
[1]

www.allitebooks.com

http://www.allitebooks.org

Swift 2 Blueprints

Sharpen your skills in Swift by designing and deploying
seven fully-functional applications

Cecil Costa

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Swift 2 Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1211015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-076-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Cecil Costa

Reviewers
Eugene Mozharovsky

Alexey Smirnov

Jak Tiano

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Larissa Pinto

Sam Wood

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Shivani Kiran Mistry

Copy Editor
Akshata Lobo

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Cecil Costa, also known as Eduardo Campos in Latin countries, is a Euro-Brazilian
freelance developer who has been learning about computers since he got his first PC
(an AT 286) in 1990. From then on, he kept learning about programming languages,
computer architecture, and computer science theory.

Learning and teaching are his passions; this is the reason why he worked as a
trainer and an author. He has been giving on-site courses for companies such as
Ericsson, Roche, TVE (a Spanish television channel), and a lot of other companies.
He is also the author of Swift Cookbook and soon he will also write a book called
Reactive Swift Programming.

Nowadays, he teaches through online platforms, helping people from every part of
the world.

In 2008, he founded his own company, Conglomo Limited (http://www.conglomo.es/),
which offers development and training programs both on site and online.

Over his professional career, he has created projects by himself and also worked
for different companies, from small to big ones, such as IBM, Qualcomm, Spanish
Lottery, and DIA%.

He develops a variety of computer languages (such as Swift, C++, Java, Objective-C,
JavaScript, Python, and so on) in different environments (iOS, Android, Web, Mac
OS X, Linux, Unity, and so on) because he thinks that a good developer needs to
learn every kind of programming language to open his mind, and only then will he
really know what development is.

Nowadays, Cecil is based in the UK, where he is progressing in his professional
career, working with augmented reality on mobile platforms.

I would like to thank Mr Robert William Bemer for creating the
escape key and my son Gabriel Campos Oliveira for bringing
happiness to my life.

www.allitebooks.com

http://www.conglomo.es/
http://www.allitebooks.org

About the Reviewers

Eugene Mozharovsky started his computer science journey in 2010 with a school
course on programming in Pascal. Then, he explored Java for himself and it was the
whole world of object-oriented programming, a full-featured API, and powerful
client-server techniques. In 2013, he switched to Mac OS and found his true passion
in app development for Apple mobile devices. In summer 2014, he fell in love with
Swift and iOS 8 beta and is currently working on a handy social app. When he
doesn't code, he tries to systematize physics for his own understanding of how the
Universe works or train his exotic parrots.

Alexey Smirnov works as a software engineer at a small start up company called
iRONYUN (http://ironyun.com). In his spare time, he enjoys building iOS apps
using Objective-C and Swift. Alexey got his master's degree in computer science
from Stony Brook University, USA.

Jak Tiano is a mobile designer and programmer. He specializes in mobile game
development using Unity3D, but also works with countless other engines. He has
been developing iOS applications since 2008, and has been all-in on Swift since its
release in 2014. He works as a freelance mobile developer, and co-runs not a hipster
coffee shop, an independent game studio in Burlington, VT.

I'd like to thank the great people at Packt for giving me the
opportunity to contribute to this book and Taylor Swift for
frequently providing the background music for my review sessions.

www.allitebooks.com

http://ironyun.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Exploring Xcode	 1

Keyboard shortcuts	 2
Versioning your project	 7
Testing with Playground	 10
Debugging	 13
New Swift features	 18
Some final comments	 19
Summary	 23

Chapter 2: Creating a City Information App with
Customized Table Views	 25

Project overview	 26
Setting it up	 26
The first scene	 32
Displaying the cities' information	 40
Coding the initial view controller	 45
Adding the page view controller	 49
Displaying the Wikipedia information	 51
Displaying weather forecasts	 56
Retrieving some pictures	 64
Summary	 69

Chapter 3: Creating a Photo Sharing App	 71
Project overview	 72
The camera	 72
Custom UIView	 72
The social framework	 72
Creating the app	 74

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating a view to draw on it	 78
Developing the edition space	 83
Publishing your picture	 90
Summary	 93

Chapter 4: Simulating Home Automation with HomeKit	 95
Project overview	 95
Preparing yourself for HomeKit	 96

Downloading the HomeKit Accessory Simulator	 96
Creating accessories	 97
Creating the app	 101
The first scene	 102
Creating an accessory class	 107

Building view controllers with HomeKit	 112
GarageDoorViewController	 112
Garage layout	 114
Building the living room	 117
The door lock view controller	 120
FanViewController	 122
AquariumViewController	 124
The final storyboard	 125

Summary	 130
Chapter 5: Health Analyzing App Using HealthKit	 131

Project overview	 131
The setup	 132
Creating helpers	 133
Asking permission	 134
Displaying and saving the user's health data	 137
Checking your health record	 146
Charts on the storyboard	 156
Summary	 158

Chapter 6: Creating a Game App Using SpriteKit	 159
Project overview	 160
The setup	 160

Changing the current code	 164
Adding a character and some waves	 167
Creating some enemies	 170
Checking for collisions	 178
Losing lives	 179

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Fixing the score counter	 180
Moving the dinosaur	 181
The final action	 185

Summary	 186
Chapter 7: Creating an Apple Watch App	 187

Project overview	 188
Setting it up	 188
The iOS app	 190
The models	 192
A scene to add supplies	 197
Displaying the fridge's status	 204
Going to the supermarket	 208
The WatchApp	 214
Communicating with the iOS app	 219
Displaying the map on the watch	 226
The glance	 228
Summary	 230

Chapter 8: AVFoundation	 233
Getting a project overview	 233
Setting up the app	 234
Storing some asset information	 235
Listing videos	 238
Recording	 242
Improving the usability	 251
Summary	 253

Index	 255

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Swift, a relatively new computer language created by Apple Computers and its
version 2 was already released. This programming language is gradually gaining
features, performance, and stability. This book shows you how to create different
apps using different frameworks. Thus, after reading this book, you will have a big
skill set for Swift development.

What this book covers
Chapter 1, Exploring Xcode, explores some features of Xcode. It gives you some tips on
how to debug and develop more quickly.

Chapter 2, Creating a City Information App with Customized Table Views, shows you how
to create an app with different scenes and table views, retrieving information from
the Internet. Here, you will learn how to use SwiftyJSON, a framework that allows
you to work with JSON messages very easily.

Chapter 3, Creating a Photo Sharing App, will show you how to use the camera, edit
your photo, and share it with your friends using the social framework.

Chapter 4, Simulating Home Automation with HomeKit, will show you how to simulate
a house with its devices, create an app that retrieves your devices' information,
and also change their state. This kind of app will be popular very soon due to the
popularity of the Internet of Things (IoT).

Chapter 5, Health Analyzing App Using HealthKit, will teach you how to use HealthKit.
Here, you are going to do some queries to receive and update the user's health data.
You will appreciate a different way of treating the data as it needs to be converted
into your favorite unit. Besides this, you will learn a third-party framework called iOS
Chart. Here, you will be able to display some charts to the user to check their progress.

Preface

[vi]

Chapter 6, Creating a Game App Using SpriteKit, is a chapter for those who like playing
games on their phones. It is even more fun when you learn how to create your game,
mainly if it is with SpriteKit, a framework that is very easy to follow and made for
developing 2D games. We will develop a game based on a surfer dinosaur that needs
to dodge the enemies. To move the character, we will use the accelerometer sensor.

Chapter 7, Creating an Apple Watch App, shows us how to create an app that controls
our fridge. We can check our Apple Watch for the amount of food that we still have.
This app also helps us display the route on the map to the supermarket.

Chapter 8, AVFoundation, shows how your phone, besides recording videos, can also
edit them. Here, we are going to use a low-level framework called AVFoundation
to change the audio of an existing video from the photos gallery. To do this app, we
will also need some help from the photos framework.

What you need for this book
As you are developing iOS apps, you will need a relatively new Apple computer
with OS X Yosemite (10.10) or above, Xcode 6 or above, and for some chapters,
a physical Apple mobile device would be needed, because some features are not
supported by the simulator. A few cases will require you to be enrolled in the
Apple Developer Program due to the requirement of some capabilities. An Internet
connection is also required for some chapters.

Who this book is for
You! That's right, if you are an iOS developer and you want to do some real-life
examples using the Swift programming language. If you are willing to learn a big
variety of iOS frameworks, this is the right book for you, as we are going to develop
seven apps using different frameworks.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
Now it time to develop the viewDidLoad method."

Preface

[vii]

A block of code is set as follows:

class Person{
 var name:String
 var age:Int
 init(name: String, age:Int) {
 self.name = name
 self.age = age
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

class Person{
 var name:String
 var age:Int
 var address:String
 init(name: String, age:Int) {
 self.name = name
 self.age = age
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[viii]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/Swift_2_Blueprints_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Swift_2_Blueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Swift_2_Blueprints_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Exploring Xcode
Programming is not only about code, it is also about methodology. It doesn't
matter how many years you've been programming with Xcode, there is always a
new feature that can speed up your development, mainly nowadays that there is a
new version every few months. Don't forget that Swift is a new language created
to replace the old Objective-C, which means that Xcode also needs to adopt new
features for this new programming language.

This book is about creating applications with the Swift programming language using
Xcode 6 as an IDE. The idea behind these apps is to show how to create different
kinds of real apps from scratch and this chapter presents with you some tricks on
how to use Xcode.

Even if you are already a developer with years of experience in Xcode, it is worth
reading this chapter because there is always a different way to do a task and it can be
very helpful. So, let's start reviewing some Xcode and Swift features. In this chapter,
we will cover:

•	 Keyboard shortcuts
•	 Versioning your project
•	 Testing with Playground
•	 Debugging
•	 New Swift features
•	 Some final comments

Exploring Xcode

[2]

Keyboard shortcuts
Have you ever thought of how much time a developer expends in moving the mouse
pointer? It can be a lot of time. How about reducing some time by memorizing a few
key combinations. Of course, don't expect to memorize all of them in a day. You can
practice them when it is necessary; you will see that, after a while, you will save a lot
of time. Of course, command + X, command + C, command + V, and command + Q are
not going to be mentioned for they are assumed to be known.

The first shortcut we are going to learn is command + B, which is to build the solution
without running it on the device or simulator. This key combination is very useful
when you want to check whether the project has any errors, but you don't want to
waste time installing the app.

Sometimes, mainly when you have Swift and C on the same project, the compiler
caches the object files wrongly, so the best solution would be to clean everything
up and recompile again. To clean your entire project, use the command + shift + K
combination. Cleaning is a fast process, nevertheless, you have to remember that
afterward you need to rebuild your project, which might take a while.

If you want to build your product and run it, you have two options. The first is
command + R that compiles your project if it is necessary and installs it on the device
or simulator; this combination is equivalent to pressing play on the left-hand side of
the toolbar. The second option is control + command + R, which installs the last build
but doesn't rebuild the project; it is very handy when your project takes a long time
to compile and you just want to reinstall it again for testing.

Now, let's learn some key combinations that will affect Xcode, visually speaking.
On the left-hand side, we have the Navigator. As you know, here is where you can
access the project files, the search results, and the compilation status. The following
screenshot shows a sample of the Navigator:

Chapter 1

[3]

If you need more visual space, you can hide the Navigator area with command + 0, or
you can show this area using the same combination. It is very useful when you have
a small screen like a MacBook screen and you need to work with the interface builder
or Playground.

As you can see, there is a bar on the top (called the Navigator bar), which allows
you to access different sections of the Navigator. You can click on each icon or
you can save some time by pressing command + a number from 1 to 8, 1 being the
project navigator (folder icon), 2 the symbol navigator, and so on till 8, which is the
report navigator.

Every Navigator section has a text field at the bottom to filter the content that is
being displayed on the Navigator. You can reach this text field very fast by using
the command + option + J combination. So, based on the previous combination, when
you need to access a file, you can go to the project navigator by pressing command + 1
followed by command + option + J.

To finish with the Navigator area, you should know that you have a shortcut to go to
the project navigator and highlight the current file, it is command + shift + J.

www.allitebooks.com

http://www.allitebooks.org

Exploring Xcode

[4]

The area on the right-hand side is called the Utility area and its combinations are
similar to the Navigator area. This area can be hidden or shown with command +
option + 0, its sections can be accessed with command + option + a number from 1 to 6,
and its filter can be reached with command + option + L. The following screenshot is a
sample of the Utility area:

Chapter 1

[5]

The area located between the Navigators and the Utility area at the bottom of the
Xcode screen is called the Debug area. This area can be shown or hidden with
command + shift + Y. Here, you have some debug combinations like command + Y
to enable or disable breakpoints or pause or resume the application with control +
command + Y. There are more debugging keyboard shortcuts; as they require the use
of fn keys (F6, F7, F8), it can be complicated according to your keyboard. Here, you
have a sample of the Debug area:

Now, the central area, which is the most important one, is called the Editor area.
Here, as you know, is where you type your code. Scrolling up and down could waste
a lot of time, so let's learn some shortcuts that will make us find our code faster. The
first combination is command + F that opens a text field to search in the current file.

When you need to search in the whole project, you can use the command + shift +
F combination, which is much faster than a click on the loupe icon and a click on
the text field. Another similar combination is command + shift + O (letter O, not the
number zero), which is called Open Quickly…. This combination opens a text field
in front of your editor area and allows you to search for symbols. It also allows you
to type the first letter of each symbol word, like the following example in which NSHD
was typed and it was able to find NSHomeDirectory.

Exploring Xcode

[6]

Open Quickly searches for symbols in the current project and also inside the
frameworks. But if you like to jump to a symbol (method, property, global variable,
and so on), you can use control + 6 as it opens the combo box that is located at the top
of the editor area like in the following screenshot:

To navigate through the files you've been using, you can use control + command + ←
to go to the previous files or control + command + → for the next one. Alternatively,
you can slide with two fingers on use the touch pad if you have one.

When you have a code that is quite difficult to understand because it is not
well-formatted, you can use the control + I combination. If you have selected
some lines, only these lines will be arranged. If no line is selected, then the current
line of code will be formatted.

To finish this shortcuts section, it is worth mentioning that you have command + \ to
toggle breakpoints and command + / to toggle the selected line comments.

Don't worry if you think that there are too many combinations to memorize or if
some of them are hard to do, you can always check the combination and customize it
if you want by opening the Xcode menu, selecting preferences, and opening the Key
Bindings section like in the following screenshot:

Chapter 1

[7]

Bear in mind while customizing your shortcuts that when
you work on another computer, you will have to set them
up again.

Versioning your project
Every project should have a version control system, even if you are the only
developer. Xcode works with Git as a default VCS, which has a special way
of working.

Firstly, you have to know that Xcode offers you just the basic usage of Git; there are
times when you might need to use the command line.

Exploring Xcode

[8]

You can use Git in two ways: locally only or remote and locally. The first one
is usually done by single developers and can be done very easily by checking
this option when you have to select a folder for your new project. The following
screenshot shows the option that needs to be checked in the file dialog:

The second way of working with Git is to use it remotely and locally. What does it
mean? It means that you can create versions of your code locally and when you think
that it is ready to be shared with the other members of the team, you can send it to
the server. To do so, you have to configure a server by yourself or you can use this
service from a third-party company, such as GitHub or BitBucket.

Recently, Apple announced the Xcode server, where you can configure
your Git server and also a continuous integration system. Explaining
how to configure this server can be very exhausting and is out of the
scope of this book. However, if you would like to create your own
server, you can have a look at this possibility.

As a developer what you need to work with a remote repository is its URL. You have
to request it to the system administrator or you can copy it from the website where
you created it. GitHub, for example, shows it on the right-hand side with a button to
copy the URL on the clipboard, as you can see in the following screenshot:

Chapter 1

[9]

Once you have the URL, you can check it out by selecting the Check out an existing
project option on the start up screen, as shown in the following screenshot. Or, you
can click on the Source Control menu and select the Check out... option.

Once you have your project checked out and have started working on it, it doesn't
matter whether it was created from a server or locally only. You will notice that
when a file is modified, letter M will appear next to your file name on the project
navigator. Letter A will also appear when a new file is added to the project. The next
screenshot shows a sample of some files that were added or modified:

Exploring Xcode

[10]

Note that letter M can also appear next to your project; it means that something in
the project.pbxproj file, which is inside of your project package. This file contains
the information of your project like the source code files with their path and the
settings; hence, you have to deliver it every time you add a file or change any setting.

To commit the modified and new files, you just need to use the command + option + C
key combination. A dialog asking for a description of the modifications will appear,
leave a message in a way that another developer understands what was done.

Avoid committing without leaving a comment, or just leaving a
nonexpressive comment like "modifications." Comments are very
useful to check the project's progress and fix bugs.

These commits are done locally by default. It means that only your computer knows
about your modifications. If you want to send your commits to the server, don't
forget to check the option that is under the comment box, as it is demonstrated in the
next screenshot:

The other way around, which means receiving updates from the server, is called
pull. To do a pull from the server, you just need to press the command + option + X
combination key.

Testing with Playground
Playground is a new Xcode 6 feature that allows the programmer to see the Swift
code result before it is added to the project. This way, you can test your code
separately from the project, receive real-time execution and feedback, and apply it
when you are really convinced.

You can use Playground as if it were a separate project by navigating to File | New
| Playground…. This way, you can do your tests without saving it with the rest of
the project.

Chapter 1

[11]

The other use of Playground is to add it to your project, so you can save your tests
with your project. To do this, just add a new file with command + N, select the iOS
Source section, and select Playground, as shown in the following screenshot:

Even if Playground is inside your project or workspace, it won't be able to use your
project classes. It means that you might have to copy some files into your Playground
and be aware of the modifications, as they are considered to be different containers
with their own dependencies.

Don't use Playground to benchmark or test sensors. It
wasn't done for this purpose.

Let's make a sample to create a customized view with Playground. We will create a
class called CustomView, which inherits from UIView. Add a yellow background and
a red border. Place the following code to start testing with Playground:

class CustomView: UIView {
 override init(frame: CGRect) {
 super.init(frame: frame)

 self.layer.borderColor = UIColor.redColor().CGColor

Exploring Xcode

[12]

 self.backgroundColor = UIColor.yellowColor()
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
}

Just below the code, you can create a frame and instantiate it:

var frame = CGRectMake(0, 0, 100, 100)
var myView = CustomView(frame: frame)

On the right-hand side, you will see the word CustomView appear. Move the mouse
over this word and you will see two small icons appear. One of them is an eye called
Quick Look. If you click on it, an image of your view will be displayed, as you can
see in the following screenshot:

Here, for example, we can see that something is missing: the red border! The reason
is that we are yet to set its width. Let's return to the initializer and add a border to
our view:

 super.init(frame: frame)
 self.layer.borderWidth = 2
 self.layer.borderColor = UIColor.redColor().CGColor

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Chapter 1

[13]

Now, you can check your view again using Quick Look. But if you want to get faster
results, you can click on the circle icon that is to the right of the Quick Look icon. You
will see your square under its declaration. Have a look at the following screenshot to
see the expected result:

Let's make another change and see how fast Playground gives us results. Add a
round corner to your view with the following code:

self.layer.cornerRadius = 15

As you could see, the Playground took approximately 1 second, as it needs to
recompile the code, execute it, and retrieve the result. Don't think about what the
sample does by itself. What you do have to think about is how much time you
expend testing it on an app every time you have a change and how much time
you expend testing it on Playground.

For more information on how to use Playground, you
can read Swift Cookbook by Packt Publishing.

Debugging
Debugging is an everyday task for a developer that is usually done to fix a bug.
There is no right or wrong way for debugging, and there is no formula to find where
the issue is. On the other hand, we have some tricks that can help us find where the
bug is. In this section, you are going to see some of them. They can be very useful if
you would like to modify any app in this book and you don't get the expected result.

www.allitebooks.com

http://www.allitebooks.org

Exploring Xcode

[14]

First of all, let's see a common problem. Swift was created to be compatible with
Objective-C and Objective-C in its early days was created to be some kind of
Smalltalk over the C layer. The idea at that time was to create a language where
containers and functions didn't need to be of only a specific type like an array of
integers, even the value returned from a function could be of any type. You can see,
for example, NSArray, NSDictionary, and NSSet that can store NSString, NSNumber,
and the objects of any other class in the same container.

How Swift receives this kind of information? One way is by using generics but,
usually, they are received as AnyObject. Sometimes, the debugger is not able to show
you the right variable type. For a better example, have a look at the following code:

var request = NSURLRequest(URL: NSURL(string:
"http://date.jsontest.com/")!)
NSURLSession.sharedSession().dataTaskWithRequest(request) { (data,
response, error) -> Void in
 var json = NSJSONSerialization.JSONObjectWithData(data,
 options: .MutableContainers, error: nil)
 // json Type???
}.resume()

In this case, you can ask yourself what is the JSON variable type? Of course, the first
step is to check the debugger information, but you might get some information like
the following one:

Chapter 1

[15]

You can check with the is operator like if json is Int, but it can be very
exhausting and, sometimes, even impossible. For scenarios like this, you can use the
_stdlib_getDemangledTypeName function, which displays the variable type name.
In this case, we can add the following println instruction to our code, as it is shown
in the next code:

 var json = NSJSONSerialization.JSONObjectWithData(data,
 options: .MutableContainers, error: nil)
 println("json variable type: \(
 _stdlib_getDemangledTypeName(json!))")
}.resume()

Now, you can see on the log console that, in this case, it is a dictionary as follows:

In Swift 2, many functions have changed their input or
output header from AnyObject to a specific type, making
life easier for developers.

Another important thing to bear in mind is lldb, which is the debugger command
line. It can look complex and not much intuitive, but when you get used to it, it
is very useful and logical. For example, you can set breakpoints using a pattern
like br s -r viewDid* to add breakpoints in functions like viewDidLoad and
viewDidAppear.

Of course, there are tasks that you can do with lldb and also with Xcode like using
the lldb command po [[UIWindow keyWindow] recursiveDescription], which
gives you the window view hierarchy, or simply using the new Debug View
Hierarchy button (displayed next) that comes since Xcode 6, which gives you 3D
information on the current view.

Exploring Xcode

[16]

Once it is pressed, you can rotate the image and have an output similar to the
following screenshot:

Chapter 1

[17]

A very common problem in our apps is the excess of memory usage. When we start
receiving memory warnings, we need to check the amount of memory that is being
increased in some parts of our code. To do it, just keep a function to retrieve the
memory whenever you want. The following code is valid to retrieve the amount of
memory that is being consumed:

func getMemoryUsage() -> mach_vm_size_t{
 let MACH_TASK_BASIC_INFO_COUNT =
 sizeof(mach_task_basic_info_data_t) / sizeof(natural_t)

 let flavor = task_flavor_t(MACH_TASK_BASIC_INFO)
 var size =
 mach_msg_type_number_t(MACH_TASK_BASIC_INFO_COUNT)
 var pointer =
 UnsafeMutablePointer<mach_task_basic_info>.alloc(1)
 let kerr = task_info(mach_task_self_, flavor,
 UnsafeMutablePointer(pointer), &size)
 let info = pointer.move()

 pointer.dealloc(1)

 if kerr == KERN_SUCCESS {
 return info.resident_size
 } else {
 let message = String(CString: mach_error_string(kerr),
 encoding: NSASCIIStringEncoding)!
 fatalError(message)
 }
}

Then, call this function in some parts of your code where you think there is memory
wastage and print it like the following code:

println("File: \(__FILE__) at line \(__LINE__) memory usage
\(getMemoryUsage())")

There are third-party products that can also help you to debug
your app like Fabric (http://www.fabric.io) that sends
reports on user crashes to the developer.

http://www.fabric.io

Exploring Xcode

[18]

New Swift features
Swift is a new language, but it has been changed a few times. While this book was
being written, Swift had passed through the 1.2 and 2.0 versions. These versions
have some syntax differences compared to the previous ones.

Before the Swift 1.2 version, you couldn't use more than one let statement on an if
statement, so you probably had to write codes like the following one:

 if let name = product.name {
 if let category = product.category{
 if let price = product.price {
 if price >= 0 {
 println("The product is valid")
 }
 }
 }
 }

Now, you can reduce the number of lines and write a code like the next one:

 if let name = product.name,
 category = product.category,
 price = product.price where price >= 0 {
 println("The product is valid")
 }

Constants can be initialized after their declaration and before using them, like the
following code:

 let discount:Double
 if onSale {
 discount = 0.2
 }else {
 discount = 0
 }

Downcasts and casts that don't return options must use the as! operator instead
of the old as operator. It means that the casting from typical functions that return
AnyObject must use the new operator. For example, the call to retrieve the index
paths of a table view will be as follows:

var paths = tableView.indexPathsForRowsInRect(rect) as!
[NSIndexPath]

Chapter 1

[19]

If you have a huge project done with the first Swift version, you might be scared
about the number of errors you have for small things like using the new as!
operator. Fortunately, there is an option to update our Swift code in the Edit menu in
order to convert our code to the latest Swift version syntax, as it is demonstrated in
the following screenshot:

When Swift was announced, it brought with itself new data types that replaced
the equivalent Objective-C containers, such as Array for NSArray, String to replace
NSString, and Dictionary for NSDictionary, but there was a missing type: NSSet.
Now, there is Set that follows the same rule as its colleagues: it must specify the data
type that it will store (generics) and it is interchangeable with NSSet.

A new attribute was introduced in the Swift language, it is called final. If you have
a final class, no class can inherit from it. If you have an attribute or a method, you
can't override it.

Some final comments
Working with someone else's code might be a difficult task; you have to figure out
what is the logic of the previous developer and how you could change the code to fix
a bug, for example. This is the reason why developers must think like a team, act as
a team, and work in a team. What does this mean? As a part of our tasks, we should
help the next developer by adding comments for them. Swift has its own features
based on comments.

Firstly, an interesting part is that Swift allows nested multiline comments. It means
that a comment like the following one is not going to stop before println like the
other languages do:

 /*
 This code was removed due to it is a bit buggy
 /*
 for i in myArray {
 object.process(i)
 }
 */
 println(myObject.description)
 */

Exploring Xcode

[20]

Another good thing that we could do with comments is to mark the current state of
development. This is equivalent to the #pragma preprocessor in Objective-C. Let's
start with // MARK: -, this allows us to add a title before each section of our class.
For example, imagine that we have a big class, so we can use this mark to show
which methods belong to the base class, which ones belong to the delegates, and
which ones are private methods. In this case, we would have a code similar to the
following one:

 // MARK: - Overriden functions
 override func viewDidLoad() {
 super.viewDidLoad()
 //…
 }
 // continue overriding some methods
 // MARK: - Delegates
 func tableView(tableView: UITableView, willDisplayCell cell:
 UITableViewCell, forRowAtIndexPath indexPath: NSIndexPath){
 //…
 }
 // continue writing some delegates methods
 // MARK: - private methods
 private func createTitle(cellNumber: Int) -> String {
 //…

In this case, when you click on the editor's combo box (or press control + 6 as we
learned before), you might see a combo similar to the following screenshot:

Chapter 1

[21]

This kind of mark can also be used to reach a differentiated code (something you
might check frequently) but, in this case, it is recommended to use it without the
dash character, something like // MARK: Important code, and it can be done
anywhere, even in half a function. Removing the dash from // MARK: removes the
dividing line in the combo box.

When you have an incomplete code or task, you can mark it with // TODO:, meaning
that something is pending in this area. For example, imagine that there is a code that
is hardcoded and it is desired to load the information from a configuration file. You
might have a code similar to the following:

// TODO: Retrieve this IP address from the configuration file
return "192.168.20.21"

The next mark we have is // FIXME:, it represents that this part of the code has a
known issue and it should be fixed. Something like the following:

// FIXME: The app hangs when there is not internet connection
myconnection.retrieveInformationFromServer()

Try to search for TODO: and FIXME: frequently or do a script
that searches for them. There are times when there are too
many codes to fix and nobody cares about it.

While you finish this part, don't forget that a well-documented code is a helpful code.
When you hold the option key and click over a symbol, you will see some information
on that symbol, like the NSURLRequest box shown in the following screenshot:

You can display equivalent information from your classes, methods, and properties
by using HereDoc. The idea is very simple; you can take advantage of the comments
by starting with ///, followed by its description as follows:

/// A class that represents a garage with its cars
class Garage {

Exploring Xcode

[22]

Of course, this format is fine when the description is short. However, if you need
to write a more exhaustive description, you'd better use the multiline comments
starting with /** and closing it with */.

You can also describe the arguments and the value returned with :param: and
:returns: as shown in the following code:

 /**
 Sell a product and remove it from the current stock.

 Remember that:

 - The product must be available
 - the quantity can't be 0 or negative

 :param: product The product you are selling
 :param: quantity Number of units or kilos to sell
 :returns: if the purchase was done correctly
 */
 func sellProduct (product: Product, quantity: Int) -> Bool{

For example, this code will generate the following box:

You can check for more information on HereDoc at https://
developer.apple.com/library/mac/documentation/
DeveloperTools/Conceptual/HeaderDoc/intro/intro.
html#//apple_ref/doc/uid/TP40001215-CH345-SW1.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html#//apple_ref/doc/uid/TP40001215-CH345-SW1
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html#//apple_ref/doc/uid/TP40001215-CH345-SW1
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html#//apple_ref/doc/uid/TP40001215-CH345-SW1
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html#//apple_ref/doc/uid/TP40001215-CH345-SW1

Chapter 1

[23]

Summary
In this introductory chapter, we discussed about the basics of Xcode. You learned
important keyboard shortcuts that helped us speed up the development. You learned
how to set up a project and how to work with this IDE like testing with Playground
and using the Git version control.

In the next chapter, we are going to start our first app from scratch. You will learn
some of the basic features of the Swift programming language.

[25]

Creating a City Information
App with Customized

Table Views
If you've ever developed an app for iOS, you've probably already used a table view.
However, you might not have developed it with customized table views or used
alternatives for it like the collection view or the page view controller.

Let's start with a simple but a very good app to warm up the engines and learn
different ways of displaying collected information with Swift.

In this chapter, we will cover the following:

•	 Using table view and custom table view cells
•	 The usage of UIPageViewController
•	 The usage of UICollectionViewController
•	 The usage of external APIs
•	 Managing JSON messages
•	 The usage of NSURLSession to receive JSON or download pictures
•	 Custom NSErrors

Creating a City Information App with Customized Table Views

[26]

Project overview
The idea of this app is to give users information about cities such as the current
weather, pictures, history, and cities that are around.

How can we do it? Firstly, we have to decide on how the app is going to suggest a
city to the user. Of course, the most logical city would be the city where the user is
located, which means that we have to use the Core Location framework to retrieve
the device's coordinates with the help of GPS.

Once we have retrieved the user's location, we can search for cities next to it. To do
this, we are going to use a service from http://www.geonames.org/.

Another piece of information that will be necessary is the weather. Of course, there
are a lot of websites that can give us information on the weather forecast, but not all
of them offer an API to use it for your app. In this case, we are going to use the Open
Weather Map service.

What about pictures? For pictures, we can use the famous Flickr. Easy, isn't it? Now
that we have the necessary information, let's start with our app.

Setting it up
Before we start coding, we are going to register the needed services and create an
empty app. First, let's create a user at geonames. Just go to http://www.geonames.
org/login with your favorite browser, sign up as a new user, and confirm it when
you receive a confirmation e-mail. It may seem that everything has been done,
however, you still need to upgrade your account to use the API services. Don't
worry, it's free! So, open http://www.geonames.org/manageaccount and upgrade
your account.

Don't use the user demo provided by geonames, even for
development. This user exceeds its daily quota very frequently.

With geonames, we can receive information on cities by their coordinates,
but we don't have the weather forecast and pictures. For weather forecasts,
open http://openweathermap.org/register and register a new user and API.

Lastly, we need a service for the cities' pictures. In this case, we are going to use
Flickr. Just create a Yahoo! account and create an API key at https://www.flickr.
com/services/apps/create/.

http://www.geonames.org/
http://www.geonames.org/login
http://www.geonames.org/login
http://www.geonames.org/manageaccount
http://openweathermap.org/register
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/

Chapter 2

[27]

While creating a new app, try to investigate the services available for
it and their current status. Unfortunately, the APIs change a lot like
their prices, their terms, and even their features.
The API keys used in this book are fake, please replace them with the
corresponding API key given to you by the service provider.

Now, we can start creating the app. Open Xcode, create a new single view
application for iOS, and call it Chapter 2 City Info. Make sure that Swift
is the main language as shown in the following screenshot:

The first task here is to add a library to help us work with JSON messages. In this
case, a library called SwiftyJSON will solve our problem. Otherwise, it would be
hard work to navigate through the NSJSONSerialization results.

Download the SwiftyJSON library from https://github.com/SwiftyJSON/
SwiftyJSON/archive/master.zip, then uncompress it, and copy the SwiftyJSON.
swift file in your project.

https://github.com/SwiftyJSON/SwiftyJSON/archive/master.zip
https://github.com/SwiftyJSON/SwiftyJSON/archive/master.zip

Creating a City Information App with Customized Table Views

[28]

Another very common way of installing third-party libraries or
frameworks would be to use CocoaPods, which is commonly known
as just PODs. This is a dependency manager, which downloads the
desired frameworks with their dependencies and updates them.
Check https://cocoapods.org/ for more information.

Ok, so now it is time to start coding. We will create some functions and classes that
should be common for the whole program. As you know, many functions return
NSError if something goes wrong. However, sometimes, there are errors that are
detected by the code, like when you receive a JSON message with an unexpected
struct. For this reason, we are going to create a class that creates custom NSError.
Once we have it, we will add a new file to the project (command + N) called
ErrorFactory.swift and add the following code:

import Foundation
class ErrorFactory {{
 static let Domain = "CityInfo"
 enum Code:Int {
 case WrongHttpCode = 100,
 MissingParams = 101,
 AuthDenied = 102,
 WrongInput = 103
 }

 class func error(code:Code) -> NSError{
 let description:String
 let reason:String
 let recovery:String
 switch code {
 case .WrongHttpCode:
 description = NSLocalizedString("Server replied wrong
 code (not 200, 201 or 304)", comment: "")
 reason = NSLocalizedString("Wrong server or wrong
 api", comment: "")
 recovery = NSLocalizedString("Check if the server is
 is right one", comment: "")
 case .MissingParams:
 description = NSLocalizedString("There are some
 missing params", comment: "")
 reason = NSLocalizedString("Wrong endpoint or API
 version", comment: "")
 recovery = NSLocalizedString("Check the url and the
 server version", comment: "")
 case .AuthDenied:

https://cocoapods.org/

Chapter 2

[29]

 description = NSLocalizedString("Authorization
 denied", comment: "")
 reason = NSLocalizedString("User must accept the
 authorization for using its feature", comment: "")
 recovery = NSLocalizedString("Open user auth panel.",
 comment: "")
 case .WrongInput:
 description = NSLocalizedString("A parameter was
 wrong", comment: "")
 reason = NSLocalizedString("Probably a cast wasn't
 correct", comment: "")
 recovery = NSLocalizedString("Check the input
 parameters.", comment: "")
 }
 return NSError(domain: ErrorFactory.Domain, code:
 code.rawValue, userInfo: [
 NSLocalizedDescriptionKey: description,
 NSLocalizedFailureReasonErrorKey: reason,
 NSLocalizedRecoverySuggestionErrorKey: recovery
])
 }
}

The previous code shows the usage of NSError that requires a domain, which is a
string that differentiates the error type/origin and avoids collisions in the error code.

The error code is just an integer that represents the error that occurred. We used
an enumeration based on integer values, which makes it easier for the developer
to remember and allows us to convert its enumeration to an integer easily with the
rawValue property.

The third argument of an NSError initializer is a dictionary that contains messages,
which can be useful to the user (actually to the developer). Here, we have three keys:

•	 NSLocalizedDescriptionKey: This contains a basic description of the error
•	 NSLocalizedFailureReasonErrorKey: This explains what caused the error
•	 NSLocalizedRecoverySuggestionErrorKey: This shows what is possible to

avoid this error

As you might have noticed, for these strings, we used a function called
NSLocalizedString, which will retrieve the message in the corresponding
language if it is set to the Localizable.strings file.

Creating a City Information App with Customized Table Views

[30]

So, let's add a new file to our app and call it Helpers.swift; click on it for
editing. URLs have special character combinations that represent special
characters, for example, a whitespace in a URL is sent as a combination
of 20% and a open parenthesis is sent with the combination of 28%. The
stringByAddingPercentEncodingWithAllowedCharacters string
method allows us to do this character conversion.

If you need more information on the percent encoding, you can
check the Wikipedia entry at https://en.wikipedia.org/
wiki/Percent-encoding. As we are going to work with web
APIs, we will need to encode some texts before we send them to
the corresponding server.

Type the following function to convert a dictionary into a string with the
URL encoding:

func toUriEncoded(params: [String:String]) -> String {
 var records = [String]()
 for (key, value) in params {
 let valueEncoded = value.
stringByAddingPercentEncodingWithAllowedCharacters(.
URLHostAllowedCharacterSet())
 records.append("\(key)=\(valueEncoded!)")
 }
 return "&".join(records)
}

Another common task is to call the main queue. You might have already used a
code like dispatch_async(dispatch_get_main_queue(), {() -> () in … }),
however, it is too long. We can reduce it by calling it something like M{…}. So, here is
the function for it:

func M(((completion: () -> ()) {
 dispatch_async(dispatch_get_main_queue(), completion)
}

A common task is to request for JSON messages. To do so, we just need to know
the endpoint, the required parameters, and the callback. So, we can start with this
function as follows:

func requestJSON(urlString:String, params:[String:String] = [:],
completion:(JSON, NSError?) -> Void){
 let fullUrlString = "\(urlString)?\(toUriEncoded(params))"
 if let url = NSURL(string: fullUrlString) {
 NSURLSession.sharedSession().dataTaskWithURL(url) { (data,
 response, error) -> Void in

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Percent-encoding

Chapter 2

[31]

 if error != nil {
 completion(JSON(NSNull()), error)
 return
 }

 var jsonData = data!
 var jsonString = NSString(data: jsonData, encoding:
 NSUTF8StringEncoding)!

Here, we have to add a tricky code, because the Flickr API is always returned with
a callback function called jsonFlickrApi while wrapping the corresponding JSON.
This callback must be removed before the JSON text is parsed. So, we can fix this
issue by adding the following code:

 // if it is the Flickr response we have to remove the
 callback function jsonFlickrApi()
 // from the JSON string
 if (jsonString as
 String).characters.startsWith("jsonFlickrApi(".characters)
{
 jsonString =
jsonString.substringFromIndex("jsonFlickrApi(".characters.count)
 let end = (jsonString as String).characters.count - 1
 jsonString = jsonString.substringToIndex(end)
 jsonData =
jsonString.dataUsingEncoding(NSUTF8StringEncoding)!
 }

Now, we can complete this function by creating a JSON object and calling
the callback:

 let json = JSON(data:jsonData)
 completion(json, nil)

 }.resume()
 }else {
 completion(JSON(NSNull()),
 ErrorFactory.error(.WrongInput))
 }
}

At this point, the app has a good skeleton. It means that, from now on, we can code
the app itself.

Creating a City Information App with Customized Table Views

[32]

The first scene
Create a project group (command + option + N) for the view controllers and move
the ViewController.swift file (created by Xcode) to this group. As we are going
to have more than one view controller, it would also be a good idea to rename it to
InitialViewController.swift:

Now, open this file and rename its class from ViewController to
InitialViewController:

class InitialViewController: UIViewController {

Once the class is renamed, we need to update the corresponding view controller in
the storyboard by:

•	 Clicking on the storyboard.
•	 Selecting the view controller (the only one we have till now).
•	 Going to the Identity inspector by using the command + option + 3

combination. Here, you can update the class name to the new one.
•	 Pressing enter and confirming that the module name is automatically

updated from None to the product name.

The following picture demonstrates where you should do this change and how it
should be after the change:

Chapter 2

[33]

Great! Now, we can draw the scene. Firstly, let's change the view background color.
To do it, select the view that hangs from the view controller. Go to the Attribute
Inspector by pressing command + option + 4, look for background color, and choose
other, as shown in the following picture:

www.allitebooks.com

http://www.allitebooks.org

Creating a City Information App with Customized Table Views

[34]

When the color dialog appears, choose the Color Sliders option at the top and select
the RGB Sliders combo box option. Then, you can change the color as per your
choice. In this case, let's set it to 250 for the three colors:

Before you start a new app, create a mockup of every scene. In this
mockup, try to write down the color numbers for the backgrounds,
fonts, and so on. Remember that Xcode still doesn't have a way to work
with styles as websites do with CSS, meaning that if you have to change
the default background color, for example, you will have to repeat it
everywhere.

Chapter 2

[35]

On the storyboard's right-hand side, you have the Object Library, which can be easily
accessed with the command + option + control + 3 combination. From there, you can
search for views, view controllers, and gestures, and drag them to the storyboard or
scene. The following picture shows a sample of it:

Now, add two labels, a search bar, and a table view. The first label should be the
app title, so let's write City Info on it. Change its alignment to center, the font to
American Typewriter, and the font size to 24.

Creating a City Information App with Customized Table Views

[36]

On the other label, let's do the same, but write Please select your city and
its font size should be 18. The scene must result in something similar to the
following picture:

Do we still need to do anything else on this storyboard scene? The answer is yes.
Now it is time for the auto layout, otherwise the scene components will be misplaced
when you start the app.

Chapter 2

[37]

There are different ways to add auto layout constraints to a component. An easy way
of doing it is by selecting the component by clicking on it like the top label. With the
control key pressed, drag it to the other component on which the constraint will be
based like the main view. The following picture shows a sample of a constraint being
created from a table to the main view:

Another way is by selecting the component and clicking on the left or on the middle
button, which are to the bottom-right of the interface builder screen. The following
picture highlights these buttons:

Whatever is your favorite way of adding constraints, you will need the following
constraints and values for the current scene:

•	 City Info label center X equals to the center of superview (main view),
value 0

•	 City Info label top equals to the top layout guide, value 0
•	 Select your city label top vertical spacing of 8 to the City Info label
•	 Select your city label alignment center X to superview, value 0
•	 Search bar top value 8 to select your city label
•	 Search bar trailing and leading space 0 to superview
•	 Table view top space (space 0) to the search bar
•	 Table view trailing and leading space 0 to the search bar
•	 Table view bottom 0 to superview

Creating a City Information App with Customized Table Views

[38]

Before continuing, it is a good idea to check whether the layout suits for every
resolution. To do it, open the assistant editor with command + option + .return
and change its view to Preview:

Here, you can have a preview of your screen on the device. You can also rotate the
screens by clicking on the icon with a square and a arched arrow over it:

Click on the plus sign to the bottom-left of the assistant editor to add more screens:

Once you are happy with your layout, you can move on to the next step. Although
the storyboard is not yet done, we are going to leave it for a while.

Chapter 2

[39]

Click on the InitialViewController.swift file. Let's start receiving information
on where the device is using the GPS. To do it, import the Core Location framework
and set the view controller as a delegate:

import CoreLocation

class InitialViewController: UIViewController,
CLLocationManagerDelegate {

After this, we can set the core location manager as a property and initialize it on
viewDidLoadMethod. Type the following code to set locationManager and initialize
InitialViewController:

 var locationManager = CLLocationManager()

 override func viewDidLoad() {
 super.viewDidLoad()
 locationManager.delegate = self
 locationManager.desiredAccuracy =
 kCLLocationAccuracyThreeKilometers
 locationManager.distanceFilter = 3000
 if
locationManager.respondsToSelector(Selector("requestWhenInUseAuthoriz
ation")) {
 locationManager.requestWhenInUseAuthorization()
 }
 locationManager.startUpdatingLocation()
 }

After initializing the location manager, we have to check whether the GPS is working
or not by implementing the didUpdateLocations method. Right now, we are going
to print the last location and nothing more:

 func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [CLLocation]!){
 let lastLocation = locations.last!
 print(lastLocation)
 }

Creating a City Information App with Customized Table Views

[40]

Now, we can test the app. However, we still need to perform one more step. Go to
your Info.plist file by pressing command + option + J and the file name. Add a new
entry with the NSLocationWhenInUseUsageDescription key and change its type to
String and its value to This app needs to know your location.

This last step is mandatory since iOS 8. Press play and check whether you have
received a coordinate, but not very frequently.

Displaying the cities' information
The next step is to create a class to store the information received from the Internet.
In this case, we can do it in a straightforward manner by copying the JSON object
properties in our class properties. Create a new group called Models and, inside it,
a file called CityInfo.swift. There you can code CityInfo as follows:

class CityInfo {
 var fcodeName:String?
 var wikipedia:String?
 var geonameId: Int!
 var population:Int?
 var countrycode:String?
 var fclName:String?
 var lat : Double!
 var lng: Double!
 var fcode: String?
 var toponymName:String?
 var name:String!
 var fcl:String?

 init?(json:JSON){){){
 // if any required field is missing we must not create the
 object.
 if let name = json["name"].string,,, geonameId =
 json["geonameId"].int, lat = json["lat"].double,
 lng = json["lng"].double {
 self.name = name

Chapter 2

[41]

 self.geonameId = geonameId
 self.lat = lat
 self.lng = lng
 }else{
 return nil
 }

 self.fcodeName = json["fcodeName"].string
 self.wikipedia = json["wikipedia"].string
 self.population = json["population"].int
 self.countrycode = json["countrycode"].string
 self.fclName = json["fclName"].string
 self.fcode = json["fcode"].string
 self.toponymName = json["toponymName"].string
 self.fcl = json["fcl"].string
 }
}

Pay attention that our initializer has a question mark on its header; this is called a
failable initializer. Traditional initializers always return a new instance of the newly
requested object. However, with failable initializers, you can return a new instance or
a nil value, indicating that the object couldn't be constructed.

In this initializer, we used an object of the JSON type, which is a class that belongs
to the SwiftyJSON library/framework. You can easily access its members by using
brackets with string indices to access the members of a json object, like json
["field name"], or using brackets with integer indices to access elements of
a json array.

Doesn't matter, the way you have to use the return type, it will always be a JSON
object, which can't be directly assigned to the variables of another built-in types, such
as integers, strings, and so on. Casting from a JSON object to a basic type can be done
by accessing properties with the same name as the destination type, such as .string
for casting to string objects, .int for casting to int objects, .array or an array of
JSON objects, and so on.

Now, we have to think about how this information is going to be displayed. As we
have to display this information repeatedly, a good way to do so would be with a
table view. Therefore, we will create a custom table view cell for it.

Creating a City Information App with Customized Table Views

[42]

Go to your project navigator, create a new group called Cells, and add a new file
called CityInfoCell.swift. Here, we are going to implement a class that inherits
from UITableViewCell. Note that the whole object can be configured just by setting
the cityInfo property:

import UIKit

class CityInfoCell:UITableViewCell {
 @IBOutlet var nameLabel:UILabel!
 @IBOutlet var coordinates:UILabel!
 @IBOutlet var population:UILabel!
 @IBOutlet var infoImage:UIImageView!

 private var _cityInfo:CityInfo!
 var cityInfo:CityInfo {
 get {
 return _cityInfo
 }
 set (cityInfo){
 self._cityInfo = cityInfo
 self.nameLabel.text = cityInfo.name
 if let population = cityInfo.population {
 self.population.text = "Pop: \(population)"
 }else {
 self.population.text = ""
 }

 self.coordinates.text = String(format: "%.02f, %.02f",
 cityInfo.lat, cityInfo.lng)

 if let _ = cityInfo.wikipedia {
 self.infoImage.image = UIImage(named: "info")
 }
 }
 }
}

Chapter 2

[43]

Return to the storyboard and add a table view cell from the object library to the table
view by dragging it. Click on this table view cell and add three labels and one image
view to it. Try to organize it with something similar to the following picture:

Change the labels font family to American Typewriter, and the font size to 16 for
the city name and 12 for the population and the location label. The image on the
left-hand side for the image view can be downloaded from this book's resources.
Drag the info.png and noinfo.png images to your Images.xcassets project. Go
back to your storyboard and set the image to noinfo in the UIImageView attribute
inspector, as shown in the following screenshot:

As you know, we have to set the auto layout constraints. Just remember that
the constraints will take the table view cell as superview. So, here you have the
constraints that need to be set:

•	 City name label leading equals 0 to the leading margin (left)
•	 City name label top equals 0 to the super view top margin
•	 City name label bottom equals 0 to the super view bottom margin
•	 City label horizontal space 8 to the population label
•	 Population leading equals 0 to the superview center X
•	 Population top equals to -8 to the superview top
•	 Population trailing (right) equals 8 to the noinfo image
•	 Population bottom equals 0 to the location top
•	 Population leading equals 0 to the location leading
•	 Location height equals to 21

Creating a City Information App with Customized Table Views

[44]

•	 Location trailing equals 8 to the image leading
•	 Location bottom equals 0 to the image bottom
•	 Image trailing equals 0 to the superview trailing margin
•	 Image aspect ratio width equals 0 to the image height
•	 Image bottom equals -8 to the superview bottom
•	 Image top equals -8 to the superview top

Has everything been done for this table view cell? Of course not. We still need to set
its class and connect each component. Select the table view cell and change its class
to CityInfoCell:

As we are here, let's do a similar task that is to change the cell identifier to
cityinfocell. This way, we can easily instantiate the cell from our code:

Now, you can connect the cell components with the ones we have in the
CityInfoCell class and also connect the table view with the view controller:

@IBOutlet var tableView: UITableView!!

Chapter 2

[45]

There are different ways to connect a view with the corresponding
property. An easy way is to open the assistant view with the
command + option + enter combination, leaving the storyboard on
the left-hand side and the Swift file on the right-hand side. Then,
you just need to drag the circle that will appear on the left-hand
side of the @IBOutlet or the @IBAction attribute and connect
with the corresponding visual object on the storyboard.

After this, we need to set the table view delegate and data source, and
also the search bar delegate with the view controller. It means that the
InitialViewController class needs to have the following header. Replace the
current InitialViewController header with:

class InitialViewController: UIViewController,
CLLocationManagerDelegate, UITableViewDataSource,
UITableViewDelegate, UISearchBarDelegate {

Connect the table view and search bar delegate and the data source with the view
controller by control dragging from the table view to the view controller's icon at
the top of the screen, as shown in the following screenshot:

Coding the initial view controller
The InitialViewController class will display the possible cities where the user
is located. Let's continue with the InitialViewController class and complete its
code. To complete this code, we need to think about where we are going to store the
received information. We will need two arrays of CityInfo: one is to store every
object received from the server and the other is to store the objects that are shown
after the user's filter. These arrays must be stored as properties:

 private var cities = [CityInfo]()
 private var citiesDisplayed = [CityInfo]()

Creating a City Information App with Customized Table Views

[46]

At this point, we can complete the didUpdateLocations method, which belongs
to the CLLocationManagerDelegate protocol. Now, we can request information
of the cities that are around us. Type the following code to implement the
didUpdateLocations method, replacing the yourgeonamesuser word with the
username you registered on geonames:

 func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [CLLocation]!){
 let lastLocation = locations.last!
 print(lastLocation)
 let accurrancy = 0.2
 requestJSON("http://api.geonames.org/citiesJSON", params:
 [
 "north":"\(lastLocation.coordinate.latitude +
 accurrancy)",
 "south":"\(lastLocation.coordinate.latitude -
 accurrancy)",
 "east":"\(lastLocation.coordinate.longitude +
 accurrancy)",
 "west":"\(lastLocation.coordinate.longitude -
 accurrancy)",
 "lang":"en",
 "username":"yourgeonamesuser"" // replace
 yourgeonameuser with the username you registered on
 geonames.
]) { (json, error) -> Void in
 if error != nil {
 print(error?.localizedDescription)
 return
 }
 if let status = json["status"].dictionary {
 print("Error")
 }else if let cities = json["geonames"].array {
 self.citiesDisplayed = [CityInfo]()
 self.cities = cities.reduce([CityInfo]()) {
 (citiesInfo, json) -> [CityInfo] in
 var citiesCopy = citiesInfo
 if let cityInfo = CityInfo(json: json) {
 citiesCopy.append(cityInfo)
 self.citiesDisplayed.append(cityInfo)
 }
 return citiesCopy
 }

 M {

Chapter 2

[47]

 self.tableView.reloadData()
 }
 }else {
 print("error")
 }
 }
 }

As you can imagine, the table view isn't going to display anything if we don't
complete the table view data source methods. So, we can just complete the table view
data source by adding the following code to our InitialViewController class:

 // MARK: - TableView Datasource and delegate
 func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int{
 return self.citiesDisplayed.count
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell{
 let cell =
 tableView.dequeueReusableCellWithIdentifier("cityinfocell")
as!
 CityInfoCell
 cell.cityInfo = self.citiesDisplayed[indexPath.row]
 return cell
 }

Don't forget that we still have to filter the cities following the information typed in
the search bar. It means that we have to implement the searchBar:textDidChange
method that belongs to the UISearchBarDelegate protocol with the following code:

 // MARK: - UISearchBar delegate
 func searchBar(searchBar: UISearchBar, textDidChange
 searchText: String) {
 self.citiesDisplayed = [CityInfo]()
 for cityInfo in self.cities {
 if searchText == "" {
 citiesDisplayed.append(cityInfo)
 }else if cityInfo.name.lowercaseString.
rangeOfString(searchText.lowercaseString) != nil{
 citiesDisplayed.append(cityInfo)
 }
 }
 self.tableView.reloadData()
 }

Creating a City Information App with Customized Table Views

[48]

The logic of this code is very easy; we just have to check whether the typed text
is found in a record. If so, we have to add it to the citiesDisplayed array. An
exception is the empty string. In this case, we have to add every record to the array.

Pay attention that we converted both strings to lowercase
to compare them. If you prefer, you can use cityInfo.
name.rangeOfString(searchText, options:
.CaseInsensitiveSearch).

Rebuild your app and run it to check whether everything is working:

Chapter 2

[49]

Adding the page view controller
To display the city's information, we are going to use a page view controller. This
way, we can navigate through its information as if we were reading a book. To do
it, we are going to add a new file called CityOptionsViewController.swift to the
ViewControllers group.

Open this file and create a class that inherits from UIPageViewController and also
stores CityInfo. This class should also be its own data source, as it needs to know
which view controller comes next when the user decides to turn a page. As we don't
yet have any of the view controllers that are going to hang from this page view
controller, we are going to implement the mandatory methods that will return nil.
Let's start implementing the CityOptionsViewController class with a minimum
code by typing the following code:

import UIKit

class CityOptionsViewController : UIPageViewController,
UIPageViewControllerDataSource {
 var cityInfo:CityInfo!
 override func viewDidLoad() {
 super.viewDidLoad()
 self.dataSource = self
 self.doubleSided = false
 }
 func pageViewController(pageViewController:
UIPageViewController, viewControllerBeforeViewController
viewController: UIViewController) -> UIViewController? {
 return nil
 }
 func pageViewController(pageViewController:
UIPageViewController, viewControllerAfterViewController
viewController: UIViewController) -> UIViewController? {
 return nil
 }
}

Creating a City Information App with Customized Table Views

[50]

This code is not finished yet. We will complete it later, when we start creating the
view controllers. Return to the storyboard and add a page view controller to it by
dragging it from the object library. The following picture shows the page view
controller in the object library:

Select the page view controller and go to its Identity inspector by pressing
command + option + 3. Here, we have to change its class to
CityOptionsViewController and the storyboard ID to cityoptions.

Chapter 2

[51]

Now, we are able to call this page view controller. All we have to do is to return to
InitialViewController and add a method that will give the CityInfo object to
our page view controller and present the new view controller. Remember that this
method is called when the user taps on the corresponding table cell, which means
that we have to implement the didSelectRowAtIndexPath method with this code:

 func tableView(tableView: UITableView, didSelectRowAtIndexPath
 indexPath: NSIndexPath){
 let viewController =
self.storyboard?.instantiateViewControllerWithIdentifier("cityoptio
ns") as! CityOptionsViewController
 viewController.cityInfo =
self.citiesDisplayed[indexPath.row]
 self.presentViewController(viewController, animated: true,
 completion: nil)
 }

Press play and confirm whether the app is working. When you tap on a city, a black
screen will appear.

Displaying the Wikipedia information
Now, we are going to display the city information by displaying its Wikipedia page.
To do it, we need to add a new view controller to our app. So, we will add a new
Swift file called WikiViewController.swift to the ViewControllers group.

Right now we are only going to create an almost empty class; nevertheless, we are
going to return here after a while to complete its code.

import UIKit
class WikiViewController:UIViewController {
 var cityInfo:CityInfo!
}

Creating a City Information App with Customized Table Views

[52]

Go back to the storyboard and add a new view controller to it. Open the view
controller's Identity inspector, and change its class from the default one to
WikiViewController. Taking advantage that we are on the Identity inspector, let's
also change the Storyboard ID to wikicity as it is shown in the following screenshot:

After this, we can change the view background to gray (FAFAFA) and add two
labels and a web view to the layout. Write City Info on the first label, change its
alignment to center and its font to American Typewriter with a font size of 24, and
place it at the top.

The second label should contain the text Wiki with center alignment and an
American Typewriter font of size 18. Place it under the first label. The web view
should take the rest of the view. At this point, you should have a layout similar to
the following:

Chapter 2

[53]

After placing the components in the layout, we have to add the following auto
layout constraints:

•	 City Info label center X equals 0 to superview center X
•	 City Info label top equals 0 to the top layout guide
•	 City Info label bottom equals 0 to the Wiki label top
•	 Wiki label center X equals 0 to the superview center X
•	 Wiki label bottom equals 0 to the web view top
•	 Web view bottom equals 0 to the superview layout guide
•	 Web view trailing equals 0 to the superview trailing margin
•	 Web view leading equals 0 to the superview leading margin

Creating a City Information App with Customized Table Views

[54]

Once the layout is complete, we can connect the web view with the view controller
and implement the viewDidLoad method of WikiViewController. In this case, we
first need to check whether we have the Wikipedia page of the current city to display
in the web view. If we don't have the Wikipedia page, we can call the Wikipedia
search page. The final code of our class must be as follows:

class WikiViewController:UIViewController {
 var cityInfo:CityInfo!
 @IBOutlet var webView: UIWebView!

 override func viewDidLoad() {
 let url:NSURL
 if let wikipediaInfo = self.cityInfo.wikipedia {
 url = NSURL(string: "http://\(wikipediaInfo)")!
 }else {
 url =
NSURL(string:"http://en.wikipedia.org/w/index.php?search=\(self.
cityInfo.name)")!
 }
 let request = NSURLRequest(URL: url)
 self.webView.loadRequest(request)
 }
}

In this case, we didn't implement UIWebViewDelegate to
detect errors, however, it is a good idea to do it.

Of course, nothing different will happen if we press play. The reason is that we need to
add an instance of this view controller to the page view controller. So, we will return
to the CityOptionsViewController code. First, we add a new array of view controllers
as an property. This array will be used to retain the view controllers' instance and to
know which view controller would come up when the user turns a page:

 private var cityViewControllers = [UIViewController]()

Then, we can complete the viewDidLoad method as we need to instantiate
WikiViewController and set it as the view controller that is going to be displayed:

 override func viewDidLoad() {
 super.viewDidLoad()
 self.dataSource = self

Chapter 2

[55]

 self.doubleSided = false

 let wikiViewController =
 self.storyboard?.instantiateViewControllerWithIdentifier("wiki
city") as! WikiViewController
 wikiViewController.cityInfo = self.cityInfo
 cityViewControllers.append(wikiViewController)

 self.setViewControllers([wikiViewController], direction:
 .Forward, animated: true) { (_) -> Void in
 return
 }
 }

Now, we can implement the page view controller data source methods.
Even with only one view controller right now, we must implement it as
a generic one. This way, we don't need to modify them every time we
add a new view controller. We will complete the implementation that
we have till now for the viewControllerBeforeViewController and
viewControllerAfterViewController methods with the following code:

 func pageViewController(pageViewController:
 UIPageViewController, viewControllerBeforeViewController
 viewController: UIViewController) -> UIViewController? {
 if let position = cityViewControllers.indexOf(
 viewController) where position > 0{
 return cityViewControllers[position - 1]
 }
 return nil
 }
 func pageViewController(pageViewController:
 UIPageViewController, viewControllerAfterViewController
 viewController: UIViewController) -> UIViewController? {
 if let position = cityViewControllers.indexOf(
 viewController) where position < cityViewControllers.count
 - 1 {
 return cityViewControllers[position + 1]
 }
 return nil
 }

Creating a City Information App with Customized Table Views

[56]

Rebuild the app and run it. Check whether, after selecting a city, you are able to see
the city's Wikipedia page:

Displaying weather forecasts
Once the user is happy with the city's information, he/she can also retrieve the
weather forecast. As it was already mentioned, the weather forecast is going to
be retrieved from Open Weather Map instead of geonames.

Chapter 2

[57]

We just have to think about how this "scene" is going to work. The idea is to display
weather information such as the date and time, the temperature, and an icon of the
sun if it is during the day time or a moon when the estimated weather is during
the night. If the table view cell needs to display rainy weather, we should use
another cell template. This one should display the same information as the other
cell, but with an exception that the icon will show rain. We are also going to display
additional information on the amount of rain.

Once we have the idea clear, we can start implementing the view controller. Select
the ViewControllers group, add a new file called WeatherViewController.
swift, and start creating a class with the same name. As we discussed before, the
information will be displayed with a table view, so we also need to implement the
table view data source protocol:

import Foundation
import UIKit

class WeatherViewController:UIViewController,
UITableViewDataSource {

As properties, we will need to store the current CityInfo object, an array of forecasts
for the table view (in this case, each forecast is a JSON object) and, of course, the table
view itself to request it to reload the data:

 var cityInfo:CityInfo!
 var forecast = [JSON]()
 @IBOutlet var tableView: UITableView!

We can request for the forecast records in the viewDidLoad method. It should be
straightforward, as we just need to request for information, store the information,
and ask the table view to reload its data. Type the following viewDidLoad
implementation to retrieve data from the Open Weather Map site:

 override func viewDidLoad() {
 requestJSON("http://api.openweathermap.org/data/2.5/forecast",
 params: ["lat": "\(cityInfo.lat)",
 "lon": "\(cityInfo.lng)"]) { (json, error) -> Void
 in
 if error != nil {
 print(error!.localizedDescription)
 return
 }
 self.forecast = json["list"].arrayValue
 M {
 self.tableView.reloadData()
 }
 }
 }

Creating a City Information App with Customized Table Views

[58]

Now, we just need to implement the table view data source's methods, starting with
numberOfRowsInSection that should return the forecast array size:

 func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int{
 return forecast.count
 }

The cellForRowAtIndexPath method is very similar to the one implemented on
InitialViewController but, here, we have a small detail. First, we are going to
check whether it is rainy and, according to it, we are going to retrieve one cell layout
or another. Don't worry about the compilation errors that you are going to receive
now, just implement the method and close the class with the following code:

 func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell{
 let currentForecast = forecast[indexPath.row]
 var cell:WeatherCell
 if let rain = currentForecast["rain"]["3h"].double where
 rain > 0 {
 cell =
tableView.dequeueReusableCellWithIdentifier("raincell") as!
RainCell

 } else {
 cell =
tableView.dequeueReusableCellWithIdentifier("weathercell") as!
WeatherCell
 }
 cell.setUIFromJSON(currentForecast)
 return cell
 }
}

As you see, with the compiler's errors, it is still pending to implement two table view
cell classes: WeatherCell and RainCell. Add a new file called WeatherCell.swift
to the cells group and add the following content:

import UIKit

class WeatherCell:UITableViewCell{

 @IBOutlet var tempMax: UILabel!
 @IBOutlet var dateAndTime: UILabel!

Chapter 2

[59]

 @IBOutlet var icon: UIImageView!

 func setUIFromJSON(json:JSON){
 let date = json["dt_txt"].stringValue
 let hour = Int(date.componentsSeparatedByString("
 ")[1].componentsSeparatedByString(":")[0])!
 if hour > 5 && hour < 20 {
 self.icon.image = UIImage(named:"sun")
 } else {
 self.icon.image = UIImage(named:"moon")
 }
 self.tempMax.text = String(format:"%.01fC",
 json["main"]["temp_max"].doubleValue - 272.15)
 self.dateAndTime.text = date
 }
}

We still have one compilation error, let's solve it by adding a new file called
RainCell.swift to the cells group. Now, we have to implement a class that is
basically the same as the previous one, but by adding new information. Therefore,
we just need to inherit from the previous class and complete it with the new code:

import UIKit

class RainCell:WeatherCell {
 @IBOutlet var waterLabel: UILabel!

 override func setUIFromJSON(json:JSON){
 super.setUIFromJSON(json)
 self.icon.image = UIImage(named:"rain")
 self.waterLabel.text = String(format:
 "%.02fmm",json["rain"]["3h"].doubleValue)
 }
}

The errors have gone but, if you are a good observer, you might have noticed that we
are loading images that are not yet in our project. Go to the book resources and drag
the rain.png, sun.png and moon.png images into your images.xcassets project.

The pictures included in the book resources are in their original size. The
right way of using them is by using three different sizes for each picture.
However, this task should be done with an external program such as
Photoshop and GIMP or by using Vector Graphics if the your original
image is a PDF vector. Both cases are out of the scope of this book.

Creating a City Information App with Customized Table Views

[60]

The coding task for this page is done, so it is time to return to the storyboard. Add a
new view controller, select it, and go to its Identity inspector. Change the class name
to WeatherViewController and its Storyboard ID to weathercity, as shown in the
following picture:

Now, create a layout similar to InitialViewController, except that the subtitle
label should be Weather Forecast. Don't forget to connect the table view with
WeatherViewController and also set it as the table view's delegate.

Once the layout is ready, you need to add two table view cells to the table view.
For the first one, change its class in the Identity inspector to WeatherCell and its
identifier in the attribute inspector to weathercell. The second cell's class should be
RainCell and its identifier should be raincell.

In both the cells, add two labels and a picture on the left-hand side. For the rain cell,
add an extra label to the left of the picture. Change the font family of every label
to American Typewriter with a font size of 16 and the rain label to 14. Set the first
picture to sun and the second one to rain.

Chapter 2

[61]

In both the layouts, the date label located at the center of the cell must have the
number of lines set to two. Change it in their attribute inspector. The final layouts
should be like the following screenshot:

Finish the layouts by adding constraints to them. For the first cell, add these constraints:

•	 Image leading the superview with 0
•	 Image width 43
•	 Image bottom equals 0 to the superview
•	 Image top space equals 0 to the superview
•	 Image trailing equals default to the date label (the first label from the left)
•	 Image alignment bottom equals 0 to the date label bottom
•	 Image alignment top equals 0 to the date label
•	 Date label trailing space equals 0 to the temperature label
•	 Date label alignment Y equals 0 to the temperature label
•	 Temperature label trailing 0 to the superview
•	 Temperature label width equals to 56
•	 Temperature label top space equals 0 to the superview

For the second cell layout, use the following constraints:

•	 Rain label leading space equals 0 to the superview.
•	 Rain label width equals 64.
•	 Rain label bottom space equals 0 to the superview.
•	 Rain label trailing space equals 0 to the image.
•	 Rain label aligned on top with the image.
•	 Rain label aligned on bottom with the image.
•	 Image width 44.
•	 Image trailing space 0 to the date label.

Creating a City Information App with Customized Table Views

[62]

•	 Image aligned bottom to the date label.
•	 Image aligned top to the date label.
•	 Date label top space equals 0 to the superview.
•	 Date label trailing space equals 0 to the temperature label.
•	 Temperature label trailing space 0 to the superview.
•	 Temperature label width equals 47.
•	 Temperature label bottom space equals 0 to the super view.
•	 Temperature label top space equals 0 to the superview. These constraints are

for the cells, don't forget to add some of the constraints to the rest of the UI
components (table view and labels).

Connect the components with their respective properties. However, if you connect
the components by using the assistant editor, you might see that you are not able
to connect the rain cell components to its code, as they are in the parent class.
The easiest way to do this task is by dragging the components' reference from the
Connections inspector to the cell in the document outline. The following picture
demonstrates how you can do it:

Chapter 2

[63]

It looks like everything has been done, but is this scene going to be displayed? Of
course not, we still need to add some code to instantiate this view controller and add
it to the page view controller. Return to the CityOptionsViewController code and
add the following highlighted code to its viewDidLoad method:

 wikiViewController.cityInfo = self.cityInfo
 cityViewControllers.append(wikiViewController)

 let weatherViewController =
self.storyboard?.instantiateViewControllerWithIdentifier("weatherci
ty") as! WeatherViewController
 weatherViewController.cityInfo = cityInfo
 cityViewControllers.append(weatherViewController)

 self.setViewControllers([wikiViewController], direction:
 .Forward, animated: true) { (_) -> Void in

It is time to rerun the app and check whether there is a new page with a weather
forecast similar to the following screenshot:

Creating a City Information App with Customized Table Views

[64]

Retrieving some pictures
Now, we are going to display some pictures that were taken on the chosen city. As
you know, we can use a table view for it. But, for this scenario, Apple has something
more appropriate called the collection view.

Create a new file in the ViewControllers group called PicturesViewController.
swift. Start by creating a class that inherits from UICollectionViewController:

import UIKit

class PicturesViewController: UICollectionViewController {

This class will need a special nested class to store the pictures' information, as we
need to keep the URL, the title, the pictures ID, and the local path where it is stored:

 private class PhotoInfo {
 var title:String!
 var url:String!
 var localPath:String!
 var id:String!
 }

As properties, we just need the cityInfo and the array of PhotoInfo:

 var cityInfo:CityInfo!
 private var photos = [PhotoInfo]()

After this, we can initialize the array by requesting Flickr for a list of pictures and
then we can download the pictures one by one. After each picture is downloaded, we
are going to ask the collection view to reload its data. To do this task, we are going to
use the following viewDidLoad method:

This is not the best way to reload data, it could cause some lags if
the broadband speed is very low. However, optimizing it would
cause a huge code that would be hard to understand.

 override func viewDidLoad() {
 let params:[String:String] = [
 "method": "flickr.photos.search",
 "api_key": "12345678901234567890123456789012",
 "text": cityInfo.name,
 "format": "json",

Chapter 2

[65]

 "extras": "url_t"
]

 requestJSON("https://api.flickr.com/services/rest",
 params: params) { (json, error) -> Void in
 for photo in json["photos"]["photo"].arrayValue {
 if let url = photo["url_t"].string {
 let photoInfo = PhotoInfo()
 photoInfo.url = url
 photoInfo.title = photo["title"].stringValue
 photoInfo.id = photo["id"].stringValue
 let documentDirectory =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory,
.UserDomainMask, true)[0]
 photoInfo.localPath = (documentDirectory as
NSString).stringByAppendingPathComponent("\(photoInfo.id).png")

 self.photos.append(photoInfo)

 if let url = NSURL(string: url){
 NSURLSession.sharedSession().
downloadTaskWithURL(url){ (url,
response, error) in
 let urlTarget = NSURL(fileURLWithPath:
 photoInfo.localPath)
 do {
 try
 NSFileManager.defaultManager().
moveItemAtURL(url!, toURL:
urlTarget)
 } catch _ {
 }
 M{
 self.collectionView?.reloadData()
 }
 }.resume()
 }
 }
 }
 }
 }

Creating a City Information App with Customized Table Views

[66]

Table view data sources have a method called numberOfItemsInSection, so we also
have it in collection views:

 override func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return photos.count
 }

The other mandatory method for the data source is cellForItemAtIndexPath.
Here, we are going to cause a compilation error as we don't yet have a class called
PictureCell. Don't worry about it, we will fix it soon:

override func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {
 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("picturecell",
forIndexPath: indexPath) as! PictureCell

 if let data = NSData(contentsOfFile:
photos[indexPath.row].localPath) {
 cell.picture.image = UIImage(data: data)
 }
 cell.text.text = photos[indexPath.row].title

 return cell
 }
}

The PicturesViewController class is over. Now, add a new file called
PictureCell.swift to the Cells group. Here, we will need only two properties:
one for the picture and the other one for its title:

import UIKit

class PictureCell:UICollectionViewCell {
 @IBOutlet var picture: UIImageView!
 @IBOutlet var text: UILabel!
}

Chapter 2

[67]

Go to your storyboard and add a collection view controller to it by dragging the
collection view from the object library, as shown in the following screenshot:

Select this new view controller and change its class to PictureViewController and
its Storyboard ID to picturescity:

Now, click on the only cell we have in this collection view and change its class to
PictureCell, identifier to picturecell, width to 128, and height to 132. Add an
image view and a label to it. Set the number of lines of the label to 2. Connect the
image and label with the corresponding properties in the PictureCell class and add
constraints by clicking on the menu Editor, on the Resolve Auto Layout Issues, and
then on add missing constraints.

Creating a City Information App with Customized Table Views

[68]

Adding missing constraints is an option that helps us save time.
However, you must take care. Frequently, the constraints are generated
in the wrong way and you might need to redo some of them.

Now, to finish the app itself, we just need to instantiate PicturesViewController
and add it as another page. Go to CityOptionsViewController and add the
highlighted code to its viewDidLoad method:

 cityViewControllers.append(weatherViewController)

 let picturesViewController =
 self.storyboard?.instantiateViewControllerWithIdentifier("pict
urescity") as! PicturesViewController
 picturesViewController.cityInfo = cityInfo
 cityViewControllers.append(picturesViewController)

 self.setViewControllers([wikiViewController], direction:
 .Forward, animated: true) { (_) -> Void in
 return
 }

Rebuild the app and run it. Check whether you can see some pictures on the
third page:

Chapter 2

[69]

Summary
In this chapter, you learned how to create custom NSError, which is the traditional
way of reporting that something went wrong. Every time a function returns NSError,
you should try to solve the problem or report what has happened to the user.

We could also appreciate the new way of trapping errors with try and catch a
few times. This is a new feature on Swift 2, but it doesn't mean that it will replace
NSError. They will be used in different situations.

During the chapter, you learned the different ways of displaying options or a list
of items on the screen. The table view is the most common one and we used it with
custom cells. There is also the collection view controller, which works like a table
view controller, but it can add cells horizontally and vertically. The other way is to
use the page view controller, which is basically a table of view controllers.

The way we retrieved information was by using APIs. This is a very common way
as internet connection is common these days. Of course, there are data that can't be
stored locally due to storage space limitations (you can't have pictures of every city
in the world on your phone) or because they need to be updated in a short period of
time, like the weather.

In the next chapter, you are going to learn how to take a picture, edit it, and send it to
your friends via social network.

[71]

Creating a Photo
Sharing App

Nowadays, there is a big percentage of iPhone users who are also social network
users. Don't ask how or why, you just have to accept this phenomenon. It implies
that you probably may have to develop an app using social network APIs.

Another phenomenon that also comes with the popularity of smartphones is the
camera usage. Basically, people have stopped buying traditional photo cameras and
started using the camera that comes with their iPhones. There is a variety of reasons
behind it and one of them is that they can take a picture with their phone camera and
share it through their favorite social networking website.

Based on this fashion, in this chapter, we are going to develop an app to use the
camera, edit pictures, and share them with our friends.

In this chapter, we will cover:

•	 Using the camera with UIImgePickerController
•	 Creating a custom UIView
•	 Manipulating an UIImage
•	 Posting on Facebook using Social Framework

Creating a Photo Sharing App

[72]

Project overview
As we did in the previous chapter, let's start by getting a big picture of the
application. We will then start coding.

Using this app should be very simple; remember that, nowadays, there are few users
who read the manual. The user just needs to follow a few steps till he reaches the goal.
Firstly, the user needs a photo, which can be taken from the camera roll or by using the
camera. After this, the user can edit and add extra features to the picture. Once the user
has finished treating the picture, he can share the picture with his friends.

Now that the app outline is done, we need to gather information on the features that
are going to be used and whether they are viable or not.

The camera
There are different ways of using the camera, but what you really need to ask
yourself is whether you need to use the camera's basic features or do you need
to use some low-level features.

Low-level features might be used with the AVFoundation framework, which you
are going to learn about in Chapter 8, AVFoundation. However, for this app, we don't
need such features, so we can develop it faster using UIImagePickerController.
This controller allows us to use the camera and the camera roll, and it also allows us
to customize the layout.

Custom UIView
Custom UIView will allow us to modify the image chosen by the user and add some
funny drawing before we share it with our friends on Facebook. To do this, we will
have to store the elements added by the user. In the end, we can generate UIImage.

Such elements can be the background, a text, an image, and a shape. In this case, we
are going to simplify it by creating texts with the same color and font family. There
will only be one image (a hat) and the shape will always be a circle, but remember
that you are free to improve this app.

The social framework
As social networks like Facebook and Twitter are very popular nowadays, Apple
decided to create a framework for social networks, meaning that now it is much
easier to share pictures with our friends.

Chapter 3

[73]

For this app, we are going to use Facebook. The only detail the user must know is
that he would have to log in to Facebook on his device before he uses this app.

There are other ways of logging in to Facebook like using the SDK
or some third-party frameworks such as Mixpanel. It depends on
the users and the method they would like to use.

Logging in is not difficult; the user just needs to go to Settings and scroll down till
they find the Facebook option.

Once this option is selected, the user can introduce his username and password. He
will then be able to post on Facebook using any iOS app.

www.allitebooks.com

http://www.allitebooks.org

Creating a Photo Sharing App

[74]

Creating the app
Let's start creating the app by opening Xcode and creating a new, single-view
application project. Call it Chapter 3 Photo Sharing and select Swift as its
main language.

Before coding, we have to set the app configuration. In this case, we will set this app
to be used only in the portrait mode. Click on your project, select the app target, and
leave only the Portrait orientation checked.

Chapter 3

[75]

Rename the ViewController.swift file to InitialViewController.swift and
do the same with its class. Don't forget to change the view controller's class on
the storyboard.

Taking advantage of being on the storyboard, we can complete the layout of the first
scene. This first scene just needs a title (a label), some user instructions (a text view),
and two buttons: one to take a picture from the camera roll and another one to take a
picture from the camera. Don't forget to add the autolayout constraints so it can be
adapted to any screen size. The final layout will be similar to the following screenshot:

Creating a Photo Sharing App

[76]

Even if your app should work only with the camera, it is a good
idea to choose a picture from the photo gallery, even if it is a
temporary option for development. This way, you will be able to
test your app with the simulator.

For the instructions, let's make sure that the user is unable to change them. To do
it, select the text view, go to its Attribute Inspector, and uncheck the Editable and
Selectable options, as shown in the following screenshot:

Connect each button to an action and call them choosePhoto and takePhoto. You
can use the Assistant view to do it in a straightforward way. Leave these actions
empty; we will complete them later:

 @IBAction func choosePhoto(sender: UIButton) {
 }
 @IBAction func takePhoto(sender: UIButton) {
 }

Now, we can complete this view controller. Let's start by completing the class
definition. In this case, it needs to specify that the view controller is also an image
picker controller delegate and a navigation controller delegate. Both delegates are
required by UIImagePickerController:

import UIKit

class InitialViewController: UIViewController,
UIImagePickerControllerDelegate, UINavigationControllerDelegate {

Chapter 3

[77]

As an attribute, the only one we will need is UIImagePickerController. This attribute
will be in charge of taking a picture from the camera or from the photo gallery:

 var imagePicker = UIImagePickerController()

We can then initialize this attribute by setting its delegate and do not allow any
further modifications:

 override func viewDidLoad() {
 super.viewDidLoad()
 imagePicker.delegate = self
 imagePicker.allowsEditing = false
 }

Once we have the imagePicker setup, we can complete the button's actions.
All we have to do is to set the attribute to where it should get the picture from
and present it:

 @IBAction func takePhoto(sender: UIButton) {
 // You can't switch these 2 lines order, otherwise your
 app will crash.
 imagePicker.sourceType = .Camera
 imagePicker.cameraDevice = .Front

 imagePicker.cameraCaptureMode = .Photo
 imagePicker.videoQuality = .TypeMedium

 self.presentViewController(imagePicker, animated: true,
 completion: nil)
 }

 @IBAction func choosePhoto(sender: UIButton) {
 imagePicker.sourceType = .PhotoLibrary
 self.presentViewController(imagePicker, animated: true,
 completion: nil)
 }

Once the user takes the picture, the app will still need to know what to do with it.
The UIImagePickerDelegate gives us two options: the first one is for when the
user accepts the picture taken and the other one is for when the user cancels it.
Both methods must be implemented, as we need to remove imagePicker from
being displayed:

 // MARK: - Delegate functions
 func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject]){

Creating a Photo Sharing App

[78]

 imagePicker.dismissViewControllerAnimated(true,
 completion: { () -> Void in
 let image = info[UIImagePickerControllerOriginalImage]
 as! UIImage

 let editPictureViewController = self.storyboard?.
instantiateViewControllerWithIdentifier("editphoto") as!
EditPictureViewController
 editPictureViewController.photo = image
 self.presentViewController(editPictureViewController,
 animated: true, completion: nil)
 })
 }

 func imagePickerControllerDidCancel(picker:
 UIImagePickerController){
 imagePicker.dismissViewControllerAnimated(true,
 completion: nil)
 }

If you allow photo editing, use the
UIImagePickerControllerEditedImage constant instead of
UIImagePickerControllerOriginalImage while retrieving the image.

Great! Now, we've got a compiler error. Don't worry about it for now; it is because
we still need to implement another view controller. To finish this class, let's create
the unwind method. This method will allow us to return to the first screen after we
finish editing our photo:

 @IBAction func unwind(segue: UIStoryboardSegue){
 }
} // class end

Creating a view to draw on it
Before we start with the next view controller, we are going to create a custom view to
draw the current picture's state and allow the user to add some features to it.

Create a new file called BoardView.swift and start a new class with the same name.
This class must inherit from UIView (not UIViewController), therefore it needs to
import UIKit:

import UIKit

class BoardView:UIView {

Chapter 3

[79]

How is it going to work? It's very easy. We have to store the elements that should be
drawn. Every time we store a new element, we will have to call setNeedsDisplay
to report that there is something new. drawRect should be called as well. These
elements are going to be implemented afterward; the only detail we need to know
about them right now is that they inherit from a class that will be called Element,
which will have a method called draw. Place the following code to add the elements
to the array:

 private var elements = [Element]()

 func addElement(element:BoardView.Element){
 element.view = self
 elements.append(element)
 setNeedsDisplay()
 }

After this, we will have to iterate over every element and draw it. As you can see, we
just need to call a method called draw. It doesn't matter what kind of element it is.

 override func drawRect(rect: CGRect) {
 for element in elements {
 element.draw()
 }

 }

Now, we can create the last method for this class. It will collect the whole image with
its icons and convert them into UIImage. This way, we can use our result to publish
it on Facebook. This method creates a bitmap graphic context, which is like an image
destination with the current BoardView frame size. It will wait till the board view
is updated with the final image and convert the context into UIImage using the
UIGraphicsGetImageFromCurrentImageContext function:

 func getImage() -> UIImage {
 UIGraphicsBeginImageContext(self.frame.size)
 self.drawViewHierarchyInRect(self.frame,
 afterScreenUpdates: true)
 let image = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return image

 }

Is this class over? The answer is no! The Element class mentioned before should be
used only with this view, so it is a good idea to create it as a nested class, as well as
the classes that are going to inherit from it.

Creating a Photo Sharing App

[80]

Swift still has some limitations with nested classes, mainly while
using them with the interface builder. Please bear this in mind.

For this class, we will need to store its position on BoardView. Every time it changes,
we will have to call setNeedsDisplay. We also need to store BoardView where this
element belongs to. Finally, we have to create a method called draw. As Swift doesn't
have abstract methods, it will raise an error in case it is called directly from the
base class:

 class Element{
 var position:CGPoint? {
 didSet{
 self.view?.setNeedsDisplay()
 }
 }

 var view:BoardView?

 func draw(){
 fatalError("The function \(__FUNCTION__) shouldn't be
called from the base class")
 }
 }

Once we have the base class, we can implement its derived classes. We will start
with the background, which is a class that stores an image and draws it on the
coordinate origin:

 class ElementBackground:BoardView.Element {
 var image:UIImage
 init(image:UIImage) {
 self.image = image
 super.init()
 self.position = CGPointZero
 }

 override func draw() {
 if let position = self.position {
 image.drawAtPoint(position)
 }
 }
 }

Chapter 3

[81]

A similar class is ElementPicture. It differs from the background by being drawn
based on its center. So, the user will be able to drag it in a more intuitive way:

 class ElementPicture:BoardView.Element {
 var image: UIImage
 init(image: UIImage){
 self.image = image
 super.init()
 }

 override func draw() {
 if let position = self.position {
 let newPosition =
 CGPointMake(position.x - image.size.width / 2,
 position.y - image.size.height / 2)
 image.drawAtPoint(newPosition)
 }
 }
 }

Another kind of element is the text. With this element, the user can write a message
on his picture and place it wherever he wants:

 class ElementText:BoardView.Element {
 var text:String
 var attributes:[String:AnyObject]
 init(text:String, attributes: [String:AnyObject]) {
 self.text = text
 self.attributes = attributes
 super.init()
 }

 override func draw() {
 if let position = self.position {
 text.drawAtPoint(position, withAttributes:
 attributes)
 }
 }
 }

Creating a Photo Sharing App

[82]

The last type of element we are going to have is the circle. Note that now we have to
override the position attribute as, the first time, it needs to store the initial position. It
will then store the opposite corner of its frame. After this element, we can close both
the classes (ElementCircle and BoardView):

 class ElementCircle:BoardView.Element {
 var initialPoint:CGPoint?
 override var position:CGPoint? {
 get {
 return super.position
 }
 set (value){
 if initialPoint == nil {
 initialPoint = value
 }
 super.position = value
 }
 }

 override func draw() {
 if let initialPosition = self.initialPoint,
 position = self.position {
 let borderRect =
 CGRectMake(initialPosition.x, initialPosition.y,
 position.x - initialPosition.x,
 position.y - initialPosition.y)
 let context = UIGraphicsGetCurrentContext()
 CGContextSetRGBStrokeColor(context, 1.0, 1.0, 1.0,
 1.0)
 CGContextSetRGBFillColor(context, 0.0, 1.0, 0.0,
 1.0)
 CGContextSetLineWidth(context, 2.0)
 CGContextFillEllipseInRect (context, borderRect)
 CGContextStrokeEllipseInRect(context, borderRect)
 }
 }
 } // class end
} // class end

Chapter 3

[83]

Developing the edition space
Return to the storyboard and add a new view controller to it. Here, we will have to
perform a few steps. We will start by creating the exit point by control-dragging it
from the view controller icon (yellow circle with a square in it) to the Exit icon (a
square with an arrow). The idea behind this is to create an exit point that will allow
us to return to the main screen:

Once you release the mouse button, a popup will appear asking you to choose the
exit point. In this case, there will be only one exit point called Unwind. Click on it
and a new icon will appear on the document outline.

Select the symbol, go to its attribute inspector, and set its identifier to restart.
Remember this identifier; we are going to use it later, while exiting to the main view.

Creating a Photo Sharing App

[84]

We will now focus on the view controller's layout. We have to add three buttons to
the top and set their titles to Text, Hat, and Circle, respectively.

Under these buttons, add a new view. As everything has the word View on the
object library, you can filter it by typing UIView.

Select the view and, if you prefer, change its background color to gray, so it will be
easier to visualize its size. Go to the identity inspector and change the class of UIView
to BoardView.

Chapter 3

[85]

Resize the view by trying to occupy as much space as you can, but leave a gap at the
bottom to add a new button. This button will be pressed by the user when he finishes
editing his picture. Add the auto layout constraints you think are necessary. You can
also add them with the magic of the suggested constraints. The main idea is to create
a layout with three buttons at the top to represent the different types of elements that
you can add to your image, a button at the bottom of the screen, and the board view
to occupy the rest of the screen.

Now, we are going to implement the second view controller. Create a new file
called EditPictureViewController.swift. Here, you have to import the
Social framework besides UIKit:

import UIKit
import Social

class EditPictureViewController:UIViewController {

In this class, we will need three attributes: boardView will be connected to the one
we have on the storyboard, UIImage is going to be the original photo received from
the camera, and BoardView.Element (called currentElement) is the element we are
working on at this moment. Every time the user releases his finger from the screen,
we will consider that he has finished placing the current element. As a consequence
of this, the attribute will be set to nil:

 @IBOutlet var boardView: BoardView!
 var currentElement:BoardView.Element?
 var photo:UIImage!

Once the attributes are done, we can set up this view class with the viewDidLoad
method. Here, we will need to add a gesture recognizer, as we need to track where
the user is moving the current element:

 override func viewDidLoad() {
 let element = BoardView.ElementBackground(image:
 UIImage(CGImage: photo.CGImage!, scale: 2, orientation:
 photo.imageOrientation))
 boardView.addElement(element)
 let gesture = UIPanGestureRecognizer(target: self, action:
 Selector("dragging:"))
 boardView.addGestureRecognizer(gesture)
 }

Creating a Photo Sharing App

[86]

As you saw in the previous code, we need to implement a method called dragging
as the gesture handler. This method just needs to update the current element
position. In case of releasing the finger from the screen, it needs to set that there is no
current element anymore:

 func dragging(gesture:UIPanGestureRecognizer){
 if let currentElement = self.currentElement {
 currentElement.position =
 gesture.locationInView(self.boardView)
 if gesture.state == .Ended {
 self.currentElement = nil
 }
 }
 }

Now, we can create each button's action. Starting with the easiest, we are going to
create the circle's action. It is as easy as creating the circle element and adding it to
the board view:

 @IBAction func addCircle(sender: UIButton) {
 currentElement = BoardView.ElementCircle()
 boardView.addElement(currentElement!)
 }

Next, we can implement the hat. Here, the idea is very similar to the similar methods.
The only difference is that we have to check whether the hat image was really loaded:

 @IBAction func addHat(sender: UIButton) {
 if let image = UIImage(named: "hat") {
 currentElement = BoardView.ElementPicture(image:
 image)
 boardView.addElement(currentElement!)
 }
 }

Remember that you have to copy the image from the book resources to images.
xcassets, as shown in the following screenshot:

Chapter 3

[87]

The third element, as you know, is the text. Here, the app must ask the user what text
he wants to display. To do it, we are going to use an alert controller. Alert controllers
are better designed than the previous alert view. Now, they are prepared to display
text fields:

 @IBAction func addText(sender: UIButton) {
 let alertController = UIAlertController(title: "Text",
 message: "Please introduce your text", preferredStyle:
 .Alert)
 alertController.addTextFieldWithConfigurationHandler {
 (textfield) -> Void in
 textfield.placeholder = "Write a message"
 }

Once we have set up the action—this is another difference against UIAlertView, as it
doesn't use a selector anymore—it will use closures:

let action = UIAlertAction(title: "OK", style: .Default) {
(action) -> Void in
 let text = alertController.textFields!.first!.text!
 let textFontAttributes:[String:AnyObject] = [
 NSFontAttributeName: UIFont(name: "Helvetica",
 size: CGFloat(24.0))!,
 NSForegroundColorAttributeName:
 UIColor.redColor(),
 NSParagraphStyleAttributeName:
 NSMutableParagraphStyle.defaultParagraphStyle()
]

 self.currentElement = BoardView.ElementText(text:
 text, attributes: textFontAttributes)
 self.boardView.addElement(self.currentElement!)
 }
 alertController.addAction(action)

Note that, here, we used some predefined settings for the font. Right now, we have
the Helvetica font with a font size of 24 and the color red, which is a style that is
perfectly visible in most picture and screen sizes. Feel free to change them or add a
feature where the user is able to change the current settings. An empty action is not
mandatory, but it is good for the user. This way, he is able to cancel the text field in
case he changes his idea:

 let cancel = UIAlertAction(title: "Cancel", style:
 .Cancel) { (_) -> Void in
 }
 alertController.addAction(cancel)

Creating a Photo Sharing App

[88]

Now, you just need to present the alert controller by calling the
presentViewController method:

 self.presentViewController(alertController, animated:
 true, completion: nil)
 }
} // class end

Since the birth of iOS, there have been a lot of pop-up windows that
are more attractive than the ones that are built-in. However, some of
them have stopped being supported, which forced some developers
to rewrite the corresponding code to keep the app up to date. Please
think twice before you use any external popup.

Once the class is done, we have to update the storyboard. Return to the storyboard
and select the view controller that we've been working on. Go to its Identity
Inspector, update its class to EditPictureViewController, and set its
Storyboard ID to editphoto, as shown in the following screenshot:

Chapter 3

[89]

Before continuing with the rest of the code, it is a good time to test the app. Check
whether you can take a picture and modify it by adding some circles, a hat, and some
text messages. You might get a result similar to the following screenshot:

Creating a Photo Sharing App

[90]

Publishing your picture
Now that you are able to edit the photo, we must develop the last part of the app.
Connect the button at the bottom to an action called done:

 @IBAction func done(sender: UIButton) {

Here, you have to check whether the user is able to post via Facebook. He may have
not logged in. If he is able to post it, you can create a view controller for posting. You
can then attach your picture to the view controller:

 if
SLComposeViewController.isAvailableForServiceType(SLServiceTypeFacebo
ok) {
 let fbViewController =
 SLComposeViewController(forServiceType:
 SLServiceTypeFacebook)
 fbViewController.addImage(boardView.getImage())

Now, we can set the operation that will be done when the user finishes with his post.
In this case, if the user posts the picture correctly, we will return to first screen by
using the restart segue:

 fbViewController.completionHandler =
 {(result) -> Void in
 switch result {
 case .Cancelled:
 ()
 case .Done:
 self.performSegueWithIdentifier("restart",
 sender: self)
 }
 }

Avoid "restacking" the view controllers; try using the unwind
methods to return to the previous view controllers. It also frees
the view controllers that were halfway in the process.

Present the view controller and close the if statement:

 presentViewController(fbViewController, animated:
 true, completion: nil)
 }

Chapter 3

[91]

Now, we can complete this method by creating the else statement. It will tell the
user that he needs to log in to post the picture:

 else {
 let alertController = UIAlertController(title: "Log
 in", message: "You must log in on Facebook",
 preferredStyle: .Alert)
 let action = UIAlertAction(title: "Dismiss", style:
 .Cancel, handler: { (_) -> Void in
 })
 alertController.addAction(action)
 presentViewController(alertController, animated: true,
 completion: nil)
 }
 }// end done

It is time to test the app again. Run your app, take a picture, add some features
(circles, texts, and hats), and try to publish it. Now, you should see a window that
allows you to add a text and other options (Location, Album, and Audience) before
you publish the photo:

Creating a Photo Sharing App

[92]

Press Post and confirm whether your picture is published. How? It is very easy. Just
open your web browser (on your computer or iPhone), log in to Facebook with the
same account you have on your device, and check whether you have a new post on
your wall.

Avoid creating apps that submit many pictures, it can consume
some broadband data and the user might be charged for it.

As you can see, the app works and you can have a lot of fun with your friends now.

Chapter 3

[93]

Summary
In this chapter, you learned how to take pictures using the camera or the camera
roll using UIImagePickerController. We were able to edit the taken picture using
a custom view, which contains an array of elements. These elements were drawn
using Core Graphics, which basically creates a context. Each call fills it with the
corresponding function.

In the end, we were able to retrieve the edited picture and post it on Facebook,
allowing us to share the final result with our friends.

In the next chapter, you are going to learn how to control your home devices
using HomeKit.

[95]

Simulating Home
Automation with HomeKit

For years, you might have been hearing about something called Internet of Things
(IoT), which is sometimes called Internet of Everything (IoE). What is it all about?
This new term applies to physical electronic devices that can be controlled by a
computer or a mobile phone.

This concept isn't new. If you read about the origin of Java programming language,
you will realize that it was done for home appliances. Things have changed and
the market is now ready for this home evolution. Many companies have started
investing in new products, therefore we will soon have doors, lights, TV, and
refrigerators controlled by our mobile phones at our homes.

Apple has now released a new framework that allows developers to create apps that
can control these devices.

In this chapter, we will cover:

•	 Installing the HomeKit Accessory Simulator
•	 Using the HomeKit framework

Project overview
This project consists of creating an app that will control the interiors of a living room
and the garage door. In our living room, we have three accessories that can be linked
to our iPhone or iPad: the door lock, fan, and aquarium thermometer.

Simulating Home Automation with HomeKit

[96]

When the app starts, it should set up the house if it is the first time, search for new
accessories, and let the user choose the room that he would like to control or retrieve
information from. If the user chooses the garage only, a view controller will be
displayed, but if the living room is chosen as well, each accessory will be displayed
in a different view controller that is controlled by UIPageViewController.

Preparing yourself for HomeKit
Let's get started with our HomeKit. The idea of this framework, as mentioned before,
is to communicate the Apple device (iPhone or iPad) with a third-party device.
The main question that arises when you use this framework is whether we need a
physical device for developing with HomeKit. The answer is you don't need to buy
any physical device; Apple provides us with a free simulator for development.

Of course, if you have a physical device, it would be worth testing on it. However,
it is not essential. In the next section, you will learn how to download the HomeKit
Accessory Simulator and see how to set it up.

Downloading the HomeKit Accessory
Simulator
While developing with the HomeKit framework, start by downloading the HomeKit
Accessory Simulator. This way, you won't need to buy any physical device. Open
your Xcode. But, instead of starting a new project, click on the Xcode menu and then
on Open Developer Tool and select More Developer Tools….

There is another way of downloading the HomeKit Accessory
Simulator, that is, when you enable the HomeKit capability on
your project. Both ways take you to the same web page.

Chapter 4

[97]

Your default web browser will open a download site in the Apple Developer Center.
You might have to log in; if so, just do it and repeat the process. Once you have
reached the download web page, look for Hardware IO Tools for your Xcode version
and click on it to start downloading.

Once you have downloaded it, open the DMG file by double-clicking on it and drag
the HomeKit Accessory Simulator to your Applications folder.

Creating accessories
Open the HomeKit Accessory Simulator by double-clicking on it (obviously). Now,
you can add a new virtual accessory to your simulator. Start by clicking on the
+ sign located in the bottom-left corner of the window. Two options will appear:
New Accessory… and New Bridge…; select the first one.

Simulating Home Automation with HomeKit

[98]

Let's create our first accessory. In this case, it will be a simple door lock that has only
two states: locked and unlocked, which are going to be represented by a Boolean
value. Complete the form that appears on the dialog box by writing Door Lock as the
accessory's name and something like Home Automation Limited for the manufacturer.

A new accessory (Door Lock) will be listed on the left-hand side. Click on it and you
will see a panel with the accessory's information with the following details:

•	 On the upper left-hand side, you can see the Setup Code ID. The user needs
this code to link his app with the accessory.

•	 On the upper right-hand side, you can see a switch that turns your
accessory's IP address on and off. Under this switch, there is a label that says
Pairings 0 with a Reset button next to it. While developing, you might need
to click on the Reset button so you can lose your device's linkage.

•	 A button with the Add Service title can also be useful. However, for this first
accessory, we won't use it.

•	 There is another button with the Add Characteristic title. We will have to
click on it to add our door states.

Chapter 4

[99]

After clicking on the Add Characteristic button, a dialog will appear. In this case,
you don't have to change anything, but copy the UUID value to eventually use it.
Make sure that the format type is Bool and leave the rest of the fields empty.

After pressing the Finish button, you will see that the characteristic has been created.
You can change the initial value if you want.

Now that you know how to create new accessories, let's create some of them. Create
a new accessory called Fan, which is supposed to be a fan in the living room. After
creating it, instead of clicking on the Add Characteristic button, press the Add
Service button.

Simulating Home Automation with HomeKit

[100]

Another dialog will appear but, this time, you will be able to choose a service type.
Select Fan Service, press Finish, and take note of this accessory's setup code. Don't
worry about the UUID; as it is a predefined service, we have constants to reach it.

Let's create the last accessory for our living room. We just need to receive some
information from the aquarium temperature. Thus, we will create a new accessory
called Aquarium Thermometer. Add a new service, select Thermostat Service,
and press Finish. On the main panel, set the current temperature to 23.1 degree
Celsius and the target temperature to 24 degree Celcius, as shown in the following
screenshot. Take note of the setup code.

After this, we are going to create another accessory, but not for the living room.
Now, we are going to create the garage door. Again, click on the + sign to add a new
accessory and call it Garage Door. For this accessory, add a new service, that is, the
Garage Door Opener Service and take note of the setup code.

Congratulations! You have a small virtual automated house. Now, you just need an
app to control it.

Chapter 4

[101]

Creating the app
Without closing the HomeKit Accessory Simulator, open Xcode and create a new
project called Chapter 4 Home Automation. Check whether Swift is the main
language and ensure Use Core Data is not checked.

Before we start coding, we will have to activate the ability to use HomeKit. Click
on your project in the project navigator, select your project target (Chapter 4 Home
Automation), click on the Capabilities tab, and turn HomeKit on.

Simulating Home Automation with HomeKit

[102]

Xcode will request you to select your enrolled Apple account for this feature. If
you don't have one, it's about time you create it. HomeKit isn't the only feature that
requests an enrolled Apple ID account.

Now we are ready to start coding.

The first scene
The first scene must be in charge of setting up the house and then allowing the user to
choose which room he wants to check. Our first task here is to rename the only view
controller we have to something more expressive. Click on the ViewController.
swift file and rename the file with its class to SelectRoomViewController. Don't
forget to update the view controller name on the Attribute Inspector on the storyboard.

Continue by importing the HomeKit framework and setting this class as
HMHomeManagerDelegate. This delegate will let us know when a home receives
an update like when HomeKit loads information from homes, rooms, and so on:

import HomeKit

class SelectRoomViewController: UIViewController,
HMHomeManagerDelegate {

Chapter 4

[103]

Now, we need to create an attribute of the HMHomeManager type. This way, we will be
able to retrieve information on homes and in turn about the rooms and the accessories
that are in them. Accessories are composed by services that have characteristics:

 let homeManager = HMHomeManager()

Another attribute we will need is two buttons, each of them will take us to the
corresponding room (the living room and garage). By default, they will be disabled
till the information of their rooms is loaded:

 @IBOutlet weak var livingRoomButton: UIButton!
 @IBOutlet weak var garageButton: UIButton!

Once the attributes are defined, we need to initialize the home manager by setting its
delegate. The manager will then start working and calling the delegates method if it
is necessary. As we are on a view controller, this initialization should be done on the
viewDidLoad method:

 override func viewDidLoad() {
 super.viewDidLoad()
 homeManager.delegate = self
 }

Before continuing with the HomeKit methods, we can create an unwind method,
so we can return fast to this scene:

 @IBAction func unwindMainMenu(sege: UIStoryboardSegue){
 }

Now, we can create the homeManagerDidUpdateHomes method, which will be called
at the beginning when the home manager loads the home information, even if there
is no home set in the HomeKit database. Thus, we need to differentiate the case when
there is no home—in which case, we will have to set it up—and when there is a
home set—in which case, we will have to only enable the buttons:

 func homeManagerDidUpdateHomes(manager: HMHomeManager) {
 if manager.homes.count == 0 {
 // There is no home set up, we must do it now.
 manager.addHomeWithName("Home Sweet Home",
 completionHandler: { home, error in
 if error != nil {
 // In case of error we will display it to the
 user
 self.displayError(error!)

Simulating Home Automation with HomeKit

[104]

 return
 }

 // as it is a new home we can set its rooms now
 home?.addRoomWithName("Living Room",
 completionHandler: {(room, error)-> Void in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.livingRoomButton.enabled = true
 })
 home?.addRoomWithName("Garage", completionHandler:
 {room, error in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.garageButton.enabled = true
 })
 })
 }else {
 livingRoomButton.enabled = true
 garageButton.enabled = true
 }
 }

This app is just a sample. This is the reason we are supposing that, if there
is a home, it is the only one and its rooms should be already set. For real
apps, it is better to check whether the home is the one that you want. If it
is set, it is a good idea to check whether the rooms are also set.

Pay attention that the HomeKit methods usually are asynchronous. Remember,
HomeKit communicates with the physical accessories via Bluetooth. It could take a
long time for it to reply, technically speaking.

Let's create an auxiliary method that can search for a room using its name:

Don't suppose that the rooms' array would always
return them in the same order.

 func getRoom(name:String) -> HMRoom? {
 if let home = homeManager.homes.first{

Chapter 4

[105]

 for room in home.rooms {
 if room.name == name {
 return room
 }
 }
 }
 return nil
 }

Now, we can prepare the prepareForSegue method. What does it mean? It means
that we can't complete its code now, as we don't have the next view controllers.
Thus, we should just leave a gap for them:

 override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {
 if sender === livingRoomButton {
 // TODO: Set the living room view controller
 }else if sender === garageButton {
 // TODO: Set the garage view controller
 }
 }

This view controller is almost ready, except for one detail: it doesn't compile. The
reason is that there is a method called displayError, which doesn't exists. So,
let's create and make it available for every view controller by defining it as an
UIViewController extension.

Create a new swift file (command + N) and call it UIViewControllerExtension.swift.
Here, we just need to create the displayError method, which will show an alert
controller with the error description:

import UIKit

extension UIViewController {
 func displayError(error:NSError){
 let alertController = UIAlertController(title: "Error",
 message: error.localizedDescription, preferredStyle:
 .Alert)
 let action = UIAlertAction(title: "Dismiss", style:
 .Cancel) { _ in
 }
 alertController.addAction(action)
 self.presentViewController(alertController, animated:
 true, completion: nil)
 }
}

Simulating Home Automation with HomeKit

[106]

Now, our code will compile it. As you can imagine, there isn't much to show. So,
let's return to the storyboard and put two labels and two buttons on the only view
controller we have till now. On the first label, write Home Automation to indicate
the app's name and change its font size to 24. For the second label, change its title
to SELECT YOUR ROOM to give instructions to the user. Change the buttons' title to
Living Room and Garage, respectively, and uncheck the Enabled checkbox on the
attribute inspector of both the buttons.

Connect the buttons to their corresponding attributes and place the components as in
the following the screenshot. Don't forget to add some auto layout constraints.

Chapter 4

[107]

Now we can test our app. It will not do too much, but we will receive signs that the
app is working fine. The first one is the HomeKit permission that must be asked
when the app is launched. The second is the buttons state that would be changed to
enabled, meaning that the home setup was done correctly. You might also receive an
alert if you don't have the iCloud Keychain enabled.

Creating an accessory class
The first goal has been completed. Now, we can start developing the view controllers
that represent the accessories with their states. As these view controllers need to be
similar, we are going to create a common class.

Create a new file called AccessoryViewController.swift, click on it, and import
UIKit and HomeKit:

import UIKit
import HomeKit

Let's create the AccessoryViewController class. It must inherit from
UIViewController and it also needs to implement the HMAccessoryBrowserDelegate
and HMAccessoryDelegate protocols. The first protocol is used to search for new
accessories around us and the second one is used to detect instances when the current
accessory changes its state:

class AccessoryViewController: UIViewController,
HMAccessoryBrowserDelegate, HMAccessoryDelegate {

Simulating Home Automation with HomeKit

[108]

As attributes, we will need HMAccessoryBrowser, the home object found on the
first screen; the room object where the accessory belongs to; the accessory itself; the
characteristics that we are controlling in the view controller; and one attribute that
we are going to call: acceptsNotifications, which means that the accessory can
notify the app when its state changes (like someone opened the door). It will also
need three computed attributes that are the accessory names we are looking for, the
service type, and the characteristic type. Why are these last two computed attributes
needed? The reason is that they must be overridden:

 var accessoryBrowser = HMAccessoryBrowser()
 var home:HMHome!
 var room:HMRoom!
 var accessory:HMAccessory?
 var characteristic:HMCharacteristic?
 var acceptsNotifications = false
 var expectedAccesory:String {
 get {
 fatalError("expectedAccesory should be called from an
 inherited class")
 }
 }
 var expectedService:String {
 get {
 fatalError("expectedService should be called from an
 inherited class")
 }
 }
 var expectedCharacteristic:String {
 get {
 fatalError("expectedCharacteristic should be called
 from an inherited class")
 }
 }

Chapter 4

[109]

As usual, after declaring the attributes, we are going to implement the viewDidLoad
method. In this case, we need to check whether the accessory we are looking for
is already assigned to its room. If so, we have to set its delegate and store it in the
corresponding attribute:

 override func viewDidLoad() {
 super.viewDidLoad()
 for accessory in room.accessories {
 if accessory.name == expectedAccesory {
 self.accessory = accessory
 self.accessory?.delegate = self
 }
 }
 }

Now, we have to override the viewDidAppear method; in this case, we are going to
do the opposite process of the ViewDidLoad method. If we don't have an accessory,
we need to set the accessory browser and ask it to start looking for accessories.
Otherwise, we can call a method that continues with the setup once the view
controller knows that the accessory is found:

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 if self.accessory == nil {
 accessoryBrowser.delegate = self
 accessoryBrowser.startSearchingForNewAccessories()
 }else {
 accessoryIsReady()
 }
 }

Why did we do this part on viewDidAppear instead of doing it on viewDidLoad?
The reason is very simple; we might instantiate and load a few view controllers at
the same time. After they search for the accessories at the same time and each of
them finds the corresponding accessory, we will assign them to their corresponding
rooms. This action will request the user for the security code.

Now, imagine that your app extends to use 20 accessories and you are going to request
their security code sequentially. It might be too exhausting to the user. You will have
to write every accessory code when the first one appears on the screen. Wouldn't it be
better if you wrote down the security while displaying it on the screen?

Simulating Home Automation with HomeKit

[110]

We order the accessory browser to search for new accessories. After this, we will
have to implement the delegate method. Here, we will have to confirm that the
accessory found belongs to the current view controller:

 func accessoryBrowser(browser: HMAccessoryBrowser,
 didFindNewAccessory accessory: HMAccessory) {
 print("Found: \(accessory.name)")
 if accessory.name == expectedAccesory {
 home.addAccessory(accessory, completionHandler: {
 error in
 if error != nil {
 self.displayError(error!)
 return
 }

 self.home.assignAccessory(accessory, toRoom:
 self.room, completionHandler: { error in
 if error != nil {
 self.displayError(error!)
 return
 }

 self.accessory = accessory
 self.accessory?.delegate = self
 self.accessoryIsReady()
 })
 })
 }
 }

Sometimes, it is also necessary to check the service
name. Bear it in mind.

The method called accessoryIsReady is the one we just made up to act when the
view controller is ready and to use the accessory with its characteristic. Bear this
method in mind as it can be overridden when it is necessary. For this level of the
class, it will search for its characteristic, set the notifications on if available, and read
the current value:

 func accessoryIsReady(){
 let accessory = self.accessory!
 for service in accessory.services {
 if service.serviceType != self.expectedService {
 continue

Chapter 4

[111]

 }
 for characteristic in service.characteristics {
 if characteristic.characteristicType ==
 self.expectedCharacteristic {
 if let _ =
characteristic.properties.indexOf(HMCharacteristicPropertySupportsEven
tNotification){){
 self.acceptsNotifications = true
 characteristic.enableNotification(true,
 completionHandler: { (error) -> Void in
 if error != nil {
 self.displayError(error!)
 return
 }
 })
 }
 self.characteristic = characteristic
 self.readCharacteristicValue()
 }
 }
 }
 }

We still need to complete the accessory delegate by reading the current characteristic
value when a change is detected:

 func accessory(accessory: HMAccessory, service: HMService,
 didUpdateValueForCharacteristic characteristic:
 HMCharacteristic) {
 self.readCharacteristicValue()
 }

Now, we can finish this class by writing a method that should be overridden on the
inherited class. This method should read the current characteristic value and update
its representation on the screen. As it is quite characteristic-specific, we just need to
define it and it will be overridden on the inherited class:

 func readCharacteristicValue(){
 // this function should be overridden
 }
} // end class

The basic class is done. Now, we are going to implement the garage view controller.

Simulating Home Automation with HomeKit

[112]

Building view controllers with HomeKit
Let's now get started with our controllers with the help of HomeKit. Basically,
we will need a view controller for each accessory. In this app, the garage has only
one accessory, therefore it has only one view controller. The living room has three
accessories: the door, the fan, and the aquarium. As we have three accessories for
the same room, we are going to use a page view controller to display the rest of the
view controllers.

Bear in mind that the view controllers can be different. Information about a door
that can be open or closed is not retrieved in the same manner as the aquarium
temperature is received. However, every accessory has some common parts like the
device name, the service, and the characteristic. This is the reason why each view
controller must inherit from AccessoryViewController.

GarageDoorViewController
Now, we are going to implement our first visible accessory view controller. Here, we
will need to use two images to represent the current garage door state. These pictures
are called garageopen.png and garageclosed.png. They can be found in the book
resources and you just need to drag them into the images.xcassets project.

Create a new file called GarageDoorViewController.swift and start coding it with
a class that inherits from AccessoryViewController:

import UIKit
import HomeKit

class GarageDoorViewController:AccessoryViewController{

Starting with the attributes, we will need four of them: one is the value itself that will
represent the last read door state (in this case, it is a Boolean value that represents
whether the garage is closed); an UIImageView that will display the garage state to
the user; and the two computed attributes that will help the class detect the desired
accessory and characteristic:

 var value = false
 @IBOutlet var garageImage:UIImageView!
 override var expectedAccesory:String {
 return "Garage Door"
 }
 override var expectedService:String {

Chapter 4

[113]

 return HMServiceTypeGarageDoorOpener
 }
 override var expectedCharacteristic:String {
 return HMCharacteristicTypeTargetDoorState
 }

Every time we click on the garage door image, its state will change. As you can see,
the garage door representation is an image not a button; it means that the tap event
will be recognized by a gesture recognizer:

 @IBAction func toggleGarageDoor(sender:
 UITapGestureRecognizer) {
 let newValue = !self.value
 characteristic?.writeValue(newValue, completionHandler: {
 error in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.readCharacteristicValue()
 })
 }

The next method is readCharacteristicValue, which is responsible for reading
the accessory characteristic value and for updating the screen image. This is the last
method of this class:

override func readCharacteristicValue() {
 characteristic?.readValueWithCompletionHandler({ error in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.value = self.characteristic?.value as! Bool
 switch self.value {
 case true:
 self.garageImage.image = UIImage(named:
 "garageclosed")
 case false:
 self.garageImage.image = UIImage(named:
 "garageopen")

 }
 })
 }
} // end class

Simulating Home Automation with HomeKit

[114]

Pay attention that there is an attribute for the value of the characteristic.
However, this value won't be updated if your accessory doesn't
accept notifications. This is the reason it is preferable to use the
readValueWithCompletionHandler method.

Garage layout
Once the garage code is ready, we have to create the visual part of that. Go to your
storyboard, add a new view controller to it, select this new view controller, and
change its class on the Identity Inspector to GarageDoorViewController.

Add a label, an image view, and a button to the image view controller. Change
the label's title to Garage and place it at the top of the screen. Under it, place the
image view. Place the button at the bottom of the screen. Set the image view to
garageclosed and change the button's title to Main screen. Add the corresponding
constraints and the final result will be something similar to the following screenshot:

Chapter 4

[115]

Connect the image view to its attribute and drag on it a tap gesture recognizer. This
recognizer won't appear on the layout, but on the Document Inspector. Select the
recognizer and open its Connections Inspector (command + option + 6). Drag the
selector option from Sent Actions to the view controller icon and, once you release
it, select the toggleGarageDoor method.

Now, we just need to create an action for our button. Control-drag it to the exit sign
located at the top of the view controller. Select the unwindMainMenu method once
you release the button.

For the last detail of this screen, you need to select the image view and check the
User Interaction Enabled option on its Attribute Inspector (command + option + 4).
Otherwise, when you touch on the garage door image, nothing will happen.
Leveraging that you are here, change the image mode from Scale to Fill to
Aspect Fit.

Simulating Home Automation with HomeKit

[116]

We chose the Aspect Fit view mode, as we don't want to stretch the
image like the Scale to Fill mode does. We didn't choose the Aspect to
Fill mode, as it will increase the size of the image till there is no space
left on UIImageView, cutting the part of the picture that is outside.

While the screen is ready, it will not appear as there is no mention of it on the main
screen. On the same storyboard, click on the main screen view controller. Press
control and drag the garage button to the garage door view controller to create
the transition.

Go to the SelectRoomViewController.swift file; here, we still need to send some
information to GarageDoorViewController. Scroll down to the prepareForSegue
method and add the code for its corresponding part:

 override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {
 if sender === livingRoomButton {
 // TODO: Set the living room view controller
 }else if sender === garageButton {
 let accessoryViewController =
 segue.destinationViewController as!
 AccessoryViewController
 accessoryViewController.home = homeManager.homes.first!
 accessoryViewController.room = getRoom("Garage")
 }
 }

This goal is done. Now, it is time to test the app and check whether it is working
fine. Build and run your app (command + R) and tap on the Garage button. Don't
forget that your HomeKit Accessory Simulator must be open. The first time it will
say that the assigning accessory has no certificate; click on add it anyway. The app
will then request for the security code; copy the one given in the HomeKit Accessory
Simulator, as seen in the following screenshot:

Chapter 4

[117]

Click on the garage door image and check whether the door opens and closes.
Simultaneously, you will have to check whether, on the HomeKit Accessory
Simulator, the target door state characteristic also changes (only target door state,
don't worry about the other characteristics like current door state). This test means
that your app is perfectly paired with the accessory and your actions (tapping on the
door image) are also sending the right information.

Now, you have to test the app the opposite way by changing the target door state
and checking whether the app image changes. This test means that the accessory is
able to send notifications and is doing it correctly.

Building the living room
Once you are done with the garage door view controller, the process is
straightforward for the rest of the accessories. You just need to consider some details;
for example, in this room, we have more accessories. Due to this, we are going to
show the view controllers with a page view controller.

Create a new file called LivingRoomViewController.swift and start creating a
class with the same name. This class must inherit from UIPageViewController and
will implement the UIPageViewControllerDataSource protocol. This protocol is for
controlling the view controllers that will be displayed (see Chapter 2, Creating a City
Information App with Customized Table Views) and also for displaying a page control,
orienting the user about the current position:

import UIKit
import HomeKit

class LivingRoomViewController: UIPageViewController,
UIPageViewControllerDataSource{

As attributes, we need the home and the room as we have to resend them to the child
view controllers and an array of accessory view controllers:

 var home:HMHome!
 var room:HMRoom!
 var accessoryViewControllers = [AccessoryViewController]()

Simulating Home Automation with HomeKit

[118]

Now, we can initialize this view controller. We have two parts: the first part that
creates and initializes the child view controllers and the second one that consists of
changing the page control as, by default, it will be shown with a black background
and white bullets and we would like to exchange these colors:

 override func viewDidLoad() {
 super.viewDidLoad()

 // View Controllers
 let doorLock =
self.storyboard?.instantiateViewControllerWithIdentifier("doorlockview
controller") as! DoorLockViewController
 doorLock.room = self.room
 doorLock.home = self.home
 self.accessoryViewControllers.append(doorLock)

 let fan =
self.storyboard?.instantiateViewControllerWithIdentifier("fanviewcontr
oller") as! FanViewController
 fan.room = self.room
 fan.home = self.home
 self.accessoryViewControllers.append(fan)

 let aquarium =
self.storyboard?.instantiateViewControllerWithIdentifier("aquariumview
controller") as! AquariumViewController
 aquarium.room = self.room
 aquarium.home = self.home
 self.accessoryViewControllers.append(aquarium)

 self.setViewControllers([doorLock], direction: .Forward,
 animated: false, completion: nil)
 self.dataSource = self

 // Page control
 let pageControl = UIPageControl.appearance()
 pageControl.pageIndicatorTintColor =
 UIColor.lightGrayColor()
 pageControl.currentPageIndicatorTintColor =
 UIColor.blackColor()
 pageControl.backgroundColor = UIColor.whiteColor()
 }

Chapter 4

[119]

Complete this class with the data source protocol methods. The first two methods are
for displaying the previous and next pages; the other two are for the page control:

// MARK: - Data source methods

 func pageViewController(pageViewController:
 UIPageViewController, viewControllerBeforeViewController
 viewController: UIViewController) -> UIViewController?{
 if let index =
self.accessoryViewControllers.indexOf(viewController as!
AccessoryViewController) where index > 0 {
 return self.accessoryViewControllers[index - 1]
 }
 return nil
 }
 func pageViewController(pageViewController:
UIPageViewController, viewControllerAfterViewController
viewController: UIViewController) -> UIViewController?{
 if let index = self.accessoryViewControllers.indexOf(
viewController as! AccessoryViewController) where index <
self.accessoryViewControllers.count - 1 {
 return self.accessoryViewControllers[index + 1]
 }
 return nil
 }

 func
presentationCountForPageViewController(pageViewController:
UIPageViewController) -> Int {
 // how many bullets should be displayed
 return accessoryViewControllers.count
 }

 func
presentationIndexForPageViewController(pageViewController:
UIPageViewController) -> Int {
 // position we start
 return 0
 }
} // end class

This file is over; but as you can see, we still need to implement the other view
controllers.

Simulating Home Automation with HomeKit

[120]

The door lock view controller
Now, it is time to develop the door lock view controller. The operation is similar to
that of the garage door controller; the difference is that its characteristic is a custom
one and it is inside the identity service.

Don't abuse the identity service. Try to create a new service,
mainly when you have too many characteristics.

Create a new file called DoorLockViewController.swift and create a class with the
same name that inherits from AccessoryViewController:

import UIKit
import HomeKit

class DoorLockViewController:AccessoryViewController{

As attributes, we need the same ones that we had with the garage door, but we will
update their values when required. Don't forget that the characteristic type is the
number that was given to us when we created it:

 var value = false
 @IBOutlet var doorImage:UIImageView!
 override var expectedAccesory:String {
 return "Door Lock"
 }
 override var expectedService:String {
 return HMServiceTypeAccessoryInformation
 }
 override var expectedCharacteristic:String {
 return "EA7939D4-F26E-4F55-BCA0-6F0F6E6258BD"
 }

The door should open and close the same way as the garage door. It means that we
just need to tap on the picture to open or close it:

 @IBAction func toggleDoorLock(sender: UITapGestureRecognizer)
{
 let newValue = !self.value
 characteristic?.writeValue(newValue, completionHandler: {
 (error) -> Void in
 if error != nil {

Chapter 4

[121]

 self.displayError(error!)
 return
 }
 self.readCharacteristicValue()
 })
 }

The method to display the door is also similar to that of the garage door, except that
it does so with different pictures. Don't forget that you have to copy these pictures
from the book resources and place them into the images.xcassets project. After this
method, you can close the class:

 override func readCharacteristicValue() {
 characteristic?.readValueWithCompletionHandler({ (error)
 -> Void in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.value = self.characteristic?.value as! Bool
 switch self.value {
 case true:
 self.doorImage.image = UIImage(named:
 "doorclosed")
 case false:
 self.doorImage.image = UIImage(named: "dooropen")

 }
 })
 }
} // end class

The door is done. We will come back later to this class when we return to
the storyboard.

Simulating Home Automation with HomeKit

[122]

FanViewController
Once the door lock is ready, we can create a class that is similar but with a few
differences like FanViewController. Here, the idea is to use UISwitch to turn on
and off the fan. The user will see the fan rotating on the screen, and to do it, we
will need some help from some core graphics functions. Start importing UIKit and
HomeKit and inheriting from AccessoryViewController:

import UIKit
import HomeKit

class FanViewController:AccessoryViewController {

As attributes, besides the traditional ones, we will need a reference to UISwitch. This
way, we can set it to the right state when the view controller appears:

 var value = false
 @IBOutlet var fanImage:UIImageView!
 @IBOutlet var fanSwitch: UISwitch!
 override var expectedAccesory:String {
 return "Fan"
 }
 override var expectedService:String {
 return HMServiceTypeFan
 }
 override var expectedCharacteristic:String {
 return HMCharacteristicTypePowerState
 }

Now, we have to create the method that turns on and off the fan. This method will be
called by UISwitch:

 @IBAction func toggleFanSwitch(sender: UISwitch) {
 let newValue = sender.on
 characteristic?.writeValue(newValue, completionHandler: {
 error in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.readCharacteristicValue()
 })
 }

Chapter 4

[123]

After this, we can override the readCharacteristicValue method. Here, the
operation is similar to the previous view controllers, except that we have to
update the switch state and start animating the fan if it is on:

 override func readCharacteristicValue() {
 characteristic?.readValueWithCompletionHandler({ error in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.value = self.characteristic?.value as! Bool
 self.fanSwitch.on = self.value
 if self.value {
 self.rotateFan()
 }
 })
 }

Lastly, we have to create the method that animates the fan. We are not going to use
core animation, as it should be a very simple animation (rotation only). We will use
the core graphics for this:

 private func rotateFan(){
 UIView.animateWithDuration(NSTimeInterval(0.2), delay:
 NSTimeInterval(0.0), options:
 UIViewAnimationOptions.CurveLinear, animations: {
 self.fanImage.transform =
 CGAffineTransformRotate(self.fanImage.transform,
 CGFloat(M_PI / 2))

 }, completion: { finished in
 if self.value {
 self.rotateFan()
 }
 })
 }
} // end class

Simulating Home Automation with HomeKit

[124]

AquariumViewController
The last view is the AquariumViewController class. This class is simpler than the
previous ones for one small reason: a thermometer is not supposed to change the
temperature, only read it. Create a new file called AquariumViewController.swift
and a class with the same name:

import UIKit
import HomeKit

class AquariumViewController:AccessoryViewController{

The value attribute now is double instead of a Boolean value. Instead of an image,
we are going to print the temperature on a label. The computed attributes are created
with their corresponding values:

 var value:Double = 0.0
 @IBOutlet var temperatureLabel: UILabel!
 override var expectedAccesory:String {
 return "Aquarium Thermometer"
 }
 override var expectedService:String {
 return HMServiceTypeThermostat
 }
 override var expectedCharacteristic:String {
 return HMCharacteristicTypeCurrentTemperature
 }

Now, we can complete this class by reading its value and printing it on the label:

 override func readCharacteristicValue() {
 characteristic?.readValueWithCompletionHandler({ (error)
 -> Void in
 if error != nil {
 self.displayError(error!)
 return
 }
 self.value = self.characteristic?.value as! Double
 self.temperatureLabel.text = "\(self.value) ºC"
 })
 }
} // end class

The code is almost over. Now, we need to go to the storyboard and complete
the views.

Chapter 4

[125]

The final storyboard
Click on the main file and place UIPageViewController in it. Create a transition by
control-dragging it from the living room button on the main screen to the new page
view controller. Click on this new view controller and on the Identity Inspector to
change its class to LivingRoomViewController.

Go to the Attribute Inspector and change the transition style to Scroll. It will remove
the page animation while it changes to the next view.

The page view controller is ready. Now, we need to create its view controllers.
Drag a new view controller on the storyboard that will represent the door lock.
Start by changing its class to DoorLockViewController and set its storyboard
id to doorlockviewcontroller.

Simulating Home Automation with HomeKit

[126]

Create a layout similar to the garage door with a label, an image view, and a
button on it. Add a tap gesture to the image and set its action to toggleDoorLock.
Control-drag the button to the exit sign, change the label to Door Lock, connect the
image view to its corresponding attribute, and set the image mode to Aspect Fit.
The final result should be similar to the following screenshot:

Chapter 4

[127]

Drag another view controller on the storyboard for the fan view controller.
The operation is similar to the previous one. Start by going to the Identity
inspector and changing its class to FanViewController and its storyboard id to
fanviewcontroller. Add a label, an image view, and a button as we did for the
previous view controller. But now, we have to add another component: UISwitch.

Here, you don't have to add the tap gesture recognizer as the switch will do an
equivalent work for us. Change the label's title to Fan and the picture to fan.png,
set the picture mode to Aspect Fit, connect the image view and the switch to
their corresponding attributes, and drag the button to the exit sign. Another view
controller is ready.

Simulating Home Automation with HomeKit

[128]

Now, we have to create the last view controller. Add a new view controller to the
storyboard, change its class to AquariumViewController, and set its storyboard id
to aquariumviewcontroller. Add two labels (one for the title and another for the
temperature), an image view, and a button to it.

Change the button's title to Main screen and control-drag it to the exit sign. Set the
image view picture to aquarium.png and change its mode to Aspect fit. Place the
temperature label at the center of the picture; change its background color to blue, its
text color to white, and its font size to 24; and connect it to the corresponding attribute.

Chapter 4

[129]

Great! Is everything done? The answer is no! We still need to update the code
for the initial view controller to set living room in this house. So, click on the
SelectRoomViewController.swift file, scroll down to the prepareForSegue
method, and upgrade it with the highlighted code:

 override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {
 if sender === livingRoomButton {
 let accessoryViewController =
 segue.destinationViewController as!
 LivingRoomViewController
 accessoryViewController.home = homeManager.homes.first
 as! HMHome
 accessoryViewController.room = getRoom("Living Room")
 }else if sender === garageButton {
 let accessoryViewController =
 segue.destinationViewController as!
 AccessoryViewController
 accessoryViewController.home = homeManager.homes.first
 as! HMHome
 accessoryViewController.room = getRoom("Garage")
 }
 }

Now, the app is ready and it is time to check it. Run the app and check whether it
requests for the secure code the first time for each accessory. Also, check whether
a change in their status changes the corresponding characteristic on the HomeKit
Accessory Simulator and vice versa.

While you are developing with HomeKit, you might need to reset the
device's status. To do it, press the Reset button for every accessory.
On the simulator, go to its menu and click on the Reset Content and
Settings… options.

Simulating Home Automation with HomeKit

[130]

Summary
In this chapter, you learned how to use the HomeKit framework. This framework
is supposed to be used with third-party physical devices, but Apple provides a
simulator called the HomeKit Accessory Simulator.

We set some devices as well as created some services and received their security
code. Once we had our virtual devices, we set a virtual home with virtual rooms and
added home devices to them.

HomeKit works with asynchronous calls as they are done via Bluetooth. This is the
reason why we had to switch threads while using the UI, check for errors, and also
request for the current accessory value.

In the next chapter, you will learn how to control your health with HealthKit.

[131]

Health Analyzing App
Using HealthKit

Wake up! Wake up! It's time to exercise! Otherwise, you are going to have a heart
attack in a few days. This is the kind of phrase we are going to hear from our iPhones
very soon, replacing a personal trainer with an app that knows everything about
your health status at all times.

HealthKit is a new framework created to record your health status, which allows
developers to create apps for fitness tracking or medical proposes. In this chapter,
we are going to create an app that will use the HealthKit framework.

We will cover the following topics here:

•	 Requesting permission to use HealthKit
•	 Querying your health data
•	 Using an external framework to plot charts
•	 Reading and storing data with NSUserDefaults

Project overview
For this app, the idea is very simple; we just need to retrieve some information on the
user such as the weight, the heart rate, and the number of steps. Then, we are going
to display some graphs that will show the user's progress.

Health Analyzing App Using HealthKit

[132]

The setup
Let's start by creating a new app called Chapter 5 HealthKit. Make sure that Swift
is the main language. We are not going to use Core Data, as HealthKit can store user
data. We just need to know how to query this data. To store any information, we are
going to use NSUserDefaults.

Click on your project in the project navigator, select the app target (Chapter 5
HealthKit), select the Capabilities tab, and turn on HealthKit. Xcode will ask you
about your Apple account; this is a mandatory requirement to use this capability.

Chapter 5

[133]

Before we start coding, we have to rename the only view controller to
InitialViewController. Do it with the file name and the class name. After this,
you will have to update the class name in the view controller attribute inspector.

Creating helpers
Before starting with the program, let's add some code that will help us through the
app development process. Add a new file called Helpers.swift and add a helper
function to execute the code in the main queue.

import Foundation

func M(block: dispatch_block_t){
 dispatch_async(dispatch_get_main_queue(), block)
}

If you prefer, you can implement the M function in different ways. Some
people prefer using NSOperation and some of them prefer using
alternative frameworks like Async (https://github.com/duemunk/
Async). It is up to you to choose the way it will be implemented.

Now create a new file called Extensions.swift. Here, we are going to add a
function to display errors to the user, as we've already seen in the previous chapter.
Place the following code in the new file:

import UIKit

extension UIViewController {
 func displayError(message:String){
 let alertController = UIAlertController(title: "Error",
 message: message, preferredStyle: .Alert)
 let alertAction = UIAlertAction(title: "Dismiss",
 style: .Cancel) { _ in
 self.dismissViewControllerAnimated(true,
 completion:nil)
 }
 alertController.addAction(alertAction)
 self.presentViewController(alertController,
 animated: true, completion: nil)
 }
}

www.allitebooks.com

https://github.com/duemunk/Async
https://github.com/duemunk/Async
http://www.allitebooks.org

Health Analyzing App Using HealthKit

[134]

Asking permission
The first view controller will contain three buttons that would be enabled only if
the user allows the app to use HealthKit. So, start by clicking on the storyboard and
adding a label and three buttons to it.

Place the label at the top and change its title to Chapter 5 HealthKit. Place two
buttons at the center of the screen, disable all of them, and change their titles to
Your Current Data and Your Progress. The final result is something similar to the
following screenshot:

Drag two view controllers to the storyboard and connect each button to a different
view controller. After this, link the buttons with the view controller as the outlet
collection. An outlet collection is like an IBOutlet, but instead of connecting to a
property of an object, you have to connect to an array property. This way you can
iterate over every button, for example, and enable or disable them:

 @IBOutlet var buttons: [UIButton]!

After this, we are going to create an enumeration for the weight units that are
accepted by this app. This enumeration will be used to know the user's preference:

enum WeightType:String {
 case Kilogram = "Kilogram",
 Pounds = "Pounds",
 Stones = "Stones"
}

Chapter 5

[135]

Return to the initial view controller and import the HealthKit framework:

import HealthKit

Now, we are going to override the viewDidAppear method, starting by initializing
an object of the HKHealthStore type and the data that we would like to read and
write from the user's health database:

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)

 let healthKitStore:HKHealthStore = HKHealthStore()
 let weightQuantityType =
 HKQuantityType.quantityTypeForIdentifier(
 HKQuantityTypeIdentifierBodyMass)!
 let heartRateQuantityType =
 HKQuantityType.quantityTypeForIdentifier(
 HKQuantityTypeIdentifierHeartRate)!
 let stepCountType =
 HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentif
ierStepCount)!

After this, we have to check whether the device has the capability of using the
HealthKit framework. Old devices and some earlier iOS versions are not compatible
with HealthKit:

 if !HKHealthStore.isHealthDataAvailable() {
 self.displayError("Health data is not available")
 return
 }

Now, we have to create two sets, one for the features that we need to write (what is
here called ToShare) and another for the features that we need to read:

 let typesToShare = Set<HKSampleType>([weightQuantityType])
 let typesToRead = Set<HKObjectType>([weightQuantityType,
 heartRateQuantityType, stepCountType])

Once you have instantiated the sets, you can request permission to use them. Note
that, after receiving the reply from requestAuthorizationToShareTypes, we
would have to execute the code in the main queue:

healthKitStore.requestAuthorizationToShareTypes(typesToShare,
readTypes: typesToRead) { success, error in
 M{
 if let error = error {
 self.displayError(error.localizedDescription)

Health Analyzing App Using HealthKit

[136]

 }else if success {
 for button in self.buttons {
 button.enabled = true
 }
 }
 else {
 self.displayError("Authorization not
 successful")
 }
 }
 }
 } // end viewDidAppear
} // end class

The app is still in its initial stage, but it is time to test it. Build and run the app with
command + R. When the app starts, you will see a screen asking the user for approval
(see the following screenshot). After the user accepts it, the buttons will be enabled.
This is the sign that everything is working fine.

Chapter 5

[137]

Displaying and saving the user's health
data
Once we have done the main screen, we can start displaying the user data on a new
scene. Here, we will display the number of steps and the heart beats in the labels
and the weight and the weight goal in the text fields, as the user can change these
values. We should also give the user the option of changing the unit for the weight
(kilogram, pounds, and stones).

Create a new file called CurrentDataViewController.swift. Here, we will
start by importing UIKit and HealthKit. After this, create a class with the
name CurrentDataViewController that inherits from UIViewController:

import UIKit
import HealthKit

class CurrentDataViewController:UIViewController {

Now, we need to start with the attributes. Firstly, we need to create an attribute
of the WeightType enumeration, which we created in Helpers.swift. This way,
we could check the current user preference. Place the following code just after the
class opening:

 private var weightType:WeightType!

The next attributes are related to HealthKit; in this case, all of them are going to be
declared and initialized together. The first property is an object of the HKHealthStore
type. We used this object type on the first to request permission to use HealthKit, but
here, we will use this object to retrieve the user's health data. The next three properties
are the quantities of each data that will be retrieved, meaning that we will have to ask
for an object of the HKQuantityType type using the predefined identifiers. Place the
following code to declare these attributes:

 private let weightQuantityType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierBody
Mass)!
 private let heartRateQuantityType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierHear
tRate)!
 private let stepCountType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierStep
Count)!

Health Analyzing App Using HealthKit

[138]

Querying the user's health data requires a descriptor. This way, the health store will
know the preferred order to return the data. In this case, we will always request for
the newest one according to the end date, not the start date. Type the following code
to declare the descriptor:

 private let sortDescriptor = NSSortDescriptor(key:
 HKSampleSortIdentifierEndDate, ascending: false)

The HealthKit framework stores the user data, but there is information that we need
to store by ourselves, for example, the user's desired weight. This information must
be stored at a different place and, for this app, we will use NSUserDefaults as we
just need to save some data using the key-value pattern. Use the following code to
create an attribute of the NSUserDefaults type:

 private let userDefaults =
 NSUserDefaults.standardUserDefaults()

The last attributes are the UI components. We will need two labels to display the
heart rate and the number of steps and two text fields for the weight and the user's
desired weight. Place the following code, but don't worry about connecting it to
the storyboard:

 @IBOutlet var stepCounterLabel: UILabel!
 @IBOutlet weak var heartRateLabel: UILabel!
 @IBOutlet weak var weightTextField: UITextField!
 @IBOutlet weak var weightGoalTextField: UITextField!

It is time to initialize the attributes. Firstly, we need to read the preferred unit type
for the weight, then we have to read the user data using auxiliary methods. Initialize
the attributes with the following code:

 override func viewDidLoad() {
 super.viewDidLoad()

 if let weightTypeString =
 userDefaults.valueForKey("weightType") as? String{
 self.weightType = WeightType(rawValue:
 weightTypeString)
 } else {
 userDefaults.setValue(WeightType.Kilogram.rawValue,
 forKey: "weightType")
 self.weightType = .Kilogram
 }

 // these functions read the current values, they will be
 implemented afterwards.

Chapter 5

[139]

 self.readWeightGoal()
 self.readSteps()
 self.readHeartRate()
 self.readWeight()
 }

Let's fill these auxiliary methods in the same order that we called them. So, first,
we will start with readWeightGoal. Here, we just need to read such data from the
user defaults and update the corresponding text field. Put the following code in
your class:

 private func readWeightGoal() {
 M{
 let unitLabel = UILabel()
 if self.weightType == .Kilogram {
 unitLabel.text = "Kg"
 }else if self.weightType == .Stones{
 unitLabel.text = "st."
 }else {
 unitLabel.text = "lb."
 }
 unitLabel.sizeToFit()
 unitLabel.textColor = UIColor.grayColor()
 self.weightGoalTextField.rightView = unitLabel
 self.weightGoalTextField.rightViewMode = .Always

 if let weightGoal =
 self.userDefaults.valueForKey("weightGoal") {
 self.weightGoalTextField.text = "\(weightGoal)"
 }
 }
 }

The rightView as well as the leftView attributes were
created for the purpose of completing the text view information
like the unit type of a sample.

Health Analyzing App Using HealthKit

[140]

The next method is readSteps. Here, we have to create a query to give the desired
result type, the number of samples (in this case, only one), and the result order
(newest first). The query object also needs a handler to know what to do with the
result. Once the query is created, the health store will have to call it, otherwise it will
be just an object prepared to be called. Place the following code to read the steps:

 private func readSteps(){
 let querySteps = HKSampleQuery(sampleType:
 self.stepCountType, predicate: nil, limit: 1,
 sortDescriptors: [sortDescriptor]) { query, results,
 error in
 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }
 if let results = results where results.count > 0{
 let sample = results.first as! HKQuantitySample
 let steps:Int
 steps = Int(sample.quantity.doubleValueForUnit(HKUnit.
countUnit()))
 M {
 self.stepCounterLabel.text = "Number of steps:
 \(steps)"
 }
 }else{
 M {
 self.stepCounterLabel.text = "Number of steps:
 NO DATA"
 }
 }
 }
 healthKitStore.executeQuery(querySteps)
 }

Ensure you always retrieve the quantity information given a specific unit. For the
number of steps, it will always be countUnit. However, for other quantities like
weight, you need to be specific with the measure you would like to use.

In case of doubt, use the HKQuantity method
isCompatibleWithUnit. This way, you won't ask for a
nonsensical quantity.

Another detail that you have to be aware of is the UI updates that have to be done by
sending them to the main queue; the reason is that the HealthKit query handlers are
called on a different thread.

Chapter 5

[141]

We can read the heart rate following the previous code. However, make sure you use
the countUnit method in this code, but divide it by minutes as your unit should be
beats per minute:

 private func readHeartRate(){
 let queryHeartRate = HKSampleQuery(sampleType:
 self.heartRateQuantityType, predicate: nil, limit: 1,
 sortDescriptors: [sortDescriptor]) { (query, results,
 error) -> Void in
 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }

 if let results = results where results.count > 0{
 let sample = results.first as! HKQuantitySample
 let bpm:Double
 bpm = sample.quantity.doubleValueForUnit(HKUnit.
countUnit().unitDividedByUnit(HKUnit.minuteUnit()))
 M {
 self.heartRateLabel.text = "Heart Rate:
 \(bpm)bpm"
 }
 }else{
 M {
 self.heartRateLabel.text = "Heart Rate: NO
 DATA"
 }
 }
 }
 healthKitStore.executeQuery(queryHeartRate)
 }

Once we've understood the operation of querying, we can follow the same procedure
for the weight. Here, we have to select the unit the user wants to display and convert
it into a number. HealthKit works this way due to a logical reason: a quantity is a
quantity and the unit you decided to use to store it will not matter. So, place this
method to read the user's weight:

 private func readWeight(){
 let queryWeight = HKSampleQuery(sampleType:
 self.weightQuantityType, predicate: nil, limit: 1,
 sortDescriptors: [sortDescriptor]) { query, results,
 error in

Health Analyzing App Using HealthKit

[142]

 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }
 M{
 let unitLabel = UILabel()
 if self.weightType == .Kilogram {
 unitLabel.text = "Kg"
 }else if self.weightType == .Stones{
 unitLabel.text = "st."
 }else {
 unitLabel.text = "lb."
 }
 unitLabel.sizeToFit()
 unitLabel.textColor = UIColor.grayColor()
 self.weightTextField.rightView = unitLabel
 self.weightTextField.rightViewMode = .Always
 }
 if let results = results where results.count > 0{
 let sample = results.first as! HKQuantitySample
 let weight:Double
 if self.weightType == .Stones {
 weight = sample.quantity.
doubleValueForUnit(HKUnit.stoneUnit())
 }else if self.weightType == .Pounds {
 weight = sample.quantity.
doubleValueForUnit(HKUnit.poundUnit())
 }else {
 weight = sample.quantity.
doubleValueForUnit(HKUnit.gramUnitWithMetricPrefix(.Kilo))
 }
 M {
 self.weightTextField.text = "\(weight)"
 }
 }else{
 print("No weight")
 }
 }
 healthKitStore.executeQuery(queryWeight)
 }

Chapter 5

[143]

After coding the methods to read the user's data, we have to go the other way
around: coding methods to write the user data. We will start by overwriting
the user-desired weight, which should be done by setting a new value for the
weightGoal key in NSUserDefaults.

 private func saveWeightGoal(){
 if let weightGoal = Int(self.weightGoalTextField.text!) {
 userDefaults.setInteger(weightGoal,
 forKey: "weightGoal")
 }
 }

In the next methods, we are going to write the user data using HealthKit. Bear
in mind that we are not going to overwrite the current data, we are going to tell
HealthKit to add new data. This way, we are able to see the progress. Use the
following code to update the user's weight:

 private func saveWeight(){
 let unit:HKUnit

 if self.weightType == .Kilogram{
 unit = HKUnit.gramUnitWithMetricPrefix(.Kilo)
 }else if self.weightType == .Stones {
 unit = HKUnit.stoneUnit()
 } else {
 unit = HKUnit.poundUnit()
 }

 if let value = Double(self.weightTextField.text!) {
 let weightQuantity = HKQuantity(unit: unit,
 doubleValue: value)
 let now = NSDate()
 let sample = HKQuantitySample(type:
 self.weightQuantityType, quantity: weightQuantity,
 startDate: now, endDate: now)
 healthKitStore.saveObject(sample, withCompletion: {
 (succeeded, error) in
 if let error = error{
 print("Failed to save the user's weight:
 \(error.localizedDescription)")
 }
 })
 }
 }

Health Analyzing App Using HealthKit

[144]

The last methods we have to implement are the events that are going to be called
by some buttons. Here, we have to know that there will be one button to change
the weight unit and another one to save the data and return to the main screen.

Starting with the button that returns to the main screen, let's create an action that
saves every piece of information and dismisses the view controller. Type the
following code, but don't worry now about connecting it to the corresponding view:

 @IBAction func saveAndClose(sender: UIButton) {
 self.saveWeightGoal()
 self.saveWeight()
 self.dismissViewControllerAnimated(true, completion: nil)
 }

Now, let's create the event to change the weight. This event is going to show an
action sheet with the units that are accepted by this app. After the user selection, it
just needs to read the corresponding value again, convert it into the new unit, and
place it in the corresponding view. As seen in the last method, we can also close the
current class:

 @IBAction func changeWeightUnit(sender: UIButton) {
 let alertController =
 UIAlertController(title: "Weight Unit",
 message: "Please choose your weight unit",
 preferredStyle: .ActionSheet)
 let setWeightType = { () in
 self.userDefaults.setValue(self.weightType.rawValue,
 forKey: "weightType")
 self.readWeight()
 }

 let kiloAction = UIAlertAction(title: "Kilograms",
 style: .Default) { _id in
 self.weightType = .Kilogram
 setWeightType()
 }
 alertController.addAction(kiloAction)

 let poundsAction = UIAlertAction(title: "Pounds",
 style: .Default) { _ in
 self.weightType = .Pounds
 setWeightType()
 }

Chapter 5

[145]

 alertController.addAction(poundsAction)

 let stonesAction = UIAlertAction(title: "Stones",
 style: .Default) { _ in
 self.weightType = .Stones
 setWeightType()
 }
 alertController.addAction(stonesAction)

 presentViewController(alertController,
 animated: true, completion: nil)
 }
} // end CurrentDataViewController

Now, we can create the visible part of this scene. Click on the storyboard and go
to the view controller that is connected to the user data button. Change its class in
Identity Inspector to CurrentDataViewController. Drag five labels, two text fields,
and two buttons to the layout, and change their titles to be as close as possible to the
following screenshot:

Health Analyzing App Using HealthKit

[146]

Link the buttons, the labels, and the text views to their corresponding attributes.
Now, it is time to test the app again. Press Play and check whether you can save
some data. After this, press the home key or command + shift + H on the simulator
and go to the Health app, which is a built-in app with an icon of a heart:

Check whether information you added is in its corresponding section. Do it the
other way around as well; change some data here and check whether you can see
your new data. Remember that weight goal is the only data that is not shown on the
Health app, as it is stored using NSUserDefaults.

Checking your health record
The second button we have on the main screen is to display the user's history. As
you can see, the Apple Health app displays some charts to show your data, but
unfortunately, Apple doesn't provide these charts as UI built-in components. Thus,
we have to use an external framework for it.

For this app, we are going to use a framework called iOS-Charts. To download this
framework, open your favorite web browser and type the https://github.com/
danielgindi/ios-charts URL. Unzip the downloaded file and keep its path in mind.

https://github.com/danielgindi/ios-charts
https://github.com/danielgindi/ios-charts

Chapter 5

[147]

Go to the general tab of your project's main target, scroll down to Embedded
Binaries, and press the plus sign under it. A dialog will appear. In this dialog, click
on the button with the Add Other… title. Here, you will have to choose the Charts
projects from the previously unzipped file. Now, click on the plus sign of the next
section (Linked Frameworks and Libraries) and choose Charts.framework. The
result should be as follows:

Once Charts.framework is loaded, you have to build your project with command + B
to check whether everything is compiled with your current Swift version.

If you face syntax problems while compiling an external framework,
try updating it to the latest Swift version (Edit, Convert, To the latest
Swift Syntax). Swift changes very frequently.

Create a new file called WeeklyChartsViewController.swift, open it, and import
UIKit, HealthKit, and the Charts framework, as shown in the following code:

import UIKit
import HealthKit
import Charts

Basically, what we want to do here is to create a view controller with three charts,
one for the steps, another chart for the heart rate, and the last one to check the
evolution of the weight. Each chart is an object of type LineChartView and should
be declared as property. Thus, you need to open your class and place the chart's
attributes as the following code:

class WeeklyChartsViewController: UIViewController{

 @IBOutlet var stepsChart: LineChartView!
 @IBOutlet var heartBeatChart: LineChartView!
 @IBOutlet var weightChart: LineChartView!

Health Analyzing App Using HealthKit

[148]

Continuing with the attributes, let's place the ones that come from HealthKit. We are
already familiar with these attributes, as they are the same from the previous view
controller. It means that we need a health store and three quantity types. Place the
following code after the chart's attributes:

 private let healthKitStore:HKHealthStore = HKHealthStore()
 private let stepCountType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierStep
Count)!
 private let heartRateQuantityType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierHear
tRate)!
 private let weightQuantityType =
HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierBody
Mass)!

As we did for the previous view controller, we will need a sort descriptor to order
the result. However, in this view controller, we are going to ask for the ascending
order. We will also need a predicate for filtering, however, we are not going to
initialize it here. So, we are going to leave it with an exclamation mark:

 private let sortDescriptor = NSSortDescriptor(key:
 HKSampleSortIdentifierEndDate,
 ascending: true)
 private var predicate:NSPredicate!

The last attributes we need are the user's defaults to retrieve the user's preferred
weight unit and weight goal, and another one to store the user's weight unit. Just
place the following code in your class. We will then start with the methods:

 private var userDefaults =
 NSUserDefaults.standardUserDefaults()
 private var weightType:WeightType!

Let's initialize this view controller with the viewDidLoad method. As you can see,
most attributes are already initialized. We just need to initialize weightType, the
predicate that filters data from one week and loads the chart's data:

 override func viewDidLoad() {
 let currentDate =
 WeeklyChartsViewController.stripDate(NSDate())
 self.predicate = NSPredicate(format: "endDate >= %@",
currentDate.dateByAddingTimeInterval(-6 * 24 * 60 * 60))
 self.readSteps()
 self.readHeartRate()
 self.readWeight()
 }

Chapter 5

[149]

The next method that we are going to implement is the one for reading the user's
steps, called readSteps, as you can see in viewDidLoad. Here, we are going to start
by initializing a sample query, except that, in this case, we need to use our predicate
for filtering and the limit should be 0, as there shouldn't be any limit:

 private func readSteps(){
 let querySteps = HKSampleQuery(sampleType:
 self.stepCountType,
 predicate: predicate, limit: 0,
 sortDescriptors: [sortDescriptor]) {
 (query, results, error) -> Void in

Now, we need to check whether there is any error and display it if found:

 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }

Great! Now, we have to sum every sample of each day. To do it, we are going to
use a dictionary using a string that represents the month and the day as keys and a
double as an accumulator. In this case, we are also going to use the keys as labels in
our chart. This is the reason we have to use them as a well-formatted string:

You don't need to use the dictionary keys as labels. It was done
this way because this sample allowed us to. If it is necessary,
instead of storing a double value, you can store an object with
its value and label.

if let results = results where results.count > 0{
 var stepSum = [String:Double]()

 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd"
 for sample in results as! [HKQuantitySample]{
 let steps =
sample.quantity.doubleValueForUnit(HKUnit.countUnit())

 let dateString =
dateFormatter.stringFromDate(sample.endDate)
 if let _ = stepSum[dateString] {
 stepSum[dateString]! += steps
 }else {
 stepSum[dateString] = steps
 }
 }

Health Analyzing App Using HealthKit

[150]

After calculating, we can configure the chart view and feed it with some data. Firstly,
we need to set some attributes to display messages and to disable user interaction:

 M{
 self.stepsChart.descriptionText = "Steps"
 self.stepsChart.noDataTextDescription =
"There is no step data"
 self.stepsChart.highlightEnabled = false
 self.stepsChart.dragEnabled = false
 self.stepsChart.setScaleEnabled(false)
 self.stepsChart.pinchZoomEnabled = false
 self.stepsChart.drawGridBackgroundEnabled =
false

The last part of this handler is to convert the data stored in the dictionary (stepSum)
into chart entries. The values of the x axis must be stored as an array of strings, so we
just need to retrieve the dictionary keys. The values of the y axis must be converted
into an array of ChartDataEntry objects:

 let xVals = stepSum.keys.sort()
 var yVals = [ChartDataEntry]()
 for (i, key) in xVals.enumerate() {
 yVals.append(ChartDataEntry(value:
 stepSum[key]!, xIndex: i))
 }

 let dataset = LineChartDataSet(yVals: yVals,
 label: "Number of Steps")
 self.stepsChart.data = LineChartData(xVals:
 xVals, dataSets: [dataset])
 }
 }
 }

Once the sample query is created, we just need to execute it and close the method:

 healthKitStore.executeQuery(querySteps)
 }

Now, we have to repeat the operation with the heart rate. The main difference is that
here, you don't have to sum the heart beats, otherwise it would make no sense to do
it. In this case, we have to display every sample, so we can see the rate variation:

 private func readHeartRate(){
 let queryHeartRate = HKSampleQuery(sampleType:
self.heartRateQuantityType, predicate: predicate, limit: 0,
sortDescriptors: [sortDescriptor]) { (query, results, error) ->

Chapter 5

[151]

Void in
 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }
 if let results = results where results.count > 0{
 var xVals = [String]()
 var yVals = [ChartDataEntry]()
 for sample in results as! [HKQuantitySample]{
 let heartRate =
sample.quantity.doubleValueForUnit(HKUnit.countUnit().
unitDividedByUnit(HKUnit.minuteUnit()))
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd"
 let dateString =
dateFormatter.stringFromDate(sample.endDate)
 xVals.append(dateString)
 yVals.append(ChartDataEntry(value: heartRate,
 xIndex: yVals.count))
 }
 M{
 self.heartBeatChart.descriptionText =
 "Heart Rate"
 self.heartBeatChart.noDataTextDescription =
 "There is no heart rate data"
 self.heartBeatChart.highlightEnabled = false
 self.heartBeatChart.dragEnabled = false
 self.heartBeatChart.setScaleEnabled(false)
 self.heartBeatChart.pinchZoomEnabled = false
 self.heartBeatChart.drawGridBackgroundEnabled
 = false

 let dataset = LineChartDataSet(yVals: yVals,
 label: "Heart Rate")

 self.heartBeatChart.data =
 LineChartData(xVals: xVals,
 dataSets: [dataset])
 }
 }
 }
 healthKitStore.executeQuery(queryHeartRate)
 }

Health Analyzing App Using HealthKit

[152]

The last sample we have to read is the user weight. Remember that, to do it, the app
must know the user's weight unit and goal. Create the following method to read the
user's weight unit and the next one for the user's desired weight:

 private func readWeightUnit(){
 if let weightTypeString =
 userDefaults.valueForKey("weightType") as? String{
 self.weightType = WeightType(rawValue:
 weightTypeString)
 } else {
 userDefaults.setValue(WeightType.Kilogram.rawValue,
 forKey: "weightType")
 self.weightType = .Kilogram
 }
 }
 private func readWeightGoal() -> Double?{
 return self.userDefaults.valueForKey("weightGoal") as?
 Double
 }

The method to read the user's weight is called readWeight. Here, the idea is similar
to the previous reading method, however, we have to consider some details. Even
if it is not normal to change the weight more than once a day, we will consider the
weight average of the day. For this reason, instead of storing only one number for
each day as we did with the steps, we are going to store an array of numbers. Start
this method with the following code:

 private func readWeight(){
 self.readWeightUnit()
 let querySteps = HKSampleQuery(sampleType:
 self.weightQuantityType, predicate: predicate, limit: 0,
 sortDescriptors: [sortDescriptor]) { (query, results,
 error) -> Void in
 if let error = error {
 self.displayError(error.localizedDescription)
 return
 }

Now, we have to create a dictionary to store the weights set for each day and two
optional variables to store the first weight of the week and the last one. This way we
can check whether the user is approaching toward or moving away from his/her
desired weight. The rest of the following code is similar to the equivalent one we have
in the readStep method, except that here, we have to take care of the sample unit:

 if let results = results where results.count > 0{
 var firstWeight:Double?

Chapter 5

[153]

 var lastWeight:Double?
 var weightTable = [String:[Double]]()
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd"
 for sample in results as! [HKQuantitySample]{
 let weight:Double
 switch self.weightType.rawValue {
 case WeightType.Stones.rawValue:
 weight =
sample.quantity.doubleValueForUnit(HKUnit.stoneUnit())
 case WeightType.Pounds.rawValue:
 weight =
sample.quantity.doubleValueForUnit(HKUnit.poundUnit())
 default:
 weight =
sample.quantity.doubleValueForUnit(HKUnit.gramUnitWithMetricPrefix(.
Kilo))
 }
 if firstWeight == nil {
 firstWeight = weight
 }
 lastWeight = weight

 let dateString =
 dateFormatter.stringFromDate(sample.endDate)
 if let _ = weightTable[dateString] {
 weightTable[dateString]!.append(weight)
 }else {
 weightTable[dateString] = [weight]
 }
 }

Once we have filled the dictionary, we can initialize the weight chart. Remember
that, for each day, we are going to show its average:

 M{
 self.weightChart.descriptionText = "Weight"
 self.weightChart.noDataTextDescription =
 "There is no weight data"
 self.weightChart.highlightEnabled = false
 self.weightChart.dragEnabled = false
 self.weightChart.setScaleEnabled(false)
 self.weightChart.pinchZoomEnabled = false

Health Analyzing App Using HealthKit

[154]

 self.weightChart.drawGridBackgroundEnabled =
 false

 let xVals = weightTable.keys.sort()
 var yVals = [ChartDataEntry]()
 for (i, key) in xVals.enumerate() {
 let weightArray = weightTable[key]!
 let weightSum = weightArray.reduce(0,
 combine: { (sum, element) -> Double in
 return sum + element
 })

 let avg = weightSum /
 Double(weightArray.count)
 yVals.append(ChartDataEntry(value: avg ,
 xIndex: i))
 }

 let dataset = LineChartDataSet(yVals: yVals,
 label: "Weight")

 self.weightChart.data = LineChartData(xVals:
 xVals, dataSets: [dataset])

This method is not over yet, now we have to report the user's progress with respect
to his or her weight. If there is more than one sample, we have to check whether the
user has reached his or her goal or whether he or she is approaching toward it or
moving away:

if results.count > 1 {
 if let goal = self.readWeightGoal() {
 let lastDiff = abs(goal - lastWeight!)
 let firstDiff = abs(goal -
 firstWeight!)
 if lastDiff >= 0.0 && lastDiff <= 0.1
 {
 self.displayMessage("Congrats, you
 have your desired weight")
 }else if lastDiff < firstDiff {
 self.displayMessage("You are doing
 well")
 }else {
 self.displayMessage("Be carefull!
 You are moving away from your
 desired weight")

Chapter 5

[155]

 }
 }else{
 self.displayMessage("No desired weight
 is set")
 }
 }
 }
 }
 }

Some iPhone models have the pedometer sensor to count the steps.
The Apple Watch has a heartbeat sensor, however, there is no scale in
any Apple device, so the weight will not be updated automatically.
The reason we had to compare lastDiff with a range is because
doubles are not 100 percent accurate. Check http://docs.oracle.
com/cd/E19957-01/806-3568/ncg_goldberg.html for more
information.

Now, we can execute the query and finish this method:

 healthKitStore.executeQuery(querySteps)
 }

If you paid attention, you might have noticed that we called a method called
stripDate. The idea of this method was to set till midnight the date given as an
argument. This method is useful, as we would like to get NSDate from a week ago.
So, we just need to set the current time to 0 and remove 6 days:

 private class func stripDate(date: NSDate) -> NSDate {
 let currentCalendar = NSCalendar.currentCalendar()
 let components =
currentCalendar.components(NSCalendarUnit.Year.union(.Month).union(.
Day), fromDate: date)
 return currentCalendar.dateFromComponents(components)!
 }

The last method of this class is a button event to close the current scene and return to
the main menu. After this method, we can close the class:

 // MARK: UI methods
 @IBAction func close(sender: AnyObject) {
 self.dismissViewControllerAnimated(true, completion: nil)
 }
} // end WeeklyChartsViewController

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Health Analyzing App Using HealthKit

[156]

Charts on the storyboard
Now, we can design the graphical part of this view controller. Click on the
storyboard and go to the view controller that is connected to the button with the title
Your Progress. Open its Identity Inspector (command + option + 3) and change its class
to WeeklyChartsViewController.

Drag three labels, three views and one button to the current view. Set the first label
title to Number of Steps, the second one to Heart Rates, the third one to Weight,
and the button to Close. Under each label, place UIView and change their class to
LineChartView:

Chapter 5

[157]

Connect the button to its corresponding method to close the scene and connect each
UIView to its corresponding chart attribute. Move and resize them till you get a layout
similar to the following screenshot. Don't forget to add the auto layout constraints.

Health Analyzing App Using HealthKit

[158]

If you have any problem placing the charts on the storyboard, because
they have the same color as the scene background, just temporarily
change their background till you reach the desired layout.

Press Play and check whether the app is working. Try to use it for a week and check
your progress.

Summary
Great! You have learned a new framework that gives information on the user's
health. You can now query the phone, which requires you to convert the result into
a quantity with a unit. It is done this way because a measure is a measure, it doesn't
matter which unit is used.

You also learned, in this chapter, how to use the iOS-Charts framework, which
allowed to display some charts of the user's progress, something very common in
health apps.

In the next chapter, we are going to create our own game using the SpriteKit
framework.

[159]

Creating a Game App
Using SpriteKit

Since the creation of the first video game, 2D games are considered to be a big source
of entertainment. There are big classic games like Pac-Man and Super Mario Bros that
still entertain the new generation. As you know, smartphones and tablets can also be
used as a new kind of video game console. There are games designed specifically for
such devices that have become very popular like Candy Crush.

A developer can create a game using the traditional UI components like UIView
and UIImage. However, its file size can get too heavy as these components are not
specific to games. Due to this reason, Apple has created a framework especially for
2D game development called SpriteKit.

SpriteKit was created in a way that a developer needed only a few classes to use it,
making it simple and useful.

In this chapter, we will cover the following topics:

•	 Creating scenes
•	 Creating nodes
•	 Different types of actions
•	 Checking for collisions
•	 Using the accelerometer sensor

Creating a Game App Using SpriteKit

[160]

Project overview
In this chapter, we are going to create a project called Dino Surf, which will give
you an understanding of developing 2D games. The idea is very simple; the player
will be a dinosaur that is practicing his favorite summer hobby: surfing. The user
needs to turn the device to the right or to the left to dodge the birds and fishes that
are moving on the screen. After a while, the enemies will arrive on the scene faster
and faster.

The setup
Open your Xcode and create a new project. This time, instead of selecting Single
View Application, you have to choose the Game template.

The preceding screenshot shows a template called Game. However, in the previous
versions of Xcode, it was called SpriteKit. The name was changed due to the
introduction of Metal and Scene Kit.

Chapter 6

[161]

In the next dialog, some information will be required to set up the game. Set its
name to Chapter 6 DinoSurf and ensure that Swift is its main language and
SpriteKit is the chosen game technology. Your settings must be the same as it
is in the following screenshot:

Then, choose the folder where you want to save the project and you will see your
new project, however, you will appreciate a few differences. Instead of a file called
ViewController.swift, you have GameViewController.swift and besides this file,
you have two new files: GameScene.swift and GameScene.sks. Don't worry about the
meaning or the content of each of these files; we are going to see it very soon.

Creating a Game App Using SpriteKit

[162]

Before we start coding, let's set the initial configuration. Select your project from
the project navigator, click on the General tab, and change the deployment target
to iOS 7.1. Leave only the Landscape Right orientation selected, as shown in the
following screenshot:

Click on the Build Settings tab and search for Other Swift Flags. Click on the left
triangle to expand the Setting option and, in the Debug option, write -DDEBUG. The
idea of this flag is to filter some code when the app is deployed. To sum it up, you
just need to follow the scheme shown:

The flag we have added will allow us to filter some code using #if, #else, and
#endif. Therefore, the final release product will be slightly different from the
debugged one.

Chapter 6

[163]

As games need very high performance, avoid leaving the code
that is not necessary for the user, such as debug information,
benchmarking code, and so on.

Let's complete the project setup by downloading the images provided by this book's
resources and dragging them to the images.xcassets catalog, which is located in
your project navigator inside the Chapter 6 DinoSurf group. Most of these images
are PNG files, as we need transparency to have a cleaner visual effect.

Developing games requires us to modify some images and
retouch them. It is a good idea to learn some image manipulation
programs such as Photoshop or Gimp.

Great! Now, we are going to press play to test the current app. You can use the
simulator if you want to. However, later we will use the accelerometer sensor to
move the dinosaur while turning the device. The accelerometer can't be tested with
the simulator. You can rotate your simulator with the command + ← key combination.

The original game template simply displays the Hello, World! message at the center
of the screen with information on the frames per second in the bottom-right corner.
If you tap anywhere on the screen, a rotating spaceship will appear. Of course, this is
not what we want, which is why we will have to remove some code soon.

Creating a Game App Using SpriteKit

[164]

Changing the current code
Now, let's start by changing the GameViewController class. Here, we don't have to
make many changes. We just need to indicate whether the debug information will be
displayed on debug compilations by using the preprocessor macro #if and #endif.

The scale mode will be changed to AspectFit. This way, we will be able to see the
entire scene on the screen without it flowing over the screen borders. The default
size of a SpriteKit project is 1024 x 768, which has an aspect ratio of 4:3. If you use
a new device, the result will give you black bars on the sides. It is not an error; it is
something that happens due to a different resolution ratio. Start wrapping the debug
code between #if and #endif, as shown in the following highlighted code:

 override func viewDidLoad() {
 super.viewDidLoad()

 if let scene = GameScene(fileNamed:"GameScene") {
 // Configure the view.
 let skView = self.view as! SKView
 #if DEBUG
 skView.showsFPS = true
 skView.showsNodeCount = true
 skView.showsDrawCount = true
 #endif

 skView.ignoresSiblingOrder = true

 /* Set the scale mode to scale to fit the window */
 scene.scaleMode = .AspectFit

 skView.presentScene(scene)
 }
 }

It is not necessary to reinstall the app to test it; just recompile it with command + B to
ensure that there is no syntax error. Now, go to the GameScene.swift file. Let's make
some modifications, starting with an easy one. When the user taps on the screen, the
app will pause or unpause. To do it, we just need to change the paused property by
inverting its value. To summarize it, just replace the touchesBegan method with the
following code:

 override func touchesBegan(touches: Set<UITouch>, withEvent
 event: UIEvent?) {
 self.paused = !self.paused
 }

Chapter 6

[165]

Easy, isn't it? Now it is time to initialize it; here, we will have to do it on the
didMoveToView method. Replace the default one with a similar code that,
instead of showing Hello, World!, shows DinoSurf using a blue font of
the Chalkboard SE family:

 override func didMoveToView(view: SKView) {
 /* Setup your scene here */
 let appTitle = SKLabelNode(fontNamed:"Chalkboard SE")
 appTitle.text = "DinoSurf";
 appTitle.fontColor = UIColor.blueColor()
 appTitle.fontSize = 65;
 appTitle.position = CGPoint(x:CGRectGetMidX(self.frame),
 y:CGRectGetHeight(self.frame) -
 CGRectGetHeight(appTitle.frame));
 self.addChild(appTitle)
 }

Based on this code, we can create a similar code to display other kinds of information
to the user. Now, we have to show: the current score that starts with 0, the number of
lives that starts with 2, and the current level that starts with 1. Place this code at the
end of the didMoveToView method:

 let scoreText = SKLabelNode(fontNamed:"Chalkboard SE")
 scoreText.text = "Score:";
 scoreText.name = "label_score"
 scoreText.fontColor = UIColor.blueColor()
 scoreText.fontSize = 25;
 scoreText.position = CGPoint(x: 0 ,
 y:CGRectGetHeight(self.frame) -
 CGRectGetHeight(scoreText.frame));
 self.addChild(scoreText)

 let levelText = SKLabelNode(fontNamed:"Chalkboard SE")
 levelText.text = "Level:";
 levelText.name = "label_level"
 levelText.fontColor = UIColor.blueColor()
 levelText.fontSize = 25;
 levelText.position = CGPoint(x: 0 ,
 y:CGRectGetMinY(scoreText.frame) -
 CGRectGetHeight(levelText.frame));
 self.addChild(levelText)

 let livesText = SKLabelNode(fontNamed:"Chalkboard SE")
 livesText.text = "Lives:";
 livesText.name = "label_lives"

Creating a Game App Using SpriteKit

[166]

 livesText.fontColor = UIColor.blueColor()
 livesText.fontSize = 25;
 livesText.position = CGPoint(x: 0 ,
 y:CGRectGetMinY(levelText.frame) -
 CGRectGetHeight(livesText.frame));
 self.addChild(livesText)

 self.refreshLabels()

We called a method called refreshLabels. This method will be called every time
something has changed (the user score, the number of lives, or the current level). Till
now, we don't have anything that controls these values, so we have to create them
as properties outside refreshLabels (or if you prefer, at the beginning of the class).
After this, we can develop the refreshLabels method:

 var score = 0
 var lives = 2
 var level = 1

 private func refreshLabels(){
 (self.childNodeWithName("label_score") as?
 SKLabelNode)?.text = "Score: \(score)"
 (self.childNodeWithName("label_level") as?
 SKLabelNode)?.text = "Level: \(level)"
 (self.childNodeWithName("label_lives") as?
 SKLabelNode)?.text = "Lives: \(lives)"
 }

Build and run your app now to check whether the labels are appearing correctly. There
will be no movement, as everything we put on the screen till now is static labels.

Chapter 6

[167]

Adding a character and some waves
Now, it is time to add some life here. Let's put some water and the surfer dinosaur
on the screen. To do it, we will need to create three SKSpriteNode: one for the
character, another one for his wave, and a third one that will display some sea water.
The first two nodes are going to be accessed by other methods; to do so, we are going
to save them as an attribute. The third one (the sea water) will just be an animation
that would be there forever, so we don't need to save it as an attribute or even give it
a name. We will place these attributes on the top of the game scene class:

 var wave:SKSpriteNode!
 var dino:SKSpriteNode!

Go to the end of the didMoveToView method; here, we have to add some actions.
An action is similar to an animation; in this case, we need to move the wave up
and down, thus it will give a more realistic effect. As the up and down effect can't
be done together, we will have to create another action that will be a sequence of
actions. Lastly, we will have to create another action that will repeat the sequence
forever, otherwise it will do it only once. Place this code at the end of didMoveToView
to create the wave animation:

 let waveUp = SKAction.moveByX(0, y: 20, duration: 0.5)
 let waveDown = SKAction.moveByX(0, y: -20, duration: 0.5)
 let waveUpAndDown = SKAction.sequence([waveUp, waveDown])
 let waveMove = SKAction.repeatActionForever(waveUpAndDown)

There is no sense in creating animations and not applying them to anything. This is
the reason we have to create a node to display the wave. We just need to instantiate
the node, name it, set its animation, and place it as a view child. Theoretically, we
also need to set its position, but we are going to do it later. So, we will place this code
to create the game's wave:

 wave = SKSpriteNode(imageNamed: "wave")
 wave.name = "wave"
 wave.runAction(waveMove)
 self.addChild(wave)

What about the dinosaur? Basically we have to do the same operation, except that we
have to use a different image and a different name.

 dino = SKSpriteNode(imageNamed: "dinosaur")
 dino.name = "dino"
 dino.runAction(waveMove)
 self.addChild(dino)

Creating a Game App Using SpriteKit

[168]

Once the wave and the character are added to the game scene, we have to place them
at the right place on the screen. For now, we are just going to call a method that does
it. The reason is that this method will be called when the player loses one life. Place
this code after the dinosaur node creation.

 self.startupPosition()

In order to compile our code, let's implement the startupPosition method. We just
need to place the wave at the bottom of the screen and the dinosaur a little bit above
it. Remember that, by default, the SKSpriteNode objects are instantiated with the
anchorPoint attribute set to (0.5, 0.5), meaning that their positions are based on
their centers. Place the following code at the end of the GameScene class:

 private func startupPosition(){
 wave.position = CGPoint(x: CGRectGetMidX(self.frame), y:
 100)
 var dinoPosition = wave.position
 dinoPosition.y = wave.position.y + 3 *
 wave.frame.size.height / 4
 dino.position = dinoPosition
 }

It's time to test the app again. So, we build and run it. Now, you can see that the app
is alive; the dinosaur is above the wave and it is moving up and down like the arrow,
as shown in the following screenshot:

Chapter 6

[169]

Don't forget that you can tap on the screen to pause and resume the game. To
complete this stage, we can add the water picture at the bottom of the screen. The
idea is very similar to one we had with the wave, except that in this case, instead of
moving it up and down, the water will be moving forward and backward. This way,
we will get an impression that the wave is not still.

Due to the reason mentioned previously, the actions will move on the x axis
rather than the y axis. If you want, you can also change its duration. It will give
an impression that the wave is either moving faster or slower. Return to the
didMoveToView method and place the following code after the startupPosition
call to add the sea and move it:

 // water actions
 let waterRight = SKAction.moveByX(10, y: 0, duration: 0.5)
 let waterLeft = SKAction.moveByX(-10, y: 0, duration: 0.5)
 let waterRightAndLeft = SKAction.sequence([waterRight,
 waterLeft])
 let waterMove =
 SKAction.repeatActionForever(waterRightAndLeft)

 // water node
 let water = SKSpriteNode(imageNamed: "water")
 water.position = CGPoint(x: CGRectGetMidX(self.frame), y:
 0)
 water.runAction(waterMove)
 self.addChild(water)

Again, we have to rebuild and execute the app. Now, you will see that the sea water
is moving forward and backward.

Creating a Game App Using SpriteKit

[170]

Creating some enemies
So far, we have only some animations on the screen. But, we need to add some
enemies to make a more dangerous scenario.

In this game, we have two kinds of enemies—a dinosaur fish that jumps vertically
from the water and a dinosaur bird, also known as a pterodactyl, which flies from
the top of the screen to one of its sides.

When should we create an enemy? Actually, we can create them anytime; it is just a
question of avoiding more than one enemy on the screen at the same time, otherwise
the game would be very hard or almost impossible to play.

We could use NSTimer to schedule the enemies' appearance. Nonetheless, when we
are talking about games, there is something that we have to consider. Usually, game
engines and frameworks have a method that is called before rendering the frame,
SpriteKit is no exception.

Note that the GameScene class has an overridden method called update. This method
receives the current time as an argument, because according to the game, you have
to calculate the difference of time between the current frame and the previous one.
Although, we are not going to worry about it in this game, it is something we
should consider.

Don't assume that it will always be a fixed frame rate. It can
vary during the game according to the device's workload.
Some games have to lower the frame rate to get a better
performance and to save battery.

Start checking whether there is any enemy on the screen by simply searching for any
node named "enemy". If there is any node with this name, we will just ignore it. If
there is no node named "enemy" we will call a function that will create it. Update the
update method with the following code:

 override func update(currentTime: CFTimeInterval) {
 if let _ = childNodeWithName("enemy") {}
 else {
 self.createEnemy()
 }
 }

Chapter 6

[171]

The createEnemy method has two options. The first one is to create a fish and the
second one is to create a bird. It should be chosen randomly with the probability of
each one being 50 percent. To do it, we are going to use arc4random_uniform, which
returns a random number between zero and the argument minus one. To sum it up,
the method in question is as simple as the following code:

 private func createEnemy(){
 if arc4random_uniform(2) == 0 {
 self.createFish()
 }else {
 self.createBird()
 }
 }

If you would like more examples on random numbers in Swift,
you can read Swift Cookbook by Packt Publishing.

Before we start implementing the createBird method, we have to analyze the bird's
movement. It will start at any part of the top of the screen and move to one of its
sides. If it starts at the left half of the screen, it will move to the right of the screen
and vice versa. Its destination is a range from the top of the screen to its bottom, as
shown in the following screenshot:

Creating a Game App Using SpriteKit

[172]

Based on the previous analysis, we can start creating the bird's node and setting its
initial position. The horizontal position (x axis) is a random number based on the
screen's width, and the vertical position (y axis) is always the top of the screen. Once
you have understood this, you can place the following code in the GameScene class:

 private func createBird(){
 let enemy = SKSpriteNode(imageNamed: "bird")
 let positionX =
 Int(arc4random_uniform(UInt32(CGRectGetWidth(self.frame))))
 enemy.position = CGPoint(x: positionX, y:
 Int(CGRectGetHeight(self.frame)))
 enemy.name = "enemy"

When the bird appears, it will first play a sound. To create this action, we are going
to use the playSoundFileNamed method of SKAction. As the sound must be played
parallel to the movement, you have to set the waitForCompletion argument to false:

 let birdSound = SKAction.playSoundFileNamed("vulture.wav",
 waitForCompletion: false)

Now, we will have to see the bird's destination. If the bird's start position is on the
left-hand side of the screen, it must move to the right, and vice versa. The vertical
position is based on the screen's height. It means that the bird can have its vertical
destination at any point between the top and the bottom of the screen, so we are
going to choose a random number based on the screen's height. After retrieving both
the values, we can create the action to move the bird to its destination. Place the
following code after the sound action is created:

 var destination = CGPoint()
 destination.y =
CGFloat(arc4random_uniform(UInt32(CGRectGetHeight(self.frame))))
 if CGFloat(positionX) < CGRectGetMidX(self.frame) {
 enemy.xScale = -1
 destination.x = CGRectGetWidth(self.frame)
 }else{
 destination.x = 0
 }
 let movement = SKAction.moveTo(destination, duration:
 self.duration)

Chapter 6

[173]

Once the bird reaches its destination, we can remove it from the scene. Removing
the bird from the scene will inform the update method that there is no enemy and it
can create a new one. And then, we can create a sequence of actions that represents
the full bird movement: playing the sound, moving the bird, and removing it from
the screen:

 let remove = SKAction.removeFromParent()
 let sequence = SKAction.sequence([birdSound, movement,
 remove])

The bird's actions are created and so is the bird node, but there is no relationship
between the two. Now, we have to tell the node to execute the sequence of actions.
When it finishes, the player will score one point.

The last step of this method is to add the node to the scene. The bird should then be
able to do its job by itself:

 enemy.runAction(sequence) {() in
 self.increaseScore()
 }
 self.addChild(enemy)
 }

The method is ready, but there are some loose wires around it. Firstly, we are trying
to load a file called vulture.wav, but this file is not yet in the project. Go to this
chapter's resource folder, which was downloaded from the Internet, and drag the
wave files (vulture.wav, splash.wav, crunch.wav, and levelup.wav) to your
project. Make sure that the Copy items if needed option and the project target is
checked, as shown in the following screenshot:

Creating a Game App Using SpriteKit

[174]

The next detail that wasn't declared is the self.duration attribute, which was used
to set the period of the movements. The initial movement will last for 3 seconds,
however, this time will decrease as the user climbs up the levels. Scroll up and place
the following attribute:

 var duration = 3.0

There is still another method called increaseScore that we have to implement.
We will do it eventually after the createFish method is implemented.

Let's continue with the method that creates a dinosaur fish; the idea is similar to the
previous method. The fish's initial position should be anywhere at the bottom of the
screen. It means that the horizontal position (x axis) is a random number based on
the scene width and the vertical position (y axis) is 0.

Bear in mind that the origin coordinate (x and y equal to zero)
on SpriteKit is in the bottom-left corner of the scene, not in the
upper-left corner as in the UIKit.

Place the following code to start with the createFish method:

 private func createFish() {
 let enemy = SKSpriteNode(imageNamed: "fish")
 let positionX =
Int(arc4random_uniform(UInt32(CGRectGetWidth(self.frame))))
 enemy.position = CGPoint(x: positionX, y: 0)
 enemy.name = "enemy"

Pay attention that this node is also called enemy. The reason is that, when the update
method starts, it will look for any node with this name; it doesn't matter if it is a fish,
a bird, or anything else. If there is one on the screen, it will simply ignore it; but if
there is no node with the name enemy, it will create one.

Our fish image is in the horizontal position as if the fish was swimming. Nonetheless,
we will have to rotate it 90 degrees to the left as it needs to be in the vertical position
to jump/attack. To do it, we are going to change the zRotation property. After
reaching the highest point, we are going to use an action called rotateByAngle. This
action receives the degree of rotation in radians as an argument. Two pi radians are
equivalent to 360 degrees; as we would like to rotate only 90 degrees, we need only
half a pi radian. You can copy the pi value from the Internet; but it is not necessary,
as Swift and Objective-C come with a constant for this number. So, we will add the
following line to create the rotation action:

 enemy.zRotation = CGFloat(M_PI / 2)

Chapter 6

[175]

In this case, we could have rotated the image in the first place. We
would have got a better performance, as the app wouldn't need to
rotate it all the time. As this is not a complex game, the main goal
is to teach SpriteKit. Here, it is done with the help of the code.

Now, we have to think about the fish attack. The whole animation should take the
same time as the bird. But here, we have to divide it in three steps: prepare or wait,
jump, and fall down. This is why we are going to start by calculating the duration of
each step:

 let stepDuration = self.duration / 3

The fish's first action is to just appear and wait a little while as if it is preparing
to jump or just announcing its presence. For this kind of events, SpriteKit has the
waitForDuration action:

 let wait = SKAction.waitForDuration(stepDuration)

After waiting, the fish will jump. Translating this phrase to SpriteKit means that it
will move from where it is to the center of the screen. This action is done together
with the splash.wav sound:

 let splashSound =
 SKAction.playSoundFileNamed("splash.wav",
 waitForCompletion: false)
 let up = SKAction.moveToY(CGRectGetMidY(self.frame),
 duration: stepDuration)

Once the fish has reached the highest point in the jump, it will fall down. First, we
need to rotate 180 degrees, which is the same as pi radian. This will make the fish
go upside down. Then, we have to tell it to return to its origin (y equals zero):

 let fallRotation = SKAction.rotateByAngle(CGFloat(M_PI),
 duration: 0)
 let down = SKAction.moveToY(0, duration: stepDuration)

Once the fish falls back into the water, it must be removed from the scene. Now that
we know the actions that are going to be performed by the fish and the sequence
order, we can create an action that is the entire sequence:

 let remove = SKAction.removeFromParent()
 let sequence = SKAction.sequence([wait, splashSound, up,
 fallRotation, down, remove])

Creating a Game App Using SpriteKit

[176]

Great! The final part of this method is already known; we just need to run the actions
and add the node to the scene. Remember that, if the node is able to finish its actions,
it will imply that the player has successfully dodged it and scored one point:

 enemy.runAction(sequence) {() -> Void in
 self.increaseScore()
 }
 self.addChild(enemy)
 }

The final idea behind this fish jump is the movement shown in the following screenshot:

Now we can create the increaseScore method. Firstly, we just need to increase the
score by one. So, we will place the following code to start with the method:

 private func increaseScore(){
 self.score++

Chapter 6

[177]

The second part of this method is to check whether the player has reached the next
level. Here, we have to consider that, when we are testing, we need some sort of
shortcuts. This will make our testing faster and help us detect issues sooner. The
production game (the final compilation, the one that could be sent to the Apple App
Store) will allow the user to go to the next level with every 10 points. It means that,
when a user reaches 10 points, his level will be upgraded to 2; when he reaches 20
points, his level will be upgraded to 3. The development app (the one you have
while developing) will upgrade the user's level every 3 points. So, we will place the
following code to create the levelup constant:

 #if DEBUG
 let levelup = 3
 #else
 let levelup = 10
 #endif

If the player has reached a new level, we can announce it by playing the levelup.
wav file. This action will be released by the dinosaur. We don't have to worry much
about who is playing the sound, as it doesn't create any visual effect. The duration
attribute should also be reduced by 20%, making the enemies appear and leave
faster. Thus, making the levels harder for the player:

 if score % levelup == 0 {
 let levelup =
 SKAction.playSoundFileNamed("levelup.wav",
 waitForCompletion: false)
 self.dino.runAction(levelup)
 level++
 duration *= 0.8
 }

We can finish this method by refreshing the labels; it will update the player's
information:

 self.refreshLabels()
 }

Well done! You have reached the next stage of the app. Now you can build and run
it. Here, you will see the bird flying, the fish jumping, and the scores and levels being
updated. You are still not able to lose any life or move the character. These are our
next goals.

Creating a Game App Using SpriteKit

[178]

Checking for collisions
Till now, the player doesn't lose his life on colliding with an object. When you tested
the app at the end of the previous section, you saw the bird and the fish catching the
dinosaur but nothing happened. The player scored a point even when the enemies
touched the dinosaur.

Now it is time to fix it. Go to the update method and add the following highlighted
code, which is just a call for a method called checkOverlaps, at the end:

 override func update(currentTime: CFTimeInterval) {
 if let _ = childNodeWithName("enemy") {
 self.checkOverlaps()
 }
 else {
 self.createEnemy()
 }
 }

The missing method is a simple one; here, we need to call a function named
enumerateChildNodesWithName. This function will search for every node that has
a name passed as the first argument, then execute the closure passed as the second
argument. Leave the closure empty for now; just place the following code so you are
still able to compile:

 private func checkOverlaps(){
 self.enumerateChildNodesWithName("enemy") { enemy, stop in
 }
 }
 }

What should we do inside the closure? Here, we have to check whether the found
enemy is overlapping with the dinosaur (only the dinosaur, not its wave). If so,
we have to play the crunch.wav sound to let the user know that he or she has lost
one life. We will have to remove the enemy from the scene, otherwise it will keep
colliding with the dinosaur. We should call a method to decrease the player's life, but
we will do it later. Place the highlighted code inside the enumeration handler:

 self.enumerateChildNodesWithName("enemy") { enemy, stop in
 if enemy.intersectsNode(self.dino) {
 let crunch =
 SKAction.playSoundFileNamed("crunch.wav",
 waitForCompletion: false)
 self.dino.runAction(crunch)
 enemy.removeFromParent()
 // TODO: remove this comment self.decreaseLife()
 }
 }

Chapter 6

[179]

Time to test the app again. Press play and check whether, when an enemy touches
the dinosaur, it makes a sound and disappears. Also, check whether the player scores
a point.

Losing lives
Once the enemy reaches the dinosaur, we will have to decrease its life counter. If
the life counter is greater than zero, we just need to decrease the life counter, call
startupPosition to place the dinosaur at the center of the screen, and update the
labels. This is the first part of the decreaseLife method:

 private func decreaseLife() {
 if self.lives > 0 {
 self.lives--
 self.startupPosition()
 self.refreshLabels()
 }

What if it was the last life? In this case, we just need to remove the dinosaur from
the scene and place a big label saying Game Over. Therefore, we can complete the
decrease method with the following code:

 else {
 dino.removeFromParent()
 let gameOverLabel = SKLabelNode(fontNamed:"Chalkboard
 SE")
 gameOverLabel.position.x = CGRectGetMidX(self.frame)
 gameOverLabel.position.y = CGRectGetMidY(self.frame)
 gameOverLabel.fontSize = 65
 gameOverLabel.text = "Game Over"
 self.addChild(gameOverLabel)
 }
 }

Great! Now, return to the checkOverlaps method, remove the following highlighted
TODO comments, and check whether it is working or not:

 // TODO: remove this comment self.decreaseLife()

Creating a Game App Using SpriteKit

[180]

Fixing the score counter
If you paid attention, you might have noticed something weird when the game
ended; even if the dinosaur is not on the screen, the player will still score points.
How could that be? It is possible because, every time the enemy reaches its
destination, we call a method called increaseScore. This method just increases
the score by one; the current state of the app doesn't matter.

We can solve it by first checking whether the dinosaur is on the screen before
increasing the score. If the dinosaur is not on the screen, we can simply exit from
the function. Fix the increaseScore function by adding the highlighted code:

 private func increaseScore(){
 if self.children.indexOf(self.dino) == nil {
 return
 }
 self.score++
 …

In a more complex game, create an attribute that can be a Boolean
value or an enumeration with the game state. This way, you will
get a better performance than the one you will get by searching
the array of nodes.

Is everything working as expected? The answer is, not yet. Note that the bird and the
fish can still collapse with the nonexistent dinosaur. Again, the question is why?

The reason is that removing a node from the scene will not imply that it doesn't exist.
The intersectsNode method simply checks the collision using their frames, not
ensuring whether they belong to the same scene or not.

How can we solve this problem? The solution is similar to the previous one; we just
need to go to the checkOverlaps function and check whether the dinosaur is on
the screen. If so, we can enumerate the enemies node, otherwise the function won't
do anything. Please update the checkOverlaps function with the highlighted code;
don't forget to close its brackets:

 private func checkOverlaps(){
 if let _ = self.children.indexOf(self.dino) {
 self.enumerateChildNodesWithName("enemy") { enemy,
 stop in
 if enemy.intersectsNode(self.dino) {

Chapter 6

[181]

 let crunch =
 SKAction.playSoundFileNamed("crunch.wav",
 waitForCompletion: false)
 self.dino.runAction(crunch)
 enemy.removeFromParent()
 self.decreaseLife()
 }
 }
 }
 }

Build and run the app again. Now, if you wait a little while, you will not score and
lose the game. The enemies will continue moving and won't disappear when they
pass through the wave.

Moving the dinosaur
So far, more than playing the game, we watched it. The player was not able to
interact with the game, except for pausing it. As it was told in the beginning of
this chapter, the user is not supposed to touch the screen. He is supposed to play
the game with the device in the landscape-right position and turn it to move the
dinosaur as if it were a car wheel.

Now is the time when the accelerometer sensor will play a vital role. The
accelerometer sensor allows us to know whether the user turned the device to the left
or to the right. The principle of this sensor is a bit complex, but for this app, we just
need to know that it will allow us to detect its orientation like a car wheel. You can
read more about it at https://www.pc-control.co.uk/accelerometers.htm.

The old versions of iOS would work with a class called UIAccelerometer. But since
iOS 4, we had to use a class called CMMotionManager. How do we use this class? First
we have to import the CoreMotion framework. So, we will scroll up to the beginning
of the GameScene.swift file and add the following line:

import CoreMotion

We will then declare an attribute called the manager of the CMMotionManager type:

 var manager:CMMotionManager!

At the end of the didMoveToView method, we can instantiate this manager and call
the startAccelerometerUpdates method with no arguments:

 manager = CMMotionManager()
 manager.startAccelerometerUpdates()

https://www.pc-control.co.uk/accelerometers.htm

Creating a Game App Using SpriteKit

[182]

If you use startAccelerometerUpdates with a queue and a handler,
it will create a pull of data received from the accelerometer, which might
cause a delay in moving the character. For real time information, it is
better to call startAccelerometerUpdates with no arguments.

The following picture shows how the axes are positioned on your device and where
they have positive and negative values:

Now that you have understood these concepts, we just need to worry about the
value of the y axis:

•	 Positive value: This means that the wave and the dinosaur should move to
the left

•	 Negative value: This means that the wave and the dinosaur should move to
the right

Moving to the left means that the position of the wave and the dinosaur will
decrease. On moving to the right, it will increase. To think of it positively, we just
need to multiply it by -1 when the dinosaur goes to the left, and multiply it by 1
when it goes to the right. So, let's create an enumeration inside this class to control
these multipliers according to their sides:

 private enum Direction: Int {
 case Left = -1,
 Right = 1
 }

Chapter 6

[183]

Now, we need to see the speed at which the wave is going to move. For this game,
we are going to have three speeds:

•	 Idle: This means that the character should stay where it is
•	 Slow: This means that the character will move forward or backward by

5 points per frame
•	 Fast: This means that the character will move forward or backward by

10 points per frame

So, we will place the following enumeration after the Direction enumeration:

 private enum Speed : Int{
 case Idle = 0,
 Slow = 5,
 Fast = 10
 }

Great! Now, we are going to create a method that moves the wave and the dinosaur
according to the requested speed and direction. Scroll down to the end of the
GameScene class and start typing it in the following method header:

 private func moveWave(direction:Direction, speed:Speed) {

The first thing we need to check is whether the speed is idle or the game is paused. In
both cases, we won't move anything:

 if speed == .Idle || self.paused {
 return
 }

If the app reaches the next line, it will mean that the character and the wave will
move. We can calculate the offset by retrieving the raw values of the direction
and speed:

 let offset = CGFloat(direction.rawValue * speed.rawValue)

Now, we have to check whether we are moving away from the screen. Technically
speaking, the character can move beyond the screen limits. If we don't take care of it,
we will have two problems:

1.	 The player might not know where the character is, as it is will not be
visible anymore.

2.	 Someone might cheat by just moving the character away from the screen and
scoring a lot of points.

Creating a Game App Using SpriteKit

[184]

For this reason, we have to check whether the movement is acceptable before we
change the dinosaur's position. We can then close the method as everything is good
to go:

 if self.wave.position.x + offset > 0 &&
 self.wave.position.x + offset < CGRectGetMaxX(self.frame)
 {
 self.wave.position.x += offset
 self.dino.position.x += offset
 }
 }

Where should we call the method that was created? We should do it on the update
method before the current code. Start by checking whether there is any accelerometer
data. If so, create two variables, one for the speed with its default value as Idle and
another one for the direction with the initial value as Right:

 if let accelerationData = self.manager.accelerometerData {
 var speed = Speed.Idle
 var direction = Direction.Right

Now, we can set the speed by checking the force of the y axis. If its absolute value is
greater than 0.5, we will consider it as high speed. If it is between 0.25 and 0.5, we
will consider it as low speed. If it is lower than 0.25, it will stay idle:

 if abs(accelerationData.acceleration.y) >= 0.5 {
 speed = .Fast
 }else if abs(accelerationData.acceleration.y) >= 0.25
 {
 speed = .Slow
 }

Once we have the speed, we just need to check whether we have to switch directions
as, by default, the character moves to the right. To do it, we just need to check
whether the y axis returns a negative value. In this case, we have to set the direction
to the left:

 if accelerationData.acceleration.y > 0 {
 direction = .Left
 }

Now, we can call the moveWave function and close the if statement:

 self.moveWave(direction, speed: speed)
 }

Chapter 6

[185]

The final action
What should we do now? Press play and enjoy the game. Remember that you have
to do it using a physical device, as the simulator can't simulate the accelerometer.

Check whether you can dodge the enemies and you can't move away from the screen.
Once the game has your approval, you have to change its compilation to release it. To
do it, click on the scheme pop up menu and go to the Edit Scheme… option:

Ensure that you are on the Info tab of the Run section, click on Build Configuration
and select Release, as shown in the following screenshot:

Press the Close button and run the game again. Check whether there is no debug
information like the frames per second. To reach the next level, you have to score
10 points instead of 3. Have a lot of fun!

Creating a Game App Using SpriteKit

[186]

Summary
I hope you had a lot of fun with this chapter. You have learned how to use SpriteKit
and have also enjoyed the game.

SpriteKit works in a very simple and logical way. You have to create nodes such as
images and labels and animate them using actions. Actions can be moving, playing a
sound, or rotating the node, or even a collection of actions like a group or a sequence.

You also learned how to use the accelerometer, making the game more enjoyable as
you could move the dinosaur by turning the device like a car wheel.

In the next chapter, we will create an app for Apple Watches; hope you will enjoy it.

[187]

Creating an Apple Watch App
What time is it? It is time to go to the supermarket and get some supplies. It doesn't
look like a traditional answer to this question. But believe me, watches will give you
this type of an answer sooner or later. As we are now experiencing, mobile phones
have multitude of functions other than making calls.

With the release of Apple Watch, we now have a new friend that tells us the time
and advises us to stand up and walk away for a while because we've been seated
for a long time. It demands attention, interrupts us constantly, and advises us on
our food intake, ensuring that we do not gain weight. Basically, it is like a smaller
version of a wife.

As it is a new product, many people are wondering about what this device can do
and what are the forthcoming apps from this invention. Actually, there are some new
apps in the process of being developed for this device. In this chapter, we are going
to explore the development of a fridge control that would determine what is there in
the fridge content and the duration of its lifetime. Furthermore, it will periodically
advise you when your supplies are running low, so you can stock them up.

In this chapter, we will cover:

•	 Creating an Apple Watch extension
•	 Creating a glance
•	 Exchanging information between Apple Watch and the iOS app
•	 Testing the memory warnings
•	 Using the MapKit framework and retrieving directions

Creating an Apple Watch App

[188]

Project overview
The idea behind this project is to create an iOS app with an Apple Watch extension
that will control the contents of your fridge. To set up the fridge contents, you need
to use an iPhone device. However, the notification that the fridge is running out of
food will be sent via Apple Watch.

You will also be able to use MapKit to guide you to the supermarket. The Watch
app will only display the supermarket's location, while the iOS app will provide
the directions to the supermarket.

Till date, it has not been possible to create an Apple Watch app
that is not linked to an iOS app, meaning that you always have
to create an iOS app, even if it is an empty application.

watchOS 2 is the version you should use for this app; it is slightly different from the
previous one. Ensure that you are using the correct simulator version or that you
have updated your watch operating system. The Xcode version must be at least 7;
don't use Xcode 6, except when you are developing for watchOS 1.

Setting it up
Open Xcode and click on Create a new Xcode project. This time, when the dialog
appears, you have to click on the Watch OS | Application section and select the iOS
App with WatchKit App option, as shown in the following screenshot. Once it is
selected, press the Next button.

Chapter 7

[189]

In the next dialog, set its title to Chapter 7 Fridge Control and make sure that
the Include Notification Scene, Include Glance Scene, and Include Complication
checkboxes are checked, as shown in the following screenshot. Curiously, the option
to use Core Data is not available on this screen; however, you won't be needing it.

If you need to use Core Data for your project, there is a simple way to do it. Just
create a single-view application with Core Data and add the WatchKit extension.

Although we would not be using complications, it would be a good idea to leave the
app prepared for it.

Press Next and choose a folder for your project. When Xcode opens the project, you
will see that the project has more files, groups, and schemes than it had before. While
developing apps for Apple Watch, note that there will be two additional targets: the
app extension that contains the code of your app and the app target that contains the
storyboard and some resources.

The first version of watchOS would install only the target app on
the Watch and the extension was installed on the iPhone device.
With watchOS 2, both the targets are installed on the watch.
However, you still have two targets instead of only one.

Creating an Apple Watch App

[190]

Now, click on your project in the project navigation, select your project target, and go
to the Capabilities tab. Search for the map's capability and turn it on. For this app,
we are going to activate only the route by car. Once you know how it works, you can
activate other routes later on.

This procedure must also be done on the Watch Extension target. This way, we can
display the map on our watch.

Return to the iOS app target, click on the Build Settings tab, and scroll down to the
Swift Compiler section. Expand the Other Swift Flags record and add the -DDEBUG
debug option, as we did in the previous chapter. This way, we can have different
settings when we are in development and when we are distributing the app.

The iOS app
As it was mentioned before, this app will also be developed for iOS. The iOS app has
two options:

•	 The first one is to add supplies to your fridge
•	 The second one is to check its current state

Inside the current state option, there will be another scene that will show us a map
with the directions to the supermarket.

Chapter 7

[191]

Rename the ViewController.swift file to InitialViewController.swift. Then,
click on it and also rename its class to InitialViewController. Now, click on the
storyboard and update the view controller class.

Drag one label and two buttons to the scene. Set the label title to Fridge Control,
one button title to Add supplies, and the other one to Check Status. Don't forget to
add the auto layout constraints that you think are necessary. The final result should
be a simple layout similar to the following screenshot:

Go to its Swift file and add a method that will allow the other scenes to unwind to
the main scene, which is a concept we've already seen in the previous chapters that
allows us to return directly to this view controller. Eventually, you can implement
this method, but leave it empty right now. Place the following code to create the
custom segue method:

 @IBAction func
 unwindToInitialViewController(segue:UIStoryboardSegue)
 {
 }

Creating an Apple Watch App

[192]

The models
Let's create some models before we start with any visual part for the app. First, add
a new file called Supply.swift. Here, we are going to create a class that represents
some supplies, which can be of the drink, food, and dessert types. To differentiate
them, we are going to create an enumeration called SupplyType:

enum SupplyType:String{
 case Drink = "drink", Food = "food", Dessert = "dessert"
}

You can create enumerations nested in a class; however, this kind
of implementations still have some limitations. Therefore, it is still
considered to be a better idea while implementing it independently.

Now, we need to create the Supply class. In this class, we need an attribute for the
supply's name, another one for its type, and two private attributes to control its
duration. We will also create a method to consume such supplies and another one to
estimate when they are going to end. Remember that their duration is based on the
time we need to consume the supply, not on their weight or size:

class Supply {
 var name:String
 var type:SupplyType
 private var duration:UInt
 private var consumed:UInt = 0

As none of these attributes are optional and not all of them are initialized, we will
have to create an initializer. We could declare them with an exclamation mark, but it
is not a good practice to abuse it. Copy this code to create the initializer:

 init(name:String, type:SupplyType, duration:UInt) {
 self.name = name
 self.type = type
 self.duration = duration
 }

Now, we need to indicate the amount of time that was consumed. If the product was
fully consumed, we have to return the amount of time remaining to consume the
next product:

 func consume(seconds: UInt) -> UInt{
 if consumed + seconds > duration {
 let rest:UInt = seconds - (duration - consumed)
 consumed = duration

Chapter 7

[193]

 return rest
 }
 consumed += seconds
 return 0
 }

At last, we have to create a method that indicates how much time is remaining for
this supply. We can then close the class:

 func endEstimation() -> UInt {
 return duration - consumed
 }
}

Pay attention that, in this class, we used an unsigned integer instead of a signed
integer, as there is no sense in mentioning negative time. Bear this decision in mind
as it needs to be like this for the whole app.

The second class we have to implement is the fridge. Add a new file called
Fridge.swift to your project. The fridge will have an instance that can be accessed
anywhere and some constants that can control the supplies' lifetime. All these
properties are static, as they don't need to be accessed through an instance; you can
just call them by calling them through the class. Place the following code to start the
class' implementation:

class Fridge {
 private static var instance:Fridge?
 #if DEBUG
 // on debug mode 1 day will be 10 seconds
 static let cycleUnit = UInt(10)
 #else
 static let cycleUnit = UInt(60 * 60 * 24)
 #endif
 static let cycleTime = UInt(30)
 static let cycleThreshold = 0.2

Sometimes, you might find the words static and class for properties. What's the
difference? Both words mean that the property or the method can be accessed
directly through the class without the need of any of its instance. However, static is
an alias for final class, which means that the property or function can't be overridden.
Another detail you have to consider is that classes can be used only with methods
and computed properties, but not with stored properties.

Creating an Apple Watch App

[194]

With object attributes, we need a dictionary that controls the supplies of each type
and an array with the accepted supply types:

 private var supplies = [SupplyType: [Supply]]()
 private let types:[SupplyType] = [.Drink, .Food, .Dessert]

Another attribute that we are going to add is a notification dictionary. This dictionary
allows us to know whether the user was notified about the supply's shortage:

 var notified = [SupplyType.Food: false,
 SupplyType.Drink: false,
 SupplyType.Dessert:false]

Technically speaking, it is not necessary to create an initializer for this class.
However, it is a good idea to initialize the supplies' dictionary for each key.
Otherwise, every time we request a key, we will have to check whether its
array exists or not:

 private init(){
 for type in types {
 supplies[type] = [Supply]()
 }
 }

Now, we need a method to access the instance of our fridge. When this method
is called, it needs to check whether the instance is already created. If not, it will
have to allocate its memory and initialize it. After this, the method will return
Fridge instance:

 class func mainFridge() -> Fridge {
 if Fridge.instance == nil {
 Fridge.instance = Fridge()
 }
 return Fridge.instance!
 }

Great! Now, we have to implement some methods to control the supplies. First,
let's create a method to add supplies to the fridge. Here, we just need to add the
argument to the array of supplies and reset the notification for this supply type:

 func addSupply(supply:Supply){
 supplies[supply.type]?.append(supply)
 self.notified[supply.type] = false
 }

Chapter 7

[195]

The next method is the one that denotes the amount of time consumed, so we have to
rest it for each supply type:

 func consume(seconds:UInt){
 for type in types {
 if let currentSupplies = supplies[type] {
 var time = seconds
 for element in currentSupplies {
 time = element.consume(time)
 }
 }
 }
 }

We will need another method to check the remaining time for a supply type. This
method will allow us to know whether the fridge is running out of any kind of
supplies. Here, we are going to use the reduce method, which belongs to the array
class. The reduce method iterates through each element of the array and returns a
value that is sent to the next iteration. In this case, for each element, we will combine
its estimation time with the current accumulator that starts with 0. Type the following
code to implement the remainingTime function:

 func remainingTime(supplyType:SupplyType) -> UInt{
 return supplies[supplyType]!.reduce(0, combine: { (sum,
 element) -> UInt in
 return sum + element.endEstimation()
 })
 }

Now, we need another method to check the percentage of such supplies. Here,
we need some clarification when we say that a percentage mean is based on the
fridge cycle. If we usually buy supplies every 30 days and we still have 15 days, it
will mean that this method will return 50%. If we have supplies for 60 days, it will
return 100% (not 200%) as the fridge is full for one cycle. This method will be used to
display the current status of the fridge:

 func cyclePercentageFor(supplyType:SupplyType) -> Float {
 let percentage = Float(self.remainingTime(supplyType)) /
 Float(Fridge.cycleUnit * Fridge.cycleTime)
 if percentage > 1.0 {
 return 1.0
 }
 return percentage
 }

Creating an Apple Watch App

[196]

As you can see, when a supply reaches the end, it is not removed from the supplies'
array. The reason is that we might need it in the future, for example, for the statistics
of the products that were consumed. But, can it cause any problem? The answer is
yes; if it consumes too much memory, we would have to free the unused records.
This is the reason we have to create a method called compress. As this is the last
method for this class, we are also going to close the class:

 func compress(){
 for key in self.supplies.keys {
 if let _ = supplies[key], _ = supplies[key]!.first{
 while supplies[key]!.count > 0 &&
 supplies[key]!.first!.endEstimation() == 0 {
 supplies[key]!.removeAtIndex(0)
 }
 }
 }
 }
} // fridge end

When should we call this method? We have two options, one is every time we
consume some supplies and the other one is when the app receives a low memory
warning. In this app, we are going to use the second option. To do it, we are going
to add the following method to the app's delegate class:

 func applicationDidReceiveMemoryWarning(application:
 UIApplication) {
 Fridge.mainFridge().compress()
 }

The last model we need is the supermarket. This model will be a very simple one
that will store the supermarket address and coordinates and will also have only
one instance for the whole app.

Now we can create the supermarket class. Add a new Swift file called
Supermarket.swift to the project and create a class with the same name:

class Supermarket{

We can then add the attributes; in this case, we need the address, the latitude, the
longitude, and also a static attribute that contains the instance of the supermarket:

 var address:String?
 var latitude:Double?
 var longitude:Double?
 private static var instance:Supermarket?

Chapter 7

[197]

As we did in the previous class, we have to create a method that will return the
instance of the current class. This is all there's to be done for this class, so we can
close it:

 static func defaultSupermarket() -> Supermarket{
 if Supermarket.instance == nil {
 Supermarket.instance = Supermarket()
 }
 return self.instance!
 }
} // end Supermarket

A scene to add supplies
Starting with the option to add supplies, we create a new file in the project called
AddSuppliesViewController.swift. Start importing UIKit and creating a class
that inherits from UIViewController with the same name as the file. This class
will also work with UIPickerView, which implies that we have to implement the
UIPickerViewDataSource and UIPickerViewDelegate protocols. We will also
need to implement UITextFieldDelegate. Leave this class empty for now; don't
worry about the compiler errors:

class AddSupplyViewController: UIViewController,
UIPickerViewDataSource, UIPickerViewDelegate, UITextFieldDelegate
{
}

Return to the storyboard and add a new view controller to it. Connect the AddSupply
button from the first scene to this new view controller by control-dragging it from
the button to the new scene. Update the scene class in its Identity inspector to
AddSupplyViewController as shown in the following screenshot:

Creating an Apple Watch App

[198]

In this scene, we need to set the product name, the product type (drink, food, or
dessert), and the product duration. For this scene, we will need four labels, one
text field, two buttons, and two picker views. Set the button's titles to Back and Add
product and also set the label's titles to ADD SUPPLIES, Product name, Product
type, and How long does it last?. Place them in a way that the user understands
the order these fields could be set in, like it is shown in the following screenshot:

The easiest command we are going to create is the Back button. Just control-drag the
button to the exit symbol on the scene and select the only method that will appear:
unwindToInitialViewController.

Set the text field delegate, the picker view's delegate, and the data source to
the current view controller. Also, connect the text field and the pickers to their
corresponding attribute in the following code:

 @IBOutlet var productNameTextField: UITextField!
 @IBOutlet var productTypePicker: UIPickerView!
 @IBOutlet var durationPicker: UIPickerView!

Chapter 7

[199]

Now let's do the same with the Add product button. Instead of connecting them to
the attributes, we will connect them to their action. We are going to leave this action
empty for now:

 @IBAction func addProductAction(sender: UIButton!) {
 }

Before we proceed with the code, let's add a border to the pickers (as it is shown in
the previous screenshot). The idea behind it is to check whether, during runtime,
there is any UI component that is overlapping with the picker. Remember that
UIPickerView has a large area that is transparent and it can also be resized due to
auto layout.

Select one picker, go to its Identity inspector and scroll down to the User Defined
Runtime Attributes section. This section is basically a table where you can add
some custom attributes. Click on its plus sign that is located in the bottom-left corner
of the table. A new row will appear; in the first column, you have to type layer.
borderWidth; in the second column, you have to change the type to Number; and in
the third column, you have to set its value to 1.

Repeat the same process with the other picker view. Eventually, you can remove
these borders if you want to. While the scene is under development, it is a good
idea to leave the borders on.

Adding a border to an UI component is one way of knowing
the space it is occupying. However, do not forget that a view
can have subviews beyond its parent frame. Another way is
to use the visual debugger.

Creating an Apple Watch App

[200]

Return to the AddSuppliesViewController.swift file and continue with its code.
Firstly, we have to declare two constant attributes: one that represents the type of
supplies displayed by the first picker view and the second one that represents the
durationUnit type displayed by the second picker. Place the following constants
under the current attributes:

 private let productTypes = ["Drink", "Food", "Dessert"]
 private let durationUnit = ["Day", "Week", "Month"]

Another attribute that will be necessary is the fridge instance. We could access it by
calling the mainFridge method every time we need it. But, it is handier if we just
create an attribute for it:

 private let fridge = Fridge.mainFridge()

The first methods that we are going to implement are those that belong to the
UIPickerViewDataSource protocol. This protocol has only two functions and they
are mandatory. One is to return the number of components (columns) and the other
function is to return the number of elements. They work like the table view delegate.
However, the information by itself is not returned by this protocol; it will be returned
by the delegate.

The first picker view will have only one component and the second one will have
two components: one to the left that displays numbers between 1 and 7 and the one
to the right that displays the units (day, week, or month). Type the following code to
complete this method:

 // MARK: - Picker view data source function.
 func numberOfComponentsInPickerView(pickerView: UIPickerView)
 -> Int{
 if pickerView === self.productTypePicker {
 return 1
 }else {
 return 2
 }
 }

Chapter 7

[201]

The next method will tell us the number of rows of a specific component; it also
belongs to the UIPickerViewDataSource protocol. In this case, we have three
situations. If the app is requesting the number of components for the supply type,
it will be the size of the corresponding array. If the app is requesting the size of
the other picker view, we have to return the number 7 for the first component
or the size of the unit array for the second one. Here, you have the code for the
numberOfRowsInComponent method:

 func pickerView(pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 if pickerView === self.productTypePicker {
 return productTypes.count
 }else {
 return component == 0 ? 7 : self.durationUnit.count
 }
 }

Now, we have to feed the picker views by implementing the titleForRow method
that belongs to UIPickerViewDelegate. Here, we have to return the values of
the corresponding arrays or return a number from 1 to 7 in the case of the first
component of the duration picker view:

 // MARK: - Picker view delegate
 func pickerView(pickerView: UIPickerView, titleForRow row:
 Int, forComponent component: Int) -> String? {
 switch (pickerView, component){
 case (self.productTypePicker, _):
 return productTypes[row]
 case (self.durationPicker, 0):
 return String(row + 1)
 case (self.durationPicker, 1):
 return self.durationUnit[row]
 default:
 return nil
 }
 }

Creating an Apple Watch App

[202]

At this point, you should be able to compile the project with command + B. However,
we are not finished with this class yet; actually, we haven't even initialized it. To do
it, we are going to call a method that will reset the scene. This method will also be
called after adding supplies to the fridge and this is the reason we shouldn't code it
on the viewDidLoad method:

 override func viewDidLoad() {
 super.viewDidLoad()
 self.setup()
 }
 func setup(){
 self.productNameTextField.text = ""
 self.productNameTextField.becomeFirstResponder()
 // Food is the default supply
 self.productTypePicker.selectRow(1, inComponent: 0,
 animated: true)
 // 1 day is the default duration
 self.durationPicker.selectRow(0, inComponent: 0, animated:
 true)
 self.durationPicker.selectRow(0, inComponent: 1, animated:
 true)
 }

The next step is to create a method to add the product on the screen. Firstly,
this method needs to check whether the user has introduced any product name,
otherwise we will not be able to continue:

 @IBAction func addProductAction(sender: UIButton!) {
 let name = self.productNameTextField.text!
 if name == "" {
 self.productNameTextField.becomeFirstResponder()
 return
 }

Then, we have to check the supply's type. As you can see, there is an extra option
that controls some kind of nonexisting selections. It is not really necessary, but it is
good to control such an error, as in the future, we could add types of new supplies:

 let type:SupplyType
 switch productTypePicker.selectedRowInComponent(0) {
 case 0:
 type = .Drink
 case 1:
 type = .Food
 case 2:
 type = .Dessert

Chapter 7

[203]

 default:
 fatalError("Wrong index
 \(productTypePicker.selectedRowInComponent(0)) on file
 \(__FILE__) near line \(__LINE__)")
 }

We should have the same procedure with the supply period:

 let period:UInt
 switch durationPicker.selectedRowInComponent(1){
 case 0:
 period = 1
 case 1:
 period = 7
 case 2:
 period = 30
 default:
 fatalError("Wrong index
 \(productTypePicker.selectedRowInComponent(0)) on file
 \(__FILE__) near line \(__LINE__)")
 }

Once we have the information on the screen, we can create the supply object and add
it to the fridge:

 let duration =
 UInt(self.durationPicker.selectedRowInComponent(0) + 1) *
 period * Fridge.cycleUnit
 let supply = Supply(name: name, type: type, duration:
 duration)
 self.fridge.addSupply(supply)

Finally, we can just reset the screen and finish this method:

 self.setup()
 }

Do we still need to do anything in this class? Theoretically no, but in practice, we still
need to add one more detail. Once the user types the product name, the keyboard
needs to be hidden. So, when the user presses the Enter key, the keyboard must be
dismissed. We can then close the class:

 // MARK: - Text field delegates
 func textFieldShouldReturn(textField: UITextField) -> Bool{
 textField.resignFirstResponder()
 return true
 }
} // end AddSuppliesViewController

Creating an Apple Watch App

[204]

Displaying the fridge's status
Once we are able to add stuff to our fridge, we need to create another scene to
display the current fridge's status. In this scene, we are going to use UIProgressView
because it is more visual than just writing a number on a label.

Go back to the storyboard and add a new view controller to it. Drag five labels, two
buttons, and three progress views to the scene as follows.

1.	 Place the first label at the top and set its title to Fridge Status.
2.	 Place the second label under the first one without a title or, if you prefer, you

can just add a dash to locate it easily. This label will be used to report to the
user the supplies that are running out of stock.

3.	 Under the message label, place one button and set its title to Go to the
supermarket.

4.	 You can place the other three labels with a progress view under each one.
Set the labels' title to Drink, Food, and Dessert.

5.	 Lastly, place the second button at the bottom of the scene and set its title
to Back.

In the end, you should have a layout similar to the following screenshot:

Chapter 7

[205]

Now, add a new file called FridgeStatusViewController.swift and open it. Start
by importing the UIKit and the CoreLocation frameworks. The second framework
is necessary, as we will be retrieving the coordinates using CLGeocoder afterwards:

import UIKit
import CoreLocation

Create the FridgeStatusViewController class that must inherit from
UIViewController and add the following UI attributes:

class FridgeStatusViewController: UIViewController {
 @IBOutlet var goToTheSupermarketButton: UIButton!
 @IBOutlet var statusLabel: UILabel!
 @IBOutlet var drinkBar: UIProgressView!
 @IBOutlet var foodBar: UIProgressView!
 @IBOutlet var dessertBar: UIProgressView!

Another attribute that is necessary is the fridge instance. This one can be a constant,
as we don't have two instances of fridge in this app:

 let fridge = Fridge.mainFridge()

The next step is to create the viewDidLoad method to initialize the visual part. Firstly,
we are going to create an array variable called lowLevel, which will store the supplies
that are being depleted. Type the following code to start the viewDidLoad method:

 override func viewDidLoad() {
 super.viewDidLoad()
 var lowLevel = [String]()

Now, we can set the supplies' progress view and append the needed values
to lowLevel:

 let drinkPercentage = fridge.cyclePercentageFor(.Drink)
 drinkBar.progress = drinkPercentage
 if drinkPercentage <= 0.2 {
 lowLevel.append(SupplyType.Drink.rawValue)
 }

 let foodPercentage = fridge.cyclePercentageFor(.Food)
 foodBar.progress = foodPercentage
 if foodPercentage <= 0.2 {
 lowLevel.append(SupplyType.Food.rawValue)
 }

 let dessertPercentage =
 fridge.cyclePercentageFor(.Dessert)

Creating an Apple Watch App

[206]

 dessertBar.progress = dessertPercentage
 if dessertPercentage <= 0.2 {
 lowLevel.append(SupplyType.Dessert.rawValue)
 }

The last part of this method is to set the status label. Here, we have three cases:

•	 When there is no food at all, we should report that the fridge is completely
empty. In this case, we should display the button that shows the route to
the supermarket.

•	 When there is enough amount of each supply, we will report it and hide the
supermarket button.

•	 When there are some supplies that are being depleted, we will report
the supplies that need attention and the supermarket button should
be displayed.

Place this code to complete the viewDidLoad method:

 if drinkPercentage == 0 &&
 foodPercentage == 0 &&
 dessertPercentage == 0 {
 statusLabel.text = "The fridge is empty!!"
 goToTheSupermarketButton.hidden = false
 }else if lowLevel.count == 0 {
 statusLabel.text = "The fridge has enough
 supplies"
 goToTheSupermarketButton.hidden = true
 }else {
 let join = lowLevel.joinWithSeparator(", ")
 statusLabel.text = "The fridge is running out of:
 \(join)"
 goToTheSupermarketButton.hidden = false
 }
 }

The next and the last method of this view controller is called goToTheSupermarket,
which will check whether the supermarket has the address with its coordinates set.
Then, it will open a scene with the map and the directions to get there. We start by
creating a nested function that opens the map's scene, as this code will be used more
than once:

 @IBAction func goToTheSupermarket(sender: UIButton) {
 let supermarket = Supermarket.defaultSupermarket()
 func openMap(){

Chapter 7

[207]

 let mapviewcontroller =
self.storyboard!.
instantiateViewControllerWithIdentifier("supermarketviewcontroller")
 self.presentViewController(mapviewcontroller,
 animated: true, completion: nil)
 }

Then, we check whether the supermarket's address is set. If so, we will just call the
openMap function:

 if let _ = supermarket.address {
 openMap()
 }

If no address is set, we will have to create an alert controller with a text field to write
the address with the following code:

 else {
 let alertController = UIAlertController(title:
 "Address not found", message: "There is no supermarket
 address set, please introduce it.", preferredStyle:
 .Alert)
 alertController.addTextFieldWithConfigurationHandler(nil)

Once the alert controller is created, we have to create its actions. The first action is
to get the content of the text field and find its coordinates using a geocoder object.
Once it is located, we can set the corresponding values to the supermarket object
and open the map:

 let acceptAction = UIAlertAction(title: "Ok", style:
 .Default, handler: { (action) -> Void in
 let address:String =
 alertController.textFields![0].text!
 let geocoder = CLGeocoder()
 geocoder.geocodeAddressString(address,
 completionHandler: { (placemarks:[CLPlacemark]?,
 error:NSError?) -> Void in
 if let error = error {
 print(error.localizedDescription)
 }
 if let placemarks = placemarks where
 placemarks.count > 0 {
 supermarket.address = address
 supermarket.latitude =
 placemarks[0].location!.coordinate.latitude

Creating an Apple Watch App

[208]

 supermarket.longitude =
 placemarks[0].location!.coordinate.longitude
 openMap()
 }
 })
 })
 alertController.addAction(acceptAction)

The second action is to just create the Cancel button; it means that all we have to do
is to create an empty action and add it to the alert controller:

 let cancelAction = UIAlertAction(title: "Cancel",
 style: .Cancel, handler: nil)
 alertController.addAction(cancelAction)

Finally, we can present the alert controller and close the brackets till we close
the class:

 self.presentViewController(alertController, animated:
 true, completion: nil)
 } // end else
 } // end goToSupermarket method
}// end FridgeStatusViewController class

Great! The code for this class is ready. Return to the storyboard, update the
view controller class to FridgeStatusViewController, and connect the visual
parts to the corresponding attributes. Don't forget that the Back button must be
connected to the unwindToInitialViewController method that will return to the
InitialViewController method.

Test the current app's status by adding some supplies and checking their statuses.
The only feature that can't be tested now is the supermarket button, otherwise your
app will crash.

Going to the supermarket
Now, it is time to create the last scene of the iOS app. Here, we just need to add a
new view controller with a label, map view, table view, and button to the storyboard.

Chapter 7

[209]

A label is used only to display the scene's title. Therefore, we will set its title to
Supermarket Directions and place it at the top of the screen. Then, we will place
the map under it to occupy approximately half the screen. Below the map, we
will place the table view; here is where will display the directions. Lastly, we will
place the button with the Main Menu title. The final layout should be similar to the
following screenshot:

Add a new file to your project called MapViewController.swift and import the
UIKit, MapKit, and CoreLocation frameworks with the following code:

import UIKit
import MapKit
import CoreLocation

Creating an Apple Watch App

[210]

Create the corresponding class by calling it MapViewController, inheriting
from UIViewController and implementing the MKMapViewDelegate and
UITableViewDataSource protocols:

class MapViewController:UIViewController, MKMapViewDelegate,
UITableViewDataSource {

As usual, we are going to start by adding its attributes. First, we need the map
instance and the table view instance:

 @IBOutlet var mapView: MKMapView!
 @IBOutlet var stepsTableView: UITableView!

The next attributes are an array of MKRouteStep that represents the directions to the
supermarket, and locationManager that will request permission to use the GPS:

 var steps:[MKRouteStep]?
 let locationManager = CLLocationManager()

After we create the attributes, we are going to implement the viewDidLoad method
by telling the location manager to request for authorization and receive updates:

 override func viewDidLoad() {
 super.viewDidLoad()

 locationManager.requestWhenInUseAuthorization()
 locationManager.startUpdatingLocation()

Then, we can retrieve information from the supermarket to create its map item.
This map item will be used to set our destination on the map:

 let supermarket = Supermarket.defaultSupermarket()
 let coordinate =
 CLLocationCoordinate2DMake(supermarket.latitude!,
 supermarket.longitude!)
 let placemark = MKPlacemark(coordinate: coordinate,
 addressDictionary: nil)
 let destination = MKMapItem(placemark: placemark)
 destination.name = "Supermarket"

Once we have our destination, we can create a request by creating an object of the
MKDirectionsRequest type. This object needs to know the source, the destination,
and the transport type, which for this app will be by car. In this case, we are not
going to accept alternative routes:

 let request = MKDirectionsRequest()
 request.source = MKMapItem.mapItemForCurrentLocation()
 print(MKMapItem.mapItemForCurrentLocation())

Chapter 7

[211]

 request.destination = destination
 request.transportType = .Automobile
 request.requestsAlternateRoutes = false

To finish this method, let's create an object of the MKDirections type and tell it to
calculate the directions. Once it gets the directions, we have to update the maps with
a route overlay and update the table view with the directions:

 let directions = MKDirections(request: request)
 directions.calculateDirectionsWithCompletionHandler({(response:
 MKDirectionsResponse?, error: NSError?) in
 if let error = error {
 print(error.localizedDescription)
 } else {
 let route = response!.routes[0]
 self.mapView.addOverlay(route.polyline,
 level: MKOverlayLevel.AboveRoads)
 self.steps = route.steps
 self.stepsTableView.reloadData()
 }
 })
 }

Curiously, adding the overlay is not enough for it to be displayed. We still need to
implement the renderForOverlay method and set the line color and width:

 func mapView(mapView: MKMapView, rendererForOverlay overlay:
 MKOverlay) -> MKOverlayRenderer {
 let renderer = MKPolylineRenderer(overlay: overlay)
 renderer.strokeColor = UIColor.blueColor()
 renderer.lineWidth = 5.0
 return renderer
 }

Now we can implement the table view data source methods. For
numberOfRowsInSection, we have two possibilities. The first one is to return the
number of elements to the steps array and the second one is to return nil when
the arrays aren't set yet:

 func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int{
 if let steps = self.steps {
 return steps.count
 }
 return 0
 }

Creating an Apple Watch App

[212]

The last method is cellForRowAtIndexPath. Here, we just need to create a table cell
and set its text to the value of the instructions attribute of the corresponding step:

 func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
 var cell =
tableView.dequeueReusableCellWithIdentifier("cell")
 if cell == nil {
 cell = UITableViewCell(style: .Default,
 reuseIdentifier: "cell")
 }
 cell?.textLabel?.text =
 self.steps?[indexPath.row].instructions
 return cell!
 }
} // end MapViewController

The code for this class is ready. Now, we will return to the storyboard and control-
drag the table view to the view controller icon (yellow circle with a white square
inside) to set its delegate. Repeat the same procedure with Map View. Once both
the delegates are set, select the map view, go to its attribute inspector, and check the
option that shows the User Location, as shown in the following screenshot:

Chapter 7

[213]

Now, click on the view controller, update its class to MapViewController on the
Identity inspector, and set Storyboard ID to supermarketviewcontroller, as
shown in the following screenshot:

There is still one small detail to be done; click on the iOS app's info.plist file, add
one record with the NSLocationWhenInUseUsageDescription key, and set its value
to This app needs your location for routing you to the supermarket. This step is
mandatory since iOS 8 and remember that this app is done for watchOS 2, which
requires iOS 9 or above.

Test the app again and you should be able to see the maps with the directions to
your supermarket.

You can simulate pinching with two fingers to zoom in and zoom
out on the simulator by using the mouse with the option key
pressed. If you need to place the fingers location at a different
place, you can move them with option + shift.

Creating an Apple Watch App

[214]

The WatchApp
Once the iOS app is almost ready (we still need to return here for a few details),
we can go to the WatchKit app. Before we start coding, we are going to add a few
resources to our project. First, we will add the drink.png, food.png, dessert.png,
and status*.png images that can be found in the book resource to the WatchKit app.

These radio images are very popular on Watch Apps. You can customize
and download them from http://hmaidasani.github.io/
RadialChartImageGenerator/. There are options to change the
image size, remove text on the screen, and change the line's colors.

Click on the storyboard that is now located in the Chapter 7 Fridge Control
WatchKit App group. Here, you can see that we have some default scenes. One of
them is the scene that represents the app, which has its initial arrow marked with the
word Main. Click on this scene and double-click on the top portion next to the clock
to set the scene title. When the text field appears, type Fridge Control as shown in
the following screenshot:

Drag a table to this scene. Note that the table has a different aspect than the one we
know on the iOS app. Don't worry about it for now; just drag an image and a label to
the only row we have, as we are going to customize the row.

http://hmaidasani.github.io/RadialChartImageGenerator/
http://hmaidasani.github.io/RadialChartImageGenerator/

Chapter 7

[215]

Click on the image and go to its attribute inspector (command + option + 4). Go to the
section titled Size and change its width type to Fixed and set its value to 32.

Now, click on the label, move it to right of the image if it is not there yet, and change
its Horizontal and Vertical alignment to Center.

The layout of this scene is basically ready, but we still need to create a class that
will represent our cell (or row as it is called here). Add a new file to the project
called SupplyRow.swift; but this time, before we press the Create button in the file
dialog, we will have to ensure this file belongs to the Chapter 7 Fridge Control
WatchKit Extension group and its target is the WatchKit Extension, as it is shown
in the following sample:

Creating an Apple Watch App

[216]

In this file, we just need to create a simple class that inherits from NSObject (yes, a
row here is NSObject) and contains WKInterfaceImage and WKInterfaceLabel,
which are the equivalent of UIImageView and UILabel on the watch:

import WatchKit
class SupplyRow:NSObject {
 @IBOutlet var image:WKInterfaceImage!
 @IBOutlet var caption:WKInterfaceLabel!
}

Return to the WatchApp storyboard and select Table Row Controller on the
Document Outline, as shown in the following screenshot:

Go to the Identity inspector and update the Class type to SupplyRow, which is the
class name that we have just created.

We then need to set the Identifier field that is located on the attribute inspector. This
field is important as, in the code, we have to call the value that was set. In this case,
we are going to set it to supplyrow.

Chapter 7

[217]

Now, you can link the image and the label to their corresponding attributes by going
to the connections inspector and dragging the plus signs to the UI components.

Now, we need to create another class to store the nonvisual information of each
row. This class will be used to exchange information between controllers. It will be
called RowInfo and it will store the title visible to the user, the image name, and the
corresponding raw value for the supply type.

Add a new file called RowInfo.swift to the Watch extension. Create one class with
the same name, and three string attributes. Then, create an initializer that sets the
attributes' initial values. The code is as follows:

class RowInfo {
 var title:String
 var image:String
 var key:String

 init(title:String, image:String, key:String){
 self.title = title
 self.image = image
 self.key = key
 }
}

The previous class is not a tuple, as the instance of its objects are going to be sent
from one interface controller to another as contexts that must be an instance of the
AnyObject type.

Now you can go to the InterfaceController.swift file. As you can see
here, the class inherits from WKInterfaceController that is equivalent to
UIViewController. Bear it in mind as the methods here are different.

Creating an Apple Watch App

[218]

In this class, we will need two attributes: the first one is the table instance that is
WKInterfaceTable here, and another one that is an array of RowInfo:

class InterfaceController: WKInterfaceController {
 @IBOutlet var statusTable: WKInterfaceTable!
 var rowsInfo = [RowInfo]()

Now, let's implement the awakeWithContext method that is created to initialize the
attributes, something similar to viewDidLoad. Here, we have to start by creating the
elements of the RowInfo array:

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 var rowInfo = RowInfo(title: "Drink", image: "drink",
 key: "drink")
 rowsInfo.append(rowInfo)
 rowInfo = RowInfo(title: "Food", image: "food", key:
 "food")
 rowsInfo.append(rowInfo)
 rowInfo = RowInfo(title: "Dessert", image: "dessert", key:
 "dessert")
 rowsInfo.append(rowInfo)

Now we can initialize the table's elements. In iOS table views, we have to use the
numberOfRowsInSection and cellForItemAtIndexPath methods. However,
WKInterfaceTable works in a different way. We have to set the rows together with
the setNumberOfRows method, where we tell the number of rows and its type, as
shown in the following code:

 statusTable.setNumberOfRows(rowsInfo.count, withRowType:
 "supplyrow")

Then, we can iterate through each retrieved row to set its contents. The
rowControllerAtIndex method returns the corresponding object of a row and,
with it, we can set up this cell. Copying the following loop code will set the rows
and close the method:

 for i in 0..<statusTable.numberOfRows {
 let row = statusTable.rowControllerAtIndex(i) as!
 SupplyRow
 let rowInfo = rowsInfo[i]
 row.caption.setText(rowInfo.title)
 let image = UIImage(named: rowInfo.title)
 row.image.setImage(image)
 }
 }

Chapter 7

[219]

Now, the first watch scene is done and ready to be tested. To do it, select the watch
app on the combo scheme as shown in the following screenshot and select your
favorite simulator or device. Remember that, if you have a physical device, it must be
paired with the phone. The app will first be installed on the phone and then sent to
the watch. This process could take a while at times.

When the simulator appears, you should have two windows, one for the iPhone
simulator and another one for the watch simulator. The final result should be a
window as shown in the following screenshot:

While developing watch apps, test them with both the models: 38 mm and 42 mm. If
you have a physical device, test on it, so you can have a more accurate result.

Communicating with the iOS app
Once the user has chosen the supply type, the app should display the supply status.
However, this information is not on the watch, it is on the phone; it must be requested
using a framework called WatchConnectivity.

This new scene will display the current supply status of the supply. If the user has
set the supermarket address, a button will appear to display the map with the
supermarket address.

Creating an Apple Watch App

[220]

Go to the WatchApp storyboard and add a new interface controller next to the first
one. Drag a label, an image, and a button to this interface controller. Select the label
and change its text alignment to center and its width size to Relative to Container
with its value as 1, as shown in the following screenshot:

Now, click on the image and set its Horizontal and Vertical alignment to Center.
Change the Width and Height size to Fixed and set their values to 80, as it is
displayed in the following screenshot:

Now, click on the button, set its text to Supermarket, its Vertical alignment to
Bottom, and its Horizontal alignment to Center. It is also useful to display the text
Return on the top of the screen next to the < symbol. This way, users will know that
by double-clicking on it, they will return to the main menu.

Chapter 7

[221]

The last visual work we have to do here is creating a segue that connects the first
scene with this one. Control-drag from the table of the first scene to this new scene.
Now your layout should be similar to this one.

Select the new segue by clicking on its arrow and go to its attribute inspector. Set its
identifier to supplysegue. This step is not essential for this app, but it might be for
any other watch app that you would develop. It is also a good idea to identify segues
in terms of software maintenance.

Now return to the InterfaceController.swift file. Here, we are going to add a
new method to send the corresponding user selection to the next scene. This method
is called contextForSegueWithIdentifier and it is similar to prepareForSegue
in the iOS app. We just need to return the object that would be sent as an argument
to the awakeWithContext method of the next scene. Place the following code in the
InterfaceController class:

 override func contextForSegueWithIdentifier(segueIdentifier:
 String, inTable table: WKInterfaceTable, rowIndex: Int) ->
 AnyObject? {
 if segueIdentifier == "supplysegue" {
 return rowsInfo[rowIndex]
 }
 return nil
 }

Creating an Apple Watch App

[222]

Now we can code the next interface controller's class. Add a new file called
SupplyStatusInterfaceController.swift to the Watch Extension target. Start
by importing the WatchKit and the WatchConnectivity frameworks with the
following code:

import WatchKit
import WatchConnectivity

Next, we have to open the class by calling it SupplyStatusInterfaceController,
inheriting from WKInterfaceController and specifying that it follows the
WCSessionDelegate protocol:

class SupplyStatusInterfaceController: WKInterfaceController,
WCSessionDelegate {

We are going to create an attribute for each UI component we place in the scene:

 @IBOutlet var statusLabel: WKInterfaceLabel!
 @IBOutlet var statusImage: WKInterfaceImage!
 @IBOutlet var supermarketButton: WKInterfaceButton!

Besides these attributes, we still need an attribute that will contain the supermarket
location, which will be implemented with a dictionary. Add another attribute, that is,
a rowInfo object that contains the user selection in the previous scene:

 var supermarketData:[String:AnyObject]?
 var rowInfo:RowInfo!

Now, we can start initializing the interface controller by creating the
awakeWithContext method. Firstly, we have to convert the argument from
AnyObject to RowInfo and assign it to our rowInfo attribute. We can then set the
scene title:

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 self.rowInfo = context as! RowInfo
 statusLabel.setText("\(rowInfo.title) Status")
 }

Every time this screen appears, we are going to refresh its data. To do it, we need
to communicate with the phone. This process is done by using an object of the
WCSession type. Place the following code to initialize the session:

 override func didAppear() {
 let session = WCSession.defaultSession()
 session.delegate = self
 session.activateSession()

Chapter 7

[223]

Now, we need to check whether the phone is reachable or not. Remember that it can
be far away from the watch or could be turned off, for example:

 if session.reachable {

If the phone is reachable, we have to send a dictionary that represents our request.
For this first message, we are going to send the "status" value for one key called
"request", and a rowInfo key for another dictionary key called "type". None of
these attributes are specified by Apple; it is just a convention we have for this app.

When the phone replies, we are going to receive another dictionary with the current
status' value. Remember that this value is a Float type (like 0.45); we need to
multiply it by 100 and convert it to Int (like 45 instead of 0.45). Once we have the
current percentage, we can call the corresponding image with its full filename, like
status45.png for example:

 session.sendMessage(["request":"status",
 "type":rowInfo.key],
 replyHandler: { (reply) -> Void in
 // Handle reply
 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in
 let percentage = Int(reply["value"] as! Float
 * 100.0)
 self.statusImage.setImageNamed("status\
(percentage)")
 })
 },
 errorHandler: { (error) -> Void in
 // Handle error
 print(error.localizedDescription)

 })

Now, we can do a similar process to request the supermarket data. In this case, if
the returned value is empty, we are going to hide the supermarket button. But if
it is not, we are going to store its data in the supermarketData attribute and display
the button:

 session.sendMessage(["request":"supermarket"],
 replyHandler: { (reply) -> Void in
 // Handle reply
 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in
 if let value = reply["value"] as?
 [String:AnyObject]{

Creating an Apple Watch App

[224]

 self.supermarketData = value
 self.supermarketButton.setHidden(false)
 }else {
 self.supermarketButton.setHidden(true)
 }
 })
 },
 errorHandler: { (error) -> Void in
 // Handle error
 print(error.localizedDescription)

 })
 }

Finally, we can create the method that will send the information to the next
scene (the map scene). As it was mentioned before, this method is called
contextForSegueWithIdentifier. But this time, it has fewer arguments,
as it is not going to be called from a table. After this method, we can close the class:

 override func contextForSegueWithIdentifier(segueIdentifier:
 String) -> AnyObject? {
 if segueIdentifier == "mapsegue" {
 return self.supermarketData
 }
 return nil
 }
} // end SupplyStatusInterfaceController class

Return to the storyboard and click on the last interface controller we created. Go to
its Identity inspector and update Class to SupplyStatusInterfaceController, as
shown in the following screenshot:

Connect the label, image, and button to their corresponding attributes. You may ask
yourself whether you can test the app now. The answer is no! We still need to update
the iOS part that receives requests and replies to them.

Chapter 7

[225]

Go to the AppDelegate.swift file of the iOS app and import the
WatchConnectivity framework:

import WatchConnectivity

Next, specify that the app delegate will follow the WCSessionDelegate protocol by
appending the following highlighted code:

class AppDelegate: UIResponder, UIApplicationDelegate,
WCSessionDelegate{

Using the didFinishLaunchingWithOptions method, we are going to get the
default session, set its delegate, and activate it. So, the final code of this method
should be as follows:

 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject:
 AnyObject]?) -> Bool {

 let session = WCSession.defaultSession()
 session.delegate = self
 session.activateSession()

 return true
 }

Now, we have to append the didReceiveMessage method, which belongs to the
WCSessionDelegate class, to the AppDelegate class. This method will start by
checking whether the request has a key called "request". In this case, we can reply
to the watch app:

 @available(iOS 9.0, *)
 func session(session: WCSession, didReceiveMessage message:
 [String : AnyObject], replyHandler: ([String : AnyObject]) ->
 Void){
 if let request = message["request"] as? String {

If the request is for the fridge's status information, we just need to request fridge
for it and reply with the handler that was sent by the argument:

 switch request{
 case "status":
 let fridge = Fridge.mainFridge()
 let type = message["type"] as! String
 let status =
fridge.cyclePercentageFor(SupplyType(rawValue: type)!)
 replyHandler(["response": "status",
 "value": status])

Creating an Apple Watch App

[226]

If the request is for the supermarket data, we are going to create a new dictionary
and return the address, latitude, and longitude. However, if the supermarket
address is not set, we are just going to reply that the information is not available:

 case "supermarket":
 let supermarket = Supermarket.defaultSupermarket()
 if let address = supermarket.address,
 latitude = supermarket.latitude,
 longitude = supermarket.longitude {
 replyHandler(["response": "supermarket",
 "value":["address": address,
 "latitude": latitude,
 "longitude": longitude]])
 }else {
 replyHandler(["response": "unavailable"])
 }

Lastly, we need to create a default option and return that the request was not found.
Then, we can close the method:

 default:
 replyHandler(["response": "notfound"])
 }// end switch
 }// end if
 } // end didReceiveMessage

Now it is time to test the app. You should see the status circle. If you set the address
on the iOS app, you should see the Supermarket button appear.

Displaying the map on the watch
The last part of our watch app and extension is to display the map to the supermarket.
To do it, we are going to use the WKInterfaceMap class that is the watch version
of UIMapView.

Return to the watch storyboard and add a new interface controller. Start by changing
the title at the top of the screen to Return, so it would be easier for the user to
understand how to return to the previous screen.

Chapter 7

[227]

Place a map on this interface controller and set its width and height to Relative to
Container with the value to 1, as shown in the following screenshot:

Now, add a new file named MapController.swift to the watch extension.
Import the WatchKit framework and open the class that inherits from
WKInterfaceController:

import WatchKit

class MapController: WKInterfaceController {

In this class, we will need two attributes, the map itself and the supermarket data
that was sent from the previous interface controller:

 @IBOutlet var map: WKInterfaceMap!
 var supermarketData:[String:AnyObject]!

Now, we can initialize the supermarketData attribute by assigning the context
argument sent on the awakeWithContext method to it:

 override func awakeWithContext(context: AnyObject?) {
 self.supermarketData = context as! [String:AnyObject]
 }

After this, we can implement the willActivate method that is equivalent to
viewWillAppear of UIViewController. Here, we just need to add a map annotation
(a purple pin in this case) with the supermarket coordinates and set its region,
which means that we are basically setting the zoom level. That's all for this class, so
don't forget to close it:

 override func willActivate() {
 let latitude = self.supermarketData["latitude"] as! Double
 let longitude = self.supermarketData["longitude"] as!
 Double

Creating an Apple Watch App

[228]

 let location = CLLocationCoordinate2D(latitude: latitude,
 longitude: longitude)
 map.addAnnotation(location, withPinColor: .Purple)
 let region = MKCoordinateRegion(center: location, span:
MKCoordinateSpan(latitudeDelta: 0.005, longitudeDelta: 0.005))
 self.map.setRegion(region)
 }
} // end MapController

Return to the WatchApp storyboard, update the interface controller class to
MapController, and connect the map to the corresponding attribute. Then,
control-drag the supermarket button of the previous scene to this interface
controller. Select the segue and set its identifier to mapsegue.

Now you can test the app. Set the supermarket address on the iOS app and check
whether it appears on the WatchApp. It is interesting to see that if you tap on the
watch map, it will open the maps application.

The glance
The glance is a screen that appears when you swipe from the bottom to the top of
your watch when the time is being displayed. It is like a single-screen application.

Go to the WatchApp storyboard and check whether there is an interface controller
with an initial arrow that has the word Glance on it. By default, we have two groups
in this interface controller. Drag one label to the group at the top and set its title to
Fridge Status. Click on the second group, go to its attribute inspector, and change
its Layout value from Horizontal to Vertical, as shown in the following screenshot:

Now drag three labels to this group. These labels should be connected to the
following attributes that we will have to type in the GlanceController.swift class:

 @IBOutlet var drinkLabel: WKInterfaceLabel!
 @IBOutlet var foodLabel: WKInterfaceLabel!
 @IBOutlet var dessertLabel: WKInterfaceLabel!

Chapter 7

[229]

We are then going to complete the GlanceController class. First, we are going to
import the WatchConnectivity framework:

import WatchConnectivity

Then, we are going to assign the WCSessionDelegate framework to the
GlanceController class:

class GlanceController: WKInterfaceController, WCSessionDelegate {

Now, inside the class, get the session as we did for WatchApp. Set its delegate to the
current object and activate the session:

 override func willActivate() {
 // This method is called when watch view controller is
 about to be visible to user
 super.willActivate()
 if (WCSession.isSupported()) {
 let session = WCSession.defaultSession()
 session.delegate = self
 session.activateSession()

Next, we can send a message to the watch, requesting for the percentage of drinks.
When the reply is called, we just have to update drinkLabel:

 session.sendMessage(["request":"status",
 "type":"drink"],
 replyHandler: { (reply) -> Void in
 dispatch_async(dispatch_get_main_queue(), { ()
 -> Void in
 let percentage = Int(reply["value"] as!
 Float * 100.0)
 self.drinkLabel.setText("Drink
 \(percentage)%")
 })
 },
 errorHandler: { (error) -> Void in
 print(error.localizedDescription)
 })

We just need to repeat the same code for the food and dessert and the method
is ready:

 session.sendMessage(["request":"status",
 "type":"food"],
 replyHandler: { (reply) -> Void in
 dispatch_async(dispatch_get_main_queue(), { ()
 -> Void in

Creating an Apple Watch App

[230]

 let percentage = Int(reply["value"] as!
 Float * 100.0)
 self.foodLabel.setText("Food
 \(percentage)%")
 })
 },
 errorHandler: { (error) -> Void in
 print(error.localizedDescription)
 })

 session.sendMessage(["request":"status",
 "type":"dessert"],
 replyHandler: { (reply) -> Void in
 dispatch_async(dispatch_get_main_queue(), { ()
 -> Void in
 let percentage = Int(reply["value"] as!
 Float * 100.0)
 self.dessertLabel.setText("Dessert
 \(percentage)%")
 })
 },
 errorHandler: { (error) -> Void in
 print(error.localizedDescription)
 })
 }
 }

Great! The app is ready. Change the scheme to glance and test it.

Summary
In this chapter, we had a different app this time, we had to create an app for Apple
Watch. As you could see, creating an Apple Watch app implies that you need to
create an iOS app.

Our iOS app worked as the heart of our app; it could set up the fridge and set the
supermarket address and tasks that were not done on the watch as there was no
keyboard on it. We could also retrieve directions to the supermarket, display them in
a table view, and draw the route on the map.

Technically speaking, the Watch app is split into two parts: the extension, which
contains the code and some resources needed by the code; and the app, which
contains the storyboard and some resources.

Chapter 7

[231]

In this app, we had to work with classes that were different from the traditional
UIKit framework. We used WKInterfaceController instead of UIViewController,
WKInterfaceTable instead of UITableView, WKIgnterfaceImage instead of
UIImageView, and so on.

watchOS 2 brings a new way to exchange information between the watch and
iPhone. It is called the Watch Communication framework, and we could use it to
request and reply.

The final feature we saw was glance. This feature allowed us to check the fridge's
status very fast, as we didn't have to open the app itself. We just had to open the
glances that were like single WKInterfaceController framework and search for the
corresponding one.

In the next chapter, you will learn how to edit an existing video using AVFoundation,
which is a low-level framework designed to manipulate audios and videos.

[233]

AVFoundation
As mentioned in the previous chapters, smartphones have replaced cameras.
Nowadays, it is very common to take pictures or record videos and upload
them on websites such as Facebook or Youtube.

Using UIImagePickerController can be enough if you just need to take a photo
or record a simple video. However, there are times when you need to do more
advanced tasks. UIImagePickerController is not enough to work with low level
media manipulation. To do it, you need to use the AVFoundation framework.

In this chapter, we are going to create an app where the user will take an existing
video and replace its sound with a narrative.

In this chapter, we will cover:

•	 Playing a video with AVFoundation
•	 Audio recording
•	 Working with temporary files
•	 Querying with the Photos framework
•	 Merging assets

Getting a project overview
In this chapter, we are going to create a new app that will make a fusion of a video
with an audio. This will allow us to select a video and replace its audio with our
narrative. Imagine that you have a video with some landscapes and you would like
to replace the current audio with your narrative. That's the idea of this app.

To the user, it will look like he/she is recording over the video, but technically
speaking, the user is recording his/her voice on an independent file while watching
the video. The merging will be done afterwards.

AVFoundation

[234]

This app will use AVFoundation and other additional frameworks such as Photos
and Core Motion.

Setting up the app
Open your Xcode and create a new single-view application as usual. In the dialog
that asks for the project's options, set the application's name to Chapter 8 Rehash;
also, ensure that Swift is the default language. The final dialog setup should be like
the following screenshot:

Rename the ViewController.swift file as well as its class to
InitialViewController.swift. Go to the storyboard and update the scene view
controller to InitialViewController, as shown in the following screenshot:

Chapter 8

[235]

Storing some asset information
Before we start with the scenes, we must create a class that will store some
information about the files that are being used for our media edition. Add a new
Swift file to our project and call it AssetInfo.swift. Start importing UIKit, as it is
shown in the next line, because we are going to use the UIImage class:

import UIKit

Open the class by calling it AssetInfo; it won't inherit from any specific class or
implement any protocol. So, its header must be simple, as follows:

class AssetInfo {

Now, we can start with the first attribute, that is the video thumbnail image. Add the
following attribute to your class:

 var videoThumbnail:UIImage?

Besides the video thumbnail, we also need to store the video date and its
corresponding URL. Both the attributes are mandatory as the date will be some kind
of title and, without the video URL, we won't be able to open it. Place the following
attributes and the initializer in your AssetInfo class:

 var videoDate:String
 var videoUrl:NSURL

 init(videoDate:String, videoUrl:NSURL){
 self.videoDate = videoDate
 self.videoUrl = videoUrl
 }

This is all the information we need for the video part. Now, we need to create
the necessary attributes to store the audio information. The audio file, which is
different from the video file, is a temporary file and should be created only
when it is requested.

The file name will always be the same; this is the reason it should be constant. The
full path is not constant as it contains an intermediate directory that can vary. Once
the full path is set, we are also going to set the equivalent URL attribute, taking
advantage of the didSet property observer. Place the following code to complete the
AssetInfo audio attribute part:

 let audioFilename = "rehash.m4a"
 var audioPath:String? {
 didSet {
 if let audioPath = self.audioPath {

AVFoundation

[236]

 self.audioUrl = NSURL(fileURLWithPath: audioPath)
 }else {
 self.audioUrl = nil
 }
 }
 }
 var audioUrl:NSURL?

To finish this class, we need to create a method that generates a temporary audio
file with its full path. Technically speaking, it will create only a directory inside the
temporary app directory, however, the file path will include the filename.

Avoid creating temporary files or directories inside documents or
library folders. These folders are backed up and sometimes copied
to the Apple cloud, consuming space and broadband data.

Create a method called prepareAudio, which returns an optional NSURL that
represents the full path for the audio file. In case of an error, this method shouldn't
be responsible for letting the user know about it, therefore we have to let this method
propagate the error to the function that called it. This is the reason this method has
the throws keyword in its definition. Place the following method header to open the
prepareAudio method:

 func prepareAudio() throws -> NSURL? {

As this method needs to work with files and directories, we have to retrieve the file
manager instance with the following code:

 let fileManager = NSFileManager.defaultManager()

Now, we are going to create a unique name for the intermediate directory. To do it,
we are going to call the globallyUniqueString attribute of the processInfo object.
This attribute returns a string that is a combination of the hostname, the process
id, and the timestamp, making it unique. Place the following code to create the
intermediate directory:

 let globallyUniqueString =
 NSProcessInfo.processInfo().globallyUniqueString
 let tempPath = (NSTemporaryDirectory() as
 NSString).stringByAppendingPathComponent(globallyUniqueString)
 try fileManager.createDirectoryAtPath(tempPath,
 withIntermediateDirectories: false, attributes: nil)

Chapter 8

[237]

The try statement is new in Swift 2 and it is mandatory when you call a method
that throws exceptions. In this case, the exception will be propagated, as there is
no do-catch statement and the method was declared with the throws attribute.

Eventually, you will use the try statement, followed by an exclamation mark (try!).
It means that, in case of an error, it won't be propagated. There is another possibility,
that is, the try statement, followed by a question mark (try?). It means that the
exception won't be propagated and the returned value will be nil.

After creating the intermediate directory, we can set the full audio path and print a
log with the full path. It can be helpful, while developing, to see whether everything
is going fine. Place the following code to complete this method:

 self.audioPath = (tempPath as
NSString).stringByAppendingPathComponent(self.audioFilename)
 print("The full audio path is \(audioPath))")
 return self.audioUrl
 }

When should we clean this file? We can do it while destroying this object, as there
will be no more use of this file. Thus, we must delete the file in the deinit method as
follows. As there are no more methods of this class, we can close it:

 deinit {
 let fileManager = NSFileManager.defaultManager()
 do {
 if let audioPath = self.audioPath {
 try fileManager.removeItemAtPath(audioPath)
 }
 } catch {
 print("Couldn't delete \(self.audioPath!) on file
 \(__FILE__) at line \(__LINE__)")
 }
 }
} // end class AssetInfo

AVFoundation

[238]

Listing videos
Let's start with the first scene, where the user will see, in the table view, a list of
his/her videos. In this scene, we just need to add a label and a table view. Set the
label title to Choose your video and place it at the top center of the screen. Under
it, place the table view, occupying the rest of the screen. The final layout should be
similar to the following screenshot:

Chapter 8

[239]

Once you have the scene layout, go to its view controller file, import the Photos
framework, and complete the class header by adding the UITableViewDataSource
and UITableViewDelegate protocols. This is shown in the following highlighted code:

import Photos

class InitialViewController: UIViewController,
UITableViewDataSource, UITableViewDelegate {

Photos is a framework that replaces Assets Library and it is available
for iOS 8.0. Therefore, ensure that your deployment target is for iOS 8
or above while using this framework.

This class needs two attributes: one is the table view instance and the other is an
array of AssetInfo, which contains each video's information. Add this code to the
InitialViewController class:

 @IBOutlet weak var assetsTableView: UITableView!
 var assets = [AssetInfo]()

Once we have the attributes, we can initialize this class with the viewDidLoad
method. Here, we have to check whether the user has already authorized the app to
access the photo library. If we already have the authorization, we can initialize the
assets by invoking a function that will be implemented afterwards, otherwise we will
have to request authorization. Place the following implementation of viewDidLoad
in your InitialViewController class:

 override func viewDidLoad() {
 super.viewDidLoad()

 if PHPhotoLibrary.authorizationStatus() == .Authorized {
 self.initAssets()
 }
 else {
 PHPhotoLibrary.requestAuthorization({ (status:
 PHAuthorizationStatus) -> Void in
 switch status {
 case .Authorized:
 self.initAssets()
 default:
 print("Not authorized")
 }
 })
 }
 }

AVFoundation

[240]

Now we can implement the initAssets method. Here, we have to query for
the videos in our photo library. To do it, we are going to use a method called
fetchAssetsWithMediaType that belongs to PHAsset. Place the following code to
open the initAssets method and to query videos from the photo library:

 func initAssets(){
 self.assets = [AssetInfo]()
 let videos = PHAsset.fetchAssetsWithMediaType(.Video,
 options: nil)

The videos variable is of the PHFetchResult type, which has some similarities to
an array, as it has the count property and you can use the subscript to access the
elements. Once we have these concepts in mind, we can write the loop as follows:

 for i in 0..<videos.count {

Each result should be an object of the PHAsset type, which still doesn't give us all
the information we need; we still need the help of an object of the PHImageManager
type. This object can search for the video equivalent, AVAsset object that will give us
the video creation date and its URL. Type the following code to request the AVAsset
objects and to initialize the AssetInfo object:

 if let video = videos[i] as? PHAsset{
 let imageManager = PHImageManager.defaultManager()
 imageManager.requestAVAssetForVideo(video ,
 options: nil, resultHandler: { (asset: AVAsset?,
 _: AVAudioMix?, _:[NSObject : AnyObject]?) -> Void
 in
 if let urlAsset = asset as? AVURLAsset where
 urlAsset.playable {
 let date:String
 if let dateValue =
 urlAsset.creationDate?.dateValue{
 let formatter = NSDateFormatter()
 formatter.dateFormat = "dd-MM-yyyy"
 date =
 formatter.stringFromDate(dateValue)
 }else {
 date = "Unknown date"
 }
 let assetInfo = AssetInfo(videoDate: date,
 videoUrl: urlAsset.URL)

As you can see, AVURLAsset has inherited a property from AVAsset called
playable. This property means that the asset can be used to initialize an
instance of AVPlayerItem.

Chapter 8

[241]

We still need one more object to complete the video part of our AssetInfo objects:
the thumbnail. Again, we will need to use the image manager to request this object.
The operation is similar to the previous one; however, this time we will use the
requestImageForAsset method. Once it is done, we can add the assetInfo object
to the array and reload the table view data in the main thread. Place this code to
request the video thumbnail image and close the initAssets method:

 imageManager.requestImageForAsset(video,
 targetSize: CGSizeMake(64, 64),
 contentMode:
 PHImageContentMode.AspectFill, options:
 nil, resultHandler: { (image:UIImage?,
 _:[NSObject : AnyObject]?) -> Void in
 assetInfo.videoThumbnail = image
 self.assets.append(assetInfo)
 dispatch_async(dispatch_get_main_queue(),
{ () -> Void in
 self.assetsTableView.reloadData()
 })
 })
 }
 })
 }
 }
 } // end initAssets

The assets are loaded but the table view still doesn't display anything, as we haven't
yet implemented the data source methods. The number of cells displayed should be
the same as the assets array size. Therefore, you will have to paste the following code
to implement numberOfRowsInSection:

 func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int{
 return assets.count
 }

The next method is cellForRowAtIndexPath, where we can take the corresponding
assetInfo object and return a cell that represents it. Place the following
implementation for displaying the asset info cells:

 func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell{
 var cell =
tableView.dequeueReusableCellWithIdentifier("assetcell")
 if cell == nil {

AVFoundation

[242]

 cell = UITableViewCell(style: .Subtitle,
 reuseIdentifier: "assetcell")
 }

 let assetInfo = assets[indexPath.row]
 cell?.textLabel?.text = assetInfo.videoDate
 cell?.detailTextLabel?.text =
 assetInfo.videoUrl.absoluteString
 cell?.imageView?.image = assetInfo.videoThumbnail
 return cell!
 }
} // end InitialViewController

To finish this part of the app, you have to return to the storyboard, connect the table
view data source and delegate to the view controller, and also connect the table view
reference to the assetsTableView attribute.

Now you can test your app. It will ask for permission to use the photo library and
display the list of videos on your phone. This test can be done on the simulator,
however, you would have to add some videos to get a better result. If you are using
any version control systems, it is a good time to commit your changes.

Recording
The first scene was created to let the user choose the video that he/she wanted to
edit. Now, we have to create another scene where the user will watch the movie
while recording his/her narrative over it.

Add a new file called RecorderViewController.swift to your project and import
UIKit, AVFoundation, and Photos, as shown in the following code:

import UIKit
import AVFoundation
import Photos

Create a class called RecorderViewController, which inherits from
UIViewController and implements the AVAudioRecorderDelegate protocol with
the following code:

class RecorderViewController: UIViewController,
AVAudioRecorderDelegate {

Chapter 8

[243]

This scene will have only a view, where the user will watch the movie, and a button
to record the audio. Based on this information, we are going to add UIView and
UIButton as attributes. Place the following code to add the needed UI attributes:

 @IBOutlet weak var videoView: UIView!
 @IBOutlet weak var recordButton: UIButton!

This class still needs more attributes, one of them is the assetInfo object that will be
submitted from the previous class. Another one is an object of the AVAudioRecorder
type that will use the device microphone to record the user's voice, an object of the
AVPlayer type that will display the chosen video, and an AVPlayerItem object
to control the player's status. Once we have understood these, we can add the
following attributes:

 var assetInfo:AssetInfo!
 var recorder:AVAudioRecorder!
 var player: AVPlayer!
 var playerItem:AVPlayerItem!

Now we can implement the viewDidLoad method. In this case, we are just going
to initialize the recorder object, as the asset info was transmitted from the previous
class, and the player will be initialized when we start recording. Place the following
code to implement viewDidLoad:

 override func viewDidLoad() {
 super.viewDidLoad()
 self.initRecorder()
 }

As you can see, you have to create a method called initRecord that will initialize
the recorder attribute. The first step is to change the current audio category to
AVAudioSessionCategoryPlayAndRecord, otherwise you are not going to be able
to record. Changing the audio category will make the app request for permission to
use the microphone. Place this code to start the initRecord method and change the
audio session category:

 private func initRecorder() {
 if let audioUrl = try! self.assetInfo.prepareAudio() {
 let session = AVAudioSession.sharedInstance()
 do {
 try session.setCategory(AVAudioSessionCategoryPlayAnd
Record)
 try session.setActive(true)

Pay attention that we have to activate the session to use it. This step is mandatory as
it will apply the configuration and make the session ready to use it.

AVFoundation

[244]

The next step before instantiating the recorder is to create the recorder's settings. A
recorder setting is just a dictionary and you can use some existing constants for the
desired keys. Here, we are going to use a good quality audio setting; however, you
can change it if you think that it is too much to just record someone's voice. Add this
code to create the recorder's settings:

 var recordSetting = [String:AnyObject]()
 recordSetting[AVFormatIDKey] =
 NSNumber(unsignedInt: kAudioFormatMPEG4AAC)
 recordSetting[AVSampleRateKey] = 44100.0
 recordSetting[AVNumberOfChannelsKey] = 2

The needed keys can vary according to the recording's format. Check
Apple's documentation at https://developer.apple.com/
library/ios/documentation/MusicAudio/Reference/
CAFSpec/CAF_spec/CAF_spec.html if you would like to record
using a different format.

Finally, we can instantiate the recorder, set it up, and enable the record button. Pay
attention that the current object (self) is its delegate. We are doing it to detect when
the recording is done. Place the following code to set up the recorder:

 recorder = try AVAudioRecorder(URL: audioUrl,
 settings: recordSetting)
 recorder.delegate = self
 recorder.meteringEnabled = true
 recorder.prepareToRecord()
 self.recordButton.enabled = true

The method is almost done; we just need to close the do statement with the
corresponding catch statement and close some brackets till we close the method:

 }catch {
 print("Fail to initialize the recorder. File
 \(__FILE__), Line: \(__LINE__)")
 }
 }
 } // end initRecord

When the user presses the record button, we shall instantiate the player. To do it,
we need an instance of an object of the AVPlayerItem type. This object observes
the player's status, so we know when the player is ready to start playing the movie.
Open the button touch up inside action with the following code:

 @IBAction func startRecording(sender: UIButton) {
 // avoid letting the user press twice the same button.

https://developer.apple.com/library/ios/documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html

Chapter 8

[245]

 sender.enabled = false
 let asset = AVAsset(URL: self.assetInfo.videoUrl)
 playerItem = AVPlayerItem(asset: asset)

The AVPlayerItem class follows the KVO pattern. It means that we have to add an
observer to it through the addObserver method. Here, we just need to check when
the status changes to ready, to play it. This status will eventually be reported in the
method observeValueForKeyPath. Place the following code line to add the current
object as an observer:

 playerItem.addObserver(self, forKeyPath: "status",
 options: .New, context: nil)

At this point, the app knows what to do when the video is loaded and ready to
play, but it can't detect when the movie is over. To do it, we will have to detect it in
a different way. In this case, we need to use the notification center and detect when
the notification named AVPlayerItemDidPlayToEndTimeNotification is triggered.
The itemDidFinishPlaying method (created by us) will then be called. Add this
code to add the observer to the notification center:

 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("itemDidFinishPlaying:"), name:
 AVPlayerItemDidPlayToEndTimeNotification, object:
 playerItem)

Once we have finished with the player item setup, we can instantiate the player. We
specify that the video must pause when it reaches the end by using the following code:

 player = AVPlayer(playerItem: playerItem)
 player.actionAtItemEnd = AVPlayerActionAtItemEnd.Pause

The player is ready, but where is it going to display the movie? It must display
it on the view called videoView, and it can be done thanks to a class called
AVPlayerLayer. As the name says, this object must be added to the view as a
sublayer, not as a subview. So, we will add the following code to create the video
layer and close the startRecording method:

 let playerLayer = AVPlayerLayer(player: player)
 playerLayer.frame = self.videoView.bounds
 self.videoView.layer.addSublayer(playerLayer)
 }

AVFoundation

[246]

What should the app do when the video is ready to be played? The answer
is very easy; start playing the video and recording the audio, so the
observeValueForKeyPath implementation is as simple as the following:

 override func observeValueForKeyPath(keyPath: String?,
 ofObject object: AnyObject?, change: [String : AnyObject]?,
 context: UnsafeMutablePointer<Void>) {
 if let playerItem = object as? AVPlayerItem where
 playerItem.status == .ReadyToPlay {
 player.play()
 recorder.record()
 }else {
 super.observeValueForKeyPath(keyPath, ofObject:
 object, change: change, context: context)
 }
 }

What happens when the movie is over? In this case, we just need to stop recording,
which by consequence, will call the audio recorder delegate to notify it. So, the
itemDidFinishPlaying method is implemented with this simple code:

 func itemDidFinishPlaying(notification: NSNotification){
 recorder.stop()
 }

When the recorder stops, the audioRecorderDidFinishRecording method, which
belongs to the AVAudioRecorderDelegate protocol, will be called. The only thing
we need to do is to check whether the recording is finished with no errors. If so, we
have to call a method in charge of merging both the assets: the recorded audio and
the displayed video. Put the following code to call the merge method:

 func audioRecorderDidFinishRecording(recorder:
 AVAudioRecorder, successfully flag: Bool) {
 if flag {
 self.merge()
 }else {
 print("Record failed")
 }
 }

Chapter 8

[247]

The merge method needs to use an object of the AVMutableComposition type,
because this class is able to create a new asset by merging others. So, let's start
this method by creating the composition object:

 func merge() {
 do {
 let composition = AVMutableComposition()

The first part of our composition is the audio track. Here, we have to load the audio
asset, retrieve its length, and create a new track based on both the variables. The
insertTimeRange method will do this job for us with the following code:

 // Audio part
 let audioAsset = AVURLAsset(URL:
 self.assetInfo.audioUrl!)
 let audioTimeRange = CMTimeRangeMake(kCMTimeZero,
 audioAsset.duration)
 let compositionAudioTrack =
 composition.addMutableTrackWithMediaType(AVMediaTypeAudio,
 preferredTrackID: kCMPersistentTrackID_Invalid)
 try
compositionAudioTrack.insertTimeRange(audioTimeRange, ofTrack:
audioAsset.tracksWithMediaType(AVMediaTypeAudio).first!, atTime:
kCMTimeZero)

The video track has a similar code, switching the audio constants with the video
equivalent ones. But there is something very important to add here: the preferred
transform. The preferredTransform property will keep the video with its
orientation, otherwise you might get portrait videos converted into landscape.
Add the video part with the following code:

 //Video part
 let videoAsset = AVURLAsset(URL: assetInfo.videoUrl)
 let videoTimeRange = CMTimeRangeMake(kCMTimeZero,
 videoAsset.duration)
 let compositionVideoTrack =
composition.addMutableTrackWithMediaType(AVMediaTypeVideo,
preferredTrackID: kCMPersistentTrackID_Invalid)
 let videoTrack =
videoAsset.tracksWithMediaType(AVMediaTypeVideo).first!
 compositionVideoTrack.preferredTransform =
 videoTrack.preferredTransform
 try
 compositionVideoTrack.insertTimeRange(videoTimeRange,
 ofTrack: videoTrack, atTime: kCMTimeZero)

AVFoundation

[248]

Now that we have the audio track and the video track, we need to create the output
file. The AssetInfo class has a code to create a temporary audio file. Now, we have
to create a similar code for the video output file. Firstly, we are going to get a unique
ID for an intermediate directory. Then, we will create such a directory and create
a URL for this directory with a file called rehash-output.mov. Place this code to
prepare for the video output file:

 // Video Output
 let fileManager = NSFileManager.defaultManager()
 let globallyUniqueString =
NSProcessInfo.processInfo().globallyUniqueString
 let tempPath = (NSTemporaryDirectory() as
NSString).stringByAppendingPathComponent(globallyUniqueString)
 try fileManager.createDirectoryAtPath(tempPath,
 withIntermediateDirectories: false, attributes: nil)
 let outputPath = (tempPath as
NSString).stringByAppendingPathComponent("rehash-output.mov")
 let outputFileUrl = NSURL(fileURLWithPath: outputPath

Everything is ready to be merged. To do this task, we are going to create an object
of the AVAssetExportSession type. This object will need the composition object as
input and some information on the output. Knowing that the file extension is .mov,
we still need to report to the export session that the output type is an Apple Quick
Time movie.

The asset export session starts working when the
exportAsynchronouslyWithCompletionHandler method is called. As its name
says, it works asynchronously. Once the exportation is done, the handler passed
as an argument will be called. Add the following code to set up the export session
and start the composition:

 // Fusion
 let assetExport = AVAssetExportSession(asset:
 composition, presetName:
 AVAssetExportPresetHighestQuality)
 assetExport?.outputFileType =
 "com.apple.quicktime-movie"
 assetExport?.outputURL = outputFileUrl
 assetExport?.exportAsynchronouslyWithCompletionHandler({
() ->
 Void in

Chapter 8

[249]

Who is going to send the output video to the photos library? The answer is the
Photos framework, again. The PHPhotoLibrary class can gives us an instance of the
photo library and we can request changes by calling the performChanges method.
This method receives two closures as an argument; the first one contains the desired
changes and the second one is called when the changes are done.

For the changes closure, we just need to call the
creationRequestForAssetFromVideoAtFileURL method that belongs to the
PHAssetChangeRequest class. For the completion handler, we need to delete the file,
because it is already uploaded to the photo library, and print a log message for now.
So, here is the code that copies the final video in the photo library:

 PHPhotoLibrary.sharedPhotoLibrary().performChanges({
() -> Void in
 PHAssetChangeRequest.creationRequestForAssetFromVi
deoAtFileURL(outputFileUrl)
 }, completionHandler: { (success:Bool,
 error:NSError?) -> Void in
 if success {
 try!
 fileManager.removeItemAtPath(outputPath)
 print("Successful saved to photo
 library")
 }else {
 print("Couldn't save to photo
 library")
 }
 })

The code is ready. Now, we just need to close the brackets till we close the method
and the class:

 })
 } catch {
 print("Failed merging the audio and video")
 }
 } // end merge
} // end RecorderViewController

AVFoundation

[250]

Finally, we can go to the storyboard and modify the visual part. Drag a new
view controller to the storyboard. Go to its identity inspector and set its class to
RecorderViewController and its Storyboard ID to recorderviewcontroller, as
demonstrated in the following screenshot:

Place UIButton and UIView on the new scene. Set the button title to Start recording,
place it at the bottom of the screen, and uncheck the enabled option on the attribute
inspector. UIView can be placed at the center of the screen, occupying a size that
you think that should be enough to display the video. But remember that a video
can be landscape or portrait-oriented. The final layout should be similar to the
following screenshot:

Chapter 8

[251]

Connect the view to the videoView attribute as well as the button to the
recordButton attribute and the startRecording action.

Can we test it now? No. If you do so, you are not going to see anything, as
there is no action when you select a video on the first screen. Return to the
InitialViewController.swift file and add the following method to call
the next screen:

 func tableView(tableView: UITableView, didSelectRowAtIndexPath
 indexPath: NSIndexPath){
 if let recorderViewController =
self.storyboard?.instantiateViewControllerWithIdentifier("recorderview
controller") as? RecorderViewController {
 recorderViewController.assetInfo =
 assets[indexPath.row]
 self.presentViewController(recorderViewController,
 animated: true, completion: nil)
 }
 }

Now you can test your app; remember that microphone input is a limitation of
the iOS simulator, so it is better to test your app on a real device. Once you have
recorded, you just have to wait till your log displays a message that the exportation
is done. Then, you can go to the Photos app, check whether your video is there with
today's date, and play it to hear your voice.

Improving the usability
So far, the app works and does what it is supposed to do, but we can still improve
it. We should give the user the opportunity to return to the first screen and repeat
the procedure with another video. Return to InitialViewController and add the
following method that will reload the videos while returning to this view controller:

 @IBAction func unwindToMainView(segue:UIStoryboardSegue) {
 self.initAssets()
 }

AVFoundation

[252]

Now, go to the storyboard and control-drag from the RecorderViewController
icon to its exit icon, as shown in the following screenshot:

After releasing the mouse button, select the unwindToMainView: option. A new
component with the Unwind segue to Scene Exit Placeholder phrase will appear on
the document's outline. Click on it and go to its attribute inspector. In the Identifier
field, set it to exitrecorder, as you can see in the following screenshot:

Now we can unwind to the main screen. To do it, we just need to return to the merge
method and call the performSegueWithIdentifier method. Scroll down to where
the performChanges method is performed and add the highlighted code at the end
of its completion handler:

 PHPhotoLibrary.sharedPhotoLibrary().performChanges({
() -> Void in
 PHAssetChangeRequest.creationRequestForAssetFromVi
deoAtFileURL(outputFileUrl)
 }, completionHandler: { (success:Bool,
 error:NSError?) -> Void in
 if success {
 try!
 fileManager.removeItemAtPath(outputPath)
 print("Successful saved to photo
 library")
 }else {

Chapter 8

[253]

 print("Couldn't save to photo
 library")
 }
 // Add the following code
 dispatch_async(dispatch_get_main_queue(), {
 () -> Void in
 self.performSegueWithIdentifier("exitrecor
der", sender: self)
 })
 })

If you test now, the app will crash when the movie is over, as it will detect that the
player item still has an observer when destroyed. We can remove the observer before
calling performSegueWithIdentifier, but a better place is on the deinit method,
as it will always remove the observers when the current object is released. Add the
following deinit implementation at the end of the RecorderViewController class:

 deinit {
 self.playerItem.removeObserver(self, forKeyPath: "status")
 NSNotificationCenter.defaultCenter().removeObserver(self.
playerItem)
 }

Now you can test the app. Choose a video, record your voice over it, and when it
finishes, check whether the app returns to the main screen and your new video is there.

Summary
In this chapter, you learned how to edit a video using AVFoundation, which
is a low-level framework and allows us to merge audios and videos. We could
play a video using AVPlayer and AVPlayerItem and record the sound using
AVAudioSession. We used different classes to create the final product (the merged
video) such as AVURLAsset and AVMutableComposition.

You also learned how to retrieve a list of videos from the photo library using a new
framework called Photos. Once the final video was ready, we used the Photos
framework to submit the video to the photo library.

This is the last chapter. I hope the you enjoyed the book.

[255]

Index
A
Apple Watch app

fridges status, displaying 204-208
glance screen 228-230
iOS app, communicating with 219-226
iOS app, options 190, 191
map, displaying 226-228
models 192-197
project overview 188
scene, to add supplies 197-203
setting up 188-190
supermarket, going to 208-213
WatchApp 214-218
watchOS 2 188

AVFoundation
about 233
asset information, storing 235, 236
project overview 233, 234
recording 242-251
setting up 234
usability, improving 251-253
videos, listing 238-242

C
city information app

cities information, displaying 40-44
first scene 32-40
initial view controller, coding 45-48
page view controller, adding 49-51
pictures, retrieving 64-68
project, overview 26
setting up 26-31
weather forecasts, displaying 56-63
Wikipedia information, displaying 51-55

CocoaPods 28
Custom UIView

testing with 72

F
failable initializer 41

G
game app

about 159
character, adding 167-169
collisions, checking for 178
creating, SpriteKit used 160
current code, changing 164-166
dinosaur, moving 181-184
enemies, creating 170-177
final action 185
lives, losing 179
score counter, fixing 180
setup 160-163
waves, adding 167-169

geonames
URL 26

H
health analyzing app

health record, checking 146-155
helpers, creating 133
permission, asking 134-136
project, overview 131
setup 132
storyboard, charts 156-158
users health data, displaying 137-146
users health data, saving 137-146

[256]

HealthKit
used, for health analyzing app 131

helpers
creating, for health analyzing app 133

HereDoc
URL 22

HomeKit
accessories, creating 97-100
accessory class, creating 107-111
Accessory Simulator, downloading 96, 97
app, creating 101, 102
first scene 102-107
preparing for 96
project, overview 95, 96
used, for building view controllers 112

I
Internet of Everything (IoE) 95
Internet of Things (IoT) 95

L
lastDiff

URL 155
lldb 15

N
Navigator bar 3

O
Open Weather Map service 26

P
photo sharing app

about 71
app, creating 74-78
camera, using 72
custom UIView 72
edition space, developing 83-88
picture, publishing 90-92
project, overview 72
social framework 72, 73
view, creating for drawing 78-82

Playground
testing with 10-13

PODs 28

S
SpriteKit

used, for creating game app 160
SwiftyJSON library

URL 27

V
view controllers, HomeKit

AquariumViewController 124
door lock view controller 120, 121
FanViewController 122, 123
final storyboard 125-129
GarageDoorViewController 112-114
garage layout 114-117
living room, building 117, 119

W
WatchApp

about 214-219
URL 214

weather forecasts
URL 26

X
Xcode

about 1
comments 19-22
debugging 13-17
keyboard shortcuts 2-7
Swift, new features 18, 19
Playground, testing with 10-13
project, versioning 7-10

Thank you for buying
Swift 2 Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Swift
ISBN: 978-1-78439-250-5 Paperback: 266 pages

Build a solid foundation in Swift to develop smart
and robust iOS and OS X applications

1.	 Practically write expressive, understandable,
and maintainable Swift code.

2.	 Discover and optimize the features of Swift to
write cleaner and better code.

3.	 This is a step-by-step guide full of practical
examples to create efficient IOS applications.

Mastering Swift
ISBN: 978-1-78439-215-4 Paperback: 358 pages

Master Apple's new Swift programming language
by following the best practices to write efficient and
powerful code

1.	 Start with basic language features and
progressively move to more advanced features.

2.	 Learn to use Xcode's new Playground feature
as you work through the immense number of
examples in the book.

3.	 Learn what makes development with Swift
so exiting and also get pointers on pitfalls
to avoid.

Please check www.PacktPub.com for information on our titles

Swift by Example
ISBN: 978-1-78528-470-0 Paperback: 284 pages

Create funky, impressive applications using Swift

1.	 Learn Swift language features quickly, with
playgrounds and in-depth examples.

2.	 Implement real iOS apps using Swift
and Cocoapods.

3.	 Create professional video games with SpriteKit,
SceneKit, and Swift.

Learning iOS 8 Game
Development Using Swift
ISBN: 978-1-78439-355-7 Paperback: 366 pages

Create robust and spectacular 2D and 3D games from
scratch using Swift – Apple's latest and easy-to-learn
programming language

1.	 Create engaging games from the ground up
using SpriteKit and SceneKit.

2.	 Boost your game's visual performance using
Metal - Apple's new graphics library.

3.	 A step-by-step approach to exploring the world
of game development using Swift.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Xcode
	Keyboard shortcuts
	Versioning your project
	Testing with Playground
	Debugging
	New Swift features
	Some final comments
	Summary

	Chapter 2: Creating a City Information App with Customized
Table Views
	Project overview
	Setting it up
	The first scene
	Displaying the cities' information
	Coding the initial view controller
	Adding the page view controller
	Displaying the Wikipedia information
	Displaying weather forecasts
	Retrieving some pictures
	Summary

	Chapter 3: Creating a Photo
Sharing App
	Project overview
	The camera
	Custom UIView
	The social framework
	Creating the app
	Creating a view to draw on it
	Developing the edition space
	Publishing your picture
	Summary

	Chapter 4: Simulating Home
Automation with HomeKit
	Project overview
	Preparing yourself for HomeKit
	Downloading the HomeKit Accessory Simulator
	Creating accessories
	Creating the app
	The first scene
	Creating an accessory class

	Building view controllers with HomeKit
	GarageDoorViewController
	Garage layout
	Building the living room
	The door lock view controller
	FanViewController
	AquariumViewController
	The final storyboard

	Summary

	Chapter 5: Health Analyzing App
Using HealthKit
	Project overview
	The setup
	Creating helpers
	Asking permission
	Displaying and saving the user's health data
	Checking your health record
	Charts on the storyboard
	Summary

	Chapter 6: Creating a Game App
Using SpriteKit
	Project overview
	The setup
	Changing the current code
	Adding a character and some waves
	Creating some enemies
	Checking for collisions
	Losing lives
	Fixing the score counter
	Moving the dinosaur
	The final action

	Summary

	Chapter 7: Creating an Apple Watch App
	Project overview
	Setting it up
	The iOS app
	The models
	A scene to add supplies
	Displaying the fridge's status
	Going to the supermarket
	The WatchApp
	Communicating with the iOS app
	Displaying the map on the watch
	The glance
	Summary

	Chapter 8: AVFoundation
	Getting a project overview
	Setting up the app
	Storing some asset information
	Listing videos
	Recording
	Improving the usability
	Summary

	Index

