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Preface
Spark	for	Python	Developers	aims	to	combine	the	elegance	and	flexibility	of	Python	with
the	power	and	versatility	of	Apache	Spark.	Spark	is	written	in	Scala	and	runs	on	the	Java
virtual	machine.	It	is	nevertheless	polyglot	and	offers	bindings	and	APIs	for	Java,	Scala,
Python,	and	R.	Python	is	a	well-designed	language	with	an	extensive	set	of	specialized
libraries.	This	book	looks	at	PySpark	within	the	PyData	ecosystem.	Some	of	the
prominent	PyData	libraries	include	Pandas,	Blaze,	Scikit-Learn,	Matplotlib,	Seaborn,	and
Bokeh.	These	libraries	are	open	source.	They	are	developed,	used,	and	maintained	by	the
data	scientist	and	Python	developers	community.	PySpark	integrates	well	with	the	PyData
ecosystem,	as	endorsed	by	the	Anaconda	Python	distribution.	The	book	puts	forward	a
journey	to	build	data-intensive	apps	along	with	an	architectural	blueprint	that	covers	the
following	steps:	first,	set	up	the	base	infrastructure	with	Spark.	Second,	acquire,	collect,
process,	and	store	the	data.	Third,	gain	insights	from	the	collected	data.	Fourth,	stream	live
data	and	process	it	in	real	time.	Finally,	visualize	the	information.

The	objective	of	the	book	is	to	learn	about	PySpark	and	PyData	libraries	by	building	apps
that	analyze	the	Spark	community’s	interactions	on	social	networks.	The	focus	is	on
Twitter	data.



What	this	book	covers
Chapter	1,	Setting	Up	a	Spark	Virtual	Environment,	covers	how	to	create	a	segregated
virtual	machine	as	our	sandbox	or	development	environment	to	experiment	with	Spark
and	PyData	libraries.	It	covers	how	to	install	Spark	and	the	Python	Anaconda	distribution,
which	includes	PyData	libraries.	Along	the	way,	we	explain	the	key	Spark	concepts,	the
Python	Anaconda	ecosystem,	and	build	a	Spark	word	count	app.

Chapter	2,	Building	Batch	and	Streaming	Apps	with	Spark,	lays	the	foundation	of	the	Data
Intensive	Apps	Architecture.	It	describes	the	five	layers	of	the	apps	architecture	blueprint:
infrastructure,	persistence,	integration,	analytics,	and	engagement.	We	establish	API
connections	with	three	social	networks:	Twitter,	GitHub,	and	Meetup.	This	chapter
provides	the	tools	to	connect	to	these	three	nontrivial	APIs	so	that	you	can	create	your
own	data	mashups	at	a	later	stage.

Chapter	3,	Juggling	Data	with	Spark,	covers	how	to	harvest	data	from	Twitter	and	process
it	using	Pandas,	Blaze,	and	SparkSQL	with	their	respective	implementations	of	the
dataframe	data	structure.	We	proceed	with	further	investigations	and	techniques	using
Spark	SQL,	leveraging	on	the	Spark	dataframe	data	structure.

Chapter	4,	Learning	from	Data	Using	Spark,	gives	an	overview	of	the	ever	expanding
library	of	algorithms	of	Spark	MLlib.	It	covers	supervised	and	unsupervised	learning,
recommender	systems,	optimization,	and	feature	extraction	algorithms.	We	put	the	Twitter
harvested	dataset	through	a	Python	Scikit-Learn	and	Spark	MLlib	K-means	clustering	in
order	to	segregate	the	Apache	Spark	relevant	tweets.

Chapter	5,	Streaming	Live	Data	with	Spark,	lays	down	the	foundation	of	streaming
architecture	apps	and	describes	their	challenges,	constraints,	and	benefits.	We	illustrate	the
streaming	concepts	with	TCP	sockets,	followed	by	live	tweet	ingestion	and	processing
directly	from	the	Twitter	firehose.	We	also	describe	Flume,	a	reliable,	flexible,	and
scalable	data	ingestion	and	transport	pipeline	system.	The	combination	of	Flume,	Kafka,
and	Spark	delivers	unparalleled	robustness,	speed,	and	agility	in	an	ever-changing
landscape.	We	end	the	chapter	with	some	remarks	and	observations	on	two	streaming
architectural	paradigms,	the	Lambda	and	Kappa	architectures.

Chapter	6,	Visualizing	Insights	and	Trends,	focuses	on	a	few	key	visualization	techniques.
It	covers	how	to	build	word	clouds	and	expose	their	intuitive	power	to	reveal	a	lot	of	the
key	words,	moods,	and	memes	carried	through	thousands	of	tweets.	We	then	focus	on
interactive	mapping	visualizations	using	Bokeh.	We	build	a	world	map	from	the	ground	up
and	create	a	scatter	plot	of	critical	tweets.	Our	final	visualization	is	to	overlay	an	actual
Google	map	of	London,	highlighting	upcoming	meetups	and	their	respective	topics.





What	you	need	for	this	book
You	need	inquisitiveness,	perseverance,	and	passion	for	data,	software	engineering,
application	architecture	and	scalability,	and	beautiful	succinct	visualizations.	The	scope	is
broad	and	wide.

You	need	a	good	understanding	of	Python	or	a	similar	language	with	object-oriented	and
functional	programming	capabilities.	Preliminary	experience	of	data	wrangling	with
Python,	R,	or	any	similar	tool	is	helpful.

You	need	to	appreciate	how	to	conceive,	build,	and	scale	data	applications.





Who	this	book	is	for
The	target	audience	includes	the	following:

Data	scientists	are	the	primary	interested	parties.	This	book	will	help	you	unleash	the
power	of	Spark	and	leverage	your	Python,	R,	and	machine	learning	background.
Software	developers	with	a	focus	on	Python	will	readily	expand	their	skills	to	create
data-intensive	apps	using	Spark	as	a	processing	engine	and	Python	visualization
libraries	and	web	frameworks.
Data	architects	who	can	create	rapid	data	pipelines	and	build	the	famous	Lambda
architecture	that	encompasses	batch	and	streaming	processing	to	render	insights	on
data	in	real	time,	using	the	Spark	and	Python	rich	ecosystem,	will	also	benefit	from
this	book.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows	“Launch
PySpark	with	IPYNB	in	directory	examples/AN_Spark	where	the	Jupyter	or	IPython
Notebooks	are	stored”.

A	block	of	code	is	set	as	follows:

#	Word	count	on	1st	Chapter	of	the	Book	using	PySpark

#	import	regex	module

import	re

#	import	add	from	operator	module

from	operator	import	add

#	read	input	file

file_in	=	sc.textFile('/home/an/Documents/A00_Documents/Spark4Py	20150315')

Any	command-line	input	or	output	is	written	as	follows:

#	install	anaconda	2.x.x

bash	Anaconda-2.x.x-Linux-x86[_64].sh

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“After	installing
VirtualBox,	let’s	open	the	Oracle	VM	VirtualBox	Manager	and	click	the	New	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.
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Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.
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Chapter	1.	Setting	Up	a	Spark	Virtual
Environment
In	this	chapter,	we	will	build	an	isolated	virtual	environment	for	development	purposes.
The	environment	will	be	powered	by	Spark	and	the	PyData	libraries	provided	by	the
Python	Anaconda	distribution.	These	libraries	include	Pandas,	Scikit-Learn,	Blaze,
Matplotlib,	Seaborn,	and	Bokeh.	We	will	perform	the	following	activities:

Setting	up	the	development	environment	using	the	Anaconda	Python	distribution.
This	will	include	enabling	the	IPython	Notebook	environment	powered	by	PySpark
for	our	data	exploration	tasks.
Installing	and	enabling	Spark,	and	the	PyData	libraries	such	as	Pandas,	Scikit-	Learn,
Blaze,	Matplotlib,	and	Bokeh.
Building	a	word	count	example	app	to	ensure	that	everything	is	working	fine.

The	last	decade	has	seen	the	rise	and	dominance	of	data-driven	behemoths	such	as
Amazon,	Google,	Twitter,	LinkedIn,	and	Facebook.	These	corporations,	by	seeding,
sharing,	or	disclosing	their	infrastructure	concepts,	software	practices,	and	data	processing
frameworks,	have	fostered	a	vibrant	open	source	software	community.	This	has
transformed	the	enterprise	technology,	systems,	and	software	architecture.

This	includes	new	infrastructure	and	DevOps	(short	for	development	and	operations),
concepts	leveraging	virtualization,	cloud	technology,	and	software-defined	networks.

To	process	petabytes	of	data,	Hadoop	was	developed	and	open	sourced,	taking	its
inspiration	from	the	Google	File	System	(GFS)	and	the	adjoining	distributed	computing
framework,	MapReduce.	Overcoming	the	complexities	of	scaling	while	keeping	costs
under	control	has	also	led	to	a	proliferation	of	new	data	stores.	Examples	of	recent
database	technology	include	Cassandra,	a	columnar	database;	MongoDB,	a	document
database;	and	Neo4J,	a	graph	database.

Hadoop,	thanks	to	its	ability	to	process	huge	datasets,	has	fostered	a	vast	ecosystem	to
query	data	more	iteratively	and	interactively	with	Pig,	Hive,	Impala,	and	Tez.	Hadoop	is
cumbersome	as	it	operates	only	in	batch	mode	using	MapReduce.	Spark	is	creating	a
revolution	in	the	analytics	and	data	processing	realm	by	targeting	the	shortcomings	of	disk
input-output	and	bandwidth-intensive	MapReduce	jobs.

Spark	is	written	in	Scala,	and	therefore	integrates	natively	with	the	Java	Virtual	Machine
(JVM)	powered	ecosystem.	Spark	had	early	on	provided	Python	API	and	bindings	by
enabling	PySpark.	The	Spark	architecture	and	ecosystem	is	inherently	polyglot,	with	an
obvious	strong	presence	of	Java-led	systems.

This	book	will	focus	on	PySpark	and	the	PyData	ecosystem.	Python	is	one	of	the	preferred
languages	in	the	academic	and	scientific	community	for	data-intensive	processing.	Python
has	developed	a	rich	ecosystem	of	libraries	and	tools	in	data	manipulation	with	Pandas
and	Blaze,	in	Machine	Learning	with	Scikit-Learn,	and	in	data	visualization	with
Matplotlib,	Seaborn,	and	Bokeh.	Hence,	the	aim	of	this	book	is	to	build	an	end-to-end



architecture	for	data-intensive	applications	powered	by	Spark	and	Python.	In	order	to	put
these	concepts	in	to	practice,	we	will	analyze	social	networks	such	as	Twitter,	GitHub,	and
Meetup.	We	will	focus	on	the	activities	and	social	interactions	of	Spark	and	the	Open
Source	Software	community	by	tapping	into	GitHub,	Twitter,	and	Meetup.

Building	data-intensive	applications	requires	highly	scalable	infrastructure,	polyglot
storage,	seamless	data	integration,	multiparadigm	analytics	processing,	and	efficient
visualization.	The	following	paragraph	describes	the	data-intensive	app	architecture
blueprint	that	we	will	adopt	throughout	the	book.	It	is	the	backbone	of	the	book.	We	will
discover	Spark	in	the	context	of	the	broader	PyData	ecosystem.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Understanding	the	architecture	of	data-
intensive	applications
In	order	to	understand	the	architecture	of	data-intensive	applications,	the	following
conceptual	framework	is	used.	The	is	architecture	is	designed	on	the	following	five	layers:

Infrastructure	layer
Persistence	layer
Integration	layer
Analytics	layer
Engagement	layer

The	following	screenshot	depicts	the	five	layers	of	the	Data	Intensive	App	Framework:

From	the	bottom	up,	let’s	go	through	the	layers	and	their	main	purpose.



Infrastructure	layer
The	infrastructure	layer	is	primarily	concerned	with	virtualization,	scalability,	and
continuous	integration.	In	practical	terms,	and	in	terms	of	virtualization,	we	will	go
through	building	our	own	development	environment	in	a	VirtualBox	and	virtual	machine
powered	by	Spark	and	the	Anaconda	distribution	of	Python.	If	we	wish	to	scale	from
there,	we	can	create	a	similar	environment	in	the	cloud.	The	practice	of	creating	a
segregated	development	environment	and	moving	into	test	and	production	deployment	can
be	automated	and	can	be	part	of	a	continuous	integration	cycle	powered	by	DevOps	tools
such	as	Vagrant,	Chef,	Puppet,	and	Docker.	Docker	is	a	very	popular	open	source
project	that	eases	the	installation	and	deployment	of	new	environments.	The	book	will	be
limited	to	building	the	virtual	machine	using	VirtualBox.	From	a	data-intensive	app
architecture	point	of	view,	we	are	describing	the	essential	steps	of	the	infrastructure	layer
by	mentioning	scalability	and	continuous	integration	beyond	just	virtualization.



Persistence	layer
The	persistence	layer	manages	the	various	repositories	in	accordance	with	data	needs	and
shapes.	It	ensures	the	set	up	and	management	of	the	polyglot	data	stores.	It	includes
relational	database	management	systems	such	as	MySQL	and	PostgreSQL;	key-value
data	stores	such	as	Hadoop,	Riak,	and	Redis;	columnar	databases	such	as	HBase	and
Cassandra;	document	databases	such	as	MongoDB	and	Couchbase;	and	graph	databases
such	as	Neo4j.	The	persistence	layer	manages	various	filesystems	such	as	Hadoop’s
HDFS.	It	interacts	with	various	storage	systems	from	native	hard	drives	to	Amazon	S3.	It
manages	various	file	storage	formats	such	as	csv,	json,	and	parquet,	which	is	a	column-
oriented	format.



Integration	layer
The	integration	layer	focuses	on	data	acquisition,	transformation,	quality,	persistence,
consumption,	and	governance.	It	is	essentially	driven	by	the	following	five	Cs:	connect,
collect,	correct,	compose,	and	consume.

The	five	steps	describe	the	lifecycle	of	data.	They	are	focused	on	how	to	acquire	the
dataset	of	interest,	explore	it,	iteratively	refine	and	enrich	the	collected	information,	and
get	it	ready	for	consumption.	So,	the	steps	perform	the	following	operations:

Connect:	Targets	the	best	way	to	acquire	data	from	the	various	data	sources,	APIs
offered	by	these	sources,	the	input	format,	input	schemas	if	they	exist,	the	rate	of	data
collection,	and	limitations	from	providers
Correct:	Focuses	on	transforming	data	for	further	processing	and	also	ensures	that
the	quality	and	consistency	of	the	data	received	are	maintained
Collect:	Looks	at	which	data	to	store	where	and	in	what	format,	to	ease	data
composition	and	consumption	at	later	stages
Compose:	Concentrates	its	attention	on	how	to	mash	up	the	various	data	sets
collected,	and	enrich	the	information	in	order	to	build	a	compelling	data-driven
product
Consume:	Takes	care	of	data	provisioning	and	rendering	and	how	the	right	data
reaches	the	right	individual	at	the	right	time
Control:	This	sixth	additional	step	will	sooner	or	later	be	required	as	the	data,	the
organization,	and	the	participants	grow	and	it	is	about	ensuring	data	governance

The	following	diagram	depicts	the	iterative	process	of	data	acquisition	and	refinement	for
consumption:



Analytics	layer
The	analytics	layer	is	where	Spark	processes	data	with	the	various	models,	algorithms,	and
machine	learning	pipelines	in	order	to	derive	insights.	For	our	purpose,	in	this	book,	the
analytics	layer	is	powered	by	Spark.	We	will	delve	deeper	in	subsequent	chapters	into	the
merits	of	Spark.	In	a	nutshell,	what	makes	it	so	powerful	is	that	it	allows	multiple
paradigms	of	analytics	processing	in	a	single	unified	platform.	It	allows	batch,	streaming,
and	interactive	analytics.	Batch	processing	on	large	datasets	with	longer	latency	periods
allows	us	to	extract	patterns	and	insights	that	can	feed	into	real-time	events	in	streaming
mode.	Interactive	and	iterative	analytics	are	more	suited	for	data	exploration.	Spark	offers
bindings	and	APIs	in	Python	and	R.	With	its	SparkSQL	module	and	the	Spark	Dataframe,
it	offers	a	very	familiar	analytics	interface.



Engagement	layer
The	engagement	layer	interacts	with	the	end	user	and	provides	dashboards,	interactive
visualizations,	and	alerts.	We	will	focus	here	on	the	tools	provided	by	the	PyData
ecosystem	such	as	Matplotlib,	Seaborn,	and	Bokeh.





Understanding	Spark
Hadoop	scales	horizontally	as	the	data	grows.	Hadoop	runs	on	commodity	hardware,	so	it
is	cost-effective.	Intensive	data	applications	are	enabled	by	scalable,	distributed	processing
frameworks	that	allow	organizations	to	analyze	petabytes	of	data	on	large	commodity
clusters.	Hadoop	is	the	first	open	source	implementation	of	map-reduce.	Hadoop	relies	on
a	distributed	framework	for	storage	called	HDFS	(Hadoop	Distributed	File	System).
Hadoop	runs	map-reduce	tasks	in	batch	jobs.	Hadoop	requires	persisting	the	data	to	disk	at
each	map,	shuffle,	and	reduce	process	step.	The	overhead	and	the	latency	of	such	batch
jobs	adversely	impact	the	performance.

Spark	is	a	fast,	distributed	general	analytics	computing	engine	for	large-scale	data
processing.	The	major	breakthrough	from	Hadoop	is	that	Spark	allows	data	sharing
between	processing	steps	through	in-memory	processing	of	data	pipelines.

Spark	is	unique	in	that	it	allows	four	different	styles	of	data	analysis	and	processing.	Spark
can	be	used	in:

Batch:	This	mode	is	used	for	manipulating	large	datasets,	typically	performing	large
map-reduce	jobs
Streaming:	This	mode	is	used	to	process	incoming	information	in	near	real	time
Iterative:	This	mode	is	for	machine	learning	algorithms	such	as	a	gradient	descent
where	the	data	is	accessed	repetitively	in	order	to	reach	convergence
Interactive:	This	mode	is	used	for	data	exploration	as	large	chunks	of	data	are	in
memory	and	due	to	the	very	quick	response	time	of	Spark

The	following	figure	highlights	the	preceding	four	processing	styles:

Spark	operates	in	three	modes:	one	single	mode,	standalone	on	a	single	machine	and	two
distributed	modes	on	a	cluster	of	machines—on	Yarn,	the	Hadoop	distributed	resource
manager,	or	on	Mesos,	the	open	source	cluster	manager	developed	at	Berkeley
concurrently	with	Spark:



Spark	offers	a	polyglot	interface	in	Scala,	Java,	Python,	and	R.



Spark	libraries
Spark	comes	with	batteries	included,	with	some	powerful	libraries:

SparkSQL:	This	provides	the	SQL-like	ability	to	interrogate	structured	data	and
interactively	explore	large	datasets
SparkMLLIB:	This	provides	major	algorithms	and	a	pipeline	framework	for
machine	learning
Spark	Streaming:	This	is	for	near	real-time	analysis	of	data	using	micro	batches	and
sliding	widows	on	incoming	streams	of	data
Spark	GraphX:	This	is	for	graph	processing	and	computation	on	complex	connected
entities	and	relationships

PySpark	in	action
Spark	is	written	in	Scala.	The	whole	Spark	ecosystem	naturally	leverages	the	JVM
environment	and	capitalizes	on	HDFS	natively.	Hadoop	HDFS	is	one	of	the	many	data
stores	supported	by	Spark.	Spark	is	agnostic	and	from	the	beginning	interacted	with
multiple	data	sources,	types,	and	formats.

PySpark	is	not	a	transcribed	version	of	Spark	on	a	Java-enabled	dialect	of	Python	such	as
Jython.	PySpark	provides	integrated	API	bindings	around	Spark	and	enables	full	usage	of
the	Python	ecosystem	within	all	the	nodes	of	the	cluster	with	the	pickle	Python
serialization	and,	more	importantly,	supplies	access	to	the	rich	ecosystem	of	Python’s
machine	learning	libraries	such	as	Scikit-Learn	or	data	processing	such	as	Pandas.

When	we	initialize	a	Spark	program,	the	first	thing	a	Spark	program	must	do	is	to	create	a
SparkContext	object.	It	tells	Spark	how	to	access	the	cluster.	The	Python	program	creates
a	PySparkContext.	Py4J	is	the	gateway	that	binds	the	Python	program	to	the	Spark	JVM
SparkContext.	The	JVM	SparkContextserializes	the	application	codes	and	the	closures
and	sends	them	to	the	cluster	for	execution.	The	cluster	manager	allocates	resources	and
schedules,	and	ships	the	closures	to	the	Spark	workers	in	the	cluster	who	activate	Python
virtual	machines	as	required.	In	each	machine,	the	Spark	Worker	is	managed	by	an
executor	that	controls	computation,	storage,	and	cache.

Here’s	an	example	of	how	the	Spark	driver	manages	both	the	PySpark	context	and	the
Spark	context	with	its	local	filesystems	and	its	interactions	with	the	Spark	worker	through
the	cluster	manager:



The	Resilient	Distributed	Dataset
Spark	applications	consist	of	a	driver	program	that	runs	the	user’s	main	function,	creates
distributed	datasets	on	the	cluster,	and	executes	various	parallel	operations
(transformations	and	actions)	on	those	datasets.

Spark	applications	are	run	as	an	independent	set	of	processes,	coordinated	by	a
SparkContext	in	a	driver	program.

The	SparkContext	will	be	allocated	system	resources	(machines,	memory,	CPU)	from	the
Cluster	manager.

The	SparkContext	manages	executors	who	manage	workers	in	the	cluster.	The	driver
program	has	Spark	jobs	that	need	to	run.	The	jobs	are	split	into	tasks	submitted	to	the
executor	for	completion.	The	executor	takes	care	of	computation,	storage,	and	caching	in
each	machine.

The	key	building	block	in	Spark	is	the	RDD	(Resilient	Distributed	Dataset).	A	dataset	is
a	collection	of	elements.	Distributed	means	the	dataset	can	be	on	any	node	in	the	cluster.
Resilient	means	that	the	dataset	could	get	lost	or	partially	lost	without	major	harm	to	the
computation	in	progress	as	Spark	will	re-compute	from	the	data	lineage	in	memory,	also
known	as	the	DAG	(short	for	Directed	Acyclic	Graph)	of	operations.	Basically,	Spark
will	snapshot	in	memory	a	state	of	the	RDD	in	the	cache.	If	one	of	the	computing
machines	crashes	during	operation,	Spark	rebuilds	the	RDDs	from	the	cached	RDD	and



the	DAG	of	operations.	RDDs	recover	from	node	failure.

There	are	two	types	of	operation	on	RDDs:

Transformations:	A	transformation	takes	an	existing	RDD	and	leads	to	a	pointer	of	a
new	transformed	RDD.	An	RDD	is	immutable.	Once	created,	it	cannot	be	changed.
Each	transformation	creates	a	new	RDD.	Transformations	are	lazily	evaluated.
Transformations	are	executed	only	when	an	action	occurs.	In	the	case	of	failure,	the
data	lineage	of	transformations	rebuilds	the	RDD.
Actions:	An	action	on	an	RDD	triggers	a	Spark	job	and	yields	a	value.	An	action
operation	causes	Spark	to	execute	the	(lazy)	transformation	operations	that	are
required	to	compute	the	RDD	returned	by	the	action.	The	action	results	in	a	DAG	of
operations.	The	DAG	is	compiled	into	stages	where	each	stage	is	executed	as	a	series
of	tasks.	A	task	is	a	fundamental	unit	of	work.

Here’s	some	useful	information	on	RDDs:

RDDs	are	created	from	a	data	source	such	as	an	HDFS	file	or	a	DB	query.	There	are
three	ways	to	create	an	RDD:

Reading	from	a	datastore
Transforming	an	existing	RDD
Using	an	in-memory	collection

RDDs	are	transformed	with	functions	such	as	map	or	filter,	which	yield	new	RDDs.
An	action	such	as	first,	take,	collect,	or	count	on	an	RDD	will	deliver	the	results	into
the	Spark	driver.	The	Spark	driver	is	the	client	through	which	the	user	interacts	with
the	Spark	cluster.

The	following	diagram	illustrates	the	RDD	transformation	and	action:







Understanding	Anaconda
Anaconda	is	a	widely	used	free	Python	distribution	maintained	by	Continuum
(https://www.continuum.io/).	We	will	use	the	prevailing	software	stack	provided	by
Anaconda	to	generate	our	apps.	In	this	book,	we	will	use	PySpark	and	the	PyData
ecosystem.	The	PyData	ecosystem	is	promoted,	supported,	and	maintained	by	Continuum
and	powered	by	the	Anaconda	Python	distribution.	The	Anaconda	Python	distribution
essentially	saves	time	and	aggravation	in	the	installation	of	the	Python	environment;	we
will	use	it	in	conjunction	with	Spark.	Anaconda	has	its	own	package	management	that
supplements	the	traditional	pip	install	and	easy-install.	Anaconda	comes	with
batteries	included,	namely	some	of	the	most	important	packages	such	as	Pandas,	Scikit-
Learn,	Blaze,	Matplotlib,	and	Bokeh.	An	upgrade	to	any	of	the	installed	library	is	a	simple
command	at	the	console:

$	conda	update

A	list	of	installed	libraries	in	our	environment	can	be	obtained	with	command:

$	conda	list

The	key	components	of	the	stack	are	as	follows:

Anaconda:	This	is	a	free	Python	distribution	with	almost	200	Python	packages	for
science,	math,	engineering,	and	data	analysis.
Conda:	This	is	a	package	manager	that	takes	care	of	all	the	dependencies	of
installing	a	complex	software	stack.	This	is	not	restricted	to	Python	and	manages	the
install	process	for	R	and	other	languages.
Numba:	This	provides	the	power	to	speed	up	code	in	Python	with	high-performance
functions	and	just-in-time	compilation.
Blaze:	This	enables	large	scale	data	analytics	by	offering	a	uniform	and	adaptable
interface	to	access	a	variety	of	data	providers,	which	include	streaming	Python,
Pandas,	SQLAlchemy,	and	Spark.
Bokeh:	This	provides	interactive	data	visualizations	for	large	and	streaming	datasets.
Wakari:	This	allows	us	to	share	and	deploy	IPython	Notebooks	and	other	apps	on	a
hosted	environment.

The	following	figure	shows	the	components	of	the	Anaconda	stack:

https://www.continuum.io/






Setting	up	the	Spark	powered
environment
In	this	section,	we	will	learn	to	set	up	Spark:

Create	a	segregated	development	environment	in	a	virtual	machine	running	on
Ubuntu	14.04,	so	it	does	not	interfere	with	any	existing	system.
Install	Spark	1.3.0	with	its	dependencies,	namely.
Install	the	Anaconda	Python	2.7	environment	with	all	the	required	libraries	such	as
Pandas,	Scikit-Learn,	Blaze,	and	Bokeh,	and	enable	PySpark,	so	it	can	be	accessed
through	IPython	Notebooks.
Set	up	the	backend	or	data	stores	of	our	environment.	We	will	use	MySQL	as	the
relational	database,	MongoDB	as	the	document	store,	and	Cassandra	as	the	columnar
database.

Each	storage	backend	serves	a	specific	purpose	depending	on	the	nature	of	the	data	to	be
handled.	The	MySQL	RDBMs	is	used	for	standard	tabular	processed	information	that	can
be	easily	queried	using	SQL.	As	we	will	be	processing	a	lot	of	JSON-type	data	from
various	APIs,	the	easiest	way	to	store	them	is	in	a	document.	For	real-time	and	time-
series-related	information,	Cassandra	is	best	suited	as	a	columnar	database.

The	following	diagram	gives	a	view	of	the	environment	we	will	build	and	use	throughout
the	book:





Setting	up	an	Oracle	VirtualBox	with	Ubuntu
Setting	up	a	clean	new	VirtualBox	environment	on	Ubuntu	14.04	is	the	safest	way	to
create	a	development	environment	that	does	not	conflict	with	existing	libraries	and	can	be
later	replicated	in	the	cloud	using	a	similar	list	of	commands.

In	order	to	set	up	an	environment	with	Anaconda	and	Spark,	we	will	create	a	VirtualBox
virtual	machine	running	Ubuntu	14.04.

Let’s	go	through	the	steps	of	using	VirtualBox	with	Ubuntu:

1.	 Oracle	VirtualBox	VM	is	free	and	can	be	downloaded	from
https://www.virtualbox.org/wiki/Downloads.	The	installation	is	pretty
straightforward.

2.	 After	installing	VirtualBox,	let’s	open	the	Oracle	VM	VirtualBox	Manager	and	click
the	New	button.

3.	 We’ll	give	the	new	VM	a	name,	and	select	Type	Linux	and	Version	Ubuntu	(64	bit).
4.	 You	need	to	download	the	ISO	from	the	Ubuntu	website	and	allocate	sufficient	RAM

(4	GB	recommended)	and	disk	space	(20	GB	recommended).	We	will	use	the	Ubuntu
14.04.1	LTS	release,	which	is	found	here:	http://www.ubuntu.com/download/desktop.

5.	 Once	the	installation	completed,	it	is	advisable	to	install	the	VirtualBox	Guest
Additions	by	going	to	(from	the	VirtualBox	menu,	with	the	new	VM	running)
Devices	|	Insert	Guest	Additions	CD	image.	Failing	to	provide	the	guest	additions
in	a	Windows	host	gives	a	very	limited	user	interface	with	reduced	window	sizes.

6.	 Once	the	additional	installation	completes,	reboot	the	VM,	and	it	will	be	ready	to	use.
It	is	helpful	to	enable	the	shared	clipboard	by	selecting	the	VM	and	clicking	Settings,
then	go	to	General	|	Advanced	|	Shared	Clipboard	and	click	on	Bidirectional.

https://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/desktop


Installing	Anaconda	with	Python	2.7
PySpark	currently	runs	only	on	Python	2.7.	(There	are	requests	from	the	community	to
upgrade	to	Python	3.3.)	To	install	Anaconda,	follow	these	steps:

1.	 Download	the	Anaconda	Installer	for	Linux	64-bit	Python	2.7	from
http://continuum.io/downloads#all.

2.	 After	downloading	the	Anaconda	installer,	open	a	terminal	and	navigate	to	the
directory	or	folder	where	the	installer	has	been	saved.	From	here,	run	the	following
command,	replacing	the	2.x.x	in	the	command	with	the	version	number	of	the
downloaded	installer	file:

#	install	anaconda	2.x.x

bash	Anaconda-2.x.x-Linux-x86[_64].sh

3.	 After	accepting	the	license	terms,	you	will	be	asked	to	specify	the	install	location
(which	defaults	to	~/anaconda).

4.	 After	the	self-extraction	is	finished,	you	should	add	the	anaconda	binary	directory	to
your	PATH	environment	variable:

#	add	anaconda	to	PATH

bash	Anaconda-2.x.x-Linux-x86[_64].sh

http://continuum.io/downloads#all


Installing	Java	8
Spark	runs	on	the	JVM	and	requires	the	Java	SDK	(short	for	Software	Development	Kit)
and	not	the	JRE	(short	for	Java	Runtime	Environment),	as	we	will	build	apps	with
Spark.	The	recommended	version	is	Java	Version	7	or	higher.	Java	8	is	the	most	suitable,
as	it	includes	many	of	the	functional	programming	techniques	available	with	Scala	and
Python.

To	install	Java	8,	follow	these	steps:

1.	 Install	Oracle	Java	8	using	the	following	commands:

#	install	oracle	java	8

$	sudo	apt-get	install	software-properties-common

$	sudo	add-apt-repository	ppa:webupd8team/java

$	sudo	apt-get	update

$	sudo	apt-get	install	oracle-java8-installer

2.	 Set	the	JAVA_HOME	environment	variable	and	ensure	that	the	Java	program	is	on	your
PATH.

3.	 Check	that	JAVA_HOME	is	properly	installed:

#	

$	echo	JAVA_HOME



Installing	Spark
Head	over	to	the	Spark	download	page	at	http://spark.apache.org/downloads.html.

The	Spark	download	page	offers	the	possibility	to	download	earlier	versions	of	Spark	and
different	package	and	download	types.	We	will	select	the	latest	release,	pre-built	for
Hadoop	2.6	and	later.	The	easiest	way	to	install	Spark	is	to	use	a	Spark	package	prebuilt
for	Hadoop	2.6	and	later,	rather	than	build	it	from	source.	Move	the	file	to	the	directory
~/spark	under	the	root	directory.

Download	the	latest	release	of	Spark—Spark	1.5.2,	released	on	November	9,	2015:

1.	 Select	Spark	release	1.5.2	(Nov	09	2015),
2.	 Chose	the	package	type	Prebuilt	for	Hadoop	2.6	and	later,
3.	 Chose	the	download	type	Direct	Download,
4.	 Download	Spark:	spark-1.5.2-bin-hadoop2.6.tgz,
5.	 Verify	this	release	using	the	1.3.0	signatures	and	checksums,

This	can	also	be	accomplished	by	running:

#	download	spark

$	wget	http://d3kbcqa49mib13.cloudfront.net/spark-1.5.2-bin-hadoop2.6.tgz

Next,	we’ll	extract	the	files	and	clean	up:

#	extract,	clean	up,	move	the	unzipped	files	under	the	spark	directory

$	tar	-xf	spark-1.5.2-bin-hadoop2.6.tgz

$	rm	spark-1.5.2-bin-hadoop2.6.tgz

$	sudo	mv	spark-*	spark

Now,	we	can	run	the	Spark	Python	interpreter	with:

#	run	spark

$	cd	~/spark

./bin/pyspark

You	should	see	something	like	this:

Welcome	to

						____														__

					/	__/__		___	_____/	/__

				_\	\/	_	\/	_	`/	__/		'_/

			/__	/	.__/\_,_/_/	/_/\_\			version	1.5.2

						/_/

Using	Python	version	2.7.6	(default,	Mar	22	2014	22:59:56)

SparkContext	available	as	sc.

>>>	

The	interpreter	will	have	already	provided	us	with	a	Spark	context	object,	sc,	which	we
can	see	by	running:

>>>	print(sc)

<pyspark.context.SparkContext	object	at	0x7f34b61c4e50>

http://spark.apache.org/downloads.html


Enabling	IPython	Notebook
We	will	work	with	IPython	Notebook	for	a	friendlier	user	experience	than	the	console.

You	can	launch	IPython	Notebook	by	using	the	following	command:

$	IPYTHON_OPTS="notebook	--pylab	inline"		./bin/pyspark

Launch	PySpark	with	IPYNB	in	the	directory	examples/AN_Spark	where	Jupyter	or
IPython	Notebooks	are	stored:

#	cd	to		/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark

#	launch	command	using	python	2.7	and	the	spark-csv	package:

$	IPYTHON_OPTS='notebook'	/home/an/spark/spark-1.5.0-bin-

hadoop2.6/bin/pyspark	--packages	com.databricks:spark-csv_2.11:1.2.0

#	launch	command	using	python	3.4	and	the	spark-csv	package:

$	IPYTHON_OPTS='notebook'	PYSPARK_PYTHON=python3

	/home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/pyspark	--packages	

com.databricks:spark-csv_2.11:1.2.0





Building	our	first	app	with	PySpark
We	are	ready	to	check	now	that	everything	is	working	fine.	The	obligatory	word	count
will	be	put	to	the	test	in	processing	a	word	count	on	the	first	chapter	of	this	book.

The	code	we	will	be	running	is	listed	here:

#	Word	count	on	1st	Chapter	of	the	Book	using	PySpark

#	import	regex	module

import	re

#	import	add	from	operator	module

from	operator	import	add

#	read	input	file

file_in	=	sc.textFile('/home/an/Documents/A00_Documents/Spark4Py	20150315')

#	count	lines

print('number	of	lines	in	file:	%s'	%	file_in.count())

#	add	up	lengths	of	each	line

chars	=	file_in.map(lambda	s:	len(s)).reduce(add)

print('number	of	characters	in	file:	%s'	%	chars)

#	Get	words	from	the	input	file

words	=file_in.flatMap(lambda	line:	re.split('\W+',	line.lower().strip()))

#	words	of	more	than	3	characters

words	=	words.filter(lambda	x:	len(x)	>	3)

#	set	count	1	per	word

words	=	words.map(lambda	w:	(w,1))

#	reduce	phase	-	sum	count	all	the	words

words	=	words.reduceByKey(add)

In	this	program,	we	are	first	reading	the	file	from	the	directory
/home/an/Documents/A00_Documents/Spark4Py	20150315	into	file_in.

We	are	then	introspecting	the	file	by	counting	the	number	of	lines	and	the	number	of
characters	per	line.

We	are	splitting	the	input	file	in	to	words	and	getting	them	in	lower	case.	For	our	word
count	purpose,	we	are	choosing	words	longer	than	three	characters	in	order	to	avoid
shorter	and	much	more	frequent	words	such	as	the,	and,	for	to	skew	the	count	in	their
favor.	Generally,	they	are	considered	stop	words	and	should	be	filtered	out	in	any
language	processing	task.

At	this	stage,	we	are	getting	ready	for	the	MapReduce	steps.	To	each	word,	we	map	a
value	of	1	and	reduce	it	by	summing	all	the	unique	words.

Here	are	illustrations	of	the	code	in	the	IPython	Notebook.	The	first	10	cells	are
preprocessing	the	word	count	on	the	dataset,	which	is	retrieved	from	the	local	file
directory.



Swap	the	word	count	tuples	in	the	format	(count,	word)	in	order	to	sort	by	count,	which
is	now	the	primary	key	of	the	tuple:

#	create	tuple	(count,	word)	and	sort	in	descending

words	=	words.map(lambda	x:	(x[1],	x[0])).sortByKey(False)

#	take	top	20	words	by	frequency

words.take(20)



In	order	to	display	our	result,	we	are	creating	the	tuple	(count,	word)	and	displaying	the
top	20	most	frequently	used	words	in	descending	order:





Let’s	create	a	histogram	function:

#	create	function	for	histogram	of	most	frequent	words

%	matplotlib	inline

import	matplotlib.pyplot	as	plt

#

def	histogram(words):

				count	=	map(lambda	x:	x[1],	words)

				word	=	map(lambda	x:	x[0],	words)

				plt.barh(range(len(count)),	count,color	=	'grey')

				plt.yticks(range(len(count)),	word)

#	Change	order	of	tuple	(word,	count)	from	(count,	word)	

words	=	words.map(lambda	x:(x[1],	x[0]))

words.take(25)

#	display	histogram

histogram(words.take(25))

Here,	we	visualize	the	most	frequent	words	by	plotting	them	in	a	bar	chart.	We	have	to
first	swap	the	tuple	from	the	original	(count,	word)	to	(word,	count):





So	here	you	have	it:	the	most	frequent	words	used	in	the	first	chapter	are	Spark,	followed
by	Data	and	Anaconda.





Virtualizing	the	environment	with
Vagrant
In	order	to	create	a	portable	Python	and	Spark	environment	that	can	be	easily	shared	and
cloned,	the	development	environment	can	be	built	with	a	vagrantfile.

We	will	point	to	the	Massive	Open	Online	Courses	(MOOCs)	delivered	by	Berkeley
University	and	Databricks:

Introduction	to	Big	Data	with	Apache	Spark,	Professor	Anthony	D.	Joseph	can	be
found	at	https://www.edx.org/course/introduction-big-data-apache-spark-uc-
berkeleyx-cs100-1x
Scalable	Machine	Learning,	Professor	Ameet	Talwalkar	can	be	found	at
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x

The	course	labs	were	executed	on	IPython	Notebooks	powered	by	PySpark.	They	can	be
found	in	the	following	GitHub	repository:	https://github.com/spark-mooc/mooc-setup/.

Once	you	have	set	up	Vagrant	on	your	machine,	follow	these	instructions	to	get	started:
https://docs.vagrantup.com/v2/getting-started/index.html.

Clone	the	spark-mooc/mooc-setup/	github	repository	in	your	work	directory	and	launch
the	command	$	vagrant	up,	within	the	cloned	directory:

Be	aware	that	the	version	of	Spark	may	be	outdated	as	the	vagrantfile	may	not	be	up-to-
date.

You	will	see	an	output	similar	to	this:

C:\Programs\spark\edx1001\mooc-setup-master>vagrant	up

Bringing	machine	'sparkvm'	up	with	'virtualbox'	provider…

==>	sparkvm:	Checking	if	box	'sparkmooc/base'	is	up	to	date…

==>	sparkvm:	Clearing	any	previously	set	forwarded	ports…

==>	sparkvm:	Clearing	any	previously	set	network	interfaces…

==>	sparkvm:	Preparing	network	interfaces	based	on	configuration…

				sparkvm:	Adapter	1:	nat

==>	sparkvm:	Forwarding	ports…

				sparkvm:	8001	=>	8001	(adapter	1)

				sparkvm:	4040	=>	4040	(adapter	1)

				sparkvm:	22	=>	2222	(adapter	1)

==>	sparkvm:	Booting	VM…

==>	sparkvm:	Waiting	for	machine	to	boot.	This	may	take	a	few	minutes…

				sparkvm:	SSH	address:	127.0.0.1:2222

				sparkvm:	SSH	username:	vagrant

				sparkvm:	SSH	auth	method:	private	key

				sparkvm:	Warning:	Connection	timeout.	Retrying…

				sparkvm:	Warning:	Remote	connection	disconnect.	Retrying…

==>	sparkvm:	Machine	booted	and	ready!

==>	sparkvm:	Checking	for	guest	additions	in	VM…

==>	sparkvm:	Setting	hostname…

==>	sparkvm:	Mounting	shared	folders…

				sparkvm:	/vagrant	=>	C:/Programs/spark/edx1001/mooc-setup-master

https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x
https://github.com/spark-mooc/mooc-setup/
https://docs.vagrantup.com/v2/getting-started/index.html


==>	sparkvm:	Machine	already	provisioned.	Run	`vagrant	provision`	or	use	

the	`--provision`

==>	sparkvm:	to	force	provisioning.	Provisioners	marked	to	run	always	will	

still	run.

C:\Programs\spark\edx1001\mooc-setup-master>

This	will	launch	the	IPython	Notebooks	powered	by	PySpark	on	localhost:8001:





Moving	to	the	cloud
As	we	are	dealing	with	distributed	systems,	an	environment	on	a	virtual	machine	running
on	a	single	laptop	is	limited	for	exploration	and	learning.	We	can	move	to	the	cloud	in
order	to	experience	the	power	and	scalability	of	the	Spark	distributed	framework.



Deploying	apps	in	Amazon	Web	Services
Once	we	are	ready	to	scale	our	apps,	we	can	migrate	our	development	environment	to
Amazon	Web	Services	(AWS).

How	to	run	Spark	on	EC2	is	clearly	described	in	the	following	page:
https://spark.apache.org/docs/latest/ec2-scripts.html.

We	emphasize	five	key	steps	in	setting	up	the	AWS	Spark	environment:

1.	 Create	an	AWS	EC2	key	pair	via	the	AWS	console	http://aws.amazon.com/console/.
2.	 Export	your	key	pair	to	your	environment:

export	AWS_ACCESS_KEY_ID=accesskeyid

export	AWS_SECRET_ACCESS_KEY=secretaccesskey

3.	 Launch	your	cluster:

~$	cd	$SPARK_HOME/ec2

ec2$	./spark-ec2	-k	<keypair>	-i	<key-file>	-s	<num-slaves>	launch	

<cluster-name>

4.	 SSH	into	a	cluster	to	run	Spark	jobs:

ec2$	./spark-ec2	-k	<keypair>	-i	<key-file>	login	<cluster-name>

5.	 Destroy	your	cluster	after	usage:

ec2$	./spark-ec2	destroy	<cluster-name>

https://spark.apache.org/docs/latest/ec2-scripts.html
http://aws.amazon.com/console/


Virtualizing	the	environment	with	Docker
In	order	to	create	a	portable	Python	and	Spark	environment	that	can	be	easily	shared	and
cloned,	the	development	environment	can	be	built	in	Docker	containers.

We	wish	capitalize	on	Docker’s	two	main	functions:

Creating	isolated	containers	that	can	be	easily	deployed	on	different	operating
systems	or	in	the	cloud.
Allowing	easy	sharing	of	the	development	environment	image	with	all	its
dependencies	using	The	DockerHub.	The	DockerHub	is	similar	to	GitHub.	It	allows
easy	cloning	and	version	control.	The	snapshot	image	of	the	configured	environment
can	be	the	baseline	for	further	enhancements.

The	following	diagram	illustrates	a	Docker-enabled	environment	with	Spark,	Anaconda,
and	the	database	server	and	their	respective	data	volumes.



Docker	offers	the	ability	to	clone	and	deploy	an	environment	from	the	Dockerfile.

You	can	find	an	example	Dockerfile	with	a	PySpark	and	Anaconda	setup	at	the	following
address:	https://hub.docker.com/r/thisgokeboysef/pyspark-docker/~/dockerfile/.

Install	Docker	as	per	the	instructions	provided	at	the	following	links:

http://docs.docker.com/mac/started/	if	you	are	on	Mac	OS	X
http://docs.docker.com/linux/started/	if	you	are	on	Linux
http://docs.docker.com/windows/started/	if	you	are	on	Windows

Install	the	docker	container	with	the	Dockerfile	provided	earlier	with	the	following
command:

$	docker	pull	thisgokeboysef/pyspark-docker

Other	great	sources	of	information	on	how	to	dockerize	your	environment	can	be	seen	at
Lab41.	The	GitHub	repository	contains	the	necessary	code:

https://github.com/Lab41/ipython-spark-docker

The	supporting	blog	post	is	rich	in	information	on	thought	processes	involved	in	building
the	docker	environment:	http://lab41.github.io/blog/2015/04/13/ipython-on-spark-on-
docker/.

https://hub.docker.com/r/thisgokeboysef/pyspark-docker/~/dockerfile/
http://docs.docker.com/mac/started/
http://docs.docker.com/linux/started/
http://docs.docker.com/windows/started/
https://github.com/Lab41/ipython-spark-docker
http://lab41.github.io/blog/2015/04/13/ipython-on-spark-on-docker/




Summary
We	set	the	context	of	building	data-intensive	apps	by	describing	the	overall	architecture
structured	around	the	infrastructure,	persistence,	integration,	analytics,	and	engagement
layers.	We	also	discussed	Spark	and	Anaconda	with	their	respective	building	blocks.	We
set	up	an	environment	in	a	VirtualBox	with	Anaconda	and	Spark	and	demonstrated	a	word
count	app	using	the	text	content	of	the	first	chapter	as	input.

In	the	next	chapter,	we	will	delve	more	deeply	into	the	architecture	blueprint	for	data-
intensive	apps	and	tap	into	the	Twitter,	GitHub,	and	Meetup	APIs	to	get	a	feel	of	the	data
we	will	be	mining	with	Spark.





Chapter	2.	Building	Batch	and	Streaming
Apps	with	Spark
The	objective	of	the	book	is	to	teach	you	about	PySpark	and	the	PyData	libraries	by
building	an	app	that	analyzes	the	Spark	community’s	interactions	on	social	networks.	We
will	gather	information	on	Apache	Spark	from	GitHub,	check	the	relevant	tweets	on
Twitter,	and	get	a	feel	for	the	buzz	around	Spark	in	the	broader	open	source	software
communities	using	Meetup.

In	this	chapter,	we	will	outline	the	various	sources	of	data	and	information.	We	will	get	an
understanding	of	their	structure.	We	will	outline	the	data	processing	pipeline,	from
collection	to	batch	and	streaming	processing.

In	this	section,	we	will	cover	the	following	points:

Outline	data	processing	pipelines	from	collection	to	batch	and	stream	processing,
effectively	depicting	the	architecture	of	the	app	we	are	planning	to	build.
Check	out	the	various	data	sources	(GitHub,	Twitter,	and	Meetup),	their	data
structure	(JSON,	structured	information,	unstructured	text,	geo-location,	time	series
data,	and	so	on),	and	their	complexities.	We	also	discuss	the	tools	to	connect	to	three
different	APIs,	so	you	can	build	your	own	data	mashups.	The	book	will	focus	on
Twitter	in	the	following	chapters.



Architecting	data-intensive	apps
We	defined	the	data-intensive	app	framework	architecture	blueprint	in	the	previous
chapter.	Let’s	put	back	in	context	the	various	software	components	we	are	going	to	use
throughout	the	book	in	our	original	framework.	Here’s	an	illustration	of	the	various
components	of	software	mapped	in	the	data-intensive	architecture	framework:

Spark	is	an	extremely	efficient,	distributed	computing	framework.	In	order	to	exploit	its
full	power,	we	need	to	architect	our	solution	accordingly.	For	performance	reasons,	the
overall	solution	needs	to	also	be	aware	of	its	usage	in	terms	of	CPU,	storage,	and	network.

These	imperatives	drive	the	architecture	of	our	solution:

Latency:	This	architecture	combines	slow	and	fast	processing.	Slow	processing	is
done	on	historical	data	in	batch	mode.	This	is	also	called	data	at	rest.	This	phase
builds	precomputed	models	and	data	patterns	that	will	be	used	by	the	fast	processing
arm	once	live	continuous	data	is	fed	into	the	system.	Fast	processing	of	data	or	real-
time	analysis	of	streaming	data	refers	to	data	in	motion.	Data	at	rest	is	essentially



processing	data	in	batch	mode	with	a	longer	latency.	Data	in	motion	refers	to	the
streaming	computation	of	data	ingested	in	real	time.
Scalability:	Spark	is	natively	linearly	scalable	through	its	distributed	in-memory
computing	framework.	Databases	and	data	stores	interacting	with	Spark	need	to	be
also	able	to	scale	linearly	as	data	volume	grows.
Fault	tolerance:	When	a	failure	occurs	due	to	hardware,	software,	or	network
reasons,	the	architecture	should	be	resilient	enough	and	provide	availability	at	all
times.
Flexibility:	The	data	pipelines	put	in	place	in	this	architecture	can	be	adapted	and
retrofitted	very	quickly	depending	on	the	use	case.

Spark	is	unique	as	it	allows	batch	processing	and	streaming	analytics	on	the	same	unified
platform.

We	will	consider	two	data	processing	pipelines:

The	first	one	handles	data	at	rest	and	is	focused	on	putting	together	the	pipeline	for
batch	analysis	of	the	data
The	second	one,	data	in	motion,	targets	real-time	data	ingestion	and	delivering
insights	based	on	precomputed	models	and	data	patterns



Processing	data	at	rest
Let’s	get	an	understanding	of	the	data	at	rest	or	batch	processing	pipeline.	The	objective	in
this	pipeline	is	to	ingest	the	various	datasets	from	Twitter,	GitHub,	and	Meetup;	prepare
the	data	for	Spark	MLlib,	the	machine	learning	engine;	and	derive	the	base	models	that
will	be	applied	for	insight	generation	in	batch	mode	or	in	real	time.

The	following	diagram	illustrates	the	data	pipeline	in	order	to	enable	processing	data	at
rest:



Processing	data	in	motion
Processing	data	in	motion	introduces	a	new	level	of	complexity,	as	we	are	introducing	a
new	possibility	of	failure.	If	we	want	to	scale,	we	need	to	consider	bringing	in	distributed
message	queue	systems	such	as	Kafka.	We	will	dedicate	a	subsequent	chapter	to
understanding	streaming	analytics.

The	following	diagram	depicts	a	data	pipeline	for	processing	data	in	motion:



Exploring	data	interactively
Building	a	data-intensive	app	is	not	as	straightforward	as	exposing	a	database	to	a	web
interface.	During	the	setup	of	both	the	data	at	rest	and	data	in	motion	processing,	we	will
capitalize	on	Spark’s	ability	to	analyse	data	interactively	and	refine	the	data	richness	and
quality	required	for	the	machine	learning	and	streaming	activities.	Here,	we	will	go
through	an	iterative	cycle	of	data	collection,	refinement,	and	investigation	in	order	to	get
to	the	dataset	of	interest	for	our	apps.





Connecting	to	social	networks
Let’s	delve	into	the	first	steps	of	the	data-intensive	app	architecture’s	integration	layer.	We
are	going	to	focus	on	harvesting	the	data,	ensuring	its	integrity	and	preparing	for	batch	and
streaming	data	processing	by	Spark	at	the	next	stage.	This	phase	is	described	in	the	five
process	steps:	connect,	correct,	collect,	compose,	and	consume.	These	are	iterative	steps	of
data	exploration	that	will	get	us	acquainted	with	the	data	and	help	us	refine	the	data
structure	for	further	processing.

The	following	diagram	depicts	the	iterative	process	of	data	acquisition	and	refinement	for
consumption:

We	connect	to	the	social	networks	of	interest:	Twitter,	GitHub,	and	Meetup.	We	will
discuss	the	mode	of	access	to	the	APIs	(short	for	Application	Programming	Interface)
and	how	to	create	a	RESTful	connection	with	those	services	while	respecting	the	rate
limitation	imposed	by	the	social	networks.	REST	(short	for	Representation	State
Transfer)	is	the	most	widely	adopted	architectural	style	on	the	Internet	in	order	to	enable
scalable	web	services.	It	relies	on	exchanging	messages	predominantly	in	JSON	(short	for
JavaScript	Object	Notation).	RESTful	APIs	and	web	services	implement	the	four	most
prevalent	verbs	GET,	PUT,	POST,	and	DELETE.	GET	is	used	to	retrieve	an	element	or	a
collection	from	a	given	URI.	PUT	updates	a	collection	with	a	new	one.	POST	allows	the
creation	of	a	new	entry,	while	DELETE	eliminates	a	collection.



Getting	Twitter	data
Twitter	allows	access	to	registered	users	to	its	search	and	streaming	tweet	services	under
an	authorization	protocol	called	OAuth	that	allows	API	applications	to	securely	act	on	a
user’s	behalf.	In	order	to	create	the	connection,	the	first	step	is	to	create	an	application
with	Twitter	at	https://apps.twitter.com/app/new.

Once	the	application	has	been	created,	Twitter	will	issue	the	four	codes	that	will	allow	it	to
tap	into	the	Twitter	hose:

CONSUMER_KEY	=	'GetYourKey@Twitter'

CONSUMER_SECRET	=	'	GetYourKey@Twitter'

OAUTH_TOKEN	=	'	GetYourToken@Twitter'

OAUTH_TOKEN_SECRET	=	'	GetYourToken@Twitter'

If	you	wish	to	get	a	feel	for	the	various	RESTful	queries	offered,	you	can	explore	the
Twitter	API	on	the	dev	console	at	https://dev.twitter.com/rest/tools/console:

https://apps.twitter.com/app/new
https://dev.twitter.com/rest/tools/console


We	will	make	a	programmatic	connection	on	Twitter	using	the	following	code,	which	will
activate	our	OAuth	access	and	allows	us	to	tap	into	the	Twitter	API	under	the	rate
limitation.	In	the	streaming	mode,	the	limitation	is	for	a	GET	request.



Getting	GitHub	data
GitHub	uses	a	similar	authentication	process	to	Twitter.	Head	to	the	developer	site	and
retrieve	your	credentials	after	duly	registering	with	GitHub	at
https://developer.github.com/v3/:

https://developer.github.com/v3/


Getting	Meetup	data
Meetup	can	be	accessed	using	the	token	issued	in	the	developer	resources	to	members	of
Meetup.com.	The	necessary	token	or	OAuth	credential	for	Meetup	API	access	can	be
obtained	on	their	developer’s	website	at	https://secure.meetup.com/meetup_api:

https://secure.meetup.com/meetup_api




Analyzing	the	data
Let’s	get	a	first	feel	for	the	data	extracted	from	each	of	the	social	networks	and	get	an
understanding	of	the	data	structure	from	each	these	sources.



Discovering	the	anatomy	of	tweets
In	this	section,	we	are	going	to	establish	connection	with	the	Twitter	API.	Twitter	offers
two	connection	modes:	the	REST	API,	which	allows	us	to	search	historical	tweets	for	a
given	search	term	or	hashtag,	and	the	streaming	API,	which	delivers	real-time	tweets
under	the	rate	limit	in	place.

In	order	to	get	a	better	understanding	of	how	to	operate	with	the	Twitter	API,	we	will	go
through	the	following	steps:

1.	 Install	the	Twitter	Python	library.
2.	 Establish	a	connection	programmatically	via	OAuth,	the	authentication	required	for

Twitter.
3.	 Search	for	recent	tweets	for	the	query	Apache	Spark	and	explore	the	results	obtained.
4.	 Decide	on	the	key	attributes	of	interest	and	retrieve	the	information	from	the	JSON

output.

Let’s	go	through	it	step-by-step:

1.	 Install	the	Python	Twitter	library.	In	order	to	install	it,	you	need	to	write	pip	install
twitter	from	the	command	line:

$	pip	install	twitter

2.	 Create	the	Python	Twitter	API	class	and	its	base	methods	for	authentication,
searching,	and	parsing	the	results.	self.auth	gets	the	credentials	from	Twitter.	It
then	creates	a	registered	API	as	self.api.	We	have	implemented	two	methods:	the
first	one	to	search	Twitter	with	a	given	query	and	the	second	one	to	parse	the	output
to	retrieve	relevant	information	such	as	the	tweet	ID,	the	tweet	text,	and	the	tweet
author.	The	code	is	as	follows:

import	twitter

import	urlparse

from	pprint	import	pprint	as	pp

class	TwitterAPI(object):

				"""

				TwitterAPI	class	allows	the	Connection	to	Twitter	via	OAuth

				once	you	have	registered	with	Twitter	and	receive	the	

				necessary	credentiials	

				"""

#	initialize	and	get	the	twitter	credentials

					def	__init__(self):	

								consumer_key	=	'Provide	your	credentials'

								consumer_secret	=	'Provide	your	credentials'

								access_token	=	'Provide	your	credentials'

								access_secret	=	'Provide	your	credentials'

					

								self.consumer_key	=	consumer_key

								self.consumer_secret	=	consumer_secret



								self.access_token	=	access_token

								self.access_secret	=	access_secret

#

#	authenticate	credentials	with	Twitter	using	OAuth

								self.auth	=	twitter.oauth.OAuth(access_token,	access_secret,	

consumer_key,	consumer_secret)

				#	creates	registered	Twitter	API

								self.api	=	twitter.Twitter(auth=self.auth)

#

#	search	Twitter	with	query	q	(i.e.	"ApacheSpark")	and	max.	result

				def	searchTwitter(self,	q,	max_res=10,**kwargs):

								search_results	=	self.api.search.tweets(q=q,	count=10,	

**kwargs)

								statuses	=	search_results['statuses']

								max_results	=	min(1000,	max_res)

								for	_	in	range(10):	

												try:

																next_results	=	search_results['search_metadata']

['next_results']

												except	KeyError	as	e:	

																break

												next_results	=	urlparse.parse_qsl(next_results[1:])

												kwargs	=	dict(next_results)

												search_results	=	self.api.search.tweets(**kwargs)

												statuses	+=	search_results['statuses']

												if	len(statuses)	>	max_results:	

																break

								return	statuses

#

#	parse	tweets	as	it	is	collected	to	extract	id,	creation	

#	date,	user	id,	tweet	text

				def	parseTweets(self,	statuses):

								return	[	(status['id'],	

																		status['created_at'],	

																		status['user']['id'],

																		status['user']['name'],	

																		status['text'],	url['expanded_url'])	

																								for	status	in	statuses	

																												for	url	in	status['entities']['urls']	]

3.	 Instantiate	the	class	with	the	required	authentication:

t=	TwitterAPI()

4.	 Run	a	search	on	the	query	term	Apache	Spark:

q="ApacheSpark"

tsearch	=	t.searchTwitter(q)

5.	 Analyze	the	JSON	output:

pp(tsearch[1])



{u'contributors':	None,

	u'coordinates':	None,

	u'created_at':	u'Sat	Apr	25	14:50:57	+0000	2015',

	u'entities':	{u'hashtags':	[{u'indices':	[74,	86],	u'text':	

u'sparksummit'}],

															u'media':	[{u'display_url':	

u'pic.twitter.com/WKUMRXxIWZ',

																											u'expanded_url':	

u'http://twitter.com/bigdata/status/591976255831969792/photo/1',

																											u'id':	591976255156715520,

																											u'id_str':	u'591976255156715520',

																											u'indices':	[143,	144],

																											u'media_url':	

...(snip)...	

	u'text':	u'RT	@bigdata:	Enjoyed	catching	up	with	@ApacheSpark	users	

&amp;	leaders	at	#sparksummit	NYC:	video	clips	are	out	

http://t.co/qrqpP6cG9s	http://t\u2026',

	u'truncated':	False,

	u'user':	{u'contributors_enabled':	False,

											u'created_at':	u'Sat	Apr	04	14:44:31	+0000	2015',

											u'default_profile':	True,

											u'default_profile_image':	True,

											u'description':	u'',

											u'entities':	{u'description':	{u'urls':	[]}},

											u'favourites_count':	0,

											u'follow_request_sent':	False,

											u'followers_count':	586,

											u'following':	False,

											u'friends_count':	2,

											u'geo_enabled':	False,

											u'id':	3139047660,

											u'id_str':	u'3139047660',

											u'is_translation_enabled':	False,

											u'is_translator':	False,

											u'lang':	u'zh-cn',

											u'listed_count':	749,

											u'location':	u'',

											u'name':	u'Mega	Data	Mama',

											u'notifications':	False,

											u'profile_background_color':	u'C0DEED',

											u'profile_background_image_url':	

u'http://abs.twimg.com/images/themes/theme1/bg.png',

											u'profile_background_image_url_https':	

u'https://abs.twimg.com/images/themes/theme1/bg.png',

											...(snip)...	

											u'screen_name':	u'MegaDataMama',

											u'statuses_count':	26673,

											u'time_zone':	None,

											u'url':	None,

											u'utc_offset':	None,

											u'verified':	False}}

6.	 Parse	the	Twitter	output	to	retrieve	key	information	of	interest:

tparsed	=	t.parseTweets(tsearch)

pp(tparsed)



[(591980327784046592,

		u'Sat	Apr	25	15:01:23	+0000	2015',

		63407360,

		u'Jos\xe9	Carlos	Baquero',

		u'Big	Data	systems	are	making	a	difference	in	the	fight	against	

cancer.	#BigData	#ApacheSpark	http://t.co/pnOLmsKdL9',

		u'http://tmblr.co/ZqTggs1jHytN0'),

	(591977704464875520,

		u'Sat	Apr	25	14:50:57	+0000	2015',

		3139047660,

		u'Mega	Data	Mama',

		u'RT	@bigdata:	Enjoyed	catching	up	with	@ApacheSpark	users	&amp;	

leaders	at	#sparksummit	NYC:	video	clips	are	out	http://t.co/qrqpP6cG9s	

http://t\u2026',

		u'http://goo.gl/eF5xwK'),

	(591977172589539328,

		u'Sat	Apr	25	14:48:51	+0000	2015',

		2997608763,

		u'Emma	Clark',

		u'RT	@bigdata:	Enjoyed	catching	up	with	@ApacheSpark	users	&amp;	

leaders	at	#sparksummit	NYC:	video	clips	are	out	http://t.co/qrqpP6cG9s	

http://t\u2026',

		u'http://goo.gl/eF5xwK'),

	...	(snip)...		

	(591879098349268992,

		u'Sat	Apr	25	08:19:08	+0000	2015',

		331263208,

		u'Mario	Molina',

		u'#ApacheSpark	speeds	up	big	data	decision-making	

http://t.co/8hdEXreNfN',

		u'http://www.computerweekly.com/feature/Apache-Spark-speeds-up-big-

data-decision-making')]





Exploring	the	GitHub	world
In	order	to	get	a	better	understanding	on	how	to	operate	with	the	GitHub	API,	we	will	go
through	the	following	steps:

1.	 Install	the	GitHub	Python	library.
2.	 Access	the	API	by	using	the	token	provided	when	we	registered	in	the	developer

website.
3.	 Retrieve	some	key	facts	on	the	Apache	foundation	that	is	hosting	the	spark

repository.

Let’s	go	through	the	process	step-by-step:

1.	 Install	the	Python	PyGithub	library.	In	order	to	install	it,	you	need	to	pip	install
PyGithub	from	the	command	line:

pip	install	PyGithub

2.	 Programmatically	create	a	client	to	instantiate	the	GitHub	API:

from	github	import	Github

#	Get	your	own	access	token

ACCESS_TOKEN	=	'Get_Your_Own_Access_Token'

#	We	are	focusing	our	attention	to	User	=	apache	and	Repo	=	spark

USER	=	'apache'

REPO	=	'spark'

g	=	Github(ACCESS_TOKEN,	per_page=100)

user	=	g.get_user(USER)

repo	=	user.get_repo(REPO)

3.	 Retrieve	key	facts	from	the	Apache	User.	There	are	640	active	Apache	repositories	in
GitHub:

repos_apache	=	[repo.name	for	repo	in	g.get_user('apache').get_repos()]

len(repos_apache)

640

4.	 Retrieve	key	facts	from	the	Spark	repository,	The	programing	languages	used	in	the
Spark	repo	are	given	here	under:

pp(repo.get_languages())

{u'C':	1493,

	u'CSS':	4472,

	u'Groff':	5379,

	u'Java':	1054894,

	u'JavaScript':	21569,

	u'Makefile':	7771,



	u'Python':	1091048,

	u'R':	339201,

	u'Scala':	10249122,

	u'Shell':	172244}

5.	 Retrieve	a	few	key	participants	of	the	wide	Spark	GitHub	repository	network.	There
are	3,738	stargazers	in	the	Apache	Spark	repository	at	the	time	of	writing.	The
network	is	immense.	The	first	stargazer	is	Matei	Zaharia,	the	cofounder	of	the	Spark
project	when	he	was	doing	his	PhD	in	Berkeley.

stargazers	=	[	s	for	s	in	repo.get_stargazers()	]

print	"Number	of	stargazers",	len(stargazers)

Number	of	stargazers	3738

[stargazers[i].login	for	i	in	range	(0,20)]

[u'mateiz',

	u'beyang',

	u'abo',

	u'CodingCat',

	u'andy327',

	u'CrazyJvm',

	u'jyotiska',

	u'BaiGang',

	u'sundstei',

	u'dianacarroll',

	u'ybotco',

	u'xelax',

	u'prabeesh',

	u'invkrh',

	u'bedla',

	u'nadesai',

	u'pcpratts',

	u'narkisr',

	u'Honghe',

	u'Jacke']



Understanding	the	community	through	Meetup
In	order	to	get	a	better	understanding	of	how	to	operate	with	the	Meetup	API,	we	will	go
through	the	following	steps:

1.	 Create	a	Python	program	to	call	the	Meetup	API	using	an	authentication	token.
2.	 Retrieve	information	of	past	events	for	meetup	groups	such	as	London	Data	Science.
3.	 Retrieve	the	profile	of	the	meetup	members	in	order	to	analyze	their	participation	in

similar	meetup	groups.

Let’s	go	through	the	process	step-by-step:

1.	 As	there	is	no	reliable	Meetup	API	Python	library,	we	will	programmatically	create	a
client	to	instantiate	the	Meetup	API:

import	json

import	mimeparse

import	requests

import	urllib

from	pprint	import	pprint	as	pp

MEETUP_API_HOST	=	'https://api.meetup.com'

EVENTS_URL	=	MEETUP_API_HOST	+	'/2/events.json'

MEMBERS_URL	=	MEETUP_API_HOST	+	'/2/members.json'

GROUPS_URL	=	MEETUP_API_HOST	+	'/2/groups.json'

RSVPS_URL	=	MEETUP_API_HOST	+	'/2/rsvps.json'

PHOTOS_URL	=	MEETUP_API_HOST	+	'/2/photos.json'

GROUP_URLNAME	=	'London-Machine-Learning-Meetup'

#	GROUP_URLNAME	=	'London-Machine-Learning-Meetup'	#	'Data-Science-

London'

class	Mee

tupAPI(object):

				"""

				Retrieves	information	about	meetup.com

				"""

				def	__init__(self,	api_key,	num_past_events=10,	http_timeout=1,

																	http_retries=2):

								"""

								Create	a	new	instance	of	MeetupAPI

								"""

								self._api_key	=	api_key

								self._http_timeout	=	http_timeout

								self._http_retries	=	http_retries

								self._num_past_events	=	num_past_events

				def	get_past_events(self):

								"""

								Get	past	meetup	events	for	a	given	meetup	group

								"""

								params	=	{'key':	self._api_key,

																		'group_urlname':	GROUP_URLNAME,

																		'status':	'past',



																		'desc':	'true'}

								if	self._num_past_events:

												params['page']	=	str(self._num_past_events)

								query	=	urllib.urlencode(params)

								url	=	'{0}?{1}'.format(EVENTS_URL,	query)

								response	=	requests.get(url,	timeout=self._http_timeout)

								data	=	response.json()['results']

								return	data

				def	get_members(self):

								"""

								Get	meetup	members	for	a	given	meetup	group

								"""

								params	=	{'key':	self._api_key,

																		'group_urlname':	GROUP_URLNAME,

																		'offset':	'0',

																		'format':	'json',

																		'page':	'100',

																		'order':	'name'}

								query	=	urllib.urlencode(params)

								url	=	'{0}?{1}'.format(MEMBERS_URL,	query)

								response	=	requests.get(url,	timeout=self._http_timeout)

								data	=	response.json()['results']

								return	data

				def	get_groups_by_member(self,	member_id='38680722'):

								"""

								Get	meetup	groups	for	a	given	meetup	member

								"""

								params	=	{'key':	self._api_key,

																		'member_id':	member_id,

																		'offset':	'0',

																		'format':	'json',

																		'page':	'100',

																		'order':	'id'}

								query	=	urllib.urlencode(params)

								url	=	'{0}?{1}'.format(GROUPS_URL,	query)

								response	=	requests.get(url,	timeout=self._http_timeout)

								data	=	response.json()['results']

								return	data

2.	 Then,	we	will	retrieve	past	events	from	a	given	Meetup	group:

m	=	MeetupAPI(api_key='Get_Your_Own_Key')

last_meetups	=	m.get_past_events()

pp(last_meetups[5])

{u'created':	1401809093000,

	u'description':	u"<p>We	are	hosting	a	joint	meetup	between	Spark	

London	and	Machine	Learning	London.	Given	the	excitement	in	the	machine	

learning	community	around	Spark	at	the	moment	a	joint	meetup	is	in	

order!</p>	<p>Michael	Armbrust	from	the	Apache	Spark	core	team	will	be	

flying	over	from	the	States	to	give	us	a	talk	in	person.\xa0Thanks	to	

our	sponsors,	Cloudera,	MapR	and	Databricks	for	helping	make	this	

happen.</p>	<p>The	first	part	of	the	talk	will	be	about	MLlib,	the	



machine	learning	library	for	Spark,\xa0and	the	second	part,	on\xa0Spark	

SQL.</p>	<p>Don't	sign	up	if	you	have	already	signed	up	on	the	Spark	

London	page	though!</p>	<p>\n\n\nAbstract	for	part	one:</p>	<p>In	this	

talk,	we\u2019ll	introduce	Spark	and	show	how	to	use	it	to	build	fast,	

end-to-end	machine	learning	workflows.	Using	Spark\u2019s	high-level	

API,	we	can	process	raw	data	with	familiar	libraries	in	Java,	Scala	or	

Python	(e.g.	NumPy)	to	extract	the	features	for	machine	learning.	Then,	

using	MLlib,	its	built-in	machine	learning	library,	we	can	run	scalable	

versions	of	popular	algorithms.	We\u2019ll	also	cover	upcoming	

development	work	including	new	built-in	algorithms	and	R	bindings.</p>	

<p>\n\n\n\nAbstract	for	part	two:\xa0</p>	<p>In	this	talk,	we'll	

examine	Spark	SQL,	a	new	Alpha	component	that	is	part	of	the	Apache	

Spark	1.0	release.	Spark	SQL	lets	developers	natively	query	data	stored	

in	both	existing	RDDs	and	external	sources	such	as	Apache	Hive.	A	key	

feature	of	Spark	SQL	is	the	ability	to	blur	the	lines	between	

relational	tables	and	RDDs,	making	it	easy	for	developers	to	intermix	

SQL	commands	that	query	external	data	with	complex	analytics.	In	

addition	to	Spark	SQL,	we'll	explore	the	Catalyst	optimizer	framework,	

which	allows	Spark	SQL	to	automatically	rewrite	query	plans	to	execute	

more	efficiently.</p>",

	u'event_url':	u'http://www.meetup.com/London-Machine-Learning-

Meetup/events/186883262/',

	u'group':	{u'created':	1322826414000,

												u'group_lat':	51.52000045776367,

												u'group_lon':	-0.18000000715255737,

												u'id':	2894492,

												u'join_mode':	u'open',

												u'name':	u'London	Machine	Learning	Meetup',

												u'urlname':	u'London-Machine-Learning-Meetup',

												u'who':	u'Machine	Learning	Enthusiasts'},

	u'headcount':	0,

	u'id':	u'186883262',

	u'maybe_rsvp_count':	0,

	u'name':	u'Joint	Spark	London	and	Machine	Learning	Meetup',

	u'rating':	{u'average':	4.800000190734863,	u'count':	5},

	u'rsvp_limit':	70,

	u'status':	u'past',

	u'time':	1403200800000,

	u'updated':	1403450844000,

	u'utc_offset':	3600000,

	u'venue':	{u'address_1':	u'12	Errol	St,	London',

												u'city':	u'EC1Y	8LX',

												u'country':	u'gb',

												u'id':	19504802,

												u'lat':	51.522533,

												u'lon':	-0.090934,

												u'name':	u'Royal	Statistical	Society',

												u'repinned':	False},

	u'visibility':	u'public',

	u'waitlist_count':	84,

	u'yes_rsvp_count':	70}

3.	 Get	information	about	the	Meetup	members:

members	=	m.get_members()



{u'city':	u'London',

		u'country':	u'gb',

		u'hometown':	u'London',

		u'id':	11337881,

		u'joined':	1421418896000,

		u'lat':	51.53,

		u'link':	u'http://www.meetup.com/members/11337881',

		u'lon':	-0.09,

		u'name':	u'Abhishek	Shivkumar',

		u'other_services':	{u'twitter':	{u'identifier':	u'@abhisemweb'}},

		u'photo':	{u'highres_link':	

u'http://photos3.meetupstatic.com/photos/member/9/6/f/3/highres_1089864

3.jpeg',

													u'photo_id':	10898643,

													u'photo_link':	

u'http://photos3.meetupstatic.com/photos/member/9/6/f/3/member_10898643

.jpeg',

													u'thumb_link':	

u'http://photos3.meetupstatic.com/photos/member/9/6/f/3/thumb_10898643.

jpeg'},

		u'self':	{u'common':	{}},

		u'state':	u'17',

		u'status':	u'active',

		u'topics':	[{u'id':	1372,	u'name':	u'Semantic	Web',	u'urlkey':	

u'semweb'},

														{u'id':	1512,	u'name':	u'XML',	u'urlkey':	u'xml'},

														{u'id':	49585,

															u'name':	u'Semantic	Social	Networks',

															u'urlkey':	u'semantic-social-networks'},

														{u'id':	24553,

															u'name':	u'Natural	Language	Processing',

...(snip)...

															u'name':	u'Android	Development',

															u'urlkey':	u'android-developers'}],

		u'visited':	1429281599000}





Previewing	our	app
Our	challenge	is	to	make	sense	of	the	data	retrieved	from	these	social	networks,	finding
the	key	relationships	and	deriving	insights.	Some	of	the	elements	of	interest	are	as
follows:

Visualizing	the	top	influencers:	Discover	the	top	influencers	in	the	community:

Heavy	Twitter	users	on	Apache	Spark
Committers	in	GitHub
Leading	Meetup	presentations

Understanding	the	Network:	Network	graph	of	GitHub	committers,	watchers,	and
stargazers
Identifying	the	Hot	Locations:	Locating	the	most	active	location	for	Spark

The	following	screenshot	provides	a	preview	of	our	app:





Summary
In	this	chapter,	we	laid	out	the	overall	architecture	of	our	app.	We	explained	the	two	main
paradigms	of	processing	data:	batch	processing,	also	called	data	at	rest,	and	streaming
analytics,	referred	to	as	data	in	motion.	We	proceeded	to	establish	connections	to	three
social	networks	of	interest:	Twitter,	GitHub,	and	Meetup.	We	sampled	the	data	and
provided	a	preview	of	what	we	are	aiming	to	build.	The	remainder	of	the	book	will	focus
on	the	Twitter	dataset.	We	provided	here	the	tools	and	API	to	access	three	social	networks,
so	you	can	at	a	later	stage	create	your	own	data	mashups.	We	are	now	ready	to	investigate
the	data	collected,	which	will	be	the	topic	of	the	next	chapter.

In	the	next	chapter,	we	will	delve	deeper	into	data	analysis,	extracting	the	key	attributes	of
interest	for	our	purposes	and	managing	the	storage	of	the	information	for	batch	and	stream
processing.





Chapter	3.	Juggling	Data	with	Spark
As	per	the	batch	and	streaming	architecture	laid	out	in	the	previous	chapter,	we	need	data
to	fuel	our	applications.	We	will	harvest	data	focused	on	Apache	Spark	from	Twitter.	The
objective	of	this	chapter	is	to	prepare	data	to	be	further	used	by	the	machine	learning	and
streaming	applications.	This	chapter	focuses	on	how	to	exchange	code	and	data	across	the
distributed	network.	We	will	get	practical	insights	into	serialization,	persistence,
marshaling,	and	caching.	We	will	get	to	grips	with	on	Spark	SQL,	the	key	Spark	module
to	interactively	explore	structured	and	semi-structured	data.	The	fundamental	data
structure	powering	Spark	SQL	is	the	Spark	dataframe.	The	Spark	dataframe	is	inspired	by
the	Python	Pandas	dataframe	and	the	R	dataframe.	It	is	a	powerful	data	structure,	well
understood	and	appreciated	by	data	scientists	with	a	background	in	R	or	Python.

In	this	chapter,	we	will	cover	the	following	points:

Connect	to	Twitter,	collect	the	relevant	data,	and	then	persist	it	in	various	formats
such	as	JSON	and	CSV	and	data	stores	such	as	MongoDB
Analyze	the	data	using	Blaze	and	Odo,	a	spin-off	library	from	Blaze,	in	order	to
connect	and	transfer	data	from	various	sources	and	destinations
Introduce	Spark	dataframes	as	the	foundation	for	data	interchange	between	the
various	Spark	modules	and	explore	data	interactively	using	Spark	SQL



Revisiting	the	data-intensive	app
architecture
Let’s	first	put	in	context	the	focus	of	this	chapter	with	respect	to	the	data-intensive	app
architecture.	We	will	concentrate	our	attention	on	the	integration	layer	and	essentially	run
through	iterative	cycles	of	the	acquisition,	refinement,	and	persistence	of	the	data.	This
cycle	was	termed	the	five	Cs.	The	five	Cs	stand	for	connect,	collect,	correct,	compose,	and
consume.	They	are	the	essential	processes	we	run	through	in	the	integration	layer	in	order
to	get	to	the	right	quality	and	quantity	of	data	retrieved	from	Twitter.	We	will	also	delve
deeper	in	the	persistence	layer	and	set	up	a	data	store	such	as	MongoDB	to	collect	our	data
for	processing	later.

We	will	explore	the	data	with	Blaze,	a	Python	library	for	data	manipulation,	and	Spark
SQL,	the	interactive	module	of	Spark	for	data	discovery	powered	by	the	Spark	dataframe.
The	dataframe	paradigm	is	shared	by	Python	Pandas,	Python	Blaze,	and	Spark	SQL.	We
will	get	a	feel	for	the	nuances	of	the	three	dataframe	flavors.

The	following	diagram	sets	the	context	of	the	chapter’s	focus,	highlighting	the	integration
layer	and	the	persistence	layer:







Serializing	and	deserializing	data
As	we	are	harvesting	data	from	web	APIs	under	rate	limit	constraints,	we	need	to	store
them.	As	the	data	is	processed	on	a	distributed	cluster,	we	need	consistent	ways	to	save
state	and	retrieve	it	for	later	usage.

Let’s	now	define	serialization,	persistence,	marshaling,	and	caching	or	memorization.

Serializing	a	Python	object	converts	it	into	a	stream	of	bytes.	The	Python	object	needs	to
be	retrieved	beyond	the	scope	of	its	existence,	when	the	program	is	shut.	The	serialized
Python	object	can	be	transferred	over	a	network	or	stored	in	a	persistent	storage.
Deserialization	is	the	opposite	and	converts	the	stream	of	bytes	into	the	original	Python
object	so	the	program	can	carry	on	from	the	saved	state.	The	most	popular	serialization
library	in	Python	is	Pickle.	As	a	matter	of	fact,	the	PySpark	commands	are	transferred
over	the	wire	to	the	worker	nodes	via	pickled	data.

Persistence	saves	a	program’s	state	data	to	disk	or	memory	so	that	it	can	carry	on	where	it
left	off	upon	restart.	It	saves	a	Python	object	from	memory	to	a	file	or	a	database	and	loads
it	later	with	the	same	state.

Marshalling	sends	Python	code	or	data	over	a	network	TCP	connection	in	a	multicore	or
distributed	system.

Caching	converts	a	Python	object	to	a	string	in	memory	so	that	it	can	be	used	as	a
dictionary	key	later	on.	Spark	supports	pulling	a	dataset	into	a	cluster-wide,	in-memory
cache.	This	is	very	useful	when	data	is	accessed	repeatedly	such	as	when	querying	a	small
reference	dataset	or	running	an	iterative	algorithm	such	as	Google	PageRank.

Caching	is	a	crucial	concept	for	Spark	as	it	allows	us	to	save	RDDs	in	memory	or	with	a
spillage	to	disk.	The	caching	strategy	can	be	selected	based	on	the	lineage	of	the	data	or
the	DAG	(short	for	Directed	Acyclic	Graph)	of	transformations	applied	to	the	RDDs	in
order	to	minimize	shuffle	or	cross	network	heavy	data	exchange.	In	order	to	achieve	good
performance	with	Spark,	beware	of	data	shuffling.	A	good	partitioning	policy	and	use	of
RDD	caching,	coupled	with	avoiding	unnecessary	action	operations,	leads	to	better
performance	with	Spark.





Harvesting	and	storing	data
Before	delving	into	database	persistent	storage	such	as	MongoDB,	we	will	look	at	some
useful	file	storages	that	are	widely	used:	CSV	(short	for	comma-separated	values)	and
JSON	(short	for	JavaScript	Object	Notation)	file	storage.	The	enduring	popularity	of
these	two	file	formats	lies	in	a	few	key	reasons:	they	are	human	readable,	simple,
relatively	lightweight,	and	easy	to	use.



Persisting	data	in	CSV
The	CSV	format	is	lightweight,	human	readable,	and	easy	to	use.	It	has	delimited	text
columns	with	an	inherent	tabular	schema.

Python	offers	a	robust	csv	library	that	can	serialize	a	csv	file	into	a	Python	dictionary.	For
the	purpose	of	our	program,	we	have	written	a	python	class	that	manages	to	persist	data	in
CSV	format	and	read	from	a	given	CSV.

Let’s	run	through	the	code	of	the	class	IO_csv	object.	The	__init__	section	of	the	class
basically	instantiates	the	file	path,	the	filename,	and	the	file	suffix	(in	this	case,	.csv):

class	IO_csv(object):

				def	__init__(self,	filepath,	filename,	filesuffix='csv'):

								self.filepath	=	filepath							#	/path/to/file	without	the	/'	at	

the	end

								self.filename	=	filename							#	FILE_NAME

								self.filesuffix	=	filesuffix

The	save	method	of	the	class	uses	a	Python	named	tuple	and	the	header	fields	of	the	csv
file	in	order	to	impart	a	schema	while	persisting	the	rows	of	the	CSV.	If	the	csv	file
already	exists,	it	will	be	appended	and	not	overwritten	otherwise;	it	will	be	created:

				def	save(self,	data,	NTname,	fields):

								#	NTname	=	Name	of	the	NamedTuple

								#	fields	=	header	of	CSV	-	list	of	the	fields	name

								NTuple	=	namedtuple(NTname,	fields)

								

								if	os.path.isfile('{0}/{1}.{2}'.format(self.filepath,	

self.filename,	self.filesuffix)):

												#	Append	existing	file

												with	open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),	'ab')	as	f:

																writer	=	csv.writer(f)

																#	writer.writerow(fields)	#	fields	=	header	of	CSV

																writer.writerows([row	for	row	in	map(NTuple._make,	data)])

																#	list	comprehension	using	map	on	the	NamedTuple._make()	

iterable	and	the	data	file	to	be	saved

																#	Notice	writer.writerows	and	not	writer.writerow	(i.e.	

list	of	multiple	rows	sent	to	csv	file

								else:

												#	Create	new	file

												with	open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),	'wb')	as	f:

																writer	=	csv.writer(f)

																writer.writerow(fields)	#	fields	=	header	of	CSV	-	list	of	

the	fields	name

																writer.writerows([row	for	row	in	map(NTuple._make,	data)])

																#		list	comprehension	using	map	on	the	NamedTuple._make()	

iterable	and	the	data	file	to	be	saved

																#	Notice	writer.writerows	and	not	writer.writerow	(i.e.	

list	of	multiple	rows	sent	to	csv	file

The	load	method	of	the	class	also	uses	a	Python	named	tuple	and	the	header	fields	of	the



csv	file	in	order	to	retrieve	the	data	using	a	consistent	schema.	The	load	method	is	a
memory-efficient	generator	to	avoid	loading	a	huge	file	in	memory:	hence	we	use	yield
in	place	of	return:

				def	load(self,	NTname,	fields):

								#	NTname	=	Name	of	the	NamedTuple

								#	fields	=	header	of	CSV	-	list	of	the	fields	name

								NTuple	=	namedtuple(NTname,	fields)

								with	open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),'rU')	as	f:

												reader	=	csv.reader(f)

												for	row	in	map(NTuple._make,	reader):

																#	Using	map	on	the	NamedTuple._make()	iterable	and	the	

reader	file	to	be	loaded

																yield	row	

Here’s	the	named	tuple.	We	are	using	it	to	parse	the	tweet	in	order	to	save	or	retrieve	them
to	and	from	the	csv	file:

fields01	=	['id',	'created_at',	'user_id',	'user_name',	'tweet_text',	

'url']

Tweet01	=	namedtuple('Tweet01',fields01)

def	parse_tweet(data):

				"""

				Parse	a	``tweet``	from	the	given	response	data.

				"""

				return	Tweet01(

								id=data.get('id',	None),

								created_at=data.get('created_at',	None),

								user_id=data.get('user_id',	None),

								user_name=data.get('user_name',	None),

								tweet_text=data.get('tweet_text',	None),

								url=data.get('url')

				)



Persisting	data	in	JSON
JSON	is	one	of	the	most	popular	data	formats	for	Internet-based	applications.	All	the	APIs
we	are	dealing	with,	Twitter,	GitHub,	and	Meetup,	deliver	their	data	in	JSON	format.	The
JSON	format	is	relatively	lightweight	compared	to	XML	and	human	readable,	and	the
schema	is	embedded	in	JSON.	As	opposed	to	the	CSV	format,	where	all	records	follow
exactly	the	same	tabular	structure,	JSON	records	can	vary	in	their	structure.	JSON	is	semi-
structured.	A	JSON	record	can	be	mapped	into	a	Python	dictionary	of	dictionaries.

Let’s	run	through	the	code	of	the	class	IO_json	object.	The	__init__	section	of	the	class
basically	instantiates	the	file	path,	the	filename,	and	the	file	suffix	(in	this	case,	.json):

class	IO_json(object):

				def	__init__(self,	filepath,	filename,	filesuffix='json'):

								self.filepath	=	filepath								#	/path/to/file	without	the	/'	at	

the	end

								self.filename	=	filename								#	FILE_NAME

								self.filesuffix	=	filesuffix

								#	self.file_io	=	os.path.join(dir_name,	.'.join((base_filename,	

filename_suffix)))

The	save	method	of	the	class	uses	utf-8	encoding	in	order	to	ensure	read	and	write
compatibility	of	the	data.	If	the	JSON	file	already	exists,	it	will	be	appended	and	not
overwritten;	otherwise	it	will	be	created:

				def	save(self,	data):

								if	os.path.isfile('{0}/{1}.{2}'.format(self.filepath,	

self.filename,	self.filesuffix)):

												#	Append	existing	file

												with	io.open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),	'a',	encoding='utf-8')	as	f:

																f.write(unicode(json.dumps(data,	ensure_ascii=	False)))	#	

In	python	3,	there	is	no	"unicode"	function	

																#	f.write(json.dumps(data,	ensure_ascii=	False))	#	create	a	

\"	escape	char	for	"	in	the	saved	file								

								else:

												#	Create	new	file

												with	io.open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),	'w',	encoding='utf-8')	as	f:

																f.write(unicode(json.dumps(data,	ensure_ascii=	False)))

																#	f.write(json.dumps(data,	ensure_ascii=	False))

The	load	method	of	the	class	just	returns	the	file	that	has	been	read.	A	further	json.loads
function	needs	to	be	applied	in	order	to	retrieve	the	json	out	of	the	file	read:

				def	load(self):

								with	io.open('{0}/{1}.{2}'.format(self.filepath,	self.filename,	

self.filesuffix),	encoding='utf-8')	as	f:

												return	f.read()



Setting	up	MongoDB
It	is	crucial	to	store	the	information	harvested.	Thus,	we	set	up	MongoDB	as	our	main
document	data	store.	As	all	the	information	collected	is	in	JSON	format	and	MongoDB
stores	information	in	BSON	(short	for	Binary	JSON),	it	is	therefore	a	natural	choice.

We	will	run	through	the	following	steps	now:

Installing	the	MongoDB	server	and	client
Running	the	MongoDB	server
Running	the	Mongo	client
Installing	the	PyMongo	driver
Creating	the	Python	Mongo	client

Installing	the	MongoDB	server	and	client
In	order	to	install	the	MongoDB	package,	perform	through	the	following	steps:

1.	 Import	the	public	key	used	by	the	package	management	system	(in	our	case,
Ubuntu’s	apt).	To	import	the	MongoDB	public	key,	we	issue	the	following
command:

sudo	apt-key	adv	--keyserver	hkp://keyserver.ubuntu.com:80	--recv	

7F0CEB10

2.	 Create	a	list	file	for	MongoDB.	To	create	the	list	file,	we	use	the	following	command:

echo	"deb	http://repo.mongodb.org/apt/ubuntu	"$("lsb_release	-sc)"/	

mongodb-org/3.0	multiverse"	|	sudo	tee	/etc/apt/sources.list.d/mongodb-

org-3.0.list

3.	 Update	the	local	package	database	as	sudo:

sudo	apt-get	update

4.	 Install	the	MongoDB	packages.	We	install	the	latest	stable	version	of	MongoDB	with
the	following	command:

sudo	apt-get	install	-y	mongodb-org

Running	the	MongoDB	server
Let’s	start	the	MongoDB	server:

1.	 To	start	MongoDB	server,	we	issue	the	following	command	to	start	mongod:

sudo	service	mongodb	start

2.	 To	check	whether	mongod	has	started	properly,	we	issue	the	command:

an@an-VB:/usr/bin$	ps	-ef	|	grep	mongo

mongodb				967					1		4	07:03	?								00:02:02	/usr/bin/mongod	--

config	/etc/mongod.conf

an								3143		3085		0	07:45	pts/3				00:00:00	grep	--color=auto	mongo



In	this	case,	we	see	that	mongodb	is	running	in	process	967.

3.	 The	mongod	server	sends	a	message	to	the	effect	that	it	is	waiting	for	connection	on
port	27017.	This	is	the	default	port	for	MongoDB.	It	can	be	changed	in	the
configuration	file.

4.	 We	can	check	the	contents	of	the	log	file	at	/var/log/mongod/mongod.log:

an@an-VB:/var/lib/mongodb$	ls	-lru

total	81936

drwxr-xr-x	2	mongodb	nogroup					4096	Apr	25	11:19	_tmp

-rw-r--r--	1	mongodb	nogroup							69	Apr	25	11:19	storage.bson

-rwxr-xr-x	1	mongodb	nogroup								5	Apr	25	11:19	mongod.lock

-rw-------	1	mongodb	nogroup	16777216	Apr	25	11:19	local.ns

-rw-------	1	mongodb	nogroup	67108864	Apr	25	11:19	local.0

drwxr-xr-x	2	mongodb	nogroup					4096	Apr	25	11:19	journal

5.	 In	order	to	stop	the	mongodb	server,	just	issue	the	following	command:

sudo	service	mongodb	stop

Running	the	Mongo	client
Running	the	Mongo	client	in	the	console	is	as	easy	as	calling	mongo,	as	highlighted	in	the
following	command:

an@an-VB:/usr/bin$	mongo

MongoDB	shell	version:	3.0.2

connecting	to:	test

Server	has	startup	warnings:	

2015-05-30T07:03:49.387+0200	I	CONTROL		[initandlisten]	

2015-05-30T07:03:49.388+0200	I	CONTROL		[initandlisten]	

At	the	mongo	client	console	prompt,	we	can	see	the	databases	with	the	following
commands:

>	show	dbs

local		0.078GB

test			0.078GB

We	select	the	test	database	using	use	test:

>	use	test

switched	to	db	test

We	display	the	collections	within	the	test	database:

>	show	collections

restaurants

system.indexes

We	check	a	sample	record	in	the	restaurant	collection	listed	previously:

>	db.restaurants.find()

{	"_id"	:	ObjectId("553b70055e82e7b824ae0e6f"),	"address	:	{	"building	:	

"1007",	"coord"	:	[	-73.856077,	40.848447	],	"street	:	"Morris	Park	Ave",	

"zipcode	:	"10462	},	"borough	:	"Bronx",	"cuisine	:	"Bakery",	"grades	:	[	{	



"grade	:	"A",	"score"	:	2,	"date"	:	ISODate("2014-03-03T00:00:00Z")	},	{	

"date"	:	ISODate("2013-09-11T00:00:00Z"),	"grade	:	"A",	"score"	:	6	},	{	

"score"	:	10,	"date"	:	ISODate("2013-01-24T00:00:00Z"),	"grade	:	"A	},	{	

"date"	:	ISODate("2011-11-23T00:00:00Z"),	"grade	:	"A",	"score"	:	9	},	{	

"date"	:	ISODate("2011-03-10T00:00:00Z"),	"grade	:	"B",	"score"	:	14	}	],	

"name	:	"Morris	Park	Bake	Shop",	"restaurant_id	:	"30075445"	}

Installing	the	PyMongo	driver
Installing	the	Python	driver	with	anaconda	is	easy.	Just	run	the	following	command	at	the
terminal:

conda	install	pymongo

Creating	the	Python	client	for	MongoDB
We	are	creating	a	IO_mongo	class	that	will	be	used	in	our	harvesting	and	processing
programs	to	store	the	data	collected	and	retrieved	saved	information.	In	order	to	create	the
mongo	client,	we	will	import	the	MongoClient	module	from	pymongo.	We	connect	to	the
mongodb	server	on	localhost	at	port	27017.	The	command	is	as	follows:

from	pymongo	import	MongoClient	as	MCli

class	IO_mongo(object):

				conn={'host':'localhost',	'ip':'27017'}

We	initialize	our	class	with	the	client	connection,	the	database	(in	this	case,	twtr_db),	and
the	collection	(in	this	case,	twtr_coll)	to	be	accessed:

				def	__init__(self,	db='twtr_db',	coll='twtr_coll',	**conn	):

								#	Connects	to	the	MongoDB	server	

								self.client	=	MCli(**conn)

								self.db	=	self.client[db]

								self.coll	=	self.db[coll]

The	save	method	inserts	new	records	in	the	preinitialized	collection	and	database:

				def	save(self,	data):

								#	Insert	to	collection	in	db		

								return	self.coll.insert(data)

The	load	method	allows	the	retrieval	of	specific	records	according	to	criteria	and
projection.	In	the	case	of	large	amount	of	data,	it	returns	a	cursor:

				def	load(self,	return_cursor=False,	criteria=None,	projection=None):

												if	criteria	is	None:

																criteria	=	{}

												if	projection	is	None:

																cursor	=	self.coll.find(criteria)

												else:

																cursor	=	self.coll.find(criteria,	projection)

												#	Return	a	cursor	for	large	amounts	of	data

												if	return_cursor:



																return	cursor

												else:

																return	[	item	for	item	in	cursor	]



Harvesting	data	from	Twitter
Each	social	network	poses	its	limitations	and	challenges.	One	of	the	main	obstacles	for
harvesting	data	is	an	imposed	rate	limit.	While	running	repeated	or	long-running
connections	between	rates	limit	pauses,	we	have	to	be	careful	to	avoid	collecting	duplicate
data.

We	have	redesigned	our	connection	programs	outlined	in	the	previous	chapter	to	take	care
of	the	rate	limits.

In	this	TwitterAPI	class	that	connects	and	collects	the	tweets	according	to	the	search
query	we	specify,	we	have	added	the	following:

Logging	capability	using	the	Python	logging	library	with	the	aim	of	collecting	any
errors	or	warning	in	the	case	of	program	failure
Persistence	capability	using	MongoDB,	with	the	IO_mongo	class	exposed	previously
as	well	as	JSON	file	using	the	IO_json	class
API	rate	limit	and	error	management	capability,	so	we	can	ensure	more	resilient	calls
to	Twitter	without	getting	barred	for	tapping	into	the	firehose

Let’s	go	through	the	steps:

1.	 We	initialize	by	instantiating	the	Twitter	API	with	our	credentials:

class	TwitterAPI(object):

				"""

				TwitterAPI	class	allows	the	Connection	to	Twitter	via	OAuth

				once	you	have	registered	with	Twitter	and	receive	the	

				necessary	credentials	

				"""

				def	__init__(self):	

								consumer_key	=	'get_your_credentials'

								consumer_secret	=	get	your_credentials'

								access_token	=	'get_your_credentials'

								access_secret	=	'get	your_credentials'

								self.consumer_key	=	consumer_key

								self.consumer_secret	=	consumer_secret

								self.access_token	=	access_token

								self.access_secret	=	access_secret

								self.retries	=	3

								self.auth	=	twitter.oauth.OAuth(access_token,	access_secret,	

consumer_key,	consumer_secret)

								self.api	=	twitter.Twitter(auth=self.auth)

2.	 We	initialize	the	logger	by	providing	the	log	level:

logger.debug(debug	message)
logger.info(info	message)
logger.warn(warn	message)
logger.error(error	message)
logger.critical(critical	message)



3.	 We	set	the	log	path	and	the	message	format:

								#	logger	initialisation

								appName	=	'twt150530'

								self.logger	=	logging.getLogger(appName)

								#self.logger.setLevel(logging.DEBUG)

								#	create	console	handler	and	set	level	to	debug

								logPath	=	'/home/an/spark/spark-1.3.0-bin-

hadoop2.4/examples/AN_Spark/data'

								fileName	=	appName

								fileHandler	=	logging.FileHandler("{0}/{1}.log".format(logPath,	

fileName))

								formatter	=	logging.Formatter('%(asctime)s	-	%(name)s	-	%

(levelname)s	-	%(message)s')

								fileHandler.setFormatter(formatter)

								self.logger.addHandler(fileHandler)	

								self.logger.setLevel(logging.DEBUG)

4.	 We	initialize	the	JSON	file	persistence	instruction:

								#	Save	to	JSON	file	initialisation

								jsonFpath	=	'/home/an/spark/spark-1.3.0-bin-

hadoop2.4/examples/AN_Spark/data'

								jsonFname	=	'twtr15053001'

								self.jsonSaver	=	IO_json(jsonFpath,	jsonFname)

5.	 We	initialize	the	MongoDB	database	and	collection	for	persistence:

								#	Save	to	MongoDB	Intitialisation

								self.mongoSaver	=	IO_mongo(db='twtr01_db',	coll='twtr01_coll')

6.	 The	method	searchTwitter	launches	the	search	according	to	the	query	specified:

				def	searchTwitter(self,	q,	max_res=10,**kwargs):

								search_results	=	self.api.search.tweets(q=q,	count=10,	

**kwargs)

								statuses	=	search_results['statuses']

								max_results	=	min(1000,	max_res)

								

								for	_	in	range(10):

												try:

																next_results	=	search_results['search_metadata']

['next_results']

																#	self.logger.info('info'	in	searchTwitter	-	

next_results:%s'%	next_results[1:])

												except	KeyError	as	e:

																self.logger.error('error'	in	searchTwitter:	%s',	%(e))

																break

												

												#	next_results	=	urlparse.parse_qsl(next_results[1:])	#	

python	2.7

												next_results	=	urllib.parse.parse_qsl(next_results[1:])

												#	self.logger.info('info'	in	searchTwitter	-	

next_results[max_id]:',	next_results[0:])

												kwargs	=	dict(next_results)

												#	self.logger.info('info'	in	searchTwitter	-	

next_results[max_id]:%s'%	kwargs['max_id'])



												search_results	=	self.api.search.tweets(**kwargs)

												statuses	+=	search_results['statuses']

												self.saveTweets(search_results['statuses'])

												

												if	len(statuses)	>	max_results:

																self.logger.info('info'	in	searchTwitter	-	got	%i	

tweets	-	max:	%i'	%(len(statuses),	max_results))

																break

								return	statuses

7.	 The	saveTweets	method	actually	saves	the	collected	tweets	in	JSON	and	in
MongoDB:

				def	saveTweets(self,	statuses):

								#	Saving	to	JSON	File

								self.jsonSaver.save(statuses)

								

								#	Saving	to	MongoDB

								for	s	in	statuses:

												self.mongoSaver.save(s)

8.	 The	parseTweets	method	allows	us	to	extract	the	key	tweet	information	from	the
vast	amount	of	information	provided	by	the	Twitter	API:

				def	parseTweets(self,	statuses):

								return	[	(status['id'],	

																		status['created_at'],	

																		status['user']['id'],

																		status['user']['name']	

																		status['text''text'],	

																		url['expanded_url'])	

																								for	status	in	statuses	

																												for	url	in	status['entities']['urls']	]

9.	 The	getTweets	method	calls	the	searchTwitter	method	described	previously.	The
getTweets	method	ensures	that	API	calls	are	made	reliably	whilst	respecting	the
imposed	rate	limit.	The	code	is	as	follows:

				def	getTweets(self,	q,		max_res=10):

								"""

								Make	a	Twitter	API	call	whilst	managing	rate	limit	and	errors.

								"""

								def	handleError(e,	wait_period=2,	

sleep_when_rate_limited=True):

												if	wait_period	>	3600:	#	Seconds

																self.logger.error('Too	many	retries	in	getTweets:	%s',	

%(e))

																raise	e

												if	e.e.code	==	401:

																self.logger.error('error	401	*	Not	Authorised	*	in	

getTweets:	%s',	%(e))

																return	None

												elif	e.e.code	==	404:

																self.logger.error('error	404	*	Not	Found	*	in	

getTweets:	%s',	%(e))

																return	None



												elif	e.e.code	==	429:	

																self.logger.error('error	429	*	API	Rate	Limit	Exceeded	

*	in	getTweets:	%s',	%(e))

																if	sleep_when_rate_limited:

																				self.logger.error('error	429	*	Retrying	in	15	

minutes	*	in	getTweets:	%s',	%(e))

																				sys.stderr.flush()

																				time.sleep(60*15	+	5)

																				self.logger.info('error	429	*	Retrying	now	*	in	

getTweets:	%s',	%(e))

																				return	2

																else:

																				raise	e	#	Caller	must	handle	the	rate	limiting	

issue

												elif	e.e.code	in	(500,	502,	503,	504):

																self.logger.info('Encountered	%i	Error.	Retrying	in	%i	

seconds'	%	(e.e.code,	wait_period))

																time.sleep(wait_period)

																wait_period	*=	1.5

																return	wait_period

												else:

																self.logger.error('Exit	-	aborting	-	%s',	%(e))

																raise	e

10.	 Here,	we	are	calling	the	searchTwitter	API	with	the	relevant	query	based	on	the
parameters	specified.	If	we	encounter	any	error	such	as	rate	limitation	from	the
provider,	this	will	be	processed	by	the	handleError	method:

								while	True:

												try:

																self.searchTwitter(	q,	max_res=10)

												except	twitter.api.TwitterHTTPError	as	e:

																error_count	=	0	

																wait_period	=	handleError(e,	wait_period)

																if	wait_period	is	None:

																				return





Exploring	data	using	Blaze
Blaze	is	an	open	source	Python	library,	primarily	developed	by	Continuum.io,	leveraging
Python	Numpy	arrays	and	Pandas	dataframe.	Blaze	extends	to	out-of-core	computing,
while	Pandas	and	Numpy	are	single-core.

Blaze	offers	an	adaptable,	unified,	and	consistent	user	interface	across	various	backends.
Blaze	orchestrates	the	following:

Data:	Seamless	exchange	of	data	across	storages	such	as	CSV,	JSON,	HDF5,	HDFS,
and	Bcolz	files.
Computation:	Using	the	same	query	processing	against	computational	backends
such	as	Spark,	MongoDB,	Pandas,	or	SQL	Alchemy.
Symbolic	expressions:	Abstract	expressions	such	as	join,	group-by,	filter,	selection,
and	projection	with	a	syntax	similar	to	Pandas	but	limited	in	scope.	Implements	the
split-apply-combine	methods	pioneered	by	the	R	language.

Blaze	expressions	are	lazily	evaluated	and	in	that	respect	share	a	similar	processing
paradigm	with	Spark	RDDs	transformations.

Let’s	dive	into	Blaze	by	first	importing	the	necessary	libraries:	numpy,	pandas,	blaze	and
odo.	Odo	is	a	spin-off	of	Blaze	and	ensures	data	migration	from	various	backends.	The
commands	are	as	follows:

import	numpy	as	np

import	pandas	as	pd

from	blaze	import	Data,	by,	join,	merge

from	odo	import	odo

BokehJS	successfully	loaded.

We	create	a	Pandas	Dataframe	by	reading	the	parsed	tweets	saved	in	a	CSV	file,
twts_csv:

twts_pd_df	=	pd.DataFrame(twts_csv_read,	columns=Tweet01._fields)

twts_pd_df.head()

Out[65]:

id				created_at				user_id				user_name				tweet_text				url

1			598831111406510082			2015-05-14	12:43:57			14755521	raulsaeztapia				RT	

@pacoid:	Great	recap	of	@StrataConf	EU	in	L…			http://www.mango-

solutions.com/wp/2015/05/the-...

2			598831111406510082			2015-05-14	12:43:57			14755521	raulsaeztapia				RT	

@pacoid:	Great	recap	of	@StrataConf	EU	in	L…			http://www.mango-

solutions.com/wp/2015/05/the-...

3			98808944719593472			2015-05-14	11:15:52			14755521	raulsaeztapia			RT	

@alvaroagea:	Simply	@ApacheSpark	http://t.c…				

http://www.webex.com/ciscospark/

4			598808944719593472			2015-05-14	11:15:52			14755521	raulsaeztapia			RT	

@alvaroagea:	Simply	@ApacheSpark	http://t.c…			http://sparkjava.com/

We	run	the	Tweets	Panda	Dataframe	to	the	describe()	function	to	get	some	overall
information	on	the	dataset:



twts_pd_df.describe()

Out[66]:

id				created_at				user_id				user_name				tweet_text				url

count		19		19		19		19		19		19

unique				7		7			6			6					6			7

top				598808944719593472				2015-05-14	11:15:52				14755521	raulsaeztapia				

RT	@alvaroagea:	Simply	@ApacheSpark	http://t.c…				http://bit.ly/1Hfd0Xm

freq				6				6				9				9				6				6

We	convert	the	Pandas	dataframe	into	a	Blaze	dataframe	by	simply	passing	it	through
the	Data()	function:

#

#	Blaze	dataframe

#

twts_bz_df	=	Data(twts_pd_df)

We	can	retrieve	the	schema	representation	of	the	Blaze	dataframe	by	passing	the	schema
function:

twts_bz_df.schema

Out[73]:

dshape("""{

		id:	?string,

		created_at:	?string,

		user_id:	?string,

		user_name:	?string,

		tweet_text:	?string,

		url:	?string

		}""")

The	.dshape	function	gives	a	record	count	and	the	schema:

twts_bz_df.dshape

Out[74]:	

dshape("""19	*	{

		id:	?string,

		created_at:	?string,

		user_id:	?string,

		user_name:	?string,

		tweet_text:	?string,

		url:	?string

		}""")

We	can	print	the	Blaze	dataframe	content:

twts_bz_df.data

Out[75]:

id				created_at				user_id				user_name				tweet_text				url

1				598831111406510082				2015-05-14	12:43:57			14755521	raulsaeztapia				

RT	@pacoid:	Great	recap	of	@StrataConf	EU	in	L…				http://www.mango-

solutions.com/wp/2015/05/the-...

2				598831111406510082				2015-05-14	12:43:57				14755521	raulsaeztapia				

RT	@pacoid:	Great	recap	of	@StrataConf	EU	in	L…				http://www.mango-

solutions.com/wp/2015/05/the-...

...	

18			598782970082807808				2015-05-14	09:32:39				1377652806	



embeddedcomputer.nl				RT	@BigDataTechCon:	Moving	Rating	Prediction	w…				

http://buff.ly/1QBpk8J

19			598777933730160640					2015-05-14	09:12:38			294862170				Ellen	

Friedman			I'm	still	on	Euro	time.	If	you	are	too	check	o…

http://bit.ly/1Hfd0Xm

We	extract	the	column	tweet_text	and	take	the	unique	values:

twts_bz_df.tweet_text.distinct()

Out[76]:

				tweet_text

0			RT	@pacoid:	Great	recap	of	@StrataConf	EU	in	L…

1			RT	@alvaroagea:	Simply	@ApacheSpark	http://t.c…

2			RT	@PrabhaGana:	What	exactly	is	@ApacheSpark	a…

3			RT	@Ellen_Friedman:	I'm	still	on	Euro	time.	If…

4			RT	@BigDataTechCon:	Moving	Rating	Prediction	w…

5			I'm	still	on	Euro	time.	If	you	are	too	check	o…

We	extract	multiple	columns	['id',	'user_name','tweet_text']	from	the	dataframe
and	take	the	unique	records:

twts_bz_df[['id',	'user_name','tweet_text']].distinct()

Out[78]:

		id			user_name			tweet_text

0			598831111406510082			raulsaeztapia			RT	@pacoid:	Great	recap	of	

@StrataConf	EU	in	L…

1			598808944719593472			raulsaeztapia			RT	@alvaroagea:	Simply	

@ApacheSpark	http://t.c…

2			598796205091500032			John	Humphreys			RT	@PrabhaGana:	What	exactly	is	

@ApacheSpark	a…

3			598788561127735296			Leonardo	D'Ambrosi			RT	@Ellen_Friedman:	I'm	still	

on	Euro	time.	If…

4			598785545557438464			Alexey	Kosenkov			RT	@Ellen_Friedman:	I'm	still	on	

Euro	time.	If…

5			598782970082807808			embeddedcomputer.nl			RT	@BigDataTechCon:	Moving	

Rating	Prediction	w…

6			598777933730160640			Ellen	Friedman			I'm	still	on	Euro	time.	If	you	

are	too	check	o…



Transferring	data	using	Odo
Odo	is	a	spin-off	project	of	Blaze.	Odo	allows	the	interchange	of	data.	Odo	ensures	the
migration	of	data	across	different	formats	(CSV,	JSON,	HDFS,	and	more)	and	across
different	databases	(SQL	databases,	MongoDB,	and	so	on)	using	a	very	simple	predicate:

Odo(source,	target)

To	transfer	to	a	database,	the	address	is	specified	using	a	URL.	For	example,	for	a
MongoDB	database,	it	would	look	like	this:

mongodb://username:password@hostname:port/database_name::collection_name

Let’s	run	some	examples	of	using	Odo.	Here,	we	illustrate	odo	by	reading	a	CSV	file	and
creating	a	Blaze	dataframe:

filepath			=	csvFpath

filename			=	csvFname

filesuffix	=	csvSuffix

twts_odo_df	=	Data('{0}/{1}.{2}'.format(filepath,	filename,	filesuffix))

Count	the	number	of	records	in	the	dataframe:

twts_odo_df.count()

Out[81]:

19

Display	the	five	initial	records	of	the	dataframe:

twts_odo_df.head(5)

Out[82]:

		id			created_at			user_id			user_name			tweet_text			url

0			598831111406510082			2015-05-14	12:43:57			14755521			raulsaeztapia			

RT	@pacoid:	Great	recap	of	@StrataConf	EU	in	L…			http://www.mango-

solutions.com/wp/2015/05/the-...

1			598831111406510082			2015-05-14	12:43:57			14755521			raulsaeztapia			

RT	@pacoid:	Great	recap	of	@StrataConf	EU	in	L…			http://www.mango-

solutions.com/wp/2015/05/the-...

2			598808944719593472			2015-05-14	11:15:52			14755521			raulsaeztapia			

RT	@alvaroagea:	Simply	@ApacheSpark	http://t.c…			

http://www.webex.com/ciscospark/

3			598808944719593472			2015-05-14	11:15:52			14755521			raulsaeztapia			

RT	@alvaroagea:	Simply	@ApacheSpark	http://t.c…			http://sparkjava.com/

4			598808944719593472			2015-05-14	11:15:52			14755521			raulsaeztapia			

RT	@alvaroagea:	Simply	@ApacheSpark	http://t.c…			https://www.sparkfun.com/

Get	dshape	information	from	the	dataframe,	which	gives	us	the	number	of	records	and
the	schema:

twts_odo_df.dshape

Out[83]:

dshape("var	*	{

		id:	int64,

		created_at:	?datetime,

		user_id:	int64,

		user_name:	?string,



		tweet_text:	?string,

		url:	?string

		}""")

Save	a	processed	Blaze	dataframe	into	JSON:

odo(twts_odo_distinct_df,	'{0}/{1}.{2}'.format(jsonFpath,	jsonFname,	

jsonSuffix))

Out[92]:

<odo.backends.json.JSONLines	at	0x7f77f0abfc50>

Convert	a	JSON	file	to	a	CSV	file:

odo('{0}/{1}.{2}'.format(jsonFpath,	jsonFname,	jsonSuffix),	'{0}/{1}.

{2}'.format(csvFpath,	csvFname,	csvSuffix))

Out[94]:

<odo.backends.csv.CSV	at	0x7f77f0abfe10>





Exploring	data	using	Spark	SQL
Spark	SQL	is	a	relational	query	engine	built	on	top	of	Spark	Core.	Spark	SQL	uses	a	query
optimizer	called	Catalyst.

Relational	queries	can	be	expressed	using	SQL	or	HiveQL	and	executed	against	JSON,
CSV,	and	various	databases.	Spark	SQL	gives	us	the	full	expressiveness	of	declarative
programing	with	Spark	dataframes	on	top	of	functional	programming	with	RDDs.



Understanding	Spark	dataframes
Here’s	a	tweet	from	@bigdata	announcing	Spark	1.3.0,	the	advent	of	Spark	SQL	and
dataframes.	It	also	highlights	the	various	data	sources	in	the	lower	part	of	the	diagram.	On
the	top	part,	we	can	notice	R	as	the	new	language	that	will	be	gradually	supported	on	top
of	Scala,	Java,	and	Python.	Ultimately,	the	Data	Frame	philosophy	is	pervasive	between
R,	Python,	and	Spark.

Spark	dataframes	originate	from	SchemaRDDs.	It	combines	RDD	with	a	schema	that	can
be	inferred	by	Spark,	if	requested,	when	registering	the	dataframe.	It	allows	us	to	query
complex	nested	JSON	data	with	plain	SQL.	Lazy	evaluation,	lineage,	partitioning,	and
persistence	apply	to	dataframes.

Let’s	query	the	data	with	Spark	SQL,	by	first	importing	SparkContext	and	SQLContext:

from	pyspark	import	SparkConf,	SparkContext

from	pyspark.sql	import	SQLContext,	Row



In	[95]:

sc

Out[95]:

<pyspark.context.SparkContext	at	0x7f7829581890>

In	[96]:

sc.master

Out[96]:

u'local[*]'

''In	[98]:

#	Instantiate	Spark		SQL	context

sqlc	=		SQLContext(sc)

We	read	in	the	JSON	file	we	saved	with	Odo:

twts_sql_df_01	=	sqlc.jsonFile	("/home/an/spark/spark-1.3.0-bin-

hadoop2.4/examples/AN_Spark/data/twtr15051401_distinct.json")

In	[101]:

twts_sql_df_01.show()

created_at											id																	tweet_text											user_id				

user_name										

2015-05-14T12:43:57Z	598831111406510082	RT	@pacoid:	Great…	14755521			

raulsaeztapia						

2015-05-14T11:15:52Z	598808944719593472	RT	@alvaroagea:	S…	14755521			

raulsaeztapia						

2015-05-14T10:25:15Z	598796205091500032	RT	@PrabhaGana:	W…	48695135			John	

Humphreys					

2015-05-14T09:54:52Z	598788561127735296	RT	@Ellen_Friedma…	2385931712	

Leonardo	D'Ambrosi

2015-05-14T09:42:53Z	598785545557438464	RT	@Ellen_Friedma…	461020977		

Alexey	Kosenkov				

2015-05-14T09:32:39Z	598782970082807808	RT	@BigDataTechCo…	1377652806	

embeddedcomputer.nl

2015-05-14T09:12:38Z	598777933730160640	I'm	still	on	Euro…	294862170		Ellen	

Friedman					

We	print	the	schema	of	the	Spark	dataframe:

twts_sql_df_01.printSchema()

root

	|--	created_at:	string	(nullable	=	true)

	|--	id:	long	(nullable	=	true)

	|--	tweet_text:	string	(nullable	=	true)

	|--	user_id:	long	(nullable	=	true)

	|--	user_name:	string	(nullable	=	true)

We	select	the	user_name	column	from	the	dataframe:

twts_sql_df_01.select('user_name').show()

user_name										

raulsaeztapia						

raulsaeztapia						

John	Humphreys					

Leonardo	D'Ambrosi

Alexey	Kosenkov				

embeddedcomputer.nl

Ellen	Friedman					



We	register	the	dataframe	as	a	table,	so	we	can	execute	a	SQL	query	on	it:

twts_sql_df_01.registerAsTable('tweets_01')

We	execute	a	SQL	statement	against	the	dataframe:

twts_sql_df_01_selection	=	sqlc.sql("SELECT	*	FROM	tweets_01	WHERE	

user_name	=	'raulsaeztapia'")

In	[109]:

twts_sql_df_01_selection.show()

created_at											id																	tweet_text											user_id		

user_name				

2015-05-14T12:43:57Z	598831111406510082	RT	@pacoid:	Great…	14755521	

raulsaeztapia

2015-05-14T11:15:52Z	598808944719593472	RT	@alvaroagea:	S…	14755521	

raulsaeztapia

Let’s	process	some	more	complex	JSON;	we	read	the	original	Twitter	JSON	file:

tweets_sqlc_inf	=	sqlc.jsonFile(infile)

Spark	SQL	is	able	to	infer	the	schema	of	a	complex	nested	JSON	file:

tweets_sqlc_inf.printSchema()

root

	|--	contributors:	string	(nullable	=	true)

	|--	coordinates:	string	(nullable	=	true)

	|--	created_at:	string	(nullable	=	true)

	|--	entities:	struct	(nullable	=	true)

	|				|--	hashtags:	array	(nullable	=	true)

	|				|				|--	element:	struct	(containsNull	=	true)

	|				|				|				|--	indices:	array	(nullable	=	true)

	|				|				|				|				|--	element:	long	(containsNull	=	true)

	|				|				|				|--	text:	string	(nullable	=	true)

	|				|--	media:	array	(nullable	=	true)

	|				|				|--	element:	struct	(containsNull	=	true)

	|				|				|				|--	display_url:	string	(nullable	=	true)

	|				|				|				|--	expanded_url:	string	(nullable	=	true)

	|				|				|				|--	id:	long	(nullable	=	true)

	|				|				|				|--	id_str:	string	(nullable	=	true)

	|				|				|				|--	indices:	array	(nullable	=	true)

...	(snip)	...

|				|--	statuses_count:	long	(nullable	=	true)

	|				|--	time_zone:	string	(nullable	=	true)

	|				|--	url:	string	(nullable	=	true)

	|				|--	utc_offset:	long	(nullable	=	true)

	|				|--	verified:	boolean	(nullable	=	true)

We	extract	the	key	information	of	interest	from	the	wall	of	data	by	selecting	specific
columns	in	the	dataframe	(in	this	case,	['created_at',	'id',	'text',	'user.id',
'user.name',	'entities.urls.expanded_url']):

tweets_extract_sqlc	=	tweets_sqlc_inf[['created_at',	'id',	'text',	

'user.id',	'user.name',	'entities.urls.expanded_url']].distinct()

In	[145]:

tweets_extract_sqlc.show()

created_at											id																	text																	id									



name																expanded_url								

Thu	May	14	09:32:...	598782970082807808	RT	@BigDataTechCo…	1377652806	

embeddedcomputer.nl	ArrayBuffer(http:...

Thu	May	14	12:43:...	598831111406510082	RT	@pacoid:	Great…	14755521			

raulsaeztapia							ArrayBuffer(http:...

Thu	May	14	12:18:...	598824733086523393	@rabbitonweb	spea…	

...			

Thu	May	14	12:28:...	598827171168264192	RT	@baandrzejczak…	20909005			Paweł	

Szulc									ArrayBuffer()							



Understanding	the	Spark	SQL	query	optimizer
We	execute	a	SQL	statement	against	the	dataframe:

tweets_extract_sqlc_sel	=	sqlc.sql("SELECT	*	from	Tweets_xtr_001	WHERE	

name='raulsaeztapia'")

We	get	a	detailed	view	of	the	query	plans	executed	by	Spark	SQL:

Parsed	logical	plan
Analyzed	logical	plan
Optimized	logical	plan
Physical	plan

The	query	plan	uses	Spark	SQL’s	Catalyst	optimizer.	In	order	to	generate	the	compiled
bytecode	from	the	query	parts,	the	Catalyst	optimizer	runs	through	logical	plan	parsing
and	optimization	followed	by	physical	plan	evaluation	and	optimization	based	on	cost.

This	is	illustrated	in	the	following	tweet:

Looking	back	at	our	code,	we	call	the	.explain	function	on	the	Spark	SQL	query	we	just
executed,	and	it	delivers	the	full	details	of	the	steps	taken	by	the	Catalyst	optimizer	in
order	to	assess	and	optimize	the	logical	plan	and	the	physical	plan	and	get	to	the	result
RDD:

tweets_extract_sqlc_sel.explain(extended	=	True)

==	Parsed	Logical	Plan	==

'Project	[*]

	'Filter	('name	=	raulsaeztapia)'name'		'UnresolvedRelation'	



[Tweets_xtr_001],	None

==	Analyzed	Logical	Plan	==

Project	[created_at#7,id#12L,text#27,id#80L,name#81,expanded_url#82]

	Filter	(name#81	=	raulsaeztapia)

		Distinct	

			Project	[created_at#7,id#12L,text#27,user#29.id	AS	id#80L,user#29.name	

AS	name#81,entities#8.urls.expanded_url	AS	expanded_url#82]

				

Relation[contributors#5,coordinates#6,created_at#7,entities#8,favorite_coun

t#9L,favorited#10,geo#11,id#12L,id_str#13,in_reply_to_screen_name#14,in_rep

ly_to_status_id#15,in_reply_to_status_id_str#16,in_reply_to_user_id#17L,in_

reply_to_user_id_str#18,lang#19,metadata#20,place#21,possibly_sensitive#22,

retweet_count#23L,retweeted#24,retweeted_status#25,source#26,text#27,trunca

ted#28,user#29]	JSONRelation(/home/an/spark/spark-1.3.0-bin-

hadoop2.4/examples/AN_Spark/data/twtr15051401.json,1.0,None)

==	Optimized	Logical	Plan	==

Filter	(name#81	=	raulsaeztapia)

	Distinct	

		Project	[created_at#7,id#12L,text#27,user#29.id	AS	id#80L,user#29.name	AS	

name#81,entities#8.urls.expanded_url	AS	expanded_url#82]

			

Relation[contributors#5,coordinates#6,created_at#7,entities#8,favorite_coun

t#9L,favorited#10,geo#11,id#12L,id_str#13,in_reply_to_screen_name#14,in_rep

ly_to_status_id#15,in_reply_to_status_id_str#16,in_reply_to_user_id#17L,in_

reply_to_user_id_str#18,lang#19,metadata#20,place#21,possibly_sensitive#22,

retweet_count#23L,retweeted#24,retweeted_status#25,source#26,text#27,trunca

ted#28,user#29]	JSONRelation(/home/an/spark/spark-1.3.0-bin-

hadoop2.4/examples/AN_Spark/data/twtr15051401.json,1.0,None)

==	Physical	Plan	==

Filter	(name#81	=	raulsaeztapia)

	Distinct	false

		Exchange	(HashPartitioning	

[created_at#7,id#12L,text#27,id#80L,name#81,expanded_url#82],	200)

			Distinct	true

				Project	[created_at#7,id#12L,text#27,user#29.id	AS	id#80L,user#29.name	

AS	name#81,entities#8.urls.expanded_url	AS	expanded_url#82]

					PhysicalRDD	

[contributors#5,coordinates#6,created_at#7,entities#8,favorite_count#9L,fav

orited#10,geo#11,id#12L,id_str#13,in_reply_to_screen_name#14,in_reply_to_st

atus_id#15,in_reply_to_status_id_str#16,in_reply_to_user_id#17L,in_reply_to

_user_id_str#18,lang#19,metadata#20,place#21,possibly_sensitive#22,retweet_

count#23L,retweeted#24,retweeted_status#25,source#26,text#27,truncated#28,u

ser#29],	MapPartitionsRDD[165]	at	map	at	JsonRDD.scala:41

Code	Generation:	false

==	RDD	==

Finally,	here’s	the	result	of	the	query:

tweets_extract_sqlc_sel.show()

created_at											id																	text																	id							name										

expanded_url								

Thu	May	14	12:43:...	598831111406510082	RT	@pacoid:	Great…	14755521	

raulsaeztapia	ArrayBuffer(http:...

Thu	May	14	11:15:...	598808944719593472	RT	@alvaroagea:	S…	14755521	

raulsaeztapia	ArrayBuffer(http:...

In	[148]:



Loading	and	processing	CSV	files	with	Spark	SQL
We	will	use	the	Spark	package	spark-csv_2.11:1.2.0.	The	command	to	be	used	to
launch	PySpark	with	the	IPython	Notebook	and	the	spark-csv	package	should	explicitly
state	the	–packages	argument:

$	IPYTHON_OPTS='notebook'	/home/an/spark/spark-1.5.0-bin-

hadoop2.6/bin/pyspark	--packages	com.databricks:spark-csv_2.11:1.2.0

This	will	trigger	the	following	output;	we	can	see	that	the	spark-csv	package	is	installed
with	all	its	dependencies:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark$	

IPYTHON_OPTS='notebook'	/home/an/spark/spark-1.5.0-bin-

hadoop2.6/bin/pyspark	--packages	com.databricks:spark-csv_2.11:1.2.0

...	(snip)	...

Ivy	Default	Cache	set	to:	/home/an/.ivy2/cache

The	jars	for	the	packages	stored	in:	/home/an/.ivy2/jars

::	loading	settings	::	url	=	jar:file:/home/an/spark/spark-1.5.0-bin-

hadoop2.6/lib/spark-assembly-1.5.0-

hadoop2.6.0.jar!/org/apache/ivy/core/settings/ivysettings.xml

com.databricks#spark-csv_2.11	added	as	a	dependency

::	resolving	dependencies	::	org.apache.spark#spark-submit-parent;1.0

		confs:	[default]

		found	com.databricks#spark-csv_2.11;1.2.0	in	central

		found	org.apache.commons#commons-csv;1.1	in	central

		found	com.univocity#univocity-parsers;1.5.1	in	central

::	resolution	report	::	resolve	835ms	::	artifacts	dl	48ms

		::	modules	in	use:

		com.databricks#spark-csv_2.11;1.2.0	from	central	in	[default]

		com.univocity#univocity-parsers;1.5.1	from	central	in	[default]

		org.apache.commons#commons-csv;1.1	from	central	in	[default]

		----------------------------------------------------------------

		|															|										modules												||			artifacts			|

		|				conf					|	number|	search|dwnlded|evicted||	number|dwnlded|

		----------------------------------------------------------------

		|				default					|			3			|			0			|			0			|			0			||			3			|			0			

		----------------------------------------------------------------

::	retrieving	::	org.apache.spark#spark-submit-parent

		confs:	[default]

		0	artifacts	copied,	3	already	retrieved	(0kB/45ms)

We	are	now	ready	to	load	our	csv	file	and	process	it.	Let’s	first	import	the	SQLContext:

#

#	Read	csv	in	a	Spark	DF

#

sqlContext	=	SQLContext(sc)

spdf_in	=	sqlContext.read.format('com.databricks.spark.csv')\

																																				

.options(delimiter=";").options(header="true")\

																																				.options(header='true').load(csv_in)

We	access	the	schema	of	the	dataframe	created	from	the	loaded	csv:



In	[10]:

spdf_in.printSchema()

root

	|--	:	string	(nullable	=	true)

	|--	id:	string	(nullable	=	true)

	|--	created_at:	string	(nullable	=	true)

	|--	user_id:	string	(nullable	=	true)

	|--	user_name:	string	(nullable	=	true)

	|--	tweet_text:	string	(nullable	=	true)

We	check	the	columns	of	the	dataframe:

In	[12]:

spdf_in.columns

Out[12]:

['',	'id',	'created_at',	'user_id',	'user_name',	'tweet_text']

We	introspect	the	dataframe	content:

In	[13]:

spdf_in.show()

+---+------------------+--------------------+----------+------------------

+--------------------+

|			|																id|										created_at|			user_id|									user_name|										

tweet_text|

+---+------------------+--------------------+----------+------------------

+--------------------+

|		0|638830426971181057|Tue	Sep	01	21:46:...|3276255125|					True	

Equality|ernestsgantt:	Bey…|

|		1|638830426727911424|Tue	Sep	01	21:46:...|3276255125|					True	

Equality|ernestsgantt:	Bey…|

|		2|638830425402556417|Tue	Sep	01	21:46:...|3276255125|					True	

Equality|ernestsgantt:	Bey…|

...	(snip)	...

|	41|638830280988426250|Tue	Sep	01	21:46:...|	951081582|						Jack	

Baldwin|RT	@cloudaus:	We…|

|	42|638830276626399232|Tue	Sep	01	21:46:...|			6525302|Masayoshi	

Nakamura|PynamoDB使いやすいです		|

+---+------------------+--------------------+----------+------------------

+--------------------+

only	showing	top	20	rows



Querying	MongoDB	from	Spark	SQL
There	are	two	major	ways	to	interact	with	MongoDB	from	Spark:	the	first	is	through	the
Hadoop	MongoDB	connector,	and	the	second	one	is	directly	from	Spark	to	MongoDB.

The	first	approach	to	interact	with	MongoDB	from	Spark	is	to	set	up	a	Hadoop
environment	and	query	through	the	Hadoop	MongoDB	connector.	The	connector	details
are	hosted	on	GitHub	at	https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage.
An	actual	use	case	is	described	in	the	series	of	blog	posts	from	MongoDB:

Using	MongoDB	with	Hadoop	&	Spark:	Part	1	-	Introduction	&	Setup
(https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-
introduction-setup)
Using	MongoDB	with	Hadoop	and	Spark:	Part	2	-	Hive	Example
(https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-
example)
Using	MongoDB	with	Hadoop	&	Spark:	Part	3	-	Spark	Example	&	Key	Takeaways
(https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-3-spark-
example-key-takeaways)

Setting	up	a	full	Hadoop	environment	is	bit	elaborate.	We	will	favor	the	second	approach.
We	will	use	the	spark-mongodb	connector	developed	and	maintained	by	Stratio.	We	are
using	the	Stratio	spark-mongodb	package	hosted	at	spark.packages.org.	The	packages
information	and	version	can	be	found	in	spark.packages.org:

Note
Releases

Version:	0.10.1	(	8263c8	|	zip	|	jar	)	/	Date:	2015-11-18	/	License:	Apache-2.0	/	Scala
version:	2.10

(http://spark-packages.org/package/Stratio/spark-mongodb)

The	command	to	launch	PySpark	with	the	IPython	Notebook	and	the	spark-mongodb
package	should	explicitly	state	the	packages	argument:

$	IPYTHON_OPTS='notebook'	/home/an/spark/spark-1.5.0-bin-

hadoop2.6/bin/pyspark	--packages	com.stratio.datasource:spark-

mongodb_2.10:0.10.1

This	will	trigger	the	following	output;	we	can	see	that	the	spark-mongodb	package	is
installed	with	all	its	dependencies:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark$	

IPYTHON_OPTS='notebook'	/home/an/spark/spark-1.5.0-bin-

hadoop2.6/bin/pyspark	--packages	com.stratio.datasource:spark-

mongodb_2.10:0.10.1…	(snip)	...	

Ivy	Default	Cache	set	to:	/home/an/.ivy2/cache

The	jars	for	the	packages	stored	in:	/home/an/.ivy2/jars

::	loading	settings	::	url	=	jar:file:/home/an/spark/spark-1.5.0-bin-

hadoop2.6/lib/spark-assembly-1.5.0-

https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-introduction-setup
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-example
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-3-spark-example-key-takeaways
http://spark-packages.org/package/Stratio/spark-mongodb


hadoop2.6.0.jar!/org/apache/ivy/core/settings/ivysettings.xml

com.stratio.datasource#spark-mongodb_2.10	added	as	a	dependency

::	resolving	dependencies	::	org.apache.spark#spark-submit-parent;1.0

		confs:	[default]

		found	com.stratio.datasource#spark-mongodb_2.10;0.10.1	in	central

[W	22:10:50.910	NotebookApp]	Timeout	waiting	for	kernel_info	reply	from	

764081d3-baf9-4978-ad89-7735e6323cb6

		found	org.mongodb#casbah-commons_2.10;2.8.0	in	central

		found	com.github.nscala-time#nscala-time_2.10;1.0.0	in	central

		found	joda-time#joda-time;2.3	in	central

		found	org.joda#joda-convert;1.2	in	central

		found	org.slf4j#slf4j-api;1.6.0	in	central

		found	org.mongodb#mongo-java-driver;2.13.0	in	central

		found	org.mongodb#casbah-query_2.10;2.8.0	in	central

		found	org.mongodb#casbah-core_2.10;2.8.0	in	central

downloading	https://repo1.maven.org/maven2/com/stratio/datasource/spark-

mongodb_2.10/0.10.1/spark-mongodb_2.10-0.10.1.jar…

		[SUCCESSFUL	]	com.stratio.datasource#spark-mongodb_2.10;0.10.1!spark-

mongodb_2.10.jar	(3130ms)

downloading	https://repo1.maven.org/maven2/org/mongodb/casbah-

commons_2.10/2.8.0/casbah-commons_2.10-2.8.0.jar…

		[SUCCESSFUL	]	org.mongodb#casbah-commons_2.10;2.8.0!casbah-

commons_2.10.jar	(2812ms)

downloading	https://repo1.maven.org/maven2/org/mongodb/casbah-

query_2.10/2.8.0/casbah-query_2.10-2.8.0.jar…

		[SUCCESSFUL	]	org.mongodb#casbah-query_2.10;2.8.0!casbah-query_2.10.jar	

(1432ms)

downloading	https://repo1.maven.org/maven2/org/mongodb/casbah-

core_2.10/2.8.0/casbah-core_2.10-2.8.0.jar…

		[SUCCESSFUL	]	org.mongodb#casbah-core_2.10;2.8.0!casbah-core_2.10.jar	

(2785ms)

downloading	https://repo1.maven.org/maven2/com/github/nscala-time/nscala-

time_2.10/1.0.0/nscala-time_2.10-1.0.0.jar…

		[SUCCESSFUL	]	com.github.nscala-time#nscala-time_2.10;1.0.0!nscala-

time_2.10.jar	(2725ms)

downloading	https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.6.0/slf4j-

api-1.6.0.jar…

		[SUCCESSFUL	]	org.slf4j#slf4j-api;1.6.0!slf4j-api.jar	(371ms)

downloading	https://repo1.maven.org/maven2/org/mongodb/mongo-java-

driver/2.13.0/mongo-java-driver-2.13.0.jar…

		[SUCCESSFUL	]	org.mongodb#mongo-java-driver;2.13.0!mongo-java-driver.jar	

(5259ms)

downloading	https://repo1.maven.org/maven2/joda-time/joda-time/2.3/joda-

time-2.3.jar…

		[SUCCESSFUL	]	joda-time#joda-time;2.3!joda-time.jar	(6949ms)

downloading	https://repo1.maven.org/maven2/org/joda/joda-convert/1.2/joda-

convert-1.2.jar…

		[SUCCESSFUL	]	org.joda#joda-convert;1.2!joda-convert.jar	(548ms)

::	resolution	report	::	resolve	11850ms	::	artifacts	dl	26075ms

		::	modules	in	use:

		com.github.nscala-time#nscala-time_2.10;1.0.0	from	central	in	[default]

		com.stratio.datasource#spark-mongodb_2.10;0.10.1	from	central	in	

[default]

		joda-time#joda-time;2.3	from	central	in	[default]

		org.joda#joda-convert;1.2	from	central	in	[default]

		org.mongodb#casbah-commons_2.10;2.8.0	from	central	in	[default]



		org.mongodb#casbah-core_2.10;2.8.0	from	central	in	[default]

		org.mongodb#casbah-query_2.10;2.8.0	from	central	in	[default]

		org.mongodb#mongo-java-driver;2.13.0	from	central	in	[default]

		org.slf4j#slf4j-api;1.6.0	from	central	in	[default]

		---------------------------------------------------------------------

		|																		|												modules												||			artifacts			|

		|							conf							|	number|	search|dwnlded|evicted||	number|dwnlded|

		---------------------------------------------------------------------

		|						default					|			9			|			9			|			9			|			0			||			9			|			9			|

		---------------------------------------------------------------------

::	retrieving	::	org.apache.spark#spark-submit-parent

		confs:	[default]

		9	artifacts	copied,	0	already	retrieved	(2335kB/51ms)

...	(snip)	...	

We	are	now	ready	to	query	MongoDB	on	localhost:27017	from	the	collection
twtr01_coll	in	the	database	twtr01_db.

We	first	import	the	SQLContext:

In	[5]:

from	pyspark.sql	import	SQLContext

sqlContext.sql("CREATE	TEMPORARY	TABLE	tweet_table	USING	

com.stratio.datasource.mongodb	OPTIONS	(host	'localhost:27017',	database	

'twtr01_db',	collection	'twtr01_coll')")

sqlContext.sql("SELECT	*	FROM	tweet_table	where	id=598830778269769728	

").collect()

Here’s	the	output	of	our	query:

Out[5]:

[Row(text=u'@spark_io	is	now	@particle	-	awesome	news	-	now	I	can	enjoy	my	

Particle	Cores/Photons	+	@sparkfun	sensors	+	@ApacheSpark	analytics	:-)',	

_id=u'55aa640fd770871cba74cb88',	contributors=None,	retweeted=False,	

user=Row(contributors_enabled=False,	created_at=u'Mon	Aug	25	14:01:26	+0000	

2008',	default_profile=True,	default_profile_image=False,	

description=u'Building	open	source	tools	for	and	teaching	enterprise	

software	developers',	entities=Row(description=Row(urls=[]),	url=Row(urls=

[Row(url=u'http://t.co/TSHp13EWeu',	indices=[0,	22],	

...	(snip)	...

	9],	name=u'Spark	is	Particle',	screen_name=u'spark_io'),	Row(id=487010011,	

id_str=u'487010011',	indices=[17,	26],	name=u'Particle',	

screen_name=u'particle'),	Row(id=17877351,	id_str=u'17877351',	indices=[88,	

97],	name=u'SparkFun	Electronics',	screen_name=u'sparkfun'),	

Row(id=1551361069,	id_str=u'1551361069',	indices=[108,	120],	name=u'Apache	

Spark',	screen_name=u'ApacheSpark')]),	is_quote_status=None,	lang=u'en',	

quoted_status_id_str=None,	quoted_status_id=None,	created_at=u'Thu	May	14	

12:42:37	+0000	2015',	retweeted_status=None,	truncated=False,	place=None,	

id=598830778269769728,	in_reply_to_user_id=3187046084,	retweet_count=0,	

in_reply_to_status_id=None,	in_reply_to_screen_name=u'spark_io',	

in_reply_to_user_id_str=u'3187046084',	source=u'<a	

href="http://twitter.com"	rel="nofollow">Twitter	Web	Client</a>',	

id_str=u'598830778269769728',	coordinates=None,	

metadata=Row(iso_language_code=u'en',	result_type=u'recent'),	

quoted_status=None)]



#





Summary
In	this	chapter,	we	harvested	data	from	Twitter.	Once	the	data	was	acquired,	we	explored
the	information	using	Continuum.io's	Blaze	and	Odo	libraries.	Spark	SQL	is	an
important	module	for	interactive	data	exploration,	analysis,	and	transformation,	leveraging
the	Spark	dataframe	datastructure.	The	dataframe	concept	originates	from	R	and	then	was
adopted	by	Python	Pandas	with	great	success.	The	dataframe	is	the	workhorse	of	the	data
scientist.	The	combination	of	Spark	SQL	and	dataframe	creates	a	powerful	engine	for	data
processing.

We	are	now	gearing	up	for	extracting	the	insights	from	the	datasets	using	machine
learning	from	Spark	MLlib.





Chapter	4.	Learning	from	Data	Using
Spark
As	we	have	laid	the	foundation	for	data	to	be	harvested	in	the	previous	chapter,	we	are
now	ready	to	learn	from	the	data.	Machine	learning	is	about	drawing	insights	from	data.
Our	objective	is	to	give	an	overview	of	the	Spark	MLlib	(short	for	Machine	Learning
library)	and	apply	the	appropriate	algorithms	to	our	dataset	in	order	to	derive	insights.
From	the	Twitter	dataset,	we	will	be	applying	an	unsupervised	clustering	algorithm	in
order	to	distinguish	between	Apache	Spark-relevant	tweets	versus	the	rest.	We	have	as
initial	input	a	mixed	bag	of	tweets.	We	first	need	to	preprocess	the	data	in	order	to	extract
the	relevant	features,	then	apply	the	machine	learning	algorithm	to	our	dataset,	and	finally
evaluate	the	results	and	the	performance	of	our	model.

In	this	chapter,	we	will	cover	the	following	points:

Providing	an	overview	of	the	Spark	MLlib	module	with	its	algorithms	and	the	typical
machine	learning	workflow.
Preprocessing	the	Twitter	harvested	dataset	to	extract	the	relevant	features,	applying
an	unsupervised	clustering	algorithm	to	identify	Apache	Spark-relevant	tweets.	Then,
evaluating	the	model	and	the	results	obtained.
Describing	the	Spark	machine	learning	pipeline.



Contextualizing	Spark	MLlib	in	the	app
architecture
Let’s	first	contextualize	the	focus	of	this	chapter	on	data-intensive	app	architecture.	We
will	concentrate	our	attention	on	the	analytics	layer	and	more	precisely	machine	learning.
This	will	serve	as	a	foundation	for	streaming	apps	as	we	want	to	apply	the	learning	from
the	batch	processing	of	data	as	inference	rules	for	the	streaming	analysis.

The	following	diagram	sets	the	context	of	the	chapter’s	focus,	highlighting	the	machine
learning	module	within	the	analytics	layer	while	using	tools	for	exploratory	data	analysis,
Spark	SQL,	and	Pandas.





Classifying	Spark	MLlib	algorithms
Spark	MLlib	is	a	rapidly	evolving	module	of	Spark	with	new	algorithms	added	with	each
release	of	Spark.

The	following	diagram	provides	a	high-level	overview	of	Spark	MLlib	algorithms
grouped	in	the	traditional	broad	machine	learning	techniques	and	following	the	categorical
or	continuous	nature	of	the	data:

We	categorize	the	Spark	MLlib	algorithms	in	two	columns,	categorical	or	continuous,
depending	on	the	type	of	data.	We	distinguish	between	data	that	is	categorical	or	more
qualitative	in	nature	versus	continuous	data,	which	is	quantitative	in	nature.	An	example
of	qualitative	data	is	predicting	the	weather;	given	the	atmospheric	pressure,	the
temperature,	and	the	presence	and	type	of	clouds,	the	weather	will	be	sunny,	dry,	rainy,	or
overcast.	These	are	discrete	values.	On	the	other	hand,	let’s	say	we	want	to	predict	house
prices,	given	the	location,	square	meterage,	and	the	number	of	beds;	the	real	estate	value
can	be	predicted	using	linear	regression.	In	this	case,	we	are	talking	about	continuous	or
quantitative	values.



The	horizontal	grouping	reflects	the	types	of	machine	learning	method	used.	Unsupervised
versus	supervised	machine	learning	techniques	are	dependent	on	whether	the	training	data
is	labeled.	In	an	unsupervised	learning	challenge,	no	labels	are	given	to	the	learning
algorithm.	The	goal	is	to	find	the	hidden	structure	in	its	input.	In	the	case	of	supervised
learning,	the	data	is	labeled.	The	focus	is	on	making	predictions	using	regression	if	the
data	is	continuous	or	classification	if	the	data	is	categorical.

An	important	category	of	machine	learning	is	recommender	systems,	which	leverage
collaborative	filtering	techniques.	The	Amazon	web	store	and	Netflix	have	very	powerful
recommender	systems	powering	their	recommendations.

Stochastic	Gradient	Descent	is	one	of	the	machine	learning	optimization	techniques	that
is	well	suited	for	Spark	distributed	computation.

For	processing	large	amounts	of	text,	Spark	offers	crucial	libraries	for	feature	extraction
and	transformation	such	as	TF-IDF	(short	for	Term	Frequency	–	Inverse	Document
Frequency),	Word2Vec,	standard	scaler,	and	normalizer.



Supervised	and	unsupervised	learning
We	delve	more	deeply	here	in	to	the	traditional	machine	learning	algorithms	offered	by
Spark	MLlib.	We	distinguish	between	supervised	and	unsupervised	learning	depending	on
whether	the	data	is	labeled.	We	distinguish	between	categorical	or	continuous	depending
on	whether	the	data	is	discrete	or	continuous.

The	following	diagram	explains	the	Spark	MLlib	supervised	and	unsupervised	machine
learning	algorithms	and	preprocessing	techniques:

The	following	supervised	and	unsupervised	MLlib	algorithms	and	preprocessing
techniques	are	currently	available	in	Spark:

Clustering:	This	is	an	unsupervised	machine	learning	technique	where	the	data	is	not
labeled.	The	aim	is	to	extract	structure	from	the	data:

K-Means:	This	partitions	the	data	in	K	distinct	clusters
Gaussian	Mixture:	Clusters	are	assigned	based	on	the	maximum	posterior
probability	of	the	component
Power	Iteration	Clustering	(PIC):	This	groups	vertices	of	a	graph	based	on
pairwise	edge	similarities
Latent	Dirichlet	Allocation	(LDA):	This	is	used	to	group	collections	of	text
documents	into	topics
Streaming	K-Means:	This	means	clusters	dynamically	streaming	data	using	a
windowing	function	on	the	incoming	data

Dimensionality	Reduction:	This	aims	to	reduce	the	number	of	features	under
consideration.	Essentially,	this	reduces	noise	in	the	data	and	focuses	on	the	key
features:

Singular	Value	Decomposition	(SVD):	This	breaks	the	matrix	that	contains	the
data	into	simpler	meaningful	pieces.	It	factorizes	the	initial	matrix	into	three



matrices.
Principal	Component	Analysis	(PCA):	This	approximates	a	high	dimensional
dataset	with	a	low	dimensional	sub	space.

Regression	and	Classification:	Regression	predicts	output	values	using	labeled
training	data,	while	Classification	groups	the	results	into	classes.	Classification	has
dependent	variables	that	are	categorical	or	unordered	whilst	Regression	has
dependent	variables	that	are	continuous	and	ordered:

Linear	Regression	Models	(linear	regression,	logistic	regression,	and	support
vector	machines):	Linear	regression	algorithms	can	be	expressed	as	convex
optimization	problems	that	aim	to	minimize	an	objective	function	based	on	a
vector	of	weight	variables.	The	objective	function	controls	the	complexity	of	the
model	through	the	regularized	part	of	the	function	and	the	error	of	the	model
through	the	loss	part	of	the	function.
Naive	Bayes:	This	makes	predictions	based	on	the	conditional	probability
distribution	of	a	label	given	an	observation.	It	assumes	that	features	are	mutually
independent	of	each	other.
Decision	Trees:	This	performs	recursive	binary	partitioning	of	the	feature	space.
The	information	gain	at	the	tree	node	level	is	maximized	in	order	to	determine
the	best	split	for	the	partition.
Ensembles	of	trees	(Random	Forests	and	Gradient-Boosted	Trees):	Tree
ensemble	algorithms	combine	base	decision	tree	models	in	order	to	build	a
performant	model.	They	are	intuitive	and	very	successful	for	classification	and
regression	tasks.

Isotonic	Regression:	This	minimizes	the	mean	squared	error	between	given	data	and
observed	responses.



Additional	learning	algorithms
Spark	MLlib	offers	more	algorithms	than	the	supervised	and	unsupervised	learning	ones.
We	have	broadly	three	more	additional	types	of	machine	learning	methods:	recommender
systems,	optimization	algorithms,	and	feature	extraction.

The	following	additional	MLlib	algorithms	are	currently	available	in	Spark:

Collaborative	filtering:	This	is	the	basis	for	recommender	systems.	It	creates	a	user-
item	association	matrix	and	aims	to	fill	the	gaps.	Based	on	other	users	and	items
along	with	their	ratings,	it	recommends	an	item	that	the	target	user	has	no	ratings	for.
In	distributed	computing,	one	of	the	most	successful	algorithms	is	ALS	(short	for
Alternating	Least	Square):

Alternating	Least	Squares:	This	matrix	factorization	technique	incorporates
implicit	feedback,	temporal	effects,	and	confidence	levels.	It	decomposes	the
large	user	item	matrix	into	a	lower	dimensional	user	and	item	factors.	It
minimizes	a	quadratic	loss	function	by	fixing	alternatively	its	factors.

Feature	extraction	and	transformation:	These	are	essential	techniques	for	large
text	document	processing.	It	includes	the	following	techniques:

Term	Frequency:	Search	engines	use	TF-IDF	to	score	and	rank	document
relevance	in	a	vast	corpus.	It	is	also	used	in	machine	learning	to	determine	the
importance	of	a	word	in	a	document	or	corpus.	Term	frequency	statistically
determines	the	weight	of	a	term	relative	to	its	frequency	in	the	corpus.	Term
frequency	on	its	own	can	be	misleading	as	it	overemphasizes	words	such	as	the,



of,	or	and	that	give	little	information.	Inverse	Document	Frequency	provides	the
specificity	or	the	measure	of	the	amount	of	information,	whether	the	term	is	rare
or	common	across	all	documents	in	the	corpus.
Word2Vec:	This	includes	two	models,	Skip-Gram	and	Continuous	Bag	of
Word.	The	Skip-Gram	predicts	neighboring	words	given	a	word,	based	on
sliding	windows	of	words,	while	Continuous	Bag	of	Words	predicts	the	current
word	given	the	neighboring	words.
Standard	Scaler:	As	part	of	preprocessing,	the	dataset	must	often	be
standardized	by	mean	removal	and	variance	scaling.	We	compute	the	mean	and
standard	deviation	on	the	training	data	and	apply	the	same	transformation	to	the
test	data.
Normalizer:	We	scale	the	samples	to	have	unit	norm.	It	is	useful	for	quadratic
forms	such	as	the	dot	product	or	kernel	methods.
Feature	selection:	This	reduces	the	dimensionality	of	the	vector	space	by
selecting	the	most	relevant	features	for	the	model.
Chi-Square	Selector:	This	is	a	statistical	method	to	measure	the	independence
of	two	events.

Optimization:	These	specific	Spark	MLlib	optimization	algorithms	focus	on	various
techniques	of	gradient	descent.	Spark	provides	very	efficient	implementation	of
gradient	descent	on	a	distributed	cluster	of	machines.	It	looks	for	the	local	minima	by
iteratively	going	down	the	steepest	descent.	It	is	compute-intensive	as	it	iterates
through	all	the	data	available:

Stochastic	Gradient	Descent:	We	minimize	an	objective	function	that	is	the
sum	of	differentiable	functions.	Stochastic	Gradient	Descent	uses	only	a	sample
of	the	training	data	in	order	to	update	a	parameter	in	a	particular	iteration.	It	is
used	for	large-scale	and	sparse	machine	learning	problems	such	as	text
classification.

Limited-memory	BFGS	(L-BFGS):	As	the	name	says,	L-BFGS	uses	limited
memory	and	suits	the	distributed	optimization	algorithm	implementation	of	Spark
MLlib.





Spark	MLlib	data	types
MLlib	supports	four	essential	data	types:	local	vector,	labeled	point,	local	matrix,	and
distributed	matrix.	These	data	types	are	widely	used	in	Spark	MLlib	algorithms:

Local	vector:	This	resides	in	a	single	machine.	It	can	be	dense	or	sparse:

Dense	vector	is	a	traditional	array	of	doubles.	An	example	of	dense	vector	is
[5.0,	0.0,	1.0,	7.0].
Sparse	vector	uses	integer	indices	and	double	values.	So	the	sparse
representation	of	the	vector	[5.0,	0.0,	1.0,	7.0]	would	be	(4,	[0,	2,	3],
[5.0,	1.0,	7.0]),	where	represent	the	dimension	of	the	vector.

Here’s	an	example	of	local	vector	in	PySpark:

import	numpy	as	np

import	scipy.sparse	as	sps

from	pyspark.mllib.linalg	import	Vectors

#	NumPy	array	for	dense	vector.

dvect1	=	np.array([5.0,	0.0,	1.0,	7.0])

#	Python	list	for	dense	vector.

dvect2	=	[5.0,	0.0,	1.0,	7.0]

#	SparseVector	creation

svect1	=	Vectors.sparse(4,	[0,	2,	3],	[5.0,	1.0,	7.0])

#	Sparse	vector	using	a	single-column	SciPy	csc_matrix

svect2	=	sps.csc_matrix((np.array([5.0,	1.0,	7.0]),	np.array([0,	2,	

3])),	shape	=	(4,	1))

Labeled	point.	A	labeled	point	is	a	dense	or	sparse	vector	with	a	label	used	in
supervised	learning.	In	the	case	of	binary	labels,	0.0	represents	the	negative
label	whilst	1.0	represents	the	positive	value.

Here’s	an	example	of	a	labeled	point	in	PySpark:

from	pyspark.mllib.linalg	import	SparseVector

from	pyspark.mllib.regression	import	LabeledPoint

#	Labeled	point	with	a	positive	label	and	a	dense	feature	vector.

lp_pos	=	LabeledPoint(1.0,	[5.0,	0.0,	1.0,	7.0])

#	Labeled	point	with	a	negative	label	and	a	sparse	feature	vector.

lp_neg	=	LabeledPoint(0.0,	SparseVector(4,	[0,	2,	3],	[5.0,	1.0,	

7.0]))

Local	Matrix:	This	local	matrix	resides	in	a	single	machine	with	integer-type
indices	and	values	of	type	double.

Here’s	an	example	of	a	local	matrix	in	PySpark:

from	pyspark.mllib.linalg	import	Matrix,	Matrices

#	Dense	matrix	((1.0,	2.0,	3.0),	(4.0,	5.0,	6.0))

dMatrix	=	Matrices.dense(2,	3,	[1,	2,	3,	4,	5,	6])



#	Sparse	matrix	((9.0,	0.0),	(0.0,	8.0),	(0.0,	6.0))

sMatrix	=	Matrices.sparse(3,	2,	[0,	1,	3],	[0,	2,	1],	[9,	6,	8])

Distributed	Matrix:	Leveraging	the	distributed	mature	of	the	RDD,	distributed
matrices	can	be	shared	in	a	cluster	of	machines.	We	distinguish	four	distributed
matrix	types:	RowMatrix,	IndexedRowMatrix,	CoordinateMatrix,	and
BlockMatrix:

RowMatrix:	This	takes	an	RDD	of	vectors	and	creates	a	distributed	matrix
of	rows	with	meaningless	indices,	called	RowMatrix,	from	the	RDD	of
vectors.
IndexedRowMatrix:	In	this	case,	row	indices	are	meaningful.	First,	we
create	an	RDD	of	indexed	rows	using	the	class	IndexedRow	and	then	create
an	IndexedRowMatrix.
CoordinateMatrix:	This	is	useful	to	represent	very	large	and	very	sparse
matrices.	CoordinateMatrix	is	created	from	RDDs	of	the	MatrixEntry
points,	represented	by	a	tuple	of	type	(long,	long,	or	float)
BlockMatrix:	These	are	created	from	RDDs	of	sub-matrix	blocks,	where	a
sub-matrix	block	is	((blockRowIndex,	blockColIndex),	sub-matrix).





Machine	learning	workflows	and	data
flows
Beyond	algorithms,	machine	learning	is	also	about	processes.	We	will	discuss	the	typical
workflows	and	data	flows	of	supervised	and	unsupervised	machine	learning.



Supervised	machine	learning	workflows
In	supervised	machine	learning,	the	input	training	dataset	is	labeled.	One	of	the	key	data
practices	is	to	split	input	data	into	training	and	test	sets,	and	validate	the	mode
accordingly.

We	typically	go	through	a	six-step	process	flow	in	supervised	learning:

Collect	the	data:	This	step	essentially	ties	in	with	the	previous	chapter	and	ensures
we	collect	the	right	data	with	the	right	volume	and	granularity	in	order	to	enable	the
machine	learning	algorithm	to	provide	reliable	answers.
Preprocess	the	data:	This	step	is	about	checking	the	data	quality	by	sampling,	filling
in	the	missing	values	if	any,	scaling	and	normalizing	the	data.	We	also	define	the
feature	extraction	process.	Typically,	in	the	case	of	large	text-based	datasets,	we
apply	tokenization,	stop	words	removal,	stemming,	and	TF-IDF.

In	the	case	of	supervised	learning,	we	separate	the	input	data	into	a	training	and	test
set.	We	can	also	implement	various	strategies	of	sampling	and	splitting	the	dataset	for
cross-validation	purposes.

Ready	the	data:	In	this	step,	we	get	the	data	in	the	format	or	data	type	expected	by
the	algorithms.	In	the	case	of	Spark	MLlib,	this	includes	local	vector,	dense	or	sparse
vectors,	labeled	points,	local	matrix,	distributed	matrix	with	row	matrix,	indexed	row
matrix,	coordinate	matrix,	and	block	matrix.
Model:	In	this	step,	we	apply	the	algorithms	that	are	suitable	for	the	problem	at	hand
and	get	the	results	for	evaluation	of	the	most	suitable	algorithm	in	the	evaluate	step.
We	might	have	multiple	algorithms	suitable	for	the	problem;	their	respective
performance	will	be	scored	in	the	evaluate	step	to	select	the	best	preforming	ones.
We	can	implement	an	ensemble	or	combination	of	models	in	order	to	reach	the	best
results.
Optimize:	We	may	need	to	run	a	grid	search	for	the	optimal	parameters	of	certain
algorithms.	These	parameters	are	determined	during	training,	and	fine-tuned	during
the	testing	and	production	phase.
Evaluate:	We	ultimately	score	the	models	and	select	the	best	one	in	terms	of
accuracy,	performance,	reliability,	and	scalability.	We	move	the	best	performing
model	to	test	with	the	held	out	test	data	in	order	to	ascertain	the	prediction	accuracy
of	our	model.	Once	satisfied	with	the	fine-tuned	model,	we	move	it	to	production	to
process	live	data.

The	supervised	machine	learning	workflow	and	dataflow	are	represented	in	the	following
diagram:





Unsupervised	machine	learning	workflows
As	opposed	to	supervised	learning,	our	initial	data	is	not	labeled	in	the	case	of
unsupervised	learning,	which	is	most	often	the	case	in	real	life.	We	will	extract	the
structure	from	the	data	by	using	clustering	or	dimensionality	reduction	algorithms.	In	the
unsupervised	learning	case,	we	do	not	split	the	data	into	training	and	test,	as	we	cannot
make	any	prediction	because	the	data	is	not	labeled.	We	will	train	the	data	along	six	steps
similar	to	those	in	supervised	learning.	Once	the	model	is	trained,	we	will	evaluate	the
results	and	fine-tune	the	model	and	then	release	it	for	production.

Unsupervised	learning	can	be	a	preliminary	step	to	supervised	learning.	Namely,	we	look
at	reducing	the	dimensionality	of	the	data	prior	to	attacking	the	learning	phase.

The	unsupervised	machine	learning	workflows	and	dataflow	are	represented	as	follows:





Clustering	the	Twitter	dataset
Let’s	first	get	a	feel	for	the	data	extracted	from	Twitter	and	get	an	understanding	of	the
data	structure	in	order	to	prepare	and	run	it	through	the	K-Means	clustering	algorithms.
Our	plan	of	attack	uses	the	process	and	dataflow	depicted	earlier	for	unsupervised
learning.	The	steps	are	as	follows:

1.	 Combine	all	tweet	files	into	a	single	dataframe.
2.	 Parse	the	tweets,	remove	stop	words,	extract	emoticons,	extract	URL,	and	finally

normalize	the	words	(for	example,	mapping	them	to	lowercase	and	removing
punctuation	and	numbers).

3.	 Feature	extraction	includes	the	following:

Tokenization:	This	breaks	down	the	parsed	tweet	text	into	individual	words	or
tokens
TF-IDF:	This	applies	the	TF-IDF	algorithm	to	create	feature	vectors	from	the
tokenized	tweet	texts
Hash	TF-IDF:	This	applies	a	hashing	function	to	the	token	vectors

4.	 Run	the	K-Means	clustering	algorithm.
5.	 Evaluate	the	results	of	the	K-Means	clustering:

Identify	tweet	membership	to	clusters
Perform	dimensionality	reduction	to	two	dimensions	with	the	Multi-
Dimensional	Scaling	or	the	Principal	Component	Analysis	algorithm
Plot	the	clusters

6.	 Pipeline:

Fine-tune	the	number	of	relevant	clusters	K
Measure	the	model	cost
Select	the	optimal	model



Applying	Scikit-Learn	on	the	Twitter	dataset
Python’s	own	Scikit-Learn	machine	learning	library	is	one	of	the	most	reliable,	intuitive,
and	robust	tools	around.	Let’s	run	through	a	preprocessing	and	unsupervised	learning
using	Pandas	and	Scikit-Learn.	It	is	often	beneficial	to	explore	a	sample	of	the	data	using
Scikit-Learn	before	spinning	off	clusters	with	Spark	MLlib.

We	have	a	mixed	bag	of	7,540	tweets.	It	contains	tweets	related	to	Apache	Spark,	Python,
the	upcoming	presidential	election	with	Hillary	Clinton	and	Donald	Trump	as
protagonists,	and	some	tweets	related	to	fashion	and	music	with	Lady	Gaga	and	Justin
Bieber.	We	are	running	the	K-Means	clustering	algorithm	using	Python	Scikit-Learn	on
the	Twitter	dataset	harvested.	We	first	load	the	sample	data	into	a	Pandas	dataframe:

import	pandas	as	pd

csv_in	=	'C:\\Users\\Amit\\Documents\\IPython	

Notebooks\\AN00_Data\\unq_tweetstxt.csv'

twts_df01	=	pd.read_csv(csv_in,	sep	=';',	encoding='utf-8')

In	[24]:

twts_df01.count()

Out[24]:

Unnamed:	0				7540

id												7540

created_at				7540

user_id							7540

user_name					7538

tweet_text				7540

dtype:	int64

#

#	Introspecting	the	tweets	text

#

In	[82]:

twtstxt_ls01[6910:6920]

Out[82]:

['RT	@deroach_Ismoke:	I	am	NOT	voting	for	#hilaryclinton	

http://t.co/jaZZpcHkkJ',

	'RT	@AnimalRightsJen:	#HilaryClinton	What	do	Bernie	Sanders	and	Donald	

Trump	Have	in	Common?:	He	has	so	far	been	th…	http://t.co/t2YRcGCh6…',

	'I	understand	why	Bill	was	out	banging	other	chicks….....I	mean	look	at	

what	he	is	married	to…..\n@HilaryClinton',

	'#HilaryClinton	What	do	Bernie	Sanders	and	Donald	Trump	Have	in	Common?:	

He	has	so	far	been	th…	http://t.co/t2YRcGCh67	#Tcot	#UniteBlue']

We	first	perform	a	feature	extraction	from	the	tweets’	text.	We	apply	a	sparse	vectorizer	to
the	dataset	using	a	TF-IDF	vectorizer	with	10,000	features	and	English	stop	words:

In	[37]:

print("Extracting	features	from	the	training	dataset	using	a	sparse	

vectorizer")



t0	=	time()

Extracting	features	from	the	training	dataset	using	a	sparse	vectorizer

In	[38]:

vectorizer	=	TfidfVectorizer(max_df=0.5,	max_features=10000,

																																	min_df=2,	stop_words='english',

																																	use_idf=True)

X	=	vectorizer.fit_transform(twtstxt_ls01)

#

#	Output	of	the	TFIDF	Feature	vectorizer

#

print("done	in	%fs"	%	(time()	-	t0))

print("n_samples:	%d,	n_features:	%d"	%	X.shape)

print()

done	in	5.232165s

n_samples:	7540,	n_features:	6638

As	the	dataset	is	now	broken	into	a	7540	sample	with	vectors	of	6,638	features,	we	are
ready	to	feed	this	sparse	matrix	to	the	K-Means	clustering	algorithm.	We	will	choose
seven	clusters	and	100	maximum	iterations	initially:

In	[47]:

km	=	KMeans(n_clusters=7,	init='k-means++',	max_iter=100,	n_init=1,

												verbose=1)

print("Clustering	sparse	data	with	%s"	%	km)

t0	=	time()

km.fit(X)

print("done	in	%0.3fs"	%	(time()	-	t0))

Clustering	sparse	data	with	KMeans(copy_x=True,	init='k-means++',	

max_iter=100,	n_clusters=7,	n_init=1,

				n_jobs=1,	precompute_distances='auto',	random_state=None,	tol=0.0001,

				verbose=1)

Initialization	complete

Iteration		0,	inertia	13635.141

Iteration		1,	inertia	6943.485

Iteration		2,	inertia	6924.093

Iteration		3,	inertia	6915.004

Iteration		4,	inertia	6909.212

Iteration		5,	inertia	6903.848

Iteration		6,	inertia	6888.606

Iteration		7,	inertia	6863.226

Iteration		8,	inertia	6860.026

Iteration		9,	inertia	6859.338

Iteration	10,	inertia	6859.213

Iteration	11,	inertia	6859.102

Iteration	12,	inertia	6859.080

Iteration	13,	inertia	6859.060

Iteration	14,	inertia	6859.047

Iteration	15,	inertia	6859.039

Iteration	16,	inertia	6859.032

Iteration	17,	inertia	6859.031

Iteration	18,	inertia	6859.029

Converged	at	iteration	18



done	in	1.701s

The	K-Means	clustering	algorithm	converged	after	18	iterations.	We	see	in	the	following
results	the	seven	clusters	with	their	respective	key	words.	Clusters	0	and	6	are	about	music
and	fashion	with	Justin	Bieber	and	Lady	Gaga-related	tweets.	Clusters	1	and	5	are	related
to	the	U.S.A.	presidential	elections	with	Donald	Trump-and	Hilary	Clinton-related	tweets.
Clusters	2	and	3	are	the	ones	of	interest	to	us	as	they	are	about	Apache	Spark	and	Python.
Cluster	4	contains	Thailand-related	tweets:

#

#	Introspect	top	terms	per	cluster

#

In	[49]:

print("Top	terms	per	cluster:")

order_centroids	=	km.cluster_centers_.argsort()[:,	::-1]

terms	=	vectorizer.get_feature_names()

for	i	in	range(7):

				print("Cluster	%d:"	%	i,	end='')

				for	ind	in	order_centroids[i,	:20]:

								print('	%s'	%	terms[ind],	end='')

				print()

Top	terms	per	cluster:

Cluster	0:	justinbieber	love	mean	rt	follow	thank	hi	https	whatdoyoumean	

video	wanna	hear	whatdoyoumeanviral	rorykramer	happy	lol	making	person	

dream	justin

Cluster	1:	donaldtrump	hilaryclinton	rt	https	trump2016	realdonaldtrump	

trump	gop	amp	justinbieber	president	clinton	emails	oy8ltkstze	tcot	like	

berniesanders	hilary	people	email

Cluster	2:	bigdata	apachespark	hadoop	analytics	rt	spark	training	chennai	

ibm	datascience	apache	processing	cloudera	mapreduce	data	sap	https	vora	

transforming	development

Cluster	3:	apachespark	python	https	rt	spark	data	amp	databricks	using	new	

learn	hadoop	ibm	big	apache	continuumio	bluemix	learning	join	open

Cluster	4:	ernestsgantt	simbata3	jdhm2015	elsahel12	phuketdailynews	

dreamintentions	beyhiveinfrance	almtorta18	civipartnership	9_a_6	25whu72ep0	

k7erhvu7wn	fdmxxxcm3h	osxuh2fxnt	5o5rmb0xhp	jnbgkqn0dj	ovap57ujdh	

dtzsz3lb6x	sunnysai12345	sdcvulih6g

Cluster	5:	trump	donald	donaldtrump	starbucks	trumpquote	trumpforpresident	

oy8ltkstze	https	zfns7pxysx	silly	goy	stump	trump2016	news	jeremy	coffee	

corbyn	ok7vc8aetz	rt	tonight

Cluster	6:	ladygaga	gaga	lady	rt	https	love	follow	horror	cd	story	ahshotel	

american	japan	hotel	human	trafficking	music	fashion	diet	queen	ahs

We	will	visualize	the	results	by	plotting	the	cluster.	We	have	7,540	samples	with	6,638
features.	It	will	be	impossible	to	visualize	that	many	dimensions.	We	will	use	the	Multi-
Dimensional	Scaling	(MDS)	algorithm	to	bring	down	the	multidimensional	features	of
the	clusters	into	two	tractable	dimensions	to	be	able	to	picture	them:

import	matplotlib.pyplot	as	plt

import	matplotlib	as	mpl

from	sklearn.manifold	import	MDS

MDS()



#

#	Bring	down	the	MDS	to	two	dimensions	(components)	as	we	will	plot	

#	the	clusters

#

mds	=	MDS(n_components=2,	dissimilarity="precomputed",	random_state=1)

pos	=	mds.fit_transform(dist)		#	shape	(n_components,	n_samples)

xs,	ys	=	pos[:,	0],	pos[:,	1]

In	[67]:

#

#	Set	up	colors	per	clusters	using	a	dict

#

cluster_colors	=	{0:	'#1b9e77',	1:	'#d95f02',	2:	'#7570b3',	3:	'#e7298a',	

4:	'#66a61e',	5:	'#9990b3',	6:	'#e8888a'}

#

#set	up	cluster	names	using	a	dict

#

cluster_names	=	{0:	'Music,	Pop',	

																	1:	'USA	Politics,	Election',	

																	2:	'BigData,	Spark',	

																	3:	'Spark,	Python',

																	4:	'Thailand',	

																	5:	'USA	Politics,	Election',	

																	6:	'Music,	Pop'}

In	[115]:

#

#	ipython	magic	to	show	the	matplotlib	plots	inline

#

%matplotlib	inline	

#

#	Create	data	frame	which	includes	MDS	results,	cluster	numbers	and	tweet	

texts	to	be	displayed

#

df	=	pd.DataFrame(dict(x=xs,	y=ys,	label=clusters,	txt=twtstxt_ls02_utf8))

ix_start	=	2000

ix_stop		=	2050

df01	=	df[ix_start:ix_stop]

print(df01[['label','txt']])

print(len(df01))

print()

#	Group	by	cluster

groups	=	df.groupby('label')

groups01	=	df01.groupby('label')

#	Set	up	the	plot

fig,	ax	=	plt.subplots(figsize=(17,	10))	



ax.margins(0.05)	

#

#	Build	the	plot	object

#

for	name,	group	in	groups01:

				ax.plot(group.x,	group.y,	marker='o',	linestyle='',	ms=12,	

												label=cluster_names[name],	color=cluster_colors[name],	

												mec='none')

				ax.set_aspect('auto')

				ax.tick_params(\

								axis=	'x',									#	settings	for	x-axis

								which='both',						#	

								bottom='off',						#	

								top='off',									#	

								labelbottom='off')

				ax.tick_params(\

								axis=	'y',									#	settings	for	y-axis

								which='both',						#	

								left='off',								#	

								top='off',									#	

								labelleft='off')

				

ax.legend(numpoints=1)					#

#

#	Add	label	in	x,y	position	with	tweet	text

#

for	i	in	range(ix_start,	ix_stop):

				ax.text(df01.ix[i]['x'],	df01.ix[i]['y'],	df01.ix[i]['txt'],	size=10)		

				

plt.show()																	#	Display	the	plot

						label							text

2000						2							b'RT	@BigDataTechCon:	'

2001						3							b"@4Quant	's	presentat"

2002						2							b'Cassandra	Summit	201'

Here’s	a	plot	of	Cluster	2,	Big	Data	and	Spark,	represented	by	blue	dots	along	with	Cluster
3,	Spark	and	Python,	represented	by	red	dots,	and	some	sample	tweets	related	to	the
respective	clusters:



We	have	gained	some	good	insights	into	the	data	with	the	exploration	and	processing	done
with	Scikit-Learn.	We	will	now	focus	our	attention	on	Spark	MLlib	and	take	it	for	a	ride
on	the	Twitter	dataset.



Preprocessing	the	dataset
Now,	we	will	focus	on	feature	extraction	and	engineering	in	order	to	ready	the	data	for	the
clustering	algorithm	run.	We	instantiate	the	Spark	Context	and	read	the	Twitter	dataset
into	a	Spark	dataframe.	We	will	then	successively	tokenize	the	tweet	text	data,	apply	a
hashing	Term	frequency	algorithm	to	the	tokens,	and	finally	apply	the	Inverse	Document
Frequency	algorithm	and	rescale	the	data.	The	code	is	as	follows:

In	[3]:

#

#	Read	csv	in	a	Panda	DF

#

#

import	pandas	as	pd

csv_in	=	'/home/an/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/data/unq_tweetstxt.csv'

pddf_in	=	pd.read_csv(csv_in,	index_col=None,	header=0,	sep=';',	

encoding='utf-8')

In	[4]:

sqlContext	=	SQLContext(sc)

In	[5]:

#

#	Convert	a	Panda	DF	to	a	Spark	DF

#

#

spdf_02	=	sqlContext.createDataFrame(pddf_in[['id',	'user_id',	'user_name',	

'tweet_text']])

In	[8]:

spdf_02.show()

In	[7]:

spdf_02.take(3)

Out[7]:

[Row(id=638830426971181057,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamintentions:	

elsahel12:	simbata3:	JDHM2015:	almtorta18:	dreamintentions:\u2026	

http://t.co/VpD7FoqMr0'),

	Row(id=638830426727911424,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews:	

dreamintentions:	elsahel12:	simbata3:	JDHM2015:	almtorta18:	CiviPa\u2026	

http://t.co/VpD7FoqMr0'),

	Row(id=638830425402556417,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	9_A_6:	ernestsgantt:	elsahel12:	

simbata3:	JDHM2015:	almtorta18:	CiviPartnership:	dr\u2026	



http://t.co/EMDOn8chPK')]

In	[9]:

from	pyspark.ml.feature	import	HashingTF,	IDF,	Tokenizer

In	[10]:

#

#	Tokenize	the	tweet_text	

#

tokenizer	=	Tokenizer(inputCol="tweet_text",	outputCol="tokens")

tokensData	=	tokenizer.transform(spdf_02)

In	[11]:

tokensData.take(1)

Out[11]:

[Row(id=638830426971181057,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamintentions:	

elsahel12:	simbata3:	JDHM2015:	almtorta18:	dreamintentions:\u2026	

http://t.co/VpD7FoqMr0',	tokens=[u'ernestsgantt:',	u'beyhiveinfrance:',	

u'9_a_6:',	u'dreamintentions:',	u'elsahel12:',	u'simbata3:',	u'jdhm2015:',	

u'almtorta18:',	u'dreamintentions:\u2026',	u'http://t.co/vpd7foqmr0'])]

In	[14]:

#

#	Apply	Hashing	TF	to	the	tokens

#

hashingTF	=	HashingTF(inputCol="tokens",	outputCol="rawFeatures",	

numFeatures=2000)

featuresData	=	hashingTF.transform(tokensData)

In	[15]:

featuresData.take(1)

Out[15]:

[Row(id=638830426971181057,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamintentions:	

elsahel12:	simbata3:	JDHM2015:	almtorta18:	dreamintentions:\u2026	

http://t.co/VpD7FoqMr0',	tokens=[u'ernestsgantt:',	u'beyhiveinfrance:',	

u'9_a_6:',	u'dreamintentions:',	u'elsahel12:',	u'simbata3:',	u'jdhm2015:',	

u'almtorta18:',	u'dreamintentions:\u2026',	u'http://t.co/vpd7foqmr0'],	

rawFeatures=SparseVector(2000,	{74:	1.0,	97:	1.0,	100:	1.0,	160:	1.0,	185:	

1.0,	742:	1.0,	856:	1.0,	991:	1.0,	1383:	1.0,	1620:	1.0}))]

In	[16]:

#

#	Apply	IDF	to	the	raw	features	and	rescale	the	data

#



idf	=	IDF(inputCol="rawFeatures",	outputCol="features")

idfModel	=	idf.fit(featuresData)

rescaledData	=	idfModel.transform(featuresData)

for	features	in	rescaledData.select("features").take(3):

		print(features)

In	[17]:

rescaledData.take(2)

Out[17]:

[Row(id=638830426971181057,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamintentions:	

elsahel12:	simbata3:	JDHM2015:	almtorta18:	dreamintentions:\u2026	

http://t.co/VpD7FoqMr0',	tokens=[u'ernestsgantt:',	u'beyhiveinfrance:',	

u'9_a_6:',	u'dreamintentions:',	u'elsahel12:',	u'simbata3:',	u'jdhm2015:',	

u'almtorta18:',	u'dreamintentions:\u2026',	u'http://t.co/vpd7foqmr0'],	

rawFeatures=SparseVector(2000,	{74:	1.0,	97:	1.0,	100:	1.0,	160:	1.0,	185:	

1.0,	742:	1.0,	856:	1.0,	991:	1.0,	1383:	1.0,	1620:	1.0}),	

features=SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	

2.9985,	185:	2.7481,	742:	5.5269,	856:	4.1406,	991:	2.9518,	1383:	4.694,	

1620:	3.073})),

	Row(id=638830426727911424,	user_id=3276255125,	user_name=u'True	Equality',	

tweet_text=u'ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews:	

dreamintentions:	elsahel12:	simbata3:	JDHM2015:	almtorta18:	CiviPa\u2026	

http://t.co/VpD7FoqMr0',	tokens=[u'ernestsgantt:',	u'beyhiveinfrance:',	

u'phuketdailynews:',	u'dreamintentions:',	u'elsahel12:',	u'simbata3:',	

u'jdhm2015:',	u'almtorta18:',	u'civipa\u2026',	u'http://t.co/vpd7foqmr0'],	

rawFeatures=SparseVector(2000,	{74:	1.0,	97:	1.0,	100:	1.0,	160:	1.0,	185:	

1.0,	460:	1.0,	987:	1.0,	991:	1.0,	1383:	1.0,	1620:	1.0}),	

features=SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	

2.9985,	185:	2.7481,	460:	6.4432,	987:	2.9959,	991:	2.9518,	1383:	4.694,	

1620:	3.073}))]

In	[21]:

rs_pddf	=	rescaledData.toPandas()

In	[22]:

rs_pddf.count()

Out[22]:

id													7540

user_id								7540

user_name						7540

tweet_text					7540

tokens									7540

rawFeatures				7540

features							7540

dtype:	int64



In	[27]:

feat_lst	=	rs_pddf.features.tolist()

In	[28]:

feat_lst[:2]

Out[28]:

[SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	2.9985,	185:	

2.7481,	742:	5.5269,	856:	4.1406,	991:	2.9518,	1383:	4.694,	1620:	3.073}),

	SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	2.9985,	185:	

2.7481,	460:	6.4432,	987:	2.9959,	991:	2.9518,	1383:	4.694,	1620:	3.073})]



Running	the	clustering	algorithm
We	will	use	the	K-Means	algorithm	against	the	Twitter	dataset.	As	an	unlabeled	and
shuffled	bag	of	tweets,	we	want	to	see	if	the	Apache	Spark	tweets	are	grouped	in	a	single
cluster.	From	the	previous	steps,	the	TF-IDF	sparse	vector	of	features	is	converted	into	an
RDD	that	will	be	the	input	to	the	Spark	MLlib	program.	We	initialize	the	K-Means	model
with	5	clusters,	10	iterations	of	10	runs:

In	[32]:

from	pyspark.mllib.clustering	import	KMeans,	KMeansModel

from	numpy	import	array

from	math	import	sqrt

In	[34]:

#	Load	and	parse	the	data

in_Data	=	sc.parallelize(feat_lst)

In	[35]:

in_Data.take(3)

Out[35]:

[SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	2.9985,	185:	

2.7481,	742:	5.5269,	856:	4.1406,	991:	2.9518,	1383:	4.694,	1620:	3.073}),

	SparseVector(2000,	{74:	2.6762,	97:	1.8625,	100:	2.6384,	160:	2.9985,	185:	

2.7481,	460:	6.4432,	987:	2.9959,	991:	2.9518,	1383:	4.694,	1620:	3.073}),

	SparseVector(2000,	{20:	4.3534,	74:	2.6762,	97:	1.8625,	100:	5.2768,	185:	

2.7481,	856:	4.1406,	991:	2.9518,	1039:	3.073,	1620:	3.073,	1864:	4.6377})]

In	[37]:

in_Data.count()

Out[37]:

7540

In	[38]:

#	Build	the	model	(cluster	the	data)

clusters	=	KMeans.train(in_Data,	5,	maxIterations=10,

								runs=10,	initializationMode="random")

In	[53]:

#	Evaluate	clustering	by	computing	Within	Set	Sum	of	Squared	Errors

def	error(point):



				center	=	clusters.centers[clusters.predict(point)]

				return	sqrt(sum([x**2	for	x	in	(point	-	center)]))

WSSSE	=	in_Data.map(lambda	point:	error(point)).reduce(lambda	x,	y:	x	+	y)

print("Within	Set	Sum	of	Squared	Error	=	"	+	str(WSSSE))



Evaluating	the	model	and	the	results
One	way	to	fine-tune	the	clustering	algorithm	is	by	varying	the	number	of	clusters	and
verifying	the	output.	Let’s	check	the	clusters	and	get	a	feel	for	the	clustering	results	so	far:

In	[43]:

cluster_membership	=	in_Data.map(lambda	x:	clusters.predict(x))

In	[54]:

cluster_idx	=	cluster_membership.zipWithIndex()

In	[55]:

type(cluster_idx)

Out[55]:

pyspark.rdd.PipelinedRDD

In	[58]:

cluster_idx.take(20)

Out[58]:

[(3,	0),

	(3,	1),

	(3,	2),

	(3,	3),

	(3,	4),

	(3,	5),

	(1,	6),

	(3,	7),

	(3,	8),

	(3,	9),

	(3,	10),

	(3,	11),

	(3,	12),

	(3,	13),

	(3,	14),

	(1,	15),

	(3,	16),

	(3,	17),

	(1,	18),

	(1,	19)]

In	[59]:

cluster_df	=	cluster_idx.toDF()

In	[65]:

pddf_with_cluster	=	pd.concat([pddf_in,	cluster_pddf],axis=1)



In	[76]:

pddf_with_cluster._1.unique()

Out[76]:

array([3,	1,	4,	0,	2])

In	[79]:

pddf_with_cluster[pddf_with_cluster['_1']	==	0].head(10)

Out[79]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text			_1			_2

6227			3			642418116819988480			Fri	Sep	11	19:23:09	+0000	2015			49693598			

Ajinkya	Kale			RT	@bigdata:	Distributed	Matrix	Computations	i…			0			6227

6257			45			642391207205859328			Fri	Sep	11	17:36:13	+0000	2015			937467860			

Angela	Bassa			[Auto]	I'm	reading	""Distributed	Matrix	Comput…			0			6257

6297			119			642348577147064320			Fri	Sep	11	14:46:49	+0000	2015			18318677			

Ben	Lorica			Distributed	Matrix	Computations	in	@ApacheSpar…			0			6297

In	[80]:

pddf_with_cluster[pddf_with_cluster['_1']	==	1].head(10)

Out[80]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text			_1			_2

6			6			638830419090079746			Tue	Sep	01	21:46:55	+0000	2015			2241040634			

Massimo	Carrisi			Python:Python:	Removing	\xa0	from	string?	-	I…			1			6

15			17			638830380578045953			Tue	Sep	01	21:46:46	+0000	2015			57699376			

Rafael	Monnerat			RT	@ramalhoorg:	Noite	de	autógrafos	do	Fluent…			1			15

18			41			638830280988426250			Tue	Sep	01	21:46:22	+0000	2015			951081582			

Jack	Baldwin			RT	@cloudaus:	We	are	3/4	full!	2-day	@swcarpen…			1			18

19			42			638830276626399232			Tue	Sep	01	21:46:21	+0000	2015			6525302			

Masayoshi	Nakamura			PynamoDB	#AWS	#DynamoDB	#Python	http://...			1			19

20			43			638830213288235008			Tue	Sep	01	21:46:06	+0000	2015			3153874869			

Baltimore	Python			Flexx:	Python	UI	tookit	based	on	web	technolog…			1			20

21			44			638830117645516800			Tue	Sep	01	21:45:43	+0000	2015			48474625			

Radio	Free	Denali			Hmm,	emerge	--depclean	wants	to	remove	somethi…			1			

21

22			46			638829977014636544			Tue	Sep	01	21:45:10	+0000	2015			154915461			

Luciano	Ramalho			Noite	de	autógrafos	do	Fluent	Python	no	Garoa…			1			22

23			47			638829882928070656			Tue	Sep	01	21:44:47	+0000	2015			917320920			

bsbafflesbrains			@DanSWright	Harper	channeling	Monty	Python.	"...			1			23

24			48			638829868679954432			Tue	Sep	01	21:44:44	+0000	2015			134280898			

Lannick	Technology			RT	@SergeyKalnish:	I	am	#hiring:	Senior	Back	e…			1			

24

25			49			638829707484508161			Tue	Sep	01	21:44:05	+0000	2015			2839203454			

Joshua	Jones			RT	@LindseyPelas:	Surviving	Monty	Python	in	Fl…			1			25

In	[81]:

pddf_with_cluster[pddf_with_cluster['_1']	==	2].head(10)

Out[81]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text			_1			_2

7280			688			639056941592014848			Wed	Sep	02	12:47:02	+0000	2015			



2735137484			Chris			A	true	gay	icon	when	will	@ladygaga	@Madonna	@...			2			

7280

In	[82]:

pddf_with_cluster[pddf_with_cluster['_1']	==	3].head(10)

Out[82]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text			_1			_2

0			0			638830426971181057			Tue	Sep	01	21:46:57	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamint…			3			0

1			1			638830426727911424			Tue	Sep	01	21:46:57	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…			3			1

2			2			638830425402556417			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	ernestsg…			3			2

3			3			638830424563716097			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…			3			3

4			4			638830422256816132			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	elsahel12:	9_A_6:	dreamintention…			3			4

5			5			638830420159655936			Tue	Sep	01	21:46:55	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…			3			5

7			7			638830418330980352			Tue	Sep	01	21:46:55	+0000	2015			3276255125			

True	Equality			ernestsgantt:	elsahel12:	9_A_6:	dreamintention…			3			7

8			8			638830397648822272			Tue	Sep	01	21:46:50	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…			3			8

9			9			638830395375529984			Tue	Sep	01	21:46:49	+0000	2015			3276255125			

True	Equality			ernestsgantt:	elsahel12:	9_A_6:	dreamintention…			3			9

10			10			638830392389177344			Tue	Sep	01	21:46:49	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…			3			10

In	[83]:

pddf_with_cluster[pddf_with_cluster['_1']	==	4].head(10)

Out[83]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text			_1			_2

1361			882			642648214454317056			Sat	Sep	12	10:37:28	+0000	2015			27415756			

Raymond	Enisuoh			LA	Chosen	For	US	2024	Olympic	Bid	-	LA2016	See…			4			

1361

1363			885			642647848744583168			Sat	Sep	12	10:36:01	+0000	2015			27415756			

Raymond	Enisuoh			Prison	See:	https://t.co/x3EKAExeFi	…	…	…	…	…	...			4			

1363

5412			11			640480770369286144			Sun	Sep	06	11:04:49	+0000	2015			

3242403023			Donald	Trump	2016			"	igiboooy!	@	Starbucks	

https://t.co/97wdL…			4			5412

5428			27			640477140660518912			Sun	Sep	06	10:50:24	+0000	2015			

3242403023			Donald	Trump	2016			"		@	Starbucks	https://t.co/wsEYFIefk7	"	-	

D…			4			5428

5455			61			640469542272110592			Sun	Sep	06	10:20:12	+0000	2015			

3242403023			Donald	Trump	2016			"	starbucks	@	Starbucks	Mam	Plaza	

https://t.co…			4			5455

5456			62			640469541370372096			Sun	Sep	06	10:20:12	+0000	2015			

3242403023			Donald	Trump	2016			"	Aaahhh	the	pumpkin	spice	latte	is	back,	

fall…			4			5456

5457			63			640469539524898817			Sun	Sep	06	10:20:12	+0000	2015			

3242403023			Donald	Trump	2016			"	RT	kayyleighferry:	Oh	my	goddd	Harry	

Potter…			4			5457

5458			64			640469537176031232			Sun	Sep	06	10:20:11	+0000	2015			



3242403023			Donald	Trump	2016			"	Starbucks	https://t.co/3xYYXlwNkf	"	-	

Donald…			4			5458

5459			65			640469536119070720			Sun	Sep	06	10:20:11	+0000	2015			

3242403023			Donald	Trump	2016			"	A	Starbucks	is	under	construction	in	my	

neig…			4			5459

5460			66			640469530435813376			Sun	Sep	06	10:20:10	+0000	2015			

3242403023			Donald	Trump	2016			"	Babam	starbucks'tan	fotogtaf	atıyor	

bende	du…			4			5460

We	map	the	5	clusters	with	some	sample	tweets.	Cluster	0	is	about	Spark.	Cluster	1	is
about	Python.	Cluster	2	is	about	Lady	Gaga.	Cluster	3	is	about	Thailand’s	Phuket	News.
Cluster	4	is	about	Donald	Trump.





Building	machine	learning	pipelines
We	want	to	compose	the	feature	extraction,	preparatory	activities,	training,	testing,	and
prediction	activities	while	optimizing	the	best	tuning	parameter	to	get	the	best	performing
model.

The	following	tweet	captures	perfectly	in	five	lines	of	code	a	powerful	machine	learning
Pipeline	implemented	in	Spark	MLlib:

The	Spark	ML	pipeline	is	inspired	by	Python’s	Scikit-Learn	and	creates	a	succinct,
declarative	statement	of	the	successive	transformations	to	the	data	in	order	to	quickly
deliver	a	tunable	model.





Summary
In	this	chapter,	we	got	an	overview	of	Spark	MLlib’s	ever-expanding	library	of	algorithms
Spark	MLlib.	We	discussed	supervised	and	unsupervised	learning,	recommender	systems,
optimization,	and	feature	extraction	algorithms.	We	then	put	the	harvested	data	from
Twitter	into	the	machine	learning	process,	algorithms,	and	evaluation	to	derive	insights
from	the	data.	We	put	the	Twitter-harvested	dataset	through	a	Python	Scikit-Learn	and
Spark	MLlib	K-means	clustering	in	order	to	segregate	the	tweets	relevant	to	Apache
Spark.	We	also	evaluated	the	performance	of	the	model.

This	gets	us	ready	for	the	next	chapter,	which	will	cover	Streaming	Analytics	using	Spark.
Let’s	jump	right	in.





Chapter	5.	Streaming	Live	Data	with
Spark
In	this	chapter,	we	will	focus	on	live	streaming	data	flowing	into	Spark	and	processing	it.
So	far,	we	have	discussed	machine	learning	and	data	mining	with	batch	processing.	We
are	now	looking	at	processing	continuously	flowing	data	and	detecting	facts	and	patterns
on	the	fly.	We	are	navigating	from	a	lake	to	a	river.

We	will	first	investigate	the	challenges	arising	from	such	a	dynamic	and	ever	changing
environment.	After	laying	the	grounds	on	the	prerequisite	of	a	streaming	application,	we
will	investigate	various	implementations	using	live	sources	of	data	such	as	TCP	sockets	to
the	Twitter	firehose	and	put	in	place	a	low	latency,	high	throughput,	and	scalable	data
pipeline	combining	Spark,	Kafka	and	Flume.

In	this	chapter,	we	will	cover	the	following	points:

Analyzing	a	streaming	application’s	architectural	challenges,	constraints,	and
requirements
Processing	live	data	from	a	TCP	socket	with	Spark	Streaming
Connecting	to	the	Twitter	firehose	directly	to	parse	tweets	in	quasi	real	time
Establishing	a	reliable,	fault	tolerant,	scalable,	high	throughput,	low	latency
integrated	application	using	Spark,	Kafka,	and	Flume
Closing	remarks	on	Lambda	and	Kappa	architecture	paradigms



Laying	the	foundations	of	streaming
architecture
As	customary,	let’s	first	go	back	to	our	original	drawing	of	the	data-intensive	apps
architecture	blueprint	and	highlight	the	Spark	Streaming	module	that	will	be	the	topic	of
interest.

The	following	diagram	sets	the	context	by	highlighting	the	Spark	Streaming	module	and
interactions	with	Spark	SQL	and	Spark	MLlib	within	the	overall	data-intensive	apps
framework.

Data	flows	from	stock	market	time	series,	enterprise	transactions,	interactions,	events,	web
traffic,	click	streams,	and	sensors.	All	events	are	time-stamped	data	and	urgent.	This	is	the
case	for	fraud	detection	and	prevention,	mobile	cross-sell	and	upsell,	or	traffic	alerts.
Those	streams	of	data	require	immediate	processing	for	monitoring	purposes,	such	as
detecting	anomalies,	outliers,	spam,	fraud,	and	intrusion;	and	also	for	providing	basic
statistics,	insights,	trends,	and	recommendations.	In	some	cases,	the	summarized



aggregated	information	is	sufficient	to	be	stored	for	later	usage.	From	an	architecture
paradigm	perspective,	we	are	moving	from	a	service-oriented	architecture	to	an	event-
driven	architecture.

Two	models	emerge	for	processing	streams	of	data:

Processing	one	record	at	a	time	as	they	come	in.	We	do	not	buffer	the	incoming
records	in	a	container	before	processing	them.	This	is	the	case	of	Twitter’s	Storm,
Yahoo’s	S4,	and	Google’s	MillWheel.
Micro-batching	or	batch	computations	on	small	intervals	as	performed	by	Spark
Streaming	and	Storm	Trident.	In	this	case,	we	buffer	the	incoming	records	in	a
container	according	to	the	time	window	prescribed	in	the	micro-batching	settings.

Spark	Streaming	has	often	been	compared	against	Storm.	They	are	two	different	models	of
streaming	data.	Spark	Streaming	is	based	on	micro-batching.	Storm	is	based	on	processing
records	as	they	come	in.	Storm	also	offers	a	micro-batching	option,	with	its	Storm	Trident
option.

The	driving	factor	in	a	streaming	application	is	latency.	Latency	varies	from	the
milliseconds	range	in	the	case	of	RPC	(short	for	Remote	Procedure	Call)	to	several
seconds	or	minutes	for	micro	batching	solution	such	as	Spark	Streaming.

RPC	allows	synchronous	operations	between	the	requesting	programs	waiting	for	the
results	from	the	remote	server’s	procedure.	Threads	allow	concurrency	of	multiple	RPC
calls	to	the	server.

An	example	of	software	implementing	a	distributed	RPC	model	is	Apache	Storm.

Storm	implements	stateless	sub	millisecond	latency	processing	of	unbounded	tuples	using
topologies	or	directed	acyclic	graphs	combining	spouts	as	source	of	data	streams	and	bolts
for	operations	such	as	filter,	join,	aggregation,	and	transformation.	Storm	also	implements
a	higher	level	abstraction	called	Trident	which,	similarly	to	Spark,	processes	data	streams
in	micro	batches.

So,	looking	at	the	latency	continuum,	from	sub	millisecond	to	second,	Storm	is	a	good
candidate.	For	seconds	to	minutes	scale,	Spark	Streaming	and	Storm	Trident	are	excellent
fits.	For	several	minutes	onward,	Spark	and	a	NoSQL	database	such	as	Cassandra	or
HBase	are	adequate	solutions.	For	ranges	beyond	the	hour	and	with	high	volume	of	data,
Hadoop	is	the	ideal	contender.

Although	throughput	is	correlated	to	latency,	it	is	not	a	simple	inversely	linear
relationship.	If	processing	a	message	takes	2	ms,	which	determines	the	latency,	then	one
would	assume	the	throughput	is	limited	to	500	messages	per	sec.	Batching	messages
allows	for	higher	throughput	if	we	allow	our	messages	to	be	buffered	for	8	ms	more.	With
a	latency	of	10	ms,	the	system	can	buffer	up	to	10,000	messages.	For	a	bearable	increase
in	latency,	we	have	substantially	increased	throughput.	This	is	the	magic	of	micro-
batching	that	Spark	Streaming	exploits.



Spark	Streaming	inner	working
The	Spark	Streaming	architecture	leverages	the	Spark	core	architecture.	It	overlays	on	the
SparkContext	a	StreamingContext	as	the	entry	point	to	the	Stream	functionality.	The
Cluster	Manager	will	dedicate	at	least	one	worker	node	as	Receiver,	which	will	be	an
executor	with	a	long	task	to	process	the	incoming	stream.	The	Executor	creates
Discretized	Streams	or	DStreams	from	input	data	stream	and	replicates	by	default,	the
DStream	to	the	cache	of	another	worker.	One	receiver	serves	one	input	data	stream.
Multiple	receivers	improve	parallelism	and	generate	multiple	DStreams	that	Spark	can
unite	or	join	Resilient	Distributed	Datasets	(RDD).

The	following	diagram	gives	an	overview	of	the	inner	working	of	Spark	Streaming.	The
client	interacts	with	the	Spark	Cluster	via	the	cluster	manager,	while	Spark	Streaming	has
a	dedicated	worker	with	a	long	running	task	ingesting	the	input	data	stream	and
transforming	it	into	discretized	streams	or	DStreams.	The	data	is	collected,	buffered	and
replicated	by	a	receiver	and	then	pushed	to	a	stream	of	RDDs.

Spark	receivers	can	ingest	data	from	many	sources.	Core	input	sources	range	from	TCP
socket	and	HDFS/Amazon	S3	to	Akka	Actors.	Additional	sources	include	Apache	Kafka,
Apache	Flume,	Amazon	Kinesis,	ZeroMQ,	Twitter,	and	custom	or	user-defined	receivers.



We	distinguish	between	reliable	resources	that	acknowledges	receipt	of	data	to	the	source
and	replication	for	possible	resend,	versus	unreliable	receivers	who	do	not	acknowledge
receipt	of	the	message.	Spark	scales	out	in	terms	of	the	number	of	workers,	partition	and
receivers.

The	following	diagram	gives	an	overview	of	Spark	Streaming	with	the	possible	sources
and	the	persistence	options:



Going	under	the	hood	of	Spark	Streaming
Spark	Streaming	is	composed	of	Receivers	and	powered	by	Discretized	Streams	and
Spark	Connectors	for	persistence.

As	for	Spark	Core,	the	essential	data	structure	is	the	RDD,	the	fundamental	programming
abstraction	for	Spark	Streaming	is	the	Discretized	Stream	or	DStream.

The	following	diagram	illustrates	the	Discretized	Streams	as	continuous	sequences	of
RDDs.	The	batch	intervals	of	DStream	are	configurable.

DStreams	snapshots	the	incoming	data	in	batch	intervals.	Those	time	steps	typically	range
from	500	ms	to	several	seconds.	The	underlying	structure	of	a	DStream	is	an	RDD.

A	DStream	is	essentially	a	continuous	sequence	of	RDDs.	This	is	powerful	as	it	allows	us
to	leverage	from	Spark	Streaming	all	the	traditional	functions,	transformations	and	actions
available	in	Spark	Core	and	allows	us	to	dialogue	with	Spark	SQL,	performing	SQL
queries	on	incoming	streams	of	data	and	Spark	MLlib.	Transformations	similar	to	those	on
generic	and	key-value	pair	RDDs	are	applicable.	The	DStreams	benefit	from	the	inner
RDDs	lineage	and	fault	tolerance.	Additional	transformation	and	output	operations	exist
for	discretized	stream	operations.	Most	generic	operations	on	DStream	are	transform	and
foreachRDD.

The	following	diagram	gives	an	overview	of	the	lifecycle	of	DStreams.	From	creation	of
the	micro-batches	of	messages	materialized	to	RDDs	on	which	transformation	function
and	actions	that	trigger	Spark	jobs	are	applied.	Breaking	down	the	steps	illustrated	in	the
diagram,	we	read	the	diagram	top	down:

1.	 In	the	Input	Stream,	the	incoming	messages	are	buffered	in	a	container	according	to
the	time	window	allocated	for	the	micro-batching.

2.	 In	the	discretized	stream	step,	the	buffered	micro-batches	are	transformed	as	DStream
RDDs.

3.	 The	Mapped	DStream	step	is	obtained	by	applying	a	transformation	function	to	the
original	DStream.	These	first	three	steps	constitute	the	transformation	of	the	original
data	received	in	predefined	time	windows.	As	the	underlying	data	structure	is	the
RDD,	we	conserve	the	data	lineage	of	the	transformations.

4.	 The	final	step	is	an	action	on	the	RDD.	It	triggers	the	Spark	job.



Transformation	can	be	stateless	or	stateful.	Stateless	means	that	no	state	is	maintained	by
the	program,	while	stateful	means	the	program	keeps	a	state,	in	which	case	previous
transactions	are	remembered	and	may	affect	the	current	transaction.	A	stateful	operation
modifies	or	requires	some	state	of	the	system,	and	a	stateless	operation	does	not.

Stateless	transformations	process	each	batch	in	a	DStream	at	a	time.	Stateful
transformations	process	multiple	batches	to	obtain	results.	Stateful	transformations	require
the	checkpoint	directory	to	be	configured.	Check	pointing	is	the	main	mechanism	for	fault
tolerance	in	Spark	Streaming	to	periodically	save	data	and	metadata	about	an	application.

There	are	two	types	of	stateful	transformations	for	Spark	Streaming:	updateStateByKey
and	windowed	transformations.

updateStateByKey	are	transformations	that	maintain	state	for	each	key	in	a	stream	of	Pair
RDDs.	It	returns	a	new	state	DStream	where	the	state	for	each	key	is	updated	by	applying
the	given	function	on	the	previous	state	of	the	key	and	the	new	values	of	each	key.	An
example	would	be	a	running	count	of	given	hashtags	in	a	stream	of	tweets.



Windowed	transformations	are	carried	over	multiple	batches	in	a	sliding	window.	A
window	has	a	defined	length	or	duration	specified	in	time	units.	It	must	be	a	multiple	of	a
DStream	batch	interval.	It	defines	how	many	batches	are	included	in	a	windowed
transformation.

A	window	has	a	sliding	interval	or	sliding	duration	specified	in	time	units.	It	must	be	a
multiple	of	a	DStream	batch	interval.	It	defines	how	many	batches	to	slide	a	window	or
how	frequently	to	compute	a	windowed	transformation.

The	following	schema	depicts	the	windowing	operation	on	DStreams	to	derive	window
DStreams	with	a	given	length	and	sliding	interval:

A	sample	function	is	countByWindow	(windowLength,	slideInterval).	It	returns	a	new
DStream	in	which	each	RDD	has	a	single	element	generated	by	counting	the	number	of
elements	in	a	sliding	window	over	this	DStream.	An	illustration	in	this	case	would	be	a
running	count	of	given	hashtags	in	a	stream	of	tweets	every	60	seconds.	The	window	time
frame	is	specified.

Minute	scale	window	length	is	reasonable.	Hour	scale	window	length	is	not	recommended
as	it	is	compute	and	memory	intensive.	It	would	be	more	convenient	to	aggregate	the	data
in	a	database	such	as	Cassandra	or	HBase.

Windowed	transformations	compute	results	based	on	window	length	and	window	slide
interval.	Spark	performance	is	primarily	affected	by	on	window	length,	window	slide
interval,	and	persistence.



Building	in	fault	tolerance
Real-time	stream	processing	systems	must	be	operational	24/7.	They	need	to	be	resilient
to	all	sorts	of	failures	in	the	system.	Spark	and	its	RDD	abstraction	are	designed	to
seamlessly	handle	failures	of	any	worker	nodes	in	the	cluster.

Main	Spark	Streaming	fault	tolerance	mechanisms	are	check	pointing,	automatic	driver
restart,	and	automatic	failover.	Spark	enables	recovery	from	driver	failure	using	check
pointing,	which	preserves	the	application	state.

Write	ahead	logs,	reliable	receivers,	and	file	streams	guarantees	zero	data	loss	as	of	Spark
Version	1.2.	Write	ahead	logs	represent	a	fault	tolerant	storage	for	received	data.

Failures	require	recomputing	results.	DStream	operations	have	exactly-one	semantics.
Transformations	can	be	recomputed	multiple	times	but	will	yield	the	same	result.	DStream
output	operations	have	at	least	once	semantics.	Output	operations	may	be	executed
multiple	times.





Processing	live	data	with	TCP	sockets
As	a	stepping	stone	to	the	overall	understanding	of	streaming	operations,	we	will	first
experiment	with	TCP	socket.	TCP	socket	establishes	two-way	communication	between
client	and	server,	and	it	can	exchange	data	through	the	established	connection.	WebSocket
connections	are	long	lived,	unlike	typical	HTTP	connections.	HTTP	is	not	meant	to	keep
an	open	connection	from	the	server	to	push	continuously	data	to	the	web	browsers.	Most
web	applications	hence	resorted	to	long	polling	via	frequent	Asynchronous	JavaScript
(AJAX)	and	XML	requests.	WebSockets,	standardized	and	implemented	in	HTML5,	are
moving	beyond	web	browsers	and	are	becoming	a	cross-platform	standard	for	real-time
communication	between	client	and	server.



Setting	up	TCP	sockets
We	create	a	TCP	Socket	Server	by	running	netcat,	a	small	utility	found	in	most	Linux
systems,	as	a	data	server	with	the	command	>	nc	-lk	9999,	where	9999	is	the	port	where
we	are	sending	data:

#

#	Socket	Server

#

an@an-VB:~$	nc	-lk	9999

hello	world

how	are	you

hello		world

cool	it	works

Once	netcat	is	running,	we	will	open	a	second	console	with	our	Spark	Streaming	client	to
receive	the	data	and	process.	As	soon	as	the	Spark	Streaming	client	console	is	listening,
we	start	typing	the	words	to	be	processed,	that	is,	hello	world.



Processing	live	data
We	will	be	using	the	example	program	provided	in	the	Spark	bundle	for	Spark	Streaming
called	network_wordcount.py.	It	can	be	found	on	the	GitHub	repository	under
https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/network_wordcount.py
The	code	is	as	follows:

"""

	Counts	words	in	UTF8	encoded,	'\n'	delimited	text	received	from	the	

network	every	second.

	Usage:	network_wordcount.py	<hostname>	<port>

			<hostname>	and	<port>	describe	the	TCP	server	that	Spark	Streaming	would	

connect	to	receive	data.

	To	run	this	on	your	local	machine,	you	need	to	first	run	a	Netcat	server

				`$	nc	-lk	9999`

	and	then	run	the	example

				`$	bin/spark-submit	

examples/src/main/python/streaming/network_wordcount.py	localhost	9999`

"""

from	__future__	import	print_function

import	sys

from	pyspark	import	SparkContext

from	pyspark.streaming	import	StreamingContext

if	__name__	==	"__main__":

				if	len(sys.argv)	!=	3:

								print("Usage:	network_wordcount.py	<hostname>	<port>",	

file=sys.stderr)

								exit(-1)

				sc	=	SparkContext(appName="PythonStreamingNetworkWordCount")

				ssc	=	StreamingContext(sc,	1)

				lines	=	ssc.socketTextStream(sys.argv[1],	int(sys.argv[2]))

				counts	=	lines.flatMap(lambda	line:	line.split("	"))\

																		.map(lambda	word:	(word,	1))\

																		.reduceByKey(lambda	a,	b:	a+b)

				counts.pprint()

				ssc.start()

				ssc.awaitTermination()

Here,	we	explain	the	steps	of	the	program:

1.	 The	code	first	initializes	a	Spark	Streaming	Context	with	the	command:

ssc	=	StreamingContext(sc,	1)

2.	 Next,	the	streaming	computation	is	set	up.
3.	 One	or	more	DStream	objects	that	receive	data	are	defined	to	connect	to	localhost	or

127.0.0.1	on	port	9999:

stream	=	ssc.socketTextStream("127.0.0.1",	9999)

https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/network_wordcount.py


4.	 The	DStream	computation	is	defined:	transformations	and	output	operations:

stream.map(x:	lambda	(x,1))

.reduce(a+b)

.print()

5.	 Computation	is	started:

ssc.start()

6.	 Program	termination	is	pending	manual	or	error	processing	completion:

ssc.awaitTermination()

7.	 Manual	completion	is	an	option	when	a	completion	condition	is	known:

ssc.stop()

We	can	monitor	the	Spark	Streaming	application	by	visiting	the	Spark	monitoring	home
page	at	localhost:4040.

Here’s	the	result	of	running	the	program	and	feeding	the	words	on	the	netcat	4server
console:

#

#	Socket	Client

#	an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$	./bin/spark-submit	

examples/src/main/python/streaming/network_wordcount.py	localhost	9999

Run	the	Spark	Streaming	network_count	program	by	connecting	to	the	socket	localhost
on	port	9999:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$	./bin/spark-submit	

examples/src/main/python/streaming/network_wordcount.py	localhost	9999

-------------------------------------------

Time:	2015-10-18	20:06:06

-------------------------------------------

(u'world',	1)

(u'hello',	1)

-------------------------------------------

Time:	2015-10-18	20:06:07

-------------------------------------------

.	.	.

-------------------------------------------

Time:	2015-10-18	20:06:17

-------------------------------------------

(u'you',	1)

(u'how',	1)

(u'are',	1)

-------------------------------------------

Time:	2015-10-18	20:06:18

-------------------------------------------

.	.	.



-------------------------------------------

Time:	2015-10-18	20:06:26

-------------------------------------------

(u'',	1)

(u'world',	1)

(u'hello',	1)

-------------------------------------------

Time:	2015-10-18	20:06:27

-------------------------------------------

.	.	.

-------------------------------------------

Time:	2015-10-18	20:06:37

-------------------------------------------

(u'works',	1)

(u'it',	1)

(u'cool',	1)

-------------------------------------------

Time:	2015-10-18	20:06:38

-------------------------------------------

Thus,	we	have	established	connection	through	the	socket	on	port	9999,	streamed	the	data
sent	by	the	netcat	server,	and	performed	a	word	count	on	the	messages	sent.





Manipulating	Twitter	data	in	real	time
Twitter	offers	two	APIs.	One	search	API	that	essentially	allows	us	to	retrieve	past	tweets
based	on	search	terms.	This	is	how	we	have	been	collecting	our	data	from	Twitter	in	the
previous	chapters	of	the	book.	Interestingly,	for	our	current	purpose,	Twitter	offers	a	live
streaming	API	which	allows	to	ingest	tweets	as	they	are	emitted	in	the	blogosphere.



Processing	Tweets	in	real	time	from	the	Twitter
firehose
The	following	program	connects	to	the	Twitter	firehose	and	processes	the	incoming	tweets
to	exclude	deleted	or	invalid	tweets	and	parses	on	the	fly	only	the	relevant	ones	to	extract
screen	name,	the	actual	tweet,	or	tweet	text,	retweet	count,	geo-location	information.
The	processed	tweets	are	gathered	into	an	RDD	Queue	by	Spark	Streaming	and	then
displayed	on	the	console	at	a	one-second	interval:

"""

Twitter	Streaming	API	Spark	Streaming	into	an	RDD-Queue	to	process	tweets	

live

	

	Create	a	queue	of	RDDs	that	will	be	mapped/reduced	one	at	a	time	in

	1	second	intervals.

	To	run	this	example	use

				'$	bin/spark-submit	

examples/AN_Spark/AN_Spark_Code/s07_twitterstreaming.py'

"""

#

import	time

from	pyspark	import	SparkContext

from	pyspark.streaming	import	StreamingContext

import	twitter

import	dateutil.parser

import	json

#	Connecting	Streaming	Twitter	with	Streaming	Spark	via	Queue

class	Tweet(dict):

				def	__init__(self,	tweet_in):

								super(Tweet,	self).__init__(self)

								if	tweet_in	and	'delete'	not	in	tweet_in:

												self['timestamp']	=	

dateutil.parser.parse(tweet_in[u'created_at']

																																).replace(tzinfo=None).isoformat()

												self['text']	=	tweet_in['text'].encode('utf-8')

												#self['text']	=	tweet_in['text']

												self['hashtags']	=	[x['text'].encode('utf-8')	for	x	in	

tweet_in['entities']['hashtags']]

												#self['hashtags']	=	[x['text']	for	x	in	tweet_in['entities']

['hashtags']]

												self['geo']	=	tweet_in['geo']['coordinates']	if	tweet_in['geo']	

else	None

												self['id']	=	tweet_in['id']

												self['screen_name']	=	tweet_in['user']

['screen_name'].encode('utf-8')

												#self['screen_name']	=	tweet_in['user']['screen_name']

												self['user_id']	=	tweet_in['user']['id']

def	connect_twitter():



				twitter_stream	=	twitter.TwitterStream(auth=twitter.OAuth(

								token	=	"get_your_own_credentials",

								token_secret	=	"get_your_own_credentials",

								consumer_key	=	"get_your_own_credentials",

								consumer_secret	=	"get_your_own_credentials"))

				return	twitter_stream

def	get_next_tweet(twitter_stream):

				stream	=	twitter_stream.statuses.sample(block=True)

				tweet_in	=	None

				while	not	tweet_in	or	'delete'	in	tweet_in:

								tweet_in	=	stream.next()

								tweet_parsed	=	Tweet(tweet_in)

				return	json.dumps(tweet_parsed)

def	process_rdd_queue(twitter_stream):

				#	Create	the	queue	through	which	RDDs	can	be	pushed	to

				#	a	QueueInputDStream

				rddQueue	=	[]

				for	i	in	range(3):

								rddQueue	+=	

[ssc.sparkContext.parallelize([get_next_tweet(twitter_stream)],	5)]

				lines	=	ssc.queueStream(rddQueue)

				lines.pprint()

				

if	__name__	==	"__main__":

				sc	=	SparkContext(appName="PythonStreamingQueueStream")

				ssc	=	StreamingContext(sc,	1)

				

				#	Instantiate	the	twitter_stream

				twitter_stream	=	connect_twitter()

				#	Get	RDD	queue	of	the	streams	json	or	parsed

				process_rdd_queue(twitter_stream)

				

				ssc.start()

				time.sleep(2)

				ssc.stop(stopSparkContext=True,	stopGraceFully=True)

When	we	run	this	program,	it	delivers	the	following	output:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$	bin/spark-submit	

examples/AN_Spark/AN_Spark_Code/s07_twitterstreaming.py

-------------------------------------------

Time:	2015-11-03	21:53:14

-------------------------------------------

{"user_id":	3242732207,	"screen_name":	"cypuqygoducu",	"timestamp":	"2015-

11-03T20:53:04",	"hashtags":	[],	"text":	"RT	@VIralBuzzNewss:	Our	

Distinctive	Edition	Holiday	break	Challenge	Is	In	this	article!	Hooray!...	

-		https://t.co/9d8wumrd5v	https://t.co/\u2026",	"geo":	null,	"id":	

661647303678259200}

-------------------------------------------

Time:	2015-11-03	21:53:15

-------------------------------------------

{"user_id":	352673159,	"screen_name":	"melly_boo_orig",	"timestamp":	"2015-



11-03T20:53:05",	"hashtags":	["eminem"],	"text":	"#eminem	

https://t.co/GlEjPJnwxy",	"geo":	null,	"id":	661647307847409668}

-------------------------------------------

Time:	2015-11-03	21:53:16

-------------------------------------------

{"user_id":	500620889,	"screen_name":	"NBAtheist",	"timestamp":	"2015-11-

03T20:53:06",	"hashtags":	["tehInterwebbies",	"Nutters"],	"text":	"See?	

That	didn't	take	long	or	any	actual	effort.	This	is	#tehInterwebbies…	

#Nutters	Abound!	https://t.co/QS8gLStYFO",	"geo":	null,	"id":	

661647312062709761}

So,	we	got	an	example	of	streaming	tweets	with	Spark	and	processing	them	on	the	fly.





Building	a	reliable	and	scalable	streaming
app
Ingesting	data	is	the	process	of	acquiring	data	from	various	sources	and	storing	it	for
processing	immediately	or	at	a	later	stage.	Data	consuming	systems	are	dispersed	and	can
be	physically	and	architecturally	far	from	the	sources.	Data	ingestion	is	often	implemented
manually	with	scripts	and	rudimentary	automation.	It	actually	calls	for	higher	level
frameworks	like	Flume	and	Kafka.

The	challenges	of	data	ingestion	arise	from	the	fact	that	the	sources	are	physically	spread
out	and	are	transient	which	makes	the	integration	brittle.	Data	production	is	continuous	for
weather,	traffic,	social	media,	network	activity,	shop	floor	sensors,	security,	and
surveillance.	Ever	increasing	data	volumes	and	rates	coupled	with	ever	changing	data
structure	and	semantics	makes	data	ingestion	ad	hoc	and	error	prone.

The	aim	is	to	become	more	agile,	reliable,	and	scalable.	Agility,	reliability,	and	scalability
of	the	data	ingestion	determine	the	overall	health	of	the	pipeline.	Agility	means	integrating
new	sources	as	they	arise	and	incorporating	changes	to	existing	sources	as	needed.	In
order	to	ensure	safety	and	reliability,	we	need	to	protect	the	infrastructure	against	data	loss
and	downstream	applications	from	silent	data	corruption	at	ingress.	Scalability	avoids
ingest	bottlenecks	while	keeping	cost	tractable.

Ingest	Mode Description Example

Manual	or	Scripted File	copy	using	command	line	interface	or	GUI	interface HDFS	Client,	Cloudera	Hue

Batch	Data	Transport Bulk	data	transport	using	tools DistCp,	Sqoop

Micro	Batch Transport	of	small	batches	of	data
Sqoop,	Sqoop2

Storm

Pipelining Flow	like	transport	of	event	streams Flume	Scribe

Message	Queue Publish	Subscribe	message	bus	of	events Kafka,	Kinesis

In	order	to	enable	an	event-driven	business	that	is	able	to	ingest	multiple	streams	of	data,
process	it	in	flight,	and	make	sense	of	it	all	to	get	to	rapid	decisions,	the	key	driver	is	the
Unified	Log.

A	Unified	Log	is	a	centralized	enterprise	structured	log	available	for	real-time
subscription.	All	the	organization’s	data	is	put	in	a	central	log	for	subscription.	Records
are	numbered	beginning	with	zero	in	the	order	that	they	are	written.	It	is	also	known	as	a
commit	log	or	journal.	The	concept	of	the	Unified	Log	is	the	central	tenet	of	the	Kappa
architecture.

The	properties	of	the	Unified	Log	are	as	follows:

Unified:	There	is	a	single	deployment	for	the	entire	organization



Append	only:	Events	are	immutable	and	are	appended
Ordered:	Each	event	has	a	unique	offset	within	a	shard
Distributed:	For	fault	tolerance	purpose,	the	Unified	Log	is	distributed	redundantly
on	a	cluster	of	computers
Fast:	The	systems	ingests	thousands	of	messages	per	second



Setting	up	Kafka
In	order	to	isolate	downstream	particular	consumption	of	data	from	the	vagaries	of
upstream	emission	of	data,	we	need	to	decouple	the	providers	of	data	from	the	receivers	or
consumers	of	data.	As	they	are	living	in	two	different	worlds	with	different	cycles	and
constraints,	Kafka	decouples	the	data	pipelines.

Apache	Kafka	is	a	distributed	publish	subscribe	messaging	system	rethought	as	a
distributed	commit	log.	The	messages	are	stored	by	topic.

Apache	Kafka	has	the	following	properties.	It	supports:

High	throughput	for	high	volume	of	events	feeds
Real-time	processing	of	new	and	derived	feeds
Large	data	backlogs	and	persistence	for	offline	consumption
Low	latency	as	enterprise	wide	messaging	system
Fault	tolerance	thanks	to	its	distributed	nature

Messages	are	stored	in	partition	with	a	unique	sequential	ID	called	offset.	Consumers
track	their	pointers	via	tuple	of	(offset,	partition,	topic).

Let’s	dive	deeper	in	the	anatomy	of	Kafka.

Kafka	has	essentially	three	components:	producers,	consumers	and	brokers.	Producers
push	and	write	data	to	brokers.	Consumers	pull	and	read	data	from	brokers.	Brokers	do	not
push	messages	to	consumers.	Consumers	pull	message	from	brokers.	The	setup	is
distributed	and	coordinated	by	Apache	Zookeeper.

The	brokers	manage	and	store	the	data	in	topics.	Topics	are	split	in	replicated	partitions.
The	data	is	persisted	in	the	broker,	but	not	removed	upon	consumption,	but	until	retention
period.	If	a	consumer	fails,	it	can	always	go	back	to	the	broker	to	fetch	the	data.

Kafka	requires	Apache	ZooKeeper.	ZooKeeper	is	a	high-performance	coordination	service
for	distributed	applications.	It	centrally	manages	configuration,	registry	or	naming	service,
group	membership,	lock,	and	synchronization	for	coordination	between	servers.	It
provides	a	hierarchical	namespace	with	metadata,	monitoring	statistics,	and	state	of	the
cluster.	ZooKeeper	can	introduce	brokers	and	consumers	on	the	fly	and	then	rebalances
the	cluster.

Kafka	producers	do	not	need	ZooKeeper.	Kafka	brokers	use	ZooKeeper	to	provide	general
state	information	as	well	elect	leader	in	case	of	failure.	Kafka	consumers	use	ZooKeeper
to	track	message	offset.	Newer	versions	of	Kafka	will	save	the	consumers	to	go	through
ZooKeeper	and	can	retrieve	the	Kafka	special	topics	information.	Kafka	provides
automatic	load	balancing	for	producers.

The	following	diagram	gives	an	overview	of	the	Kafka	setup:



Installing	and	testing	Kafka
We	will	download	the	Apache	Kafka	binaries	from	the	dedicated	web	page	at
http://kafka.apache.org/downloads.html	and	install	the	software	in	our	machine	using	the
following	steps:

1.	 Download	the	code.
2.	 Download	the	0.8.2.0	release	and	un-tar	it:

>	tar	-xzf	kafka_2.10-0.8.2.0.tgz

>	cd	kafka_2.10-0.8.2.0

3.	 Start	zooeeper.	Kafka	uses	ZooKeeper	so	we	need	to	first	start	a	ZooKeeper	server.
We	will	use	the	convenience	script	packaged	with	Kafka	to	get	a	single-node
ZooKeeper	instance.

>	bin/zookeeper-server-start.sh	config/zookeeper.properties

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/zookeeper-server-start.sh	

config/zookeeper.properties

http://kafka.apache.org/downloads.html


[2015-10-31	22:49:14,808]	INFO	Reading	configuration	from:	

config/zookeeper.properties	

(org.apache.zookeeper.server.quorum.QuorumPeerConfig)

[2015-10-31	22:49:14,816]	INFO	autopurge.snapRetainCount	set	to	3	

(org.apache.zookeeper.server.DatadirCleanupManager)...

4.	 Now	launch	the	Kafka	server:

>	bin/kafka-server-start.sh	config/server.properties

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/kafka-server-start.sh	

config/server.properties

[2015-10-31	22:52:04,643]	INFO	Verifying	properties	

(kafka.utils.VerifiableProperties)

[2015-10-31	22:52:04,714]	INFO	Property	broker.id	is	overridden	to	0	

(kafka.utils.VerifiableProperties)

[2015-10-31	22:52:04,715]	INFO	Property	log.cleaner.enable	is	

overridden	to	false	(kafka.utils.VerifiableProperties)

[2015-10-31	22:52:04,715]	INFO	Property	log.dirs	is	overridden	to	

/tmp/kafka-logs	(kafka.utils.VerifiableProperties)	[2013-04-22	

15:01:47,051]	INFO	Property	socket.send.buffer.bytes	is	overridden	to	

1048576	(kafka.utils.VerifiableProperties)

5.	 Create	a	topic.	Let’s	create	a	topic	named	test	with	a	single	partition	and	only	one
replica:

>	bin/kafka-topics.sh	--create	--zookeeper	localhost:2181	--

replication-factor	1	--partitions	1	--topic	test

6.	 We	can	now	see	that	topic	if	we	run	the	list	topic	command:

>	bin/kafka-topics.sh	--list	--zookeeper	localhost:2181

Test

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	1	--partitions	1	--topic	

test

Created	topic	"test".

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/kafka-topics.sh	--list	--

zookeeper	localhost:2181

test

7.	 Check	the	Kafka	installation	by	creating	a	producer	and	consumer.	We	first	launch	a
producer	and	type	a	message	in	the	console:

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/kafka-console-producer.sh	--

broker-list	localhost:9092	--topic	test

[2015-10-31	22:54:43,698]	WARN	Property	topic	is	not	valid	

(kafka.utils.VerifiableProperties)

This	is	a	message

This	is	another	message

8.	 We	then	launch	a	consumer	to	check	that	we	receive	the	message:

an@an-VB:~$	cd	kafka/

an@an-VB:~/kafka$	cd	kafka_2.10-0.8.2.0/

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$	bin/kafka-console-consumer.sh	--

zookeeper	localhost:2181	--topic	test	--from-beginning



This	is	a	message

This	is	another	message

The	messages	were	appropriately	received	by	the	consumer:

1.	 Check	Kafka	and	Spark	Streaming	consumer.	We	will	be	using	the	Spark	Streaming
Kafka	word	count	example	provided	in	the	Spark	bundle.	A	word	of	caution:	we	have
to	bind	the	Kafka	packages,	--packages	org.apache.spark:spark-streaming-
kafka_2.10:1.5.0,	when	we	submit	the	Spark	job.	The	command	is	as	follows:

./bin/spark-submit	--packages	org.apache.spark:spark-streaming-

kafka_2.10:1.5.0	\	

examples/src/main/python/streaming/kafka_wordcount.py	\

localhost:2181	test

2.	 When	we	launch	the	Spark	Streaming	word	count	program	with	Kafka,	we	get	the
following	output:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$	./bin/spark-submit	--

packages	org.apache.spark:spark-streaming-kafka_2.10:1.5.0	

examples/src/main/python/streaming/kafka_wordcount.py	

localhost:2181	test

-------------------------------------------

Time:	2015-10-31	23:46:33

-------------------------------------------

(u'',	1)

(u'from',	2)

(u'Hello',	2)

(u'Kafka',	2)

-------------------------------------------

Time:	2015-10-31	23:46:34

-------------------------------------------

-------------------------------------------

Time:	2015-10-31	23:46:35

-------------------------------------------

3.	 Install	the	Kafka	Python	driver	in	order	to	be	able	to	programmatically	develop
Producers	and	Consumers	and	interact	with	Kafka	and	Spark	using	Python.	We	will
use	the	road-tested	library	from	David	Arthur,	aka,	Mumrah	on	GitHub
(https://github.com/mumrah).	We	can	pip	install	it	as	follows:

>	pip	install	kafka-python

an@an-VB:~$	pip	install	kafka-python

Collecting	kafka-python

		Downloading	kafka-python-0.9.4.tar.gz	(63kB)

...

Successfully	installed	kafka-python-0.9.4

Developing	producers

https://github.com/mumrah


The	following	program	creates	a	Simple	Kafka	Producer	that	will	emit	the	message	this	is
a	message	sent	from	the	Kafka	producer:	five	times,	followed	by	a	time	stamp	every
second:

#

#	kafka	producer

#

#

import	time

from	kafka.common	import	LeaderNotAvailableError

from	kafka.client	import	KafkaClient

from	kafka.producer	import	SimpleProducer

from	datetime	import	datetime

def	print_response(response=None):

				if	response:

								print('Error:	{0}'.format(response[0].error))

								print('Offset:	{0}'.format(response[0].offset))

def	main():

				kafka	=	KafkaClient("localhost:9092")

				producer	=	SimpleProducer(kafka)

				try:

								time.sleep(5)

								topic	=	'test'

								for	i	in	range(5):

												time.sleep(1)

												msg	=	'This	is	a	message	sent	from	the	kafka	producer:	'	\

																		+	str(datetime.now().time())	+	'—'\

																		+	str(datetime.now().strftime("%A,	%d	%B	%Y	%I:%M%p"))

												print_response(producer.send_messages(topic,	msg))

				except	LeaderNotAvailableError:

								#	https://github.com/mumrah/kafka-python/issues/249

								time.sleep(1)

								print_response(producer.send_messages(topic,	msg))

	

				kafka.close()

	

if	__name__	==	"__main__":

				main()

When	we	run	this	program,	the	following	output	is	generated:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_Code$	

python	s08_kafka_producer_01.py

Error:	0

Offset:	13

Error:	0

Offset:	14

Error:	0

Offset:	15

Error:	0

Offset:	16

Error:	0

Offset:	17

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_Code$



It	tells	us	there	were	no	errors	and	gives	the	offset	of	the	messages	given	by	the	Kafka
broker.

Developing	consumers
To	fetch	the	messages	from	the	Kafka	brokers,	we	develop	a	Kafka	consumer:

#	kafka	consumer

#	consumes	messages	from	"test"	topic	and	writes	them	to	console.

#

from	kafka.client	import	KafkaClient

from	kafka.consumer	import	SimpleConsumer

def	main():

		kafka	=	KafkaClient("localhost:9092")

		print("Consumer	established	connection	to	kafka")

		consumer	=	SimpleConsumer(kafka,	"my-group",	"test")

		for	message	in	consumer:

				#	This	will	wait	and	print	messages	as	they	become	available

				print(message)

if	__name__	==	"__main__":

				main()

When	we	run	this	program,	we	effectively	confirm	that	the	consumer	received	all	the
messages:

an@an-VB:~$	cd	~/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/AN_Spark_Code/

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_Code$	

python	s08_kafka_consumer_01.py

Consumer	established	connection	to	kafka

OffsetAndMessage(offset=13,	message=Message(magic=0,	attributes=0,	

key=None,	value='This	is	a	message	sent	from	the	kafka	producer:	

11:50:17.867309Sunday,	01	November	2015	11:50AM'))

...

OffsetAndMessage(offset=17,	message=Message(magic=0,	attributes=0,	

key=None,	value='This	is	a	message	sent	from	the	kafka	producer:	

11:50:22.051423Sunday,	01	November	2015	11:50AM'))

Developing	a	Spark	Streaming	consumer	for	Kafka
Based	on	the	example	code	provided	in	the	Spark	Streaming	bundle,	we	will	create	a
Spark	Streaming	consumer	for	Kafka	and	perform	a	word	count	on	the	messages	stored
with	the	brokers:

#

#	Kafka	Spark	Streaming	Consumer				

#

from	__future__	import	print_function

import	sys

from	pyspark	import	SparkContext

from	pyspark.streaming	import	StreamingContext

from	pyspark.streaming.kafka	import	KafkaUtils



if	__name__	==	"__main__":

				if	len(sys.argv)	!=	3:

								print("Usage:	kafka_spark_consumer_01.py	<zk>	<topic>",	

file=sys.stderr)

								exit(-1)

				sc	=	SparkContext(appName="PythonStreamingKafkaWordCount")

				ssc	=	StreamingContext(sc,	1)

				zkQuorum,	topic	=	sys.argv[1:]

				kvs	=	KafkaUtils.createStream(ssc,	zkQuorum,	"spark-streaming-

consumer",	{topic:	1})

				lines	=	kvs.map(lambda	x:	x[1])

				counts	=	lines.flatMap(lambda	line:	line.split("	"))	\

								.map(lambda	word:	(word,	1))	\

								.reduceByKey(lambda	a,	b:	a+b)

				counts.pprint()

				ssc.start()

				ssc.awaitTermination()

Run	this	program	with	the	following	Spark	submit	command:

./bin/spark-submit	--packages	org.apache.spark:spark-streaming-

kafka_2.10:1.5.0	

examples/AN_Spark/AN_Spark_Code/s08_kafka_spark_consumer_01.py	

localhost:2181	test

We	get	the	following	output:

an@an-VB:~$	cd	spark/spark-1.5.0-bin-hadoop2.6/

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$	./bin/spark-submit	\

>					--packages	org.apache.spark:spark-streaming-kafka_2.10:1.5.0	\

>					examples/AN_Spark/AN_Spark_Code/s08_kafka_spark_consumer_01.py	

localhost:2181	test…

::	retrieving	::	org.apache.spark#spark-submit-parent

		confs:	[default]

		0	artifacts	copied,	10	already	retrieved	(0kB/18ms)

-------------------------------------------

Time:	2015-11-01	12:13:16

-------------------------------------------

-------------------------------------------

Time:	2015-11-01	12:13:17

-------------------------------------------

-------------------------------------------

Time:	2015-11-01	12:13:18

-------------------------------------------

-------------------------------------------

Time:	2015-11-01	12:13:19

-------------------------------------------

(u'a',	5)

(u'the',	5)

(u'11:50AM',	5)



(u'from',	5)

(u'This',	5)

(u'11:50:21.044374Sunday,',	1)

(u'message',	5)

(u'11:50:20.036422Sunday,',	1)

(u'11:50:22.051423Sunday,',	1)

(u'11:50:17.867309Sunday,',	1)

...

-------------------------------------------

Time:	2015-11-01	12:13:20

-------------------------------------------

-------------------------------------------

Time:	2015-11-01	12:13:21

-------------------------------------------



Exploring	flume
Flume	is	a	continuous	ingestion	system.	It	was	originally	designed	to	be	a	log	aggregation
system,	but	it	evolved	to	handle	any	type	of	streaming	event	data.

Flume	is	a	distributed,	reliable,	scalable,	and	available	pipeline	system	for	efficient
collection,	aggregation,	and	transport	of	large	volumes	of	data.	It	has	built-in	support	for
contextual	routing,	filtering	replication,	and	multiplexing.	It	is	robust	and	fault	tolerant,
with	tunable	reliability	mechanisms	and	many	failover	and	recovery	mechanisms.	It	uses	a
simple	extensible	data	model	that	allows	for	real	time	analytic	application.

Flume	offers	the	following:

Guaranteed	delivery	semantics
Low	latency	reliable	data	transfer
Declarative	configuration	with	no	coding	required
Extendable	and	customizable	settings
Integration	with	most	commonly	used	end-points

The	anatomy	of	Flume	contains	the	following	elements:

Event:	An	event	is	the	fundamental	unit	of	data	that	is	transported	by	Flume	from
source	to	destination.	It	is	like	a	message	with	a	byte	array	payload	opaque	to	Flume
and	optional	headers	used	for	contextual	routing.
Client:	A	client	produces	and	transmits	events.	A	client	decouples	Flume	from	the
data	consumers.	It	is	an	entity	that	generates	events	and	sends	them	to	one	or	more
agents.	Custom	client	or	Flume	log4J	append	program	or	embedded	application	agent
can	be	client.
Agent:	An	agent	is	a	container	hosting	sources,	channels,	sinks,	and	other	elements
that	enable	the	transportation	of	events	from	one	place	to	the	other.	It	provides
configuration,	life	cycle	management	and	monitoring	for	hosted	components.	An
agent	is	a	physical	Java	virtual	machine	running	Flume.
Source:	Source	is	the	entity	through	which	Flume	receives	events.	Sources	require	at
least	one	channel	to	function	in	order	to	either	actively	poll	data	or	passively	wait	for
data	to	be	delivered	to	them.	A	variety	of	sources	allow	data	to	be	collected,	such	as
log4j	logs	and	syslogs.
Sink:	Sink	is	the	entity	that	drains	data	from	the	channel	and	delivers	it	to	the	next
destination.	A	variety	of	sinks	allow	data	to	be	streamed	to	a	range	of	destinations.
Sinks	support	serialization	to	user’s	format.	One	example	is	the	HDFS	sink	that
writes	events	to	HDFS.
Channel:	Channel	is	the	conduit	between	the	source	and	the	sink	that	buffers
incoming	events	until	drained	by	sinks.	Sources	feed	events	into	the	channel	and	the
sinks	drain	the	channel.	Channels	decouple	the	impedance	of	upstream	and
downstream	systems.	Burst	of	data	upstream	is	damped	by	the	channels.	Failures
downstream	are	transparently	absorbed	by	the	channels.	Sizing	the	channel	capacity
to	cope	with	these	events	is	key	to	realizing	these	benefits.	Channels	offer	two	levels
of	persistence:	either	memory	channel,	which	is	volatile	if	the	JVM	crashes,	or	File



channel	backed	by	Write	Ahead	Log	that	stores	the	information	to	disk.	Channels	are
fully	transactional.

Let’s	illustrate	all	these	concepts:



Developing	data	pipelines	with	Flume,	Kafka,	and
Spark
Building	resilient	data	pipeline	leverages	the	learnings	from	the	previous	sections.	We	are
plumbing	together	data	ingestion	and	transport	with	Flume,	data	brokerage	with	a	reliable
and	sophisticated	publish	and	subscribe	messaging	system	such	as	Kafka,	and	finally
process	computation	on	the	fly	using	Spark	Streaming.

The	following	diagram	illustrates	the	composition	of	streaming	data	pipelines	as	sequence
of	connect,	collect,	conduct,	compose,	consume,	consign,	and	control	activities.	These
activities	are	configurable	based	on	the	use	case:

Connect	establishes	the	binding	with	the	streaming	API.
Collect	creates	collection	threads.
Conduct	decouples	the	data	producers	from	the	consumers	by	creating	a	buffer	queue
or	publish-subscribe	mechanism.
Compose	is	focused	on	processing	the	data.
Consume	provisions	the	processed	data	for	the	consuming	systems.	Consign	takes
care	of	the	data	persistence.
Control	caters	to	governance	and	monitoring	of	the	systems,	data,	and	applications.

The	following	diagram	illustrates	the	concepts	of	the	streaming	data	pipelines	with	its	key
components:	Spark	Streaming,	Kafka,	Flume,	and	low	latency	databases.	In	the



consuming	or	controlling	applications,	we	are	monitoring	our	systems	in	real	time
(depicted	by	a	monitor)	or	sending	real-time	alerts	(depicted	by	red	lights)	in	case	certain
thresholds	are	crossed.

The	following	diagram	illustrates	Spark’s	unique	ability	to	process	in	a	single	platform
data	in	motion	and	data	at	rest	while	seamlessly	interfacing	with	multiple	persistence	data
stores	as	per	the	use	case	requirement.

This	diagram	brings	in	one	unified	whole	all	the	concepts	discussed	up	to	now.	The	top
part	describes	the	streaming	processing	pipeline.	The	bottom	part	describes	the	batch
processing	pipeline.	They	both	share	a	common	persistence	layer	in	the	middle	of	the
diagram	depicting	the	various	modes	of	persistence	and	serialization.







Closing	remarks	on	the	Lambda	and
Kappa	architecture
Two	architecture	paradigms	are	currently	in	vogue:	the	Lambda	and	Kappa	architectures.

Lambda	is	the	brainchild	of	the	Storm	creator	and	main	committer,	Nathan	Marz.	It
essentially	advocates	building	a	functional	architecture	on	all	data.	The	architecture	has
two	branches.	The	first	is	a	batch	arm	envisioned	to	be	powered	by	Hadoop,	where
historical,	high-latency,	high-throughput	data	are	pre-processed	and	made	ready	for
consumption.	The	real-time	arm	is	envisioned	to	be	powered	by	Storm,	and	it	processes
incrementally	streaming	data,	derives	insights	on	the	fly,	and	feeds	aggregated	information
back	to	the	batch	storage.

Kappa	is	the	brainchild	of	one	the	main	committer	of	Kafka,	Jay	Kreps,	and	his	colleagues
at	Confluent	(previously	at	LinkedIn).	It	is	advocating	a	full	streaming	pipeline,
effectively	implementing,	at	the	enterprise	level,	the	unified	log	enounced	in	the	previous
pages.



Understanding	Lambda	architecture
Lambda	architecture	combines	batch	and	streaming	data	to	provide	a	unified	query
mechanism	on	all	available	data.	Lambda	architecture	envisions	three	layers:	a	batch	layer
where	precomputed	information	are	stored,	a	speed	layer	where	real-time	incremental
information	is	processed	as	data	streams,	and	finally	the	serving	layer	that	merges	batch
and	real-time	views	for	ad	hoc	queries.	The	following	diagram	gives	an	overview	of	the
Lambda	architecture:



Understanding	Kappa	architecture
The	Kappa	architecture	proposes	to	drive	the	full	enterprise	in	streaming	mode.	The
Kappa	architecture	arose	from	a	critique	from	Jay	Kreps	and	his	colleagues	at	LinkedIn	at
the	time.	Since	then,	they	moved	and	created	Confluent	with	Apache	Kafka	as	the	main
enabler	of	the	Kappa	architecture	vision.	The	basic	tenet	is	to	move	in	all	streaming	mode
with	a	Unified	Log	as	the	main	backbone	of	the	enterprise	information	architecture.

A	Unified	Log	is	a	centralized	enterprise	structured	log	available	for	real-time
subscription.	All	the	organization’s	data	is	put	in	a	central	log	for	subscription.	Records
are	numbered	beginning	with	zero	so	that	they	are	written.	It	is	also	known	as	a	commit
log	or	journal.	The	concept	of	the	Unified	Log	is	the	central	tenet	of	the	Kappa
architecture.

The	properties	of	the	unified	log	are	as	follows:

Unified:	There	is	a	single	deployment	for	the	entire	organization
Append	only:	Events	are	immutable	and	are	appended
Ordered:	Each	event	has	a	unique	offset	within	a	shard
Distributed:	For	fault	tolerance	purpose,	the	unified	log	is	distributed	redundantly	on
a	cluster	of	computers
Fast:	The	systems	ingests	thousands	of	messages	per	second

The	following	screenshot	captures	the	moment	Jay	Kreps	announced	his	reservations
about	the	Lambda	architecture.	His	main	reservation	about	the	Lambda	architecture	is
implementing	the	same	job	in	two	different	systems,	Hadoop	and	Storm,	with	each	of	their
specific	idiosyncrasies,	and	with	all	the	complexities	that	come	along	with	it.	Kappa
architecture	processes	the	real-time	data	and	reprocesses	historical	data	in	the	same
framework	powered	by	Apache	Kafka.







Summary
In	this	chapter,	we	laid	out	the	foundations	of	streaming	architecture	apps	and	described
their	challenges,	constraints,	and	benefits.	We	went	under	the	hood	and	examined	the	inner
working	of	Spark	Streaming	and	how	it	fits	with	Spark	Core	and	dialogues	with	Spark
SQL	and	Spark	MLlib.	We	illustrated	the	streaming	concepts	with	TCP	sockets,	followed
by	live	tweet	ingestion	and	processing	directly	from	the	Twitter	firehose.	We	discussed	the
notions	of	decoupling	upstream	data	publishing	from	downstream	data	subscription	and
consumption	using	Kafka	in	order	to	maximize	the	resilience	of	the	overall	streaming
architecture.	We	also	discussed	Flume—a	reliable,	flexible,	and	scalable	data	ingestion
and	transport	pipeline	system.	The	combination	of	Flume,	Kafka,	and	Spark	delivers
unparalleled	robustness,	speed,	and	agility	in	an	ever	changing	landscape.	We	closed	the
chapter	with	some	remarks	and	observations	on	two	streaming	architectural	paradigms,
the	Lambda	and	Kappa	architectures.

The	Lambda	architecture	combines	batch	and	streaming	data	in	a	common	query	front-
end.	It	was	envisioned	with	Hadoop	and	Storm	in	mind	initially.	Spark	has	its	own	batch
and	streaming	paradigms,	and	it	offers	a	single	environment	with	common	code	base	to
effectively	bring	this	architecture	paradigm	to	life.

The	Kappa	architecture	promulgates	the	concept	of	the	unified	log,	which	creates	an
event-oriented	architecture	where	all	events	in	the	enterprise	are	channeled	in	a	centralized
commit	log	that	is	available	to	all	consuming	systems	in	real	time.

We	are	now	ready	for	the	visualization	of	the	data	collected	and	processed	so	far.





Chapter	6.	Visualizing	Insights	and
Trends
So	far,	we	have	focused	on	the	collection,	analysis,	and	processing	of	data	from	Twitter.
We	have	set	the	stage	to	use	our	data	for	visual	rendering	and	extracting	insights	and
trends.	We	will	give	a	quick	lay	of	the	land	about	visualization	tools	in	the	Python
ecosystem.	We	will	highlight	Bokeh	as	a	powerful	tool	for	rendering	and	viewing	large
datasets.	Bokeh	is	part	of	the	Python	Anaconda	Distribution	ecosystem.

In	this	chapter,	we	will	cover	the	following	points:

Gauging	the	key	words	and	memes	within	a	social	network	community	using	charts
and	wordcloud
Mapping	the	most	active	location	where	communities	are	growing	around	certain
themes	or	topics



Revisiting	the	data-intensive	apps
architecture
We	have	reached	the	final	layer	of	the	data-intensive	apps	architecture:	the	engagement
layer.	This	layer	focuses	on	how	to	synthesize,	emphasize,	and	visualize	the	key	context
relevant	information	for	the	data	consumers.	A	bunch	of	numbers	in	a	console	will	not
suffice	to	engage	with	end-users.	It	is	critical	to	present	the	mass	of	information	in	a	rapid,
digestible,	and	attractive	fashion.

The	following	diagram	sets	the	context	of	the	chapter’s	focus	highlighting	the	engagement
layer.

For	Python	plotting	and	visualizations,	we	have	quite	a	few	tools	and	libraries.	The	most
interesting	and	relevant	ones	for	our	purpose	are	the	following:

Matplotlib	is	the	grandfather	of	the	Python	plotting	libraries.	Matplotlib	was
originally	the	brainchild	of	John	Hunter	who	was	an	open	source	software	proponent



and	established	Matplotlib	as	one	of	the	most	prevalent	plotting	libraries	both	in	the
academic	and	the	data	scientific	communities.	Matplotlib	allows	the	generation	of
plots,	histograms,	power	spectra,	bar	charts,	error	charts,	scatterplots,	and	so	on.
Examples	can	be	found	on	the	Matplotlib	dedicated	website	at
http://matplotlib.org/examples/index.html.
Seaborn,	developed	by	Michael	Waskom,	is	a	great	library	to	quickly	visualize
statistical	information.	It	is	built	on	top	of	Matplotlib	and	integrates	seamlessly	with
Pandas	and	the	Python	data	stack,	including	Numpy.	A	gallery	of	graphs	from
Seaborn	at	http://stanford.edu/~mwaskom/software/seaborn/examples/index.html
shows	the	potential	of	the	library.
ggplot	is	relatively	new	and	aims	to	offer	the	equivalent	of	the	famous	ggplot2	from
the	R	ecosystem	for	the	Python	data	wranglers.	It	has	the	same	look	and	feel	of
ggplot2	and	uses	the	same	grammar	of	graphics	as	expounded	by	Hadley	Wickham.
The	ggplot	the	Python	port	is	developed	by	the	team	at	yhat.	More	information	can
be	found	at	http://ggplot.yhathq.com.
D3.js	is	a	very	popular,	JavaScript	library	developed	by	Mike	Bostock.	D3	stands	for
Data	Driven	Documents	and	brings	data	to	life	on	any	modern	browser	leveraging
HTML,	SVG,	and	CSS.	It	delivers	dynamic,	powerful,	interactive	visualizations	by
manipulating	the	DOM,	the	Document	Object	Model.	The	Python	community	could
not	wait	to	integrate	D3	with	Matplotlib.	Under	the	impulse	of	Jake	Vanderplas,
mpld3	was	created	with	the	aim	of	bringing	matplotlib	to	the	browser.	Examples
graphics	are	hosted	at	the	following	address:	http://mpld3.github.io/index.html.
Bokeh	aims	to	deliver	high-performance	interactivity	over	very	large	or	streaming
datasets	whilst	leveraging	lot	of	the	concepts	of	D3.js	without	the	burden	of	writing
some	intimidating	javascript	and	css	code.	Bokeh	delivers	dynamic	visualizations
on	the	browser	with	or	without	a	server.	It	integrates	seamlessly	with	Matplotlib,
Seaborn	and	ggplot	and	renders	beautifully	in	IPython	notebooks	or	Jupyter
notebooks.	Bokeh	is	actively	developed	by	the	team	at	Continuum.io	and	is	an
integral	part	of	the	Anaconda	Python	data	stack.

Bokeh	server	provides	a	full-fledged,	dynamic	plotting	engine	that	materializes	a	reactive
scene	graph	from	JSON.	It	uses	web	sockets	to	keep	state	and	update	the	HTML5	canvas
using	Backbone.js	and	Coffee-script	under	the	hoods.	Bokeh,	as	it	is	fueled	by	data	in
JSON,	creates	easy	bindings	for	other	languages	such	as	R,	Scala,	and	Julia.

This	gives	a	high-level	overview	of	the	main	plotting	and	visualization	library.	It	is	not
exhaustive.	Let’s	move	to	concrete	examples	of	visualizations.

http://matplotlib.org/examples/index.html
http://stanford.edu/~mwaskom/software/seaborn/examples/index.html
http://ggplot.yhathq.com
http://mpld3.github.io/index.html




Preprocessing	the	data	for	visualization
Before	jumping	into	the	visualizations,	we	will	do	some	preparatory	work	on	the	data
harvested:

In	[16]:

#	Read	harvested	data	stored	in	csv	in	a	Panda	DF

import	pandas	as	pd

csv_in	=	'/home/an/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/data/unq_tweetstxt.csv'

pddf_in	=	pd.read_csv(csv_in,	index_col=None,	header=0,	sep=';',	

encoding='utf-8')

In	[20]:

print('tweets	pandas	dataframe	-	count:',	pddf_in.count())

print('tweets	pandas	dataframe	-	shape:',	pddf_in.shape)

print('tweets	pandas	dataframe	-	colns:',	pddf_in.columns)

('tweets	pandas	dataframe	-	count:',	Unnamed:	0				7540

id												7540

created_at				7540

user_id							7540

user_name					7538

tweet_text				7540

dtype:	int64)

('tweets	pandas	dataframe	-	shape:',	(7540,	6))

('tweets	pandas	dataframe	-	colns:',	Index([u'Unnamed:	0',	u'id',	

u'created_at',	u'user_id',	u'user_name',	u'tweet_text'],	dtype='object'))

For	the	purpose	of	our	visualization	activity,	we	will	use	a	dataset	of	7,540	tweets.	The
key	information	is	stored	in	the	tweet_text	column.	We	preview	the	data	stored	in	the
dataframe	calling	the	head()	function	on	the	dataframe:

In	[21]:

pddf_in.head()

Out[21]:

		Unnamed:	0			id			created_at			user_id			user_name			tweet_text

0			0			638830426971181057			Tue	Sep	01	21:46:57	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamint…

1			1			638830426727911424			Tue	Sep	01	21:46:57	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…

2			2			638830425402556417			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	ernestsg…

3			3			638830424563716097			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…

4			4			638830422256816132			Tue	Sep	01	21:46:56	+0000	2015			3276255125			

True	Equality			ernestsgantt:	elsahel12:	9_A_6:	dreamintention…

We	will	now	create	some	utility	functions	to	clean	up	the	tweet	text	and	parse	the	twitter
date.	First,	we	import	the	Python	regular	expression	regex	library	re	and	the	time	library
to	parse	dates	and	time:

In	[72]:

import	re

import	time



We	create	a	dictionary	of	regex	that	will	be	compiled	and	then	passed	as	function:

RT:	The	first	regex	with	key	RT	looks	for	the	keyword	RT	at	the	beginning	of	the
tweet	text:

re.compile(r'^RT'),

ALNUM:	The	second	regex	with	key	ALNUM	looks	for	words	including	alphanumeric
characters	and	underscore	sign	preceded	by	the	@	symbol	in	the	tweet	text:

re.compile(r'(@[a-zA-Z0-9_]+)'),

HASHTAG:	The	third	regex	with	key	HASHTAG	looks	for	words	including
alphanumeric	characters	preceded	by	the	#	symbol	in	the	tweet	text:

re.compile(r'(#[\w\d]+)'),

SPACES:	The	fourth	regex	with	key	SPACES	looks	for	blank	or	line	space	characters
in	the	tweet	text:

re.compile(r'\s+'),	

URL:	The	fifth	regex	with	key	URL	looks	for	url	addresses	including	alphanumeric
characters	preceded	with	https://	or	http://	markers	in	the	tweet	text:

re.compile(r'([https://|http://]?[a-zA-Z\d\/]+[\.]+[a-zA-Z\d\/\.]+)')

In	[24]:

regexp	=	{"RT":	"^RT",	"ALNUM":	r"(@[a-zA-Z0-9_]+)",

										"HASHTAG":	r"(#[\w\d]+)",	"URL":	r"([https://|http://]?[a-zA-

Z\d\/]+[\.]+[a-zA-Z\d\/\.]+)",

										"SPACES":r"\s+"}

regexp	=	dict((key,	re.compile(value))	for	key,	value	in	

regexp.items())

In	[25]:

regexp

Out[25]:

{'ALNUM':	re.compile(r'(@[a-zA-Z0-9_]+)'),

	'HASHTAG':	re.compile(r'(#[\w\d]+)'),

	'RT':	re.compile(r'^RT'),

	'SPACES':	re.compile(r'\s+'),

	'URL':	re.compile(r'([https://|http://]?[a-zA-Z\d\/]+[\.]+[a-zA-

Z\d\/\.]+)')}

We	create	a	utility	function	to	identify	whether	a	tweet	is	a	retweet	or	an	original	tweet:

In	[77]:

def	getAttributeRT(tweet):

				"""	see	if	tweet	is	a	RT	"""

				return	re.search(regexp["RT"],	tweet.strip())	!=	None

Then,	we	extract	all	user	handles	in	a	tweet:

def	getUserHandles(tweet):

				"""	given	a	tweet	we	try	and	extract	all	user	handles"""

				return	re.findall(regexp["ALNUM"],	tweet)

We	also	extract	all	hashtags	in	a	tweet:



def	getHashtags(tweet):

				"""	return	all	hashtags"""

				return	re.findall(regexp["HASHTAG"],	tweet)

Extract	all	URL	links	in	a	tweet	as	follows:

def	getURLs(tweet):

				"""	URL	:	[http://]?[\w\.?/]+"""

				return	re.findall(regexp["URL"],	tweet)

We	strip	all	URL	links	and	user	handles	preceded	by	@	sign	in	a	tweet	text.	This	function
will	be	the	basis	of	the	wordcloud	we	will	build	soon:

def	getTextNoURLsUsers(tweet):

				"""	return	parsed	text	terms	stripped	of	URLs	and	User	Names	in	tweet	

text

								'	'.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z	\t])|(\w+:\/\/\S+)","	

",x).split())	"""

				return	'	'.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z	\t])|

(\w+:\/\/\S+)|(RT)","	",	tweet).lower().split())

We	label	the	data	so	we	can	create	groups	of	datasets	for	the	wordcloud:

def	setTag(tweet):

				"""	set	tags	to	tweet_text	based	on	search	terms	from	tags_list"""

				tags_list	=	['spark',	'python',	'clinton',	'trump',	'gaga',	'bieber']

				lower_text	=	tweet.lower()

				return	filter(lambda	x:x.lower()	in	lower_text,tags_list)

We	parse	the	twitter	date	in	the	yyyy-mm-dd	hh:mm:ss	format:

def	decode_date(s):

				"""	parse	Twitter	date	into	format	yyyy-mm-dd	hh:mm:ss"""

				return	time.strftime('%Y-%m-%d	%H:%M:%S',	time.strptime(s,'%a	%b	%d	

%H:%M:%S	+0000	%Y'))

We	preview	the	data	prior	to	processing:

In	[43]:

pddf_in.columns

Out[43]:

Index([u'Unnamed:	0',	u'id',	u'created_at',	u'user_id',	u'user_name',	

u'tweet_text'],	dtype='object')

In	[45]:

#	df.drop([Column	Name	or	list],inplace=True,axis=1)

pddf_in.drop(['Unnamed:	0'],	inplace=True,	axis=1)

In	[46]:

pddf_in.head()

Out[46]:

		id			created_at			user_id			user_name			tweet_text

0			638830426971181057			Tue	Sep	01	21:46:57	+0000	2015			3276255125			True	

Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	dreamint…

1			638830426727911424			Tue	Sep	01	21:46:57	+0000	2015			3276255125			True	

Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…

2			638830425402556417			Tue	Sep	01	21:46:56	+0000	2015			3276255125			True	

Equality			ernestsgantt:	BeyHiveInFrance:	9_A_6:	ernestsg…

3			638830424563716097			Tue	Sep	01	21:46:56	+0000	2015			3276255125			True	



Equality			ernestsgantt:	BeyHiveInFrance:	PhuketDailyNews…

4			638830422256816132			Tue	Sep	01	21:46:56	+0000	2015			3276255125			True	

Equality			ernestsgantt:	elsahel12:	9_A_6:	dreamintention…

We	create	new	dataframe	columns	by	applying	the	utility	functions	described.	We	create	a
new	column	for	htag,	user	handles,	URLs,	the	text	terms	stripped	from	URLs,	and
unwanted	characters	and	the	labels.	We	finally	parse	the	date:

In	[82]:

pddf_in['htag']	=	pddf_in.tweet_text.apply(getHashtags)

pddf_in['user_handles']	=	pddf_in.tweet_text.apply(getUserHandles)

pddf_in['urls']	=	pddf_in.tweet_text.apply(getURLs)

pddf_in['txt_terms']	=	pddf_in.tweet_text.apply(getTextNoURLsUsers)

pddf_in['search_grp']	=	pddf_in.tweet_text.apply(setTag)

pddf_in['date']	=	pddf_in.created_at.apply(decode_date)

The	following	code	gives	a	quick	snapshot	of	the	newly	generated	dataframe:

In	[83]:

pddf_in[2200:2210]

Out[83]:

		id			created_at			user_id			user_name			tweet_text			htag			urls			ptxt			

tgrp			date			user_handles			txt_terms			search_grp

2200			638242693374681088			Mon	Aug	31	06:51:30	+0000	2015			19525954			

CENATIC			El	impacto	de	@ApacheSpark	en	el	procesamiento…			[#sparkSpecial]			

[://t.co/4PQmJNuEJB]			el	impacto	de	en	el	procesamiento	de	datos	y	e…			

[spark]			2015-08-31	06:51:30			[@ApacheSpark]			el	impacto	de	en	el	

procesamiento	de	datos	y	e…			[spark]

2201			638238014695575552			Mon	Aug	31	06:32:55	+0000	2015			51115854			

Nawfal			Real	Time	Streaming	with	Apache	Spark\nhttp://...			[#IoT,	

#SmartMelboune,	#BigData,	#Apachespark]			[://t.co/GW5PaqwVab]			real	time	

streaming	with	apache	spark	iot	smar…			[spark]			2015-08-31	06:32:55			[]			

real	time	streaming	with	apache	spark	iot	smar…			[spark]

2202			638236084124516352			Mon	Aug	31	06:25:14	+0000	2015			62885987			

Mithun	Katti			RT	@differentsachin:	Spark	the	flame	of	digita…			

[#IBMHackathon,	#SparkHackathon,	#ISLconnectIN…			[]			spark	the	flame	of	

digital	india	ibmhackathon…			[spark]			2015-08-31	06:25:14			

[@differentsachin,	@ApacheSpark]			spark	the	flame	of	digital	india	

ibmhackathon…			[spark]

2203			638234734649176064			Mon	Aug	31	06:19:53	+0000	2015			140462395			

solaimurugan	v			Installing	@ApacheMahout	with	@ApacheSpark	1.4…			[]			

[1.4.1,	://t.co/3c5dGbfaZe.]			installing	with	1	4	1	got	many	more	issue	

whil…			[spark]			2015-08-31	06:19:53			[@ApacheMahout,	@ApacheSpark]			

installing	with	1	4	1	got	many	more	issue	whil…			[spark]

2204			638233517307072512			Mon	Aug	31	06:15:02	+0000	2015			2428473836			

Ralf	Heineke			RT	@RomeoKienzler:	Join	me	@velocityconf	on	#m…			

[#machinelearning,	#devOps,	#Bl]			[://t.co/U5xL7pYEmF]			join	me	on	

machinelearning	based	devops	operat…			[spark]			2015-08-31	06:15:02			

[@RomeoKienzler,	@velocityconf,	@ApacheSpark]			join	me	on	machinelearning	

based	devops	operat…			[spark]

2205			638230184848687106			Mon	Aug	31	06:01:48	+0000	2015			289355748			

Akim	Boyko			RT	@databricks:	Watch	live	today	at	10am	PT	is…			[]			[1.5,	

://t.co/16cix6ASti]			watch	live	today	at	10am	pt	is	1	5	presented	b…			

[spark]			2015-08-31	06:01:48			[@databricks,	@ApacheSpark,	@databricks,	

@pwen…			watch	live	today	at	10am	pt	is	1	5	presented	b…			[spark]

2206			638227830443110400			Mon	Aug	31	05:52:27	+0000	2015			145001241			



sachin	aggarwal			Spark	the	flame	of	digital	India	@	#IBMHackath…			

[#IBMHackathon,	#SparkHackathon,	#ISLconnectIN…			[://t.co/C1AO3uNexe]			

spark	the	flame	of	digital	india	ibmhackathon…			[spark]			2015-08-31	

05:52:27			[@ApacheSpark]			spark	the	flame	of	digital	india	ibmhackathon…			

[spark]

2207			638227031268810752			Mon	Aug	31	05:49:16	+0000	2015			145001241			

sachin	aggarwal			RT	@pravin_gadakh:	Imagine,	innovate	and	Igni…			

[#IBMHackathon,	#ISLconnectIN2015]			[]			gadakh	imagine	innovate	and	

ignite	digital	ind…			[spark]			2015-08-31	05:49:16			[@pravin_gadakh,	

@ApacheSpark]			gadakh	imagine	innovate	and	ignite	digital	ind…			[spark]

2208			638224591920336896			Mon	Aug	31	05:39:35	+0000	2015			494725634			

IBM	Asia	Pacific			RT	@sachinparmar:	Passionate	about	Spark??	Hav…			

[#IBMHackathon,	#ISLconnectIN]			[India..]			passionate	about	spark	have	

dreams	of	clean	sa…			[spark]			2015-08-31	05:39:35			[@sachinparmar]			

passionate	about	spark	have	dreams	of	clean	sa…			[spark]

2209			638223327467692032			Mon	Aug	31	05:34:33	+0000	2015			3158070968			

Open	Source	India			"Game	Changer"	#ApacheSpark	speeds	up	#bigdata…			

[#ApacheSpark,	#bigdata]			[://t.co/ieTQ9ocMim]			game	changer	apachespark	

speeds	up	bigdata	pro…			[spark]			2015-08-31	05:34:33			[]			game	changer	

apachespark	speeds	up	bigdata	pro…			[spark]

We	save	the	processed	information	in	a	CSV	format.	We	have	7,540	records	and	13
columns.	In	your	case,	the	output	will	vary	according	to	the	dataset	you	chose:

In	[84]:

f_name	=	'/home/an/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/data/unq_tweets_processed.csv'

pddf_in.to_csv(f_name,	sep=';',	encoding='utf-8',	index=False)

In	[85]:

pddf_in.shape

Out[85]:

(7540,	13)





Gauging	words,	moods,	and	memes	at	a
glance
We	are	now	ready	to	proceed	with	building	the	wordclouds	which	will	give	us	a	sense	of
the	important	words	carried	in	those	tweets.	We	will	create	wordclouds	for	the	datasets
harvested.	Wordclouds	extract	the	top	words	in	a	list	of	words	and	create	a	scatterplot	of
the	words	where	the	size	of	the	word	is	correlated	to	its	frequency.	The	more	frequent	the
word	in	the	dataset,	the	bigger	will	be	the	font	size	in	the	wordcloud	rendering.	They
include	three	very	different	themes	and	two	competing	or	analogous	entities.	Our	first
theme	is	obviously	data	processing	and	analytics,	with	Apache	Spark	and	Python	as	our
entities.	Our	second	theme	is	the	2016	presidential	election	campaign,	with	the	two
contenders:	Hilary	Clinton	and	Donald	Trump.	Our	last	theme	is	the	world	of	pop	music
with	Justin	Bieber	and	Lady	Gaga	as	the	two	exponents.



Setting	up	wordcloud
We	will	illustrate	the	programming	steps	by	analyzing	the	spark	related	tweets.	We	load
the	data	and	preview	the	dataframe:

In	[21]:

import	pandas	as	pd

csv_in	=	'/home/an/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/data/spark_tweets.csv'

tspark_df	=	pd.read_csv(csv_in,	index_col=None,	header=0,	sep=',',	

encoding='utf-8')

In	[3]:

tspark_df.head(3)

Out[3]:

		id			created_at			user_id			user_name			tweet_text			htag			urls			ptxt			

tgrp			date			user_handles			txt_terms			search_grp

0			638818911773856000			Tue	Sep	01	21:01:11	+0000	2015			2511247075			Noor	

Din			RT	@kdnuggets:	R	leads	RapidMiner,	Python	catc…			[#KDN]			

[://t.co/3bsaTT7eUs]			r	leads	rapidminer	python	catches	up	big	data…			

[spark,	python]			2015-09-01	21:01:11			[@kdnuggets]			r	leads	rapidminer	

python	catches	up	big	data…			[spark,	python]

1			622142176768737000			Fri	Jul	17	20:33:48	+0000	2015			24537879			IBM	

Cloudant			Be	one	of	the	first	to	sign-up	for	IBM	Analyti…			[#ApacheSpark,	

#SparkInsight]			[://t.co/C5TZpetVA6,	://t.co/R1L29DePaQ]			be	one	of	the	

first	to	sign	up	for	ibm	analyti…			[spark]			2015-07-17	20:33:48			[]			be	

one	of	the	first	to	sign	up	for	ibm	analyti…			[spark]

2			622140453069169000			Fri	Jul	17	20:26:57	+0000	2015			515145898			Arno	

Candel			Nice	article	on	#apachespark,	#hadoop	and	#dat…			[#apachespark,	

#hadoop,	#datascience]			[://t.co/IyF44pV0f3]			nice	article	on	apachespark	

hadoop	and	datasci…			[spark]			2015-07-17	20:26:57			[@h2oai]			nice	

article	on	apachespark	hadoop	and	datasci…			[spark]

Note
The	wordcloud	library	we	will	use	is	the	one	developed	by	Andreas	Mueller	and	hosted	on
his	GitHub	account	at	https://github.com/amueller/word_cloud.

The	library	requires	PIL	(short	for	Python	Imaging	Library).	PIL	is	easily	installable	by
invoking	conda	install	pil.	PIL	is	a	complex	library	to	install	and	is	not	yet	ported	on
Python	3.4,	so	we	need	to	run	a	Python	2.7+	environment	to	be	able	to	see	our	wordcloud:

#

#	Install	PIL	(does	not	work	with	Python	3.4)

#

an@an-VB:~$	conda	install	pil

Fetching	package	metadata:	....

Solving	package	specifications:	..................

Package	plan	for	installation	in	environment	/home/an/anaconda:

The	following	packages	will	be	downloaded:

				package																				|												build

				---------------------------|-----------------

				libpng-1.6.17														|																0									214	KB

https://github.com/amueller/word_cloud


				freetype-2.5.5													|																0									2.2	MB

				conda-env-2.4.4												|											py27_0										24	KB

				pil-1.1.7																		|											py27_2									650	KB

				------------------------------------------------------------

																																											Total:									3.0	MB

The	following	packages	will	be	UPDATED:

				conda-env:	2.4.2-py27_0	-->	2.4.4-py27_0

				freetype:		2.5.2-0						-->	2.5.5-0					

				libpng:				1.5.13-1					-->	1.6.17-0				

				pil:							1.1.7-py27_1	-->	1.1.7-py27_2

Proceed	([y]/n)?	y

Next,	we	install	the	wordcloud	library:

#

#	Install	wordcloud

#	Andreas	Mueller

#	https://github.com/amueller/word_cloud/blob/master/wordcloud/wordcloud.py

#

an@an-VB:~$	pip	install	wordcloud

Collecting	wordcloud

		Downloading	wordcloud-1.1.3.tar.gz	(163kB)

				100%	|████████████████████████████████|	163kB	548kB/s	

Building	wheels	for	collected	packages:	wordcloud

		Running	setup.py	bdist_wheel	for	wordcloud

		Stored	in	directory:	

/home/an/.cache/pip/wheels/32/a9/74/58e379e5dc614bfd9dd9832d67608faac9b2bc6

c194d6f6df5

Successfully	built	wordcloud

Installing	collected	packages:	wordcloud

Successfully	installed	wordcloud-1.1.3



Creating	wordclouds
At	this	stage,	we	are	ready	to	invoke	the	wordcloud	program	with	the	generated	list	of
terms	from	the	tweet	text.

Let’s	get	started	with	the	wordcloud	program	by	first	calling	%matplotlib	inline	to	display
the	wordcloud	in	our	notebook:

In	[4]:

%matplotlib	inline

In	[11]:

We	convert	the	dataframe	txt_terms	column	into	a	list	of	words.	We	make	sure	it	is	all
converted	into	the	str	type	to	avoid	any	bad	surprises	and	check	the	list’s	first	four
records:

len(tspark_df['txt_terms'].tolist())

Out[11]:

2024

In	[22]:

tspark_ls_str	=	[str(t)	for	t	in	tspark_df['txt_terms'].tolist()]

In	[14]:

len(tspark_ls_str)

Out[14]:

2024

In	[15]:

tspark_ls_str[:4]

Out[15]:

['r	leads	rapidminer	python	catches	up	big	data	tools	grow	spark	ignites	

kdn',

	'be	one	of	the	first	to	sign	up	for	ibm	analytics	for	apachespark	today	

sparkinsight',

	'nice	article	on	apachespark	hadoop	and	datascience',

	'spark	101	running	spark	and	mapreduce	together	in	production	

hadoopsummit2015	apachespark	altiscale']

We	first	call	the	Matplotlib	and	the	wordcloud	libraries:

import	matplotlib.pyplot	as	plt

from	wordcloud	import	WordCloud,	STOPWORDS

From	the	input	list	of	terms,	we	create	a	unified	string	of	terms	separated	by	a	whitespace
as	the	input	to	the	wordcloud	program.	The	wordcloud	program	removes	stopwords:

#	join	tweets	to	a	single	string

words	=	'	'.join(tspark_ls_str)

#	create	wordcloud	

wordcloud	=	WordCloud(

																						#	remove	stopwords

																						stopwords=STOPWORDS,

																						background_color='black',

																						width=1800,

																						height=1400

																					).generate(words)



#	render	wordcloud	image

plt.imshow(wordcloud)

plt.axis('off')

#	save	wordcloud	image	on	disk

plt.savefig('./spark_tweets_wordcloud_1.png',	dpi=300)

#	display	image	in	Jupyter	notebook

plt.show()

Here,	we	can	visualize	the	wordclouds	for	Apache	Spark	and	Python.	Clearly,	in	the	case
of	Spark,	Hadoop,	big	data,	and	analytics	are	the	memes,	while	Python	recalls	the	root	of
its	name	Monty	Python	with	a	strong	focus	on	developer,	apache	spark,	and	programming
with	some	hints	to	java	and	ruby.

We	can	also	get	a	glimpse	in	the	following	wordclouds	of	the	words	preoccupying	the
North	American	2016	presidential	election	candidates:	Hilary	Clinton	and	Donald	Trump.
Seemingly	Hilary	Clinton	is	overshadowed	by	the	presence	of	her	opponents	Donald
Trump	and	Bernie	Sanders,	while	Trump	is	heavily	centered	only	on	himself:



Interestingly,	in	the	case	of	Justin	Bieber	and	Lady	Gaga,	the	word	love	appears.	In	the
case	of	Bieber,	follow	and	belieber	are	key	words,	while	diet,	weight	loss,	and	fashion	are
the	preoccupations	for	the	Lady	Gaga	crowd.





Geo-locating	tweets	and	mapping	meetups
Now,	we	will	dive	into	the	creation	of	interactive	maps	with	Bokeh.	First,	we	create	a
world	map	where	we	geo-locate	sample	tweets	and,	on	moving	our	mouse	over	these
locations,	we	can	see	the	users	and	their	respective	tweets	in	a	hover	box.

The	second	map	is	focused	on	mapping	upcoming	meetups	in	London.	It	could	be	an
interactive	map	that	would	act	as	a	reminder	of	date,	time,	and	location	for	upcoming
meetups	in	a	specific	city.



Geo-locating	tweets
The	objective	is	to	create	a	world	map	scatter	plot	of	the	locations	of	important	tweets	on
the	map,	and	the	tweets	and	authors	are	revealed	on	hovering	over	these	points.	We	will	go
through	three	steps	to	build	this	interactive	visualization:

1.	 Create	the	background	world	map	by	first	loading	a	dictionary	of	all	the	world
country	boundaries	defined	by	their	respective	longitude	and	latitudes.

2.	 Load	the	important	tweets	we	wish	to	geo-locate	with	their	respective	coordinates
and	authors.

3.	 Finally,	scatter	plot	on	the	world	map	the	tweets	coordinates	and	activate	the	hover
tool	to	visualize	interactively	the	tweets	and	author	on	the	highlighted	dots	on	the
map.

In	step	one,	we	create	a	Python	list	called	data	that	will	contain	all	the	world	countries
boundaries	with	their	respective	latitude	and	longitude:

In	[4]:

#

#	This	module	exposes	geometry	data	for	World	Country	Boundaries.

#

import	csv

import	codecs

import	gzip

import	xml.etree.cElementTree	as	et

import	os

from	os.path	import	dirname,	join

nan	=	float('NaN')

__file__	=	os.getcwd()

data	=	{}

with	gzip.open(join(dirname(__file__),	

'AN_Spark/data/World_Country_Boundaries.csv.gz'))	as	f:

				decoded	=	codecs.iterdecode(f,	"utf-8")

				next(decoded)

				reader	=	csv.reader(decoded,	delimiter=',',	quotechar='"')

				for	row	in	reader:

								geometry,	code,	name	=	row

								xml	=	et.fromstring(geometry)

								lats	=	[]

								lons	=	[]

								for	i,	poly	in	

enumerate(xml.findall('.//outerBoundaryIs/LinearRing/coordinates')):

												if	i	>	0:

																lats.append(nan)

																lons.append(nan)

												coords	=	(c.split(',')[:2]	for	c	in	poly.text.split())

												lat,	lon	=	list(zip(*[(float(lat),	float(lon))	for	lon,	lat	in

																coords]))

												lats.extend(lat)

												lons.extend(lon)



								data[code]	=	{

												'name'			:	name,

												'lats'			:	lats,

												'lons'			:	lons,

								}

In	[5]:

len(data)

Out[5]:

235

In	step	two,	we	load	a	sample	set	of	important	tweets	that	we	wish	to	visualize	with	their
respective	geo-location	information:

In	[69]:

#	data

#

#

In	[8]:

import	pandas	as	pd

csv_in	=	'/home/an/spark/spark-1.5.0-bin-

hadoop2.6/examples/AN_Spark/data/spark_tweets_20.csv'

t20_df	=	pd.read_csv(csv_in,	index_col=None,	header=0,	sep=',',	

encoding='utf-8')

In	[9]:

t20_df.head(3)

Out[9]:

				id		created_at		user_id					user_name			tweet_text		htag				urls				

ptxt				tgrp				date				user_handles				txt_terms			search_grp		lat					lon

0			638818911773856000		Tue	Sep	01	21:01:11	+0000	2015		2511247075		Noor	

Din				RT	@kdnuggets:	R	leads	RapidMiner,	Python	catc…			[#KDN]		

[://t.co/3bsaTT7eUs]				r	leads	rapidminer	python	catches	up	big	data…			

[spark,	python]					2015-09-01	21:01:11					[@kdnuggets]				r	leads	

rapidminer	python	catches	up	big	data…			[spark,	python]					37.279518			

-121.867905

1			622142176768737000		Fri	Jul	17	20:33:48	+0000	2015		24537879				IBM	

Cloudant				Be	one	of	the	first	to	sign-up	for	IBM	Analyti…			

[#ApacheSpark,	#SparkInsight]			[://t.co/C5TZpetVA6,	://t.co/R1L29DePaQ]				

be	one	of	the	first	to	sign	up	for	ibm	analyti…			[spark]					2015-07-17	

20:33:48					[]		be	one	of	the	first	to	sign	up	for	ibm	analyti…			[spark]					

37.774930			-122.419420

2			622140453069169000		Fri	Jul	17	20:26:57	+0000	2015		515145898			Arno	

Candel					Nice	article	on	#apachespark,	#hadoop	and	#dat…			[#apachespark,	

#hadoop,	#datascience]			[://t.co/IyF44pV0f3]				nice	article	on	

apachespark	hadoop	and	datasci…			[spark]					2015-07-17	20:26:57					

[@h2oai]				nice	article	on	apachespark	hadoop	and	datasci…			[spark]					

51.500130			-0.126305

In	[98]:

len(t20_df.user_id.unique())

Out[98]:

19

In	[17]:

t20_geo	=	t20_df[['date',	'lat',	'lon',	'user_name',	'tweet_text']]

In	[24]:

#	

t20_geo.rename(columns={'user_name':'user',	'tweet_text':'text'	},	

inplace=True)



In	[25]:

t20_geo.head(4)

Out[25]:

				date				lat					lon					user				text

0			2015-09-01	21:01:11					37.279518			-121.867905					Noor	Din				RT	

@kdnuggets:	R	leads	RapidMiner,	Python	catc…

1			2015-07-17	20:33:48					37.774930			-122.419420					IBM	Cloudant				Be	

one	of	the	first	to	sign-up	for	IBM	Analyti…

2			2015-07-17	20:26:57					51.500130			-0.126305			Arno	Candel					Nice	

article	on	#apachespark,	#hadoop	and	#dat…

3			2015-07-17	19:35:31					51.500130			-0.126305			Ira	Michael	Blonder					

Spark	101:	Running	Spark	and	#MapReduce	togeth…

In	[22]:

df	=	t20_geo

#

In	step	three,	we	first	imported	all	the	necessary	Bokeh	libraries.	We	will	instantiate	the
output	in	the	Jupyter	Notebook.	We	get	the	world	countries	boundary	information	loaded.
We	get	the	geo-located	tweet	data.	We	instantiate	the	Bokeh	interactive	tools	such	as
wheel	and	box	zoom	as	well	as	the	hover	tool.

In	[29]:

#

#	Bokeh	Visualization	of	tweets	on	world	map

#

from	bokeh.plotting	import	*

from	bokeh.models	import	HoverTool,	ColumnDataSource

from	collections	import	OrderedDict

#	Output	in	Jupiter	Notebook

output_notebook()

#	Get	the	world	map

world_countries	=	data.copy()

#	Get	the	tweet	data

tweets_source	=	ColumnDataSource(df)

#	Create	world	map	

countries_source	=	ColumnDataSource(data=	dict(

				countries_xs=[world_countries[code]['lons']	for	code	in	

world_countries],

				countries_ys=[world_countries[code]['lats']	for	code	in	

world_countries],

				country	=	[world_countries[code]['name']	for	code	in	world_countries],

))

#	Instantiate	the	bokeh	interactive	tools	

TOOLS="pan,wheel_zoom,box_zoom,reset,resize,hover,save"

We	are	now	ready	to	layer	the	various	elements	gathered	into	an	object	figure	called	p.
Define	the	title,	width,	and	height	of	p.	Attach	the	tools.	Create	the	world	map	background
by	patches	with	a	light	background	color	and	borders.	Scatter	plot	the	tweets	according	to
their	respective	geo-coordinates.	Then,	activate	the	hover	tool	with	the	users	and	their
respective	tweet.	Finally,	render	the	picture	on	the	browser.	The	code	is	as	follows:



#	Instantiante	the	figure	object

p	=	figure(

				title="%s	tweets	"	%(str(len(df.index))),

				title_text_font_size="20pt",

				plot_width=1000,

				plot_height=600,

				tools=TOOLS)

#	Create	world	patches	background

p.patches(xs="countries_xs",	ys="countries_ys",	source	=	countries_source,	

fill_color="#F1EEF6",	fill_alpha=0.3,

								line_color="#999999",	line_width=0.5)

#	Scatter	plots	by	longitude	and	latitude

p.scatter(x="lon",	y="lat",	source=tweets_source,	fill_color="#FF0000",	

line_color="#FF0000")

#	

#	Activate	hover	tool	with	user	and	corresponding	tweet	information

hover	=	p.select(dict(type=HoverTool))

hover.point_policy	=	"follow_mouse"

hover.tooltips	=	OrderedDict([

				("user",	"@user"),

			("tweet",	"@text"),

])

#	Render	the	figure	on	the	browser

show(p)

BokehJS	successfully	loaded.

				

inspect

				

#

#

The	following	code	gives	an	overview	of	the	world	map	with	the	red	dots	representing	the
locations	of	the	tweets’	origins:



We	can	hover	on	a	specific	dot	to	reveal	the	tweets	in	that	location:



We	can	zoom	into	a	specific	location:

Finally,	we	can	reveal	the	tweets	in	the	given	zoomed-in	location:





Displaying	upcoming	meetups	on	Google	Maps
Now,	our	objective	is	to	focus	on	upcoming	meetups	in	London.	We	are	mapping	three
meetups	Data	Science	London,	Apache	Spark,	and	Machine	Learning.	We	embed	a
Google	Map	within	a	Bokeh	visualization	and	geo-locate	the	three	meetups	according	to
their	coordinates	and	get	information	such	as	the	name	of	the	upcoming	event	for	each
meetup	with	a	hover	tool.

First,	import	all	the	necessary	Bokeh	libraries:

In	[	]:

#

#	Bokeh	Google	Map	Visualization	of	London	with	hover	on	specific	points

#

#

from	__future__	import	print_function

from	bokeh.browserlib	import	view

from	bokeh.document	import	Document

from	bokeh.embed	import	file_html

from	bokeh.models.glyphs	import	Circle

from	bokeh.models	import	(

				GMapPlot,	Range1d,	ColumnDataSource,

				PanTool,	WheelZoomTool,	BoxSelectTool,

				HoverTool,	ResetTool,

				BoxSelectionOverlay,	GMapOptions)

from	bokeh.resources	import	INLINE

x_range	=	Range1d()

y_range	=	Range1d()

We	will	instantiate	the	Google	Map	that	will	act	as	the	substrate	upon	which	our	Bokeh
visualization	will	be	layered:

#	JSON	style	string	taken	from:	https://snazzymaps.com/style/1/pale-dawn

map_options	=	GMapOptions(lat=51.50013,	lng=-0.126305,	map_type="roadmap",	

zoom=13,	styles="""

[{"featureType":"administrative","elementType":"all","stylers":

[{"visibility":"on"},{"lightness":33}]},

	{"featureType":"landscape","elementType":"all","stylers":

[{"color":"#f2e5d4"}]},

	{"featureType":"poi.park","elementType":"geometry","stylers":

[{"color":"#c5dac6"}]},

	{"featureType":"poi.park","elementType":"labels","stylers":

[{"visibility":"on"},{"lightness":20}]},

	{"featureType":"road","elementType":"all","stylers":[{"lightness":20}]},

	{"featureType":"road.highway","elementType":"geometry","stylers":

[{"color":"#c5c6c6"}]},

	{"featureType":"road.arterial","elementType":"geometry","stylers":

[{"color":"#e4d7c6"}]},

	{"featureType":"road.local","elementType":"geometry","stylers":

[{"color":"#fbfaf7"}]},

	{"featureType":"water","elementType":"all","stylers":[{"visibility":"on"},

{"color":"#acbcc9"}]}]



""")

Instantiate	the	Bokeh	object	plot	from	the	class	GMapPlot	with	the	dimensions	and	map
options	from	the	previous	step:

#	Instantiate	Google	Map	Plot

plot	=	GMapPlot(

				x_range=x_range,	y_range=y_range,

				map_options=map_options,

				title="London	Meetups"

)

Bring	in	the	information	from	our	three	meetups	we	wish	to	plot	and	get	the	information
by	hovering	above	the	respective	coordinates:

source	=	ColumnDataSource(

				data=dict(

								lat=[51.49013,	51.50013,	51.51013],

								lon=[-0.130305,	-0.126305,	-0.120305],

								fill=['orange',	'blue',	'green'],

								name=['LondonDataScience',	'Spark',	'MachineLearning'],

								text=['Graph	Data	&	Algorithms','Spark	Internals','Deep	Learning	on	

Spark']

				)

)

Define	the	dots	to	be	drawn	on	the	Google	Map:

circle	=	Circle(x="lon",	y="lat",	size=15,	fill_color="fill",	

line_color=None)

plot.add_glyph(source,	circle)

Define	the	stings	for	the	Bokeh	tools	to	be	used	in	this	visualization:

#	TOOLS="pan,wheel_zoom,box_zoom,reset,hover,save"

pan	=	PanTool()

wheel_zoom	=	WheelZoomTool()

box_select	=	BoxSelectTool()

reset	=	ResetTool()

hover	=	HoverTool()

#	save	=	SaveTool()

plot.add_tools(pan,	wheel_zoom,	box_select,	reset,	hover)

overlay	=	BoxSelectionOverlay(tool=box_select)

plot.add_layout(overlay)

Activate	the	hover	tool	with	the	information	that	will	be	carried:

hover	=	plot.select(dict(type=HoverTool))

hover.point_policy	=	"follow_mouse"

hover.tooltips	=	OrderedDict([

				("Name",	"@name"),

				("Text",	"@text"),

				("(Long,	Lat)",	"(@lon,	@lat)"),

])

show(plot)



Render	the	plot	that	gives	a	pretty	good	view	of	London:

Once	we	hover	on	a	highlighted	dot,	we	can	get	the	information	of	the	given	meetup:



Full	smooth	zooming	capability	is	preserved,	as	the	following	screenshot	shows:







Summary
In	this	chapter,	we	focused	on	few	visualization	techniques.	We	saw	how	to	build
wordclouds	and	their	intuitive	power	to	reveal,	at	a	glance,	lots	of	the	key	words,	moods,
and	memes	carried	through	thousands	of	tweets.

We	then	discussed	interactive	mapping	visualizations	using	Bokeh.	We	built	a	world	map
from	the	ground	up	and	created	a	scatter	plot	of	critical	tweets.	Once	the	map	was
rendered	on	the	browser,	we	could	interactively	hover	from	dot	to	dot	and	reveal	the
tweets	originating	from	different	parts	of	the	world.

Our	final	visualization	was	focused	on	mapping	upcoming	meetups	in	London	on	Spark,
data	science,	and	machine	learning	and	their	respective	topics,	making	a	beautiful
interactive	visualization	with	an	actual	Google	Map.
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