground to a LinearGradientBrush.

95

Chapter 6: Silverlight Text

Figure 6-4

Controlling Text Layout in TextBlock
The TextBlock element also includes a series of properties that allow you to influence the layout of text
in the TextBlock. TextWrapping, LineHeight, and LineStackingStrategy are all properties that give
you fine-grained control over the layout of the TextBlock’s text.

The TextWrapping property allows you to indicate if you want the text within the TextBlock to auto-
matically wrap based on the size of the TextBlock. As you have seen in previous samples in this chap-
ter, by default, if your TextBlock’s text exceeds its container, it is simply clipped. To instead set the text
to wrap, simply set the TextWrapping property to Wrap, as shown in the previous code and again here:

<TextBlock TextWrapping=”Wrap”>Lorem ipsum dolor sit amet, consectetuer
 adipiscing elit. Fusce porttitor, tellus id tristique viverra,
 ligula pede pulvinar purus, nec hendrerit urna justo et nulla. Cras
 condimentum nulla at ipsum. Nullam nulla. Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus et
 enim. Nunc accumsan. Curabitur ultrices dui ac tortor. Nunc mollis,
 turpis quis consequat laoreet, nisl quam laoreet justo, a euismod
 magna nisi sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.</TextBlock>

Enabling text wrapping allows the TextBlock to intelligently wrap the text to fit it within the width of
its container, as shown in Figure 6-5.

Figure 6-5

96

Part II: Using Silverlight 3 Essentials

Note that even though the TextBlock will wrap text horizontally, if the wrapped text exceeds the verti-
cal height available to the TextBlock, the text will continue to be clipped.

For East Asian text, Silverlight correctly uses Kinsoku line-breaking rules when wrapping is enabled.

Also keep in mind that when you enable text wrapping, you will alter the values returned from
the TextBlock’s ActualWidth and ActualHeight properties. When text wrapping is disabled, the
ActualWidth property returns a value that is equal to the width of the TextBlock’s container. When text
wrapping is enabled, the ActualWidth will be the length of the longest wrapped line in the TextBlock.

LineHeight and LineStackingStrategy give you control over the height given to each line of text and
how lines are stacked when wrapped.

LineStackingStrategy offers two options: MaxHeight says that Silverlight should use the smallest
value that contains all of the inline elements on that line that are aligned properly. BlockLineHeight
says that the stack height is determined by the block element’s LineHeight property, which by default is
determined according to the font characteristics.

Text Decorations
TextBlock also allows you to supply a text decoration. Text decorations are visual ornaments that can
be applied to text such as underline, overline, or strike-through. Whereas in WPF you can apply any of
these different types of text decorations, in Silverlight you are limited to only the underline text decora-
tion. To apply the decoration, simply use the TextDecorations property and provide it with a value of
Underline, as shown in the following sample:

<TextBlock TextDecorations=”Underline”>

Inline Text Formatting
So far in this chapter, we have looked at how changing the different formatting properties on a
TextBlock affects the format of the text within; however, there are many times when you want to for-
mat only a portion of a larger block of text. Thankfully, Silverlight supports formatting blocks of text
within a larger body of text.

TextBlock allows you to specify specific runs of Text that need unique formatting options by using the
Run element. The following code demonstrates using the Run element within a TextBlock to create three
discrete text sections, each of which has its own unique font styling:

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 <Run FontFamily=”Courier New”>Fusce porttitor, tellus id
 tristique viverra, ligula pede pulvinar purus, nec hendrerit
 urna justo et nulla.</Run> Cras condimentum nulla at ipsum.
 <Run Foreground=”Red”>Nullam nulla.</Run> Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus
 et enim. Nunc accumsan. <Run FontWeight=”Bold”>Curabitur
 ultrices dui ac tortor.</Run> Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi

97

Chapter 6: Silverlight Text

 sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.</TextBlock>

Figure 6-6 shows the output of this TextBlock.

Figure 6-6

Setting styling properties in a discrete Run element overrides the style properties set on the TextBlock
for that specific Run.

The TextBlock also allows you to explicitly insert line breaks into the text content using the LineBreak
element. Using the LineBreak element gives you explicit control over the location where the TextBlock
breaks a line of text, as shown here:

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 <Run FontFamily=”Courier New”>Fusce porttitor, tellus id
 tristique viverra, ligula pede pulvinar purus, nec hendrerit
 urna justo et nulla.</Run>
 <LineBreak />
 Cras condimentum nulla at ipsum.
 <Run Foreground=”Red”>Nullam nulla.</Run> Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus
 et enim. Nunc accumsan. <Run FontWeight=”Bold”>Curabitur
 ultrices dui ac tortor.</Run>
 <LineBreak />
 Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi
 sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.
</TextBlock>

Figure 6-7 shows the text rendered with the line breaks.

Using Run and LineBreak still allows the TextBlock to control the rendering of the text as a single uni-
fied object; therefore, as your application is resized, the TextBlock can intelligently reorganize the text
it contains, regardless of how that text may be formatted.

98

Part II: Using Silverlight 3 Essentials

Figure 6-7

Using Embedded Fonts
As discussed earlier in the chapter, Silverlight natively supports 10 Western language fonts and 31 East
Asian fonts, but the world of fonts is vast, and designers should not be limited to this tiny handful.
Thankfully, Silverlight includes support for embedding fonts in the application, allowing designers to
use any font they wish in their application design.

To use an embedded font with the TextBlock, you simply provide the FontFamily property with a
special font URI that tells Silverlight the name of the TrueType font file you want to use and the specific
TypeFace from that file to use. This is shown in the following sample:

<TextBlock FontFamily=”[FontFile]#[TypeFace]” />

So, for example, if you want to use the font file named MyFavoriteFont.ttf, which contains a typeface
named My Favorite Font Normal, you can configure a TextBlock to use this font using this syntax:

<TextBlock FontFamily=”segoesc.ttf#Segoe Script” />

Figure 6-8 shows the text in the TextBlock using the embedded font.

Figure 6-8

99

Chapter 6: Silverlight Text

Note that if you are embedding fonts in your Silverlight application, this may be considered distribut-
ing a font with your application. If you are using a licensed font, you may need to ensure that you have
the appropriate distribution rights.

Chapter 9 contains an in-depth review of embedding fonts into your Silverlight application.

Glyphs
Silverlight also allows a designer to render individual font glyphs. The advantage of using the Glyphs
element is that you do not have to embed an entire font file into your application. Instead, using the
FontUri property, you can specify a font that is hosted on your Web Server. The Glyphs element also
can use an expanded set of fonts that is located on the client system.

As shown in the following code, using the Glyphs element, you can render specific glyphs contained in
a font:

<Glyphs
 Fill = “SteelBlue”
 FontUri=”/LANDMARK.ttf”
 FontRenderingEmSize = “36”
 UnicodeString = “Hello”>
</Glyphs>

In the preceding sample, only the glyphs needed to render the UnicodeString are retrieved from the
font on the server. Also note that, unlike TextBlock, the default Fill value for Glyphs is null, and the
FontRenderingEmSize is zero; therefore, you should make sure to provide values for both of these prop-
erties in order to render the text. If you want to use a font that is on the local client system, you can use
the Silverlight plug-in’s JavaScript to enumerate the local system fonts and then assign that font as the
Glyphs font source. This is shown in the code listing below:

function handleLoad(sender, args) {
 var plugIn = sender.get_element();

 var gtc = plugIn.settings.GetSystemGlyphTypefaces();

 for (i = 0; i < gtc.count; i++) {

 gtf = gtc.getItem(i);

 if (gtf.FontUri == “comic.ttf”) {
 var glyph = plugIn.content.root.findName(“glyph”);
 glyph.SetFontSource(gtf, “”); //must include “”
 }
 }
}

This listing shows how you can use the GetSystemGlyphTypefaces function of Silverlight’s JavaScript
API to get a list of the local systems’ fonts, then, using the Glyphs element’s SetFontSource function,
assign the glyph a font typeface.

100

Part II: Using Silverlight 3 Essentials

You can use the Glyphs element’s Indices property to specify specific glyph indices in the font. You can
also use the Indices property to control the spacing of characters in the UnicodeString. The Indices
property accepts a semicolon-delimited list of glyph indices and spacing information. Each index can
be defined using the following format:

[GlyphIndex][,[Advance][,[uOffset][,[vOffset]]]]

Each portion of this format is optional. More information on using the Indices property to control font
spacing can be found at http://msdn.microsoft.com/en-us/library/ms748985.aspx.

Transforming Text with RenderTransforms
The last area that this chapter looks at is using RenderTransforms with the Silverlight TextBlock
element. Silverlight contains a series of transforms that allows you to transform the rendering of UI
elements using various schemes such as Rotation, Skewing, or Scaling. You can easily apply these
transforms to TextBlocks in your application simply by setting the RenderTransform property of the
TextBlock.

The Rotate transform, as the name implies, allows you to rotate a TextBlock. You can add a Rotate
transform to a TextBlock by setting the element’s RenderTransform property, as shown here:

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer
 adipiscing elit. Fusce porttitor, tellus id tristique viverra,
 ligula pede pulvinar purus, nec hendrerit urna justo et nulla. Cras
 condimentum nulla at ipsum. Nullam nulla. Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus et
 enim. Nunc accumsan. Curabitur ultrices dui ac tortor. Nunc mollis,
 turpis quis consequat laoreet, nisl quam laoreet justo, a euismod
 magna nisi sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.
 <TextBlock.RenderTransform>
 <RotateTransform Angle=”45” CenterX=”200” CenterY=”150” />
 </TextBlock.RenderTransform>
</TextBlock>

The Rotate transform allows you to specify the angle of rotation as well as set the rotation center of the
element.

Other transforms available to you include the ScaleTransform, which allows you to scale the
TextBlock horizontally and vertically:

<ScaleTransform ScaleX=”1.5” ScaleY=”1.5” />

The SkewTransform allows you to skew the TextBlock along the X- or Y-axis:

<SkewTransform AngleY=”25” />

101

Chapter 6: Silverlight Text

The TranslateTransform allows you to offset the text from along its X- or Y-axis:

<TranslateTransform X=”7” Y=”13” />

Finally, the MatrixTransform allows you to create custom transforms, which the previously mentioned
transforms provide:

<MatrixTransform Matrix=”1, 0, 0, -1, 0, 0”/>

Transform Groups
While the RenderTransform property allows you to provide a single transform to the TextBlock, there
will be times when you want to apply more than one transform to the element. To do this, you can use
the TransformGroup property, which allows you to add multiple transforms. The following code dem-
onstrates the use of the TransformGroup, adding both a RotateTransform and a SkewTransform to the
TextBlock:

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer
 adipiscing elit. Fusce porttitor, tellus id tristique viverra,
 ligula pede pulvinar purus, nec hendrerit urna justo et nulla. Cras
 condimentum nulla at ipsum. Nullam nulla. Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus et
 enim. Nunc accumsan. Curabitur ultrices dui ac tortor. Nunc mollis,
 turpis quis consequat laoreet, nisl quam laoreet justo, a euismod
 magna nisi sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.
 <TextBlock.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle=”90” />
 <SkewTransform AngleX=”25” />
 </TransformGroup>
 </TextBlock.RenderTransform>
</TextBlock>

Summary
As the Internet moves toward even more rich media content, text remains a central way to convey infor-
mation to end-users. Silverlight puts significant new capabilities into the hands of web developers and
frees web designers from many of the constraints imposed on them by traditional HTML text display.

This chapter looks at the core mechanism used to display text in Silverlight, the TextBlock. This versa-
tile element gives you amazing power to style and display text. Choose from the set of native fonts or
provide your own font set to differentiate your site from others.

The chapter also explored more advanced text options such as using the Glyphs element to display
individual font glyphs, as well as using text transforms to transform text.

Layout

Controlling the layout of an application’s user interface is a problem that has long plagued devel-
opers. Over the years, rich client developers have written thousands of lines of code solely devoted
to the repositioning of user interface elements in the application as its window size changes. Web
developers have long struggled with the multitude of positioning schemes available to them, start-
ing with HTML tables and progressing to CSS layout, and — adding insult to injury — dealing
with different browser interpretations of these layout schemes.

Microsoft looked to address many of the basic problems in application user interface layout with
Windows Presentation Foundation by creating a powerful, yet flexible and highly extensible new
layout system, and, thankfully, they have brought most of those layout concepts into the world of
Silverlight. Through the use of layout containers and panels, the Silverlight layout system gives
you a level of layout control that was previously difficult, if not impossible, to achieve.

In this chapter, you will look at the basics of the Silverlight layout system and how you can use it to
create flexible application user interfaces. This chapter walks you through the core concepts of the
layout system, then looks at the panels included in the Silverlight that implement these concepts.
You will also learn how simple it is to take advantage of the layout system by building your own
custom panel that includes your own layout logic. Finally, the chapter also looks at how external
influences such as browser rendering can influence the layout of your Silverlight application.

Measure, Then Arrange
The basis of the Silverlight layout system is to measure, arrange, and then draw elements. Every
element that can be drawn in Silverlight is included as part of the application’s visual tree. When
the application begins a layout pass, it uses the visual tree as a map, enumerating the leaves in the
tree to first measure, then arrange, and finally draw the UI element.

The first pass of the system, the Measure pass, asks each element in the visual tree to determine
how much space it would like to have by calling its Measure method. Starting with the root UI

7

104

Part II: Using Silverlight 3 Essentials

element, each child determines its size, usually based on the size of its content or a hard-coded Height
or Width value. This measurement is known as the element’s DesiredHeight and DesiredWidth because
although an element may desire a specific size, other factors in the UI may cause the element to be ren-
dered with a different size.

The second pass of the system, called Arrange, is where the logic of a Panel is used to position elements.
As with the Measure pass, during the Arrange pass the Silverlight layout system enumerates the mem-
bers of the visual tree, this time calling each element’s Arrange method. The Arrange method accepts
a rectangle as a parameter. This rectangle defines the coordinate position of the element within its
parent, as well as the size of the element. Once this pass is completed, you can query for the element’s
ActualHeight and ActualWidth. When querying an element for its current size, you should always use
the ActualHeight and ActualWidth properties since the element’s parent can alter the element’s height
and width regardless of any explicit height and width values that might be set.

Also note that each time a UI element changes position, it has the potential to trigger a new pass by the
layout system, which can become an expensive process, depending on the complexity of your
application.

Bounding Box
In order to simplify the layout system, Silverlight surrounds every UI element with a bounding box.
When the layout system attempts to position an element, it is in reality positioning a rectangle, also
called a layout slot, which contains the element.

The size of the layout slot is determined by the layout system, giving consideration to the amount of
available screen space, constraints like margin and padding, and the unique behavior of the parent
Panel. It is up to the parent container to determine the size of the layout for each of its children.

If an element extends outside of its allocated layout slot, the layout system will begin to clip the element.
You can get the dimensions of the visible portion of the element by calling the GetLayoutClip method.

Element Sizing Characteristics
Every UI element includes several properties that can help the element influence its own size and posi-
tion within the layout container.

Width and Height
Every UI element can have an explicit pixel width and height set on it. Depending on the element’s lay-
out container, these values will generally override any other sizing properties set on the element. By
default, elements have their Width and Height properties set to Double.NaN, which is interpreted by the
layout system as “Auto.” The Auto layout generally means that the layout system should size the ele-
ment to the available size in the layout, rather than to any specific pixel value.

Although not necessary, you can explicitly set a Width or Height to Auto in XAML. Additionally, if
you have previously assigned an explicit height or width to an element, and wish to set the value back
to Auto, simply assign the property a value of Double.NaN in code.

105

Chapter 7: Layout

As shown in the following code sample, the effect of the Auto size value is most clearly seen by adding
a button to a grid:

<UserControl x:Class=”RotatePanelSample.GridTest”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Button 1” Width=”Auto” />
 </Grid>
</UserControl>

In this sample, the Button’s width has been explicitly set to Auto, although we could have completely
omitted the property, since this is the default Width property value. The results of the Auto value are
shown in Figure 7-1.

Figure 7-1

You can clearly see that, as expected, the Button control has sized itself to take all available size in its
layout container. Because, in this case, the Button is the only element in the Grid, it consumes all avail-
able space in the Grid.

Also note that the Grid itself has Width and Height properties set to Auto by default, which explains
why the Grid is consuming all available space of its layout container, the UserControl. It is only the
UserControl that has an explicit height and width set.

Setting an explicit width on the Button will constrain it within the Grid, as shown in Figure 7-2, where
the Button now has its Width property set to 150.

Note that leaving a control’s Height or Width as Auto does allow the Panel to influence how a control
is ultimately rendered. For example, if you take the code from the previous listing and substitute a
StackPanel for the Grid as the Button’s layout container, you will see that the Button’s height is ren-
dered differently. We will explain this in greater detail when we examine the StackPanel layout
container later in this chapter.

106

Part II: Using Silverlight 3 Essentials

Figure 7-2

In addition to setting height and width values, every element can have height and width thresholds set
on it. Using an element’s MinWidth, MinHeight, MaxWidth, and MaxHeight properties, you can dictate to
the element’s layout container that the element should never exceed certain height or width values, even
if the element’s Width or Height properties are explicitly set to values outside the minimum or maxi-
mum range.

In cases in which the available size given to the layout container is less than the MinWidth or MinHeight
of the element, the container will begin to clip the element rather than reduce the element’s size.

Alignment
Elements can have a horizontal or vertical alignment set on them. The alignment properties include the
standard alignment values — Left, Right, and Center for horizontal alignment and Top, Center, and
Bottom for vertical alignment — but by default, an element’s alignment is set to a fourth option, called
Stretch. Stretch tells the element that it should attempt to fill its parent’s entire layout slot.

Margin and Padding
Finally, every object derived from FrameworkElement includes a Margin, and every object derived from
Control includes a Padding property. Margins allow you to add space to the outside of the element
between the element and other elements that surround it, be they peer elements or even an element’s
parent.

The Margin property allows you to set this spacing for all four sides of the elements, as shown in
Figure 7-3.

Figure 7-3

107

Chapter 7: Layout

If the element container has no size constraints, the margins will push the container boundaries out-
ward. This is shown in Figure 7-4, where a Button has been placed in a Grid that has no explicitly set
height or width. The Grid’s Background has been set to LightGray and the HorizontalAlignent and
VerticalAlignment properties have been set to Center. The Button has explicit height and width prop-
erties set, and has had a margin size of 40 set on each side. You can see that the margin is pushing the
Grid outward beyond the boundaries of the Button, where it would normally be.

If the layout system determines that space is not available, the system will attempt to constrain, or even
clip, the element’s content in order to display the full margins. This is shown in Figure 7-5, where the
Grid now has an explicit height and width set along with the Button; therefore, the content of its child
is now clipped when a margin is added.

If the element having margins applied to it does not have an explicit size set, Silverlight will attempt to
constrain the element content in order to display the full margins.

The Padding property allows you to add space around the inside of an element, as shown in Figure 7-6.

Figure 7-4

Figure 7-5

108

Part II: Using Silverlight 3 Essentials

Figure 7-6

Figure 7-7 demonstrates this by showing a Border control that contains a rectangle. The Border has had
its Padding property set to increase the buffer between it and the child rectangle.

Figure 7-7

As with the Margin properties, if the parent element has no explicit size set, the element will increase in
size in order to accommodate the padding.

Margin and Padding are cumulative, meaning that if the parent element has Padding defined and the
inner element has Margin defined, Silverlight will display both.

Layout Panels
Now that you have a basic understanding of how the Silverlight layout system works, you can begin to
use some of the Panels built into Silverlight that leverage this system. Silverlight includes a variety of
built-in Panels that each provides a unique layout mechanism you can leverage in your application.

Canvas
The Canvas panel provides you with a way to position elements using an explicit coordinate system.
Elements contained in the Canvas are positioned relative to the top-left corner of the panel, which is
considered position 0,0.

While this layout panel may feel the most familiar to developers who are coming from the Windows
Forms world, for the most part, you should avoid using Canvas in your applications (or at least use it
sparingly) because it forces you to do most of the work to control the position of your UI elements,
rather than allowing the layout system to do this for you.

109

Chapter 7: Layout

An excellent explanation of why the use of Canvas should be avoided can be found here: http://blogs
.msdn.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx.

To position elements on the Canvas, you can use the Canvas’s Top and Left attached properties on its
child elements. An example of using Canvas is shown next:

<UserControl x:Class=”RotatePanelSample.CanvasText”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Canvas>
 <Button Canvas.Left=”0” Canvas.Top=”0” Content=”Button1” />
 <Button Canvas.Left=”50” Canvas.Top=”25” Content=”Button1” />
 <Button Canvas.Left=”100” Canvas.Top=”50” Content=”Button1” />
 <Button Canvas.Left=”150” Canvas.Top=”75” Content=”Button1” />
 <Button Canvas.Left=”200” Canvas.Top=”100” Content=”Button1” />
 <Button Canvas.Left=”250” Canvas.Top=”125” Content=”Button1” />
 </Canvas>
 </Grid>
</UserControl>

Rendering this as shown in Figure 7-8 results in the buttons being absolutely positioned within the Canvas.

Figure 7-8

While Canvas is useful when you need to explicitly position elements in your user interface — for example,
if your application performs some type of physics-based rendering or drawing — it does mean that your
user interface becomes less dynamic and will not be able to properly scale as the available space in the UI
changes. Canvas does not consider some of the basic element characteristics like HorizontalAlignment and
VerticalAlignment when positioning children because Canvas is based on absolute positioning.

StackPanel
As the name implies, the StackPanel simply stacks elements vertically or horizontally. The next code
sample demonstrates the use of the StackPanel:

<UserControl x:Class=”RotatePanelSample.StackPanelTest”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

110

Part II: Using Silverlight 3 Essentials

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button Content=”Button” />
 <TextBlock>Lorum Ipsum</TextBlock>
 <Slider></Slider>
 <HyperlinkButton Content=”HyperlinkButton” />
 <CheckBox />
 </StackPanel>
 </Grid>
</UserControl>

As you can see in Figure 7-9, when child elements are added to the StackPanel, the panel simply stacks
them in its default vertical orientation. Using the StackPanel’s Orientation property, you can change
the panel to stack elements horizontally.

Figure 7-9

Because the stack panel internally sets its available width or height (depending on the current value of
Orientation) to infinity, if no explicit height has been set on a child element of the StackPanel, it will
take as much space as is available to it in the StackPanel.

Additionally, as with every other element, StackPanel can have its height and width set. If no width is
set, the StackPanel will be as wide as its widest child. If no height is set, it will take enough height to
display all of its children.

Grid
Perhaps the most powerful layout container in Silverlight is the Grid panel. As the name implies, the
Grid panel allows you to define a grid of rows and columns in which you can position child elements.

The following code demonstrates a simple Grid layout container:

<UserControl x:Class=”RotatePanelSample.SilverlightControl3”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>

111

Chapter 7: Layout

 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text=”Grid Cell 1” Grid.Row=”0” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”0” Grid.Column=”1” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”1” />
 </Grid>
</UserControl>

In the above sample, a grid structure consisting of two rows and two columns is created using the
Grid’s RowDefinitions and ColumnDefinitions collections. Once the structure is defined, a TextBlock
is added to each grid cell. The placement of the TextBlocks is achieved by using the Grid’s Row and
Column attached properties, which allow you to dictate which grid cell an element should be positioned in.

The Grid also exposes RowSpan and ColumnSpan attached properties that you can use to alter how an
element is positioned in the Grid. The next listing demontrates the use of these attached properties:

<UserControl x:Class=”RotatePanelSample.SilverlightControl3”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row=”0” Grid.Column=”0”
 Grid.ColumnSpan=”2” TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Sed ultricies lectus et dui. Quisque vulputate facilisis nisl.
 Nulla sed turpis. Pellentesque ultricies mi ac velit. Praesent
 id turpis. Nunc mattis pharetra enim. In leo eros, sollicitudin
 vitae, ultricies accumsan, luctus quis, justo.
 </TextBlock>
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”1” />
 </Grid>
</UserControl>

The Grid also allows you to set properties on the individual rows and columns that affect their layout.
The RowDefinition and ColumnDefinition classes expose properties that allow you to set Height and
Width properties.

112

Part II: Using Silverlight 3 Essentials

Unlike a standard element’s Width and Height properties, which only accept pixel measurements or the
Auto keyword, Grid Row and Column size properties accept a type called GridLength. This special type
not only offers the standard size units (Pixels or Auto), but also includes an additional measurement
type call Star. The Star unit allows you to provide a value that expresses a size as a weighted propor-
tion of available space. To specify a Star value, you simply provide the literal * character as the value for
the Width property. You can also specify a factor by placing an integer preceding the *, for example, 3*.

The following listing demonstrates the use of the Star sizing in a Grid:

<UserControl x:Class=”RotatePanelSample.SilverlightControl3”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300” Loaded=”UserControl_Loaded”>
 <Grid x:Name=”LayoutRoot” Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”100” />
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”2*” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>

 </Grid>
</UserControl>

In this sample, the first ColumnDefinition has an explicit pixel width set, while the rest use Star size val-
ues. The third ColumnDefinition includes a factorial value that specifies that the width given to this column
should be two times that given to the other columns. Figure 7-10 shows the resulting grid rendered.

In this case, the Grid has had its ShowGridLines property set to True in order to show the column widths.

Figure 7-10

113

Chapter 7: Layout

Custom Panels
As was stated earlier in the chapter, the layout system included in Silverlight is not only highly flexible
but also very extensible. It is quite easy to leverage the layout system to create your own custom layout
panels that contain your own unique layout logic. In order to show this, this section demonstrates how
to create a simple Wrap Panel control. The layout logic for the Wrap Panel will stack its child elements
from left to right, starting in the upper-left corner of the panel. When the child elements begin to exceed
the width of the panel, the panel will automatically begin to wrap the elements to a new row.

To get started creating a custom panel, simply create a new Silverlight Class Library in your project.
Once the class file has been created, change the class so that it derives from the base Panel object. This
is shown in the following code:

using System;
using System.Windows;
using System.Windows.Controls;

namespace RotatePanelSample
{
 public class SimpleStackPanel : Panel
 {
 }
}

Next, you need to override two methods from the base Panel — MeasureOverride and
ArrangeOverride — as follows:

 public class SimpleStackPanel : Panel
 {
 protected override Size MeasureOverride(Size availableSize)
 {
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 }
 }

That’s all that is required to set up your own custom layout panel. Now all that is left is for you to
implement your own custom layout logic in the Measure and Arrange methods. As an example, this
chapter demonstrates how to create a panel that wraps UI elements that exceed the width of the panel
to a new row.

The following code shows the overriden MeasureOverride method for this custom panel:

 protected override Size MeasureOverride(Size availableSize)
 {
 Size size = new Size();

 availableSize.Height = double.PositiveInfinity;
 availableSize.Width = double.PositiveInfinity;

 foreach(UIElement element in this.Children)

114

Part II: Using Silverlight 3 Essentials

 {
 if (element != null)
 {
 element.Measure(availableSize);
 Size desiredSize = element.DesiredSize;

 size.Width = Math.Max(size.Width, desiredSize.Width);
 size.Height += desiredSize.Height;
 }
 }

 return size;
 }

The first step in this method is to take the availableSize parameter, which represents the amount of
space that the layout system says is initially available to the panel, based on the element’s size charac-
teristics (as described earlier in the chapter), and set its Width and Height properties to Infinity. We
do this in order to get any of the panel’s children that do not have explicitly set Width and Height val-
ues to return a desired size that reflects the size defined in their default template. If we did not do this,
some controls like Button would attempt to fill all available space because by default their heights and
widths are set to Auto.

The next step in the method is to loop through all of the panel’s child elements and call Measure on each
one of them, passing in the availableSize parameter. This will cause the child elements to calculate
their own desired sizes.

Finally, using the loop, the Panel control also attempts to identify the amount of space needed by the
panel for the layout. This is calculated by finding the width of the widest element in the panel and by
calculating the sum height of all elements in the panel. Once the size is determined, it is returned as the
result of the method.

Once the layout system has completed the Measure pass, it will then execute its arrange. The Arrange pass
is when the the Panel control actually positions its child elements in the final space allocated to the panel
by the layout system. The positioning of the child elements is done by calling the Arrange method on each
child of the Panel, passing the child its final desired size and position by using a Rectangle object.

The following code shows the panel’s ArrangeOverride method, which includes the positioning logic
for the panel:

protected override Size ArrangeOverride(Size finalSize)
{
 Point point = new Point(0, 0);
 Rect finalRect =
 new Rect(point, new Point(finalSize.Width, finalSize.Height));

 double maxheight = 0.0;
 double rowheight = 0.0;
 double width = 0.0;

 foreach (UIElement element in this.Children)
 {
 if (element != null)

115

Chapter 7: Layout

 {

 finalRect.X += width;
 width = element.DesiredSize.Width;

 //Check to see if this element will be rendered outside of
 //the panels width and if so, create a new row in the panel
 if ((finalRect.X + element.DesiredSize.Width) > finalSize.Width)
 {
 finalRect.X = 0.0;

 maxheight += rowheight;
 finalRect.Y = maxheight;
 rowheight = 0.0;
 }

 //Find the tallest element in this row
 if (element.DesiredSize.Height > rowheight)
 rowheight = element.DesiredSize.Height;

 finalRect.Width = width;
 finalRect.Height = element.DesiredSize.Height;

 element.Arrange(finalRect);
 }
 }

 return finalSize;
}

The logic in the Arrange method for this panel is relatively simple. To start, a new Rectangle object is
created, which will be used to provide the panel’s children with the information they need to position
themselves within the panel.

Next, several internal members are defined, which will help the Panel track information about the posi-
tioned elements. The Panel needs to track three things: the cumulative width of all elements it has
positioned in the current row, the height of the tallest element in the current row, and the cumulative
height of all rows in the panel.

The cumulative width is used to correctly position the next element in the row. The tallest element in
the current row is used to determine the overall row height. As each element is positioned, the Panel
checks to see if its height is greater than any other element that has been positioned in the row before it.
The cumulative row height of all rows in the panel is used to determine the position of the next row.

Next, the method begins to enumerate each child element of the panel, calculating the position for each
child element and calling its Arrange method. As the Panel enumerates each element, it sets the Width
and Height and X and Y properties of the positioning rectangle using the data from the internal
members.

The Panel also checks to determine if the element, when positioned, will exceed the width of the panel.
If this is found to be true, the Panel resets the Rectangle’s X and Y properties to reposition the element
onto a new row.

116

Part II: Using Silverlight 3 Essentials

Finally, the child elements’ Arrange method is called. and the Rectangle is passed as the parameter.

Figure 7-11 shows the results of the panel once it is rendered.

Figure 7-11

While the Wrap Panel is a simple example of a custom panel, every panel that you create will follow the
same basic Measure and Arrange principles.

Silverlight Plug- In Sizing and Position
As has been described in the book, at its core, Silverlight is a browser plug-in, which is added to the page
using a standard HTML <object> tag. This means that when mixed into a page that contains other HTML,
CSS, and JavaScript, the specific way the browser renders this content can have significant influence
over how the Silverlight plug-in is sized and positioned.

To control the size of the browser plug-in, you can set a height and width attribute on the object tag in
HTML, as shown in the following code:

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%” height=”100%”>
<param name=”source” value=”ClientBin/MySample.xap”/>
<param name=”onerror” value=”onSilverlightError” />
<param name=”background” value=”white” />
<param name=”minRuntimeVersion” value=”2.0.31005.0” />
<param name=”autoUpgrade” value=”true” />
<a href=”http://go.microsoft.com/fwlink/?LinkID=124807”
 style=”text-decoration: none;“>
<img src=”http://go.microsoft.com/fwlink/?LinkId=108181”
 alt=”Get Microsoft Silverlight” style=”border-style: none”/>

</object>

As with other HTML height and width attributes, you can either provide percent values, like those
shown in the sample, or fixed pixel values.

117

Chapter 7: Layout

If you are using the ASP.NET XAML control, you can set its Height and Width properties:

<asp:Silverlight ID=”Xaml1” runat=”server”
 Source=”~/ClientBin/MySample.xap” MinimumVersion=”2.0.31005.0”
 Width=”100%” Height=”100%” />

These properties will be added as Height and Width properties on the object tag rendered by the control.

Summary
Silverlight provides a new and innovating user interface layout system that allows you to create highly
flexible user interfaces that easily adjust and accommodate changes in application and content size. This
chapter introduced you to the basics of this new layout system, starting with an overview of the new
Measure, Arrange, and Render pattern used by Silverlight to intelligently render UI elements. This two-
pass system allows Silverlight first to evaluate the amount of space that each UI element needs, and
then to arrange each of these elements in the actual amount of space available.

The layout system allows you to influence this process by setting various sizing characteristics such as
the height, width, alignment, and margin on UI elements.

The chapter then introduced you to the available Panel control, which is responsible for most of the ele-
ment arrangement that happens in Silverlight. You can choose a panel that uses a layout scheme that
meets your layout needs, be it Grid, StackPanel, or Canvas, or as the chapter showed, you can create
your own custom panel with your own custom layout scheme.

Finally, the chapter looked briefly at how the browser itself can influence how Silverlight renders its
content and how you can use the object tag to configure the Silverlight object size.

Styling Your App and
Dealing with Resources

Creating beautiful, highly styled web-based applications is a core promise of the Silverlight
platform. Rarely have we seen Microsoft promote ugly Silverlight apps. Generally, they’ve been
through the user experience and visual design machines of top-notch companies who specialize
in creating beautiful software. However, learning to take advantage of the power of the platform
and thus deliver on the promise of the platform starts at a technical, and somewhat unbeautiful,
level. I’m not even going to try to teach you to create a thing of great beauty — I’m just going to
empower you to apply your artistic talents to a platform that embraces them.

In this chapter, I’ll teach you how to customize the look and feel of the core controls you were
introduced to in previous chapters. I’ll discuss the ways you can target controls for styling, pres-
ent approaches for organizing your styles and resources, and teach you what a resource actually
is. When we’re finished, you should have a solid understanding of how to make your app look the
way you want it to.

Getting Star ted
Before we jump into styling, I want to define a small set of core terminology that will be used
throughout this chapter. I also want to define a testing environment that you can use to follow the
examples that are coming up. Let’s get started!

8

120

Part II: Using Silverlight 3 Essentials

Core Terminology
We’ll start with five key concepts that will be used throughout this discussion. There are many more con-
cepts that we’ll cover along the way; these will provide us with just enough common ground to move ahead.

Brush❑❑ — A Brush object in Silverlight is used to paint elements with solid colors, linear gra-
dients, radial gradients, and images. The brush can be applied to elements such as rectangles,
circles, text, and panels.

Resource❑❑ — A resource is a static instance of some type of object. Brush-based types are fre-
quently defined as resources for use within an application.

ResourceDictionary❑❑ — A ResourceDictionary contains a collection of resources. A
ResourceDictionary can be defined inline in a Silverlight page (i.e., Page.xaml) or externally
as a stand-alone XAML file.

Style❑❑ — A Style is a special type of object that contains a collection of property Setters. A
Style is defined within a ResourceDictionary and targets a particular type of control, like a
TextBox. It is commonly used to set properties like Foreground, FontStyle, and FontFamily.
Remember and repeat to yourself: A Style is a collection of Setters.

ControlTemplate❑❑ — A ControlTemplate is the VisualTree of elements that make up the look
of a control. These elements can range from a series of nested Borders (like the default button)
to a combination of paths with complex gradient fills. A ControlTemplate is generally applied
by a Style in a Setter that sets the Template property.

The term styling encompasses many ideas, from the Foreground color and FontStyle of a TextBlock,
to the default hover animation applied to a button. I’m going to start from the ground up, first show-
ing you how to set visual properties inline, at the control level. We’ll then look at how resources, such as
SolidColorBrushes, are defined and consumed by elements in a Page, then move on to defining Styles that
set multiple properties on a particular type of control. Finally, we’ll look at retemplating controls to completely
customize their appearance. In the end, you should understand the “big picture” of styling in Silverlight.

Defining the Working Environment: A XAML-Based Approach
As we start our styling journey, let’s establish a common working environment so that you can eas-
ily follow the examples. You can work either in Visual Studio 2008 or in Blend 3; the environment you
choose is really not important at this point. (I’ll be using Blend as I step through this chapter, so the
screenshots you see will likely be taken in the Blend environment.)

Create a new Silverlight 3.0 Project, and add a UserControl to your project. Figure 8-1 demonstrates
how to do this in both Blend and Visual Studio by right-clicking on the Project node in Solution
Explorer. Once you’ve added the UserControl, double-click on its XAML file to make it the active docu-
ment, and then switch to XAML view.

To ensure that your new UserControl is the page that you see when you debug, open App.xaml.cs and
edit the OnStartup method created by the Silverlight Project starter template. Change the line high-
lighted in the following code to match the name of your new UserControl:

private void OnStartup(object sender, StartupEventArgs e)
 {
 // Load the main control here

121

Chapter 8: Styling Your App and Dealing with Resources

 this.RootVisual = new UserControl1(); // Change this control
 }

Now, with that little bit of housecleaning out-of-the-way, let’s get started.

Figure 8-1

Local Styling (Inline Styling)
Local styling is no more than setting properties on an instance of a control. This may sound a bit obvi-
ous, but it’s crucial that you see this basic piece of the bigger puzzle. Let’s assume that you want to cus-
tomize the look of a TextBlock, setting its Foreground to red (#FF0000 in hexadecimal), its FontStyle
to Arial, and its FontWeight to bold. The following code demonstrates how to do this in XAML:

<TextBlock Text=”My Red Bold Arial Label” Foreground=”#FF0000” FontFamily=”Arial”
FontWeight=”Bold” />

The Foreground property above accepts an inline hexadecimal value that represents a SolidColorBrush.
We can also use the longhand version and set the Foreground property by explicitly declaring a
SolidColorBrush object:

<TextBlock Text=”My Red Bold Arial Label” FontFamily=”Arial” FontWeight=”Bold”>
 <TextBlock.Foreground>
 <SolidColorBrush Color=”#FF0000” />
 </TextBlock.Foreground>
</TextBlock>

122

Part II: Using Silverlight 3 Essentials

I’m showing you this longhand version so that you see the underlying object type needed to set
the Foreground property. We’ve just encountered the first definition — Brush, in this case, the
SolidColorBrush. Let’s suppose now that you want to create a Rectangle, painted with the same
red SolidColorBrush. You can do it inline just as we did with the TextBlock:

<Rectangle Width=”100” Height=”100”>
 <Rectangle.Fill>
 <SolidColorBrush Color=”#FF0000” />
 </Rectangle.Fill>
</Rectangle>

Let’s now assume that you always want your TextBlock Foreground to match the Fill of this Rectangle,
and let’s pretend that your mood just changed from red to green. Let’s also add to our layout 10 additional
TextBlocks and three additional Rectangles and demand that they abide by the same color rules. You
could step through your XAML (or Blend or Visual Studio) and manually change property values every
time you change your mind . . . or you can use resources.

Styling with Resources
Let’s resolve our color-sync nightmare through the use of resources. We’ll first define the resource, then
reference that resource inline on each of our TextBlocks and Rectangles. The XAML snippet below
shows our UserControl prior to defining any resources:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Silverlight2BookSamples.UserControl1”
 d:DesignWidth=”640” d:DesignHeight=”480”>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle Height=”84” HorizontalAlignment=”Left” Margin=”8,35,0,0”
VerticalAlignment=”Top” Width=”84” Fill=”#FFFF0000” Stroke=”#FF000000”/>
 <TextBlock HorizontalAlignment=”Left” VerticalAlignment=”Top”
Text=”TextBlock” TextWrapping=”Wrap” Margin=”8,12.4630002975464,0,0”/>
 </Grid>
</UserControl>

Resources are housed in a ResourceDictionary, commonly in the outermost element of your XAML
file. All UIElement-derived classes have a Resources property of type ResourceDictionary, and
UserControl is no exception. The code below shows a new SolidColorBrush added to the UserControl
.Resources ResourceDictionary:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”

123

Chapter 8: Styling Your App and Dealing with Resources

 x:Class=”Silverlight2BookSamples.UserControl1”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 </UserControl.Resources>
…

Notice that the definition of the brush is exactly the same as the inline definition, only it now includes
an x:Key property value. When applying this resource, you will reference it by the key value SharedBrush.
To reference a resource in XAML, you use the {StaticResource keyName} markup extension. The
following shows both the Rectangle’s Fill property and the TextBlock’s Foreground property refer-
encing the new resource named SharedBrush:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Silverlight2BookSamples.UserControl1”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle Height=”84” HorizontalAlignment=”Left” Margin=”8,35,0,0”
VerticalAlignment=”Top” Width=”84” Fill=”{StaticResource SharedBrush}”
Stroke=”#FF000000”/>
 <TextBlock HorizontalAlignment=”Left” VerticalAlignment=”Top”
Text=”TextBlock” TextWrapping=”Wrap” Margin=”8,12.4630002975464,0,0”
Foreground=”{StaticResource SharedBrush}“/>
 </Grid>
</UserControl>

The key thing to notice in the XAML is the statement Fill=“{StaticResource SharedBrush}“. This
statement basically reads, assign the resource named SharedBrush to the Fill property.

The curly braces are required when referencing a resource.

You’ve now seen how to define a resource and reference that resource. Try changing the Color property
of your SharedBrush resource and rerun your application. You should see that both the foreground of
the text and the fill of the rectangle have been updated, reflecting your new color value.

As I pointed out in the definitions section at the beginning of the chapter, a resource is a static instance
of some type of object. You’re not limited to creating Brush resources. The following code shows two
additional resources, CornerRadiusX and CornerRadiusY, both of type System:Double (note that I added
a namespace definition for System). These are referenced by the Rectangle’s CornerX and CornerY
properties.

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

124

Part II: Using Silverlight 3 Essentials

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:System=”clr-namespace:System;assembly=mscorlib”
 mc:Ignorable=”d”
 x:Class=”Silverlight2BookSamples.UserControl1”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 <System:Double x:Key=”CornerRadiusX”>9</System:Double>
 <System:Double x:Key=”CornerRadiusY”>9</System:Double>

 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle Height=”84” HorizontalAlignment=”Left” Margin=”8,35,0,0”
VerticalAlignment=”Top” Width=”84” Fill=”{StaticResource SharedBrush}”
Stroke=”#FF000000” RadiusX=”{StaticResource CornerRadiusX}”
RadiusY=”{StaticResource CornerRadiusY}”/>
 <TextBlock HorizontalAlignment=”Left” VerticalAlignment=”Top”
Text=”TextBlock” TextWrapping=”Wrap” Margin=”8,12.4630002975464,0,0”
Foreground=”{StaticResource SharedBrush}”/>
 </Grid>
</UserControl>

If you’re keeping your local project in sync with this running sample, your UserControl should now
look like Figure 8-2.

Figure 8-2

Carrying this idea further, we can define resources for the FontFamily, FontSize, FontWeight, and
FontStyle properties of our TextBlock. And while this approach still satisfies our goal of centralizing
shared values, the following code demonstrates how messy this approach can become:

<UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 <System:Double x:Key=”CornerRadiusX”>9</System:Double>
 <System:Double x:Key=”CornerRadiusY”>9</System:Double>
 <FontFamily x:Key=”SharedFont”>Portable User Interface</FontFamily>
 <System:Double x:Key=”SharedFontSize”>14.666666984558106</System:Double>
 <FontWeight x:Key=”SharedFontWeight”>Normal</FontWeight>
 <FontStyle x:Key=”SharedFontStyle”>Normal</FontStyle>

 </UserControl.Resources>

125

Chapter 8: Styling Your App and Dealing with Resources

…

<TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock”
 TextWrapping=”Wrap”
 Margin=”8,12.4630002975464,0,0”
 Foreground=”{StaticResource SharedBrush}”
 FontFamily=”{StaticResource SharedFont}”
 FontSize=”{StaticResource SharedFontSize}”
 FontWeight=”{StaticResource SharedFontWeight}”
 FontStyle=”{StaticResource SharedFontStyle}”/>
…

We’re now referencing resources for a large number of properties on this TextBlock control. We’ll have
to do the same thing for every other TextBlock in our layout that we want to share this same look. Not
only will this make our XAML hard to read, but it will also become a nightmare to maintain. What if we
decide to synchronize another property, such as TextWrapping? With this model, we’ll need to define
another resource and update all of our TextBlocks to point to this new resource. This is quickly becom-
ing a problem. Fear not — the Style object is here to save the day!

Working with the Style Object
When I defined style at the beginning of this chapter, I asked you to remember that a Style is a collection of
Setters. Furthermore, a Style is a keyed resource that contains a collection of Setters that target properties
and specify values for a particular type of control (such as TextBlock). The previous code listing shows
what can happen when we try to centralize values for several different properties on a control. A large
number of resources are defined, one for each property. Then, on each instance of the control (TextBlock
in the example), we have to use a StaticResource reference for each centralized property value. It becomes
a real mess! The following code shows you how this problem is solved, using a Style object defined in the
same ResourceDictionary:

<UserControl.Resources>
<Style x:Key=”TextBlockStyle” TargetType=”TextBlock”>
 <Setter Property=”FontFamily” Value=”Verdana”/>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”FontStyle” Value=”Normal”/>
 <Setter Property=”Foreground” Value=”#FFFF0000”/>
 </Style>

 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock” TextWrapping=”Wrap”
 Style=”{StaticResource TextBlockStyle}”/>
 </Grid>

126

Part II: Using Silverlight 3 Essentials

See how much cleaner our TextBlock has become! All of the individual property settings (and
StaticResource references) have been replaced by a single Style property setting. Additionally, all of
our resources have been rolled into a single resource of type Style. With all of these resources rolled
into a single Style, keeping several TextBlocks in sync is no longer a problem. We simply set the Style
property.

Now, let’s look a little more closely at the details of this Style object. First, and not surprisingly, the
Style resource has a key. In addition to the Key property, the Style object also has a property named
TargetType. When defining a Style, you must specify the type of control the Style is going to target,
and this is done by setting the TargetType property. If you’re coming to Silverlight from WPF, you’ll
note the omission of curly braces when setting the target type. This value is simply a string. If we were
targeting a control in a custom assembly, we would need to preface the control name with the correct
namespace mapping (i.e., TargetType=”customNamespace:customControl”).

The previous code sample demonstrated clearly the collection of Setters idea. Where once we had four indi-
vidual resources, we now have five Setter objects. Each Setter has a property/value pair that must be
set. The value of the Property property (not a typo) is set to the name of a property on the TargetType
control. The first Setter defined previously sets the default value of TextBlock.FontFamily to
“Verdana”. Any property defined on the TargetType control can be set in the Style, using a Setter.
Applying the Style is just as easy as pointing the Foreground property to a StaticResource: You set
the Style property of the control using the {StaticResource Syntax}. The following snippet high-
lights how this is set one more time for you.

<TextBlock
 Text=”TextBlock” TextWrapping=”Wrap”
 Style=”{StaticResource TextBlockStyle}”/>

If I want to synchronize the TextWrapping property of all TextBlocks using this Style, I simply add
another Setter to the Style:

<Setter Property=”TextWrapping” Value=”Wrap” />

We’ve gone from a large number of cumbersome resource references to a single resource reference, all
thanks to the Style object.

Property Resolution
When defining and applying a custom Style to a control, it’s important to understand how the values
defined in that style are resolved with local values set on the control itself and with values set in the
default Style for the control. When a custom Style is applied, the property settings in the custom style
are combined with the property settings of both the default style and the local control instance. Each
property set in a custom Style overrides the default value defined in the control’s default Style, and
properties set at the control-instance level override values set in the custom Style. The following dem-
onstrates the order of resolution, with highest priority on the right:

Default Control Style > Custom Style > Local Values

If FontSize is set in the default style of TextBlock to 14 and the custom Style does not include a
Setter for FontSize, 14 will still be applied to the TextBlock.FontSize property, unless the TextBlock
explicitly sets its own FontSize property as shown above.

127

Chapter 8: Styling Your App and Dealing with Resources

It’s important to remember that custom Styles do not completely replace all of the default property set-
tings, but instead override the default property settings. Test this out for yourself by creating a simple
Style that targets Button. Define a single Setter that targets the FontWeight property and set its value
to Bold. When you apply this Style to a Button, the button looks exactly like the default button, only
the text is bold. All of the other property settings defined by the control’s default Style are still intact —
we’ve simply overridden the FontWeight property.

Creating BasedOn Styles
The Style object has a BasedOn property that can be used to reference another Style. This can be a real
time-saver when you want to create Styles that have subtle derivations from a master Style. When the
BasedOn property is set, the referenced Style is essentially injected into the resolution order shown in
the previous section:

Default Control Style > BasedOn Style > Custom Style > Local Values

It should come as no surprise that the BasedOn property is set using the {StaticResource keyName}
markup syntax. The following XAML shows two Button styles, the second based on the first:

<Style x:Key=”ButtonBaseStyle” TargetType=”Button”>
 <Setter Property=”Foreground” Value=”#FF0000” />
</Style>

<Style x:Key=”ButtonBasedOn” BasedOn=”{StaticResource ButtonBaseStyle}”
 TargetType=”Button”>
 <Setter Property=”FontWeight” Value=”Bold” />
</Style>

It’s important to note that the order resources are defined in XAML makes a difference when they’re
being referenced by other resources. For example, if you move the ButtonBasedOn style so that it’s
defined before ButtonBaseStyle, you will get a runtime error because the ButtonBaseStyle will not
have been created yet.

Changing the Look of a Control with a Custom
ControlTemplate

You’ve now seen how you can set multiple properties of a particular type of control using the Style
object. These properties all affect the look of the control in some way, often by changing the FontStyle,
the Foreground, or perhaps the default Height or Width. When your customization needs outgrow
simple property settings, you need to customize the ControlTemplate.

Overriding the ControlTemplate is achieved in the Style by setting the Template property. Remember,
a Style is just a collection of Setters, and the Template property is the most powerful property you can set.

What Is a ControlTemplate?
At the beginning of this chapter, I said that a ControlTemplate is the VisualTree of elements that
make up the look of a control. These elements can range from a series of nested Borders (like the
default Button) to a combination of paths with complex gradient fills. A ControlTemplate is gener-
ally applied by a Style. In Silverlight, just like WPF, controls are said to be lookless. The definition of a

128

Part II: Using Silverlight 3 Essentials

control’s properties is independent from the actual look of the control. The look of the control is defined
in XAML and is applied at compile time.

Why Define a Custom Template?
Acknowledging that Silverlight controls are lookless is one thing, but understanding why they are look-
less is another. Because a control is lookless, you can completely replace its visual appearance. Let’s
consider the Button for a moment. The Button control is probably the most commonly retemplated
control in both Silverlight and WPF. Consider the immersive Web experiences or applications you’ve
encountered over the years. A core action of your experience is clicking. You click, click, click — text,
images, custom artwork — anything is fair game. Generally, the item you are clicking responds to the
MouseOver and MousePressed events, providing you with visual feedback to your interaction.

If I ask you to picture different button styles that you’ve encountered, your mind probably fills will dif-
ferent shapes, colors, and textures — imprints left by the many visually diverse experiences you’ve had
in your travels. If your mind didn’t fill with images, at least consider the differing appearance between
a Windows Vista button and an OS X button. The two buttons react to the same interaction (MouseOver,
MousePressed, Disabled) and generally fire the same events for developers (e.g., Click), but their
appearance is markedly different.

Your application will likely need the functionality provided by Buttons, ListBoxes, RadioButtons, and
CheckBoxes, but your brand may require a look other than the default look provided by Silverlight. By
retemplating the controls, you get the same functionality provided out-of-the-box with the added ben-
efit of having your custom look applied.

Defining and Applying a Custom Template
Before we retemplate the Button, let’s add a default-styled Button to the page for comparison.
Figure 8-3 shows the default Silverlight Button on the stage in Blend. All of the visual elements that
make up the look of the button reside in the Button’s default template. Later, we’ll look at the XAML
that makes up the default button; for now, I want to call out a few key elements. Notice the single-pixel
gray border with rounded corners — that’s defined by a Border element. In the foreground of that
Border element is another border with a gradient fill. In the foreground of that element is a rounded
piece of artwork that simulates a highlight. Finally, there is an element that displays the Content we
have specified on the button. It is center-aligned both vertically and horizontally.

Figure 8-3

A custom template is defined using the same layout panels and controls you’ve been introduced to
throughout this book. Everything in your Silverlight arsenal is fair game for a control’s template. The
following code shows a simple Style that sets the Template property of a Button control, replacing the
default template with a Grid containing a nested red Rectangle:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >

129

Chapter 8: Styling Your App and Dealing with Resources

 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”#FF0000” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Here, for the first time in this chapter, you’re seeing the more verbose way of setting the Value prop-
erty of a Setter. Because the value we are supplying is much more complex than a single string value,
we have to set the Value property by using <Setter.Value />. The value of the Template property is
always a ControlTemplate object whose TargetType property matches the value of the Style object it is
defined within. The ControlTemplate object accepts a single child element whose value is always some
type of Panel; in this case, it’s a Grid.

Unlike WPF, the value of the TargetType property is just a string and does not
require the {x:Type ControlName} syntax.

Applying this Style to a Button is achieved by setting the Style property, just like we did for the
TextBlock example before:

<Button Style=”{StaticResource customStyle}” Content=”Click Me!”
HorizontalAlignment=”Center” VerticalAlignment=”Center”/>

Applying this Style to a Button results in a button that looks like a flat, red rectangle like the button
depicted in Figure 8-4. We’ve completely replaced the default template of the button with a single
rectangle.

Figure 8-4

Not too exciting, eh? And where is the text “Click Me!” as specified on the Content property? Since
we have completely replaced the template of the Button with a Grid and nested Rectangle, we have
eliminated the Button’s ability to display its own content! See, the Template property really is the most
powerful property of all. As we define the template of a control, we have to think about how we want the
control’s property values to affect the way the control actually looks. Let’s deal with the content issue first.

The ContentPresenter
The ContentPresenter control, just as its name indicates, is used to display content. All controls derived
from ContentControl have a Content property. Button happens to be derived from ContentControl,
which is why you set its Content property instead of its Text property. The Content property is of type
UIElement, which means pretty much any visual element can be thrown at it, even another Button.

130

Part II: Using Silverlight 3 Essentials

In order to display the text “Click Me!” as set on our Button’s Content property, we need to add a
ContentPresenter to our custom template defined in customStyle. The following XAML shows
this ContentPresenter in place:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”#FF0000” />
 <ContentPresenter Margin=”5,5,5,5” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

That’s all there is to it. It’s actually deceptively simple. The ContentPresenter, when dropped into a
ContentControl, automatically detects the type of content that has been set and displays it accordingly.
When the content is text, as in this example, a TextBlock is automatically created whose Text property
is set to the value specified.

Try setting the Content of the button to different types of objects (Circles, Rectangles, ComboBoxes,
etc.) and notice how each of these objects is displayed inside the custom template. Figure 8-5 shows some
of the variations that are possible. And remember, you can affect the layout of the ContentPresenter by
using the HorizontalAlignment, VerticalAlignment, and Margin properties (or any other layout prop-
erties) as with any other control.

Figure 8-5

TemplateBinding
In the previous section, you saw how to present the Content of a ContentControl by using the
ContentPresenter. In this section, we’ll look at how you can use other properties defined on the
control you’re templating, using TemplateBinding.

TemplateBinding is a special type of binding that lets you access the value of properties defined on a
control from within the template you’re authoring. The first template we created consisted of a Grid with
a nested Rectangle. At run time, all Buttons whose Style was set to customStyle looked exactly the
same, regardless of their property settings. If the Background property was set to green, the Rectangle

131

Chapter 8: Styling Your App and Dealing with Resources

in the template was still red. In fact, those buttons couldn’t even present their own content. We took
care of the content situation by adding a ContentPresenter to the template. We now want to take
advantage of the Background property, empowering the template to set the Rectangle’s color to the
value of the Button’s Background property.

The following XAML demonstrates how to use the TemplateBinding syntax to assign values set on the
control to elements within its template:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The Rectangle’s Fill property is now bound to the Button’s Background property. I happened to
choose the Background property in this example, but I could just as easily have chosen the BorderBrush
property, because they’re both of type Brush. If I were authoring a template for another control that
defined more Brush properties, I could have chosen those properties as well.

Try creating several instances of Button, setting each instance’s Style property to customStyle, then set
each Button’s Background property to a different color value. When you run the sample, you should see your
Background properties honored on each Button instance. It’s important to note that the value supplied by
the TemplateBinding is the runtime value of each control’s instance. TemplateBinding does not synchronize
values across controls; it just gives you a way to pump property values into your control’s template.

More TemplateBinding
In the previous example, we used TemplateBinding to bind the Button’s Background property to the
Fill property of a Rectangle nested within the Button’s ControlTemplate. Every single property defined
on Button can be bound to an element within the template using TemplateBinding. It’s through
TemplateBinding that the properties of this lookless control come to life and start to have meaning.

Let’s attach a few more properties. I’m going to start with Padding. Padding is typically used to define
the amount of space surrounding an object’s content. In comparison, an object’s margin is the amount of
space preserved around the control itself. Both the Margin and Padding properties are of type Thickness
and are defined using four double values that represent Left, Top, Right, and Bottom. The most mean-
ingful way for us to use the Padding property is by applying it as the Margin of the ContentPresenter.
The following code demonstrates how this is achieved:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter Margin=”{TemplateBinding Padding}” />

132

Part II: Using Silverlight 3 Essentials

 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The previous code and Figure 8-6 demonstrate various Padding values and their resulting visuals. Note
how the space around the content changes as the Padding value changes.

Figure 8-6

<!--Red Button with 5 Pixel Margin on All Sides-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#FF0000”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,10,0,0”
 Padding=”5,5,5,5” />

<!--Green button with 5 pixel Margin on Top and Bottom-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#00FF00”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,60,0,0”
 Padding=”0,5,0,5” />

<!--Blue Button with 5 pixel Margin on Left and Right-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#0000FF”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,120,0,0”
 Padding=”5,0,5,0” />

133

Chapter 8: Styling Your App and Dealing with Resources

I’m now going to add HorizontalAlignment and VerticalAlignment property settings to the
ContentPresenter and set their values to HorizontalContentAlignment and VerticalContentAlignment
using TemplateBinding. The following XAML demonstrates the updated Style:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter
 Margin=”{TemplateBinding Padding}”
 HorizontalAlignment=”{TemplateBinding
 HorizontalContentAlignment}”
 VerticalAlignment=”{TemplateBinding
 VerticalContentAlignment}” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Now that we’ve hooked these properties up in the template, they will actually have an effect when set
on each Button instance. We can now specify both the padding and internal alignment of the content of
each Button that uses the customStyle style.

I’m not going to keep stepping through each property on Button and show you how to hook it up via
TemplateBinding; instead, you can just keep repeating the same process, experimenting to your heart’s
content. I will point out that you can TemplateBind to the same property multiple times in a template.
For example, I could have two nested Borders, each of whose Padding property is bound to the Button’s
Padding property. Similarly, I could have multiple TextBlocks, each of whose Text property is bound
to the Button’s Content property, achieving the drop shadow effect shown in Figure 8-7.

Figure 8-7

Without TemplateBinding, properties set on individual control instances would have no visual effect at
all. TemplateBinding provides a path into the template of a control by means of simple property settings at
the control-instance level. The Styles and Templates defined for the default Silverlight controls have made
extensive use of TemplateBinding. Try changing the Background, BorderBrush, HorizontalContentAlignment,
and Padding properties of the default Button. As you change these properties, the button’s appearance
changes accordingly. The author(s) of the default Styles had to employ TemplateBinding throughout
the default Styles in order to enable the behavior that you expect when interacting with the control.

Preserving the Essence of Your Style
If you’ve experimented with the default Silverlight Button control, you should have noticed that as you
set its Background property, the overall look and feel, or essence, of the control remains the same. For

134

Part II: Using Silverlight 3 Essentials

example, if you set the Background property to a green SolidColorBrush, the button does not actually
appear flat green. Instead, it looks almost the same, only now it has a green hue. The oval highlight in
the foreground remains, and the background color appears to fade vertically to white. Figure 8-8 shows
the default Silverlight button, without a custom background color, and two additional buttons, each of
whose Background property has been set.

Figure 8-8

In order to achieve this effect, the Template must include more than a single rectangle, as we’ve been
using up to this point. The default template employs several elements, layered in the foreground of a
base element that is template-bound to the Background property. The foreground elements are partially
transparent to allow the base element to shine through. As the Style author, it is up to you to define how
various property settings affect the final look of your control. You can choose to completely ignore local
settings, by not using TemplateBinding at all, or you can choose to strategically apply TemplateBinding
to elements within your Template to maintain the essence of your design, while providing a degree of
flexibility.

The code listing below displays the XAML for the default Silverlight button. I’ve added comments
throughout the template to hopefully shed some light on the techniques employed.

<Style x:Key=”DefaultButtonStyle” TargetType=”Button”>
 <!-- ======================================= -->
 <!-- Default Brushes Defined At Style Level -->
 <!-- ======================================= -->
 <Setter Property=”Background” Value=”#FF1F3B53”/>
 <Setter Property=”Foreground” Value=”#FF000000”/>
 <Setter Property=”Padding” Value=”3”/>
 <Setter Property=”BorderThickness” Value=”1”/>
 <Setter Property=”BorderBrush”>
 <Setter.Value>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFA3AEB9” Offset=”0”/>
 <GradientStop Color=”#FF8399A9” Offset=”0.375”/>
 <GradientStop Color=”#FF718597” Offset=”0.375”/>
 <GradientStop Color=”#FF617584” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <!-- === -->
 <!-- VisualStateManager Defined as Child of First Template Element -->
 <!-- === -->
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>

135

Chapter 8: Styling Your App and Dealing with Resources

 <vsm:VisualState x:Name=”Normal”/>
 <!-- =============== -->
 <!-- MouseOver State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundAnimation”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[1].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#F2FFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[2].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#CCFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[3].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#7FFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <!-- ============== -->
 <!-- Pressed State -->
 <!-- ============== -->
 <vsm:VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”Background” Storyboard.
TargetProperty=”(Border.Background).(SolidColorBrush.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#FF6DBDD1”/>
 </ColorAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundAnimation”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[0].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#D8FFFFFF”/>

136

Part II: Using Silverlight 3 Essentials

 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[1].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#C6FFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[2].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#8CFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush.GradientStops)[3].
(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#3FFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <!-- =============== -->
 <!-- Disabled State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”Disabled”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”DisabledVisualElement”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”.55”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <!-- =============== -->
 <!-- Focused State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”Focused”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”FocusVisualElement”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Unfocused”/>
 </vsm:VisualStateGroup>

137

Chapter 8: Styling Your App and Dealing with Resources

 </vsm:VisualStateManager.VisualStateGroups>
 <!-- === -->
 <!-- Base Border (BorderBrush and BorderThickness TemplateBound) -->
 <!-- === -->

 <Border x:Name=”Background” Background=”White”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}” CornerRadius=”3”>
 <!-- == -->
 <!-- Grid (Background TemplateBound to Button.Background) -->
 <!-- == -->
 <Grid Margin=”1” Background=”{TemplateBinding Background}”>
 <Border x:Name=”BackgroundAnimation” Opacity=”0”
 Background=”#FF448DCA”/>
 <Rectangle x:Name=”BackgroundGradient”>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”.7,1”
 StartPoint=”.7,0”>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#F9FFFFFF”
 Offset=”0.375”/>
 <GradientStop Color=”#E5FFFFFF”
 Offset=”0.625”/>
 <GradientStop Color=”#C6FFFFFF” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Grid>
 </Border>
 <!-- == -->
 <!-- ContentPresenter (Content and ContentTemplate
 <!-- Property Settings Not Necessary) -->
 <!-- == -->
 <ContentPresenter x:Name=”contentPresenter”
 HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”
 Margin=”{TemplateBinding Padding}”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”
 Content=”{TemplateBinding Content}”
 ContentTemplate=”{TemplateBinding ContentTemplate}”/>
 <Rectangle x:Name=”DisabledVisualElement” Fill=”#FFFFFFFF”
 RadiusX=”3” RadiusY=”3” IsHitTestVisible=”false”
 Opacity=”0”/>
 <Rectangle x:Name=”FocusVisualElement” Stroke=”#FF6DBDD1”
 StrokeThickness=”1” RadiusX=”2” RadiusY=”2” Margin=”1”
 IsHitTestVisible=”false” Opacity=”0”/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

138

Part II: Using Silverlight 3 Essentials

If you look at the first grid defined in the template, you’ll see that its Background property is set to
{TemplateBinding Background}:

<!-- == -->
<!-- Grid (Background TemplateBound to Button.Background) -->
<!-- == -->
<Grid Margin=”1” Background=”{TemplateBinding Background}”>

The second child of that grid is a rectangle that uses a LinearGradientBrush as its Fill. The Color val-
ues of each GradientStop are white, each with varying shades of opacity. This lets the containing grid’s
background brush bleed through. The foreground rectangle is used to create a shading effect. When the
Background property of the control is set, the essence of the button remains the same because it’s really
the foreground rectangle that’s responsible for creating the gradient effect.

Try replacing the white foreground gradient with a black-based gradient. You should see that the tem-
plate still responds to the Background setting, only now the button is much darker than the default
Silverlight Style.

Limitations of TemplateBinding
I just pointed out that the default button lets you change its background color by specifying a custom
value for its Background property. But what if you want to change the button’s hover color? There
isn’t a BackgroundHover property. Likewise, if you want the HorizontalContentAlignment to change
when the button is in a hover state, you won’t find a property specific to the hover state. Or maybe
you just want to turn off the default button’s oval highlight artwork — it’s in these cases of interaction
and customization where the control author can either choose to add additional properties (such as a
DisplayHighlight property) or require you to edit the default template. In most cases, you’ll need to
edit the default template.

You can see that once your customization needs step beyond just the basics, you have to create a custom
Style and override the default template. To anticipate even a minor level of template-level customiza-
tion, a large number of properties would need to be added to the control. Consider once again, just for a
moment, the ways you might want to customize the button when it’s in a hover state. How about turn-
ing off the highlight and changing the border color, the background color, the foreground color of the
text, and the text’s FontWeight? This would all require custom properties to be defined on the control
that you could then TemplateBind to. And what if the template itself had no highlight artwork? What
good would our highlight-based property(ies) be then?

I hope you see that properties defined simply to point directly into the template can be quite arbitrary
in nature and often won’t hold up across the many uses a control might find itself in. There are cer-
tainly cases in which it makes sense to add properties (such as an AlternateRowBackground brush
property for a grid), but they should not be added on a whim. Fortunately, Silverlight provides a model
that allows us to react to state changes from within the template itself.

Visual State Manager: Reacting to State Changes within a Template
So far you’ve seen how to define the look of a control by creating a custom ControlTemplate. But the
examples so far result in a static visual, with no interaction whatsoever. The control looks the same
whether it has focus or doesn’t have focus, whether the mouse is over it or not, and even whether it is
pressed or not. For a personal project, this may be fine, but for interactive Silverlight applications, your
users are going to expect visual feedback. Enter the VisualStateManager.

139

Chapter 8: Styling Your App and Dealing with Resources

If you paid close attention to the previous code listing, you may have noticed the VisualStateManager
definition (<vsm:VisualStateManager />) defined within the button’s ControlTemplate. The
VisualStateManager is used to define how controls react visually to changes in state, such as
MouseOver or Pressed. You use the Visual State Manager (VSM) to define different VisualStates for
the control whose template you’re authoring.

It is up to the control author to define both the control’s VisualStateGroups and the VisualStates
of each group. The control author is also responsible for transitioning from state to state through-
out the life of the control. The default Silverlight controls all employ this State Model and use the
TemplateVisualState attribute:

[TemplateVisualState(Name = “MouseOver”, GroupName = “CommonStates”)]

Microsoft Expression Blend looks for this attribute on controls and presents all VisualStateGroups and
VisualStates defined when in template editing mode. Figure 8-9 shows how Blend exposes these states.

Figure 8-9

Editing state transitions is most commonly done in Blend, but I’ll break down the default button’s
VisualStateManager XAML so that you have a firm grasp of what’s being generated behind the scenes.
The following XAML defines two VisualStateGroups — CommonStates and FocusStates:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”></vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”></vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

To the VisualStateGroups, we will add VisualStates:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver” />
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />
 </vsm:VisualStateGroup>

140

Part II: Using Silverlight 3 Essentials

 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

These are all of the states that have been defined for the Button control by the Silverlight engineering
team. You can add additional VisualStates to the XAML, but they will never be accessed because the
control is not looking for them. This is another reason it’s a good idea to start from the default control
XAML when skinning controls.

Now that we have the default VisualStateGroups and VisualStates defined, let’s add a simple
Storyboard to the MouseOver state:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color” To=”#FF000000” Duration=”0” />
 </Storyboard>
 </vsm:VisualStatep>
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

The ColorAnimation added targets a GradientStop with the name “LinearBevelDarkEnd” defined
in the default button’s XAML and animates the value of the GradientStop’s Color property to black
(#FF000000). This Storyboard is started when the control enters the MouseOver state. The Duration of
the ColorAnimation is set to 0, which essentially means “Take 0 seconds to get to your destination.” If
you wanted the GradientStop value to slowly change to black, you could have entered “00:00:05.00”
for a 5-second animation. The animation continues to have an effect even after the Duration has been
reached and will remain at the destination value until another animation is started. In this case, the
GradientStop value will remain black until the control changes state.

A control can only be in one state per VisualStateGroup at a time. So, based on the XAML above, this
means that the Button cannot be in both a Normal state and a MouseOver state at once. If you look at the
states that have been defined, I think you’ll see this makes sense. However, a control can be in multiple
states across VisualStateGroups. For example, the Button can be in both a MouseOver and Focused
state at the same time.

Empty VisualStates have an effect on the control: as a control changes state, if a matching
VisualState is found, any previous animations that were started as a result of previous VisualStates
will be stopped. Empty VisualStates will essentially reset a control to its base state when triggered.

141

Chapter 8: Styling Your App and Dealing with Resources

Defining Transitions

The VisualStateManager lets you define Transition Storyboards that are played as the control transi-
tions between states. The animations do not replace the VisualState Storyboards; they just serve as
interludes between them. The following XAML adds to the VisualStateManager a VisualTransition
that will be played as the control leaves the MouseOver state and enters the Normal state:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition From=”MouseOver” To=”Normal”
 Duration=”0:0:0.2”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color” To=”#FFFFFFFF” />
 </Storyboard>
 </vsm:VisualTransition>
 </vsm:VisualStateGroup.Transitions>

 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color” To=”#FF000000” Duration=”0” />
 </Storyboard>
 </vsm:VisualStatep>
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

Over a period of 0.2 seconds, the same GradientStop we’ve been targeting will animate to a white color,
before returning to its base state. Because the “Normal” VisualState is empty, all previously applied
Storyboards will be stopped. The final result of this VisualStateManager definition: Mousing over the
Button will result in the GradientStop named LinearBevelDarkEnd animating to black immediately
(Duration: 0). As the mouse leaves the control, the same GradientStop will animate to white over a
0.2-second duration, then immediately return to its original, base state.

The default Button XAML defines additional Storyboards and transitions that we didn’t cover here. It’s
really just more of the same, but now you can read the XAML and actually decipher what you see!

Text-Related Properties
Text properties in Silverlight behave differently than their fellow non-text properties. Unlike proper-
ties such as Fill and HorizontalAlignment, the following properties cascade from the top down in the
VisualTree:

FontFamily❑❑

FontWeight❑❑

142

Part II: Using Silverlight 3 Essentials

FontStyle❑❑

FontSize❑❑

FontStretch❑❑

When set at any level, these property settings are inherited by all children in the VisualTree of the
element where the properties are set. Only set these properties locally when you want to intercept this
inheritance and override those values. Keep this in mind when you are defining Styles for controls —
font settings on the Style will take precedence over those defined at an application or page level, inter-
cepting application-level font settings.

Defining and Organizing Resources
Resources can be defined almost anywhere. Because all FrameworkElement-derived objects have a
.Resources collection, you can dangle resources off your base UserControl (UserControl.Resources), in
nested Grids (Grid.Resources), in nested Buttons (Button.Resources), and any number of other elements.
In addition to defining resources within a single UserControl, resources can also be defined in App.xaml
and in external ResourceDictionaries. With all of these locations capable of housing resources, it’s
important to define some best practices and understand how these resources are scoped.

Defining Stand-Alone ResourceDictionaries
Silverlight provides us with a mechanism for housing resources outside of UserControls. These stand-
alone ResourceDictionaries are simply XAML files whose outermost element is a ResourceDictionary.
Both Blend and Visual Studio have ResourceDictionary templates that can be accessed by right-clicking
on the project, selecting “Add New Item,” and selecting “ResourceDictionary” from the dialog that
appears. In both applications, you’ll be prompted to provide a name for the new ResourceDictionary.
The following XAML shows a simple stand-alone ResourceDictionary with a single SolidColorBrush
resource defined:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
</ResourceDictionary>

Merged Dictionaries
Much like CSS’s @import statement for referencing additional CSS files, Silverlight’s ResourceDictionary
.MergedDictionaries collection lets you reference external ResourceDictionaries. Each
ResourceDictionary has a MergedDictionaries collection, so you can reference external dictionar-
ies from any location where resources can be defined. The following XAML demonstrates how a
ResourceDictionary containing button resources (Resources/Buttons.xaml) can be referenced at the
UserControl level:

<UserControl x:Class=”SilverlightBookSamples.Resources”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

143

Chapter 8: Styling Your App and Dealing with Resources

 Height=”300” Width=”300”>
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”Resources/Buttons.xaml” />
 <!-- Additional Resource Definitions Here -->
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid>

 </Grid>
</UserControl>

When using the MergedDictionaries collection, you have to explicitly declare a ResourceDictionary
object with the container .Resources collection. If you refer to previous resource definitions in the chap-
ter, the <ResourceDictionary /> tag was not required.

Resource Scope
The location where a resource is defined and/or referenced determines the scope within which it can be
used. The following are the locations where resources may be defined:

App.xaml❑❑

Themes/generic.xaml (for defining custom controls)❑❑

Custom UserControl.xaml❑❑

External ❑❑ ResourceDictionaries (.xaml files within the project)

App.xaml
Resources defined or referenced at the App.xaml level can be used anywhere in your Silverlight appli-
cation. When you’re synchronizing the look of an application across multiple UserControls, you’ll want
to define your resources here. Any external ResourceDictionaries referenced at this level will also be
available throughout your application.

Custom Controls — Themes/generic.xaml
In projects in which you define custom controls, a myButton control, for example, the default style for
that custom control is defined in generic.xaml. Both Blend and Visual Studio will automatically add
this file to your project when you add a custom control to the project using their starter templates. When
your project is compiled and your control is used either in the same project or another project, the style
defined in generic.xaml will be applied. You should not house application-level styles or resources in this
file. The resources defined in generic.xaml should be specifically for custom controls you are defining.

Local Resources — UserControl.xaml
When you don’t need your resources to have a full application-wide scope, you can define them
within the current UserControl you’re authoring. In these cases, you will likely add the resources to
<UserControl.Resources>:

<!-- Add Resources Here -->
</UserControl.Resources>

144

Part II: Using Silverlight 3 Essentials

All resources defined in <UserControl.Resources /> will be available throughout your UserControl.
If you want to further scope your resource definitions to a particular area within your UserControl,
this is a possibility as well. Each FrameworkElement-derived object in Silverlight has a Resources collec-
tion. So just as you can access the UserControl’s resources collection via UserControl.Resources, you
can access the Grid’s resources collection via Grid.Resources:

<Grid x:Name=”LayoutRoot”>
 <Grid.Resources>
 <!-- Add Local Resources Here. Only items within this Grid have
 access to these resources -->
 </Grid.Resources>
</Grid>

Littering your UserControl with localized Resources is generally not the best approach. You’ll end up
with resources scattered throughout your page and have a hard time tracking down your styling bugs.
However, for those times when you need to scope your resources, you now know that you have local-
ized resources at your disposal.

Thus, the discussion of organization is really a discussion of scope. If you want your entire Silverlight
application to have access to a resource, you need to add that resource to App.xaml. Every page loaded
in your Silverlight application will have access to resources defined in App.xaml.

External ResourceDictionaries
External ResourceDictionaries do not have an inherent scope. Their scope is determined by the scope
of the MergedDictionary where they’re referenced. If they are referenced in App.xaml, they will have an
Application-wide scope. Likewise, if they are referenced by a Grid defined within UserControl2.xaml,
they will be scoped to that Grid.

Organizing Resources
We’ve already looked at where resources can be defined; now let’s look at one approach for organizing
your resources within those locations. Often, the organization of resources is an afterthought, some-
thing that you come back to as part of your cleanup phase once you have everything working. When
you choose to organize your resources is really dependent on your workflow requirements. If you’re a
single developer working on a project, the resource organization is more for your own sanity than the
sanity of others, so you can do this when you please. If you’re a member of a team, collaborating with
both designers and developers, it makes sense to organize your resources early, providing both consis-
tency and clarity for team members.

In applications with a large number of resources, it generally makes sense to organize your resources
into external ResourceDictionaries. Start by creating a Resources folder in your project, and then
group your resources by shared type or shared purpose:

Define common brushes in one ResourceDictionary.

Define non-Style or non-Template related resources (i.e., CornerRadius, Thickness, etc.) in their own
ResourceDictionary.

145

Chapter 8: Styling Your App and Dealing with Resources

Define Styles, grouped by control type (i.e., all Buttons together).

Define Styles for related controls (i.e., ComboBox and its subcontrols).

Below is a sample folder structure to give you a better idea:

\[ProjectName]\
 \Resources
 \Brushes.xaml
 \Buttons.xaml
 \CommonControls.xaml
 \MainMenuBrushes.xaml
 \MainMenuControls.xaml

It’s important to get into the habit of creating centralized styles and brushes for use throughout your
application. It may feel like extra work at first, but in the end, it empowers you and your team to refine
the application much more quickly than they could if everything were defined inline.

Resource Naming
Just as there are best practices for naming variables within an application, there are best practices for
naming resources. And, just like strategies for naming variables, with a little Web searching, you can
find some heated debates as to which approach is the best. As I did with the previous section on organi-
zation, I’m just going to present you with a few guidelines to get you started. How you evolve this and
make this work within your organization is entirely up to you.

Brush Naming: Template/Style-Specific Brushes
When naming brushes that are specific to certain Styles and Templates, try to tie the name of the brush
to the Style, to elements within the Style, and to the state of the control represented by the brush. For
example:

ControlNameStateElementNameFill

Here are three hypothetical brushes used by the PlayButton style:

PlayButtonNormalOuterBorderFill
PlayButtonHoverOuterBorderFill
PlayButtonPressedOuterBorderFill

Here are three additional brushes that will be applied to the BorderBrush of the OuterBorder element
contained within the PlayButton template:

PlayButtonNormalOuterBorderBorderBrush
PlayButtonHoverOuterBorderBorderBrush
PlayButtonPressedOuterBorderBorrderBrush

146

Part II: Using Silverlight 3 Essentials

Brush Naming: Non-Template Brushes
Name brushes for elements within your applications in a way that makes sense to you and
your team. Using the name BackgroundBrush, for example, is quite vague. Instead, use the name
ApplicationBackgroundBrush or MainMenuBackgroundBrush. It’s important that your brush nam-
ing map to the element-naming conventions you’ve decided on for your application. Consistency
here is key. If you have a UserControl named MenuArea, don’t name the brush that is applied as the
MenuArea’s background BackgroundRegionMenu; instead, name it MenuAreaBackground. Furthermore,
name additional MenuArea brushes and resources with the MenuArea prefix: MenuAreaForeground,
MenuAreaCornerRadius, and so forth.

Again, consistency is key here. Define a naming convention that is logical for your team, that is repeat-
able, and that is readable; and follow that convention religiously.

Style/Template Naming
When naming styles, include the control’s TargetType in your key (PlayButtonStyle, PlayButtonTemplate,
VolumeSliderStyle). This lets you quickly identify the control type without having to rely on additional
information that the IDE might provide you with (via an icon or additional label).

Summary
You should now have a solid mental image of what the term styling means in the context of Silverlight.
We started with the very basic approach of setting properties on controls. We then replaced those prop-
erty values with resources that represented the property type (a SolidColorBrush resource was the first).
From there, we looked at setting more and more properties with inline StaticResource references and
welcomed the clarity, and brevity, that the Style object provides. With all of our property setters moved
to a centralized Style, we considered the highest degree of control customization possible: template editing.
We saw how powerful template editing is and learned how TemplateBinding ties specific elements within
the template to the properties of our lookless control. We concluded our journey with a brief examination of
resource scope and naming/organization conventions.

As I mentioned at the start of this chapter, learning to style Silverlight apps starts at a technical, and
somewhat unbeautiful, level. I’ve laid the groundwork for your technical understanding; it’s now up to
you to make something of it!

Using Graphics and Visuals

Silverlight includes all of the core primitive elements you would expect in a platform designed
to provide a compelling visual experience. These basic elements include the Rectangle, Ellipse,
Path, Image, and MediaElement controls. When listed, these controls can seem basic and boring,
yet impressively complex visuals can be created from this simple toolset. In addition to these base
controls, Silverlight 3 adds bitmap effects, support for HLSL shaders, and Perspective 3D. These
last three items can empower a limitless array of visual effects in your applications. In this chap-
ter, we’ll start by covering the basic building block controls and how they are defined in XAML
to provide a firm foundation of understanding. Along the way, you’ll see how to use Blend to
save some time manually creating these elements. We’ll then see how both effects and 3D can fit
into your application and look at the tooling that supports them. We’ll wrap up our discussion by
looking at design tools other than Blend and discuss how those tools can fit into your Silverlight
workflow.

The Basics
Let’s get started by looking at the core Silverlight controls at your disposal to create visuals. We’ll
look at each control individually and cover XAML composition of that control. Along the way, I’ll
try to point out things you need to be aware of when working with particular controls.

Rectangles and Borders
The Rectangle control can serve as a foundation for many UI elements. Most controls that you
interact with on a daily basis are rectangular in nature: buttons, scrollbars, header element back-
ground, and so forth. Generally, these controls are not composed of a single rectangle, but mul-
tiple layered rectangles, each with varying shades of opacity, margins, and fills. Together these
rectangles form the visuals you have come to expect from modern operating systems and applica-
tions. Figure 9-1 calls out the nested rectangles used to create the Office 2007 Ribbon control and
the default Silverlight button.

9

148

Part II: Using Silverlight 3 Essentials

Figure 9-1

The following XAML defines a lime-green Rectangle that is 100 pixels wide by 20 pixels tall:

<Rectangle Width=”100” Height=”20” Fill=”#FFCCFF00” />

Rounded Corners
You should have noticed in Figure 9-1 that both examples had rounded corners. This is easily achieved
in Silverlight by setting the RadiusX and RadiusY properties on the Rectangle control. The following
XAML defines a Rectangle with uniformly rounded corners, each with a 5-pixel corner radius:

<Rectangle Height=”20” Width=”100” Fill=”#CCFF00” RadiusX=”5” RadiusY=”5” />

Both the RadiusX and RadiusY properties have the same value as in the previous example. These values
do not have to be the same, however. By increasing the value on either axis, you’ll see that the corner
begins to skew either horizontally or vertically, depending on which property value is greater. Figure 9-2
demonstrates the effect on each axis when one corner radius value is greater than the other.

Figure 9-2

Pixel-Based Values
It’s important to note once again that the corner radius values are pixel-based and not percentage-based.
So, if you set the corner radius to 5, the amount of curvature on each corner will remain the same whether
your rectangle is 100 pixels wide or 100 pixels high. Some design programs store the corner radius as a
percentage of the object’s size, so a corner radius of 10 would be 10 pixels for a rectangle 100 pixels wide
and 100 pixels for a rectangle 1,000 pixels wide. That is always frustrating for me, so I’m glad Silverlight
implements these as pixel values rather than percentage values.

Rectangle versus Border
You may be wondering why Border is included in a discussion about drawing primitives. The Border
control is actually a FrameworkElement-derived control that can accept child content, and not a primi-
tive drawing element. The Border control provides a key feature that the Rectangle control does not —
individual control over each corner’s radius! This means that you can have a “rectangle” whose top-left
and top-right corners are rounded, while its bottom corners remain square. With the Rectangle control,
it’s an all-or-nothing proposition. The following XAML defines a lime-green Border that is 100 pixels
wide by 20 pixels tall, with its top-left and top-right corners rounded on a 5-pixel radius:

<Border Width=”100” Height=”20” Background=”#FFCCFF00”
CornerRadius=”5,5,0,0” />

149

Chapter 9: Using Graphics and Visuals

The Border’s CornerRadius property provides the corner-by-corner flexibility that makes this control
so useful. The CornerRadius property has four properties that let you specify the corner radius for each
corner: TopLeft, TopRight, BottomRight, and BottomLeft. The previous XAML demonstrates how these
properties can be set inline with comma-delimited values. The following pseudo-XAML represents the
order in which these values are applied to each corner:

<Border CornerRadius=”TopLeft, TopRight, BottomRight, BottomLeft” />

Additional Notes
The Border element, unlike the Rectangle, has a Child property and supports nested content. This means
that you can create a series of nested Borders housed by a single parent Border. You set the Padding prop-
erty on each Border to create inset effects with each child Border. The following XAML demonstrates
how three nested Borders can be used to create a shiny button, as shown in Figure 9-3:

<Border
 Opacity=”1”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”281.031005859375,250,0,0”
 CornerRadius=”14.805,14.805,14.805,14.805”
 Background=”#ccff00” Width=”208” Height=”63” Padding=”2,2,2,2”>
 <Border
 Opacity=”1”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 CornerRadius=”14.1,14.1,14.1,14.1”>
 <Border.Background>
 <LinearGradientBrush
 StartPoint=”0.5098039215686274,0.35”
 EndPoint=”0.5098039215686274,1.0478118896484374”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop
 Color=”#00ccff00”
 Offset=”0” />
 <GradientStop
 Color=”#FF5e7500”
 Offset=”1” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.Background>
 <Border
 Opacity=”1”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 Margin=”0,0,0,27”
 CornerRadius=”13.8,13.8,13.8,13.8”>
 <Border.Background>
 <LinearGradientBrush
 StartPoint=”0.3872549019607843,-0.08571428571428572”

150

Part II: Using Silverlight 3 Essentials

 EndPoint=”0.3872549019607843,1.2612723214285715”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop
 Color=”#FFffffff”
 Offset=”0” />
 <GradientStop
 Color=”#00ffffff”
 Offset=”1” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.Background>
 </Border>
 </Border>
</Border>

Figure 9-3

So, you now have two tools in your arsenal to create rectangle-based shapes. The Rectangle is a lighter
control, so you’ll probably want to go with it for most cases, but, when you need to specifically target
individual corners, the Border is your best friend.

Ellipses
The Ellipse control is used to define both circles and ellipses and is just as easy to define as the
Rectangle. In fact, the following XAML is the same XAML we started with for Rectangle but with the
term Ellipse instead of Rectangle:

<Ellipse Width=”100” Height=”20” Fill=”#FFCCFF00” />

This XAML results in an oval 100 pixels wide by 20 pixels high, as shown in Figure 9-4.

Figure 9-4

To create a circle, just set the Height and Width to the same value.

151

Chapter 9: Using Graphics and Visuals

Paths
While the Rectangle and Ellipse controls are used to customize predefined, familiar shapes, the
Path control is used to represent any shape. Like the Rectangle and Ellipse, the Path control includes
Height and Width properties, but unlike Rectangle or Ellipse, the Path control has a Data property
that is used to define the point data that makes up the shape. And while you can hand-code the path
data, you’ll likely only do that in the most basic of cases, and only then for simple shapes or purely
intellectual exercises. Generally, you’ll rely on a tool like Expression Blend (or one of several design
tools discussed later).

Let’s start by looking at simple path data, then move on to additional properties on the Path control that
define the way the shape is ultimately rendered. The following XAML defines a 10 × 10 square purely
using path data:

<Path
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Stroke=”#FF000000” Data=”M0,0 L10,0 L10,10 L0,10 L0,0 z”/>

Figure 9-5 shows this Path rendered in Expression Blend.

Figure 9-5

The path data “M0,0 L10,0 L10,10 L0,10 L0,0 z” may look a little cryptic at first, but once you know
the basic structure, I think you’ll find it quite readable. All paths consist of a starting point (defined
by an X,Y-coordinate pair), followed by a series of subsequent points. In the data string for this rect-
angle path, try replacing M with “MoveTo” and L with “LineTo.” The result reads more like a sentence:
“MoveTo 0,0 LineTo 10,0 LineTo 10,10 LineTo 0,10 LineTo 0,0 z”. The z closes the path.

The next XAML defines a circle purely using path data:

<Path Fill=”#FFCCFF00” Stretch=”Fill” Stroke=”#FF000000”
 Data=”M50.147999,25.323999 C50.147999,39.033916 39.033916,50.147999
25.323999,50.147999 C11.614083,50.147999 0.5,39.033916 0.5,25.323999 C0.5,11.614083
11.614083,0.5 25.323999,0.5 C39.033916,0.5 50.147999,11.614083 50.147999,25.323999
z” />

152

Part II: Using Silverlight 3 Essentials

Figure 9-6 shows this path rendered in Expression Blend.

Figure 9-6

Whereas the rectangle’s path data consists of a series of straight lines, the circle consists of a series of
curves. Instead of a simple X,Y pair representing each point on the path, the circle’s points are represented
by three X,Y pairs to define a Bezier point. The first and third X,Y pairs define the tension handles, while
the second pair defines the anchor point. Figure 9-7 shows a selected point in Expression Blend. The
selected point is solid blue, with its two tension points denoted by circles drawn at the end of the tan-
gent line.

The path data “M50.147999,25.323999 C50.147999,39.033916 39.033916,50.147999
25.323999,50.147999 C11.614083,50.147999 0.5,39.033916 0.5,25.323999 C0.5,11.614083
11.614083,0.5 25.323999,0.5 C39.033916,0.5 50.147999,11.614083 50.147999,25.323999 z” for
the circle is a bit more complex than that of the rectangle, but again we’ll do a little string substitution
and the data will read like a sentence. This time, replace M with “MoveTo” and C with “CurveTo.” You’ll
end up with a sentence that reads like “MoveTo x,y CurveTo x,y x,y x,y CurveTo x,y x,y x,y…“.

Figure 9-7

153

Chapter 9: Using Graphics and Visuals

The following XAML mixes things up a bit by combining both LineTo and CurveTo points:

Data=”M74.833336,76.333336 L85.5,76.333336 C85.5,76.333336 87.666351,83.250168
80.083427,83.250168 C72.500504,83.250168 74.833336,76.333336 74.833336,76.333336 z”

With your new understanding of the path data syntax, you can now recognize that this path starts with
a line segment, followed by two Bezier points. However, unless you’re some type of savant, you probably
can’t read the data and immediately picture the path that will be rendered. That’s why, as I said before,
you’ll likely use a design tool to define paths.

Try removing the closing z and see what your Path looks like. Its absence will be
more noticeable if you’ve set both the Stroke and StrokeThickness properties and
if your last point is a considerable distance away from your starting point.

Defining the Path Resize Behavior
When we defined the rectangle as a Path, the first point of our path data was (0,0). However, when
we drew the circle, the starting point was approximately (75,76). When the circle was rendered on the
screen, it didn’t actually start at the point (75,76). Instead, Silverlight drew the circle artwork based on
several properties on the Path control, taking into account the Path’s Width, Height, HorizontalAlignment,
VerticalAlignment, and Margin. The underlying path data was normalized to the top-left corner of the
Path control.

When the Path control is resized, the actual size of the control will differ from that of the underlying
path data. You can define how the underlying data is rendered by setting the Stretch property. The
Stretch property accepts one of the following values:

Fill❑❑ (Default) — The artwork is stretched both vertically and horizontally, filling the Path
control. This is the behavior you most likely expect if you are coming to Silverlight from the
design world.

None❑❑ — The underlying artwork does not stretch at all.

In practice, the behavior when set to None is the same as when set to Fill.

Uniform❑❑ — The underlying artwork maintains its original shape and aspect ratio, while scaling
to fit within the control. With this mode the shape is always drawn in its entirety.

UniformToFill❑❑ — The underlying artwork maintains its original shape and aspect ratio,
although if the aspect ratio of the containing Path control differs from the underlying path data,
the path will be clipped.

Figure 9-8 demonstrates how these different stretch modes affect the final rendering of a Path.

154

Part II: Using Silverlight 3 Essentials

Figure 9-8

Images and Media
Images and media are dealt with similarly in Silverlight. Each has a specialized control that points to a
source image or media file. The image or media can be either a file included in the project or an external
file, possibly residing on a remote server. We’ll start by looking at the Image control, then move on to
the MediaElement control. Once we’ve covered the Image control, there will just be a few more things to
add to bring you up to speed with MediaElement.

Images
Even though Silverlight provides a vector-based rendering and layout engine, you’re likely to use
Images in your Silverlight applications. Whether you’re creating a photo-browser, using an existing
image-based icon library, or working with artwork from your design team, I’m sure you’ll encounter the
need to use an image at some point in your Silverlight career.

Image Control
The Image control is used to display bitmap images in your Silverlight applications. The following
XAML demonstrates how to display a photo that is 640 × 480 pixels in dimension, positioned 25 pixels
from the left and top of its parent Grid:

<Image
 Source=”myPhoto.jpg”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”25,25,0,0”
Stretch=”Uniform” Width=”640” />

Notice that the Image control has a Stretch property, just like the Path control. And, like the Path con-
trol, the available values for Stretch are Fill, None, Uniform, and UniformToFill. See the previous
section, “Defining the Path Resize Behavior,” to understand how these values affect the way the Image
is resized.

If the Height and Width are not set or other sizing constraints (such as Margins) are not in place, the
Image will be displayed at the native size of the underlying source image.

Referencing Images
Images referenced via the Image control can be images compiled into the containing assembly, images
that live inside the XAP file as siblings to your compiled assembly, images compiled as resources in

155

Chapter 9: Using Graphics and Visuals

other assemblies, loose images on your server (outside of the XAP), or images on a remote server. Let’s
look at how each of these approaches is achieved and the pros and cons of each.

Compiled Images
An image is compiled into your project’s assembly when its Build Action is set to Resource. This is the
default approach taken by Blend when you first reference an image.

This is the same behavior you see in Flash when an image is imported and dragged onto the stage. It is
compiled into the swf file and does affect file size.

Adding an Image in Blend
The Image control in Blend is not exposed in the main toolbox. You have to open the Asset Library,
expand Controls, and select All, as shown in Figure 9-9. Select Image to make it the active control. You
can now draw an Image control on the canvas, just like you create a rectangle, or you can double-click
on the Image icon to add a default-sized Image to the canvas.

Figure 9-9

Setting the Image Source
Once you’ve added an Image control to the surface, you need to set its Source property using the
Property panel. The Source property is found in the Common Properties category. If you’ve already
added images to your project, those images should appear in the Source combobox. In Figure 9-10, you
can click on the ellipses to launch a File Browser dialog.

Figure 9-10

156

Part II: Using Silverlight 3 Essentials

Once you’ve selected an image, that image will be copied to your project directory and added to the
root folder of your project. Behind the scenes, the file’s Build Action will be set to Resource. This is not
something that you can change via the Blend interface, but you can do so in Visual Studio. Figure 9-11
highlights both the Build Action and the Copy to Local Directory properties that are available in Visual
Studio’s Properties Window when a file is selected. The scenarios that follow will require that you
change these properties.

Figure 9-11

Referencing the Image in XAML

Reference an embedded image using a relative URL. If the image is in the root folder of your project,
you simply type its name. If the image is in a subfolder, such as Images, include the entire relative path.
For example, the following XAML references an image stored in the Images/Icons subfolder of the proj-
ect directory:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
Source=”images/icons/iconHome.jpg”/>

You can also use a path that explicitly references the assembly this image is housed in. If your
Silverlight project name is MyProject, then the previous XAML could be replaced by the following:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
Source=”MyProject;component/images/icons/iconHome.jpg”/>

The text in bold is key: MyProject;component/.

The text MyProject should be replaced with the name of your project, but ;component/ should remain
at all times.

Pros❑❑ — Image is available immediately; simple relative path references; no security issues.

Cons❑❑ — Large images or large numbers of small images can bloat the assembly size and
increase page load time.

157

Chapter 9: Using Graphics and Visuals

XAP File Images
An image is included in the XAP file and is not compiled into the assembly when its Build Action is set
to Content. When configured as Content, image files do not bloat the size of your project assembly, but
they do continue to bloat the size of the XAP file. You might want to do this if you will be reusing the
project assembly, but not the resources.

Referencing the Image in XAML

When images are included this way, you need to add a forward slash “/” before the path to the image:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
Source=”/images/icons/iconHome.jpg”/>

Pros❑❑ — Image is available immediately; simple relative path references; no security issues;
assembly size is reduced.

Cons❑❑ — Large images or large numbers of small images can bloat the XAP size and increase
page load time.

Loose Images
You can add images to your project that are not compiled into the project assembly or added to the XAP
file. These files do not bloat either the assembly or the XAP file. To achieve this scenario, set the Build
Action of your image to None and “Copy to Local Directory” to “Copy Always” or “Copy if Newer.”

Referencing the Image in XAML

Use the same syntax that you used with XAP File Images, adding a forward slash to the URI:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
Source=”/images/icons/iconHome.jpg”/>

Pros❑❑ — Assembly size is reduced; XAP size is reduced (faster page load time).

Cons❑❑ — Image is not loaded at page load; image loads asynchronously after the XAP is
downloaded.

Use this scenario when you want to create a very lightweight, quick-loading application. You can then
use the WebClient to download the image asynchronously and provide a “loading” experience.

Images in Other Assemblies
Just as images can be compiled in your main project assembly, images can be compiled in additional
resource assemblies. These could be assemblies that you create yourself or they could be third-party
assemblies. And, just like referencing images embedded in the project assembly, images in other assem-
blies can be referenced in XAML using a special syntax.

158

Part II: Using Silverlight 3 Essentials

Referencing the Image in XAML

The following XAML references an image named alienFace.png defined in an assembly named
AlienImages.dll:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
Source=”AlienImages;component/images/alienFace.png”/>

This syntax should look familiar to you — it’s the same alternative syntax shown in the “Compiled
Images” section previously. The only thing that has changed is the assembly name. It should be com-
forting to know that the URI for referencing resources is the same whether it is defined in the main
project assembly or a referenced assembly.

Pros❑❑ — Assembly size is reduced; XAP size is (potentially) increased, as referenced assemblies
grow in size; separates visuals from application logic.

Cons❑❑ — Images can be renamed or removed if you are not in control of the resource assem-
bly; increases the number of projects you must maintain (if you are in control of the resource
assembly).

Images on Other Domains
When you want to access an image on a remote server (like flickr or photobucket, or a friend’s site), you
can use the fully qualified URL to access the image:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0”
Source=”http://www.remotewebsite.com/images/targetImage.png”/>

However, Silverlight’s security policies will prevent the remote image from loading if the remote site
does not have a security manifest file in place that grants you access. For all the gory details on security
policies, see Chapter 11.

Pros❑❑ — Enables your cross-domain needs.

Cons❑❑ — Cannot rely on image being at URI; requires security policies.

Image Summary
Which Build Action you choose is ultimately up to the priorities and reliance on images of your applica-
tion. If you are using just a few images relatively small in size, embedding the images in your assembly
probably makes sense. If your project is image-intensive and intended to load gracefully for users with
limited bandwidth, going with a loose image solution is probably the right move for you. It will let you
create a fast startup experience that then relies on asynchronous image-loading.

MediaElement
Adding video to your Silverlight application is just as easy as adding an image using the Image control.
Only, instead of using the Image control, you use the MediaElement control. With the exception of a
few additional properties and methods, working with media is practically the same as working with

159

Chapter 9: Using Graphics and Visuals

images. In fact, you can pretty much re-read the previous section about images and replace Image with
MediaElement.

Adding a Video in Blend
Like the Image control, the MediaElement control is accessed by launching Blend’s Asset Library,
expanding Controls, and selecting All. Figure 9-12 shows the MediaElement control in the Asset Library.

Figure 9-12

Create an instance of the MediaElement by dragging a rectangle on the design surface or double-clicking
on the control’s icon once selected. With the MediaElement selected on the design surface, you can select
a Source file by clicking the ellipses next to the Source property. Figure 9-13 shows the Source property
in Blend’s Media category.

Figure 9-13

Once you’ve selected a supported media file, it will be added to your project with a Build Action of Content
and a “Copy to Output Directory” setting of “Copy if Newer.” You can modify these settings in Visual
Studio to meet your needs. See the previous section, “Referencing Images,” to understand the various
options afforded to you by changing the values of these two properties.

This section on MediaElement just touches on adding a MediaElement to your page. For a much more
in-depth look at this control, see Chapter 10.

160

Part II: Using Silverlight 3 Essentials

Brushes
In Silverlight, brushes are used to paint elements on your page. These brushes can be solid color values,
linear or radial gradients, or even images. In this section, we’ll look at the base XAML definitions for
each of these, then look at how you can define and edit brushes in Expression Blend.

SolidColorBrush
The SolidColorBrush is used to paint elements with a (surprise, surprise) solid color. The following
XAML shows how to define a SolidColorBrush and set its color property:

<SolidColorBrush Color=”#FFCCFF00”/>

Generally, when applying a solid color to an object, you just set its appropriate Brush property (Fill,
Stroke, Background, or Border) inline:

<Rectangle Height=”20” Width=”100” Fill=”#CCFF00” />

You would only need to use the full SolidColorBrush definition when you are creating Resources of
type SolidColorBrush. However, you can use the full syntax:

<Rectangle Height=”20” Width=”100”>
 <Rectangle.Fill>
 <SolidColorBrush Color=”#FFCCFF00”/>
 </Rectangle.Fill>
</Rectangle>

LinearGradientBrush
Gradients are used in applications of every flavor (desktop, Web, mobile) to create a modern, pol-
ished experience. Through skilled techniques, artists can create glass effects, reflection effects,
and subtle transitions that draw the eye from one area to the next. In Silverlight, you’ll use the
LinearGradientBrush to achieve such feats. The following XAML defines a (boring) black-to-white,
vertical gradient:

 <LinearGradientBrush StartPoint=”0.5,0” EndPoint=”0.5,1”>
 <GradientStop Color=”#FF000000” Offset=”0”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”1”/>
</LinearGradientBrush>

To define the direction of the gradient, you must specify both a StartPoint and an EndPoint. The value
of each of these properties is an ordered pair that specifies a point in a normalized 1 × 1 square, where 1
actually represents 100 percent. When the control is rendered, this imaginary square stretches from the
top-left corner of the object’s bounding box (0,0) to the lower-right corner of the object’s bounding box
(1,1).

Figure 9-14 shows what the directional handles look like for the previous LinearGradientBrush.

161

Chapter 9: Using Graphics and Visuals

Figure 9-14

In addition to defining the StartPoint and EndPoint for the brush, you also define a collection of
GradientStops. Each GradientStop consists of a Color and Offset. The Color property accepts a
Color using the #AARRGGBB notation, just like the SolidColorBrush, and the Offset accepts a double-
precision value between 0 and 1. The Offset is used to define the order of the each GradientStop.

When two GradientStops share the same Offset value, the Silverlight renderer relies on the order in
which the GradientStops appear in XAML when drawing the gradient.

RadialGradientBrush
The RadialGradientBrush can be used to define both radial and elliptical gradients. Like the
LinearGradientBrush, the RadialGradientBrush accepts a collection of GradientStops. The following
XAML creates a radial gradient that goes from blue in the center to white:

 <RadialGradientBrush>
 <GradientStop Color=”#FF65BADA” Offset=”0”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”1”/>
</RadialGradientBrush>

By default, the radial gradient is drawn from the center of the object it is being applied to in a symmetri-
cal fashion. However, by adjusting the following properties, you can achieve a wide range of variations:

Center❑❑

RadiusX❑❑

RadiusY❑❑

GradientOrigin❑❑

162

Part II: Using Silverlight 3 Essentials

The first three properties work together to define an ellipse within which a gradient is drawn. Just like
the LinearGradientBrush, you need to imagine a 1 × 1 normalized box that starts at the top-left corner
of the target object’s bounding box and stretches to the lower-right corner of the target object’s bound-
ing box. The values of all four of these properties lie within the 0 . . . 1 range and are applied across this
imaginary box. Figure 9-15 demonstrates how changing the values of Center, RadiusX, and RadiusY
affect the ellipse within which the gradient is drawn.

Figure 9-15

By default, Center is set to 0.5,0.5, and both RadiusX and RadiusY are set to 0.5. This is the first example
shown in Figure 9-15. Once you’ve defined the ellipse, you need to specify a GradientOrigin.

You can think of the GradientOrigin almost like a light source, with the GradientStops radiating from
the GradientOrigin to the edge of the ellipse defined by the Center, RadiusX, and RadiusY properties.
Each ray is drawn from the GradientOrigin (offset 0) to the edge of the ellipse (offset 1). Figure 9-16 shows
how various values of GradientOrigin affect the final rendering.

Figure 9-16

163

Chapter 9: Using Graphics and Visuals

ImageBrush
The ImageBrush is used to paint objects with images. You can use an ImageBrush for any Brush-derived
property, like the Path’s Fill property or the TextBlock’s Foreground property. When applied, the
image referenced by the ImageBrush is painted within the bounds of the object. The following XAML
defines an ImageBrush resource whose ImageSource property references a wood-textured image:

 <Grid
 Height=”Auto”
 Background=”{x:Null}”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”29,30,0,0” Width=”Auto”>
 <Grid.Resources>
 <ImageBrush
 x:Key=”Brush1”
 Stretch=”UniformToFill”
 ImageSource=”wood.png”
 />
 </Grid.Resources>
 <Border
 Opacity=”1”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 Margin=”0,0,0,0”
 Background=”{StaticResource Brush1}” Width=”125” Height=”125” />
 <Ellipse HorizontalAlignment=”Left” Margin=”147,0,-126,-1”
 Width=”125” Fill=”{StaticResource Brush1}” Stroke=”#FF000000”
 Height=”125”/>
 <TextBlock HorizontalAlignment=”Left” Margin=”285,62,0,0”
 VerticalAlignment=”Center” FontFamily=”Arial Black” FontSize=”48”
 Text=”WOOD” TextWrapping=”NoWrap”
 Foreground=”{StaticResource Brush1}”/>
</Grid>

Figure 9-17 shows the result of the previous XAML — an ImageBrush applied to Border, Ellipse, and
TextBlock objects.

Figure 9-17

Just like the Image control, the ImageBrush control has a Stretch property that defines the way the
source image is rendered when the object being painted is not the same size as the underlying image.
And, as we’ve seen before, the values for Stretch can be None, Fill, Uniform, and UniformToFill.

164

Part II: Using Silverlight 3 Essentials

VideoBrush
Just as you can paint an object with an image, you can paint an object with video! While a lot of the
samples demonstrating this may seem a bit frivolous (like animated text with video painted on it), being
able to paint elements with video can enable some really interesting visual effects. Just for fun, I’ll show
you how to paint text with video anyway.

Instead of simply setting a Source property on the VideoBrush (as we did with ImageBrush), you first
have to define a MediaElement and give it a name. You then consume the MediaElement with the
VideoBrush by setting its SourceName property to the name of the MediaElement you just created. You
can then apply the VideoBrush to your target object just like any of the previous brushes we’ve looked at.

The following XAML defines a MediaElement and sets its name to sourceMediaElement:

<MediaElement
 x:Name=”sourceMediaElement”
 Source=”SampleVideo.wmv” IsMuted=”True” Opacity=”0”
 IsHitTestVisible=”False” />

In addition to giving the MediaElement a name, I also set Opacity to 0, IsHitTestVisible to False,
and IsMuted to True. Together these properties ensure that the MediaElement itself is neither seen nor
heard nor able to intercept mouse clicks. The following XAML defines a VideoBrush that references this
MediaElement. The VideoBrush is then applied to the Foreground of a TextBlock:

<TextBlock
 FontFamily=”Arial Black” FontSize=”48” Text=”VIDEO”
 TextWrapping=”NoWrap”>

 <TextBlock.Foreground>
 <VideoBrush SourceName=”sourceMediaElement”
 Stretch=”UniformToFill” />
 </TextBlock.Foreground>
</TextBlock>

Editing Brushes in Blend
You’ve now seen how to define the various brush types by hand. Now it’s time to take a look at how
these same brushes can be created using Microsoft Expression Blend. Blend provides a brush-editing
experience similar to other design programs you may have experienced before, reducing the labor of
hand-typing GradientStops to simple, familiar user-interface conventions. Don’t feel that the previous
XAML-focused exercise was a waste, however — you now have a solid understanding of what’s hap-
pening behind the scenes, and you’re prepared to hand-tweak the designer-generated brushes when
they just don’t follow your every need.

Using the Brush Editor
Properties such as Fill, Background, Stroke, and Foreground all accept values of type Brush.
We’ve just seen how Silverlight supports brushes of type SolidColorBrush, LinearGradientBrush,
RadialGradientBrush, ImageBrush, and VideoBrush. A simple text field will obviously not work for

165

Chapter 9: Using Graphics and Visuals

this type of property. Enter the Brush editor, a tool that should look familiar to users of modern design
programs.

In Figure 9-18, an ellipse is selected on the canvas whose Fill property is set to a
LinearGradientBrush. On the right, the Brushes category is expanded (select the Properties tab in
Blend if you haven’t already). Notice the list of brush properties at the very top of this category. You’ll
see the Fill, Stroke, and OpacityMask brush properties listed. You can tell that Fill is the active
property because it’s highlighted with a light-gray background. Pay attention to two other details here
also: the brush preview drawn adjacent to the property name, and the white marker directly next to the
preview.

Figure 9-18

You can use the preview to glance and quickly determine the brush values that are applied to the cur-
rently selected object. The white box is known as a marker and launches a context menu for the property.
Clicking it reveals a menu that lets you reset the property value, among other things. You can see that
neither the Stroke nor the OpacityMask properties in Figure 9-18 have values set because their markers
are both grayed out.

Applying a Brush Value
The Brush editor is divided into four tabs, one for each brush type available. Click on the first tab to
clear the brush value. Click on the second tab to specify a SolidColorBrush, click on the third tab to
specify a GradientBrush, and click on the fourth tab to select a brush resource.

Solid Color Brushes
When you specify a SolidColorBrush, the Brush editor interface appears as shown in Figure 9-19.

Although this editor may appear a little complicated at first glance, it is actually quite simple and just
provides multiple ways to achieve the same task. You can quickly change the color by clicking any-
where in the large color area, indicated by the mouse cursor in Figure 9-19. Change the hue by dragging
the Hue slider or clicking anywhere along the hue range.

166

Part II: Using Silverlight 3 Essentials

Figure 9-19

As you change the hue or choose different colors, the R, G, and B values will be updated accordingly.
These are the Red, Green, and Blue color components of the selected color, respectively. Each compo-
nent has a range from 0 to 255. The “A” entry listed beneath R, G, and B stands for Alpha (Transparency)
and has a value range from 0 percent to 100 percent, where 0 represents fully transparent and 100
represents fully opaque. You can also specify the color by typing in an #AARRGGBB hexadecimal
representation. The hexadecimal box will accept RRGGBB values if you paste in from a paint program
that doesn’t include an Alpha value, so it’s a quick way to bring over color values if you have them
elsewhere.

Gradient Brushes
Click on the third tab in the Brush editor to specify a GradientBrush. By default, a LinearGradientBrush
will be applied to your selected object. You can toggle between LinearGradientBrush and
RadialGradientBrush by clicking either of the two “Gradient Type” buttons located in the lower-left
corner of the editor (as shown in Figure 9-20).

Figure 9-20

167

Chapter 9: Using Graphics and Visuals

The GradientBrush editor builds on the SolidColorBrush editor by adding a gradient preview rect-
angle. The preview includes draggable swatches that represent GradientStops. Simply click a swatch to
make it the active swatch. In Figure 9-20, the rightmost swatch is active, indicated by its black border.

Adding Stops❑❑ — Add additional GradientStops by clicking anywhere in the preview rectangle
that does not already include a stop.

Moving Stops❑❑ — Change the position and order of stops by pressing and dragging the target
stop.

Deleting Stops❑❑ — Remove GradientStops by dragging the stop down and away from the rect-
angle preview. Release when the stop disappears.

Precision Editing❑❑ — When editing gradients that require extreme precision, such as the sharp
highlight shown in Figure 9-21, you may find that the visual editor is not precise enough for you.

Figure 9-21

In Figure 9-22, the second stop from the left is actually two stops. Their offsets are so close that they
appear to be a single stop. Achieving this level of precision is frustrating if not impossible using the edi-
tor itself. Fortunately, you can actually edit the GradientStops in XAML. Jump directly to the XAML
for your selected rectangle by right-clicking on it in the Object tree and selecting “View XAML” from
the context menu.

Figure 9-22

The following code shows the XAML used to define the gradient shown in Figure 9-22:

<Rectangle
 Opacity=“1“
 Canvas.Left=“689“
 Canvas.Top=“114“
 Width=“128“
 Height=“35t“>
 <Rectangle.Fill>
 <LinearGradientBrush
 StartPoint=“0.9334821701049805,0.05263148716517857“
 EndPoint=“0.9334821701049805,0.9473685128348214“>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>

168

Part II: Using Silverlight 3 Essentials

 <GradientStop
 Color=“#FFd3ddab“
 Offset=“0“ />
 <GradientStop
 Color=“#FF819d35“
 Offset=“0.49“ />
 <GradientStop
 Color=“#FF739221“
 Offset=“0.49“ />
 <GradientStop
 Color=“#FF678822“
 Offset=“0.79“ />
 <GradientStop
 Color=“#FFBBC749“
 Offset=“0.92t“ />
 <GradientStop
 Color=“#FFdbde58“
 Offset=“1“ />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Notice the two stops with Offset values of 0.49. Remember, when two stops have the same Offset value,
they are rendered in the order they’re defined in XAML. This gives you the ability to create sharp lines
in your gradients. Achieving this level of precision is just not possible with the current Gradient editor.
Any time you find yourself having troubles getting your gradient to look exactly right, jump to the XAML
and manually tweak the Offset values.

ImageBrushes
ImageBrushes can be quickly created from existing Images on the design surface in Blend. First, create an
instance of the Image control and set its Source property to an image you want to use as an ImageBrush.
With the Image selected, navigate to “Make ImageBrush Resource” on the main menu, as shown in
Figure 9-23.

Tools > Make Brush Resource > Make ImageBrush Resource…

Figure 9-23

After selecting “Make ImageBrush Resource,” you will be prompted to specify both a Key and a loca-
tion for the ImageBrush resource. In Figure 9-24, I gave my brush the name tiledImageBackgroundBrush
and selected UserControl as the location where I want the resource defined.

169

Chapter 9: Using Graphics and Visuals

Figure 9-24

After clicking OK, it appears as if nothing has happened. The selected control is still an Image, and
my design surface remains unchanged. Behind the scenes, a new ImageBrush resource was created
in the location you specified, either in App.xaml or in the current Page’s resources collection
(UserControl.Resources).

We can now apply this new resource using the fourth tab of the Blend Brush editor. First, draw a
Rectangle on the stage, and then switch to the Properties tab if you have not already done so. With the
rectangle selected, click on the Fill property in the Brush editor to make it the active brush property.
Now, select the Brush resources tab, the fourth tab next to the Gradient Brush tab. Figure 9-25 shows the
Brush Resources tab selected.

Figure 9-25

With the rectangle selected, clicking on the name of the ImageBrush you just defined applies the brush
to the active brush property, in this case, Fill. By default, the image used by the ImageBrush is scaled
uniformly within the object it is being applied to. But, just like the Image and several other controls
we’ve looked at along the way, the ImageBrush has a Stretch property that lets you define the stretch-
ing and scaling behavior of the image.

In order to edit the Stretch property of the ImageBrush, you have to switch to the Resources tab
of Blend. Figure 9-26 shows the Resources tab selected and UserControl expanded to reveal the
ImageBrush named myTiledBackgroundBrush.

170

Part II: Using Silverlight 3 Essentials

Figure 9-26

Click on the down arrow next to the brush preview to reveal the Brush editor and set the Stretch prop-
erty, as shown in Figure 9-27.

Figure 9-27

The two other important properties of the ImageBrush, ViewportUnits, and Viewport are not exposed
in the version of Blend at the time of this writing. You’ll have to jump to XAML to edit those properties.
(See, I told you the XAML section wasn’t a waste!)

VideoBrush
Blend does not currently provide authoring support for VideoBrush. For now, you’ll have to define your
VideoBrush resources by hand.

Fonts and Font Embedding
Silverlight ships with several “system” fonts built- in. I put “system” in quotation marks, because these
are included in the Silverlight run time and do not fall back to the operating system, so you can count
on these core fonts whether you are running your Silverlight application on Windows, OS X, or Linux.
Figure 9-28 shows a preview of these always-available fonts.

These fonts should all be familiar to you — they’ve shipped as standard fonts with Windows since
Windows XP. Well, maybe not Portable User Interface. What is that, anyway? The Portable User Interface
designation is really a fallback to the default Lucida Sans Unicode. It’s the font you get when you don’t
specify a FontFamily.

171

Chapter 9: Using Graphics and Visuals

Figure 9-28

Font Embedding
If you’ve selected a TextBlock in Blend, you’ll see these default fonts listed at the top of the FontFamily
dropdown (see Figure 9-29). The blue Silverlight logo next to these fonts indicates that they are
embedded.

Figure 9-29

172

Part II: Using Silverlight 3 Essentials

If you want to use a font other than one of the defaults, you’ll have to embed that font in your project
(or a referenced assembly). This is easy in Blend, simply select the font you wish to apply and check
the “Embed” box in the Text properties panel. Blend will automatically create a Fonts folder, copy the
required fonts files to that folder, and set their Build Action. It will also write the FontFamily syntax
required for referencing embedded fonts so you can go about your business designing. If you’re not
using Blend you’ll have to do these steps manually. Let’s take a look at the manual process now.

To get started, find a font file on your system that you want to use in your Silverlight application. In
Blend, you can add the font to the project by right-clicking on either the project itself or a folder within
the project and selecting “Add Existing Item,” as shown in Figure 9-30.

Figure 9-30

As with images, when Blend adds external font files, it automatically sets the Build Action to Resource.
If you add the file using Visual Studio, you will need to manually set the Build Action to Resource (see
Figure 9-31).

Once the font is included in your project as a resource, you can apply it via XAML by setting the
FontFamily property:

<TextBlock FontFamily=”Fonts/DistrictThin.ttf#DistrictThin“
Text=”Custom Font: District Thin” />

Let’s break down the value of FontFamily so that you understand exactly how this works. First, you
specify the actual font file path within your project. In this case, it’s “Fonts/DistrictThin.ttf”. Next,
you specify the actual name of the font, preceded by the # symbol. Here, it’s “#DistrictThin”. It’s
important to note that the name of the font may be different from the filename of the font. An easy way
to find the name of the font is by double-clicking on the font file in Windows Explorer and taking a look
at the Font name declaration at the top of the preview window. Figure 9-32 shows this preview window
for the example font DistrictThin.

173

Chapter 9: Using Graphics and Visuals

Figure 9-31

Figure 9-32

In the previous XAML, the font file was referenced just like we reference image resources in the project.
And, just as we saw with image references, you can add a notation to the FontFamily font source path
that specifies which assembly the font file resides in. The following XAML explicitly declares the proj-
ect (assembly) name:

<TextBlock FontFamily=”BookProject;component/Fonts/DistrictThin.ttf#DistrictThin”
Text=”Custom Font: District Thin” />

This means that you can embed font resources in other assemblies and still reference them via XAML,
using a familiar syntax that is consistent with the syntax used by other controls.

174

Part II: Using Silverlight 3 Essentials

Ef fects and Perspective 3D
So far in this chapter, we’ve looked at the fundamental building blocks used to define an application’s
interface.

Effects
Effects are used through the design industry — from print to the Web to desktop applications to motion
video. These effects are used to add realism (subtle glows), create a sense of depth (drop shadows),
simulate a real-world phenomenon (rippling water), and achieve a wide variety of additional visualiza-
tions. The core Silverlight run time includes a couple of common effects (Blur and DropShadow) but also
supports custom PixelShader-based effects. This support essentially delivers the potential for an infi-
nite number of effect possibilities.

Applying Effects
All objects derived from UIElement have a property of type Effect that happens also to be named
Effect. To apply an effect to an object, you simply set the value of this property to an object that
derives from Effect. The sample XAML defines two buttons, one with and one without a BlurEffect
applied:

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <Button Content=”I’m Not Blurred”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”
 Margin=”0,0,10,0”>
 </Button>
 <Button Content=”I’m Blurred”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”>
 <Button.Effect>
 <BlurEffect Radius=”4” />
 </Button.Effect>
 </Button>
</StackPanel>

The previous XAML results in a layout that looks like that shown in Figure 9-33.

Figure 9-33

Currently only a single effect can be applied to an object at a time. In order to apply multiple effects to
the same visual, you will need to wrap the target element with additional panels (such as a Border)
and progressively apply effects to each wrapper panel.

175

Chapter 9: Using Graphics and Visuals

Native Effects
Silverlight 3 includes two native effects that are included as part of the core run time — BlurEffect and
DropShadowEffect. These two effects alone may not seem like much, but the DropShadowEffect can
also be used to create what is traditionally known as a glow effect as well. Together, these three effects
are probably the most commonly used effects when creating user interface artwork.

BlurEffect
Using the BlurEffect is extremely simple and only includes a single customization property — Radius.
The radius is used to determine how blurry the target element is: the higher the radius value, the blur-
rier your target. The default value for this property is 5 (in device-independent units of 1/96 of an inch).

Figure 9-34 shows the same target element with varying degrees of blur applied:

Figure 9-34

Common Uses for the BlurEffect

Blur the main body of your application to draw focus to modal dialogs in the foreground.❑❑

Apply ❑❑ BlurEffects over time in animations to simulate motion blur.

Emphasize disabled items by slightly blurring them.❑❑

Create a sense of depth by applying varying degrees of blur to layers in your application.❑❑

DropShadowEffect
The DropShadowEffect can be used to create both drop shadow and glow effects. Unlike the
BlurEffect, this effect includes more than one property for customization. The following XAML
defines a DropShadowEffect that results in a green glow around a custom button (Style is defined in
the previous chapter):

<Button Style=”{StaticResource ButtonWithDropShadow}”
 Width=”130” Content=”GLOW” Height=”45”>
 <Button.Effect>
 <DropShadowEffect ShadowDepth=”0” BlurRadius=”20” Opacity=”1”
 Color=”#FF25DFCE” Direction=”315”/>
 </Button.Effect>
</Button>

It’s by setting the ShadowDepth property to 0 that this effect essentially becomes a glow effect. The other
properties all affect the way the final “shadow” is drawn. Figure 9-35 shows several DropShadowEffect
configurations and their resulting visuals. The first sample shown is the result of the previous XAML.

176

Part II: Using Silverlight 3 Essentials

Figure 9-35

When using the DropShadowEffect for user interfaces, I generally find subtle techniques, such as the
Soft Shadow or Radiosity samples above, more effective than “in your face” options like Hard Shadow and
Top Shadow. I hope you see that a wide variety of visualizations can be achieved with this single effect.

Applying Effects in Blend
You don’t have to manually apply effects in XAML if you’re using Blend 3. Figure 9-36 shows the Asset
Library expanded with the Effects tab selected.

Figure 9-36

To apply an effect, press and hold your mouse over the effect you wish to apply, and drag the effect
to the target object either on the design surface or in the Object tree. The behavior will appear in the
Object tree as shown in Figure 9-37.

Figure 9-37

177

Chapter 9: Using Graphics and Visuals

Editing the properties of an effect is no different from editing the properties of any other selected object
on the stage. You can either select the effect in the Object tree directly and edit the effect’s properties in
the Property panel, or you can select the parent object (in this case Image) and expand the Effect prop-
erty in the Property panel. Figure 9-38 shows the Property panel when the effect is selected directly (on
the left) and shows the Effect property expanded when the parent Image is selected.

Figure 9-38

Custom Effects
Silverlight opens up a world of creativity possibilities by supporting custom High Level Shading
Language (HLSL)–based effects. HLSL is the shader language used to define DirectX effects and was
introduced with DirectX 8. Because HLSL has been around for a while, you can find a large number of
articles and free resources (read: “free effects”) that you can take advantage of. Start by visiting http://
msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx to learn more about HLSL, then do a
Web search on HLSL to find a wealth of resources on this topic.

In order to use HLSL-based effects in Silverlight, you have to create a proxy class derived from ShaderEffect.
It’s in this derived class that you load precompiled HLSL bytecode and define proxy properties between
your class and the underlying HLSL effect. In the walk-through that follows, you’ll first learn how to
use freely available tools to tweak and compile HLSL shaders, and then see how to consume those
effects in custom classes that can be used in your Silverlight projects in the same way as native effects.

Getting the Tools
In order to compile HLSL shaders, you’ll need the DirectX SDK, freely available on the Microsoft web
site. In addition to the SDK, I also recommend downloading Walt Ritscher’s Shazzam Shader Editing
Tool. Shazzam is delivered as a WPF ClickOnce application and provides a nice interface for editing
and testing HLSL shaders.

DirectX SDK❑❑ — http://msdn.microsoft.com/en-us/directx/aa937788.aspx

Shazzam❑❑ — http://shazzam-tool.com/publish.htm

Viewing and Compiling Shaders with Shazzam and the DirectX SDK
Start by downloading and installing the latest version of the DirectX SDK. (Be warned, it’s a fairly hefty
400+ MB download.) Once you’ve installed the SDK, install and run Shazzam. The first time you run
Shazzam, you’ll probably need to update its settings to ensure that it knows the correct location of the

178

Part II: Using Silverlight 3 Essentials

DirectX FX compiler. Do this by expanding the Settings panel and clicking on the “Change Path” button,
shown expanded in Figure 9-39:

Figure 9-39

The default installation path required by Shazzam will be something like C:\Program Files\
Microsoft DirectX SDK (March 2009)\Utilities\bin\x86\fxc.exe. This path will vary slightly based on
the version of the SDK you’ve installed and whether or not you’ve changed the default installation path.
Once you’ve set the correct path, you can move on to the fun stuff — testing and compiling shaders.

Shazzam ships with several default shaders that you can play with by expanding the Shader Loader panel.
Click on the “Sample Shaders” button, and then select a shader from the list. The shader will be loaded
in an uncompiled state as the first tab. Press [F5] or select Tools ➪ Apply from the main menu to com-
pile and test the results. When you compile a shader in Shazzam, several important things happen:

ShaderEffect❑❑ -derived classes are auto-generated in both C# and Visual Basic for use in your
own projects.

The “Change Shader Settings” tab is either added or updated, providing you with an interface ❑❑

for modifying the shader input values.

The new effect is applied to all of the sample images in the tabbed preview area.❑❑

Figure 9-40 shows the Embossed.fx shader selected, compiled, and applied to the Sample5 image.

179

Chapter 9: Using Graphics and Visuals

Figure 9-40

I’ve set the value of the Amount parameter to .57 and the value of the Width parameter to .004. For many
of the sample effects, the default value range of the sliders is not effective. For example, I changed the
Max value of Width to .01 for this Embossed effect. If you compile a shader and feel like it’s not work-
ing, it’s likely that you just haven’t found an appropriate combination of input values yet.

Creating a Custom Shader Effect
With the custom shader tweaked and compiled, it’s now time to create a custom ShaderEffect class
that can be consumed by our Silverlight applications. Shazzam has already taken a lot of the guesswork
out of the process by compiling the .fx shader and generating a starter effect class for us. We now have
to add the compiled effect to our Visual Studio project and customize the starter class for Silverlight.
(Shazzam currently generates WPF code.)

Add the Compiled Shader to Visual Studio

Select Tools ➪ View Compiled Shaders from the main menu in Shazzam. This will open the GeneratedShaders
folder in Windows Explorer. You will see a number of .ps files, one for each Sample Shader you’ve com-
piled and tested. In this sample, I’m going to use the Embossed shader. Create a folder inside your Visual
Studio project named Shaders, and then drag Embossed.ps from Windows Explorer to the Visual Studio
folder. Figure 9-41 shows the file Embossed.ps added to the Shaders folder inside the Visual Studio proj-
ect. Make sure you set the Build Action of your shader file to Resource.

180

Part II: Using Silverlight 3 Essentials

Figure 9-41

Create the Effect Class

With the shader in place in the project, it’s now time to create our proxy effect class. Start by creating
an Effects folder in Visual Studio. Add an empty class to that folder with the filename EmbossedEffect.cs.
Now, switch back to Shazzam and select the “Generated Shader — C#” tab (or “Visual Basic” if you’re
trying this in VB). Copy all of the auto-generated code to the new EmbossedEffect class you just added
to Visual Studio.

Below is the initial code generated by Shazzam:

namespace Shazzam.Shaders
{
 using System.Windows;
 using System.Windows.Media;
 using System.Windows.Media.Effects;

 public class AutoGenShaderEffect : ShaderEffect
 {

 public static DependencyProperty InputProperty =
ShaderEffect.RegisterPixelShaderSamplerProperty(“Input”, typeof(AutoGenShaderEffect), 0);
 public static DependencyProperty AmountProperty =
DependencyProperty.Register(“Amount”, typeof(double), typeof(AutoGenShaderEffect),
new System.Windows.UIPropertyMetadata(new double(), PixelShaderConstantCallback(0)));
 public static DependencyProperty WidthProperty =
DependencyProperty.Register(“Width”, typeof(double), typeof(AutoGenShaderEffect), new
System.Windows.UIPropertyMetadata(new double(), PixelShaderConstantCallback(1)));

 public AutoGenShaderEffect(PixelShader shader)
 {
 // Note: for your project you must decide how to use the generated
 // ShaderEffect class (Choose A or B below).
 // A: Comment out the following line if you are not passing in the shader

181

Chapter 9: Using Graphics and Visuals

 // and remove the shader parameter from the constructor

 PixelShader = shader;

 // B: Uncomment the following two lines - which load the *.ps file
 // Uri u = new Uri(@”pack://application:,,,/bandedswirl.ps”);
 // PixelShader = new PixelShader() { UriSource = u };

 // Must initialize each DependencyProperty that’s affliated with a shader register
 // Ensures the shader initializes to the proper default value.
 this.UpdateShaderValue(InputProperty);
 this.UpdateShaderValue(AmountProperty);
 this.UpdateShaderValue(WidthProperty);
 }

 public virtual System.Windows.Media.Brush Input
 {
 get
 {
 return ((System.Windows.Media.Brush)(GetValue(InputProperty)));
 }
 set
 {
 SetValue(InputProperty, value);
 }
 }

 public virtual double Amount
 {
 get
 {
 return ((double)(GetValue(AmountProperty)));
 }
 set
 {
 SetValue(AmountProperty, value);
 }
 }

 public virtual double Width
 {
 get
 {
 return ((double)(GetValue(WidthProperty)));
 }
 set
 {
 SetValue(WidthProperty, value);
 }
 }
 }
}

The generated code includes a class derived from ShaderEffect and dependency properties for each of
the shader’s input fields. We now need to make a few tweaks to get this working in Silverlight. Start by

182

Part II: Using Silverlight 3 Essentials

updating the generated namespace so that it’s similar to ProjectName.Effects. Now, right-click on the
class name and select Refactor ➪ Rename from the context menu. Enter EmbossedEffect and click OK.

Two of the three DependencyProperties use a class named UIPropertyMetadata. In Silverlight, this
class is simply PropertyMeta. Drop the UI from the two DependencyProperties using this class, and
your project and this class should now compile (compile but not work).

We need to add a parameterless constructor that loads the Embossed.ps shader resource we added in
the previous step; otherwise, this is just an empty effect with a few meaningless input properties. In the
following code, a new URI object (found in the System namespace) has been defined that references the
.ps resource (using the ProjectName;component syntax introduced earlier in this chapter).

public EmbossedEffect()
{
 Uri u = new Uri(@”Ch9UsingGraphicsAndVisuals;component/Shaders/Embossed.ps”,

UriKind.Relative);
 PixelShader = new PixelShader() { UriSource = u };

 this.UpdateShaderValue(InputProperty);
 this.UpdateShaderValue(AmountProperty);
 this.UpdateShaderValue(WidthProperty);
}

The PixelShader property (defined on ShaderEffect) is initialized to a new instance of PixelShader
whose UriSource is the URI just defined. This is the magic hookup that ties the HLSL shader to a
Silverlight-supported ShaderEffect. The last three lines of this constructor ensure that the shader val-
ues are initialized the first time it is applied. The following code shows the EmbossedEffect class after
our updates (I’ve omitted the Input, Amount, and Width property definitions as they did not change):

namespace Ch9UsingGraphicsAndVisuals.Effects
{
 using System.Windows;
 using System.Windows.Media;
 using System.Windows.Media.Effects;
 using System;

 public class EmbossedEffect : ShaderEffect
 {

 public static DependencyProperty InputProperty =
ShaderEffect.RegisterPixelShaderSamplerProperty(“Input”, typeof(EmbossedEffect), 0);
 public static DependencyProperty AmountProperty =
DependencyProperty.Register(“Amount”, typeof(double), typeof(EmbossedEffect),
new System.Windows.PropertyMetadata(new double(), PixelShaderConstantCallback(0)));
 public static DependencyProperty WidthProperty =
DependencyProperty.Register(“Width”, typeof(double), typeof(EmbossedEffect),
new System.Windows.PropertyMetadata(new double(), PixelShaderConstantCallback(1)));

 public EmbossedEffect()
 {
 Uri u = new Uri(@”Ch9UsingGraphicsAndVisuals;component/Shaders/Embossed.ps”,

UriKind.Relative);
 PixelShader = new PixelShader() { UriSource = u };

 this.UpdateShaderValue(InputProperty);

183

Chapter 9: Using Graphics and Visuals

 this.UpdateShaderValue(AmountProperty);
 this.UpdateShaderValue(WidthProperty);
 }
 // Input, Amount, and Width Properties here
}

Before moving on to actually applying the custom effect, I want to recap what is a fairly simple process:

 1. Test and compile shader in Shazzam.

 2. Add compiled .ps file to Visual Studio and set its Build Action to Resource.

 3. Add new Effect-named class to your project.

 4. Copy Shazzam-generated effect code to your new class.

 5. Update the namespace.

 6. Refactor❑➪❑Rename the class name.

 7. Change UIPropertyMetaData to PropertyMetaData.

 8. Create a Uri that references the .ps file (using System is required).

 9. Add a parameter-less constructor that initializes the PixelShader property.

Applying the Custom Effect

With the custom effect defined, we can now apply it via XAML just like we apply the Blur and
DropShadow effects. The only additional thing required is a namespace mapping to our custom effects
namespace. The following XAML defines a localEffects namespace and applies the EmbossedEffect
to a sample image:

<UserControl
 xmlns:localEffects=”clr-namespace:Ch9UsingGraphicsAndVisuals.Effects”
 …
<Image Source=”Images/sampleImage.jpg”>
 <Image.Effect>
 <localEffects:EmbossedEffect Width=”.003” Amount=”1” />
 </Image.Effect>
</Image>

Figure 9-42 shows the sample image with and without the EmbossedEffect applied.

Figure 9-42

184

Part II: Using Silverlight 3 Essentials

We can easily enable real-time adjustments of the effect input values by binding Slider controls to the
effect instance itself, just as Shazzam generates automatically. The following XAML adds an x:Name
attribute to the EmbossedEffect instance and binds a Slider’s Value property to the EmbossedEffect’s
Width property:

<Image Source=”Images/sampleImage.jpg”>
 <Image.Effect>
 <localEffects:EmbossedEffect x:Name=”EmbossedEffect”
 Width=”.003” Amount=”1” />
 </Image.Effect>
</Image>
<Slider Value=”{Binding ElementName=EmbossedEffect, Path=Width, Mode=TwoWay}”
 Minimum=”0” SmallChange=”.001” Maximum=”.01” />

When you compile and run, you can drag the slider and adjust the Width parameter of the
EmbossedEffect in real time — Nice!

Summary
I hope you are now starting to see the power of shader-based custom effects in Silverlight. There are so
many creative possibilities here. If you’re interested in seeing more effects than those that ship with
Shazzam, be sure to check out the open-source WPF/Silverlight Shader Effects Library at Codeplex:
http://wpffx.codeplex.com. In addition to providing a large number of predefined effects, this solu-
tion also demonstrates how to share a code base between Silverlight and WPF projects.

Perspective 3D
Silverlight gives you the ability to rotate every UIElement in your application in its own three-dimensional
(3D) space simply by setting the Projection property. Unlike true 3D environments wherein multiple
elements live in a shared 3D space, objects in Silverlight each have their own space. 3D in Silverlight is
really a 3D transform applied to individual objects and not a true all-encompassing 3D environment
that supports 3D objects and materials. For example, you can’t import a 3ds model of a fighter jet and
have it fly across the screen, but you can flip a configuration panel up from the bottom of the screen or
rotate an image into view.

While this level of support may sound limited compared to a full 3D environment, it actually supports
a wide array of user interface scenarios and is more flexible than you might at first think. Let’s start by
looking at a simple sample, then move on to some of the configuration options that demonstrate flex-
ibility. The following XAML defines two images. The first is displayed normally, while the second is
rotated about the X- and Y-axes:

<Image Height=”116” Margin=”241,317,0,0” VerticalAlignment=”Top”
 Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 HorizontalAlignment=”Left”/>
<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”-17” RotationY=”-34”/>
 </Image.Projection>
</Image>

185

Chapter 9: Using Graphics and Visuals

All we had to do was set the Projection property of the Image to an instance of the PlaneProjection
object. It’s on the PlaneProjection where we customize all of the rotation properties. This sample uses
an Image, but Image could just as easily have been a Button, Grid, Border, Rectangle, or any other con-
trol you felt needed to be rotated. Figure 9-43 shows the Image both with and without the transform.

Figure 9-43

By default, the image is rotated about its center on all three axes. You can customize the center of rota-
tion by adjusting the CenterOfRotationX, CenterOfRotationY, and CenterOfRotationZ properties on
the PlaneProjection object. The following XAML sets both the X and Y center to 0 (top, left corner) of
the image and rotates –60 degrees about the Y-axis:

<Image Height=”116” Margin=”241,317,0,0” VerticalAlignment=”Top”
 Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 HorizontalAlignment=”Left”/>
<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”0” RotationY=”-60” CenterOfRotationX=”0”
 CenterOfRotationY=”0” CenterOfRotationZ=”0”/>
 </Image.Projection>
</Image>

In Figure 9-44, you can see how the image appears to be swinging back, almost like a door on its hinge.

Figure 9-44

You can simulate a true 3D environment by synchronizing the initial position of a number of objects
and synchronizing their CenterOfRotation properties. Figure 9-45 shows 200 procedurally generated
Rectangles, all positioned in the center of a container Grid, with a CenterOfRotationZ property set
to –300. When the RotationX and RotationY properties are set, it’s as if these images are being moved
around the surface of a sphere.

186

Part II: Using Silverlight 3 Essentials

Figure 9-45

Each rectangle has its own PlaneProjection and is rotated in its own 3D space, but by synchronizing
the initial positions and CenterOfRotationZ property, we have achieved a deceptive result. The follow-
ing code shows how this visual was created:

public ThreeDeeLayouts()
{
 // Required to initialize variables
 InitializeComponent();

 GenerateSphere();
}

int rowCount = 10;
int columnCount = 20;
int rectHeightWidth = 30;

private void GenerateSphere()
{
 for (var i = 0; i < rowCount; i++)
 {
 for (var j = 0; j < columnCount; j++)
 {
 // Create Rectangle

187

Chapter 9: Using Graphics and Visuals

 Rectangle rect = new Rectangle();
 rect.Height = rect.Width = rectHeightWidth;

 // Create PlaneProjection and Initialize CenterOfRotationZ
 PlaneProjection projection = new PlaneProjection();
 projection.CenterOfRotationZ = -300;

 // Set RotationX and RotationY based on current row and column
 projection.RotationX = -90 + ((180 / rowCount) * i);
 projection.RotationY = (360 / columnCount) * j;

 // Assign PlaneProject to Rectangle’s Projection property
 rect.Projection = projection;

 // Set the Rectangle’s Fill property
 rect.Fill = new SolidColorBrush(Color.FromArgb(150,255,255,255));

 // Add the Rectangle to a XAML-defined Grid (named “sphere”)
 this.sphere.Children.Add(rect);
 }
 }
}

This sample just defines and applies a 3D transformation to a collection of rectangles. You could extend
this sample and make it more interactive by responding to mouse position and updating all of the
3D transforms, creating a sense of interactive 3D space. I’ll leave that up to you, though; you are now
armed with the basic understanding of what is required to take it further.

Adjusting PlaneProjections in Blend
Blend 3 adds support in the Properties panel for adjusting the values of a PlaneProjection applied
to an object. Select an object on the stage, and then scroll to the Transform category of the Properties
panel. By default, the Project property is hidden in the “Advanced properties” section. Click the down
arrow to reveal the editor shown in Figure 9-46.

Figure 9-46

You can manually define rotation values for the X-, Y-, and Z-axes, or you can click and drag the circle-
based sphere icon to do a freeform rotation. Additional tabs in this editor expose the Center of Rotation,
Global Offset, and Local Offset property categories. We did not look at these last two property groups

188

Part II: Using Silverlight 3 Essentials

in the previous exercise. These additional value categories let you adjust the positions of items in 3D
space, much like applying a TranslateTransform in 2D space. These properties can be used to further
simulate a true 3D environment much as our previous sphere example demonstrated.

Importing Artwork from Additional Design Tools
You may be wondering why you would even need to work with artwork created outside of Blend, con-
sidering that Blend provides practically all of the tools you need to design a user interface. I think there
are two clear answers to this question:

 1. Most of you already have preexisting artwork created in other applications that you would like
to reuse.

 2. Many of you are already very familiar with your own design tools and can simply work faster
in your design tool of choice.

Based on my experience, you will initially be inclined to export to XAML from your favorite tool, stay-
ing in your design comfort zone. Then, as you become more and more familiar with Blend, you will
find yourself starting in Blend for most tasks and jumping back to your other program only for spe-
cialty design needs.

Designing with Blend/Silverlight in Mind
If you’re doing the designing, exporting, and integrating yourself, you have the luxury (or responsibil-
ity) of designing with exporting in mind. This means that you can anticipate the needs of your applica-
tion layout and design so that achieving your intended results is as easy as possible. If you’re a designer
working in a third-party tool delivering artwork to a fellow developer using Blend, you can strengthen
your work relationship by exporting your artwork in a way that makes the developer’s job easier.

There are several questions you need to keep in mind when designing artwork:

Are bitmaps acceptable? (If so, can you use all the effects you want?)❑❑

Does the piece you’re working on need to stretch? (Horizontally, vertically, or both?)❑❑

Will pieces of the user interface animate? (Like panel backgrounds or buttons?)❑❑

We’ll take a look at each of these scenarios and discuss certain techniques you can use that will make
your life (or your coworkers’ lives) easier.

Are Bitmaps Acceptable?
There are several factors that affect the answer to this question, many of which go beyond the scope of
this book. However, we’ll try to cover a few key scenarios here.

File Size
The first, and possibly most obvious, aspect of including bitmaps in your project is file size. Silverlight
is a Web-based platform, which means that bandwidth is a very real concern. Even with growing

189

Chapter 9: Using Graphics and Visuals

numbers of broadband connections in homes, keeping the download footprint of your application to a
minimum is still a necessary evil. There are times when the XAML required to represent your artwork
could actually be larger than a representative bitmap, and if the other considerations listed next don’t
contradict your file size requirement, exporting your artwork as a bitmap may be the best option.

Scaling
At the heart of Silverlight is a high-performance, vector-based rendering engine. This means vector-based
artwork, represented by XAML, can be rendered without loss at virtually any size. If the artwork you
are designing is intended to scale, exporting to bitmaps is not the way to go. When bitmaps are resized
in the Silverlight player, you’ll begin to see pixelation as the artwork increases in size and blurriness as
the artwork decreases in size.

Dynamic Changes
Artwork in Silverlight applications can be updated dynamically at run time. For example, you could
change the brush that is used to paint the background of a button when the mouse moves over it. If the
artwork you are creating will be used in this type of scenario, exporting as a bitmap is not an option.

Techniques That Require a Bitmap Export
Most design programs are platform-agnostic and export to various flattened file formats. When author-
ing for Silverlight, you have to consider the features of the Silverlight rendering engine. The following
techniques are not supported by the Silverlight player and will require that you export your artwork
as a bitmap. If exporting to bitmaps is not an option for your application, you can either scale back the
visuals or recraft your artwork using other techniques.

Effects❑❑ — Currently, the Silverlight player does not support live bitmap effects (drop shadows,
blurs, glows, etc.), so any time you need to achieve these types of effects, you will have to export
your artwork as a bitmap.

Blending Modes❑❑ — If the visuals you’re creating use Blending modes (Screen, Add, Subtract,
Saturation, etc.), you will have to export your artwork as a bitmap or choose alternative tech-
niques. The Silverlight player does not currently include support for Blending modes.

Which Bitmap File Type Is Best?
If you find that you do have to include bitmaps in your project, your first step is to determine which file
type is right for you. If you need to composite the bitmap with a transparent background, exporting
as a 32-bit PNG with a transparent background is the best choice. If transparency isn’t a requirement,
finding the right balance between file size and quality is your next step. The same rules that apply to
traditional Web design apply here. If you’re exporting a photo, a JPEG is the obvious choice. Just play
with the quality settings until you achieve the right balance. If you’re exporting artwork, experiment with
JPEG quality and PNG bit depths until you reach a compromise that meets your needs. Most modern
design applications provide live previews that help you find this quality/file size balance quickly.

Does the Piece You’re Working on Need to Stretch?
You need to consider whether the artwork you’re working on needs to scale vertically, horizontally, or
both. You need to anticipate how the artwork is going to scale and export your artwork accordingly. If
you have rounded corners, how are you going to design so that the XAML you export behaves correctly?

190

Part II: Using Silverlight 3 Essentials

Will you use a single Border object and set the CornerRadius property, or will you “slice” your artwork,
much as traditional Web designers would slice the artwork they export? You may have to work through
your layout a few times before you come to an acceptable solution.

If you as a designer don’t consider how the application is going to behave, you’ll end up with artwork in
Blend that isn’t functional. Regardless of the size of the team you’re working on, it’s important to estab-
lish open lines of communication between design and development. And if you’re wearing both hats,
design with interactivity in mind — you’ll save yourself lots of extra rework in the end.

Exporting to XAML in Other Tools
When I first started working with XAML (way back in the spring of 2005), I was pretty much stuck with
Notepad and a handful of cobbled-together converters and exporters. I would create artwork in Adobe
Illustrator, save to an Illustrator SVG file, and then convert the SVG to XAML using the Xamlon SVG to
XAML Converter. I would then hand-tweak the generated XAML and copy it into my application and cross
my fingers. If things weren’t quite right, I’d step through the process again … and again … and again. …

Fortunately, things have matured considerably since then. Blend 3 now has native Adobe Photoshop
and Adobe Illustrator importers. There are also a number of third-party exporters and converters for a
variety of popular design applications and file types. Mike Swanson, a technical evangelist at Microsoft,
created a freely available Illustrator to a XAML plug-in that many of us began using early on. During
the summer of 2006, I spent my nights and weekends creating the Fireworks to XAML Exporter, a panel
for Adobe Fireworks that I still use in practically every WPF and Silverlight project. There are many
other passionate people out there who have created similar plug-ins for their tools of choice, and we’ve
provided the following list of those tools. We’ve also included in the list some commercial applications
that you may need to help round out your toolset.

Microsoft Expression Design ❑❑ (www.microsoft.com/expression) — Included in the Microsoft
Expression Suite and available as a trial download. Supports WPF and Silverlight-specific
XAML export.

Adobe Fireworks to WPF/XAML Exporter❑❑ by Grant Hinkson (www.granthinkson.com/tools/
fireworks) — A free extension for Adobe Fireworks CS4. This panel lets you copy XAML
directly to the clipboard or save XAML to a file.

Adobe Illustrator to WPF/XAML Export Plug-In ❑❑ by Mike Swanson (www.mikeswanson.com/
XAMLExport) — A free plug-in for Adobe Illustrator that adds XAML as an export format

XamlXporter for Illustrator❑❑ by Pavan Podila (www.codeplex.com/Wiki/
View.aspx?ProjectName=xamlxporter) — An open-source, C#-based exporter for Adobe Illustrator

SWF2XAML: A Flash to XAML Conversion Tool ❑❑ by Mike Swanson (www.mikeswanson.com/
SWF2XAML) — A free converter for Adobe Flash SWF files. Opens exported SWF files and con-
verts each frame to XAML.

theConverted–SWF to XAML Edition ❑❑ by Debreuil Digital Works (theconverted.ca) — A com-
mercial SWF to XAML converter

Kaxaml ❑❑ by Robby Ingebretsen (www.kaxaml.com) — A free, lightweight XAML Editor for WPF
and Silverlight.

191

Chapter 9: Using Graphics and Visuals

Summary
We started this chapter by examining the core set of controls at your disposal for creating interesting
visuals in Silverlight. You were exposed to the XAML syntax first so that you would have a solid under-
standing of what’s happening behind the scenes. After covering the XAML, we jumped to Blend and
used a design surface to do the same things we had just done by hand. In some cases, Blend was able to
do everything for us (and was practically necessary for tasks such as creating complex paths). In other
cases, Blend didn’t provide tooling for certain control features (such as setting ViewportUnits on an
ImageBrush), and we had to return to the XAML to achieve just what we wanted.

We also looked at how to reference and include binary assets (images, fonts, videos, etc.) and how to
use Visual Studio to set the Build Action. You also learned that Blend doesn’t provide a way to change
the Build Action itself and that you have to use Visual Studio (or edit the .csproj file by hand). We then
shifted focus to effects and 3D support offered by Silverlight and even stepped through creating our
own custom effect. You should now have an understanding of how the various tools at your disposal —
whether raw XAML, design tools such as Blend and Fireworks, or development environments such as
Visual Studio — all have their place in the Silverlight ecosystem and are really co-dependent. You can
use one or two exclusively, but ultimately you need to be familiar with a number of design and develop-
ment tools.

Making It Richer with Media

Silverlight supports MP3 audio, H.264 Video, AAC Audio, and several Windows Media Audio
and Windows Media Video formats, giving you the ability to create media-rich, Web-based expe-
riences. And even if you’re not creating a photo browser or interactive video application, you can
use Silverlight’s media capabilities to add subtle MouseOver sound effects to buttons in your appli-
cation to add that next level of polish. In this chapter, you’ll look at the capabilities of the Silverlight
MediaElement control and the file formats it supports. You’ll see how to define the control both in
XAML and in Blend and see how to respond to the events it raises. You’ll also be introduced to
Expression Media Encoder 2 and learn how to prepare your media for use in your Silverlight app.
We’ll conclude the chapter by looking at the free live.com-based Silverlight Streaming service and
the new Smooth Streaming feature of IIS7 for delivering high-definition live video.

Supported Formats
Before we even take a look at including media in our Silverlight apps, let’s take a look at the file
formats and codecs supported natively by the Silverlight player. Media can be encoded using sev-
eral of the Windows Media Video and Windows Media Audio codecs, as well as the MP3 and
AAC audio codecs and H.264 video codec. Windows Media Audio and Video are more than just
two codecs. Both of these formats include various versions and use-specific codecs (such as
Windows Media Screen and Windows Media Voice). Silverlight supports a subset of the broad
array of Windows Media codecs. Listed below are the versions supported by the player. These
formats are supported, regardless of the file extension of the encoded file. Silverlight ignores the
file extension when the source media file is referenced.

Video
WMV1❑❑ — Windows Media Video 7

WMV2❑❑ — Windows Media Video 8

WMV3❑❑ — Windows Media Video 9

10

194

Part II: Using Silverlight 3 Essentials

WMVA❑❑ — Windows Media Video Advanced Profile, non-VC-1

WMVC1❑❑ — Windows Media Video Advanced Profile, VC-1

H.264❑❑

Can only be used for progressive download, smooth streaming, and adaptive streaming❑❑

Supports Base, Main, and High Profiles.❑❑

Audio
WMA 7❑❑ — Windows Media Audio 7

WMA 8❑❑ — Windows Media Audio 8

WMA 9❑❑ — Windows Media Audio 9

WMA 10❑❑ — Windows Media Audio 10

AAC❑❑ — Advanced Audio Coding

Can only be used for progressive download, smooth streaming, and adaptive streaming❑❑

AAC is the LC variety and supports sampling frequencies up to 48 kHz.❑❑

MP3❑❑ — ISO/MPEG Layer-3

Input❑❑ — ISO/MPEG Layer-3 data stream

Channel Configurations❑❑ — Mono, stereo

Sampling Frequencies❑❑ — 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, and 48 kHz

Bitrates❑❑ — 8–320 Kbps, variable bitrate

Limitations❑❑ — “Free format mode” (see ISO/IEC 11172-3, subclause 2.4.2.3) is not
supported.

Unsupported Windows Media Formats
The following Windows Media–based formats are not supported by the Silverlight MediaElement
control:

Interlaced video content ❑❑

Windows Media Screen ❑❑

Windows Media Audio Professional ❑❑

Windows Media Voice ❑❑

Combination of Windows Media Video and MP3 (WMV video + MP3 audio) ❑❑

Windows Media Video using odd (not divisible by two) dimensioned frames; for example, ❑❑

127 × 135

195

Chapter 10: Making It Richer with Media

H.264 and AAC Support
H.264 is a popular codec for encoding high-definition video. This format is used widely across several
devices and applications and has been made popular by the iTunes store and family of supported
devices. Many consumer camcorders now encode video natively to H.264 so that the video can be
immediately uploaded to media-sharing web sites such as YouTube.com and Vimeo.com. The Silverlight
player can access H.264 videos directly via the MediaElement or via IIS7 Smooth Streaming (enabled
through the Media Services 3.0 extension for IIS7 available at www.iis.net/extensions/
SmoothStreaming). H.264 video cannot be delivered via Windows Media Server streaming.

AAC is the audio codec counterpart to H.264; most videos encoded with the H.264 codec have an accompa-
nying audio stream encoded using the AAC codec. AAC is also the audio format natively used by iTunes.

Silverlight does not currently support DRM (Digital Rights Management) for H.264 encoded video.

Using the MediaElement Control
Media is displayed in Silverlight applications by using the MediaElement control. Just like the Image
control, the MediaElement control has a Source property that points to the source media. The source
media can be an internal resource, compiled into your Silverlight assembly, a resource compiled into a
referenced assembly, a loose file sitting on the host server, a file residing on a remote server, or a playlist
served up from a local or remote server. In short, the MediaElement can reference a file that resides just
about anywhere.

The following XAML defines a MediaElement control and references a loose video on the server, located
as a sibling to the XAP file:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”SampleVideo.wmv” />

This particular MediaElement is 320 pixels wide × 240 pixels tall and is aligned to the top-left corner of
the page with both a top and left margin of 50 pixels (Margin=”50,50,0,0”, where Margin=”TL,TR,
BR, BL”). Pretty simple, right? The layout principles introduced in Chapter 9 apply here, too.

Build Actions and Referencing Media
Just like images or other binary files, media files can reside just about anywhere and can even be included
in your project in a number of ways. Let’s take a look at the various approaches available, examine the
pros and cons of each, and see how the approach alters the way the media is referenced via XAML.

Each of the following sections mentions the term Build Action. Build Action refers to a property available
in Visual Studio (and not available in Blend) that dictates how the file is treated when the project is

196

Part II: Using Silverlight 3 Essentials

compiled. Figure 10-1 shows the Visual Studio Property panel when a media file has been selected in
the Solution Explorer.

Figure 10-1

Assembly Resource Media
A media file is compiled into your project’s assembly when its Build Action is set to Resource. This should
only be done for short clips that you want to be available immediately when your application or assembly
is loaded. Files included as Resources are compiled into the application assembly and can greatly increase
the assembly’s file size.

Referencing the Media in XAML
Reference an embedded media file using a relative URL. If the file is in the root folder of your project,
you simply type its name. If the file is in a subfolder, such as Media, include the entire relative path. For
example, the following XAML references a video stored in the media/stockfootage subfolder of the
project directory:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”media/stockfootage/Bear.wmv” />

You can also use a path that explicitly references the assembly that the video is housed in. If your
Silverlight project name is MyProject, then the previous XAML could be replaced by the following:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”MyProject;component/media/stockfootage/Bear.wmv“ />

197

Chapter 10: Making It Richer with Media

The text in bold is key: MyProject;component/.

The text MyProject should be replaced with the name of your project, but ;component/ should remain
at all times.

Pros❑❑

Media is available immediately.❑❑

Simple relative path references❑❑

No security issues❑❑

Cons❑❑

Large media files can bloat the assembly size and increase page load time.❑❑

XAP File Media
A media file is included in the XAP file and is not compiled into the assembly when its Build Action is
set to Content. When configured as Content, media files do not bloat the size of your project assembly,
but they do continue to bloat the size of the XAP file. You might take this approach if you want your
media files available immediately but do not want to bloat the size of your assembly.

Referencing the Media in XAML
When media is included this way, you need to add a forward slash (/) before the path to the file:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”/media/stockfootage/Bear.wmv” />

Pros❑❑

Media is available immediately.❑❑

Simple absolute path references❑❑

No security issues❑❑

Assembly size is reduced.❑❑

Cons❑❑

Large media files can bloat the XAP size and increase page load time.❑❑

198

Part II: Using Silverlight 3 Essentials

Loose Files
You can add media files to your project that are not compiled into the project assembly or added to the
XAP file. These files neither bloat the assembly nor the XAP file. To achieve this scenario, set the Build
Action of your file to None, and “Copy to Local Directory” to Copy Always or Copy if Newer.

Referencing the Image in XAML
Use the same syntax as you used with XAP File Images, adding a forward slash to the URI:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”/media/stockfootage/Bear.wmv” />

Pros❑❑

Assembly size is reduced.❑❑

XAP size is reduced (faster page load time).❑❑

Cons❑❑

Media is not loaded at page load; instead, it loads asynchronously after the XAP is ❑❑

downloaded.

Use this scenario when you want to create a very lightweight, quick-loading application. The media will
begin streaming from the server to the MediaElement control as soon as it is referenced.

Media in Other Assemblies
Media does not have to be housed in your main project’s assembly for you to reference it. Media files
can be compiled as resources into separate assemblies either created by you or a third party. When ref-
erencing images in assemblies other than the main project, you are required to use the
ProjectName;component/ syntax introduced a couple of sections back.

Referencing the Media in XAML
The following XAML references a video named cloudTexture.wmv defined in an assembly named
BackgroundVideoTextures.dll:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”BackgroundVideoTextures;component/cloudTexture.wmv” />

199

Chapter 10: Making It Richer with Media

Pros❑❑

Assembly size is reduced.❑❑

XAP size is (potentially) increased; as referenced assemblies grow in size, separates ❑❑

visuals from application logic.

Cons❑❑

Media cannot be renamed or removed if you are not in control of the resource ❑❑

assembly.

Increases the number of projects you must maintain (if you are in control of the ❑❑

resource assembly).

Media on Other Domains
When you want to access audio or video on a remote server, you can use the fully qualified URI to
access the image:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”http://www.remotewebsite.com/publicvideo.wmv” />

However, Silverlight’s security policies will prevent the remote file from loading if the remote site does
not have a security manifest file in place that grants you access. For all the gory details on security poli-
cies, see Chapter 11.

Pros❑❑

Allows you to host media on remote, high-capacity servers.❑❑

Cons❑❑

You don’t have control of the remote server.❑❑

The integrity of the application is dependent on third-party server performance.❑❑

Requires security policies.❑❑

Adding a MediaElement in Blend
While it’s important to know how to define the MediaElement by hand in XAML, it’s also quite likely
that you’ll use Blend to add, position, and size media. The MediaElement control is accessed by

200

Part II: Using Silverlight 3 Essentials

launching Blend’s Asset Library and checking the “Show All” checkbox. Figure 10-2 shows the
MediaElement control in the Asset Library.

Figure 10-2

Create an instance of the MediaElement by first selecting the MediaElement control from the Asset Library
and then dragging a rectangle on the design surface to define its initial position and size. You can also
double-click on the control’s icon in the toolbar. With the MediaElement selected on the design surface,
you can specify a Source file by either clicking the dropdown arrow or clicking the ellipsis next to the
Source property. Clicking the dropdown arrow will reveal any media files already added to the project.

Clicking the ellipsis will launch a File Browser dialog. Once you’ve selected a supported media file, it
will be added to your project with a Build Action of Content and a “Copy to Output Directory” setting
of Copy if Newer. You can modify these settings in Visual Studio to meet your needs.

Figure 10-3 shows the Source property in Blend’s Media category.

Figure 10-3

Sizing Video and Setting the Stretch Behavior
The MediaElement control does not have to be the same size as the source video. Just like any element in
your VisualTree, you are in charge of its positioning and size. Just like the Image and Path control that
we examined in Chapter 9, the MediaElement control has a Stretch property that dictates the way the

201

Chapter 10: Making It Richer with Media

underlying video is drawn as its container MediaElement control is sized and resized. The following
values can be set on MediaElement.Stretch:

Fill❑❑ — The video is stretched both vertically and horizontally, filling the MediaElement control.
With this setting, video can feel distorted.

None❑❑ — The underlying artwork does not stretch at all.

In practice, the behavior when set to None is the same as when set to Fill.

Uniform (Default)❑❑ — The underlying video maintains its original aspect ratio while scaling to
fit within the control. With this mode, the video is always drawn in its entirety.

UniformToFill❑❑ — The underlying video maintains its original aspect ratio; although unlike
Uniform, it always scales to fit the longest axis. The resulting video is never distorted, although
it may be clipped.

Figure 10-4 demonstrates how the various values of Stretch affect the final rendering of the MediaElement.

Figure 10-4

The Stretch property lets you control the behavior of the MediaElement when the source video is a dif-
ferent size from the MediaElement control. What if you always want to draw the MediaElement at the
exact same size as the underlying video? Fortunately, the MediaElement control provides a couple of
properties that expose the native height and width of the loaded file. You can use NaturalVideoHeight
and NaturalVideoWidth to get the original height and width of the source video, then update the
Height and Width properties (and any additional layout properties) of your MediaElement to display
your video in the size it was intended to be viewed.

The following method handles the MediaOpened event for our sample video. Once this event has been
raised, we have access to the NaturalVideoHeight and NaturalVideoWidth properties. This event handler
uses these two properties to update the Height and Width properties of the MediaElement that raised the
event:

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MediaOpened=”SetNaturalDimensions”
 Source=”/SampleVideo.wmv” />

private void SetNaturalDimensions(object sender, RoutedEventArgs e)
{

202

Part II: Using Silverlight 3 Essentials

 MediaElement media = sender as MediaElement;
 media.Height = media.NaturalVideoHeight;
 media.Width = media.NaturalVideoWidth;
…

Transforming Video
Just like any FrameworkElement-derived object, the MediaElement can be positioned, sized, trans-
formed, and clipped in a myriad of ways to meet your layout needs. I’ll show you a few examples here,
just to get your creative juices flowing, but this is in no way an exhaustive demonstration of what can be
achieved.

Let’s start by rotating a MediaElement. On the Blend design surface, shown in Figure 10-5, I can simply
mouse over one of the corners of my selected MediaElement until I get the rotate icon, then rotate to the
desired angle.

Figure 10-5

Figure 10-6 shows the RenderTransform Editor in the Blend Properties panel that lets you adjust rota-
tion (and all of the other transform properties) with numerical precision.

Figure 10-6

Behind the scenes, the RenderTransform property of the MediaElement has been set. When editing
any of the transform properties in Blend, a TransformGroup containing each of the transform types is

203

Chapter 10: Making It Richer with Media

applied to the RenderTransform property. The following XAML shows what Blend has applied behind
the scenes:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 x:Name=”meSampleVideo”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5” >
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle=”9.862”/>
 <TranslateTransform/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

Rotating Video in 3D
After realizing that you can apply a RenderTransform to video, it’s only natural to consider rotating the
video in three-dimensional (3D) space. Fortunately, 3D transformations can be applied to MediaElements
just as easily as they can be applied to other UIElements, by setting the Projection property. The fol-
lowing XAML “swings” the video back just like the Image sample shown in Chapter 9 (Figure 9-44):

<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”0” RotationY=”-60” CenterOfRotationX=”0”
 CenterOfRotationY=”0” CenterOfRotationZ=”0”/>
 </Image.Projection>
</Image>

Figure 10-7 shows the resulting MediaElement.

Figure 10-7

204

Part II: Using Silverlight 3 Essentials

With the ability to apply true 3D transformations to video, Silverlight is empowering creative and
media professionals to create truly stunning interfaces that were previously only capable on desktop
and gaming platforms. And it’s easy to do, too!

Clipping Video
Again, just like any FrameworkElement-derived object, the MediaElement can be clipped using a clip-
ping path. To clip the MediaElement, you set the Clip property using the same path data syntax you
were introduced to in Chapter 9. Blend makes creating clipping paths easy. Simply define a path using
the Blend drawing tools, and then size and position the path over the MediaElement you want to clip.
Once you have the path where you want it, select both the Path and the MediaElement (hold down the
[Shift] key to select multiple objects); then, from the main menu, select Object❑➪❑Path❑➪❑Make Clipping
Path. Figure 10-8 shows both a MediaElement and Path selected on the design surface with the com-
mand exposed on the main menu.

Figure 10-8

Notice that the Path is positioned directly over the MediaElement that I want to clip. You need to position
the Path exactly where you want the visible area of the video to be before using the Make Clipping Path
command. Blend normalizes the values of the Path data to be relative to the top-left corner of the element
being clipped. With clipping masks, (0,0) represents the top-left corner of the object being clipped, not the
top-left corner of the design surface. Figure 10-9 shows the MediaElement after it has been clipped.

Figure 10-9

205

Chapter 10: Making It Richer with Media

In the following XAML, you can see that the Clip property accepts the same path data syntax that you
should be vaguely familiar with now. Try hand-editing a few points to see how the clipping mask is
affected:

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 Source=”/SampleVideo.wmv”
 RenderTransformOrigin=”0.5,0.5”
 Clip=”M89.626343,47.989033 C89.626343,47.989033 1.9381521,109.92341
54.496151,126.16163 C107.05415,142.39984 88.938194,90.738899 141.32475,105.99192
C193.71132,121.24493 205.15047,87.790825 202.15236,82.222031 C199.15424,76.653236
186.56322,39.257092 151.01031,33.257763 C115.45742,27.258436 89.626343,47.989033
89.626343,47.989033 z” >
</MediaElement>

Painting Elements with the VideoBrush
Using the VideoBrush, you can paint any element on your design surface with video. The classic example
is text painted with video; however, you can paint any custom artwork with a video brush to create a
variety of really interesting effects. You could, for example, have cloud-shaped paths, painted with sub-
tly moving fluffy textures, floating across your page. Let’s stick with convention, though, and paint
some text with video!

The VideoBrush is not completely self-contained. Instead, it needs a reference to an existing MediaElement
defined within your page. The following XAML defines a MediaElement that references a WMV file named
texture.wmv:

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”textureVideo”
 Opacity=”0”
 IsMuted=”True”
 IsHitTestVisible=”False” />

I’ve highlighted several properties above that you’ll likely want to set when defining a MediaElement
for use by a VideoBrush. First, I’ve set Opacity to 0 so that the source video won’t be seen except when
used by the VideoBrush. Second, I’ve set IsMuted to True. I don’t really want to hear any audio playing
in the background if this video has an audio track. I just want the video. Last, I’ve set IsHitTestVisible
to False so that the MediaElement doesn’t erroneously capture my mouse clicks. These three properties
together keep the MediaElement quiet and prevent it from making itself known in ways other than
how I’ve intended.

The following XAML defines a TextBlock and sets its Foreground property with a VideoBrush
that references the MediaElement just defined. Note that the name of the MediaElement is
“textureVideo” (x:Name=”textureVideo”).

<TextBlock
 Text=”VideoBrush”
 FontFamily=”Arial”
 FontSize=”72”
 FontWeight=”Bold”>

206

Part II: Using Silverlight 3 Essentials

 <TextBlock.Foreground>
 <VideoBrush
 SourceName=”textureVideo” Stretch=”UniformToFill” />
 </TextBlock.Foreground>
</TextBlock>

The VideoBrush is applied just as you apply a SolidColorBrush, LinearGradientBrush, or ImageBrush.
I’ve highlighted the SourceName property above. The SourceName property accepts a string with the
name of the source MediaElement, in this case, textureVideo. Because VideoBrush is derived from
TileBrush (like ImageBrush), it has a Stretch property. Use the Stretch property to define how the
video is applied as it fills the target element.

Simulating Video Reflections
It’s likely you’ve seen Silverlight media samples that simulate reflected video. This technique is easy
and fast to achieve once you know the basics. You can apply this same technique to any other element
in your Page as well. To achieve the effect, we’ll use:

Two ❑❑ MediaElements, both using the same Source

ScaleTransform❑❑

OpacityMask❑❑

First, start by creating two MediaElements and set their Source property to the same video. Then, posi-
tion them one on top of the each other as shown in Figure 10-10.

Figure 10-10

You can use whatever layout panel works best for you here — positioning absolutely using the Canvas
control, or via the StackPanel with its Orientation set to Vertical. Next, we need to flip the bottom
video using a ScaleTransform. The following XAML shows how to do this by setting the ScaleY prop-
erty to -1 to “flip” the video on the Y-axis:

<MediaElement
 Height=”320”
 Width=”240”

207

Chapter 10: Making It Richer with Media

 x:Name=”videoReflection”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5”>
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleY=”-1”/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

You can achieve this with a single button click in the Blend transform editor. Just select the second
video and select the last tab in the transform editor. Figure 10-11 shows the “Flip Y axis” button that
automatically applies the ScaleTransform for you.

Figure 10-11

The last step in simulating a reflection is applying a LinearGradientBrush as an OpacityMask to the
second video. The following XAML defines a vertical LinearGradientBrush that starts at 50 percent
opacity (4C in Hexadecimal) and fades to 0 percent opacity (00 in Hexadecimal):

<MediaElement
 Height=”320”
 Width=”240”
 x:Name=”videoReflection”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5”>
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleY=”-1”/>
 </TransformGroup>
 </MediaElement.RenderTransform>
 <MediaElement.OpacityMask>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#00FFFFFF”/>
 <GradientStop Color=”#4CFFFFFF” Offset=”1”/>
 </LinearGradientBrush>
 </MediaElement.OpacityMask>
</MediaElement>

Note that the order of the stops feels reversed, with the first stop representing 0 percent opacity and the
second stop representing 30 percent opacity. This is because the OpacityMask is applied to the
MediaElement before it is flipped.

So, that’s all there is to it! Create two videos. Position them. Flip the second. Apply an OpacityMask.
Easy, easy! Now you can spend time adjusting the OpacityMask until you achieve the final effect you’re
after. Try wrapping the two MediaElements with a container panel (such as Grid) and apply a 3D trans-
form — reflected, 3D-rotated video in just a few steps!

208

Part II: Using Silverlight 3 Essentials

Enabling GPU Hardware Acceleration
When rendering high-definition video (or any video for that matter), you may want to enable hardware
acceleration to offload the processing to your GPU. You first have to enable this at the plug-in level. The
following ASPX enables this on the ASP Silverlight component:

<asp:Silverlight ID=”Silverlight1”
 EnableGPUAcceleration=”true”
 EnableCacheVisualization=”true”
 runat=”server” Source=”~/ClientBin/Ch10MakingItRicherWithMedia.xap”
 MinimumVersion=”3.0.40307.0”
 Width=”100%” Height=”100%” />

You can also set these parameters using the <param /> tag when using an <object /> instead of the
Silverlight ASP control:

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/Ch10MakingItRicherWithMedia.xap”/>
 <param name=”EnableGPUAcceleration” value=”true” />
 <param name=”EnableCacheVisualization” value=”true” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”3.0.40307.0” />
</object>

The first parameter, EnableGPUAcceleration, enables the option of GPU acceleration at the plug-in
level. Note that at this point no elements in the player will actually be GPU-accelerated. The second
parameter, EnableCacheVisualization, will apply a red overlay to all elements not GPU-accelerated. If
you run your project at this point, everything should be red because you haven’t explicitly turned on
acceleration for any objects. EnableCacheVisualization is a great tool for understanding what is actu-
ally being offloaded to the GPU.

Now that you’ve enabled GPU acceleration at the plug-in level, you have to turn on GPU acceleration for
specific elements in your application. The following XAML enables GPU acceleration by setting the
CacheMode property to BitmapCache on a MediaElement:

<MediaElement x:Name=”sampleVideo”
 Source=”media/sampleVideo.m4v”
 CacheMode=”BitmapCache”
/>

If you test now, you should see that your video is no longer red (meaning that the GPU is rendering it).
When you’re satisfied with your caching settings, either delete the EnableCacheVisualization param-
eter or set its value to false.

Audio Settings
The Blend interface exposes some of the common properties you might want to set when initializing
your media. Three of the properties seen in Figure 10-3 deal with audio: Balance, IsMuted, and Volume.
These properties can be set via XAML, via the Blend property panel, or at run time via code.

Balance❑❑ — The Balance property accepts a value between –1 and 1, where –1 represents the left
channel of audio, and 1 represents the right channel. By default, this value is centered with a value of 0.

209

Chapter 10: Making It Richer with Media

IsMuted❑❑ — Toggle the value of this property to turn the volume of the MediaElement on or off,
while preserving the value of the Volume property.

Volume❑❑ — The Volume property accepts a value between 0 and 1, where 0 represents no volume,
and 1 represents full volume.

Buffering
By default, the MediaElement will buffer 5 seconds of the target source file before playback starts. You
can adjust this value by setting the BufferingTime property. This property is of type TimeSpan and
accepts a value in the following format:

[days.]hours:minutes:seconds[fractionalSeconds]

Both days and fractionalSeconds are optional. The following XAML instructs the MediaElement to
buffer 1 minute and 30.5 seconds of video:

<MediaElement
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

As the buffer is loaded, the BufferingProgress property of the MediaElement is updated. The value of
this property, like other properties representing a percentage, is 0 to 1. When this value reaches 1, it means
that 100 percent of the media specified by the BufferingTime has been downloaded, not 100 percent of
the media itself. Every time the BufferingProgress value is updated by 0.05 or more, the MediaElement
raises the BufferingProgressChanged event. The following XAML demonstrates how to specify an event
handler for the BufferingProgressChanged event:

<MediaElement
 x:Name=”meSampleVideo”
 BufferingProgressChanged=”meSampleVideo_BufferingProgressChanged”
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

The following code represents the meSampleVideo_BufferingProgressChanged event handler, refer-
enced by the previous XAML. When called, this method sets the Text property of the TextBlock
named tbBufferProgress with a meaningful message, based on the value of the MediaElement’s
BufferingProgress value:

private void meSampleVideo_BufferingProgressChanged(object sender, RoutedEventArgs e)
{
 tbDownloadProgress.Text = (meSampleVideo.BufferingProgress *
 100).ToString() + “% Buffered”;
}

210

Part II: Using Silverlight 3 Essentials

Detecting Download Progress
Just as you can detect the amount of video that has been buffered, you can detect the amount of the
total video that has been downloaded. The MediaElement’s DownloadProgress property represents the
percentage of video that has been downloaded in the value range of 0 to 1. As the value of this property
increases by 0.05, the DownloadProgressChanged event is raised by the MediaElement. The following
XAML demonstrates how to specify an event handler for the DownloadProgressChanged event:

<MediaElement
 x:Name=”meSampleVideo”
 DownloadProgressChanged=”meSampleVideo_DownloadProgressChanged”
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

The following code represents the meSampleVideo_DownloadProgressChanged event handler, refer-
enced by the previous XAML. When called, this method sets the Text property of the TextBlock
named tbDownloadProgress with a download status message based on the MediaElement’s
DownloadProgress property:

private void meSampleVideo_DownloadProgressChanged(object sender, RoutedEventArgs e)
{
 tbBufferProgress.Text = (meSampleVideo.DownloadProgress *
 100).ToString() + “% Downloaded”;
}

Notice that I’m multiplying the DownloadProgress value by 100 to obtain a percentage-based value.

Detecting Playback Quality
The MediaElement control exposes two properties, DroppedFramesPerSecond and
RenderedFramesPerSecond, that you can use to detect the video quality being rendered at any point in
time. If the framerate has dropped to a really low number, or the number of frames being dropped per
second is close to the framerate of your video, you could choose to change the Source of the MediaElement
to a stream encoded at a lower bitrate.

Controlling Playback
The MediaElement exposes several common methods that you can use to control the playback of the
loaded media.

Pause()
When called, the Pause method pauses playback at the current position. Playback can be resumed from
the Pause position by calling the Play method. If Pause is called but not available, the call will simply
be ignored. The MediaElement exposes a Boolean CanPause property that you can access to determine
whether or not pausing is available for the currently loaded media. Even though the Pause method will
be ignored when CanPause is false, you can take advantage of this property to update your user inter-
face, potentially disabling or hiding your pause button.

211

Chapter 10: Making It Richer with Media

The following code represents the Click event handler for a Button named btnPause:

 private void btnPause_Click(object sender, RoutedEventArgs e)
 {
 if (meSampleVideo.CanPause)
 meSampleVideo.Pause();
 }

Play()
When the Play method is called, the media is either started (if media was loaded with AutoPlay set to
false) or playback resumes from the current position (if paused). If the media is already playing, call-
ing this method has no effect. The following code represents the Click event handler for a Button
named btnPlay:

 private void btnPlay_Click(object sender, RoutedEventArgs e)
 {
 meSampleVideo.Play();
 }

Stop()
When called, the Stop method stops playback and resets the Position property to 00:00:00. If the
media was paused when Stop was called, the Position is simply reset. If playback was already
stopped, the method is ignored. The following event handler stops playback of MediaElement named
meSampleVideo:

 private void btnStop_Click(object sender, RoutedEventArgs e)
 {
 meSampleVideo.Stop();
 }

SetSource()
Generally, you will set the value of the MediaElement’s Source property directly, specifying a valid URI.
However, if you already have access to a media file via a Stream or MediaSourceStream (potentially
obtained asynchronously using the WebClient), you can use the SetSource method to change the media
stream. The following code hints at how this might be achieved:

 private void btnLoadStream_Click(object sender, RoutedEventArgs e)
 {
 // Load media using a stream obtained via WebClient
 // meSampleVideo.SetSource(WebClient stream here);
 }

Seeking
The MediaElement does not expose a method for seeking to a particular location within the loaded media.
You can, however, set the value of the Position property, which achieves the desired result. Just like
pausing, seeking is not available when the media source is a live stream. You can detect whether or not
seeking is available for the loaded media by accessing the CanSeek property.

212

Part II: Using Silverlight 3 Essentials

The following XAML specifies an event handler for the MediaElement’s MediaOpened event:

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MediaOpened=”UpdateScrubberVisibility”
 Source=”/SampleVideo.wmv” />

The following code handles the MediaOpened event and toggles the visibility of a Slider named
Scrubber based on the value of the MediaElement’s CanSeek property:

 private void UpdateScrubberVisibility(object sender, RoutedEventArgs e)
 {
 MediaElement media = sender as MediaElement;

 if (media.CanSeek)
 {
 Scrubber.Visibility = Visibility.Visible;
 }
 else
 {
 Scrubber.Visibility = Visibility.Collapsed;
 }
}

Responding to Video Markers
Windows Media files can be encoded with “Markers” throughout their timelines that can represent
either text or some type of script at a specified point on the timeline. You can use these markers to cre-
ate a higher level of interactivity with the media currently playing. For example, consider a recorded
presentation that includes a set of coordinating slides. As the video plays, you would like to change the
active slide at different points in the video to coincide with the appropriate narration. You can achieve
this feat by encoding your video with markers at each point along the timeline where you want the slide
to change. The section “Encoding Media with Expression Encoder” later in this chapter describes how to
add markers to video.

The Markers Property
When media is loaded via the MediaElement control, the MediaElement.Markers property is cleared
and then loaded with any markers defined in the currently loaded media. This property is available
once the MediaOpened event is raised.

The Markers property is of type TimelineMarkerCollection, a collection of TimelineMarker objects.
Each timeline marker has a Text, Time, and Type property. Generally, with video encoded for Silverlight
applications, the value of the Type property will be “Name”, with the value of Text representing the
Name of the particular marker. The Time property is of type TimeSpan and represents the location along
the media’s timeline where the marker occurs.

Using the Markers collection, you can retrieve all of the names of each marker for the currently loaded
video and create an interface that lets you jump directly to a particular scene. The following code loops

213

Chapter 10: Making It Richer with Media

through all of the markers for a MediaElement that has just been opened and writes the value of each
marker’s Text property to the debug window:

private void TraceMarkers(object sender, RoutedEventArgs e)
{
 MediaElement mediaElementWithMarkers = sender as MediaElement;
 foreach (TimelineMarker marker in mediaElementWithMarkers.Markers)
 {
 Debug.WriteLine(“Marker Found: “ + marker.Text);
 Debug.WriteLine(“ > “ + marker.Time.ToString());
 }
}

You can also use the Time property of a particular marker to seek to a position in the loaded media. The
following code jumps to the position of the last marker in the Markers collection:

private void SeekLastMarker(MediaElement mediaElement)
{
 // Get Index of Last Marker
 int lastMarkerIndex = mediaElement.Markers.Count - 1;

 // Seek to Position of Last Marker
 mediaElement.Position = mediaElement.Markers[lastMarkerIndex].Time;
}

Remember, the MediaElement does not contain a Seek() method; instead, you simply set the value of
the Position property directly.

The MarkerReached Event
The Markers property gives you all of the information you need to jump directly to a predefined point
in your media. However, if you want to enable the synchronized video + slideshow scenario described
at the beginning of this section, you’ll need to respond to the MarkerReached event of the MediaElement.
The MarkerReached event is raised any time a marker is reached during playback. The following XAML
demonstrates how to assign an event handler to the MarkerReached event:

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MarkerReached=”OnMarkerReached”
 Source=”/SampleVideo.wmv” />

Similar to the TraceMarkers method we saw earlier, the following OnMarkerReached method displays
the Text and Time of the marker that was just reached:

private void OnMarkerReached(object sender, TimelineMarkerRoutedEventArgs e)
{
 Debug.WriteLine(“Marker Reached: “ + e.Marker.Text);
 Debug.WriteLine(“ > “ + e.Marker.Time.ToString());
}

214

Part II: Using Silverlight 3 Essentials

The TimelineMarkerRoutedEventArgs object includes a Marker property that you use to get information
about the marker that has just been reached. The previous simple event handler just writes the Text
and Time to the Debug window. A more realistic sample might update an image and modify the text
of a label. The following example does just that:

private void OnMarkerReached(object sender, TimelineMarkerRoutedEventArgs e)
{
 // Set Slide Title
 txtSlideTitle.Text = e.Marker.Text;

 // Update Slide Image
 imgSlide.Source = new BitmapImage(new Uri(“images\\”
 + e.Marker.Text
 + “.png”, UriKind.Relative));
}

In the previous example, we create a new BitmapImage (System.Windows.Media.Imaging namespace),
assuming that there is a PNG image available that matches the string contained within the Marker.Text
property. In practice, you could have some type of data structure that matches the marker’s text or off-
set with the source video file and provides any number of fields you need to support your UI.

Windows Media files support multiple streams, each of which can have their own set of markers. The
MediaElement.Markers property only contains the markers embedded in the main file header, not the
additional streams. However, the MediaElement will still raise the MarkerReached event as these
additional markers are reached.

Handling Failed Media
We’d all like to think that nothing we create will ever fail, but you and I both know that’s just not real-
ity. When you’re setting the source file of the MediaElement to a URL on a remote web site, you can only
hope that it will always be there. If you’re not in control of the server, you can never truly count on its
existence, or the availability of the server, for that matter. Fortunately, the MediaElement control will let
us know when a referenced media file doesn’t load, isn’t supported, or “errors out” during playback.

The following XAML demonstrates how to assign an event handler to the MediaFailed event:

<MediaElement
 Width=”320”
 Height=”240”
 MediaFailed=”OnMediaFailed”
 Source=”/SampleVideo.wmv” />

When this unfortunate event occurs, you can either try to load another file or present the user with
some type of meaningful message or experience. The following code updates a TextBlock and displays
an error image:

private void OnMediaFailed(object sender, RoutedEventArgs e)
{

215

Chapter 10: Making It Richer with Media

 // Set Slide Title
 txtSlideTitle.Text = “An error occurred while trying to load the
 selected video.”;

 // Update Slide Image
 imgSlide.Source = new BitmapImage(new Uri(“images\\errorSlide.png”,
 UriKind.Relative));
}

Responding to State Changes
The MediaElement has a CurrentState property that can be accessed at any point during the life of the
control to determine its state. The CurrentState property is of type MediaElementState, an enum type
with the following values:

Closed❑❑

Opening❑❑

Individualizing❑❑

AcquiringLicense❑❑

Buffering❑❑

Playing❑❑

Paused❑❑

Stopped❑❑

The MediaElement also raises a CurrentStateChanged event that you can handle and respond to. The
following XAML demonstrates how to assign an event handler to this event:

<MediaElement
 Width=”320”
 Height=”240”
 CurrentStateChanged=”OnCurrentStateChanged”
 Source=”/SampleVideo.wmv” />

The following code handles this event and writes the current state of the MediaElement to the debug
window:

private void OnCurrentStateChanged(object sender, RoutedEventArgs e)
{
 MediaElement media = sender as MediaElement;
 Debug.WriteLine(“Current State: “ + media.CurrentState);
}

You can use your knowledge of the current state of the MediaElement to update playback controls in
your application. For example, if the current state changes to Playing, you probably want to show a
Pause button and vice versa.

216

Part II: Using Silverlight 3 Essentials

Media Playlists
In certain scenarios, playing a single media file is not enough. Consider an online news program that
consists of several news segments interspersed with commercials. Or consider on online radio program
that consists of a number of audio tracks, framed at the beginning and the end with commentary. In
both of these scenarios, a media playlist is desirable.

Silverlight supports both Server Side Playlist (SSPL) and Advanced Stream Redirector (ASX) playlist
files to enable the scenarios described previously.

Server-Side Playlist Files
SSPL files are XML-based and use the .wsx file extension. These files are used by a Microsoft Media Server
of some flavor (Windows Server 2003, Windows Server 2008, Windows Web Server 2008, etc.). Microsoft
has a server comparison guide to help illustrate the differences between their different server offerings at
the following URL: www.microsoft.com/windows/windowsmedia/forpros/server/version.aspx.

You’ll see that the Standard Edition of Windows Server 2003 does not support Advanced Fast Start or
Advanced Fast Forward/Rewind, whereas the Enterprise and DataCenter versions of those servers do.
There are several other features such as this that you don’t get with the non-Enterprise version of the
servers.

Why Use a Media Server and SSPL
Below are some common advantages offered by the Media Server technologies. Access the previously
referenced web site to get a full understanding of the capabilities offered by Microsoft Media Servers.

Dynamic Generation — ❑❑ SSPL files can be created either statically or, more attractively, dynami-
cally. This means that you can serve up a dynamic playlist based on a user’s authentication level
or the time of day the playlist is being requested. You can even edit the playlist after it has been
accessed by a client, giving you an extreme level of control over the served-up content.

Loading/Startup Experience — ❑❑ When broadcasting a live event, it’s common for users to sign in
before the event has started. To provide a better experience for the early birds, you can specify a
media file to loop prior to the broadcast.

Fine-Grained Control — ❑❑ The SSPL supports various configuration options that give you a high
level of control over each media file in your playlist. For example, you can define alternative
video streams or files should another video fail. You can also display a subclip of a video
instead of the entire video, by setting the clipBegin and clipEnd properties.

Creating and Consuming a WSX File
The .wsx file is an XML-based file that can be easily defined by hand. Once defined and saved, the file
must be published using a Windows Media Server. When a .wsx file is published, a publishing point will
be defined. It is this publishing point that will be consumed by the MediaElement control, just like a
standard media file:

myCustomPlaylist.wsx => publish => mms://MyMediaServer:8081/myCustomPlaylist

217

Chapter 10: Making It Richer with Media

The following shows a simple WSX file definition:

<?wsx version=“1.0”?>
<smil>
 <seq id=”debateSeq”>
 <media id=”introVideo” src=”intro.wmv” />
 <media id=”debate” src=”debate.wmv” />
 <media id=”summaryVideo” src=”summary.wmv” />
 <seq>
</smil>

Consuming the WSX is just as easy as consuming a single media file. You simply set the Source property
of MediaElement to the URI of your published playlist:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”mms://MyMediaServer:8081/myCustomPlaylist” />

The SSPL currently supports a number of features that Silverlight does not support. To see the latest list
of Silverlight-supported attributes visit the Audio and Video ➪ Server-Side Playlists section of the
Silverlight Developer Center (http://msdn.microsoft.com/en-us/library/cc645037(VS.95).aspx).

Advanced Stream Redirector (ASX) Files
In addition to SSPL files, Silverlight supports ASX-based playlist files. Like WSX files, ASX files are
XML-based and can be easily defined by hand or programmatically on the server. Unlike WSX files,
ASX files can reside on a standard Web Server and do not have to be published via Windows Media
Server. This capability may make ASX files more attractive to you when the power (and extra overhead)
of Windows Media Server is too much for your needs. The following URL covers in depth all aspects of
the ASX file format: http://msdn.microsoft.com/en-us/library/ms925291.aspx.

Key Features of ASX
The following are a few key features of the ASX playlist that may help you decide between SSPL and ASX:

Server Independent❑❑ — ASX files do not require a Windows Media Server. They are stand-alone
files that can reside loosely on a server or as part of your Silverlight project.

Dynamic Generation❑❑ — ASX files can be created either statically or, more attractively, dynami-
cally. This means you can serve up a dynamic playlist based on a user’s authentication level or
the time of day the playlist is being requested. You could achieve this dynamic approach by cre-
ating an ASPX page that returns ASX content. Set the Source property of your MediaElement to
the ASPX page’s path.

Fine-Grained Control❑❑ — The ASX file format offers various configuration options for each entry
in the playlist. For example, the STARTMARKER attribute lets you specify the start time of a particu-
lar entry. Most of these features of ASX are not currently supported by Silverlight 3, although I
wanted to call this ASX feature out should they be implemented at some point in the future.

218

Part II: Using Silverlight 3 Essentials

Creating and Consuming an ASX File
A simple ASX file contains a single root ASX element and a list of child Entry elements. Each Entry rep-
resents an item in the playlist. The following is a simple example that defines a playlist with a single item:

<ASX version = “3.0”>
<!--A simple playlist with entries to be played in sequence.-->
 <Title>Playlist Title</Title>
 <Entry>
 <Title>Sample Show Title</Title>
 <Author>ABC Video</Author>
 <Copyright>(c) 2008 ABC Video</Copyright>
 <Ref href=”Bear.wmv” />
 </Entry>
</ASX>

Reference the ASX playlist just as you would a single media element:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”MyCustomPlaylist.asx” />

Not all of the capabilities of the ASX format are supported by Silverlight 3. The following table identifies
those features and describes the behavior of the player when unsupported features are encountered:

ASX Feature Description

PreviewMode
attribute

This attribute is found on the root ASX object. It is not supported and will
raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

BannerBar
attribute

This attribute is found on the root ASX object. It is not supported and will
raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

SkipIfRef This attribute is found on the root ENTRY object. It is not supported and will
raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

PARAM element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

REPEAT element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

EVENT element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

219

Chapter 10: Making It Richer with Media

ASX Feature Description

STARTMARKER
element

This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

ENDMARKER
element

This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

Invalid content If a valid ASX tag has content that is not accepted (e.g., a MOREINFO tag con-
tains a REF tag), a MediaFailed error is raised.

Fallback URLs If an ENTRY tag has multiple REF children, only the first one is read. Unlike
WMP, Silverlight will not attempt to open additional REF URLs in case the
first one fails, and a MediaFailed error is raised.

Encoding Media with Expression Encoder
Now that you know how to do practically everything you can with the MediaElement, let’s take a look
at how to prepare media for use by the MediaElement. We’ll use Microsoft Expression Encoder 2, avail-
able as a trial download from www.microsoft.com/expression (Note: Be sure to download and install
Expression Encoder Service Pack 1 or later for H.264 and ACC support — http://www.microsoft.com/
downloads/details.aspx?FamilyId=A29BE9F9-29E1-4E70-BF67-02D87D3E556E&displaylang=en).
Expression Encoder is designed with Silverlight exporting in mind. It lets you quickly trim videos, add
markers, and render to a format natively supported by Silverlight. It even includes publishing templates
that generate Silverlight-based layouts (that include MediaElements, of course) to quickly present your
media on the Web.

In this walk-through, I’ll step you through a common encoding scenario to get you up-and-running
quickly; I won’t cover Expression Encoder in great detail. If you really need to dig deep, the Expression
Encoder Help should do the trick. So, here’s a quick glance at what we’ll cover:

Importing a media file❑❑

Trimming the media❑❑

Adding markers❑❑

Setting encoder settings❑❑

Defining metadata❑❑

Publishing the video❑❑

Let’s get started. Figure 10-12 shows Expression Encoder right after it’s been launched.

The default workspace is mostly disabled at startup. To get going, click on the Import button in the
lower-left corner of the screen (see Figure 10-13), or select File❑➪❑Import from the main menu.

Clicking Import will launch the File Browser dialog and let you select a file of any of the supported
media types, a fairly exhaustive list that should meet most of your needs (see Figure 10-14).

220

Part II: Using Silverlight 3 Essentials

Figure 10-12

Figure 10-13

Figure 10-14

Once you’ve selected a media file, it will be added to the Media Content panel, shown in Figure 10-15. I
selected the file Bear.wmv from the Windows Vista Videos folder as an example.

221

Chapter 10: Making It Richer with Media

Figure 10-15

Once you’ve imported the file, Expression Encoder detects some features of the file, such as File type,
duration, file size, and dimensions. These are displayed inline as a quick reference for you. You can
import any number of media files by clicking on the Import button again. Just select the media element
in the Content panel’s list to make it the active element on the edit surface, as seen in Figure 10-16.

Figure 10-16

222

Part II: Using Silverlight 3 Essentials

Timeline Controls
The timeline and transport controls appear directly beneath a video once it is selected. The interface is
broken into six key regions, highlighted in Figure 10-16:

Timeline❑❑

Timeline Viewing controls❑❑

Playback controls❑❑

Editing buttons❑❑

“Add leader” button❑❑

“Add trailer” button❑❑

Timeline
The Timeline is where you will trim the beginning and ending of your video, cut segments from your
video, and add media markers. You navigate the Timeline by dragging the “playhead” (orange box icon)
to a desired position. As you drag (or scrub, as it’s also known), the position indicator and video preview
will update (see Figure 10-17).

Figure 10-17

Trimming Video
Mouse over the beginning or ending of the timeline until your cursor changes, and you’ll see the icons
shown in Figure 10-18. Once you see the icon, press and drag to the right or left to trim the beginning or
ending of the video.

Figure 10-18

Cutting Video/Editing along the Timeline
You can cut segments from the middle of the timeline by adding an edit. Do this by positioning the
scrubber at the location where you want to make the edit, then click on the “Add an edit at the play-
head” button, as shown in Figure 10-19.

Once you’ve added an edit, you can trim the beginning or ending of the new segment just like you
trimmed the entire timeline (see Figure 10-20).

223

Chapter 10: Making It Richer with Media

Figure 10-19

Figure 10-20

The third of the editing buttons lets you remove the segment currently beneath the playhead. This lets
you cut out an entire segment of video. If you want to control your edits with an extra level of precision,
select the Enhance tab on the right of the screen (Window❑➪❑Enhance if it’s not available). Here, as
shown in Figure 10-21, you will see the “Start Time” and “End Time” for all of the edits you have added.

Figure 10-21

Adding Markers
Markers can be added to the Timeline by right-clicking at the location of the playhead and selecting
“Add Marker,” or by positioning the playhead and pressing [Ctrl]+M on your keyboard. Once you’ve
added a marker, it appears on the Timeline as a white rectangle (see Figure 10-22).

Figure 10-22

224

Part II: Using Silverlight 3 Essentials

Once you’ve added markers on the Timeline, you can edit their properties using the Markers panel,
available on the Metadata tab (Window❑➪❑Metadata). Figure 10-23 shows the Markers tab open with a
single marker added.

Figure 10-23

You can hand-tweak the time, provide a Value, specify whether or not to encode this as a keyframe, and
specify whether or not to generate a thumbnail for this particular marker. If you click on the Thumbnail
checkbox, a .jpg image will be created from the video at the position of the marker. This is useful if you
want to create a DVD-style navigation that displays images for different jump points in your media.

Timeline Viewing Controls
The Timeline Viewing controls are directly beneath the start of the Timeline, on the left-hand side of the
screen. The first item in this set is a toggle button that lets you toggle the visibility of segments in the
video that have been cut. In Figure 10-24, this feature is turned on, revealing a section in red that has
been cut. The second button toggles between the current zoom level (set by the zoom slider at the end
of this set) and a zoom level that shows the Timeline in its entirety. Use the zoom slider to set the zoom
factor, sliding it to the right to zoom in for more precise editing.

Figure 10-24

Playback Controls
The playback controls are positioned right in the middle of the Timeline area, making it easy to navi-
gate your timeline quickly. The leftmost and rightmost buttons, commonly used to navigate to the pre-
vious and next track on a media player, are here used to navigate from edit point to edit point or marker
to marker. The next set of buttons, second from the left and second from the right, let you step through
your video frame-by-frame. The middle button lets you toggle between Play and Pause. If you ever for-
get the meaning of practically any element in the interface, just hover for a few moments to see the con-
trol’s tooltip (see Figure 10-25).

225

Chapter 10: Making It Richer with Media

Figure 10-25

Editing Buttons
See the previous section, “Cutting Video/Editing along the Timeline.”

Add Leader/Add Trailer Buttons
Expression Encoder lets you quickly set an opening (leader) and closing (trailer) video to your currently
selected media by clicking on either the “Add Leader” or “Add Trailer” button. This is useful if you
have a standard branding that you want to apply to the beginning, end, or both, of all of the videos you
produce.

You cannot edit or trim either the leader or trailer. You’ll have to edit those separately, encode them, and
then set them as a leader or trailer if you need to perform any editing on those videos.

Editing Metadata
Select the Metadata tab (Window❑➪❑Metadata) to edit properties such as Title, Author, Copyright,
Rating, and the like that will be included with your encoded media file. If the encoded file is opened
with Windows Media Player, you will see this information displayed. The metadata properties listed
by default are only the most commonly used fields. Click the down arrow beneath the Description field
to see all of the supported fields. You can access this metadata in Silverlight using the MediaElement
.Attributes property (see Figure 10-26).

Figure 10-26

Encoding Settings
Select the Encode tab (Window❑➪❑Encode) to customize the way your video and audio will be encoded.
At the beginning of this chapter, we looked at a list of codecs supported by Silverlight. Now, we actually
encounter them. Figure 10-27 shows the Profile panel of the Encode tab. The first two sections let you

226

Part II: Using Silverlight 3 Essentials

specify a video profile and an audio profile by selecting from a dropdown list of options. You can think
of these as presets, each of which sets a codec, bitrate, height, width, and several other properties.

Figure 10-27

If you click the down arrow beneath the Video combobox, you’ll see all of the properties each item in
the combobox is setting. Figure 10-28 shows all of the sections contained within the Profile panel
expanded, revealing all available property settings. Try changing your combobox selection to see how
property settings are updated.

Figure 10-28

227

Chapter 10: Making It Richer with Media

If you want to get a feeling for how your video will look with your current encoding settings, click on
the “A/B compare” button in the lower-right corner of the Media Content area, as shown in Figure 10-29.

Figure 10-29

When you select “A/B compare,” the video preview area goes into a split mode, with the original video
on the left and a preview of the encoding video on the right. You first have to click on the “Generate
preview” link positioned in the right-hand area of the video. When the preview area goes blank, don’t
worry — the preview is being rendered. You will see a progress bar in the Media Content List for the
currently selected item. Once the preview has been rendered, you should see a preview similar to the
one in Figure 10-30.

Figure 10-30

Exit the Preview mode by clicking on the same A/B button you pressed to enter this mode. Its label has
changed to “Exit A/B compare.”

228

Part II: Using Silverlight 3 Essentials

Additional Encoding Features
The Encode tab also includes three other panels: Video Profile, Pre-Processing, and Advanced Codec
Settings. Use the Video Profile panel to resize and crop your video prior to encoding it. The Pre-
Processing panel includes options for de-interlacing your video, adjusting the resize quality, and nor-
malizing the level of you audio. The Advanced Codec Settings panel provides several options that let
you tweak the way the video is processed when it is being encoded. For more information about all of
these features, consult the Expression Media Help.

Adding a Video Overlay
Expression Media lets you quickly add an overlay image to your encoded video. This could be useful if
you want to watermark your video with a transparent logo, or even if you wanted to simulate a television-
style footer. You can supply either a static overlay, in the form of an image, or a motion overlay, in the
form of another video file or even XAML!

To add an overlay, select the Enhance tab (Window❑➪❑Enhance), and then scroll down to the Overlay
panel, as shown in Figure 10-31.

Figure 10-31

Click on the ellipsis button next to File to browse for an overlay file. For still image overlays, you can use a
JPG, BMP, PNG, or GIF file. I recommend using a 32-bit PNG file, as it supports a full alpha channel (mean-
ing real transparency). If you want to use a video overlay, you can select any of the many video types that
Expression supports for encoding. Expression also supports QuickTime files with full alpha channels, giv-
ing you the ability to add animated overlays full alpha-channel transparency (see Figure 10-32).

As mentioned earlier, you can also provide XAML-based overlays. This puts the full power of the
Silverlight rendering and animation engine at your disposal for creating video overlays.

You’ll need to use a Canvas-based layout when creating your overlay.

229

Chapter 10: Making It Richer with Media

Figure 10-32

Output Settings
The Output tab (Window❑➪❑Output) lets you customize thumbnail encoding options (file type, image
dimensions, etc.) and, most importantly, lets you specify where you want to render your media and
whether or not you want to publish using a Silverlight template. Figure 10-33 shows the Job Output
panel. The first property listed is Template. By default (None) is selected. If you wish to publish your
video with a Silverlight media player template, select an item from the dropdown list. As you change
your selection, the preview below the dropdown will change. Selecting one of these presets does not
affect your render settings; it just adds to the number of files that are generated and copied to your des-
tination folder. With “None” selected, only the .wmv or .wma is generated. With a template, the .wmv or
.wma plus several supporting files are generated.

Figure 10-33

230

Part II: Using Silverlight 3 Essentials

Encoding Media
Once you’ve finished customizing the Output Settings, Encoding Options, and optional overlay, you’re
ready to encode. So, click on the large Encode button in the lower left-hand corner of the screen, and
watch the progress bar work its way to 100 percent. That’s it! (See Figure 10-34.)

Figure 10-34

Using the Silverlight Streaming Service
Microsoft offers a free media hosting service at http://silverlight.live.com known as Microsoft
Silverlight Streaming by Windows Live. Once you’ve created an account, you have 10 GB of storage at your
disposal for publishing Silverlight applications. That 10 GB may sound great, but you don’t actually get
a 10-GB free-for-all. Your video files must be smaller than 105 MB in size. That’s approximately 10 min-
utes of video encoded at a bitrate of 1.4 Mbps. Once you’ve created your account and logged in, you’ll
see a menu similar to the one shown in Figure 10-35.

Figure 10-35

The first thing you want to do is click “Manage Applications.” On the next screen, you’ll click “Upload
an application,” as shown in Figure 10-36.

Figure 10-36

After clicking “Upload an application,” you’ll be prompted to give your new application a name. Enter a
name, and then click Create (see Figure 10-37).

231

Chapter 10: Making It Richer with Media

Figure 10-37

Once you’ve named your application, you’ll be prompted to upload a zipped version of your published
app. I browsed to my bin/Release folder, selected All files, then right-clicked and chose Send To❑➪❑
Compressed (Zipped) Folder. With my project zipped, I then browsed to the zip using the Browse dialog
in the Web page (see Figure 10-38).

Figure 10-38

After your application has finished uploading, you’ll be taken to the Application Properties page for
your newly created application. You can reaccess this page at any time by selecting “Manage Applications”
on the main menu, then selecting the desired project. Figure 10-39 shows the Application Properties
page for my newly created application named SampleStreaming.

Figure 10-39

On this page, you can choose from the options: Update the application by uploading a new version of
the zip file with the same name, delete the application, or configure the application by creating or edit-
ing its manifest. If the service cannot detect the settings of your embedded manifest file, it lets you cre-
ate one inline and edit those settings, as shown in Figure 10-40.

232

Part II: Using Silverlight 3 Essentials

Figure 10-40

Once you have a valid manifest file, the service provides directions for adding your uploaded applica-
tion to a Web page. As of this writing, you can embed the application as a frame in your page or use a
live control (see Figure 10-41).

Figure 10-41

233

Chapter 10: Making It Richer with Media

The Silverlight Streaming service gives you a location to host your Silverlight applications (whether
they include media or not) on a large network or redundant servers to reduce the load on your own
server. This is a great way to save costs if your application is going to be bandwidth-intensive or if you
expect to receive high-volume traffic on your application.

Smooth Streaming and IIS7
Smooth Streaming is an IIS Media Services extension, available for download at www.iis.net/extensions/
SmoothStreaming. This technology dynamically switches between various encodings of the same media
content based on the detected bandwidth of the requesting PC. Via this dynamic switching, Smooth Streaming
can enable near-instant seeking of video: A low-quality version of the video is immediately sent to the PC
upon seeking so that playback can begin. In the background, the next higher-quality feed is being cached.
When available, the video steps up to the next level of quality. This process continues until the PC’s band-
width no longer supports the next higher encoding.

In order to deliver Smooth Streaming video, the video must be encoded at a number of target quality levels
to support the various levels of bandwidth encountered. Expression Encoder 2 with Service Pack 1 includes
Smooth Streaming support that makes encoding for this powerful feature as easy as selecting a single pro-
file. If you don’t have Service Pack 1 installed, you’ll need to download it and install it before proceeding
(www.microsoft.com/downloads/details.aspx?FamilyId=A29BE9F9-29E1-4E70-BF67-02D87D3E556E).

Figure10-42 shows the Encode tab in Expression Encoder. To generate a collection of files to enable
Smooth Streaming, select the “Adaptive Streaming” profile from the Video dropdown, and select
“Adaptive Streaming Audio” from the Audio dropdown.

Figure 10-42

Like any of the other presets, you can customize individual properties once the preset has been selected.
Once you’re satisfied with your settings, you can complete the Publish section to publish your rendered
files directly to a Smooth Streaming IIS7 server. Select “WebDAV” from the “Publish To” dropdown in
the Publish category shown in Figure 10-43.

234

Part II: Using Silverlight 3 Essentials

Figure 10-43

Click on the Encode button and step away for a coffee or a good night’s rest, depending on the length of
your footage.

Summary
The media capabilities offered by the Silverlight player empower you to create true multimedia experi-
ences. You now know how to respond to all of the events raised by the MediaElement and interact with
its properties to create interactive, media-rich applications. You learned how to use Microsoft Expression
Media Encoder to prepare media files for consumption by your Silverlight applications and saw how the
Microsoft Silverlight Streaming service can be used to help carry your bandwidth burden. I hope your
mind is now racing with ideas for exciting media applications!

Using the Services

In this chapter, you’ll look at the services Silverlight provides out-of-the-box and get an understand-
ing of how to use them in your applications. Here we use the term services generically — facilities
that do something for you. We’ve categorized these roughly into three groups: communications,
storage, and installation and updates; and we’ll cover these, some in depth and some at a high level,
while referencing other parts of the book that delve into them in more detail.

Communications
Silverlight, at a high level, gives you essentially two forms of network communications: HTTP-
based and TCP-based sockets. Before diving into those, it is worthwhile to consider some URL
access restrictions that affect how you can use these services.

URL Access Restrictions
Silverlight has a few URL access restrictions. For the most part, they’re what you’d expect from a
browser-based technology, but they are worth discussing briefly. They apply both to HTTP-based
classes and to other facilities in the framework that internally use HTTP — for example, images,
media, font files, XAML source files, and streaming media.

At a high level, there are three kinds of restrictions: those based on schemes (i.e., HTTP, HTTPS,
and FILE); those based on domains, for which Silverlight loosens the standard browser restric-
tions to enable cross-domain access; and those based on zone access (in Internet Explorer).

For zone-based access, the rule is that you can’t access resources in a zone that is more trusted;
for example, you can’t get a resource in Trusted Sites if your application is running in the Internet
zone. This zone-based security will override cross-domain policies, so keep this in mind if you
find yourself trying to access a site that you know has the correct cross-domain policy; you also
need to check to ensure that it’s not in a more trusted zone.

11

236

Part II: Using Silverlight 3 Essentials

The following table gives a good outline of how the restrictions affect the various kinds of access in
Silverlight.

WebClient
and HTTP
Classes

Image,
MediaElement
(Non-
Streaming)

XAML
Source
Files

Font
Files

Streaming
Media

Allowed
Schemes

HTTP, HTTPS HTTP, HTTPS,
FILE

HTTP,
HTTPS,
FILE

HTTP,
HTTPS,
FILE

HTTP

Cross-
Scheme
Access

No No No No Not from
HTTPS

Cross-
Domain
Access

Only with
security pol-
icy; not
HTTPS-
HTTPS

Not HTTPS-
HTTPS

Not
HTTPS-
HTTPS

No Not HTTPS-
HTTPS

Cross-Zone
Access
(in IE)

Same or less
restrictive

Same or less
restrictive

Same or
less
restrictive

Same or
less
restrictive

Same or less
restrictive

Re-Direction
Allowed

Same site/
scheme or
cross-domain
with a policy

Not cross-scheme No No No

Other network and security considerations are covered in Chapter 13.

HTTP-Based Communications
HTTP-based communications are those that you use to — surprise — communicate over HTTP in a
broad sense. This includes the simplified WebClient as well as the more generic but more powerful
HttpWebRequest/Reponse. Within these, you have a few libraries to help you with particular scenarios,
such as RSS/syndication, duplex communications, and downloading.

Obviously, the most common scenario you’ll have is accessing some kind of Web service from
Silverlight. You may have a formal service with WSDL (Web Services Description Language); if that’s
the case, you can generate a client proxy for that service and access it using the proxy. Another very
common scenario is to access a service that is just Plain-Old XML (POX) and Representational State
Transfer (REST) services. For both of these, you can just use the WebClient or HttpWebRequest/Response
classes, although Silverlight does provide some facilities for REST, particularly for ADO.NET Data
Services. These topics are covered in depth in Chapter 14, and, in general, HTTP-based communication
is covered throughout the book, so we won’t dig into that here.

237

Chapter 11: Using the Services

Downloader
In Silverlight 1.0, there was a special Downloader service that simplified downloading items with HTTP
GET. In Silverlight 2, the Downloader was replaced by the WebClient class, which is a more general-
purpose web client (as its name implies). You can use this class to download all sorts of things (XAML,
XML, media, fonts, packages, additional assemblies, etc.) asynchronously over HTTP.

In addition to starting and receiving, it can also be used to monitor progress; the
DownloadProgressChangedEventArgs has various members such as bytes and total bytes to receive as
well as a nifty progress percentage member that you can use to display meaningful progress to users.

If you are downloading a package, you use the OpenReadAsync method in conjunction with the System
.Windows.Resources.StreamResourceInfo class and the System.Windows.Application.GetResourceStream
overload that takes the StreamResourceInfo instance to extract different parts of the downloaded pack-
age. This can be extremely useful for minimizing bandwidth usage by zipping things up into coherent
packages.

Because the WebClient class is so multipurpose (and useful), it is used throughout this book and else-
where; therefore, this chapter will not cover it in depth.

Duplex Communication
Duplex communication is a special facility that enables Silverlight clients to connect to a server and
effectively keep a channel of communication open so that the server can send updates (sometimes
called push) to clients without their having to repeatedly poll for updates. This is especially helpful in
cases such as instant communications clients (IMs/chat services) as well as server-based monitoring.

Note that under the covers, there is intermittent polling going on, but it is effec-
tively two-way as the server will keep the poll connection open until it responds
(or times out).

The following sample illustrates the basics of setting up duplex (two-way) communications. Be pre-
pared to be mystified if this sort of thing is new to you; it requires jumping through a lot of hoops and
does not provide most of the WCF service niceties (like client generation) that you’re used to. First,
you’ll want to set up your Silverlight application as usual and add a web site (or link to an existing one).

Setting Up the Duplex Service
On the server side, you need to add a reference (in addition to standard WCF references) to System
.ServiceModel.PollingDuplex.dll, which can be found in the server-side Evaluation folder in the
Silverlight SDK (e.g., C:\Program Files\Microsoft SDKs\Silverlight\v3.0\Libraries\Server). It should
show up in the .NET tab of the “Add Reference” dialog in Visual Studio.

Create a Services folder in your Web project and right-click to add an item. I recommend just adding
a text file and calling it Notifications.svc because the current state of things with duplex makes it easier
than clearing out stuff that doesn’t apply. In that file, add the following at the top:

<%@ ServiceHost Language=”C#” Debug=”true”
 Factory=”Wrox.Silverlight3.Services.NotificationsHostFactory” %>

238

Part II: Using Silverlight 3 Essentials

We’ll get to the service factory eventually. For now, add a Notifications.cs code file to your App_Code
directory (you might need to add that special ASP.NET folder to your web site). In that file, add the
following to define your contracts. In this sample, keep it simple. The service will simply be set up for
client subscriptions to arbitrary server notifications, which you’ll use to just send the server time down,
but it establishes the basic principles that you could use to build other duplex services.

using System;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.ServiceModel.Channels;
using System.Threading;
using System.Collections.Generic;

namespace Wrox.Silverlight3.Services
{
 #region Contracts
 [ServiceContract(Namespace = “http://wrox.com/Silverlight3/Services”,
 CallbackContract = typeof(IReceiveNotifications))]
 public interface ISendNotifications
 {
 [OperationContract(IsOneWay = true)]
 void Subscribe(Message message);
 }

 [ServiceContract(Namespace =“http://wrox.com/Silverlight3/Services”)]
 public interface IReceiveNotifications
 {
 [OperationContract(IsOneWay = true)]
 void Notify(Message message);
 }
 #endregion
}

ISendNotifications is the server-side contract, and IReceiveNotifications defines the client-side
contract. What is really important here is the ServiceContract namespace, as that is how WCF will map
the messages sent back and forth to the corresponding code operations. On the server, you just define
a Subscribe that clients can call to subscribe to server notifications; the client defines a Notify that the
server will use to send notifications to clients. Note the CallbackContract on ISendNotifications; this
indicates the client-side contract that WCF will expect for duplex communication.

Now add an implementation of the server-side contract (as you normally would):

#region Service Implementation
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class Notifications : ISendNotifications
{
 Dictionary<string,IReceiveNotifications> _Clients =
 new Dictionary<string, IReceiveNotifications>();
 object _SyncRoot = new object();

 Timer _ServerTimer;

 public Notifications()

239

Chapter 11: Using the Services

 {
 _ServerTimer = new Timer(GenerateNotification, null, 0, 1000);
 }

 public void Subscribe(Message message)
 {
 lock (_SyncRoot)
 {
 OperationContext.Current.Channel.Closing += Channel_Closing;
 _Clients[OperationContext.Current.Channel.SessionId] =
 OperationContext.Current.
 GetCallbackChannel<IReceiveNotifications>();
 }
 }

 void GenerateNotification(object clientMessage)
 {
 Message notification = Message.CreateMessage(MessageVersion.Soap11,
 “http://wrox.com/Silverlight3/Services/ISendNotifications/Notify”,
 “Server Time: “ + DateTimeOffset.Now.ToString());
 lock (_SyncRoot)
 {
 foreach (IReceiveNotifications client in _Clients.Values)
 client.Notify(notification);
 }
 }

 void Channel_Closing(object sender, EventArgs e)
 {
 lock (_SyncRoot)
 {
 IContextChannel channel = (IContextChannel)sender;
 _Clients.Remove(channel.SessionId);
 }
 }
}
#endregion Service Implementation

All this code simply sets up a service that will send 1-second updates to subscribed clients, telling them
what the current server time is. The timer is just there to facilitate the updates; normally, you wouldn’t
do this — you would have something more meaningful to send back to the client that would more
likely be event-based than timer-based.

The code uses a simple generic dictionary to keep track of subscribed clients by using the SessionId on
the client context as the key. This is used in the Closing event handler to remove those clients that close
their connections (or time out) from the list of clients to notify.

You use the System.ServiceModel.Channels.Message class to send messages back and forth. The
Create method has a few overloads; the code above uses the one that takes a message version (duplex
only supports SOAP 1.1 right now), the action (remember that this is mapped to the service namespace,

240

Part II: Using Silverlight 3 Essentials

service, and operation names), and the content of the message — you can only send string-based
messages, so you have to serialize and deserialize your objects yourself.

Next, you have to create your own factory (that was specified in the .svc file, if you recall):

#region Service Host Factory
public class NotificationsHostFactory : ServiceHostFactoryBase
{
 public override ServiceHostBase CreateServiceHost(
 string constructorString, Uri[] baseAddresses)
 {
 ServiceHost service =
 new ServiceHost(typeof(Notifications), baseAddresses);
 PollingDuplexHttpBinding binding = new PollingDuplexHttpBinding()
 {
 ServerPollTimeout = TimeSpan.FromSeconds(60),
 InactivityTimeout = TimeSpan.FromMinutes(10)
 };

 service.AddServiceEndpoint(typeof(ISendNotifications),
 binding, “”);

 return service;
 }
}
#endregion Service Host Factory

Although this is doubtless gobbledygook to those not steeped in WCF-ology, the basic thing here is to
create the PollingDuplexHttpBinding, set its time-out values, and add the endpoint on a service of the
Notifications type that you just created.

So that’s it for the server side; you should be able to right-click and open Notifications.svc in the
browser without error at this point, although it won’t supply metadata because you didn’t specify a
metadata exchange endpoint. Hopefully, once the infrastructure is fully baked, you’ll be able to let
Visual Studio take care of all this for you and/or even use web.config instead of coding the factory.

Setting Up the Duplex Client
The server is pretty straightforward compared to the client interface. This is where you better make sure
you have a cup of Joe handy and your best focus music going before diving into this convoluted mess.
In this sample, you’ll just create two buttons, one for telling the client to subscribe to server notifications
and one to unsubscribe, as well as a textbox to display messages in, so the XAML looks like this:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button Content=”Subscribe” x:Name=”SubscriptionButton”
 Click=”SubscriptionButton_Click” />
 <Button Content=”Unsubscribe” x:Name=”UnsubscriptionButton”
 Click=”UnsubscriptionButton_Click” />
 <TextBlock x:Name=”SusbscriptionInfo” TextWrapping=”Wrap” />
 </StackPanel>
</Grid>

241

Chapter 11: Using the Services

Before moving on, you will need a few extra references. Add references in your Silverlight project to
System.ServiceModel, System.ServiceModel.PollingDuplex, and System.Runtime.Serialization.
Then, in your code-behind, you will need to use some of those namespaces:

using System.Threading;
using System.ServiceModel;
using System.ServiceModel.Channels;

Next, you need to set up a few class members to make coding a bit easier:

SynchronizationContext _UiThread;
IDuplexSessionChannel _Channel;
bool IsChannelOpen { get { return _Channel != null; } }

Now, in your SubscriptionButton_Click handler, add the following code:

if (IsChannelOpen)
{
 AppendServerMessage(“Already subscribed.”);
 return;
}
AppendServerMessage(“Subscribing to server notifications...”);
_UiThread = SynchronizationContext.Current;

PollingDuplexHttpBinding binding = new PollingDuplexHttpBinding()
{
 InactivityTimeout = TimeSpan.FromMinutes(10)
};

IChannelFactory<IDuplexSessionChannel> factory =
 binding.BuildChannelFactory<IDuplexSessionChannel>(new

BindingParameterCollection());

IAsyncResult factoryOpenResult =
 factory.BeginOpen(OnFactoryOpenComplete, factory);
if (factoryOpenResult.CompletedSynchronously)
{
 FactoryOpenComplete(factoryOpenResult);
}

The first thing this does is check to see if there is already a channel set up and open (it assumes, as you’ll
see, that if there is a channel instance, it is effectively open). This keeps the channels open to one, which
is important because this will use one of the two available IE connections that you have available (if you’re
using IE, of course, although, no doubt, most other browsers have similar limitations).

The AppendServerMessage is just a helper function to add text to the textbox you set up; it will be used
from background threads to post messages via the SynchronizationContext’s Post method, and that’s
also why you grab a reference to the UI thread’s context. Here’s what it looks like:

void AppendServerMessage(object messagePayload)
{
 string message = messagePayload as string;

242

Part II: Using Silverlight 3 Essentials

 if (!string.IsNullOrEmpty(message))
 this.SusbscriptionInfo.Text += message + Environment.NewLine;
}

Next, you get to the actual client binding code. Much as you did on the server, you create a
PollingDuplexHttpBinding and set its time-outs. Here we’re just setting the inactivity time-out, which
is an additive time-out that determines how long the client will keep its session open without any real
messages from the server. The code above sets it to 10 minutes to wait before timing out because of
inactivity; this needs to vary based on your needs and usage patterns.

Then you set up a duplex channel factory to create your channel from. This is where the craziness
really starts — pretty much every communication method has an asynchronous capability but could
also execute synchronously, so you need to supply an asynchronous callback as well as a synchronous
handler. The general pattern, as you will see, is that the asynchronous callback method checks to see if
the call was completed synchronously, and only if it wasn’t, will it then call the synchronous handler.

void OnFactoryOpenComplete(IAsyncResult result)
{
 if (!result.CompletedSynchronously)
 FactoryOpenComplete(result);
}

void FactoryOpenComplete(IAsyncResult result)
{
 IChannelFactory<IDuplexSessionChannel> factory =
 (IChannelFactory<IDuplexSessionChannel>)result.AsyncState;

 factory.EndOpen(result);

 _Channel = factory.CreateChannel(new EndpointAddress(
 “http://localhost:1045/ServicesWeb/Services/Notifications.svc”));

 IAsyncResult channelOpenResult =
 _Channel.BeginOpen(OnChannelOpenComplete, null);
 if (channelOpenResult.CompletedSynchronously)
 {
 ChannelOpenComplete(channelOpenResult);
 }
}

Whether or not it completed asynchronously, you need to call the corresponding End method to con-
tinue. Once you have created the factory, you then create a channel using the endpoint for your service.
(Obviously, in a real app, you won’t want to hard-code the URI to your endpoint.) Now you have a
channel, so you can open it using BeginOpen and the corresponding completion handlers:

void OnChannelOpenComplete(IAsyncResult result)
{
 if (!result.CompletedSynchronously)
 ChannelOpenComplete(result);
}

void ChannelOpenComplete(IAsyncResult result)
{

243

Chapter 11: Using the Services

 _Channel.EndOpen(result);
 Message message =
 Message.CreateMessage(MessageVersion.Soap11,
 “http://wrox.com/Silverlight3/Services/ISendNotifications/Subscribe”,
 string.Empty);
 IAsyncResult sendResult =
 _Channel.BeginSend(message, OnSendComplete, null);
 if (sendResult.CompletedSynchronously)
 {
 SendComplete(sendResult);
 }
 ReceiveNotifications();
}

After opening the channel, you are free to send messages to the server to your heart’s content. What the
code above does is send a subscribe message to the server (effectively calling the ISendNotifications
.Subscribe method on your contract implementation). Remember the mapping of the service namespace
to actual code operations. If you get it wrong, the correct server code won’t work. This is another case in
which you’d typically want to refactor so that you’re not hard-coding the operation strings in your code
(e.g., a MessageHelper static class with constant strings for message operations).

You send off that message and move on with life to the ReceiveNotifications method to go ahead and
prepare the client to receive messages. The send completion handlers look like this — nothing special:

void OnSendComplete(IAsyncResult result)
{
 if (!result.CompletedSynchronously)
 SendComplete(result);
}

void SendComplete(IAsyncResult result)
{
 _Channel.EndSend(result);
 _UiThread.Post(AppendServerMessage, “Waiting for notifications...”);
}
What’s more interesting is the preparation to receive messages from the server.
void ReceiveNotifications()
{
 IAsyncResult result =
 _Channel.BeginReceive(OnReceiveComplete, null);
 if (result.CompletedSynchronously)
 ReceiveComplete(result);
}

OK, so it isn’t that interesting in itself, but what this does is initiate the poll/wait on the server for a
message. When the client receives a message, your completion handlers will be called:

void OnReceiveComplete(IAsyncResult result)
{
 if (!result.CompletedSynchronously)
 ReceiveComplete(result);
}

void ReceiveComplete(IAsyncResult result)

244

Part II: Using Silverlight 3 Essentials

{
 try
 {
 Message receivedMessage = _Channel.EndReceive(result);

 if (receivedMessage == null)
 {
 _UiThread.Post(AppendServerMessage, “Server disconnected.”);
 this.Close();
 }
 else
 {
 string text = receivedMessage.GetBody<string>();
 _UiThread.Post(AppendServerMessage, text);
 ReceiveNotifications();
 }
 }
 catch (CommunicationObjectFaultedException)
 {
 _UiThread.Post(AppendServerMessage, “Server notifications timed out.”);
 }
}

The EndReceive method on the channel returns the Message that the server sent, and that’s what
you have to use to dive into the response. A typical thing to do is use the GetBody method to retrieve
the message body, and this is where your custom deserialization code would come into play if you
were shipping serialized custom objects around. In this case, you’re just getting a string message,
which is immediately posted to the UI thread. Last, you set up the client to receive again by calling
ReceiveNotifications again.

You will note a few conditions here. First, if the message is null, it is best to assume that the connection
has been severed in some way, so you want to handle that accordingly. In the preceding code, it just
posts a message to that effect and cleans up the channel. The other condition is a fault condition that
should be triggered if a time-out occurs.

What’s left is the code Close and cleaning up the channel:

void Close()
{
 if (IsChannelOpen)
 {
 IAsyncResult result =
 _Channel.BeginClose(OnCloseChannel, null);
 if (result.CompletedSynchronously)
 {
 CloseChannel(result);
 }
 }
}

void OnCloseChannel(IAsyncResult result)
{
 if (!result.CompletedSynchronously)

245

Chapter 11: Using the Services

 CloseChannel(result);
}

void CloseChannel(IAsyncResult result)
{
 if (IsChannelOpen)
 {
 _Channel.EndClose(result);
 _UiThread.Post(AppendServerMessage, “Unsubscribed.”);
 _Channel = null;
 }
}

As you can see, it pretty much follows the pattern used thus far, calling the BeginClose and EndClose
methods on the channel and clearing out the channel reference. And that makes way for the final bit of
code in this sample, the UnsubscriptionButton_Click handler, which just closes the channel:

void UnsubscriptionButton_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

The problem with where things are right now is that you’re left to do a lot of the grunt work yourself to
do duplex communication. No doubt this will be made easier as it is developed, but if you need it sooner,
you can and should refactor your duplex code into a separate class or set of classes to encapsulate it better
both for reuse and for cleaner, more maintainable code.

Sockets
Like the HTTP-based duplex communication just covered in the previous section, sockets are likely
going to appeal to a limited audience, but they’re very useful for those who need them. Silverlight’s
sockets implementation uses Windows Sockets (Winsock) on Windows and BSD UNIX’s sockets on
OS X to provide a standard, managed interface. If you need true, real-time duplex communication and
can use TCP, then this is your solution in Silverlight. The challenge, of course, is that it uses ports
(4502–4532 and 943 for policy) that are less likely to be open in firewalls, so the application of a sockets
solution may be limited because of that.

The example that follows is a simple implementation of essentially the same scenario covered in the
duplex HTTP section, that is, server notifications. The first thing you’ll need to do is create a server;
probably the easiest way to do this is via a console application, so you can just add a Console application
to your solution and call it SocketsServer to get started.

Setting Up the Policy Server
Now, because sockets require a call access security file (even for site-of-origin calls), you first need
to set up a policy server listener. To do this, add a new class file to your console application, calling it
PolicyServer. You’ll need to use a few namespaces to make things more manageable:

using System.IO;
using System.Net;
using System.Net.Sockets;

246

Part II: Using Silverlight 3 Essentials

Most of the socket’s functionality you’ll need will, of course, be in System.Net.Sockets. We have I/O
included because we want to read the policy XML file from the local filesystem, as you’ll see shortly.
System.Net has the network endpoint classes you’ll be using. Now, create a few class members:

Socket _Listener;
byte[] _PolicyData;

The Socket, of course, is the listener socket you’ll set up; the policy data will be in an in-memory byte
buffer of your policy file data to be shared across connections. Now define a constructor that takes a file
path to the location of your policy file:

public PolicyServer(string policyFile)
{
 using (FileStream policyStream =
 new FileStream(policyFile, FileMode.Open))
 {
 _PolicyData = new byte[policyStream.Length];
 policyStream.Read(_PolicyData, 0, _PolicyData.Length);
 }
}

As you can see, this simply reads the policy file data into the aforementioned byte buffer. The policy
file you’ll use can be added to your project and called whatever you like; since you’re going to allow all
access, you might call it allow-all.xml. You could create different policies in different files then and just
use some mechanism to specify which policy should apply at any particular time. The allow-all access
XML file looks like the following:

<?xml version=“1.0“ encoding =“utf-8“?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri=“*“ />
 </allow-from>
 <grant-to>
 <socket-resource port=“4502-4532“ protocol=“tcp“ />
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

The two key things here are the allow-from with the * URI, which means any URI can call it, and the
port specification, which here is just as open as Silverlight itself, although you could use this to further
constrain the allowable ports.

Back to the policy server. You will want to add a Start method of some sort that will create the socket
listener and start listening for requests:

public void Start()
{
 Console.WriteLine(“Starting policy server...”);

247

Chapter 11: Using the Services

 _Listener = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
 _Listener.Bind(new IPEndPoint(IPAddress.Any, 943));
 _Listener.Listen(10);
 _Listener.BeginAccept(OnConnection, null);
 Console.WriteLine(“Policy server waiting for connections...”);
}

Silverlight limits the kinds of sockets you can create — pretty much streams over TCP. Since this is the
policy server, you need to bind to the well-known port 943, and the Listen method starts it listening on
that port, allowing up to 10 connections in the queue, which is more than enough in this sample. Finally,
you attach a handler to the BeginAccept event, such as the OnConnection method:

void OnConnection(IAsyncResult res)
{
 Socket client = null;
 try
 {
 client = _Listener.EndAccept(res);
 }
 catch (SocketException)
 {
 return;
 }
 Console.WriteLine(“Policy client connected.”);

 PolicyConnection policyConnection =
 new PolicyConnection(client, _PolicyData);
 policyConnection.NegotiatePolicy();

 _Listener.BeginAccept(OnConnection, null);
}

The first thing this handler does is get a reference to the client socket, which will be used to send the
policy file. To facilitate this, you need to create a PolicyConnection class as follows. In that class, you
need to use a couple of namespaces:

using System.Net.Sockets;
using System.Text;

The Sockets namespace is, of course, for the sockets work, and the Text namespace facilitates using the
text encoding to read a string from a byte array. Now add a few class members:

Socket _Connection;
byte[] _PolicyRequestBuffer;
int _NumBytesReceived;
byte[] _PolicyData;
static string _PolicyRequest = “<policy-file-request/>”;

In this case, the Socket will be the connection to the client. The policy request buffer will be used to
compare the connection request with the expected request, identified in the shared policy request
string — this is what Silverlight clients will send when looking for a policy file. The number of bytes

248

Part II: Using Silverlight 3 Essentials

received is just used to track that the full request is received, as you’ll see, and the policy data byte
array will be a reference to the given policy file data.

public PolicyConnection(Socket client, byte[] policy)
{
 _Connection = client;
 _PolicyData = policy;
 _PolicyRequestBuffer = new byte[_PolicyRequest.Length];
 _NumBytesReceived = 0;
}

As you might expect, the constructor initializes the class members appropriately:

public void NegotiatePolicy()
{
 Console.WriteLine(“Negotiating policy.”);
 try
 {
 _Connection.BeginReceive(_PolicyRequestBuffer, 0,
 _PolicyRequest.Length, SocketFlags.None, OnReceive, null);
 }
 catch (SocketException)
 {
 _Connection.Close();
 }
}

This is the method you called from the PolicyServer’s OnConnection handler to negotiate the policy
for the current connection. It simply starts receiving the request from the client into the buffer, using
the OnReceive method as the completion event handler:

private void OnReceive(IAsyncResult res)
{
 try
 {
 _NumBytesReceived += _Connection.EndReceive(res);
 if (_NumBytesReceived < _PolicyRequest.Length)
 {
 _Connection.BeginReceive(_PolicyRequestBuffer, _NumBytesReceived,
 _PolicyRequest.Length - _NumBytesReceived, SocketFlags.None,
 OnReceive, null);
 return;
 }
 string request = Encoding.UTF8.GetString(
 _PolicyRequestBuffer, 0, _NumBytesReceived);
 if (StringComparer.InvariantCultureIgnoreCase.Compare(
 request, _PolicyRequest) != 0)
 {
 _Connection.Close();
 return;
 }
 Console.WriteLine(“Policy successfully requested.”);
 _Connection.BeginSend(_PolicyData, 0, _PolicyData.Length,
 SocketFlags.None, OnSend, null);
 }

249

Chapter 11: Using the Services

 catch (SocketException)
 {
 _Connection.Close();
 }
}

OK, so this is where dealing with sockets can be a little more archaic than what the average .NET dev is
probably used to. Because there is no guarantee that the entire request that you are expecting was sent
in the first go, you may want to take this approach. Calling EndReceive will tell you how many bytes
were received. You can then compare that with what you are expecting to see if you’re done. In the pre-
ceding code, you’re expecting to receive a request with the length of the policy request length; if it isn’t
there yet, you call BeginReceive again to (hopefully) get the rest of what you’re looking for.

Once you have something that is at least the right length, the next step is to compare that to what you
are expecting; however, you first need to read the received bytes into a UTF8 string. You can then com-
pare the actual request contents with the well-known policy request string. If it doesn’t match, you just
close the connection — this server only handles negotiating server policy according to the Silverlight
policy negotiation protocol. If, on the other hand, it is the expected request, you then just send the
server policy data down to the client.

The last thing to do for the policy server is to set it up when the console application starts, so go
into your Main method (in the Program class file, assuming that you used the standard VS Console
Application template), create a policy server instance, and start it up like this:

static void Main(string[] args)
{
 PolicyServer ps = new PolicyServer(“allow-all.xml”);
 ps.Start();
}

See, here you’re passing in the path to your policy file. This is hard-coded for simplicity; you’d probably
want to let the policy file be passed in via command-line arguments or some other fancier mechanism
in real-world code. Also, note that you can simply add that file as a text file to your project and set its
Build Action to Content and the “Copy to Output Directory” to “Copy if newer” so that you can man-
age the file in your project and have it be in the output location to be consumed while you are running
and debugging it.

Unfortunately, that’s a lot of boilerplate code that you have to deal with just to enable Silverlight clients
to connect to your real sockets server, that is, the one that is doing your domain work. On the positive
side, your policy server should be the same (code) for all sockets apps, so you can reuse it across them
and just tweak your policy files as needed.

Setting Up the Application Sockets Server
In this sample case, the real sockets server will just send notifications, so set that up next by adding a
SocketsServer class file to your project and using the following namespaces:

using System.Collections.Generic;
using System.Text;
using t = System.Timers;
using System.Net.Sockets;

250

Part II: Using Silverlight 3 Essentials

using System.Net;
using System.Threading;
using System.Diagnostics;

It’s a lot of namespaces, but there’s no need to get overwhelmed. You’ll only be using a few things from
each. Next thing to do is set up your class fields:

t.Timer _ServerTimer;
Socket _Listener;
ManualResetEvent _ThreadCoordinator = new ManualResetEvent(false);
List<Socket> _Clients = new List<Socket>();
object _SyncRoot = new object();

Since there is a System.Threading timer and a System.Timers timer, it is helpful to disambiguate using
the namespace alias set up in the using statements, that is t. The thread coordinator, sync root, and cli-
ents list are all there to facilitate tracking multiple connections and coordinating between them. Next,
add a Start method as you did with the policy server to set things off:

public void Start()
{
 _ServerTimer = new t.Timer(1000);
 _ServerTimer.Enabled = false;
 _ServerTimer.Elapsed += ServerTimer_Elapsed;

 _Listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 IPEndPoint serverEndpoint = new IPEndPoint(IPAddress.Any, 4502);
 _Listener.Bind(serverEndpoint);
 _Listener.Listen(2);

 while (true)
 {
 _ThreadCoordinator.Reset();
 _Listener.BeginAccept(AcceptClient, null);
 Console.WriteLine(“Waiting for clients...”);
 _ThreadCoordinator.WaitOne();
 }
}

The first thing here is the creation of the timer. Note that it is disabled initially — no need for it to be
running while no clients are connected. Also, keep in mind that this is just used for simulation purposes;
it’s safe to assume that you would have more meaningful events and notifications to send to real-world
clients than timer-based ones.

The next block of code should look familiar; it is setting up the server socket listener. One thing that is
different is that it is listening on port 4502 — one of the ports allowed by Silverlight and not the policy
negotiation port of 943. Also, the code is (arbitrarily) limiting queued connections to two; you need to
adjust this to what makes sense for your expected usage and capacity.

The last block here sets up the listener loop. The ManualResetEvent that here is called _ThreadCoordinator
is used as a simple way for threads to signal that they’re doing or not doing something. Reset tells all

251

Chapter 11: Using the Services

the threads to hold on while the current thread does its thing. WaitOne tells the current thread to chill
until it gets a signal that says “Go ahead.” In between, you set up the AcceptClient method to take the
next connection that comes in:

void AcceptClient(IAsyncResult result)
{
 try
 {
 _ThreadCoordinator.Set();

 Socket clientSocket = _Listener.EndAccept(result);
 lock (_SyncRoot)
 _Clients.Add(clientSocket);
 Console.WriteLine(“Client connected.”);

 if (!_ServerTimer.Enabled)
 _ServerTimer.Enabled = true;
 }
 catch (ObjectDisposedException ex)
 {
 Trace.WriteLine(“Socket closed: “ + ex.ToString());
 }
 catch (SocketException ex)
 {
 Console.WriteLine(ex.Message);
 }
}

In this method, the first thing is to say, “Yo, all y’all can go ahead now” to the waiting threads that
were previously blocked. Then it goes on to get a reference to the connected client socket, synchronizes
access to the current list of clients, and adds this one to the list of subscribed clients. The next thing is
to go ahead and enable the server timer now that clients are connected and waiting for notifications. If
you’ll recall, you attached the ServerTimer_Elapsed method to the timer’s Elapsed method back in the
Start method.

void ServerTimer_Elapsed(object sender,
 System.Timers.ElapsedEventArgs e)
{
 byte[] serverTimeBytes = Encoding.UTF8.GetBytes(
 DateTimeOffset.Now.ToString());
 Console.WriteLine(“Sending server time.”);
 lock (_SyncRoot)
 {
 List<Socket> refreshedList = new List<Socket>(_Clients.Count);
 foreach (Socket client in _Clients)
 {
 if (client.Connected)
 {
 try
 {
 client.Send(serverTimeBytes);
 }

252

Part II: Using Silverlight 3 Essentials

 catch (Exception ex)
 {
 if (!(ex is SocketException) ||
 ((SocketException)ex).SocketErrorCode !=
 SocketError.ConnectionReset)
 Console.WriteLine(“Client Send Error: “ + ex.ToString());
 else
 Console.WriteLine(“Client disconnected.”);
 client.Close();
 return;
 }
 refreshedList.Add(client);
 }
 }
 _Clients = refreshedList;
 if (_Clients.Count == 0)
 _ServerTimer.Enabled = false;

 }
}

This method does the actual sending of notifications to clients, but remember that this is completely
arbitrary — you could send updates to clients based on any number of server-side events. Since this
sample is timer-based, it makes sense to just send the server time, so that first bit is grabbing the cur-
rent server time into a byte buffer to be sent to the clients.

The next block goes ahead and synchronizes access to the client list by locking on the sync root object.
It then creates a new list of clients that will be used to refresh the list of currently connected clients —
in this way, when clients fall off or unsubscribe, we let go of them on the server side and let their
resources get cleaned up. Then, for every client that is still connected, you add them to the new list and
try to send them the message (the server time).

The last bit of code in this method updates the _Clients reference with the new, refreshed list of clients
and then checks to see if any clients are still connected. If not, it disables the timer until new clients
connect.

The final thing you need to do on the server is to create an instance of this class and start it up, so go
back to your Main method and add it like this:

static void Main(string[] args)
{
 PolicyServer ps = new PolicyServer(“allow-all.xml”);
 ps.Start();

 SocketsServer s = new SocketsServer();
 s.Start();
}

253

Chapter 11: Using the Services

Setting Up the Sockets Client
Now that your server is all set, you need to create a client. To do this, you can copy the XAML from the
duplex HTTP sample into a new Sockets.xaml user control. Then, in the code-behind, you need to set
up some stuff. This is where, if you ask me, sockets are easier than duplex HTTP — it feels like far fewer
methods and far less trouble to accomplish the same scenario. So first, adding the following namespace
includes:

using System.Threading;
using System.Net.Sockets;
using System.Text;

Then add these class members:

SynchronizationContext _UiThread;
Socket _Channel;
DnsEndPoint _RemoteEndPoint;
bool Connected {get{ return _Channel != null && _Channel.Connected; }}

This is fairly similar to the duplex HTTP sample, and, in fact, you can copy the AppendServerMessage
from that sample as well as the button click event-handler signatures, the first of which is the
SubscriptionButton_Click handler:

void SubscriptionButton_Click(object sender, RoutedEventArgs e)
{
 if (Connected)
 {
 AppendServerMessage(“Already subscribed.”);
 return;
 }

 AppendServerMessage(“Subscribing to server notifications...”);
 _UiThread = SynchronizationContext.Current;

 _Channel = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 _RemoteEndPoint =
 new DnsEndPoint(Application.Current.Host.Source.DnsSafeHost, 4502);

 SocketAsyncEventArgs args = new SocketAsyncEventArgs();
 args.RemoteEndPoint = _RemoteEndPoint;
 args.Completed += SocketConnectCompleted;
 _Channel.ConnectAsync(args);
}

The first part of this should look familiar from the duplex HTTP, just ensuring only one subscription for
this client at a time and grabbing a reference to the UI thread context. Assuming that it is not already con-
nected, this will create a new socket and set up a DnsEndPoint to the site of origin (that’s the Application
.Current.Host.Source bit) on port 4502. The important thing here, of course, is to connect on the port

254

Part II: Using Silverlight 3 Essentials

that the server is listening on, so if this were a real-world app, you’d have to publish that information to
your clients somehow. Here, we’re hard-coding for simplicity.

Now Silverlight uses the SocketAsyncEventArgs class as a sort of general socket communication facil-
ity, so you go ahead and create an instance, set the remote endpoint to the one just created, attach to
the Completed event with the SocketConnectCompleted handler, and call ConnectAsync on the socket.
When the connection completes, it will call SocketConnectCompleted:

void SocketConnectCompleted(object sender, SocketAsyncEventArgs args)
{
 if (!_Channel.Connected)
 {
 _UiThread.Post(AppendServerMessage,
 “Could not connect to server.”);
 _Channel.Dispose();
 _Channel = null;
 return;
 }

 args.Completed -= SocketConnectCompleted;
 args.Completed += ReceiveData;
 args.SetBuffer(new byte[2048], 0, 2048);
 _Channel.ReceiveAsync(args);
 _UiThread.Post(AppendServerMessage, “Waiting for notifications...”);
}

If the result of the connection attempt is not successful, you dispose of the socket and send a message to
the user letting them know that. If it does succeed, you move on to the next step — receiving data. Again,
the SocketAsyncEventArgs class is used; in fact, you can reuse it to conserve resources as done here. First,
remove the SocketConnectCompleted event handler and attach instead the ReceiveData handler. Set
up a buffer to specify how much to receive at a time; in this case, 2048 is rather arbitrary and actually
way more than you need since you know that the server is just sending the server time. What you’d
want to do is set it up to something reasonable that would handle most messages but that is not so large
that it ties up too many resources. Then it goes ahead and puts itself into a state to receive data from the
server.

Remember that once this client connected, if the server will enable its timer (if no other clients were
already connected) and start sending server time updates every second, the ReceiveData method
should be called almost immediately:

void ReceiveData(object sender, SocketAsyncEventArgs e)
{
 if (Connected)
 {
 string notification = Encoding.UTF8.GetString(
 e.Buffer, e.Offset, e.BytesTransferred);
 _UiThread.Post(AppendServerMessage, notification);
 _Channel.ReceiveAsync(e);
 }
}

255

Chapter 11: Using the Services

This method just grabs the bytes sent as a UTF8 string, posts those to the UI thread, and tells the socket
to receive again (using the same SocketAsyncEventArgs instance). This loop will continue as long as
the server keeps sending data and, of course, as long as the socket remains open, which leads us to the
UnsubscriptionButton_Click handler:

void UnsubscriptionButton_Click(object sender, RoutedEventArgs e)
{
 if (Connected)
 {
 _Channel.Dispose();
 _Channel = null;
 AppendServerMessage(“Unsubscribed.”);
 }
 else
 AppendServerMessage(“Not subscribed.”);
}

If connected, this will dispose of the socket, clear out the reference to it, and notify the user accordingly.

So that about wraps it up for the communications services. As noted, you’re going to see a lot of samples
in this book using the standard HTTP- and WCF-style communications, so those were omitted here, but
you did cover the duplex HTTP and sockets in enough depth to give you a good understanding of what
is involved in using them. If you have a need for duplex, real-time communication, those are your two
best options in Silverlight. If the application is meant to run over the Web, your best bet is duplex HTTP;
however, if you can require your clients to open up the right ports, sockets may be a more dependable
solution, perhaps even a simpler solution.

Storage
A really great service that Silverlight provides is what they call isolated storage. The general idea is that
you get a quota of disk space and a virtual filesystem to work with within that quota. The default quota
that applications get is 100 KB, but you can request that the application be given more space, up to System
.Int64.MaxValue in bytes, which is more than any Silverlight app should ever need. This is done by call-
ing the IncreaseQuoteTo method on the desired store (which is an instance of the IsolatedStorageFile
class) and providing it with the size, in bytes, that you want. The size must be larger than the current
quota, so you need to check that.

It is worth highlighting that you will get an exception if you try to request an
increase to the quota when not in a user-initiated event handler method, such as a
button click handler. You need to be proactive about managing the quota.

While there is an API to simply store application settings using the IsolatedStorageSettings class,
you can imagine that it would not be ideal to store settings in isolated storage because they will only be
persisted for the current machine the user is using (so users will have to reconfigure settings on each
new machine). From a user experience perspective, this is bad. Instead, you should consider using, for

256

Part II: Using Silverlight 3 Essentials

example, the ASP.NET profile service to store user application settings as outlined in Chapter 16. You
could still use the local settings for simple name–value pairs that you want to store under the covers
persistently, but I’m having trouble thinking of a good scenario in which storing them on the server
wouldn’t be better.

That said, where isolated storage really shines is in providing a persistent local cache. To facilitate better
performance in networked applications, it is often helpful to get and send data to and from the server in
chunks. Imagine an e-mail program that had to go and get the user’s e-mails again from the server every
time it loaded up. This would be less than ideal on many levels — user experience, bandwidth usage,
server utilization, and so forth. Instead, caching data locally would make the app perform better and use
fewer resources.

The key when using isolated storage is to keep usage of it in the background, indiscernible to the user as
much as possible. The user shouldn’t know if you’re caching or not — they should just know that they
like how well your application performs and how reliable it is when, for example, the browser crashes for
some reason, and they can get right back in to what they were doing on the application.

Interacting with isolated storage is very (and intentionally) reminiscent of using the normal .NET file-
system APIs. The only particularly isolated storagey thing about it is getting to the store in the first place,
but once you have a reference to the store, you can list, create, delete, and get info about directories and
files in essentially the same way. To illustrate this, take the sockets sample from earlier in this chapter
and enhance it to include some basic logging.

Using Isolated Storage for Local Logging
You could create a new user control or simply copy the existing sockets’ user control and rename the
files and class. Once you do that, add a few extra namespaces:

using System.Text;
using System.IO.IsolatedStorage;
using System.IO;

You can already get an inkling from these that you’ll be dealing with familiar APIs — the only new one
is IsolatedStorage. Next, go ahead and add a couple more class members:

IsolatedStorageFile _UserStore;
IsolatedStorageFile UserStore
{
 get
 {
 if (_UserStore == null)
 _UserStore = IsolatedStorageFile.GetUserStoreForApplication();
 return _UserStore;
 }
}
const string LOG_FILE = “ServerNotification.log”;

Here you see basically the only particularly isolated storagey thing you’ll be doing in this sample. You
call the GetUserStoreForApplication method on IsolatedStorageFile, which will return the user’s

257

Chapter 11: Using the Services

isolated store for the current application. You can think of this as a (initially very small) disk drive on
the computer.

The LOG_FILE is just there so that you don’t repeat yourself in specifying the log file. It is interesting to
note that there’s really no firm reason to bother with file extensions here because these files are not
exposed directly in the host filesystem. However, you may as well give it one in case you should ever
want to ship it up to the server without extra intervention and just because folks are used to seeing file
extensions.

Now add a method to log messages to this log file:

void LogMessage(string message)
{
 using (IsolatedStorageFileStream log =
 UserStore.OpenFile(LOG_FILE, FileMode.Append,
 FileAccess.Write, FileShare.ReadWrite))
 {
 using (StreamWriter sw = new StreamWriter(log))
 sw.WriteLine(message);
 }
}

So there is a specialized file stream type for isolated storage; but for all intents and purposes, it doesn’t
matter. You see that you just call OpenFile as you likely have on the standard filesystem APIs, and the
parameters are essentially the same as well. Then you use a standard System.IO.StreamWriter to write
stuff to the log file. Add a call to this method at the end of the AppendServerMessage method, which
was created in (and copied from) the sockets and duplex HTTP examples.

Once you do this and run it, you will be writing the same messages that appear on the screen to the log
file on the users’ computers. You can imagine that this is a useful scenario for tracing and even for excep-
tion handling — you could log locally and then periodically (preferably with the users’ consent) ship
these logs up to the server for analysis.

Now you have a working log, but why not go ahead and do a little bit more with it here? Add a new
button to your XAML to show the log contents:

<Button Content=”Show Log” x:Name=”ShowLogButton”
 Click=”ShowLogButton_Click” />

Here’s what the click handler looks like:

void ShowLogButton_Click(object sender, RoutedEventArgs e)
{
 using (IsolatedStorageFileStream log =
 UserStore.OpenFile(LOG_FILE, FileMode.OpenOrCreate,
 FileAccess.Read, FileShare.ReadWrite))
 {
 using (StreamReader sr = new StreamReader(log))
 this.SusbscriptionInfo.Text = sr.ReadToEnd();
 }
}

258

Part II: Using Silverlight 3 Essentials

Again, same stuff you’re used to. It’s good to use “using” statements to ensure that the resources get
closed and released, particularly on the StreamWriter (in the previous snippet), because if you don’t do
that or call Flush, it won’t actually write to the underlying stream. But it’s just generally good practice to
call Dispose (which is what the using block will do for you — even if there’s an exception) on classes that
implement IDisposable. Implementing that is supposed to be a signal that the class uses unmanaged
resources that you will want to release when you’re done with them (such as a file on the filesystem).

Last, why not have the ability to clear the log file? To do this, just add another button and correspond-
ing click handler as follows:

<Button Content=”Clear Log” x:Name=”ClearLogButton”
 Click=”ClearLogButton_Click” />

void ClearLogButton_Click(object sender, RoutedEventArgs e)
{
 if (UserStore.FileExists(LOG_FILE))
 UserStore.DeleteFile(LOG_FILE);
 this.SusbscriptionInfo.Text = string.Empty;
}

Here again, you see the familiar methods like FileExists and DeleteFile. As you can see, interacting
with isolated storage is a breeze if you’re familiar with the .NET filesystem APIs. The real trick is to use
it wisely and in a way that will have the most positive effect on user experience. Along those lines, it’s
not clear yet how users will respond to requests for quota increases, but let’s hope that as Silverlight
applications become more common, they will become comfortable with them enough so that it won’t be
a problem. Use it wisely in any case.

Out-of-Browser Applications
To bring Web-based RIAs closer to the feel of a desktop application, Silverlight 3 introduces Out of Browser
Applications (OOBAs). An OOBA is essentially the exact same application that you would run from a
URL in the browser, except that it is started from a desktop icon or an icon from the Start Menu. This is
enabled via a configuration file in your Silverlight application, which displays the desktop installation
option via the right-click menu of your running Silverlight application. This desktop-deployed application
still runs in the Silverlight plug-in in the browser; it just has the ability to be launched via the desktop or
the Start Menu via an icon, just like any other desktop application. That being said, there are some inter-
esting scenarios that you can implement with this new capability. For example, since you have the ability
to check the state of the network, as well as the ability to store a file locally with the IsolatedStorage
API’s, you can create a very rich, desktop-like experience using Silverlight because the OOBA can run
without being connected to the Internet or your local network.

To enable an OOBA, follow these steps:

 1. In Visual Studio, right-click on your Silverlight project to select Properties from the context
menu. This will bring up the Project Properties page in Visual Studio, as Figure 11-1 shows.

 2. Check the box that reads “Enable running Silverlight application out of the browser”.

Once you do this, a configuration file named OutOfBrowserSettings.xml is added to your project under
the Properties folder, as demonstrated in Figure 11-2, and the .proj file is updated to point to this con-
figuration file so the build knows to include the OOBA capabilities.

259

Chapter 11: Using the Services

Figure 11-1

Figure 11-2

260

Part II: Using Silverlight 3 Essentials

This XML configuration file is all that is needed to enable your application to be installed to the desktop
with the default settings. If you open this file, you’ll see something like this:

<OutOfBrowserSettings
 ShortName=“SilverlightApplication2 Application“
 EnableGPUAcceleration=“False“
 ShowInstallMenuItem=“True“>
 <OutOfBrowserSettings.Blurb>
 SilverlightApplication2 Application on your desktop; at home, at work or on the
go.
 </OutOfBrowserSettings.Blurb>
 <OutOfBrowserSettings.WindowSettings>
 <WindowSettings Title=“SilverlightApplication2 Application“ />
 </OutOfBrowserSettings.WindowSettings>
 <OutOfBrowserSettings.Icons />
</OutOfBrowserSettings>

You’ll also notice the “Out-of-Browser Settings …” button on the Project Properties page shown in
Figure 11-1. This button, which displays the model Out-of-Browser Settings dialog, shown in Figure 11-3,
allows you to change the various properties allowed in an OOBA experience, instead of hand-coding
the XML configuration file.

Figure 11-3

These properties, located in the OutOfBrowserSettings class in the System.Windows namespace, are
detailed in the following list:

Blurb❑❑ — Gets a short description of the application.

EnableGPUAcceleration❑❑ — Gets a value that indicates whether to use graphics processor unit
hardware acceleration for cached compositions, which potentially results in graphics
optimization.

261

Chapter 11: Using the Services

Icons❑❑ — Gets a collection of Icon instances (16×16, 32×32, 48×48, and 128×128) associated with
the application. If you do not specify icon files, default icons are displayed at runtime.

ShortName❑❑ — Gets the short version of the application title.

ShowInstallMenuItem❑❑ — Gets a value that indicates whether the application right-click menu
includes an install option.

WindowSettings❑❑ — Gets the settings applied to the application window.

When you run an application that is properly configured, you’ll see the right-click option shown in
Figure 11-4.

Figure 11-4

Once you click the menu item to install the application to the desktop, the Install Application dialog,
shown in Figure 11-5, gives the option to confirm the install to the Start menu by default, and the
Desktop as an option.

Figure 11-5

Once the OK button is clicked, the application icon will appear in the Start menu or Desktop and the
application can be run locally. To uninstall the application, the right-click Install option is replaced with
a Remove option, as shown in Figure 11-6.

262

Part II: Using Silverlight 3 Essentials

Figure 11-6

When the application is brought offline, the following happens:

 1. An application request is sent to the server, and the XAP for the application is sent back to the
browser and stored in a low-trust location (a round-trip occurs here).

 2. Metadata is stored along with the XAP, which includes the original URI of the application, and
time-stamp information on the XAP file (the ETag of the HttpRequest).

The Application.InstallState property contains the enumeration of states that you can program-
matically check to determine if an application is installed locally and subsequently install the applica-
tion locally via code. The values for InstallState are:

NotInstalled❑❑ — The application is running within its host Web page.

Installing❑❑ — The application is in the process of being installed to run outside the browser.

Installed❑❑ — The application is running outside the browser.

InstallFailed❑❑ — The application could not be installed to run outside the browser.

This code would check the install state of an application and install it locally:

if (Application.Current.InstallState == InstallState.NotInstalled)
{
 Application.Current.Install();
}

You cannot uninstall an application programmatically; this must be initiated by the end user via the
right-click option.

Detecting Network State
The OOBA experience wouldn’t be completely useful unless there was a way to detect whether the local
application was online. Checking the results of the NetworkInterface.GetIsNetworkAvailable

263

Chapter 11: Using the Services

method in the NetworkChange.NetworkAddressChanged event, you can check the state of the current
network connection.

if (NetworkInterface .GetIsNetworkAvailable())

At the application level, in the App.Xaml.Cs file, you can determine whether an application is running
outside the browser by checking the IsRunningOutOfBrowser property:

if (Application.Current.IsRunningOutOfBrowser)

Checking for Application Updates
To check for and retrieve an update to OOBA, you can call the CheckAndDownloadUpdateAsync method
and handle the Application.CheckAndDownloadUpdateCompleted event. In order for the updated
application to be used, you can check the UpdateAvailable property in this event handler, and if it
returns true, you can prompt the user to restart the application. In the case where an update is avail-
able, but the update is using a newer version of Silverlight, the UpdateAvailable will return false, and
the update will not download. Note that OOBA will not automatically check for an updated application,
you need to deal with that yourself.

Installation and Updates
One last area where Silverlight helps out a lot is in installation and updates. Of course, for your applica-
tions, Silverlight follows the Web model, ensuring that users are always using the latest version, almost
invisibly. You are responsible, though, for ensuring a reasonable download and startup time for your
applications. If you have large applications, think about breaking them up into multiple Silverlight proj-
ects and downloading them either on demand or in the background after an initial download, or even
just placing different “areas” of your application in different locations on your server (e.g., you could have a
/users directory with one Silverlight project that deals with managing user information and a /projects
directory that deals with managing projects).

New in Silverlight 3 is the ability to improve the overall download size of your application by letting
Silverlight keep a global cache of the Silverlight-specific assemblies in the client for all Silverlight appli-
cations. This means that when you compile your application, the XAP will not contain any of the neces-
sary System.* DLLs or 3rd party vendor DLLs that Silverlight needs. Instead, the manifest will point to a
URL at Microsoft.com for the Silverlight specific DLLs or the appropriate vendors website for 3rd party
DLLs to download the files if they are not already on the local machine. You can enable this assembly-
caching feature by selecting the “Reduce Xap size by using application library caching” option in the
Properties window for your application, as shown in Figure 11-7.

264

Part II: Using Silverlight 3 Essentials

Figure 11-7

But as far as the Silverlight run time itself is concerned, Microsoft handles the distribution, installation,
and updates for you. As you doubtless have seen and will see elsewhere in the book, you can and should
supply the standard blue Silverlight badge (or whatever color it becomes in the future) so that it is
familiar (and thus increases trust). You can, and should, supply a preview image of your application
and encourage users to choose to install to get that functionality. But the hard part of distributing,
downloading, installing, and updating is taken care of for you.

If the browser and OS will allow it, Silverlight wants to do automatic updates for users; however, this is
configurable even in the cases in which it is allowed via the Silverlight Configuration dialogs that users
can access by right-clicking on any Silverlight instance. There is an Updates tab, as shown in Figure 11-8,
that users can use to change how Silverlight updates. In this instance, it is running on Vista under User
Account Control (UAC), so automatic updates are not allowed.

265

Chapter 11: Using the Services

Figure 11-8

Summary
In this chapter, you covered various services that Silverlight provides to make application development
and maintenance easier and, in some cases, possible for certain user scenarios. You looked first at com-
munications services such as HTTP-based services, including duplex communication over HTTP, and
also at sockets communications. You then looked at storage services, which, in Silverlight, take the form
of isolated storage; and, finally, you read about Out of Browser applications and the basic facilities that
Silverlight provides to manage installation and updates for you.

Part III: Building Applications

Chapter 12: Silverlight, the Browser, and the Server

Chapter 13: First Things First: Handling Cross-Cutting Concerns

Chapter 14: Dealing with Data

Chapter 15: Designing and Styling the User Interface

Chapter 16: Making the Application Come Alive

Chapter 17: Creating Custom Controls

Silverlight, the Browser,
and the Server

Prepare yourself for a fun ride through the rapids. This chapter will gear you up with an under-
standing of where Silverlight sits in relation to the browser and the server, two foundational rela-
tionships that you need to know inside and out. First, you’ll take a brief tour of the knobs that
Silverlight offers to configure the run time and your applications and then go on to how to deal
with various non-executing resources. After that, you dig deep into Silverlight’s relationship with
the browser, which, as you’ll see, is quite extensive and powerful thanks to the HTML bridge.
Finally, you’ll wrap up with a look at Silverlight’s relationship with the server, with particular
focus on the facilities that ASP.NET brings to the table to make your life easier.

Silverlight All by Its Lonesome
It is strange to think about it this way, but Silverlight is in itself an entire development and runtime
platform for applications. Microsoft has created a specialized managed run time, set of libraries,
and a common translation layer so that it can run on multiple operating systems, much like Java.
Some have called Silverlight just a player or just another applet or plug-in, and it is those, but it is
selling Silverlight short to leave it at that.

It’s important to draw this out because you really need to think of it as a full-fledged run time apart
from the browser, the server, and the operating system. It is its own ecosystem, a mini-universe for
developers to play in, to create anything from a simple animated ad to a full-fledged accounting
system. It is true that, as of Silverlight 2, it is dependent on a browser host, but there is nothing
inherent in Silverlight that should keep it in the browser, much like Flash and Flex have moved out
of the browser with the Adobe Integrated Runtime (AIR). I have no doubt that Silverlight will get
there, and thus it will do developers good to think about Silverlight in these terms, as a full-scale
application platform on its own.

Having said this, there are certainly considerations that you must keep in mind relating
Silverlight to the browser and the server, which you will cover later in this chapter.

12

270

Part III: Building Applications

Configuration
The current configuration model relies on the HTML object tag attributes and parameters. Here is an
example of a Silverlight object declaration:

<div id=”silverlightControlHost”>
<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/SilverlightApplication2.xap”/>
 <param name=”onError” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”3.0.40603.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40603.0”
 style=”text-decoration:none”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=108181”
 alt=”Get Microsoft Silverlight”
 style=”border-style:none”/>

</object><iframe id=”_sl_historyFrame”
 style=”visibility:hidden;height:0px;width:0px;border:0px”></iframe>
</div>

The full list of attributes is:

id❑❑ — Specifies an identifier that can be used to reference the runtime instance in script.

data❑❑ — Helps with the instantiation; it is recommended that the value be the standard
Silverlight MIME type, data:application/x-silverlight.

type❑❑ — This is the specific MIME type and is used to specify which version of Silverlight should
be loaded.

height❑❑ — Specifies the height of the runtime instance in either pixels (integer) or percentage.

width❑❑ — Specifies the width of the runtime instance in either pixels (integer) or percentage.

You’re typically going to want to specify all of these. The parameters are a bit more involved, but they’re
still few enough to be easily digested. They’re broken up into data and event parameters.

Data Parameters
The data parameters include:

source❑❑ — This is required and specifies the path to the application, which typically will be a
XAP file. You can also use the hash (#) followed by a DOM ID to point to some inline XAML,
but that is not supported by managed code.

enableHtmlAccess❑❑ — Specifies whether or not this Silverlight instance can access the HTML
bridge, as covered later in this chapter.

allowHtmlPopupWindow❑❑ — Specifies whether or not code in the Silverlight instance can use the
HtmlPage.PopupWindow method to create a new browser window.

background❑❑ — This lets you specify a background color for the Silverlight instance, and it
defaults to fully opaque white (#FFFFFFFF).

271

Chapter 12: Silverlight, the Browser, and the Server

minRuntimeVersion❑❑ — Specifies the minimum version you need for your application to run
correctly.

autoUpgrade❑❑ — Lets you specify that Silverlight should try to auto-update if its version is less
than the minimumRuntimeVersion.

maxFramerate❑❑ — Allows you to specify the desired maximum framerate. The default is 60, and
the actual framerate will vary by the system load and processing power.

windowless❑❑ — This only applies for Windows (other systems are always windowless). The
default is false, and that improves performance on Windows, but if you need to layer HTML
on top of the Silverlight instance, you need to set this to true.

The parameters thus far configure the Silverlight run time itself, but you get a couple of parameters that
let you tweak the behavior a bit and pass information to the application that runs in the instance:

splashScreenSource❑❑ — This enables you to customize the loading screen while the application
referred to by the source parameter is downloaded. By default, Silverlight provides a generic
download progress bar, but you may want to enhance your User Experience (UX) by customiz-
ing it, especially if you expect anything more than a few seconds of download time.

initParams❑❑ — Used to pass in custom parameters to your application. This is the closest thing
to what you get with application settings in .NET, but it is woefully basic.

The last couple of data parameters are for debugging only and should not, as you could infer, be used in
production applications.

enableRedrawRegions❑❑ — This adds a special adornment to illuminate which regions are being
re-drawn with each frame, which can be useful if something isn’t visually updating as you
expect it to do.

enableFramerateCounter❑❑ — This one only works in IE on Windows, but it will show the actual
framerate in the status bar of the browser, which can help you debug issues with visual latency.

Event Parameters
Event parameters are those that let you specify unmanaged JavaScript methods to handle events coming
from the Silverlight runtime instance:

onError❑❑ — This is used to handle both error events in the run time itself and those caused by
user code that are not handled in user code as dealt with in Chapter 16.

onResize❑❑ — This event occurs when the actual height and width of the runtime instance
changes.

onLoad❑❑ — Occurs when the runtime instance is loaded and everything in the root visual is
loaded.

onfullscreenchanged❑❑ — Fires when a change to the FullScreen property occurs.

onSourceDownloadComplete❑❑ — Occurs when the source referenced by the source parameter is
fully downloaded.

onSourceDownloadProgressChanged❑❑ — Occurs while the source download progresses.

272

Part III: Building Applications

Application Configuration
Unfortunately, beyond the initParams parameter, there is no built-in application-level configuration.
An alternative to using initParams is to use JavaScript variables to store configuration that can be
accessed via the HTML bridge as done in Chapter 16. You could take this a step further and have your
server-side code emit such a configuration based on server-side configuration, which would let you take
advantage of the .NET configuration system to manage your settings. But the fact is that you’re on your
own on this point.

Resources
First, be aware that there are multiple kinds of resources when dealing with Silverlight. There are
Silverlight resources, which are things like styles and templates referenced via resource dictionaries.
These are covered in Chapter 8. The resources referred to here are application resources, which are any
non-executable files (XAML, XML, images, media, etc.) that are used by your application. Within these,
there are basically three categories: embedded resources, content resources, and site-of-origin
resources.

Embedded Resources
Embedded resources should be familiar to most developers — these are resources that are packaged up
in the assemblies themselves. To use these in Visual Studio (or MSBuild), you mark the file as a Resource
in the Properties pane or as a Resource element in the MSBuild file. These will then be packaged in
with the assembly when it is compiled and will be downloaded along with the assembly when the
assembly is downloaded.

You can reference these kinds of resources by URI, using XAML attribute values such as the Source
attribute on the Image control:

<Image Source=”MyEmbeddedImage.png” />

Alternatively, you can specify them in code using the Uri class:

Uri myUri = new Uri(“/MyEmbeddedImage.png”, UriKind.Relative);

These are resolved relative to the running code, so if you need to reference an image from another
assembly, you have to use this special syntax:

Uri myUri = new Uri(“/OtherAssembly;component/MyEmbeddedImage.png”,
 UriKind.Relative);

The first bit followed by ;component tells the resolution mechanism to find that assembly and then look
for the resource relative to it.

Content Resources
Content resources are functionally similar to embedded resources in that they are packaged up and
downloaded with the application package itself. The distinction is that they are not embedded in one
particular assembly, so this is a good option to share resources between assemblies more naturally and
not bloat assembly size.

273

Chapter 12: Silverlight, the Browser, and the Server

To use these, mark the files as “Content” in the VS property grid or use the Content element in the
MSBuild specification. When the package is built, they will be included in the generated XAP file but
not embedded in particular assemblies.

You reference them in basically the same way as embedded resources; however, you need to start with a
leading slash (/) to specify where the resource is relative to the package root.

Site-of-Origin Resources
“Site-of-origin resources” is a fancy way of saying resources that are located outside of the package
and assembly, typically on a Web Server. In VS, you mark these as None and use the None element in
MSBuild (assuming that they’re in your project), and then you’ll likely want to specify that they be
copied to your output directory, which is configurable in the VS Property grid as well as by using the
CopyToOutputDirectory attribute in the MSBuild specification.

You reference these resources in exactly the same way that you reference content resources, with the
leading slash (/), which is relative to the location of the application source.

Choosing Resource Type
The decision of which resource type to choose depends on your usage scenario and, to some extent, on
the size of the resource. The general rule is that if you must have the resource for the application to run
successfully, you should package it either in the assembly or the package as embedded resources or con-
tent resources, respectively. As noted, choosing between those two depends largely on whether or not
you intend to share the resource between assemblies or if, for instance, you have a library assembly that
always needs its resources — in that case, you’d want to embed the resources with the assembly.
Otherwise, I would generally suggest content resources.

If you don’t need to have the resource, that is, if you can meaningfully execute the application without
it, you should probably consider hosting that resource outside of the package to limit downloading time
for the package itself — this is your best option for download-on-demand scenarios, and this is likely
the best approach for large multimedia files, unless you have a good reason to embed those.

Silverlight with the Browser
The previous section talked about Silverlight itself and how you can configure it and handle its resources.
In this section, you’ll explore in more depth what Silverlight provides in terms of interaction with the
browser and browser technologies. The name that Microsoft seems to prefer for talking about this stuff
is the HTML Bridge, so if you see that term, it means “the facilities that enable communication between
managed code and the browser/JavaScript.” Remember that everything in the chapter up to and includ-
ing this section is independent of the server-side technology.

Interacting with the Browser Object Model (BOM)
The Browser Object Model (BOM) is the set of objects that allow applications to understand and manipu-
late browser facilities such as window-, location-, navigator-, and frames-related functionality. It also
provides access to the currently loaded document, which gets you into the Document Object Model and
is usually the object that receives the most focus and efforts of DHTML development.

274

Part III: Building Applications

In terms of browser-level interaction, Silverlight provides a few facilities. First, there is the HtmlPage
.BrowserInformation member. This gets you environmental information about the browser, as shown
in Figure 12-1. Pretty much all of the HTML bridge/browser stuff is in the System.Windows.Browser
namespace, so if you do much with it, you’ll want to import/use that namespace.

Figure 12-1

The code that produces this is fairly straightforward, as you might expect:

void Page_Loaded(object sender, RoutedEventArgs e)
{
 this.SetBrowserInfo();
}

void SetBrowserInfo()
{
 this.AddLine(this.BrowserInfo, “Platform”,
 HtmlPage.BrowserInformation.Platform);
 this.AddLine(this.BrowserInfo, “Browser”,
 HtmlPage.BrowserInformation.Name);
 this.AddLine(this.BrowserInfo, “Version”,
 HtmlPage.BrowserInformation.BrowserVersion.ToString());
 this.AddLine(this.BrowserInfo, “User Agent”,
 HtmlPage.BrowserInformation.UserAgent);
 this.AddLine(this.BrowserInfo, “Cookies Enabled”,
 (HtmlPage.BrowserInformation.CookiesEnabled ? “Yes” : “No”));
}

private void AddLine(TextBlock block, string label, string value)
{
 Run r = new Run();
 r.FontWeight = FontWeights.Bold;
 r.Text = label + “: “;
 block.Inlines.Add(r);
 r = new Run();
 r.Text = value;
 block.Inlines.Add(r);
 block.Inlines.Add(new LineBreak());
}

I’d expect this kind of information to be less valuable in Silverlight than it is in standard web develop-
ment, where you often need to do special stuff based on browser information, but it could certainly be
helpful information to log in error handling.

275

Chapter 12: Silverlight, the Browser, and the Server

Of course, your window (pun intended) into the world of the browser is the Window object that hangs off
the HtmlPage type (i.e., HtmlPage.Window). You have most of the stuff you’ve come to know and loathe
in JavaScript as follows.

Alerts, Confirms, and Prompts, Oh Dear!
In the following sections, you’ll see how to use standard JavaScript user message/input facilities. For
alerts that are triggered from the server, Silverlight 3 introduces the MessageBox class, which provides a
static Show method that you can use to display a message in a simple dialog box. The dialog box is
modal and provides an OK button. There is an overload of the Show method that enables you to specify
a title bar caption and an optional Cancel button. If you display a Cancel button, you can use the return
value of the method to determine the user’s response. The next several sections will only discuss the
JavaScript message and input facilities.

Alert
You can, as an extremely lazy and unpleasant (but sometimes useful) approach, use Window.Alert to
show the standard JavaScript Alert window, passing in whatever string you want displayed. For
instance, add a Button and set its Click property to Alert_Demo in XAML, and then use this code for
that handler:

private void Alert_Demo(object sender, RoutedEventArgs e)
{
 Exception ex = new Exception(“I didn’t get handled well.”);
 HtmlPage.Window.Alert(ex.ToString());
}

That will give you what you see in Figure 12-2, as you should expect.

Figure 12-2

In terms of user experience, this is less than ideal. Ideally, you’ll create an area of your UI or create a
nicely styled user control to display these kinds of messages to users. For example, you could create
a TransientMessage control that is styled in accord with the application and fades in and out to show
certain messages. Don’t require your users to click anything to dismiss such messages; it’s just extra
work for them.

276

Part III: Building Applications

The TransientMessage control is essentially a UserControl that has a few borders (for styling) and a
TextBlock (to display the message). You then add a StoryBoard to the UserControl.Resources that
looks something like the following:

<Storyboard x:Name=”ShowTimeline”>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName=”LayoutRoot”
 Storyboard.TargetProperty=”Opacity” BeginTime=”00:00:00”>
 <SplineDoubleKeyFrame KeyTime=”00:00:00” Value=”0”/>
 <SplineDoubleKeyFrame KeyTime=”00:00:00.8000000” Value=”1”/>
 <SplineDoubleKeyFrame x:Name=”StartHideFrame”
 KeyTime=”00:00:04.8” Value=”1”/>
 <SplineDoubleKeyFrame x:Name=”EndHideFrame”
 KeyTime=”00:00:05.600000” Value=”0”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

LayoutRoot is the standard Grid you start with when creating a UserControl — it’s just the root visual
element on this control. The StoryBoard targets the Opacity property in order to fade in and out. Using
keyframes enables you to have more discrete control over how the animation works. To allow the con-
trol to be displayed for user-configured durations, you need to add names to the last two frames to
change them in code via, for example, a ShowDuration property:

public static DependencyProperty ShowDurationProperty =
 DependencyProperty.Register(“ShowDuration”, typeof(double),
 typeof(TransientMessage), null);
public double ShowDuration
{
 get
 {
 return (double)this.GetValue(ShowDurationProperty);
 }
 set
 {
 this.SetValue(ShowDurationProperty, value);
 this.StartHideFrame.KeyTime =
 KeyTime.FromTimeSpan(TimeSpan.FromSeconds(value + .8d));
 this.EndHideFrame.KeyTime =
 KeyTime.FromTimeSpan(TimeSpan.FromSeconds(value + 1.6d));
 }
}

You see here that in the setter, you reset the KeyTime on the StartHideFrame (the one that controls when
to start fading out) to be 0.8 second after the requested duration. This is because the storyboard has a
0.8-second fade-in, so you want to show at 100 percent opacity for the specified duration. Then you set
the EndHideFrame’s KeyTime to be 1.6 seconds after the desired duration, so the overall effect is to fade
in for 0.8 second, show for the desired duration, and then fade out for 0.8 second.

You can, of course, add other features, but at a minimum, you need to add a Message property to let
users set the text of the message:

public string Message
{

277

Chapter 12: Silverlight, the Browser, and the Server

 get
 {
 return this.MessageBlock.Text;
 }
 set
 {
 this.MessageBlock.Text = value;
 }
}

This simply sets the Text property on the TextBlock you have defined in your XAML (we called it
MessageBlock, but you can call it whatever you want). Then you will want to add a Show method as
follows:

public void Show()
{
 this.LayoutRoot.Visibility = Visibility.Visible;
 this.ShowTimeline.Begin();
}

This sets the visibility to Visible, meaning that it will take up space and display, all other things (like
Opacity) being equal. Then simply start your storyboard, which handles the fading in and out for you.

That reminds me, you have some setting up to do in your constructor:

public TransientMessage()
{
 InitializeComponent();

 this.LayoutRoot.Visibility = Visibility.Collapsed;
 this.LayoutRoot.Opacity = 0;
 this.ShowDuration = 4d;
 this.ShowTimeline.Completed +=
 new EventHandler(ShowTimeline_Completed);
}

Here you set the visibility on your root visual to Collapsed (which means that it won’t take up space
and won’t show) and default to zero Opacity (which makes it invisible, even if it were not collapsed,
a good starting point for fading in). Then default the ShowDuration to whatever makes sense, such as
4 seconds. Finally, attach a Completed event handler to your storyboard.

Now when your storyboard completes, your ShowTimeline_Completed method is called:

void ShowTimeline_Completed(object sender, EventArgs e)
{
 this.LayoutRoot.Visibility = Visibility.Collapsed;
}

This just resets the Visibility so that it is no longer taking up space, which may or may not matter
depending on your layout.

278

Part III: Building Applications

Now to use the control, you first (as always) need to define an XML namespace for it:

xmlns:l=”clr-namespace:BrowserAndStuff”

Then use it in your layout where it makes sense, but given that objects defined later have a higher
default z-index, it’s usually good to put it at the bottom, so it will be on top by default.

<l:TransientMessage x:Name=”ServiceError”
 MaxHeight=”90” MaxWidth=”350”
 ShowDuration=”5” Message=”There was a problem getting your information. Please

try again later. If this keeps happening, please let us know.” />

It’s good to define a Height and Width (or MaxHeight and MaxWidth) because if it is in a Grid, it will
expand to take up the entire Grid, which is likely the entire control (or page, if you’re using Silverlight
with 100% height/width). Set the duration for a reasonable time for users to read the message, and then
you set the message itself.

This one is an error message that you could show when calling your services, so in the completed handler
for your call to the service, if there is an error, essentially do this:

this.ServiceError.Show();

That results in the user seeing Figure 12-3.

Figure 12-3

Of course, you could use this approach for non-error messages as well, informational, whatever. You
might also add an overload to Show that lets you change the message, so you could use it similarly to the
Window.Alert, and that would have a lot better UX than the built-in Alert approach. If you’re building
real apps, you should also think about the different kinds of messages.

It’s pretty common to at least have two kinds of message (error and information); sometimes you need
a warning, but those (like confirmations as discussed below) should be avoided if possible. In distin-
guishing between these types of messages, you should follow standard approaches, particularly for
errors, in terms of clearly communicating an error state (unlike what was done with the TransientMessage
above). I recommend exploring the Windows Vista UX Guidelines for error messages on this point as a
good starting point for crafting (or better yet, avoiding) your error messages.

Confirm
Like Alert, Window allows you to bridge into the Confirm JavaScript function. The following code shows
an example of that, assuming that you have a button that uses it for its Click event:

private void Confirm_Demo(object sender, RoutedEventArgs e)
{

279

Chapter 12: Silverlight, the Browser, and the Server

 if (HtmlPage.Window.Confirm(
 “Are you sure you want to hurt your users like this?”))
 {
 // you’re unbelievably cruel
 }
}

And like Alert, this is a really shoddy user experience that you should avoid. First off, you should avoid con-
firmations in general. A better pattern to follow is Undo, that is, allowing users to easily undo actions. It
encourages users to explore functionality and not be anxious about actions they might take, which makes
them more comfortable with the application. Similarly, most of the time when a user does something, he
really means to do it, which means that, say, 80 percent of the time, you’re just bothering him with a confirma-
tion dialog. Last, as you see in Figure 12-4, the standard confirm dialogs are just ugly and almost certainly do
not share the look and feel of your application. Slightly extending the TransientMessage approach, you can
easily imagine how you could design a confirmation dialog with a much better experience.

Figure 12-4

Prompt
Any hall of shame for bad UX wouldn’t be complete without the JavaScript prompt dialog, as shown in
Figure 12-5.

Figure 12-5

280

Part III: Building Applications

Oh wait, I couldn’t show you this in Figure 12-5 because I first had to tell IE that it was OK to show
prompt dialogs. Let’s try Figure 12-6.

Figure 12-6

I hope I don’t have to go into detail as to why this is a bad idea and should never be used. Just don’t do
it! But if you must, here’s how:

private void Prompt_Demo(object sender, RoutedEventArgs e)
{
 string reason =
 HtmlPage.Window.Prompt(
 “Please explain why you’d ever use this.”);
}

Navigation
OK, enough of the no-no’s. A facility that you will likely need and want to use on the Window object is
the ability to navigate or open new windows. You can do this with the Window.Navigate method (and
overloads). There three overloads:

Window.Navigate(❑❑ Uri navigateToUri)

Window.Navigate(❑❑ Uri navigateToUri, string target)

Window.Navigate(❑❑ Uri navigateToUri, string target, string targetFeatures)

Of course, that maps pretty closely to the JavaScript window.Open method. The point is that you use this
to change the current window location as well as open new ones (or target frames). As you might guess,
the Uri is where you want to go, the target is the target frame or window, and the features are the same
features you can use with window.Open.

So let’s just drop a Button into the page like this:

<Button
 Width=”200”
 HorizontalAlignment=”Left”
 Content=”Feeling Lucky!”
 Click=”Feeling_Lucky” />

281

Chapter 12: Silverlight, the Browser, and the Server

and add the handler vis-à-vis what’s in the XAML:

private void Feeling_Lucky(object sender, RoutedEventArgs e)
{
 HtmlPage.Window.Navigate(
 new Uri(“http://www.wrox.com”, UriKind.Absolute),
 “NavWindow”, “toolbars=no,address=no,width=800,height=600”);
}

And this will, of course, result in something like what you see in Figure 12-7.

Figure 12-7

Microsoft supplies you with the HyperlinkButton control, so you may rarely need to use this approach,
but it’s there if you do need to. One nice thing is that as long as you navigate to a new window in
response to a user click, you should get by pop-up blockers — just don’t try to do it on the sly.

Window also gives you NavigateToBookmark (method) and CurrentBookmark (property), which lets you
change the hash value (aka, bookmark) of the current URL. This can be very useful for enabling what is
sometimes called deep linking, that is, URLs that will link directly/deeply into an Ajax, Flash, Silverlight,
or similar application. The accompanying samples for the chapter have a utility class that shows how
you might simplify working with this kind of approach, but setting and getting are fairly straightfor-
ward, so much so that one wonders, why even have the method, since it just sets the property?

282

Part III: Building Applications

Silverlight 3 adds a new content control, a Frame, that handles navigation between Page objects. This
new control will also handle the updating of the browser journal history, which means that there is
complete integration of page navigation between Silverlight pages and the browser.

Window Events
Using Window events between script and managed code is covered in Chapter 16, but note that there is
an AttachEvent and DetachEvent set of methods on Window that lets managed code subscribe to and
unsubscribe from JavaScript events. Both of these have an overload that takes the method name as
string as the first parameter and either EventHandler or EventHandler<HtmlEventArgs> as the second.
These are derived from the HtmlObject type, which is covered more fully later in this chapter.

Frames
Frames have generally fallen out of favor, and I can only guess that’s why they’re not explicitly sup-
ported on the Window object. If you’re using inline frames, you can use the GetProperty method to get a
reference to the frame.

Interacting with the Document Object Model (DOM)
In the previous section, you saw the facilities for interacting with BOM; in this section, you’ll see the
facilities provided for interacting with the DOM, which is what you’ll want to do if you need to control
or get information about visual elements in the browser that are outside the Silverlight instance.

The first, and most obvious, way to get at the DOM is through the Document object itself, and Silverlight
provides a super-easy way to do that: System.Windows.Browser.HtmlPage.Document. The Document
property gets you an HtmlDocument instance, which is a derivative of HtmlObject, the class that defines
the basic behaviors for dealing with all HTML elements in managed code such as attaching and detach-
ing events (which is covered in depth in Chapter 16).

HtmlDocument has some interesting behaviors that you should expect if you’ve done any scripting with
the Html.Document object.

CreateElement(❑❑ string elementName) — Creates the specified element and returns a managed
reference to it. The element will be stand-alone; that is, it won’t have a parent until you add it
somewhere in the DOM.

GetElementById(❑❑ string id) — Gets the HTML element with the matching ID.

GetElementsByTagName(❑❑ string tagName) — Gets a ScriptObjectCollection of all elements
of the specified tag name (essentially getting HTML elements by their type).

Submit(❑❑ string formId) — Posts the form specified by formId; there is also an overload with
no parameters that will post the first form in the document.

In addition to these behaviors, the HtmlDocument object has some interesting additional properties:

Body❑❑ — Gets a reference to the HTML document’s body element (as an HtmlElement).

Cookies❑❑ — Lets you read or set the browser’s cookie string.

DocumentElement❑❑ — Gets an HtmlElement reference to the HtmlDocument element.

283

Chapter 12: Silverlight, the Browser, and the Server

DocumentUri❑❑ — Gets you the Uri instance for the current document — sure to be a very com-
monly used property on the Document.

IsReady❑❑ — Lets you figure out if all elements on Silverlight’s host page have been parsed, that
is, that it is ready to start programming against. This is a good gate flag to keep you from run-
ning into unexpected errors while hacking away at the DOM.

QueryString❑❑ — This is a nifty Read Only dictionary of the current query string values. If you
need to modify them, you need to use the Navigate methods as outlined in the BOM section of
this chapter — modifying the query string is considered a navigational action.

Finally, the HtmlDocument object has a handy DocumentReady event that you can use to simplify your
code by holding off your hacking until it is done (a good alternative to manually checking IsReady), but
be aware that this event could fire before you subscribe to it, so probably the best thing would be to use
something like the following in your application initialization:

if (!System.Windows.Browser.HtmlPage.Document.IsReady)
 System.Windows.Browser.HtmlPage.Document.DocumentReady +=
 new EventHandler(Document_DocumentReady);

Then in Document_DocumentReady, do whatever DOM hacking you need to do up front. Depending on
your level of confidence in how quickly the page will parse, you may want to check IsReady in your
DOM manipulation code.

So that’s the HtmlDocument “Document” property on the page that gives you a nice “in” into the DOM,
but normally, when manipulating the DOM, you are dealing with HTML elements, and that’s where the
HtmlElement class comes in, providing you with what DOM programmers are used to, such as these
extra behaviors:

AppendChild(❑❑ HtmlElement element) — If the element allows children, this sticks the given
element on the end of the children collection. If you want to insert it, you use the overload that
takes a second HtmlElement, and then the new element will be stuffed in before that element.

RemoveChild(❑❑ HtmlElement element) — Removes the given element from the children collec-
tion if it is in it.

Focus()❑❑ — Need more be said?

GetAttribute(❑❑ string name) — Gets the specified attribute value; it returns null if the attri-
bute is not specified.

GetStyleAttribute(❑❑ string name) — Same as above, only for CSS styles

RemoveAttribute(❑❑ string name) — Removes the specified attribute if it exists or just clears out
the attribute value, depending on the browser (e.g., in Firefox it just clears it out).

RemoveStyleAttribute(❑❑ string name) — This is similar to the above; however, different
browsers behave differently if they don’t understand the named style.

SetAttribute(❑❑ string name, string value) — Sets the given attribute to the provided value.

SetStyleAttribute(❑❑ string name, string value) — Sets the given CSS style attribute to the
provided value. The same caveats that apply to removing style attributes apply here.

284

Part III: Building Applications

In addition, there are some interesting properties on HtmlElement:

Children❑❑ — Gets you a Read Only ScriptObjectCollection of any children that the element
has; it’ll be empty if there are no children.

CssClass❑❑ — Lets you get or set the CSS class value for the element; recall that you can have
more than one class on an element according to the rules of CSS.

Id❑❑ — Gets the HTML element’s id value or an empty string if it isn’t set.

Parent❑❑ — Gets you an HtmlElement reference to the HTML element’s parent if it has one; other-
wise, you get null.

TagName❑❑ — Gets you the HTML tag name, which is essentially its type.

The following example shows DOM access and manipulation in action. First off, add a new Button to
the existing BrowserAndStuff sample like this:

<Button
 Width=”200”
 HorizontalAlignment=”Left”
 Content=”Add Selector”
 Click=”AddSelector_Click” />

and then add this code in that handler:

void AddSelector_Click(object sender, RoutedEventArgs e)
{
 HtmlDocument doc = HtmlPage.Document;
 HtmlElement selector = doc.CreateElement(“select”);
 HtmlElement item = doc.CreateElement(“option”);
 item.SetAttribute(“innerText”, “-- Choose One --”);
 item.SetProperty(“textContent”, “-- Choose One --”);
 item.SetAttribute(“value”, “”);
 selector.AppendChild(item);
 item = doc.CreateElement(“option”);
 item.SetAttribute(“innerText”, “Option 1”);
 item.SetProperty(“textContent”, “Option 1”);
 item.SetAttribute(“value”, “1”);
 selector.AppendChild(item);
 item = doc.CreateElement(“option”);
 item.SetAttribute(“innerText”, “Option 2”);
 item.SetProperty(“textContent”, “Option 2”);
 item.SetAttribute(“value”, “2”);
 selector.AppendChild(item);
 doc.Body.AppendChild(selector);
}

It should be pretty readable, but just to be explicit, it gets a reference to the HTML document, creates a
select element, then adds a few options to that, and finally adds that select element to the document
body. The only slightly odd thing is that you still have to account for browser disparity here — IE likes
the innerText property for the option text, and the standard XML DOM likes textContent. Also note

285

Chapter 12: Silverlight, the Browser, and the Server

that using SetAttribute doesn’t work for textContent; you have to use SetProperty, which is a way to
execute JavaScript, as covered in more detail in Chapter 13.

Sadly, at least the current version of Silverlight (and probably future versions as well) doesn’t do much
to hide away the browser inconsistencies, so you’re still left fending for yourself in that regard. An
interesting thought: If you do intense DOM manipulation, you could create an invisible Silverlight
instance and let it do the DOM manipulation for you. About the only way I can see this being good is if
you extend the managed API to provide strongly typed objects based on HTML element tag names, so
you’d get type checking at least on the tag-specific properties. It’s probably not worth the effort, but it’s
a thought. If, however, you’re using a dynamic language or if you can wait for the C# 4 dynamic fea-
tures, this option may become more palatable, as it improves on interop.

That about wraps it up for manipulating the DOM. You should be able to do pretty much everything you
can do in script, but the key scenarios will be enabling Silverlight integration with HTML elements. For
instance, you could use an HTML overlay to integrate Live Maps (Virtual Earth). You can see how, with
these APIs, you can get some pretty rich, almost invisible integration between Silverlight and the DOM.

Calling Script from Managed Code
This section covers the basics of calling script from managed code. As when dealing with the BOM and
DOM, the API for calling script is located in the System.Windows.Browser namespace and is facilitated
by just a few classes, some of which have already been touched on in this chapter and are used in
Chapter 16 as well. The main item in this space for dealing with script on the managed side is the
ScriptObject type, which is actually the base class for most of the types in this space. It gives you
some tools that are pretty handy for dealing with all that stuff, like:

CheckAccess()❑❑ — Same as usual; tells you if you’re on the UI thread.

ConvertTo(❑❑ Type targetType, bool allowSerialization) — (Tries to) convert the
ScriptObject to the given type, with optional support for serialization, which, if true, tries to
serialize the JavaScript object to JSON and then back out into the desired managed object.
There’s a generic overload ConvertTo<T>() that essentially calls the main overload with serial-
ization support and casts the result back for you. This is very handy if you want a managed
copy (or reference to an existing managed object) of a script object.

GetProperty(❑❑ string name) — Gets the value of the specified property by name. There is an
integer overload that goes by the ordinal number of the property (since properties can be enu-
merated in JavaScript).

SetProperty(❑❑ string name, object value) — Sets the value of the specified property by
name. As with the getter, you can use an integer ordinal instead of the name.

Invoke(❑❑ string name, params object[] args) — One of the most useful methods, this will
invoke the named method on the current object and allow you to (optionally) pass in
arguments.

InvokeSelf(❑❑ params object[] args) — This is likely one of the least useful methods; it will
assume that the current script object is a method and invoke it with the given arguments. The
thing is that, in most cases, you don’t want to reinvoke a method that you have a reference to
because, in order to get a reference to a method in the first place, you have to call Invoke on
HtmlWindow, and the method has to return itself. In other words, it needs to be a JavaScript class
constructor, in which case, you wouldn’t want to call it again for the same instance.

286

Part III: Building Applications

In addition to the methods, you get a couple of potentially useful properties:

Dispatcher❑❑ — The same as usual; gets you the UI Dispatcher, which you can use to invoke stuff
on the UI thread if need be, that is, if you have a ScriptObject on a background thread. It
seems unlikely that this would happen much, but it’s there if you need it.

ManagedObject❑❑ — If you have a case in which you have passed a reference type to JavaScript
(or created one from JavaScript) and get an untyped ScriptObject reference to it in managed
code, you can use just this property and cast it to the right type rather than, for example, using
ConvertTo.

The following example illustrates some of these. The use of GetProperty, SetProperty, and Invoke is
shown at various points in the book, as these are likely the most common uses — those you might use,
for example, when interacting with the Live Maps JavaScript API. The example here shows a slightly
more complex scenario, creating a JavaScript class (there are no real classes in JavaScript — they’re emu-
lated using functions that have members) and then calling a member on that instance, passing in a
scriptable managed type.

First, create a JavaScript class definition as follows in a script block on your HTML page used in your
handy-dandy BrowserAndStuff project:

function MyFancyJavaScriptObject(someConstructionParameter)
{
 this._constructorParam = someConstructionParameter;

 if (typeof _MyFancyJavaScriptObjectInitialized == ‘undefined’)
 {
 this.someMethod = function(baseBaseBase)
 {
 alert(baseBaseBase.All + baseBaseBase[‘Your’] +
 baseBaseBase.Base + this._constructorParam);
 }
 _MyFancyJavaScriptObjectInitialized = true;
 }
 return this;
}

This is about as basic as it gets for a JavaScript type. It takes one constructor parameter, which it just
saves for later reference.

The typeof ... block is there just as a good practice element for perf — it ensures
that the someMethod function is only defined once; otherwise, every time you con-
struct a MyFancyJavaScriptObject, it would re-define it. This doesn’t matter much
here, but if it were many and/or large methods, it could have a deleterious effect on
performance.

Next, add a new Button to your Page.xaml:

<Button
 Width=”200”

287

Chapter 12: Silverlight, the Browser, and the Server

 HorizontalAlignment=”Left”
 Content=”Create JS Object And Do Stuff”
 Click=”CallJavaScript” />

Now you can write your handler for that Click event as follows:

void CallJavaScript(object sender, RoutedEventArgs e)
{
 ScriptObject fancyScriptObject =
 (ScriptObject)HtmlPage.Window.Invoke(“MyFancyJavaScriptObject”,
 “are belong to us.”);
 fancyScriptObject.Invoke(“someMethod”, new AllYourBase());
}

So you see here that you call Invoke on the window to create an instance of your JavaScript type, pass-
ing in the constructor parameter (“are belong to us.”). Then you can invoke methods on your
JavaScript object, again using the Invoke method, and pass in a new instance of the managed
AllYourBase type. This type should be defined like this:

[ScriptableType]
public class AllYourBase
{
 public string All { get { return “All “; } }
 public string Your { get { return “your “; } }
 public string Base { get { return “base “; } }
}

Marking a type with the ScriptableTypeAttribute makes all public properties and methods accessible
from script. When the object is passed to script, a dictionary-based wrapper is created, so you can either
use the properties as defined or you can access properties via a string indexer. Both approaches are
illustrated in the someMethod implementation — the All and Base are accessed via properties, and Your
is accessed via the indexer.

If you’re not familiar with “all your base,” you should Google it.

Calling Managed Code from Script
The last part of the previous section introduced a key aspect of calling managed code from script —
using the ScriptableTypeAttribute. There’s another one you can use, ScriptableMemberAttribute, if
you want finer-grained control of what type members are exposed to script. Marking up your types to
indicate how they can be scripted is a good first step, but you need to take another to make your types
available to be used from JavaScript directly (i.e., not passed to JavaScript from managed code as they
were in the previous sample). The HtmlPage class’s static members illuminate this further:

RegisterScriptableObject(❑❑ string scriptKey, object instance) — This is what you use
to expose a managed object instance to script. The script key is used to provide a handle to
access that instance on the script side, which is slapped onto the Content object of the
Silverlight runtime instance.

288

Part III: Building Applications

RegisterCreateableType(❑❑ string scriptAlias, Type type) — Exposes a type to script via
the given alias. In script, you use the alias with the Content.services.createObject method
to create managed types from script.

UnregisterCreateableType(❑❑ string scriptAlias) — If, for some reason, you want to prevent
further script creation of a type, you can use this to do that.

So how about putting all this wondrous knowledge to some use? Go ahead and grab that
BrowserAndStuff project, and in the Page.xaml.cs, add this method to your Page class:

[ScriptableMember]
public AllYourBase GiveMeYourBase()
{
 return new AllYourBase();
}

What that will do is specifically expose that method to script, assuming we register it somehow. Next,
to enhance your AllYourBase class a bit, add this method to it:

public void SayIt(AllYourBase baseBaseBase)
{
 HtmlPage.Window.Alert(
 baseBaseBase.All + baseBaseBase.Your +
 baseBaseBase.Base + “ARE belong to us!”);
}

Nothing special here — we just added a method that uses the HTML bridge’s Alert method (that one
that you should really not use), but hang with me. Now, go to your App.xaml.cs, and, in the app startup
handler, add the following registrations so that it ends up looking like this:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page();
 HtmlPage.RegisterScriptableObject(“thePage”, this.RootVisual);
 HtmlPage.RegisterCreateableType(“AllYourBase”, typeof(AllYourBase));
}

Note that you are registering the new instance of the Page class that is your root visual and providing a
handle of “thePage” so that your script can access it (the handle can be whatever you like). The next
line registers the type of AllYourBase as a script-creatable type and assigns it the alias of “AllYourBase”,
which again could be whatever you want, but it seems to me that a good practice would be to match the
.NET type (you might even use namespace, depending on how complex your app is). At this point, you
should be all set to use these new things in script, so flip on over to your HTML page and add an
HTML button like this:

<button
 onclick=”javascript: return UltimateBaseDemo();”>DO It!</button>

Then define the UltimateBaseDemo function as follows:

function UltimateBaseDemo()
{

289

Chapter 12: Silverlight, the Browser, and the Server

 var slRuntime = document.getElementById(‘silverlightRuntime’);
 var allYerBase = slRuntime.content.thePage.GiveMeYourBase();
 var theRealDealYo =
 slRuntime.content.services.createObject(‘AllYourBase’);
 theRealDealYo.SayIt(allYerBase);
}

Now you may need to kick your noggin into overdrive to follow this. When you run and click on the
“DO It!” button, this function will get a reference to the Silverlight runtime instance. At that point, it
uses the Content property (it is case-insensitive because it is a property on the plug-in object) to access
the handle you set up in the app start handler (“thePage”). This handle is a script wrapper over your
root visual Page instance, and, if you recall, you set up the GiveMeYourBase method as a scriptable mem-
ber, so you can call it from script to get a script wrapper around a new instance of the AllYourBase type.

Next, the code again uses the Content property, this time accessing the Services property to call the
helper createObject method, passing in the alias you set up in the app start handler so that it returns
another wrapped instance of the AllYourBase type. Finally, it calls the SayIt method on this second
instance, passing in the first; and that method, if you’ll glance back, simply shows a JavaScript alert
(calling back into script from managed code, which was called from script using a script wrapper of a
managed type!). Pretty crazy, huh? The results are what you’d expect, as shown in Figure 12-8.

Figure 12-8

Truly, all your base ARE belong to us.

Silverlight and JavaScript Marshaling
A note on marshaling types between script and managed code: while the basic scenarios (and even not-
so-basic ones) should go off without a hitch following the principles illustrated here, there are actually a
lot of sticky details in terms of how stuff gets sent back and forth between script and managed code. If
you’re going to do a lot of this, you should consult the MSDN documentation on this topic. The basic
rules are:

Managed types are wrapped by reference to JavaScript. This is why, for instance, you can get a ❑❑

ScriptObject and use the ManagedObject reference to get that reference back.

JavaScript types that are passed as data (e.g., as parameters to methods and property setters) ❑❑

have to be converted to a corresponding managed wrapper, which is what is passed to code.

290

Part III: Building Applications

Exceptions between Managed Code and Script
There is limited support for passing exceptions between managed code and script. You should refer-
ence Chapter 13, on cross-cutting concerns, for details on exception handling. The key things to know
here are that exceptions thrown to JavaScript from managed code are reported as a
ManagedRuntimeError, and only the top-level exception information (not nested) is passed to JavaScript.
Also, exceptions that occur in managed code called from a JavaScript event handler (e.g., a button’s
click handler) are silently ignored.

JavaScript exceptions are passed to the calling managed code as InvalidOperationException instances,
and if you have a chain of calls from, for example, managed code that was called by JavaScript, which
was called by managed code, you will not get the original managed-code details — they’re lost in trans-
lation. Last, because all browsers have their own way of reporting messages, you can’t always count on
getting good info in managed code to parse/handle specially, and, specifically, Safari may not return an
exception at all, so you need to be extra careful with any JavaScript code that is called from managed
code to effectively handle it in JavaScript as much as possible.

HTML Bridge Scenarios
Here are a few more interesting scenarios to think about that are enabled thanks to this truly advanced
HTML bridge:

Silverlight to Silverlight❑❑ — You can have two instances of Silverlight on one page and commu-
nicate between them using the bridge or the new Local Connection API. This could be useful in
scenarios in which you need to coordinate data between them (such as multiple Silverlight Web
Parts in a portal) as well as situations in which you need more advanced layering than is sup-
ported out-of-the-box, for example, a background Silverlight layer, a middle HTML layer for
rich HTML overlays, and another, top Silverlight layer, for Silverlight overlays that need to be
placed on top of the HTML.

Silverlight to Flash or <❑❑ insertnamehere> — If you have existing Flash or other plug-in-based
technology, you can use the bridge to communicate with those.

Silverlight to Ajax❑❑ — This will likely be the most common scenario, in which you have a fairly
rich Ajax-based app that you want to add a Silverlight “island of richness” to, so you use the
bridge to facilitate that.

Silverlight with the Server
The last section in this chapter deals very briefly with Silverlight’s relationship with the server. Unlike
ASP.NET and other HTML-generating server-side technologies, Silverlight is a pure client play, which
means that you can run it just fine in a plain old HTML page; however, the chances of that happening
without some server-side platform are probably kind of low. It is more likely that you will want to plug
your Silverlight into some server-side framework.

The good news is that because it is pure client side, you can pick and choose your server-side technol-
ogy. You can run it with PHP, Perl, Python, Ruby, Java, and even CGI if you like. What’s more, because
of the CLR, Silverlight can support other languages, and Microsoft, in addition to VB and C#, is adding

291

Chapter 12: Silverlight, the Browser, and the Server

IronRuby, IronPython, and Managed JScript (along with the necessary DLR infrastructure). So if, say,
Ruby’s your thing, you can use Ruby on Rails on the server and IronRuby in Silverlight: pretty awe-
some setup if you’re into that. Get all the power of Silverlight, including some Visual Studio tooling and
debugging, along with your favorite language and server-side framework.

Silverlight with ASP.NET
Of course, it’s one thing to say that you can run Silverlight with other server platforms, but there is no
doubt that the biggest developer audience will be using ASP.NET. And in addition to specialized
Silverlight support for WCF and ADO.NET Data Services on the client, Microsoft is providing a couple
of facilities to make using Silverlight on ASP.NET even easier. These are:

System.Web.UI.SilverlightControls.MediaPlayer❑❑ — This control empowers developers to
easily add rich media capabilities to their ASP.NET applications by handling the details of creat-
ing a Silverlight player. It supports some nice-looking built-in skins as well as the ability to sup-
ply custom skins and use the output of Expression Media Encoder.

System.Web.UI.SilverlightControls.Silverlight❑❑ — This control simplifies adding
Silverlight applications to ASP.NET pages.

Silverlight Control
Essentially, the Silverlight control provides a server-side facility for declaring and configuring a
Silverlight instance. It exposes the various configuration knobs as properties on the server control and
handles the details of appropriately creating an instance based on browser support. Thus, there isn’t
much more to say. Here’s what a simple declaration will look like (generated for test pages when you
create new Silverlight web projects):

<asp:Silverlight ID=”Xaml1” runat=”server”
 Source=”~/ClientBin/SilverlightAndAspNetBff.xap”
 MinimumVersion=”2.0.31005”
 Width=”100%” Height=”100%” />

You will see this used throughout this book as well as in any number of Silverlight samples in other
learning resources. One thing to note is that you will need to register the Silverlight controls tag pre-
fix either in the web.config or on your pages:

<%@ Register Assembly=”System.Web.Silverlight”
 Namespace=”System.Web.UI.SilverlightControls”
 TagPrefix=”asp” %>

MediaPlayer Control
The MediaPlayer control drastically simplifies adding media to ASP.NET applications. All you have to
do is add a reference to the System.Web.Silverlight.dll (same thing for the Silverlight control itself), reg-
ister the tag prefix as shown previously, and then declare it on your ASPX as follows:

<asp:MediaPlayer ID=”MyMediaPlayer” runat=”server”
 MediaSource=”~/Media/Butterfly.wmv” Width=”100%” Height=”100%” />

292

Part III: Building Applications

Of course, you have to add your media, and it’s best if you encode it using Expression Encoder, but
that’s all there is to it. Figure 12-9 shows the outcome of this.

Figure 12-9

That skin isn’t the most beautiful, though, but never fear! If you switch into design view and select the
smart tag, you can just use the Import Skin option to pick one of the several prebaked skins. See
Figure 12-10 to see what I’m talking about.

Figure 12-10

I kind of like the Console skin, so I picked it. That does two things: it copies Console.xaml from the
Silverlight 3 SDK (typically found at C:\Program Files\Microsoft SDKs\Silverlight\v3.0\Libraries\
Server\MediaPlayerSkins) to the web app and sets the MediaSkinSource property to that file, so if you
flip back to source view, your MediaPlayer definition now looks like this:

<asp:MediaPlayer ID=”MyMediaPlayer” runat=”server”
 MediaSource=”~/Media/Butterfly.wmv” Width=”100%” Height=”100%”
 MediaSkinSource=”~/Console.xaml” />

293

Chapter 12: Silverlight, the Browser, and the Server

And if you run this, you’ll see something like Figure 12-11.

Figure 12-11

That’s all there is to it! And another nice thing about this is that clients only need Silverlight 1.0 to add
the rich media player to your ASP.NET apps. Naturally, however, there’s a lot more to multimedia in
Silverlight, and that’s already covered in depth in Chapter 10.

Summary
After reading this chapter, you should have a good basic understanding of Silverlight as a complete
application platform in its own right, an in-depth understanding of how Silverlight relates to the
browser, and how to get the two to play nicely together; finally, you should be aware of how Silverlight
lives vis-à-vis the server, particularly with ASP.NET. At this point, you’re ready to dig in to deeper
cross-cutting concerns that you should think about when setting out to build your own Silverlight
applications.

First Things First : Handling
Cross-Cutting Concerns

Cross-cutting concerns are those system design issues that cut across the various areas of an
application and are typically foundational system services that you need to consider before div-
ing into building an application. Most common among these are security, exception handling,
and logging. In this chapter, you’ll get an understanding of how to address these in your applica-
tions, particularly how these concerns change in the context of a Silverlight application.

Security
In this section, you’ll look at the various aspects of security that you’ll need to think about for
Silverlight applications.

Code Access Security Model
Silverlight 3 completely rips out the familiar .NET Code Access Security (CAS) model and replaces
it with a straightforward, invisible model. Because it is targeted strictly at web applications and runs
in the browser, it more or less inherits the browser/AJAX security model in terms of what it allows
applications to do. So, in a sense, the burden of security, particularly code security, is removed from
the developer — no worrying about attributes, asserts, demands, and that sort of thing.

Under the covers it is more complicated than that, of course. Platform (Microsoft) code has the
ability to do things that aren’t what you’d call sandboxed, things like accessing the host filesystem.
To do this, Silverlight has essentially three layers of security. The first is the transparent, which is
where your application code will run (and always will run — you can’t elevate or demand). The
third, if you will, is the critical code that actually talks to the host system. And in between the
two, the second, is the safe critical code.

This intermediate layer is the most interesting for Silverlight because it acts as the gatekeeper.
It’s not literally a separate layer — just conceptually — but the thing it does is perform checks to

13

296

Part III: Building Applications

ensure that the application is in an acceptable state and validating parameters before performing criti-
cal operations. Again, this is only the Microsoft libraries that can do this — applications are prevented
from doing so.

Network Access Security Model
By default, Silverlight applications can only access the server that they were deployed to (and down-
loaded from), a.k.a., their site of origin. If you don’t do anything special, this is the extent of the commu-
nication allowed, much as in AJAX applications; however, Silverlight 3 also has the capability to make
cross-domain calls, that is, calls to servers in other domains, which is essential for enabling mashups.

To do this, Silverlight has a security policy system. This means that calls using the WebClient and HTTP
classes in System.Net will require a policy file to be downloaded first before accessing other network
resources on the target server for calls to non-site-of-origin servers — they don’t require the policy
for site-of-origin access. On the other hand, all socket connections will require a policy, regardless of
whether the call is to the site of origin or not.

At a high level, the way this works for HTTP-based calls is that Silverlight will look for a Silverlight-based
clientaccesspolicy.xml file in the root of the target domain. If one is returned, it will use this policy for
the duration of the application session. If one can’t be found, it falls back to asking for the Flash cross-
domain policy file, crossdomain.xml, and it will use that. This is great for accessing all the existing sites
enabled for Flash cross-domain access, but it must enable access to all domains to be used by Silverlight.

Sockets work a bit differently, given their nature. The client connects on port 943 and sends a special
<policy-file-request /> message and waits for the policy file to be returned. Once this file is suc-
cessfully parsed, and assuming its policy is met, it will open a connection to the target. It will not fall
back to the Flash policy file/format.

Socket connections in Silverlight are limited to the port range of 4502–4534.

Check out Chapters 11 and 14 for examples of cross-domain calls.

Cryptography
Silverlight 3 provides a subset of the .NET Framework’s cryptography capabilities, which is likely more
than enough for most Silverlight applications. With these, you can do both symmetric and asymmetric
encryption, handle hashes, and generate random numbers.

The thing is that, in most cases, you’ll want to do your cryptography on the server because there’s no
terribly safe place to keep things like keys on the client. One possible work-around for that would be to
require the user to authenticate to a service that will then supply a session key for the client code to use
for encrypted communications. More likely, you’ll rely on SSL for secure communications between the
client and the server.

In any case, here’s a basic class you could use as a starting point for cryptography in your application. It
simplifies interaction with the boorish framework security classes.

297

Chapter 13: First Things First: Handling Cross-Cutting Concerns

using System;

namespace AppServices.Security
{
 public static class Crypto
 {
 static System.Security.Cryptography.AesManaged _Cryptor = null;
 static System.Security.Cryptography.AesManaged Cryptor
 {
 get
 {
 if (_Cryptor == null)
 {
 _Cryptor = new System.Security.Cryptography.AesManaged();
 _Cryptor.GenerateIV();
 _Cryptor.GenerateKey();
 }
 return _Cryptor;
 }
 }

 public static string Encrypt(string value)
 {
 using (System.IO.MemoryStream encryptionStream =
 new System.IO.MemoryStream())
 {
 using (System.Security.Cryptography.CryptoStream encrypt =
 new System.Security.Cryptography.CryptoStream(
 encryptionStream, Cryptor.CreateEncryptor(),
 System.Security.Cryptography.CryptoStreamMode.Write))
 {
 byte[] utfD1 =
 System.Text.UTF8Encoding.UTF8.GetBytes(value);
 encrypt.Write(utfD1, 0, utfD1.Length);
 encrypt.FlushFinalBlock();
 encrypt.Close();

 return
 Convert.ToBase64String(encryptionStream.ToArray());
 }
 }
 }

 public static string Decrypt(string value)
 {
 byte[] encryptedData = Convert.FromBase64String(value);

 using (System.IO.MemoryStream decryptionStream =
 new System.IO.MemoryStream())
 {
 using (System.Security.Cryptography.CryptoStream decrypt =
 new System.Security.Cryptography.CryptoStream(
 decryptionStream,Cryptor.CreateDecryptor(),
 System.Security.Cryptography.CryptoStreamMode.Write))

298

Part III: Building Applications

 {
 decrypt.Write(encryptedData, 0, encryptedData.Length);
 decrypt.Flush();
 decrypt.Close();

 byte[] decryptedData = decryptionStream.ToArray();
 return
 System.Text.UTF8Encoding.UTF8.GetString(decryptedData, 0,
 decryptedData.Length);
 }
 }
 }

 public static string Hash(string value)
 {
 byte[] inBytes =
 System.Text.UTF8Encoding.UTF8.GetBytes(value);

 System.Security.Cryptography.SHA256Managed hasher =
 new System.Security.Cryptography.SHA256Managed();

 byte[] outBytes = hasher.ComputeHash(inBytes);

 return Convert.ToBase64String(outBytes);
 }

 }
}

The encryption code here takes advantage of the auto-generation of keys and initialization vectors built
into the cryptography classes; however, most likely you’ll want to modify it to supply the class with a
key derived from some other source, such as the aforementioned server.

This chapter’s sample includes a sample control called CryptoSample.xaml that shows how to use this
wrapper class, but it is very straightforward — just call the appropriate method and supply the value.

Authentication
Silverlight 3 has no built-in authentication services, but you can use the ASP.NET services for Windows
Communication Foundation (WCF) to provide ASP.NET-based authentication. The following goes over
how you can go about doing that.

First, create a Silverlight application, if you don’t have one already. The code in this sample uses a proj-
ect, including an accompanying web site, called AppServices.

Next, set up some users. You can do that by selecting the web site in Solution Explorer and clicking
Website ➪ ASP.NET Configuration from the menu in Visual Studio. Then, in the admin web site that
comes up, go to Security and Create a user or two, as shown in Figure 13-1. This is standard ASP.NET.

By default, ASP.NET wants to use SQL Express for web site configuration. If you
don’t have that installed, you will need to configure a different provider as out-
lined here: http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx.

299

Chapter 13: First Things First: Handling Cross-Cutting Concerns

Figure 13-1

While you’re in there, go and set your app to use Forms authentication (choose “Select authentication
type” and then “From the Internet”), or you can add it in the system.web section in web.config yourself:

<authentication mode=“Forms“ />

Next, add a Services folder, as shown in Figure 13-2. You don’t have to do this, but it is a nice way to cor-
don off your services.

Figure 13-2

Then add a new Authentication service to the Services folder, as shown in Figure 13-3. Because you’re
using pre-baked services, it’s easiest to pick the text file type and just change the filename.

300

Part III: Building Applications

Figure 13-3

Open the .svc file and update it to point to the built-in AuthenticationService type as follows:

<%@ ServiceHost Language=”C#”
 Service=”System.Web.ApplicationServices.AuthenticationService” %>

Now configure the web.config to enable the service:

<system.serviceModel>
 <services>
 <service
 name=“System.Web.ApplicationServices.AuthenticationService“
 behaviorConfiguration=“AuthenticationServiceTypeBehaviors“>
 <endpoint
 contract=“System.Web.ApplicationServices.AuthenticationService“
 binding=“basicHttpBinding“ bindingConfiguration=“userHttp“
 bindingNamespace=“http://asp.net/ApplicationServices/v200“/>
 </service>
 </services>

 <bindings>
 <basicHttpBinding>
 <binding name=“userHttp“>
 <security mode=“None“/>
 </binding>
 </basicHttpBinding>
 </bindings>

 <behaviors>
 <serviceBehaviors>
 <behavior name=“AuthenticationServiceTypeBehaviors“>

301

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 <serviceMetadata httpGetEnabled=“true“/>
 </behavior>
 </serviceBehaviors>
 </behaviors>

 <serviceHostingEnvironment aspNetCompatibilityEnabled=“true“/>
</system.serviceModel>

The first section adds the service, specifying the behavior, contract, and binding information; then you
add a basicHttpBinding definition with a security mode of none (you’d probably use HTTPS in real
app scenarios). Add a behavior definition to match what you specified for the service, and last turn on
ASP.NET compatibility to run this inside ASP.NET.

Next add a system.web.extensions section to enable the new extensions service:

<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled=“true“ requireSSL=“false“/>
 </webServices>
 </scripting>
</system.web.extensions>

Now you should be able to verify the service setup by right-clicking on the svc file and choosing “View
in Browser.” It should look something like Figure 13-4.

Figure 13-4

302

Part III: Building Applications

Now, on the client side, you need to get ready to use it. First, add a Controls folder, and in the folder,
add a new SignIn user control, as in Figure 13-5.

Figure 13-5

At a minimum, add a username and password TextBox as well as a “Sign-In” button (you’ll probably
need a “Cancel/Close” button, too). Here’s an example of how you might do this with a little styling
and simple animation (for fade in/out).

<UserControl x:Class=”AppServices.Controls.SignIn”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”294” Height=”163”>
 <UserControl.Resources>
 <Storyboard x:Name=”ShowMe”>
 <DoubleAnimation Storyboard.TargetName=”LayoutRoot”
 Storyboard.TargetProperty=”Opacity”
 Duration=”0:0:0.5” To=”1” />
 </Storyboard>
 <Storyboard x:Name=”CloseMe”>
 <DoubleAnimation Storyboard.TargetName=”LayoutRoot”
 Storyboard.TargetProperty=”Opacity”
 BeginTime=”0:0:0.5”
 Duration=”0:0:0.5” To=”0” />
 </Storyboard>
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot”>
 <Border CornerRadius=”4,4,4,4”>
 <Border.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FF000000” Offset=”0.071”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#FF070707” Offset=”0.933”/>

303

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 </LinearGradientBrush>
 </Border.Background>
 <Canvas Height=”157” Width=”289”>
 <TextBlock Height=”25” Width=”115” Foreground=”#FFFFFFFF”
 Text=”Sign In” TextWrapping=”Wrap” Canvas.Left=”3”
 Canvas.Top=”2” x:Name=”TitleLabel”/>
 <Path Height=”1” Width=”86.016”
 Canvas.Left=”1” Canvas.Top=”23”
 Data=”M20.647833,63 L142.66422,63” Stretch=”Fill”>
 <Path.Stroke>
 <LinearGradientBrush
 EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop
 Color=”#FF000000” Offset=”1”/>
 <GradientStop
 Color=”#FFFFFFFF” Offset=”0”/>
 </LinearGradientBrush>
 </Path.Stroke>
 </Path>
 <TextBlock Height=”21” Width=”94” FontSize=”12”
 Foreground=”#FFFFFFFF” Text=”Username”
 Canvas.Top=”31” Canvas.Left=”24” x:Name=”UsernameLabel” />
 <TextBox Height=”Auto” Width=”130”
 FontFamily=”Verdana” FontSize=”10”
 Canvas.Left=”24” Canvas.Top=”46.5”
 KeyUp=”SignIn_KeyUp”
 x:Name=”Username”/>
 <TextBlock Height=”21” Width=”94” FontSize=”12”
 Foreground=”#FFFFFFFF” Text=”Password”
 Canvas.Top=”73” Canvas.Left=”24” x:Name=”PasswordLabel”/>
 <PasswordBox Height=”Auto” x:Name=”Password” Width=”130”
 FontFamily=”Verdana” FontSize=”10”
 Canvas.Left=”24” Canvas.Top=”88.5”
 KeyUp=”SignIn_KeyUp” />
 <TextBlock Height=”111.5” Width=”121” FontSize=”10”
 Foreground=”#FFFFFFFF” TextWrapping=”Wrap”
 x:Name=”UserMessage” Margin=”0,0,0,0”
 Canvas.Left=”160” Canvas.Top=”30”/>
 <Button Height=”23” Width=”73.5”
 Canvas.Left=”24” Canvas.Top=”118.5”
 Content=”Sign In!” x:Name=”SignInButton”
 Click=”SignInButton_Click”/>
 <Button Height=”16” Width=”17” FontSize=”9”
 Canvas.Left=”264” Canvas.Top=”8”
 Content=”X” x:Name=”CloseButton”
 Click=”CloseButton_Click”/>
 </Canvas>
 </Border>
 </Grid>
</UserControl>

304

Part III: Building Applications

You’ll want to implement the Show/Close functionality. At a minimum, you can just use the
Visibility property, but it is often a nice experience to use some subtle animations (such as a quick
fade in and out). Here is what the code for that looks like:

public partial class SignIn : UserControl
{
 public SignIn()
 {
 InitializeComponent();
 this.Visibility = Visibility.Collapsed;
 this.LayoutRoot.Opacity = 0;
 this.ShowMe.Completed += ShowMe_Completed;
 this.CloseMe.Completed += CloseMe_Completed;
 }

 public void Show()
 {
 this.Visibility = Visibility.Visible;
 this.ShowMe.Begin();
 }

 void ShowMe_Completed(object sender, EventArgs e)
 {
 this.Username.Focus();
 }

 public void Close()
 {
 this.CloseMe.Begin();
 }

 void CloseMe_Completed(object sender, EventArgs e)
 {
 this.Visibility = Visibility.Collapsed;
 this.Username.Text = string.Empty;
 this.Password.Password = string.Empty;
 this.UserMessage.Text = string.Empty;
 }

 private void SignInButton_Click(object sender, RoutedEventArgs e)
 {
 this.DoSignIn();
 }

 private void CloseButton_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }

 private void SignIn_KeyUp(object sender, KeyEventArgs e)
 {
 if (e.Key == Key.Enter)

305

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 this.DoSignIn();
 }

 void DoSignIn()
 {
 }
}

There are definitely a few nice-to-haves in this code. In addition to the show and close animations, the
code in the Show Completion handler will set the focus on the username, so users can immediately
start typing. The SignIn_KeyUp handler, which is attached to both input boxes, will attempt a sign-in if
the [Enter] key is pressed (so users don’t have to reach for the mouse and click on the “Sign-In” button).
The last nicety is the UserMessage TextBox; this is a very basic approach to enable feedback to the user
as to what is going on with their sign-in attempts, as you will see.

Then you can use this on your Page by defining an XML namespace and declaring it. You need a login
button of some sort, too. Here’s an example of that:

<UserControl
 x:Class=”AppServices.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:l=”clr-namespace:AppServices.Controls”
 >
 <Grid x:Name=”LayoutRoot”>
 <HyperlinkButton
 x:Name=”LoginButton”
 HorizontalAlignment=”Right” VerticalAlignment=”Top”
 Content=”Login” Click=”LoginButton_Click” />
 <l:SignIn x:Name=”SignInBox” />
 </Grid>
</UserControl>

Here’s the code for the login button click handler:

private void LoginButton_Click(object sender, RoutedEventArgs e)
{
 this.SignInBox.Show();
}

And when you click on the Login button, you’ll see something like what is shown in Figure 13-6.

Figure 13-6

306

Part III: Building Applications

Now you’re ready to consume the authentication service, so right-click on your Silverlight project and
choose “Add Service Reference.” Choose Discover, and the program should find your local authenti-
cation service and automatically select it. Then you can give it a namespace — I like using Services to
group services, so specify Services.Authentication for this reference, as in Figure 13-7.

Figure 13-7

Now that you have the service client, you can use it in your DoSignIn method on the SignIn user control.
Update your SignIn code-behind like this:

void DoSignIn()
{
 Services.Authentication.AuthenticationServiceClient auth =
 new Services.Authentication.AuthenticationServiceClient();
 auth.LoginCompleted += LoginCompleted;
 auth.LoginAsync(this.Username.Text, this.Password.Password,
 string.Empty, false, this.Username.Text);
 this.UserMessage.Text = “Attempting to sign in...”;
}

void LoginCompleted(object sender,
 Services.Authentication.LoginCompletedEventArgs e)
{
 if (e.Error != null)
 this.UserMessage.Text = “There’s a technical problem preventing “ +
 “sign in at this time. Please try again later and let us know “ +
 “if the problem continues.”;
 else
 {
 bool success = e.Result;
 if (!success)
 this.UserMessage.Text = “We could not sign you in with the “ +
 “username and password you supplied. Please double-check “ +
 “and try again.”;

307

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 else
 {
 this.UserMessage.Text = “Signed in successfully!”;
 App.CurrentUser =
 new Security.AppPrincipal((string)e.UserState, true);
 this.Close();
 }
 }
}

The code creates an authentication client, adds a completion handler for the Login method, starts a
login (asynchronously, of course), and lets the user know that this is occurring. Once you get a result
back from the server, it does very basic error checking, letting the user know if there is an error. Then
it checks the result, which is a Boolean indicating success. If the sign-in attempt failed, the code lets
the user know; otherwise, it tells the user that he or she logged in successfully, creates a corresponding
AppPrincipal (which will be discussed shortly), and closes the dialogue.

Closing automatically is, in itself, a good experience — don’t make users click
when they don’t have to. Also, the CloseMe animation is set up to pause for half a
second to let the user see the success message before fading out.

If this were a real app, you should consider a “working” animation (such as a spin-
ning cycle or bar) that shows while contacting the server, and you should consider
using visual language (such as color) to indicate failure and success, but I didn’t
want to further distract from the core issue here, which is authentication using the
ASP.NET service.

Now you should be wondering what this AppPrincipal thing is. That’s a custom class that implements
the System.Security.Principal.IPrincipal interface. Silverlight 3 does not have built-in support for
standard principals, which is fine as you probably would want to extend it in most cases anyway. But
we do get the usual IIdentity and IPrincipal interfaces as a good starting point.

To use this is pretty simple:

First, create an AppIdentity class, putting it in a Security folder in your app. Have that class inherit
from IIdentity and implement the members, adding a relevant constructor as follows:

public class AppIdentity : IIdentity
{
 public AppIdentity(string name, bool authenticated)
 {
 _Name = name;
 _IsAuthenticated = authenticated;
 }

 #region IIdentity Members
 public string AuthenticationType
 {
 get { return “ASP.NET Services”; }

308

Part III: Building Applications

 }

 bool _IsAuthenticated;
 public bool IsAuthenticated
 {
 get { return _IsAuthenticated; }
 }

 string _Name;
 public string Name
 {
 get { return _Name; }
 }
 #endregion
}

Next, create an AppPrincipal class in the same folder, inheriting from IPrincipal and implementing
in a similar fashion:

public class AppPrincipal : IPrincipal
{

 public AppPrincipal(string name,
 bool authenticated)
 : this(name, authenticated,
 new string[0]{}) { }

 public AppPrincipal(string name,
 bool authenticated, string[] roles)
 {
 _Identity = new AppIdentity(name, authenticated);
 _Roles = roles;
 }

 string[] _Roles;

 #region IPrincipal Members

 IIdentity _Identity;
 public IIdentity Identity
 {
 get
 {
 return _Identity;
 }
 }

 public bool IsInRole(string role)
 {
 return _Roles.Contains(role);
 }

 #endregion
}

309

Chapter 13: First Things First: Handling Cross-Cutting Concerns

You’ll need to use/import System.Linq to use the Contains extension method and also System
.Security.Principal for both classes. The next thing is to create a shared/static member to serve as the
current principal/user reference, and it just makes sense to stick it on the App class that is part of the
usual VS project template:

static Security.AppPrincipal _CurrentUser;
internal static Security.AppPrincipal CurrentUser
{
 get
 {
 if (_CurrentUser == null)
 _CurrentUser =
 new Security.AppPrincipal(string.Empty, false);
 return _CurrentUser;
 }
 set
 {
 if (_CurrentUser != value &&
 (_CurrentUser == null || value == null ||
 (value.Identity.Name != _CurrentUser.Identity.Name)))
 {
 _CurrentUser = value;
 if (CurrentUserChanged != null)
 CurrentUserChanged(App.Current, new EventArgs());
 }
 }
}

public static event EventHandler CurrentUserChanged;

There are a few things going on here. First, if the current user is not set and it is accessed, the system
generates a default, unauthenticated principal, so you don’t have to worry about null checking in rela-
tion to this.

The next thing is the CurrentUserChanged event. This can be used by various observers in the app to
know when the authenticated user is changed, and with that, the setter checks to see if the current user
is different from the new user value before setting it and then raising the event.

Before moving on, you may want to add one more authentication feature — a SignInStatus control.
The idea is, much as with the ASP.NET LoginStatus, to display a Sign In command if the user is not
authenticated, and to display a simple authenticated user message and a Sign Out command if the user
is authenticated. Most of the hard work is already done.

First, create a SignInStatus user control in your Controls directory. Now, copy the XML namespace
declaration for your custom controls from your Page.xaml to the SignInStatus.xaml, and then you
can cut and paste the sign-in hyperlink button and the sign-in box from your page (with the corre-
sponding code) to the new control. Then you can add a StackPanel with a TextBlock and another
HyperlinkButton to end up with something like the following:

<UserControl x:Class=”AppServices.Controls.SignInStatus”
 xmlns=”http://schemas.microssoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:l=”clr-namespace:AppServices.Controls”>

310

Part III: Building Applications

 <Grid x:Name=”LayoutRoot”>
 <HyperlinkButton
 x:Name=”SignInButton”
 HorizontalAlignment=”Right” VerticalAlignment=”Top”
 Content=”Sign In” Click=”LoginButton_Click” />
 <StackPanel x:Name=”SignOutPanel” Visibility=”Collapsed”
 HorizontalAlignment=”Right” VerticalAlignment=”Top”
 Orientation=”Horizontal”>
 <TextBlock x:Name=”StatusMessageBlock” />
 <HyperlinkButton x:Name=”SignOutButton”
 Content=” [Sign Out]” Click=”SignOutButton_Click” />
 </StackPanel>
 <l:SignIn x:Name=”SignInBox” />
 </Grid>
</UserControl>

The code for this control is pretty simple, as you might expect:

public partial class SignInStatus : UserControl
{
 public SignInStatus()
 {
 InitializeComponent();
 App.CurrentUserChanged += App_CurrentUserChanged;
 this.StatusMessageBlock.FontFamily = this.SignOutButton.FontFamily;
 this.StatusMessageBlock.FontSize = this.SignOutButton.FontSize;
 }

 void App_CurrentUserChanged(object sender, EventArgs e)
 {
 this.UpdateStatus();
 }

 public void UpdateStatus()
 {
 if (App.CurrentUser.Identity.IsAuthenticated)
 {
 this.StatusMessageBlock.Text = “Welcome, “ +
 App.CurrentUser.Identity.Name + “!”;
 this.SignInButton.Visibility = Visibility.Collapsed;
 this.SignOutPanel.Visibility = Visibility.Visible;
 }
 else
 {
 this.SignInButton.Visibility = Visibility.Visible;
 this.SignOutPanel.Visibility = Visibility.Collapsed;
 }
 }

 private void LoginButton_Click(object sender, RoutedEventArgs e)
 {
 this.SignInBox.Show();
 }

 private void SignOutButton_Click(object sender, RoutedEventArgs e)

311

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 {
 App.CurrentUser = null;
 }
}

Now see? You’re already taking advantage of that CurrentUserChanged event! It allows for nice, loose
coupling for things that need to be aware of authentication status. The next two lines in the construc-
tor are just synchronizing the font properties so the message and the sign-out command look similar.
The LoginButton_Click does the same thing as before, and the SignOutButton_Click simply sets the
current user for the app to null (which, of course, will trigger the CurrentUserChanged, which will, in
turn, call UpdateStatus from our handler.

UpdateStatus checks to see if the user is authenticated. If so, it displays a simple Welcome message and
a “Sign-Out” button (along with hiding the “Sign-In” button). If not, it will hide the message and sign-
out command in favor of the sign-in command. Figure 13-8 shows what it looks like just after the user is
authenticated, right before the Sign-In box fades out.

Figure 13-8

Now you’re all set with a basic authentication infrastructure; the next step in security is authorization.

Authorization
Authorization is about ensuring that an actor (usually a person/user) is authorized to do something.
ASP.NET carries forward the concept of role-based authorization. This is superior to the common level-
based authorization (e.g., user, superuser, admin) because it allows for more fine-grained control, based
on the role that a user is in. It is somewhat similar to groups in NT file access security, although there
is no built-in grouping of other roles. Role-based authorization is limited, though, and usually needs to
be supplemented by further authorization based on assignment, ownership, or (generically speaking)
responsibility.

This latter is when you, for instance, have a role such as Project Managers that determines a user can
perform project management functions, but you need a further authorization level to restrict what
projects a particular user can manage. Usually there is some level of responsibility implied here. In any
case, you have to implement that level of responsibility-based authorization yourself, but you can take
advantage of the ASP.NET role-based authorization for more coarse-grained authorization.

312

Part III: Building Applications

Adding support for ASP.NET role-based authorization is very similar to using ASP.NET authentication
in that you start by adding a service for it to your Web project. Remember to pick the text file type and
rename it to Authorization.svc, and then add the following to that file:

<%@ ServiceHost Language=”C#”
 Service=”System.Web.ApplicationServices.RoleService” %>

Next, open that web.config file, find the system.serviceModel/services section, and add this code there:

<service name=“System.Web.ApplicationServices.RoleService“
 behaviorConfiguration=“RoleServiceTypeBehaviors“>
 <endpoint contract=“System.Web.ApplicationServices.RoleService“
 binding=“basicHttpBinding“ bindingConfiguration=“userHttp“
 bindingNamespace=“http://asp.net/ApplicationServices/v200“/>
</service>

And add the behavior to the system.serviceModel/behaviors section:

<behavior name=“RoleServiceTypeBehaviors“>
 <serviceMetadata httpGetEnabled=“true“/>
</behavior>

Then enable the role manager service for ASP.NET in the system.web section, as follows.

<roleManager enabled=“true“/>

The last thing in web.config is to enable the role manager to be exposed via the services. To do that, find
the system.web.extensions/scripting/webServices section and add the following:

<roleService enabled=“true“/>

Now you can right-click and view in the browser to ensure that the new service is functional, at least
to the extent that you didn’t make a goof in the configuration. Good? OK, now if you don’t have roles
already set up, go into the Website ➪ ASP.NET Configuration for the web site and go to Security ➪
Create or Manage Roles. There, you can add a few roles, such as Project Managers and Account
Executives, as shown in Figure 13-9.

Assign them to your users in Security ➪ Manage users. On the admin interface, you click “Edit Roles”
for each user and check the ones you want. We set Jim to be an Account Executive (AE) and Joe to be a
Project Manager (PM).

Now that the server side is set up, you can add a service reference just like you did for authentication:
Just use Services.Authorization for the namespace on this reference.

Next, you need to use this new service to cache the roles for the user. You need to consider that cach-
ing means that changes in roles on the server will not be reflected until the user signs out and in again.
That usually won’t be a problem, but if you have scenarios that would make it problematic, such as the
user can do something that would change his or her role, you would want to update their roles at that
point as well.

313

Chapter 13: First Things First: Handling Cross-Cutting Concerns

Figure 13-9

So open SignIn.xaml.cs, which you created in the Authentication section. Modify the sign-in success as
follows. (Remove the line that updates the user message — we’re going to move that later.)

Services.Authorization.RoleServiceClient rsc =
 new Services.Authorization.RoleServiceClient();
rsc.GetRolesForCurrentUserCompleted +=
 rsc_GetRolesForCurrentUserCompleted;
rsc.GetRolesForCurrentUserAsync(e.UserState);

This sets up the roles service client, attaches a completion handler for role retrieval, and tells it to go get
the roles for the user. Add the rsc_GetRolesForCurrentUserCompleted method like this:

void rsc_GetRolesForCurrentUserCompleted(object sender,
 Services.Authorization.GetRolesForCurrentUserCompletedEventArgs e)
{
 if (e.Error != null)
 {
 this.UserMessage.Text =
 “Sorry! There’s a technical problem preventing “ +
 “sign in at this time. Please try again later and let us know “ +
 “if the problem continues.”;
 }
 else
 {
 this.UserMessage.Text = “Signed in successfully!”;
 App.CurrentUser =
 new Security.AppPrincipal((string)e.UserState, true,
 e.Result.ToArray());
 this.Close();
 }
}

314

Part III: Building Applications

After checking for an error, this will let the user know that sign-in was OK (see, we moved it down
here) and then set up the new principal just as before; only this time, you’re adding the third parameter,
which will be the list of roles for that user as a string array.

So now your user principal object will be set up with the basics of authentication and authorization. We
recommend adding a few convenience and maintenance facilities. First, you may want to add a static
Roles class to your app to centralize the string names for your roles. To do that, just go into App.xaml.
cs and add the following somewhere in the App class definition.

public static class Roles
{
 public const string ProjectManager = “Project Managers”;
 public const string AccountExecutive = “Account Executives”;
}

The value here is that it is easy to reference these whenever you need to do an authorization against
known roles, as you’ll see shortly.

Next, you can optionally add an Extensions class to the root of your project. .NET 3.5 adds the ability
to have extension methods, which enable you, in practice, to add your own instance methods to types
that you don’t necessarily have control over. It’s a compiler trick, really, because you’re not modifying
the types but, rather, adding static methods that the compiler will let you use as if they were instance
methods. The one we added was an authorization checker to the FrameworkElement type that lets you
easily modify any FrameworkElement’s Visibility based on whether or not the user is in a given role.
Here’s what it looks like:

public static class Extensions
{
 public static void AuthorizeVisibility(this FrameworkElement fe,
 string role)
 {
 fe.Visibility = App.CurrentUser.IsInRole(role) ?
 Visibility.Visible : Visibility.Collapsed;
 }

}

The trick for extension methods is as follows:

 1. Declare a static class.

 2. Use the this keyword for the first parameter to a static method to indicate the type that the
method should extend/be attached to.

 3. Use the namespace that your class is in for any calling code.

Since we put this in the root (AppServices), it shows up for most code in the project without trying.

At this point, you’re pretty much there in terms of setting up the authorization service infrastructure.
Now you should add some authorization checking in the application against these roles. What we did
was just add a couple of buttons to the main Page.xaml under the sign-in control:

315

Chapter 13: First Things First: Handling Cross-Cutting Concerns

<StackPanel>
 <l:SignInStatus x:Name=”SignInStatus” />
 <Button x:Name=”ManageProjects”
 Width=”200” Height=”30”
 Content=”Manage Projects” Visibility=”Collapsed” />
 <Button x:Name=”ManageAccounts”
 Width=”200” Height=”30”
 Content=”Manage Accounts” Visibility=”Collapsed” />
</StackPanel>

By default, these buttons are hidden. To show them, add some code to do the authorization. In the Page
.xaml.cs constructor, add a handler to handle the user-changed event on the application:

App.CurrentUserChanged += App_CurrentUserChanged;
That method then updates the authorization:
void App_CurrentUserChanged(object sender, EventArgs e)
{
 this.ManageProjects.AuthorizeVisibility(App.Roles.ProjectManager);
 this.ManageAccounts.AuthorizeVisibility(App.Roles.AccountExecutive);
}

You see here that we use the two facilities added to make maintenance and readability better. The
AuthorizeVisibility method is the extension method we defined to extend FrameworkElement (and
buttons are derivatives of that, so they can use those, just as you’d expect for normal type inheritance
of methods). It takes a role, so the code passes in the role, using the string constants set up off the App
class.

Now, when you run the application, it will update the visibility of the buttons based on the current
user’s roles. Jim will only see the “Manage Accounts” button because he’s an Account Executive, and
Joe will only see the “Project Manager” button. You can imagine how you can easily extend this for
your own authorization of users.

Exception Handling and Logging
The next common cross-cutting concern is exception handling, and logging often goes hand-in-hand
with that (at least in the sense that the most common logging is exception logging). Now I hope your
mind immediately goes to the Microsoft Enterprise Library when the topic of .NET exception handling
and logging comes up. Unfortunately, as of the time of writing, there are no Silverlight-based EntLib
libraries, and since Silverlight is not binary-compatible, you can’t just drop EntLib into your Silverlight
projects.

Of course, if you talk to the EntLib creators and aficionados, they’ll scoff to think you need them to
provide you with binaries — they’d prefer that folks customize EntLib for their particular needs rather
than use the binaries directly. And if you’re in that camp, by all means, enjoy porting what you can to
Silverlight. If you are among the other 99 percent of Microsoft developers, you can either wait for the
Patterns and Practices group to produce some Silverlight libraries or do some footwork for yourself. I’ve
not heard of any plans to specifically port EntLib to Silverlight, though, so that probably means creating
some basic facilities yourself.

316

Part III: Building Applications

The nice thing is that you can lean on the server to do the heavy lifting and just focus on some minimal
work on the client. If you want instrumentation/tracking of usage, you’ll have a bit more work cut out
for you, but for basic exception handling and logging, there’s not too terribly much. Essentially, you can
use EntLib on your server, create an exception logging service, and log your exceptions to that service,
which is what you’ll do here, except that we won’t dive into EntLib — that’s beyond the scope of this
book, and what we’re building isn’t necessarily EntLib-specific.

So first, create a logging service by right-clicking on your Services directory in the AppServices web site,
choosing “Add New Item,” selecting “Silverlight-enabled WCF Service,” and calling it Logging.svc. That will
automatically create a Logging.cs file in your App_Code directory (and should open it for you). It has some
default goo, which is OK; you just need to change the default method signature to something like this:

[OperationContract]
public void LogException(ExceptionInfo info)
{
 // do something to log message on the server
 System.Diagnostics.Debug.WriteLine(info.Details);
}

As noted, this chapter won’t cover what you do with it on the server, as that’s no different from .NET
today. You could use EntLib, ELMAH, Log4Net, or any number of other exception/logging frameworks.
The ExceptionInfo type is a custom class defined as follows:

[DataContract]
public class ExceptionInfo
{
 [DataMember]
 public string Application { get; set; }
 [DataMember]
 public DateTimeOffset TimeOfOccurrence { get; set; }
 [DataMember]
 public string ClientInfo { get; set; }
 [DataMember]
 public string UserInfo { get; set; }
 [DataMember]
 public string FullTypeName { get; set; }
 [DataMember]
 public string Details { get; set; }
}

That’s it for the server side. You might want to right-click and view the new service in your browser to
ensure that it comes up. Then flip over to the client side and add a service reference (as you did with the
authentication and authorization); we used Services.Logging for the namespace, as in Figure 13-10.

Now you have a service to log to, so you just need to decide how you’re going to handle and log.
In our example, we just handle the unhandled exceptions using the System.Windows.Application
.UnhandledException event in our App.xaml.cs class. It’s actually handled by default in the VS
Silverlight application template. You can delete the generated code and add the following:

private void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{

317

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 try
 {
 CurrentPage.PromptException(e.ExceptionObject);
 e.Handled = true;
 }
 catch (Exception)
 {
 }
}

Figure 13-10

The CurrentPage is a static property we already defined that just casts the App’s RootVisual as our
Page class. Now you can add a PromptException method on your Page class.

public void PromptException(Exception ex)
{
 this.ExceptionPrompt.Prompt(ex);
}

OK, enough infrastructure! Now on to the actual handling code, which we’ve encapsulated in an
ExceptionPrompt user control. So go ahead and add an ExceptionPrompt.xaml user control in the
Controls directory. On that, you’ll want to put a message to the user, letting them know there was a
problem, and because this is client side, the polite thing to do is ask them if they want to report it, so
you can add a question to the user asking that and provide a “Send” or “Don’t Send” button.

We got a little fancy in this sample, adding a nice fade and slide in (which, of course, you can’t see in
a book), but Figure 13-11 shows the end result — it acts like a modal dialogue by putting a layer over
everything that is dark and mostly opaque and slides the message in from the top (all in less than 1 s).
Pretty smooth; you should check it out.

318

Part III: Building Applications

Figure 13-11

We’re following several of the Vista UX best practices for error handling here — making the title clear
that there is a problem, telling them what application is the source, showing a big error icon, and letting
them report it or not, and the like. You’ll want to, of course, customize this and maybe even make the
style match your app style — just make it obvious that it is an error and not just info or a warning.

If the user chooses Don’t Send, our code is just hiding the prompt and moving on with life. That may or
may not make sense for your application. If you’re doing a good job, standard exception-handling best
practices still apply; that is, try to handle exceptions and keep the app moving, so if it gets this far (to a
generic unhandled exception handler), it may be safe to assume the app can’t continue, in which case,
you may want to redirect to some contact page or something to give the user some direction on what to
do next. But you could use this prompt approach for other errors that are non-fatal but that may be use-
ful to report, telling the user to try again or whatever makes sense for the context.

If the user chooses to Send, that’s where we engage our logging code, like this:

Services.Logging.ExceptionInfo _ExInfo;
public void Prompt(Exception exception)
{
 _ExInfo = new Services.Logging.ExceptionInfo();
 _ExInfo.TimeOfOccurrence = DateTimeOffset.Now;
 _ExInfo.FullTypeName = exception.GetType().FullName;
 _ExInfo.Details = exception.ToString();
 _ExInfo.Application = “AppServices”;
 _ExInfo.ClientInfo =
 “Platform: “ +
 System.Windows.Browser.HtmlPage.BrowserInformation.Platform +
 “\r\nBrowser: “ +
 System.Windows.Browser.HtmlPage.BrowserInformation.Name +
 “\r\nVersion: “ +
 System.Windows.Browser.HtmlPage.
 BrowserInformation.BrowserVersion.ToString() +
 “\r\nCookies: “ +
 (System.Windows.Browser.HtmlPage.BrowserInformation.CookiesEnabled
 ? “Yes” : “No”) +
 “\r\nUser Agent: “ +
 System.Windows.Browser.HtmlPage.BrowserInformation.UserAgent +
 “\r\nUser Culture: “ +
 System.Globalization.CultureInfo.CurrentUICulture.Name;

319

Chapter 13: First Things First: Handling Cross-Cutting Concerns

 _ExInfo.UserInfo =
 “Authenticated: “ + (App.CurrentUser.Identity.IsAuthenticated
 ? “Yes” : “No”) +
 “\r\nUsername: “ + App.CurrentUser.Identity.Name +
 “\r\nRoles: “ + App.CurrentUser.Roles;
 this.Visibility = Visibility.Visible;
 this.Show.Begin();
}

Recall that this is the method being called from the Page.xaml.cs PromptException method. It creates
an instance of your service reference’s proxy ExceptionInfo class and sets a bunch of stuff on it. The
idea here, of course, is to log as much as you can to help your debugging efforts on the back end. This
is just a simplistic capture — you’d want to customize it to provide whatever context and debugging
information makes sense for your app.

At the very end, we go ahead and show the dialogue (nothing’s been sent yet). See Figure 13-11 again to
see what shows at that point. Now here’s the code for Send:

private void Send_Click(object sender, RoutedEventArgs e)
{
 if (_ExInfo != null)
 {
 try
 {
 Services.Logging.LoggingClient logger =
 new Services.Logging.LoggingClient();
 logger.LogExceptionAsync(_ExInfo);
 }
 catch (Exception ex)
 {
 // maybe log to isolated storage
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 finally { _ExInfo = null; }
 this.Hide.Begin();
 }
}

Pretty simple. Just create an instance of the Logging client proxy and send the ExceptionInfo instance
created in the Prompt method. It might be worthwhile handling the LogExceptionCompleted method
and checking for an error, depending on how robust you want your logging to be — you could fall back
to logging to isolated storage. Finally, the code clears out the info so that it doesn’t hang around, and
then it hides the dialogue (the Show and Hide are storyboards we created that are not listed here; see
the sample code for details).

And that’s pretty much it. You can extend this concept, elaborate it, and make it more robust for your
applications as needed. You could use a similar approach to log feature usage of your app — just
be sure that you don’t blow up when logging, as the user won’t know what’s going on, and you
should probably ask the user if it is OK to log that sort of thing, like the many “Customer Experience
Improvement Program” dialogues you see in things like Office, Visual Studio, and the like.

Similarly, if you need to do general auditing (outside of data auditing), you could save audit logs to the
local isolated storage and periodically send them to the server in batch updates. Your data-level audit-

320

Part III: Building Applications

ing will need to be done as you normally do it and sent along to the server with the data updates them-
selves, as you might expect.

Summary
In this chapter, you saw how to deal with the most common cross-cutting concerns for applications —
security, exception handling, and logging. You covered the basics of the Silverlight security models for
code access and network access, touched on cryptography, and dug into how to take advantage of the
ASP.NET authentication and authorization services. (Chapter 16 builds on that to add personalization
using the ASP.NET profile service.) After looking at those services, you saw an example of how to handle
and log exceptions and some brief thoughts on best practices in that area. Now you should be ready to
take this infrastructure and start building out your application experience.

Dealing with Data

One of the most prominent and compelling aspects of rich Internet applications is unfettered access
to data. It should, therefore, be no surprise that Silverlight provides a rich, pervasive model that
allows you to create dynamic data-driven applications. Silverlight provides a host of facilities for
retrieving, displaying, manipulating, and storing data from a variety of data sources.

In this chapter you will discover:

How to expose data from a server and retrieve it from a Silverlight application❑❑

How to present data via the XAML-binding syntax❑❑

How to store data on the client❑❑

Getting Data to Your Application
If you are accustomed to using classes within Sytem.Data to query databases directly, you are in
for a rude surprise with Silverlight, as none of these services are available. Instead, the WebClient
class is provided to make network requests to arbitrary URI data endpoints. Fortunately,
Microsoft also provides the infrastructure to generate WCF proxy client classes, which take care
of the details needed to access data you expose through WCF services.

Fetching Data with the WebClient Class
You can use the WebClient class to retrieve data from a wide variety of endpoints including POX-,
JSON-, RSS-, and REST-based services. All requests are performed asynchronously in Silverlight,
which enables your application to respond even while loading data.

Depending on the format of the data returned by a server, you then choose the appropriate class
to parse it into a format for your application to consume. For example, the XmlReader class can be
used to quickly access data returned from the server in Plain Old XML (POX).

14

322

Part III: Building Applications

Initiating the Download Request
Once you have created a WebClient object and added an event handler for the DownloadStringCompleted
event, you are ready to retrieve data:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Construct a new WebRequest object
 WebClient client = new WebClient();

 // Configure an event handler for when the Download is complete
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadCompleted);

 // Request an XML document located adjacent to the XAP
 Uri xmlUri = new Uri(“Destinations.xml”, UriKind.Relative);
 client.DownloadStringAsync(xmlUri);
 }

 void client_DownloadCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 // If no error, sends results to a text block
 if (e.Error == null)
 {
 ResultsTextBlock.Text = e.Result;
 }
 }
}

In this case, an XML file located adjacent to the XAP is being accessed, which makes for a very simple
endpoint URI.

Reusing a Single WebClient Object
If you want to download a set of data files but do not want to create a separate WebClient object and
event handler for each, you can choose to reuse a single WebClient. Although each download request is
made asynchronously, the WebClient class does not support simultaneous requests. You can, however,
make additional calls to DownloadStringAsync once previous calls have completed.

Since each WebClient object has a single DownloadStringCompleted event, you need a way to distin-
guish exactly what request has completed in your event handler. This can be achieved by specifying
some state with each call to DownloadStringAsync through the userToken parameter:

public partial class Page : UserControl
{

323

Chapter 14: Dealing with Data

 // Construct a new WebRequest object as a private member
 WebClient _client = new WebClient();

 public Page()
 {
 InitializeComponent();
 this.Loaded +=new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Configure an event handler for when the Download is complete
 _client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadCompleted);

 // construct a URI based on files with an indexed naming scheme
 Uri targetUri = new Uri(“Destinations1.xml”, UriKind.Relative);

 // iniate the download passing an integer as the userToken
 _client.DownloadStringAsync(targetUri, 1);
 }

 void client_DownloadCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 // if no error, process the result if (e.Error == null)
 {
 // retrieve the state we originally specified
 int count = (int)e.UserState;
 // Set the text of the apporpriate textbox based on
 // our integet userToken
 switch (count)
 {
 case 1:
 ResultsTextBlock1.Text = e.Result;
 break;
 case 2:
 ResultsTextBlock2.Text = e.Result;
 break;
 case 3:
 ResultsTextBlock3.Text = e.Result;
 break;
 }
 // Fire off requests until we have retrieved 3 files
 if (count++ < 3)
 {

 Uri targetUri = new Uri(“Destinations” + count + “.xml”,
 UriKind.Relative);

 // iniate the download passing an integer as the userToken
 _client.DownloadStringAsync(targetUri, count);
 }
 }
 }
}

324

Part III: Building Applications

Cross-Domain Access
Silverlight enables access to any services that are contained in the same domain as the application.
If you wish to access services that are located on a different domain, then a policy file is required.
Assuming that you have root access to your deployment server, adding a Silverlight policy file is actu-
ally quite simple.

Many domains have already been configured to allow cross-domain access from Flash clients via a
crossdomain.xml policy file. Thankfully, Silverlight supports the Silverlight (clientaccesspolicy.xml)
policy format and the subset of Flash (crossdomain.xml) and policy formats.

clientaccesspolicy.xml

The following Silverlight policy file will enable classes in System.Net such as WebClient as well as
classes in the System.Net.Sockets classes to access all available resources located in the domain:

<?xml version=”1.0” encoding=”utf-8”?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers=”*”>
 <domain uri=”*”/>
 </allow-from>
 <grant-to>
 <resource path=”/” include-subpaths=”true”/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

crossdomain.xml

The following Flash-based policy file will allow Silverlight to make cross-domain calls to resources on
the server from WebClient and other HTTP classes in the System.Net namespace:

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM
 “http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <allow-http-request-headers-from domain=”*” headers=”*”/>
</cross-domain-policy>

Processing XML Data
While a developer might actually enjoy seeing XML presented directly in an application, it is far more
likely that you will need to massage the XML data into some strongly typed objects that will be pre-
sented to the user. For instance, you would probably not want to expose the end-user to the following
raw XML:

<?xml version=”1.0” encoding=”utf-8” ?>
<destinations>
 <destination name=”St. Croix” population=”70,000”
 averageAirfare=”300” averageHotel=”300”
 bestKnownFor=”Beaches” />

325

Chapter 14: Dealing with Data

 <destination name=”St. Barths” population=”8,450”
 averageAirfare=”600” averageHotel=”800”
 bestKnownFor=”Shopping” />
 <destination name=”St. Lucia” population=”160,765”
 averageAirfare=”400” averageHotel=”400”
 bestKnownFor=”Rainforests” />
</destinations>

Silverlight provides both the low-level XMLReader class and LINQ to XML for working with raw XML.
Either framework can be used to transform XML into a strongly typed class that represents the data.
In this example, we have a Destination class, which exposes some of the important factors you might
consider when deciding where to spend your next vacation.

public class Destination
{
 public string Name { get; set; }
 public int Population { get; set; }
 public double AverageAirfare { get; set; }
 public double AverageHotel { get; set; }
 public string BestKnownFor { get; set; }
}

Let’s take a look at how we can use both LINQ to XML and the XMLReader classes to grab the informa-
tion found in XML and create a set of Destination objects.

LINQ to XML
LINQ to XML provides a clean, consistent syntax for accessing XML data. Begin by adding references to
System.Xml and System.Xml.Linq. Once WebClient completes downloading the data, you will need to
construct a new XDocument for LINQ to query. From there, you can map the XML file to a list of strongly
typed objects.

void Page_Loaded(object sender, RoutedEventArgs e)
{
 // Construct a new WebRequest object
 WebClient client = new WebClient();

 // Configure an event handler for when the Download is complete
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadCompleted);

 // Request an Xml document located adjacent to the XAP Uri xmlUri = new
Uri(“Destinations.xml”, UriKind.Relative);
 client.DownloadStringAsync(xmlUri);
}

// private member for holding destinations
private IEnumerable<Destination> _destinationsList;

void client_DownloadCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{

326

Part III: Building Applications

 // If no error, sends results to a text block if (e.Error == null)
 {
 parseDestinationsXml(e.Result);
 }
}

void parseDestinationsXml(string xmlContent)
{
 // Create an Xml document from the conteent
 XDocument doc = XDocument.Parse(xmlContent);

 // Create a Linq query which maps to Destination objects _destinationsList =
 from destination in doc.Descendants(“destination”)
 select new Destination
 {
 Name = (string)destination.Attribute(“name”),
 Population = (int)destination.Attribute(“population”),
 AverageAirfare = (double)destination.Attribute
 (“averageAirfare”),
 AverageHotel = (double)destination.Attribute(“averageHotel”),
 BestKnownFor = (string)destination.Attribute(“bestKnownFor”)
 };
 DestinationsListBox.ItemsSource = _destinationsList;
}

XML Reader
You are also free to parse the data through the XMLReader API; just don’t expect all the bells and whistles
of LINQ:

public partial class Page : UserControl
{
 // private member for holding destinations
 private List<Destination> _destinationsList;

 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Construct a new WebRequest object
 WebClient client = new WebClient();

 // Configure an event handler for when the Download is complete
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadCompleted);

 // Request an xml document located adjacent to the XAP
 Uri xmlUri = new Uri(“Destinations.xml”, UriKind.Relative);
 client.DownloadStringAsync(xmlUri);
 }

 void client_DownloadCompleted(object sender,

327

Chapter 14: Dealing with Data

 DownloadStringCompletedEventArgs e)
 {
 // If no error, sends results to a text Block
 if (e.Error == null)
 {
 parseDestinationXml(new StringReader(e.Result));
 }
 }

 void parseDestinationXml(StringReader xmlContent)
 {
 // Create a list to hold our destinations
 _destinationsList = new List<Destination>();

 // Create a new XmlReader to walk through the document
 XmlReader reader = XmlReader.Create(xmlContent);

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 if (reader.Name == “destination”)
 {
 Destination d = new Destination
 {
 Name = reader[“name”],
 Population = int.Parse(reader[“population”]),
 AverageAirfare = double.Parse(reader[“averageAirfare”]),
 AverageHotel = double.Parse(reader[“averageHotel”]),
 BestKnownFor = reader[“bestKnownFor”]
 };
 _destinationsList.Add(d);
 }
 }
 }
 DestinationsListBox.ItemsSource = _destinationsList;
 }
}

Accessing Data through WCF
Visual Studio .NET provides relatively seamless integration of WCF services into your Silverlight appli-
cation. A huge benefit of leveraging WCF is automatic type serialization and deserialization between
the server and client for a wide variety of types.

Taking advantage of WCF can be factored into several key steps, including:

 1. Creating business objects that correspond to your data

 2. Exposing WCF services for working with those objects

 3. Referencing the WCF service from your Silverlight project and creating proxy classes

 4. Accessing the services from your Silverlight application

328

Part III: Building Applications

Factoring Out Business Objects for Your Data
For many developers who have been working with Web services or following formal tiered architec-
tures, it might be a foregone conclusion that they will have to factor out business objects; however,
many ASP.NET developers choose to include SQL queries directly in their presentation layer and have
found no need to factor out business objects. If you fall into the latter category, get ready for a major
context switch! The time spent making this adjustment is well worth it, since your developer skills and
the applications you build will be greatly improved.

Since Silverlight does not provide any classes for accessing SQL databases directly, you are forced
to create a server-side layer that exposes the data to the client. While you are free to use a variety of
server-side data access technologies, it is strongly advisable to create objects that represent that data
that is essential to your application.

This could be as straightforward as creating a set of objects that mirror your SQL table structure, or
might be more involved depending on the architecture of your application.

In this example, we are going to reuse the Destination object:

public class Destination
{
 public string Name { get; set; }
 public int Population { get; set; }
 public double AverageAirfare { get; set; }
 public double AverageHotel { get; set; }
 public string BestKnownFor { get; set; }
}

Serialization
At some point, WCF is going to need to serialize your types, so you should take a moment to consider
what is the most appropriate for your application’s types. The four built-in serialization mechanisms are:

XmlSerializer❑❑

DataContractSerializer❑❑

NetDataContractSerializer❑❑

DataContractJsonSerializer❑❑

By default, WCF will use DataContractSerializer, while classic ASMX services default to XmlSerializer.
This disconnect may lead to some confusion if you are transitioning between the two service platforms.

If you are using built-in types and don’t have particularly complicated objects, you should not need to
spend much time digging through MSDN’s serialization documentation.

Exposing a WCF Service
Start by adding a new “Silverlight-enabled WCF service” to your web application in Visual Studio. You
might be wondering why we selected the Silverlight Enabled WCF service instead of creating a stan-
dard WCF service. The primary difference is the transport enabled for the service. Silverlight supports

329

Chapter 14: Dealing with Data

only basicHttpBinding, and a quick look at your web.config will show that this has been configured
automatically for the new service:

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name=“Wrox.Silverlight30.Data.WCFService.Web.
DestinationsServiceBehavior“>
 <serviceMetadata httpGetEnabled=“true“ />
 <serviceDebug includeExceptionDetailInFaults=“false“ />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=“true“ />
 <services>
 <service behaviorConfiguration=“Wrox.Silverlight30.Data.WCFService.Web.
DestinationsServiceBehavior“
 name=“Wrox.Silverlight30.Data.WCFService.Web.DestinationsService“>
 <endpoint address=“” binding=“basicHttpBinding“
 contract=“Wrox.Silverlight30.Data.WCFService.Web.DestinationsService“ />
 <endpoint address=“mex“ binding=“mexHttpBinding“
contract=“IMetadataExchange“ />
 </service>
 </services>
</system.serviceModel>

After selecting an appropriate ServiceContract namespace and class name, you will want to create a
set of methods that are flagged with the OperationContract attribute.

In this case, one service is offered for retrieving a list of the U.S. Virgin Islands:

[ServiceContract(Namespace = “Wrox.Silverlight30.Data.WCFService.Web”)]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class DestinationsService
{
 [OperationContract]
 public List<Destination> GetIslands()
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix” });
 destinations.Add(new Destination { Name = “St. John” });
 destinations.Add(new Destination { Name = “St. Thomas” });
 return destinations;
 }
}

Referencing the WCF Service from Silverlight
Now that you have a WCF service to offer up, it is time to set up the hooks so that you can access it from
the client. To make consuming services easy, Visual Studio is capable of generating proxy classes for
accessing the service.

330

Part III: Building Applications

This process begins by selecting “Add Service Reference” from the Project menu. You can select ser-
vices by URI or by finding them in other solution projects. Visual Studio’s interface allows you to drill
into the service to verify that it exposes the operations you expect.

Take a moment to consider the appropriate namespaces Visual Studio is about to create for consuming
and working with the data provided by the service. Once a service is selected, choose a namespace for
the proxy objects through which you will access the service.

A host of advanced options, which control the proxy classes that Visual Studio generates, are avail-
able by selecting the Advanced button. If you are wondering why the return type of collection objects
exposed through the service doesn’t align with what is found in the generated proxy class, take a quick
look at the Advanced settings. One option that may catch you by surprise is that the proxy class will
expose collections offered through service operations as ObservableCollections. Later in this chapter,
we will discuss the advantages of using this collection when binding a collection to the presentation
layer.

Accessing the Service from Silverlight
Having created and exposed a WCF service, you are now set up to consume it from Silverlight. Each
time you add a service reference, Visual Studio creates several classes for facilitating communication
with the service. The ServiceClient is the key class for calling into the service and is named the same
as the service with ServiceClient appended. In this example, we have created a service.

The ServiceClient Class
Similarly to the WebClient class, ServiceClient-derived classes are built around asynchronous calls to
the server. A quick inspection of the ServiceClient-derived class named DestinationsServiceClient
created for the Destinations service reveals unique asynchronous methods and matching event handlers
for each method in the service. This is the pattern you will find in all ServiceClient classes.

To invoke a method in the WCF service, you need to create a new instance of the ServiceClient, attach
an event handler for the method you wish to call, and, finally, invoke the service:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Instantiate the Service Client
 DestinationsServiceClient client = new DestinationsServiceClient();

 // Invoke a service method
 client.GetIslandsAsync();

 }
}

331

Chapter 14: Dealing with Data

Waiting for the Service to Respond
The ServiceClient class provides an event for each service method, which will fire after a service
method has been invoked. In our service, we will listen to the GetIslandsCompleted event. Access to
the return data from the service is provided in a strongly typed manner through the Result property
of the custom EventArgs objects created for each service method.

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Instantiate the Service Client
 DestinationsServiceClient client = new DestinationsServiceClient();

 // Hook up listener for completion of inoking a service method
 client.GetIslandsCompleted +=
 new EventHandler<GetIslandsCompletedEventArgs>(client_GetIslandsCompleted);

 // Invoke a service method
 client.GetIslandsAsync();
 }

 void client_GetIslandsCompleted(object sender, GetIslandsCompletedEventArgs e)
 {
 if (e.Error == null)
 {
 DestinationsListBox.ItemsSource = e.Result;
 }
 }
}

Binding a User Inter face to Data
Silverlight provides a flexible data-binding model for connecting a user interface to data objects. Built
around the Binding object, it facilitates both presenting and processing updates to data. The binding
model is not tied to a specific data provider; instead, it is centered around connecting a property from
a source object to a property on a target object. Silverlight’s architecture enables and encourages a high
degree of separation between the presentation and business layers of an application.

Establishing a Data-Binding Connection
To establish a binding, you need to specify both the object that will communicate via the binding
and the properties on those objects that should be connected. Bindings can be established at run time
through code or can be specified statically in XAML markup.

332

Part III: Building Applications

Before diving into the details, consider a simple scenario of binding a few TextBlock elements to a single
object. We will continue to use the Destination object discussed earlier in this chapter. Begin by add-
ing binding statements to the properties on the target object that map to select properties on the source
object:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock Text=”{Binding Name}”></TextBlock>
 <TextBlock Text=”{Binding Population}”></TextBlock>
 </StackPanel>
</Grid>

Next, provide the source object for both TextBlocks by specifying the DataContext for the StackPanel:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination { Name = “St. Croix”, Population = 70000 };
 LayoutRoot.DataContext = d;
 }
}

In the preceding case, each TextBlock is the target of a binding, and a single Destination object acts as
the source.

Valid Binding Target Types
Silverlight’s binding model is able to establish communication among a wide variety of objects. While
the binding source can be of any type for one-way and one-time binding, the target must be both a
member of a FrameworkElement object and a dependency property. This restriction is of greater concern
when building custom controls because it is essential for supporting data binding.

Specifying the Source Object
Since a binding’s target must be a FrameworkElement, you can take advantage of the DataContext prop-
erty to specify the source object for a binding. DataContext is inherited from parents in the object tree,
which eliminates the need to specify the source for a group of UI elements that present information for
the same data object. This is why, in our first example, we only needed to specify the DataContext for
the StackPanel instead of on each TextBlock element.

If you do not want the binding source to be inherited by children, you can specify the source property
on the binding object itself. In this example, we establish the binding in code:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>

333

Chapter 14: Dealing with Data

 <TextBlock x:Name=”NameTextBlock”></TextBlock>
 <TextBlock x:Name=”PopulationTextBlock”></TextBlock>
 </StackPanel>
</Grid>

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // The object which will be used as the source
 Destination d = new Destination { Name = “St. Croix”, Population = 70000 };

 // Create a Binding in code for the Name
 System.Windows.Data.Binding nameBinding = new Binding(“Name”);
 nameBinding.Source = d;
 nameBinding.Mode = BindingMode.OneTime;

 // Connect the binding to the TextBox’s Text property
 NameTextBlock.SetBinding(TextBlock.TextProperty, nameBinding);

 // Create a Binding in code for the Population
 System.Windows.Data.Binding popBinding = new Binding(“Population”);
 popBinding.Source = d;
 popBinding.Mode = BindingMode.OneTime;
 PopulationTextBlock.SetBinding(TextBlock.TextProperty, popBinding);
 }
}

Selecting a Property from the Source Object
The binding object’s Path property allows you to specify the property from the Source object. For mem-
bers on the Source object, you can simply specify the name of the property.

<Binding Path=”SourceProperty” />

Since Path is of type PropertyPath, it also allows for specifying properties of subobjects on the source
as well as collections. In Silverlight, you can traverse subobjects through the use of a period in between
the property names.

<Binding Path=”SourceProperty.SubObjectProperty” />

If your Source object offers collection properties that have additional collections nested beneath them,
you can use a forward slash to traverse the relationship:

<Binding Path=”SourceCollectionProperty/SubCollectionProperty”

334

Part III: Building Applications

Binding to Collections with ItemsControl
Up to this point, we have looked at bindings in the context of a single source data object. An equally
common, and more interesting, use case is binding to collections of data. Any ItemsControl can be
used to apply a DataTemplate for presenting each item in a Source object’s collection. IEnumerable is
all that is required on the Source object for basic collection-binding behavior.

The ItemsSource property on ItemsControl is used to specify the Collection to which the control is
bound. This can be specified programmatically or set through a binding. If no ItemTemplate is provided
for the control, you can take advantage of the DisplayMemberPath property to select which source prop-
erty will be rendered. The following ItemsControl will be bound to a collection found in the effective
DataContext and render the Name property of each item in that collection:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}” DisplayMemberPath=”Name” />
</Grid>

Accessing the source collection through the ItemsSource will give you only Read access; if you wish
to modify the source collection, make sure to do so through a direct reference.

Since we have created a binding for the ItemsSource, the ItemsControl will honor the effective
DataContext, so creating the binding is straightforward:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix” });
 destinations.Add(new Destination { Name = “St. John” });
 destinations.Add(new Destination { Name = “St. Thomas” });

 LayoutRoot.DataContext = destinations;
 }
}

Specifying an ItemTemplate
If you wish to override the default rendering for each item, you can create a DataTemplate and set it
as the ItemsTemplate for the ItemsControl. Note that the source of each Binding defined within the
Template will be an item in the Collection to which the ItemsControl is bound.

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}” >
 <ItemsControl.ItemTemplate>

335

Chapter 14: Dealing with Data

 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Name}” ></TextBlock>
 <TextBlock Text=”{Binding Population}” ></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</Grid>

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix”, Population = 70000 });
 destinations.Add(new Destination { Name = “St. John”, Population = 5000 });
 destinations.Add(new Destination { Name = “St. Thomas”, Population = 50000 });

 LayoutRoot.DataContext = destinations;
 }
}

Providing a Custom ItemsPanel
By default, ItemsControl uses a Vertical StackPanel to arrange the elements rendered for each
item. Continuing to highlight the Silverlight pattern of flexibility, you can adjust this by setting the
ItemsPanel to a custom ItemsPanelTemplate:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}” >
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Name}” ></TextBlock>
 <TextBlock Text=”{Binding Population}” ></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation=”Horizontal”></StackPanel>
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
</Grid>

336

Part III: Building Applications

Using a Relative Source Binding
Silverlight 3 introduces the ability to specify the source of a Binding relative to the target. For instance,
you can create a Binding with the source specified as the target’s TemplatedParent. The following example
demonstrates using a RelativeSource binding to bind the Text property of a TextBlock to the content of
the parent Button element:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button Content=”SampleContent”>
 <Button.Template>
 <ControlTemplate>
 <StackPanel>
 <TextBlock Text=”{Binding RelativeSource=
 {RelativeSource TemplatedParent},
 Path=Content}” />
 </StackPanel>
 </ControlTemplate>
 </Button.Template>
 </Button>
 </StackPanel>
</Grid>

Element-to-Element Binding
Silverlight 3 also introduces the ability to specify an element as the source for a Binding through the
ElementName property. This easily used feature can come in handy when building interactive interfaces
where one Element should reflect changes to another. Currently, the target of such binding must be a
FrameworkElement. The following example demonstrates binding the text property of a TextBlock to
the current value of a Slider:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Slider x:Name=”Slider1” Minimum=”0” Maximum=”100” />
 <TextBlock Text=”{Binding ElementName=Slider1, Path=Value}” />
 </StackPanel>
</Grid>

Handling Data Updates
Silverlight’s binding object provides three distinct binding modes, which determine the way that data
flows between the source and target objects.

OneWay❑❑ — Changes to the Source are reflected on the Target as they occur.

OneTime❑❑ — The Target property is only set when the binding is initialized.

TwoWay❑❑ — Changes to the Source are reflected on the Target, and updates to the Target are
propagated to the Source.

Both OneWay and TwoWay functionality comes at the cost of restricting the types of object that can partic-
ipate in the binding. Silverlight relies on the DependencyObject infrastructure and several Notification-
based interfaces to support the processing of DataBinding updates.

337

Chapter 14: Dealing with Data

INotifyPropertyChanged Interface
The INotifyPropertyChanged interface offers a single event to broadcast when a property has been
modified on the object. The expectation is that this will be triggered anytime that a property is adjusted.

Here we have an IslandTimer class, which reflects a slower pace of life. Note that it fires PropertyChanged
events both from within the Name property and from the Read Only ElapsedTime property, a value that
is managed internally.

public class IslandTimer : INotifyPropertyChanged
{

 private TimeSpan _elapsedTime;
 private DispatcherTimer _timer;
 private string _name;

 public event PropertyChangedEventHandler PropertyChanged;

 public TimeSpan ElapsedTime
 {
 get { return _elapsedTime; }
 }

 public string Name
 {
 get
 {
 return _name;
 }
 set
 {
 _name = value;
 OnPropertyChanged(“Name”);
 }
 }

 public IslandTimer()
 {
 _elapsedTime = new TimeSpan();

 // Create a timer which fires every few seconds
 _timer = new DispatcherTimer();
 _timer.Interval = TimeSpan.FromSeconds(2);
 _timer.Tick += new EventHandler(timer_Tick);
 }

 public void StartTimer()
 {
 if (!_timer.IsEnabled)
 {
 _timer.Start();
 }
 }

 public void StopTimer()
 {

338

Part III: Building Applications

 _timer.Stop();
 }

 private void timer_Tick(object sender, EventArgs e)
 {
 _elapsedTime += TimeSpan.FromSeconds(1);
 OnPropertyChanged(“ElapsedTime”);
 }

 // Helper method to fire PropertyChanged Events
 private void OnPropertyChanged(string propName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
}

Collection Update Notifications
The INotifyCollectionChanged interface is implemented on interfaces that wish to participate in full
data binding. Similarly to INotifyPropertyChanged, it exposes one event for when the collection is
modified, CollectionChanged.

Thankfully, Silverlight includes ObservableCollection<T>, which is a generic collection that imple-
ments this interface. If you have a collection that you expect to be updated during the life of your appli-
cation, it is highly recommended that you use this type.

OneTime Bindings
The simplest and most performant binding mode, OneTime, specifies that the binding should only be
applied when the application starts or when the effective DataContext is adjusted. This is most appro-
priate when the source object is not manipulated during the life of the application and when the target
object does not accept user input.

OneWay Bindings
If you anticipate that the source object may change during the life of the application, you can rely on
Silverlight data binding to automatically update target object properties when in the OneWay mode.

Now that we have an object capable of letting Silverlight know that its properties are changing, we can
attach it as the source for a OneWay binding:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button x:Name=”StartButton” HorizontalAlignment=”Center”>
 <TextBlock>Start Timer</TextBlock>
 </Button>
 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Elapsed Island Time: </TextBlock>
 <TextBlock Text=”{Binding ElapsedTime, Mode=OneWay}” />
 </StackPanel>
 </StackPanel>

339

Chapter 14: Dealing with Data

</Grid>

public partial class Page : UserControl
{
 IslandTimer _timer;
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 _timer = new IslandTimer() { Name = “MyTimer” };

 StartButton.Click += new RoutedEventHandler(StartButton_Click);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 LayoutRoot.DataContext = _timer;
 }

 void StartButton_Click(object sender, RoutedEventArgs e)
 {
 _timer.StartTimer();
 }
}

TwoWay Binding
TwoWay bindings are the most powerful mode and offer bidirectional update support for property value
changes. They make sense in scenarios in which you use controls that accept users’ inputs and are
bound to dynamic data objects.

Here, we allow the user to adjust the name of the Timer. Note the use of static bindings to configure the
bindings completely in XAML.

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button x:Name=”StartButton” HorizontalAlignment=”Center”>
 <TextBlock>Start Timer</TextBlock>
 </Button>
 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Elapsed Island Time:</TextBlock>
 <TextBlock Text=”{Binding ElapsedTime, Mode=OneWay}”></TextBlock>
 </StackPanel>
 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Timer Name:</TextBlock>
 <TextBox Text=”{Binding Name, Mode=TwoWay}” Width=”100” />
 </StackPanel>
 </StackPanel>
</Grid>

340

Part III: Building Applications

Validating Data
Data Validation is driven by the binding framework’s capability to capture exceptions that take place
while a binding is in process. Silverlight 3 extends this with a set of controls with distinct VisualStates
that visually indicate that a validation error has occurred.

Handling Binding Exceptions
In a TwoWay binding, exceptions can occur as data flows from the Target back to the Source property.
The Binding object provides two properties that allow you to adjust the way these exceptions are
handled:

ValidatesOnExceptions❑❑

NotifyOnValidationError❑❑

If ValidatesOnExceptions is set to true, any exceptions thrown by the setter of the source property or
by a converter will be handled by the Binding object.

If NotifyOnValidationError is also true, then the Binding will raise the BindingValidationError as
exceptions are encountered. Somewhat counterintuitive, the BindingValidationError event will also
fire once the binding is able to successfully send the data to the source property. You can therefore use
this event to determine both when a validation error has occurred and when it has been resolved.

The Action property of the ValidationEventArgs indicates the state of the Validation error.
As a binding encounters exceptions when applying the data updates, the Action will be
VaidationErrorEventAction.Added. Once the binding is able to successfully update the source object,
the event will be raised with VaidationErrorEventAction.Removed.

In the following example, we adjust the foreground color of the target object based on the Action of the
ValidationError. Since the ValidationErrorEvent is routed up the chain of parent elements, we are
able to catch it from the LayoutRoot.

<Grid x:Name=”LayoutRoot”
 BindingValidationError=”LayoutRoot_BindingValidationError” Background=”White” >
 <Grid.RowDefinitions>
 <RowDefinition Height=”0.113*”/>
 <RowDefinition Height=”0.887*”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.462*”/>
 <ColumnDefinition Width=”0.538*”/>
 </Grid.ColumnDefinitions>
 <TextBlock Text=”Destination Name”/>
 <TextBlock Grid.Column=”1” Text=”Population” />
 <TextBlock Text=”{Binding Name, Mode=OneWay}” Grid.Row=”1” />
 <TextBox Text=”{Binding Population, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}”
 VerticalAlignment=”Top” Grid.Column=”1” Grid.Row=”1” Width=”200” />
</Grid>

341

Chapter 14: Dealing with Data

When executed, the application will adjust the color of the TextBox when an error is encountered con-
verting the text value to the integer value expected by the destination’s Population property.

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination { Name = “St. Croix”, Population=70000 };
 LayoutRoot.DataContext = d;
 }

 void LayoutRoot_BindingValidationError(object sender, ValidationErrorEventArgs e)
 {
 // Adjust the foreground color base on the Action
 if (e.Action == ValidationErrorEventAction.Added)
 {
 TextBox tb = (TextBox)e.OriginalSource;
 tb.Foreground = new SolidColorBrush(Colors.Red);
 }
 else
 {
 TextBox tb = (TextBox)e.OriginalSource;
 tb.Foreground = new SolidColorBrush(Colors.Black);
 }
 }
}

Visual States That Reflect Validation Errors
Silverlight 3 enhances a variety of core controls so that they can indicate when a binding validation
exception has occurred. This is enabled through the Validation class, which offers attached properties
for data validation that are then used to determine the appropriate visual state of the control.

A common scenario for offering a visual indicator when a validation error occurs is on a data entry
form. Since the Silverlight 3 TextBox contains visual states that respond to validation errors, all that is
required is establishing the binding with ValidatesOnExceptions set to true.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }
 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d =
 new Destination { Name = “St. Croix”, Population = 70000 };

342

Part III: Building Applications

 LayoutRoot.DataContext = d;
 }
}

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock x:Name=”DestinationName” Text=”{Binding Name}” />
 <TextBox x:Name=”PopulationTextBox”
 Text=”{Binding Population, Mode=TwoWay,
 ValidatesOnExceptions=true}”
 />
 <Button Content=”Ok” />
 </StackPanel>
</Grid>

Converting Data Types
There are many instances in which the source and destination property types will not align. In these cases,
the binding will attempt to perform a data conversion that may result in a format that is less than ideal.
Fortunately, Silverlight provides a baked-in mechanism for converting data as it passes through a binding.

DateTime objects often call for some conversion to display them in a meaningful way to the user. To
demonstrate this, we will add the PeakSeasonStart property to the Destination object and bind it to a
TextBlock. Without a converter, this will result in a string such as 12/1/2009 12:00:00 AM:

public class Destination
{
 public string Name { get; set; }
 public int Population { get; set; }
 public double AverageAirfare { get; set; }
 public double AverageHotel { get; set; }
 public string BestKnownFor { get; set; }
 public DateTime PeakSeasonStart { get; set; }
}

<Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”{Binding PeakSeasonStart}” />
</Grid>

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination() { Name = “St. Croix”,
 PeakSeasonStart = new DateTime(2009, 12, 1) };
 LayoutRoot.DataContext = d;
 }
}

343

Chapter 14: Dealing with Data

To adjust this behavior, we need to take several steps:

 1. Create a class that implements IValueConverter.

 2. Include an instance of that class in a Resource.

 3. Specify a Converter in the binding.

IValueConverter
The IValueConverter interface defines two straightforward methods to enable conversion: Convert
and ConvertBack. As their names suggest, they allow conversion back and forth between two types. If
all that you need to support is OneWay binding, the ConvertBack method is not invoked.

Here, you see a basic implementation of IValueCOnverter that adjusts the way that a DateTime object is
converted to a String:

// Class for converting between DateTime and string objects
public class DateConverter : IValueConverter
{
 // Convert DateTime to a string without time info
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 DateTime date = (DateTime)value;
 return (date.ToShortDateString());
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string s = (string)value;
 return (DateTime.Parse(s));
 }
}

Adding the Converter to a Binding
The Binding object provides a Converter property for specifying the object that should serve as the
intermediary between the source and target. Here, we include the Converter as a resource and reference
it from the binding for the binding between a DateTime source and String target object. The following
will provide a slightly more pleasing representation of our date, which omits the time information:

<UserControl x:Class=”Wrox.Silverlight30.Data.Convertion.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-namespace:Wrox.Silverlight30.Data.Convertion”
 Width=”400” Height=”300”>
 <UserControl.Resources>
 <data:DateConverter x:Key=”DateConverter” />
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”{Binding PeakSeasonStart,
 Converter={StaticResource DateConverter}}” />

344

Part III: Building Applications

 </Grid>
</UserControl>

Using the ConverterParameter
The Binding object provides an additional property, which allows you to feed a parameter to the
IValueConverter. This can be useful if you want to employ a converter in several related scenarios
that are slightly different. Those familiar with formatting strings in .NET should be no stranger to
the variety of FormatStrings available for built-in data types. The following example leverages the
ConverterParameter to provide a FormatString.

The following example passes in the .NET short date format string ‘{0:d}’ for display of the destina-
tion’s start of peak season:

// Class for converting to a string based on the provided FormatString
public class FormatStringConverter : IValueConverter
{
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string formatString = (string)parameter;
 return String.Format(formatString, value);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

<UserControl x:Class=”Wrox.Silverlight30.Data.Convertion.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-namespace:Wrox.Silverlight30.Data.Convertion”
 Width=”400” Height=”300”>
 <UserControl.Resources>

 <data:FormatStringConverter x:Key=”FormatStringConverter” />
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock Text=”{Binding PeakSeasonStart,
 Converter={StaticResource FormatStringConverter},
 ConverterParameter=’{0:d}’}” />
 </StackPanel>
 </Grid>
</UserControl>

345

Chapter 14: Dealing with Data

Persisting Data in Isolated Storage
Silverlight’s isolated storage infrastructure allows you to securely cache data on the client, opening up
a range of options to improve user experiences. Each application is given access to a virtual filesystem
through which files can be managed. The core Isolated Storage API is very similar to what is offered in
the System.Data File and FileStream classes, which makes it easy to approach.

In this section we will cover the basics of:

Getting a reference to the ❑❑ IsolatedStore

Creating a new file in the store❑❑

Reading and writing to files❑❑

Accessing the Isolated Store
The IsolatedStorageFile class provides several static methods for obtaining a reference to
Isolated Storage. The isolated store can be scoped to the application or site level and is accessed
uniformly across any assemblies in your application.

Once you have an instance of the IsolatedStorageFile, you can perform basic file operations such as
checking if a file exists.

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 IsolatedStorageFile store;
 store = IsolatedStorageFile.GetUserStoreForApplication();

 if (store.FileExists(“destinations.xml”)
 {
 // app logic
 }
 }
}

Managing the Size of the Store
Microsoft arbitrarily decided on a default file store quota of 1 MB per application. Fortunately, they offered
a simple API for detecting the size of the store and a convenient way to prompt users for more space.

346

Part III: Building Applications

A common case in which you might need to request additional space is if you detect that you are
approaching the threshold of the quota for your application:

public partial class Page : UserControl
{
 private IsolatedStorageFile _store;

 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 _store = IsolatedStorageFile.GetUserStoreForApplication();
 CheckAvailableSpace();
 }

 private void CheckAvailableSpace()
 {
 // See if the store is over 90% full
 if (_store.AvailableFreeSpace < .1 * _store.Quota)
 {
 // Request the user for permission to
 // increase the quota by a megabyte
 _store.IncreaseQuotaTo(_store.Quota + 1048576);
 }
 }
}

Creating a New File
The Isolated Storage API allows you to create directories and reference files via a virtual path. Before
creating a new file, you are going to want to see if it already exists:

public partial class Page : UserControl
{
 private IsolatedStorageFile _store;

 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 _store = IsolatedStorageFile.GetUserStoreForApplication();
 CreateFile();
 }

 private void CreateFile()

347

Chapter 14: Dealing with Data

 {

 // Create a new directory for data related files
 if (!_store.DirectoryExists(“data”))
 {
 _store.CreateDirectory(“data”);
 }

 // Add a new file if it does not already exist
 if (!_store.FileExists(“data\\destinations.xml”))
 {
 _store.CreateFile(“data\\destinations.xml”);
 }
 }
}

Reading and Writing to a File
Access to each file is provided through stream objects, which are returned by the store. Each
IsolatedStorageFileStream can be configured with different parameters, which control how the file is
accessed and how the stream should handle file existence.

Once you have a reference to the FileStream, you can perform the normal stream operations to read
and write data. If you want to store an object that was already sent across the wire via a Web service,
you should be able to serialize it without much headache. For instance, the XML serialize command
will suffice for our collection of Destination objects. Note that XML serialization requires a reference
to the System.Xml.Serializaiton assembly.

The following example creates an XML file containing a list of destinations and then reads that back in
before it is bound to the DataContext:

public partial class Page : UserControl
{
 private IsolatedStorageFile _store;
 List<Destination> _destinations;

 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 _store = IsolatedStorageFile.GetUserStoreForApplication();
 CheckAvailableSpace();
 CreateFile();
 ReadDestinations();
 LayoutRoot.DataContext = _destinations;
 }

 private void CheckAvailableSpace()

348

Part III: Building Applications

 {
 // See if the store is over 90% full
 if (_store.AvailableFreeSpace < .1 * _store.Quota)
 {
 // Request from the user permission to
 // increase the quota by one megabyte
 _store.IncreaseQuotaTo(_store.Quota + 1048576);
 }
 }

 private void CreateFile()
 {
 // Create a new directory for data-related files
 if (!_store.DirectoryExists(“data”))
 {
 _store.CreateDirectory(“data”);
 }

 // Add a new file if it does not already exist
 if (!_store.FileExists(“data\\destinations.xml”))
 {
 _store.CreateFile(“data\\destinations.xml”);
 WriteDestinations();
 }
 }

 private void WriteDestinations()
 {
 // Open up a file stream
 IsolatedStorageFileStream fs;
 fs = _store.OpenFile(“data\\destinations.xml”, System.IO.FileMode.Open);

 // Create a bunch of Desination objects
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix”, Population = 70000 });
 destinations.Add(new Destination { Name = “St. John”, Population = 5000 });
 destinations.Add(new Destination { Name = “St. Thomas”, Population = 50000 });

 // Use XML serialization to write out the destinations list
 XmlSerializer serializer;
 serializer = new XmlSerializer(destinations.GetType());
 serializer.Serialize(fs, destinations);
 fs.Close();
 }

 private void ReadDestinations()
 {
 // Open up a file stream
 IsolatedStorageFileStream fs;
 fs = _store.OpenFile(“data\\destinations.xml”, System.IO.FileMode.Open);

 XmlSerializer serializer = new XmlSerializer(typeof(List<Destination>));
 _destinations = (List<Destination>)serializer.Deserialize(fs);
 }
}

349

Chapter 14: Dealing with Data

Summary
Silverlight truly provides the core infrastructure needed to allow pervasive data in your applications.
Silverlight makes few assumptions about where your data lives and the format it takes, which opens up
exciting opportunities to work with data across a variety of platforms and from disparate providers.

You should now be able to retrieve data from Silverlight, provide compelling data bound interfaces with
bindings, and cache data in the Isolated File Store. The core options for accessing, manipulation, and
storing data presented in this chapter are a great foundation for exploring the wealth of options avail-
able to all Silverlight developers.

Designing and Styling the
User Interface

Designing and styling the user interface (UI) of your Silverlight application can be one of the most
exciting and satisfying parts of the process. It is through design and styling that you give your
application a personality. That personality can feel corporate and reserved (ready to get things
done without any frills) or young and hip (not afraid to get a little sidetracked on the way to
accomplishing the task at hand). All of the UI building blocks that we’ve discussed in previous
chapters now come together in an infinite array of possibilities to meet your vision.

This concept is so large that this chapter could really be represented by a completely separate book
that brings together software-planning concepts, user-experience concepts, and visual-design
concepts. Countless books have already been written on these topics, and each caters to a different
target audience, from single designers/developers to small software development teams, to large
enterprise-scale application development teams. Instead of getting sidetracked by all of the many
variations along the way, I’m going to present a single workflow that takes you from concept to
implementation. Instead of focusing on the details of requirements gathering, because each of you
probably goes about it in a little bit different way, I’ll just say “after gathering requirements,” then
move along.

Let’s start by looking at a team organization model that works well in both Silverlight and WPF.
We’ll review each team’s role, responsibilities, and the tools they use to achieve their tasks.

The Players
In Silverlight and WPF development, it is common to organize product team members by devel-
opment roles, designer roles, and integrator roles. For large projects, this could be three separate
departments of individuals; for small projects and companies, this could be three individuals.
Sometimes, these three roles are even played by two people or one person. Let’s take a look at
these three roles and get an understanding of how they fit into the big picture.

15

352

Part III: Building Applications

Developers
I imagine most of you reading this book fit into the Developer role. The Developer role is responsible
for … developing! Imagine that. OK, more specifically, the developer is primarily concerned with all things
technical and architectural. You should not concern yourself with things like color, layout, or animation,
except in cases in which you are supporting the design teams with properties, events, and transitions to
enable their vision.

This should be welcome news to you as a developer — you don’t have to think about design. You get
to focus on what you’re good at — coding. Now, sometimes designers will try to do some really crazy
things, like paint the entire background of an application with video, or apply tiled ImageBrushes to
every object on the page. When your once-lightning-fast application comes to a crawl because of design
decisions, you get to have a say in design. But instead of scolding, you should really play a troubleshoot-
ing and enabling role, working to come to a compromise that benefits both performance and artistic
integrity. This Brave New World where designers are actually working directly in your projects is going
to take some getting used to, and you’re going to have to play your part in reducing tension and estab-
lishing trust. Once both sides trust each other’s skill set, the level of quality and creativity can increase.

Tools Used
The developer will spend most of her time in Visual Studio because 99 percent of her time should be
code-focused. However, there are many things that are simply faster in Blend than they are in Visual
Studio, such as layout, data binding, and setting brushes. For those tasks, a basic level of Blend compe-
tence can really speed the developer’s tasks along.

Visual Studio 2008 (or later)❑❑

Blend 3 (or later)❑❑

Designers
Designers breathe personality into Silverlight applications, taking them from purely functional to
engaging, branded experiences. Silverlight designers need to be technically oriented designers, but they
don’t need to have programming skills. These designers will traditionally be familiar with tools like
Adobe Illustrator, Fireworks, Photoshop, and Flash. Those who have worked in Flash often make the
fastest transition because they are already familiar with integrated animation and coding concepts.

Ultimately, these designers will need to learn XAML, just as web designers ultimately need to learn
XHTML and CSS to become highly proficient at their job. In this world, artwork is not just sliced and
thrown over a wall; it is integrated directly into the application, so having an understanding of the
underlying technology is really helpful.

Tools Used
Silverlight designers will ultimately spend a lot of time in Blend, either designing artwork completely
in that tool, or integrating artwork they’ve created in other design tools. In addition to working with
design tools, designers will also need to become familiar with Visual Studio for advanced control of
project assets. For example, Blend cannot currently change the Build Action of an asset or easily move
items (such as images) once they have been added to a project.

Blend 3 (or later)❑❑

Microsoft Expression Design❑❑

353

Chapter 15: Designing and Styling the User Interface

Adobe Fireworks, Illustrator, Photoshop, and the like❑❑

Visual Studio 2008 (or later)❑❑

Integrators
The integrator is a special breed of person who has both technical and design skills. This person acts as
a bridge between the strict worlds of design and development. In reality, these people are hard to find,
and the role is often played by one of the more technical designers or one of the more visually aware
developers. Still, thinking of this person in a purest sense provides clarity, and they do actually exist!

The integrator understands the language of developers and asks the development team precisely for
what the design team needs in a language that the development team respects and understands. For
example, instead of the designer saying to the developer, “I want to fade out the login screen when the
user has logged in,” the integrator will say “Upon successful login, please start a storyboard named
sbLoginSuccess. Go ahead and create a dummy storyboard, and let me know where it is defined when
you have it in place.” Now, instead of the developer coming up with a procedural way of fading out the
login container element, she will anticipate the need for a storyboard and start it at the appropriate time
in the application’s life cycle.

The integrator is also responsible for taking the original artwork created by the design team and trans-
lating it into XAML (if it was defined outside of Blend). He will create custom Styles based on the origi-
nal artwork and apply those Styles to the representative controls in the real application.

Tools Used
Silverlight integrators will use all of the tools listed for both developers and designers, although they’ll
likely spend the majority of their time in Blend.

Visual Studio 2008 (or later)❑❑

Blend 3 (or later)❑❑

Microsoft Expression Design❑❑

Adobe Fireworks❑❑

Additional Design Tools (Illustrator, Photoshop, etc.)❑❑

Gathering Requirements
Before we start pushing pixels around on the screen, we need to have some sort of end goal in mind.
Your end goal could be to migrate your existing ASP.NET web application to Silverlight, taking advan-
tage of the new layout and animation capabilities of the platform. Or maybe you’re coming to Silverlight
from a WPF or Windows Forms application, looking forward to easing deployment issues used in
a Web-based technology. In both of these cases, it’s highly likely that you already have a clear under-
standing of what your application needs to do, how it needs to do it, and a few areas in which it could
do a bit better. Assuming that you’re not completely reinventing your app, you’re likely just considering
how you can take advantage of Silverlight (and work within its limitations) to meet your end goal.

354

Part III: Building Applications

If you aren’t migrating an app, you’re creating something from scratch. And depending on where you
work, your requirement-gathering can range from scribbled notes on a napkin to months of planning,
analysis, meetings, more meetings, and still more meetings and planning. This is where we’re going to
skip the details and just agree that requirements were gathered and that a set of features were agreed on.

For demonstration purposes, we’re going to walk through creating an interface for a simple application
called schtüff. This app lets you keep track of all of your “stuff” online, in case you tragically need to
take advantage of your insurance policy. After a quick napkin-based requirements-gathering process, I
arrived at the following set of requirements for the application:

Primary Objective
Help people keep track of what they own, what those things are worth, and when they were purchased.

Features
Account-based login/authentication❑❑

Define properties/locations (e.g., Home, Office, Vacation Home).❑❑

Add items to each location.❑❑

Items represented by title, value, purchase date, description (optional), and an image (maybe ❑❑

multiple images in v2)

Show total values by Property.❑❑

Additional Thoughts
Should I be able to assign a UPC/ISBN number to items using my old CueCat barcode scanner?❑❑

Should I be able to categorize items?❑❑

Should I support exporting the database to Excel or CSV?❑❑

Should I charge for the service and integrate some type of payment service?❑❑

Before I move on to the next stage, I define a simple database structure to support my Properties and
Items. Figure 15-1 shows the two tables I’ll use to store my data.

Figure 15-1

355

Chapter 15: Designing and Styling the User Interface

UI Brainstorming/UX Sessions
With a firm understanding of what my application should do, it’s now time to consider how it should do
it. For personal projects, I start with my favorite pen and idea pad and start drawing. If I’m developing
an interface with a team of collaborators, we’ll use a large whiteboard instead. Start at a high level, and
try to capture what you consider to be all of the screens or states of your application. Some people rec-
ommend doing this with Post-it notes or index cards. Once you’ve identified all of your states, try to get
a feel for the transitions between these states. Figure 15-2 shows a hand-drawn starting point for schtüff,
the login screen.

Figure 15-2

Figure 15-3 represents the home screen seen after a successful login.

Figure 15-3

356

Part III: Building Applications

In my login success transition, I’ve made a note: “storyboard: fadeOutLogin.” This is a callout early in
the process that I want to fade the login dialog out of view after a successful login. I’ve also noted that
“if no properties have been defined (i.e., home, office), show the Add Property dialog immediately; oth-
erwise, show the list of defined properties.

Once a property has been defined and selected, it’s time to define a list of items. The mockup in
Figure 15-4 shows a property named Home selected in the Properties list, a list of items that belong to
Home, and the “Add Item” button.

Figure 15-4

The final screen that I’ve hand-drawn (see Figure 15-5) shows the Add/Edit Item dialog.

At this point, I have a good understanding of how my application is going to flow and even have a couple
of animations in mind. I could spend more time thinking things through at this level, but I’m really
anxious to move along to doing real mockups in my design tool.

357

Chapter 15: Designing and Styling the User Interface

Figure 15-5

Design/Dev Part Ways
In the third phase of this process, I’m going to pretend that there is actually a design team and a devel-
opment team, even though it’s just me stepping through this process. We are now at a point where both
teams have an understanding of what this application is going to do, roughly how it’s going to be laid
out, and what the various states of the application are. It is now time for the two teams to part ways.
The designers will begin creating mockups in their design applications, and the developers will begin
building a working infrastructure.

It doesn’t really matter at this point whether you are a member of a large team putting this process into
place or a single designer/developer hybrid capable of doing both.

358

Part III: Building Applications

Design Creates Mockups
With our hand-drawn mockups in hand, it’s finally time to start pushing pixels! This is where the appli-
cation starts to take on a personality. (I’ll probably say this through each of the following phases.) I’m
going to begin my design work in Adobe Fireworks because I’ve found it to be the right tool for the job.
It gives me bitmap-level precision (pixel-perfect, that is) with vector-based drawing tools. I’ll show you
how I use Firework’s page-based metaphor to create a walk-through, then how I use the Fireworks to
XAML exporter to translate this artwork directly into Silverlight-based XAML.

I could do all of this in Blend, or another design tool for that matter, but I find that working in
Fireworks at this stage is faster. Many designers in the WPF/Silverlight space use this same workflow.

And just to be clear, this is not going to be a Fireworks tutorial — the techniques and thought process
I’m presenting here are valid no matter what tool you’re using.

First Pass
Let’s jump right in by taking a look at my first round of mockups. The first round definitely feels like a
first round, and normally I wouldn’t show these to anyone, but I want to reinforce the fact that this is an
iterative process. In the following screenshots, you can see how the original hand-drawn workflow is
starting to take form on the design surface.

In Figure 15-6, I’ve started experimenting with branding at the top of the page, including a logo treat-
ment for schtüff. The panel highlighted with blue on the right side of the application is the Pages panel.
The Pages panel lets me quickly organize artwork by logical pages in my application.

Figure 15-7 shows this panel in more detail.

The first page in the Pages List is designated as a “Master Page.” I define all of the artwork that stays fixed
throughout the application on the Master Page, such as the header and footer artwork, then use additional
pages to add the foreground elements, such as the LOG in screen just seen. Figure 15-8 shows the Home
property selected, with a list of items defined for Home. Notice in this mockup that I am using the term
Catalog instead of the final term Property that I ended up with.

The final screenshot, Figure 15-9, in this initial round of designs shows the Edit Item layout. Notice I’ve
grayed out the background to draw attention to the foreground dialogs.

As I created this Edit dialog, I realized that I would want it to fade in or animate into place in some way.
We didn’t make a note of this prior to parting paths with the development team. I can either communi-
cate that now or wait until the first round of integration. The key takeaway here is that the development
team will be responsible for starting and stopping storyboards as the state of the application changes.
These two teams need to decide on a name for the storyboard, then the development team will start and
stop the storyboard, and the design team can define the storyboard. We’ll dig into this in more detail in
a couple of sections.

359

Chapter 15: Designing and Styling the User Interface

Figure 15-6

Figure 15-7

360

Part III: Building Applications

Figure 15-8

Figure 15-9

361

Chapter 15: Designing and Styling the User Interface

Second Pass
The first round of mockups in Fireworks put all of the major pieces into place and got me thinking
about transitions from state to state, but that was just a warm-up. Now I know how much real estate I
have after adding all of the required elements, and I’m ready to push the polish to the next level and
make this app something to remember.

Figure 15-10 shows my enhanced Master Page. The header remained pretty true to the original, only
with minor modification to the blue box behind the logo. The darker background is what adds the
drama to this new layout, though. I went from the original solid white to a radial gradient with black
and blue Gradient stops. I also added some texture to the background using the Fireworks Twist and
Fade command (Commands ➮ Creative ➮ Twist and Fade) on two circles, similar to those seen over the
“u” in schtüff.

Figure 15-10

I’m trying to avoid using any bitmap effects in my layout (such as blur or glow) to avoid the need to
export artwork as images. So far, all of my layout elements, with the exception of the item photos, are
vector-based and will translate directly to XAML.

Figure 15-11 shows the revised login screen. The text log in is now much more legible, and the “sign in”
button really contrasts nicely against the blue background.

362

Part III: Building Applications

Figure 15-11

Figure 15-12 shows the revised Properties page, now using the term properties instead of catalogs. In this
revised version, the relationship between the child grid of items is reinforced by making the item’s con-
tainer appear to have slid out from behind the Property List. In fact, while creating this mockup, I real-
ized that I would need another storyboard to start when a property is selected from the list. I’ll need to
communicate this need to the development team so that they can add this to the application logic.

The final of the revised series of screenshots is shown in Figure 15-13. Here, we see the updated “edit
item” layout. This layout will also serve as the “add item” layout. I’ve borrowed elements from both the
“log in” layout (see Figure 15-11) and the revised “properties listing” scene (see Figure 15-12). Where the
first version of this layout had the image dialog container floating by itself, this version uses the same
technique as the “properties listing” to reinforce the relationship between parent and child containers.

I feel pretty good about this second round of layouts. I think I’ve established a cohesive, branded look
across all of the screens of this simple application, and I’ve managed to keep everything in vector for-
mat, which means I’m ready for the first round of integration.

I’m omitting some states, such as login failure and account creation, to keep the scope of this discussion
manageable. In a real application, all of those small states and screens would be taken into account.

363

Chapter 15: Designing and Styling the User Interface

Figure 15-12

Figure 15-13

364

Part III: Building Applications

Development Creates Working Model
While the design team focuses on establishing a polished layout, the development team creates a working
model of the application based on the initial requirements and specifications. Because this chapter is really
about styling and less about coding, I’m going to avoid the details of what it would take to implement this
application programmatically in Silverlight, and instead focus on the outcome of this phase.

The development team should create a fully functional application prior to the integration phase. They
won’t focus on layout or beauty; they’ll just make sure everything is in place and working. Let’s con-
sider the login form as an example. The development team would create a simple XAML layout that
includes two TextBoxes, a “Sign In” button, a “Forgot Password” button, and a “Create Account” but-
ton. They will add event listeners to the buttons, add a storyboard named sbFadeOutLogin, and start
that storyboard when a user logs in successfully.

Figure 15-14 shows the login screen created by the development team during this phase. It looks noth-
ing like our Fireworks mockups, but it does include all of the functional elements we’re expecting.

Figures 15-15 through 15-17 show the additional development-created layouts.

Figure 15-14

Figure 15-15

365

Chapter 15: Designing and Styling the User Interface

Figure 15-16

Figure 15-17

With all of the pieces in place, the development team/developer can test the application and ensure that
all requirements have been met. The application is now ready for the first round of styling integration.

I want to point out that this minimal approach to styling by the development team speeds the integra-
tion process when the application is handed over to the design team. The less developer styling that has
to be ripped out, the faster this stage goes.

Integration Phase
We are now at a point where we have a working model of the application and a set of highly styled
mockups. These two pieces and their respective teams are about to collide in one of the most rewarding
and exciting phases of the process — the Integration phase. We now get to see the Integrator role at work.
The integrator will take the source Fireworks file and use the Fireworks to XAML Exporter panel (www
.granthinkson.com/tools/fireworks) to export each layout/state to XAML that can be integrated into
the live application, using Blend. So, I’ll put my Integrator hat on now and step you through the process.

If your designers aren’t using Fireworks, fear not! Blend 3 introduces new native Photoshop and
Illustrator importers accessible directly from the File menu.

366

Part III: Building Applications

Assessing the Pieces
As the integrator, I first need to review both the application and the mockups. I need to understand the
controls that the development team used to create the working model and assess how my artwork can
be applied to those controls. I need to see if custom controls have been defined, if UserControls have
been defined, and consider the way elements in my layout will need to animate. Knowing all of these
things will affect the way I export my artwork and ultimately the way I group items in Blend.

When I open the working project in Blend, I first notice that several UserControls have been created
by the development team. Fortunately, these UserControls map closely to the Pages in my Fireworks
mockup (funny how that happened). Figure 15-18 shows the Object tree in Blend for Page.xaml.
Notice the four UserControls: EditItemControl, ItemListingControl, PropertiesControl, and
LoginControl.

Figure 15-18

Looking to the Solution Explorer in Figure 15-19, I can see XAML files for each of these controls. I will
open each of these files individually to apply my custom styling.

Figure 15-19

This organization is going to work well for me. I will be able to apply my background styling at the
Page.xaml level, then position, style, and animate each of the individual pieces. Let’s start by exporting
the Master Page artwork to Page.xaml. This will give us a chance to look at the options available with
the Fireworks to XAML Exporter.

367

Chapter 15: Designing and Styling the User Interface

Using the Fireworks to XAML Exporter
Shifting back to Fireworks, select the page named Master. Figure 15-20 shows both the Master Page
selected and the FW to XAML Exporter panel.

Figure 15-20

The Output Tab
The Fireworks to XAML Exporter panel is divided into two tabs: Output and XAML Options. The
options of both of these tabs are further categorized into related sections.

Export Options
The Export Options section of the Output tab contains options that are bitmap-specific. The first
checkbox, Images, when enabled will export Bitmap objects on the surface in Fireworks as Image
controls in XAML and render the Source property with a full, absolute path. The next two options,
when enabled, will attempt to define ImageBrushes based on Fireworks’ Texture Fill and Pattern Fill
features. Owing to differences between the Fireworks and Silverlight rendering engines, the results
of these two options have to be tweaked in Blend nearly 100 percent of the time. The fourth option,
Bitmap Effects, is currently WPF-specific. Silverlight does not currently support BitmapEffects on
UIElements as WPF does.

Text Options
The Text Options section contains a single option, “Convert Text to Paths.” When enabled, all text in the
export operation will be converted to Path objects. Enable this option for text-based artwork (such as logos)
whose look needs to be preserved without embedding a font.

Export Type
 You can either export the entire current Frame (in Fireworks CS4 the name Frame has changed to State)
or you can export the current selection. I generally use the “Selected Items” option here, as it lets me
quickly bring specific artwork into Blend.

368

Part III: Building Applications

The XAML Options Tab
The XAML Options tab, shown in Figure 15-21, includes several settings that affect the final XAML that
is rendered when exporting.

Figure 15-21

Outer Panel Type
When artwork is exported as XAML, it always has a root Panel that can either be a Grid or a Canvas. When Grid
is selected, items are positioned by setting HorizontalAlignment=”Stretch” and VerticalAlignment=”Stretch”
and applying left, right, top, and bottom margins to enforce the original size. This is useful if you want
your application to stretch as it is resized, but you will still have to make changes in Blend to ensure the
correct resizing behavior.

When Canvas is selected, all items are exported with fixed heights and widths and positioned using
Canvas.Left and Canvas.Top.

Syntax
The first option in the Syntax section, “Convert Rectangles to Borders,” is useful if you want individual
control over the roundness of each corner. See Chapter 9 to get a better understanding of why you might
want to enable this option. I always enable the second option in this section, “Use Condensed Path Syntax.”
When enabled, the PathData notation you were introduced to in previous chapters (“M X,Y CX,Y X,Y X,Y...”)
is used for the Path.Data property, instead of the longhand <PathGeometry> syntax.

Element Names
Enable the “Write when Specified” option when you want object names specified in the Layers panel
to be rendered as x:Name in XAML. Using this option may cause problems if you have multiple items
defined with the same name in Fireworks. Silverlight does not allow multiple items to share the same
x:Name value, whereas Fireworks does not enforce uniqueness.

369

Chapter 15: Designing and Styling the User Interface

Resources

When “Export Fills as Resources” is enabled, all Fills used in the export operation will be converted to
Brush resources and added to the outer panel’s Resources collection. For example, if you select Grid as the
Outer Panel Type, a Grid.Resources collection will be defined that houses all Brushes used in the layout.
Exported elements use the {StaticResource brushName} notation to reference the defined brush.

Saving or Copying
Once you’re finished customizing all of your export options, it’s time to actually export. You can either
export directly to a XAML file or copy XAML directly to the clipboard, using either the Save or the
Copy icon located in the lower-right corner of the Fireworks to XAML Exporter panel. I usually copy
directly to the Clipboard, as it makes for a really fast workflow between Fireworks and Blend.

Exporting the Master Page
Now that you have an idea of the options available when exporting, let’s export the Master Page to
XAML and add it directly to Page.xaml. I’m going to export the Selected Items, Convert Text to Paths,
and export using a Grid as my Outer Panel Type. I press [Ctrl]+A on my keyboard to select all elements
on my Master Page, click on the Copy button on the Exporter panel, and then switch to Blend.

In Blend, I select the Design/XAML Split view and select the LayoutRoot grid in the Object tree to
scroll directly to its location in XAML. I then place my cursor in the Split view after the LayoutRoot
definition and press [Ctrl]+V to paste my XAML into place. Figure 15-22 shows a snippet of the exported
XAML pasted in place.

Figure 15-22

Figure 15-23 shows the layout with the new XAML copied into place. The artwork that was just
imported is represented by the unnamed grid in the Object tree.

Not bad for a straight copy! Everything looks pretty much the same as it did in Fireworks. I do see that
the footer text of my layout is being clipped. The mockup layout was sized at 800 × 600, so my exported
XAML has that size set. It’s being clipped either by Height and Width settings on LayoutRoot, the
UserControl, or the preview area in Blend. After selecting these items, I see that the UserControl is set
to 640 pixels wide by 480 pixels tall. I really want it to stretch to fill the full window, so I clear those val-
ues and let the design surface size itself based on its content. With those values cleared, I can now see
all of my imported artwork.

370

Part III: Building Applications

Figure 15-23

Setting Resize Behavior
I can use a design-time feature of Blend to help me get a feeling for how my layout will resize at run
time. Figure 15-24 shows the Design-Time sizing adorner handle. As I resize my layout, I can see that
my background artwork is not stretching to fill as I want it to (the white background is showing).

So, just like my layout was being clipped because it was set to 800 × 600, it’s also staying at 800 × 600 as
the form is resized. I now need to dig into the grid of elements that was brought over from Fireworks
and individually set HorizontalAlignment, VerticalAlignment, Height, Width, and Margin properties
on individual elements to ensure that they stretch when I want them to, don’t stretch when I don’t want
them to, and remain anchored to the side I want them anchored to. Figure 15-25 demonstrates how I
want each of the elements in this background to behave.

What I didn’t call out in Figure 15-25 was the background rectangle. It should be clear that I want it to
stretch to fill the entire window. The “bubbles” in the background are already grouped into two sepa-
rate elements (Groups come over from Fireworks as Grids). I will anchor the group set that looks like a
trail of bubbles to the top-left corner and anchor the cluster to the lower-right corner.

371

Chapter 15: Designing and Styling the User Interface

Figure 15-24

Figure 15-25

Achieving the desired behavior requires a combination of settings on each set of items. First, I will
step through the imported grid and group each set of items that logically belong together, if they are not
already grouped. I could also have done this in Fireworks. Once I’ve identified and grouped the target ele-
ments, I will set the Height, Width, Margin, HorizontalAlignment, and VerticalAlignment properties on
each element. The following table shows the values for each of the items called out in Figure 15-25.

372

Part III: Building Applications

Element Height Width HorizontalAlignment VerticalAlignment Margin

A 57 269 Left Top 0,34,0,0

B 110 Auto Stretch Top 169,0,0,0

C 9 31 Right Top 0,9,16,0

D 38 Auto Left Bottom 0,0,0,0

Background Auto Auto Stretch Stretch 0,0,0,0

Bubbles
top-left

510 640 Left Top 41,90,0,0

Bubbles
bottom-
right

278 264 Right Bottom 0,0,25,-23

Originally, the footer text was a sibling of its rectangle background. Since I enabled “Convert Rectangles
to Borders,” I decided to make the TextBlock a child of the Border. I gave the Border a fixed height and
no width, then aligned the TextBlock to the bottom of the Border and gave it a left, bottom, and right
margin. This way, if the text length changes, the background will resize with it. Figure 15-26 shows the
copyrightFooter Border and its nested txtCopyright TextBlock.

Figure 15-26

After stepping through the artwork and organizing the imported elements, grouping and naming
them, the resulting object tree looks like the one shown in Figure 15-27.

Figure 15-27

373

Chapter 15: Designing and Styling the User Interface

Now, as I resize the design surface using the Design-Time size adjuster shown earlier, everything behaves
exactly as I had in mind. It took me a little while to step through all of the imported objects and group
them. Next time, I’ll make sure that my design team groups and names everything for me instead of just
giving me a big, unorganized layout.

Exporting the Login Form
With the background in place, it’s now time to integrate the Login Form artwork into the
LoginControl UserControl. Refer back to Figure 15-6 to see what the login mockup in Fireworks
looks like and review Figure 15-14 to see the developer-created version of the control in place on the
design surface. The working version of the layout includes two TextBlocks representing the labels
Email and Password, and two TextBoxes for text input. Three buttons represent “Forgot Password?,”
“Create Account,” and “Sign In.”

We are now going to import the login artwork in its entirety. We’ll use the fake TextBoxes, defined
with Rectangles in Fireworks, to size and position the real TextBoxes. We’ll then convert the “Sign In”
artwork to a Button Style, and assign that Style to the existing, working Button on the form. We’ll
do the same thing for the other two Buttons, creating Styles that look like text links.

Figure 15-28 shows the first import of the artwork, with the original buttons and elements in the fore-
ground. I toggled the visibility of the original Rectangle that the development team put in place as a
background.

Figure 15-28

I know this looks like a mess, but we’re about to take care of it. I’m going to position the TextBoxes on
top of the imported Rectangles, then delete the imported Rectangles. I’ll then remove the original
labels and move on to creating the “sign in” Button Style. In Figure 15-29, I’ve hidden the current but-
tons and selected the sign-in artwork.

I made sure the sign-in artwork was grouped in Fireworks before it was exported and named as
btnSignIn, so it came over as a grid with two child Borders and a child TextBlock. With the btnSignIn
grid selected, I selected Tools ➮ Make Into Control from the main menu in Blend. Figure 15-30 shows
the resulting Make Into Control dialog.

374

Part III: Building Applications

Figure 15-29

Figure 15-30

375

Chapter 15: Designing and Styling the User Interface

I selected Button from the list of available controls (to designate that this Style will target Button),
named the new Style ButtonSignIn and chose to define the Style in “This document.” After clicking
OK, several things happen:

A new ❑❑ Style is created and added to UserControl.Resources that targets Button and has a
Key of ButtonSignIn.

The elements that were selected on the stage are now set as the ❑❑ ControlTemplate of the new
Button Style.

A ❑❑ ContentPresenter is added to the new ControlTemplate as the foremost element.

The items selected on the stage are replaced with a ❑❑ Button whose Style is set to
{StaticResource ButtonSignIn}.

Before I consider this Style complete, I need to remove the ContentPresenter that was automatically
added and TemplateBind the Text property of the sign-in TextBlock to the Content property of the
Button. Figure 15-31 shows the TextBlock selected on the Blend design surface. Using the property
marker next to the Text property, I have selected the TemplateBinding submenu and selected the
Content property.

Figure 15-31

With TemplateBinding now in place for the TextBlock, I can delete the ContentPresenter that was
automatically created. I will now click on the btnSignIn button in the breadcrumb toolbar at the top of

376

Part III: Building Applications

the design surface to return to the LoginControl User Control on the design surface. At the LoginControl
level, I’ll make sure that my btnSignIn button is selected and set its Content property to sign in. The
button should be updated on the design surface and look like the original button I had in mind.

I’ve gone through these extra steps to ensure that if I later change my mind and want sign in to read log
in, all I have to do is set the Content property of my Button. (This also paves the way for localization,
should I choose to localize my application.)

Now that I have a style that looks like the “sign in” button I defined, I have a couple of options. I can
either set the Style of the original “sign in” button to the style I just created, position and size it cor-
rectly, then delete the newly created button; or I can rename my new button to match the name of the
original button and review the original button’s XAML and copy to my new button any event handlers
that were predefined by the development team. The goal here is to ensure that I don’t break any of the
work that the development did to make this button work correctly. Figure 15-32 shows the final “sign
in” button in place.

Figure 15-32

The last thing I need to do with this login form is create a Style that makes Buttons look like text links. I’ll
use the Make Button command again to create a Style quickly. First, I’ll create a new TextBlock on the
design surface, then select Tools ➮ Make Button. I’ll name the new style ButtonTextLink and define it
within the UserControl again. I’ll then edit the template and delete the newly created ContentPresenter.
As I did with the ButtonSignIn style, I’ll TemplateBind the Text property of my TextBlock to the Content
property of the Button.

I’m going to do a couple of additional things with this style to make it feel like a link. First, I’m going
to underline the text when the button is in its MouseOver state. I’ll also set the Cursor to Hand in the
MouseOver state. Figure 15-33 shows the MouseOver state selected in the States panel of Blend.

Figure 15-33

377

Chapter 15: Designing and Styling the User Interface

With the MouseOver state selected, I now select the TextBlock and turn Underline on. I also set Cursor
to Hand. With those properties selected, I move back to the Base state. I need to do one more thing to
ensure correct behavior with this button: I need to set the Background property of the containing grid
to a transparent brush. I do this to ensure that the MouseOver state is entered smoothly as the mouse
moves over the control. Without setting the Background property of the grid, the text is the only thing
in the button that will pick up the HitTest. Since the text does not fill the entire background, the cur-
sor will toggle erratically between the arrow and the hand as you move over the text. Setting the grid’s
background solves this problem.

OK, with that style out of the way, let’s delete the temporary button and assign the Style to the two
Buttons created by the development team. Figure 15-34 shows the “forgot password?” button selected
on the design surface. I’m using the Style property marker to assign the newly created Style to this
Button.

Figure 15-34

After setting the Style for both of the TextLink buttons, I return to Page.xaml and rebuild the solution.
Figure 15-35 shows the final login UserControl styled and in place on Page.xaml.

378

Part III: Building Applications

Figure 15-35

With the login UserControl styled and positioned, the only thing left for me to do with this part of the
application is customize the sbLoginSuccess storyboard. In Figure 15-36, I’ve clicked on the Storyboards
dropdown and see the sbLoginSuccess storyboard already defined.

Figure 15-36

379

Chapter 15: Designing and Styling the User Interface

After selecting this storyboard, I drag the timeline marker to 0.400 second and select the loginControl
in the Object tree as shown in Figure 15-37.

Figure 15-37

I then set its opacity to 0 percent and scale it to both the X-axis and Y-axis to 75 percent using the
Transform panel, shown in Figure 15-38.

Figure 15-38

Now that I have the opacity and scale set, I want to customize the easing so that the animation slows as
it reaches its destination. This final customization step adds that extra level of polish that users can feel
when using the application. To do this, I select the keyframe that was just added to display the Easing
panel shown in Figure 15-39. I then select the EasingFunction mode from the list of easing options. This
mode lets me select from a number of preset easing functions. I’ve selected “Cubic Out”, which will
result in an animation that slows down as it reaches its destination value.

Figure 15-39

Additional UserControls
With the Login control finished, we now have three additional controls to style: EditItemControl,
ItemListingControl, and the PropertiesControl. I’m not going to step through each of these controls,

380

Part III: Building Applications

as the process is the same you just witnessed for the Login control. For each additional control, I will
need to:

Assess resize behavior.❑❑

Group logical objects in Fireworks.❑❑

Export XAML from Fireworks and Import into Blend.❑❑

Tweak the Layout settings to support your desired resize behavior.❑❑

Use the Make Button command or create custom Styles for other control types.❑❑

Continuous Iteration
Once the integrator has completed his first integration pass, it is time to assess additional UI require-
ments that were overlooked at the beginning of the planning phase. We’ve already identified several
additional storyboards that we want started throughout the application. These can now be communi-
cated to the development team. While the designers or the integrator are building the storyboard, the
dev team can update the application logic to start and stop the storyboard at the appropriate time. The
integrator may have identified additional properties that are needed to support the UI fully. Again,
the development team can add those while the design team updates the layout in anticipation of those
properties.

This process can continue for quite some time until both sides have everything they need in place.
Often, the integrator has the requisite skills to add simple properties and perform other minor pro-
gramming tasks to keep the process moving. He can then notify the development team of the changes
he made, and they can review the changes for quality and robustness. He acts as an enabler for both
teams, but understands that his changes may be temporary. At this point in the process, it works best
if the designer and integrator, or designer and developer, are working closely together, with changes
made very quickly.

Final Polish/Cleanup
After the fast-paced iteration stages are out of the way, the code churn should be slowing down, and
both sides (design and development) should be focusing on quality and cleanup. The design team
may have added images to the project that are no longer used and now need to be removed, or they
may have created a number of resources early on that are now no longer referenced. They can use the
freely available resource analyzer Pistachio (www.granthinkson.com/tools/wpf) to identify all unused
resources in their project. Furthermore, the design team needs to continue stepping through the appli-
cation, ensuring that their styles work correctly for all of the various states of the application and the
controls used therein.

381

Chapter 15: Designing and Styling the User Interface

Summary
You should now have a solid understanding of a common Silverlight application–styling workflow.
You’ve seen how an application can move from planning to designer mockups to working model to
integrated artwork to final application. You’ve been introduced to the team members (designers, devel-
opers, integrators), seen how they work together, and learned what their various roles are throughout
the development cycle. You can now reflect on how this workflow can fit within your current organiza-
tion, hopefully picturing the faces of your coworkers who will step in and fill these roles. Or maybe it’s
your face in all three slots!

Making the Application
Come Alive

Now that you have a good understanding of Silverlight application structure and architecture,
have learned how to hook up your data, and have a good grasp on creating and styling your UI,
it’s time to take it to the next level and really make your application come alive. In this chapter, we
dive into the facilities that Silverlight provides for you to make your application interactive.

Events
To start off, we’ll dive into eventing, particularly event interop between JavaScript and your man-
aged code.

Most of the interop with the browser (from managed code) is achieved through the Browser
namespace, so you’ll want to include using a System.Windows.Browser; statement when using it,
as I’ve done in the samples in this chapter.

Before moving on, many of the samples in the rest of this chapter do not require a
corresponding web site, so we’re not going to generate or use a web app (or site) for
our Silverlight solutions. By default, the other option when creating a Silverlight
Application in Visual Studio is to dynamically generate a test HTML page for the
Silverlight app. This would be fine, except that we need to write some JavaScript
and other interaction, so what we’ll do is tweak the default single-project Silverlight
setup.

16

384

Part III: Building Applications

Raising and Handling Managed Events in Script
If you’ve done any .NET development, you’re already familiar with handling managed events, so here
we’re going to focus on two things: raising managed events and handling those events in JavaScript.
Of all of this, the only particularly Silverlight-specific feature is handling them in JavaScript, so we’re
going to focus on that mainly.

First, though, we’ll talk about raising managed events. There is a well-known pattern for this that holds
true in Silverlight. I’m not talking about the Observer pattern (of which .NET eventing is an implemen-
tation); I’m talking about a pattern — maybe convention would be a better word — for how to declare
and raise events in .NET.

Initially, you want to determine what, if any, special values you want to pass as arguments. If you need
to, you can create a data transfer object (DTO) that can serve to pass data (usually simply aggregate
objects) around for eventing. In this case, I have created a simple User type.

public class User
{
 public string Name { get; set; }
 public string Password { get; set; }
}

This could be anything — whatever you want to pass in your events. The next thing is to create a spe-
cialized EventArgs derivative. If you only have simple types (such as string, int, etc.), you can skip the
first step and just do this one. Derive a new class from EventArgs and implement a constructor that
takes the data you want to ship to your event handlers.

public class UserEventArgs : EventArgs
{
 public UserEventArgs(User user)
 {
 _User = user;
 }

 User _User;
 public User User { get { return _User; } }
}

The constructor is a convenience, but it is particularly useful for event args because they are so transi-
tory — you usually don’t want to go to the trouble of creating and then setting properties. Also, event
args should be immutable, so using the constructor with Read Only properties enables this approach.

Now you’ve got your event args ready to go, so you can declare your event (you used to have to further
declare a delegate to specify your event handler signature, but with generic EventHandler<T>, we get
to skip that step — Yeah, generics!). By the way, you don’t have to use the generic version here for
Silverlight — when it is surfaced in JavaScript, it doesn’t matter, but it certainly makes it nicer for any-
one handling the event in managed code. Remember, it could be handled either way.

public event EventHandler<UserEventArgs> UserSelected;

All event signatures must use EventHandler or EventHandler<T>, as we did above.

385

Chapter 16: Making the Application Come Alive

So now the event is all ready, you just have to raise it. Again, the convention is to use an OnEvent
method to centralize raising of the event:

void OnUserSelected(User user)
{
 if (this.UserSelected != null)
 this.UserSelected(this,
 new UserEventArgs(user));
}

Again, this is pretty conventional — nothing Silverlight-specific yet. We just check if there are any
observers (handlers) on our event and, if so, raise the event, passing the context-specific data/objects
(via the event arguments). Voila! We’re all set to start using our event.

Now to sprinkle on the Silverlight magic. First, we mark all the stuff we want to surface to JavaScript
with the ScriptableTypeAttribute. You don’t have to mark all types used as input parameters or
return values on a type that you register (see below), but it may help to make your intent explicit to
other programmers. Any type you mark with that attribute needs to be public, and Silverlight assumes
that you want to expose all public properties, events, and methods on that type to JavaScript; that is,
you don’t need to mark all members with the ScriptableMemberAttribute, but it is worth noting that
these attributes are not inherited (so derivative types need to declare themselves as scriptable as well).
There is one exception to this, which is HtmlEventArgs, but again, you’ll likely want to mark such a
type as well to make your intent clear and to expose any new members you add.

[ScriptableType]
public sealed partial class Page : UserControl
{ ... }
[ScriptableType]
public class UserEventArgs : EventArgs
{ ... }
[ScriptableType]
public class User
{ ... }

The next thing you need to do is register any instances you want to access directly from the Silverlight
plugin object in JavaScript. You can do this in the application startup event or at least somewhere
before you need to access it. In our case, since we’re registering the Page type, which is the root visual
for the application and only created once in the application startup, we can just stick it in our Page type
constructor. (If you needed to expose multiple instances, you wouldn’t want to use the constructor
because you couldn’t give them unique names.)

public Page()
{
 InitializeComponent();
 HtmlPage.RegisterScriptableObject(“Page”, this);
}

Now you’re all set to consume this event in JavaScript. You should be able to attach to it pretty much
any time after the loaded event, and, in fact, that’s what I do in this sample. So, first, write a simple
JavaScript Silverlight loaded handler:

function onSilverlightLoad(sender, args) {
}

386

Part III: Building Applications

Then you need to specify it for the Silverlight instance. Depending on how you create your Silverlight
object, you may do this in any number of ways. If you declare the object tag directly, as I am doing, you
simply add a param tag to the object declaration:

<param name=”onload” value=”onSilverlightLoad”

If you’re using the JavaScript CreateObject or CreateObjectEx, you specify in the call to those meth-
ods. If you’re using the ASP.NET control, use the onPluginLoaded event. However you are creating the
object, you can handle its loaded event and then do the following:

function onSilverlightLoad(sender, args) {
 var plugin = sender.getHost();
 plugin.Content.Page.UserSelected = userSelected;
}

The first thing is to get a reference to the Silverlight plug-in. Now, you’d think that the sender of the
loaded event would be that, but it isn’t. So you call getHost, and that will get a reference to the plug-in
instance. (You could also use document.getElementById.) All types that are registered using HtmlPage
.RegisterScriptableObject should be available on the plug-in’s Content property, using the string
identifier you provide as the first parameter to that method. We used Page, but we could’ve picked
fantabulous or anything else we want.

Then, you can attach a JavaScript event handler to the managed event by simply setting a reference to
the JavaScript function on the event (as was done above). This will allow you to set one handler; if you
need multiple handlers, you should use the auto-generated addEventListener method on the regis-
tered object’s JavaScript proxy like this:

plugin.Content.Page.addEventListener(‘UserSelected’, userSelected);

There is a corresponding removeEventListener method with the same signature
(string name, object method) that is generated to remove such listeners.

Here’s the userSelected function that the line above attaches to the event:

function userSelected(sender, userArgs) {
 alert(“Username: “ + userArgs.User.Name + “\nPassowrd: “ +
 userArgs.User.Password);
}

Now everything is in place — you can just raise the event from anywhere in managed code, and your
JavaScript handler should be called. Note that I named the second parameter userArgs. It’s good prac-
tice to use a specific name if the args are more than the standard event args. Since our args have the
User property and related data, I picked userArgs.

The last thing to do is actually raise the event, so just, for instance, add a Button to the Page XAML and
create a Click event handler for it.

<UserControl x:Class=”EventsAndUserActivity.Page”
 xmlns=”http://schemas.microsoft.com/client/2007”

387

Chapter 16: Making the Application Come Alive

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Click=”Button_Click” Content=”Click Me” />
 </Grid>
</UserControl>

The Visual Studio tools have a nice facility to create the event handler stub while writing the XAML;
then you can right-click on that and pick “Navigate to Event Handler” from the context menu. That’s
where you can add your code, in the example, to raise the managed event:

private void Button_Click(object sender, RoutedEventArgs e)
{
 User u = new User();
 u.Name = “Ambrose”;
 u.Password = “youWish”;
 this.OnUserSelected(u);
}

Now if you run the sample, it should give you a nice big button that says Click Me, and clicking it will
give you what is shown in Figure 16-1.

Figure 16-1

That seems like a lot to do in order to bubble an event to JavaScript. It can be, but you probably won’t
need to do it very often. A big part of it is just implementing the standard .NET eventing conventions.
Then you just need to decorate your types with ScriptableTypeAttribute and attach to and handle
them in script.

Probably the most common need for this would be if you, say, created a reusable Silverlight island
(such as an ad) that you wanted to reuse in multiple contexts and needed to expose events to JavaScript.
Events give you a nice, loose coupling if that’s what you need, but if you don’t mind tighter coupling,
you could just directly call a JavaScript method from your managed code. That is covered later in this
chapter.

There is another way to handle the standard user input (i.e., the universal ones like
MouseMove, MouseLeave, KeyDown, etc.) managed events in JavaScript. If you try to
handle a managed event that isn’t available to script, such as the Click event on the
Microsoft Button, it throws an AG_E_RUNTIME_ADDEVENT error.

388

Part III: Building Applications

In the Silverlight loaded handler you created, add the following:

var managedButton = plugin.content.findName(“ManagedButton”);
managedButton.addEventListener(“MouseMove”, managedButtonHover);

That’s all you have to do to handle events like these in JavaScript. Let’s look at how we could use this.
We’re going to show the mouse coordinates while hovering over the button. To do this, first create a bit
of HTML to display the values:

<div id=”MouseTracking”>
 <div>X: </div>
 <div>Y: </div>
</div>

Put this right at the top of your test page, just inside the body tag. Then add the managedButtonHover
function:

var mouseX, mouseY;
function managedButtonHover(sender, mouseArgs) {
 if (!mouseX)
 mouseX = document.getElementById(“MouseX”);
 if (!mouseY)
 mouseY = document.getElementById(“MouseY”);

 var coords = mouseArgs.getPosition(null);
 mouseX.innerHTML = coords.X;
 mouseY.innerHTML = coords.Y;
}

Define the global mouseX and mouseY variables for faster reference. The first thing in the function is to
find the corresponding HTML elements if they’re not set yet. Then you can call the getPosition
method (GetPosition in managed code on the MouseEventArgs type, which is what you get as the args
in JavaScript). This method returns a Point type, which gives you the X- and Y-coordinates, so then just
set the innerHTML accordingly. Run it, and now you see that when you hover, the mouse coordinates are
reported as expected (see Figure 16-2), with one caveat: The coordinates will be relative to the Silverlight
root element in that instance.

Figure 16-2

389

Chapter 16: Making the Application Come Alive

So if you just need to handle the basic events, this is another option that could work for you.

Handling Scripted Events from Managed Code
Handling JavaScript events in managed code is pleasantly easy. Continuing on from the last example,
first add an HTML Button to the test page, just inside the body tag:

<button id=”myHtmlButton”>Click Me! [HTML]</button>

Now, inside of our Page type constructor, add the code to attach to that button’s Click event:

HtmlElement btn = HtmlPage.Document.GetElementById(“myHtmlButton”);
btn.AttachEvent(“onclick”, HtmlButton_Click);

First you just use the Document.GetElementById (much as you would in HTML) to get a reference to the
HTML element. There is no specific HTML button type in Silverlight — you just get the HtmlElement
type, which is just fine and dandy. Once you have the reference, you simply use the AttachEvent method,
giving it the JavaScript method name and an event handler with the appropriate signature:

void HtmlButton_Click(object sender, HtmlEventArgs e)
{
 User u = new User();
 u.Name = “Hamilton”;
 u.Password = “HTML”;
 this.OnUserSelected(u);
}

The HtmlEventArgs type gets you extra info, mostly around cursor positioning and key information.
We’re not using that here. Instead, the preceding code actually demonstrates how you can reuse your
event raising (and handling) code, as alluded to previously. When you create a new user and call the
OnUserSelected event already defined, the same managed UserSelected event will be raised, and the
JavaScript code we had will handle it just as before, showing the info as in Figure 16-3.

Figure 16-3

We’re not covering raising scripted events because you’re most likely not going to
do that directly yourself, as you might with managed code. To raise scripted
(browser or HTML) events, just do what you’d normally do, for example, trigger
them via the usual ways.

390

Part III: Building Applications

You can imagine how raising and handling events between managed code and JavaScript could be
essential to a “mixed-mode” application (one in which you have some DHTML and some Silverlight).
Events are central to interactive, responsive applications, and understanding how to integrate managed
and script events and handling should enable you to bring these kinds of apps to life. There are also
facilities for invoking managed methods (as we did with GetPosition) from script and vice versa to
further enhance such applications, and we’ll get into that later in this chapter.

Responding to User Activity
While events, in and of themselves, are useful for building loosely coupled applications, the most inter-
esting kinds of events, from an interactive application point of view, are those generated in some way
by users. This section covers the essentials of effectively handling user activity in an application
through the various input and control mechanisms, from most common to least.

Mouse Events
In the world of GUIs, a mouse is indispensable (at least for most apps). Obviously, a technology that is
targeted at creating rich interactive (or Internet, if you prefer) applications needs thorough support for
mouse input, and Silverlight gives you plenty. The following are the Silverlight mouse-related events
that you can consume.

MouseEnter❑❑ — When the mouse enters the bounds of an element

MouseMove❑❑ — When the coordinates of the mouse change [Routed]

MouseLeave❑❑ — When the mouse leaves the bounds of an object

MouseLeftButtonDown❑❑ — When the mouse’s left button is down [Routed]

MouseLeftButtonUp❑❑ — When the mouse’s left button goes back up after a down event [Routed]

Using a combination of these events, you can do pretty much anything you should need to do in an
interactive application. However, you may have a few questions (such as those addressed in the follow-
ing sections) on your mind.

What about Click and Double-Click?
Click is essentially equivalent to MouseLeftButtonUp, so that shouldn’t be an issue. If you need double-
click, you could implement it in a helper class like the one described here: http://weblogs.asp.net/
aboschin/archive/2008/03/17/silverlight-2-0-a-double-click-manager.aspx.

What about Right-Click?
The convention is for plug-ins to use the right-click for general plug-in configuration and information,
as you will see if you right-click a Silverlight instance. This is not necessarily set in stone, but it seems
unlikely to change any time soon.

What Is This [Routed] of Which You Speak?
WPF introduced this name of routed events, although the concept is known elsewhere. The idea is that there
is a visual hierarchy (e.g., the HTML DOM or the WPF/Silverlight UI element tree) such that an event

391

Chapter 16: Making the Application Come Alive

can be routed through the hierarchy. In WPF, routed events are provided for two ways — tunneling down
the tree, conceptually before the event happens, and bubbling up the tree once the event has happened.
Silverlight only uses the bubbling half of that — tunneling is not supported.

The net effect is that you can, say, handle the MouseLeftButtonUp event for the top-level, root UI ele-
ment and thereby handle all MouseLeftButtonUp events for the entire tree, without having to attach
handlers to each individual element that you’re interested in. This can come in really handy if you need
to handle the same event for many objects in a generic way.

Routed events have a special OrinalSource property and Handled property. The OriginalSource
property will get you a reference to the most specific element that registered the event. The Handled prop-
erty lets you inform other handlers that you consider the event to have been taken care of. Setting
Handled to true prevents further, normal bubbling, so you need to be aware of what events the controls
you are using may swallow. For instance, Button swallows MouseLeftButtonUp and supplies Click
instead.

Mouse Event Arguments
As you’ve seen already, there are specialized event arguments for mouse events. They are:

MouseEventArgs❑❑ — Non-button mouse events

MouseButtonEventArgs❑❑ — Button-related events

Interestingly enough, although MouseButtonEventArgs derives from MouseEventArgs and adds seman-
tic value, no additional functionality is provided. Because there is effectively only one mouse button
(the left one) and there is no double-click, there’s nothing more it could add. It is pretty much only there
for compatibility with WPF, but who knows, maybe it’ll come in handy down the line, eh?

There is only one added bit of functionality for mouse event arguments over a standard routed event —
the GetPosition method. (There are actually two more, ink-related events we’ll cover later in this sec-
tion.) You’ve already seen this in action in the last section. If you want to get the mouse coordinates
relative to the content root (the Silverlight plug-in bounds), you can just pass null to this method.

GetPosition returns a Point structure (that’s right, it’s a value type) with two members of type
Double — the X-coordinate and the Y-coordinate. These will be relative to the element that you pass
into the method or (as noted) the root. If you do specify a relative element, the resultant coordinates
will be relative to the top and left coordinate of the given element. This means, for instance, that if the
pointer is above and to the left of the given element, the resultant Point will have negative X and Y
values.

Common Mouse Scenarios
OK, so now you have a good overview of what Silverlight gives you in terms of mouse events, and it is
time to apply that knowledge in meaningful ways. The following are common scenarios that you’ll
likely need to deal with while building interactive applications.

Hovering
Hovering is when the mouse cursor is over an element. On the Web today, in HTML, hovering is often
used to provide visual feedback to indicate that an action is available (such as the mouse cursor

392

Part III: Building Applications

changing to a hand if a link can be clicked and often some other indicator such as underline, changing
color, etc.); it is also used to provide basic tooltips, and, occasionally, it is used to trigger the display of
some nearby, related content, as on the Infragistics homepage (see Figure 16-4).

Figure 16-4

Silverlight gives you a few basic helpers to implement hover scenarios. First, there are the MouseEnter
and MouseLeave events. When the mouse enters the target element, you activate your hover state. When
the mouse leaves the target element, you deactivate the hover state, if applicable. The next one is the
Cursor property that is available on all FrameworkElement types; this is a super-simple way of provid-
ing some basic visual feedback while hovering over an element. You may also need the MouseMove
event — this continues to fire as you move the mouse over an element. It’s more useful for click-and-
drag type operations, although you may also have the occasional need for cursor tracking. The last
hover-related facility in the box is the ToolTip control.

The ToolTip is key for providing transitory, contextual information. The most common use is to pro-
vide simply a short bit of text to answer an implicit question. For instance, if it is a link, button, or other
command-type control, you typically want to tell the user what clicking on it will do. Another common
use is to elaborate on a word, term, or visual/image — to further describe it and help users understand it.

In HTML, tooltips are built into several elements, but they’re limited to textual information (which is
good for accessibility and SEO, such as the alt tag for images). The tooltips are displayed in the system
style, so if you want a styled or richer tooltip, you have to create your own or use a third-party control.
In Silverlight, you can just use the standard text-based approach, but you can also completely customize
the tooltip content by using a control template (or just use styles to change basic visual attributes).
Either way, it does the heavy lifting of detecting mouse hovering, showing, timing, and hiding the tool-
tip via the ToolTipService class, which you can also use to programmatically attach tooltips.

Most controls don’t have a ToolTip property, but, thankfully, you can just use the ToolTipServer.ToolTip
attached property to effectively set a tooltip on pretty much any visual element. You can set it in one of
two ways on related visuals (in XAML). First, if you just want the default look, you can set it on the ele-
ment XAML directly, like this:

<Grid x:Name=”LayoutRoot” Background=”White”
 ToolTipService.ToolTip=”Howdy, Folks!”>

393

Chapter 16: Making the Application Come Alive

That will give you the default look and feel, as shown in Figure 16-5. This works because the
ToolTipService will automatically wrap a string in a ToolTip instance for you.

Figure 16-5

If you want to customize it, you can use this alternative approach, placing the declaration just inside the
tag of the element you want the tooltip to apply to:

<ToolTipService.ToolTip>
 <ToolTip Background=”Black”>
 <Border Background=”White”
 BorderThickness=”1” CornerRadius=”4”>
 <TextBlock Foreground=”Maroon” FontSize=”11”
 Margin=”3,3,3,3” Text=”Howdy, Folks!” />
 </Border>
 </ToolTip>
</ToolTipService.ToolTip>

The result is shown in Figure 16-6.

Figure 16-6

394

Part III: Building Applications

Note that you can style various properties about what is in the tooltip, even on the ToolTip control
itself. The properties it exposes are, of course, stylable using standard Silverlight styling. It will even
let you supply inner content that is basically anything you want — you could have a StackPanel with
images and beyond. But it will always wrap it in that little silverish border. If you want to completely
change it, you’ll have to use a control template. Here’s how.

First, you want to define your template. You can do it from scratch or you can use Reflector or a tool
like Delay’s default style browser (http://blogs.msdn.com/delay/archive/2008/03/22/improved-
access-to-silverlight-2-s-generic-xaml-resources-silverlightdefaultstylebrowser-
available-via-clickonce.aspx) to find and copy the default style and templates as a starting point, to
simplify your customization. Here’s what a custom tooltip style and template look like:

<Style x:Key=”FaceOutToolTip” TargetType=”ToolTip”>
 <Setter Property=”FontFamily” Value=”Verdana” />
 <Setter Property=”FontSize” Value=”10” />
 <Setter Property=”Foreground” Value=”#FFC6DD5B” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate>
 <Border HorizontalAlignment=”Left” VerticalAlignment=”Center”
 CornerRadius=”4” BorderBrush=”#FFFFFFFF”
 BorderThickness=”1,1,1,1”>
 <Border Background=”#FF424542” Name=”RootElement”
 CornerRadius=”4” Padding=”4”>
 <Border.Resources>
 <Storyboard x:Key=”Visible State” />
 <Storyboard x:Key=”Normal State” />
 </Border.Resources>
 <ContentPresenter Content=”{TemplateBinding Content}”
 ContentTemplate=”{TemplateBinding ContentTemplate}” />
 </Border>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

You’ll notice all the template bindings; these maintain most of the bindings that are in the default tem-
plate, but we do force some of the properties for consistency’s sake within the application. You could
probably even do without maintaining all the template bindings if you know you don’t need them to be
customizable in your application.

You can put your templates and styles in your page/user control, but if you’re going to reuse them, as is
often the case, it is better to put them in the app.xaml Application.Resources tag to simplify the man-
agement of your look-and-feel and better ensure visual consistency. Doing that in the current sample,
you can rework the tooltip usage like this:

<ToolTipService.ToolTip>
 <ToolTip Style=”{StaticResource FaceOutToolTip}”
 Content=”Howdy, Folks!” />
</ToolTipService.ToolTip>

395

Chapter 16: Making the Application Come Alive

You can see how using a template, especially applied over multiple uses of ToolTip, could greatly
improve the manageability, consistency, and legibility, for that matter, of your XAML. You could also
apply the template as follows:

ToolTip tt = new ToolTip();
tt.Style = App.Current.Resources[“FaceOutToolTip”] as
 Style;
tt.Content = “Howdy, Folks!”;
ToolTipService.SetToolTip(this.LayoutRoot, tt);

This would have the net same effect as the previous XAML for the given element.

So that’s one important hover service for your apps. Changing the mouse cursor is another very com-
mon one, and that’s easy enough. The simplest thing is to set the Cursor property in XAML, directly or
via a style or template. Here you’ll want to follow the standard cursor usage. This means, typically, if it
is a command (link, image button, and content area/row being the most common) that isn’t necessarily
obviously a command, it helps to switch the cursor to Hand to indicate that the user can take some
action — then you’d want to complement that with a tooltip describing the action.

You might also need to consider using the Busy cursor if you do something that ties up the UI for any
length of time or if you simply want to indicate that the user’s command input had an effect when it
isn’t immediately obvious. Arrow is going to be the default, and there is an IBeam, but applicability of
that will be narrow outside of TextBox for the current version because it implies that you can manipu-
late text, and the TextBlock won’t let you even select text in v2. Last, there are a couple of stylus-related
cursors, but those apply in inking situations that we’ll cover later.

If you do nothing else but use the Cursor and ToolTip, you’ll handle the most common hover scenarios.
However, if you need to kick it up a notch, that’s when the MouseEnter and MouseLeave events become
your friends.

Clicking
Probably the most common mouse input that application developers care about is clicking. As noted,
Silverlight gives you the MouseLeftButtonUp event for this scenario, and some controls, such as Button,
CheckBox, and so on (derived from ButtonBase) actually create a Click event for you, since that’s what
we’re all more used to. (MouseLeftButtonUp seems so abstract.)

The point of clicking, of course, is to indicate selection, a commitment from the user that he or she
wants whatever command is represented to be executed. Most often this will be one of three things:
Select (as in selecting a row in a grid or some other list or a checkbox/radio button), Go (some naviga-
tional command, such as a link or menu item), and Execute (most often a button, menu item, or link that
acts like a button).

The key thing here is to look at the control you’re using. If it has a Click event, use that, because it is
more likely to provide arguments that you’re interested in (or none) and the “sender” will more likely
be the control itself, rather than a visual in the control. If you handle, say, the MouseLeftButtonUp, the
sender is likely going to be a specific visual element within the control rather than the control itself, and
it may be hard to get at the control information from that.

If there is no Click event, then you can just use MouseLeftButtonUp or create some abstraction for your-
self in a user control.

396

Part III: Building Applications

Drag-and-Drop
In some ways, this could be considered an advanced scenario, but it is also a pretty common one. You’d
hope that the Popup control in the box would give you some basic window-like functionality, but it pretty
much just gives you offset (vertical and horizontal) and an IsOpen property to open/close (by setting it
to true/false). This is not especially helpful, but it does live in the Primitives namespace, so I suppose
you can’t be too surprised.

That said, it’s a decent place to start with implementing some drag-and-droppiness to your application.
There are three key events in the life of a drag-and-drop: mouse button down, mouse move, and
mouse button up. So what you want to do is create another user control in your Silverlight app; call it
Drag-n-Drop. (You could also just start a new project if you want.) Then reset the application to use
that as the root visual in the App.xaml.cs startup.

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the main control
 // this.RootVisual = new Page();
 this.RootVisual = new Drag_n_Drop();
}

Since the TestPage.html has some Page-specific script, you’ll need to modify it like this:

function onSilverlightLoad(sender, args) {
 var plugin = sender.getHost();
 try // swallow exceptions for when Page doesn’t exist
 { plugin.Content.Page.UserSelected = userSelected; } catch(e) {}

 // attach to mouse enter for button
 var managedButton = plugin.content.findName(“ManagedButton”);
 if (managedButton)
 managedButton.addEventListener(“MouseMove”,
 managedButtonHover);
}

This ignores any error on setting when the Page scriptable type doesn’t exist and checks to ensure
there is a ManagedButton found. You could just as easily clear out the onSilverlightLoad event, but
this enables you to switch back to using Page as the root visual if you want. The other thing you may
want to change on the HTML page is the height/width of the Silverlight instance — to 100 percent. This
gives more room to drag stuff around because you’ll only be able to drag inside the Silverlight plug-in
bounds.

Now in your Drag-n-Drop.xaml, remove the default height/width, and add a button with a Click event
handler. Your XAML should look something like this:

<UserControl x:Class=”EventsAndUserActivity.Drag_n_Drop”
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button
 Width=”80” Height=”25”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”

397

Chapter 16: Making the Application Come Alive

 Content=”Open Popup” Click=”Button_Click” />
 </Grid>
</UserControl>

Now you need to set up your pop-up. This is the meat of the Drag-n-Drop scenario. Create a new user
control — call it RealPopup (as opposed to the fake one you get in the box). What you’re going to do is
create a basic title bar and content layout with a Close button in the top right. There are a few ways you
could do this with XAML; here is one:

<UserControl x:Class=”EventsAndUserActivity.RealPopup”
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Border
 MinHeight=”30” MinWidth=”80” HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom” CornerRadius=”4”
 BorderBrush=”#FFFFFFFF” BorderThickness=”1,1,1,1”>
 <Border
 Background=”#FF424542” Name=”RootElement”
 CornerRadius=”4”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”25” />
 <RowDefinition Height=”*” MinHeight=”50” />
 </Grid.RowDefinitions>
 <Grid Grid.Row=”0” Background=”Black”
 Cursor=”Hand”
 MouseLeftButtonDown=”MouseDragStart”
 MouseMove=”MouseDrag”
 MouseLeftButtonUp=”MouseDragStop”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”16” />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column=”0” Text=”Title”
 Foreground=”White”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center” />
 <Button Grid.Column=”1” x:Name=”CloseButton”
 HorizontalAlignment=”Right”
 VerticalAlignment=”Top” FontSize=”9”
 Width=”16” Height=”16”
 Click=”CloseButton_Click” Content=”X” />
 </Grid>
 <Grid Grid.Row=”1”>
 <TextBlock
 Foreground=”White” FontSize=”9”
 Margin=”4”>
 <Run>This is the content area.</Run>
 </TextBlock>
 </Grid>
 </Grid>
 </Border>
 </Border>
</UserControl>

398

Part III: Building Applications

The Borders were copied from the ToolTip style; it uses a basic top-bottom grid layout (25 pixels high
for the title, everything else for the content, with a minimum height of 50 just to look proportional). The
Close button is just a regular 16 × 16 button with an X as its content. The interesting bits for drag-and-
drop are the MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp handlers; and it sets the
Cursor property to hand in order to indicate that you can do something with it. That’s all there is to the
XAML — the magic happens in the code.

What you need to do in code is:

 1. Determine the position of the mouse relative to the top-left corner of the element being
dragged — the drag offset.

 2. Capture the mouse.

 3. Update the top and left coordinates of the element being dragged. The value here will be the
absolute coordinates of the mouse minus the drag offset.

 4. Release the mouse when dragging stops.

First things first — handle the mouse down event.

bool _DragInProgress = false;
Point _DragOffset;
private void MouseDragStart(object sender, MouseButtonEventArgs e)
{
 FrameworkElement grabElement = sender as FrameworkElement;
 _DragOffset = e.GetPosition(this);
 _DragInProgress = true;
 this.BringToFront();
 grabElement.CaptureMouse();
}

Define the class fields of _DragInProgress and _DragOffset. The first one tracks whether or not there is
a drag in progress, which is important because the mouse move event will fire even when the mouse
button is not down — you don’t want to have the sticky element problem, whereby the element tracks
the mouse even if the user is not pressing down the button. The drag offset just records the location of
the mouse relative to the upper-left corner of the element when the mouse is pressed down. The last
thing to do is to capture the mouse. This is important because if the user drags the element under another
one, you could lose the mouse input, and capturing ensures that the mouse events keep being sent to
your element until you release it.

You can, optionally add the BringToFront feature; that will be covered later in this
section.

Next, you need to handle the mouse move event:

private void MouseDrag(object sender, MouseEventArgs e)
{
 if (_DragInProgress)
 this.ProcessDrag(e.GetPosition(null));
}

void ProcessDrag(Point location)

399

Chapter 16: Making the Application Come Alive

{
 this.Move(new Point(location.X - _DragOffset.X,
 location.Y - _DragOffset.Y));
 if (this.Opacity == 1)
 this.Opacity = 0.6;
}

public void Move(Point targetLocation)
{
 this.Popup.HorizontalOffset = targetLocation.X;
 this.Popup.VerticalOffset = targetLocation.Y;
}

The first thing you do is ensure that there is a “drag in progress”; again, that’s just a check that the
mouse is depressed. Then you process the drag by moving the control to the new location — the mouse
position relative to the plug-in bounds minus the offset. Here is where the built-in Popup control can
come in handy; it has a HorizontalOffset and a VerticalOffset that you can use to update the X- and
Y-coordinates. Without this, you could use a TranslateTransform; they both seem to work equally well,
but this way makes your code a bit simpler and easier to understand. The Popup property is just a con-
venience property:

Popup _Popup;
Popup Popup
{
 get
 {
 if (_Popup == null)
 {
 _Popup = new Popup();
 _Popup.Child = this;
 }
 return _Popup;
 }
}

You just use a class field to store a Popup instance for the control and set the Popup.Child property to be
this control, much as you would if you were using the Popup directly outside a custom control.

You may have noted the Opacity change in the ProcessDrag method. This is a nifty UI feature; it
enables users to see what is behind the element while dragging it, which can be very useful for helping
position it exactly where they want it. You don’t have to do it for Drag-n-Drop if you don’t want to.

The last bit is to respond when the user releases the mouse button and stop the dragging process.

private void MouseDragStop(object sender, MouseButtonEventArgs e)
{
 if (_DragInProgress)
 this.StopDrag();
}

void StopDrag()
{
 _DragInProgress = false;

400

Part III: Building Applications

 this.ReleaseMouseCapture();
 this.Opacity = 1;
}

All you need to do here is update the _DragInProgress flag so that further mouse moves won’t continue
to change the element’s location. Then release the mouse capture so that mouse events trigger normally
again on all elements, and, finally, if you are changing the Opacity, set it back to full.

That is all you have to do to make elements drag-and-droppable. But there is still the question of
showing and hiding the pop-up, though, so for that, you can just add simple Show and Hide methods
like this:

public void Show()
{
 this.Popup.IsOpen = true;
 this.BringToFront();
}

public void Hide()
{
 this.Popup.IsOpen = false;
}

Mainly, this exercises the other feature built into Popup — you can just toggle the IsOpen property to
toggle the visibility of the control. The other thing you see here is the use of BringToFront again. This
should look familiar to Windows developers, but there is no built-in mechanism in Silverlight for this
purpose. You can easily extend FrameworkElement, however, by just adding an extension class to your
project.

public static class FrameworkExtensions
{
 internal static int LastZIndex = 1000;

 public static void BringToFront(this FrameworkElement element)
 {
 element.SetValue(Canvas.ZIndexProperty, LastZIndex++);
 }
}

This uses the new .NET 3.5 language feature called extension methods. Declare a static class and declare
static methods and use the special this keyword on the first parameter. Then just use/import the
namespace, and any elements of the type you specify can use those methods as if they were declared on
the instance’s class directly. Because our RealPopup control derives from FrameworkElement (as do
almost all visual elements in Silverlight), we’re able to use BringToFront as if it were a member of our
class. Cool, huh?

Oh, and all it does is keep track of a shared z-index and increment/set it on the target element, making
sure (in most cases) that it will be on top of other visual elements. We use it when you first show the pop-up
and also when you click to drag it, both of which, from a user perspective, seem like the natural/right
thing to have happen.

401

Chapter 16: Making the Application Come Alive

The last thing you need to do is to use the pop-up, which takes us back to our button click handler in
Drag-n-Drop.xaml.cs:

private void Button_Click(object sender, RoutedEventArgs e)
{
 RealPopup p = new RealPopup();
 p.Show();
}

See? Easy. Makes sense. Once you bring it all together and run it, you can click on the “Show Popup”
button a few times and end up with something like you see in Figure 16-7.

Figure 16-7

If your interface has a high potential for having many of these “windows,” you
will want to have some sort of organizational tool — this is what the taskbar in
Windows does and tabs do in multidocument interfaces like Visual Studio.
Otherwise, the windows get overwhelming and hard to keep track of.

Keyboard Events
Next to mousing, of course, is keyboarding when it comes to interaction devices in apps today. Silverlight
provides the two events that you need — KeyDown and KeyUp, both of which are routed events. As the
names imply, the first is raised when a key is pressed down and the second when the key is released
(up). They both use KeyEventArgs to give you information about the keys involved in the event.

In addition to OriginalSource and Handled, KeyEventArgs provides these members:

Key❑❑ — This is a facility provided to make handling common key entry easier — it is an enumer-
ation value that represents so-called portable (cross-platform) keys, which are most of what you
see on a standard 101-key keyboard. One of the members is Unknown, which means it’s not one
of the standard keys, and you need to look at the PlatformKeyCode.

PlatformKeyCode❑❑ — This is an integer that represents the platform-specific key code. You have
to reference platform docs to make use of this.

402

Part III: Building Applications

Silverlight provides an additional facility for handling the case when, for example, the [Alt] or [Ctrl] key
is pressed. For that, you use the static (Shared) property Keyboard.Modifiers property and compare it
to the ModifierKeys flag enumeration. It’s a flag enumeration because multiple modifier keys can be
pressed at once.

Common Key Scenarios
As with mouse, there are a few scenarios with keys that will be very common for application develop-
ers. They can be boiled down to two basic categories — text input and control (e.g., navigation and
commands).

Text Input
This one barely bears mentioning because it is the default and is often just taken for granted, but those
two little events — KeyDown and KeyUp — enable things like the TextBox to receive the key input and
reflect it as a string of characters in its display area. This is absolutely essential to pretty much any
application that involves data (which is most in the business world).

In Silverlight 3, you pretty much just get the standard single-line textbox, although there are embellish-
ments such as masking for passwords (PasswordBox). Unfortunately, there is no rich text editor, so text
input scenarios in “native” Silverlight are limited; however, you can overlay HTML-based editors on
Silverlight if you need that. Certainly the future will hold solutions for rich text editing.

To get a feel for TextBox, you can just add one to your Popup control from the drag-and-drop scenario
covered in the mouse section. Actually, you’ll probably want to add a StackPanel around the
TextBlock and the new TextBox as follows (this is in RealPopup.xaml, if you recall):

<StackPanel>
 <TextBlock
 Foreground=”White” FontSize=”9”
 Margin=”4”>
 <Run>This is the content area.</Run>
 </TextBlock>
 <TextBox x:Name=”TextInput” />
</StackPanel>

Run that sample again now, and you get something like Figure 16-8.

Figure 16-8

403

Chapter 16: Making the Application Come Alive

There are four very common text input scenarios, in addition to the basic textbox: masked text input,
structured text input, multiple-line text input, and rich text input.

Masked Text Input

Out-of-the-box, you get the PasswordBox control, which enables you to mask sensitive information as it
is being typed-in by users. This handles the majority of cases with this need, but other types of mask-
ing serve to further structure input and cross the line into structured text input.

Structured Text Input

Common examples where structured text input is used are phone numbers, tax identifiers, dates, and
credit cards. These are used because the system needs to treat these numbers specially, potentially even
storing the pieces of the numbers separately, so it helps to guide users to enter them in the format that
the system needs.

Thus, you’ll commonly see these numbers broken out into separate textboxes or a masking device used
to constrain user input to the expected format. Third-party vendors like Infragistics usually supplement
the platform controls with these kinds of masked text editors, and, no doubt, we’ll see that for Silverlight
as well. I recommend that you use one of these rather than rolling your own; they seem simple on the
surface, but using them can get complicated rather quickly.

To do a simple implementation of the broken-apart structured format, you can use the following exam-
ple. You’ll make a simple US-based phone number input element, and by adding to the RealPopup
example, you can add a StackPanel and put three TextBox controls in it, separated by two TextBlock
controls, like this:

<StackPanel
 x:Name=”PhoneNumber”
 Orientation=”Horizontal”>
 <TextBox
 x:Name=”AreaCode”
 MaxLength=”3”
 TabIndex=”1”
 KeyUp=”Structured_KeyUp”
 FontSize=”9”
 Width=”25” />
 <TextBlock
 Foreground=”White” FontSize=”9”
 Text=”-” />
 <TextBox
 x:Name=”Prefix”
 MaxLength=”3”
 TabIndex=”2”
 KeyUp=”Structured_KeyUp”
 FontSize=”9”
 Width=”25” />
 <TextBlock
 Foreground=”White” FontSize=”9”
 Text=”-” />

404

Part III: Building Applications

 <TextBox
 x:Name=”Number”
 MaxLength=”4”
 TabIndex=”3”
 FontSize=”9”
 Width=”33” />
</StackPanel>

Width and FontSize work together to create a visual feel that looks like a phone number, with the Width
being proportionate to the maximum number of characters (MaxLength). The TabIndex is used both by
the Silverlight tabbing mechanisms and our code, which follows. The MaxLength property is useful for
both limiting text input length and creating a sort-of-generic method for moving between the parts —
the Structured_KeyUp method that follows:

private void Structured_KeyUp(object sender, KeyEventArgs e)
{
 TextBox box = (TextBox)e.OriginalSource;
 if (box.Text.Trim().Length == box.MaxLength)
 {
 foreach (UIElement elem in ((Panel)box.Parent).Children)
 {
 Control c = elem as Control;
 if (c != null && c.IsTabStop &&
 c.TabIndex == box.TabIndex + 1)
 {
 c.Focus();
 break;
 }
 }
 }
}

First, notice the method signature — the same for all key-based events, taking an object as the sender of
the event and the KeyEventArgs. We’re not doing key detection here, but we do use the routed event
argument OriginalSource to get the TextBox that triggers the event. This lets us use the same method
for multiple boxes.

The first thing we do with the box is check that its length is equivalent to the expected MaxLength (max-
imum number of characters). If it is, we then attempt to find the next tab stop in its parent. We do this
by assuming that the parent is a Panel (it is — a StackPanel), and we iterate through its Children (a
UIElementCollection), trying to cast each element as a Control. If the cast is successful, c will be not
null, and we can then check first that it is a tab stop and second that its tab index is the next in line, in
which case, we focus on it and exit.

The net effect of this is that as users are typing, once they get to the expected length for the box, they’ll
automatically tab over to the next box in the sequence. This approach is fairly common on the Web,
especially for things like phone numbers. You can see the end result in Figure 16-9, although, of course,
you’ll have to try it out to get the full effect.

405

Chapter 16: Making the Application Come Alive

Figure 16-9

Multiple-Line Text Input

Next to plain old single-line textboxes, probably the next most common input control is for multiple-line
input. HTML defines a special TEXTAREA element for it, but in Silverlight, as in WinForms and WPF, you
just modify the TextBox to accept multiline input. Key to doing this are the following properties:

Height❑❑ /Width — Use these just to define the viewable area — with a single line, you typically
let the control manage the height; but for multiple lines, you set it to three lines, at a minimum.
This will vary based on your font size.

AcceptsReturn❑❑ — This lets users use the [Enter] key as a carriage-return line feed (CRLF, which
is like a \r\n in C# string syntax and VbCrLf in VB). More often than not, you want to let users
do this in a multiline input. By default, it is off/false for TextBox.

TextWrapping❑❑ — Use this to wrap the text input at the end of the visible textbox area. This is
again, more often than not, likely what you want to do as it is what users are used to; otherwise,
you’ll have horizontal scrolling, and the height setting won’t really matter.

VerticalScrollBarVisibility❑❑ — If you want to show a scrollbar, you should set this prop-
erty. Auto is a good one if you don’t expect to need it most of the time; otherwise, you might
want to set it to Visible so that its sudden appearance doesn’t distract users.

<TextBox
 x:Name=”TextInput”
 Width=”200”
 Height=”75”
 AcceptsReturn=”True”
 FontSize=”9”
 TextWrapping=”Wrap”
 VerticalScrollBarVisibility=”Auto”
 KeyDown=”TextInput_Measure”
 KeyUp=”TextInput_Measure” />

In addition to setting the normal multiline settings, the code above uses a TextInput_Measure method.
This is done to allow us to provide feedback to users in terms of how many characters they’ve typed. If
you have a back-end system that limits the length of the text being entered, it is a good experience to
provide that feedback to help users proactively control the length of their input. For example, twitter
limits tweets to 140 characters, so if you were implementing that, the TextInput_Measure method
might look like the following:

const int MAX_INPUT = 140;
private void TextInput_Measure(object sender, KeyEventArgs e)
{

406

Part III: Building Applications

 TextBox box = (TextBox)e.OriginalSource;
 int actual = box.Text.Length;

 this.ContentArea.Text =
 string.Format(“{0} of {1} characters used. “,
 actual, MAX_INPUT);
 int diff = MAX_INPUT - actual;
 Run counter = new Run();

 if (diff >= 0)
 counter.Text =
 string.Format(“{0} characters left.”, diff);
 else
 {
 counter.Text =
 string.Format(“{0} characters too many.”, Math.Abs(diff));
 counter.Foreground = new SolidColorBrush(Colors.Red);
 }
 this.ContentArea.Inlines.Add(counter);

 if (e.Key == Key.A &&
 (Keyboard.Modifiers & ModifierKeys.Control)
 == ModifierKeys.Control)
 {
 box.SelectionStart = 0;
 box.SelectionLength = actual;
 }
}

First, we grab the reference to the originating (OriginalSource) TextBox and then grab the current
length of its text and store it in the actual integer. We use our ContentArea TextBlock to report the
number of characters versus the max. Some implementations of this pattern stop there, which leaves it
to the user to figure out the difference, but to make it more usable, we go ahead and do the math for
them (subtracting the actual from the max). If the difference is zero or more, we just append a message
telling them how many characters they have left; however, if they are exceeding the maximum, we
want to change the message to tell them that they have too many characters (and how many too many),
as well as go ahead and reinforce that message by using red, indicating an unacceptable state.

A Run is a Silverlight (and WPF) document object used to group a succession of
characters (similar to a string). The benefit is that it lets you apply distinct styling
to that group of characters, which is why we use it here — in case we want to
change the color of that message to red.

The last bit actually has nothing to do with the measurement. Silverlight doesn’t have an implementa-
tion of CTRL-A (select all), so this is a simple way to implement that. Using the Keyboard.Modifiers
property, you can check to see which (if any) modifiers are pressed. It’s a flags enumeration, which
enables more than one of its values to be true at once. While we could simply check for equivalence to
ModifierKeys.Control (e.g., Keyboard.Modifiers == ModifierKeys.Control), the syntax in the list-
ing shows how you check for multiple values, and, in fact, this will register a select all even if you have
more than just [Ctrl] pressed, as I do in Figure 16-10.

407

Chapter 16: Making the Application Come Alive

Figure 16-10

Rich Text Input

Unfortunately, Silverlight 3 still does not have good support for rich text. It has a very limited subset of
the document API that you get with WPF. However, it does support font embedding, so that’s one up on
HTML. There are some free rich-text emulators that, for example, will take XHTML and attempt a con-
version to Silverlight markup, but since Silverlight markup is inherently limited, the success of these
will be inherently limited. There’s the further consideration that the lingua franca for the Web today
(and in the foreseeable future) is HTML, so you probably don’t want to be storing Silverlight markup
for your rich text.

One option in the current version will be to overlay an HTML editor on your Silverlight application.
You do this by setting the Silverlight plug-in to windowless mode and then using the CSS z-index to
layer the HTML elements on top of your Silverlight. The problem here is if you have draggable objects
in your Silverlight app, the HTML will always be on top of those.

To deal with this layering problem, you can host two Silverlight plug-ins on your HTML page. You then
layer them as follows: One Silverlight plug-in contains the main/background Silverlight objects; on top
of that, you layer HTML overlays, and finally, you add another Silverlight layer where you host your
objects that may need to overlie the overlaid HTML.

Another option for including rich HTML is to create a fixed transparent area of the Silverlight plug-in,
underlay your HTML in that area, and, if you need to, shuttle input events to the underlying HTML.
And last, there is always the option to not do full-page Silverlight — reserve part of your page for
HTML content, and keep it there. This last approach will be the easiest and possibly best from an expe-
rience perspective, if it works to have the HTML and Silverlight completely separate. Otherwise, you’re
stuck with one of the other, less than optimal, options.

Now don’t forget that the purpose of this whole discussion about HTML overlaying is to enable rich
text editing in the context of this section. Obviously, it also affects other rich interactions such as
HTML-based mashup elements or just plain HTML displaying. The bottom line is that rich text is a
tough scenario in Silverlight 3, so if it is central to your application, you will have to think about these
issues and decide which approach makes the most sense for you.

Navigation and Commands
Two other very common keyboard issues are navigation and commands. We actually already covered
commands at the end of the “Multiple-Line Text Input” section, in which we added a Select All com-
mand mapped to pressing [Ctrl]+A (a very common mapping for that command). Other common
commands are [Ctrl]+C (Copy), [Ctrl]+X (Cut), and [Ctrl]+V (Paste) — these work in Silverlight 3 and
are the only way for your Silverlight app to get access to the system clipboard (for security reasons).

408

Part III: Building Applications

The thing to note here is that you can use the same technique we used for [Ctrl]+A to create your own
keyboard commands, which are especially useful for heavily used applications in which you don’t want
your users to constantly have to switch between typing and using the mouse. A very common example
(in Windows) is to use [Alt]+<key> to provide keyboard access to menu commands (known as keyboard
accelerators). You need to be mindful that some modifier keys are platform-specific.

Keyboard navigation can be very useful, particularly in graphical applications in which you want to
move graphical elements using the keyboard. There are plenty of Silverlight-based games that use this
approach. For our purposes, we’ll add basic keyboard movement capabilities to our pop-up.

To do this is actually pretty easy. First, you want to add a couple of event handlers to your RealPopup
user control. You can do it in XAML or code (e.g., in the constructor). This is what the XAML will look
like for your UserControl:

<UserControl x:Class=”EventsAndUserActivity.RealPopup”
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 IsTabStop=”True”
 MouseLeftButtonUp=”UserControl_MouseLeftButtonUp”
 KeyDown=”UserControl_KeyDown”>

You need to add the MouseLeftButtonUp and KeyDown event handlers. The KeyDown is probably obvious,
but to make the navigation seem right, you have to do a few extra things besides just handling the
KeyDown. The first of those tangential things is to enable the control to receive focus, and for that, it
needs to be Visible, be in the visual tree, and be considered a tab stop. We get the last two for free just
by showing the pop-up, but you need to set IsTabStop to True (as shown in the last listing).

That will make the control able to receive focus; then you need to do a couple of things to actually give
it focus. First, in the Show method, add this.Focus():

public void Show()
{
 this.Popup.IsOpen = true;
 this.BringToFront();
 this.Focus();
}

This means that when it shows, it will automatically have focus and be navigable (movable) with the
keyboard. The next thing to address is the MouseLeftButtonUp handler:

private void UserControl_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 this.Focus();
}

This gives the focus back to the control when you click anywhere that doesn’t grab focus itself (such as
a TextBox). In our pop-up, we have a few textboxes, so we want to be able to click back out of them, as it
were, to give focus back to the control (otherwise, you can only click in other textboxes).

409

Chapter 16: Making the Application Come Alive

So that enables the not-so-obvious part of making the control keyboard navigable. Now you just need to
do the actual keyboard navigation.

private void UserControl_KeyDown(object sender, KeyEventArgs e)
{
 if (e.OriginalSource == this)
 {
 switch (e.Key)
 {
 case Key.Right:
 this.Move(new Point(this.Popup.HorizontalOffset + 1,
 this.Popup.VerticalOffset));
 break;
 case Key.Left:
 this.Move(new Point(this.Popup.HorizontalOffset - 1,
 this.Popup.VerticalOffset));
 break;
 case Key.Down:
 this.Move(new Point(this.Popup.HorizontalOffset,
 this.Popup.VerticalOffset + 1));
 break;
 case Key.Up:
 this.Move(new Point(this.Popup.HorizontalOffset,
 this.Popup.VerticalOffset - 1));
 break;
 }
 }
}

The scenario you’re enabling is to move the pop-up right, left, down, or up by 1 pixel using the natural
mapping of those arrow keys. The way you can do it, again thanks to the offset properties that Popup
provides, is to simply increment or decrement the appropriate offset using the Move method you created
previously. You could, of course, just set the offsets directly (since that is all Move does), but it is a better
practice to use the appropriate, semantically correct method if one is available to keep that code central-
ized. The kinky thing to remember is that you’re acting on the coordinates from the top and left, so
even though it may seem right to decrement the vertical offset to go down, it’s actually the opposite.

The only other thing you’ll want to do here is only move if it is the user control that has focus and, ergo,
is the source of the event, so wrap the switch statement in a check against the OriginalSource of the
event arguments. This is good so that you won’t move the thing around while the focus is in, say, the
textboxes.

Be aware that keyboard input is disabled when in Full-Screen mode except for navi-
gational type keys. This is a security feature to prevent phishing type applications —
for example, you could design a Silverlight app to mimic the OS login screen to steal
their login credentials (and that’s just the beginning). If you need other keyboard
input in Full-Screen mode, you need to consider a visual keyboard such as on iPhone,
Xbox, and so forth. Here’s a list of available key inputs in full-screen mode: Up
Arrow, Down Arrow, Left Arrow, Right Arrow, Spacebar, [Tab], [Page Up], [Page
Down], [Home], [End], [Enter].

410

Part III: Building Applications

That’s the essentials of keyboard navigation and wraps up this section on keyboard input. You should
be able to apply the concepts covered here to do pretty much anything you need to with keyboard
input.

Other Inputs: Ink
Although this section is called “Other Inputs,” essentially the only other user-initiated inputs that
Silverlight handles are ink-related. While you may have other hardware devices that a user may use, they
will need to translate to mouse, keyboard, or ink to work in Silverlight. So in this last user-interactivity
section, we’ll focus on ink stuff.

As noted in the mouse section, ink information is attached to mouse event arguments. This is impor-
tant because you can use the mouse for basic ink input, but it won’t support pressure sensitivity
directly.

In any case, thankfully, Silverlight 3 makes cross-platform inking a breeze. In some ways, it resembles
handling standard drag-and-drop mouse functionality; you just add an InkPresenter and take advan-
tage of the Stylus-related stuff on the mouse event args.

First, add an InkPresenter to your RealPopup, at the bottom, under your structured input (phone)
StackPanel:

<Border Background=”Black” BorderThickness=”1,1,2,2”>
 <InkPresenter
 x:Name=”Inker”
 Background=”White”
 Width=”200” Height=”200”
 MouseLeftButtonDown=”InkPresenter_MouseLeftButtonDown”
 MouseMove=”InkPresenter_MouseMove”
 MouseLeftButtonUp=”InkPresenter_MouseLeftButtonUp”
 />
</Border>

Well, you might want to add a Border around it to add a bit of definition. Just declare an InkPresenter,
give it a name, set the background to something (white, if you want it to be like a standard drawing
canvas), and give it some substantial height and width; finally, you need to handle the three usual sus-
pects for drag-and-drop operations: left mouse button down, mouse move, and button up.

System.Windows.Ink.Stroke _Stroke;
private void InkPresenter_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 _Stroke = new System.Windows.Ink.Stroke();
 _Stroke.StylusPoints.Add(
 e.StylusDevice.GetStylusPoints(this.Inker));
 _Stroke.DrawingAttributes.Color = Colors.Black;
 this.Inker.Strokes.Add(_Stroke);
}

You’ll need to define a class member of type Stroke. This serves two purposes: First, it provides an
indicator of whether or not there is a current drag in progress (similar to the Boolean field used in the

411

Chapter 16: Making the Application Come Alive

pop-up drag-and-drop), and second, it is what the inking infrastructure will use to record the actual
drawing, on a per-stroke basis.

So in the mouse down handler, you create a new stroke and add the initial stroke information using the
event argument’s StylusDevice.GetStylusPoints method. You then just add the returned value to
the stroke’s StylusPoints collection. Finally, you may want to modify the DrawingAttributes (things
like width, color, etc.); the code above just sets the color to black. And, last, add the new stroke to the
InkPresenter’s Strokes collection for it to display the stroke.

Note that you don’t need to capture the mouse. If you do, Silverlight will allow you to draw out of the
InkPresenter’s bounds, which is almost certainly not what you want. But if you did, that’s how you’d
get it to do that.

private void InkPresenter_MouseMove(object sender, MouseEventArgs e)
{
 if (_Stroke != null)
 {
 _Stroke.StylusPoints.Add(e.StylusDevice.GetStylusPoints
 (this.Inker));
 }
}

As the mouse moves inside the presenter, its MouseMove handler is called. In that handler, you check to
see if there is a current stroke using the _Stroke field you defined before. Recall that it serves a dual
purpose of recording the stroke and that there is a current drag in progress. If there is a current stroke,
you just add the new stylus points to the stroke’s collection as you did for the initial mouse down
handler.

The last thing you do is clear out the current stroke when the mouse button is released:

private void InkPresenter_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 _Stroke = null;
}

Although this is a rather simplistic inking example, it demonstrates the essential facilities that
Silverlight provides to ink-enable your applications on the Web. For Tablet PC (and other inking fans),
this is a great addition to their Web toolkit. You can also use it to create basic drawing applications if
your scenarios demand it.

An interesting use of this feature is shown at www.tabletpcpost.com/search. It
uses Silverlight’s ink capabilities along with character recognition to allow hand-
written (ink-written) searches of Google. The recognition doesn’t seem to be as
good as Vista’s, but it is cool nonetheless!

Once you have added the InkPresenter and related code, you’ll be able to do neat stuff like write (or
mousepad, in my case!) messages to the world, as shown in Figure 16-11.

412

Part III: Building Applications

Figure 16-11

That wraps it up for responding to user input in your Silverlight applications. Every application you
build in Silverlight will draw on these techniques and facilities. The stuff we covered here is fundamen-
tal and essential to user interaction, and everything else is derived from it. Obviously, you will want to
take advantage of the more advanced controls provided to speed development and keep maintenance
costs low. Microsoft has a pretty good offering out-of-the-box and in their supplemental toolkit, and
third-parties like Infragistics will definitely be adding even more value on top of that.

Personalization
One of the surest ways to make your application come alive to your users is to personalize it for them.
There are good ways and not so good ways to do this, of course. There is the idea of an adaptive interface
that learns from the user and modifies itself according to the user’s habits. The problem with this is that
it can be very difficult to get right and very easy to get wrong — just remember the feature in Office
that would try to hide rarely used commands in the menus?

More common (and reliable) forms of personalization lean on the user to explicitly opt in to choices. For
some time, it has been popular to allow users to change the theme of their applications; you’ll want to
think about whether or not this is good. The theme can definitely affect a user’s experience, and it cer-
tainly has an impact on their perception (or lack of perception) of your brand.

Probably the single most useful personalization feature across all applications is simply sharing a user’s
settings across multiple installations of the same application. After all, if you allow users to change set-
tings, it is almost certain they don’t want to reset the same settings over and over again. Since Silverlight 3
doesn’t inherently have a personalization framework (or even basic user settings), the onus will be on you
to make one. Making these settings persist across browsers, machines, and the like will involve storing
them on your servers, but since Silverlight is a Web technology, this shouldn’t come as a surprise.

You could create your own personalization store, or you could build on what you started in Chapter 13
and take advantage of the ASP.NET Profile provider and corresponding ready-made WCF service. So if
you start with that, you already have your authentication framework in place. All you need to do now is
add the profile stuff.

413

Chapter 16: Making the Application Come Alive

First, you need to add a new service file in your web site’s Services directory. An easy way to do this is
to just copy the Authentication.svc and rename it Profile.svc and then update the ServiceHost declaration:

<%@ ServiceHost Language=”C#”
 Service=”System.Web.ApplicationServices.ProfileService” %>

Next, as you did for the other services, add the service to the system.serviceModel/services section in
the web.config:

<service
 name=“System.Web.ApplicationServices.ProfileService“
 behaviorConfiguration=“ProfileServiceTypeBehaviors“>
 <endpoint
 contract=“System.Web.ApplicationServices.ProfileService“
 binding=“basicHttpBinding“ bindingConfiguration=“userHttp“
 bindingNamespace=“http://asp.net/ApplicationServices/v200“/>
</service>

Notice that you’re reusing the same basicHttpBinding you already defined. And then add the behavior
definition to the system.serviceModel/behaviors/serviceBehaviors section:

<behavior name=“ProfileServiceTypeBehaviors“>
 <serviceMetadata httpGetEnabled=“true“/>
</behavior>

Now, if you don’t already have a profile section defined, add one to the system.web section. For
example:

<profile>
 <properties>
 <add name=“PreferredTheme“
 type=“string“ defaultValue=“Orange Smoothy“ />
 </properties>
</profile>

In real apps, of course, you will most likely have a whole host of things — whatever extra information
you want to store about your users. For this example, we’re just keeping it simple and doing a theme
setting.

The last thing on the server side is that you need to enable the profile functionality to be accessed via
the service, so in the system.web.extensions/scripting/webservices section, add the following:

<profileService
 enabled=“true“
 readAccessProperties=“PreferredTheme“
 writeAccessProperties=“PreferredTheme“ />

Now, to test out your config, right-click on your Profile.svc and select “View in Browser.” If there are
no errors, you’re ready to move on to the client. Right-click on the Silverlight application, choose “Add
Service Reference,” and click Discover. You should see the services you have configured; select the
Profile service and give it a namespace, for example, Services.Profile. Visual Studio should generate
your proxies for you.

414

Part III: Building Applications

Now, before you move on, it is probably best to define your profile client-side class, so add a
Personalization (or whatever you want to call it) folder and in it add an AppProfile.cs class like the
following:

public sealed class AppProfile
{
 AppSettings _Settings = new AppSettings();
 public AppSettings Settings
 {
 get
 {
 return _Settings;
 }
 }

}

public sealed class AppSettings : INotifyPropertyChanged
{
 ThemeInfo _Theme = Themes.Default;
 public ThemeInfo Theme
 {
 get
 {
 return _Theme;
 }
 set
 {
 if (value != _Theme)
 {
 _Theme = value;
 this.OnPropertyChanged(“Theme”);
 }
 }
 }

 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 internal void OnPropertyChanged(string propertyName)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
 #endregion
}

The actual profile class is simple at this point. The idea is that you would expand it for things like user
information (names, contact, etc.). For this example, you can just add a Settings property and the
AppSettings class. This class will be used to store application settings/preferences. For now, just add a

415

Chapter 16: Making the Application Come Alive

Theme property (we’ll look at the Theme types shortly). Make it implement INotifyPropertyChanged so
that any bindings to its members will be updated; this will come in handy, as you’ll see.

Next, add a ThemeInfo.cs file and put the following in it:

public sealed class ThemeInfo
{
 public ThemeInfo(string name, Brush background,
 Brush foreground, Brush dialogBackground,
 Brush buttonBackground)
 {
 this.Name = name;
 this.Background = background;
 this.Foreground = foreground;
 this.DialogBackground = dialogBackground;
 this.ButtonBackground = buttonBackground;
 }

 public string Name { get; private set; }
 public Brush Background { get; private set; }
 public Brush Foreground { get; private set; }
 public Brush DialogBackground { get; private set; }
 public Brush ButtonBackground { get; private set; }

}

Pretty straightforward — this class defines various properties that can be used to change the visual
appearance of the application. Next, you should define some themes; one way to do that is adding a
Themes class with some convenience properties and methods as follows:

public static class Themes
{
 const string BlackIceName = “Black Ice”;
 public static ThemeInfo BlackIce
 {
 get
 {
 return new ThemeInfo(BlackIceName,
 new SolidColorBrush(Colors.Black),
 new SolidColorBrush(Colors.White),
 Gradient(Colors.White, Colors.Black, 0.07d),
 Gradient(Colors.White, Colors.Black, 0.3d));
 }
 }

 const string OrangeSmoothyName = “Orange Smoothy”;
 public static ThemeInfo OrangeSmoothy
 {
 get
 {
 return new ThemeInfo(OrangeSmoothyName,
 new SolidColorBrush(Colors.Orange),
 new SolidColorBrush(Colors.White),
 Gradient(Colors.White, Colors.Orange, 0.07d),

416

Part III: Building Applications

 Gradient(Colors.White, Colors.Orange, 0.3d));
 }
 }

 static GradientBrush Gradient(Color start, Color end,
 double endOffset)
 {
 LinearGradientBrush gb = new LinearGradientBrush();
 gb.StartPoint = new Point(0.5d, 0);
 gb.EndPoint = new Point(0.5d, 1);
 GradientStop stop = new GradientStop();
 stop.Color = start;
 stop.Offset = 0d;
 gb.GradientStops.Add(stop);
 stop = new GradientStop();
 stop.Color = end;
 stop.Offset = endOffset;
 gb.GradientStops.Add(stop);
 return gb;
 }

 public static ThemeInfo Default
 {
 get
 {
 return OrangeSmoothy;
 }
 }

 public static ThemeInfo GetThemeByName(string name)
 {
 switch (name)
 {
 case OrangeSmoothyName:
 return OrangeSmoothy;
 case BlackIceName:
 return BlackIce;
 default:
 return Default;
 }
 }
}

This class defines two preset themes, Orange Smoothy and Black Ice. It also provides a default as well as a
facility to get theme information by name. If you were to go much further with this, you might want to
consider creating, say, an XML schema that you can use to specify them, but this keeps it simple, main-
taining the basic look-and-feel that you’ve designed but allowing users to select among a few different
color palettes that you design. This addresses the concern about branding and experience because you
retain full control of the theme options.

Now you need to plug your new profile goodness into your existing framework from Chapter 13. To do
this, add a Profile property to your AppPrincipal class:

Personalization.AppProfile _Profile =
 new Personalization.AppProfile();

417

Chapter 16: Making the Application Come Alive

public Personalization.AppProfile Profile
{
 get
 {
 return _Profile;
 }
}

Now the profile (and app settings) will be available from the static App.CurrentUser property defined
in Chapter 13. The next thing to do is update the SignIn user control to load the new profile settings, so
in that control’s code-behind, update the LoginCompleted method to — instead of displaying a success
message and closing — tell the user that you are loading settings and make the call to do so:

void LoginCompleted(object sender,
 Services.Authentication.LoginCompletedEventArgs e)
{
 if (e.Error != null)
 [snipped]
 else
 {
 bool success = e.Result;
 if (!success)
 [snipped]
 else
 {
 App.CurrentUser =
 new Security.AppPrincipal((string)e.UserState, true);
 this.UserMessage.Text = “Loading your settings...”;
 this.LoadProfile();
 }
 }
}

The LoadProfile method creates an instance of your new profile service proxy and calls to load all
properties for the current user:

void LoadProfile()
{
 Services.Profile.ProfileServiceClient profile =
 new Services.Profile.ProfileServiceClient();
 profile.GetAllPropertiesForCurrentUserCompleted +=
 ProfileRetrieved;
 profile.GetAllPropertiesForCurrentUserAsync(false);
}

And the last thing in this class is to handle the callback for the profile properties loaded request:

void ProfileRetrieved(object sender,
 Services.Profile.GetAllPropertiesForCurrentUserCompletedEventArgs e)
{
 if (e.Error != null)
 {
 this.UserMessage.Text = “There’s a problem loading “ +
 “your settings. Default settings loaded instead.”;
 }

418

Part III: Building Applications

 else
 {
 object val;
 if (e.Result.TryGetValue(“PreferredTheme”, out val))
 App.CurrentUser.Profile.Settings.Theme =
 Personalization.Themes.GetThemeByName((string)val);
 this.UserMessage.Text = “Settings loaded. Sign in complete.”;
 this.Close();
 }
}

Here, if there is success, you load the properties into the new AppProfile class. In this case, the code is
just loading the one Theme setting.

So now you’re all set with a fully loaded profile, what are you going to do with it? Since Silverlight 3
allows you to reuse resources at run time, there are a couple of ways to implement this style change. For
this example, we’ll go about implementing a custom theme provider that will give you a complete
example of how you can use service calls and the profile service in ASP.NET in a complete personaliza-
tion example.

As you saw in the ThemeInfo class, currently the app will only support changing the Background,
Foreground, and more subtle control over dialog and button backgrounds.

First, change the background and foreground. To do that (and make it relatively easy to use in your
app), you have to do a little prep work. First, create what I call a façade class; this class will serve as an
instance to stick in your application ResourceDictionary:

public class AppSettingsStaticResource : INotifyPropertyChanged
{
 public AppSettingsStaticResource()
 {
 App.CurrentUserChanged += new EventHandler(App_CurrentUserChanged);
 }

 void App_CurrentUserChanged(object sender, EventArgs e)
 {
 this.OnPropertyChanged(“Current”);
 }

 public AppSettings Current
 {
 get
 {
 return App.CurrentUser.Profile.Settings;
 }
 }

 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 internal void OnPropertyChanged(string propertyName)
 {

419

Chapter 16: Making the Application Come Alive

 if (this.PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
 #endregion
}

Apart from implementing the INotifyPropertyChanged (again, so bindings will detect changes), this class
simply exposes the current instance of the user’s AppSettings. It subscribes to the App.CurrentUserChanged
event (created in Chapter 13) so that when the user signs in or out, it will let any bindings know about
the change by raising the OnPropertyChanged event specified in the INotifyPropertyChanged interface,
which is what bindings look for to keep an eye on things.

Next, you need to stick this into your application ResourceDictionary, so in App.xaml, add an XML
namespace pointing to your Personalization namespace where this class should be:

xmlns:settings=”clr-namespace:AppServices.Personalization”

Then add the façade class to its ResourceDictionary:

<Application.Resources>
 <settings:AppSettingsStaticResource x:Key=”Settings” />
</Application.Resources>

What all this does is make your settings usable in XAML so that you can set up bindings against them
and have changes be detected. To do such a binding, open Page.xaml, and on the UserControl element,
add:

Foreground=”{Binding Current.Theme.Foreground, Source={StaticResource Settings}}”

(The line break is the result of the width constraint of the printed page and should be removed in
the code.)

What this is doing is telling the binding to look for a static resource (static here means that it doesn’t
change, not that it is static as in C#, i.e., “shared”) that has the key of “Settings” and, if it is found, bind
it to the property path you specify, so the net result is that it will bind to App.CurrentUser.Profile
.Settings.Theme.Foreground because, if you recall, the “Settings” resource you defined in App.xaml
points to your façade (i.e., creates an instance of it and sticks it in that ResourceDictionary) that pro-
vides a Current property pointing to App.CurrentUser.Profile.Settings. Clear as mud, right?

Now, similarly bind your LayoutRoot grid’s background like this:

Background=”{Binding Current.Theme.Background, Source={StaticResource Settings}}”

Now if you run your app, you should see these settings applied so they look something like
Figure 16-12.

420

Part III: Building Applications

Figure 16-12

This is the Black Ice theme in action! But that only gets you part way because the SignIn XAML from
Chapter 13 defines a specific look-and-feel that you want to “theme enable.” So open up the SignIn.xaml
file, and first update the Background on the Border to bind to the current theme’s DialogBackground:

<Border CornerRadius=”4,4,4,4” BorderThickness=”1”
 Background=”{Binding Current.Theme.DialogBackground, Source={StaticResource Settings}}”>

That’s one more step in the right direction, but you’ll still have the stock button style, which is, well,
stock. So why not spice it up a bit and at least match the theme? This is where the limitation of not being
able to set Style properties more than once really bites. What you can do to work around that is create a
new custom style (and template) for Button that effectively will bind to the button’s Background
property.

It takes some tweaking that would just take too much space here. Be sure to read Chapter 8 to under-
stand how to do that; you can grab the ThemeableButton style out of the accompanying sample code
(it’s in App.xaml). But once you bind a gradient background to the Button’s Background property, you
can then bind your buttons to your theme’s ButtonBackground as follows:

<Button Height=”23” Width=”73.5”
 Canvas.Left=”24” Canvas.Top=”118.5”
 Content=”Sign In!” x:Name=”SignInButton”
 Click=”SignInButton_Click”
 Background=”{Binding Current.Theme.ButtonBackground, Source={StaticResource Settings}}”
 Style=”{StaticResource ThemableButton}” >
</Button>
<Button Height=”16” Width=”17”
 Canvas.Left=”267” Canvas.Top=”4”
 Content=”X” x:Name=”CloseButton”
 Click=”CloseButton_Click”
 Background=”{Binding Current.Theme.ButtonBackground, Source={StaticResource Settings}}”
 Style=”{StaticResource ThemableButton}” />

421

Chapter 16: Making the Application Come Alive

The net result is that now, if you run and sign in, the application will take on the new theme color pal-
ette. By default, if you refer back to the profile section you added to the web.config, it specifies a default
preferred theme of Orange Smoothy, so when you log in with a user that has yet to specify one (all of
them at this point), the theme will change from Black Ice (the default for the app) to Orange Smoothy,
which looks like Figure 16-13, which is what shows just before the sign-in dialog fades out.

Figure 16-13

The next and final step is to save personalization settings back to the profile service. To enable this, add
some UI to let the user pick a theme explicitly. A simple way is to just add the following to your Page.xaml:

<StackPanel HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Orientation=”Horizontal”>
 <TextBlock Text=”Theme” />
 <RadioButton
 x:Name=”OrangeSmoothy” Content=”Orange Smoothy”
 Foreground=”{Binding Current.Theme.Foreground,
 Source={StaticResource Settings}}”
 GroupName=”ThemeChoice” Margin=”20,0,0,0”
 Click=”RadioButton_Click” />
 <RadioButton
 x:Name=”BlackIce” Content=”Black Ice”
 Foreground=”{Binding Current.Theme.Foreground,
 Source={StaticResource Settings}}”
 GroupName=”ThemeChoice” Margin=”20,0,0,0”
 Click=”RadioButton_Click” />
</StackPanel>

This sets up a theme selector at the top-left of the screen. Figure 16-14 gives you an idea of what that
looks like.

422

Part III: Building Applications

Figure 16-14

Then in your code-behind, update the Page constructor to select the current theme:

RadioButton rb =
 this.FindName(App.CurrentUser.Profile
 .Settings.Theme.Name.Replace(“ “, “”))
 as RadioButton;
if (rb != null)
 rb.IsChecked = true;

And now add the click handler to update the theme based on the selection:

private void RadioButton_Click(object sender, RoutedEventArgs e)
{
 RadioButton r = sender as RadioButton;
 Personalization.ThemeInfo ti =
 Personalization.Themes.GetThemeByName((string)r.Content);
 App.CurrentUser.Profile.Settings.Theme = ti;
 if (App.CurrentUser.Identity.IsAuthenticated)
 App.CurrentUser.Profile.Save();
 }

That’s not quite enough, since you need to detect when something else changes the theme, which could
happen in one of two ways — the theme is changed or the user signs in or out. So handle the relevant
events as follows. First, you should refactor the selection code into its own method and add a check to
see if it is checked (to avoid resetting the theme):

void SyncTheme()
{
 RadioButton rb =
 this.FindName(App.CurrentUser.Profile

423

Chapter 16: Making the Application Come Alive

 .Settings.Theme.Name.Replace(“ “, “”))
 as RadioButton;
 if (rb != null && !(rb.IsChecked ?? false))
 rb.IsChecked = true;
}

Then update your constructor to use that and subscribe to the change events for themes:

public Page()
{
 InitializeComponent();

 App.CurrentUserChanged += App_CurrentUserChanged;
 App.CurrentUser.Profile.Settings.PropertyChanged +=
 Settings_PropertyChanged;
 this.SyncTheme();
}

In the handler for the UserChanged event, you’ll need to resubscribe to the theme change (because it
will be a new instance) and sync up the theme:

void App_CurrentUserChanged(object sender, EventArgs e)
{
 App.CurrentUser.Profile.Settings.PropertyChanged +=
 Settings_PropertyChanged;
 this.SyncTheme();
}

In the settings Changed handler, check to see if it was the theme that changed and, if so, sync:

void Settings_PropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
{
 if (e.PropertyName == “Theme”)
 this.SyncTheme();
}

Now you’re all set to save the settings. Since you have only one property, it is lightweight enough to just
do this each time the user changes the theme, but if you had many properties, as part of a dialog, you
would probably have a Save button of some sort. In the theme change handler shown previously, you see
that there is a check to see if the user is authenticated and, if so, to call Save on the profile. To implement
this, open your AppProfile class and add a Save method like this one:

public void Save()
{
 Services.Profile.ProfileServiceClient profile =
 new Services.Profile.ProfileServiceClient();
 Dictionary<string, object> properties =
 new Dictionary<string,object>(1);
 properties[“PreferredTheme”] =
 App.CurrentUser.Profile.Settings.Theme.Name;
 profile.SetPropertiesForCurrentUserAsync(properties, false);
}

424

Part III: Building Applications

You see that you do the inverse of what you did for loading (naturally!). There is a completion handler for
this method as well, but since the app is saving in the background, it wouldn’t make sense to notify the user
of saving success or error. If you were explicitly requiring a user to press a Save button, though, you would
want to handle the completion, ensure that there wasn’t an error, and give the user feedback accordingly.

That wraps it up for personalization. It’s hard to generalize about what you’d want to do for this aspect
of your application, but it is important to keep in mind that adding personalization can definitely
enhance the user experience, and persisting those settings across users’ machines and browsers is pref-
erable to just saving them locally in, for example, a cookie or IsolatedStorage.

Internationalization
Since Silverlight is a Web technology, being able to internationalize applications is extremely important.
This section covers various facilities that Silverlight provides to make that possible. The run time itself
is being provided in several (nine at writing) languages, including East Asian support with input via IME.
This section covers a few aspects of internationalization; first, you’ll see how to detect and change the
current culture, then you see what facilities are there for globalizing your applications, and, finally,
you’ll see how you can localize it for specific locales you want to support.

Detecting Culture
Detecting the culture works the same way it does in standard .NET coding — you use the current
thread’s Culture and UICulture properties. For example, add this XAML to your page:

<StackPanel>
 <TextBlock x:Name=”Culture”
 TextWrapping=”Wrap” />
 <TextBlock x:Name=”UICulture”
 TextWrapping=”Wrap” />
 <Button
 x:Name=”ColorButton”
 Width=”200”
 VerticalAlignment=”Top”
 HorizontalAlignment=”Left” />
</StackPanel>

Then in your code, you can set these like this:

this.Culture.Text =
 “Current Culture: “ +
 System.Threading.Thread.CurrentThread.CurrentCulture.DisplayName;
this.UICulture.Text =
 “Current UI Culture: “ +
 System.Threading.Thread.CurrentThread.CurrentUICulture.DisplayName;

By default, Silverlight will inherit the OS’s culture settings, but you can override those in one of two
ways. First, you can set the culture and uiculture via param tags on the Silverlight object itself:

<param name=”culture” value=”en-GB” />
<param name=”uiculture” value=”en-GB” />

425

Chapter 16: Making the Application Come Alive

You can also do this in code:

System.Threading.Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo(“en-GB”);
System.Threading.Thread.CurrentThread.CurrentCulture =
 new System.Globalization.CultureInfo(“en-GB”);

Overriding the culture may come in handy if you are making assumptions about the culture, for example,
in your formatting and parsing operations. In those cases, you may want to override just the default cul-
ture, as it won’t make sense to let your app break — at least it will work, even if you don’t localize it.

One area, in particular, that can act a bit odd is currency formatting. By default, the .NET string format-
ting will use the locale’s currency symbol, but if you are not actually converting your currency amounts
to the user’s locale, this can be misleading. Actually, it’s almost certainly going to be just plain wrong.
In that case, you’d want to override the culture or use culture-insensitive formatting for those specific
situations, as covered in the next section.

Globalization
The idea of globalization is that you prepare your application to be localized as much as possible. If you
do it from the get-go, you won’t have to go back and rework things when you are ready to localize. Two
of the core aspects of globalization in Silverlight (the same in .NET) are using resource files for string
literals and any image resources that need to be localized, as well as using (or not using) the current
culture info for formatting, parsing, and sorting.

Of course, these facilities will only get you so far. Your architecture may need to be even more global-
aware in the sense of being able to adapt to different layout needs, such as making sure you use top
label alignment (putting labels above inputs) to allow for changing widths of localized labels, and even
differing input needs. For example, it is common to accept input of East Asian strings as well as Latin-
based strings for things like addresses and names.

A complete course in globalization is outside the scope of this book, so if you are intending to localize,
be sure to invest time up front to research the needs of your target locales and design your application
accordingly. Then familiarize yourself with the features built into Silverlight/.NET that can help.

Resource Files
One such feature is the use of RESX files for resources that may need to be localized. As with .NET, you
can simply add them to your projects, using the Add New Item dialog, selecting “Resources File,” and
entering the name you want. I typically create a Common.resx for common resources used throughout the
application; another typical file I create is Exceptions.resx to store exception messages. Then you may want
to create RESX files for individual user controls in your project, using a naming scheme like MyControl
.xaml.resx to clearly associate a file with the control in question and limit its scope. You should create
whatever makes sense for your needs.

You may need to manually set the Custom Tool property to ResXFileCodeGenerator
by selecting the file and pressing [F4].

426

Part III: Building Applications

If you get into the habit up front of using these, you will save yourself a lot of headache later when it
comes time to localize.

Using Culture for String Operations
You also need to watch out for times when you need to override the user’s locale. As mentioned previ-
ously, you may need to override things like sorting, parsing, and formatting. For instance, if you have a
data source that has date values stored as strings in a local format (e.g., MM/DD/YYY, a U.S. format),
you would need to take that into account in code that parses from that source into a DateTime object.
For instance, if you have sales information stored in XML using U.S. date formats, when parsing it, you
need to tell .NET to override the user’s culture with a different format provider. Something like the fol-
lowing should work:

IFormatProvider usDates =
 System.Globalization.CultureInfo.GetCultureInfo(1033).DateTimeFormat;

Get the format provider from the English-US culture (1033), and then pass that into your parsing
calls:

LastOrderReceived = DateTime.Parse(
 c.Element(“SalesNote”).Attribute(“LastOrderReceived”).Value, usDates)

Another case in which you may need to override is in formatting when displaying currency values. To
do this, set up a static property on the App type like this:

static NumberFormatInfo _defaultNumberFormat;
public static NumberFormatInfo DefaultNumberFormat
{
 get
 {
 if (_defaultNumberFormat == null)
 {
 _defaultNumberFormat =
 (NumberFormatInfo)NumberFormatInfo.CurrentInfo.Clone();
 _defaultNumberFormat.CurrencySymbol = “$”;
 }
 return _defaultNumberFormat;
 }
}

If all you want to do is override the currency symbol, you can grab a clone of the current number for-
mat and overwrite the CurrencySymbol with the U.S. dollar sign. Then use that in formatting currency
values for display, for example:

total.ToString(“c”, App.DefaultNumberFormat)

Another case in which you may want to override culture is when sorting. If your data source is not
culture-sensitive, you may want to force sorting operations to align with the data source’s culture, in
which case, you can pass in the desired culture info much as in the two previous examples.

427

Chapter 16: Making the Application Come Alive

Again, these sorts of things only get you so far. You will need to do research and understand your tar-
get locales and try to design flexibly enough to support them without much tweaking/specialization
per locale.

Localization
Assuming that you spent the time to design your application for globalization, localizing into a specific
culture should be much easier. If you didn’t, you may have a lot of rework to do. In any case, it is almost
certain that you won’t have anticipated everything, but it’s certain that trying to anticipate as much as
possible will be worth your time.

The main effort of localization involves translation of resources (usually text and images with text), but
you can certainly go deeper to understand and cater to particular locales. The facilities in Silverlight
follow pretty closely those of the full .NET Framework, although there are a few extra steps required to
get the packaging right:

 1. You use RESX files as discussed previously to create your localized resources.

 2. Add an assembly-level attribute to your AssemblyInfo file to specify the default, culture-neutral
language for your application. For example:

[assembly:NeutralResourcesLanguage(“en”)]

 3. Unload the project in Solution Explorer and find the SupportedCultures tag. List in it any cul-
tures that you intend to support, separated by semicolons.

 4. Reload the project.

Now when you compile, the XAP should include subdirectories for each supported culture with satel-
lite assemblies following the <assemblyname>.resources.dll naming convention. Then you use
ResourceManager or the strongly typed wrappers as usual to get access to the localized resources.

If you intend to support a lot of cultures or have a lot of resources, you may want to
create separate build configurations for each language and then load the language-
specific XAPs for the user. This part isn’t built-in — you’ll want to do it by detect-
ing the user’s language and/or letting her select it before loading the corresponding
localized Silverlight application XAP file.

Dates and Times
Working with dates and times can become complex, but, thankfully, .NET and Silverlight have some
facilities to help with that.

428

Part III: Building Applications

Retrieving Current Time
Any .NET programmer has probably done this one: DateTime.Now. The thing is, DateTime doesn’t really
do much for you in terms of dealing with time zones and differences in those. If that’s not important to
you, using it is fine. If not, you probably should think about DateTimeOffset.

Adjusting for Time Zones
The main tool for working with specific points in time, where differences in time zone matter, is
DateTimeOffset. You can use TimeZoneInfo, but it is basically limited to Local and Utc (which just
might be enough). If you need more, though, DateTimeOffset is the tool to use.

For example, let’s say that you have a server in a different time zone and you want to know what that
time zone is and potentially adjust for it to let the user know what time it is in terms of his time zone.
This is a common need for applications that display logging where times are stored using the server
time. In that case, using the DateTimeOffset can come in handy. To see what that is like, create a new
Silverlight application and call it DatesAndTimes, and include the generated web app for the server time.

On the server app (the web site), right-click and add a Silverlight-enabled WCF Service, as shown in
Figure 16-15.

In its code file, add the following operation:

[OperationContract]
public DateTimeOffset GetServerTime()
{
 return new DateTimeOffset(
 new DateTime(DateTime.Now.Ticks, DateTimeKind.Unspecified) +
 TimeSpan.FromHours(8).Add(TimeSpan.FromSeconds(73)),
 DateTimeOffset.Now.Offset + TimeSpan.FromHours(8));
}

Figure 16-15

429

Chapter 16: Making the Application Come Alive

This is a bit goofy, but it’s trying to emulate a server in another time zone that has a slightly different
time from the real local time. You have to create a DateTime using DateTimeKind.Unspecified because
.NET is smart and doesn’t like it if you try to create a DateTimeOffset for a different time zone using a
local DateTime object. Obviously, you’d rarely, if ever, need to do this in real apps.

Now, on your client, right-click and add a service reference to this service, putting it in a Services
namespace. In your Page.xaml, add some text blocks to show different times:

<StackPanel>
 <TextBlock x:Name=”LocalTime” />
 <TextBlock x:Name=”ServerTime” />
 <TextBlock x:Name=”ServerAdjustedTime” />
</StackPanel>

And in your code-behind, add a couple of class-level fields to keep an instance of a timer and one for
the service proxy. Keeping the proxy at the class level is just for performance, so you don’t to keep re-
creating proxies (as it will be called every second).

System.Threading.Timer _TickTock;
Services.TimeServiceClient _ServerTime;

Then add a Loaded handler in the Page constructor:

public Page()
{
 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);
}

In your loaded handler, set up your proxy instance and start your timer:

void Page_Loaded(object sender, RoutedEventArgs e)
{
 _ServerTime = new Services.TimeServiceClient();
 _ServerTime.GetServerTimeCompleted +=
 ServerTime_GetServerTimeCompleted;
 _TickTock =
 new System.Threading.Timer(TimerTick, null, 0, 1000);
}

Now, every time the timer ticks (every second), the TimerTick callback will be called, as follows:

void TimerTick(object data)
{
 _ServerTime.GetServerTimeAsync();
 this.LocalTime.Dispatcher.BeginInvoke(
 delegate { this.LocalTime.Text = “Local Time: “ +
 DateTime.Now.ToLongTimeString(); });
}

430

Part III: Building Applications

This calls the server’s time service method to get the server time we set up previously. Then it sets the
local time. Because the timer is set up on a background thread, you have to invoke changes to the UI
using a UI object dispatcher (such as the one on LocalTime here).

The callback for the server time method is like this:

void ServerTime_GetServerTimeCompleted(object sender,
 DatesAndTimes.Services.GetServerTimeCompletedEventArgs e)
{
 this.ServerTime.Dispatcher.BeginInvoke(
 delegate
 {
 this.ServerTime.Text = “Server Time: “ +
 e.Result.DateTime.ToLongTimeString() + “ “ +
 e.Result.Offset.ToString();
 });
 this.ServerAdjustedTime.Dispatcher.BeginInvoke(
 delegate
 {
 this.ServerAdjustedTime.Text = “Adjusted Server Time: “ +
 e.Result.LocalDateTime.ToLongTimeString();
 });
}

It’s doing two things. First, it shows the server time as is, including its UTC offset. Second, it uses the
DateTimeOffset’s LocalDateTime property, which automatically calculates the local time based on its
time and offset. The result of this is shown in Figure 16-16.

Figure 16-16

Astute readers will now be able to determine the author’s time zone.

The reason that being aware of DateTimeOffset is important is that Silverlight is an n-tier technology
by default — that is, the code running on the client will be running in the user’s local time zone with
the local settings, and it is going to be very likely that the server that backs up the application will be in
another time zone. Web developers who are not used to thinking about this will need to keep that in
mind, and if dealing with precise times is important to your application, you will definitely prefer
using the DateTimeOffset over DateTime.

431

Chapter 16: Making the Application Come Alive

Summary
We covered a lot in this chapter. You dug in depth into the various ways that Silverlight receives user
input and saw some techniques to enrich that. You saw how to add personalization services based on
ASP.NET’s profile provider and service. You saw how to make your application ready for the world and
how to specialize it for particular locales, and, finally, you saw how to deal with dates and times in an RIA
app that could have different time zones for its servers. All of these things combine toward enabling you
to make your applications more interactive, adaptive, and resilient to enhance your users’ experiences.

Creating
Custom Controls

Silverlight 3 introduces an extensible control model, which you can leverage to encapsulate logic
and common functionality. Custom controls allow you to follow the Silverlight pattern of separa-
tion between the presentation and logical functionality of the control. This architecture allows
you to reuse functionality, while allowing a designer to completely change out the user interface
displayed by the control.

In this chapter, you will discover how to:

Create a Silverlight Class Library with a basic control.❑❑

Reference a custom control from a Silverlight application.❑❑

Work with the Parts Control Model.❑❑

Take advantage of visual states.❑❑

Create a dependency property.❑❑

Build a content control.❑❑

Setting Up a Control Project
Start by creating a new Silverlight Class Library (SCL) in Visual Studio. This project can contain
as many custom controls as you wish. For each custom control, create a new class that extends
from Control or one of its subclasses.

17

434

Part III: Building Applications

Creating a Control Class
Silverlight exposes a handful of Control classes that you can extend. Selecting an appropriate class
to extend will save you time when implementing the control and make your control easier to use.
The following table lists a few of the base classes you can consider:

Class Common Usage

Control Provides only the essential functions for a control.

ContentControl Used by controls that are expected to host content

Panel Layout controls such as Grid, Canvas, StackPanel

ItemsControl Used to display lists of items, often in data-bound scenarios

You can also extend from higher-level controls, such as a ToggleButton, if you find that the scenario your
control targets is similar to another control in the framework.

For simplicity, the following example extends the core Control class; however, if you were creat-
ing a fully functional button, you would be well served to extend an existing button class such as
ButtonBase.

namespace Wrox.Silverlight30.Controls
{
 public class CustomButton : Control
 {

 }
}

Defining a Default Control Template
You can associate a default Control Template with your control, which will provide default rendering
when placed in a Silverlight application. As with any Silverlight control, a developer can choose to over-
ride this template. Three steps are required to set things up:

 1. Create and embed a XAML resource in the assembly.

 2. Define a resource dictionary that sets the Control Template.

 3. Specify the DefaultStyleKey in your control’s constructor.

Creating generic.xaml
To provide a default rendering for your control, you will need to create a new XAML filename —
generic.xaml. This file must be located in a folder named themes off the root of your control project.
Since Visual Studio does not offer “XAML file” from the Add New Item Wizard, select new “Text File,”
and name it generic.xaml (see Figure 17-1).

435

Chapter 17: Creating Custom Controls

Figure 17-1

Next, adjust the project properties for generic.xaml so that it is included as a resource in the output
assembly, and clear out the associated “Custom Tool,” as shown in Figure 17-2.

Figure 17-2

Providing a Style for the Control
Generic.xaml should include a resource dictionary with a Control Template defined for each control in
your project. Begin by including a custom namespace reference to the document:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

Button;assembly=Wrox.Silverlight30.CustomControls.Button”
 >
</ResourceDictionary>
 Silverlight30Silverlight30

436

Part III: Building Applications

Next, define a style that sets the template property to a new Control Template. Note that the TargetType
for both the Style and ControlTemplate reference your control class:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

Button;assembly=Wrox.Silverlight30.CustomControls.Button”
>

 <Style TargetType=”wrox:CustomButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:CustomButton”>
 <Grid x:Name=”LayoutRoot”>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>Silverlight30Silverlight30

As discussed in Chapter 8, you are free to specify other information in your style such as a more com-
plex ControlTemplate, StoryBoards, VisualStateGroups, and other property setters. For instance, you
can specify a size for the control and a basic rendering:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

Button;assembly=Wrox.Silverlight30.CustomControls.Button”
>

 <Style TargetType=”wrox:CustomButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:CustomButton”>
 <Grid x:Name=”LayoutRoot”>
 <Rectangle HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 Stroke=”#FF000000” StrokeThickness=”5” RadiusY=”5”
 RadiusX=”5”/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>Silverlight30Silverlight30

437

Chapter 17: Creating Custom Controls

Attaching the Style to the Control
The final step is to let your control know what key it should look for in generic.xaml for its default
Control Template. This is achieved by setting the DefaultStyleKey property in your constructor:

namespace Wrox.Silverlight30.CustomControls.Button
{
 public class CustomButton : Control
 {
 public CustomButton() : base()
 {
 this.DefaultStyleKey = typeof(CustomButton);
 }
 }
}

Using a Custom Control in an Application
Now that you have a basic custom control, the next logical step is going to be checking it out in a run-
ning Silverlight application. Begin by adding a reference to the assembly that contains your control. As
shown in Figure 17-3, to keep things simple, we will use a project reference.

Figure 17-3

Now from Page.xaml, include the namespace for your control and include an instance of our custom
control:

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.ButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

438

Part III: Building Applications

 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.
Button;assembly=Wrox.Silverlight30.CustomControls.Button”

 Width=”400” Height=”300”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <wrox:CustomButton />
 </StackPanel>
 </Grid>
</UserControl>Silverlight30Silverlight30Silverlight30

Voilà! We have a custom control rendering in our Silverlight application (see Figure 17-4).

Figure 17-4

Styling the Custom Control
A custom control can be manipulated just like any other Silverlight control. For instance, you can over-
ride the default template and replace it with something a bit more visually interesting by setting the
template with one defined in a style resource:

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.ButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

Button;assembly=Wrox.Silverlight30.CustomControls.Button”
 Width=”400” Height=”300”>

 <UserControl.Resources>
 <LinearGradientBrush x:Key=”StarBrush”
 StartPoint=”0.3089005235602094,0.07222222222222222”
 EndPoint=”0.9947643979057592,1.238888888888889”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color=”#FFffff00” Offset=”0” />
 <GradientStop Color=”#FFf0f0f0” Offset=”0.9944” />
 </GradientStopCollection>

439

Chapter 17: Creating Custom Controls

 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 <ControlTemplate x:Key=”StarControlTemplate”>
 <Grid>
 <Path Margin=”0,0,0,0”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Stretch=”Fill” Opacity=”1”
 Data=”M 96,0 C96,0 117,70 117,70 117,70 191,69 191,69 191,69 130,111
130,111 130,111 154,180 154,180 154,180 96,136 96,136 96,136 37,180 37,180 37,180
61,111 61,111 61,111 0,69 0,69 0,69 74,70 74,70 74,70 96,0 96,0 z”
 Fill=”{StaticResource StarBrush}”
 Width=”{TemplateBinding Width}”
 Height=”{TemplateBinding Width}” />
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <wrox:CustomButton />
 <wrox:CustomButton Template=”{StaticResource StarControlTemplate}”

Width=”100” Height=”100” />
 </StackPanel>
 </Grid>
</UserControl>Silverlight30Silverlight30Silverlight30

When run, this application shows the same control with two distinct rendering styles (see Figure 17-5).

Figure 17-5

The Parts Control Model
So far, we have looked at a control that was essentially composed of one visual element, and there was
no logic to handle interaction with that element. More sophisticated controls can be segmented into log-
ically different visual elements. Silverlight addresses the need to have distinct visual areas of a control
and still be able to completely customize its rendering with the Parts Model.

440

Part III: Building Applications

When creating a control, there are three steps to taking advantage of the Parts Model:

 1. Attributing the control class with the names and types of the Template Parts that are expected

 2. Overriding OnApplyTemplate to identify Template Parts within the supplied Control Template

 3. Creating a Control Template with elements that correspond to the expected Template Parts

Identifying Control Template Parts
The TemplatePart class attribute is used to specify which parts a control expects. These attributes
come in handy when a Design Surface, such as Blend, wishes to expose the expected Template Parts to a
developer.

Two parameters are expected by the TemplatePart attribute: name and type. The name corresponds
to the x:Name attribute that is applied in XAML to the element that represents the Template Part. The
type parameter specifies the type of element that the control expects. This type could be as general as
FrameworkElement or could be a specific control type such as CheckBox. When deciding which type to
expect for each part, it is best to be as general as is feasible. Specifying a granular type will reduce the
flexibility that a designer will have in providing a custom template.

To demonstrate the Parts Model, let’s walk through building a PartButton control that expects one
Template Part, defining the visual element that should be used to indicate a Button click:

[TemplatePart(Name = “ClickRegion”, Type = typeof(FrameworkElement))]
public class PartButton : Control

In this case, we have no specific needs from the Template Part aside from exposing Mouse Events, so
selecting FrameworkElement as the type of the part allows for the most flexibility.

Since we are going to be referencing the string identified for this part elsewhere in our control, it will
help to make a static member to hold this value:

[TemplatePart(Name = PartButton.ClickRegionPartName,
 Type = typeof(FrameworkElement))]
public class PartButton: Control
{
 // The Name of the Element expected for our Click Region
 private const string ClickRegionPartName = “ClickRegion”;

Mapping Template Parts in OnApplyTemplate
OnApplyTemplate is called whenever ApplyTemplate is invoked on a control. Normally, the Silverlight
rendering framework handles invoking this method at the appropriate time. Custom controls that
wish to take advantage of the Template Part Model need to perform the logic to find each Template
Part within OnApplyTemplate. Finding the matching element can be accomplished with a call to
GetTemplateChild:

// The Name of the Element expected for our Click Region
private const string ClickRegionPartName = “ClickRegion”;

// Private member to hold our Click Region Template Part

441

Chapter 17: Creating Custom Controls

private FrameworkElement _clickRegionElement;

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();

 // Find our Click Region Template Part
 _clickRegionElement =
 GetTemplateChild(ClickRegionPartName) as FrameworkElement;
}

Hooking Up Event Handlers to Template Parts
In the case of our PartButton, we are going to want to hook up an event handler for when the Template
Part is clicked. Be mindful that ApplyTemplate can be called multiple times, so it is important to clear
out any existing event handlers before grabbing the Template Part.

Silverlight controls are expected to gracefully handle missing Template Parts, so make sure to add some
null reference checks after looking for a particular part.

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();

 // Clear out event hanlders if this is not the first template applied
 if (_clickRegionElement != null)
 {
 _clickRegionElement.MouseLeftButtonUp -=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);
 }
 // Find our Click Region Template Part
 _clickRegionElement =
 GetTemplateChild(ClickRegionPartName) as FrameworkElement;

 if (_clickRegionElement != null)
 {
 // Hook up a new event handler for the Mouse LeftButtonUp
 _clickRegionElement.MouseLeftButtonUp +=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);
 }
}
private void clickRegion_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 // Mouse Click Logic
}

Before moving on, let’s finally make this control exhibit the most basic functionality of a button, the
Click event:

// Click Event
public event EventHandler<EventArgs> Click;

private void clickRegion_MouseLeftButtonUp(object sender,

442

Part III: Building Applications

 MouseButtonEventArgs e)
{
 if (Click != null)
 {
 this.Click(this, EventArgs.Empty);
 }
}

Using Template Parts in a Control Template
Now that we have a control exposing what Template Parts it expects and searching for them in
OnApplyTemplate, we need to provide it with what it is asking for. Start by including the template parts
in generic.xaml. All that is required is adding elements with a Name attribute that matches the Template
Part name, and making sure that it is of the right type. For the PartButton, all that is required is a
FrameworkElement with a name of “ClickRegion”.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.PartButton”>
<Style TargetType=”wrox:PartButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:PartButton”>
 <Grid x:Name=”LayoutRoot”>
 <Rectangle x:Name=”ClickRegion”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Stroke=”#FF000000”
 StrokeThickness=”5”
 RadiusY=”5” RadiusX=”5”/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>
</ResourceDictionary>

Silverlight30

Providing a Custom Template for a Parts-Based Control
If you are looking to override the Control Template for a control that uses the Parts Model, make sure to
include elements that match what the control expects. Just like in generic.xaml, all that is needed is an
element with the appropriate name and type:

<UserControl x:Class=”PartButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

PartButton;assembly=Wrox.Silverlight30.CustomControls.PartButton”
 Width=”400” Height=”300”>

 <!-- Define a Brush and a Style containing a new template-- >

443

Chapter 17: Creating Custom Controls

 <UserControl.Resources>
 <LinearGradientBrush x:Key=”StarBrush”
 StartPoint=”0.3089005235602094,0.07222222222222222”
 EndPoint=”0.9947643979057592,1.238888888888889”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color=”#FFffff00” Offset=”0” />
 <GradientStop Color=”#FFf0f0f0” Offset=”0.9944” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 <ControlTemplate x:Key=”StarControlTemplate”>
 <Grid>
 <Path x:Name=”ClickRegion” Margin=”0,0,0,0” HorizontalAlignment=”Left”
 VerticalAlignment=”Top” Stretch=”Fill” Opacity=”1”
 Data=”M 96,0 C96,0 117,70 117,70 117,70 191,69 191,69 191,69 130,111
130,111 130,111 154,180 154,180 154,180 96,136 96,136 96,136 37,180 37,180 37,180
61,111 61,111 61,111 0,69 0,69 0,69 74,70 74,70 74,70 96,0 96,0 z”
 Fill=”{StaticResource StarBrush}”
 Width=”32”
 Height=”32”
 />
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <!-- CustomButton with default control template-- >
 <wrox:PartButton x:Name=”PartButton1” />

 <!-- CustomButton with control template from a resource-- >
 <wrox:PartButton x:Name=”PartButton2” Template=”{StaticResource

StarControlTemplate}” />

 <TextBlock x:Name=”ClickTextBlock” TextAlignment=”Center”/>
 </StackPanel>
 </Grid>
</UserControl>
Silverlight30Silverlight30

Let’s also verify that our Click event is firing correctly:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 this.PartButton1.Click += new EventHandler<EventArgs>(Button_Click);

444

Part III: Building Applications

 this.PartButton2.Click += new EventHandler<EventArgs>(Button_Click);
 }

 void Button_Click(object sender, EventArgs e)
 {
 PartButton button = sender as PartButton;
 this.ClickTextBlock.Text = button.Name + “ Clicked”;
 }
}

When run, this application exhibits the behavior shown in Figure 17-6 when the user clicks within the
control.

Figure 17-6

Taking Advantage of Visual States
Silverlight includes a new Visual State Model, which addresses the need to allow the control to have
different visual representations for different logical states. This extensible model allows the control
developer to offer common logical states such as MouseOver or MousePress as well as states related to
the precise functionality of a control, such as the checked state of a CheckBox.

The VisualStateManager object provides the foundation and logic needed to transition fluidly between
states. It allows the Control Template to define both the visual appearance for a particular state and how
transitions should occur between states.

Adding Visual State support for a control can be accomplished in three steps:

 1. Attributing the control class with information about the Visual States it supports

 2. Leveraging the VisualStateManager object to specify the current state of the control

 3. Creating a Control Template with display information for each Visual State

445

Chapter 17: Creating Custom Controls

Identifying Visual States for a Control
The TemplateVisualState class attribute is used to identify what Visual States a control supports.
Each state is defined by two strings, representing the unique state name and what logical group the
state belongs to. Groups are used to identify Visual States that are mutually exclusive. A control can be
in two logical states as long as those states are in different StateGroups. The following shows a new
StateButton custom control with several states relating to mouse interaction:

// Visual State Definitions
[TemplateVisualState(Name = “Normal”, GroupName = “CommonStates”)]
[TemplateVisualState(Name = “MouseOver”, GroupName = “CommonStates”)]
[TemplateVisualState(Name = “Pressed”, GroupName = “CommonStates”)]
public class StateButton : Control

 In a manner similar to the way we handled Template Part names, it will help to declare the Visual State
identifiers as constants:

// Visual State Definitions
[TemplateVisualState(Name = NormalStateName,
 GroupName = CommonStatesGroupName)]
[TemplateVisualState(Name = MouseOverStateName,
 GroupName = CommonStatesGroupName)]
[TemplateVisualState(Name = PressedStateName,
 GroupName = CommonStatesGroupName)]
public class StateButton : Control
 {

 // Constants for Visual States
 private const string CommonStatesGroupName = “CommonStates”;
 private const string NormalStateName = “Normal”;
 private const string MouseOverStateName = “MouseOver”;
 private const string PressedStateName = “Pressed”;

Adjusting the Active Visual State
Now that you have identified the Visual States you expect, the control needs to ensure that it lets the
VisualStateManager know when a logical state change occurs. It is highly recommended that this be
done in centralized methods in your control to avoid unnecessary calls to the VisualStateManager and
confusion as to the actual logical state of the control.

Begin by adding members to track the current logical state of the control:

// Members to track the current state
private bool _isMouseOver = false;
private bool _isPressed = false;

In the StateButton custom control, we also include a new EnsureVisualState method, which calls the
VisualStateManager’s GoToState method. The GoToState method takes a parameter indicating if a tran-
sition should be used when moving to a new Visual State. Since our VisualStates are all in the same

446

Part III: Building Applications

group, no two can be active at the same time. Here we make the decision that in the StateControl, the
Pressed Visual State takes precedence over the MouseOver state:

private void EnsureVisualState(bool useTransitions)
{
 // Move to the appropriate State for the CommonStates group
 if (_isPressed)
 {
 VisualStateManager.GoToState(this,
 PressedStateName, useTransitions);

 }
 else if (_isMouseOver)
 {
 VisualStateManager.GoToState(this,
 MouseOverStateName, useTransitions);
 }
 else
 {
 VisualStateManager.GoToState(this,
 NormalStateName, useTransitions);
 }
}

Since we initially invoke our method from OnApplyTemplate and there is no state to transition from, we
will not ask for a transition to take place. We also add event handlers to trigger changes in the Visual
State.

// The Name of the Element expected for our Click Region
private const string ClickShapePartName = “ClickRegion”;

// Private member to hold our Click Region Template Part
private FrameworkElement _clickRegionElement;

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();

 // Clear out event hanlders if this is not the first template applied
 if (_clickRegionElement != null)
 {
 _clickRegionElement.MouseLeftButtonUp -=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);
 _clickRegionElement.MouseEnter -=
 new MouseEventHandler(clickRegion_MouseEnter);
 _clickRegionElement.MouseLeave -=
 new MouseEventHandler(clickRegion_MouseLeave);
 _clickRegionElement.MouseLeftButtonDown -=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonDown);
 }
 // Find our Click Region Template Part
 _clickRegionElement =
 GetTemplateChild(ClickShapePartName) as FrameworkElement;

447

Chapter 17: Creating Custom Controls

 if (_clickRegionElement != null)
 {
 // Hook up a new event handlers
 _clickRegionElement.MouseLeftButtonUp +=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);
 _clickRegionElement.MouseEnter +=
 new MouseEventHandler(clickRegion_MouseEnter);
 _clickRegionElement.MouseLeave +=
 new MouseEventHandler(clickRegion_MouseLeave);
 _clickRegionElement.MouseLeftButtonDown +=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonDown);
 }

 // Reset the current state, no need to transition
 _isMouseOver = false;
 _isPressed = false;
 EnsureVisualState(false);
}

Finally, we add logic to our event handlers to adjust the logical state of the control and trigger our
EnsureVisualState method:

// Click Event
public event EventHandler<EventArgs> Click;

void clickRegion_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 _isPressed = true;
 EnsureVisualState(true);
}

private void clickRegion_MouseLeave(object sender,
 MouseEventArgs e)
{
 _isMouseOver = false;
 EnsureVisualState(true);
}

private void clickRegion_MouseEnter(object sender,
 MouseEventArgs e)
{
 _isMouseOver = true;
 EnsureVisualState(true);
}

private void clickRegion_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 _isPressed = false;
 EnsureVisualState(true);

 if (Click != null)

448

Part III: Building Applications

 {
 this.Click(this, EventArgs.Empty);
 }
}

Visual States in a Control Template
The last step in supporting visual states is adding them to our default Control Template in generic.xaml.
Essentially, we need to provide a StoryBoard for each state and a VisualTransition that defines how
the control visually moves between different states.

Start by declaring the Groups for the control on the root visual element of the Control Template:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.StateButton”>
 <Style TargetType=”wrox:StateButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:StateButton”>
 <Grid x:Name=”LayoutRoot”>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”/>
 <vsm:VisualState x:Name=”MouseOver” />
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <Rectangle x:Name=”ClickRegion”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Stroke=”#FF000000”
 Fill=”White” StrokeThickness=”5” RadiusY=”5”
 RadiusX=”5” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>Silverlight30

VisualState Elements
For each state of the control, we now need to provide a matching VisualState element that includes the
name of the state and an appropriate StoryBoard. If the StoryBoard has duration of zero, then the state
will appear static; otherwise, the StoryBoard will repeat while the control is in that state.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”

449

Chapter 17: Creating Custom Controls

 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.StateButton”>
 <Style TargetType=”wrox:StateButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:StateButton”>
 <Grid x:Name=”LayoutRoot”>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”/>
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill)
. (SolidColorBrush.Color)”
 To=”#009933” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill)
 (SolidColorBrush.Color)”
 To=”#33CCCC” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Rectangle x:Name=”ClickRegion”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Stroke=”#FF000000”
 Fill=”White” StrokeThickness=”5” RadiusY=”5”
 RadiusX=”5” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

Silverlight30

Note that the normal state does not require a StoryBoard since it is represented by the appearance of
the default Control Template.

Visual Transitions
Next, we specify the transitions for the transform that the VisualStateManager will apply between the
states of each group. Each VisualTransition element contains a GeneratedDuration and optionally
specifies the From and To states that are matched at run time based on the transition taking place.

450

Part III: Building Applications

In the StateButton, a default transition time of half a second seems appropriate for all transitions.
Going from the MouseOver to Pressed state is something that should happen quickly, so we specify an
almost immediate transition:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.StateButton”>
 <Style TargetType=”wrox:StateButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”32” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:StateButton”>
 <Grid x:Name=”LayoutRoot”>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”/>
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill
 (SolidColorBrush.Color)”
 To=”#009933” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill).
 (SolidColorBrush.Color)”
 To=”#33CCCC” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration=”0:0:1”/>
 <vsm:VisualTransition To=”Pressed”
 GeneratedDuration=”0:0:.25”/>
 <vsm:VisualTransition From=”Pressed”
 GeneratedDuration=”0:0:.5”/>
 <vsm:VisualTransition From=”MouseOver” To=”Pressed”
 GeneratedDuration=”0:0:.1”/>
 </vsm:VisualStateGroup.Transitions>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Rectangle x:Name=”ClickRegion”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Stroke=”#FF000000”
 Fill=”White” StrokeThickness=”5” RadiusY=”5”
 RadiusX=”5” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

451

Chapter 17: Creating Custom Controls

</ResourceDictionary>

Silverlight30

End-User Customization
The StateButton custom control now fully supports some select Visual States. As with Template Parts,
the actual rendering used to represent the distinct Visual States and the transitions that are applied
between them can be configured in XAML through the Control Template property. Here, we include a
StateButton in an application to check out its behavior:

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.StateButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

StateButton;assembly=Wrox.Silverlight30.CustomControls.StateButton”
 Width=”400” Height=”300”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <wrox:StateButton ></wrox:StateButton>
 </Grid>

</UserControl>
Silverlight30Silverlight30Silverlight30

Including Dependency Properties
If you wish to have a property on a custom control fully participate in key Silverlight features such as
data binding and styling, it should be implemented as a dependency property. Dependency properties
are standard .NET properties that rely on the DependencyProperty system to store and retrieve their
actual values. Adding a dependency property is accomplished in three stages:

 1. Create and register a static member of type DependencyProperty.

 2. Create a standard .NET property whose value is managed by the DependencyProperty system.

 3. Handle updates to the property originating in the DependencyProperty system.

Registering a Dependency Property
A static member is needed on the control class to identify each dependency property the class offers.
In addition, each property must be registered with the dependency property system. This is done by
passing in:

The static ❑❑ DependencyProperty member that identifies the property

The type of the property ❑❑

The type of the object that contains the property❑❑

Optional information used to identify an event handler for when the property changes❑❑

452

Part III: Building Applications

To demonstrate the concept, we will create a new SelectButton control, which has an IsSelected
property indicating if the button has been clicked. Microsoft’s naming convention on Boolean proper-
ties has shifted to using an Is prefix.

// Declare and register a Dependency Property
public static DependencyProperty SelectedProperty =
 DependencyProperty.Register(“IsSelected”, typeof(bool),
 typeof(SelectButton),
 new PropertyMetadata(new PropertyChangedCallback(OnSelectedPropertyChanged)));

The convention is to name the static DependencyProperty the same as the true property it represents
with Property appended.

Declaring the Property
Next, create a standard .NET property that delegates management of its value to the Dependency
Property system. This is done through the GetValue and SetValue methods that we inherit from
DependencyObject:

// Create the actual Property
public bool IsSelected
{
 get
 {
 return ((bool)this.GetValue(SelectButton.SelectedProperty));
 }
 set
 {
 this.SetValue(SelectButton.SelectedProperty, value);
 }
}

Notice that we use the static IsSelectedProperty member to identify this property to the Dependency
Property system.

Handling Updates
The last parameter we provided to DependencyProperty.Register was a Callback reference to an event
handler. This will be invoked whenever the value of the property is adjusted. Since this is a dependency
property, not all updates to the property will be sent through our setter; instead, updates may be made
directly through mechanisms such as data binding.

In the event handler, invoke the EnsureVisualState helper method to transition to a new visual state:

// Handler for when our Dependency Propety Changes
private static void OnSelectedPropertyChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
{

453

Chapter 17: Creating Custom Controls

 // Cast the Dependency Object to a SelectButton
 SelectButton sb = (SelectButton)d;

 // Update Visual State
 sb.EnsureVisualState(true);
}

private void EnsureVisualState(bool useTransitions)
{
 // Move to the appropriate State for the CommonStates group
 if (_isPressed)
 {
 VisualStateManager.GoToState(this,
 PressedStateName, useTransitions);
 }
 else if (_isMouseOver)
 {
 VisualStateManager.GoToState(this,
 MouseOverStateName, useTransitions);
 }
 else if (this.IsSelected)
 {
 VisualStateManager.GoToState(this,
 SelectedStateName, useTransitions);
 }
 else
 {
 VisualStateManager.GoToState(this,
 NormalStateName, useTransitions);
 }
}

After adjusting the Selected property, the control will appear in a new visual state (see Figure 17-7):

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.SelectButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

SelectButton;assembly=Wrox.Silverlight30.CustomControls.SelectButton”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel Background=”White”>
 <!-- CustomButton with default control template -- >
 <wrox:SelectButton x:Name=”SelectButton1” />
 <!-- CustomButton that is selected -- >
 <wrox:SelectButton x:Name=”SelectButton2” IsSelected=”True” />
 </StackPanel>
 </Grid>
</UserControl>
Silverlight30Silverlight30Silverlight30

454

Part III: Building Applications

Figure 17-7

Building a Content Control
Content controls in Silverlight have the ability to host arbitrary content. Examples of content controls
include Button, TabItem, and CheckBox. In the custom button controls developed so far in this chapter,
there is no easy way to add elements within the button.

Creating a ContentControl is straightforward and requires the following steps:

 1. Inherit from ContentControl or one of its subclasses.

 2. Include a ContentPresenter in the Control Template.

Extending ContentControl
Start by creating a class that extends ContentControl:

namespace Wrox.Silverlight30.CustomControls.ContentButton
{
[TemplatePart(Name = ContentButton.ClickRegionPartName,
 Type = typeof(FrameworkElement))]
// Visual State Definitions
[TemplateVisualState(Name = NormalStateName,
 GroupName = CommonStatesGroupName)]
[TemplateVisualState(Name = MouseOverStateName,
 GroupName = CommonStatesGroupName)]
[TemplateVisualState(Name = PressedStateName,
 GroupName = CommonStatesGroupName)]
[TemplateVisualState(Name = SelectedStateName,
 GroupName = CommonStatesGroupName)]
public class ContentButton : ContentControl
{
 // The Name of the Element expected for our Click Region

455

Chapter 17: Creating Custom Controls

 private const string ClickRegionPartName = “ClickRegion”;

 // Private members for Template Part Elements
 private FrameworkElement _clickRegionElement;

 // Constants for Visual States
 private const string CommonStatesGroupName = “CommonStates”;
 private const string NormalStateName = “Normal”;
 private const string MouseOverStateName = “MouseOver”;
 private const string PressedStateName = “Pressed”;
 private const string SelectedStateName = “Selected”;

 // Members to track the current state
 private bool _isMouseOver = false;
 private bool _isPressed = false;

 // Declare and register a Dependency Property
 public static DependencyProperty SelectedProperty =
 DependencyProperty.Register(“IsSelected”, typeof(bool),
 typeof(ContentButton),
 new PropertyMetadata(new PropertyChangedCallback(OnSelectedPropertyChanged)));

 // Create the actual Property
 public bool IsSelected
 {
 get
 {
 return ((bool)this.GetValue(ContentButton.SelectedProperty));
 }
 set
 {
 this.SetValue(ContentButton.SelectedProperty, value);
 }
 }

 // Events
 public event EventHandler<EventArgs> Click;

 public ContentButton()
 : base()
 {
 this.DefaultStyleKey = typeof(ContentButton);
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 // Clear out event hanlders if this is not the first template applied
 if (_clickRegionElement != null)
 {
 _clickRegionElement.MouseLeftButtonUp -=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);

456

Part III: Building Applications

 _clickRegionElement.MouseEnter -=
 new MouseEventHandler(clickRegion_MouseEnter);
 _clickRegionElement.MouseLeave -=
 new MouseEventHandler(clickRegion_MouseLeave);
 _clickRegionElement.MouseLeftButtonDown -=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonDown);
 }
 // Find our Click Region Template Part
 _clickRegionElement =
 GetTemplateChild(ClickRegionPartName) as FrameworkElement;
 if (_clickRegionElement != null)
 {
 // Hook up a new event handlers
 _clickRegionElement.MouseLeftButtonUp +=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonUp);
 _clickRegionElement.MouseEnter +=
 new MouseEventHandler(clickRegion_MouseEnter);
 _clickRegionElement.MouseLeave +=
 new MouseEventHandler(clickRegion_MouseLeave);
 _clickRegionElement.MouseLeftButtonDown +=
 new MouseButtonEventHandler(clickRegion_MouseLeftButtonDown);
 }
 // Reset the current state, no need to transition
 _isMouseOver = false;
 _isPressed = false;
 EnsureVisualState(false);

 }

 // Handler for when our Dependency Propety Changes
 private static void OnSelectedPropertyChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 // Cast the Dependency Object to a ContentButton
 ContentButton sb = (ContentButton)d;

 // Update Visual State
 sb.EnsureVisualState(true);
 }

 private void clickRegion_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 _isPressed = true;
 EnsureVisualState(true);
 }

 private void clickRegion_MouseLeave(object sender,
 MouseEventArgs e)
 {
 _isMouseOver = false;
 EnsureVisualState(true);
 }

 private void clickRegion_MouseEnter(object sender,
 MouseEventArgs e)

457

Chapter 17: Creating Custom Controls

 {
 _isMouseOver = true;
 EnsureVisualState(true);
 }

 private void clickRegion_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 _isPressed = false;

 this.IsSelected = !this.IsSelected;

 if (Click != null)
 {
 this.Click(this, EventArgs.Empty);
 }
 }

 private void EnsureVisualState(bool useTransitions)
 {
 // Move to the appropriate State for the CommonStates group
 if (_isPressed)
 {
 VisualStateManager.GoToState(this,
 PressedStateName, useTransitions);
 }
 else if (_isMouseOver)
 {
 VisualStateManager.GoToState(this,
 MouseOverStateName, useTransitions);
 }
 else if (this.IsSelected)
 {
 VisualStateManager.GoToState(this,
 SelectedStateName, useTransitions);
 }
 else
 {
 VisualStateManager.GoToState(this,
 NormalStateName, useTransitions);
 }
 }
}

Next, add a ContentPresenter to generic.xaml. The ContentPresenter is responsible for host-
ing elements in the control. Two properties inherited from ContentControl — Content and
ContentTemplate — are set through a template binding.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”

458

Part III: Building Applications

 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.ContentButton”>

 <Style TargetType=”wrox:ContentButton”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”100” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”wrox:ContentButton”>
 <Grid x:Name=”LayoutRoot”>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”/>
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill).(GradientBrush.GradientStops)[0].

(GradientStop.Color)”
 To=”#009933” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill).(GradientBrush.GradientStops)[0].

(GradientStop.Color)”
 To=”#33CCCC” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Selected”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”ClickRegion”
 Storyboard.TargetProperty=”(Shape.Fill).(GradientBrush.GradientStops)[0].

(GradientStop.Color)”
 To=”#FF2C5DE2” Duration=”0” />
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration=”0:0:1”/>
 <vsm:VisualTransition To=”Pressed” GeneratedDuration=”0:0:.25”/>
 <vsm:VisualTransition From=”Pressed” GeneratedDuration=”0:0:.5”/>
 <vsm:VisualTransition From=”MouseOver” To=”Pressed”

GeneratedDuration=”0:0:.1”/>
 </vsm:VisualStateGroup.Transitions>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Path x:Name=”ClickRegion” HorizontalAlignment=”Left”
 VerticalAlignment=”Top” Stretch=”Fill” Opacity=”1” Width=”100”

Height=”100”
 Data=”M 96,0 C96,0 117,70 117,70 117,70 191,69 191,69 191,69 130,111
130,111 130,111 154,180 154,180 154,180 96,136 96,136 96,136 37,180 37,180 37,180
61,111 61,111 61,111 0,69 0,69 0,69 74,70 74,70 74,70 96,0 96,0 z”
 >

459

Chapter 17: Creating Custom Controls

 <Path.Fill>
 <LinearGradientBrush
 StartPoint=”0.3089005235602094,0.07222222222222222”
 EndPoint=”0.9947643979057592,1.238888888888889”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color=”#FFffff00” Offset=”0” />
 <GradientStop Color=”#FFf0f0f0” Offset=”0.9944” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Path.Fill>
 </Path>
 <ContentPresenter x:Name=”ContentPresenter”
 HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Content=”{TemplateBinding Content}”
 ContentTemplate=”{TemplateBinding ContentTemplate}” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>Silverlight30

Finally, include an element for the Content property when using the control in XAML (see Figure 17-8):

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.ContentButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

ContentButton;assembly=Wrox.Silverlight30.CustomControls.ContentButton”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel Background=”White”>
 <wrox:ContentButton x:Name=”ContentButton1”>
 <wrox:ContentButton.Content>
 <TextBlock Text=”Star” TextAlignment=”Center” Width=”100” />
 </wrox:ContentButton.Content>
 </wrox:ContentButton>
 </StackPanel>
 </Grid>
</UserControl>Silverlight30Silverlight30Silverlight30

Because of the way that the XAML parser treats subelements of a ContentControl, you can also simply
include the element as a child of the control, and it will be fed to the Content property (see Figure 17-8):

<wrox:ContentButton x:Name=”ContentButton1”>
 <TextBlock Text=”Star” TextAlignment=”Center” Width=”100”>
</wrox:ContentButton>

460

Part III: Building Applications

Figure 17-8

Since this is a ContentControl, you can also provide a DataTemplate for the ContentTemplate property
(see Figure 17-9):

<UserControl x:Class=”Wrox.Silverlight30.CustomControls.ContentButtonApp.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wrox=”clr-namespace:Wrox.Silverlight30.CustomControls.

ContentButton;assembly=Wrox.Silverlight30.CustomControls.ContentButton”
 Width=”400” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel Background=”White”>
 <wrox:ContentButton x:Name=”ContentButton2” IsSelected=”True”>
 <wrox:ContentButton.ContentTemplate>
 <DataTemplate>
 <Grid>
 <Ellipse Width=”40” Height=”20” Stroke=”Blue”></Ellipse>
 <TextBlock Text=”Star” TextAlignment=”Center”
 Width=”100”></TextBlock>
 </Grid>
 </DataTemplate>
 </wrox:ContentButton.ContentTemplate>
 </wrox:ContentButton>
 </StackPanel>
 </Grid>
</UserControl>Silverlight30Silverlight30Silverlight30

Figure 17-9

461

Chapter 17: Creating Custom Controls

Summary
In this chapter, you learned the basics of creating a custom control project, leveraging the power of
Template Parts and Visual States, and how to facilitate use of a control through Dependency Properties.

This foundation will prove useful as you develop in Silverlight and identify functionality that should
be common across different applications. Silverlight’s powerful, extensible model for creating custom
controls allows you to tackle the challenge of providing functional controls that can offer radically dif-
ferent visual representations.

Appendices

Appendix A: Silverlight Base Class Libraries Reference

Appendix B: System.Windows Reference

Appendix C: System.Windows.Media Reference

Appendix D: System.Windows.Shapes Reference

Appendix E: Additional Resources

Silverlight Base Class
Libraries Reference

The .NET Framework for Silverlight class library is based on the same base class library (BCL)
that you use in full desktop .NET applications. When building Silverlight Applications, you have
the same experience as you would when building a full Windows Presentation Foundation (WPF)
application. The difference between the full BCL and the Silverlight BCL lies in the namespaces
and classes. The Silverlight BCL is much smaller than the .NET BCL. In order to be efficient for
transport in a networked browser environment, many objects were removed that did not make
sense. For example, many of the ASP.NET-specific classes have been removed, as well as System
.Security, since the security model is completely different. In this appendix, you will see all of
the namespaces that are included in the Silverlight BCL and the functions they perform.

A

466

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

Microsoft.Scripting.Silverlight Contains classes that enable Silverlight-based
applications written in dynamic languages. Use
the DynamicApplication class to gain access to
visual elements from your dynamic language
code. The DynamicApplication class also is used
by the Silverlight host to start a dynamic language
application.

Microsoft.VisualBasic Contains classes that support the Visual Basic run
time in Visual Basic.

Microsoft.VisualBasic
.CompilerServices

Contains internal-use-only types that support the
Visual Basic compiler.

Microsoft.Win32.SafeHandles Contains classes that are abstract derivations of Safe
Handle classes that provide common functionality
supporting file and operating system handles.

MS.Internal This namespace supports the .NET Framework for
Silverlight infrastructure and is not intended to be
used directly from your code.

System Contains fundamental classes and base classes
that define commonly used value and reference
data types, events and event handlers, interfaces,
attributes, and processing exceptions. Other classes
provide services supporting data type conversion,
method parameter manipulation, mathematics,
remote and local program invocation, application
environment management, and supervision of man-
aged and unmanaged applications.

System.CodeDom.Compiler Contains a class that identifies code that is generated
by a tool.

System.Collections Contains interfaces and classes that define various
collections of objects, such as lists, queues, bit arrays,
hash tables, and dictionaries.

System.Collections.Generic Contains interfaces and classes that define generic
collections, which enables users to create strongly
typed collections that provide better type safety
and performance than non-generic, strongly typed
collections.

System.Collections.ObjectModel Contains classes that can be used as collections in the
object model of a reusable library. Use these classes
when properties or methods return collections.

467

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.Collections.Specialized Contains specialized and strongly typed collections.

System.ComponentModel Provides classes that are used to implement the run-
time and design-time behavior of components and
controls.

System.Configuration.Assemblies Contains classes that are used to configure an
assembly.

System.Diagnostics Provides classes that enable you to interact with sys-
tem processes, event logs, and performance counters.

System.Data.Services.Client Represents the classes and members that applications
can use to interact with ADO.NET Data Services.

System.Data.Services.Common Contains a class that indicates the key property or
properties of an entity.

System.Diagnostics.CodeAnalysis Contains classes for interaction with code analysis
tools. These tools are used to analyze code for con-
formance to coding conventions such as naming or
security rules.

System.Diagnostics.SymbolStore Provides classes that enable you to read and write
debug symbol information, such as source line to
Microsoft Intermediate Language (MSIL) maps.
Compilers targeting the .NET Framework can store
the debug symbol information into programmer’s
database (PDB) files. Debuggers and code profiler
tools can read the debug symbol information at run
time.

System.Globalization Contains classes that define culture-related informa-
tion, including the language; the country/region; the
calendars in use; the format patterns for dates, cur-
rency, and numbers; and the sort order for strings.
These classes are useful for writing globalized (inter-
nationalized) applications.

System.IO Contains types that enable reading and writing to
files and data streams, and types that provide basic
file and directory support.

System.IO.IsolatedStorage Contains types for creating and using a virtual
filesystem. Isolated storage provides safe client-side
storage for partial trust applications. In Silverlight, all
I/O operations are restricted to isolated storage and
do not use the filesystem of the operating system.

Continued

468

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.Json Provides standards-based support for the serializa-
tion of JavaScript Object Notation (JSON).

System.Linq Contains classes and interfaces that support queries
that use Language-Integrated Query (LINQ).

System.Linq.Expressions Contains types that enable language-level code
expressions to be represented as objects in the form
of expression trees.

System.Net Provides a simple programming interface for
many of the protocols used on networks today. The
WebRequest and WebResponse classes form the basis
of pluggable protocols, which enable you to develop
applications that use Internet resources without
worrying about the specific details of the individual
protocols.

System.Net.Sockets Provides a managed implementation of the sockets
networking interface for developers who need to
tightly control access to the network. On Windows,
this namespace provides a managed implementa-
tion of the Windows Sockets (Winsock) interface. On
Apple Mac OS X, this namespace provides a man-
aged implementation of the sockets interface based
on Berkeley Software Distribution (BSD) UNIX.

System.Reflection Contains types that retrieve information about
assemblies, modules, members, parameters, and
other entities in managed code by examining their
metadata. These types also can be used to manipu-
late instances of loaded types, for example, to hook
up events or to invoke methods.

System.Reflection.Emit Contains classes that enable a compiler or tool to
emit metadata and Microsoft Intermediate Language
(MSIL) and optionally generate a PE file on disk. The
primary clients of these classes are script engines
and compilers.

System.Resources Provides classes and interfaces that enable developers
to create, store, and manage various culture-specific
resources used in an application.

System.Runtime.CompilerServices Provides functionality for compiler writers who
use managed code to specify attributes in metadata
that affect the runtime behavior of the Common
Language Runtime (CLR).

469

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.Runtime.ConstrainedExecution Defines a set of types that enumerate and define a
contract for reliability between the author of some
code and the developers who take a dependency
on that code. The types are intended for use in con-
strained execution regions (CERs).

System.Runtime.InteropServices Provides a wide variety of members that support
COM interop and platform invoke services.

System.Runtime.Serialization Contains classes that can be used for serializing and
deserializing objects. Serialization is the process of
converting an object or a graph of objects into a linear
sequence of bytes for either storage or transmission
to another location. Deserialization is the process of
taking in stored information and recreating objects
from it.

System.Runtime.Serialization.Json Contains types for serializing objects to JavaScript
Object Notation (JSON) and deserializing objects
from JSON.

System.Runtime.Versioning Contains advanced types that support version-
ing in side-by-side implementations of the .NET
Framework.

System.Security Provides the underlying structure of the .NET
Framework security system, including base classes
for permissions.

System.Security.Cryptography Provides cryptographic services, including secure
encoding and decoding of data, as well as many
other operations, such as hashing, random number
generation, and message authentication.

System.Security.Cryptography
.X509Certificates

Contains the CLR implementation of the
Authenticode X.509 v.3 certificate. This certificate is
signed with a private key that uniquely and posi-
tively identifies the holder of the certificate.

System.Security.Permissions Defines classes that control access to operations and
resources based on policy.

System.Security.Principal Defines a principal object that represents the security
context under which code is running.

System.ServiceModel Contains the types necessary to build Silverlight cli-
ent applications that can be used to access distributed
applications.

Continued

470

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.ServiceModel.Channels Contains the types required to construct and modify
the messages used by clients to communicate with
services, the types of channels used to exchange
messages, the channel factories used to construct
those channels, and the binding elements used to
configure them.

System.ServiceModel.Description Contains the types required to construct and modify
descriptions of services, contracts, and endpoints
that are used to build service run times and to export
metadata.

System.ServiceModel.Dispatcher Contains the types necessary to modify the runtime
execution behavior of client applications.

System.ServiceModel.Syndication Contains the types that make up the Silverlight syn-
dication object model.

System.Text Contains classes representing Unicode and UTF-8
character encodings; abstract base classes for con-
verting blocks of characters to and from blocks of
bytes; and a helper class that manipulates and for-
mats String objects without creating intermediate
instances of String.

System.Text.RegularExpressions Contains classes that provide access to the .NET
Framework regular expression engine. The namespace
provides regular expression functionality that can be
used from any platform or language that runs within
the.NET Framework.

System.Threading Provides classes and interfaces that enable multi-
threaded programming.

System.Web.UI.Design
.SilverlightControls

Contains classes that provide design-time support of
ASP.NET server controls for Silverlight.

System.Web.UI.SilverlightControls Contains classes that enable ASP.NET developers to
add Silverlight functionality to ASP.NET pages.

System.Windows Provides general presentation classes for the
Silverlight client, as well as the Silverlight base
classes. These presentation classes are often
analogous to classes that exist in the Windows
Presentation Foundation (WPF).

System.Windows.Automation Contains classes that provide support for WPF UI
Automation clients.

471

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.Windows.Automation.Peers Defines the AutomationPeer base class and a set
of types that derive from it and that correspond
to Silverlight controls. Each AutomationPeer
exposes the corresponding Silverlight control to UI
Automation.

System.Windows.Automation.Provider Contains types for creating UI Automation providers.

System.Windows.Browser Contains classes that enable the interaction between
managed code and JavaScript in Silverlight-based
applications. This functionality is referred to as the
HTML Bridge feature.

System.Windows.Controls Contains classes to create controls that enable a user
to interact with an application.

System.Windows.Controls.Primitives Contains base classes and controls that are intended
to be used as part of other, more complex controls.

System.Windows.Data Contains classes used for binding properties to data
sources.

System.Windows.Documents Contains classes that support basic document con-
cepts in Silverlight.

System.Windows.Ink Provides classes to interact with and manipulate ink
in Silverlight.

System.Windows.Input Contains classes that support the Silverlight client
input system.

System.Windows.Interop Contains classes that provide managed-code expo-
sure for properties of the Silverlight plug-in, which
otherwise exist in the HTML DOM of the hosting
browser.

System.Windows.Markup Contains classes that support Extensible Application
Markup Language (XAML) processing in Silverlight.

System.Windows.Media Contains classes that enable integration of rich
media, including drawings, text, and audio/video
content in Silverlight-based applications.

System.Windows.Media.Animation Contains classes that support property animation
functionality, including timelines, storyboards, and
key frames.

System.Windows.Media.Imaging Contains types used to encode and decode bitmap
images.

Continued

472

Appendix A: Silverlight Base Class Libraries Reference

Namespace Description

System.Windows.Resources Contains a class that provides resource stream infor-
mation for application resources or other packages
obtained through GetResourceStream.

System.Windows.Shapes Contains a library of shapes that can be used in
XAML or code.

System.Windows.Threading Contains classes that support the Silverlight thread-
ing system.

System.Xml Provides standards-based support for processing XML.

System.Xml.Linq Contains the types for LINQ to XML, which is an
in-memory XML programming interface that enables
you to modify XML documents efficiently and easily.

System.Xml.Resolvers Contains classes that provide support for prepopulat-
ing the cache with DTDs or XML streams.

System.Xml.Schema Contains the XML classes that provide standards-
based support for XML Schema definition language
(XSD) schemas.

System.Xml.Serialization Contains classes that are used to serialize objects into
XML format documents or streams.

System.Windows Reference

The System.Windows namespace can be looked on as containing the code set of classes needed to
render basic Silverlight content. It contains the critical classes that most other objects in Silverlight
derive from to get their functionality.

In this appendix, you will learn about:

The classes in ❑❑ System.Windows and what each property and enumeration gives you

The ❑❑ DependencyObject class, which enables Silverlight Dependency Property system
services on its derived classes, and what those derived classes are

The ❑❑ FrameworkElement class, which enables layout, data binding, and lifetime manage-
ment on its derived classes, and what those derived classes are

The ❑❑ UIElement class, which is the base class for most visual elements that are rendered in
Silverlight

B

474

Appendix B: System.Windows Reference

System.Windows Classes
The following table describes the classes in the System.Windows namespace.

Class Description

Application Encapsulates a Silverlight application.

ApplicationIdentity Represents information about an applica-
tion that is configured for out-of-browser
support.

ApplicationServiceContext Represents the initial state of a Silverlight
application when application services are
started.

ApplicationUnhandledExceptionEventArgs Provides data for the Application
.UnhandledException event.

AssemblyPart An assembly part is an assembly that is to be
included in a Silverlight-based application’s
application package (.xap).

AssemblyPartCollection Stores a collection of AssemblyPart
objects. Provides collection support for the
Deployment.Parts property.

DataTemplate Describes the visual structure of a data
object.

DependencyObject Represents an object that participates in the
Silverlight Dependency Property system.

DependencyProperty Represents a dependency property that is
registered with the Silverlight Dependency
Property system. Dependency properties
provide support for value expressions, data
binding, animation, and property change
notification.

Deployment Provides application part and localiza-
tion information in the application mani-
fest when deploying a Silverlight-based
application.

DurationConverter Provides type conversion support for the
Duration structure.

EventTrigger Represents a trigger that applies a set of
actions (animation storyboards) in response
to an event.

475

Appendix B: System.Windows Reference

Class Description

ExceptionRoutedEventArgs Provides event data for exceptions that are
raised as events by asynchronous opera-
tions, such as MediaFailed or ImageFailed.

Expression This type is not intended to be used from
your code or to be derived from.

ExtensionPart Represents a Silverlight platform extension
that is required by your application.

ExternalPart Represents a Silverlight platform extension
that is used by your application but is not
required.

ExternalPartCollection Represents a collection of ExternalPart
instances that indicate the Silverlight plat-
form extensions used by an application.

FontStretches Provides a set of predefined font stretches
as static property values.

FontStyles Provides a set of predefined font styles as
static property values.

FontWeights Provides a set of predefined font weights as
static property values.

FrameworkElement Provides a framework of common APIs for
objects that participate in Silverlight layout.
Also defines APIs related to data binding,
object tree, and object lifetime feature areas
in Silverlight.

FrameworkTemplate Creates an element tree of elements.

HierarchicalDataTemplate Represents a DataTemplate that supports
HeaderedItemsControl objects, such as
TreeViewItem.

Icon Represents an icon that is used to identify
an offline application.

IconCollection Represents a collection of Icon instances.

LengthConverter Converts instances of other types to and
from instances of a Double that represent
an object measurement such as a height or
width.

MessageBox Displays a message to the user and option-
ally prompts for a response.

Continued

476

Appendix B: System.Windows Reference

Class Description

NullableBoolConverter Converts Nullable<(Of <(T>)>) types
(using the Boolean type constraint on the
generic) to and from strings.

PresentationFrameworkCollection<(Of <(T>)>) Provides a common collection class for
Silverlight collections.

PropertyMetadata Defines certain behavior aspects of a depen-
dency property, including the conditions it
was registered with.

PropertyPath Implements a data structure for describing
a property as a path below another prop-
erty, or below an owning type. Property
paths are used in data binding to objects
and in storyboards and timelines for
animations.

PropertyPathConverter Provides type conversion support for the
PropertyPath type. Primarily exists to sup-
port specifying a PropertyPath as a string
for XAML attribute usage of properties that
take a PropertyPath.

ResourceDictionary Provides a dictionary that contains
keyed resources used by components of a
Silverlight-based application.

RoutedEvent Represents a routed event to the Silverlight
event system.

RoutedEventArgs Contains state information and event data
associated with a routed event.

RoutedPropertyChangedEventArgs<(Of <(T>)>) Provides data about a change in value to a
dependency property as reported by par-
ticular routed events, including the previ-
ous and current value of the property that
changed.

Setter Applies a value to a property in a Style.

SetterBase Represents the base class for value setters.

SetterBaseCollection Represents a collection of objects that
inherit from SetterBase.

SizeChangedEventArgs Provides data related to the SizeChanged
event.

477

Appendix B: System.Windows Reference

Class Description

StartupEventArgs Contains the event data for the Startup
event.

Style Contains property setters, resources, and
event handlers that can be shared between
instances of a type.

StyleTypedPropertyAttribute Represents an attribute that is applied
to the class definition and reports the
TargetType of the properties that are of
type Style.

SystemColors Contains system colors, system brushes,
and system resource keys that correspond
to system display elements.

SystemParameters Contains properties that you can use to
query system settings.

TemplateBindingExpression Infrastructure. Supports template binding.

TemplatePartAttribute Represents an attribute that is applied to
the class definition to identify the types of
the named parts that are used for control
templating.

TemplateVisualStateAttribute Specifies that a VisualState is a part of a
control contract.

TextDecorationCollection Provides the value for the TextDecorations
and TextDecorations properties.

TextDecorations Implements a set of predefined text
decorations.

TriggerAction Serves as the base class for
BeginStoryboard.

TriggerActionCollection Represents a collection of BeginStoryboard
objects.

TriggerBase Serves as the base class for EventTrigger.

TriggerCollection Represents a collection of EventTrigger
objects.

UIElement Base class for most of the objects that have
visual appearance and can process basic
input in Silverlight

Continued

478

Appendix B: System.Windows Reference

Class Description

VisualState Represents the visual appearance of the
control when it is in a specific state.

VisualStateChangedEventArgs Provides data for the
CurrentStateChanging and
CurrentStateChanged events.

VisualStateGroup Contains mutually exclusive VisualState
objects and VisualTransition objects that
are used to go from one state to another.

VisualStateManager Manages states and the logic for transition-
ing between states for controls.

VisualTransition Represents the visual behavior that occurs
when the control transitions from one state
to another.

System.Windows Structures
The following table describes the structures in the System.Windows namespace.

Name Description

CornerRadius Describes the characteristics of a rounded corner,
such as can be applied to a Border.

DependencyPropertyChangedEventArgs Provides data for a PropertyChangedCallback
implementation.

Duration Represents the duration of time that a Timeline is
active.

FontStretch Describes the degree to which a font has been stretched
compared to the normal aspect ratio of that font.

FontStyle Represents the style of a font face (e.g., as normal or
italic).

FontWeight Refers to the density of a typeface, in terms of the
lightness or heaviness of the strokes.

GridLength Represents the length of elements that explicitly sup-
port Star unit types.

Point Represents an X- and Y-coordinate pair in two-
dimensional space. Can also represent a logical point
for certain property usages.

479

Appendix B: System.Windows Reference

Name Description

Rect Describes the width, height, and point origin of a
rectangle.

Size Describes the width and height of an object.

Thickness Describes the thickness of a frame around a rec-
tangle. Four Double values describe the Left,
Top, Right, and Bottom sides of the rectangle,
respectively.

System.Windows Enumerations
The following table describes the enumerations in the System.Windows namespace.

Name Description

CrossDomainAccess Defines values that specify the access that cross-domain callers have to a
Silverlight-based application.

Values:

NoAccess — Cross-domain callers have no access to the Silverlight
application.

FullAccess — Cross-domain callers have full access to the Silverlight
application.

ScriptableOnly — Cross-domain callers have script access to the
Silverlight application.

ExecutionStates Defines constants that indicate the state of an application that can run
offline.

Values:

RunningOnline — Returns if the application is running within its host
Web page.

Detaching — The application is in the process of detaching from its host
Web page.

Detached — The application is running in offline mode, detached from
its host Web page.

DetachedUpdatesAvailable — The application is running in offline
mode, but a newer version of the application has been downloaded and
will be used the next time that the application is launched.

DetachFailed — The application could not be detached from its host
Web page.

Continued

480

Appendix B: System.Windows Reference

Name Description

GridUnitType Describes the kind of value that a GridLength object is holding.

Values:

Auto — Size is determined by the size properties of the content object.

Pixel — Value is expressed as a pixel.

Star — Value is expressed as a weighted proportion of available space.

HorizontalAlignment Indicates where an element should be displayed on the horizontal axis
relative to the allocated layout slot of the parent element.

Values:

Left — Element is aligned to the left of the layout slot for the parent
element.

Center — Element is aligned to the center of the layout slot for the parent
element.

Right — Element is aligned to the right of the layout slot for the parent
element.

Stretch — Element is stretched to fill the entire layout slot of the parent
element.

LineStackingStrategy Describes a mechanism by which a line box is determined for each line.

Values:

MaxHeight — The stack height is the smallest value that contains the
extended block progression dimension of all the inline elements on that
line when those elements are properly aligned.

BlockLineHeight — The stack height is determined by the block element
line-height property value.

MessageBoxButton Specifies the buttons to include when you display a message box.

Values:

OK — Displays only the OK button.

OKCancel — Displays both the OK and Cancel buttons.

MessageBoxResult Represents a user’s response to a message box.

Values:

None — This value is not currently used.

OK — The user clicked on the OK button.

Cancel — The user clicked on the Cancel button or pressed [Esc].

Yes — This value is not currently used.

No — This value is not currently used.

481

Appendix B: System.Windows Reference

Name Description

TextAlignment Specifies whether text is centered, left-aligned, or right-aligned.

Values:

Center — Text is centered.

Left — Text is aligned to the left.

Right — Text is aligned to the right.

TextWrapping Specifies whether text wraps when it reaches the edge of its container.

Values:

Wrap — Line breaking occurs if a line of text overflows beyond the avail-
able width of its container. Line breaking occurs even if the standard
line-breaking algorithm cannot determine any line break opportunity,
such as when a line of text includes a long word that is constrained by a
fixed-width container without scrolling.

NoWrap — No line wrapping is performed.

VerticalAlignment Describes how a child element is vertically positioned or stretched
within a parent’s layout slot.

Values:

Top — The child element is aligned to the top of the parent’s layout slot.

Center — The child element is aligned to the center of the parent’s lay-
out slot.

Bottom — The child element is aligned to the bottom of the parent’s lay-
out slot.

Stretch — An element stretched to fill the entire layout slot of the par-
ent element.

Visibility Specifies the display state of an element.

Values:

Visible — Display the element.

Collapsed — Do not display the element, and do not reserve space for it
in layout.

482

Appendix B: System.Windows Reference

DependencyObject Class
The DependencyObject class enables Silverlight to compute the values of properties and to provide sys-
tem notification about values that have changed.

The class hierarchy for DependencyObject is:

System.Object

 System.Windows.DependencyObject

 System.Windows.ApplicationIdentity

 System.Windows.AssemblyPart

 System.Windows.Automation.Peers.AutomationPeer

 System.Windows.Controls.ColumnDefinition

 System.Windows.Controls.DataFormField

 System.Windows.Controls.DataGridColumn

 System.Windows.Controls.MultiScaleSubImage

 System.Windows.Controls.RowDefinition

 System.Windows.Deployment

 System.Windows.Documents.Inline

 System.Windows.ExternalPart

 System.Windows.FrameworkTemplate

 System.Windows.Icon

 System.Windows.Ink.DrawingAttributes

 System.Windows.Ink.Stroke

 System.Windows.Input.InputMethod

 System.Windows.Media.Animation.ColorKeyFrame

 System.Windows.Media.Animation.DoubleKeyFrame

 System.Windows.Media.Animation.EasingFunctionBase

 System.Windows.Media.Animation.KeySpline

483

Appendix B: System.Windows Reference

 System.Windows.Media.Animation.ObjectKeyFrame

 System.Windows.Media.Animation.PointKeyFrame

 System.Windows.Media.Animation.Timeline

 System.Windows.Media.Brush

 System.Windows.Media.CacheMode

 System.Windows.Media.Effects.Effect

 System.Windows.Media.Effects.PixelShader

 System.Windows.Media.GeneralTransform

 System.Windows.Media.Geometry

 System.Windows.Media.GradientStop

 System.Windows.Media.ImageSource

 System.Windows.Media.MultiScaleTileSource

 System.Windows.Media.PathFigure

 System.Windows.Media.PathSegment

 System.Windows.Media.Projection

 System.Windows.Media.TimelineMarker

 System.Windows.Navigation.UriFragmentHelper.BrowserNavigationProxy

 System.Windows.PresentationFrameworkCollection<(Of <(<’T>)>)>

 System.Windows.ResourceDictionary

 System.Windows.SetterBase

 System.Windows.Style

 System.Windows.TriggerAction

 System.Windows.TriggerBase

 System.Windows.UIElement

 System.Windows.VisualState

 System.Windows.VisualStateGroup

484

Appendix B: System.Windows Reference

System.Windows
.VisualStateManagerDependencyObject Methods

The following table describes the methods that the DependencyObject exposes.

Name Description

CheckAccess Determines whether the calling thread has access to this object.

ClearValue Clears the local value of a property.

Equals Determines whether the specified object is equal to the current object
(inherited from Object).

Finalize Allows an object to attempt to free resources and perform other
cleanup operations before the object is reclaimed by garbage collec-
tion (inherited from Object).

GetAnimationBaseValue Returns any base value established for a Silverlight dependency prop-
erty, which would apply in cases in which an animation is not active.

GetHashCode Serves as a hash function for a particular type (inherited from
Object).

GetType Gets the Type of the current instance (inherited from Object).

GetValue Returns the current effective value of a dependency property from a
DependencyObject.

MemberwiseClone Creates a shallow copy of the current object (inherited from Object).

ReadLocalValue Returns the local value of a dependency property, if a local value is set.

SetValue Sets the local value of a dependency property on a
DependencyObject.

ToString Returns a String that represents the current object (inherited from
Object).

UIElement Class
The UIElement class defines the input behavior for UI elements, including the events for keyboard,
mouse and stylus input, and focus events. Like WPF, Silverlight is a composite-UI rendering system;
thus, it supports routed events, and many of the events in this class are routed events. This enables
built-in event handling notification, so events from child elements bubble up to parent elements for
handling.

485

Appendix B: System.Windows Reference

The UIElement class has the following inheritance hierarchy:

System.Object

 System.Windows.DependencyObject

 System.Windows.UIElement

 System.Windows.FrameworkElement

UIElement Class Methods
The following table describes the methods that the UIElement class exposes.

Name Description

AddHandler Adds a routed event handler for a specified routed event, adding
the handler to the handler collection on the current element. Specify
handledEventsToo as true to have the provided handler be invoked for
a routed event that had already been marked as handled by another
element along the event route.

Arrange Positions child elements and determines a size for a UIElement. Parent
elements that implement custom layout call this method from their
layout override implementations to form a recursive layout update.

CaptureMouse Sets mouse capture to the element.

CheckAccess Determines whether the calling thread has access to this object (inher-
ited from DependencyObject).

ClearValue Clears the local value of a property (inherited from
DependencyObject).

Equals Determines whether the specified object is equal to the current object
(inherited from Object).

Finalize Allows an object to attempt to free resources and perform other
cleanup operations before the object is reclaimed by garbage collection
(inherited from Object).

GetAnimationBaseValue Returns any base value established for a Silverlight dependency prop-
erty, which would apply in cases in which an animation is not active
(inherited from DependencyObject).

GetHashCode Serves as a hash function for a particular type (inherited from
Object).

GetType Gets the Type of the current instance (inherited from Object).

Continued

486

Appendix B: System.Windows Reference

Name Description

GetValue Returns the current effective value of a dependency property from a
DependencyObject (inherited from DependencyObject).

InvalidateArrange Invalidates the arrange state (layout) for the element. After the invali-
dation, the element will have its layout updated, which will occur
asynchronously.

InvalidateMeasure Invalidates the measurement state (layout) for the element.

Measure Updates the DesiredSize of a UIElement. Parent elements that imple-
ment custom layout call this method from their own MeasureOverride
implementations to form a recursive layout update.

MemberwiseClone Creates a shallow copy of the current object (inherited from Object).

OnCreateAutomationPeer When implemented in a derived class, returns class-specific
AutomationPeer implementations for the Silverlight automation
infrastructure.

ReadLocalValue Returns the local value of a dependency property, if a local value is set
(inherited from DependencyObject).

ReleaseMouseCapture Removes mouse capture from the object, which typically means that
no object holds mouse capture.

SetValue Sets the local value of a dependency property on a DependencyObject
(inherited from DependencyObject).

ToString Returns a String that represents the current object (inherited from
Object).

TransformToVisual Returns a transform object that can be used to transform coordinates
from the UIElement to the specified object.

UpdateLayout Ensures that all positions of child elements of this element are properly
updated for layout.

UIElement Class Properties
The following table describes the properties of the UIElement class.

Name Description

CacheMode Gets or sets a value that indicates that rendered content should be
cached when possible.

Clip Gets or sets the Geometry used to define the outline of the contents of
an element.

487

Appendix B: System.Windows Reference

Name Description

DesiredSize Gets the size that this element computed during the measure pass of
the layout process.

Dispatcher Gets the Dispatcher this object is associated with (inherited from
DependencyObject).

Effect Gets or sets the pixel shader effect to use for rendering this UIElement.

IsHitTestVisible Gets or sets whether the contained area of this UIElement can return
true values for hit testing.

Opacity Gets or sets the degree of the object’s opacity.

OpacityMask Gets or sets the Brush used to alter the opacity of regions of this object.

Projection Gets or sets the perspective projection (3D effect) to apply when ren-
dering this UIElement.

RenderSize Gets the final render size of this element.

RenderTransform Gets or sets transform information that affects the rendering position
of this element.

RenderTransformOrigin Gets or sets the origin point of any possible render transform declared
by RenderTransform, relative to the bounds of the element.

UseLayoutRounding Gets or sets a value that determines whether rendering for the object
and its subtree should use rounding behavior that aligns rendering to
whole pixels.

Visibility Gets or sets the visibility of this element. Elements that are not visible
do not render.

UIElement Class Events
The following table describes the events associated with the UIElement class.

Name Description

GotFocus Occurs when an element receives focus.

KeyDown Occurs when a keyboard key is pressed while the element has focus.

KeyUp Occurs when a keyboard key is released while the element has focus.

LostFocus Occurs when the element loses focus.

LostMouseCapture Occurs when the object loses mouse (or stylus) capture.

Continued

488

Appendix B: System.Windows Reference

Name Description

MouseEnter Occurs when the mouse enters the bounding area of an element.

MouseLeave Occurs when the mouse leaves the bounding area of an object.

MouseLeftButtonDown Occurs when the left mouse button is pressed while the mouse pointer
is over the element.

MouseLeftButtonUp Occurs when the left mouse button is released while the mouse is over
the element (or while the element holds mouse capture).

MouseMove Occurs when the coordinate position of the mouse changes.

FrameworkElement Class
The FrameworkElement class extends the UIElement class and adds the following capabilities with lay-
out capabilities, object lifetime events, and data-binding support.

The Framework element class has the following class hierarchy:

System.Object

 System.Windows.DependencyObject

 System.Windows.UIElement

 System.Windows.FrameworkElement

 System.Windows.Controls.Border

 System.Windows.Controls.ContentPresenter

 System.Windows.Controls.Control

 System.Windows.Controls.Image

 System.Windows.Controls.ItemsPresenter

 System.Windows.Controls.MediaElement

 System.Windows.Controls.MultiScaleImage

 System.Windows.Controls.Panel

 System.Windows.Controls.Primitives.Popup

 System.Windows.Controls.TextBlock

489

Appendix B: System.Windows Reference

 System.Windows.Documents.Glyphs

 System.Windows.Shapes.Shape

FrameworkElement Class Methods
The following table describes the methods that the FrameworkElement class exposes.

Name Description

AddHandler Adds a routed event handler for a specified routed event, adding
the handler to the handler collection on the current element. Specify
handledEventsToo as true to have the provided handler be invoked
for a routed event that had already been marked as handled by
another element along the event route (inherited from UIElement).

Arrange Positions child elements and determines a size for a UIElement.
Parent elements that implement custom layout call this method from
their layout override implementations to form a recursive layout
update (inherited from UIElement).

ArrangeOverride Provides the behavior for the Arrange pass of Silverlight layout.
Classes can override this method to define their own arrange pass
behavior.

CaptureMouse Sets mouse capture to the element (inherited from UIElement).

CheckAccess Determines whether the calling thread has access to this object
(inherited from DependencyObject).

ClearValue Clears the local value of a property (inherited from
DependencyObject).

Equals Determines whether the specified object is equal to the current object
(inherited from Object).

Finalize Allows an object to attempt to free resources and perform other
cleanup operations before the object is reclaimed by garbage collec-
tion (inherited from Object).

FindName Retrieves an element that has the provided identifier name.

GetAnimationBaseValue Returns any base value established for a Silverlight dependency
property, which would apply in cases in which an animation is not
active (inherited from DependencyObject).

GetBindingExpression Returns any base value established for a Silverlight dependency
property, which would apply in cases in which an animation is not
active (inherited from DependencyObject).

Continued

490

Appendix B: System.Windows Reference

Name Description

GetHashCode Serves as a hash function for a particular type (inherited from
Object).

GetType Gets the Type of the current instance (inherited from Object).

GetValue Provides specialized property return value behavior for certain
FrameworkElement properties [overrides DependencyObject
.GetValue(DependencyProperty)].

InvalidateArrange Invalidates the arrange state (layout) for the element. After the invali-
dation, the element will have its layout updated, which will occur
asynchronously (inherited from UIElement).

InvalidateMeasure Invalidates the measurement state (layout) for the element (inherited
from UIElement).

Measure Updates the DesiredSize of a UIElement. Parent elements
that implement custom layout call this method from their own
MeasureOverride implementations to form a recursive layout update
(inherited from UIElement).

MeasureOverride Provides the behavior for the measure pass of Silverlight layout.
Classes can override this method to define their own measure pass
behavior.

MemberwiseClone Creates a shallow copy of the current object (inherited from Object).

OnApplyTemplate When overridden in a derived class, is invoked whenever applica-
tion code or internal processes (such as a rebuilding layout pass) call
ApplyTemplate.

OnCreateAutomationPeer When implemented in a derived class, returns class-specific
AutomationPeer implementations for the Silverlight automation
infrastructure (inherited from UIElement).

ReadLocalValue Returns the local value of a dependency property, if a local value is
set (inherited from DependencyObject).

ReleaseMouseCapture Removes mouse capture from the object, which typically means that
no object holds mouse capture (inherited from UIElement).

RemoveHandler Removes the specified routed event handler from this UIElement
(inherited from UIElement).

SetBinding Attaches a binding to this element, based on the provided binding
object.

SetValue Sets the local value of a dependency property on a DependencyObject
(inherited from DependencyObject).

491

Appendix B: System.Windows Reference

Name Description

ToString Returns a String that represents the current object (inherited from
Object).

TransformToVisual Returns a transform object that can be used to transform coordi-
nates from the UIElement to the specified object (inherited from
UIElement).

UpdateLayout Ensures that all positions of child elements of this element are prop-
erly updated for layout (inherited from UIElement).

FrameworkElement Class Properties
The following table describes the properties of the FrameworkElement class.

Name Description

ActualHeight Gets the rendered height of this element.

ActualWidth Gets the rendered width of this element.

CacheMode Gets or sets a value that indicates that rendered content should be
cached when possible (inherited from UIElement).

Clip Gets or sets the Geometry used to define the outline of the contents of
an element (inherited from UIElement).

Cursor Gets or sets the cursor that displays when the mouse pointer is over
this element.

DataContext Gets or sets the data context for an element when it participates in
data binding.

DesiredSize Gets the size that this element computed during the measure pass of
the layout process (inherited from UIElement).

Dispatcher Gets the Dispatcher this object is associated with (inherited from
DependencyObject).

Effect Gets or sets the pixel shader effect to use for rendering this
UIElement (inherited from UIElement).

Height Gets or sets the suggested height of the element.

HorizontalAlignment Gets or sets the horizontal alignment characteristics applied to this
element when it is composed within a parent element, such as a panel
or items control.

IsHitTestVisible Gets or sets whether the contained area of this UIElement can return
true values for hit testing (inherited from UIElement).

Continued

492

Appendix B: System.Windows Reference

Name Description

Language Gets or sets localization/globalization language information that
applies to an element.

Margin Gets or sets the outer margin of an element.

MaxHeight Gets or sets the maximum height constraint of the element.

MaxWidth Gets or sets the maximum width constraint of the element.

MinHeight Gets or sets the minimum height constraint of the element.

MinWidth Gets or sets the minimum width constraint of the element.

Name Gets (or sets, in XAML only) the identifying name of the element. The
name provides a reference so that code-behind, such as event handler
code, can refer to a markup element after an XAML processor creates
the object tree from markup.

Opacity Gets or sets the degree of the object’s opacity (inherited from
UIElement).

OpacityMask Gets or sets the brush used to alter the opacity of regions of this
object (inherited from UIElement).

Parent Gets the parent element of this element.

Projection Gets or sets the perspective projection (3D effect) to apply when ren-
dering this UIElement (inherited from UIElement).

RenderSize Gets the final render size of this element (inherited from UIElement).

RenderTransform Gets or sets transform information that affects the rendering position
of this element (inherited from UIElement).

RenderTransformOrigin Gets or sets the origin point of any possible render transform
declared by RenderTransform, relative to the bounds of the element
(inherited from UIElement).

Resources Gets the locally defined resource dictionary. In XAML, you can estab-
lish resource items as child elements of the <object.Resources>
property element, through XAML implicit collection syntax.

Style Gets or sets an instance Style that is applied for this element during
rendering.

Tag Gets or sets an arbitrary object value that can be used to store custom
information about this element.

Triggers Gets the collection of triggers for animations that are defined for this
object.

493

Appendix B: System.Windows Reference

Name Description

VerticalAlignment Gets or sets the vertical alignment characteristics applied to this ele-
ment when it is composed within a parent element such as a panel or
items control.

Visibility Gets or sets the visibility of this element. Elements that are not visible
do not render (inherited from UIElement).

Width Gets or sets the width of the element

FrameworkElement Class Events
The following table describes the events associated with the FrameworkElement class.

Name Description

BindingValidationError Occurs when a data validation error is reported by a binding source.

GotFocus Occurs when an element receives focus (inherited from UIElement).

KeyDown Occurs when a keyboard key is pressed while the element has focus
(inherited from UIElement).

KeyUp Occurs when a keyboard key is released while the element has focus
(inherited from UIElement).

LayoutUpdated Occurs when the layout of the various child elements associated with
the current Silverlight plug-in instance changes.

Loaded Occurs when the element has completed layout passes, has been ren-
dered, and is ready for interaction.

LostFocus Occurs when the element loses focus (inherited from UIElement).

LostMouseCapture Occurs when the object loses mouse (or stylus) capture (inherited
from UIElement).

MouseEnter Occurs when the mouse enters the bounding area of an element
(inherited from UIElement).

MouseLeave Occurs when the mouse leaves the bounding area of an object (inher-
ited from UIElement).

MouseLeftButtonDown Occurs when the left mouse button is pressed while the mouse
pointer is over the element (inherited from UIElement).

MouseLeftButtonUp Occurs when the left mouse button is released while the mouse is
over the element (or while the element holds mouse capture) (inher-
ited from UIElement).

Continued

494

Appendix B: System.Windows Reference

Name Description

MouseMove Occurs when the coordinate position of the mouse changes (inherited
from UIElement).

SizeChanged Occurs when either the ActualHeight or the ActualWidth properties
change value on this element.

System.Windows.Media
Reference

System.Windows.Media
The System.Windows.Media namespace contains the types that give Silverlight rich capabili-
ties for media, audio, video, vector drawing, and text. In this section, we’ll list all of the classes
and dig deeper into some of the core classes that you’ll need to bring richness to your Silverlight
applications.

System.Windows.Media Classes
The following sections list and describe the classes in the System.Windows.Media namespace.

ArcSegment
ArcSegment draws an elliptical arc between two points. The ArcSegment has five properties that
you can use to define an elliptical arc.

IsLargeArc❑❑ — A Boolean value that gets or sets whether the arc should be greater than
180 degrees. IsLargeArc is used in conjunction with SweepDirection to set one of four
arcs that can be rendered. If IsLargeArc=True, then an arc with a 180 degree sweep or
greater is rendered.

Point❑❑ — The Point structure that gets or sets the endpoint of where the elliptical arc is
drawn. The default Point is 0,0.

RotationAngle❑❑ — A Double value that gets or sets the value in degrees by which the
ellipse is rotated about the X-axis. The default RotationAngle is 0.

Size❑❑ — A Size structure that gets or sets the Width (X-radius) and Height (Y-radius) of
the arc as a Size structure. The default value is a Size with value 0,0.

SweepDirection❑❑ — The value of CounterClockwise or Clockwise that gets or sets the
value of how an arc is drawn.

C

496

Appendix C: System.Windows.Media Reference

Syntax
<Path Stroke=”DarkOrange”
 StrokeThickness=”4” Margin=”10”>
 <Path.Data>
 <PathGeometry>
 <PathFigure StartPoint=”0,65”>
 <ArcSegment
 SweepDirection=”Clockwise”
 Size=”2,9” Point=”25,65”/>
 <ArcSegment
 SweepDirection=”CounterClockwise”
 Size=”2,18” Point=”50,65”/>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Example

BezierSegment
BezierSegment defines a cubic Bezier curve drawn between two points. This class has three properties
that you can use to define the BezierSegment.

Point1❑❑ — Point structure that gets or sets the first control point of the curve. The default value
is 0.

Point2❑❑ — Point structure that gets or sets the second control point of the curve. The default
value is 0.

Point3❑❑ — Point structure that gets or sets the endpoint of the curve

Syntax
<Path Stroke=”Black” StrokeThickness=”1” >
 <Path.Data>
 <PathGeometry>
 <PathFigure
 StartPoint=”10,50”>
 <BezierSegment
 Point1=”400,12”
 Point2=”100,200”
 Point3=”100,20”/>
 </PathFigure>

497

Appendix C: System.Windows.Media Reference

 </PathGeometry>
 </Path.Data>
</Path>

Example

BitMapCache
BitMapCache enables the caching of XAML elements at run time for reuse by GPU acceleration. Using
the CacheMode property of BitMapCache creates a bitmap of a XAML element that can dramatically
improve the performance of elements on a page.

Syntax
CacheMode=”BitMapCache”

In order for BitMapCache to work on cached items, the EnableGPUAcceleration property must be set to
true on the Silverlight plug-in.

Syntax
<param name=”EnableGPUAcceleration” value=”true” />

Brush
Brush defines objects used to paint graphical objects. The XAML usage for setting a Brush can be one of
several variances, based on how you are going to set the Brush color:

<object property=”predefinedColorName”/>❑❑

<object property=”#rgb”/>❑❑

<object property=”#argb”/>❑❑

<object property=”#rrggbb”/>❑❑

<object property=”#aarrggbb”/>❑❑

<object property=”sc#scR,scG,scB”/>❑❑

<object property=”sc#scA,scR,scG,scB”/>❑❑

The following figure demonstrates the full color table for the Brush object:

498

Appendix C: System.Windows.Media Reference

The Brush object can be one of the following five types:

SolidColorBrush❑❑ — Paints an area with a solid color.

LinearGradientBrush❑❑ — Paints an area with a linear gradient.

RadialGradientBrush❑❑ — Paints an area with a radial gradient.

ImageBrush❑❑ — Paints an area with an image.

VideoBrush❑❑ — Paints an area with a running video.

Note that SolidColorBrush is the only Brush that supports attribute and object element syntax; the
remaining brushes all must be declared in XAML with the object element syntax.

colorString❑❑ — The color for a SolidColorBrush expressed as an attribute string. This includes:

Named color❑❑

RBG value (with optional Alpha information)❑❑

ScRGB value (with optional Alpha information)❑❑

<object Fill=”Red”/>

singleBrush❑❑ — Within opening and closing property elements for object.Fill, exactly one
object element for a class that derives from Brush (LinearGradient, RadialGradient, Image,
Video). For example:

<object>
 <object.Fill>
 singleBrush
 </object.Fill>
</object>

Syntax
<Rectangle Width=”200” Height=”100”>
 <Rectangle.Fill>
 <LinearGradientBrush
 StartPoint=”0,0”
 EndPoint=”1,1”>
 <GradientStop Color=”Red”
 Offset=”0.0” />
 <GradientStop Color=”Blue”
 Offset=”0.55” />
 <GradientStop Color=”Yellow”
 Offset=”1.0” />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

499

Appendix C: System.Windows.Media Reference

Colors
Colors defines a set list of color properties. The following table lists the system-defined colors and
ARGB values that you can set/get on an object.

Color String ARGB Value

Black #FF000000

Blue #FF0000FF

Brown #FFA52A2A

Cyan #FF00FFFF

DarkGray #FFA9A9A9

Gray #FF808080

Green #FF008000

LightGray #FFD3D3D3

Magenta #FFFF00FF

Orange #FFFFA500

Purple #FF800080

Red #FFFF0000

Transparent #00FFFFFF

White #FFFFFFFF

Yellow #FFFFFF00

CompositionTarget
CompositionTarget represents the display surface of a Silverlight-based application. The purpose of
this class is as the host of the Rendering event, which can be used as a per-frame callback for com-
plex layout or composition scenarios. Handling CompositionTarget.Rendering and working with a
DispatcherTimer are two possible ways to handle game loops or other lower-level timing tasks.

DeepZoomImageTileSource
DeepZoomImageTileSource sets the URI for the source of the MultiScaleImage object.

DoubleCollection
DoubleCollection defines an ordered collection of Double values.

500

Appendix C: System.Windows.Media Reference

Syntax
Dim dCollection As New DoubleCollection
dCollection.Add(6)

Dim rect As New Rectangle
With rect
 .StrokeDashArray = dCollection
 .Stroke = _
 New SolidColorBrush(Colors.Black)
 .SetValue(Canvas.TopProperty, _
 Convert.ToDouble(50))
 .SetValue(Canvas.LeftProperty, _
 Convert.ToDouble(50))
 .Height = 150
 .Width = 150
End With

LayoutRoot.Children.Add(rect)

Example

EllipseGeometry
EllipseGeometry represents the geometry of a circle or ellipse. Different from the Ellipse class in the
System.Windows.Shapes namespace, this EllipseGeometry class defines the geometry of an ellipse and
cannot render itself.

The following four properties are in the EllipseGeometry class:

Bounds❑❑ — Gets a Rect that specifies the axis-aligned bounding box of the Geometry. (Inherited
from Geometry.)

Center❑❑ — Point structure that gets or sets the center point of the EllipseGeometry.

RadiusX❑❑ — Double value that gets or sets the X-radius value of the EllipseGeometry.

RadiusY❑❑ — Double value that gets or sets the Y-radius value of the EllipseGeometry.

Syntax
In the following XAML, notice the clipped Ellipse over the semitransparent image:

<Image Source=”race.jpg”
 Opacity=”.5” >
</Image>

<Rectangle>

501

Appendix C: System.Windows.Media Reference

 <Rectangle.Fill>
 <ImageBrush
 ImageSource=”race.jpg” />
 </Rectangle.Fill>
 <Rectangle.Clip>
 <EllipseGeometry
 Center=”175,175”
 RadiusX=”50”
 RadiusY=”50” />
 </Rectangle.Clip>
</Rectangle>

Example

FontFamily
FontFamily is a string that defines the family of related fonts in the Silverlight player. The following
fonts are included:

Arial❑❑

Arial Black❑❑

Comic Sans MS❑❑

Courier New❑❑

Lucida Grande❑❑

Lucida Sans Unicode❑❑

Times New Roman❑❑

Trebuchet MS❑❑

Verdana❑❑

GeneralTransform
GeneralTransform provides transformation support for objects, such as points or rectangles.

502

Appendix C: System.Windows.Media Reference

Geometry
Geometry provides a base class for objects that define geometric shapes for operations such as clipping
and rendering two-dimensional (2D) data as a Path object. The following three key properties are used
to define a Geometry:

Bounds❑❑ — Rect that specifies the axis-aligned bounding box of the Geometry

StandardFlatteningTolerance❑❑ — Gets the standard tolerance used for polygonal
approximation.

Transform❑❑ — Gets or sets the Transform object applied to a Geometry, using a single transform
or a transform group.

GeometryCollection
GeometryCollection defines a collection of Geometry objects that derive from Geometry.

GeometryGroup
GeometryGroup represents a composite geometry, composed of other Geometry objects. These are
usually a combination of EllipseGeometry, GeometryGroup, LineGeometry, PathGeometry, and
RectangleGeometry.

Syntax
<Path Stroke=”Black”
 StrokeThickness=”3”
 Fill=”Yellow”>
 <Path.Data>
 <GeometryGroup
 FillRule=”Nonzero” >
 <EllipseGeometry
 Center=”60,70”
 RadiusX=”40”
 RadiusY=”30” />
 <RectangleGeometry
 Rect=”60,55 100 60” />
 </GeometryGroup>
 </Path.Data>
</Path>

Example

GradientBrush
An abstract class that describes a gradient, composed of gradient stops. Classes that derive from
GradientBrush, such as LinearGradientBrush and RadialGradientBrush, describe different ways of
interpreting gradient stops.

503

Appendix C: System.Windows.Media Reference

The following seven properties are exposed by GradientBrush:

ColorInterpolationMode❑❑ — Gets or sets a ColorInterpolationMode enumeration value that
specifies how the gradient’s colors are interpolated.

GradientStops❑❑ — Gets or sets a collection of the GradientStop objects associated with the
Brush. Each GradientStop specifies a color and an offset along the Brush’s gradient axis. The
default is an empty GradientStopCollection.

MappingMode❑❑ — Gets or sets a BrushMappingMode enumeration value (Absolute or
RelativeToBoundingBox) that specifies whether the positioning coordinates of the gradient
brush are absolute or relative to the output area.

Absolute❑❑ — The coordinate system is not relative to a bounding box. Values are inter-
preted directly in local space.

 ❑❑ RelativeToBoundingBox — The coordinate system is relative to a bounding box: 0
indicates 0 percent of the bounding box, and 1 indicates 100 percent of the bounding
box. For example, (0.5, 0.5) describes a point in the middle of the bounding box, and
(1, 1) describes a point at the bottom right of the bounding box.

Opacity❑❑ — Gets or sets the degree of opacity of a Brush. (Inherited from Brush.)

RelativeTransform❑❑ — Gets or sets the transformation that is applied to the Brush using relative
coordinates. (Inherited from Brush.)

SpreadMethod❑❑ — Gets or sets the type of spread method that specifies how to draw a gradient
that starts or ends inside the bounds of the object to be painted.

Transform❑❑ — Gets or sets the transformation that is applied to the brush. (Inherited from
Brush.)

GradientStop
GradientStop sets the location and color of a transition point in a LinearGradientBrush or
RadialGradientBrush.

Syntax
<Rectangle Width=”200” Height=”100”>
 <Rectangle.Fill>
 <LinearGradientBrush
 StartPoint=”0,0”
 EndPoint=”1,1”>
 <GradientStop
 Color=”Yellow”
 Offset=”0.0” />
 <GradientStop
 Color=”Red”
 Offset=”0.25” />
 <GradientStop
 Color=”Blue”
 Offset=”0.75” />

504

Appendix C: System.Windows.Media Reference

 <GradientStop
 Color=”LimeGreen”
 Offset=”1.0” />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Example

GradientStopCollection
GradientStopCollection represents a collection of GradientStop objects that can be individually
accessed by index.

ImageBrush
 ImageBrush paints an area with an ImageSource, which is defined as a BitmapImage. An ImageBrush is
used on an object such as a Rectangle or a TextBlock.

Syntax
<Rectangle>
 <Rectangle.Fill>
 <ImageBrush ImageSource=”race.jpg”/>
 </Rectangle.Fill>
</Rectangle>

Example

ImageSource
ImageSource is an abstract type that is used in the signatures for Image.Source, MultiScaleImage
.Source, and ImageBrush.ImageSource.

505

Appendix C: System.Windows.Media Reference

LinearGradientBrush
LinearGradientBrush paints an area with a linear gradient along a specific linear line defined by
StartPoint and EndPoint properties. In the case of a LinearGradientBrush, its GradientStops are ren-
dered along this line.

The default linear gradient is diagonal. In the default, the StartPoint of a linear gradient is a Point
with value 0,0, the upper-left corner of the area being painted, and its EndPoint is a Point with value
1,1, the lower-right corner of the area being painted. The colors in the resulting gradient are interpolated
along the diagonal path.

Syntax
<Rectangle Width=”200”
 Height=”100”>
<Rectangle.Fill>
 <LinearGradientBrush
 StartPoint=”0,0”
 EndPoint=”1,0”>
 <GradientStop
 Color=”Yellow”
 Offset=”0.25” />
 <GradientStop
 Color=”Green”
 Offset=”0.50” />
 <GradientStop
 Color=”Red”
 Offset=”0.75” />
 </LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

Example

LineGeometry
LineGeometry defines the geometry of a line used by a Path shape to render the line. Similar to the
EllipseGeometry, the LineGeometry only defines the line — it depends on other objects to render itself.

Syntax
<Path Stroke=”OrangeRed”
 StrokeThickness=”5”>
 <Path.Data>
 <GeometryGroup>
 <LineGeometry
 StartPoint=”10,10”

506

Appendix C: System.Windows.Media Reference

 EndPoint=”100,10”/>
 <LineGeometry
 StartPoint=”100,10”
 EndPoint=”100,100”/>
 </GeometryGroup>
 </Path.Data>
</Path>

Example

LineSegment
LineSegment defines a line drawn between two points, which can be part of a PathFigure within Path
data. The LineSegment class does not contain a property for the starting point of the line. The starting
point of the line is the endpoint of the previous segment or the StartPoint of the PathFigure if no other
segments exist.

The simple shape of a line can also be generated using Line. LineSegment is particularly intended for
drawing a line within what is typically a more complex geometry group.

The LineSegment has a single Point property, which gets or sets the endpoint of the line.

Syntax
<Canvas>
 <Path Stroke=”Black” StrokeThickness=”1”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint=”10,20”>
 <PathFigure.Segments>
 <LineSegment Point=”100,130”/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
 </Path>
</Canvas>

MatrixTransform
MatrixTransform creates an arbitrary 2D X–Y plane that uses a 3 × 3 matrix for transformations. The
following six property values are used in XAML to define the transform matrix on the X–Y plane.

m11❑❑ — Double value at position (1, 1) of the transformation Matrix

m12❑❑ — Double value at position (1, 2) of the transformation Matrix

507

Appendix C: System.Windows.Media Reference

m21❑❑ — Double value at position (2, 1) of the transformation Matrix

m22❑❑ — Double value at position (2, 2) of the transformation Matrix

offsetX❑❑ — Double value at position (3, 1) of the transformation Matrix

offsetY❑❑ — Double value at position (3, 2) of the transformation Matrix

Syntax
<Rectangle Width=”75”
 Height=”90”
 Fill=”Blue”>
 <Rectangle.RenderTransform>
 <MatrixTransform>
 <MatrixTransform.Matrix >
 <Matrix OffsetY=”-50”
 M12=”1.4” />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </Rectangle.RenderTransform>
</Rectangle>

Example

MediaStreamDescription
MediaStreamDescription defines the media type needed to initialize the MediaElement and the under-
lying media pipeline. The following properties are specific to MediaStreamDescription:

MediaAttributes❑❑ — Gets a collection of attributes about the media stream. This collection only
contains attributes that are used to initialize the media pipeline and the MediaElement.

StreamId❑❑ — Integer value that gets the stream ID of the stream being described

Type❑❑ — The MediaStream enumeration that contains the following:

Audio❑❑ — The stream is an audio stream.

Video❑❑ — The stream is a video stream.

Script❑❑ — The stream is a script stream.

Currently script commands are not supported in MediaStreamSource.

508

Appendix C: System.Windows.Media Reference

MediaStreamSample
MediaStreamSample defines a media sample in enough detail to allow the MediaElement and underly-
ing pipeline to render the sample.

MediaStreamSource
MediaStreamSource enables MediaElement to use a container format other than ASF.

MultiScaleTileSource
MultiScaleTileSource specifies the source of Deep Zoom images. The DeepZoomImageTileSource,
which derives from this class, is used to specify the source of a MultiScaleImage.

PathFigure
PathFigure defines a path geometry that can contain multiple PathSegments to make up a single, inter-
connected geometry.

IsClosed❑❑ — Boolean that gets or sets a value that specifies whether this figure’s first and last
segments are connected

IsFilled❑❑ — Boolean that gets or sets whether the contained area of this PathFigure is to be
used for hit-testing, rendering, and clipping

Segments❑❑ — A PathsegmentCollection that gets or sets the collection of segments that define
the shape of this PathFigure object

StartPoint❑❑ — Point structure that gets or sets the Point where the PathFigure begins

The key property for the PathFigure is its StartPoint, which is the point from which the first con-
tained line segment starts. If you need a geometry in which the multiple segments are not connected,
you can define multiple PathFigure objects in a PathFigureCollection. Each PathFigure would have
a different StartPoint.

Usage
<PathFigure>
 oneOrMorePathSegments
</PathFigure>

where the PathSegments are objects that derive from PathSegment, such as ArcSegment,
BezierSegment, LineSegment, PolyBezierSegment, PolyQuadraticBezierSegment, or
QuadraticBezierSegment.

Notice in the following XAML that there are only three lines in the PathFigure.Segements collection,
yet four lines are rendered. The IsClosed property automatically closed the geometry with a line con-
necting the first and third LineSegements. You can also omit the PathGeometries.Figures syntax,
since you can use the implicit collection syntax in this case.

509

Appendix C: System.Windows.Media Reference

Syntax
<Path Stroke=”DarkSalmon”
 StrokeThickness=”3”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure
 StartPoint=”10,20”
 IsClosed=”True” >
 <PathFigure.Segments>
 <LineSegment
 Point=”100,130”/>
 <LineSegment
 Point=”100,230”/>
 <LineSegment
 Point=”200,50”/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

Example

PathFigureCollection
As demonstrated in the previous PathFigure example, this PathFigureCollection contains a collec-
tion of PathFigure objects that collectively make up the geometry of a PathGeometry.

Either you can use the Path mini-language, which is a collection of drawing commands, or you can
define multiple geometries in a PathFigure.Segments collection.

PathGeometry
As demonstrated in the previous PathFigure example, a PathGeometry is a complex shape that may be
composed of arcs, curves, ellipses, lines, and rectangles.

510

Appendix C: System.Windows.Media Reference

Syntax
<Path Stroke=”Black”
 StrokeThickness=”3”
 Fill=”DodgerBlue”>
 <Path.Data>
 <GeometryGroup
 FillRule=”EvenOdd” >
 <EllipseGeometry
 Center=”60,70”
 RadiusX=”40”
 RadiusY=”30” />
 <RectangleGeometry
 Rect=”60,55 100 60” />
 </GeometryGroup>
 </Path.Data>
</Path>

Example

PathSegment
PathSegment defines a segment of a PathFigure object based on an instance of the ArcSegment,
BezierSegment, LineSegment, PolylineSegement, PolyBezierSegment, PolyQuadraticBezierSegment,
and QuadraticBezierSegment derived types.

Similarly to the previous PathFigure example, this XAML adds a BezierSegment and sets the IsClosed
property to False.

Syntax
<Path Stroke=”DarkSalmon”
 StrokeThickness=”3”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure
 StartPoint=”10,20”
 IsClosed=”False” >
 <PathFigure.Segments>
 <BezierSegment
 Point1=”100,0”
 Point2=”200,200”
 Point3=”300,100”/>
 <LineSegment
 Point=”100,130”/>

511

Appendix C: System.Windows.Media Reference

 <LineSegment
 Point=”100,230”/>
 <LineSegment
 Point=”200,50”/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

Example

PathSegmentCollection
PathSegmentCollection represents a collection of PathSegment geometries. Each PathSegment in the
PathSegmentCollection can be accessed by index. See the previous PathFigure examples for the syn-
tax on implementing a PathSegmentCollection.

PixelFormats
PixelFormats defines the values that represent the supported pixel formats:

Bgr32❑❑ — An sRGB format with 32 bits per pixel (BPP). Each color channel (blue, green, and red)
is allocated 8 BPP.

Pbgra32❑❑ — An sRGB format with 32 BPP. Each channel (blue, green, red, and alpha) is allocated
8 BPP. Each color channel is pre-multiplied by the alpha value.

PlaneProjection
PlaneProjection is used to create a perspective transform (a 3D effect) on an object. For example,
you can create the illusion that an object is rotated toward or away from you. You can apply a
PlaneProjection to any UIElement, including controls. This class also enables you to animate the per-
spective transform properties to create moving 3D effects.

The following properties are in the PlaneProjection class:

CenterOfRotationX❑❑ — Double value that gets or sets the X-coordinate of the center of rotation
of the object you rotate

CenterOfRotationY❑❑ — Double value that gets or sets the Y-coordinate of the center of rotation
of the object you rotate

512

Appendix C: System.Windows.Media Reference

CenterOfRotationZ❑❑ — Double value that gets or sets the Z-coordinate of the center of rotation
of the object you rotate

GlobalOffsetX❑❑ — Double value that gets or sets the distance the object is translated along the
X-axis of the screen

GlobalOffsetY❑❑ — Double value that gets or sets the distance the object is translated along the
Y-axis of the screen

GlobalOffsetZ❑❑ — Double value that gets or sets the distance the object is translated along the
Z-axis of the screen.

LocalOffsetX❑❑ — Double value that gets or sets the distance the object is translated along the
X-axis of the plane of the object

LocalOffsetY❑❑ — Double value that gets or sets the distance the object is translated along the
Y-axis of the plane of the object

LocalOffsetZ❑❑ — Double value that gets or sets the distance the object is translated along the
Z-axis of the plane of the object

RotationX❑❑ — Double value that gets or sets the number of degrees to rotate the object around
the X-axis of rotation

RotationY❑❑ — Double value that gets or sets the number of degrees to rotate the object around
the Y-axis of rotation

RotationZ❑❑ — Double value that gets or sets the number of degrees to rotate the object around
the Z-axis of rotation

Syntax
<StackPanel Margin=”35” Background=”PapayaWhip”>
 <StackPanel.Projection>
 <PlaneProjection RotationX=”-25”
 RotationY=”35”
 RotationZ=”0” />
 </StackPanel.Projection>

 <TextBlock Margin=”10”>First Name:</TextBlock>
 <TextBox Margin=”10”></TextBox>

 <TextBlock Margin=”10”>Last Name:</TextBlock>
 <TextBox Margin=”10”></TextBox>

 <Button Margin=”10” Content=”Submit” Width=”100” />
</StackPanel>

513

Appendix C: System.Windows.Media Reference

Example

PointCollection
PointCollection represents a collection of Point values that can be individually accessed by index.

Syntax
<Path Stroke=”DarkOliveGreen”
 StrokeThickness=”3”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure
 StartPoint=”10,50”>
 <PathFigure.Segments>
 <PathSegmentCollection>
 <PolyBezierSegment
 Points=”0,0 100,0
 300,100 400,10
 100,0 300,100” />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

Example

514

Appendix C: System.Windows.Media Reference

PolyBezierSegment
PolyBezierSegment represents one or more cubic Bezier curves.

PolyLineSegment
PolyLineSegment defines a series of connected lines in a PathFigure, which contains a series of points
that specify the endpoint of each line segment in a PointCollection.

The previous PathSegment example demonstrates a PolylineSegment.

PolyQuadraticBezierSegment
PolyQuadraticBezierSegment represents a set of quadratic Bezier segments that have one control
point and an endpoint. Each PolyQuadraticBezierSegment can have an unlimited number of control
points, with the values of these points and the endpoint given as the Points property value.

Syntax
<Path Stroke=”Chocolate”
 StrokeThickness=”4” >
 <Path.Data>
 <PathGeometry>
 <PathFigure
 StartPoint=”10,100”>
 <PolyQuadraticBezierSegment
 Points=”200,200 300,
 100 0,200 30,250”/>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Example

Projection
Projection provides a base class for projections, which describe how to transform an object in 3D
space using perspective transforms. See PlaneProjection earlier in this appendix for usage.

QuadraticBezierSegment
QuadraticBezierSegment defines a quadratic Bezier curve between two points in a PathFigure. In a
QuadraticBezierSegment, there is no property for the starting point of the line. The starting point of
the line is the endpoint of the previous segment, or the StartPoint of the PathFigure if no other seg-
ments exist.

515

Appendix C: System.Windows.Media Reference

Syntax
<Path Stroke=”Chocolate”
 StrokeThickness=”4” >
 <Path.Data>
 <PathGeometry>
 <PathFigure
 StartPoint=”10,100”>
 <QuadraticBezierSegment
 Point1=”200,200”
 Point2=”300,100”/>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Example

RadialGradientBrush
Using a focal point that defines the beginning of the gradient and a circle that defines the endpoint of
the gradient, this class paints an area with a radial gradient.

Whereas the linear gradient has a start and an endpoint to define the gradient vector, the radial gradi-
ent has an ellipse along with a focal point (the GradientOrigin) to define the gradient behavior. The
ellipse defines the endpoint of the gradient.

RadialGradientBrush is derived from GradientBrush, which is derived from Brush. The four proper-
ties unique to RadialGradientBrush are:

Center❑❑ — Point structure that gets or sets the center of the outer circle of the radial gradient

GradientOrigin❑❑ — Point structure that gets or sets the location of the focal point that defines
the beginning of the gradient

RadiusX❑❑ — Double value that gets or sets the horizontal radius of the outer circle of the radial
gradient

RadiusY❑❑ — Double value that gets or sets the vertical radius of the outer circle of the radial gradient

Syntax
<Rectangle Width=”200”
 Height=”100”>
 <Rectangle.Fill>
 <RadialGradientBrush
 GradientOrigin=”0.5,0.5”
 Center=”0.5,0.5”
 RadiusX=”0.5”
 RadiusY=”0.5”>

516

Appendix C: System.Windows.Media Reference

 <GradientStop
 Color=”Yellow”
 Offset=”0” />
 <GradientStop
 Color=”Red”
 Offset=”0.25” />
 <GradientStop
 Color=”Blue”
 Offset=”0.75” />
 <GradientStop
 Color=”LimeGreen”
 Offset=”1” />
 </RadialGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Example

RectangleGeometry
RectangleGeometry describes a 2D rectangular geometry. The RectangleGeometry has three properties
that set its height, width, X location, Y location, and the X-radius and Y-radius of the geometry’s ellipse.

RadiusX❑❑ — Double value that gets or sets the X-radius of the ellipse used to round the corners of
the rectangle

RadiusY❑❑ — Double value that gets or sets the Y-radius of the ellipse used to round the corners of
the rectangle

Rect❑❑ — Rect structure that gets or sets the dimensions of the rectangle in the form of
Rect=”x,y,width,height”

The value of RadiusX or RadiusY must be greater than or equal to 0 and less than half of the X-radius or
Y-radius of the geometry. Anything greater than half of the X-radius or Y-radius value will be treated as
half of the X-radius or Y-radius value. In the case of the example below, the X-radius and Y-radius of the
geometry are both 150, so any RadiusX or RadiusY setting greater than 75 would be treated as 75.

Syntax
<Path Fill=”Firebrick”
 Stroke=”Green”
 StrokeThickness=”4”>
 <Path.Data>
 <RectangleGeometry
 Rect=”100,100,150,150” />
 </Path.Data>
</Path>

517

Appendix C: System.Windows.Media Reference

Example

This XAML adds the RadiusX and RadiusY properties:

<Path Fill=”Firebrick”
 Stroke=”Green”
 StrokeThickness=”4”>
 <Path.Data>
 <RectangleGeometry
 RadiusX=”30”
 RadiusY=”30”
 Rect=”100,100,150,150” />
 </Path.Data>
</Path>

resulting in the same geometry with rounded corners:

RenderOptions
RenderOptions provides options for controlling the rendering behavior of objects. By default, Silverlight
optimizes text for readability, which can have a large performance impact when you animate text. This
is because during animation, Silverlight is constantly re-drawing the optimized text, and this optimiza-
tion takes significant resources. When animating text, you will likely get better performance by turning
off this readability optimization by setting the TextRenderingMode property to RenderForAnimation
and then setting it back to Default when the animation ends.

RotateTransform
RotateTransform rotates an object clockwise about a specified point in a 2D X–Y coordinate system by
changing the Angle property, which rotates an object by that angle about the point CenterX, CenterY.

518

Appendix C: System.Windows.Media Reference

Syntax
In the following example, the Angle property is set to 90 degrees for the second TextBlock. Notice that
the Margin is the same for both TextBlock elements.

<TextBlock Margin=”100,30”
 Text=”Rotated Text”
 FontSize=”18” />
<TextBlock Margin=”100, 30”
 Text=”Rotated Text”
 FontSize=”18” >
 <TextBlock.RenderTransform>
 <RotateTransform Angle=”90” />
 </TextBlock.RenderTransform>
</TextBlock>

Example

ScaleTransform
ScaleTransform scales an object by changing the ScaleX and ScaleY properties in a ScaleTransform.
The four properties that set how the ScaleTransform is rendered are:

ScaleX❑❑ — Double value that specifies the amount to stretch or shrink an object along the X-axis

ScaleY❑❑ — Double value that specifies the amount to stretch or shrink an object along the Y-axis

CenterX❑❑ — Double value that gets or sets the X-coordinate of the center point of this
ScaleTransform

CenterY❑❑ — Double value that gets or sets the Y-coordinate of the center point of this
ScaleTransform

All scale operations are centered on the point specified by the CenterX and CenterY properties.

The same XAML used in the RotateTransform example is used below. A TransformGroup is added,
so we can use multiple transforms, and the ScaleX and ScaleY properties are changed on the
ScaleTransform to grow the X and Y scale of the rotated text by 2. Note that when you change the font
size of an object, the font is calculated independently to render the best resolution based on the size set.
When scaling text with ScaleTransform, the text preserves the proportions of the original-sized text.

Syntax
<TextBlock Margin=”100,30”
 Text=”Rotated Text”
 FontSize=”18” />

519

Appendix C: System.Windows.Media Reference

<TextBlock Margin=”100, 30”
 Text=”Rotated Text”
 FontSize=”18” >
 <TextBlock.RenderTransform>
 <TransformGroup>
 <RotateTransform
 Angle=”90” />
 <ScaleTransform
 ScaleX=”2” ScaleY=”2”/>
 </TransformGroup>
 </TextBlock.RenderTransform>
</TextBlock>

Example

SkewTransform
SkewTransform represents a 2D skew that created the illusion of 3D depth in a 2D object. The four prop-
erties that set how the SkewTransform is rendered are:

AngleX❑❑ — Double value that gets or sets the X-axis skew angle, which is measured in degrees
counterclockwise from the Y-axis

AngleY❑❑ — Double value that gets or sets the Y-axis skew angle, which is measured in degrees
counterclockwise from the X-axis

CenterX❑❑ — Double value that gets or sets the X-coordinate of the transform center

CenterY❑❑ — Double value that gets or sets the Y-coordinate of the transform center

The following image illustrates the various effects the properties can have on an object:

520

Appendix C: System.Windows.Media Reference

Syntax
<Image
 Source=”race.jpg”
 Margin=”50, 25”>
 <Image.RenderTransform>
 <TransformGroup>
 <SkewTransform
 AngleX=”-15”
 AngleY=”0” />
 <ScaleTransform
 ScaleX=”.5”
 ScaleY=”.5”/>
 </TransformGroup>
 </Image.RenderTransform>
</Image>

Example

SolidColorBrush
SolidColorBrush paints an area with a solid color. For a complete description of the SolidColorBrush,
refer to the beginning of the section for the Brush class.

TileBrush
TileBrush defines a way for the derived ImageBrush and VideoBrush classes to paint a region by using
one or more tiles. The properties specific for its rendering are:

AlignmentX❑❑ — Gets or sets the horizontal alignment of content in the TileBrush base tile.

AlignmentY❑❑ — Gets or sets the vertical alignment of content in the TileBrush base tile.

Opacity❑❑ — Gets or sets the degree of opacity of a Brush. (Inherited from Brush.)

RelativeTransform❑❑ — Gets or sets the transformation that is applied to the Brush using relative
coordinates. (Inherited from Brush.)

Stretch❑❑ — Gets or sets a value that specifies how the content of this TileBrush stretches to fit
its tiles.

Transform❑❑ — Gets or sets the transformation that is applied to the Brush. (Inherited from
Brush.)

TimelineMarker
TimelineMarker represents metadata associated with a specific point in a media file.

521

Appendix C: System.Windows.Media Reference

TimelineMarkerCollection
TimelineMarkerCollection represents a collection of TimelineMarker objects that can be individually
accessed by index.

TimelineMarkerRoutedEventArgs
TimelineMarkerRoutedEventArgs provides event data for the MarkerReached event.

Transform
Transform defines functionality for creating transformation on a 2D plane. The following transform
classes derive from the Transform class:

System.Windows.Media❑❑ — MatrixTransform

System.Windows.Media❑❑ — RotateTransform

System.Windows.Media❑❑ — ScaleTransform

System.Windows.Media❑❑ — SkewTransform

System.Windows.Media❑❑ — TransformGroup

System.Windows.Media❑❑ — TranslateTransform

TransformCollection
TransformCollection represents a collection of Transform objects that can be individually accessed by
index. The TransformCollection element does not need to be included in your TransformGroup decla-
ration, as it follows the implicit collection syntax.

TransformGroup
TransformGroup defines a series of transforms on an object. A TransformGroup is required if there is
more than a single transform being applied to an object.

It is important to note that the order of the transforms matters in how the element renders. Rotating
an object that is centered at the origin produces a different result from rotating an object that has been
moved away from the origin based on the CenterX or CenterY property settings.

Syntax
<Image
 Source=”race.jpg”
 Margin=”110, 15”>
 <Image.RenderTransform>
 <TransformGroup>
 <SkewTransform
 AngleX=”-15”
 AngleY=”0” />
 <ScaleTransform
 ScaleX=”.5”
 ScaleY=”.5”/>

522

Appendix C: System.Windows.Media Reference

 <RotateTransform
 Angle=”25”/>
 </TransformGroup>
 </Image.RenderTransform>
</Image>

Example

TranslateTransform
TranslateTransform translates (moves) an object in the 2D X–Y coordinate system.

VideoBrush
A VideoBrush is a type of Brush object similar to a LinearGradientBrush or an ImageBrush. However,
instead of painting an area with a solid color, a gradient, or an image, it paints an area with video con-
tent. This video content is provided by a MediaElement. Just like the other brush types, you can use a
VideoBrush to paint the Fill of a shape such as a Rectangle or the geometry contents of a Path, the
Background of a Canvas, or the Foreground of a TextBlock or Run.

To use a VideoBrush, you create a MediaElement, apply the VideoBrush to the object that you want to
paint, and set the VideoBrush object’s SourceName property to the name of the MediaElement that you
created. The following properties are in the VideoBrush class:

AlignmentX❑❑ — Gets or sets the horizontal alignment of content in the TileBrush base tile.
(Inherited from TileBrush.)

AlignmentY❑❑ — Gets or sets the vertical alignment of content in the TileBrush base tile.
(Inherited from TileBrush.)

Opacity❑❑ — Gets or sets the degree of opacity of a Brush. (Inherited from Brush.)

RelativeTransform❑❑ — Gets or sets the transformation that is applied to the Brush using relative
coordinates. (Inherited from Brush.)

SourceName❑❑ — Gets or sets the name of the MediaElement to use as the source of the
VideoBrush.

Stretch❑❑ — Gets or sets a value that specifies how the content of this TileBrush stretches to fit
its tiles. (Inherited from TileBrush.)

Transform❑❑ — Gets or sets the transformation that is applied to the Brush. (Inherited from
Brush.)

523

Appendix C: System.Windows.Media Reference

Syntax
<MediaElement
 x:Name=“butterflyMediaEelment“
 Source=“sampleMedia/Butterfly.wmv“ IsMuted=“True“
 Opacity=“0.0“ IsHitTestVisible=“False“ />

<TextBlock Canvas.Left=“5“ Canvas.Top=“30“
 FontFamily=“Verdana“ FontSize=“120“
 FontWeight=“Bold“ TextWrapping=“Wrap“
 Text=“Video“>

 <TextBlock.Foreground>
 <VideoBrush SourceName=“butterflyMediaElement“
 Stretch=“UniformToFill“ />
 </TextBlock.Foreground>
</TextBlock>

VisualTreeHelper
VisualTreeHelper provides utility methods that can be used to traverse object relationships (along
child object or parent object axes) in the Silverlight visual tree.

System.Windows.Media Enumerations
The following sections describe the enumerations in the System.Windows.Media namespace.

AlignmentX
AlignmentX specifies how content is positioned horizontally in a container.

The values are:

Left❑❑

Center❑❑

Right❑❑

AlignmentY
AlignmentY specifies how content is positioned vertically in a container.

The values are:

Top❑❑

Center❑❑

Bottom❑❑

524

Appendix C: System.Windows.Media Reference

BrushMappingMode
BrushMappingMode specifies the coordinate system used by a Brush.

The values are:

Absolute❑❑ — The coordinate system is not relative to a bounding box. Values are interpreted
directly in local space.

RelativeToBoundingBox❑❑ — The coordinate system is relative to a bounding box: 0 indicates 0
percent of the bounding box, and 1 indicates 100 percent of the bounding box.

ColorInterpolationMode
ColorInterpolationMode specifies how the colors in a gradient are interpolated.

The values are:

ScRgbLinearInterpolation❑❑ — Colors are interpolated in the scRGB color space.

SRgbLinearInterpolation❑❑ — Colors are interpolated in the sRGB color space.

FillRule
FillRule specifies how the intersecting areas of PathFigure objects contained in a Geometry are com-
bined to form the area of the Geometry.

The values are:

EvenOdd❑❑ — Rule that determines whether a point is in the fill region by drawing a ray from that
point to infinity in any direction and counting the number of path segments within the given
shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.

Nonzero❑❑ — Rule that determines whether a point is in the fill region of the path by drawing a
ray from that point to infinity in any direction and then examining the places where a segment
of the shape crosses the ray

GradientSpreadMethod
GradientSpreadMethod specifies how to draw the gradient outside a gradient brush’s gradient vector
or space.

The values are:

Pad❑❑ — The color values at the ends of the gradient vector fill the remaining space.

Reflect❑❑ — The gradient is repeated in the reverse direction until the space is filled.

Repeat❑❑ — The gradient is repeated in the original direction until the space is filled.

525

Appendix C: System.Windows.Media Reference

LogSource
LogSource indicates the reason that a media log was generated.

The values are:

RequestLog❑❑ — The RequestLog method was called.

Stop❑❑ — The media stopped.

Seek❑❑ — A seek operation occurred on the media; that is, playback was moved forward or backward.

Pause❑❑ — The media paused.

SourceChanged❑❑ — The source of the media changed.

EndOfStream❑❑ — The media reached the end of its stream.

MediaElementShutdown❑❑ — The runtime shutdown.

RuntimeShutdown❑❑ — The runtime shutdown.

MediaElementState
MediaElementState defines the potential states of a MediaElement object.

The values are:

Closed❑❑ — MediaElement contains no media. The MediaElement displays a transparent frame.

Opening❑❑ — MediaElement is validating and attempting to open the Uniform Resource Identifier
(URI) specified by its Source property. While in this state, the MediaElement queues any Play,
Pause, or Stop commands it receives and processes them if the media is successfully opened.

Buffering❑❑ — MediaElement is loading the media for playback. Its Position does not advance
during this state. If the MediaElement was already playing video, it continues to display the last
displayed frame.

Playing❑❑ — MediaElement is playing the media specified by its source property. Its Position
advances.

Paused❑❑ — MediaElement does not advance its Position. If the MediaElement was playing
video, it continues to display the current frame.

Stopped❑❑ — MediaElement contains media but is not playing or paused. Its Position is 0 and
does not advance. If the loaded media is video, the MediaElement displays the first frame.

MediaSampleAttributeKeys
MediaSampleAttributeKeys is an enumeration that describes the media sample.

The values are:

KeyFrameFlag❑❑ — Data about the sample needed to decrypt it

DRMInitializationVector❑❑ — Boolean value describing whether or not the given video frame is
a keyframe

526

Appendix C: System.Windows.Media Reference

MediaSourceAttributesKeys
MediaSourceAttributesKeys is an enumeration that describes the media source.

The values are:

CanSeek❑❑ — Boolean value describing whether or not this source can seek

Duration❑❑ — DRM data that the pipeline needs to initialize and decrypt correctly. This is the
DRM header represented as a string.

DRMHeader❑❑ — The length of playback time of this source as an integer in 100-nanosecond
increments

MediaStreamAttributeKeys
MediaStreamAttributeKeys is an enumeration that describes the media stream.

The values are:

CodecPrivateData❑❑ — Codec data that the pipeline needs to initialize and render correctly. For
video, this is other Header information. For audio, this is the base16-encoded WaveFormatEx
structure.

VideoFourCC❑❑ — This is data needed to instantiate a video codec. This is the 4 character value
also known as FourCC.

Width❑❑ — This is the integer width a video frame is to be rendered at.

Height❑❑ — This is the integer height a video frame is to be rendered at.

MediaStreamSourceDiagnosticKind
MediaStreamSourceDiagnosticKind is an enumeration that describes the type of diagnostic informa-
tion used by the media.

The values are:

BufferLevelInMilliseconds❑❑ — Download buffer in milliseconds

BufferLevelInBytes❑❑ — Download buffer in bytes

MediaStreamType
MediaStreamType is an enumeration that specifies the type of stream.

The values are:

Audio❑❑ — The stream is an audio stream.

Video❑❑ — The stream is a video stream.

Script❑❑ — The stream is a script stream.

527

Appendix C: System.Windows.Media Reference

PenLineCap
PenLineCap describes the shape at the end of a line or segment.

The values are:

Flat❑❑ — A cap that does not extend past the last point of the line. Comparable to no line cap.

Square❑❑ — A rectangle that has a height equal to the line thickness and a length equal to half the
line thickness

Round❑❑ — A semicircle that has a diameter equal to the line thickness

Triangle❑❑ — An isosceles right triangle whose base length is equal to the thickness of the line

PenLineJoin
PenLineJoin describes the shape that joins two lines or segments.

The values are:

Miter❑❑ — Line joins use regular angular vertices.

Bevel❑❑ — Line joins use beveled vertices.

Round❑❑ — Line joins use rounded vertices.

Stretch
Stretch describes how content is resized to fill its allocated space.

The values are:

None❑❑ — The content preserves its original size.

Fill❑❑ — The content is resized to fill the destination dimensions. The aspect ratio is not preserved.

Uniform❑❑ — The content is resized to fit in the destination dimensions while it preserves its
native aspect ratio.

UniformToFill❑❑ — The content is resized to fill the destination dimensions while it preserves
its native aspect ratio. If the aspect ratio of the destination rectangle differs from the source, the
source content is clipped to fit in the destination dimensions.

StyleSimulations
StyleSimulations describes the simulation style of a font.

The values are:

None❑❑ — No font style simulation

BoldSimulation❑❑ — Bold style simulation

528

Appendix C: System.Windows.Media Reference

ItalicSimulation❑❑ — Italic style simulation

BoldItalicSimulation❑❑ — Bold and Italic style simulation

SweepDirection
SweepDirection defines the direction in which an elliptical arc is drawn.

The values are:

Counterclockwise❑❑ — Specifies that arcs are drawn in a counterclockwise (negative-angle)
direction.

Clockwise❑❑ — Specifies that arcs are drawn in a clockwise (positive-angle) direction.

System.Windows.Shapes

Reference

System.Windows.Shapes Classes
The System.Windows.Shapes namespace contains the basic drawing elements that make up most
of the rendered content in the player. The Ellipse, Line, Path, Polygon, Polyline, and Rectangle
classes render vector-based resolution-independent lines and shape, so they can be resized appro-
priately no matter what size the shape is being rendered in. In this appendix, we’ll go into detail
on the classes in this namespace and cover how you can use the classes.

The following classes are in the System.Windows.Shapes namespace:

Shape❑❑

Ellipse❑❑

Line❑❑

Path❑❑

Polygon❑❑

Polyline❑❑

Rectangle❑❑

We’ll cover each in the next sections.

Shape Class
The Shape class is the base class for the Ellipse, Line, Path, Polygon, Polyline, and Rectangle
classes. The following sections describe the properties of the Shape class that are not inherited
from UIElement or FrameworkElement.

D

530

Appendix D: System.Windows.Shapes Reference

Fill
Fill gets or sets the color (Brush object in System.Windows.Media) that specifies how to paint the inte-
rior of the shape. Figure D-1 demonstrates the full color table for the Brush object.

Figure D-1

The Brush object can be one of the following five types:

SolidColorBrush❑❑ — Paints an area with a solid color.

LinearGradientBrush❑❑ — Paints an area with a linear gradient.

RadialGradientBrush❑❑ — Paints an area with a radial gradient.

ImageBrush❑❑ — Paints an area with an image.

VideoBrush❑❑ — Paints an area with a running video.

Note that SolidColorBrush is the only brush that supports attribute and object element syntax; the
remaining brushes all must be declared in XAML with the object element syntax.

colorString❑❑ — The color for a SolidColorBrush expressed as an attribute string. This includes:

Named color❑❑

RBG value (with optional Alpha information)❑❑

ScRGB value (with optional Alpha information)❑❑

<object Fill=”Red”/>

531

Appendix D: System.Windows.Shapes Reference

singleBrush❑❑ — Within opening and closing property elements for object.Fill; exactly one
object element for a class that derives from Brush (LinearGradient, RadialGradient, Image,
Video) For example:

<object>
 <object.Fill>
 singleBrush
 </object.Fill>
</object>

Stretch
Stretch gets or sets one of the following four values from the Stretch enumeration value that indicates
how a shape is stretched within its parent.

None❑❑ — The content preserves its original size.

Fill❑❑ — The content is resized to fill the destination dimensions. The aspect ratio is not
preserved.

Uniform❑❑ — The content is resized to fit in the destination dimensions while it preserves its
native aspect ratio.

UniformToFill❑❑ — The content is resized to fill the destination dimensions while it preserves
its native aspect ratio. If the aspect ratio of the destination rectangle differs from the source, the
source content is clipped to fit in the destination dimensions.

Syntax
<Line Stroke=”Black”
 Stretch=”UniformToFill”
 StrokeThickness=”10”
 X1=”120” Y1=”40”
 X2=”200” Y2=”20”/>

StrokeDashArray
StrokeDashArray is a collection of Double values that get or set values based on a specific grammar
that indicate the pattern of dashes and gaps that is used to outline shapes.

The grammar follows this format:

StrokeDashArray=”S[,G][,S*,G**]*“

S❑❑ — A Double value that defines the length of the first stroke in the sequence

G❑❑ — A Double value that defines the length of the first gap between strokes in the sequence. If G
is not included, the gap length is identical to the preceding stroke length.

S*❑❑ — A Double value that defines the length of the additional strokes in the sequence

G*❑❑ — A Double value that defines the length of additional gaps between strokes in the sequence.
If G* is omitted, the gap length is identical to the preceding stroke length.

532

Appendix D: System.Windows.Shapes Reference

Syntax
<Rectangle Stroke=”Black”
 Margin=”100,100,100,100”
 StrokeDashArray=”3,2”>
</Rectangle>

Example

StrokeDashCap; StrokeEndLineCap; StrokeStartLineCap
Each Stroke with the Cap suffix gets or sets one of the four PenLineCap enumeration values below that
specify how the ends of a dash are drawn.

Flat❑❑ — A cap that does not extend past the last point of the line. Comparable to no line cap.

Square❑❑ — A rectangle that has a height equal to the line thickness and a length equal to half the
line thickness

Round❑❑ — A semicircle that has a diameter equal to the line thickness

Triangle❑❑ — An isosceles right triangle whose base length is equal to the thickness of the line

Syntax
<Path Data=”M 70, 150 A 60,
 60 0 0 0 170, 150”
 Stroke=”Red”
 StrokeThickness=”20”
 StrokeStartLineCap=”Triangle”
 StrokeEndLineCap=”Square”/>

Example

StrokeDashOffset
StrokeDashOffset is a Double value that gets or sets the distance within a dash pattern where a dash
begins.

533

Appendix D: System.Windows.Shapes Reference

Syntax
<Rectangle Stroke=”Green”
 Margin=”100,100,100,100”
 StrokeThickness=”15”
 StrokeDashArray=”3,3”
 StrokeDashOffset=”5”
 StrokeDashCap=”Triangle” >
</Rectangle>

Example

StrokeLineJoin
StrokeLineJoin gets or sets one of the three PenLineJoin enumeration values below that specify the
Join appearance used at the vertices of a Shape:

Miter Line joins use regular angular vertices. ❑❑

Bevel Line joins use beveled vertices. ❑❑

Round Line joins use rounded vertices. ❑❑

Syntax
<Path Height=”200”
 StrokeLineJoin=”Bevel”
 Fill=”#FFFFFFFF”
 Stroke=”Black”
 StrokeThickness=”10”
 Data=”M320,195 L325,65
 L411,192 L432,47”/>

Example

StrokeMiterLimit
StrokeMiterLimit is a Double value that gets or sets a positive number greater than or equal to 1 that
limits the ratio of the miter length (the beveled end of two joined lines) to half the StrokeThickness of
a Shape element.

534

Appendix D: System.Windows.Shapes Reference

Syntax
<Path Height=”200”
 StrokeMiterLimit=”50”
 Fill=”#FFFFFFFF”
 Stroke=”Black”
 StrokeThickness=”10”
 Data=”M320,195 L325,65
 L411,192 L432,47”/>

Example

Stroke
Stroke is a Brush that gets or sets how the Shape outline is painted. The Fill property explained in the
beginning of this chapter uses the same Brush object. The same definition and rules apply to the Stroke
property.

Syntax
<Rectangle
 Stroke=”Black”
 StrokeThickness=”6”
 StrokeDashArray=”3,2”
 StrokeDashCap=”Round”
 StrokeLineJoin=”Round” >
</Rectangle>

Example

StrokeThickness
StrokeThickness is a Double value that gets or sets the width in pixels of a Shape outline.

Syntax
<Rectangle
 Stroke=”Purple”
 StrokeThickness=”6”>
</Rectangle>

535

Appendix D: System.Windows.Shapes Reference

Example

Ellipse Class
The Ellipse class, whose purpose is to simply draw an ellipse, inherits all of its properties from Shape,
UIElement, and FrameworkElement.

Syntax
 <Canvas>
 <Ellipse Canvas.Top=”30”
 Canvas.Left=”30”
 Fill=”Red”
 Height=”150”
 Width=”120”
 StrokeThickness=”5”
 StrokeDashArray=”3”
 StrokeDashCap=”Triangle”
 Stroke=”Black”/>
</Canvas>

Example
The above XAML returns this ellipse:

Line Class
The Line class, which draws a straight line between two points, has the following properties that deter-
mine where it should draw the line based on the parent it is rendering in:

X1❑❑ — Gets or sets the X-coordinate of the Line start point.

X2❑❑ — Gets or sets the X-coordinate of the Line endpoint.

Y1❑❑ — Gets or sets the Y-coordinate of the Line start point.

Y2❑❑ — Gets or sets the Y-coordinate of the Line endpoint.

The remaining properties of the Line class are inherited from Shape, FrameworkElement, and
UIElement.

536

Appendix D: System.Windows.Shapes Reference

Syntax
<Line Stroke=”Black”
 StrokeThickness=”10”
 X1=”120” Y1=”40” X2=”200” Y2=”20” />

Example
The above XAML returns this line:

Path Class
The Path class is responsible for drawing a series of connected lines and curves. The line and curve
dimensions are declared through the Data property, which is the only property of the Path class not
inherited from Shape, UIElement, or FrameworkElement.

The Data property gets or sets a Geometry that specifies the shape to be drawn.

In XAML, the Data property is made up of a series of geometries (PathGeometry objects) based on the
Path mini-language. Each PathGeometry is a collection of PathFigure objects that describe a discrete
shape in the PathGeometry. Each PathFigure is composed of one or more PathSegment objects, which
each describes a segment of the figure.

The following segments make up each PathFigure:

ArcSegment❑❑ — Creates an elliptical arc between two points.

BezierSegment❑❑ — Creates a cubic Bezier curve between two points.

LineSegment❑❑ — Creates a line between two points.

PolyBezierSegment❑❑ — Creates a series of cubic Bezier curves.

PolyLineSegment❑❑ — Creates a series of lines.

PolyQuadraticBezierSegment❑❑ — Creates a series of quadratic Bezier curves.

QuadraticBezierSegment❑❑ — Creates a quadratic Bezier curve.

Each segment in a PathFigure is connected to another segment to create a single, continuous shape.
The segments are connected based on the initial StartPoint property of a PathFigure, and then subse-
quent segments are connected based on the endpoint of the previous segment.

In the Path mini-language, the PathSegments map to commands in the language. The following com-
mands make up the Path mini-language:

Move❑❑ — Specifies the start point of a new figure, represented by an uppercase M and lowercase
m. The uppercase M indicates that startPoint is an absolute value, while the lowercase m indi-
cates that startPoint is an offset to the previous point.

537

Appendix D: System.Windows.Shapes Reference

Draw❑❑ — A Draw command can consist of several shape commands. The following shape com-
mands are available:

Command
Mini-
Language Description

Line L or l Creates a straight line between the current point
and the specified endpoint with an uppercase L
or lowercase l. The endpoint is an X, Y value of
the Point structure.

HorizontalLine H or h Creates a horizontal line between the current
point and the specified X-coordinate with an
uppercase H or lowercase h. The endpoint is the
X-coordinate of the line.

VerticalLine V or v Creates a vertical line between the current
point and the specified Y-coordinate with an
uppercase V or lowercase v. The endpoint is the
Y-coordinate of the line.

CubicBezierCurve C or c Creates a cubic Bezier curve between the cur-
rent point (Point structure) and the specified
endpoint (Point structure) by using the two
specified control points with an uppercase C or
lowercase c. The two control points and one end-
point are described as follows:

controlPoint1❑❑ — The first control point
of the curve, which determines the starting
tangent of the curve

controlPoint2❑❑ — The second control point
of the curve, which determines the ending
tangent of the curve

endPoint❑❑ — The point to which the curve
is drawn

QuadraticBezierCurve Q or q Creates a quadratic Bezier curve between the
current point (Point structure) and the speci-
fied endpoint (Point structure) by using the
specified control points with an uppercase Q or
lowercase q. The control point and endpoint are
as follows:

controlPoint❑❑ — The control point of the
curve, which determines the starting and
ending tangents of the curve

endPoint❑❑ — The point to which the curve
is drawn

538

Appendix D: System.Windows.Shapes Reference

Command
Mini-
Language Description

SmoothCubic BezierCurve S or s Creates a cubic Bezier curve between the current
point (Point structure) and the specified end-
point (Point structure) by using the specified
control points with an uppercase S or lowercase
s. The control point is assumed to be the reflec-
tion of the control point of the previous com-
mand relative to the current point. The control
point and endpoint are as follows:

controlPoint❑❑ — The control point of the
curve, which determines the ending tan-
gent of the curve

endPoint❑❑ — The point to which the curve
is drawn

SmoothQuadraticBezierCurve T or t Creates a quadratic Bezier curve between the
current point (Point structure) and the speci-
fied endpoint (Point structure) by using the
specified control points with an uppercase T or
lowercase t. The control point is assumed to be
the reflection of the control point of the previous
command relative to the current point. The con-
trol point and endpoint are as follows:

controlPoint❑❑ — The control point of the
curve, which determines the ending tan-
gent of the curve

endPoint❑❑ — The point to which the curve
is drawn

EllipticalArc A or a Creates an elliptical arc between the current
point and the specified endpoint. The values of
the Elliptical Arc are set using:

size❑❑ — X, Y of the X-radius and Y-radius
of the arc

rotationAngle❑❑ — Double value of the rota-
tion of the ellipse, in degrees

isLargeArcFlag❑❑ — Set to 1 if the angle of
the arc should be 180 degrees or greater;
otherwise, set to 0

sweepDirectionFlag❑❑ — Set to 1 if the arc is
drawn in a positive-angle direction; other-
wise, set to 0

endPoint❑❑ — Point structure to which the
arc is drawn

539

Appendix D: System.Windows.Shapes Reference

Close❑❑ — The uppercase Z or lowercase z close command ends the current figure and creates a
line that connects the current point to the starting point of the figure. This command creates a
line join (corner) between the last segment and the first segment of the figure.

Syntax
<Path Margin=”96,64,157,110”
 Fill=”#FFFFFFFF”
 Stretch=”Fill”
 Stroke=”CornflowerBlue”
 StrokeThickness=”10”
 Data=”M106,74 L111,368 L483,370”/>

Example
The above XAML results in this path:

Syntax
<Path Margin=”80.5,72.5,88.5,64”
 Fill=”#FFFFFFFF”
 Stretch=”Fill”
 Stroke=”Red”
 StrokeThickness=”10”
 Data=”M81,73
 L184.5,330.5
 L550.5,341.97769
 L495.05902,98.40345
 C495.05902,98.40345
 192.38138,413.20697
 192.38138,413.20697
 C547.00372,413.70438
 547.00372,358.99271
 546.00476,413.70438”/>

Example
The above XAML results in this path:

540

Appendix D: System.Windows.Shapes Reference

Polygon Class
The Polygon class handles the drawing of a connected series of lines that forms a closed shape. The
Polygon class inherits its properties from the Shape, FrameworkElement, and UIElement classes, but it
also exposes the same FillRule enumeration and Points property that the Polyline class has.

FillRule❑❑ — Has two enumeration options, EvenOdd or NonZero, which specify the interior fill
of the polygon.

EvenOdd❑❑ — Determines whether a point is in the fill region by drawing a ray from that
point to infinity in any direction and counting the number of path segments within the
given shape that the ray crosses. If this number is odd, the point is inside; if even, the
point is outside.

NonZero❑❑ — Determines whether a point is in the fill region of the path by drawing a
ray from that point to infinity in any direction and then examining the places where a
segment of the shape crosses the ray. Starting with a count of 0, add one each time a
segment crosses the ray from left to right, and subtract one each time a path segment
crosses the ray from right to left. After counting the crossings, if the result is 0, then the
point is outside the path; otherwise, it is inside.

Points❑❑ — Gets or sets a collection that contains the vertex points of the polygon in the format
X,Y[X*,Y*]*

X,Y❑❑ — A pair of double values that identify the X,Y initial point of the polygon

X*,Y*❑❑ — Subsequent pairs of double values that define additional points of this object

Syntax
<Polygon
 Points=”10,10 10,110 110,110 110,10”
 Stroke=”Black”
 StrokeThickness=”10”
/>

Example
The above XAML returns this polygon:

PolyLine Class
The Polyline class handles the drawing of a connected series of lines that do not have to form a closed shape. The
Polyline class inherits its properties from the Shape, FrameworkElement, and UIElement classes, but it also
exposes the same FillRule enumeration and Points property that the Polygon class has.

541

Appendix D: System.Windows.Shapes Reference

FillRule❑❑ — Has two enumeration options, EvenOdd or NonZero, which specify the interior fill
of the polygon.

EvenOdd❑❑ — Determines whether a point is in the fill region by drawing a ray from that
point to infinity in any direction and counting the number of path segments within the
given shape that the ray crosses. If this number is odd, the point is inside; if even, the
point is outside.

NonZero❑❑ — Determines whether a point is in the fill region of the path by drawing a
ray from that point to infinity in any direction and then examining the places where a
segment of the shape crosses the ray. Starting with a count of 0, add one each time a
segment crosses the ray from left to right, and subtract one each time a path segment
crosses the ray from right to left. After counting the crossings, if the result is 0, then the
point is outside the path; otherwise, it is inside.

Points❑❑ — Gets or sets a collection that contains the vertex points of the polygon in the
format X,Y[X*,Y*]*.

X,Y❑❑ — A pair of Double values that identify the X,Y initial point of the polygon

X*,Y*❑❑ — Subsequent pairs of Double values that define additional points of this object.

Syntax
<Polyline
 Points=”60,15 20,100 100,100 70,05”
 Stroke=”Blue”
 Fill=”Bisque”
 StrokeThickness=”5” />

Example
The above XAML returns this polyline:

Rectangle Class
The Rectangle class handles the drawing of a rectangle shape, which can optionally have a Stroke and
a Fill. The Rectangle class inherits its properties from the Shape, FrameworkElement, and UIElement
classes, but it also exposes the RadiusX and RadiusY properties.

RadiusX❑❑ — A Double value that gets or sets the X-axis radius of the ellipse that is used to round
the corners of the rectangle

RadiusY❑❑ — A Double value that gets or sets the Y-axis radius of the ellipse that is used to round
the corners of the rectangle

The default value for both RadiusX and RadiusY is 0.

542

Appendix D: System.Windows.Shapes Reference

Syntax
<Rectangle
 Stroke=”Green”
 Margin=”50,50,50,50”
 StrokeThickness=”5”
 StrokeDashArray=”6,6”
 StrokeDashOffset=”9”
 StrokeLineJoin=”Round”>
</Rectangle>

Example
The above XAML returns this rectangle:

Additional Resources

The following are some additional resources that we have found helpful in our own learning of
Silverlight 3. We hope you find them useful!

http://community.infragistics.com/silverlight/default.aspx❑❑ — Infragistics
community site for Silverlight

http://silverlight.net❑❑ — The Official Silverlight Community Site

http://msdn.microsoft.com/en-us/silverlight/default.aspx❑❑ — Silverlight SDK

www.infragistics.com/silverlight❑❑ — Infragistics Silverlight Resources

http://channel9.msdn.com❑❑ — The Ever-Present Channel9: lots of good stuff on Silverlight

www.silverlightshow.net❑❑ — Quality Independent Silverlight community site

www.wynapse.com❑❑ — Silverlight articles, blogs, examples, and more

http://msdn.microsoft.com/en-us/library/bb188743.aspx❑❑ — MSDN Library for
Silverlight

http://tinyurl.com/ironruby-resources❑❑ — IronRuby resources

http://tinyurl.com/ironpython-project❑❑ — IronPython Project

www.shinedraw.com❑❑ — Shine Draw: Silverlight and Flash repository

www.projectrosetta.com❑❑ — From Flash to Silverlight

Some related Microsoft blogs:

http://Weblogs.asp.net/scottgu❑❑ — Scott Guthrie (a must for any .NET dev!)

http://Blogs.msdn.com/brada/❑❑ — Brad Abrams

http://Blogs.msdn.com/tims/❑❑ — Tim Sneath

http://adamkinney.com/❑❑ — Adam Kinney

http://silverlight.net/blogs/jesseliberty/❑❑ — Jesse Liberty

E

Index

Index

SymbolS and
numberS
{} (curly braces), markup extensions and, 42
3d (three dimension)

adjusting PlaneProjections in Blend,
187–188

perspective-3D, 184–187
Silverlight support for, 50

a
aaC (advanced audio Coding)

audio support and, 21, 52
media capabilities of Silverlight, 4
MediaElement control, 195

absolute positioning, Canvas panel, 109
access control

code access, 295
network access, 296
URL access restrictions, 235–236

activating/deactivating Silverlight
applications, on browser
host, 48

adaptive interfaces, 412
adobe Fireworks

benefits of, 358
Fireworks to WPF/XAML Exporter, 190,

367–369

first pass UI mockup created with, 358–360
second pass UI mockup created with,

361–363
tools used by designers and integrators, 353

adobe Photoshop, 353
ado.neT

data support options, 58
Silverlight support for, 291

advanced audio Coding. See aaC
(advanced audio Coding)

advanced Stream redirector files. See aSX
(advanced Stream redirector) files

aJaX
HTML bridge for Silverlight to AJAX

communication, 290
alerts, bom (browser object model),

275–278
alignment, of uI elements, 106
AlignmentX, System.Windows.Media

enumerations, 523
Alignmenty, System.Windows.Media

enumerations, 523
alpha (transparency), brushes and, 166
animation

overview of, 14–16
Silverlight support for, 50–51
transforms and, 50

annotation, with ink input, 22–23

548

application development

application development
scenarios, 6–7
Silverlight and. See Silverlight, as stand-alone

application development platform
application resources

choosing resource type, 273. See also
resources

content resources, 272–273
embedded resources, 272
site-of-origin resources, 273

application server, for sockets, 249–252
applications

browser host application services, 48
configuring, 272
dates and times. See dates and times
interacting with. See interactivity
internationalization. See internationalization
options for building, 11
personalization. See personalization, of

applications
UI styling. See UI (user interface), designing

and styling
updating OOBAs (Out of Browser

Applications), 263
AppPrincipal, authentication and, 307–308
app.xaml, 144
architecture

BCLs (Base Class Libraries), 54–56
browser host, 48–49
CLR (Common Language Runtime), 53–54
controls, 51–52
data-related features, 58
display features, 49–51
DLR (Dynamic Language Runtime), 59
input mechanisms, 51
media, 52–53
.NET Framework and, 53
networking, 56–58
overview of, 47–48
presentation core, 49
SCL (Silverlight Class Library), 56
summary, 59
WPF (Windows Presentation Foundation) and,

58–59

ArcSegment, System.Windows.Media
classes, 495

args parameter, event handlers, 38
arrange aspect, of layout process, 103–104
asian languages, font support and, 91–92
aSP.neT

authentication services, 298
personalization and, 412–413
role-based authorization, 312
Silverlight-related controls, 291–293
SQL Express for web site configuration, 298

assemblies
referencing images in, 157
referencing media in, 198–199

asset library, blend
accessing Image control, 155
accessing MediaElement control, 159
effects in, 176–177

aSX (advanced Stream redirector) files,
217–219

creating and consuming ASX files, 218
features, 218–219
SSPL vs., 217

atom syndication, 57
attributes

object declaration and, 270
XAML attribute element syntax, 33, 35
x:Class attributes, 37–38
x:Key attributes, 38
x:Name attributes, 37–38

audio
formats supported, 21, 52, 194
settings, 208–209

audit logs, 319–320
authentication, 298–311

adding/enabling authentication service,
299–301

AppPrincipal and, 307–308
ASP.NET-based, 298
CurrentUserChanged events and, 309–310
Forms authentication, 299
login button added to user control, 305
service reference added on client side for,

306–307

549

Button control

Show/Close functionality added to user control,
304–305

UpdateStatus events and, 311
username and password on user control,

302–303
verifying authentication service, 301

authorization, 311–315
adding support for ASP.NET role-based

authorization, 312
assigning and caching user roles, 312–313
event handler for role retrieval, 313–314
maintenance facility for, 314–315
overview of, 311
service reference added on client side for, 312

auto layout option, 104–105

b
backgrounds, changing, 418–419
Balance property, audio settings, 208
base types, in Silverlight bCl, 54–55
BasedOn property, of Style object, 127
bCls (base Class libraries)

benefits of Silverlight and, 4
Silverlight BCL reference, 465–472
Silverlight support for, 13–14
Silverlight-related features, 54–56

BezierSegment, System.Windows.Media classes,
496–497

Binding markup extensions, Xaml, 43–44
Binding object, 331, 343–344. See also data

binding
BitMapCache, System.Windows.Media

classes, 497
bitmaps

factors in determining acceptable use, 188–189
file types, 189
Image control and, 154
performance enhanced by caching, 49–50
scaling, 189
Silverlight support for, 49–50

blending modes, bitmap export and, 189
BlurEffect, 175
bold fonts, algorithmically rendering, 93

bom (browser object model)
alerts, 275–278
browser host facilitating, 49
confirms, 278–279
frames, 282
navigation, 280–282
overview of, 273–275
prompts, 279–280
Window events, 282

Border control, rounding rectangle corners with,
148–150

bounding boxes, layout and, 104
browser host, 48–49. See also bom (browser

object model); Web browsers
browser interop, Silverlight libraries and, 56
brush editor, expression blend

applying brush values, 165
gradient brushes, 166–168
overview of, 164–165
solid color brushes, 165–166

brushes
application resources and, 530–531
applying to TextBlock’s foreground property,

94–95
color table for Brush object, 530
creating ImageBrushes, 168–169
creating special effects with, 15
creating VideoBrushes, 170
defined, 120
editing in Blend, 164–168
ImageBrush control, 163
inline styling, 121–122
LinearGradientBrush control, 160–161
naming, 146
RadialGradientBrush control, 161–162
SolidBrush control, 160
styling with resources, 123
System.Windows.Media classes, 497–498
VideoBrush control, 164

BrushMappingMode, System.Windows.Media
enumerations, 524

bSd unIX’s sockets, on oSX, 245
buffering media, 209
build actions, Visual Studio and, 195–196
business objects, data-related, 328
Button control, 87–88

550

cache

C
cache

global cache of Silverlight-specific
assemblies, 263

persistent local cache, 256
for user roles in authorization, 312–313

Calendar control, 88
Canvas panel

overview of, 17–18
using, 108–109

CaS (Code access Security), 295
case sensitivity, Xaml, 30
character recognition, 411
CheckBox columns, grid column types, 78
circles, Ellipse control and, 150
class hierarchy
DependencyObject class, 482–483
FrameworkElement class, 488–489
UIElement class, 484–485

classes
class libraries, 64–65
media. See System.Windows.Media classes
in System.Windows namespace, 474–478

clicking
mouse events and, 390
operations triggered by, 395

clientaccesspolicy.xml, 324
clients

duplex communication service, 240–245
ServiceClient class, 330–331
sockets, 253–255
WebClient class. See WebClient class

client-side
authentication service reference, 306–307
authorization service reference, 312
exception handling service reference, 316–317
profile class on, 414

Clip property, MediaElement control, 204–205
clipboard, commands for using, 407–408
clipping video, 204–205
Clr (Common language runtime)

CoreCLR, 53–54
Silverlight development tools based on, 4
Silverlight support for, 13–14

Code access Security (CaS), 295
code behind, Xaml and, 37
code security

CoreCLR and, 54
in Silverlight 3, 295

collections
binding data to, 334–335
Columns collection, 78
media classes, 499–500, 502, 504, 509,

513, 521
in Silverlight BCL, 55
update notifications, 338
XAML implicit collection syntax, 33–35

color
applying brushes to TextBlock’s foreground

property, 94–95
SolidColorBrush and, 165–166
System.Windows.Media classes, 499

ColorInterpolationMode, System.Windows.
Media enumerations, 524

columns, DataGrid
freezing, 81
layout of, 110–112
moving, 81
overview of, 78–80
resizing, 80–81
sorting, 80

Columns collection, 78
ComboBox control, 85
commands, keyboard, 407–410
Common language runtime. See Clr (Common

language runtime)
common type system (CTS)

CoreCLR and, 54
.NET Framework support and, 13

communication services
Downloader service, 237
duplex communication clients, 240–245
duplex communication service, setting up,

237–240
HTTP-based communications, 236
installation and updates, 263–265
isolated storage for local logging, 256–258
OOBAs (Out of Browser Applications), 258–262
OOBAs network state, 262–263

551

controls

OOBAs updates, 263
overview of, 235
sockets, 245
sockets application server, 249–252
sockets clients, 253–255
sockets policy server, 245–249
storage services, 255–256
summary, 265
URL access restrictions, 235–236

compiled images, 155–158
CompositionTarget, System.Windows.Media

classes, 499
configuration model, Silverlight

application configuration, 272
data parameters, 270–271
event parameters, 271
overview of, 270

confirms, bom (browser object model),
278–279

connectivity, checking state of network
connections, 262–263

Content, XaP media files and, 197
content resources, types of application

resources, 272–273
ContentControl

creating, 454
creating control classes, 434
extending, 454–460

ContentPresenter control
adding to generic.xaml, 457
for displaying content, 129–130

continuous integration, designing and styling uI
application, 380

control templates
ContentPresenter, 129–130
custom template for parts-based control,

442–444
defined, 120
defining and applying custom templates, 128–

129, 434
end-user customization, 451
limitations of TemplateBinding, 138
overview of, 127–128
preserving essence of style when using,

133–138

reasons for defining custom templates, 128
state changes, response to, 138–140
style for default, 435–437
Template Parts used in, 442
TemplateBinding and, 130–133
text-related properties, 141–142
transitions and, 141
Visual States in, 448–451
VisualStateManager and, 444

controls
benefits of Silverlight, 4
Button, 87
Calendar, 88
ComboBox, 85
ContentControl. See ContentControl
ContentPresenter. See ContentPresenter

control
Control class, 434
creating user control for username and

password, 302–303
custom controls. See custom controls
DataGrid. See DataGrid control
DatePicker, 88
Ellipse, 150, 535
Frame and Page controls in Navigation

Framework, 22
GridSplitter, 89–90
HyperLinkButton, 87
Image. See Image
inline styling controls, 121–122
ItemsControl, 334–335, 434
LinearGradientBrush control, 160–161, 505
ListBox, 83–85
MediaElement. See MediaElement control
MediaPlayer, 291–293
overview of, 75
RadialGradientBrush, 161–162, 515–516
ShaderEffect control, 177
Silverlight, 291
in Silverlight architecture, 51–52
Silverlight Controls Toolkit, 89
SolidBrush, 160
styling for UI application, 373–379
summary, 90
TabControl, 85–86

552

controls (continued)

text input controls, 75–76
TextBox. See TextBox control
timeline controls, 222–225
ToggleButton, 87–88, 434
user interface, 19–20
VideoBrush. See VideoBrush
WPF-related features in Silverlight, 59

Converter property, adding to Binding object,
343–344

ConverterParameter, data type conversion, 344
coordinates, Canvas panel using for

positioning, 108
CoreClr, 53–54. See also Clr (Common

language runtime)
vs. CLR, 13–14

cross-browser support, 4
cross-cutting concerns

exception handling. See exception handling
logging. See logging
overview of, 295
security. See security

cross-domain access
URL access restrictions, 235
WebClient class and, 324

crossdomain.xml, 324
cross-platform support, 4
cryptography

security and, 296–298
in Silverlight BCL, 55

[Ctrl]+a (select all), 407
[Ctrl]+C (copy), 407
[Ctrl]+V (paste), 407
[Ctrl]+X (cut), 407
CTS (common type system)

CoreCLR and, 54
.NET Framework support and, 13

cultures
detecting, 424–425
font support in Silverlight and, 91–92
string operations and, 426–427

curly braces {}, markup extensions and, 42
currency values, internationalization and, 426
CurrentUserChanged events, authentication

and, 309–310

cursor, mouse hovering events changing, 395
custom controls

adjusting active Visual State, 445–448
content control and, 454
creating Control class, 434
custom styles, 438–439
custom template for parts-based control,

442–444
declaring dependency properties, 452
default styles, 435–437
defining control template, 434
end-user customization, 451
event handlers connected to Template Parts,

441–442
extending ContentControl, 454–460
generic.xaml and, 434–435
handling updates, 452–454
identifying control Template Parts, 440
identifying Visual States for a control, 445
including dependency properties, 451
mapping Template Parts, 440–441
Parts Model and, 439–440
registering dependency properties, 451–452
resource scope and, 143
setting up project, 433
summary, 461
using in application, 437–438
Visual States and, 444, 448–451

custom effects. See HlSl (High level Shading
language)-based effects

custom panels, 113–116
custom templates

defining and applying, 128–129
reasons for defining, 128

cutting/editing video, on Timeline, 222–223

d
data

accessing through WCF, 327
accessing WCF service from Silverlight,

330–331
architecture, 58
binding user interface to. See data binding
creating business objects corresponding to, 328
exposing WCF service, 328–329

controls (continued)

553

developers

isolated storage. See isolated storage
LINQ to XML and, 325–326
local data storage, 21
processing XML data, 324–325
referencing WCF service from Silverlight,

329–330
summary, 349
WebClient class and, 321–324
XML Reader and, 326–327

data binding
collection update notifications and, 338
collections, binding to, 334–335
data type conversion and, 342–344
data validation and, 340–342
DataGrid control and, 76–78
element-to-element binding, 336
establishing connection for, 331–332
handling data updates, 336
INotifyPropertyChanged interface and,

337–338
OneTime and OneWay bindings, 338–339
overview of, 331
relative source binding, 336
Silverlight support for, 25–26
source objects, specifying, 332–333
target types, 332
TwoWay bindings, 339
WPF-related features in Silverlight, 59

data parameters, in Silverlight configuration,
270–271

data transfer objects (dTos), 384
data type conversion, 342–344

adding Converter property to Binding object,
343–344

ConverterParameter, 344
overview of, 342–343

data validation, data binding and, 340–342
DataGrid control

columns, 78–80
data binding and, 76–78
freezing columns, 81
moving columns, 81
overview of, 76
resizing columns, 80–81
row details, 82–83
sorting and, 80

DatePicker control, 88
dates and times

overview of, 427
retrieving current time, 428
time zone adjustments, 428–430

DateTimeOffset, 428–430
debugging, data parameters for, 271
declaring objects, in Xaml, 32
decorations, text, 96
deep linking

enabling, 281
Navigation Framework and, 22

deep Zoom Composer tool, 26–27
deep Zoom graphics, 26–27
DeepZoomImageTileSource, System.Windows.

Media classes, 499
delay’s default style browser, 394
dependency properties

adding to custom controls, 451
declaring, 452
registering, 451–452
updating, 452–454

DependencyObject class
class hierarchy, 482–483
methods exposed by, 483

deployment, .xap files and, 56
design/designing

artwork, 188–190
brainstorming and, 355–357
with Expression Blend, 68–70
first pass mockups, 358–360
integrators assessing design mockups and

working models, 366
page layout and, 17–19
second pass mockups, 361–363

designers
final polish and cleanup, 380
first pass UI mockup, 358–360
second pass UI mockup, 361–363
splitting UI project into design and development

teams, 357
UI styling and, 352–353

developers
creating working models, 364–365
Developers Runtime and SDK, 62–63
Expression Blend and, 68–70

554

developers (continued)

Expression Media Encoder and, 71
overview of, 61
Silverlight Tools for Visual Studio 2008. See

Silverlight Tools for Visual Studio 2008 SP1
summary, 72
UI styling and, 352

developers runtime and SdK, downloading and
installing, 62–63

dialog boxes, displaying messages in, 275
dictionaries. See also resource dictionaries

merged, 142–143
stand-alone, 142

digital rights management (drm), 53
directX SdK, viewing/compiling shader effects

with, 177–179
display features, architecture of, 49–51
dlr (dynamic language runtime), 59
DockPanel panel, 17–18
Document object, 282
dom (document object model)

browser host facilitating, 49
interacting with, 282–285

domains
domain-based access rules, 235
referencing media in other domains, 199

double clicking, mouse events, 390
DoubleCollection, System.Windows.Media

classes, 499–500
downloader service, 237
DownloadProgress property, MediaElement

control, 210
downloads

progress indicator for, 210
Silverlight download and install options, 7–9
WebClient class download requests, 322–323

drag-and-drop, 396–401
code for, 398
mouse down event for, 398
mouse move event for, 398–399
overview of, 396
setting up pop-up, 397
stopping dragging, 399

draw aspect, of layout process, 103–104
drm (digital rights management), 53

DropShadowEffect, 175–176
dTos (data transfer objects), 384
duplex communication service

client set up, 240–245
server set up, 237–240

dynamic changes, bitmap use and, 189
dynamic language runtime (dlr), 59

e
eclipse, building Silverlight applications with, 4
effects

applying, 174
applying in Blend, 176–177
bitmap export and, 189
custom. See HLSL (High Level Shading

Language) -based effects
native, 175–176
overview of, 174

element-to-element binding, 336
Ellipse

defining ellipses and circles with, 150
System.Windows.Shapes namespace, 535

EllipseGeometry

System.Windows.Media classes, 500–501
vector-based drawing and, 14

embedded resources
fonts, 98–99, 171–173
images, referencing in XAML, 156
types of application resources, 272

encoded media
Expression Encoder and, 219–221
publishing video, 71
settings, 225–227

encryption
DRM (Digital Rights Management) and, 53
securing communication with, 296–298
in Silverlight BCL, 55

end-user customization, controls for, 451
entlib. See microsoft enterprise library
enumerations

media. See System.Windows.Media
enumerations

in System.Windows namespace, 479–481
error messages, Windows Vista uX Guidelines

for, 278, 318

developers (continued)

555

Fireworks to WPF/XAML Exporter

event bubbling
routed events and, 391
XAML and, 40–41

event handlers
attaching Java Script event handler to managed

event, 386
hooking up to Template Parts, 441–442
for retrieving authorization roles, 313–314
for triggering changes in Visual State, 446–447
XAML, 37–39

event interop, 383
event parameters, in Silverlight configuration, 271
event tunneling, routed events and, 391
EventArgs, 384
events

bubbling, 40–41, 391
declaring in JavaScript, 39–40
event handlers and partial classes, 37–39
FrameworkElement class, 493–494
handling scripted events from managed code,

389–390
keyboard. See keyboards
managed events, 384–388
MediaFailed events, 214–215
mouse events. See mouse
overview of, 37
raising and handling managed events in

JavaScript, 384–388
tunneling, 391
UIElement class, 487–488

exception handling, 315–320
control for reporting exceptions, 317–319
Enterprise Library and, 315–316
logging service for, 316
overview of, 315
passing exceptions between managed code and

script, 290
service reference added on client side for,

316–317
try-catch-finally process, 54

execute operation, clicking and, 395
exporting to Xaml, 190, 367
expression blend

adding images, 155
adding MediaElement control, 199–200

adding video, 159
adjusting PlaneProjections, 187–188
Brush Editor. See Brush Editor, Expression Blend
building Silverlight applications, 4
creating projects, 68–70
designing with, 68–70
developers and designers using, 352–353
downloading and installing, 62
editing brushes in, 164–168
effects, 176–177
getting around in, 70
as RAD tool, 13, 30

expression design
exporting to XAML, 190
tools designers used by designers and

integrators, 353
expression encoder

adding leaders and trailers to video, 225
encoding media with, 219–221
overview of, 70
publishing encoded video, 71

extension methods
authorization and, 314
in .NET 3.5, 400

external resource dictionaries, 144

F
façade class, changing backgrounds and

foregrounds, 418–419
file size, bitmap use and, 188–189
files

creating new storage file, 346–347
File Open and File Save dialogs, 51
reading/writing to storage files, 347–348

Fill property, Shape class, 530–531
FillRule, System.Windows.Media

enumerations, 524
fills, Path control and, 153–154
findName method, finding Xaml objects, 40
Fireworks. See adobe Fireworks
Fireworks to WPF/Xaml exporter

exporting to XAML, 190, 369
Output tab, 367
XAML Options tab, 368–369

556

Flash

Flash, HTml bridge for Silverlight to Flash
communication, 290

font families
overview of, 93
System.Windows.Media classes, 501

fonts
built-in, 170–171
defining resources for font-related

properties, 124
embedding, 98–99, 171–173
font-related properties, 93–94
glyphs, 99–100
Silverlight supported, 91–92

foregrounds
applying brushes to TextBlock’s foreground

property, 94–95
changing, 418–419

formats, media, 21, 52, 193–194
Forms authentication, 299
FPS (frames per second), bitmap caching

and, 50
Frame controls, in navigation Framework, 22
frames, bom (browser object model), 282
frames per second (FPS), bitmap caching

and, 50
FrameworkElement class

class hierarchy, 488–489
events, 493–494
methods exposed by, 489–491
properties, 491–493

Full-Screen mode, navigation and, 409

G
GeneralTransform, System.Windows.Media

classes, 501
generic.xaml

adding ContentPresenter control to, 457–459
creating new file, 434–435
providing style for, 435–437
resource scope and, 143

Geometry

System.Windows.Media classes, 502
vector-based drawing and, 14

GeometryCollection, System.Windows.Media
classes, 502

GeometryGroup, System.Windows.Media
classes, 502

GET, HTTP, 237
global cache, of Silverlight-specific assemblies,

263
globalization. See also internationalization

overview of, 425
in Silverlight BCL, 55

glow effects, 175
glyphs, text, 99–100
Go operations, clicking as trigger for, 395
GPu (Graphics Processing unit)

bitmap caching and, 50
hardware acceleration and, 208

gradient brushes
Blend Brush Editor, 166–168
LinearGradientBrush control, 160–161
RadialGradientBrush control, 161–162
System.Windows.Media classes, 502–503

GradientSpreadMethod, System.Windows.Media
enumerations, 524

GradientStop, System.Windows.Media classes,
503–504

GradientStopCollection, System.Windows.
Media classes, 504

Graphics Processing unit (GPu)
bitmap caching and, 50
hardware acceleration and, 208

graphic/visual elements
bitmap acceptability factors, 188–189
Border control, 148–150
creating ImageBrushes, 168–169
creating VideoBrushes, 170
Deep Zoom graphics, 26–27
designing artwork and, 188–190
editing brushes in Blend, 164–168
Ellipse control, 150
exporting to XAML, tools for, 190
font embedding, 171–173
fonts, 170–171
HLSL-based effects. See HLSL (High Level

Shading Language) -based effects
Image control, 154–158
ImageBrush control, 163
introduction to Silverlight graphics features,

14–16

557

Illustrator

LinearGradientBrush control, 160–161
MediaElement control, 158–159
native effects, 174–177
overview of, 147
Path control, 151–153
perspective-3D, 184–188
Rectangle control, 147–148
Silverlight support for, 49–50
SolidBrush control, 160
summary, 191
VideoBrush control, 164

Grid panel
overview of, 17
using, 110–112

GridSplitter control, 89–90

H
H.264

media capabilities of Silverlight, 4
MediaElement control, 195
video support and, 21, 52

hardware acceleration, in GPu, 208
Hd (high definition) video

GPU hardware acceleration and, 208
media capabilities of Silverlight, 4

Height property, Path control, 151
height settings, uI elements, 104–106
help, on SdK, 63
hexadecimal representation, of r, G, and b color

values, 166
high definition (Hd) video

GPU hardware acceleration and, 208
media capabilities of Silverlight, 4

High level Shading language effects. See HlSl
(High level Shading language)-based
effects

hints, Xaml editors and, 38
HlSl (High level Shading language)-based

effects, 177–184
applying, 183–184
creating custom shader effect, 177–179
creating proxy effect class for, 180–183
overview of, 177
viewing/compiling shaders with Shazzam and

DirectX SDK, 177–179

horizontal alignment, setting element
alignment, 106

hovering with mouse
changing mouse cursor, 395
helpers for implementing, 392
overview of, 391–392
tool tips and, 392–395

HTml (Hypertext markup language)
controlling browser plug-in size and position,

116–117
Silverlight configuration based on HTML

object, 270
HTml bridge. See also Silverlight, interaction

with browser
browser interop and, 56
defined, 273
scenarios, 290
System.Windows.Browser namespace and, 274

HtmlDocument, 282–283
HtmlElement, 284
HtmlPage class

calling managed code from script, 287–289
Window object, 275

HTTP-based communications
Downloader service, 237
duplex communication clients, 240–245
duplex communication servers, 237–240
overview of, 236

HTTP/HTTPS
accessing HTTP resources, 24
network access security and, 296
request and response objects, 57
Silverlight support for, 53

HyperLinkButton control, 87
Hypertext markup language (HTml)

controlling browser plug-in size and position,
116–117

Silverlight configuration based on HTML
object, 270

I
Il (Intermediate language), 4
Illustrator

Illustrator to WPF/XAML Exporter, 190
tools designers used by designers and

integrators, 353

558

Image

Image, 154–158
adding images and setting image source,

155–156
overview of, 154
referencing images, 154–155
referencing images in XAML, 156–158
summary, 158

ImageBrush

creating ImageBrushes, 168–169
overview of, 163
System.Windows.Media classes, 504

ImageSource, System.Windows.Media
classes, 504

implicit collection syntax, Xaml, 33–35
Import Skin option, 292
importing artwork, 188
in place install, Silverlight installation options, 8
initParams, application configuration and, 272
InkPresenter object, 22–23
ink/stylus-based devices, as input mechanisms,

51, 410–412
inline formatting, text, 96–98
inline styling, applications, 121–122
INotifyCollectionChanged interface, handling

data updates on collections, 338
INotifyPropertyChanged interface, handling

full data update, 337–338
input mechanisms, Silverlight, 51
input/output (I/o), in Silverlight bCl, 55
install options

browser host and, 48
Silverlight download and install options, 7–9

integrators
assessing design mockup and working

model, 366
continuous integration, 380
integration phase of application

development, 365
styling and, 353

IntelliSense
Expression Blend code editing and, 70
XAML Editor using, 67

interactivity
clicking mouse and, 395
drag-and-drop with mouse, 396–401

handling scripted events from managed code,
389–390

hovering with mouse and, 391–395
ink-related inputs, 410–412
keyboard events, 401–402
keyboard navigation and commands, 407–410
masked text input, 403
mouse click options, 390
mouse event arguments, 391
mouse events, 390
multiple-line text input, 405–407
overview of, 383
raising and handling managed events in

JavaScript, 384–388
responding to user activities, 390
rich text input, 407
routed events and, 390–391
structured text input, 403–405
text input, 402–403

Intermediate language (Il), 4
internationalization

culture used for string operations, 426–427
detecting culture, 424–425
globalization and, 425
localization and, 427
overview of, 424
RESX files, 425–426

I/o (input/output), in Silverlight bCl, 55
“Islands of richness” scenarios for application

development with Silverlight, 6
IsMuted property, audio settings, 209
isolated storage

accessing, 345
creating new file, 346–347
for local logging, 256–258
managing store size, 345–346
.NET Framework, 21
overview of, 345
reading/writing to files, 347–348
Silverlight libraries, 56
storage services, 255

IsolatedStorageSettings class, 255
italics fonts, algorithmically rendering, 93

559

LineSegment

ItemsControl

binding to collections, 334–335
creating control classes, 434

ItemSource property, data binding in DataGrid
control, 77

ItemsPanel, 335
ItemTemplate, 334–335

J
JavaScript

alerts, confirms, and prompts, 275
browser host facilitating, 49
calling from managed code, 285–287
calling managed code from, 287–289
declaring events in, 39–40
event interop with managed code, 383
event parameters for specifying unmanaged

events, 271
handling scripted events from managed code,

389–390
marshaling types between script and managed

code, 289
passing exceptions between managed code and

script, 290
raising and handling managed events, 384–388

JPeG files, 189
JSon

networking features in Silverlight, 57
WebClient class retrieving data from, 321

K
Kaxaml, 190
keyboards

as input mechanism, 51
masked text input, 403
multiple-line text input, 405–407
navigation and commands with, 407–410
overview of keyboard events, 401–402
rich text input, 407
structured text input, 403–405
text input, 402–403

KeyDown events, keyboards, 401
KeyEventArgs, 401
KeyUp events, keyboards, 401

l
languages, font support in Silverlight and, 91–92
layout

alignment, 106
bounding boxes and, 104
Canvas panel, 108–109
controlling browser plug-in size and position,

116–117
controlling text layout with TextBlock element,

95–96
custom panels, 113–116
Grid panel, 110–112
margins, 106–107
measure, arrange, and then draw, 103–104
overview of, 103
padding, 107–108
panels, 108
Silverlight layout engine, 50
sizing/resizing application layout, 370–373
StackPanel panel, 109–110
summary, 117
width and height settings, 104–106
WPF-related features in Silverlight, 58

layout slot, 104
leaders, video, 225
libraries

Asset Library, Blend, 155, 159, 176–177
base classes. See BCLs (Base Class Libraries)
class libraries, 64–65
isolated storage, 56
Microsoft Enterprise Library, 315
on SDK, 63
Silverlight BCL. See SCL (Silverlight Class Library)

line breaks, text, 97
Line class, System.Windows.Shapes

namespace, 535–536
LinearGradientBrush

overview of, 160–161
System.Windows.Media classes, 505

LineGeometry, System.Windows.Media classes,
505–506

LineHeight, text properties, 95
LineSegment, System.Windows.Media

classes, 506

560

LINQ

lInQ, 58
lInQ to Xml, 58, 325–326
ListBox control, 83–85
LoadProfile() method, 417–418
local (inline) styling, application, 121–122
local data storage, 21
local logging, 256–258
local resources, 143–144
localization, 427. See also internationalization
logging, 315–320

auditing and, 319–320
creating logging service for exception

handling, 316
deciding how to log, 316–317
exception handling and, 315
isolated storage for local logging, 256–258
user engaging logging code, 318–319

logging in
adding login button to authentication

control, 305
form in working model of UI application, 364
styling Login control, 373–379

LogSource, System.Windows.Media
enumerations, 525

loose file media, 198

m
mac oS X

list of supported OSs, 5
sockets service, 245

managed code
calling from script, 287–289
calling script from, 285–287
event interop and, 383
handling scripted events from, 389–390
marshaling types between script and managed

code, 289
passing exceptions between script and managed

code, 290
managed events, raising and handling in

JavaScript, 384–388
managed languages, benefits of Silverlight, 4
margins, spacing uI elements, 106–107

markers
adding to Timeline, 223–224
brushes and, 165
responding to video markers, 212–214

markup extensions, Xaml
binding, 43–44
overview of, 42
StaticResource, 44–45

marshaling, JavaScript, 289
masked text input, keyboard events, 403
master Page, exporting to Xaml, 369
MatrixTransform, System.Windows.Media

classes, 506–507
measure aspect, of layout process, 103–104
media

3D rotation of video, 203–204
adding to ASP.NET applications, 291–293
architecture, 52–53
ASX (Advanced Stream Redirector) files and,

217–219
audio settings, 208–209
buffering, 209
Build Actions, 195–196
capabilities, 20
classes. See System.Windows.Media classes
clipping video, 204–205
download progress indicator, 210
encoding settings, 225–230
encoding with Expression Encoder, 219–221
enumerations. See System.Windows.Media

enumerations
Expression Media Encoder generating video, 71
formats supported, 21, 52, 194
GPU hardware acceleration, 208
H.264 and AAC support, 195
handling failed media, 214–215
MediaElement control, 195
MediaElement control added with Blend,

199–200
metadata, 225
overview of, 193
playback methods, 210–212
playback quality indicator, 210
protocols for, 53
referencing assembly resource media, 196–197

561

mouse

referencing loose file media, 198
referencing media in other assemblies,

198–199
referencing media in other domains, 199
referencing XAP file media, 197
reflections simulated in video, 206–207
Silverlight streaming service, 230–233
sizing and stretching video, 200–202
Smooth Streaming service, 233–234
SSPLs (Server-Side Playlists), 216–217
state changes, response to, 215
summary, 234
timeline controls, 222–225
transforming video, 202
unsupported Windows Media- based

formats, 194
video added to Web pages, 20
video formats, 193–194
video markers, responding to, 212–214
VideoBrush for painting video elements,

205–206
media Servers, microsoft, 216
MediaElement control

adding with Blend, 199–200
buffering, 209
clipping video, 204–205
CurrentState property, 215
DownloadProgress property, 210
encoding media and, 219–221
H.264 and AAC support, 195
Markers property, 212–214
MediaFailed events, 214–215
overview of, 158–159
playback methods, 210–212
playback quality, 210
reflections simulated in video, 206–207
size and stretch behaviors, 200–202
transforming, 202
unsupported media formats, 194
using, 195
video added with Blend, 158–159
VideoBrush for painting video elements,

205–206
MediaElementState, System.Windows.Media

enumerations, 525

MediaFailed events, MediaElement control,
214–215

MediaPlayer control, 291–293
MediaSampleAttributeKeys, System.Windows.

Media enumerations, 525
MediaSourceAttributeKeys, System.Windows.

Media enumerations, 526
MediaStreamAttributeKeys, System.Windows.

Media enumerations, 526
MediaStreamDescription, System.Windows.

Media classes, 507
MediaStreamSample, System.Windows.Media

classes, 508
MediaStreamSource, System.Windows.Media

classes, 508
MediaStreamSourceDiagnosticKind, System.

Windows.Media enumerations, 526
MediaStreamType, System.Windows.Media

enumerations, 526
memory management, in CoreClr, 54
merged dictionaries, 142–143
MessageBox class, 275
metadata, editing media metadata, 225
methods
DependencyObject class, 483
extension methods in .NET 3.5, 314, 400
findName method for finding XAML objects, 40
FrameworkElement class, 489–491
playback methods, 210–212
profile service, 417–418
UIElement class, 485–486
Window object, 275–282

microsoft
Expression Blend. See Expression Blend
Expression Design. See Expression Design
Windows OSs. See Windows OSs

microsoft enterprise library, 315
microsoft Intermediate language (mSIl), 13
microsoft media Servers, 216
microsoft Streaming media service, 71
mouse

arguments, 391
click options, 390
clicking, 395
drag-and-drop, 396–401

562

mouse (continued)

hovering, 391–395
input mechanisms, 51
overview of mouse events, 390
routed events, 390–391

MouseEventArgs, 391, 410
mP3s, 21, 52, 194
mPeG-4, 4
mSIl (microsoft Intermediate language), 13
multiple effects, applying, 174
multiple-line text input, keyboard events,

405–407
MultiScaleTileSource, System.Windows.Media

classes, 508

n
namespaces

classes in System.Windows namespace,
474–478

enumerations in System.Windows namespace,
479–481

SCL (Silverlight Class Library), 465–472
structures in System.Windows namespace,

478–479
naming resources, 145–146
native effects, 174–177
navigation

BOM (browser Object Model) and, 280–282
Frame and Page controls for Navigation

Framework, 22
keyboard commands and, 408–410

.neT Framework
architecture and, 53
BCLs (Base Class Libraries), 54–56
CAS (Code Access Security), 295
CLR (Common Language Runtime), 53–54
DLR (Dynamic Language Runtime), 59
networking, 56–58
SCL (Silverlight Class Library), 56
Silverlight and, 4
support for Silverlight, 13–14
WPF (Windows Presentation Foundation), 58–59

network state, for oobas (out of browser
applications), 262–263

networks/networking
access security, 296
accessing network resources, 24–25
architecture, 56–58
browser host and, 49
checking state of connections, 262–263

o
objects

business objects, data-related, 328
events and, 37
positioning page objects, 17
Silverlight data support options, 58
Silverlight object declaration, 270

objects, Xaml
declaring, 32
findName method for finding, 40
object element syntax, 32–33

offline file usages. See oobas (out of browser
applications)

OnApplyTemplate, 440–441
OneTime bindings, 338–339
OneWay bindings, 338–339
oobas (out of browser applications)

bringing application offline and, 262
browser host and, 48
capability of, 22
checking application updates for, 263
enabling, 258–260
network state for, 262–263
overview of, 258
properties, 260–261

oSs (operating systems)
list of supported, 5
sockets service and, 245
UAC (User Account Control) in Vista, 264
UX Guidelines for error messages in Vista, 278

out of browser applications. See oobas (out of
browser applications)

output settings, media, 229
output tab, Fireworks to Xaml exporter, 367
overlay, adding video overlays, 228
overriding culture settings, 426

mouse (continued)

563

policies

P
packaging, 56
padding

layout of UI elements, 107–108
TemplateBinding for attaching, 131–133

Page controls, in navigation Framework, 22
page layout, 17–19
painting video elements, VideoBrush for, 205–

206
Panel object

as base class for custom panels, 113
creating control classes, 434

panels, layout
Canvas panel, 108–109
custom, 113–116
Grid panel, 110–112
overview of, 108
StackPanel panel, 109–110

parameters, Silverlight configuration
data parameters, 270–271
event parameters, 271

partial classes, Xaml, 37–39
Parts model

custom template for parts-based control,
442–444

event handlers connected to Template Parts,
441–442

identifying control Template Parts, 440
mapping Template Parts, 440–441
overview of, 439–440

PasswordBox control, 76
passwords, creating user control for, 302–303
Path

creating custom shapes with, 151–153
resize behavior of, 153
System.Windows.Shapes namespace, 536–539

Path property, Source object, 333
PathFigure, System.Windows.Media classes,

508–509
PathFigureCollection, System.Windows.Media

classes, 509
PathGeometry, System.Windows.Media classes,

509–510

PathSegment, System.Windows.Media classes,
510–511

PathSegmentCollection, System.Windows.Media
classes, 511

Pause ()method, playback methods, 210–211
PenLineCap, System.Windows.Media

enumerations, 527
PenLineJoin, System.Windows.Media

enumerations, 527
performance, enhanced by bitmap caching,

49–50
persistent local cache, data storage, 256
personalization, of applications, 412–424

adding profile service, 413
adding profile service to resource directory,

419–420
changing backgrounds and foregrounds,

418–419
defining client-side profile class, 414
defining themes, 415–416
LoadProfile() method, 417–418
overview of, 412
saving profile service settings, 421–424

Photoshop, adobe, 353
Pistachio, resource analyzer, 380
pixel-based values, vs. percentage-based, 148
PixelFormats, System.Windows.Media

classes, 511
Plain-old Xml. See PoX (Plain-old Xml)
PlaneProjection

adjusting in Blend, 187–188
overview of, 185
System.Windows.Media classes, 511–513

playback
methods, 210–212
quality indicator, 210

playlists, media
ASX (Advanced Stream Redirector) files,

217–219
SSPLs (Server-Side Playlists), 216–217

Play()method, playback methods, 210–211
PnG files, 189
PointCollection, System.Windows.Media

classes, 513
policies, security policies in System.Net, 296

564

policy server

policy server, for sockets, 245–249
PolyBezierSegment, System.Windows.Media

classes, 514
Polygon class, System.Windows.Shapes

namespace, 540
PolyLine class, System.Windows.Shapes

namespace, 540–541
PolyLineSegment, System.Windows.Media

classes, 514
PolyQuadraticBezierSegment, System.Windows.

Media classes, 514
Portable user Interface (PFI) font

fonts, 170–171
text support in Silverlight and, 91

Position property, MediaElement control,
211–212

positioning
with coordinates, 109
page layout and, 17

PoX (Plain-old Xml)
accessing Web services and, 236
networking features in Silverlight, 57
WebClient class retrieving data from, 321

presentation core, Silverlight architecture
controls, 51–52
display features, 49–51
input mechanisms, 51
media, 52–53
overview of, 49

profile service
adding, 413
adding to resource directory, 419–420
LoadProfile() method, 417–418
personalization and, 412–413
saving settings, 421–424

project templates, 64–66
Silverlight Application, 64, 66
Silverlight Class Library, 64–65
Silverlight Navigation Application, 65

Projection, System.Windows.Media
classes, 514

Projection property, for 3d rotation of
UIElements, 184, 203–204

prompts, bom (browser object model),
279–280

properties
dependency properties. See dependency

properties
font-related properties, 93–94
FrameworkElement class, 491–493
text-related properties, 141–142
UIElement class, 486–487
XAML property element syntax, 33, 35

property resolution, Style object and, 126
proxy effect class, 180–183
publishing encoded video, 71
publishing points, WSX files and, 216–217

Q
QuadraticBezierSegment, System.Windows.

Media classes, 514–515

r
r,G, and b (red, green, blue) color values, 166
rad (rapid application development), 13, 30
RadialGradientBrush

overview of, 161–162
System.Windows.Media classes, 515–516

RadiusX/RadiusY properties, of Rectangle
control, 148

rapid application development (rad), 13, 30
reading/writing, to storage files, 347–348
RectangleGeometry, System.Windows.Media

classes, 516–517
rectangles

adding rounded corners to, 148
Border control, 148–150
overview of, 147–148
Rectangle control, 147–148
System.Windows.Shapes namespace, 541–542

reference
DependencyObject class, 482–483
for Silverlight class library, 465–472
System.Windows namespace, 473
UIElement class, 484–488

referencing images
in current project, 156–158
loose images, 157
in other assemblies, 157–158

565

Secure Sockets Layer

on other domains, 158
overview of, 154–155
XAP file images, 157

referencing media
assembly resource media, 196–197
loose file media, 198
in other assemblies, 198–199
in other domains, 199
XAP file media, 197

reflection, in Silverlight bCl, 55
reflector, defining tool tip template with, 394
relative source binding, 336
RenderOptions, System.Windows.Media

classes, 517
RenderTransforms property

transforming media, 202–203
transforming text, 100–101

representational State Transfer. See reST
(representational State Transfer)

resize behavior, of Path control, 153
resolution order, for style properties, 126
resource analyzer, Pistachio, 380
resource dictionaries

control templates and, 435–437
defined, 120
External Resource Dictionaries, 144
merged dictionaries, 142–143
organizing resources in, 144–145
profile service added to, 419–420
resources stored in, 122
stand-alone dictionaries, 142
Style object defined in, 125

resource files (reSX), 425–427
resources

application resources, 272–273
defined, 120
merged dictionaries, 142–143
naming, 145–146
organizing, 144–145
overview of, 142
referencing media resources, 196–199
RESX files for localized resources, 425
scope of, 143–144
stand-alone dictionaries, 142
for styling applications, 122–125

reST (representational State Transfer)
accessing Web services and, 236
networking features in Silverlight, 57
WebClient class retrieving data from, 321

reSX (resource files), 425–427
rIas (rich Internet applications)

OOBAs (Out of Browser Applications) and, 258
Silverlight as, 3

rich text input, keyboard events, 407
right-clicking, mouse events, 390
role-based authorization, 312
RotateTransform, System.Windows.Media

classes, 517–518
rotation, 3d perspective and, 184–185,

203–204
rounded corners, Rectangle control and Border

control and, 148–150
routed events

framework elements supporting, 40–41
keyboard events, 401
mouse events, 390–391

RowDetailsTemplate, DataGrid control, 82–83
rows, layout of, 110–112
rSS

networking features in Silverlight, 57
WebClient class retrieving data from, 321

S
scale, vector graphics and, 189
ScaleTransform, System.Windows.Media

classes, 518–519
schtüff sample application. See uI (user

interface), designing and styling
SCl (Silverlight Class library). See also bCls

(base Class libraries)
architecture, 56
namespaces and descriptions, 465–472
setting up new, 433

scope, of resources, 143–144
ScriptObject type, 285–286
scripts. See JavaScript
SdK (Software development Kit), 10, 62–63
Search engine optimization (Seo), 22
Secure Sockets layer (SSl), 296

566

security

security
authentication. See authentication
authorization, 311–315
code access, 295
cryptography, 296–298
network access, 296

Select operations, mouse click triggering, 395
sender parameter, event handlers, 38
Seo (Search engine optimization), 22
serialization

in Silverlight BCL, 55–56
in WCF, 328

servers. See also communication services
application server for sockets, 249–252
duplex communication service, 237–240
media servers, 216
policy server for sockets, 245–249
Silverlight interaction with. See Silverlight,

interaction with server
Server-Side Playlists (SSPls)

creating and consuming WSX files, 216–217
overview of, 216

service references, adding
for authentication service, 306–307
for authorization service, 312
for exception handling service, 316–317
for WCF service, 329–330

ServiceClient class, 330–331
services, communication. See communication

services
SetSource() method, playback methods,

210–211
Setters, styles as collection of, 125
ShaderEffect control, 177. See also HlSl (High

level Shading language)-based effects
Shape class

Fill property, 530–531
overview of, 529
Stretch property, 531
Stroke property, 534
StrokeDashArray property, 531–532
StrokeDashCap properties, 532
StrokeDashOffset property, 532–533
StrokeLineJoin property, 533
StrokeMiterLimit property, 533–534

StrokeThickness property, 534–535
shapes
Path control for creating custom, 151–153
vector-based drawing and, 14

Shapes namespace
Ellipse class, 535
Line class, 535–536
Path class, 536–539
Polygon class, 540
PolyLine class, 540–541
Rectangle class, 541–542
Shape class. See Shape class

Shazzam Shader editing Tool, 177–179
Silverlight, as stand-alone application

development platform
configuration model for, 270–272
overview of, 269
resources, 272–273

Silverlight, interaction with browser. See also
HTml bridge

alerts, 275–278
BOM (browser Object Model), 273–275
calling managed code from script, 287–289
calling script from managed code, 285–287
confirms, 278–279
DOM (Document Object Model) and, 282–285
frames, 282
HTML bridge and, 290
JavaScript marshaling and, 289
navigation, 280–282
overview of, 273
passing exceptions between managed code and

script, 290
prompts, 279–280
Window events, 282

Silverlight, interaction with server
ASP.NET and, 291
MediaPlayer control, 291–293
overview of, 290–291
Silverlight control, 291
summary, 293

Silverlight, introduction
annotation with ink input, 22–23
application development scenarios, 6–7
building applications, 11

567

streaming media

data binding, 25–26
Deep Zoom graphics, 26–27
download and install options, 7–9
graphics and animation, 14–16
list of features, 11
local data storage, 21
media capabilities, 20
navigation framework, 22
.NET Framework support, 13–14
network access, 24–25
Out-of-Browser capability, 22
overview of, 3–5
page layout and design, 17–19
resources for, 543
SDK (Software Development Kit), 10
summary, 27
user interface controls, 19–20
versions, 6
XAML and, 12–13

Silverlight application, project template, 64, 66
Silverlight Class library, project template,

64–65
Silverlight control, 291
Silverlight Controls Toolkit, 89
Silverlight navigation application, project

template, 65
Silverlight streaming service, 230–233
Silverlight Tools for Visual Studio 2008 SP1

development tools, 67
overview of, 62–63
project templates, 64–66
XAML Editor, 67–68

site-of-origin
network access security and, 296
types of application resources, 273

SkewTransform, System.Windows.Media classes,
519–520

skins, Import Skin option, 292
Smooth Streaming service, 233–234
sockets

application server for, 249–252
clients, 253–255
network access security and, 296
networking features in Silverlight, 58

overview of, 245
policy server for, 245–249

Software development Kit (SdK), 10, 62–63
SolidBrush control, 160
SolidColorBrush

Blend Brush Editor, 165–166
System.Windows.Media classes, 520

sorting
columns, 80
internationalization and, 426–427

Source object, Path property, 333
Source property
Image control, 155–156
MediaElement control, 195

sources
data binding and, 332–333
relative source binding, 336

SQl express, 298
SSl (Secure Sockets layer), 296
SSPls (Server-Side Playlists)

creating and consuming WSX files, 216–217
overview of, 216

StackPanel panel
overview of, 17
using, 109–110

stand-alone dictionaries, 142
standard install, Silverlight installation

options, 7
state

network state for OOBAs, 262–263
reacting to state in templates, 138–140
response to state changes in media, 215
visual states reflecting data validation errors,

341–342
StaticResource markup extensions, Xaml,

44–45
Stop()method, playback methods, 210–211
storage services

isolated storage for local logging, 256–258
overview of, 255–256

store size, isolated storage, 345–346
streaming media

Expression Encoder and, 71
Silverlight streaming service, 230–233
Smooth Streaming service, 233–234

568

Stretch

Stretch, System.Windows.Media
enumerations, 527

Stretch property
Image control, 154
ImageBrush control, 163
MediaElement control, 200–201
Path control, 153
Shape class, 531

strings
cultures and, 426–427
in Silverlight BCL, 54

Stroke property, Shape class, 534
StrokeDashArray property, Shape class,

531–532
StrokeDashCap properties, Shape class, 532
StrokeDashOffset property, Shape class,

532–533
StrokeLineJoin property, Shape class, 533
StrokeMiterLimit property, Shape class,

533–534
StrokeThickness property, Shape class,

534–535
structured text input, keyboard events, 403–405
structures, in System.Windows namespace,

478–479
Style object
BasedOn property, 127
overview of, 125–126
property resolution and, 126

StyleSimulations, System.Windows.Media
enumerations, 527–528

styles/styling. See also resources
additional controls, 379–380
attaching to control, 437
BasedOn styles, 127
controls. See control templates
custom controls, 438–439
defined, 120
local (inline), 121–122
Login control, 373–379
overview of, 119–120
providing for custom controls, 435–436
resolution order for style properties, 126–127
resources for, 122–125
Silverlight controls for, 51–52

Style object, 125–126
summary, 146
XAML-based approach to working environment,

120–121
SweepDirection, System.Windows.Media

enumerations, 528
SWF2Xaml: a Flash to Xaml Conversion
Tool, 190
System.Net, 296
System.Object, 482–483
System.Windows

Browser namespace, 274
classes in, 474–478
DependencyObject class, 482–483
Ellipse class, 535
enumerations in, 479–481
FrameworkElement class, 488–494
Line class, 535–536
Path class, 536–539
Polygon class, 540
PolyLine class, 540–541
Rectangle class, 541–542
reference, 473
Shape class. See Shape class
structures in, 478–479
UIElement class, 484–488

System.Windows.Media classes
ArcSegment, 495
BezierSegment, 496–497
BitMapCache, 497
Brush, 497–498
Colors, 499
CompositionTarget, 499
DeepZoomImageTileSource, 499
DoubleCollection, 499–500
EllipseGeometry, 500–501
FontFamily, 501
GeneralTransform, 501
Geometry, 502
GeometryCollection, 502
GeometryGroup, 502
GradientBrush, 502–503
GradientStop, 503–504
GradientStopCollection, 504
ImageBrush, 504

569

templates

ImageSource, 504
LinearGradientBrush, 505
LineGeometry, 505–506
LineSegment, 506
MatrixTransform, 506–507
MediaStreamDescription, 507
MediaStreamSample, 508
MediaStreamSource, 508
MultiScaleTileSource, 508
PathFigure, 508–509
PathFigureCollection, 509
PathGeometry, 509–510
PathSegment, 510–511
PathSegmentCollection, 511
PixelFormats, 511
PlaneProjection, 511–513
PointCollection, 513
PolyBezierSegment, 514
PolyLineSegment, 514
PolyQuadraticBezierSegment, 514
Projection, 514
QuadraticBezierSegment, 514–515
RadialGradientBrush, 515–516
RectangleGeometry, 516–517
RenderOptions, 517
RotateTransform, 517–518
ScaleTransform, 518–519
SkewTransform, 519–520
SolidColorBrush, 520
TileBrush, 520
TimeLineMarker, 520
TimeLineMarkerCollection, 521
TimeLineMarkerRoutedEventArgs, 521
Transform, 521
TransformCollection, 521
TransformGroup, 521–522
TranslateTransform, 522
VideoBrush, 522–523
VisualTreeHelper, 523

System.Windows.Media enumerations
AlignmentX, 523
Alignmenty, 523
BrushMappingMode, 524
ColorInterpolationMode, 524
FillRule, 524

GradientSpreadMethod, 524
LogSource, 525
MediaElementState, 525
MediaSampleAttributeKeys, 525
MediaSourceAttributeKeys, 526
MediaStreamAttributeKeys, 526
MediaStreamSourceDiagnosticKind, 526
MediaStreamType, 526
PenLineCap, 527
PenLineJoin, 527
Stretch, 527
StyleSimulations, 527–528
SweepDirection, 528

T
TabControl control, 85–86
target types, data-binding model, 332
team organization model

designers, 352–353
developers, 352
integrators, 353
overview of, 351
splitting UI project into design and development

teams, 357
Template columns, grid column types, 78
Template Parts

custom template for parts-based control,
442–444

event handlers connected to, 441–442
identifying, 440
mapping, 440–441
using, 442

TemplateBinding

attaching padding property with, 131–133
limitations of, 138
markup extension in XAML, 42
overview of, 130–131

TemplatePart class, 440
templates

control templates. See control templates
naming, 146
project templates in Silverlight Tools for Visual

Studio, 64–66
reacting to state in, 138–140
Silverlight controls for, 52

570

TemplateVisualState

TemplateVisualState, 445
text

controlling layout in TextBlock, 95–96
decorations, 96
displaying with TextBlock element, 92–95
embedded fonts, 98–99
font glyphs, 99–100
inline formatting, 96–98
overview of, 91
Silverlight support for, 50, 91–92
summary, 101
transforming, 100–101

Text columns, grid column types, 78
text decorations, 96
text input

control for, 75–76
keyboard events, 402–403
masked text input, 403
multiple-line text input, 405–407
rich text input, 407
structured text input, 403–405

Text options, Fireworks to Xaml exporter, 367
Text property, TextBlock element, 92–93
TextBlock element

controlling text layout with, 95–96
displaying text with, 92–95

TextBox control
multiple-line text input, 405–407
text input, 75–76
text input with keyboard, 402–403

text-related properties, ControlTemplate,
141–142

theConverted-SWF to Xaml edition, 190
themes

defining, 415–416
presets, 416
resource scope and, 143

threading, CoreClr and, 54
TileBrush, System.Windows.Media classes, 520
time. See dates and times
time zones, 428–430
Timeline, 222–225

adding markers to, 223–224
cutting/editing video on, 222–223
playback control, 224

trimming video on, 222
viewing controls, 224

TimeLineMarker, System.Windows.Media
classes, 520

TimeLineMarkerCollection, System.Windows.
Media classes, 521

TimeLineMarkerRoutedEventArgs, System.
Windows.Media classes, 521

ToggleButton control, 87–88, 434
tool tips, hovering with mouse and, 392–395
tools, on SdK, 63
trailers, video, 225
Transform, System.Windows.Media classes, 521
TransformCollection, System.Windows.Media

classes, 521
TransformGroup, System.Windows.Media

classes, 521–522
transforms

text, 100–101
uses of, 50
video, 202

transitions
ControlTemplate, 141
VisualTransition elements, 449–451

TranslateTransform, System.Windows.Media
classes, 522

transparency, brushes and, 166
trimming video, on Timeline, 222
troubleshooting failed media, 214–215
TwoWay bindings, 339

u
uaC (user account Control), Windows

Vista, 264
uI (user interface)

binding to data. See data binding
controls, 19–20
layout of application user interface. See layout

uI (user interface), designing and styling
assessing design mockup and working

model, 366
brainstorming design of, 355–357
continuous integration, 380
design mockups, first pass, 358–360

571

Visual States

design mockups, second pass, 361–363
designers and, 352–353
developers and, 352
exporting Master Page to XAML, 369
final polish and cleanup, 380
Fireworks to XAML Exporter and, 367–369
integration phase, 365
integrators and, 353
overview of, 351
requirements for sample application, 353–354
sizing/resizing layout, 370–373
splitting into design and development

teams, 357
styling additional controls, 379–380
styling Login control, 373–379
summary, 381
working model for, 364–365

UICulture, 424
UIElement

class hierarchy, 484–485
Effect property, 174
events, 487–488
methods exposed by, 485–486
properties, 486–487
Rectangle control as common foundation for,

147–148
rotating in 3D, 184

updates
browser host and, 48
checking application updates for OOBAs, 263
collection update notifications, 338
communication services and, 263–265
custom controls and, 452–454
handling data updates, 336
INotifyPropertyChanged interface, 337–338

UpdateStatus events, authentication and, 311
urls, access restrictions, 235–236
user account Control (uaC), Windows Vista, 264
user experience. See uX (user experience)
user interface. See uI (user interface)
user messages

alerts, 275–278
confirms, 278–279
overview of, 275
prompts, 279

UserControl, 120
userControl.xaml, 143–144
usernames, creating user control for, 302–303
uX (user experience)

brainstorming design of UI and, 355–357
JavaScript prompts and, 279
parameters for enhancing, 271
Windows Vista UX Guidelines for error

messages, 278, 318

V
vector graphics

scaling and, 189
Shape objects and, 14
Silverlight support for, 49–50

versions, Silverlight, 6
vertical alignment, properties for setting

element alignment, 106
video

adding video overlays, 228
clipping video, 204–205
cutting/editing on Timeline, 222–223
formats, 21, 52, 193–194
generating with Expression Media Encoder, 71
leaders and trailers, 225
publishing encoded, 71
rotating in 3D, 203–204
simulating reflections in, 206–207
sizing and stretching, 200–202
transforming, 202
trimming on Timeline, 222

video markers, 212–214
VideoBrush

creating VideoBrushes, 170
overview of, 164
for painting video elements, 205–206
System.Windows.Media classes, 522–523

visual elements. See graphic/visual elements
Visual States

adjusting active, 445–448
in control templates, 448–451
data validation errors reflected by, 341–342
identifying, 445
overview of, 444

572

Visual Studio

Visual Studio
adding compiled shader effect to, 179–180
Build Actions and, 195–196
building Silverlight applications with, 4
developers, designers, and integrators use of,

352–353
as RAD tool, 13, 30

VisualState elements, 448–449
VisualStateManager

control templates and, 444
defining transitions with, 141
reacting to state changes within templates,

138–140
VisualTransition elements, 449–451
VisualTreeHelper, System.Windows.Media

classes, 523
Volume property, audio settings, 209

W
WCF (Windows Communication Foundation)

accessing data through, 327
accessing WCF service from Silverlight,

330–331
ASP.NET-based authentication and, 298
creating business objects corresponding to

data, 328
Duplex service and, 237–240
exposing WCF service, 328–329
personalization and, 412
referencing WCF service from Silverlight,

329–330
Silverlight support for, 291
Silverlight-related features in, 57

Web browsers. See also bom (browser
object model)

controlling browser plug-in size and position,
116–117

cross-browser support in Silverlight, 4
list of supported browsers, 5
Navigation Framework and, 22
Silverlight interaction with. See Silverlight,

interaction with browser
Web-based platform, Silverlight as, 3

WebClient class, 321–327
cross-domain access and, 324
fetching data with, 321
initiating download request, 322–323
processing XML data, 324–327
replacing Downloader service, 237

Western languages, font support in Silverlight
and, 91–92

Width property, Path control, 151
width settings, layout of uI elements, 104–106
Window object
Alert method, 275–278
Confirm method, 278–279
events for interaction between script and

managed code, 282
navigation methods and properties, 280–282
Prompt method, 279–280

Windows Communication Foundation. See WCF
(Windows Communication Foundation)

Windows media
unsupported media formats, 194
VC-1/WMA, 4

Windows media audio (Wma), 21, 52, 194
Windows media Video (WmV), 21, 52, 193
Windows oSs

sockets service, 245
UAC (User Account Control) in Vista, 264
UX Guidelines for error messages in Vista, 278

Windows Presentation Foundation. See WPF
(Windows Presentation Foundation)

Winsock (Windows Sockets), 245
Wma (Windows media audio), 21, 52, 194
WmV (Windows media Video), 21, 52, 193
WmVa, 21, 52, 194
WmVC1, 21, 52, 194
working model, of uI application

developers creating, 364–365
integrators assessing design mockup and

working model, 366
WPF (Windows Presentation Foundation)

architecture and, 58–59
Expression Blend and, 68
richness of Web experience and, 4–5
XAML in WPF vs. in Silverlight, 30

573

zone-based access rules

WrapPanel panel, 17
wrapping text, 95
WSdl, 236
WSX files, 216–217

X
X- and y-coordinates, for positioning page

objects, 17
Xaml (extensible application markup

language)
attribute element syntax, 33, 35
Binding markup extensions, 43–44
controlling browser plug-in size and

position, 117
data binding and, 25–26
declaring events in Java, 39–40
declaring objects in, 32
event bubbling, 40–42
event handlers and partial classes, 37–39
findName method for finding XAML objects, 40
Fireworks to XAML Exporter, 367–369
hierarchy, 35–36
implicit collection syntax, 33–35
introduction to, 29–30
markup extensions, 42
object element syntax, 32–33
overview of, 12–13
property element syntax, 33, 35
referencing images in, 156–158
referencing media in, 196–199
Silverlight basics, 30–32
StaticResource markup extensions, 44–45

styling applications, 120–121
as subset of WPF, 51
summary, 45

Xaml editor
hints and, 38
Silverlight Tools for Visual Studio, 67–68

Xaml options tab, Fireworks to Xaml exporter,
368–369

XamlXporter for Illustrator, 190
XaP files

referencing images, 157
referencing media, 197
Silverlight deployment and, 56

x:Class attributes, Xaml and, 37–38
x:Key attributes, Xaml and, 38
Xml data

LINQ to XML, 58, 325–326
overview of, 324–325
Silverlight data support options, 58
WebClient fetching XML data, 324–327
XML Reader, 326–327

Xml reader, 326–327
x:Name attributes, Xaml and, 37–38

y
y- and X-coordinates, for positioning page

objects, 17

Z
zone-based access rules, communication

services and, 235

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

Silverlight™ 3

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox Programmer’s References are designed to give the experienced developer straight facts on a new technology, without
hype or unnecessary explanations. They deliver hard information with plenty of practical examples to help you apply new tools
to your development projects today.

Recommended
Computer Book

Categories

Programming

Software Development

ISBN: 978-0-470-38540-1

Silverlight 3 is dramatically improved over previous versions and
makes the development of rich interactive applications (RIAs) more
achievable for everyone. Packed with examples and written by a
team of seasoned developers and designers, this full-color tutorial
demonstrates exactly what Silverlight 3 offers for building RIAs
that combine animation, graphics, audio, and video.

With a focus on the capabilities provided by the Silverlight 3
platform (Build 40522), this book introduces you to the
languages, tools, and techniques needed to build applications
on the platform. You’ll begin with an overview of Silverlight
and move on to topic-by-topic coverage of this new platform’s
capabilities, including new APIs, objects, services, and
concepts. Each chapter provides a mini-tutorial on each topic,
and the examples serve to both educate and inspire you. The
information in this book is structured to help prepare you for the
real-world challenges you may face when building applications
on the Silverlight platform.

With this resource, you’ll gain a thorough understanding of
how Silverlight applications are architected, developed, and
designed.

What you will learn from this book
● Ways to create holistic Silverlight applications (not just

multimedia glitz)
● How to solve real-world problems you may face when

building your Silverlight applications
● Ways to use controls, work with text, lay out views, style

applications, use graphics, work with audio, and more
● The basics of using designer and developer tools with

Silverlight (including Expression Blend™ and Visual Studio®)
● How to use XAML in Silverlight for event handling
● Transforming text with render transforms

Who this book is for
This book is for .NET developers who want to learn how to create
practical Silverlight 3 applications.

Programmer’s Reference

spine=1.1875"
S

ilve
rlight

™ 3
Little, Beres,

Hinkson, Rader,
Croney

Updates, source code, and Wrox technical support at www.wrox.com

Silverlight
TM

 3

J. Ambrose Little, Jason Beres, Grant Hinkson, Devin Rader, Joseph Croney

Programmer’s Reference

 F
ul

l C
ol

or

Programmer’s
Reference

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	Silverlight 3 Programmer's Reference
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Getting Started
	Chapter 1: Introduction to Silverlight
	What Is Silverlight?
	Silverlight Versions Explained
	Application Development Scenarios
	Getting the Silverlight Plug-In
	Getting the Silverlight SDK
	Building Silverlight Applications
	Silverlight 3 Tour
	Summary

	Chapter 2: XAML Basics
	Introducing XAML
	Silverlight XAML Basics
	Declaring Objects in XAML
	XAML Hierarchy
	Events and the Silverlight Control
	Markup Extensions
	Summary

	Chapter 3: Silverlight Architectural Tour
	Browser Host
	Presentation Core
	.NET
	Summary

	Chapter 4: Silverlight Developer Toolbox
	Silverlight 3 Tools
	Developing with Silverlight 3 Tools for Visual Studio 2008 SP1
	Designing with Expression Blend 3
	Generating Video Using Expression Encoder
	Summary

	Part II: Using Silverlight 3 Essentials
	Chapter 5: Controls
	Text Input
	DataGrid
	List Box, ComboBox, and TabControl
	Button, HyperLinkButton, and ToggleButton
	GridSplitter
	Silverlight Controls Toolkit
	Summary

	Chapter 6: Silverlight Text
	Text Support in Silverlight
	Displaying Text with TextBlock
	Summary

	Chapter 7: Layout
	Measure, Then Arrange
	Element Sizing Characteristics
	Layout Panels
	Custom Panels
	Silverlight Plug-In Sizing and Position
	Summary

	Chapter 8: Styling Your App and Dealing with Resources
	Getting Started
	Local Styling (Inline Styling)
	Styling with Resources
	Working with the Style Object
	Defining and Organizing Resources
	Summary

	Chapter 9: Using Graphics and Visuals
	The Basics
	Images and Media
	Brushes
	Fonts and Font Embedding
	Effects and Perspective 3D
	Importing Artwork from Additional Design Tools
	Summary

	Chapter 10: Making It Richer with Media
	Supported Formats
	Unsupported Windows Media Formats
	H.264 and AAC Support
	Using the MediaElement Control
	Media Playlists
	Summary

	Chapter 11: Using the Services
	Communications
	Storage
	Installation and Updates
	Summary

	Part III: Building Applications
	Chapter 12: Silverlight, the Browser, and the Server
	Silverlight All by Its Lonesome
	Silverlight with the Browser
	Silverlight with the Server
	Summary

	Chapter 13: First Things First: Handling Cross-Cutting Concerns
	Security
	Exception Handling and Logging
	Summary

	Chapter 14: Dealing with Data
	Getting Data to Your Application
	Binding a User Interface to Data
	Persisting Data in Isolated Storage
	Summary

	Chapter 15: Designing and Styling the User Interface
	The Players
	Gathering Requirements
	UI Brainstorming/UX Sessions
	Design/Dev Part Ways
	Integration Phase
	Continuous Iteration
	Final Polish/Cleanup
	Summary

	Chapter 16: Making the Application Come Alive
	Events
	Responding to User Activity
	Personalization
	Internationalization
	Dates and Times
	Summary

	Chapter 17: Creating Custom Controls
	Setting Up a Control Project
	Using a Custom Control in an Application
	The Par ts Control Model
	Taking Advantage of Visual States
	Including Dependency Properties
	Building a Content Control
	Summary

	Appendices
	Appendix A: Silverlight Base Class Libraries Reference
	Appendix B: System.Windows Reference
	System.Windows Classes
	DependencyObject Class
	UIElement Class
	FrameworkElement Class

	Appendix C: System.Windows.Media Reference
	System.Windows.Media

	Appendix D: System.Windows.Shapes Reference
	System.Windows.Shapes Classes

	Appendix E: Additional Resources

	Index

