
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page i

SWIFT™ iOS 24-HOUR TRAINER

INTRODUCTION . xxiii

 ▸ SECTION I: HELLO iOS!

LESSON 1: HELLO iOS! . 3

LESSON 2: A TOUR OF XCODE AND THE iOS SIMULATOR 19

LESSON 3: INTRODUCING SWIFT . 35

LESSON 4: FUNCTIONS . 53

LESSON 5: CLOSURES . 57

LESSON 6: ERROR HANDLING . 63

LESSON 7: OBJECT-ORIENTED PROGRAMMING WITH SWIFT 69

LESSON 8: SUPPORTING MULTIPLE DEVICE TYPES . 85

LESSON 9: INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT 95

LESSON 10: INTRODUCTION TO STORYBOARDS .117

 ▸ SECTION II: MORE iOS DEVELOPMENT

LESSON 11: HANDLING USER INPUT . 143

LESSON 12: ALERT VIEWS AND ACTION SHEETS . 155

LESSON 13: ADDING IMAGES TO YOUR VIEW . 167

LESSON 14: PICKERS . 177

LESSON 15: NAVIGATION CONTROLLERS . 193

LESSON 16: TABLE VIEWS . 203

LESSON 17: COLLECTION VIEWS . 217

LESSON 18: TAB BARS AND TOOLBARS . 229

LESSON 19: CREATING VIEWS THAT SCROLL . 245

LESSON 20: POPOVERS AND MODAL VIEWS . 257

LESSON 21: TOUCHES AND GESTURES . 269

Continues

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page ii

 ▸ SECTION III: STORING DATA AND NETWORK PROGRAMMING

LESSON 22: PROPERTY LISTS . 277

LESSON 23: APPLICATION SETTINGS . 285

LESSON 24: INTRODUCTION TO iCLOUD STORAGE . 295

LESSON 25: INTRODUCTION TO CLOUDKIT . 327

LESSON 26: INTRODUCTION TO CORE DATA . 381

LESSON 27: CONSUMING RESTful JSON WEB SERVICES 399

 ▸ SECTION IV: BEYOND THE BASICS

LESSON 28: SOCIAL MEDIA INTEGRATION . 417

LESSON 29: WHERE Am I? INTRODUCING CORE LOCATION 427

LESSON 30: INTRODUCTION TO MAP KIT . 443

LESSON 31: USING THE CAMERA AND PHOTO LIBRARY 455

LESSON 32: INTRODUCTION TO USER INTERFACE TESTING 465

LESSON 33: INTRODUCTION TO TEST DRIVEN DEVELOPMENT. 485

 ▸ SECTION V: REFERENCE

APPENDIX A: TESTING YOUR APP ON A DEVICE . 507

APPENDIX B: BETA TESTING WITH TESTFLIGHT . 527

APPENDIX C: APP STORE DISTRIBUTION. 553

INDEX . 569

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page iii

Swift™ iOS 24-Hour Trainer

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page v

Swift™ iOS 24-Hour Trainer

Abhishek Mishra

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page vi

Swift™ iOS 24-Hour Trainer

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-07355-0
ISBN: 978-1-119-07346-8 (ebk)
ISBN: 978-1-119-07342-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015957030

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Swift is a trademark of Apple, Inc. All other trademarks are the prop-
erty of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://book-support.wiley.com
http://booksupport.wiley.com
http://book-support.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page vii

ABOUT THE AUTHOR

ABHISHEK MISHRA has been developing software for over 18 years and has experience with a
diverse set of programming languages and platforms. He is the author of iPhone and iPad App
24-Hour Trainer and the technical reviewer of Professional iOS Programming. He holds a Master’s
degree in Computer Science from the University of London and is a freelance consultant and
trainer specializing in mobile application development. His clients include British Sky Broadcasting,
Centrica PLC, Expedia Inc., Kantar Media, and Havas Media. He lives with his wife and daughter
in London.

ABOUT THE TECHNICAL EDITOR

CHAIM KRAUSE is a Simulation Specialist for the U.S. Army. One of his responsibilities is to develop
small games for use at the Army University. Chaim has been developing software for about 30
years, progressing through BASIC, Delphi/Pascal, C++, Java, Objective-C, and C# on platforms
from the TRS-80 through Windows, OS X, Android, and iOS. He has also worked with Arduinos.
Chaim has been the Technical Editor for a dozen books on topics as varied as iPhone/iPad, Android,
iWatch, Arduino, and Unity. When not working in front of a computer at his day job, Chaim is
often sitting in front of a computer at home playing wargames or developing his own game. Chaim
can be reached at chaim@chaim.com.

www.allitebooks.com

mailto:chaim@chaim.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 12/14/2015 Page ix

ACQUISITIONS EDITOR
Aaron Black

PROJECT EDITOR
Christina Haviland

TECHNICAL EDITOR
Chaim Krause

PRODUCTION EDITOR
Joel Jones

COPY EDITOR
Nancy Rapoport

MANAGER OF CONTENT DEVELOPMENT &
ASSEMBLY
Mary Beth Wakefi eld

PRODUCTION MANAGER
Kathleen Wisor

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
© nyul/iStockphoto

CREDITS

ffi rs.indd 12/14/2015 Page xi

ACKNOWLEDGMENTS

 This book would not have been possible without the support of the team at John Wiley and
Sons—Aaron Black, Christina Haviland, Nancy Rapoport, and Mariann Barsolo. I would also like
to thank Chaim Krause for taking the time to read the entire manuscript and his keen eye for detail.
It has been my privilege to work with you. Thank you.

ftoc.indd 12/08/2015 Page xiii

CONTENTS

INTRODUCTION xxiii

SECTION I: HELLO iOS!

LESSON 1: HELLO iOS! 3

iOS Developer Essentials 3
A Suitable Mac 3
A Device for Testing 4
An iOS Developer Account 4
The Offi cial iOS SDK 6
The Typical App Development Process 6
Wireframes and Design 8
Coding 8
Testing 8
Home Screen Icon 9
Application Launch Image 10

Try It 11
Lesson Requirements 11
Hints 11
Step-by-Step 11

LESSON 2: A TOUR OF XCODE AND THE iOS SIMULATOR 19

The Welcome Screen 19
Creating a New Project 20
An Overview of the Xcode IDE 22

The Navigator Area 22
The Editor Area 26
The Utilities Area 28
The Debugger Area 30
The Toolbar 30

Features of the iOS Simulator 31
Installing and Uninstalling Applications 32
Limitations of the iOS Simulator 33

Try It 33
Lesson Requirements 33
Hints 33
Step-by-Step 33

xiv

CONTENTS

ftoc.indd 12/08/2015 Page xiv

LESSON 3: INTRODUCING SWIFT 35

Introducing Xcode Playgrounds 35
Constants and Variables 37
Data Types 38
Comments 39
Strings 39
Tuples 40
Optionals 41
Control Flow Statements 42

if-else 42
switch-case 44
Loops 45

Control Transfer Statements 49
Try It 50

Lesson Requirements 50
Hints 50
Step-by-Step 50

LESSON 4: FUNCTIONS 53

Declaring Functions 53
Parameters and Return Values 53
Try It 55

Lesson Requirements 55
Hints 55
Step-by-Step 55

LESSON 5: CLOSURES 57

Function Types 57
Closure Types 58

Global Closures 58
Nested Closures 58
Closure Expressions 59

Try It 60
Lesson Requirements 60
Hints 60
Step-by-Step 60

LESSON 6: ERROR HANDLING 63

The ErrorType Protocol 63
Throwing and Catching Errors 64

xv

CONTENTS

ftoc.indd 12/08/2015 Page xv

Suppressing Error Handling 65
The defer Statement 66

Try It 66
Lesson Requirements 66
Hints 67
Step by Step 67

LESSON 7: OBJECT-ORIENTED PROGRAMMING WITH SWIFT 69

Creating Classes with Swift 70
Properties 70
Methods 71
Instantiating Objects 74
Inheritance 74
Computed Properties 76
Enumerations 77
Protocols 77
Try It 81

Lesson Requirements 81
Hints 81
Step-by-Step 81

LESSON 8: SUPPORTING MULTIPLE DEVICE TYPES 85

Device Differences 86
Screen Size 86
Icon Size 87
Device Orientation 89

The Universal XCode Template 90
Try It 91

Lesson Requirements 91
Hints 91
Step-by-Step 91

LESSON 9: INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT 95

Introducing the UIKit Framework 95
The UIButton Class 97
The UILabel Class 98

Basic Constraints 99
Previewing Your Layout 106
Creating Outlets 108
Creating Actions 110
Try It 110

xvi

CONTENTS

ftoc.indd 12/08/2015 Page xvi

Lesson Requirements 110
Hints 111
Step-by-Step 111

LESSON 10: INTRODUCTION TO STORYBOARDS 117

Try It 124
Lesson Requirements 124
Hints 125
Step-by-Step 125

SECTION II: MORE iOS DEVELOPMENT

LESSON 11: HANDLING USER INPUT 143

Text Fields 143
Text Views 146
Try It 147

Lesson Requirements 147
Hints 148
Step-by-Step 148

LESSON 12: ALERT VIEWS AND ACTION SHEETS 155

Alert Views 155
Action Sheets 159
Try It 161

Lesson Requirements 161
Hints 161
Step-by-Step 161

LESSON 13: ADDING IMAGES TO YOUR VIEW 167

The UIImage Class 167
The UIImageView Class 170
Try It 172

Lesson Requirements 172
Hints 172
Step-by-Step 172

LESSON 14: PICKERS 177

Date Pickers 181
Custom Pickers 184
Try It 185

xvii

CONTENTS

ftoc.indd 12/08/2015 Page xvii

Lesson Requirements 185
Hints 185
Step-by-Step 186

LESSON 15: NAVIGATION CONTROLLERS 193

Adding a Navigation Controller to a Storyboard 193
The Navigation Controller Interface 196
Try It 197

Lesson Requirements 198
Hints 198
Step-by-Step 198

LESSON 16: TABLE VIEWS 203

Table View Appearance 203
Creating a Table View with Interface Builder 205

Static Table Views 206
Dynamic Table Views 207

Try It 211
Lesson Requirements 211
Hints 211
Step-by-Step 211

LESSON 17: COLLECTION VIEWS 217

Creating a Collection View with Interface Builder 218
Collection View Cells 219
Collection View Delegate and Data Source 220
Try It 222

Lesson Requirements 222
Hints 223
Step-by-Step 223

LESSON 18: TAB BARS AND TOOLBARS 229

Creating a Tab Bar Controller 231
Toolbars 235
Try It 238

Lesson Requirements 239
Hints 239
Step-by-Step 239

xviii

CONTENTS

ftoc.indd 12/08/2015 Page xviii

LESSON 19: CREATING VIEWS THAT SCROLL 245

The UIScrollView Class 245
Scroll Views and Text Fields 248
Try It 249

Lesson Requirements 249
Hints 250
Step-by-Step 250

LESSON 20: POPOVERS AND MODAL VIEWS 257

Popovers 257
Modal Views 260
Try It 262

Lesson Requirements 262
Hints 263
Step-by-Step 263

LESSON 21: TOUCHES AND GESTURES 269

Touch Events 269
Gesture Recognizers 270
Try It 271

Lesson Requirements 271
Hints 272
Step-by-Step 272

SECTION III: STORING DATA AND NETWORK PROGRAMMING

LESSON 22: PROPERTY LISTS 277

Creating Property Lists 277
Reading Property Lists 279
Try It 280

Lesson Requirements 280
Hints 280
Step-by-Step 280

LESSON 23: APPLICATION SETTINGS 285

Adding a Settings Bundle 285
Reading Preferences with Code 289
Try It 290

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

ftoc.indd 12/08/2015 Page xix

Lesson Requirements 290
Hints 290
Step-by-Step 291

LESSON 24: INTRODUCTION TO iCLOUD STORAGE 295

Basic Concepts 295
Preparing to Use the iCloud Storage APIs 297

Creating an iCloud-Enabled App ID 297
Creating an Appropriate Provisioning Profi le 302
Enabling Appropriate Entitlements in Your Xcode Project 308

Checking for Service Availability 309
Using iCloud Document Storage 310

Creating a New iCloud Document 311
Opening an Existing Document 312
Saving a Document 312
Searching for Documents on iCloud 313

Try It 315
Lesson Requirements 315
Hints 316
Step-by-Step 316

LESSON 25: INTRODUCTION TO CLOUDKIT 327

Containers, Databases, and Records 327
Development and Production Environments 330
The CloudKit Dashboard 331

Creating a Record Type 331
Deleting a Record Type 333
Creating Relationships Between Record Types 333
Adding Records 334
Modifying and Deleting Records 336
Resetting the Development Schema 337
Deploying to Production 337

Preparing to Use CloudKit 338
Create an iCloud-Enabled App ID 338
Create an Appropriate Provisioning Profi le 344
Enable Appropriate Entitlements in Your Xcode Project 350

Common Operations 350
Checking for Service Availability 351
Creating Records Programmatically 351
Retrieving Records 352

xx

CONTENTS

ftoc.indd 12/08/2015 Page xx

Try It 352
Lesson Requirements 353
Hints 353
Step-by-Step 353

LESSON 26: INTRODUCTION TO CORE DATA 381

Basic Concepts 381
Managed Object 381
Managed Object Context 381
Persistent Store Coordinator 382
Entity Description 383
Managed Object Model 383

Adding Core Data to a Project 384
Instantiating Core Data Objects 389
Writing Managed Objects 390
Reading Managed Objects 391
Try It 391

Lesson Requirements 391
Hints 392
Step-by-Step 392

LESSON 27: CONSUMING RESTful JSON WEB SERVICES 399

Types of Web Services 400
RESTful Web Services 400
SOAP Web Services 401

JSON and NSJSONSerialization 401
NSURLSession and Application Transport Security 403

Creating an NSURLSession 404
Creating a Data Task 405
Application Transport Security 406

Try It 408
Lesson Requirements 408
Hints 409
Step-by-Step 409

SECTION IV: BEYOND THE BASICS

LESSON 28: SOCIAL MEDIA INTEGRATION 417

The Share Sheet 418
Try It 421

xxi

CONTENTS

ftoc.indd 12/08/2015 Page xxi

Lesson Requirements 421
Hints 421
Step-by-Step 422

LESSON 29: WHERE Am I? INTRODUCING CORE LOCATION 427

Permissions 428
Accuracy 430
Receiving Location Updates 431
Handling Errors and Checking Hardware Availability 433
Geocoding and Reverse Geocoding 434
Obtaining Compass Headings 435
Try It 436

Lesson Requirements 436
Hints 437
Step-by-Step 437

LESSON 30: INTRODUCTION TO MAP KIT 443

Adding Annotations 444
Accessory Views 447
Try It 447

Lesson Requirements 448
Hints 448
Step-by-Step 449

LESSON 31: USING THE CAMERA AND PHOTO LIBRARY 455

Selecting the Image Source 456
Presenting the Image Picker 456
Try It 459

Lesson Requirements 459
Hints 459
Step-by-Step 459

LESSON 32: INTRODUCTION TO USER INTERFACE TESTING 465

Adding Support for UI Testing to Your Project 465
Anatomy of a Test Case 468
New Classes for UI Testing 469

XCUIApplication 469
XCUIDevice 470
XCUIElementQuery 471
XCUIElement 472

xxii

CONTENTS

ftoc.indd 12/08/2015 Page xxii

XCUIElementAttributes 475
XCUIElementTypeQueryProvider 476

Test Assertions 477
UI Recording 478
Waiting for Elements in a UI Test 479
Try It 480

Lesson Requirements 480
Hints 480
Step-by-Step 481

LESSON 33: INTRODUCTION TO TEST DRIVEN DEVELOPMENT 485

Adding Support for Unit Testing to Your Project 486
TDD Techniques 488

Test First 488
Red-Green-Refactor 488
Don’t Write Code You Do Not Yet Need 489

Anatomy of a Test Case 489
Test Assertions 491
Try It 493

Lesson Requirements 493
Hints 493
Step-by-Step 494

SECTION V: REFERENCE

APPENDIX A: TESTING YOUR APP ON A DEVICE 507

APPENDIX B: BETA TESTING WITH TESTFLIGHT 527

APPENDIX C: APP STORE DISTRIBUTION 553

INDEX 569

fl ast.indd 12/10/2015 Page xxiii

 INTRODUCTION

WHEN I FIRST BEGAN LEARNING IOS DEVELOPMENT, I started out like most developers, from the
humble Hello World application. I was overwhelmed with new concepts, such as view control-
lers and table views. My background with C++ did not help much when it came to working with
Objective-C, and I had to start from scratch. There was no book written on the subject and every-
thing had to be learned from Apple’s documentation and personal blogs.

Eventually I came to grips with Objective-C, and with practice, I grew more profi cient. With the
launch of iOS 7, Apple announced a new language called Swift, and it felt almost like going back to
square one again, as I learned how to perform familiar tasks with a new language.

This book is written to help someone new to iOS development learn the basic concepts and (I hope)
avoid making the mistakes I made when starting out myself. That being said, this book should also
be useful for an experienced Objective-C developer who is looking to transition over to Swift. This
book adopts a hands-on Try It approach, and you get to try out each new concept as you progress
through the book.

iOS application development is a huge topic, and it is just not possible to include every single topic
related to iOS application development in this book. When selecting topics to include in this book,
I have tried to strike a balance between the absolute basics and more advanced topics such as Test
Driven Development, CloudKit, and UI testing.

This book has been written for you, the reader. I hope that after reading this book, you can take
your fi rst steps into the wildly exciting world of iOS App development.

WHO THIS BOOK IS FOR

This book is for beginners with little programming experience who want to pursue a career in the
exciting world of iOS development. It is also for experienced Objective-C developers who want to
learn Swift programming.

Although you do not need to have any prior programming experience, a little knowledge will help
you move faster through the initial lessons, particularly the basics of object-oriented software devel-
opment. If you are a more experienced developer, then this book can help you get up-to-speed with
new concepts relating specifi cally to iOS 9 development and Swift.

WHAT THIS BOOK COVERS

This book covers iOS 9 application development with Swift 2. That includes development for both
the iPhone and the iPad. The lessons in this book use XCode 7.0 and make use of new Swift features
such as the guard let clause. All of the lessons use storyboards to construct user interfaces.

xxiv

INTRODUCTION

fl ast.indd 12/10/2015 Page xxiv

The book starts off with an introduction to the Swift language followed by lessons that will teach
you how to perform common tasks such as displaying alerts, pickers, and collection views. Toward
the end of the book, you will fi nd slightly more advanced topics such as iCloud document storage,
CloudKit, Test Driven Development, and UI testing.

The appendixes cover ways to test and deploy your apps, ranging from deploying a build to your
personal device to distributing your app to beta testers via TestFlight.

HOW THIS BOOK IS STRUCTURED

This book consists of 33 short lessons and 3 appendixes. Each lesson introduces a single topic and
ends with a step-by-step Try It section where you get to apply the concepts you’ve learned in the
lesson to create a simple iOS application. The source code for the Try It exercises is available for
download at www.wrox.com/go/swiftios. Lessons toward the beginning of the book are simpler
and progress in complexity as you work your way through the book.

If you are an absolute beginner to iOS development, you should progress through the lessons from
cover to cover, sequentially. If you have prior experience with iOS development and want to read
this book for a particular topic of interest, then you can jump right in with the relevant lessons.

iOS development is a vast topic and no single book can cover everything related to iOS development.
However, several lessons contain sources for where to fi nd additional information on the web.

When you’re fi nished reading the book and watching the accompanying videos, you’ll fi nd lots of
support in the P2P forums.

INSTRUCTIONAL VIDEOS

Learning is often enhanced by seeing in real time what’s being taught, which is why most lessons in
the book have a corresponding video tutorial available at www.wrox.com/go/swiftiosvid. And of
course it’s vital that you play along at home—fi re up Xcode and try out what you read in the book
and watch on the videos.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I’ve used a number of
conventions throughout the book.

NOTE Boxes like this one hold important, not-to-be forgotten information that
is directly relevant to the surrounding text.

http://www.wrox.com/go/swiftios
http://www.wrox.com/go/swiftiosvid

xxv

INTRODUCTION

fl ast.indd 12/10/2015 Page xxv

REFERENCE References like this one point you to other lessons in the book, the
book’s website, and the instructional videos that accompany a given lesson.

As for styles in the text:

 ➤ I highlight new terms and important words when they are fi rst introduced.

 ➤ I show URLs within the text like this: www.wrox.com.

 ➤ I present code in monofont type like this: persistence.properties.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata you may
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the
form to send us the error you have found. We’ll check the information and, if appropriate, post a
message to the book’s errata page and fi x the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://p2p.wrox.com

xxvi

INTRODUCTION

fl ast.indd 12/10/2015 Page xxvi

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com
http://p2p.wrox.com

c01.indd 10/31/2015 Page 1

SECTION I
Hello iOS!

 ▸ LESSON 1: Hello iOS!

 ▸ LESSON 2: A Tour of Xcode and the iOS Simulator

 ▸ LESSON 3: Introducting Swift

 ▸ LESSON 4: Functions

 ▸ LESSON 5: Closures

 ▸ LESSON 6: Error Handling

 ▸ LESSON 7: Object-Oriented Programming With Swift

 ▸ LESSON 8: Supporting Multiple Device Types

 ▸ LESSON 9: Introduction to UIKit and Adaptive Layout

 ▸ LESSON 10: Introduction to Storyboards

www.allitebooks.com

http://www.allitebooks.org

c01.indd 10/31/2015 Page 3

Hello iOS!
Hello and welcome to the exciting world of iOS application development. iOS is Apple’s operat-
ing system for mobile devices; the current version at the time of this writing is 8.0. It was origi-
nally developed for the iPhone (simply known as iPhone OS back then), and was subsequently
extended and renamed in June 2010 to iOS to support the iPad, iPhone, and iPod Touch.

At its core, iOS is Unix-based and has its foundations in MacOS X, which is Apple’s desktop
operating system. In fact, both iOS and MacOS X share a common code base. As new ver-
sions of mobile operating systems have appeared, Apple has brought over more functionality
from MacOS X. This is part of Apple’s strategy to bridge the difference between desktop and
mobile computing.

With the launch of version 8.0, Apple has not only pushed the boundaries on what is achiev-
able on smart phones and tablet computers, but has also given us a brand new programming
language called Swift. This book covers iOS development with Swift only, but at the time of
this writing, it is possible to create iOS applications with both the older language Objective-C
as well as Swift.

This lesson introduces you to the arena of iOS development.

iOS DEVELOPER ESSENTIALS

Before you get started on your journey to becoming an iOS developer, you will need some
essential resources. This section covers these basic requirements.

A Suitable Mac
To develop apps for the iPhone and the iPad using the offi cial set of tools provided by Apple,
you will fi rst need an Intel-based Mac running Mac OS X Yosemite (10.10) with a minimum
4GB of RAM and at least 11GB of free space on your hard disk. You do not need a top-spec
model to get started. In fact a Mac Mini or a low-end MacBook will work just fi ne.

Processor speed is not going to make much difference to you as a developer. You will be better
off investing your money in more RAM and hard disk space instead. These are things you can
never get enough of. A large screen does help, but it is not essential.

1

4 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 4

A Device for Testing
If you are reading this book, chances are that you have used an iPhone, iPad, or iPod Touch and
probably even own one or more of these nifty devices.

As far as development is concerned, there aren’t many differences between developing for any of
these devices. The obvious differences are screen size and the fact that only iPhones can make
phone calls. When you are starting out as an iOS developer, you will test your creations on the iOS
Simulator. The iOS Simulator is an application that runs on your Mac and simulates several func-
tions of a real iOS device (more on this later).

At some point, however, you will want to test your apps on a physical device. As good as the iOS
Simulator may be, you must test on a physical device before submitting your app to the App Store.

Another good reason to test on a physical device is that the processor on your Mac is much faster
than that on the iPhone/iPad. Your app may appear to execute much faster on your Mac (in the iOS
Simulator) than it does on the real thing.

If the app you are going to make is targeted at iPhone users, you can also use an iPod Touch as the
test device. These are signifi cantly cheaper than iPhones and for the most part offer the same func-
tionality as their phone counterparts.

Most of Apple’s devices support iOS 8; however, iOS 8 is not supported for the following:

 ➤ iPhones prior to the iPhone 4S

 ➤ iPads prior to the iPad 2

 ➤ iPod Touch devices prior to the iPod Touch 5th generation

An iOS Developer Account
To develop your apps you will need to download the latest version of Xcode and the iOS SDK
(Software Development Kit). To do this, you must sign up to the Apple Developer Program to
become a registered developer.

The signup process is free and you can immediately begin to develop your fi rst apps. Limitations
exist as to what you can do for free. To submit your apps to the App Store, get access to beta ver-
sions of the iOS/SDK, or test your apps on a physical device, you need to become a paying member.

Most of the concepts and apps presented in this book will work just fi ne with the free membership.
The only exceptions would be examples that require the camera, accelerometer, and GPS for which
you would need to try the app on a physical device.

You can choose from two forms of paid membership as a registered Apple Developer: Individual and
Enterprise.

Individual
The Individual iOS Developer Program costs $99 a year and is for individuals or companies that
want to develop apps that will be distributed through the App Store. You can also test/distribute

iOS Developer Essentials ❘ 5

c01.indd 10/31/2015 Page 5

your apps on up to 100 devices without having to go through the App Store. This form of deploy-
ment (without having to submit them to the App Store) is called ad-hoc distribution and is a great
way to submit a preview of the app to a client. This form of distribution is covered in detail in
Appendix C.

Enterprise
The Enterprise iOS Developer Program costs $299 a year and is for large companies that want to
develop apps for internal use and will not distribute these apps through the App Store. With the
Enterprise iOS Developer Program there is no restriction to the number of devices on which your
in-house application can be installed.

To start the registration process, visit the iOS Dev Center (see Figure 1-1) at https://developer
.apple.com/programs/enroll/.

FIGURE 1-1

https://developer
https://developer.apple.com/programs/enroll/

6 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 6

The Offi cial iOS SDK
The Apple iOS SDK (Software Development Kit) is a collection of tools and documentation that you
can use to develop iOS apps. The main tools that make up the SDK are:

 ➤ Xcode: Apple’s integrated development environment (IDE) that enables you to manage your
products, type your code, trace and fi x bugs (debugging), and lots more.

 ➤ Interface Builder: A tool fully integrated into the Xcode IDE that enables you to build your
application’s user interface visually.

 ➤ iOS Simulator: A software simulator to simulate the functions of an iPhone or an iPad on
your Mac.

 ➤ Instruments: A tool that will help you fi nd memory leaks and optimize the performance of
your apps. Instruments are not covered in this book.

In addition to these tools, the iOS SDK also includes extensive documentation, sample code, How-
To’s, and access to the Apple Developer Forums.

The iOS SDK is available as a free download to registered members (registration is free). However,
there are benefi ts to paid membership, including the ability to debug your code on an iOS device,
distribution of your applications, and two technical support incidents a year where Apple engineers
will provide you code-level assistance.

Downloading and Installing
You can download and install Xcode 7 for Mac OS X El Capitan and the iOS SDK from the Mac
App Store (see Figure 1-2).

If you have a paid membership, you can download the latest version of Xcode as well as prior ver-
sions by logging in to the iOS developer portal at https://developer.apple.com/devcenter/
ios/index.action.

The Typical App Development Process
Whether you intend to develop iOS apps yourself or manage the development of one, you need to
be familiar with the basic steps in the development process (see Figure 1-3). This section introduces
these steps briefl y.

https://developer.apple.com/devcenter
https://developer.apple.com/devcenter/ios/index.action

iOS Developer Essentials ❘ 7

c01.indd 10/31/2015 Page 7

FIGURE 1-2

Final
Product Testing

Wireframes
and

Design
CodingWritten

Specification

FIGURE 1-3

8 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 8

Writing a Specifi cation
The development of an app begins with a concept. It is good practice to formally put this concept on
paper and create a specifi cation. You do not necessarily need to type this specifi cation, although it’s
a good idea to do so.

At the end of the project you should come back to the specifi cation document to see how the fi nal
product that was created compares with the original specifi cation.

As you build your experience developing iOS applications, this difference will become smaller. The
specifi cation must address the following points:

 ➤ A short description in 200 words or less

 ➤ The target audience/demographic of the users

 ➤ How will it be distributed (App Store, or direct to a small number of devices)

 ➤ A list of similar competing apps

 ➤ A list of apps that best illustrate the look-and-feel your app is after

 ➤ The pricing model of competing apps and potential pricing for your app

Wireframes and Design
A wireframe is a large drawing that contains mockups of each screen of your app as well as lines
connecting different screens that indicate the user’s journey through your application.

Wireframes are important because they can help identify fl aws in your design early on (before any
coding has been done). They can also be used to show potential clients how a particular app is likely
to look when it’s completed.

There is no right or wrong way to make a wireframe. If it is for your personal use, you can just use
a few sheets of paper and a pen. If it is for a client, you might want to consider using an illustration
package.

Coding
The actual process of creating an iOS app involves using the Xcode IDE to type your code. iOS apps
can be written in either Swift or Objective-C. This book covers iOS development with Swift only.

An iOS app typically consists of several fi les of Swift code along with resource fi les (such as images,
audio, and video). These individual fi les are combined together by a process called compilation into
a single fi le that is installed onto the target device. This single fi le is usually referred to as the appli-
cation binary or a build.

Testing
It might sound obvious, but you must test your app after it has been developed. As a developer, you
test your code frequently as you write it. You must also perform a comprehensive test of the entire
application as often as possible to ensure things that were working in the past continue to do so.

iOS Developer Essentials ❘ 9

c01.indd 10/31/2015 Page 9

This form of testing is called regression testing. It helps to make a test plan document. Such a docu-
ment basically lists all the features that you want to test and the steps required to carry out each
test. The document should also clearly list which tests failed. The ones that fail will then need to be
fi xed and the test plan document can provide the replication procedure for the defect in question.

When your app is ready, you will want to list it in the iTunes App Store. To do so involves submit-
ting your app for review to Apple. Apple has several criteria against which it reviews applications
and if your app fails one or more of these criteria it will be rejected—in which case you will need to
fi x the appropriate code and resubmit. It is best to test your apps thoroughly before submitting them
in the fi rst place. Distributing your apps via the App Store is covered in Appendix D.

You must always test on a real iOS device before submitting your app for the App Store review pro-
cess, or giving it to a client to test. Testing on the iOS Simulator alone is not suffi cient.

If you are developing for a client, you will probably need to send the client a testable version of your
work periodically for review. The recommended way to do this is by using Apple’s TestFlight ser-
vice, which is covered in Appendix C.

Home Screen Icon
Unless you provide an icon for your application, iOS will use a standard gray icon to represent your
application in the home screen (see Figure 1-4).

FIGURE 1-4

10 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 10

To replace this icon, you will need to provide one or more PNG fi les with appropriate dimen-
sions. These dimensions are listed in Table 1-1 and are different for iPhone-based and iPad-based
applications.

TABLE 1-1: Home Screen Icon Sizes

DEVICE ICON SIZE (IN PIXELS)

iPhone 4s 120 x 120

iPhone 5 and iPhone 6 120 x 120

iPhone 6Plus 180 x 180

iPad Retina and iPad Mini Retina 152 x 152

iPad and iPad Mini (without Retina) 76 x 76

You learn to use these icons in this lesson’s Try It section.

Application Launch Image
A launch image is a placeholder image that you must provide as part of your iOS application.
When a user taps your application’s icon on the home screen, iOS displays this image while the app
starts up.

Once your application has fi nished loading, iOS gives it control and simultaneously hides the launch
image. The overall effect of the launch image is to give your users the perception that your applica-
tion has launched quickly.

NOTE The launch image provided as part of your application may not always
be used. When an app is suspended into the background state (perhaps because
the user tapped the home button on the device), iOS creates a snapshot of the
current screen before suspending the app. If the app is resumed within a short
period of time then this cached image is used in place of the launch image.
However, if the user killed the app, uninstalled it, or hasn’t used the app for an
extended period of time then the launch image will be used.

Prior to iOS8, as a developer you had to provide a static PNG version of the launch image for every
screen size and orientation that was supported by your app.

While it is still possible to provide static launch images, with the launch of iOS 8 Apple has intro-
duced the concept of a single launch fi le. A launch fi le is an XIB (or a storyboard fi le) that describes
the user interface for the launch image. An empty document called LaunchScreen.storyboard is
provided with every iOS project that you create.

Try It ❘ 11

c01.indd 10/31/2015 Page 11

 The idea behind providing a single launch fi le over several individual launch images is that iOS will
generate the launch images it needs from the launch fi le for the device on which the app is being
used.

You learn to use a launch fi le in this lesson’s Try It section.

TRY IT

In this Try It, you build a simple iPhone application using Xcode 7 that displays the text “Hello
Swift” in the center of the screen. You will also provide application icons and a launch fi le.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit a storyboard in Interface Builder.

 ➤ Display the Xcode Utilities area.

 ➤ Set up an application icon.

 ➤ Set up a launch fi le.

 ➤ Test an app in the iOS Simulator.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
Download and install the latest version of Xcode and the iOS SDK on your Mac; then launch
Xcode.

Step-by-Step
 ➤ Create a Single View Application in Xcode called HelloSwift.

 1. Launch Xcode.

 2. To create a new project, select the File ➪ New ➪ Project menu item.

 3. Choose the Single View Application (see Figure 1-5) template for iOS and click Next.

http://www.wrox.com/go

12 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 12

FIGURE 1-5

 4. Use the following information in the project options dialog box (see Figure 1-6) and
click Next.

 ➤ Product Name: HelloSwift

 ➤ Organization Name: Your company

 ➤ Organization Identifi er: com.wileybook

 ➤ Language: Swift

 ➤ Devices: Universal

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 5. Select a folder where this project should be created.

 6. Ensure the Source Control checkbox is not selected.

 7. Click Create.

 ➤ Edit the Main.storyboard fi le in Interface Builder (see Figure 1-7).

Try It ❘ 13

c01.indd 10/31/2015 Page 13

FIGURE 1-6

FIGURE 1-7

14 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 14

 1. Ensure the project navigator is visible and the HelloSwift project is selected and
expanded. To show the project navigator, use the View ➪ Navigators ➪ Show Project
Navigator menu item. To expand a project, click the triangle next to the project name
in the project navigator.

 2. Click the Main.storyboard fi le to select it.

 3. Ensure the Attribute inspector is visible by selecting the View ➪ Utilities ➪ Show
Utilities menu item.

 4. Click the white background area of the default scene in the storyboard.

 5. Under the View section of the Attribute inspector, click once on the Background item
to change the background color. This is shown in Figure 1-8. Pick any color you want.

FIGURE 1-8

 6. From the Object library in the bottom-right corner, select Label and drop it onto the
View (see Figure 1-9). You can use the search box to narrow your choices.

 7. Change the text displayed in the Label to “Hello Swift” by editing the value of the Text
attribute in the Attribute inspector.

 8. Position the label anywhere within the scene using the mouse.

 ➤ Create layout constraints.

 1. Select the label in the storyboard scene by clicking on the label once. Change the size of
the label so that the label is large enough to show the text “Hello Swift” fully. To do
this use the Editor ➪ Size To Fit Content menu item.

 2. Select the label in the storyboard and bring up the Align constraints popup window by
clicking the Align button at the bottom right corner of the storyboard (see Figure 1-10).

Try It ❘ 15

c01.indd 10/31/2015 Page 15

FIGURE 1-9

FIGURE 1-10

16 ❘ LESSON 1 HELLO IOS!

c01.indd 10/31/2015 Page 16

In this popup window, setup the following options (see Figure 1-11):

 ➤ Horizontally in Container: Checked

 ➤ Vertically in Container: Checked

 ➤ Update Frames: All Frames In Container

FIGURE 1-11

Click the Add 2 constraints button in the popup to apply these layout constraints to
the label and dismiss the popup.

NOTE Selecting All Frames in Container in the Update Frames combo box will
force the scene to update the position of the label using the constraints you have
just specifi ed.

 ➤ Set up a launch fi le.

 1. Select the LaunchScreen.Storyboard fi le in the project navigator.

 2. Use the Attribute Inspector to change the background color of the launch fi le to a dif-
ferent color than that of the scene in the main storyboard.

 ➤ Set up an application icon.

 1. Select the Assets.xcassets item in the project navigator to open the asset bundle.
Select the AppIcon asset within this bundle.

 2. Use drag-and-drop to assign images to the iPhone App and iPad App placeholders. You
can obtain the images from the resources available for this lesson on the book’s website
at www.wrox.com/go/swiftios.

 ➤ iPhone App 2x: Use the fi le
iPhoneAppIcon2x.png.

http://www.wrox.com/go/swiftios

Try It ❘ 17

c01.indd 10/31/2015 Page 17

 ➤ iPhone App 3x: Use the fi le
iPhoneAppIcon3x.png.

 ➤ iPad App 1x: Use the fi le
iPadAppIcon1x.png.

 ➤ iPad App 2x: Use the fi le
iPadAppIcon2x.png.

After these assignments are made, your scene should resemble Figure 1-12.

FIGURE 1-12

 ➤ Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project ➪ Run menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 1
video online at www.wrox.com/go/swiftio s vid.

http://www.wrox.com/go/swiftio

c02.indd 11/02/2015 Page 19

A Tour of Xcode and the iOS
Simulator

Xcode is Apple’s IDE (integrated development environment), which you use to create iOS
applications. The word “integrated” refers to the fact that Xcode brings together several
different tools into a single application.

Xcode contains several tools, but the ones you’ll use most of the time are the source code
editor, debugger, and the Interface Builder. At the time of this writing, the current version of
Xcode is 7.0.

The iOS Simulator is an application that runs on your Mac and allows you to test your apps
without using an actual iOS device. The iOS Simulator is part of the standard iOS SDK instal-
lation. When you run your app in Xcode, you have the choice of launching it in the simulator
or an actual device. If you choose to launch it in the simulator, Xcode will launch the iOS
Simulator automatically.

In this lesson, you explore various commonly used features of Xcode and the iOS Simulator.

THE WELCOME SCREEN

When you launch Xcode, you are presented with the welcome dialog box (Figure 2-1). You
can use the welcome dialog box to quickly create a new project, connect to a source code
repository, open a recently used project, or create a Swift playground.

2

20 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 20

FIGURE 2-1

The fi rst step in creating an iOS application is to create an appropriate project in Xcode. An Xcode
project has the fi le extension .xcodeproj and tells the Xcode IDE (among other things) the name of
your application, what kind of application it is (iPhone/iPad/Universal), and where to fi nd the code
fi les and resources required to create the application.

CREATING A NEW PROJECT

When you create a new project in Xcode, you fi rst need to select a template on which to base the
project. Xcode templates contain fi les that you need to start developing a new application. Xcode
provides a list of project templates to select from (Figure 2-2).

FIGURE 2-2

Creating a New Project ❘ 21

c02.indd 11/02/2015 Page 21

The Xcode template window has multiple template categories to choose from. In this book, you cre-
ate iOS applications, and thus need to make sure the iOS template category is selected.

After you have selected a suitable template, Xcode presents the project options dialog box
(Figure 2-3).

FIGURE 2-3

This is where you provide the name of the project and the name of your company, choose the lan-
guage (Objective-C or Swift), and specify the target device (iPhone, iPad, or Universal).

To uniquely identify your application in the iTunes store (and on an iOS device), each project must
have a unique identifi er. This identifi er is known as a bundle identifi er and is created by combining
the name of the project along with a company identifi er that you provide in the project options dia-
log box. It is best to provide your website domain name in reversed format as the company identifi er
because domain names are guaranteed to be globally unique.

Checking the Use Core Data checkbox will add necessary boilerplate code to allow your applica-
tion to persist objects into a database using Core Data. Core Data is covered in Lesson 26; for the
moment you can leave this box unchecked.

Checking the Include Unit Tests and Include UI Tests checkboxes will create a project that includes
unit interface tests and user tests, topics that are covered in Lessons 33 and 34, respectively. For the
moment you should leave these boxes unchecked.

When you click Next, Xcode will ask you to provide a location on your Mac where you would like
to save the new project. Toward the bottom of this dialog box, you have the option to create a new
Git repository for version control. Version control is beyond the scope of this book, so just uncheck
the Source Control option in the dialog box.

22 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 22

AN OVERVIEW OF THE XCODE IDE

The Xcode IDE features a single window, called the workspace window (Figure 2-4), where you get
most of your work done.

FIGURE 2-4

The Navigator Area
The left side of the workspace window is the navigator area (Figure 2-5).

FIGURE 2-5

www.allitebooks.com

http://www.allitebooks.org

An Overview of the Xcode IDE ❘ 23

c02.indd 11/02/2015 Page 23

The navigator area consists of eight tabs; each of these tabs (called
navigators) shows different aspects of the same project. You can switch
between navigators using the navigator selector bar at the top of the
navigator area (Figure 2-6).

The Project Navigator
The project navigator (Figure 2-7) shows the contents of your project.
Individual fi les are organized within groups that are represented as
folders in a tree structure. The top-level node of this tree structure rep-
resents the project itself. These groups are purely logical and provide a
convenient way to organize the contents of your project. A group may
not necessarily correspond to actual folders on your hard drive.

When a new project is created, Xcode will create two groups (folders)
under the project node. Figure 2-7 shows what the project navigator
would look like if you were to create a new project using the Single
View Application template called HelloWorld without unit tests or
user interface tests.

As you can see, the top-level node is called HelloWorld, and the two
groups below that node are:

 ➤ HelloWorld: Contains the source code for your application.

 ➤ Products: Contains the fi nished products, created after the source
code compiles successfully.

In most cases, you will work with a single project at a time in the
Xcode workspace window; however, it is possible to open multiple
projects in the project navigator using a workspace fi le. A workspace
fi le has the fi le extension .xcworkspace and contains references to one
or more project fi les. You will not be creating workspaces in this book;
however, if you were to open a workspace fi le, the workspace window
would display information on multiple projects contained within the
workspace (Figure 2-8).

To create a new group, right-click an existing node in the project navi-
gator and select New Group from the context menu. You can move
fi les between groups by using simple drag-and-drop operations in the
project navigator. If the groups in the project navigator correspond to
actual folders on your Mac, then moving things around in the project
navigator will not move the corresponding fi les into new locations on
your Mac.

To delete a fi le, simply select the item and hit the backspace key on your keyboard. Xcode then asks
you if you intended to delete the actual fi le from your Mac or just remove the reference from the
project. The process of deleting a group is similar to that of a fi le; keep in mind that deleting a group
deletes any fi les within that group.

FIGURE 2-6

FIGURE 2-7

Project 1

Project 3

Project 2

FIGURE 2-8

24 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 24

At the bottom of the project navigator is a set of icons. You can use these icons to fi lter what is dis-
played in the project navigator based on certain criteria.

NOTE To learn more about the project navigator, read the Project Navigator
Help document at http://developer.apple.com/library/ios/#recipes/
xcode_help-structure_navigator/_index.html.

The Symbol Navigator
The symbol navigator (Figure 2-9) shows the classes in your project along with their methods and
member variables. A top-level node in a tree-like structure represents each class. Expanding the class
node reveals all its member variables and methods.

FIGURE 2-9

The Find Navigator
The fi nd navigator (Figure 2-10) lets you fi nd all occurrences of some text, across all fi les of the
project.

A root-level node in a tree represents each fi le that has one or more occurrences of matching text.
Expanding the node reveals the exact positions within that fi le where these matches were made.

The Issue Navigator
The issue navigator (Figure 2-11) lists all compile-time errors and warnings in your project.
While compiling a fi le, Xcode raises an issue each time it fi nds a problem with the fi le. Severe show-
stopping issues are fl agged as errors, whereas less severe issues are fl agged as warnings.

http://developer.apple.com/library/ios/#recipes
http://developer.apple.com/library/ios/#recipes/xcode_help-structure_navigator/_index.html

An Overview of the Xcode IDE ❘ 25

c02.indd 11/02/2015 Page 25

FIGURE 2-10

Each fi le with one or more errors/warnings is represented by a root-level node in a tree-like struc-
ture. Expanding the node reveals the exact positions within that fi le where these errors/warnings
were encountered.

The Test Navigator
The test navigator (Figure 2-12) gives you a snapshot of all the unit tests created with the project. A
root-level node in a tree-like structure represents each test suite. Expanding this node reveals the test
fi xtures within that test suite. Clicking a test fi xture (method) will open the corresponding code in
the editor area. To run a test, you could click the play icon to the right of the test fi xture.

FIGURE 2-12

FIGURE 2-11

26 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 26

The Debug Navigator
The debug navigator is used during an active debugging session and lists the call stack for each run-
ning thread. Debugging is an advanced topic and is not covered in this book.

The Breakpoint Navigator
The breakpoint navigator lists all breakpoints in your code and allows you to manage them. A
breakpoint is an intentional pause-point that you can set in your project. When the app is being
executed, Xcode interrupts the execution of the application when it encounters one of these pause-
points and transfers control to the debugger. This is extremely useful when trying to fi gure out why
a particular piece of code does not work and you want to inspect the values of variables and con-
tent of memory. Breakpoints and the debugger work only when the application is being executed in
debug mode. Breakpoints and debugging are advanced topics, and are not covered in this book.

The Report Navigator
The report navigator shows you a history of build logs and console debug sessions. Building is the
complete process of creating an executable application from your source code fi les. Compilation is a
part of the build process. Each time you build a new executable, Xcode creates a build log that con-
tains, among other things, a list of fi les that were compiled.

The Editor Area
The right side of the workspace window is the editor area (Figure 2-13). Xcode includes editors for many
fi le types, including source code, user interface fi les, XML fi les, and project settings, to name a few.

FIGURE 2-13

An Overview of the Xcode IDE ❘ 27

c02.indd 11/02/2015 Page 27

The content of the editor area depends on the current selection in the navigator area. When you
select a fi le in the navigator area, Xcode tries to fi nd an appropriate editor for that fi le type. If it
can’t fi nd one, it opens the fi le using Quick Look (which is also used by the Finder).

Jump Bars
At the top of the editor area is the jump bar (Figure 2-14). The jump bar displays the path to the
current fi le being edited and can be used to quickly select another fi le in the workspace. The jump
bar also has back and forward buttons to move through a history of fi les edited. Each element in the
path displayed in the jump bar is a pop-up menu (Figure 2-15) that you can use to navigate around
your project.

FIGURE 2-14

FIGURE 2-15

The contents of the jump bar depend on the type of fi le you’re viewing. When editing a user inter-
face fi le, for example, the jump bar enables you to navigate to individual interface elements.

The Source Editor
When you select a source-code fi le in the navigator area, or a text/XML fi le, Xcode uses the source
editor to open the fi le. This is the editor with which you will spend most of your time when you
write your code. The source editor has several helpful features, such as syntax highlighting and
code completion hints. You can confi gure individual features of the source editor using Xcode
preferences.

The Assistant Editor
The assistant editor (Figure 2-16) was introduced in Xcode 4 and enables you to view multiple fi les
side-by-side.

The assistant editor is not visible by default and can be accessed by using the editor selector buttons
in the Xcode toolbar or by selecting View ➪ Assistant Editor ➪ Show Assistant Editor. Option-
clicking a fi le in the project navigator or symbol navigator opens it in the assistant editor. You can
create additional assistant editor panes by using the + button in the jump bar of the assistant editor.

The Version Editor
If your project is under version control, you can use the version editor to compare the current ver-
sion of a fi le with a previous version. Like the assistant editor, the version editor is not visible by

28 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 28

default and can be accessed by using the editor selector buttons in the Xcode toolbar. Version con-
trol is not covered in this book.

Assistant
Editor

FIGURE 2-16

The Utilities Area
The utilities area (Figure 2-17) supplements the editor area. You can display it by selecting View ➪
Utilities ➪ Show Utilities or by clicking the utility button in the toolbar.

The Inspector Area
The top portion of the utilities area contains the inspector area (Figure 2-18). Like the navigator
area, the inspector area also contains multiple tabs that can be switched using a selector bar at the
top of the window.

The number of tabs available depends on the currently selected item in the project navigator.
Regardless of what is selected in the project navigator, the fi rst two tabs are always the fi le inspector
and the quick help inspector. The fi le inspector provides access to the properties of the current fi le.
The quick help inspector provides a short description of the current fi le.

The Library Area
The bottom portion of the utilities area contains the library area (Figure 2-19). This area con-
tains a library of fi le templates, user interface objects, and code snippets that you can use in your
applications.

An Overview of the Xcode IDE ❘ 29

c02.indd 11/02/2015 Page 29

Utilities
Area

FIGURE 2-17

FIGURE 2-18

The library area also provides a convenient method to access all the media fi les in your project.
A selector bar at the top of the library area provides access to four different library categories.

FIGURE 2-19

30 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 30

The Debugger Area
The debugger area (Figure 2-20) also supplements the editor area. You can access it by selecting
View ➪ Show Debug Area or by clicking the debugger button in the toolbar.

Debugger
Area

FIGURE 2-20

The debugger area is used while debugging an application and to access the debug console window.
You can use this area to examine the values of variables in your programs.

The Toolbar
The Xcode toolbar (Figure 2-21) is located at the top of the workspace window. Use the fi rst two
buttons on the left side to run/stop the active build scheme. Immediately following the stop button is
the Scheme/Target multi-selector. When you create an iOS project, Xcode creates a scheme with the
same name as the project and several build targets.

FIGURE 2-21

The build targets that are typically generated for a project include:

 ➤ iOS Device

 ➤ iPad 2 (if it is an iPad or Universal project)

 ➤ iPad Air (if it is an iPad or Universal project)

Features of the iOS Simulator ❘ 31

c02.indd 11/02/2015 Page 31

 ➤ iPad Retina (if it is an iPad or Universal project)

 ➤ iPhone 4S (if it is an iPhone or Universal project)

 ➤ iPhone 5 (if it is an iPhone or Universal project)

 ➤ iPhone 5S (if it is an iPhone or Universal project)

 ➤ iPhone 6 Plus (if it is an iPhone or Universal project)

 ➤ iPhone 6 (if it is an iPhone or Universal project)

You can use the Scheme/Target multi-selector to switch build targets and create/edit schemes.
Managing schemes is an advanced topic beyond the scope of this book.

To the right of the Scheme/Target multi-selector is a status window. Following the status window,
the toolbar contains the editor selector and utility selector buttons, which have been covered in the
previous sections.

FEATURES OF THE iOS SIMULATOR

When you run an application from the Xcode IDE, unless you have selected a device in the Scheme/
Target multi-selector, your application will be launched in the iOS Simulator. Figure 2-22 shows the
iPhone 5S simulator. You can use the iOS Simulator to simulate different device and SDK versions.
To switch devices use the Hardware ➪ Device menu.

FIGURE 2-22

32 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 32

You can rotate the simulator by using the Rotate Left or Rotate Right menu items from the
Hardware menu. The iOS Simulator allows you to simulate a variety of one and two-fi nger multi-
touch gestures. Single-fi nger gestures such as taps and swipes can be performed by clicking and
dragging with the mouse. The only two-fi nger gesture that you can simulate is the pinch. To do so,
hold down the Option key on your keyboard while clicking and dragging with the mouse in the
simulator window. Shake gestures can be performed by using the Hardware ➪ Shake Gesture menu
item.

If you are developing an app that requires location data, you can use the iOS Simulator to simulate a
test location while you are running your application within the simulator. Select Debug ➪ Location
➪ Custom Location to specify a latitude and longitude pair (Figure 2-23). Creating location-based
applications is covered in Lessons 29 and 30.

FIGURE 2-23

The simulator can also simulate changing locations. This is particularly useful if your app is
designed to be used while on the move. From the Debug ➪ Location menu, you can select from a
list of prerecorded location sets. The simulator will then periodically cycle between the locations in
the selected set. The sets are:

 ➤ Apple Stores

 ➤ City Bicycle Ride

 ➤ City Run

 ➤ Freeway Drive

Installing and Uninstalling Applications
To install an application to the iOS Simulator, you need to open its corresponding .xcodeproj fi le
in Xcode and click the Run button in the Xcode toolbar.

You cannot delete the default iOS Simulator applications (such as Photos, Settings, Game Center,
Safari, and so on). To uninstall (delete) one of your applications from the iOS Simulator, click and
hold the mouse button down on the icon of the app until all the icons start to wiggle. Once they
start to wiggle, you will notice an X button on the top-left corner of each icon.

Release the mouse button if you are still holding it down; the icons will still continue to wiggle.
Click the X button on the icon of the app you want to delete. An alert window will appear asking
you to confi rm this action.

Try It ❘ 33

c02.indd 11/02/2015 Page 33

Limitations of the iOS Simulator
As good as the iOS Simulator may be, it has its limitations. For starters, you cannot make calls, send
or receive text messages, or install apps from the App Store.

The performance of the iOS Simulator depends on the speed of your Mac, and in certain cases your
application may appear to execute much faster on your Mac (in the iOS Simulator) than it does on
the real device.

Accelerometer, camera, and microphone functions are not supported in the iOS Simulator. If you are
developing OpenGL/ES-based applications, you should keep in mind that several OpenGL/ES func-
tions are not supported on the iOS Simulator.

The iOS Simulator is a useful tool to test your apps but it is defi nitely not a replacement for testing
on a real device.

TRY IT

In this Try It, you launch Xcode and open the project that you created in the Try It for Lesson 1.
This project was built using the Single View Application template. Once the project is opened in
Xcode, you will open a fi le in the editor area and display the assistant editor, debugger, and utilities
areas.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project using a template.

 ➤ Open a fi le in the editor area.

 ➤ Show the assistant editor.

 ➤ Show the debug area.

 ➤ Show the utilities area.

Hints
This Try It builds on the HelloSwift project you created at the end of Lesson 1.

Step-by-Step
 1. Open the HelloSwift project you created at the end of Lesson 1 by double-clicking the

HelloSwift.xcodeproj fi le in the fi nder.

 2. Open the AppDelegate.swift fi le in the Xcode editor. Ensure the project navigator is visible
and the iOSTest project is open.

34 ❘ LESSON 2 A TOUR OF XCODE AND THE IOS SIMULATOR

c02.indd 11/02/2015 Page 34

 3. Show the assistant editor using the editor selector buttons on the Xcode toolbar.

 4. Show the debug area using the view selector buttons on the Xcode toolbar.

 5. Show the utilities area using the view selector buttons on the Xcode toolbar.

REFERENCE To see some of the examples from this lesson, watch the Lesson 2
video online at www.wrox.com/go/swifti o svid.

http://www.wrox.com/go/swifti

c03.indd 10/31/2015 Page 35

Introducing Swift
Prior to the launch of iOS8, Objective-C was the offi cial language used to make native applica-
tions. With the launch of iOS 8, Apple provided an alternative language called Swift. Now it
is possible to code iOS (and Mac OSX) applications in both Objective-C and Swift. This book
targets Swift 2.0, which is supported on iOS 9 and later. This lesson introduces some of the
basic concepts of Swift.

INTRODUCING XCODE PLAYGROUNDS

Playgrounds are a new feature of Xcode (available from versions 6 and above) that allow you
to rapidly prototype Swift code. You cannot create a complete app in a playground, but if you
want to quickly try out an algorithm or just want to get a feel for the Swift programming lan-
guage, then playgrounds are for you.

To create a playground, you can either select the Get started with a playground option in the
Xcode welcome screen (Figure 3-1), or select the File ➪ New ➪ Playground menu item.

FIGURE 3-1

3

36 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 36

Xcode will then ask you to provide a name for the playground as well as the platform. In this book,
only iOS playgrounds are explored (Figure 3-2).

FIGURE 3-2

Xcode will then prompt you to provide a location where the playground should be saved on your
hard disk. You can, of course, use any location of your choice.

The main playground screen is divided into two parts (Figure 3-3).

 ➤ Editor area: This forms the left-hand side of the playground screen and is where you type
your Swift statements. Every time you press Enter on your keyboard to type a new line, the
playground will try to execute the line you have just fi nished.

 ➤ Results area: This forms the right-hand side of the playground and is where results are dis-
played. When the playground executes a line of Swift code, it will try and put the result in the
same vertical position as the line of code that was executed.

If the Swift code you have typed in the editor area contains print statements, then the output of
these statements will be visible in the console. To display the console in a playground, use the View
➪ Debug Area ➪ Activate Console menu item.

Constants and Variables ❘ 37

c03.indd 10/31/2015 Page 37

FIGURE 3-3

CONSTANTS AND VARIABLES

The let keyword is used to create a constant. A constant is a quantity whose value cannot change once
it is assigned. The following statement creates a constant called maximumScore with a value of 200:

let maximumScore = 200

38 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 38

If you are familiar with programming in C or Objective-C, you will immediately notice that Swift
statements do not need to end in a semicolon.

A variable quantity is one whose value can change over the life of the application. A variable is
defi ned using the var keyword as follows:

var currentScore = 20

There are a few rules that you must stick to when it comes to naming constants and variables.
Constants and variables cannot begin with a number, contain spaces, or contain mathematical sym-
bols. You cannot change a constant into a variable or vice versa.

DATA TYPES

Unlike C or Objective-C, Swift does not require you to specify a data type when you are declaring
a constant or variable. The Swift compiler uses type inference to work out the data type from the
value you assign. If, however, you wish to be explicit, you can specify the data type of a constant or
variable while declaring them as follows:

let maximumScore:Int = 200
var bookCategory:String = "fiction"

Once a constant or variable has been created with a certain type, its type cannot be changed.
Table 3-1 lists some of the common data types in Swift.

TABLE 3-1: Common Swift Data Types

TYPE DESCRIPTION

Int Used to represent whole positive or negative numbers such as 1, 2, 300, 5000.

Float Used to represent positive or negative fractional numbers such as 11.9482.

Double Used to represent positive or negative fractional numbers (with a greater degree of
precision than Float), such as –11.948281731.

Bool Used to represent Boolean values; can be true or false.

String Used to represent a sequence of characters enclosed in double quotes, such as
“Hello World!”

Character Used to represent a single character in a string.

Variables in Swift are classed as either value types or reference types depending on how they behave
when they are passed as parameters to a method. (A method is a block of code that will be described
later).

A value type is a variable whose value is copied when it is passed as a parameter to a method. Any
changes made by the method to the variable only apply to its private copy of the original variable
and do not affect the value of the original variable in any way.

Strings ❘ 39

c03.indd 10/31/2015 Page 39

A reference type, on the other hand, is passed by reference. If the receiving method changes the
value of a reference type then the change will be visible outside the scope of the function.

COMMENTS

Comments are used to add some descriptive text to your code that you want the compiler to ignore.
Typically, these are used to provide a human readable description about what is happening in the
code for reference purposes. Comments in Swift are similar to C-style comments. A single line com-
ment begins with two forward slashes (//). For example:

// this is a single line comment.

When the compiler encounters a line that starts with two forward slashes, it ignores everything on
that line.

If you would like to create a comment that spans over multiple lines, you could use multiple single
line comments. Alternatively you can use a multi-line comment. A multi-line comment begins with
a forward slash asterisk (/*) and ends with an asterisk forward slash (*/) for example:

/* this is a very
long comment that spans
three lines */

STRINGS

A string is a sequence of characters represented by the String type, and each character in a string is
of the Character type. For example:

var stringVariable = "the man in the moon"

You can initialize an empty string as follows:

var anEmptyString:String = ""

If you have programmed in Objective-C, you will be familiar with the concept of mutable and
immutable strings. A mutable string is one whose contents can be changed, and Objective-C uses
two different classes (NSString and NSMutableString) to indicate whether a string can be mutated.
You will be pleased to know that there is only one String type in Swift; mutability is established
by creating a string variable. If you wish to create an immutable string, create a string constant as
follows:

let immutableString = "this string cannot be changed"

Strings can be concatenated (added together) to produce longer strings using the + operator as
follows:

let firstString = "Happy"
let secondString = "Birthday"
var concatenatedString = firstString + secondString

40 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 40

The variable concatenatedString will now contain "HappyBirthday" (without a space, as there is
no space in any of the original strings.

You can append a string to an existing string variable using the += operator as follows:

var myString = "two times two is "
myString += "four"

The variable myString will now contain "two times two is four". The space between is and
four is part of the original value of myString.

Swift uses string interpolation to create a new string from a mix of constants, variables, and
expressions. If you are an Objective-C programmer, then string interpolation in Swift is similar
to Objective-C’s [NSString stringWithFormat] class method. This is best explained with an
example:

var patientName = "Jason"
var patientHeight = 84
var message = "\(patientName) is \(patientHeight) cm tall."

The result of this snippet will be a string that contains "Jason is 84 cm tall." In this example the
variables patientName and patientHeight are inserted as \(patientName) and \(patientHeight)
placeholders. When the message variable is evaluated, these placeholders are replaced by actual values
and any associated type conversions are performed automatically.

Placeholders aren’t restricted to names of constants and variables; you can put a complete expression
in a placeholder. For example, the statement

let result = "\(2 + 2) is equal to four"

will create a string constant called result with the value "4 is equal to four".

TUPLES

A tuple is a compound value that groups multiple values. The individual values within a tuple can be
of different data types. The following line of code declares a tuple called applicantDetails with
two values—the fi rst is an Int, the second a String.

let applicantDetails = (12, "Henry")

There are a few different ways to access individual values in a tuple. One way is to use index num-
bers starting at zero:

print("Applicant age is \(applicantDetails.0)")
print("Applicant name is \(applicantDetails.1)")

If you have named the elements in the tuple when it is defi ned, you can use these names to access
individual values, as you can see in the following code snippet:

let applicantDetails = (applicantAge:12, applicantName:"Henry")
print("Applicant age is \(applicantDetails.applicantAge)")
print("Applicant name is \(applicantDetails.applicantName)")

Optionals ❘ 41

c03.indd 10/31/2015 Page 41

You can also split a tuple into separate variables, which you can then access as follows:

let applicantDetails = (12, "Henry")
let (applicantAge, applicantName) = applicantDetails
print("Applicant age is \(applicantAge)")
print("Applicant name is \(applicantName)")

The output of any of these three methods would be the same:

Applicant age is 12
Applicant name is Henry

OPTIONALS

An optional is a new concept in Swift. An optional variable can either contain a value or have no
value. The closest thing in Objective-C would be the use of nil to indicate the absence of an object,
but in Objective-C, nil cannot be used with primitive data types, structures, or enumerations.
Unlike Objective-C, Swift’s optionals can be used to indicate the absence of a value for any data
type.

While declaring a variable, you indicate that it is an optional by appending a (?) to the data type.
Thus, an optional Double is a Double? For example:

var optionalDouble : Double? = 17.7681

If you defi ne an optional without providing a value, it is automatically set to nil. Alternately, you
can set an optional variable to contain no value by assigning nil to it as follows:

optionalDouble = nil

nil is interpreted as a valueless state to an optional. If an optional contains a value, you can access
this value by unwrapping the optional. To unwrap an optional, simply add an exclamation mark to
the end of the variable name.

If you attempt to unwrap an optional that has no value, your app will be terminated with a runtime
error. You can test whether an optional has a value by comparing it with nil in a simple if state-
ment, as in the following:

var score : Int? = 10
if (score != nil)
{
 print("Your score is \(score!)")
}

Another way to execute a bunch of statements if an optional contains a value is to use an optional
binding. An optional binding allows you check if an optional has a value and, at the same time,
extract this value into a constant or variable. Optional bindings can only be used in if and while
statements, both of which are covered later in this lesson. Consider the following example:

var score : Int? = 10
if let unwrappedScore = score
{
 print("Your score is \(unwrappedScore)")
}

42 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 42

In this example, the optional score will automatically be unwrapped into the constant unwrapped-
Score if it contains a value. unwrappedScore can now be used just like a normal constant and does
not need any further unwrapping.

If an optional is guaranteed to always contain a value, then you can skip having to unwrap it every
time by implicitly unwrapping it when you declare the optional. An implicitly unwrapped optional
is declared with an exclamation mark after the data type, instead of a question mark. Attempting to
assign nil to an implicitly unwrapped option will result in a compile time error.

Some scenarios where you may want to use an implicitly unwrapped optional are:

 ➤ As a return value from a function, this ensures the function will not return nil.

 ➤ As an argument to a function, this ensures the function cannot be called with a nil argument.

 ➤ When creating IBOutlets to elements in xib fi les. Interface builder and xib fi les will be cov-
ered in Lesson 9.

In the following example, score is an implicitly unwrapped optional:

var score : Int! = 10
print("Your score is \(score)")

CONTROL FLOW STATEMENTS

A control fl ow statement allows you to modify the order of statements executed, execute certain
statements multiple times, or execute certain statements conditionally.

if-else
The if statement is one such control statement. In its basic form an if statement executes a block of
statements only if a specifi c condition is met.

if condition evaluates to true
{
 statement to execute
}

The test condition is usually a Boolean variable, or an expression that evaluates to a Boolean vari-
able. If the test condition evaluates to true, the following statement (or block of statements) is
executed. The following is a simple example:

var numberOfRedMarbles = 20;
var numberOfBlueMarbles = 5;
if numberOfRedMarbles > numberOfBlueMarbles
{
 print("Game over, you won!");
}

Control Flow Statements ❘ 43

c03.indd 10/31/2015 Page 43

In this hypothetical game example, a player is required to collect a certain number of red and blue
marbles. A player wins the game if he collects more red marbles than blue ones. The test condition
in this case is the expression

numberOfRedMarbles > numberOfBlueMarbles

which evaluates to true in this particular case. Note the complete if statement contains both the
test condition and the block of statements that go with the test condition.

The else Clause
A modifi ed version of the if statement allows you to specify an additional block of statements that
are executed should the test condition fail. This additional alternate-scenario statement is completely
optional and should you need to specify it, you can use the modifi ed form of the if statement:

if condition evaluates to true
{
 statements to execute
}
else
{
 some other statements to execute
}

This modifi ed form of the if statement is known as the if-else statement. The else portion is
optional. The statement (or block of statements) following the else clause is executed only if the test
condition evaluates to false. A simple example follows:

var numberOfRedMarbles = 20;
var numberOfBlueMarbles = 5;
if numberOfRedMarbles > numberOfBlueMarbles
{
 print("Game over, you won!");
}
else
{
 print("Better luck next time!");
}

In this example, if numberofRedMarbles is greater than numberofBlueMarbles then

print("Game over, you won!");

will be executed. Otherwise,

print("Better luck next time!");

will be executed. Now it just so happens to be the case that 20 is greater than 5 and hence the block
associated with the else clause will not execute in this example.

44 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 44

In the examples so far, the conditional expressions are trivial (such as 20 is greater than 5) and
strictly speaking, the if statement is not being used to its true potential. In a real-world application,
the values of the operands in the conditional expression would be dynamic—for instance, the num-
ber of times a tap is detected, or the number of alien spaceships destroyed by the player as a game
proceeds. In these cases, the if and if-else statements are extremely useful.

Just as with an if statement, statements that appear after the if-else statement would continue to
execute regardless of what happened in the if-else statement.

switch-case
A switch-case statement is convenient when you want to examine a variable and take a different
course of action for different values of the variable.

switch variable {

case value:
 statements

case value:
 statements

default:
 statements
}

The variable being examined in a switch-case statement can be an Integer, Boolean, Tuple, or
Optional. You use the case clause to handle a specifi c value (or set of values). If the value of the
variable is found to match one of the scenarios handled by a case statement, then the corresponding
statement (or block of statements) will be executed. The following example shows a switch-case
statement:

let numberOfMarbles = 1;

switch numberOfMarbles {

case 1:
 print("You have just one marble.")

case 2,3,4,5:
 print("You have a few marbles.")

default:
 print("You have way too many marbles!")
}

The last case in a switch-case statement is always labeled default. The default case is executed if
none of the preceding cases have matched the value of the variable. Once a case is executed, control
moves out of the entire switch-case block and the statement following the switch-case block will
be executed.

Control Flow Statements ❘ 45

c03.indd 10/31/2015 Page 45

Every case must have at least one statement; the following will NOT work in Swift:

let numberOfMarbles = 1;

switch numberOfMarbles {

case 0:
case 1:
 print("You have just one marble.")

case 2,3,4,5:
 print("You have a few marbles.")

default:
 print("You have way too many marbles!")
}

It is possible to achieve the overall effect of a switch-case statement with multiple if-else state-
ments, but the resulting code would be cumbersome.

Loops
A loop is a programming construct used to execute a bunch of statements multiple times. Typically,
a Boolean expression is evaluated either at the beginning or at the end of each pass of the loop. If the
expression evaluates to true then the loop will continue for another pass.

for Loop
The for loop has its roots in the C programming language. The general form of this loop is

for initial expression; termination expression; increment expression
{
 loop statements
}

where:

 ➤ Initial expression: This expression usually involves an assignment (where a value is assigned
to a variable).

 ➤ Termination expression: This expression usually involves a comparison operator and evalu-
ates to either true or false. If this expression evaluates to false the body of the loop will
not be executed.

 ➤ Increment expression: This expression usually adds an integer to the variable used in the ini-
tial expression.

The loop statements are a block of Swift statements that are executed at each pass of the loop. These
statements are also known as the body of the loop.

46 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 46

When a for loop is encountered, the following happens:

 1. The initial expression is evaluated.

 2. The termination expression is evaluated.

 3. If the termination expression evaluates to false, the for statement terminates, and execution
continues at the fi rst statement after the loop block.

 4. If the termination expression evaluates to true, the loop statement/block is executed once.

 5. The increment expression is evaluated, and execution continues from Step 2.

For an example of a for statement in action, consider the following snippet:

for var number = 10; number < 15; number++ {
 print("The value of number is \(number)")
}

This snippet would result in the following output:

The value of number is 10
The value of number is 11
The value of number is 12
The value of number is 13
The value of number is 14

In this example, the initial expression sets the value of the variable number to 10:

number = 10

The termination expression is a conditional expression that evaluates to true or false. In this case,
the expression tests if the value of number is less than 15:

number < 15

The increment expression adds 1 to the value of the variable number:

number++

Without this expression, the value of number would never change, and the termination expression
would never evaluate to false. Consequently the loop would go on indefi nitely.

for-in Loop
The for-in loop executes a block of statements for each item in a range or collection. Unlike the
for loop, there is no termination expression to be evaluated. The general form of this loop is

for item in range
{
 loop statements
}

where:

 ➤ Item: This is a variable that is automatically assigned the next value in the collection of
values being iterated across.

 ➤ Range: This is an ordered collection of values over which the loop iterates.

Control Flow Statements ❘ 47

c03.indd 10/31/2015 Page 47

The following snippet provides an example of the for-in statement in action:

for number in 1...3
{
 print("The value of number is \(number)")
}

This snippet would result in the following output:

The value of number is 1
The value of number is 2
The value of number is 3

In this example, the range of values across which the loop iterates is expressed as a closed range
of numbers from 1 to 3 using the range operator (...). The variable number does not have to be
declared before it is used as Swift will implicitly declare it because it is included in the loop.

You can also use the for-in loop to iterate across an array or dictionary. An example of iterating
over an array of strings follows:

let places = ["Geneva", "Rome", "Zurich"]
for place in places
{
 print("\(place) is a nice city to visit.")
}

This snippet would result in the following output:

Geneva is a nice city to visit.
Rome is a nice city to visit.
Zurich is a nice city to visit.

while Loop
The while loop executes a block of statements as long as a specifi ed condition holds true. The gen-
eral form of the while statement is:

while loop condition
{
 loop statements
}

The loop condition is typically a Swift expression that evaluates to true or false. The loop state-
ments are a block of Swift statements that are executed at each pass of the loop. These statements
are also known as the body of the loop.

When a while loop is encountered, the following happens:

 1. The loop condition is evaluated.

 2. If the loop condition evaluates to false, the while statement terminates, and execution con-
tinues at the fi rst statement after the loop block.

 3. If the loop condition evaluates to false, the loop statement/block is executed once, after
which execution continues from Step 1.

48 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 48

The following code snippet provides an example of a while loop in action:

var number = 1
while number < 5
{
 print("The value of number is \(number)")
 number = number + 1;
}

This snippet would result in the following output:

The value of number is 1
The value of number is 2
The value of number is 3
The value of number is 4

In this example, the loop condition is a conditional expression that evaluates to true or false. In
this case, the expression tests if the value of number is less than 5:

number < 5

It is worth noting that the value of number is incremented by 1 in the body of the while loop. If this
were not done, then number would always equal 1, and this loop would never terminate.

repeat-while Loop
The repeat-while loop fi rst executes a block of statements and then checks a specifi ed condition
to determine if the preceding block should be executed again. The general form of the while
statement is:

repeat {
 loop statements
}
while loop condition

Once again, loop condition is typically a Swift expression that involves a conditional operator and
evaluates to true or false. The loop statements are a block of Swift statements that are executed at
each pass of the loop. These statements are also known as the body of the loop.

When a repeat-while loop is encountered, the following happens:

 1. The loop body is executed.

 2. The loop condition is evaluated.

 3. If the loop condition evaluates to false, the repeat-while loop terminates, and execution
continues at the fi rst statement after the loop block.

 4. If the loop condition evaluates to true, execution continues from Step 1.

Consider the following example of a repeat-while loop in action:

var number = 1
repeat
{
 print("The value of number is \(number)")

Control Transfer Statements ❘ 49

c03.indd 10/31/2015 Page 49

 number = number + 1
}
while number < 5

This snippet would result in the following output:

The value of number is 1
The value of number is 2
The value of number is 3
The value of number is 4

It’s important to note that the body of the repeat-while loop is guaranteed to execute at least once
because the loop condition is evaluated after the loop body is executed.

CONTROL TRANSFER STATEMENTS

Control transfer statements change the order in which your program’s instructions are executed.
They are commonly used to break out of a loop prematurely, or skip one or more iterations.

You can use the break statement as part of the statements that form the body of a for, for-in,
while, or repeat-while loop, to end the loop prematurely. Programs that use loops generally rely
on the loop to come to a natural end at some point.

However, sometimes you need to break out of a loop prematurely (perhaps in response to some
external factor) and in such cases you can use the break statement. The break statement is written
on its own, on a single line:

break

Any other statements in the block after the break statement will not be executed. The following
example demonstrates the use of the break statement. In this example a while loop is used to iterate
over integers between 1 and 200 and print the fi rst number that is divisible by both 5 and 7

var number = 1
while number < 200
{
 if ((number % 5 == 0) && (number %% 7 == 0) {
 print("The first number divisible by both 5 and 7 is \(number)")
 break
 }
}
 number = number + 1;
}

The continue statement, when used in the body of a loop, causes execution to skip one iteration of
the loop. The continue statement is also written on its own, on a single line:

continue

Any statements after a continue statement will be skipped for that iteration. The following example
demonstrates the use of the continue statement. In this example a while loop is used to iterate over
integers between 1 and 200 and print all numbers that are not divisible by 13.

50 ❘ LESSON 3 INTRODUCING SWIFT

c03.indd 10/31/2015 Page 50

var number = 1
while number < 200
{
 if ((number % 13 == 0){
 number = number + 1
 continue
 }

 print("\(number) is not divisible by 13.")
 number = number + 1;
}

TRY IT

In this Try It, you launch Xcode and create a new Swift playground. You will then perform a few
basic operations with optionals.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new Swift playground.

 ➤ Perform basic operations with optionals.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To view the console inside the playground window, use the View ➪ Assistant Editor ➪ Show
Assistant Editor menu item.

Step-by-Step
 ➤ Create a new Swift playground.

 1. Launch Xcode and create a new Swift playground by selecting the File ➪ New ➪
Playground menu item.

 2. In the playground options screen, use the following values:

 ➤ Name: Playground1

 ➤ Platform: iOS

http://www.wrox.com/go

Try It ❘ 51

c03.indd 10/31/2015 Page 51

 3. Save the playground onto your hard disk.

 ➤ Create a simple program in the playground.

 1. Delete the default contents of the playground fi le.

 2. Type the following lines:

import UIKit

var blueBallCount : Int! = 20
var redBallCount : Int? = 100

if redBallCount != nil
{
 print("number of red balls is \(redBallCount!)")
 print("total number of balls is \(redBallCount! + blueBallCount)")
}
else
{
 print("redBallCount has no value")
}

 3. Observe the results of this program in the Assistant Editor. You should see two lines:

"number of red balls is 100"
"total number of balls is 120

 ➤ Modify the program slightly.

 1. Change the third line of code to

var redBallCount : Int?;

 2. Once again, observe the results of this program. You should now see only one line:

" redBallCount has no value"

REFERENCE To see some of the examples from this lesson, watch the Lesson 3
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c04.indd 10/31/2015 Page 53

Functions
A function is a collection of instructions that perform a specifi c task; the task is usually some-
thing that needs to be performed multiple times over the life of the application. A function has
a name, which is used to call it from other parts of your application. A function may return a
value (perhaps the result of a computation) and could also have one or more input parameters.

DECLARING FUNCTIONS

Every function has a name; the name given to a function typically describes what it does.
Functions are declared in Swift using the func keyword. The following example declares a
simple function called greetUser that prints a line to the console using print:

func greetUser ()
{
 print("Hello there!")
}

To call this function from other parts of your code, you will simply need to mention the name
of the function:

greetUser()

PARAMETERS AND RETURN VALUES

As mentioned earlier, functions can return values and accept input parameters; both of these
are optional but at the very least, most functions accept one or more input parameters. The
following example declares the function cubeNumber, which accepts a single integer as input
and returns its cube as output.

func cubeNumber (inputValue:Int) -> Int
{
 return inputValue * inputValue * inputValue
}

4

54 ❘ LESSON 4 FUNCTIONS

c04.indd 10/31/2015 Page 54

Any input parameters are declared in the parentheses, and the return type of the function is speci-
fi ed using the return arrow (->). Functions aren’t restricted to a single input parameter. The follow-
ing example declares the function greetUserBetter, which accepts an Int and String as input
parameters and writes a line to the console.

func greetUserBetter(age:Int, userName:String)
{
 print("Hello \(userName). You are \(age) year(s) old.")
}

To call this function from other parts of your code, you will simply need to mention the name of the
function and supply the values for the two arguments in the order in which they were declared:

greetUserBetter(12, userName:"John")

Functions can only return a single value (or none at all), but you can still use tuples to return multi-
ple values from a function. Essentially the multiple values that the function would like to return will
be grouped into a single tuple and returned. This is demonstrated in the following example:

func retrievePersonnelDetails(personnelID:String) -> (String?, Int?)
{
 if personnelID == "100-182"
 {
 return ("John Woods", 37)
 }
 else if personnelID == "100-876"
 {
 return ("Jason Lee", 45)
 }

 return (nil, nil)
}

It is worth mentioning that the return value for this function is a tuple of optionals. This implies that
for some cases of personnelID this function will return the tuple (nil, nil), indicating that no data
was available. You could instead have used an optional tuple (as opposed to a tuple of optionals) for
the return value. Using an optional tuple means that the function will return (String, Int), or nil.

Swift allows you to specify an optional external name (known as an argument label) for each
parameter to a function. The idea is to provide descriptive names for each parameter that indicate
the purpose of the parameter. The retrievePersonnelDetails function could be declared using
external and internal parameter names as follows:

func retrievePersonnelDetails(acmeEmployeeNumber personnelID:String) ->
(String?, Int?)

When this method is now called, you will use the external parameter name:

retrievePersonnelDetails(acmeEmployeeNumber:"100-876")

If you want a function parameter to accept zero or more items of the same type, you will need to
declare the parameter as a variadic parameter. A variadic parameter is declared by adding three

Try It ❘ 55

c04.indd 10/31/2015 Page 55

period characters (...) to the end of the data type in the functions parameter list. The values of a
variadic parameter are presented to the function as an array. Variadic parameters will be explored
in this lesson’s Try It.

TRY IT

In this Try It, you create a new Swift playground and build a function that uses several concepts
covered in this lesson, including returning tuples, variadic parameters, and external parameter
names.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new Swift playground.

 ➤ Create a function that fi nds the minimum and maximum height from a variable number of
heights.

 ➤ Display the results in the console.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To view the console inside the playground window, use the View ➪ Debug Area ➪ Activate Console
menu item.

Step-by-Step
 ➤ Create a new Swift playground.

 1. Launch Xcode and create a new Swift playground by selecting File ➪ New ➪
Playground.

 2. In the playground options screen, use the following values:

 ➤ Name: FunctionPlayground

 ➤ Platform: iOS

 3. Save the playground onto your hard disk.

 ➤ Create the minmax function.

 1. Delete the default contents of the playground fi le.

http://www.wrox.com/go

56 ❘ LESSON 4 FUNCTIONS

c04.indd 10/31/2015 Page 56

 2. Type the following lines:

func minmax(heights inputValues:Int...) -> (Int, Int)
{
 var minHeight = 100000
 var maxHeight = -10000
 for height in inputValues
 {
 if height > maxHeight
 {
 maxHeight = height
 }

 if height < minHeight
 {
 minHeight = height
 }
 }

 return (minHeight, maxHeight)
}

 ➤ Call the minmax function.

 1. Type the following lines after the end of the minmax function defi nition:

let result = minmax(heights:10, 12, 8, 5, -2, 13)
print("Shortest height = \(result.0). Tallest height = \(result.1)")

 2. Observe the results of this program in the console. You should see the following line in
the console:

Shortest height = -2. Tallest height = 13

REFERENCE To see some of the examples from this lesson, watch the Lesson
4 video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvid

c05.indd 10/31/2015 Page 57

Closures
A closure is a block of code that can be passed around and used in your code. Functions
are special cases of closures. Closures in Swift are similar to blocks in Objective-C and can
capture any constants and variables in their enclosing scope.

FUNCTION TYPES

In the last lesson you learned about functions—which are a special case of closures. Just like
primitive data types Int, String, Double, and so on, functions have their own data types in
Swift. The data type of a function is called a function type and is simply a collection of the
parameters and return values of the function. For example, if given the function cubeNumber:

func cubeNumber (inputValue:Int) -> Int
{
 return inputValue * inputValue * inputValue
}

its function type is simply (Int) -> Int.

It is possible for different functions to have the same function type. In the following example,
you can see that the function type for another function called squareNumber is exactly the
same as for cubeNumber:

func squareNumber (inputValue:Int) -> Int
{
 return inputValue * inputValue
}

Function types are fi rst class data types. You can declare a variable to be of a function type
and assign an appropriate function to that variable as follows:

var mathFunction: (Int) -> Int = squareNumber

5

58 ❘ LESSON 5 CLOSURES

c05.indd 10/31/2015 Page 58

Function types can be used as parameters to functions as well as return values.

CLOSURE TYPES

There are three types of closures in Swift: global closures, nested closures, and closure expressions.
Each of these will be explored in this section.

Global Closures
Global closures are the functions you have learned about so far, declared with the func keyword.
Unless explicitly specifi ed, these global closures are part of the public interface of the class in which
they are declared. You can restrict the visibility of the global closure to the containing class by using
the private keyword.

Nested Closures
A nested closure is a function defi ned within the body of another function. The nested closure
would not be visible to code outside the enclosing function but could still be used within the enclos-
ing function. The enclosing function can, however, return one of the nested functions to the caller.
For this to happen, the return type of the enclosing function would have to be a function type. In
the following example, the function mathFunctionFactory returns one of two nested closures
depending on the input parameter:

func mathFunctionFactory(operationId : String) -> (Int) -> Int
{
 func squareNumber(inputValue : Int) -> Int
 {
 return inputValue * inputValue
 }

 func cubeNumber(inputValue : Int) -> Int
 {
 return inputValue * inputValue * inputValue
 }

 return (operationId == "square") ? squareNumber : cubeNumber
}

You could use mathFunctionFactory to square a number as follows:

var mathFunction : (Int) -> Int = mathFunctionFactory("square")
println("The square of 2 is \(mathFunction(2))")

Closure Types ❘ 59

c05.indd 10/31/2015 Page 59

Closure Expressions
Closure expressions are a way to write inline closures. They are the equivalent of blocks in
Objective-C, or lambdas in other languages. Usually when one mentions the word closure in Swift,
they are referring to closure expressions. The syntax of the closure expression is as follows:

{ (parameters) -> return type in
statements
}

The cubeNumber function discussed earlier in this lesson could be written using a closure expression
as follows:

var cubeNumber : (Int) -> Int =
{
 (inputValue : Int) -> Int in
 return inputValue * inputValue * inputValue
}

Note that cubeNumber is now a variable of function type (Int) -> Int and is assigned a closure
expression of the same function type. The closure expression is everything between the pair of curly
braces.

{
 (inputValue : Int) -> Int in
 return inputValue * inputValue * inputValue
}

The body of the closure expression starts after the in keyword. The defi nition of the closure’s
parameters and return types always precedes the in keyword.

If you have looked at the closure version of cubeNumber, you may have noticed that mentioning the
function type twice seems redundant. Swift can infer the function type of the closure expression
automatically. Thus, the closure version of cubeNumber can be reduced to this:

var cubeNumber : (Int) -> Int =
{
 inputValue in
 return inputValue * inputValue * inputValue
}

When you program with closures, it is unlikely you will store them in a variable as in the preceding
example. Most of the time, a closure is used as a parameter to a function. This is illustrated in this
lesson’s Try It.

60 ❘ LESSON 5 CLOSURES

c05.indd 10/31/2015 Page 60

TRY IT

In this Try It, you create a new Swift playground and build a function that performs a simple arith-
metic operation on two numbers. The operation to be performed on the numbers is passed to the
function as a closure.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new Swift playground.

 ➤ Create a function that performs a mathematical operation on two numbers using a closure.

 ➤ Display the results in the console.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To view the console inside the playground window, select View ➪ Debug Area ➪ Activate Console
menu item.

Step-by-Step
 ➤ Create a new Swift playground.

 1. Launch Xcode and create a new Swift playground by selecting File ➪ New ➪
Playground.

 2. In the playground options screen, use the following values:

 ➤ Name: ClosurePlayground

 ➤ Platform: iOS

 3. Save the playground onto your hard disk.

 ➤ Create the minmax function.

 1. Delete the default contents of the playground fi le.

 2. Type the following lines:

func calculator(firstOperand : Double,
 secondOperand : Double,
 calculatorFunction:(Double, Double) -> Double)

http://www.wrox.com/go

Try It ❘ 61

c05.indd 10/31/2015 Page 61

{
 let result : Double = calculatorFunction(firstOperand, secondOperand)
 print("operand 1 = \(firstOperand), operand 2 = \(secondOperand),
 result = \(result)")
}

 ➤ Call the calculator function.

 1. Type the following lines after the end of the calculator function defi nition:

calculator(12.4,
 secondOperand:17.5,
 calculatorFunction:{
 (v1:Double, v2:Double) -> Double in
 return v1 - v2}
)

 2. Observe the results of this program in the console. You should see the following line in
the console:

operand 1 = 12.4, operand 2 = 17.5, result = -5.1

REFERENCE To see some of the examples from this lesson, watch the Lesson 5
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

www.allitebooks.com

http://www.allitebooks.org

c06.indd 10/31/2015 Page 63

Error Handling
Error handling refers to the process of handling error conditions in your app. Swift 2.0 adds
new statements that give you the ability to throw, catch, and manipulate runtime errors.
Prior to Swift 2.0, if your function wanted to indicate failure, it would do so by returning an
Optional variable with a nil value. Errors provide a streamlined solution to the problem of
indicating failure within a function and handling the failure.

THE ERRORTYPE PROTOCOL

An error can be represented by a class, struct, or enumeration that implements the ErrorType
protocol. In most cases, you will use enumerations to represent errors. The following code
snippet lists an enumeration called NetworkError that could be used to represent error condi-
tions encountered while making a network request.

enum NetworkError: ErrorType {
 case ResourceNotFound
 case ServerError(httpErrorCode:Int)
 case NetworkTimeout
}

NetworkError could be used to represent three potential scenarios:

 ➤ ResoureNotFound: The URL you were trying to reach couldn’t be located.

 ➤ NetworkTimeout: The network request timed out.

 ➤ ServerError: Any other error generated by the server, the HTTP error code will be
included as an associated value—httpErrorCode.

6

64 ❘ LESSON 6 ERROR HANDLING

c06.indd 10/31/2015 Page 64

THROWING AND CATCHING ERRORS

To indicate that a function can throw a runtime error, you must add the throws keyword to the end
of the function declaration:

func doSomething() throws {
...
}

If your function returns a value, then you must add the throws keyword before the return arrow
(->):

func downloadResource(resourceName:String) throws -> NSData?
{

}

If a function is not declared with the throws keyword, it cannot throw a runtime error. To throw an
error from a throwing function, you can use the throw keyword:

func downloadResource(resourceName:String) throws -> NSData?
{
 if resourceName.isEmpty
 {
 throw NetworkError.ResourceNotFound
 }

 return nil;
}

When calling a function that can throw, you must write try in front of the function call. This key-
word is used to indicate the fact that the function being called may throw an error and the lines of
code after the function call may not be executed as a result. The following snippet shows how you
would call the downloadResource function.

let homeScreenBanner:NSData? = try downloadResource("homeScreenBanner.png")

Adding a try statement before a function call does not catch or handle any of the errors that can be
generated by the function. It simply serves to highlight the fact that the function you are calling can
throw one or more errors. To catch and handle errors, you wrap the call to the function in a do . . .
catch statement: The general form of the do . . . catch statement is presented next:

do{
 try A function that throws an error
}
 catch An Error Matching Pattern {
}

If a function throws an error, that error propagates up the call stack until a suitable catch clause is
found that can handle the error. If no catch clause is found, then the application is terminated with
a runtime error. A catch clause is followed by an optional pattern used to match errors and a bunch
of statements that will be executed if the match is a success.

Throwing and Catching Errors ❘ 65

c06.indd 10/31/2015 Page 65

You can have multiple catch clauses in a do . . . catch statement. You can also create a catch-all
clause by omitting the pattern. Multiple catch clauses, and a catch-all clause are demonstrated in
the following code snippet:

func loadHomeScreenImages() {

 do {
 let homeScreenBanner:NSData? = try downloadResource("homeScreenBanner.png")
 } catch (NetworkError.NetworkTimeout) {
 print("Network error occurred!")
 } catch {
 print("Some other error occurred!")
 }
}

catch clauses must be exhaustive; you need to either provide a catch clause for every exception that
can be generated by the throwing function or include a catch-all clause.

You can, however, decide to handle some of the errors and pass the rest higher up the call stack. To
do so, simply append the throws keyword to the method that is handling the partial list of errors.
For example, the following code snippet will compile fi ne even though it does not handle every pos-
sible error that the downloadResource method can throw:

func loadHomeScreenImages() throws {

 do{
 let homeScreenBanner:NSData? = try downloadResource("homeScreenBanner.png")
 }
 catch (NetworkError.NetworkTimeout)
 {
 print("Network error occured!")
 }
}

This code will compile because loadHomeScreenImages itself is declared as a method that can
throw errors (in this case, propagate errors from the downloadResource function).

Suppressing Error Handling
If you are sure that a throwing function will, in fact, not throw an error at runtime, you can opt to
suppress error handling by using the forced try expression (try!). The following snippet uses the
forced try expression in the call to downloadResource to suppress error handling.

func loadHomeScreenImages() {
 let homeScreenBanner:NSData? = try! downloadResource("homeScreenBanner.png")
 print("\(homeScreenBanner)")
}

If a method that is called with the forced try expression generates a runtime error, then your appli-
cation will be terminated.

66 ❘ LESSON 6 ERROR HANDLING

c06.indd 10/31/2015 Page 66

The defer Statement
When a runtime error occurs, code execution usually leaves the current block of code and propa-
gates up the call stack until an appropriate catch expression is found. Often you may want to exe-
cute some cleanup code when an error occurs, before code execution leaves the current scope. The
defer statement allows you to do just that.

A defer statement delays execution until the current scope is exited:

func downloadResource(resourceName:String) throws -> NSData?
{
 if resourceName.isEmpty
 {
 throw NetworkError.ResourceNotFound

 defer {
 // insert cleanup code here.
 }
 }
 else
 {
 return NSData(contentsOfURL: NSURL(string: resourceName)!)
 }

 return nil;
}

You cannot execute any code in a defer block that would cause execution control to jump out
of the block. Therefore, you cannot use the break statement or the return statement, or throw
an error.

TRY IT

In this Try It, you create a new Swift playground and build a function that divides two numbers and
throws an exception if the denominator is zero.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new Swift playground.

 ➤ Create a function called divideNumbers that divides two numbers and throws an exception.

 ➤ Create a function that calls divideNumbers and handles any exceptions that are thrown by
divideNumbers.

 ➤ Display the results in the console.

Try It ❘ 67

c06.indd 10/31/2015 Page 67

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To view the console inside the playground window, select View ➪ Debug Area ➪ Activate Console.

Step by Step
 ➤ Create a new Swift playground.

 1. Launch Xcode and create a new Swift playground by selecting File ➪ New ➪
Playground.

 2. In the playground options screen, use the following values:

 ➤ Name: ExceptionsPlayground

 ➤ Platform: iOS

 3. Save the playground onto your hard disk.

 ➤ Create an enumeration to represent errors.

 1. Delete the default contents of the playground fi le.

 2. Type the following lines:

enum ArithmeticError: ErrorType {
 case DivisionByZero
}

 ➤ Create the divideNumbers function.

Type the following lines after the defi nition of the ArithmeticError enumeration:

func divideNumebrs(numerator n:Double, denominator d:Double) throws -> Double
{
 if d == 0
 {
 throw ArithmeticError.DivisionByZero
 }

 return n / d
}

 ➤ Create a function that calls the divideNumbers function and handles any errors that may be
generated.

http://www.wrox.com/go

68 ❘ LESSON 6 ERROR HANDLING

c06.indd 10/31/2015 Page 68

Type the following lines after the defi nition of the divideNumbers enumeration:

func performDivision(number1:Double, _ number2:Double)
{
 do{
 let result = try divideNumbers(numerator: number1,
 denominator: number2)

 print("\(number1) divided by \(number2) equals \(result)")

 }
 catch
 {
 print ("number2 is zero!")
 }
}

 ➤ Call the performDivision function.

 1. Type the following line after the end of the performDivision function defi nition:

performDivision(10, 2)

 2. Observe the results of this program in the console. You should see the following line in
the console:

"10.0 divided by 2.0 equals 5.0\n"

REFERENCE To see some of the examples from this lesson, watch the Lesson 6
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c07.indd 12/08/2015 Page 69

Object-Oriented Programming
with Swift

Over the years, computer application developers have developed various strategies to create
applications that can solve complex problems. One of the earliest approaches to problem solv-
ing was the concept of structured programming.

Structured programming (which predates object-oriented programming) centered on a divide-
and-conquer philosophy. A complex program was broken down into a set of tasks, and then
each task into a set of simpler sub-tasks. A key feature of structured programming is that there
is a clear separation between data and the code that operates on that data.

Structured programming is still in use in some types of applications today, but it has a few
drawbacks:

 ➤ People generally think of data (account numbers) and what they can do with it (com-
pute balance, interest, and so on) as related concepts. It is not natural to think of them
in isolation.

 ➤ Programmers were constantly reinventing the wheel, creating solutions for things
that had been solved over and over again by others. Structured programming did not
address the need to reuse existing functions (either written by you or someone else)
conveniently.

 ➤ A new approach to programming, object-oriented programming (OOP), was created.
Essentially, OOP tries to address the defi ciencies in the structured programming
model by:

 ➤ Providing techniques to achieve re-use of software components.

 ➤ Coupling data with the functions that act on them.

Core to object-oriented programming is the idea of treating data and functions that act upon
them as an independent entity known as an object.

7

70 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 70

CREATING CLASSES WITH SWIFT

A class can be thought of as a template or blueprint of an object. This is best understood by an
example. If you were to go down to your local car dealer, you would likely fi nd several cars there.
Each of these cars share some common characteristics with each other; for instance, each has
seats, wipers, four wheels, and so on. Looking at this situation from an object-oriented perspec-
tive, you can say that each of these cars is an instance of a class of objects called automobiles. The
Automobile class (see Figure 7-1) could then be thought to defi ne some characteristics that are com-
mon to each instance (such as the fact that each car has four wheels).

CLASS: Automobile

Has 4 Wheels

Has Seats

Has 1 Steering Wheel

Has Windows

Has Brake Pedal

OBJECT: Ford Focus OBJECT: BMW X5 OBJECT: Aston Martin DB9

FIGURE 7-1

Classes are created in swift using the class keyword followed by the name of the class. Unlike
Objective-C, the external interface and implementation of a class is contained in a single fi le. A
bare-bones Automobile class would resemble the following:

class Automobile : NSObject
{

}

The statements that will make up the body of the class are contained within the pair of curly braces.
Just like Objective-C, Swift classes generally inherit from NSObject either directly or indirectly.

PROPERTIES

Common characteristics between the various instances of the Automobile class can be easily
represented using variables; for example, the number of wheels could be represented by an integer

Methods ❘ 71

c07.indd 12/08/2015 Page 71

variable named wheelCount and so on. Table 7-1 lists the characteristics of the Automobile class
and the equivalent variables that could be used to represent them.

TABLE 7-1: Characteristics of the Automobile Class

CHARACTERISTIC VARIABLE

Has 4 wheels Int wheelCount

Has seats Bool hasSeats

Has 1 steering wheel Int numberOfSteeringWheels

Has windows Bool hasWindows

Has brake pedal Bool hasBrakePedal

Unlike Objective-C, Swift does not have an explicit @property syntax. Properties in Swift are
simply public member variables of the class. With this in mind, the Automobile class now becomes:

class Automobile : NSObject
{
 var wheelCount:Int?
 var hasSeats:Bool?
 var numberOfSteeringWheels:Int?
 var hasWindows:Bool?
 var hasBreakPedal:Bool?
}

Notice how every variable is declared as an optional type. The class does not have an init()
method at this point so the default values of all these variables will automatically be nil, and you
need optionals to handle nil values in Swift.

METHODS

To be compliant with the principles of object-oriented design, this Automobile class must also
defi ne some operations that do something with these variables (see Figure 7-2). Whatever these oper-
ations may be, each concrete instance of the Automobile class will be able to perform them.

These operations are best thought of as commands you could give to a car (instance of Automobile
class). This is perhaps where object-oriented solutions differ from real-world situations. In the real
world, you can’t command a car to drive itself (except in the movies); you need to drive the car. In
an object-oriented world, however, the car would drive itself and all you would have to do is tell the
car to start driving. Table 7-2 lists a few possible operations that the Automobile class could defi ne.

72 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 72

OBJECT: Ford Focus OBJECT: BMW X5 OBJECT: Aston Martin DB9

CLASS: Automobile

Has 4 Wheels

Has Seats

Has 1 Steering Wheel

Has Windows

RollDownWindows

StopMoving

StartMoving

Has Brake Pedal

FIGURE 7-2

TABLE 7-2: Operations in the Automobile Class

OPERATION DESCRIPTION

rollDownWindows The car rolls down all its windows.

stopMoving The car stops moving.

startMoving The car starts moving.

Just as you use variables to represent the common characteristics, each of these operations would be
represented using blocks of code (methods). These blocks of code would operate on the data (vari-
ables) within the class to achieve the desired outcome. The following is the modifi ed defi nition of the
Automobile class:

class Automobile : NSObject
{
 var wheelCount:Int?
 var hasSeats:Bool?
 var numberOfSteeringWheels:Int?
 var hasWindows:Bool?
 var hasBreakPedal:Bool?
 var speed:Int?

 func rollDownWindows () {
 println("windows are now open");
 }

 func stopMoving() {
 speed = 0

Methods ❘ 73

c07.indd 12/08/2015 Page 73

 println("car has stopped moving")
 }

 func startMoving() {
 speed = 10
 println("car is moving")
 }
}

An initializer is a special method in a class that is used to create an instance of the class. This is
similar to the concept of a constructor in other languages. The process of initialization typically
involves setting up default values for member variables and any other setup tasks that may be neces-
sary. Unlike Objective-C, initializers in Swift do not return a value.

When it comes to specifying default values for member variables, you can either specify them at
the time of declaration or set them up in an initializer. The initializer for the Automobile class
would be:

init (numWheels:Int, seats:Bool,
 steeringWheelCount:Int, windows:Bool,
 breakPedal:Bool) {
 wheelCount = numWheels
 hasSeats = seats
 numberOfSteeringWheels = steeringWheelCount
 hasWindows = windows
 hasBreakPedal = breakPedal
 }

You can also create an initializer without any parameters; however, because the Automobile class
inherits from NSObject, you will end up overriding the default no-parameter initializer provided by
NSObject. A default initializer for the Automobile class would resemble the following:

override init() {
 wheelCount = 4
 hasSeats = true
 numberOfSteeringWheels = 1
 hasWindows = true
 hasBreakPedal = true
 }

A deinitializer is a method that is called immediately before a class is deallocated. Deinitializers are
written with the deinit keyword, and are called automatically for you.

deinit {
}

Swift uses ARC (Automatic Reference Counting) to manage your memory for you so you do not
usually need to use deinitializers. However, if you are managing your own resources outside of
ARC, you will need to use a deinit method to free these resources.

To fi nd out more about ARC, refer to the Automatic Reference Counting guide available at:

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_
Programming_Language/AutomaticReferenceCounting.html

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html

74 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 74

INSTANTIATING OBJECTS

When it comes to using a class, in most cases you need to instantiate it into a concrete object fi rst.
All subsequent interaction will be with the object and not the class. The Automobile class in this
example is not an actual car; it is just the defi nition of what a car should be.

The following example shows how an instance of the Automobile class may be instantiated and
used:

var bmwThreeSeries: Automobile = Automobile(numWheels:4,
 seats:true, steeringWheelCount:1,
 windows:true, breakPedal:true)

bmwThreeSeries.rollDownWindows()
bmwThreeSeries.startMoving()
bmwThreeSeries.stopMoving()

INHERITANCE

When developing an application, you are likely to create more than one class. The classes you defi ne
are likely to have some relationships with each other. Object-oriented programming allows you to
specify different types of relationships between classes.

The concept of inheritance implies that a new class can be created that inherits the functionality
of an existing class. This new class will provide the functionality of the parent class and provide
some additional functionality of its own. Inheriting from a base class is known as subclassing. By
subclassing an existing class, the designer of an object-oriented solution is reusing the functionality
present in an existing class and not duplicating it. The parent class is commonly referred to as the
base class, and the child as the subclass.

As an example, consider a hypothetical class Dog (see Figure 7-3). Such a class could either be
created in isolation, or more likely inherit from a more general class Mammal. The attributes and
methods present in the Mammal class would be a part of the Dog class. In addition, the Dog class
would add a few attributes and methods of its own.

When you use inheritance to create a relationship between two classes, you are essentially creating
an is-a relationship between them. In the preceding example, a Dog is a Mammal. When one class
inherits from another, the parent class is known as the superclass and the derived class is known as
the subclass.

To indicate a class inherits from a superclass, you indicate the name of the superclass after the sub-
class, separating the two names with a colon. For example, if Mammal is the superclass, and Dog a
subclass, then this relationship can be defi ned in Swift as follows:

class Mammal : NSObject{

 var isMale:Bool = false

 func play() {
 println("Mammal's play() called")
 }

Inheritance ❘ 75

c07.indd 12/08/2015 Page 75

 func rest() {
 println("Mammal's rest() called")
 }

 func eat() {
 println("Mammal's eat() called")
 }
}

class Dog : Mammal{

 var hasFourLegs:Bool = true

 func bark(){
 println("Dog's bar() called")
 }
}

OBJECT: Jane’s DogOBJECT: Ben’s Dog

CLASS: Dog (is-a Mammal)

Has Gender

Has 4 Legs

Rest

Eat

Bark

Play

CLASS: Mammal

Has Gender

Rest

Eat

Play

FIGURE 7-3

A subclass can provide its own implementation of a method that is defi ned in a superclass. This
behavior is called method overriding, and the subclass’s version of the method will be used instead
of the superclass. When overriding a superclass method, Swift requires that you prefi x your over-
riding version in the subclass with the override keyword. Within your overriding version, you

76 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 76

can access the variables and methods of the superclass using the super keyword. In the following
code snippet, the Dog class overrides the eat method, which it would have otherwise inherited from
Mammal:

class Dog : Mammal{

 var hasFourLegs:Bool = true

 override func eat() {
 super.eat()
 println("Dog's eat() called")
 }

 func bark(){
 println("Dog's bar() called")
 }
}

The overriding version of eat in the Dog class fi rst calls the superclass’s version of eat. This is not
strictly required but is a good idea. If you want to prevent a method from being overridden in a sub-
class, you need to append the final keyword before the method declaration.

COMPUTED PROPERTIES

Swift provides the concept of computed properties. These are similar to custom getters and setters in
Objective-C.

A getter is a method that provides read-only access to a private member variable of an object. A
setter is a method that allows another object to change the value of a private member variable.

In object-oriented design it is common practice to create private member variables in a class and
selectively provide getters/setters to defi ne the operations that can be performed on these variables.
This practice is known as encapsulation and allows one to use a class without knowing the details
about how specifi c functionality is implemented in the class. Encapsulation also provides the class
designer with a degree of control over how the class will be used.

It is not necessary to have both getter and setter methods for a member variable. Providing just
a getter method (without a setter method) would in effect make the underlying member variable
read-only.

Computed properties do not actually store a value; instead, you provide a getter and (an optional)
setter method that compute the value of the property based on other properties of the class. This is
illustrated in the following example:

class Rectangle : NSObject {

 var length:Double
 var breadth:Double

Protocols ❘ 77

c07.indd 12/08/2015 Page 77

 init(length:Double, breadth:Double) {
 self.length = length
 self.breadth = breadth
 }

 var area : Double {
 get{
 return length * breadth
 }
 }
}

ENUMERATIONS

An enumeration is a data type that groups a set of named values. The named values are referred
to as elements of the enumeration. Unlike C, Swift enumerations can contain computed properties,
initializers, and member methods.

Enumerations in Swift are defi ned using the enum keyword, and the member values within that enu-
meration are prefi xed with the case keyword, as shown here:

enum EmployeeType {
 case CEO
 case CTO
 case Manager
 case Receptionist
 case Developer
 case ProductOwner
}

To use this enumeration, you will need to declare an appropriate variable and assign it one of the
values in the enumeration as follows:

var acmeEmployee : EmployeeType = EmployeeType.Developer

PROTOCOLS

A protocol can be thought of as a contract that a class agrees to abide by. Technically speaking, the
class is said to implement the protocol in question. But what form does this contract take?

This contract (protocol) is basically a list of methods. These methods can be grouped as either
required or optional. Any class that wishes to conform to a protocol must provide implementations
of all required methods in the protocol. A class can implement multiple protocols (see Figure 7-4),
and multiple classes may implement a given protocol.

78 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 78

Protocol 1
(Contract)

CLASS 1

Protocol 2
(Contract)

CLASS 2 CLASS 3 CLASS 4

FIGURE 7-4

Just because a class implements a protocol does not mean that the class cannot have additional
methods of its own (in addition to the ones defi ned in the protocol). The manner in which protocols
are used depends on the designer of the object-oriented system. In other object-oriented languages
like C++, protocols are known as interfaces.

Protocols are defi ned in Swift using the protocol keyword:

protocol MessageListener {

}

A class conforms to a protocol by including the names of the protocol in its declaration after a
colon. A class can conform to multiple protocols by listing the names of the protocols separated
by commas. If a class has a superclass, the name of the superclass must be listed before any proto-
cols. The following code snippet lists a class called NetworkManager that is a subclass of NSObject
(inheritance) and implements the MessageListener protocol:

class NetworkManager: NSObject, MessageListener {

}

If a protocol contains member variables (property defi nitions), then conforming classes will need
to provide appropriate properties with the same name in their declarations. The protocol does not
specify the manner in which a conforming class may implement properties. A conforming class
could provide a stored property or a computed property implementation. A protocol, however, does
specify whether each property must be gettable, settable, or both. The following snippet shows the
MessageListener protocol with a few property defi nitions as well as the corresponding implemen-
tation in the NetworkManager class:

import Foundation

protocol MessageListener {
 var hasNewMessage:Bool {get}
 var messagePollInterval:Int {get set}
}

class NetworkManager: NSObject, MessageListener {

 private var isDirty : Bool = false

Protocols ❘ 79

c07.indd 12/08/2015 Page 79

 private var pollInterval : Int = 10

 var hasNewMessage : Bool {
 get {
 return isDirty
 }
 }

 var messagePollInterval: Int {
 get {
 return pollInterval
 }

 set {
 self.pollInterval = newValue
 }
 }
}

A protocol can also contain method names that conforming classes must implement. The follow-
ing code snippet builds on the MessageListener protocol and NetworkManager class by adding
methods:

protocol MessageListener {
 var hasNewMessage:Bool {get}
 var messagePollInterval:Int {get set}

 func beginListening()
 func endListening()
}

class NetworkManager: NSObject, MessageListener {

 private var isDirty : Bool = false
 private var pollInterval : Int = 10

 var hasNewMessage : Bool {
 get {
 return isDirty
 }
 }

 var messagePollInterval: Int {
 get {
 return pollInterval
 }

 set {
 self.pollInterval = newValue
 }
 }

 func beginListening() {
 println("NetworkManager beginListening() is called")

80 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 80

 }

 func endListening() {
 println("NetworkManager endListening() is called")
 }
}

If a method or property is prefi xed with the optional attribute in the protocol, then conforming
classes need not provide implementations for these. If a protocol contains an optional property or
method in its defi nition, then the entire protocol must be marked with the @objc attribute, as you
can see in the following code snippet:

@objc protocol ConnectionDelegate {
 optional func setupConnectionAttributes(ipaddress:String, port:Int) -> Bool
}

class NetworkManager: NSObject, MessageListener, ConnectionDelegate {

 private var isDirty : Bool = false
 private var pollInterval : Int = 10

 var hasNewMessage : Bool {
 get {
 return isDirty
 }
 }

 var messagePollInterval: Int {
 get {
 return pollInterval
 }

 set {
 self.pollInterval = newValue
 }
 }

 func beginListening() {
 println("NetworkManager beginListening() is called")
 }

 func endListening() {
 println("NetworkManager endListening() is called")
 }

 // NOTE: this class does not need to provide an implementation for
 // the optional method in the ConnectionDelegate protocol, but it does
 // in this case
 func setupConnectionAttributes(ipaddress:String, port:Int) -> Bool{
 return false
 }
}

Try It ❘ 81

c07.indd 12/08/2015 Page 81

TRY IT

In this Try It, you create a new Swift playground and build a class called Calculator that performs
arithmetic calculations.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new Swift playground.

 ➤ Create a class called Calculator that performs arithmetic calculations.

 ➤ Display the results in the console.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To view the console inside the playground window, use the View ➪ Debug Area ➪ Activate Console
menu item.

Step-by-Step
 ➤ Create a new Swift playground.

 1. Launch Xcode and create a new Swift playground by selecting the File ➪ New ➪
Playground menu item.

 2. In the playground options screen, use the following values:

 ➤ Name: ClassPlayground

 ➤ Platform: iOS

 3. Save the playground onto your hard disk.

 ➤ Create the Calculator class.

 4. Delete the default contents of the playground fi le.

 5. Type the following lines:

import UIKit

class Calculator : NSObject

http://www.wrox.com/go

82 ❘ LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

c07.indd 12/08/2015 Page 82

{
 func AddTwoNumbers(firstNumber:Double, secondNumber:Double) -> Double {
 return firstNumber + secondNumber
 }

 func SubtractTwoNumbers(firstNumber:Double,
 secondNumber:Double) -> Double {
 return firstNumber - secondNumber
 }

 func MultiplyTwoNumbers(firstNumber:Double,
 secondNumber:Double) -> Double {
 return firstNumber * secondNumber
 }

 func DivideTwoNumbers(firstNumber:Double,
 secondNumber:Double) -> Double? {
 if (secondNumber == 0) {
 return nil
 }

 return firstNumber / secondNumber
 }
}

 ➤ Create an instance of the Calculator class and call some of its methods.

 1. Type the following lines after the end of the Calculator class defi nition:

var arithmeticCalculator:Calculator = Calculator()

let num1 = 17.5
let num2 = 19.76

let sum = arithmeticCalculator.AddTwoNumbers(num1, secondNumber: num2)
let difference = arithmeticCalculator.SubtractTwoNumbers(num1,
secondNumber: num2)
let product = arithmeticCalculator.MultiplyTwoNumbers(num1,
secondNumber: num2)
let division = arithmeticCalculator.DivideTwoNumbers(num1, secondNumber:
num2)

print("\(num1) + \(num2) is \(sum)")
print("\(num1) - \(num2) is \(difference)")
print("\(num1) * \(num2) is \(product)")
print("\(num1) / \(num2) is \(division!)")

 2. Observe the results of this program in the console. You should see the following output
in the console:

17.5 + 19.76 is 37.26
17.5 - 19.76 is -2.26

Try It ❘ 83

c07.indd 12/08/2015 Page 83

17.5 * 19.76 is 345.8
17.5 / 19.76 is 0.885627530364372

REFERENCE To see some of the examples from this lesson, watch the Lesson 7
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c08.indd 10/31/2015 Page 85

Supporting Multiple
Device Types

If you have been developing iOS applications for a few years, you will have noticed the steady
increase in the number of iOS-enabled devices in the market today. In this lesson, you learn
about some of the differences between the different iOS devices and how to support them from
a single code base.

When it comes to supporting the different devices, broadly speaking there are two main device
families, iPhones and iPads. The obvious difference is the screen size, but there are some more
subtle differences. For example, iPads cannot make phone calls or send text messages.

You could create separate binaries of your application for the iPhone and iPad, although the
commonly accepted method is to create a single binary that works on both device families.
Such a binary is called a universal application.

To create a universal application project in Xcode, set the device type to be Universal in the
project options dialog box (see Figure 8-1). Although you can use any Xcode template to create
a universal application, this lesson is based on the Single View Application template.

8

86 ❘ LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

c08.indd 10/31/2015 Page 86

FIGURE 8-1

DEVICE DIFFERENCES

While there are two main iOS device families (iPhones and iPads), within each family there are sev-
eral devices. This section introduces the differences between these devices.

Screen Size
By far, the most visible aspect of a device is its screen size. There is a subtle difference in units when
it comes to expressing screen dimensions from a hardware versus a software point of view.

From a hardware point of view, screen size is expressed in terms of physical pixels, whereas iOS
applications refer to the same screen size in device-independent units and not pixels. Starting with
iOS4 and the introduction of the Retina display on the iPhone 4, Apple has introduced a new
device-independent coordinate system. Application developers express sizes and positions in this
new system.

Depending on the physical device on which the app is executed, these device-independent coordi-
nates are converted to device-dependent coordinates by multiplying them with a scale factor. In
the case of a device that does not have a Retina display (such as the iPhone 3GS), this scale factor
happens to be 1. Table 8-1 provides a summary of screen sizes both in hardware pixels and device-
independent units.

Device Differences ❘ 87

c08.indd 10/31/2015 Page 87

TABLE 8-1: Summary of Screen Sizes

DEVICE TYPE SCALE FACTOR PHYSICAL SIZE (PIXELS) LOGICAL SIZE (UNITS)

iPhone 4S 2 640 x 960 320 x 480

iPhone 5/5S 2 640 x 1136 320 x 568

iPhone 6 2 750 x 1334 375 x 667

iPhone 6Plus 3 1242 x 2208 414 x 736

iPad 2, iPad mini 1 768 x 1024 768 x 1024

iPad mini Retina, iPad Air,
iPad Air 2

2 1536 x 2048 768 x 1024

Icon Size
Every application has an icon that is used to represent it on the springboard, settings app, and
spotlight search results. The sizes of these icons have changed over the years as iOS has evolved.
Table 8-2 presents the sizes of these icons for iOS 7.0 and 8.0.

TABLE 8-2: Icon Sizes

DEVICE IOS VERSION ICON TYPE ICON SIZE (PIXELS)

iPhone 4S/5/5S 7.0 Springboard 120 x 120

iPhone 6 8.0 Springboard 120 x 120

iPhone 6 Plus 8.0 Springboard 180 x 180

iPad 2, iPad mini 7.0 Springboard 76 x 76

iPad mini Retina, iPad Air, iPad
Air 2

8.0 Springboard 152 x 152

iPhone 4S/5/5S 7.0 Spotlight results 80 x 80

iPhone 6 8.0 Spotlight results 80 x 80

iPhone 6 Plus 8.0 Spotlight results 120 x 120

iPad 2, iPad mini 7.0 Spotlight results 40 x 40

continues

88 ❘ LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

c08.indd 10/31/2015 Page 88

DEVICE IOS VERSION ICON TYPE ICON SIZE (PIXELS)

iPad mini Retina, iPad Air, iPad
Air 2

8.0 Spotlight results 58 x 58

iPhone 4S/5/5S 7.0 Settings app 58 x 58

iPhone 6 8.0 Settings app 58 x 58

iPhone 6 Plus 8.0 Settings app 87 x 87

iPad 2, iPad mini 7.0 Settings app 29 x 29

iPad mini Retina, iPad Air, iPad
Air 2

8.0 Settings app 58 x 58

As an iOS developer, you will need to include your application icon in different sizes as part of your
project. This is typically done using an asset bundle. Every Xcode project has an asset bundle called
Assets.xcassets and within this bundle is an entry called AppIcon that represents the application
icons (see Figure 8-2).

FIGURE 8-2

TABLE 8-2 (continued)

Device Differences ❘ 89

c08.indd 10/31/2015 Page 89

Device Orientation
There are four device orientations for iOS devices:

 ➤ Portrait

 ➤ Portrait upside-down

 ➤ Landscape left (the Home button is on the left)

 ➤ Landscape right (the Home button is on the right)

It is common for iPhone applications to support a single orientation (portrait), but for iPad applica-
tions, Apple recommends that you support every orientation. You can confi gure the layouts sup-
ported by your application in the Xcode project settings page (see Figure 8-3). You will notice that
the default orientation options for iPhone applications are set up so as to exclude support for the
portrait upside-down mode. This makes sense because people generally do not use their iPhones
upside-down.

FIGURE 8-3

When you use the Xcode project settings page to set up the list of orientations supported by your
app, behind the scenes Xcode adds entries to the “Supported interface orientations and Supported
interface orientations (iPad)” keys in your project’s Info.plist fi le (see Figure 8-4). The Info
.plist fi le can be found in the Supporting Files group in the project explorer.

90 ❘ LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

c08.indd 10/31/2015 Page 90

FIGURE 8-4

THE UNIVERSAL XCODE TEMPLATE

If you create a new universal Xcode project using the Single
view Application template, the project navigator will resemble
Figure 8-5. Notice the project contains a single view controller
fi le and a single storyboard. This may be a surprise to you if you
have been developing applications prior to iOS8.

Prior to iOS 8, a universal application template consisted of two
different storyboards, one for the iPhone and one for the iPad.
This has now been done away with but introduces a slight com-
plication into the mix.

The iPad user interface for an app is usually different from the
iPhone version. In general, because the iPad screen is larger,
developers tend to use different on-screen layouts and in some
cases even provide the user with additional options on the iPad
version of the same app.

With just a single storyboard fi le, how can this be accomplished? The answer to this is the new
Adaptive layout feature of iOS8 with support for size classes. Adaptive layout will be discussed in
the next lesson.

FIGURE 8-5

Try It ❘ 91

c08.indd 10/31/2015 Page 91

TRY IT

In this Try It, you launch Xcode and create a new universal project using the Single View
Application template. You then add a label to the main scene of the storyboard and examine the
application on both the iPhone and iPad simulators.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project using a template.

 ➤ Use the interface editor to update a storyboard scene.

 ➤ Launch the app in the iPhone simulator.

 ➤ Launch the app in the iPad simulator.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
To run an application in the iOS Simulator fi rst select the appropriate device in the scheme selector
drop-down; then select Product ➪ Run.

Step-by-Step
 ➤ Create a new universal project in Xcode.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: UniversalTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: Universal

 ➤ Use Core Data: Unchecked

http://www.wrox.com/go

92 ❘ LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

c08.indd 10/31/2015 Page 92

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk

 ➤ Open the Main.storyboard fi le in the Xcode editor.

 1. Ensure the project navigator is visible and the UniversalTest project is open.

 2. Click the Main.storyboard fi le.

 ➤ Add a label to the storyboard:

 1. Ensure the Object Library is visible by selecting View ➪ Utilities ➪ Show Object
Library.

 2. Select a label from the Object Library and drag it onto the single scene of the story-
board. The position of the label does not matter at this point.

 3. In the Attribute inspector, change the text of the label to “Hello World!” You can dis-
play the Attribute inspector by selecting View ➪ Utilities ➪ Show Attribute Inspector.

 4. Use the Attribute inspector to change the alignment of the label to Centered.

 5. Select Editor ➪ Size to Fit Content to resize the label so that its contents are not
truncated. This option will not be visible in the menu if the label’ contents are not
truncated.

 ➤ Set up a few basic layout constraints to center the label on the screen regardless of the device
family the app may be run on.

Ensure the label is selected. If it is not, simply click it once.

 1. With the label selected, click the Align button located at the bottom right of the story-
board editor to bring up the alignment constraint editor.

 2. Ensure the Horizontally In Container and Vertically In Container options are selected
in the popup window.

 3. Ensure the value of the Update Frames combo box is set to Items of New Constraints.

 4. Click on the Add 2 Constraints button.

 ➤ Run the app on the iPhone Simulator.

 1. Use the scheme/target selector buttons on the Xcode toolbar to select the iPhone6
simulator.

 2. Run the application by selecting Product ➪ Run. Notice the label is centered in the
simulator.

 3. Go back to Xcode and stop the app in the simulator by selecting Product ➪ Stop.

Try It ❘ 93

c08.indd 10/31/2015 Page 93

 ➤ Run the app on the iPad Simulator.

 1. Use the scheme/target selector buttons on the Xcode toolbar to select the iPad Air
simulator.

 2. Run the application by selecting Product ➪ Run. Notice the label is centered in the
simulator.

 3. Go back to Xcode and stop the app in the simulator by selecting Product ➪ Stop.

REFERENCE To see some of the examples from this lesson, watch the Lesson 8
video online at www.wrox.com/go/swiftiosvid .

http://www.wrox.com/go/swiftiosvid

c09.indd 12/08/2015 Page 95

Introduction to UIKit and
Adaptive Layout

With the launch of iOS8, Apple has made it possible to build an application that can run on
any device with a single storyboard. In Apple’s terminology, the application adapts to the
device it is running on. Prior to iOS8, it was common to have different storyboards for
each device family.

Instead of specifying explicit sizes and positions for UI elements, with adaptive layout you
specify constraints between the user interface elements of your view and have iOS apply these
constraints at run time to work out the size and position the elements. A constraint is a math-
ematical description of the relationship between elements.

Most of the time, you apply these constraints using Interface Builder, but it is pos-
sible to specify these constraints programmatically in your code by creating instances of
NSLayoutConstraint. Creating NSLayoutConstraint instances programmatically is outside
the scope of this book. If you are interested in learning more about creating layout constraints
programmatically, refer to the NSLayoutConstraint Class Reference at:

https://developer.apple.com/library/ios/documentation/AppKit/Reference/
NSLayoutConstraint_Class/

INTRODUCING THE UIKIT FRAMEWORK

A framework is a collection of classes that you can use to write your apps. Apple provides a
large number of frameworks that enforce consistent implementation of features across applica-
tions from different developers. All the familiar user interface features such as navigation bars,
toolbars, back buttons, and so on that you commonly use in iOS apps are, in fact, classes in
one of the frameworks provided by Apple.

Although the idea of sticking to user interface elements that only appear in an Apple frame-
work may seem limiting, it is in fact not the case. Apple’s frameworks have a large number of
classes; in fact, some frameworks do not have any user interface–specifi c classes at all. You

9

https://developer.apple.com/library/ios/documentation/AppKit/Reference
https://developer.apple.com/library/ios/documentation/AppKit/Reference/NSLayoutConstraint_Class/

96 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 96

must always try to use classes from one of the standard frameworks when possible; this will ensure
that you do not spend time reinventing the wheel.

The frameworks are grouped together into layers, with frameworks in higher layers building upon
frameworks found in lower layers. Figure 9-1 shows the different layers with examples of some of
the frameworks they contain. In general, using a class from a framework in a lower layer requires
you to write more code than using one from a higher layer.

Cocoa Touch

UIKit MapKit GameKit ...

Media

...AVFoundationCoreGraphics

Core Services

Foundation CoreData CoreLocation ...

CoreOS

...SecurityAccelerate

IOS Framework
Layers

FIGURE 9-1

The top-most layer is known as Cocoa Touch and contains a large number of classes distributed
within multiple frameworks that handle the most common aspects of iOS applications, including but
not limited to processing events, touches, gestures, multithreading, map support, and accelerometer.

Every Xcode project that is created from one of the standard iOS application templates includes
three key frameworks: CoreGraphics, Foundation, and UIKit. Most simple apps do not need to
use classes from any other framework.

Of all the Cocoa Touch frameworks, perhaps the most important and commonly used is UIKit. The
name UIKit may lead you to conclude that it contains only user interface–specifi c classes. This is,
however, not true. Besides user interface–specifi c classes, UIKit contains classes for handling events,
touches, gestures, and general application support.

Classes that are part of UIKit always begin with the UI prefi x. Thus, the UIApplication,
UIWindow, UIView, and UIViewController classes that you have encountered earlier in this lesson
are all part of UIKit.

Introducing the UIKit Framework ❘ 97

c09.indd 12/08/2015 Page 97

The UIButton Class
The UIButton class is part of the UIKit framework and encapsulates the functionality of a button
on a touch screen. A UIButton object sends a message to a target object when it intercepts one or
more touch events.

UIButton objects can intercept different types of touch events; some of the most common ones are
briefl y summarized in Table 9-1.

TABLE 9-1: UIButton Touch Events

EVENT DESCRIPTION

Touch Up
Inside

The user has lifted his fi nger from the touch screen inside the area of the button.

Touch Up
Outside

The user had pressed this button but has lifted his fi nger outside the area of the
button (that is, dragged his fi nger outside the button before lifting it).

Touch
Down

The user has just pressed this button and hasn’t yet lifted his fi nger, or moved it.

Touch Drag
Enter

The user has pressed this button, then dragged his fi nger outside the button, and
has just entered the area of the button again (without lifting the fi nger).

Touch Drag
Exit

The user has pressed this button, then dragged his fi nger and, as a consequence
of dragging, has just left the area of the button.

Touch Drag
Inside

The user has pressed this button and is dragging his fi nger within the area of the
button.

Touch Drag
Outside

The user has pressed this button and is now dragging his fi nger outside the area
of the button. The user would have had to move his fi nger out of the button and
continued to drag without lifting his fi nger to receive this event.

By and large, the most common event that you will use in your code is the Touch Up Inside event.

Adding a UIButton to the view is a simple matter of dragging a Button
object from the Object library onto the client area of the scene. You can
use the Attributes inspector to set up some common properties of the
new button. However, keep in mind that each of these properties can
also be set up using Objective-C code. If you just want to add a title
to a button quickly, simply double-click the button and type in a
suitable title.

The default button created by Xcode is, in fact, quite boring. To make it
more interesting you can change its appearance using use the Attribute
inspector (View ➪ Utilities ➪ Show Attributes Inspector). You can select
from common button types using the Type drop-down (see Figure 9-2). FIGURE 9-2

98 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 98

The standard button types are:

 ➤ Custom: A button without any specifi c appearance, invisible unless you set up an image.
Typically used to create hotspots or graphical buttons.

 ➤ System: This is the default.

 ➤ Detail Disclosure: A button with an arrow; usually indicates that tapping it will reveal addi-
tional information.

 ➤ Info Light: The standard “i” icon, intended to be used over dark backgrounds.

 ➤ Info Dark: The standard “i” icon, intended to be used over light backgrounds.

 ➤ Add Contact: The standard + icon.

A UIButton object can be in one of four states:

 ➤ Default: The button is visible on the screen; the user is not interacting with it.

 ➤ Highlighted: The user is currently pressing down the button.

 ➤ Selected: A UIButton object does not ordinarily move into this state as a result of user inter-
action, but this state can be set up programmatically.

 ➤ Disabled: The button is visible on the screen, but the user cannot interact with it.

For each state you can provide a different background color, title, and
background image. You can use the Attribute inspector’s State Confi g
drop-down to select a state and set up attributes for that state. This is
shown in Figure 9-3.

To assign an image for your button, you will need to create a PNG
image for each state and import the images into your Xcode project.
When applying an image to a button, you can assign the image to either
the Image attribute or the Background attribute. There is a slight differ-
ence between the two. The background image is scaled to fi ll the entire
area of the button and is displayed behind the title. The foreground
image is displayed beside the title.

NOTE To learn more about the UIButton class, read the UIButton Class
Reference documentation available at http://developer.apple.com/library/
IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/
UIButton.html.

The UILabel Class
The UILabel class allows you to draw one or multiple lines of static text onto your view. The
UILabel class does not normally generate touch events but provides several properties that allow
you to customize its appearance. The most common ones are described in Table 9-2.

FIGURE 9-3

http://developer.apple.com/library
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/UIButton.html

Basic Constraints ❘ 99

c09.indd 12/08/2015 Page 99

TABLE 9-2: UILabel Properties

PROPERTY DESCRIPTION

text Sets the text displayed by the label using the current font.

numberOfLines The maximum number of lines of text to be drawn.

textAlignment Defi nes the horizontal alignment of text in the label. Permissible val-
ues are UITextAlignmentLeft, UITextAlignmentRight, and
UITextAlignmentCenter.

textColor Sets the color used to display the text. You can set the color by providing a
UIColor object. The UIColor class is discussed later in this lesson.

font Sets the font that is used to display the text.

NOTE To learn more about the UILabel class, read the UILabel Class refer-
ence documentation available at http://developer.apple.com/library/
IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/
UILabel.html.

BASIC CONSTRAINTS

If you have developed iOS applications in the past, the fi rst change you will notice when you open a
nib or a storyboard is that each view is now represented using a square canvas instead of a rectangu-
lar one (see Figure 9-4).

FIGURE 9-4

http://developer.apple.com/library
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/UILabel.html

100 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 100

This may seem a little odd at fi rst because the iPhones and iPads all have rectangular form factors.
Apple has introduced a square canvas because they do not want you to think in terms of a specifi c
device when designing your UI. Instead, you build your user interface for a generic square canvas
and iOS will adapt it to fi t the specifi c device based on the constraints you have specifi ed.

The fundamental building block of this new layout system is the constraint. A constraint is a math-
ematical rule that helps lay out UI elements. Constraints can specify an element’s height, width,
horizontal position, or vertical position from another element. Constraints can be added, removed,
and edited to affect the layout of your application’s UI.

For instance, to position a label centered (horizontally and vertically) in the screen, you will need to
add a few constraints. Start by dragging a Label object from the Object Library and placing it at an
arbitrary location on the storyboard canvas (see Figure 9-5).

FIGURE 9-5

With the Label selected, you bring up the alignment constraint editor by clicking the Align button
located at the bottom-right corner of the storyboard editor (see Figure 9-6).

In the alignment constraint editor, ensure the Horizontally in Container and Vertically in Container
options are enabled and their corresponding values are both zero. Click on the Add 2 Constraints
button to add these constraints. When you do this, you will notice two new constraints has been
added between the label and the view (see Figure 9-7).

Basic Constraints ❘ 101

c09.indd 12/08/2015 Page 101

1

2

FIGURE 9-6

FIGURE 9-7

102 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 102

If you select one of the constraint in the view hierarchy, you can update
its properties using the size inspector (see Figure 9-8).

Mathematically, any constraint can be expressed using the following
equation:

Y = multiplier * X + Constant

X and Y are attributes of views and can be either left, right, top,
bottom, leading, trailing, width, height, centerX, centerY, or
baseline.

The attributes leading and trailing are the same as left and right
for left-to-right languages such as English. However, in a right-to-left
language such as Arabic, leading and trailing are interpreted as right and left. When you
create constraints, you should usually use leading and trailing (instead of left and right) to
make sure your interface is laid out appropriately in all languages.

Some of the other properties relevant to constraints are:

 ➤ Relation: The relationship between the attributes represented in a constraint can be one of
equality (=), greater than or equal to (>=), or less than or equal to (<=)

 ➤ Priority: When multiple constraints are defi ned for a given attribute, those with higher prior-
ity levels are satisfi ed before those with lower priority.

At this point, even though you have added constraints to center the label horizontally and vertically,
the label is still where you left it on the storyboard. If you were to run the application now, you
would fi nd that the label is indeed centered as you would expect.

If you select the label on the storyboard, you will notice that it has an orange outline. An orange
outline implies that there is an adaptive layout problem. There are three typical problems that you
will encounter:

 ➤ The constraints are correct, but the size/position of the UI elements will be different from
what you see on the storyboard in Interface Builder

 ➤ You don’t have enough constraints to specify both the size and position of a UI element

 ➤ You have ambiguous constraints, i.e. either none or too many constraints are specifi ed for the
same attribute, with the same priority level.

You can fi nd out what the problem is by switching to the Issue Navigator (see Figure 9-9).

FIGURE 9-9

FIGURE 9-8

Basic Constraints ❘ 103

c09.indd 12/08/2015 Page 103

In this particular case there is just one issue with the constraints on this storyboard scene, and is
listed as

 ➤ Frame for “Label” will be different at run time.

To fi x this particular issue, select the label and then select Editor ➪ Resolve Auto Layout Issues ➪
Update Frames.

The storyboard should now resemble Figure 9-10.

FIGURE 9-10

If you pay attention to the bottom-right corner of the storyboard, you will notice four auto layout–
specifi c buttons (see Figure 9-11):

FIGURE 9-11

 ➤ Stack: This button is only enabled if one or more items are selected in a storyboard scene.
When this option is available, using it will embed the selected items into a UIStackView.

104 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 104

 ➤ Align: This button enables you to add an alignment constraint to the selected UI element rela-
tive to another element in the scene. Clicking this button will bring up a popup that contains
various alignment options.

 ➤ Pin: This button enables you to set the position of a UI element relative to other elements and
to apply size constraints.

 ➤ Resolve Auto Layout Issues: This button enables you to correct layout problems. Clicking
this button will bring up a popup menu that is identical to the Editor ➪ Resolve Auto Layout
Issues menu item.

If you now wanted to add a button to the right of the label, you could do this by fi rst dragging a
Button object from the object library and placing it in the approximate location on the scene (see
Figure 9-12).

FIGURE 9-12

You can then use the Pin button to create constraints that fi x the size of the button and its horizon-
tal distance from the label, as shown in Figure 9-13.

To align the top of the button with the top of the label, select both the button and label (in that
order), and then use the alignment constraint editor to add a new alignment constrained for Top
Edges (see Figure 9-14).

Basic Constraints ❘ 105

c09.indd 12/08/2015 Page 105

FIGURE 9-13

FIGURE 9-14

106 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 106

To refl ect these changes on the storyboard, select Editor ➪ Resolve Auto Layout Issues ➪ Update
Frames.

PREVIEWING YOUR LAYOUT

If you would like to know how your storyboard will appear on a specifi c device without running the
application, you can use the assistant editor. First, ensure a scene is selected in your storyboard and
show the assistant editor by selecting View ➪ Assistant Editor ➪ Show Assistant Editor.

Next, use the assistant editor’s jump bar to switch to the layout preview (see Figure 9-15). The assis-
tant editor will now display a preview of the storyboard in one of the standard iOS screen sizes.

FIGURE 9-15

You can add additional screen sizes to the preview area by clicking the plus sign (+) button at the
bottom-left corner of the preview window (see Figure 9-16). You can also toggle the orientation of
the preview between portrait and landscape by clicking the device name (see Figure 9-17).

Previewing Your Layout ❘ 107

c09.indd 12/08/2015 Page 107

FIGURE 9-16

FIGURE 9-17

108 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 108

CREATING OUTLETS

User interface elements are usually defi ned in storyboards, and even though you can set their prop-
erties graphically using Interface Builder, there will be times when you will need to read or change a
property from your code while your application is running. To do so, you need to create an appro-
priate instance variable in the view controller class and connect it to the user interface element in
the scene. These connections are known as outlets, and can be created quickly using the assistant
editor. To display the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor. If the
assistant editor is in Automatic mode, selecting a user interface element in one of the scenes of the
storyboard fi le automatically opens the Swift code (.swift) fi le of the corresponding view controller
class. You can switch the assistant editor into Automatic mode using the jump bar. This is shown in
Figure 9-18.

FIGURE 9-18

To create an outlet for the button object, right-click the button to bring up a context menu and drag
from the circle beside the New Referencing Outlet line to an empty line in the Swift class (see
Figure 9-19).

Release the mouse button on an empty line in the header fi le to open a dialog box that allows you
to type in a name for the outlet (see Figure 9-20). Type a name for the outlet variable—for our pur-
poses here, let’s name it someButton.

Creating Outlets ❘ 109

c09.indd 12/08/2015 Page 109

FIGURE 9-19

FIGURE 9-20

Click the Connect button in the popup dialog box to fi nish creating the outlet. Notice how Xcode
has created an optional var of type UIButton in your class.

@IBOutlet weak var someButton: UIButton!

To signify that the variable refers to an object defi ned in the storyboard fi le, Xcode adds the
@IBOutlet keyword to the variable declaration.

110 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 110

CREATING ACTIONS

Most user interface elements generate a variety of events as a result of user interaction. As a pro-
grammer, you will be interested in some of these user-generated events and will want your code to
be executed when these events occur. To achieve this, you need to create one or more methods in the
view controller class and wire them up to appropriate events generated by the user interface element.
These methods in the view controller class that are called when an event has been triggered as a
result of user interaction are referred to as actions.

As you might expect, both of these steps can be performed graphically with the Interface Builder.
To show a list of events that can be intercepted by a user interface object, simply right-click the user
interface element in Interface Builder and browse through the entries under the Sent Events category
of the context menu.

You will see all the familiar touch events listed there along with a few others. To wire up the Touch
Up Inside event to a method in your class, simply drag from the circle beside the name of the event
to an empty line in your view controller class.

When you release the mouse on the view controller, Xcode presents a popup window in which you
can provide a name for the new method. Call the new method onButtonPressed.

Note that the onButtonPressed method takes in a single argument of type AnyObject called
sender. This parameter always contains a reference to the object that sent this message to your view
controller. In this particular case, the sender would be the user interface object that generated the
corresponding event.

Once you have an action method wired up to the button’s Touch Up Inside event, you can write
Swift code that will be executed when the user interacts with this button. This is examined in this
lesson’s Try It.

TRY IT

In this Try It, you launch Xcode and create a new Xcode project using the Single View Application
template called InteractionSample. You use the Interface Builder to create an instance of a
UIButton and a UILabel class and then write code to update the text displayed in the label when
the button is pressed.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a UILabel and a UIButton object to the default scene in the storyboard.

Try It ❘ 111

c09.indd 12/08/2015 Page 111

 ➤ Create and connect the UILabel to an outlet in the view controller class.

 ➤ Create and connect the Touch Up Inside event of the UIButton instance to an action method
in the view controller class.

 ➤ Change the text of the label when the button is clicked.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor Show Assistant Editor.

 ➤ To show the source editor, select View ➪ Source Editor ➪ Show Standard Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called InteractionSample:

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product name: InteractionSample

 ➤ Organization name: your company

 ➤ Organization identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project to your hard disk.

 ➤ Open the Main.storyboard fi le in the Xcode editor:

 1. Ensure the project navigator is visible and the InteractionSample project is open.

 2. Click the Main.storyboard fi le.

http://www.wrox.com/go

112 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 112

 ➤ Add a label to the storyboard:

 1. Ensure the Object Library is visible by selecting View ➪ Utilities ➪ Show Object
Library.

 2. Select a label from the Object Library and drag it onto the single scene of the story-
board. The position of the label does not matter at this point.

 3. Use the Attribute inspector to change the alignment of the label to Centered.

 4. Select Editor ➪ Size to Fit Content to resize the label so that its contents are not trun-
cated. This option is only visible if the text in the label is currently truncated.

 ➤ Set up a few basic layout constraints to center the label on the screen:

 1. Ensure the label is selected; if it is not, simply click it once.

 2. Center the label horizontally and vertically by using the alignment constraint editor
popup window.

 3. Update the storyboard to display the new position of the label accurately by selecting
Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a button to the storyboard:

 1. From the Object library, select a Button and drop it onto the scene.

 2. Double-click the button and change the text displayed in it to Greet Me!

 3. Drag the button to sit a short distance below the label. The precise position does not
matter.

 4. Ensure the button is selected; if it is not, simply click it once.

 5. Center the button horizontally by using the alignment constraint editor popup window.

 6. Use the pin button to add the following constraints (see Figure 9-21)

 ➤ Pin the distance between the top of the button and its nearest neighbor in the
storyboard (the label).

 ➤ Pin the height of the button.

 ➤ Pin the width of the button.

 ➤ Create an outlet in the view controller class and connect it to the label.

 1. Ensure the assistant editor is visible. To show it, select View ➪ Assistant Editor ➪
Show Assistant Editor. Ensure the ViewController.swift fi le is open in the assistant
editor. If it’s not, use the jump bars to select it.

 2. Right-click the label to show the context menu. Ensure you have right-clicked the label
and not the layout constraint.

 3. Drag from the circle beside New Referencing Outlet to an empty line in the
ViewController.swift fi le in the assistant editor.

Try It ❘ 113

c09.indd 12/08/2015 Page 113

 4. Name the new connection textLabel in the popup dialog that appears and click the
Connect button. The code in the assistant editor should now resemble the following:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var textLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

FIGURE 9-21

114 ❘ LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

c09.indd 12/08/2015 Page 114

 ➤ Create an action method in the view controller class and connect it to the Touch Up Inside
event of the button:

 1. Right-click the button to show the context menu.

 2. Drag from the circle beside the Touch Up Inside event to an empty line in the
ViewController.swift fi le in the assistant editor.

 3. Name the new method onButtonPressed in the popup dialog that appears and
click the Connect button. The code in the assistant editor should now resemble the
following:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var textLabel: UILabel!

 @IBAction func onButtonPressed(sender: AnyObject) {

 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

 ➤ Write code to update the text of the label when the button is pressed:

 1. Scroll down and locate the implementation of the onButtonPressed method in the
Assistant Editor.

 2. Replace it with the following code to change the text of the label:

@IBAction func onButtonPressed(sender: AnyObject) {
 textLabel.text = “Greetings mighty coder!”
}

Try It ❘ 115

c09.indd 12/08/2015 Page 115

 ➤ Run the app on the iOS Simulator:

 1. Use the scheme/target selector buttons on the Xcode toolbar to select an iOS simulator.

 2. Run the application by selecting Product ➪ Run. Tap the button and observe the text in
the label change.

 3. Go back to Xcode and stop the app in the simulator by selecting Product ➪ Stop.

REFERENCE To see some of the examples from this lesson, watch the Lesson 9
video online at www.wrox.com/g o /swiftiosvid.

http://www.wrox.com/g

c10.indd 11/02/2015 Page 117

Introduction to Storyboards
Most iOS applications are made up of several screens of content with the user typically navi-
gating from one screen to another. A storyboard is a feature in Xcode that lets you view all
the screens as well as the connections between them in a single place. In general, storyboards
provide a better high-level overview of all the screens in your application and the relationships
between them.

Storyboards involve two key concepts, scenes and segues. A scene is defi ned by a view control-
ler and is the major visual component of a storyboard. It represents one screen of content in
your application.

If you have been programming iOS applications prior to iOS5, everything you know about
Interface Builder applies to scenes. When you create a new project from any of the iOS
Application templates, Xcode creates a single storyboard fi le for you called Main.storyboard
(see Figure 10-1).

Figure 10-2 shows the scenes that make up the storyboard of a simple iOS application. As you
can see, each scene contains familiar UIKit controls like image views, buttons, and labels.
Clicking one of the scenes in the storyboard selects it. The selected scene has a dark gray out-
line around it.

Toward the upper portion of the selected scene you will notice three icons (see Figure 10-3)
in a white strip. This strip is called the dock and the three icons represent the top-level
items in the scene. The fi rst two of these represent the view controller class associated
with the scene, the second represents the fi rst responder, and the third icon represents the
exit item.

10

118 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 118

FIGURE 10-1

FIGURE 10-2

FIGURE 10-3

c10.indd 11/02/2015 Page 119

Introduction to Storyboards ❘ 119

The actual user-interface elements in the view controller are not top-level objects because they are
contained by the view controller and hence do not appear in the dock. These appear in the docu-
ment outline, which can be expanded using the Document Outline button at the bottom-left corner
of the storyboard (see Figure 10-4).

FIGURE 10-4

120 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 120

Objects contained within the scene are shown hierarchically (see
Figure 10-5). Clicking an object in the hierarchy selects it in the cor-
responding scene.

To view the entire storyboard at a glance, simply double-click the
canvas to zoom out. Double-click a scene to select and zoom in to
the storyboard.

A segue represents the transition between one scene to another.
It also represents the manner in which the new scene is
presented. Segues are represented by arrows between scenes
(see Figure 10-6). There can be multiple segues between
scenes.

When using segues, there are four different ways in which a view
can be presented: Push, Replace, Present Modally, Present As
Popover. Modal segues are used to present modal content; they
enable you to specify a transition style, the most common of which
is one where the new scene slides up from the bottom of the screen.
Push segues are used in conjunction with a navigation controller
to slide a new scene onto the screen. Custom segues enable you to
specify the presentation style.

You can set up the type and Attribute of a segue by selecting it and
using the Attribute inspector (see Figure 10-7).

FIGURE 10-6

FIGURE 10-5

c10.indd 11/02/2015 Page 121

Introduction to Storyboards ❘ 121

FIGURE 10-7

You can select a segue by clicking the circle in the middle of the arrow representing the segue on the
storyboard (see Figure 10-8). Each segue in your application must be uniquely identifi ed by a string.
This identifi er can also be set up using the Attribute inspector.

FIGURE 10-8

When you create a new Xcode project, the default storyboard fi le contains a single scene. To add a
new scene to a storyboard, simply drag and drop a View Controller object from the Object library
onto the canvas. You can add interface elements to the new scene by simply dragging and dropping
objects from the Object library; to create outlets and actions for these elements you fi rst need to create
a UIViewController subclass that does not have an associated XIB fi le and link it to the new scene.

To create a new UIViewController subclass, simply right-click the project in the project navigator
and select New File from the context menu. Select the Cocoa Touch Class template (under the iOS ➪
Source group) in the dialog box that appears and click Next (see Figure 10-9).

FIGURE 10-9

122 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 122

In the fi le options dialog box for the new class, ensure you have subclassed UIViewController and
have cleared the Also create XIB fi le option (see Figure 10-10).

FIGURE 10-10

After you create your UIViewController subclass, you need to associate it with the new scene in
the storyboard. To do so, simply select the scene in the storyboard, select the view controller object
(the yellow box) in the dock, and choose the appropriate class name in the Identity inspector (see
Figure 10-11).

FIGURE 10-11

To create a segue from an object in one scene to another scene, simply right-click the object to dis-
play a context menu and drag from the circle beside the action entry under the Triggered Segues cat-
egory to the target scene (see Figure 10-12).

Alternately, you can Ctrl+drag from the object to the target scene and select an option from the con-
text menu that appears when you release the mouse button.

www.allitebooks.com

http://www.allitebooks.org

c10.indd 11/02/2015 Page 123

Introduction to Storyboards ❘ 123

Click the new segue to select it, and use the Attribute inspector to give it a unique string identifi er.
To perform some tasks in the source view controller when a segue is about to be performed, override
the prepareForSegue method in the source view controller class.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

}

FIGURE 10-12

You could potentially have several buttons in the source view controller, each going to different
scenes of the storyboard with individual segues. If you override the prepareForSegue method in
the source view controller, your version of this method will be called regardless of which segue is in
action. Within this method, you need to provide code to determine which segue is in action and take
appropriate steps.

The fi rst argument of this method is a UIStoryboardSegue object that represents the segue about to
be performed. The second parameter is a reference to the object that initiated the segue.

The UIStoryboardSegue object provides the identifier variable, which contains the unique string
identifi er specifi ed using the Attribute inspector. The UIStoryboardSegue object also provides the

124 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 124

sourceViewController and destinationViewController variables that you can use to retrieve a
reference to the source and target view controllers involved in the transition. You can use this infor-
mation to set up properties in the destination view controller before it is displayed.

TRY IT

In this Try It, you launch Xcode and create a new Xcode project using the Single View Application
template called FruitList. In the default scene, you present the user with a short list of fruits, and
in the second scene you show detailed information on the fruit selected in the fi rst scene. The user
will be able to get back to the fi rst scene from the second scene.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Add image resources to your project.

 ➤ Add a new NSObject subclass to your project FruitClass.

 ➤ Add an array to the FruitListViewController class and add three instances of
FruitClass to this array.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a UILabel and three UIButton objects to the default scene in the storyboard.

 ➤ Create an additional scene in the storyboard and a new UIViewController subclass called
FruitDetailViewController in the project.

 ➤ Use the Identity inspector to change the Custom class of the new scene to
FruitDetailViewController.

 ➤ Create segues from the four buttons in the fi rst scene to the second scene.

 ➤ Override the prepareForSegue:sender method in the ViewController class to pass infor-
mation on the selected fruit to the second scene.

 ➤ Add user interface elements and code to the second scene to display information on a fruit.

 ➤ Add a UIButton to the second scene to dismiss it.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

http://www.wrox.com/go

Try It ❘ 125

c10.indd 11/02/2015 Page 125

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called FruitList.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: FruitList

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project to your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking on it in the project navigator.

 3. Navigate to the Images folder in this chapter’s resources from the website.

 4. Create a new image set by selecting Editor ➪ New Image Set, and name this new image
set apple.

 5. Drag the apple1x.png, apple2x.png, and apple3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

 6. Create a new image set by selecting Editor ➪ New Image Set, and name this new image
set banana.

 7. Drag the banana1x.png, banana2x.png, and banana3x.png images from this chap-
ter’s resources into the appropriate placeholders in the image set.

126 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 126

 8. Create a new image set by selecting Editor ➪ New Image Set, and name this new image
set orange.

 9. Drag the orange1x.png, orange2x.png, and orange3x.png images from this chap-
ter’s resources into the appropriate placeholders in the image set.

 10. Create a new image set by selecting Editor ➪ New Image Set and name this new image
set background.

 11. Drag the background1x.png, background2x.png, and background3x.png images
from this chapter’s resources into the appropriate placeholders in the image set.

 ➤ Open the Main.storyboard fi le in the Xcode editor.

 1. Ensure the project navigator is visible and the FruitList project is open.

 2. Click the Main.storyboard fi le.

 ➤ Add a background image to the default scene of the storyboard.

 1. Ensure the Object library is visible by selecting View ➪ Utilities ➪ Show Object
Library.

 2. Select an Image View from the Object library and drag it onto the single scene of the
storyboard. The size and position of the image view does not matter at this point.

 3. Use the Attribute inspector to set the Image attribute of the image view to background.

 4. Ensure the image view is selected; if it is not, simply click it once.

 5. Use the Pin button to display the constraints editor popup.

 ➤ Uncheck the Constrain to margins option.

 ➤ Pin the distance between the top of the image view and its nearest neighbor
to 0.

 ➤ Pin the distance between the bottom of the image view and its nearest
neighbor to 0.

 ➤ Pin the distance between the left edge of the image view and its nearest neigh-
bor to 0.

 ➤ Pin the distance between the right edge of the image view and its nearest
neighbor to 0.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 ➤ Add a button to the storyboard.

 1. From the Object library, select a button and drop it onto the scene.

 2. Double-click the button and change the text displayed in it to Apple.

 3. Drag the button to position it near the center of the scene. The precise size or position
does not matter.

Try It ❘ 127

c10.indd 11/02/2015 Page 127

 4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector; you may need to scroll down a little to access it.

 5. Ensure the button is selected; if it is not, simply click it once.

 6. Use the Align button to display the alignment constraint editor and add two constraints
to center the button both horizontally and vertically.

 7. Ensure the button is selected and use the Pin button to display the constraints editor
popup.

 ➤ Pin the width of the button to 165.

 ➤ Pin the height of the button to 40.

 ➤ Click the Add 2 Constraints button to dismiss the constraints editor popup.

 ➤ Update the frames to match the constraints you have set.

 1. Click the View controller item in the dock above the storyboard scene. This is the fi rst
of the three icons located directly above the selected storyboard scene.

 2. Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a second button to the storyboard.

 1. From the Object library, select a button and drop it onto the scene.

 2. Double-click the button and change the text displayed in it to Banana.

 3. Drag the button to position it a short distance below the Apple button. The precise size
or position does not matter.

 4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector. You may need to scroll down a little to access it.

 5. Ensure the button is selected; if it is not, simply click it once.

 6. Use the Align button to display the alignment constraint editor and add a constraint to
center the button horizontally.

 7. Ensure the button is selected and use the Pin button to display the constraints edi-
tor popup. While setting these constraints ensure the Constrain to margins option is
unchecked.

 ➤ Pin the width of the button to 165.

 ➤ Pin the height of the button to 40.

 ➤ Pin the distance between the top of the button and its nearest neighbor to 30.

 ➤ Click the Add 3 Constraints button to dismiss the constraints editor popup.

128 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 128

 8. Update the frames to match the constraints you have set.

 ➤ Click the View controller item in the dock above the storyboard scene. This is
the fi rst of the three icons located directly above the selected storyboard scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a third button to the storyboard.

 1. From the Object library, select a button and drop it onto the scene.

 2. Double-click the button and change the text displayed in it to Orange.

 3. Drag the button to position it a short distance above the Apple button. The precise size
or position does not matter.

 4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector. You may need to scroll down a little to access it.

 5. Ensure the button is selected. If it is not, simply click it once.

 6. Use the Align button to display the alignment constraint editor and add a constraint to
center the button horizontally.

 7. Ensure the button is selected and use the pin button to display the constraints edi-
tor popup. While setting these constraints ensure the Constrain to margins option is
unchecked.

 ➤ Pin the width of the button to 165.

 ➤ Pin the height of the button to 40.

 ➤ Pin the distance between the bottom of the button and its nearest neighbor
to 30.

 ➤ Click the Add 3 Constraints button to dismiss the constraints editor popup.

 8. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a label to the storyboard.

 1. Ensure the Object library is visible by selecting View ➪ Utilities ➪ Show Object
Library.

 2. Select a label from the Object library and drag it onto the single scene of the story-
board. Place the label a short distance above the Orange button.

 3. Use the Attribute inspector to change the alignment of the label to Centered.

 4. Double-click the label and change the text displayed in it to Select a fruit.

 5. Use the Attribute inspector to change the font size of the label to 36.

Try It ❘ 129

c10.indd 11/02/2015 Page 129

 6. Select Editor ➪ Size to Fit Content to resize the label so that its contents are not
truncated.

 7. Center the label horizontally by selecting Editor ➪ Align ➪ Horizontal Center in
Container.

 8. Ensure the label is selected and use the Pin button to display the constraints editor
popup.

 ➤ Pin the distance between the bottom of the label and its nearest neighbor
to 30.

 ➤ Click the Add 1 Constraint button to dismiss the constraints editor popup.

 9. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Create an NSObject subclass called FruitClass.

 1. Ensure the project navigator is visible.

 2. Right-click the FruitList group and select New File from the context menu.

 3. Select the Cocoa Touch Class template and click Next.

 4. Call the new class FruitClass and ensure that the new class is a subclass of NSObject
by selecting NSObject in the drop-down combo box, and click Next.

 5. Select a folder where fi les should be created. It is best to accept the default location pro-
vided by Xcode.

 6. Modify the FruitClass.swift fi le to resemble the following:

import UIKit
import Foundation

class FruitClass: NSObject {

 var fruitName:String!
 var fruitImage:String!
 var fruitFamily:String!
 var fruitGenus:String!

 init (fruitName:String,
 fruitImage:String,
 fruitFamily:String,
 fruitGenus:String) {
 self.fruitName = fruitName;
 self.fruitImage = fruitImage;
 self.fruitFamily = fruitFamily;
 self.fruitGenus = fruitGenus;
 }
}

130 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 130

 ➤ Add an Array variable to the ViewController class and populate it with three FruitClass
instances. Do this bymodifying the ViewController.swift fi le to resemble the following:

import UIKit

class ViewController: UIViewController {

 var arrayOfFruits:[FruitClass] = [FruitClass]()

 override func viewDidLoad() {
 super.viewDidLoad()

 let apple:FruitClass = FruitClass(fruitName: "Apple",
 fruitImage: "apple",
 fruitFamily: "Rosacae",
 fruitGenus: "Malus")

 let banana:FruitClass = FruitClass(fruitName: "Banana",
 fruitImage: "banana",
 fruitFamily: "Musacae",
 fruitGenus: "Musa")

 let orange:FruitClass = FruitClass(fruitName: "Orange",
 fruitImage: "orange",
 fruitFamily: "Rutacae",
 fruitGenus: "Citrus")

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

 ➤ Add a new subclass of UIViewController called FruitDetailViewController.

 1. Ensure the project navigator is visible.

 2. Right-click the FruitList group and select New File from the context menu.

 3. Select the Cocoa Touch Class template and click Next.

 4. Call the new class FruitDetailViewController and ensure that the new class is a
subclass of UIViewController by selecting UIViewController in the drop-down
combo box.

 5. Ensure that Also create XIB fi le option is not selected, and click Next.

 6. Select a folder where fi les should be created. It is best to accept the default location
provided by Xcode.

 ➤ Create a new scene in the storyboard.

 1. Ensure the Main.storyboard fi le is open. If it is not, then select it in the project
navigator.

 2. Drag a View Controller object from the Object library onto the storyboard canvas.

Try It ❘ 131

c10.indd 11/02/2015 Page 131

 3. Double-click the canvas to zoom out.

 4. Position the new scene alongside the original scene.

 5. Select the new scene in the storyboard, select the View Controller object from
the dock, and use the Identity inspector to change its Custom class attribute to
FruitDetailViewController. To show the Identity inspector, select View ➪ Utilities
➪ Show Identity inspector.

 ➤ Add user interface elements to the new scene.

 1. Select the Fruit Detail View Controller scene to select it, and use the scroll bars to cen-
ter it in the view area.

 2. Add a background image to the new scene.

 ➤ Ensure the Object library is visible by selecting View ➪ Utilities ➪ Show
Object Library.

 ➤ Select an image view from the Object library and drag it onto the single scene
of the storyboard. The size and position of the image view does not matter at
this point.

 ➤ Use the Attribute inspector to set the Image attribute of the image view to
background.

 ➤ Ensure the image view is selected; if it is not, simply click it once.

 ➤ Use the Pin button to display the constraints editor popup:

 a. Clear the Constrain to margins option.

 b. Pin the distance between the top of the image view and its nearest neighbor
to 0.

 c. Pin the distance between the bottom of the image view and its nearest
neighbor to 0.

 d. Pin the distance between the left edge of the image view and its nearest
neighbor to 0.

 e. Pin the distance between the right edge of the image view and its nearest
neighbor to 0.

 f. Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Add an additional image view to the new scene. This will be used to display a picture of
the fruit selected in the fi rst scene.

 ➤ Ensure the Object library is visible by selecting View ➪ Utilities ➪ Show
Object Library.

 ➤ Select an Image View from the Object library and drag it onto the single scene
of the storyboard. The size and position of the image view does not matter at
this point.

 ➤ Use the Align button to display the alignment constraint editor and add con-
straints to center the button horizontally and vertically.

132 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 132

 ➤ Use the Pin button to display the constraints editor popup.

 a. Pin the height of the image view to 128.

 b. Pin the width of the image view to 128.

 c. Click the Add 2 Constraints button to dismiss the constraints editor popup.

 ➤ Update the frames to match the constraints you have set.

 a. Click the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected
storyboard scene.

 b. Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Create an outlet in the FruitDetailViewController class and connect it to
the image view.

 a. Ensure the assistant editor is visible. To show it, select View
➪ Assistant Editor ➪ Show Assistant Editor. Ensure the
FruitDetailViewController.swift file is open in the assistant
editor; if not, then use the jump bars to select it.

 b. Right-click the image view to show the context menu. Ensure you have
right-clicked the image view and not the layout constraint.

 c. Drag from the circle beside New Referencing Outlet to an empty line
in the FruitDetailViewController.swift fi le in the assistant editor.

 d. Name the new outlet fruitImage in the popup dialog that appears and
click the Connect button. The code in the assistant editor should now
resemble the following:

import UIKit

class FruitDetailViewController: UIViewController {

 @IBOutlet weak var fruitImage: UIImageView!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()

Try It ❘ 133

c10.indd 11/02/2015 Page 133

 // Dispose of any resources that can be recreated.
 }
}

 4. Add a label to the storyboard.

 ➤ Ensure the Object library is visible by selecting View ➪ Utilities ➪ Show
Object Library.

 ➤ Select a label from the Object library and drag it onto the single scene of the
storyboard. Place the label a short distance above the image view added in the
previous step.

 ➤ Use the Attribute inspector to change the alignment of the label to Centered.

 ➤ Double-click the label and change the text displayed in it to You have
selected.

 ➤ Use the attribute editor to change the font size of the label to 26.

 ➤ Select Editor ➪ Size to Fit Content and resize the label so that its contents are
not truncated.

 ➤ Use the Align button to display the alignment constraint editor and add a con-
straint to center the button horizontally.

 ➤ Ensure the label is selected and use the pin button to display the constraints
editor popup.

 a. Pin the distance between the bottom of the label and its nearest neigh-
bor to 30.

 b. Click the Add 1 Constraint button to dismiss the constraints editor
popup.

 ➤ Update the frames to match the constraints you have set.

 5. Add three additional labels to the scene below the image view.

 ➤ Repeat the steps.

 ➤ Ensure the Text Alignment attribute of each label is Centered.

 ➤ Place them one below the other, and all of them below the image view.

 ➤ Ensure the labels are centered horizontally in the scene and are at an even dis-
tance of 15 units from each other.

 ➤ Change the caption of the labels to Fruit Name, Fruit Family, Fruit Genus.

 ➤ When complete, your scene should resemble Figure 10-13.

134 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 134

FIGURE 10-13

 ➤ Create three outlets in the FruitDetailViewController class and connect
them to the three labels you have just created on the storyboard scene. Name
these outlets fruitNameLabel, fruitFamilyLabel, and fruitGenusLabel.
The code in the assistant editor should now resemble the following:

import UIKit

class FruitDetailViewController: UIViewController {

 @IBOutlet weak var fruitImage: UIImageView!
 @IBOutlet weak var fruitNameLabel: UILabel!
 @IBOutlet weak var fruitFamilyLabel: UILabel!
 @IBOutlet weak var fruitGenusLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {

Try It ❘ 135

c10.indd 11/02/2015 Page 135

 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

 6. Add a button to the scene.

 ➤ From the Object library, select a Button object and drop it onto the scene.

 ➤ Double-click the button and change the text displayed in it to Back.

 ➤ Drag the button to position it a short distance below the Fruit Genus label.
The precise size or position does not matter.

 ➤ Use the Attribute Editor to change the background color of the button to
White Color. The background color attribute is located in the View subsec-
tion of the Attribute Editor; you may need to scroll down a little to access it.

 ➤ Ensure the button is selected. If it is not, simply click it once.

 ➤ Center the button horizontally by selecting Editor ➪ Align ➪ Horizontal
Center in Container.

 ➤ Ensure the button is selected and use the pin button to set up the following
constraints:

 a. Pin the width of the button to 165.

 b. Pin the height of the button to 40.

 c. Pin the distance between the top of the button and its nearest neighbor
to 15.

 ➤ Click the Add 3 Constraints button to dismiss the constraints editor popup.

 ➤ Update the frames to match the constraints you have set.

 a. Click on the View controller item in the dock above the storyboard
scene. This is the fi rst of the three icons located directly above the
selected storyboard scene.

 b. Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Create an action method in the view controller class and connect it to the
button.

 a. Ensure the assistant editor is visible. To show it, select View
➪ Assistant Editor ➪ Show Assistant Editor. Ensure the
FruitDetailViewController.swift fi le is open in the assistant editor;
if not, then use the jump bars to select it.

 b. Right-click the button to show the context menu. Ensure you have
right-clicked the label and not the layout constraint.

136 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 136

 c. Drag from the circle beside Touch Up Inside to an empty line in the
FruitDetailViewController.swift fi le in the assistant editor.

 d. Name the new action method onBack in the popup dialog that appears
and click the Connect button.

 e. Add the following line of code to the implementation of the onBack
method in the FruitDetailViewController.swift fi le:

self.dismissViewControllerAnimated(true, nil);

The code in the assistant editor should now resemble the following:

import UIKit

class FruitDetailViewController: UIViewController {

 @IBOutlet weak var fruitImage: UIImageView!
 @IBOutlet weak var fruitNameLabel: UILabel!
 @IBOutlet weak var fruitFamilyLabel: UILabel!
 @IBOutlet weak var fruitGenusLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func onBack(sender: AnyObject) {
 self.dismissViewControllerAnimated(true, completion: nil);
 }
}

 ➤ Create segues in the storyboard.

 1. Open the Main.storyboard fi le in Interface Builder

 2. Double-click the canvas to zoom out. Position the two scenes suffi ciently apart on the
canvas by dragging them.

 3. Double-click the fi rst scene to activate it.

 4. Right-click the Orange button to bring up a context menu. Drag from the circle beside
the action item under the Triggered Segues category in the context menu to the Fruit
Detail View Controller scene (see Figure 10-14).

 5. When you release the mouse button, you will be asked to select the segue type. Select
Present Modally.

Try It ❘ 137

c10.indd 11/02/2015 Page 137

 6. Select the segue by clicking the circle along the line joining the two scenes and use the
Attribute inspector to change the identifi er to orangeSegue (see Figure 10-15).

FIGURE 10-14

FIGURE 10-15

138 ❘ LESSON 10 INTRODUCTION TO STORYBOARDS

c10.indd 11/02/2015 Page 138

 7. Similarly, create segues from each of the other two buttons (Apple, Banana) in the fi rst
scene to the second scene. Name these segues appleSegue and bananaSegue respec-
tively. Your storyboard canvas should resemble Figure 10-16.

FIGURE 10-16

 ➤ Modify the implementation of the ViewController class by adding the following implemen-
tation for the prepareForSegue:sender: method in ViewController.swift:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

 if (segue.identifier == "appleSegue") {
 var objectData:FruitClass = self.arrayOfFruits[0]
 let destination = segue.destinationViewController
 as! FruitDetailViewController

 destination.dataObject = objectData;
 }
 else if (segue.identifier == "bananaSegue") {
 var objectData:FruitClass = self.arrayOfFruits[1]
 let destination = segue.destinationViewController
 as! FruitDetailViewController

 destination.dataObject = objectData;
 }
 else if (segue.identifier == "orangeSegue") {
 var objectData:FruitClass = self.arrayOfFruits[2]
 let destination = segue.destinationViewController
 as! FruitDetailViewController

 destination.dataObject = objectData;
 }
 }

Try It ❘ 139

c10.indd 11/02/2015 Page 139

When you fi nish typing these lines, you may notice the compiler complaining about the line:

destination.dataObject = objectData;

Ignore the issue momentarily as we will address it in the next step.

 ➤ Modify the interface of the FruitDetailViewController class.

 1. Add the following variable directive to the top of the FruitDetailViewController
.swift fi le:

var dataObject:FruitClass?

 2. Modify the implementation of the viewDidLoad method as follows:

override func viewDidLoad() {
 super.viewDidLoad()
 guard let dataObject = dataObject else {
 return
 }

 fruitImage.image = UIImage(named: dataObject.fruitImage)
 fruitNameLabel.text = "Name: \(dataObject.fruitName)"
 fruitFamilyLabel.text = "Family: \(dataObject.fruitFamily)"
 fruitGenusLabel.text = "Genus: \(dataObject.fruitGenus)"
}

 ➤ Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 10
video online at www.w r ox.com/go/swiftiosvid.

http://www.w

c11.indd 12/10/2015 Page 141

 SECTION II
More iOS Development

 ▸ LESSON 11: Handling User Input

 ▸ LESSON 12: Alert Views and Action Sheets

 ▸ LESSON 13: Adding Images to Your View

 ▸ LESSON 14: Pickers

 ▸ LESSON 15: Navigation Controllers

 ▸ LESSON 16: Table Views

 ▸ LESSON 17: Collection Views

 ▸ LESSON 18: Tab Bars and Toolbars

 ▸ LESSON 19: Creating Views That Scroll

 ▸ LESSON 20: Popovers and Modal Views

 ▸ LESSON 21: Touches and Gestures

c11.indd 12/10/2015 Page 143

Handling User Input
In Lesson 9 you were introduced to the UIButton and UILabel classes. The UILabel class
enables you to display static text on the screen. In this lesson, you learn to use text fi elds and
text views to accept input from users. Text fi elds enable users to type a single line of text and
are instances of the UITextField class. Text views, on the other hand, enable users to type in
multiple lines of text and are instances of the UITextView class. Both classes are part of the
UIKit framework.

TEXT FIELDS

To create a text fi eld, simply drag and drop a Text Field object from the Object library onto a
storyboard scene (see Figure 11-1).

You can use the Attribute inspector to set up several attributes of the text fi eld, including the
Placeholder, Alignment, Border Style, Text Color, Font, and the type of keyboard that is dis-
played when the user taps on the text fi eld (see Figure 11-2).

A placeholder is some text that is displayed in the text fi eld when it is empty, typically prompt-
ing the user to enter some information in the fi eld. You can choose from seven different key-
boards to associate with a text fi eld; the choice you make will depend on the type of data you
expect. These keyboard styles can be selected using the Attribute inspector and are displayed
in Figure 11-3.

11

c11.indd 12/10/2015 Page 144

144 ❘ LESSON 11 HANDLING USER INPUT

FIGURE 11-1

FIGURE 11-2 FIGURE 11-3

Text Fields ❘ 145

c11.indd 12/10/2015 Page 145

The text displayed in a text fi eld is an instance of a String object. The String class is defi ned in
the Foundation framework, and its instances represent sequences of characters (alphabets, numbers,
punctuation marks).

To be able to access the text displayed in a text fi eld object from code, you fi rst need to create an
outlet in the view controller class and then read the value of the text property in your code. For
example, if usernameField is an outlet created using the assistant editor, you can use the following
code to get the text displayed in the fi eld:

let text:String = usernameField.text;

Tapping on a text fi eld signifi es that the user wants to interact with it, and as a result makes it the
active user interface element. The active user interface element is formally known as the “fi rst
responder.” When a text fi eld receives fi rst responder status, it automatically displays a keyboard.

To dismiss a keyboard when the Done button is pressed on the keypad, you will have to use the
assistant editor to create a method in the view controller class and connect it to the Did End On
Exit event of the text fi eld (see Figure 11-4). A method in a view controller class that is wired to one
of the events generated by a user interface element is commonly referred to as an action method.

FIGURE 11-4

In your action method, you need to ask the text fi eld to resign from fi rst responder status. You can
do this by calling the resignFirstResponder method of the text fi eld object as shown in the fol-
lowing snippet:

@IBAction func onDismissKeyboard(sender: AnyObject) {
 self.usernameField.resignFirstResponder();
 }

146 ❘ LESSON 11 HANDLING USER INPUT

c11.indd 12/10/2015 Page 146

Note that the sender parameter will contain a reference to the source of the event that triggered this
method (which will be the text fi eld).

This method of dismissing the keypad works for most keyboard styles, except for the numeric key-
pads, which don’t have a Done button. It is common practice for applications to allow the user to
tap the background of the screen (outside the keypad or any other text fi eld) to dismiss the keypad.
One way to achieve this is by using a UITapGestureRecognizer object. Gesture recognizers are
covered in detail in Lesson 21. For the moment, you can add a gesture recognizer to the view con-
troller class by following these simple steps.

 1. Add the following method declaration to the view controller class:

func handleBackgroundTap(sender: UITapGestureRecognizer) {

 }

 2. Add the following code to the viewDidLoad method of the view controller class:

let tapRecognizer = UITapGestureRecognizer(target:self ,
 action: Selector("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer(tapRecognizer)

 3. Implement the handleBackgroundTap: method as follows:

func handleBackgroundTap(sender: UITapGestureRecognizer) {
 self.usernameField.resignFirstResponder();
 }

TEXT VIEWS

Text views are similar to text fi elds in many respects. The key difference, however, is that text views
can handle multiple lines of text. Text views handle the scrolling of text automatically, and can also
be used as a read-only view, thus providing a convenient way to display scrollable multi-line text.

To create a text view, simply drag and drop a Text View element from the Object library onto the
view (see Figure 11-5). By default a text view is sized to fi t the entire screen, but you can resize/
reposition it as needed.

To create a read-only text view, simply uncheck its Editable property in the Attribute inspector. A
read-only text view does not display a keypad when tapped. Editable text views also enable you
to select from one of seven different keypad types that will appear when the user taps them. The
keypad associated with a text view, however, does not have a Done button; instead, it has a Return
button that adds a new line to the text. Thus, to dismiss the keypad you will have to use the gesture
recognizer technique discussed for text fi elds.

Try It ❘ 147

c11.indd 12/10/2015 Page 147

FIGURE 11-5

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
LoginSample that presents a simple user interface to collect a username and password combination
from the user. The user interface will also contain a Login button that displays a customized greet-
ing to the user when it is tapped.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

148 ❘ LESSON 11 HANDLING USER INPUT

c11.indd 12/10/2015 Page 148

 ➤ Add two UILabel instances to the default scene, with the text User name: and Password:,
respectively.

 ➤ Add two UITextField instances to the same scene, corresponding to the username and pass-
word fi elds, and create appropriate outlets in the view controller for them.

 ➤ Create an action method called dismissKeyboard() in the view controller class that calls the
resignFirstResponder method on each text fi eld, and connect the Did End On Exit event
of each text fi eld to this action method.

 ➤ Add a UIButton instance to the scene that, when tapped, displays a message in an alert view.

 ➤ Use a tap gesture recognizer to dismiss the keyboard when the background is tapped.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, use the View ➪ Utilities ➪ Show Object Library menu item.

 ➤ To show the assistant editor, use the View ➪ Assistant Editor ➪ Show Assistant Editor menu
item.

Step-by-Step
 ➤ Create a Single View Application in Xcode called LoginSample.

 1. Launch Xcode and create a new application by selecting File ➪ New Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: LoginSample

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project to your hard disk.

http://www.wrox.com/go

Try It ❘ 149

c11.indd 12/10/2015 Page 149

 ➤ Open the Main.storyboard fi le in the Xcode editor.

 1. Ensure the project navigator is visible and the LoginSample project is open.

 2. Click the Main.storyboard fi le.

 ➤ Add two UILabel instances to the default scene.

 1. Ensure the Object library is visible. To show it, select View ➪ Utilities ➪ Show Object
Library.

 2. From the Object library, drag and drop two Label objects onto the scene.

 3. Use the Attribute inspector to set the text attribute of the fi rst label to User name:. To
show the Attribute inspector, select View ➪ Utilities ➪ Show Attributes Inspector.

 4. Change the text attribute of the second label to Password:.

 5. Select both labels in the scene and select Editor ➪ Size to Fit Contents to ensure the
labels are large enough to show their contents.

 6. Add the following constraints using the pin constraints dialog box for the user name
label:

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ The distance from the left edge of the label to the view is 10.

 ➤ The distance from the top of the label to the view is 15.

 ➤ The width of the label is 91.

 ➤ The height of the label is 21.

 7. Add the following constraints using the pin constraints dialog box for the password
label:

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ The distance from left edge of the label to the view is 10.

 ➤ The vertical distance between the two labels is 15.

 ➤ The width of the label is 91.

 ➤ The height of the label is 21.

 8. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add two UITextField instances to the scene.

150 ❘ LESSON 11 HANDLING USER INPUT

c11.indd 12/10/2015 Page 150

 1. From the Object library, drag and drop two Text Field objects onto the scene and posi-
tion them beside the two labels created in the previous step.

 2. Use the Attribute inspector to set the Placeholder attribute of the fi rst text fi eld to
Enter user name.

 3. Use the Attribute inspector to set the Placeholder attribute of the second text fi eld to
Enter password.

 4. Select both text fi elds in the scene and select Editor ➪ Size to Fit Contents to ensure the
labels are large enough to show their contents.

 5. Select the user name fi eld in the scene and click the Pin button to display the constraints
editor. Set the following constraints.

 ➤ Ensure that Constrain to margins is unchecked.

 ➤ The distance between the text fi eld and the label should be 15.

 ➤ The distance from the top of the text fi eld to the view should be 10.

 ➤ The width of the text fi eld should be 200.

 ➤ The height of the text fi eld should be 30.

 6. Add the following constraints for the password fi eld:

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ The distance between the text fi eld and the label should be 15.

 ➤ The vertical distance between the two text fi elds should be 10.

 ➤ The width of the text fi eld should be 200.

 ➤ The height of the text fi elds should be 30.

 7. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a UIButton instance to the scene.

 1. From the Object library, drag and drop a Button object onto the scene.

 2. Double-click it and set the text in the button to Login.

 3. Select the button in the scene and click the Pin button to display the constraints editor.
Set the following constraints:

Try It ❘ 151

c11.indd 12/10/2015 Page 151

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ The horizontal distance between the button and the view should be 116.

 ➤ The vertical distance between the button and the password fi eld should be 10.

 ➤ The width of the button should be 64.

 ➤ The height of the button should be 40.

 4. Change the background color for the button to a dark gray color so that it is visible
against a white background.

 5. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

Your storyboard should resemble Figure 11-6.

FIGURE 11-6

152 ❘ LESSON 11 HANDLING USER INPUT

c11.indd 12/10/2015 Page 152

 ➤ Create outlets in the ViewController class and connect these outlets to the text fi elds in the
scene.

 1. Ensure the assistant editor is visible. To show it, select View ➪ Editor ➪ Show
Assistant Editor.

 2. Right-click the UITextField object corresponding to the user name to display a con-
text menu. Drag from the circle beside the New Referencing Outlet option in the con-
text menu to an empty line in the ViewController.swift fi le.

 3. Name the new outlet usernameField.

 4. Repeat this procedure for the password text fi eld, and name the corresponding outlet
passwordField.

 ➤ Create an action method in the ViewController class and associate it with the Did End On
Exit events of the two text fi elds.

 1. Right-click the UITextField object corresponding to the username to display its con-
text menu, and drag from the circle beside the Did End On Exit item to an empty line
in the ViewController.swift fi le.

 2. Name the new Action onDismissKeyboard.

 3. Right-click the UITextField object corresponding to the password to display its con-
text menu, and drag from the circle beside the Did End On Exit item to the icon repre-
senting the view controller in the dock (see Figure 11-7).

FIGURE 11-7

Try It ❘ 153

c11.indd 12/10/2015 Page 153

 4. Release the mouse button over the yellow view controller icon in the dock to present
a list of existing action methods in the view controller. Select the onDismissKeyboard
method.

 5. Click the ViewController.swift fi le in the project navigator to open it.

 6. Add the following code to the implementation of the onDismissKeyboard method:

usernameField.resignFirstResponder()
passwordField.resignFirstResponder()

 ➤ Create an action in the ViewController.swift fi le and connect it with the Touch Up Inside
event of the login button.

 1. Select the storyboard in the project navigator.

 2. Right-click the Login button in the scene to display its context menu, and drag from the
circle beside the Touch Up Inside item to an empty line in the ViewController.swift
fi le.

 3. Name the new action method onLogin.

 4. Click the ViewController.swift fi le in the project navigator to open it.

 5. Add the following code to the implementation of the onLogin method:

usernameField.resignFirstResponder()
passwordField.resignFirstResponder()

let userName:String = usernameField.text!
let length:Int = userName.characters.count

if length == 0 {
 return
}

let alert = UIAlertController(title: "",
 message: "Login succesfull",
 preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

self.presentViewController(alert,
 animated: true,
 completion: nil)

 ➤ Add a tap gesture recognizer and use it to dismiss the keyboard when the background area of
the view is tapped.

 1. Add the following code to the viewDidLoad method of the ViewController.Swift
fi le, after the super.viewDidLoad() line:

let tapRecognizer = UITapGestureRecognizer(target:self ,
 action: Selector("handleBackgroundTap:"))

154 ❘ LESSON 11 HANDLING USER INPUT

c11.indd 12/10/2015 Page 154

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer(tapRecognizer)

 2. Implement the handleBackgroundTap() method in the ViewController.swift fi le as
follows:

func handleBackgroundTap(sender: UITapGestureRecognizer) {
 usernameField.resignFirstResponder()
 passwordField.resignFirstResponder()
 }

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can use the Project ➪ Run
menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 11
video online at www.wrox.com/go/s w iftiosvid.

http://www.wrox.com/go/s

c12.indd 10/31/2015 Page 155

Alert Views and Action Sheets
The user interface elements you have encountered so far have all been created by dragging
and dropping from the Object library. In this lesson you are introduced to alert views and
action sheets, two user interface elements that are created only with code. Prior to iOS 8,
alert views and action sheets were represented by the UIAlertView and UIActionSheet
classes. This is no longer the case with iOS 8; both of these are now handled by a single class
UIAlertController.

ALERT VIEWS

An alert view is a special modal view that is used to display a short message to the user and
typically enables the user to choose from a small number of options. The most common use of
an alert view is to display information on success or failure of an operation; for example, on
success a typical login operation may display an alert view, as shown in Figure 12-1.

FIGURE 12-1

12

156 ❘ LESSON 12 ALERT VIEWS AND ACTION SHEETS

c12.indd 10/31/2015 Page 156

When an alert view is displayed, the screen is dimmed automatically for you. You can specify a title,
a message, and one or more buttons to present the user with options. When multiple options are pre-
sented to the user, it is common to designate one of the buttons to act as the cancel button. You can
change the text displayed in the cancel button, but it is always displayed at the bottom of the alert
view with a boldface font, as shown in Figure 12-2.

FIGURE 12-2

An alert view is managed by an instance of the UIAlertController class, which is part of the
UIKit framework and is created in code as follows:

let alert = UIAlertController(title: "This is the title",
 message: "This is the message text",
 preferredStyle: UIAlertControllerStyle.Alert)

The fi rst parameter is the title of the alert view. This is followed by the message. The third param-
eter should be UIAlertControllerStyle.Alert if you want an alert view.

Once you have created an alert view, you need to add buttons to it. This is achieved by creat-
ing instances of the UIAlertAction class and adding them to the alert view using the addAction
method. The following code snippet creates two buttons, one of them being the Cancel button.

alert.addAction(UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

alert.addAction(UIAlertAction(title: "Cancel",
style: UIAlertActionStyle.Cancel,
handler: nil))

Alert Views ❘ 157

c12.indd 10/31/2015 Page 157

The fi rst parameter to the UIAlertAction constructor is the title that appears on the button; this is
followed by the type of button (Default or Cancel). The fi nal parameter is an optional closure that is
executed when the button is pressed.

The following code snippet creates an alert view with two actions. The fi rst action has a closure
associated with it that will display another alert view:

let alert = UIAlertController(title: "Help",
 message: "Would you like to call customer services?",
 preferredStyle: UIAlertControllerStyle.Alert)

let dialActionHandler = { (action:UIAlertAction!) -> Void in
 let alertMessage = UIAlertController(title: "Error",
 message: "Sorry, unable to make a call at the moment.",
 preferredStyle: UIAlertControllerStyle.Alert)

 alertMessage.addAction(UIAlertAction(title: "OK",
 style: .Default,
 handler: nil))

 self.presentViewController(alertMessage,
 animated: true,
 completion: nil)
 }

alert.addAction(UIAlertAction(title: "Call +44 7922 394132",
 style: UIAlertActionStyle.Default,
 handler: dialActionHandler))

alert.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.Cancel,
 handler: nil))

To show the alert view, simply use the presentViewController method of UIViewController as
follows:

self.presentViewController(alert, animated: true, completion: nil)

The alert view object enables you to add up to two text fi elds, in addition to buttons. This
comes in handy when you want to collect username and password information from the user (see
Figure 12-3).

To do this, you can use the addTextFieldWithConfigurationHandler method of the
UIAlertController class. The following code snippet creates an alert view with a text fi eld:

let alert = UIAlertController(title: "Enter name",
 message: "",
 preferredStyle: UIAlertControllerStyle.Alert)

158 ❘ LESSON 12 ALERT VIEWS AND ACTION SHEETS

c12.indd 10/31/2015 Page 158

alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

alert.addTextFieldWithConfigurationHandler({(textField: UITextField!) in
 textField.placeholder = "What is your name?"
 })

self.presentViewController(alert, animated: true, completion: nil)

FIGURE 12-3

To retrieve the value typed by the user when the alert view is dismissed, you need to retrieve a refer-
ence to the UITextField object within the alert controller and read its text as follows:

let alert = UIAlertController(title: "Enter name",
 message: "",
 preferredStyle: UIAlertControllerStyle.Alert)

let okActionHandler = { (action:UIAlertAction!) -> Void in

 var nameField = alert.textFields![0] as UITextField

 let alertMessage = UIAlertController(title: "Hello",
 message: "\(nameField.text)",
 preferredStyle: UIAlertControllerStyle.Alert)

 alertMessage.addAction(UIAlertAction(title: "OK",
 style: .Default,
 handler: nil))

Action Sheets ❘ 159

c12.indd 10/31/2015 Page 159

 self.presentViewController(alertMessage,
 animated: true,
 completion: nil)
 }

alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: okActionHandler))

alert.addTextFieldWithConfigurationHandler({(textField: UITextField!) in
 textField.placeholder = "What is your name?"
 })

self.presentViewController(alert, animated: true, completion: nil)

ACTION SHEETS

An action sheet is another user interface component that is created through code and can be used to
present a list of choices to a user. Action sheets are similar to alert views in many respects, but they
have several important differences. To start with, action sheets look signifi cantly different from alert
views, and they look different on an iPhone and an iPad (see Figure 12-4).

FIGURE 12-4

On an iPhone, they slide up from the bottom of the screen, and on the iPad they display as popover
windows. On an iPad, the cancel button is not visible. If the user taps outside the action sheet on an
iPad, the action sheet is dismissed.

Action sheets enable you to highlight one of the buttons in red—this button is referred to as the
destructive button. The following code snippet shows how to create an action sheet on an iPhone:

160 ❘ LESSON 12 ALERT VIEWS AND ACTION SHEETS

c12.indd 10/31/2015 Page 160

let alert = UIAlertController(title: "This is the title",
 message: "This is the message",
 preferredStyle: UIAlertControllerStyle.ActionSheet)

alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

alert.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.Cancel,
 handler: nil))

alert.addAction(UIAlertAction(title: "Destructive",
 style: UIAlertActionStyle.Destructive,
 handler: nil))

self.presentViewController(alert, animated: true, completion: nil)

As you can see, the parameters are very similar to those of an alert view, with the main dif-
ference being that the third argument to the UIAlertController constructor is now
UIAlertControllerstyle.ActionSheet.

The destructive button is created by instantiating a UIAlertAction object with the style parameter
set to UIAlertActionStyle.Destructive.

alert.addAction(UIAlertAction(title: "Destructive",
 style: UIAlertActionStyle.Destructive,
 handler: nil))

Showing an action sheet on an iPhone is identical to alert views:

self.presentViewController(alert, animated: true, completion: nil)

However, on an iPad you will need additional code, as the action sheet is presented in a popover. To
show an action sheet on an iPad, use the following snippet:

alert.modalPresentationStyle = UIModalPresentationStyle.Popover

if let popoverController = alert.popoverPresentationController {
 popoverController.sourceView = sender as UIView;
 popoverController.sourceRect = sender.bounds;
}

self.presentViewController(alert, animated: true, completion: nil)

You cannot display an action sheet in the viewDidLoad method of a view controller class on the
iPad. Another important distinction between action sheets and alert views is that the former cannot
have text fi elds in them.

Try It ❘ 161

c12.indd 10/31/2015 Page 161

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
ActionSheetSample that presents an action sheet with a list of colors when a button is tapped.
When the user selects a color from the action sheet, the background color of the scene will be
updated to match the selected color.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add UIButton instance to the default scene.

 ➤ Write code to display a list of colors to the user when the button is tapped.

 ➤ Write code to update the background color of the scene to refl ect the selected color.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called ActionSheetSample.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: ActionSheetSample

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

http://www.wrox.com/go

162 ❘ LESSON 12 ALERT VIEWS AND ACTION SHEETS

c12.indd 10/31/2015 Page 162

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project to your hard disk.

 ➤ Open the Main.storyboard fi le in the Xcode editor.

 1. Ensure the project navigator is visible and the ActionSheetSample project is open.

 2. Click the Main.storyboard fi le.

 ➤ Add a UIButton instance to the scene.

 1. From the Object library, drag and drop a Button object onto the scene.

 2. Double-click it and set the text in the button to Change Background Color.

 3. Select the button in the scene and click the Pin button to display the constraints editor.
Set the following constraints:

 ➤ The width of the button should be 210.

 ➤ The height of the button should be 40.

 4. Change the background color for the button to a dark gray color so that it is visible
against a white background.

 5. Select the button in the scene and click the Align button to display the alignment con-
straint editor. Add two constrains to center the button both horizontally and vertically
(see Figure 12-5).

 6. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

Your storyboard should resemble Figure 12-6.

Try It ❘ 163

c12.indd 10/31/2015 Page 163

FIGURE 12-5

 ➤ Create an action in the ViewController.swift fi le and connect it with the Touch Up Inside
event of the Change Background Color button.

 1. Select the storyboard in the project navigator.

 2. Right-click the Change Background Color button in the scene to display its context
menu, and drag from the circle beside the Touch Up Inside item to an empty line in the
ViewController.swift fi le.

 3. Name the new action method onPresentActionSheet.

164 ❘ LESSON 12 ALERT VIEWS AND ACTION SHEETS

c12.indd 10/31/2015 Page 164

FIGURE 12-6

 4. Click the ViewController.swift fi le in the project navigator to open it.

 5. Add the following code to the implementation of the onPresentActionSheet method:

let alert = UIAlertController(title: "Change background color",
 message: "Select a color",
 preferredStyle: UIAlertControllerStyle.ActionSheet)

 alert.addAction(UIAlertAction(title: "Red",
 style: UIAlertActionStyle.Default,
 handler: { (action: UIAlertAction) -> Void in
 self.view.backgroundColor = UIColor.redColor()
 }))

 alert.addAction(UIAlertAction(title: "Green",
 style: UIAlertActionStyle.Default,
 handler: { (action: UIAlertAction) -> Void in
 self.view.backgroundColor = UIColor.greenColor()

Try It ❘ 165

c12.indd 10/31/2015 Page 165

 }))

 alert.addAction(UIAlertAction(title: "Blue",
 style: UIAlertActionStyle.Default,
 handler: { (action: UIAlertAction) -> Void in
 self.view.backgroundColor = UIColor.blueColor()
 }))

 alert.addAction(UIAlertAction(title: "Yellow",
 style: UIAlertActionStyle.Default,
 handler: { (action: UIAlertAction) -> Void in
 self.view.backgroundColor = UIColor.yellowColor()
 }))

 alert.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.Cancel,
 handler:nil))

 self.presentViewController(alert, animated: true, completion: nil)

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can use the Project ➪ Run
menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 12
video online at www.wrox.com/go/swiftio s vid.

http://www.wrox.com/go/swiftio

c13.indd 10/31/2015 Page 167

Adding Images to Your View
The UIKit framework provides classes that enable you to represent and display images. In this
lesson, you learn how to use the UIImage and UIImageView classes.

THE UIIMAGE CLASS

A UIImage object represents image data that has either been read from a fi le or created using
Quartz primitives. Instances are immutable. Thus, their properties can’t be changed once they
have been created. UIImage instances do not provide access to the underlying image data, but
do enable you to retrieve a PNG or JPEG image representation in an NSData object.

Images generally require large amounts of memory to store, and you should avoid creating
image objects larger than 4096 x 4096 pixels. To load an image from a fi le into a UIImage
object, you fi rst need to ensure the fi le is in one of the formats listed in Table 13-1.

TABLE 13-1: UIImage Supported File Formats

DESCRIPTION FILE EXTENSIONS

Portable Network Graphics .png

Joint Photographic Experts Group .jpeg, .jpg

Graphics Interchange Format .gif

Windows Device Independent Bitmap .bmp

Tagged Image File Format .tif, .tiff

You also need to ensure that the fi le is part of the project’s asset catalog. To access the asset
catalog for your project, simply click on the Assets.xcassets fi le in the Project Explorer (see
Figure 13-1).

13

168 ❘ LESSON 13 ADDING IMAGES TO YOUR VIEW

c13.indd 10/31/2015 Page 168

FIGURE 13-1

 An asset catalog lets you keep all the images in your project in one place and access them conve-
niently. An asset catalog can contain the following:

 ➤ Image sets: An image set contains all the versions of an image, at different sizes to support
different device scale factors.

 ➤ App icons: An app icon contains the application icon in different sizes. The application icon
is used to represent the application on the iOS home screen, settings app, spotlight results,
and the app store.

 ➤ Launch images: A launch image is a placeholder image used by iOS to stand in place of an
application while the application is being loaded in the background. Once the application is
loaded, iOS swaps the static launch image with the application’s fi rst screen. You will need to
provide the launch image in different sizes.

Each image set in an asset catalog has a unique name that can be used to refer to the asset from
both the Interface editor and code. To add a new image set to an asset catalog, select Editor ➪ New
Image Set. Double-click the new image set entry within the asset catalog to rename it.

For any given image set, you must provide at least one image. It is highly recommended that you
provide multiple versions at different sizes. When you create a new image asset, you can provide
three sizes of the image (see Figure 13-2).

The UIImage Class ❘ 169

c13.indd 10/31/2015 Page 169

FIGURE 13-2

The base version of the image is called the 1x version, and is used when your app is running on
a non-retina device. The only non-retina devices that are supported under iOS9 are the early
generation iPads. To support retina devices, you provide an image that is twice the size of the base
(non-retina) version. This larger image is called the 2x version. When the iPhone 6Plus was intro-
duced with its larger screen size, a third larger image size was introduced into the mix to support
this device. This larger image size, which is only used with the iPhone 6 Plus, is called the 3x version
and is three times as large as the base 1x version.

Alternately, you can provide device-specifi c sizes by selecting Device Specifi c in the Devices drop-
down of the Attribute Editor (see Figure 13-3).

If you have an image set called cat and want to load it into a UIImage object, you use the following
code:

let catImage:UIImage! = UIImage(named: "cat")

This code uses one of the constructors of the UIImage class, which in turn implements an internal
system cache. Thus, if you were to use this method to repeatedly load the same image fi le, the image
data would be loaded only once and shared between the UIImage instances.

Loading images from your application bundle is not the only way to use UIImage objects. You
can also create one from an online data source by downloading the data available at the URL into
an NSData object and then instantiating a UIImage using an overloaded constructor that takes an
NSData variable as input.

The following code snippet shows how to do this synchronously, but in production code, you should
try and download any data from the web, including images, asynchronously. Downloading images
asynchronously is an advanced topic and is not covered in this book.

170 ❘ LESSON 13 ADDING IMAGES TO YOUR VIEW

c13.indd 10/31/2015 Page 170

let url = NSURL(string:"http://...")
let data = NSData(contentsOfURL: url!)
let image:UIImage! = UIImage(data: data!)

FIGURE 13-3

THE UIIMAGEVIEW CLASS

A UIImageView object provides a container for displaying either a single UIImage object or an ani-
mated series of UIImage objects. To add a UIImageView object to a view controller or storyboard
scene, simply drag an Image View object from the Object library (see Figure 13-4).

To set up the default image displayed in the image view, simply select an image from the project’s
asset catalog for the image property in the Attribute inspector (see Figure 13-5).

If you wish to display a UIImage object in an image view programmatically, you need to create an
outlet for the image view in the view controller class and set up its image property as follows:

imageView.image = UIImage(named: "cat")

To use a UIImageView object to perform simple frame animation, simply provide an array of
UIImage objects in the image view’s animationImages property as follows:

let animationImageList:[AnyObject] = [
 UIImage(named: "frame1")!,

The UIImageView Class ❘ 171

c13.indd 10/31/2015 Page 171

 UIImage(named: "frame2")!,
 UIImage(named: "frame3")!,
 UIImage(named: "frame4")!
]

imageView.animationImages = animationImageList

FIGURE 13-4

FIGURE 13-5

172 ❘ LESSON 13 ADDING IMAGES TO YOUR VIEW

c13.indd 10/31/2015 Page 172

To kick off the animation, call the startAnimating method of the image view:

imageView.startAnimating()

Specify the duration of the animation in seconds, using the animationDuration property:

imageView.animationDuration = 2

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
TreasureHunt that displays an image and asks the user to fi nd an object in the image. When the
user taps the object, a short congratulatory animation sequence is displayed.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface editor.

 ➤ Import image resources into the project.

 ➤ Add a UILabel instance to the default scene.

 ➤ Add two UIImageView instances to the default scene.

 ➤ Use a gesture recognizer to detect a tap on the image and display an alert view.

 ➤ If the tap occurs over a specifi c region of the image, display a congratulatory frame
animation.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called TreasureHunt.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

Try It ❘ 173

c13.indd 10/31/2015 Page 173

 3. In the project options screen, use the following values:

 ➤ Product Name: TreasureHunt

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking on it in the project navigator.

 3. Navigate to the Images folder in this chapter’s resources from the website.

 4. Create a new image set by selecting Editor ➪ New Image Set and name this new image
set beads.

 5. Drag the beads1x.png, beads2x.png, and beads3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

 6. Create a new Image set by selecting Editor ➪ New Image Set and name this new image
set animframe1.

 7. Drag the animframe1_1x.png, animframe1_2x.png, and animframe1_3x.png images
from this chapter’s resources into the appropriate placeholders in the image set.

 8. Similarly, create new image sets called animframe2, animframe3, animframe4, anim-
frame5, and animframe6, and use the appropriate images from this chapter’s resources
folder.

 ➤ Add a UILabel instance to the default scene.

 1. Open the MainStoryboard.storyboard fi le in Interface Builder.

 2. Ensure the Object library is visible. To show it, select View ➪ Utilities ➪ Show Object
Library.

 3. From the Object library, drag and drop a Label object onto the scene.

 4. Use the Attribute inspector to set the Text attribute of the label to Tap the blue
bead! To show the Attribute inspector, select View ➪ Utilities ➪ Show Attributes
Inspector.

174 ❘ LESSON 13 ADDING IMAGES TO YOUR VIEW

c13.indd 10/31/2015 Page 174

 5. Select the label in the scene, and select Editor ➪ Size to Fit Contents to ensure the label
is large enough to show its contents.

 6. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

 7. Select the label in the scene and click the Pin button to display the constraints editor.
Ensure the Constrain to margins options is unchecked and set the following constraint:

 ➤ The distance from the top of the label to the view should be 10.

 8. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add two UIImageView instances to the default scene.

 1. From the Object library, drag and drop an Image View object onto the scene, and place
it below the label.

 2. Use the Attribute inspector to set the Image attribute of the image view to bead. To
show the Attribute inspector, select View ➪ Utilities ➪ Show Attributes Inspector.

 3. Using the Attribute inspector, set the View Mode attribute to Aspect Fill.

 4. Select the image view in the scene, and select Editor ➪ Size to Fit Contents to ensure the
image view is large enough to show its image.

 5. Select the image view in the scene and click the Align button to display the alignment
constraint editor. Add a constraint to center the image view horizontally.

 6. Select the image view in the scene and click the Pin button to display the constraints
editor. Ensure the Constrain to margins options is unchecked and set the following
constraint:

 ➤ The vertical distance between the label and the image view should be 10.

 7. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 8. Use the assistant editor to create an outlet in the view controller class called large
Image and connect the image view to it.

 9. From the Object library, drag and drop a second Image View object to the scene.

Try It ❘ 175

c13.indd 10/31/2015 Page 175

 10. Use the Attribute inspector to set the Image attribute of the image view to animframe1.
To show the Attribute inspector, select View ➪ Utilities ➪ Show Attributes Inspector.

 11. Using the Attribute inspector, set the View Mode attribute to Aspect Fill.

 12. Select the image view in the scene and click the Align button to display the alignment
constraint editor. Add a couple of constrains to center the image view horizontally and
vertically.

 13. Update the frames to match the constraints you have set.

 14. Use the Assistant editor to create an outlet in the view controller class called animated
Image and connect the image view to it.

 ➤ Add a tap gesture recognizer and use it to show an animated image sequence when the blue
bead is tapped. Gesture recognizers are covered in detail in Lesson 21.

 1. Update the viewDidLoad method of the view controller class to resemble the following:

override func viewDidLoad() {

super.viewDidLoad()

// install tap gestue recognizer.
let tapRecognizer = UITapGestureRecognizer(target: self,
 action:"handleTap:")

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer(tapRecognizer)

// setup animatedImage
let frameArray:[UIImage] = [
 UIImage(named: "animframe1")!,
 UIImage(named: "animframe2")!,
 UIImage(named: "animframe3")!,
 UIImage(named: "animframe4")!,
 UIImage(named: "animframe5")!,
 UIImage(named: "animframe6")!
]

animatedImage.animationImages = frameArray
animatedImage.animationDuration = 0.5
animatedImage.animationRepeatCount = 1
animatedImage.userInteractionEnabled = false
animatedImage.hidden = true
}

 2. Add the following method to the ViewController.swift fi le:

func handleTap(sender:UITapGestureRecognizer) {

 let startLocation:CGPoint =

176 ❘ LESSON 13 ADDING IMAGES TO YOUR VIEW

c13.indd 10/31/2015 Page 176

 sender.locationInView(self.largeImage)

 let scaleFactor = self.largeImage.frame.size.height / 430.0;

 if ((startLocation.y >= 211 * scaleFactor) &&
 (startLocation.y <= (211 + 104) * scaleFactor))
 {
 animatedImage.hidden = false
 animatedImage.startAnimating()
 }
}

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 13
video online at www.wrox.com/go/ s wiftiosvideo.

http://www.wrox.com/go

c14.indd 10/31/2015 Page 177

Pickers
A picker view is a user interface component that enables a user to
pick a value from a set of related values using a slot machine–style
interface. An example is shown in Figure 14-1.

Each wheel of the picker view is called a component, and it is fairly
common to have picker view with multiple components. Each com-
ponent can have a different number of items in it (see Figure 14-2).

A picker view is encapsulated by the UIPickerView class, which is part of the UIKit frame-
work. Apple provides a special picker for allowing the user to select date and time. This
component is called the date picker.

A picker requires a data source object and a delegate
object. The data source object is one that implements the
UIPickerViewDataSource protocol and provides informa-
tion on the number of components, and rows-per-component,
of the picker.

The delegate object implements the UIPickerViewDelegate protocol and has methods that
are called when the current selection in a component has changed.

The delegate and data source objects could both be the same object, and in many cases the
duties of these objects are performed by the view controller. However, it is very possible for
them to be independent objects.

Creating a picker view is a simple matter of dragging the Picker View component from the
Object library onto your storyboard or XIB fi le (see Figure 14-3) and then creating an appro-
priate outlet in your view controller class using the assistant editor.

14
FIGURE 14-1

FIGURE 14-2

178 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 178

FIGURE 14-3

The delegate and data source objects can be set up using the Interface editor (see Figure 14-4) or by
setting up the delegate and dataSource properties in code.

FIGURE 14-4

c14.indd 10/31/2015 Page 179

Pickers ❘ 179

The following code snippet assumes pickerView is an outlet that is connected to a UIPickerView
instance and sets up the view controller to be the delegate and the data source object:

override func viewDidLoad() {

 super.viewDidLoad()

 pickerView.delegate = self
 pickerView.dataSource = self
}

The UIPickerViewDataSource protocol defi nes two methods:

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int

func pickerView(pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int

You must return the number of components in the picker view from the numberOfComponents
InPickerView method. The number of rows in each component should be returned by the
pickerView(pickerView, numberOfRowsInComponent) method. For example, a two-component
picker can be set up as follows:

// returns the number of 'columns' to display.
func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int
{
 return 2
}

// returns the # of rows in each component..
func pickerView(pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int
{
 if component == 0
 {
 return cities.count
 }
 else
 {
 return placesOfInterest.count
 }
}

The following are the most commonly used UIPickerViewDelegate methods:

func pickerView(pickerView: UIPickerView,
 titleForRow row: Int,
 forComponent component: Int) -> String!

func pickerView(pickerView: UIPickerView,
 didSelectRow row: Int,
 inComponent component: Int)

180 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 180

The text to be displayed in each row of each component is to be returned by the pickerView
(pickerView, titleForRow, forComponent) delegate method. When the user selects a row in
any component of the picker, your delegate object’s pickerView(pickerView, didSelectRow,
inComponent) method will be called.

Typically, the data for each component of a picker view is stored in an array. Assuming that cities
and placesOfInterest are arrays of String objects that contain the data for the two components
of a picker view, the pickerView(pickerView, titleForRow, forComponent) delegate method
can be implemented as follows:

var cities = ["New York","London","Paris","Chicago"]

var placesOfInterest = ["Hotels","Cinemas","Theaters","Airports","Museums","Clubs"]

func pickerView(pickerView: UIPickerView,
 titleForRow row: Int,
 forComponent component: Int) -> String!
{
 if component == 0
 {
 return cities[row]
 }
 else
 {
 return placesOfInterest[row]
 }
}

ARRAYS IN SWIFT

Arrays are one of two collection types provided in Swift (the other being the dic-
tionary). An array is an ordered collection of similar objects, and each object in the
array has an index. The index of the fi rst object is zero.

If you create an array and assign it to a constant using the let keyword, that array
will be immutable. This means that you cannot change the contents of that array
after you have created it.

If, however, you create an array and assign it to a variable using the var keyword,
then this array will have no such restriction. However, you must keep in mind that
inserting/deleting objects from an array can be a time-consuming operation, and
thus you should aim to use mutable arrays wherever possible.

To create an array variable instance, and add four string objects to it in the same
step, you can use code similar to the following:

var cities:[String] = ["New York","London","Paris","Chicago"]

Date Pickers ❘ 181

c14.indd 10/31/2015 Page 181

To retrieve an object at a specifi c index position, you can use the subscript operator
([]). Index numbers start from zero.

var someCity:String! = cities[0]

To retrieve the number of objects in an array, you can use the count method:

var arrayCount:int = cities.count

To add an element to the back of a mutable array, you can use the append()
method:

cities.append("Tokyo")

To remove an object at a specifi c index position from a mutable array, you can use
the removeAtIndex method.

DATE PICKERS

Although it is possible to create a picker view with several components to allow your user to enter a
date, Apple provides a special user interface component for precisely this purpose. The date picker is
a special picker that can be used to select dates and times. You can confi gure it to display only time,
only date, or both date and time as shown in Figure 14-5.

FIGURE 14-5

The UIDatePicker class provides the functionality of a date picker, which is part of the UIKit
framework. The UIDatePicker class privately uses a UIPickerView instance, but you cannot access
this instance directly.

A date picker is much simpler to use than a picker view. For starters, it does not require you to pro-
vide a delegate or data source object. Creating a date picker is a simple matter of dragging the Date
Picker component from the Object library onto a scene in your storyboard.

The mode of the date picker refers to whether it displays date, time, or both date and time. You can
also specify the range of values that should be displayed by the date picker. Both these tasks can be
accomplished by using the assistant editor (see Figure 14-6).

182 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 182

FIGURE 14-6

You can read the date currently selected in the picker by accessing the date picker’s date property.
The result is returned as an NSDate instance:

// get date from date picker
var pickerDate:NSDate! = datePicker.date

The date picker provides a Value Changed event that is fi red when the user changes the selection in
the picker. You can use the assistant editor to create and associate an action method in your view
controller class with this event.

DATES IN SWIFT

Swift provides an NSDate class, instances of which represent a combined date and
time value. To create an NSDate object that has the current date and time, use the
following code:

let todaysDate:NSDate = NSDate()

To create an NSDate object dated at a specifi c interval of time from the current
date, you can use the NSDate(timeIntervalSinceNow) method. This method
requires a single argument, which is the number of seconds in the past or future
from the current date. A positive number indicates a future date.

Thus, to create an NSDate object exactly 24 hours from the current date, you can
use the following code:

let tomorrowsDate:NSDate = NSDate(timeIntervalSinceNow: 24 * 3600)

If you want to create an NSDate without reference to the current date, you can use
the NSDate(timeIntervalSinceReferenceDate) method to create a date that is at
a specifi ed interval from January 1, 1970. The interval is specifi ed in seconds.

NSDate instances also provide several useful methods to compare dates, including:

 ➤ isEqualToDate: Returns true if two NSDate instances are equal

 ➤ earlierDate: Returns the earlier of two NSDate objects

 ➤ laterDate: Returns the later of two NSDate objects

Date Pickers ❘ 183

c14.indd 10/31/2015 Page 183

The following examples contain these methods:

let comparisonResult:Bool = pickerDate.isEqualToDate(todaysDate)

let firstDate:NSDate = pickerDate.earlierDate(todaysDate)

For information on NSDate objects, refer to the NSDate Class Reference at

https://developer.apple.com/library/prerelease/ios//
documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
index.html

Creating a formatted representation of the contents of an NSDate object requires
the use of another class: NSDateFormatter.

To use an NSDateFormatter, you need to fi rst instantiate it and use the setLocal-
izedDateFormatFromTemplate method on the instance to specify the internal for-
mat used by the date formatter object. This internal format is specifi ed as a string.
Once a date formatter is instantiated, you can use it to create a textual representa-
tion of an NSDate object using the stringFromDate method. This is demonstrated
in the following code:

let todaysDate:NSDate = NSDate()

var dateFormatter:NSDateFormatter = NSDateFormatter()
dateFormatter.setLocalizedDateFormatFromTemplate("MMMM d, yyyy")

let textualRepresentation:String = dateFormatter.stringFromDate
(todaysDate)

The format string consists of a series of characters that represent parts of a date
and time. The characters themselves are case-sensitive. Some of the most common
format strings are:

 ➤ MMMM: The full name of the month

 ➤ d: The day of the month

 ➤ YYYY: The four-digit year

 ➤ hh: Two-digit hour of the day

 ➤ mm: Two-digit minute

 ➤ ss: Two-digit second

 ➤ a: AM

 ➤ p: PM

continues

https://developer.apple.com/library/prerelease/ios
https://developer.apple.com/library/prerelease/ios//documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/index.html

184 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 184

For a complete list of format strings, refer to the Data Formatting Guide,
available at

https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//
apple_ref/doc/uid/TP40002369-SW1

For more information on the NSDateFormatter class, refer to the NSDateFormatter
Class Reference, available at

https://developer.apple.com/library/ios/documentation/Cocoa/
Reference/Foundation/Classes/NSDateFormatter_Class/

CUSTOM PICKERS

Picker views do not have to be restricted to displaying text; in fact, they can just as easily display
images, or a combination of images and text. In this section, you learn how to provide your own
UIView subclasses for individual elements of a picker view, thus creating pickers that have images
instead of text, as shown in Figure 14-7.

FIGURE 14-7

The key to implementing this functionality lies in three optional methods of the
UIPickerViewDelegate protocol:

func pickerView(pickerView: UIPickerView,
 widthForComponent component: Int) -> CGFloat

func pickerView(pickerView: UIPickerView,
 rowHeightForComponent component: Int) -> CGFloat

func pickerView(pickerView: UIPickerView,
 viewForRow row: Int,
 forComponent component: Int,
 reusingView view: UIView!) -> UIView

You can customize the width of each picker component by returning an appropriate value from the
pickerView(pickerView, widthForComponent) delegate method. If you do not implement this
method, the picker view distributes the available width equally between its components.

continued

https://developer.apple.com/library/ios/documentation/Cocoa
https://developer.apple.com/library/ios/documentation/Cocoa
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW1
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/

Try It ❘ 185

c14.indd 10/31/2015 Page 185

The pickerView(pickerView, rowHeightForComponent)delegate method enables you to specify
the height of each row in a given component. All rows in a component must have the same height.

You need to return a UIView subclass in the pickerView(pickerView, viewForRow, forCompo-
nent, reusingView) delegate method. This method’s arguments include a reference to the picker
view, the row, and the component number.

The view returned by this method can be an instance of an existing UIKit class such as
UIImageView or UILabel. You can also provide instances of your own UIView subclass in which
you have implemented custom drawing logic. Subclassing UIView is outside the scope of this book.

The last argument of this delegate method is a reference to an existing UIView object. If this argu-
ment is not nil, it will refer to one of the view objects provided by this method on a previous occa-
sion. You should try to reuse it instead of creating one from scratch.

When you scroll a row in one of the components off the screen, the picker does not immediately
destroy the corresponding view; instead it adds it to an internal cache of “reusable views.” When it
is time to display a new row in the same component, the picker provides one of these cached views
to your delegate method, encouraging you to reuse it instead of instantiating a fresh copy.

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
CustomPickerTest, which displays three-component custom picker view with images of fruits.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Import image resources into the project.

 ➤ Add a picker view and create an outlet for it in the view controller class.

 ➤ Add three data arrays with the names of fruits to be displayed for each picker component in
the view controller class and populate them in the viewDidLoad method.

 ➤ Add a Dictionary object that maps names of fruits to image fi lenames.

 ➤ Implement the UIPickerViewDataSource and UIPickerViewDelegate protocols in your
view controller class.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

186 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 186

 ➤ A Dictionary object contains a list of mappings between keys and values. Each key in a dic-
tionary is unique.

 ➤ Use the let keyword to create an array whose contents will not change.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Step-by-Step
 ➤ Create a Single View Application in Xcode called CustomPickerTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: CustomPickerTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking on it in the project navigator.

 3. Navigate to the Images folder in this chapter’s downloads from the website.

 4. Create a new Image set by selecting Editor ➪ New Image Set and name this new image
set appleImages.

 5. Drag the apple1x.png, apple2x.png, and apple3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

 6. Similarly, create new image sets called bananaImages, lemonImages, orangeImages,
peachImages, pearImages, and pineappleImages and use the appropriate images
from this chapter’s resources folder.

http://www.wrox.com/go

Try It ❘ 187

c14.indd 10/31/2015 Page 187

 ➤ Add a UIPickerView instance to the default scene.

 1. Open the MainStoryboard.storyboard fi le in Interface Builder.

 2. Ensure the Object library is visible. To show it, select View ➪ Utilities ➪ Show Object
Library.

 3. From the Object library, drag and drop a Picker View object onto the scene.

 4. Select the picker view in the scene and click the Align button to display the alignment
constraint editor. Add a constraint to center the picker view horizontally.

 5. Select the picker view in the scene and click the Pin button to display the constraints
editor. Ensure the Constrain to margins options is unchecked, and set the following
constraints:

 ➤ The distance from the top of the picker to the view should be 0.

 ➤ The height of the picker should be 162.

 6. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 7. Use the assistant editor to create an outlet in the view controller class called picker-
View and connect the picker to it.

 8. Set up the view controller as the delegate and data source of the picker.

 ➤ Ctrl+Click on the picker object in the storyboard scene to reveal a popup menu.

 ➤ Drag from the circle beside the delegate item in the popup menu onto the view
controller object in the dock (see fi gure 14-8).

 ➤ Drag from the circle beside the dataSource item in the popup menu onto the view
controller object in the dock.

 ➤ Add a UILabel instance to the default scene.

 1. From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

 2. Select the label and center it horizontally in the storyboard by selecting Editor ➪ Align
➪ Horizontal Center In Container.

 3. Select the label in the scene and select Editor ➪ Size to Fit Contents to ensure the label
is large enough to show its contents.

 4. Add the following constraints using the pin constraints dialog box for the label:

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ The distance from the top of the label to the view = 32.

188 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 188

 5. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

FIGURE 14-8

 6. Use the assistant editor to create an outlet in the view controller class called results-
Label and connect the label to it.

 ➤ Add three arrays called dataForComponent1, dataForComponent2, and dataForCompo-
nent3 to the view controller class.

let dataForComponent1:[String] = ["Apple", "Banana", "Lemon",
 "Orange", "Peach", "Pear",
 "Pineapple"]

let dataForComponent2:[String] = ["Banana", "Orange", "Pear",
 "Apple", "Pineapple", "Lemon",
 "Peach"]

let dataForComponent3:[String] = ["Pear", "Peach", "Lemon",
 "Pineapple", "Apple", "Banana",
 "Orange"]

Try It ❘ 189

c14.indd 10/31/2015 Page 189

 ➤ Add a dictionary nameToImageMapping to the view controller class.

let nameToImageMapping:[String:String] = ["Apple":"appleImages",
 "Banana":"bananaImages",
 "Lemon":"lemonImages",
 "Orange":"orangeImages",
 "Peach":"peachImages",
 "Pear":"pearImages",
 "Pineapple":"pineappleImages"]

 ➤ Add the following code to your view controller’s viewDidLoad method to set up the initial
text of the UILabel instance resultsLabel:

resultsLabel.text = "Match the fruits in each row!";

 ➤ Have your view controller class conform to the UIPickerViewDataSource and
UIPickerViewDelegate protocols by modifying its declaration to the following:

class ViewController: UIViewController,
 UIPickerViewDataSource,
 UIPickerViewDelegate {

At this point, your compiler will issue an error that the view controller does not conform to the
UIPickerViewDataSource and UIPickerViewDelegate protocols. This is because these protocols
contain mandatory methods that must be implemented by a conforming class. We will implement
these methods over the next few steps; for the moment ignore this error.

 ➤ Your view controller class should now resemble the following:

class ViewController: UIViewController,
 UIPickerViewDataSource,
 UIPickerViewDelegate {

 @IBOutlet weak var pickerView: UIPickerView!
 @IBOutlet weak var resultsLabel: UILabel!

 let dataForComponent1:[String] = ["Apple", "Banana", "Lemon",
 "Orange", "Peach", "Pear",
 "Pineapple"]

 let dataForComponent2:[String] = ["Banana", "Orange", "Pear",
 "Apple", "Pineapple", "Lemon",
 "Peach"]

 let dataForComponent3:[String] = ["Pear", "Peach", "Lemon",
 "Pineapple", "Apple", "Banana",
 "Orange"]

 let nameToImageMapping:[String:String] = ["Apple":"appleImages",
 "Banana":"bananaImages",
 "Lemon":"lemonImages",
 "Orange":"orangeImages",
 "Peach":"peachImages",
 "Pear":"pearImages",
 "Pineapple":"pineappleImages"]

190 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 190

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

 ➤ Implement the numberOfComponentsInPickerView() delegate method in your view con-
troller as follows:

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int
{
 return 3
}

This delegate method must return the number of columns in the picker view. In this project, you
return 3 as the project builds a three-column picker.

 ➤ Implement the pickerView(pickerView, numberOfRowsInComponent) data source
method in your view controller as follows:

func pickerView(pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int
 {
 if component == 0
 {
 return dataForComponent1.count
 }
 else if component == 1
 {
 return dataForComponent2.count
 }
 else
 {
 return dataForComponent3.count
 }
 }

This data source method must return the number of rows in each component of the picker. In this
project, since the data for each component is stored in an array, the snippet simply returns the num-
ber of elements in the array for the each component.

 ➤ Implement the pickerView(pickerView, rowHeightForComponent) delegate method in
your view controller as follows:

func pickerView(pickerView: UIPickerView,
rowHeightForComponent component: Int) -> CGFloat
{
 return 50
}

This delegate method must return the height of each row in a given component of the picker. In this
project, you return 50 as the row height is the same for all three components of the picker.

Try It ❘ 191

c14.indd 10/31/2015 Page 191

 ➤ Implement the pickerView(pickerViewm viewForRow, forComponent, reusingView)
delegate method in your view controller as follows:

func pickerView(pickerView: UIPickerView,
viewForRow row: Int,
forComponent component: Int,
reusingView view: UIView!) -> UIView
{
 // get the fruit name
 var keyString:String? = nil

 if component == 0
 {
 keyString = dataForComponent1[row]
 }
 else if component == 1
 {
 keyString = dataForComponent2[row]
 }
 else if component == 2
 {
 keyString = dataForComponent3[row]
 }

 var imageFileName:String? = nameToImageMapping[keyString!]

 if view == nil
 {
 return UIImageView(image:UIImage(named: imageFileName!));
 }

 var imageView:UIImageView = view as! UIImageView

 imageView.image = UIImage(named: imageFileName!)

 return view;
}

This delegate method is called by the picker view when it needs a view for a specifi c column
and row position. The column and row position for which a view is required are passed in
as parameters to the delegate method.

In this snippet you query the underlying data array for the requested component to retrieve
the name of the fruit that should be displayed in the specifi ed column and row position.
Once you have the name of the fruit, you obtain the name of an image in the asset bundle
that corresponds to the fruit by using the nameToImageMapping dictionary.

The third parameter to this delegate method is a UIView optional. If this parameter is not
nil, then you need to reuse it (modify its contents in some way) and return it to the picker.
If the parameter is nil you need to create a new view and return the new view to the picker.
This is achieved in the fi nal part of the code snippet:

 if view == nil{
 return UIImageView(image:UIImage(named: imageFileName!));
 }

 var imageView:UIImageView = view as! UIImageView

192 ❘ LESSON 14 PICKERS

c14.indd 10/31/2015 Page 192

 imageView.image = UIImage(named: imageFileName!)
 return view;

 ➤ Implement the pickerView:didSelectRow:inComponent: delegate method in your view
controller as follows:

func pickerView(pickerView: UIPickerView,
didSelectRow row: Int,
inComponent component: Int)
{
 // get selected fruit in each component
 var selectedRowInComponent1 = pickerView.selectedRowInComponent(0)
 var fruitInComponent1:String! =
dataForComponent1[selectedRowInComponent1]

 var selectedRowInComponent2 = pickerView.selectedRowInComponent(1)
 var fruitInComponent2:String! =
dataForComponent2[selectedRowInComponent2]

 var selectedRowInComponent3 = pickerView.selectedRowInComponent(2)
 var fruitInComponent3 = dataForComponent3[selectedRowInComponent3]

 // if the same fruit is selected in
 // each row, then show a message
 if fruitInComponent1 == fruitInComponent2 &&
 fruitInComponent2 == fruitInComponent3
 {
 resultsLabel.text = "Jackpot!";
 }
 else
 {
 resultsLabel.text = "Match the fruits in each row!";
 }
}

This delegate method is called when the user moves one of the wheels of the picker to
update the current selection in the picker. The picker passes the row and column whose
value has been changed as parameters to this delegate method.

In this snippet you retrieve the name of the fruit selected in each component of the picker.
If the same fruit has been selected in each component of the picker, you display a message
on the screen.

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

 2. Change the selection in the components of the picker. If you get three fruits of the same
kind in the central row, you should see the Jackpot! message.

REFERENCE To see some of the examples from this lesson, watch the Lesson 14
video online at www.wrox.com/go/swif t iosvideo.

http://www.wrox.com/go/swif

c15.indd 10/31/2015 Page 193

Navigation Controllers
A navigation controller is a class that manages the presentation of a stack of view controllers
one at a time. The topmost item on the stack is visible, and users can navigate down the stack one
view controller at a time. Whenever a view controller is pushed on—or off the navigation control-
ler’s stack—iOS applies an appropriate slide animation automatically. Navigation controllers are
implemented in the UINavigationController class in the UIKit framework and can be found in
several standard applications such as the iOS Mail, and Settings apps.

ADDING A NAVIGATION CONTROLLER TO A STORYBOARD

To create a navigation controller using the interface editor, simply select the storyboard scene
that you want to use as the root view controller of the navigation stack and select Editor ➪
Embed In ➪ Navigation Controller. You can optionally drag a Navigation Controller object
from the Object library to the storyboard. When you create a navigation controller in this
manner, Xcode creates a default scene that is set up to act as the root view controller for the
navigation controller (see Figure 15-1).

In most cases, you will want to use one of the existing scenes in the storyboard as the root
view controller. To do this, fi rst select the Relationship Segue between the navigation control-
ler and the default root view controller and delete it (see Figure 15-2).

Now select the navigation controller scene, hold down the Ctrl key, and drag from the navi-
gation controller scene to whatever scene you want to use as the root view controller. When
you release the mouse pointer you will be presented with a list of segue types to use; select
Relationship Segue (see Figure 15-3).

15

194 ❘ LESSON 15 NAVIGATION CONTROLLERS

c15.indd 10/31/2015 Page 194

FIGURE 15-1

FIGURE 15-2

You can now delete the previous root view controller scene, which is now unused if you wish. If the
navigation controller is going to be the primary view controller of your application, then you must

Adding a Navigation Controller to a Storyboard ❘ 195

c15.indd 10/31/2015 Page 195

ensure that the Is Initial View Controller option in the Attribute Editor is selected for the navigation
controller (see Figure 15-4).

FIGURE 15-3

FIGURE 15-4

196 ❘ LESSON 15 NAVIGATION CONTROLLERS

c15.indd 10/31/2015 Page 196

THE NAVIGATION CONTROLLER INTERFACE

A navigation controller contains two key components, as shown in Figure 15-1.

Navigation bar

Root View Controller

FIGURE 15-5

 ➤ Navigation bar: This is the horizontal header on the top of the view, just below the status
bar; it typically contains the title of the view being displayed and an optional back button.

 ➤ Root view controller: This is the base view controller at the bottom of the navigation stack; it
cannot be removed from the navigation controller. When this view controller is visible, there
is no back button available to the user.

To set the title that is displayed in the navigation bar when a view controller is on the top of the
stack, you can set up the view controller’s title property as follows:

self.title = "Root View";

You can add buttons to the navigation bar that perform custom actions. The following code snip-
pet adds a Share button to the right side of the navigation bar (see Figure 15-6). When this button is
tapped, the onShare method will be called.

override func viewDidLoad()
{
 super.viewDidLoad()

 self.title = "Root View";

 let shareButton:UIBarButtonItem = UIBarButtonItem(barButtonSystemItem:
 UIBarButtonSystemItem.Action,
 target: self,
 action: "onShare:")

Try It ❘ 197

c15.indd 10/31/2015 Page 197

 self.navigationItem.setRightBarButtonItem(shareButton, animated: false)

}

func onShare(sender: UIBarButtonItem) {

}

FIGURE 15-6

You can add and remove view controllers onto the navigation stack by using the following methods:

pushViewController(viewController, animated)
popViewControllerAnimated(animated)

The UINavigationController class provides the following two additional methods that enable you
to pop all view controllers down to a specifi c view controller:

popToRootViewControllerAnimated(animated: Bool)
popToViewController(viewController, animated)

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
NavigationControllerTest that uses a navigation controller to manage a hierarchy of views.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

http://www.wrox.com/go

198 ❘ LESSON 15 NAVIGATION CONTROLLERS

c15.indd 10/31/2015 Page 198

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Embed the default storyboard scene in a navigation controller.

 ➤ Add a button to the default scene.

 ➤ Add a second scene to the storyboard.

 ➤ Create a segue from the button in the fi rst scene to the second scene.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called NavigationControllerTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: NavigationControllerTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a UILabel instance to the default scene.

 1. From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

 2. Edit the text displayed in the label to Root View.

Try It ❘ 199

c15.indd 10/31/2015 Page 199

 3. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

 4. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label vertically.

 5. Select the label in the scene and select Editor ➪ Size to Fit Contents to ensure the label
is large enough to show its contents.

 6. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Add a button to the storyboard.

 1. From the Object library, select a button and drop it onto the scene.

 2. Double-click the button and change the text displayed in it to Show Detail.

 3. Drag the button to position it near the center of the scene, beneath the label. The pre-
cise size or position does not matter.

 4. Use the Attribute inspector to change the background color of the button to a shade of
gray. The background color attribute is located in the View subsection of the Attribute
inspector; you may need to scroll down a little to access it.

 5. Ensure the button is selected; if it is not, simply click it once.

 6. Center the button horizontally by selecting Editor ➪ Align ➪ Horizontal Center in
Container.

 7. Ensure the button is selected and use the Pin button to display the constraints editor
popup.

 ➤ Pin the width of the button to 165.

 ➤ Pin the height of the button to 40.

 ➤ Pin the distance between the button and the label to 50.

 ➤ Click the Add 3 Constraints button to dismiss the constraints editor popup.

 8. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Embed the default scene in a navigation controller.

200 ❘ LESSON 15 NAVIGATION CONTROLLERS

c15.indd 10/31/2015 Page 200

 1. Click on the View controller item in the dock above the storyboard scene. This is the
fi rst of the three icons located directly above the selected storyboard scene.

 2. Select Editor ➪ Embed In ➪ Navigation Controller to embed the default scene as the
root view controller of a navigation controller. Your storyboard should resemble
Figure 15-7.

FIGURE 15-7

 ➤ Add a new subclass of UIViewController called DetailViewController.

 1. Ensure the project navigator is visible.

 2. Right-click the NavigationControllerTest group and select New File from the con-
text menu.

 3. Select the Cocoa Touch Class template and click Next.

 4. Call the new class DetailViewController and ensure that the new class is a subclass
of UIViewController by selecting UIViewController in the drop-down combo box.

 5. Ensure that the Also create XIB fi le option is unchecked and click Next.

 6. Select a folder where fi les should be created. It is best to accept the default location
provided by Xcode.

 ➤ Create a new scene in the storyboard.

 1. Ensure the Main.storyboard fi le is open. If it is not, then select it in the project
navigator.

 2. Drag a View Controller object from the Object library onto the storyboard canvas.

Try It ❘ 201

c15.indd 10/31/2015 Page 201

 3. Double-click the canvas to zoom out.

 4. Position the new scene alongside the original scene.

 5. Select the new scene in the storyboard, select the View Controller object from the dock,
and use the Identity inspector to change its Custom Class to DetailViewController.
To show the Identity inspector, select View ➪ Utilities ➪ Show Identity inspector.

 ➤ Add a UILabel instance to the new scene.

 1. From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

 2. Edit the text displayed in the label to Detail View.

 3. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

 4. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label vertically.

 5. Select the label in the scene and choose Editor ➪ Size to Fit Contents to ensure the label
is large enough to show its contents.

 6. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Create a segue from the button in the fi rst scene to the new scene.

 1. Double-click the canvas to zoom out. Position the two scenes suffi ciently apart on the
canvas by dragging them.

 2. Double-click the fi rst scene to activate it.

 3. Right-click the Show detail button in the fi rst scene to bring up a context menu. Drag
from the circle beside the action item under the Triggered Segues category in the
context menu to the second scene.

 4. When you release the mouse button, you will be asked to select the segue type. Select
Show.

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

 2. Tap on the Show Detail button and observe the second scene pushed onto the naviga-
tion controller stack.

REFERENCE To see some of the examples from this lesson, watch the Lesson 15
video online at www.wrox.com/go/sw i ftiosvid.

http://www.wrox.com/go/sw

c16.indd 10/31/2015 Page 203

Table Views
A table view is a user interface component used to present a list of items to the user. Table views
are instances of the UITableView class and are part of the UIKit framework. Table views are
one of the most versatile user interface components in UIKit and can be found in several apps,
including Apple’s own contacts, and mail applications. In this lesson, you learn to use table
views in your applications.

TABLE VIEW APPEARANCE

A table view allows you to present a single column of values. Each value is presented vertically
in its own row. A user can scroll through the rows vertically. Vertical scrolling is automatically
managed by the table view and is enabled when the number of rows exceed the visible height
of the table view.

Each row in a table view is an instance of another UIKit class called UITableViewCell. The
table view has a mechanism in place that allows you to reuse table view cells instead of creat-
ing a new one for each row.

Data in table views are presented in sections. Sections are numbered from zero and run
vertically down the table (see Figure 16-1).

Each section can have an optional header and footer. The default table view has just one
section with no visible header or footer (see Figure 16-2).

Rows within each section are also numbered from 0 and run vertically down the table, within
the section.

Additionally, a table view has one of two presentation styles, plain and grouped (see Figure 16-3).
A plain table view is a continuous list; a grouped table view has gaps between sections.

16

204 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 204

FIGURE 16-1

FIGURE 16-2

FIGURE 16-3

Creating a Table View with Interface Builder ❘ 205

c16.indd 10/31/2015 Page 205

CREATING A TABLE VIEW WITH INTERFACE BUILDER

To add a new scene in your storyboard that contains a table view, simply drag and drop a Table
View Controller object into your scene. A table view controller is an object that manages a table
view (see Figure 16-4).

FIGURE 16-4

If, however, you want to add a table view to an existing scene, drag and drop a table view
object onto the scene. When using a table view, your view controller class will be responsible
for managing the table view, and will need to implement the UITableViewDataSource and
UITableViewDelegate protocols. You can use the Attribute inspector to set up the table views style
as plain or grouped (see Figure 16-5).

FIGURE 16-5

You can set up your table view to show static or dynamic content by using the Content property in
the Attribute inspector.

206 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 206

Static Table Views
A table view with static content has a fi xed number of rows that are confi gured at design time in the
storyboard. Static cells can only be used with table view controllers.

If you are using a table view controller and wish to populate it with static content, simply use the
Attribute inspector to set the Content property of the table view to Static Cells.

You can then use the Sections attribute to confi gure the number of sections in the table view. To
edit the number of rows, section header, or section footer for each section, simply select the section
from the document outline and use the Attribute inspector (see Figure 16-6).

FIGURE 16-6

To edit the content of each row, select a row in the document outline and drag standard compo-
nents, such as labels and image views, into the cell. You will need to set up the constraints for each
cell individually (see Figure 16-7).

If the layout for your cell is simple, you can optionally use a standard cell style for each row. This
can be done by selecting the row in the document outline and using the Attribute inspector to
change the cell style to one of four options:

 ➤ Basic

 ➤ Right Detail

 ➤ Left Detail

 ➤ Subtitle

Creating a Table View with Interface Builder ❘ 207

c16.indd 10/31/2015 Page 207

Selecting one of these options will add one or more labels into the cell at fi xed positions; you can
simply edit the text in these labels by double-clicking the label (see Figure 16-8).

FIGURE 16-7

FIGURE 16-8

Dynamic Table Views
If the contents of your table view are to be managed at runtime, you need to set the Content attri-
bute to Dynamic Prototype. When using dynamic table views, you will fi rst need to design a tem-
plate cell in the storyboard. This template cell is known as a prototype cell and will be instantiated
programmatically at runtime and populated with content for each row.

It is possible to register multiple prototype cells with a table view, but this is not often used as the
rows in a table view generally share the same visual layout, differing only in content.

208 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 208

To set up the number of prototype cells in a dynamic table view, select the table view and change the
value of the Prototype Cells property in the Attribute inspector (see Figure 16-9)

FIGURE 16-9

For each prototype cell in a dynamic table view, you will need to provide a unique string for the
Identifi er property in the Attribute inspector By default, each prototype cell is an instance of
UITableViewCell. UITableViewCell provides an image view and a text label, accessed via the
imageView and textLabel properties.

If, however, your prototype cell contains more than just a single line of text and an image view,
you will need to fi rst create a subclass of UITableViewCell and associate it with the cell using the
Identity inspector (see Figure 16-10).

FIGURE 16-10

You can then drag and drop standard user interface elements onto the prototype cell and create
outlets/actions in the associated UITableViewCell subclass.

Creating a Table View with Interface Builder ❘ 209

c16.indd 10/31/2015 Page 209

Dynamic table views require a data source and a delegate object. A data source object must
implement the UITableViewDataSource protocol, and the delegate object must implement the
UITableViewDelegate protocol.

If the table view was added to an existing scene, then the data source and delegate are both usually
set to be the view controller, with the view controller implementing the relevant methods from both
protocols (see Figure 16-11).

FIGURE 16-11

The UITableViewDataSource and UITableViewDelegate protocols defi ne several methods, most
of which are optional. The most common UITableViewDataSource methods you are likely to
implement are:

func numberOfSectionsInTableView(tableView: UITableView) -> Int

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell

210 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 210

You should return the number of sections in your table view from the numberOfSectionsInTableView
method. If this method is not implemented, the table view assumes a single section. The number of rows
in each section are to be returned from numberOfRowsInSection and a UITableViewCell instance for
each row within each section is to be returned from cellForRowAtIndexPath.

The most common UITableViewDelegate method that you are likely to implement is:

func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath)

This method is called when the user selects a row in your table view. If, however, you have created
segues in your storyboard from your table view to another scene, then prepareForSegue is called
instead.

If on the other hand, you are using a table view controller in your storyboard, then you will need to
associate a custom UITableViewController subclass with the table view controller in the Identity
Inspector and implement the data source and delegate methods in this subclass.

The following code snippet shows how these data source and delegate methods are implemented in a
view controller:

class ViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate {

 var fruits:Array<String> = ["Apple", "Banana",
"Mango", "Pear",
"Peach", "Plum",
"Grape", "Melon",
"Orange"]

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 func numberOfSectionsInTableView(tableView: UITableView) -> Int
 {
 return 1
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int
 {
 return fruits.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell
 {
 var cell:UITableViewCell =

Try It ❘ 211

c16.indd 10/31/2015 Page 211

tableView.dequeueReusableCellWithIdentifier("cellPrototype1")
as! UITableViewCell

 cell.textLabel?.text = fruits[indexPath.row]

 return cell

 }

}

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
TableViewTest that adds a grouped table view with multiple sections to an existing scene of the
default storyboard.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a table view to the default scene.

 ➤ Set up a prototype cell.

 ➤ Set up table view attributes with the Attribute inspector.

 ➤ Set up the data source and delegate property of the table view.

 ➤ Implement UITableViewDataSource and UITableViewDelegate methods.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called TableViewTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

212 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 212

 3. In the project options screen, use the following values:

 ➤ Product Name: TableViewTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a UITableView instance to the default scene.

 1. From the Object library, drag and drop a Table View object onto the scene.

 2. Ensure the table view is selected and use the Pin button to display the constraints editor
popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 4. Set up the data source and delegate properties.

 ➤ Right-click the table view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

 ➤ Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “View Controller”
in the document outline.

Try It ❘ 213

c16.indd 10/31/2015 Page 213

 ➤ Set up the table view’s appearance:

 1. Select the table view and ensure the Attribute inspector is visible.

 2. Ensure the Content attribute is set to Dynamic Prototypes.

 3. Ensure the value of the Prototype Cells attribute is 1.

 4. Ensure the Style attribute is set to Grouped.

 ➤ Set up the prototype cell:

 1. Expand the table view in the document outline; this will reveal the table view cell.

 2. Select the table view cell.

 3. Use the attribute editor to ensure that the value of the identifi er attribute is
prototypeCell1.

 4. Ensure the Style attribute is set to Basic.

 ➤ Implement the data source and delegate methods in the view controller.

 1. Add the following code snippet to the ViewController.swift fi le to declare fi ve arrays
of strings:

var continents:Array<String> = ["Asia", "North America",
 "Europe", "Australia"]

var citiesInAsia:Array<String> = ["Bangkok", "New Delhi",
 "Singapore", "Tokyo"]

var citiesInNorthAmerica:Array<String> = ["San Francisco","Cupertino"]
var citiesInEurope:Array<String> = ["London", "Paris", "Rome", "Athens"]
var citiesInAustralia:Array<String> = ["Sydney", "Melbourne", "Cairns"]

 2. Implement the numberOfSectionsInTableView data source method as follows:

func numberOfSectionsInTableView(tableView: UITableView) -> Int
{
 return continents.count;
}

 3. Implement the numberOfRowsInSection data source method as follows:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int
{
 if section == 0
 {
 return citiesInAsia.count
 }
 else if section == 1
 {
 return citiesInNorthAmerica.count
 }

214 ❘ LESSON 16 TABLE VIEWS

c16.indd 10/31/2015 Page 214

 else if section == 2
 {
 return citiesInEurope.count
 }
 else if section == 3
 {
 return citiesInAustralia.count
 }

 return 0
}

 4. Implement the titleForHeaderInSection data source method as follows:

func tableView(tableView: UITableView,
 titleForHeaderInSection section: Int) -> String?
{
 return continents[section];
}

 5. Implement the cellforRowAtIndexPath data source method as follows:

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell
{
 var cell:UITableViewCell =
tableView.dequeueReusableCellWithIdentifier("prototypeCell1") as!
 UITableViewCell

 if indexPath.section == 0
 {
 cell.textLabel?.text = citiesInAsia[indexPath.row]
 }
 else if indexPath.section == 1
 {
 cell.textLabel?.text = citiesInNorthAmerica[indexPath.row]
 }
 else if indexPath.section == 2
 {
 cell.textLabel?.text = citiesInEurope[indexPath.row]
 }
 else if indexPath.section == 3
 {
 cell.textLabel?.text = citiesInAustralia[indexPath.row]
 }

 return cell
}

Try It ❘ 215

c16.indd 10/31/2015 Page 215

 6. Modify the declaration of the ViewController class to inherit from
UIViewController, UITableViewDataSource, and UITableViewDelegate:

class ViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate {

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 16
video online at www.wrox.com/go/swiftio s vid.

http://www.wrox.com/go/swiftio

c17.indd 11/12/2015 Page 217

Collection Views
In the previous lesson, you learned about table views. Collection views are similar to table
views in many respects; the primary difference between them is that collection views are not
restricted to single column layouts. A collection views layout can be customized programmati-
cally, allowing collection views to present data in grid layouts, circular layouts, and cover-fl ow
layouts (see Figure 17-1).

FIGURE 17-1

17

218 ❘ LESSON 17 COLLECTION VIEWS

c17.indd 11/12/2015 Page 218

Collection views are instances of the UICollectionView class and are part of the UIKit framework.
Data in a collection view is referred to as Items that are grouped into sections. Each section can
have an optional header and a footer view.

CREATING A COLLECTION VIEW WITH INTERFACE BUILDER

To add a new scene in your storyboard that contains a collection view, simply drag and drop a
Collection View Controller object into your scene. A collection view controller is an object that
manages a collection view (see Figure 17-2).

FIGURE 17-2

If, however, you want to add a collection view to an existing scene, drag and drop a collection
view object onto the scene. When using a collection view your view controller class will be respon-
sible for managing the collection view and will need to implement relevant methods from the
UICollectionViewDataSource and UICollectionViewDelegate protocols. You will also need to
set the view controller to act as both the data source and delegate object for the collection view
(see Figure 17-3). The data source and delegate will be discussed in more detail later in this lesson.

Collection View Cells ❘ 219

c17.indd 11/12/2015 Page 219

FIGURE 17-3

COLLECTION VIEW CELLS

Each item in a collection view is an instance of another UIKit class called UICollectionViewCell.
The collection view has a mechanism in place that allows you to reuse collection view cells instead
of creating one for each item.

When you add a collection view to your storyboard, the collection view has a default cell of dimen-
sions 50 x 50 units. Select the collection view in the document outline, and use the Size Inspector to
edit the dimensions of the cell and the spacing between cells (see Figure 17-4).

220 ❘ LESSON 17 COLLECTION VIEWS

c17.indd 11/12/2015 Page 220

FIGURE 17-4

Select the collection view cell (not the collection view) in the docu-
ment outline and switch to the Attribute inspector to set up a
unique identifi er that will be used to access this cell programmati-
cally (see Figure 17-5).

You will also need to create a custom UICollectionViewCell
subclass and associate it with the collection view cell using the
Identity Inspector (see Figure 17-6).

Unlike table view cells, the default collection view cell is empty.
You will need to build a layout using standard UIKit elements such
as labels and image views, and set up layout constraints within the
cell.

Once a custom UICollectionViewCell subclass is associated with
the collection view cell in the storyboard, you can create outlets
and actions for the elements within the cell in this class.

COLLECTION VIEW DELEGATE AND DATA SOURCE

The UICollectionViewDataSource and UICollectionViewDelegate protocols defi ne several
methods, most of which are optional. The most common UICollectionViewDataSource methods
you are likely to implement are:

FIGURE 17-5

FIGURE 17-6

Collection View Delegate and Data Source ❘ 221

c17.indd 11/12/2015 Page 221

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell

func numberOfSectionsInCollectionView(collectionView: UICollectionView) -> Int

You should return the number of sections in your collection view from the numberOfSectionsIn
CollectionView method. If this method is not implemented, the collection view assumes a single sec-
tion. The number of items in each section are to be returned from collectionView(collectionView,
numberOfItemsInSection), and a UICollectionViewCell instance for each row within each section
is to be returned from collectionView(collectionView, cellForItemAtIndexPath).

The most common UICollectionViewDelegate method that you are likely to implement is:

func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath)

This method is called when the user selects an item in your collection view. If, however, you have
created segues in your storyboard from your table view to another scene, then prepareForSegue is
called instead.

If, on the other hand, you are using a collection view controller in your storyboard, then you
will need to associate a custom UICollectionViewController subclass with the collection view
controller in the Identity Inspector and implement the data source and delegate methods in this
subclass.

The following code snippet shows how these data source and delegate methods are imple-
mented in a view controller; this snippet assumes that ElementCollectionViewCell is a custom
UICollectionViewCell subclass:

class ViewController: UIViewController,
 UICollectionViewDataSource,
 UICollectionViewDelegate {

 var elements:Array<String> = ["Hi", "He", "Li", "Be", "B", "C",
 "N", "O", "F" ,"Ne", "Na", "Mg",
 "Al", "Si", "P", "S", "Cl", "Ar",
 "K", "Ca"]

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

222 ❘ LESSON 17 COLLECTION VIEWS

c17.indd 11/12/2015 Page 222

 func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int
 {
 return elements.count;
 }

 func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath) ->
 UICollectionViewCell
 {
 var cell: ElementCollectionViewCell =
collectionView.dequeueReusableCellWithReuseIdentifier("ElementCell",
forIndexPath:indexPath) as! ElementCollectionViewCell

 var elementName:String = elements[indexPath.row]
 cell.elementImage.image = UIImage(named: elementName)

 return cell
 }

 func numberOfSectionsInCollectionView(collectionView: UICollectionView) -> Int
 {
 return 1;
 }

}

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
CollectionViewTest that adds a collection view with three sections to an existing scene of the
default storyboard. The sections display a few elements from the periodic table sorted into solids,
liquids, and gases.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a collection view to the default scene.

 ➤ Set up a collection view cell.

 ➤ Set up collection view attributes with the Attribute inspector.

 ➤ Set up the data source and delegate property of the table view.

 ➤ Implement UICollectionViewDataSource and UICollectionViewDelegate methods.

Try It ❘ 223

c17.indd 11/12/2015 Page 223

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called CollectionViewTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: CollectionViewTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking it in the project navigator.

 3. Navigate to the Images folder in this chapter’s resources from the website.

 4. Create a new Image set by selecting Editor ➪ New Image Set, and name this new image
set Al.

 5. Drag the Al_1x.png, Al_2x.png, and Al_3x.png images from this chapter’s resources
into the appropriate placeholders in the image set.

 6. Similarly, create new image sets called F, Hg, Li, N, O, and Si, and use the appropriate
images from this chapter’s resources folder.

http://www.wrox.com/go

224 ❘ LESSON 17 COLLECTION VIEWS

c17.indd 11/12/2015 Page 224

 ➤ Add a UICollectionView instance to the default scene.

 1. From the Object library, drag and drop a Collection View object onto the scene.

 2. Ensure the collection view is selected and use the Pin button to display the constraints
editor popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 4. Set up the data source and delegate properties.

 ➤ Right-click the collection view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

 ➤ Right-click the collection view to bring up a context menu. Drag from the
item labeled “delegate” in the context menu to the item labeled “View
Controller” in the document outline.

 ➤ Set up the collection view’s appearance.

 1. Select the collection view and ensure the Attribute inspector is visible.

 2. Ensure the Layout attribute is set to Flow.

 3. Ensure the Scroll Direction attribute is set to Vertical.

 4. Ensure the Section Header check box is unchecked.

 5. Ensure the collection view is selected, and switch to the Size Inspector to set the height
and width of the collection view cell to 150 units each.

 6. Set the Top Section Inset to 10 units.

 ➤ Add a UICollectionViewCell subclass.

 1. Option-click the CollectionViewTest group in the project explorer and select New
File from the context menu.

 2. Select Swift File under the iOS Templates section.

 3. Name the fi le ElementCollectionViewCell.swift and click Create.

Try It ❘ 225

c17.indd 11/12/2015 Page 225

 4. Modify the contents of the ElementCollectionViewCell.swift fi le to subclass
UICollectionViewCell. The modifi ed contents of this fi le should resemble the
following:

import UIKit

class ElementCollectionViewCell: UICollectionViewCell {

}

 ➤ Set up the collection view cell.

 1. Expand the collection view in the document outline; this will reveal the collection
view cell.

 2. Select the collection view cell.

 3. Use the attribute editor to ensure that the value of the identifi er attribute is
ElementCellIdentifier.

 4. Drag and drop an Image view onto the collection view cell.

 5. Ensure the image view is selected and use the pin button to display the constraints edi-
tor popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 0.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 6. Update the frames to match the constraints you have set.

 ➤ Select the collection view cell in the document outline. This will now be listed
as ElementCellIdentifier.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 7. Select the collection view cell, and use the Identity Inspector to change the custom class
of the cell to ElementCollectionViewCell.

 8. Ensure the assistant editor is visible and the ElementCollectionViewCell.Swift fi le
is open in it.

 9. Select the image view in the document outline and create an outlet for the image view
in the ElementCollectionViewCell.Swift fi le. Name the outlet imageView.

 ➤ Implement the data source and delegate methods in the view controller.

 1. Add the following code snippet to the ViewController.swift fi le to declare four
arrays of strings:

var statesOfMatter:Array<String> = ["Solid", "Liquid", "Gas"]

226 ❘ LESSON 17 COLLECTION VIEWS

c17.indd 11/12/2015 Page 226

var solids:Array<String> = ["Li", "Al", "Si"]

var liquids:Array<String> = ["Hg"]

var gasses:Array<String> = ["N", "O", "F"]

 2. Implement the numberOfSectionsInCollectionView data source method as follows:

func numberOfSectionsInCollectionView(collectionView: UICollectionView)
 -> Int
{
 return statesOfMatter.count;
}

 3. Implement the collectionView(collectionView, numberOfItemsInSection) data
source method as follows:

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int
{
 if section == 0
 {
 return solids.count
 }
 else if section == 1
 {
 return liquids.count
 }
 else if section == 2
 {
 return gasses.count
 }

 return 0
}

 4. Implement the collectionView(collectionView, cellForItemAtIndexPath) data
source method as follows:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell
{
 var section = indexPath.section
 var row = indexPath.row

 var cell: ElementCollectionViewCell =
collectionView.dequeueReusableCellWithReuseIdentifier
("ElementCellIdentifier", forIndexPath:indexPath)
as! ElementCollectionViewCell

 if section == 0
 {
 var elementName:String = solids[indexPath.row]
 cell.imageView.image = UIImage(named: elementName)
 }

Try It ❘ 227

c17.indd 11/12/2015 Page 227

 else if section == 1
 {
 var elementName:String = liquids[indexPath.row]
 cell.imageView.image = UIImage(named: elementName)
 }
 else if section == 2
 {
 var elementName:String = gasses[indexPath.row]
 cell.imageView.image = UIImage(named: elementName)
 }

 return cell
}

 5. Modify the declaration of the ViewController class to inherit
from UIViewController, UICollectionViewDataSource, and
UICollectionViewDelegate :

class ViewController: UIViewController,
 UICollectionViewDataSource,
 UICollectionViewDelegate {

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 17
video online at www.wrox.com/go/swif t iosvid.

http://www.wrox.com/go/swif

c18.indd 11/12/2015 Page 229

Tab Bars and Toolbars
Lesson 15 discussed navigation controllers, which allowed your application to present a hier-
archy of views one at a time. A tab bar controller, on the other hand, allows you to display
multiple view controllers at the same time (see Figure 18-1).

FIGURE 18-1

Navigation controllers are well suited to a hierarchical app structure, where users navigate
one screen at a time to reach their destination. A tab bar controller is handy when it comes to
creating a fl at app structure where users can navigate directly from one primary category to
another (see Figure 18-2). Examples of such apps include the Clock and the App store apps on
iOS devices.

18

230 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 230

Root View Controller

Event List View Controller Event Map View Controller Event Search View Controller

Hierarchical structure, works well with navigation controllers Flat structure, works well with tab bar controllers

Table View Controller

Detail View Controller

More Detail View Controller

Drill down for detail

Drill down for more detail

FIGURE 18-2

View controllers provide the content of tabs within a tab bar controller. It is quite common to com-
bine tab bar controllers and navigation controllers to create an app that provides the best of both.
The tab bar sits at the top of the view controller hierarchy and some of the tabs could have a naviga-
tion controller within them that provides a drill-down interface for the content within that tab. The
Phone app on the iPhone is an example of such an app, with the Contacts tab containing a naviga-
tion controller that allows you to drill down into a contact’s details.

A tab bar represents a single tab within a tab bar controller. Tab bars are located at the bottom of
the screen and consist of an icon and text to describe the content it represents. Each tab can also
have a badge, which is a red oval with a number in it (see Figure 18-3).

FIGURE 18-3

On an iPhone, a tab bar controller can only display fi ve tabs at a time. If there are more than fi ve,
then the fi rst four are displayed and the tab bar controller adds a More tab that reveals a list of addi-
tional tabs. The iPad can display more than fi ve tabs because it has a larger screen.

Creating a Tab Bar Controller ❘ 231

c18.indd 11/12/2015 Page 231

CREATING A TAB BAR CONTROLLER

Xcode contains a template specifi cally for applications that want to present a tabbed interface. This
template is called the Tabbed Application template and can be selected when creating a new project
(see Figure 18-4).

FIGURE 18-4

The template adds a tab bar controller to the default storyboard scene and confi gures the tab
bar to present two tabs, the contents of which are provided by two view controllers, called
FirstViewController and SecondViewController respectively (see Figure 18-5).

FIGURE 18-5

232 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 232

Inspecting the storyboard in the document outline reveals that each view controller contains a view
and a tab bar item. The tab bar item is used to represent the view controller within the parent tab
bar controller (see Figure 18-6).

FIGURE 18-6

You can use the Attribute inspector to change the contents of the tab bar item. Apple provides a list
of standard tab bar items:

 ➤ More

 ➤ Favorites

 ➤ Featured

 ➤ Top rated

 ➤ Recents

 ➤ Contacts

 ➤ History

 ➤ Bookmarks

 ➤ Search

 ➤ Downloads

 ➤ Most recent

 ➤ Most visited

You can choose one of these using the System Item drop-down combo in the Attribute inspector (see
Figure 18-7).

Creating a Tab Bar Controller ❘ 233

c18.indd 11/12/2015 Page 233

FIGURE 18-7

If you choose one of the standard tab bar items, then Xcode will provide a suitable icon and
caption for you. If, however, you wish to use your own icon and caption, set the System Item to
Custom. Astute readers will note that the default setting for the tab bar items created by the Tabbed
Application template is Custom, with appropriate icons in the project’s asset bundle.

To add a new tab to the tab bar controller, you must fi rst add a new view controller scene to the
storyboard. To do this, drag and drop a View Controller from the Object library onto the story-
board scene (see Figure 18-8).

FIGURE 18-8

234 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 234

Next, create a new Swift class that subclasses UIViewController and use the Identity Inspector to
associate this class with the view controller you have just dropped onto the storyboard.

To add a tab bar item to the new scene, ensure the scene is selected, and then drag and drop a Tab
Bar Item from the Object library anywhere onto the scene. The tab bar item will automatically snap
to the bottom of the scene regardless of where you drop it. To confi gure the tab bar item, simply
select it and use the attribute editor.

Finally, to add the new view controller to the tab bar, simply hold down the Ctrl key on your keyboard
and drag from the tab bar onto the new view controller scene (you are creating a segue). When you
release the mouse button, select Relationship Segue from the popup menu (see Figure 18-9).

FIGURE 18-9

Toolbars ❘ 235

c18.indd 11/12/2015 Page 235

TOOLBARS

Toolbars look similar to tab bars in that both of them appear at the bottom of the screen, but the
similarity ends there. A tab bar is used when you want to present multiple view controllers on the
screen simultaneously. A toolbar is used to present a menu of options related to the content pre-
sented in a view controller. The two are not usually used together. The Maps application uses a
toolbar to present options related to the map being displayed (see Figure 18-10). Tapping the info
button brings up a modal view with options that will change the way in which data is displayed on
the map.

FIGURE 18-10

Typically, the buttons on a tab bar represent command functions that would be used on the current
view. To add a toolbar to a view controller scene, simply drag and drop a Toolbar from the Object
library. Unlike tab bar items, toolbars do not automatically snap to the bottom of the screen. You
will need to provide appropriate constraints to anchor the toolbar to the bottom of the screen (see
Figure 18-11).

Options within a toolbar are instances of the UIBarButtonItem class. You can add to the options
displayed in a toolbar by dragging and dropping a Bar Button Item from the Object library (see
Figure 18-12).

Confi guring a bar button item is similar to confi guring a tab bar item. You simply select it and bring
up the Attribute inspector to change appropriate properties. Xcode provides a set of standard bar
button item styles that can be selected using the Identifi er drop-down combo box in the Attribute
inspector (see Figure 18-13).

236 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 236

FIGURE 18-11

FIGURE 18-12

Toolbars ❘ 237

c18.indd 11/12/2015 Page 237

FIGURE 18-13

Two styles are worth special mention. The fi rst is the Fixed Space style. When applied, the bar
button item renders as empty space (of fi xed width) between its neighboring bar button items.
Figure 18-14 shows a toolbar that starts with three bar button items. The Fixed Space style is then
applied to the one in the middle. Note how it changes to represent whitespace. You can edit the
width of a bar button item (even fi xed spaces) by using the Size inspector.

FIGURE 18-14

The second style is the Flexible Space style. The toolbar distributes the available free space across
all bar button items that have this style applied to them. In a toolbar with three items, if this style
were to be applied to the middle item, the neighboring items would be placed at ends of the toolbar
because the width of the fl exible spacebar button item would equal all the free space in the toolbar
(see Figure 18-15).

238 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 238

FIGURE 18-15

For a toolbar with fi ve items in which the second and fourth items are given the Flexible Space style,
the remaining three items would be spaced apart evenly (see Figure 18-16) because the free space
in the toolbar would be split equally between the two fl exible space items.

FIGURE 18-16

Last but not least, you will need to associate action methods in your view controller class with each
bar button item. To do this simply use the assistant editor to create a method and associate it with
the bar button item (see Figure 18-17).

 FIGURE 18-17

TRY IT

In this Try It, you create a simple application based on the Tabbed Application template, called
TabbedApplication, that contains two tabs. The fi rst tab contains a list of cities; the second tab
serves as an About page for the app.

Try It ❘ 239

c18.indd 11/12/2015 Page 239

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Tabbed Application template, with two tabs.

 ➤ Add a Table View to the fi rst tab.

 ➤ Use Interface Builder to add several user interface elements to the second tab.

 ➤ Add code to the view controller class for the fi rst tab to populate the table view.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library menu item.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Tabbed Application in Xcode called TabbedApplicationTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Tabbed Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: TabbedApplicationTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

http://www.wrox.com/go

240 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 240

 ➤ Add image resources to the project.

 1. Open the Assets.xcassets asset bundle by clicking it in the project explorer.

 2. Add a new image set called aboutImage by selecting Editor ➪ Add Assets ➪ New
Image Set menu item.

 3. Select the new image set and use the Attribute inspector to change the value of the Scale
Factors property to Single Vector.

 4. Drag and drop the about.pdf fi le from this lesson’s resources folder onto the place-
holder in the image set.

 ➤ Add user interface elements to the fi rst tab.

 1. Open the Main.storyboard fi le and locate the scene called First Scene.

 2. Delete the two labels that are present on the scene. These should have the captions
“First View” and “Loaded by FirstViewController” respectively.

 3. Add a UITableView instance to the scene using the Object library.

 4. Ensure the table view is selected and use the Pin button to display the constraints editor
popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 5. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 6. Using the assistant editor, create an outlet for the table view in the view controller
class, and call the outlet tableView.

 7. Set up the data source and delegate properties.

 ➤ Right-click the table view to bring up a context menu. Drag from the item
labeled “dataSource” in the context menu to the item labeled “First” in the
document outline.

 ➤ Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “First” in the
document outline.

Try It ❘ 241

c18.indd 11/12/2015 Page 241

 8. Set up the table view’s appearance.

 ➤ Select the table view and ensure the Attribute inspector is visible.

 ➤ Ensure the Content attribute is set to Dynamic Prototypes.

 ➤ Ensure the value of the Prototype Cells attribute is 1.

 ➤ Ensure the Style attribute is set to Grouped.

 9. Set up the prototype cell.

 ➤ Expand the table view in the document outline; this will reveal the table
view cell.

 ➤ Select the table view cell.

 ➤ Use the attribute editor to ensure that the value of the identifi er attribute is
prototypeCell1.

 ➤ Ensure the Style attribute is set to Basic.

 ➤ Update the tab bar item for the fi rst tab.

 1. Select the Tab bar item on the scene called First.

 2. Use the Attribute inspector to set the value of the System Item property to Top Rated.

 ➤ Add user interface elements to the second tab.

 1. Open the Main.storyboard fi le and locate the scene called Second Scene.

 2. Edit the contents of the “Second View” label to “City Index.”

 3. Edit the contents of the “Loaded by SecondViewController” label to “Cities listed by
continent.”

 ➤ Update the tab bar item for the second tab.

 1. Select the Tab bar item on the scene called Second.

 2. Use the Attribute inspector to set the value of the Title property to About.

 3. Set the value of the Image attribute to aboutImage.

 ➤ Ensure the FirstViewController class implements the UITableViewDataSource and
UITableViewDelegate protocols.

Modify the declaration of the FirstViewController class from

class FirstViewController: UIViewController
to

class FirstViewController: UIViewController,
 UITableViewDataSource,
 UITableViewDelegate

 ➤ Implement the data source and delegate methods in the view controller.

242 ❘ LESSON 18 TAB BARS AND TOOLBARS

c18.indd 11/12/2015 Page 242

 1. Add the following code snippet to the FirstViewController.swift fi le to declare fi ve
arrays of strings:

let continents:Array<String> = ["Asia", "North America",
 "Europe", "Australia"]

let citiesInAsia:Array<String> = ["Bangkok", "New Delhi",
 "Singapore", "Tokyo"]
let citiesInNorthAmerica:Array<String> = ["San Francisco","Cupertino"]
let citiesInEurope:Array<String> = ["London", "Paris", "Rome", "Athens"]
let citiesInAustralia:Array<String> = ["Sydney", "Melbourne", "Cairns"]

 2. Implement the numberOfSectionsInTableView data source method as follows:

func numberOfSectionsInTableView(tableView: UITableView) -> Int
{
 return continents.count;
}

 3. Implement the numberOfRowsInSection data source method as follows:

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int
{
 if section == 0
 {
 return citiesInAsia.count
 }
 else if section == 1
 {
 return citiesInNorthAmerica.count
 }
 else if section == 2
 {
 return citiesInEurope.count
 }
 else if section == 3
 {
 return citiesInAustralia.count
 }

 return 0
}

 4. Implement the titleForHeaderInSection data source method as follows:

func tableView(tableView: UITableView,
titleForHeaderInSection section: Int) -> String?
{
 return continents[section];
}

 5. Implement the cellforRowAtIndexPath data source method as follows:

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell
{

Try It ❘ 243

c18.indd 11/12/2015 Page 243

 let cell =
 tableView.dequeueReusableCellWithIdentifier("prototypeCell1",
 forIndexPath: indexPath)

 if indexPath.section == 0
 {
 cell.textLabel?.text = citiesInAsia[indexPath.row]
 }
 else if indexPath.section == 1
 {
 cell.textLabel?.text = citiesInNorthAmerica[indexPath.row]
 }
 else if indexPath.section == 2
 {
 cell.textLabel?.text = citiesInEurope[indexPath.row]
 }
 else if indexPath.section == 3
 {
 cell.textLabel?.text = citiesInAustralia[indexPath.row]
 }

 return cell
}

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 18
video online at www.wrox.com/go/swift i osvid.

http://www.wrox.com/go/swift

c19.indd 11/12/2015 Page 245

Creating Views That Scroll
When your apps start to get more complex, sooner or later you will need to develop a strategy
to scroll to off-screen content when a user swipes on a view in your app. This is particularly
true if your app requires a user to fi ll a large form on a device with limited screen size.

You can either try to break up the content of your application and present it across multiple
views using tab bars or navigation controllers, or you could still keep all the content in a single
view but allow the user to scroll through the content of the view.

UIKit provides the UIScrollView class specifi cally designed to help you create scrollable
views. In this lesson, you learn to use UIScrollView instances in your applications.

THE UISCROLLVIEW CLASS

To create a UIScrollView instance using the Xcode Interface Builder, simply drag and drop
a Scroll View object from the Object library onto a scene, and create an outlet using the
assistant editor (see Figure 19-1).

FIGURE 19-1

19

246 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 246

You can add one or more instances of UIView subclasses as subviews of the scroll view. The collec-
tive dimensions of these subviews can be much larger than the dimensions of the scroll view itself (see
Figure 19-2).

contentSize.height

contentSize.width

content area

UIScrollView

FIGURE 19-2

The dimensions of the content managed by a scroll view can be read (or set) using the contentSize
property. The contentSize property is a CGSize structure and contains two fl oat members, height
and width. Thus, if scrollView is a UIScrollView instance, the following code could be used to
read the height and width of the content area:

var contentHeight = scrollView.contentSize.height
var contentWidth = scrollView.contentSize.width

When you create a scroll view instance with Interface Builder, the size of the content area is exactly
the same as the size of the scroll view. Thus, scroll views, by default, do not scroll. To enable the
scrolling behavior, you need to set up the contentSize property programmatically. You can do this
at any point after the scroll view is instantiated. If you created the scroll view with Interface Builder,
you may want to set it up in the viewDidLoad method of the view controller class that contains the
scroll view, using code similar to the following:

scrollView.contentSize = CGSizeMake(320, 4200);

Another property related to the scrolling behavior is the contentOffset property. This property is
a CGPoint structure and contains two fl oat members, x and y, that represent the distance scrolled by
the user along the horizontal and vertical axes (see Figure 19-3).

You can add user interface elements to a scroll view with Interface Builder by simply dragging
and dropping them from the Object library onto the scroll view. Positioning elements that are not
initially visible in the scroll view can be a bit tricky. One way to solve this problem is to drag and
drop elements onto the scroll view and then provide precise numeric values for the X and Y posi-
tions using the Attribute inspector (see Figure 19-4). If you do this though, you will also need to set

The UIScrollView Class ❘ 247

c19.indd 11/12/2015 Page 247

up the appropriate constraints to ensure that the user elements occupy the current positions on the
screen at runtime.

contentSize.height

contentSize.width

content area

contentOffset.y

contentOffset.x

UIScrollView

FIGURE 19-3

FIGURE 19-4

248 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 248

Another way is to resize/reposition the scroll view within the scene and create the user interface
elements visually in their correct positions. Once the elements are in their correct positions, you can
then set up constraints. This approach requires you to move the scroll view about in the scene a few
times until you get the results you want (see Figure 19-5). Don’t forget to reset the scroll view’s
position and size to their initial values after you are done.

FIGURE 19-5

You could also create the user interface elements programmatically and insert them at the appropri-
ate position within the scroll view. If you create UIKit elements programmatically, then you must
also need to specify constraints programmatically. Creating constraints programmatically is not
covered in this book, but if you are interested, you are encouraged to read the Working with Auto
Layout Guide available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
AutolayoutPG/AutoLayoutinCode/AutoLayoutinCode.html

Regardless of which method you use, you need to set the contentSize property to an appropriate
value to enable scrolling.

 SCROLL VIEWS AND TEXT FIELDS

A common scenario in which you are likely to use a scroll view involves multiple text fi elds in a
scene. If you tap a text fi eld closer to the bottom of the screen, a keyboard automatically pops up
and covers part of the user interface. This is illustrated in Figure 19-6; when a user taps on the

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/AutoLayoutinCode/AutoLayoutinCode.html

Try It ❘ 249

c19.indd 11/12/2015 Page 249

Address (Line 1): fi eld, the keyboard comes up and covers the text fi eld, thus making it impossible
for the user to see what is being typed.

FIGURE 19-6

Scroll views provide a simple and elegant solution to this problem; you can change the Y offset of
the content area within the scroll view when a specifi c text fi eld is tapped, thus moving the content
toward the top by a small amount. This solution is explored next, in this lesson’s Try It section.

TRY IT

In this Try It, you create a simple application based on the Single View Application template called
ScrollingForms that contains several text fi elds and a scroll view. When a text fi eld is tapped on, the
content of the scroll view is moved up by a small amount to ensure that the iOS keyboard will not
cover the text fi eld.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Add a scroll view to the default scene of the storyboard.

 ➤ Use Interface Builder to add several user interface elements to the scroll view.

 ➤ Add code to the view controller class to move the content in the scroll view when a text fi eld
is tapped, thus ensuring the text fi eld is always visible.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

http://www.wrox.com/go

250 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 250

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called ScrollingForms.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options, screen use the following values:

 ➤ Product Name: ScrollingForms

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add user interface elements to your storyboard’s scene.

 1. Add a UIScrollView instance to the default scene.

Using the Object library, add a Scroll View to the default scene of the storyboard.

 2. Ensure the scroll view is selected and use the Pin button to display the constraints
editor popup (see Figure 19-7).

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

Try It ❘ 251

c19.indd 11/12/2015 Page 251

FIGURE 19-7

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Use the Editor ➪ Resolve Auto Layout Issues ➪ Update Frames menu item.

 4. Using the assistant editor, create an outlet for the scroll view in the view controller class
called scrollView.

 ➤ Add user interface elements to the scroll view.

 1. Use the Object library to add fi ve Label instances and fi ve Text Field instances to the
scroll view. Position them to resemble Figure 19-8.

 2. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 19-1. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked.

252 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 252

FIGURE 19-8

TABLE 19-1: Layout Constraints

ELEMENT LEFT TOP WIDTH HEIGHT

Username (Label) 32 17 84 21

Username (Text fi eld) 32 8 256 30

Password (Label) 32 38 81 21

Password (Text fi eld) 32 8 256 30

Address 1 (Label) 32 59 129 21

Address 1 (Text Field) 32 8 256 30

Try It ❘ 253

c19.indd 11/12/2015 Page 253

ELEMENT LEFT TOP WIDTH HEIGHT

Address 2 (Label) 32 59 129 21

Address 2 (Text Field) 32 8 256 30

Postcode (Label) 32 64 79 21

Postcode (Text Field) 32 8 256 30

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Use the Editor ➪ Resolve Auto Layout Issues ➪ Update Frames menu item.

 4. Use the assistant editor to create outlets for each of the text fi elds in the view controller
class. Name the outlets usernameField, passwordField, addressField1, address-
Field2, and postcodeField.

 ➤ Ensure the view controller class implements the UITextFieldDelegate protocol.

Modify the declaration of the view controller class from

class ViewController: UIViewController
to

class ViewController: UIViewController, UITextFieldDelegate

 ➤ Add additional variable declarations to the ViewController.swift fi le.

 1. Add the following variable declarations to the ViewController.swift fi le:

var keyboardHeight:Float
var currentTextField:UITextField!

 2. The code in the ViewController.swift fi le should now resemble the following:

import UIKit

class ViewController: UIViewController, UITextFieldDelegate {

 @IBOutlet weak var usernameField: UITextField!
 @IBOutlet weak var passwordField: UITextField!
 @IBOutlet weak var addressField1: UITextField!
 @IBOutlet weak var addressField2: UITextField!
 @IBOutlet weak var postcodeField: UITextField!

 var keyboardHeight:Float = 0.0
 var currentTextField:UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

254 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 254

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

 ➤ Set up the delegate for the text fi eld instances.

Set up the view controller instance to be the delegate object for the text fi eld instances
by modifying the implementation of the viewDidLoad method to the following:

override func viewDidLoad() {
 super.viewDidLoad()

 usernameField.delegate = self
 passwordField.delegate = self
 addressField1.delegate = self
 addressField2.delegate = self
 postcodeField.delegate = self

}

 ➤ Set up your view controller class to be notifi ed when the keyboard is displayed and dismissed.

 1. You need to tell iOS to call the keyboardDidShow and keyboarDidHide meth-
ods in your view controller class when the keyboard becomes visible/hidden,
respectively. To do this, you need to register these methods as observers for the
UIKeyboardDidShowNotification and UIKeyboardDidHideNotification events.
Add the following code to your view controller class to override the viewWillAppear
method:

override func viewWillAppear(animated: Bool) {

 super.viewWillAppear(animated)

 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardDidShow:"),
 name: UIKeyboardDidShowNotification ,
 object: self.view.window)

 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardDidHide:"),
 name: UIKeyboardDidHideNotification ,
 object: nil)
}

 2. When your view controller is dismissed, you need to tell iOS that your code is not inter-
ested in the notifi cations previously registered by overriding the viewDidDisappear
method as follows:

override func viewDidDisappear(animated: Bool) {

 super.viewDidDisappear(animated)

Try It ❘ 255

c19.indd 11/12/2015 Page 255

 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: UIKeyboardDidShowNotification,
 object: nil)

 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: UIKeyboardDidHideNotification,
 object: nil)
}

NOTE The preceding code snippet removes individual observers one by one. If
you want to remove all observers in one line, you can alternately implement the
viewDidDisappear method as:

override func viewDidDisappear(animated: Bool) {

 super.viewDidDisappear(animated)

 NSNotificationCenter.defaultCenter().removeObserver(self)
}

 3. Implement the keyboardDidShow method in your view controller class as follows:

func keyboardDidShow(sender: NSNotification!)
{
 // get height of keyboard
 let info: NSDictionary = sender.userInfo!

 let value: NSValue =
 info.valueForKey(UIKeyboardFrameEndUserInfoKey) as! NSValue

 let keyboardFrame: CGRect = value.CGRectValue()

 // convert from Core Graphics CGFloat to Swift Float
 let cgFloatKeyboardHeight:CGFloat = keyboardFrame.size.height

 keyboardHeight = Float(cgFloatKeyboardHeight)

 // ensure current text field is visible,
 // if not adjust the contentOffset
 // of the scrollView appropriately.
 let textFieldTop:Float = Float(currentTextField.frame.origin.y)
 let textFieldBottom:Float = textFieldTop +
 Float(currentTextField.frame.size.height)

 if (textFieldBottom > keyboardHeight)
 {
 scrollView.setContentOffset(CGPointMake(0,
 CGFloat(textFieldBottom - keyboardHeight)),
 animated: true)
 }
}

256 ❘ LESSON 19 CREATING VIEWS THAT SCROLL

c19.indd 11/12/2015 Page 256

The preceding code snippet stores the height of the keyboard in a member variable
keyboardHeight. It then tests to see if the currently active text fi eld is partly or
wholly covered by the keyboard. If it is, it updates the contentOffset property of
the scroll view to rectify the situation.

 4. Implement the keyboardDidHide method in your view controller class as follows:

func keyboardDidHide(sender: NSNotification!)
{
 scrollView.setContentOffset(CGPointMake(0, 0), animated: false)
}

The preceding code snippet resets the contentOffset property of the scroll view to
X = 0, and Y = 0.

 ➤ Implement UITextFieldDelegate methods in your view controller class.

 1. Implement the textFieldShouldReturn method of the UITextFieldDelegate
protocol as follows:

func textFieldShouldReturn(textField: UITextField) -> Bool {
 textField.resignFirstResponder()
 return true;
}

 2. Implement the textFieldDidBeginEditing method of the UITextFieldDelegate
protocol as follows:

func textFieldDidBeginEditing(textField: UITextField)
{

 currentTextField = textField

 var textFieldTop:Float = Float(currentTextField.frame.origin.y)
 var textFieldBottom:Float = textFieldTop +
 Float(currentTextField.frame.size.height)

 if textFieldBottom > keyboardHeight && keyboardHeight != 0.0
 {
 scrollView.setContentOffset(CGPointMake(0,
 CGFloat(textFieldBottom - keyboardHeight)),
 animated: true)
 }
}

The preceding code snippet is called when the user taps on a text fi eld. It fi rst saves
a reference to the text fi eld in the variable currentTextField. It then checks to see
if the fi eld is wholly/partially obscured by the keyboard. If this is the case, it updates
the contentOffset property of the scroll view to rectify this situation.

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 19
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c20.indd 11/13/2015 Page 257

Popovers and Modal Views
Popovers and modal views provide ways to temporarily display some information to users.
The information that is displayed is usually contextual and related to an action performed by
the user.

Both popovers and modal views interrupt the user’s journey through your application; the user
must interact with the popover/modal view before using the rest of the application. Popovers
are dismissed by tapping outside the bounds of the popover; modal views are dismissed by
using a user-defi ned cancel button located in the modal view. Popovers are only available on
iPads, whereas modal views are available on both the iPad and iPhone.

POPOVERS

A popover view is one that is revealed when a control is tapped. A popover appears attached
to the control that was tapped to reveal it (see Figure 20-1).

Popovers are only supported on the iPad, and should be used to display additional information
related to the control that displays it. When presenting a popover, you do not provide a Done
or Cancel button; popovers are dismissed when the user taps outside the popover.

To present a scene in your storyboard in a popover, simply create a popover presentation segue
from a button in one of the other scenes of your view controller to the scene you wish to use
within the popover (see Figure 20-2).

20

258 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 258

FIGURE 20-1

You can use the Attribute inspector to confi gure the popover presentation segue (see Figure 20-3).
The Anchor attribute references a button (or bar button item) in the presenting view controller. The
popover will be anchored to this control. By default, popovers are dismissed as soon as the user taps
outside them. If you do not want the popover to be dismissed when some controls are tapped, you
can set up the Passthrough attribute to reference them.

Popovers ❘ 259

c20.indd 11/13/2015 Page 259

FIGURE 20-2

FIGURE 20-3

260 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 260

MODAL VIEWS

A modal view can be created in a couple of different ways; the most common is to use a Present
Modally segue from a button in a scene to another scene (see Figure 20-4).

FIGURE 20-4

The Present Modally segue has a few presentation styles that can be set up using the Attribute
inspector:

 ➤ Full Screen

 ➤ Current Context

 ➤ Form Sheet

 ➤ Page Sheet

The default setting is to present the modal view so that it takes up the entire screen. A commonly
used presentation style is form sheet. On an iPhone, the form sheet presentation style and the full
screen presentation style achieve identical effects. However, on the iPad, the form sheet presentation
style causes the modal view to appear as a self-contained form centered in the presenting view (see
Figure 20-5).

When a view is presented modally, there is no system-provided means to dismiss it and return back
to the presenting view. If you do not provide a way to dismiss the modal view, then your user will be
unable to use the rest of your application (see Figure 20-6).

Modal Views ❘ 261

c20.indd 11/13/2015 Page 261

FIGURE 20-5

FIGURE 20-6

262 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 262

Modal views are used when your app needs to collect some vital information before proceeding.
Typically you add a close button in the modal view that, when tapped, will dismiss it. You cannot
use a segue to dismiss a modal view; instead you must call the dismissViewControllerAnimated
method on the modal view controller. This method allows you to provide an optional completion
handler that is executed when the modal view is dismissed.

@IBAction func onDismissModalView(sender: AnyObject) {
 self.dismissViewControllerAnimated(true, completion: nil);
 }

If you do not wish to use a segue, you can alternately present a scene in your storyboard modally by
using the following code snippet attached to a UIButton instance in the presenting view controller:

@IBAction func onPresentModalView(sender: AnyObject) {

 let modalViewController:ModalViewController =

(self.storyboard!.instantiateViewControllerWithIdentifier
("ModalViewController") as? ModalViewController)!
 modalViewController.modalPresentationStyle =
 UIModalPresentationStyle.FormSheet
 self.presentViewController(modalViewController,
animated: true, completion: nil)

 }

TRY IT

In this Try It, you create a simple iPad-only application based on the Single View Application tem-
plate called PopoverTest, which displays an image and some information on the image in a popover.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPad-only project based on the Single View Application template.

 ➤ Create a storyboard with multiple scenes.

 ➤ Use Interface Builder to create segues between scenes.

 ➤ Present a scene in a popover.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

http://www.wrox.com/go

Try It ❘ 263

c20.indd 11/13/2015 Page 263

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called PopoverTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: PopoverTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPad

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking on it in the project navigator.

 3. Navigate to the Images folder in this chapter’s download from the book website.

 4. Create a new image set using Editor ➪ New Image Set and name this new image set
Sunflower.

 5. Drag the Sunflower_1x.jpg, sunflower_2x.jpg, and Sunflower_3x.jpg images
from this chapter’s resources into the appropriate placeholders in the image set.

264 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 264

 ➤ Add user interface elements to your storyboard’s scene.

 1. Add a toolbar to the bottom of the scene.

Using the Object library, add a Toolbar to the bottom of the storyboard scene.

 2. Ensure the toolbar is selected and use the Pin button to display the constraints editor
popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the toolbar to 0.

 ➤ Pin the distance between the right edge of the view and the toolbar to 0.

 ➤ Pin the distance between the bottom of the view and the toolbar to 0.

 ➤ Pin the height of the toolbar to 44.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 4. Edit the toolbar.

Select the default bar button item in the toolbar and rename it to Image Information.

 5. Add a UIImageView instance to the default scene.

Use the Object library to add an Image View to the default scene of the storyboard.
Place it above the tab bar.

 6. Ensure the image view is selected and use the Pin button to display the constraints edi-
tor popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the image view to 0.

 ➤ Pin the distance between the right edge of the view and the image view to 0.

 ➤ Pin the distance between the bottom of the image view and the tab bar to 0.

 ➤ Pin the distance between the top of the view and the image view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 7. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

Try It ❘ 265

c20.indd 11/13/2015 Page 265

 8. Using the assistant editor, create an outlet for the image view in the view controller
class called imageView.

 ➤ Add code to the view controller class.

 1. Add a variable declaration to the view controller class.

var image:UIImage!

 2. Add the following snippet to the end of the view controller’s viewDidLoad method to
load an image and set up the image view:

image = UIImage(named: "Sunflower")

imageView.image = image
imageView.contentMode = UIViewContentMode.ScaleAspectFit

 3. Add the following implementation of the prepareForSegue(segue: sender:) to the
view controller class.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

 if segue.identifier == "imageInformationSegue" {
 let viewController:ImageInformationViewController =
 segue.destinationViewController as!
 ImageInformationViewController
 viewController.imageBeingDisplayed = self.image
 }

 }

 ➤ Create an additional view controller scene.

 1. Use the Object library to drag and drop a new View Controller scene onto the
storyboard.

 2. Create a new Cocoa Touch class called ImageInformationViewController by select-
ing File ➪ New. Ensure the class is a subclass of UIViewController (see Figure 20-7).

FIGURE 20-7

266 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 266

 3. Select the new scene in the storyboard and switch to the Identity Inspector (View ➪
Utilities ➪ Show Identity Inspector).

 4. Change the Class attribute of the scene to ImageInformationViewController.

 ➤ Add user interface elements to your new scene.

 1. Add three labels to the scene.

Using the Object Library, drag and drop three labels onto the scene, position them one
below the other, and name them Height (pixels), Width (pixels), and Colorspace.

 2. Add three text fi elds to the scene.

 ➤ Using the Object Library, drag and drop three text fi elds onto the scene; posi-
tion them one below the other and beside the three labels you have created in
the previous step.

 ➤ Use the Attribute inspector to change the background color of the three text
fi elds to a shade of dark gray.

 3. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 20-1. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked.

TABLE 20-1: Layout Constraints

ELEMENT LEFT TOP RIGHT WIDTH HEIGHT

Height (label) 16 20 115 21

Height (text fi eld) 24 0 16 30

Width (label) 16 26 115 21

Width (text fi eld) 24 18 16 30

Colorspace (label) 16 26 115 21

Colorspace (text fi eld) 24 18 16 30

 4. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Your scene should resemble Figure 20-8.

 5. Use the assistant editor to create outlets for each of the text fi elds in the
ImageInformationViewController.swift class. Name the outlets imageHeight,
imageWidth, and imageColorSpace.

Try It ❘ 267

c20.indd 11/13/2015 Page 267

FIGURE 20-8

 ➤ Update the ImageInformationViewController.swift fi le to display information on the
image fi le.

 1. Add the following variable declarations to the fi le:

var imageBeingDisplayed:UIImage!

 2. Update the viewDidLoad method in the ImageInformationViewController.swift
fi le to resemble the following:

override func viewDidLoad() {
 super.viewDidLoad()

 let imageSize = imageBeingDisplayed.size
 let height = imageSize.height
 let width = imageSize.width

 imageHeight.text = "\(height)"
 imageWidth.text = "\(width)"
 imageColorSpace.text = "RGB"
 }

 ➤ The code in the ImageInformationViewController.swift fi le should now resemble the
following:

import UIKit

class ImageInformationViewController: UIViewController {

 @IBOutlet weak var imageHeight: UITextField!
 @IBOutlet weak var imageWidth: UITextField!
 @IBOutlet weak var imageColorSpace: UITextField!

268 ❘ LESSON 20 POPOVERS AND MODAL VIEWS

c20.indd 11/13/2015 Page 268

 var imageBeingDisplayed:UIImage!

 override func viewDidLoad() {
 super.viewDidLoad()

 let imageSize = imageBeingDisplayed.size
 let height = imageSize.height
 let width = imageSize.width

 imageHeight.text = "\(height)"
 imageWidth.text = "\(width)"
 imageColorSpace.text = "RGB"
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

 ➤ Create a segue from the Image Information bar button item in the fi rst scene to the Image
Information View Controller scene.

 1. Select the Image Information bar button item in the fi rst scene.

 2. Ctrl+drag from the bar button item to the second scene. On releasing the mouse but-
ton, you will be presented with a context menu that lets you select the segue type. Select
Popover Presentation from the list.

 3. Select the segue in the scene and use the Attribute inspector to set its identifi er attribute
to imageInformationSegue.

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 20 video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c21.indd 11/04/2015 Page 269

Touches and Gestures
Your users interact with your iOS applications using touches and gestures, as opposed to a
keyboard and mouse. While touches and gestures aren’t the only ways users could interact
with your apps, they are defi nitely the most common, with touches being more prevalent
than gestures. Both touches and gestures are UIEvent instances and are managed by the
UIApplication class.

TOUCH EVENTS

When the user begins a touch sequence, the system generates a touch event and pack-
ages information into this event. A touch event is represented by an instance of the
UIEventTypeTouches object; individual touches themselves are represented by UITouch
instances.

Touch events are placed by UIKit in an application-level event queue and dispatched by your
application’s run loop to the window that initiated the event. From there they are forwarded
to the fi rst responder, which is usually the view where the touch occurred. If that view cannot
handle the touch event, then the event is forwarded to the next responder in the chain, which
could be the view controller that manages the view.

To place a UIView subclass at the front of the responder chain, you send it the becomeFirst
Responder() message. Some views such as UITextView display a keyboard when they are sent
this message.

If you want to process touch events in your own UIView subclass, you must fi rst override can-
BecomeFirstResponder and return true from this method.

To handle touch events, you need to override one or more of the following methods:

func touchesBegan(_ touches: Set<UITouch>, withEvent event: UIEvent?)
func touchesMoved(_ touches: Set<UITouch>, withEvent event: UIEvent?)
func touchesEnded(_ touches: Set<UITouch>, withEvent event: UIEvent?)
func touchesCancelled(_ touches: Set<UITouch>?, withEvent event: UIEvent?)

21

270 ❘ LESSON 21 TOUCHES AND GESTURES

c21.indd 11/04/2015 Page 270

The touchesBegan method is called to inform your view when one or more fi ngers touch down
in a view, touchesMoved is called when the user drags one or more fi ngers across your view, and
touchesEnded is called when the user lifts one or more fi ngers off your view. The fi rst parameter is
a set of UITouch instances, one for each fi nger. Multi-touch is disabled by default; to enable it, you
must call multipleTouchEnabled on the view in question.

The last method in the list, touchesCancelled, is called if the system cancels the touch event in
response to a low memory warning or an incoming call.

NOTE If you override any of these four methods without calling super in your
implementation, you must also override the other methods, even if you provide
empty implementations.

GESTURE RECOGNIZERS

Touch events provide low-level information on touches as they happen; sometimes they can provide
too much detail, and interpreting a sequence of touches to represent a gesture can be a complex task.
This is where gesture recognizers come it.

A gesture recognizer is a subclass of UIGestureRecognizer and can be used to interpret low-
level touch event data into meaningful gestures. Apple provides the following subclasses of
UIGestureRecognizer to recognize specifi c types of gestures:

 ➤ UITapGestureRecognizer: For single and multiple taps

 ➤ UIPinchGestureRecognizer: For pinch in, pinch out gestures

 ➤ UIPanGestureRecognizer: For dragging

 ➤ UISwipeGestureRecognizer: For swipes

 ➤ UIRotationGestureRecognizer: For rotation

 ➤ UILongPressGestureRecognizer: For touch and hold (long press)

To use a gesture recognizer in your view, you can either add one or more appropriate gesture recog-
nizers programmatically, or through the interface editor.

To add a gesture recognizer to a view using the interface editor, simply drag and drop the appropri-
ate gesture recognizer from the Object Library onto your view (see Figure 21-1).

To create a gesture recognizer programmatically, simply instantiate one using the appropriate ini-
tializer and add it to the view using the views addGestureRecognizer method.

Regardless of which method you use to add a gesture recognizer to your view, you will need to pro-
vide a method in your class that will be called when the gesture recognizer has detected an appropri-
ate gesture.

Try It ❘ 271

c21.indd 11/04/2015 Page 271

FIGURE 21-1

The following snippet shows how to add a tap gesture recognizer to a view:

let tapRecognizer = UITapGestureRecognizer(target:self ,
action: Selector("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer(tapRecognizer)

If you would like your gesture recognizer to forward the underlying touch events to your view after
it has processed them, ensure the cancelsTouchesInViews property is set to false.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called GestureTest that adds a tap gesture recognizers to the main scene of the storyboard and
updates a label when a gesture is interpreted.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

272 ❘ LESSON 21 TOUCHES AND GESTURES

c21.indd 11/04/2015 Page 272

 ➤ Add user interface elements to the default scene of the storyboard.

 ➤ Add gesture recognizers to the scene using the Interface Editor.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called GestureTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: Gesture

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk

 ➤ Add a UILabel instance to the default scene.

 1. From the Object library, drag and drop a Label object onto the scene.

 2. Ensure the label is selected and use the Pin button to display the constraints editor
popup.

http://www.wrox.com/go

Try It ❘ 273

c21.indd 11/04/2015 Page 273

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 20.

 ➤ Pin the distance between the right edge of the view and the table view to 20.

 ➤ Pin the height of the label to 21.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Ensure the value of the Update Frames combo box is set to All Frames In
Container. Using this option will automatically update the frames for all
objects in the scene as soon as you fi nish adding the constraints. The alterna-
tive is to use the Editor ➪ Resolve Auto Layout Issues ➪ Update Frames menu
item after adding the constraints.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Add an outlet in the view controller class and connect it to the label in the scene.

 ➤ Ensure the Assistant editor is visible. To show it, select View ➪ Assistant
Editor ➪ Show Assistant Editor.

 ➤ Right-click the label to display a context menu. Drag from the circle beside
the New Referencing Outlet option in the context menu to an empty line
in the ViewController class.

 ➤ Name the new outlet gestureType.

 ➤ Add a tap gesture recognizer to the default scene.

 1. From the Object library, drag and drop a Tap Gesture Recognizer object onto the
scene.

 2. Ensure the Assistant editor is visible. To show it, select View ➪ Assistant Editor ➪
Show Assistant Editor.

 3. Right-click the tap gesture recognizer to display a context menu. Drag from the
circle beside the fi rst item under the Sent Actions group to an empty line in the
ViewController class (see Figure 21-2).

 4. Name the new action onTapGestureDetected.

 ➤ Add code to the view controller class.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Replace the stub implementation of the onTapGestureDetected method to resemble
with following:

@IBAction func onTapGestureDetected(sender: AnyObject) {
 gestureType.text = "Tap gesture detected"
 }

274 ❘ LESSON 21 TOUCHES AND GESTURES

c21.indd 11/04/2015 Page 274

FIGURE 21-2

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 21
video online at www.wrox.com/go/swif t iosvid.

http://www.wrox.com/go/swif

c22.indd 12/01/2015 Page 275

SECTION III
Storing Data and Network
Programming

 ▸ LESSON 22: Property Lists

 ▸ LESSON 23: Application Settings

 ▸ LESSON 24: Introduction to iCloud Storage

 ▸ LESSON 25: Introduction to CloudKit

 ▸ LESSON 26: Introduction to CoreData

 ▸ LESSON 27: Consuming RESTful JSON Web Services

c22.indd 12/01/2015 Page 277

Property Lists
A property list is an XML key-value store that allows applications to store small amounts of
data locally. Property lists are best suited to storing small amounts of data (less than a few
hundred kilobytes). It is quite common for applications to use property lists to store applica-
tion confi guration information, such as server addresses and URLs.

CREATING PROPERTY LISTS

A property list can be created using the property list editor, or programmatically. The GUI
property list editor that is integrated with XCode displays a property list fi le as a hierarchy of
nodes and elements, all contained under a root node (see Figure 22-1). The root node can be
either an array or a dictionary.

FIGURE 22-1

To create a property list, add a new fi le to the project and select Property List from the iOS
Resource section in the fi le options dialog box (see Figure 22-2).

22

278 ❘ LESSON 22 PROPERTY LISTS

c22.indd 12/01/2015 Page 278

FIGURE 22-2

This will add an empty property list fi le to your project, with a single dictionary element called Root
(see Figure 22-3).

FIGURE 22-3

To add a new entry to the property list, select the parent node and select Editor ➪ Add Item (see
Figure 22-4).

FIGURE 22-4

Reading Property Lists ❘ 279

c22.indd 12/01/2015 Page 279

The default data type for new items is String; you can change that using the drop-down picker in
the second column. If the parent node is a dictionary, then each child is treated as a key-value pair
with keys being unique Strings.

To create a property list programmatically, you need to build a dictionary or array with data you
wish to save and write it to a fi le in your application’s documents directory. The following code snip-
pet shows how you can achieve this:

func writeToPlist(fileName:String!, data:NSMutableDictionary!)
{
 let paths = NSSearchPathForDirectoriesInDomains(.DocumentDirectory,
 .UserDomainMask, true)[0] as String
 let path = paths.stringByAppendingPathComponent(fileName)
 data.writeToFile(path, atomically: true)
}

If all the data you wish to write to a property list fi le can be represented using a combination of
NSNumber, NSString, NSArray, NSDictionary, and NSData instances, then your task is straightfor-
ward. If, however, you wish to write instances of your own classes to a property list fi le, you must
implement the NSCoding protocol.

NSCoding defi nes two methods encodeWithCoder(aCoder: NSCoder) and a designated initializer
init?(coder aDecoder: NSCoder).

The following code snippet lists a class Employee that is NSCoding-compliant and can be inserted
into a property list.

import UIKit

class Employee: NSObject, NSCoding {

 var name:String?
 var address:String?

 func encodeWithCoder(aCoder: NSCoder)
 {
 // write to plist here.
 aCoder.encodeObject(name)
 aCoder.encodeObject(address)
 }

 required init?(coder aDecoder: NSCoder)
 {
 // read from plist here
 name = aDecoder.decodeObjectForKey("name") as? String
 address = aDecoder.decodeObjectForKey("address") as? String }
}

READING PROPERTY LISTS

To read a property list fi le, you need to load its contents into an array or dictionary. The following
code snippet assumes you have added a property list fi le called Config.plist to the project:

280 ❘ LESSON 22 PROPERTY LISTS

c22.indd 12/01/2015 Page 280

var plistDictionary: NSDictionary?
if let path = NSBundle.mainBundle().pathForResource("Config", ofType: "plist") {
 plistDictionary = NSDictionary(contentsOfFile: path)
}

if let unwrappedDictionary = pListDictionary {
 // Use unwrappedDictionary here
}

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called PropertyListTest that populates a table view with contents read off a plist fi le. The contents of
the plist fi le will be generated programmatically.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Create a storyboard with a single scene.

 ➤ Add code to the application delegate object to create the plist fi le when the application is
launched.

 ➤ Read the plist fi le in the view controller and display its contents in a table view.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the Assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called PropertyListTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project menu
item.

 2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

Try It ❘ 281

c22.indd 12/01/2015 Page 281

 3. In the project options screen, use the following values:

 ➤ Product Name: PropertyListTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a UITableView instance to the default scene.

 1. From the Object library, drag and drop a Table View object onto the scene.

 2. Ensure the table view is selected and use the Pin button to display the constraints editor
popup.

 ➤ Ensure the Constrain to margins option is unchecked.

 ➤ Pin the distance between the left edge of the view and the table view to 0.

 ➤ Pin the distance between the right edge of the view and the table view to 0.

 ➤ Pin the distance between the bottom of the view and the table view to 0.

 ➤ Pin the distance between the top of the view and the table view to 20.

 ➤ Click the Add 4 Constraints button to dismiss the constraints editor popup.

 3. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 4. Set up the data source and delegate properties

 ➤ Right-click the table view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

 ➤ Drag from the item labeled “delegate” in the context menu to the item labeled
“View Controller” in the document outline.

 ➤ Set up the table view’s appearance.

 1. Select the table view and ensure the Attributes inspector is visible.

282 ❘ LESSON 22 PROPERTY LISTS

c22.indd 12/01/2015 Page 282

 2. Ensure the Content attribute is set to Dynamic Prototypes.

 3. Ensure the value of the Prototype Cells attribute is 1.

 4. Ensure the Style attribute is set to Grouped.

 ➤ Set up the prototype cell.

 1. Expand the table view in the document outline; this will reveal the table view cell.

 2. Select the table view cell.

 3. Use the attribute editor to ensure that the value of the identifi er attribute is
prototypeCell1.

 4. Ensure the Style attribute is set to Basic.

 ➤ Add code to the application delegate to create a plist fi le.

 1. Open the AppDelegate.swift fi le in the project explorer.

 2. Replace the implementation of application(application, didFinishLaunching-
WithOptions) -> Bool with

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

 // create contacts.plist in the documents directory, if it does not
exist
 let fileManager:NSFileManager! = NSFileManager.defaultManager()

 let documentsDirectory:String =
NSSearchPathForDirectoriesInDomains(
NSSearchPathDirectory.DocumentDirectory, NSSearchPathDomainMask.
UserDomainMask,
true)[0] as String

 let plistPath = documentsDirectory + "/contacts.plist"

 if fileManager.fileExistsAtPath(plistPath) == false {

 let contacts:NSMutableArray = NSMutableArray()
 contacts.addObject("Elana")
 contacts.addObject("Sonam")
 contacts.addObject("Jane")
 contacts.addObject("Paul")
 contacts.addObject("Abhishek")
 contacts.addObject("Nick")
 contacts.addObject("Steve")

 contacts.writeToFile(plistPath, atomically: true)
 }

 return true
}

 ➤ Load the plist fi le in the view controller class.

Try It ❘ 283

c22.indd 12/01/2015 Page 283

 1. Open the ViewController.swift fi le in the project explorer.

 2. Add the following variable declaration to the view controller class:

var arrayOfContacts:NSArray? = nil

 3. Replace the implementation of the viewDidLoad method with the following:

override func viewDidLoad() {

 super.viewDidLoad()

 // load contacts.plist into arrayOfContacts
 let documentsDirectory:String =
NSSearchPathForDirectoriesInDomains(
NSSearchPathDirectory.DocumentDirectory, NSSearchPathDomainMask.
UserDomainMask,
true)[0] as String

 let plistPath = documentsDirectory + "/contacts.plist"

 arrayOfContacts = NSArray(contentsOfFile: plistPath)
}

 ➤ Implement the data source and delegate methods in the view controller.

 1. Implement the numberOfSectionsInTableView data source method as follows:

func numberOfSectionsInTableView(tableView: UITableView) -> Int
{
 return 1;
}

 2. Implement the numberOfRowsInSection data source method as follows:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int
{
 return arrayOfContacts!.count
}

 3. Implement the cellforRowAtIndexPath data source method as follows:

func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell
{
 let cell = tableView.dequeueReusableCellWithIdentifier("prototypeCell1",
 forIndexPath: indexPath) as UITableViewCell

 let contactName:String =
 arrayOfContacts!.objectAtIndex(indexPath.row)
 as! String

 cell.textLabel?.text = contactName
 return cell
}

284 ❘ LESSON 22 PROPERTY LISTS

c22.indd 12/01/2015 Page 284

 4. Modify the declaration of the ViewController class to inherit from
UIViewController, UITableViewDataSource, and UITableViewDelegate:

class ViewController: UIViewController,
 UITableViewDataSource,
 UITableViewDelegate {

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 22 video online at www.wrox.com/go/swifti o svid.

http://www.wrox.com/go/swifti

c23.indd 11/04/2015 Page 285

Application Settings
Most applications that perform complex tasks will at some point need to allow users to cus-
tomize the applications’ operation to suit their specifi c needs. These customizable options are
usually referred to as application preferences or application settings. iOS applications can
either expose their preferences within Apple’s Settings application, or provide a user interface
within the application where the user can customize them appropriately.

To integrate your application’s preferences with Apple’s Settings application, your application
must include a Settings.bundle fi le. A settings bundle fi le enables you to declare the pref-
erences in your application as a property list, and the Settings application provides the user
interface for editing those preferences.

Keep in mind that to access the Settings application your users will have to fi rst exit your
application if they were using it. You should always refresh settings data when the application
is activated so that your application can learn about the changes made by the user via the set-
tings app. In this lesson, you learn to create this fi le and use it to expose system preferences.

ADDING A SETTINGS BUNDLE

To add a Settings.bundle fi le to your application, right-click your application’s group in the
project navigator and select New File from the context menu. Select the Settings Bundle fi le
type from the iOS Resource section of the dialog box (see Figure 23-1).

23

286 ❘ LESSON 23 APPLICATION SETTINGS

c23.indd 11/04/2015 Page 286

FIGURE 23-1

When the Settings application is launched on an iOS device, every third-party application is checked
to see if it has a Settings.bundle fi le. For each application on the iOS device that has this fi le, its
name and icon are added to a list on the main page of the Settings application (see Figure 23-2).

FIGURE 23-2

Tapping on the icon will take the user to the particular application’s settings page. By default, the
Settings application will use an application’s standard icon fi le when listing it. If you want to provide

Adding a Settings Bundle ❘ 287

c23.indd 11/04/2015 Page 287

a custom icon to be used for your application in the Settings application, include the appropriate 2x
and 3x images for the AppIcon asset in the project’s asset catalog.

The Settings application can display application preferences in a series of hierarchical pages.
Creating hierarchical settings pages is not covered in this lesson, but if you are interested in this
topic, you should read the Preferences and Settings Programming Guide available at https://
developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/

Introduction/Introduction.html.

A settings bundle is actually a collection of fi les. To see the contents of the bundle, simply click the
triangle beside the Settings.bundle fi le in the project navigator (see Figure 23-3).

FIGURE 23-3

Inside the settings bundle, you will fi nd a fi le named Root.plist. This fi le controls how your appli-
cation’s preferences will appear within the Settings application. Clicking the fi le opens it in the prop-
erty list editor. When you do this, you will see a table with three columns—Key, Type, and Value.
This fi le contains two properties: an array called Preference Items and a string called Strings
Filename (see Figure 23-4).

FIGURE 23-4

Each preference that you want to expose to your users will be an entry in the Preference Items
array. To see the contents of the Preference Items array, simply expand it within the property
list editor. When you create a new settings bundle, this array contains four items by default (see

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Introduction/Introduction.html

288 ❘ LESSON 23 APPLICATION SETTINGS

c23.indd 11/04/2015 Page 288

Figure 23-5). Each entry in the array is a dictionary of key-value pairs. Technically speaking, the
Preference Items property is an array of dictionaries.

FIGURE 23-5

Each entry within the Preference Items array, given that it’s a dictionary, can have several key-
value pairs, but you will always fi nd four keys in each entry—Title, Type, Identifier, and
DefaultValue.

The value of the Title key is used by the Settings application to label the preference when it is pre-
sented to the user. The value of the Type key determines what kind of preference value it is and thus
what user interface component will be used by the Settings application when presenting it. The value
of the Identifier key contains a string that you can use to read the value of the preference in your
Objective-C code. The value of the DefaultValue key contains the default value for the preference.

The default settings bundle created by Xcode contains four entries in the Preference Items array:

 ➤ Group

 ➤ Text Field

 ➤ Toggle Switch

 ➤ Slider

If you were to run this app on an iOS device, and look at its settings page in the Settings application,
you would see something similar to that shown in Figure 23-6.

Table 23-1 describes the element types that can be used in the settings bundle.

TABLE 23-1: Preference Types

TYPE DESCRIPTION

Text Field An editable text fi eld

Toggle Switch On/Off toggle button

Title A read-only text string

Slider A slider to allow the user to select from a range of values

Multi Value A list of values

Reading Preferences with Code ❘ 289

c23.indd 11/04/2015 Page 289

TYPE DESCRIPTION

Group A logical group of preferences

Child Pane Child preferences page, used to implement hierarchical preference pages

FIGURE 23-6

READING PREFERENCES WITH CODE

To read the value of a preference in a settings bundle from your code, you need to use an
NSUserDefaults object. NSUserDefaults is part of the Core Foundation framework and provides
a set of methods that allow you to manage application preferences. NSUserDefaults is a singleton
class, and thus only one object should exist during the lifetime of an application. To get access to
this one instance, use the following code:

let userDefaults = NSUserDefaults()

Recall that each preference within a settings bundle is represented by a dictionary of key-value pairs,
and one of the four keys that each dictionary must contain is Identifier. To retrieve the value of a
preference that has the identifi er user_name, use the following code:

let userName = userDefaults.valueForKey("user_name") as? String

This code assumes that the value being retrieved is a string. The NSUserDefaults class provides sev-
eral methods that allow you to retrieve preference values of different data types, including:

 ➤ boolForKey

 ➤ floatForKey

290 ❘ LESSON 23 APPLICATION SETTINGS

c23.indd 11/04/2015 Page 290

 ➤ doubleForKey

 ➤ integerForKey

Although you have provided default values for the preferences in the settings bundle, these values
will not be applied until the users launch the Settings application on their device after installing
your application. To get around this problem, you should specify a default value for each of your
preferences in code as well as the settings bundle.

You can then use methods in the NSUserDefaults class to ensure that the default values are applied
only once regardless of whether your user launches the Settings application or your application fi rst.
To do this, you need to create a dictionary with the default values of each preference and use the
registerDefaults and synchronize methods of the NSUserDefaults object as follows:

let registrationDictionary:[String: String] = ["user_name":"Paul Woods",
 "user_age":"28"]

userDefaults.registerDefaults(registrationDictionary)
userDefaults.synchronize()

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called SettingsTest that allows the user to specify a name and age value within the Settings appli-
cation. Your application, when launched, will display this name and age.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add a settings bundle to the application.

 ➤ Add user interface elements to the default scene of the storyboard.

 ➤ In the viewDidLoad method, read the preference values and display them in the labels.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To display your application’s preferences in the Settings application, you must include a

Settings.bundle fi le.

 ➤ To access the preference values specifi ed by the user in the settings page from within your
code, each preference must have a unique string identifi er.

http://www.wrox.com/go

Try It ❘ 291

c23.indd 11/04/2015 Page 291

 ➤ When creating a new project, you can use your website’s domain name as the Company
Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the Assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called SettingsTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project menu
item.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: SettingsTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a settings bundle to the project.

 1. Ensure the project navigator is visible.

 2. Right-click the Settings Test group and select New File from the context menu.

 3. Select the Settings Bundle template from the iOS Resources section. Save the fi le as
Settings.bundle.

 ➤ Edit the Settings.bundle fi le.

 1. Expand the Settings.bundle fi le in the project navigator and click the Root.plist
fi le to edit it with the property editor.

 2. Expand the Preference Items property.

 3. Delete items 2 and 3. These are the Toggle Switch and Slider items, respectively. To
delete an item, select it and hit the backspace key.

 4. Edit the Text Field preference.

 ➤ Expand the Item 1 (Text Field – Name) dictionary.

 ➤ Set the Title to User Name, Identifier to user_name, and Default Value
to Paul Woods (see Figure 23-7).

292 ❘ LESSON 23 APPLICATION SETTINGS

c23.indd 11/04/2015 Page 292

FIGURE 23-7

 5. Add a new Text Field preference.

 ➤ Ensure the Item 1 (Text Field – User Name) dictionary is collapsed.

 ➤ Right-click the row corresponding to the Item 1 (Text Field – User
Name) dictionary and select Add Row from the context menu (see
Figure 23-8).

FIGURE 23-8

 ➤ Expand the newly added preference dictionary.

 ➤ Ensure the Type key is set to Text Field, Title is set to Age, and Identifier
is set to user_age.

Try It ❘ 293

c23.indd 11/04/2015 Page 293

 ➤ Add a new key to the dictionary by right-clicking the last key (Identifier)
and selecting Add Row from the context menu.

 ➤ Ensure the name of the new key is Default Value and the value of the key is
28 (see Figure 23-9).

FIGURE 23-9

 ➤ Add two UILabel instances to the default scene.

 1. Open the Main.storyboard fi le in the Interface Editor.

 2. From the Object library, drag and drop two Label objects onto the scene and place
them one below the other.

 3. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 23-2. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked and the value of the Update
Frames combo box is set to Items of New Constraints.

TABLE 23-2: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT

Label 1 20 20 20 21

Label 2 20 20 20 21

 4. Use the assistant editor to create outlets for each of the labels in the view controller
class. Name the outlets nameLabel and ageLabel.

 ➤ Read and display the preference values provided by the user in the Settings application.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Replace the implementation of the viewDidLoad method to resemble the following:

override func viewDidLoad() {
 super.viewDidLoad()

 let userDefaults = NSUserDefaults()
 let registrationDictionary:[String: String] =

294 ❘ LESSON 23 APPLICATION SETTINGS

c23.indd 11/04/2015 Page 294

 ["user_name":"Paul Woods", "user_age":"28"]

 userDefaults.registerDefaults(registrationDictionary)
 userDefaults.synchronize()

 nameLabel.text = userDefaults.valueForKey("user_name") as? String
 ageLabel.text = userDefaults.valueForKey("user_age") as? String
 }

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project ➪
Run menu item.

 2. After changing preferences in the Settings application, ensure your application is not
running in the background before launching it again.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 23 video online at www.wrox.com/go/swiftiosvi d .

http://www.wrox.com/go/swiftiosvi

c24.indd 11/04/2015 Page 295

Introduction to iCloud Storage
iCloud Storage is a set of classes and services that enable you to share data between instances
of your application running across different devices. In this lesson, you learn to use the iCloud
Storage APIs in your apps.

BASIC CONCEPTS

Apple’s iCloud is a service that allows applications to synchronize data across devices. Your
data is stored across a set of servers maintained by Apple and is made available to copies of
your app across all iCloud-compatible devices. Changes made to this data by one instance
of your application are automatically propagated to other instances.

From a developer’s perspective, you need to use Apple’s iCloud Storage APIs to interact with
the iCloud service. These APIs enable you to store both documents and small amounts of key-
value data.

NOTE This lesson does not cover key-value data storage. For more informa-
tion on storing key-value data with iCloud, refer to the Designing for Key-Value
Data in iCloud section of the iCloud Design Guide, available at:

https://developer.apple.com/library/ios/documentation/General/
Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-ValueDataIn-
iCloud.html#//apple_ref/doc/uid/TP40012094-CH7-SW1.

24

https://developer.apple.com/library/ios/documentation/General
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-ValueDataIniCloud.html#//apple_ref/doc/uid/TP40012094-CH7-SW1

296 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 296

iCloud applications cannot be tested on the iOS Simulator, and to make the most of this lesson you
should ideally have two iOS devices to test on. iCloud Storage APIs are available to both iOS and
MacOS X developers.

Your iOS applications always execute in a restricted environment on the device known as the appli-
cation sandbox. Some of these restrictions affect where and how your application can store data.

Each application is given a directory on the device’s fi le system. The contents of this directory are
private to the application and cannot be read by other applications on the device.

Each application’s directory has four locations into which you can store data:

 ➤ Preferences

 ➤ Documents

 ➤ Caches

 ➤ tmp

The fi rst of these, Preferences, is not intended for direct fi le manipulation; however, the other
three are. The most commonly used directories are the Documents and the tmp directories.

The Documents directory is the main location for storing application data. The contents of this direc-
tory can also be manipulated within iTunes. The Caches directory is used to store temporary fi les that
need to persist between application launches. The tmp directory is used to store temporary fi les that do
not need to persist between application launches.

Applications are responsible for cleaning up the contents of these directories because storage space
on a device is limited. The contents of the Caches and tmp directories are not backed up by iTunes.

iCloud Storage conceptually extends this model and allows your applications to upload your data
from its private directory to Apple’s servers. This data then fi lters down to other iCloud-compatible
devices on which copies of your application are running. Your application also receives notifi cations
when a document has been created or updated by another copy of the application.

This synchronization is achieved by a background process (also known as a daemon) that runs on
all iCloud-compatible devices. Figure 24-1 illustrates the iCloud architecture.

Preparing to Use the iCloud Storage APIs ❘ 297

c24.indd 11/04/2015 Page 297

iCloud service

iCloud
daemon

Files

iCloud
daemon

Files

iCloud
daemon

Files

Files

FIGURE 24-1

PREPARING TO USE THE ICLOUD STORAGE APIS

To use the iCloud Storage APIs in an application, you need to perform three steps:

 1. Create an iCloud-enabled App ID.

 2. Create an appropriate provisioning profi le.

 3. Enable appropriate entitlements in your Xcode project.

Creating an iCloud-Enabled App ID
To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link on the right side to navigate to the member center.
Within the member center click, the Certifi cates, Identifi ers & Profi les link (see Figure 24-2).

https://developer
https://developer.apple.com/ios

298 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 298

FIGURE 24-2

Next, click the Identifi ers link in the iOS Apps category on the left side of the page (see Figure 24-3).

FIGURE 24-3

Preparing to Use the iCloud Storage APIs ❘ 299

c24.indd 11/04/2015 Page 299

To create a new App ID, click the New App ID button on the top-right side (see Figure 24-4).

FIGURE 24-4

Provide a descriptive name of the new App ID in the Name fi eld and select Team ID in the App ID
prefi x drop-down. Select the Explicit App ID radio button under the App ID suffi x section and
provide a unique identifi er in the Bundle ID fi eld that ends in the name of the Xcode project you are
going to create (or have created).

Typically, you create this identifi er by combining the reverse-domain name of your website
and the name of your Xcode project. For example, the project created in this lesson is called
SwiftCloudTest and the bundle identifi er specifi ed is com.wileybook.CloudTest. Your browser
window should resemble Figure 24-5.

300 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 300

FIGURE 24-5

Scroll down to reveal the App Services section and ensure the iCloud checkbox is selected and the
Compatible with Xcode 5 option is selected (see Figure 24-6).

Preparing to Use the iCloud Storage APIs ❘ 301

c24.indd 11/04/2015 Page 301

FIGURE 24-6

Click the Continue button to proceed. You will be presented with a summary of the App ID infor-
mation (see Figure 24-7). Click on Submit to fi nish creating the App ID.

302 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 302

FIGURE 24-7

Creating an Appropriate Provisioning Profi le
To create a provisioning profi le for an iCloud-enabled App ID, click the All link (under the
Provisioning category) in the menu on the left side of the iOS Provisioning Portal window (see
Figure 24-8).

Preparing to Use the iCloud Storage APIs ❘ 303

c24.indd 11/04/2015 Page 303

FIGURE 24-8

Click the New Profi le button on the top-right side (see Figure 24-9).

FIGURE 24-9

304 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 304

You will be asked to choose between a development or distribution provisioning profi le. A distribu-
tion provisioning profi le is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure 24-10).

FIGURE 24-10

A development provisioning profi le ties together three pieces of information:

 ➤ A single App ID

 ➤ One or more public keys

 ➤ A list of test device IDs

Preparing to Use the iCloud Storage APIs ❘ 305

c24.indd 11/04/2015 Page 305

The next step requires you to select an App ID that will be associated with this provisioning profi le.
Select the iCloud-enabled App ID you have created (see Figure 24-11) and click Continue.

FIGURE 24-11

Select one or more development certifi cates that will be included in the profi le. You must make sure
to sign the app in Xcode using one of the certifi cates you select here. Select a suitable certifi cate and
click Continue (see Figure 24-12).

306 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 306

FIGURE 24-12

Next, you must select one or more devices that will be included in this provisioning profi le. The cor-
responding identifi ers for these devices must be registered with your development account. Your app
will only be testable on these devices (see Figure 24-13).

Preparing to Use the iCloud Storage APIs ❘ 307

c24.indd 11/04/2015 Page 307

 FIGURE 24-13

The fi nal step involves providing a suitable name for the profi le and clicking the Generate button.
When the profi le is created, you will be provided an option to download it onto your computer (see
Figure 24-14).

308 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 308

FIGURE 24-14

If you were to now click the All link under the Provisioning section on the left side menu, you should
see an entry for the new profi le in the list of available profi les. You can also download a provision-
ing profi le from this list.

Once the profi le has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Enabling Appropriate Entitlements in Your Xcode Project
Create a new project in Xcode using one of the standard iOS application templates. In the
Project Options dialog box, make sure you provide the correct value for the Product Name and
Organization Identifi er fi elds so as to create the same App ID that was registered on the iOS
Provisioning Portal. If, for instance, the App ID you registered was com.wileybook.swiftcloud-
test, use swiftcloudtest for the Product Name fi eld and com.wileybook for the Company
Identifi er fi eld.

Applications that use iCloud must be signed with iCloud-specifi c entitlements. These entitlements
ensure that only your applications can access the documents that they create. To enable entitlements,
select the project’s root node in the project navigator and the appropriate build target. Ensure the

Checking for Service Availability ❘ 309

c24.indd 11/04/2015 Page 309

Capabilities tab is selected. Locate the iCloud node and enable it. You may be asked to provide your
iOS developer accounts credentials when you enable the iCloud entitlement. Because this lesson
is about iCloud document storage, ensure the iCloud Documents checkbox is checked (see Figure
24-15).

3

4

2

1

FIGURE 24-15

CHECKING FOR SERVICE AVAILABILITY

If your application intends to make use of the iCloud Storage APIs, you must ensure that the service
is available to the application. This may not necessarily be the case if, for example, the user has not
set up iCloud on the device.

To check for service availability, use the URLForUbiquityContainerIdentifier() method of the
NSFileManager class. This method requires one String parameter that specifi es a container identi-
fi er that your application uses.

If this method succeeds, the return value is an NSURL instance that identifi es the container directory. If
the method fails, the return value is nil.

If your application uses only one container identifi er, or you want to use the main container identi-
fi er for the application, pass nil for the parameter. If your application accesses multiple containers,
you must call this method for each container identifi er to ensure you have access to each container.
The following code snippet shows how to use this method for the main container identifi er:

310 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 310

let folderURL =
NSFileManager.defaultManager().URLForUbiquityContainerIdentifier(nil)

if let unwrappedFolderURL = folderURL {
 // cloud access is available
}
else {
 // cloud access is not available.
}

USING ICLOUD DOCUMENT STORAGE

Any fi le stored by your application on iCloud must be managed by a fi le presenter object. A fi le pre-
senter is an object that implements the NSFilePresenter protocol. Essentially, a fi le presenter acts
as an agent for a fi le. Before an external source can change the fi le, the fi le presenter for the fi le is
notifi ed. When your app wants to change the fi le, it must lock the fi le by making its changes through
a fi le coordinator object. A fi le coordinator object is an instance of the NSFileCoordinator class.

The simplest way to incorporate fi le presenters and coordinators in your application is to have your
data classes (also known as model classes) subclass UIDocument. The UIDocument class implements
the methods of the NSFilePresenter protocol and handles all of the fi le-related management. At the
most basic level, you will need to override two UIDocument methods:

public func loadFromContents(contents: AnyObject,
 ofType typeName: String?) throws

public func contentsForType(typeName: String) throws -> AnyObject

The loadFromContents(contents, ofType) method is overridden by your UIDocument subclass
and is called when the application needs to read data into its data model.

The fi rst parameter of this method, contents, encapsulates the document data to be read. In the
case of fl at fi les, contents is an instance of an NSData object. It can also be an NSFileWrapper
instance if the data being read corresponds to a fi le package. The typeName parameter indicates the
fi le type of the document.

If you cannot load the document for some reason, you should throw an exception encapsulating the
reason for failure.

The contentsForType() method is also overridden by your UIDocument subclass and is called
when the application saves data to a fi le. This method must return an NSData instance that will be
written to the fi le. If you cannot return an NSData instance for some reason, you throw an exception
that encapsulates the reason for failure.

The following code presents a simple UIDocument subclass called SwiftCloudTestDocument. The
example assumes that the application where this class is used has a rather simple data model consist-
ing of a single String instance.

import UIKit

enum DocumentReadError: ErrorType {

Using iCloud Document Storage ❘ 311

c24.indd 11/04/2015 Page 311

 case InvalidInput
}

enum DocumentWriteError: ErrorType {
 case NoContentToSave
}

class SwiftCloudTestDocument: UIDocument {

 var documentContents:String?

 override init(fileURL url: NSURL) {
 super.init(fileURL: url)
 }

 override func loadFromContents(contents: AnyObject,
 ofType typeName: String?) throws {

 if let castedContents = contents as? NSData {
 documentContents = NSString(data: castedContents,
 encoding: NSUTF8StringEncoding) as? String

 }
 else {
 documentContents = nil
 throw DocumentReadError.InvalidInput
 }
 }

 override func contentsForType(typeName: String) throws -> AnyObject {

 if documentContents == nil {
 throw DocumentWriteError.NoContentToSave
 }

 return documentContents!.dataUsingEncoding(NSUTF8StringEncoding)!
 }
}

Creating a New iCloud Document
To create a new document, initialize an instance of your UIDocument subclass by using the
init(fileURL url: NSURL)initializer and then call saveToURL(url, saveOperation, comple-
tionHandler) on the instance.

The initializer requires a single NSURL parameter that identifi es the location where document data is
to be written. This URL is usually composed by appending a fi lename in the Documents subdirec-
tory to the path to an iCloud container. For instance, to create a new document on iCloud called
phoneNumber.txt, you could use the following snippet:

let containerURL =
NSFileManager.defaultManager().URLForUbiquityContainerIdentifier(nil)

312 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 312

let documentDirectoryURL = containerURL!.URLByAppendingPathComponent("Documents")

let documentURL =
documentDirectoryURL.URLByAppendingPathComponent("phoneNumber.txt")

let cloudDocument:SwiftCloudTestDocument =
 SwiftCloudTestDocument(fileURL: documentURL)

cloudDocument.saveToURL(cloudDocument.fileURL,
forSaveOperation: UIDocumentSaveOperation.ForCreating) {
 (Bool success) -> Void in
 if (success) {
 // document was created successfully.
 }
}

The saveToURL(url, saveOperation, completionHandler)method is described later in this
lesson.

Opening an Existing Document
To open an existing document, allocate and initialize an instance of your UIDocument subclass and
call openWithCompletionHandler() on the instance. For example, you could open a fi le called
phoneNumbers.txt from iCloud using the following snippet:

let containerURL =
NSFileManager.defaultManager().URLForUbiquityContainerIdentifier(nil)

let documentDirectoryURL = containerURL!.URLByAppendingPathComponent("Documents")

let documentURL =
documentDirectoryURL.URLByAppendingPathComponent("phoneNumber.txt")

let cloudDocument:SwiftCloudTestDocument =
SwiftCloudTestDocument(fileURL: documentURL)

cloudDocument.openWithCompletionHandler {
 (BOOL success) -> Void in
 if (success)
 {
 // cloud document opened successfully!
 }
}

Saving a Document
Once you have an instance of a UIDocument subclass, saving it to iCloud is simply a matter of call-
ing the saveToURL(url, saveOperation, completionHandler) method on it. The fi rst parameter
to this method is an NSURL instance that contains the target URL. You can compose this URL in the
same manner as when you instantiated your UIDocument subclass.

Using iCloud Document Storage ❘ 313

c24.indd 11/04/2015 Page 313

 If, however, you want to retrieve the URL corresponding to an existing UIDocument subclass,
simply use the fileURL property of the subclass. Thus, if cloudDocument is an instance of a
UIDocument subclass, you can retrieve the URL used when it was instantiated using the following
code:

Let documentURL = cloudDocument.fileURL

The second parameter is a constant that is used to indicate whether the document contents are being
saved for the fi rst time, or overwritten. It can be either of:

 ➤ UIDocumentSaveOperation.ForCreating

 ➤ UIDocumentSaveOperation.ForOverwriting

The third parameter is a block completion handler.

NOTE For more information on the UIDocument class, refer to the UIDocument
Class reference, available at:

https://developer.apple.com/library/prerelease/ios/documentation/
UIKit/Reference/UIDocument_Class/index.html.

Searching for Documents on iCloud
Often, you will need to search iCloud container directories for documents. To do this, you need to
create a search query using an NSMetadataQuery instance, set up an appropriate search fi lter, and
execute the query.

Queries have two phases: an initial search phase and a second live-update phase. During the live-
update phase, updated results are typically available once every second. The following code snippet
builds a search query:

let searchQuery:NSMetadataQuery = NSMetadataQuery()
searchQuery.searchScopes = [NSMetadataQueryUbiquitousDocumentsScope];

The searchScopes property allows you to specify an array of directory strings over which the
search should execute. To specify the iCloud container folder as the search target, you provide an
Array instance with a single object:

NSMetadataQueryUbiquitousDocumentsScope

Before you can execute the query, you need to specify a search fi lter. Search fi lters are also known
as predicates and are instances of the NSPredicate class. The following code snippet creates an
NSPredicate instance that fi lters out a fi le with a specifi c name:

let documentFileName = "cloudDocument.txt"
let predicate = NSPredicate(format: "%K == %@",
argumentArray: [NSMetadataItemFSNameKey, documentFileName])

https://developer.apple.com/library/prerelease/ios/documentation
https://developer.apple.com/library/prerelease/ios/documentation/UIKit/Reference/UIDocument_Class/index.html

314 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 314

To apply the predicate to the search query, use the predicate property on the NSMetadataQuery
instance:

searchQuery.predicate = predicate

Search queries execute asynchronously. When the query has fi nished gathering results, your applica-
tion will receive the NSMetadataQueryDidFinishGatheringNotification notifi cation message.
Use the following code snippet to set up a method in your code called queryDidFinish() to be
called when this notifi cation is received:

NSNotificationCenter.defaultCenter().addObserver(self,
selector: "queryDidFinish:",
name: NSMetadataQueryDidFinishGatheringNotification ,
object: searchQuery)

Finally, to start the query, call the startQuery method of the NSMetadataQuery instance:

searchQuery.startQuery()

When you receive the notifi cation message, you can fi nd out the number of results returned by the
search by querying the resultCount property of the NSMetadataQuery instance:

let numResults = searchQuery.resultCount

To retrieve an NSURL instance for each result returned by the search query, you can use a simple for
loop:

for (var resultIndex = 0; resultIndex < numResults; resultIndex++)
{
 let item:NSMetadataItem? = searchQuery.results[resultIndex] as?
 NSMetadataItem

 if let unwrappedItem = item {
 let url = unwrappedItem.valueForAttribute(NSMetadataItemURLKey)
 }
}

If you do not want the search query to continue returning results, use the following code snippet to
stop it:

searchQuery.disableUpdates()
searchQuery.stopQuery()

The Try It section for this lesson contains a simple project that uses an NSMetadataQuery instance
to fi nd a document on iCloud and then proceeds to open it.

Try It ❘ 315

c24.indd 11/04/2015 Page 315

NOTE For more information on the NSMetadataQuery class, refer to the
NSMetadataQuery Class Reference, available at:

https://developer.apple.com/library/prerelease/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/.

For more information on the NSPredicate class, refer to the NSPredicate Class
Reference available at:

https://developer.apple.com/library/prerelease/mac/documentation/
Cocoa/Reference/Foundation/Classes/NSPredicate_Class/index.html.

TRY IT

In this Try It, you build a new Xcode project based on the Single View Application template called
SwiftCloudTest. In this application, you create a simple text document called cloudDocument
.txt and store it on iCloud. This document can then be edited across multiple copies of the applica-
tion running on different iOS devices.

Lesson Requirements
 ➤ Create a new Universal application project based on the Single View Application template.

 ➤ Register the App ID with the iOS Provisioning Portal.

 ➤ Create a development provisioning profi le.

 ➤ Download and install the development provisioning profi le.

 ➤ Create a simple user interface that consists of a UIButton instance, a UILabel instance, and
a UITextView instance.

 ➤ Create a data class that subclasses UIDocument.

 ➤ Check iCloud service availability in the viewDidLoad method of the view controller class.

 ➤ Load an existing document stored on iCloud. If the document does not exist, create a
new one.

 ➤ Implement code to save the document on iCloud when a button is tapped.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

https://developer.apple.com/library/prerelease/ios/documentation
https://developer.apple.com/library/prerelease/mac/documentation
http://www.wrox.com/go
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/
https://developer.apple.com/library/prerelease/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/index.html

316 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 316

Hints
 ➤ To make best use of this application, you will need at least two iOS devices set up to use the

same iCloud account.

 ➤ You must ensure iCloud has been set up on each test device.

 ➤ Testing your apps on iOS devices is covered in Appendix A.

Step-by-Step
 ➤ Create a Single View Application in Xcode called SwiftCloudTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: SwiftCloudTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: Universal

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Register an App ID with the iOS Provisioning Portal.

 1. Log in to the iOS Provisioning Portal, and register a new App ID with the following
details:

 ➤ Description: SwiftCloudTest AppID

 ➤ Bundle Seed ID: Use Team ID

 ➤ Bundle Identifi er: com.wileybook.SwiftCloudTest

 2. Enable the App ID to use with iCloud. This process is covered in the section titled
“Creating an iCloud-Enabled App ID” earlier in this lesson.

 ➤ Create a development provisioning profi le using the App ID created in the previous step.

 1. The process of creating the provisioning profi le is covered in the section titled “Creating
an Appropriate Provisioning Profi le” earlier in this lesson. Follow those instructions to
create a development provisioning profi le called Swift Cloud Test Development Profi le.

 2. Download and install the provisioning profi le by double-clicking on the profi le after it
has been downloaded to your computer.

Try It ❘ 317

c24.indd 11/04/2015 Page 317

 ➤ Enable iCloud-specifi c entitlements for the application target.

 1. Select the project’s root node in the project navigator and select the appropriate build
target. Ensure the Capabilities tab is selected. Scroll down to the iCloud option and
enable it.

 2. Once the iCloud entitlement has been enabled, ensure the iCloud Documents checkbox
has been checked

 ➤ Create a UIDocument subclass.

 1. Right-click your project’s root node in the project navigator and select New File from
the context menu.

 2. Select the Swift fi le template and click Next.

 3. Name the class SwiftCloudTestDocument and click Create.

 4. Replace the contents of the SwiftCloudTestDocument.swift fi le with the following:

import UIKit

enum DocumentReadError: ErrorType {
 case InvalidInput
}

enum DocumentWriteError: ErrorType {
 case NoContentToSave
}

class SwiftCloudTestDocument: UIDocument {

 var documentContents:String?

 override init(fileURL url: NSURL) {
 super.init(fileURL: url)
 }

 override func loadFromContents(contents: AnyObject,
 ofType typeName: String?) throws {

 if let castedContents = contents as? NSData {
 documentContents = NSString(data: castedContents,
 encoding: NSUTF8StringEncoding) as? String

 NSNotificationCenter.defaultCenter().
 postNotificationName("refreshDocumentPreview",
 object: self)
 }
 else {
 documentContents = nil
 throw DocumentReadError.InvalidInput
 }
 }

 override func contentsForType(typeName: String)

318 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 318

 throws -> AnyObject {

 if documentContents == nil {
 throw DocumentWriteError.NoContentToSave
 }

 return documentContents!.dataUsingEncoding(NSUTF8StringEncoding)!
 }
}

Recall that the loadFromContents() method is called when a document must be loaded
from a fi le. In case of iCloud documents, this method is also called automatically when the
contents of the fi le have changed. This will typically happen when the fi le was edited by
another copy of the application.

In the preceding implementation, in addition to loading the contents of the fi le into member
variables of the SwiftCloudTestDocument class, you also send out an application-wide
notifi cation called refreshDocumentPreview.

The view controller class listens for these notifi cations, and treats the arrival of one as a cue
to update the user interface.

 ➤ Create a simple user interface with Interface Builder.

 1. Open the storyboard fi le and use the Object library to drag and drop a label, button,
and text view onto the default scene.

 2. Select the label and display the Pin constraints popup. Ensure the Constrain to margins
options is unchecked and Update Frames is set to None. Create the following layout
constraints:

 ➤ Left: 20

 ➤ Right: 20

 ➤ Top: 20

 ➤ Height: 21

 3. Select the button and display the Pin constraints popup. Ensure the Constrain to mar-
gins options is unchecked and Update Frames is set to None. Create the following lay-
out constraints:

 ➤ Left: 20

 ➤ Right: 20

 ➤ Top: 20

 ➤ Height: 30

 4. Select the text view and the Pin constraints popup. Ensure the Constrain to margins
options is unchecked and Update Frames is set to All Frames in Container. Create the
following layout constraints:

 ➤ Left: 20

 ➤ Right: 20

Try It ❘ 319

c24.indd 11/04/2015 Page 319

 ➤ Top: 20

 ➤ Bottom: 20

 5. Use the Attribute inspector to set the text property of the label to iCloud Service Status.

 6. Use the Attribute inspector to set the Alignment property of the label to center.

 7. Double-click the button in the scene and change its title to Save Document.

 8. Change the background color of the button to a shade of gray.

 9. Use the assistant editor to create an outlet called serviceStatus in the
ViewController class and connect it to the UILabel instance in the default scene.

 10. Use the assistant editor to create an outlet called documentContentView in the
ViewController class and connect it to the UITextView instance in the default scene.

 11. Use the assistant editor to create an action method called onSaveDocument in the
ViewController class and connect it to the Touch Up Inside event of the UIButton
instance in the default scene.

Your storyboard should resemble Figure 24-16.

FIGURE 24-16

 ➤ Edit the ViewController.swift fi le.

320 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 320

 1. Add the following member variable declarations to the class:

var cloudServicesAreAvailable:Bool?
var cloudDocument:SwiftCloudTestDocument?
var searchQuery:NSMetadataQuery?

 2. Update the implementation of the viewDidLoad method to resemble the following:

override func viewDidLoad() {

 super.viewDidLoad()

 documentContentView.text = ""

 // register this class as an observer for the 'refreshDocumentPreview'
 // notification, this notification is sent by the document class when
 // the contents of the document have ben updated.
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "refreshDocumentPreview:",
 name: "refreshDocumentPreview" ,
 object: nil)

 // check if cloud services are available.
 let containerURL =
 NSFileManager.defaultManager().URLForUbiquityContainerIdentifier(nil)

 if containerURL != nil {
 self.cloudServicesAreAvailable = true
 serviceStatus.text = "Cloud Service Status: Available"

 // load existing document, or create a new document
 loadDocument()
 }
 else {
 self.cloudServicesAreAvailable = false
 serviceStatus.text = "Cloud Service Status: Not Available"

 let alert = UIAlertController(title: "Error",
 message: "iCloud has not been setup on this device!",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)
 }
}

In this method, you check if the iCloud service is available, and if it is, then proceed to
load a specifi c document from iCloud.

 3. Implement the deinit method in your ViewController class as follows:

deinit {

Try It ❘ 321

c24.indd 11/04/2015 Page 321

 if cloudDocument != nil {
 cloudDocument?.closeWithCompletionHandler(nil)
 }

 NSNotificationCenter.defaultCenter().removeObserver(self)
}

 4. Add a new method called loadDocument method as follows:

func loadDocument(){
 // search for cloudDocument.txt
 searchQuery = NSMetadataQuery()
 searchQuery!.searchScopes = [NSMetadataQueryUbiquitousDocumentsScope];

 let documentFileName = "cloudDocument.txt"
 let predicate = NSPredicate(format: "%K == %@",
 argumentArray: [NSMetadataItemFSNameKey, documentFileName])

 searchQuery!.predicate = predicate

 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "queryDidFinish:",
 name: NSMetadataQueryDidFinishGatheringNotification ,
 object: searchQuery)

 UIApplication.sharedApplication().networkActivityIndicatorVisible = true

 searchQuery!.startQuery()
}

These statements instantiate an NSMetadataQuery object to search the Documents
directory in the application’s iCloud container for a fi le called cloudDocument.txt.
When the query is complete, the queryDidFinish() method of the view controller
class will be called.

 5. Implement the queryDidFinish() method as follows:

func queryDidFinish(notifcation: NSNotification) {

 UIApplication.sharedApplication().networkActivityIndicatorVisible = false

 // stop the query to prevent it from running constantly
 searchQuery!.disableUpdates()
 searchQuery!.stopQuery()

 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: NSMetadataQueryDidFinishGatheringNotification,
 object: nil)

 // this application expects this query to return a single
 // result. If no documents were found, then create a new
 // document and inform the user.
 if searchQuery!.resultCount == 0
 {
 let alert = UIAlertController(title: "",

322 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 322

 message: "iCloud document not found., creating new document!",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)

 createDocument()
 return
 }

 // instantiate a SwiftCloudTestDocument instance and
 // open the cloud document
 if cloudDocument == nil
 {
 let item:NSMetadataItem? = searchQuery!.results[0] as?
 NSMetadataItem

 if let unwrappedItem = item {
 let url = unwrappedItem.valueForAttribute(NSMetadataItemURLKey)
 as! NSURL
 cloudDocument = SwiftCloudTestDocument(fileURL: url)
 }
 }

 cloudDocument!.openWithCompletionHandler {
 (BOOL success) -> Void in
 if (success) {
 let alert = UIAlertController(title: "",
 message: "iCloud document loaded!",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)
 }
 else {
 let alert = UIAlertController(title: "",
 message: "Could not load iCloud document!",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,

Try It ❘ 323

c24.indd 11/04/2015 Page 323

 animated: true,
 completion: nil)
 }
 }
}

The preceding implementation fi rst stops the query from running constantly. If the
query did not return any results, it calls the createDocument method of the view
controller class to create a new document on iCloud; otherwise, it loads the existing
document from iCloud.

 6. Implement the onSaveDocument() method as follows:

@IBAction func onSaveDocument(sender: AnyObject) {

 if cloudDocument == nil {
 return
 }

 documentContentView.resignFirstResponder()

 cloudDocument!.documentContents = documentContentView.text

 cloudDocument!.saveToURL(cloudDocument!.fileURL,
 forSaveOperation: UIDocumentSaveOperation.ForCreating) {
 (Bool success) -> Void in
 if (success) {
 self.cloudDocument!.openWithCompletionHandler(nil)
 }
 }
}

This method dismisses the keypad, if it is visible, and saves the
SwiftCloudTestDocument object to the iCloud document.

 7. Implement the createDocument() method as follows:

func createDocument(){

 if self.cloudDocument == nil {
 let containerURL =
 NSFileManager.defaultManager().URLForUbiquityContainerIdentifier(nil)

 let documentDirectoryURL =
containerURL!.URLByAppendingPathComponent("Documents")

 let documentURL =
documentDirectoryURL.URLByAppendingPathComponent("cloudDocument.txt")

 cloudDocument = SwiftCloudTestDocument(fileURL: documentURL)
 }

 cloudDocument!.documentContents = documentContentView.text
 cloudDocument!.saveToURL(cloudDocument!.fileURL,
 forSaveOperation: UIDocumentSaveOperation.ForCreating) {
 (Bool success) -> Void in

324 ❘ LESSON 24 INTRODUCTION TO ICLOUD STORAGE

c24.indd 11/04/2015 Page 324

 if (success) {
 self.cloudDocument!.openWithCompletionHandler(nil)
 }
 }
}

This method is used to create an empty fi le called cloudDocument.txt on iCloud, and
is used when the loadDocument method could not fi nd a document to load.

 8. Implement the refreshDocumentPreview() method as follows:

func refreshDocumentPreview(notifcation: NSNotification) {
 documentContentView.text = cloudDocument!.documentContents;
}

This method is received when the CloudTestDocument object loads data from the
iCloud document cloudDocument.txt. Here, you simply refresh the user interface.

 ➤ Test your app on an iOS device.

 1. Connect your iOS device to your Mac.

 2. Select your device from the Target/Device selector in the Xcode toolbar.

 3. Ensure the correct value has been selected for the Code Signing Entity build settings of
the application target (see Figure 24-17).

FIGURE 24-17

Try It ❘ 325

c24.indd 11/04/2015 Page 325

 4. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project ➪
Run menu item.

 5. When you run the application for the fi rst time, you will see a message similar to
Figure 25-16, telling you that a new iCloud document is going to be created for you.

 6. Type some text into the text view and tap the Save Document button.

 7. If you now run this application on a different device, you will get a message telling you
that an existing iCloud document has been opened.

REFERENCE To see some of the examples from this lesson, watch the Lesson 24
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c25.indd 11/04/2015 Page 327

Introduction to CloudKit
In Lesson 24, you learned how to create an app that could store documents on iCloud and
access these documents across different devices. In this lesson, you learn about CloudKit,
which is a set of APIs that allow you to move structured data between your app and iCloud.
Whereas iCloud document storage operates on fi les, CloudKit operates on dictionaries of key-
value pairs called records. To use a relational database analogy, a record is similar to a row in
a table.

CloudKit also allows relationships between records. You may be tempted to use CloudKit to
replace CoreData in your application, but these two technologies complement each other and
are not meant to replace each other. CoreData is concerned with storing model objects locally;
CloudKit is concerned with moving some of the data in these model objects to iCloud so that
they can be accessed by other instances of your application.

When using CloudKit, your application decides when to move data to and from iCloud. The
process is not automatic. It is possible to confi gure iCloud to inform your application when
changes occur; your application will still need to fetch those changes. In this lesson, you will
look at some of the key concepts involved in building iOS applications with CloudKit.

CONTAINERS, DATABASES, AND RECORDS

Data in iCloud is organized into containers. Containers are represented by instances of
CKContainer objects and every iCloud enabled app has at least one container called the
default container, the identifi er of which is the same as that of the app. Conceptually, you can
think of a container to represent storage space for your app on iCloud.

When you add iCloud entitlements in your Xcode project, Xcode adds the identifi er for the
app’s default container to the project (see Figure 25-1).

25

328 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 328

FIGURE 25-1

You have the option to add other container identifi ers, which is something you would do if you
wanted to perhaps share data between a group of applications you have developed. Multiple con-
tainer identifi ers are outside the scope of this lesson.

To obtain a reference to the default container for your app, simply use the defaultContainer class
method of the CKContainer class:

let defaultContainer = CKContainer.defaultContainer()

Each Container contains a public database and multiple private databases (there is one private data-
base per user of your app). Databases are represented by instances of CKDatabase objects. Data in a
private database is only visible to the user who created it. Data in a public database is visible to all
users of the app.

You can retrieve a CKDatabase instance for the public or private database using the publicCloud-
Database() or privateCloudDatabase() instance methods of CKContainer:

let privateDatabase:CKDatabase = CKContainer.defaultContainer().
privateCloudDatabase

let publicDatabase:CKDatabase = CKContainer.defaultContainer().publicCloudDatabase

At runtime, all the data in the public database will always be readable by your app, even if there is
no active iCloud account on the device. However, a user must set up an iCloud account in order to
write to public databases or access private databases.

Within databases, your app’s data is grouped into record types. In terms of a relational data-
base analogy, record types are the equivalent of database tables. A record type contains a unique

Containers, Databases, and Records ❘ 329

c25.indd 11/04/2015 Page 329

identifi er, a collection of records, and some additional metadata required by CloudKit. A collection
of record types is known as a schema.

A record is an instance of a CKRecord objects and is a dictionary of key-value pairs called fi elds. A
record is similar to a row in a relational database system. CloudKit requires that a record not exceed
1MB in size, and because of this limitation you should save large fi les such as images in physical
fi les, and simply store the fi le name in the record. Table 25-1 shows the commonly used fi eld types.

TABLE 25-1: CloudKit Field Types

FIELD CLASS DESCRIPTION

Asset CKAsset A large fi le that is stored separately from the record

Bytes NSData Raw binary data stored within the record

Date/Time NSDate A date/time

Double NSNumber A double

Int NSNumber An integer

Location CLLocation A latitude and longitude pair

Reference CKReference A relationship to a fi eld in another record type

String NSString An immutable string

List NSArray An array of any of the above types

The relationship between containers, databases, and records is shown in Figure 25-2.

ID CAPTION FILENAME
PUBLIC DATABASE

Container: com.wileybook.swiftcloudtest

The Pub ASSET 1
RECORD TYPE:

PHOTO

PHOTO PHOTOGRAPHER PHOTO PHOTOGRAPHER

RECORD TYPE:
PHOTOGRAPHER

PRIVATE DATABASE
(USER ABC@XYZ.COM)

PRIVATE DATABASE
(USER PQR@EFG.COM)

ASSET 2

ASSET 3

London Sunset

Locomotive

1

2

3

ASSET 3ASSET 2ASSET 1

FIGURE 25-2

mailto:PQR@EFG.COM
mailto:ABC@XYZ.COM

330 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 330

DEVELOPMENT AND PRODUCTION ENVIRONMENTS

CloudKit provides separate development and production environments for your app’s data. The
development environment is only accessible to members of your development team. When you save a
record to a database in the development environment, CloudKit automatically updates the database
schema by creating the associated record type. This feature is called just-in-time schema and is only
available in the development environment.

In the development environment, you can also use the CloudKit Dashboard to modify the schema
and records. In the production environment, you cannot edit the schema but you can modify indi-
vidual records in the public database.

If you decide to use CloudKit to generate the schema for you, keep in mind that once you add a fi eld
to a record, the data type associated with that fi eld cannot be changed programmatically. It can,
however, be changed from the CloudKit dashboard.

Typically, you use the development environment while developing and testing your app. In fact,
when you run your app from Xcode on a simulator or device, it is automatically confi gured to use
the development environment.

When you use Xcode to submit your app for review, Xcode will automatically confi gure the app to
target the production environment prior to submission. When you export an app for testing, you
will be asked to specify either the development or production environment.

Once your app appears to be working fi ne with the development environment, you will want
to switch over to the production environment prior to submitting the app to the iTunes Store.
Switching over to the production environment will require you to deploy the schema into the pro-
duction environment. Deploying a scheme only copies the record types, and not the individual
records themselves.

The fi rst time you deploy the schema from the development environment to the production envi-
ronment, the schema is copied over to the production environment. The next time you deploy the
schema (because perhaps you modifi ed the schema in the development environment), the schema is
merged with the production schema.

To prevent merge confl icts, CloudKit does not allow you to delete fi elds or record types in a schema
in the development environment that was previously deployed to the production environment.

The CloudKit Dashboard ❘ 331

c25.indd 11/04/2015 Page 331

THE CLOUDKIT DASHBOARD

The CloudKit dashboard (see Figure 25-3) is a web-based application that allows you to manage
both the schema and the records stored on iCloud by your CloudKit-based applications. You can
access it at https://icloud.developer.apple.com/dashboard/.

FIGURE 25-3

The features of the dashboard only apply to the currently selected container. You can use the drop-
down combo box located at the top left of the dashboard to switch containers. The dashboard will
only display containers that belong to your Apple developer account.

The rest of this section explores some of the common tasks you are likely to perform with the dash-
board. Keep in mind that some of these tasks can be performed programmatically.

Creating a Record Type
A record type is the equivalent of a table in a relational database. To create a record type, fi rst click
on the Record Types option under the Schema group in the left-hand navigation menu. Next, click
the Add (+) button in the upper-left corner of the detail area (see Figure 25-4).

https://icloud.developer.apple.com/dashboard

332 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 332

FIGURE 25-4

Enter a name for the new record type, and then proceed to add fi elds to the record type. There is
no limit to the number of fi elds you can have in a record type. A record type must have at least one
fi eld, and to enforce this the dashboard creates one for you by default (see Figure 25-5).

FIGURE 25-5

Every fi eld must have a unique name, and can have one of the data types listed in Table 25-1. To add
additional fi elds click the Add Field button. When you have fi nished creating all the fi elds, click the
Save button on the bottom right side of the detail area to update the schema.

The CloudKit Dashboard ❘ 333

c25.indd 11/04/2015 Page 333

You can delete a fi eld by clicking the delete (X) button located to the right of the fi eld row (see
Figure 25-6). Deleting a fi eld will remove the fi eld from the record type as well as any records.

FIGURE 25-6

Deleting a Record Type
To delete a record type, simply select it in the list of record types and click the trash icon in the
upper-left corner of the detail area (see Figure 25-7). Deleting a record type will also delete all
records that are based on the record type. Once a development schema has been deployed to the
production environment, you cannot delete record types.

FIGURE 25-7

Creating Relationships Between Record Types
Relationships between record types are represented using fi elds that have the CKReference data
type. Relationships can be used to express hierarchies in the data and can be both one-to-one or
one-to-many.

A CKReference object encapsulates a record identifi er of a target record and is added to the source
record. To add a one-to-one relationship between a source and target record types, add the reference
fi eld to the source record type (see Figure 25-8).

Source

PERSON

Destination

PASSPORT DETAILS

FIGURE 25-8

When adding a one-to-many relationship between record types in CloudKit, the child object is con-
sidered to be the source of the relationship and the CKReference object is added to the child. This
is illustrated in Figure 25-9 where there is a one-to-many relationship between a record type called
Photographer and a record type called Photo.

334 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 334

PHOTO

Sunset in Dorset

Castlerigg Stone Circle

Windermere

Bowness Pier

Derwent Water

Paul P

Arthur A

Source

Destination

PHOTOGRAPHER

FIGURE 25-9

The actual process of adding the fi eld from the CloudKit dashboard is a simple matter of selecting
the correct record type and adding a fi eld, whose type is Reference (see Figure 25-10).

FIGURE 25-10

While adding references between two record types, it is advisable to create inverse references from
the destination record type to the source record type as well.

Adding Records
To add a new record to a container, you must fi rst decide which database you want to add the record
to. If you add the record to the public database, the record will be visible to all users of your appli-
cation. If you add the record to the private database, then the record will be added to your private
database (as you are accessing the CloudKit dashboard using your developer account).

The CloudKit Dashboard ❘ 335

c25.indd 11/04/2015 Page 335

Data within the database is grouped into zones. A zone is a logical grouping of the records in the
database; every database starts out with a single zone called the Default zone. Additional zones can
be added.

For certain types of applications, segregating the data in the database by zones may make sense (for
example, zones could represent different business functions within an organization such as fi nance,
marketing, development, and so on). In the examples created in this lesson, however, all databases
use the default zone.

To add a new record using the dashboard, simply select the Default zone for the public or private
database on the left-hand side navigation menu, select the record type, and click the Add (+) button
in the detail area (see Figure 25-11).

FIGURE 25-11

Type in values for the fi elds and click the Save button to create the record. When you add a record
from the dashboard, CloudKit automatically creates a unique record identifi er for the record, which
is visible in the Record Name attribute in Figure 25-12.

336 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 336

FIGURE 25-12

If the fi eld type is a reference, then you will have a check box labeled DeleteSelf visible beside the
fi eld value (see Figure 25-13).

FIGURE 25-13

Enabling the DeleteSelf option implies that the record you are creating will be automatically
deleted if the referenced record is deleted.

Modifying and Deleting Records
To edit a record, simply select the record from the list of records, enter new values for the fi elds, and
click Save. To delete a record, use the trash icon located at the upper-left corner of the detail area
(see Figure 25-14).

FIGURE 25-14

The CloudKit Dashboard ❘ 337

c25.indd 11/04/2015 Page 337

Resetting the Development Schema
You can reset the development schema to a previous state by using the Deployment ➪ Reset
Development Environment option (see Figure 25-15).

FIGURE 25-15

If you have never deployed your schema to the production environment, resetting the schema results
in all records and record types being deleted from all databases.

If, however, you have deployed your schema previously, then resetting the schema
in the development environment results in all records being deleted and the schema
being restored to the production version.

The Deployment option is only available when you are working in the develop-
ment environment. To fi nd out which environment you are working in (or to
switch to the other environment), use the environment drop-down option at the
bottom-left of the dashboard (see Figure 25-16).

Deploying to Production
Once your app appears to be working fi ne with the development environment, you will want
to switch over to the production environment prior to submitting the app to the iTunes Store.
Switching over to the production environment will require you to deploy the schema into the pro-
duction environment. Deploying a schema only copies the record types, not the individual records
themselves.

FIGURE 25-16

338 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 338

To deploy a schema to production, click the Deployment option in the left-hand navigation menu
and then click the Deploy to Production button in the detail area (see Figure 25-17).

FIGURE 25-17

If you have unused indexes, you may get a warning message asking you to either deploy unused
indexes or optimize them. An Index helps to improve the speed of fetching records from the
database.

When you add fi elds to a record type, CloudKit creates an index for the fi eld. Depending on the type
of fi eld, CloudKid will create indexes for sorting, querying, and searching on that fi eld. In produc-
tion, it is wasteful to store indexes you do not use.

PREPARING TO USE CLOUDKIT

To use the CloudKit APIs in an application, you need to perform three steps:

 1. Create an iCloud-enabled App ID.

 2. Create an appropriate provisioning profi le.

 3. Enable appropriate entitlements in your Xcode project.

Create an iCloud-Enabled App ID
To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link on the right side to access the member center.
Within the member center, click the Certifi cates, Identifi ers & Profi les link (see Figure 25-18).

https://developer
https://developer.apple.com/ios

Preparing to Use CloudKit ❘ 339

c25.indd 11/04/2015 Page 339

FIGURE 25-18

Next, click the Identifi ers link in the iOS Apps category on the left side of the page (see Figure 25-19).

FIGURE 25-19

340 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 340

To create a new App ID, click the New App ID button on the top-right side (see Figure 25-20).

FIGURE 25-20

Provide a descriptive name of the new App ID in the Name fi eld and select Team ID in the App ID
prefi x drop-down. Select the Explicit App ID radio button under the App ID suffi x section and
provide a unique identifi er in the Bundle ID fi eld that ends in the name of the Xcode project you are
going to create (or have created).

Typically, you create this identifi er by combining the reverse-domain name of your website
and the name of your Xcode project. For example, the project created in this lesson is called
CloudKitPhotos and the bundle identifi er specifi ed is com.wileybook.cloudkitphotos. Your
browser window should resemble Figure 25-21.

Preparing to Use CloudKit ❘ 341

c25.indd 11/04/2015 Page 341

FIGURE 25-21

Scroll down to reveal the App Services section and ensure that both the iCloud checkbox and the
Include CloudKit support option are selected (see Figure 25-22).

342 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 342

FIGURE 25-22

 Click the Continue button to proceed. You will be presented with a summary of the App ID
information (see Figure 25-23). Click Submit to fi nish creating the App ID.

Preparing to Use CloudKit ❘ 343

c25.indd 11/04/2015 Page 343

FIGURE 25-23

344 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 344

Create an Appropriate Provisioning Profi le
To create a provisioning profi le for an iCloud-enabled App ID, click the All link (under the
Provisioning category) in the menu on the left-hand side of the iOS Provisioning Portal window (see
Figure 25-24).

FIGURE 25-24

Click the New Profi le button on the top-right side (see Figure 25-25).

FIGURE 25-25

Preparing to Use CloudKit ❘ 345

c25.indd 11/04/2015 Page 345

You will be asked to choose between a development or distribution provisioning profi le. A distribu-
tion provisioning profi le is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure 25-26).

FIGURE 25-26

A development provisioning profi le ties together three pieces of information:

 ➤ A single App ID

 ➤ One or more public keys

 ➤ A list of test device IDs

The next step requires you to select an App ID that will be associated with this provisioning profi le.
Select the iCloud-enabled App ID you have created (see Figure 25-27) and click Continue.

346 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 346

FIGURE 25-27

Select one or more development certifi cates that will be included in the profi le. You must make sure
to sign the app in Xcode using one of the certifi cates you select here. Select a suitable certifi cate and
click Continue (see Figure 25-28).

Preparing to Use CloudKit ❘ 347

c25.indd 11/04/2015 Page 347

FIGURE 25-28

Next, you must select one or more devices that will be included in this provisioning profi le. The cor-
responding identifi ers for these devices must be registered with your development account. Your app
will only be testable on these devices (see Figure 25-29).

348 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 348

 FIGURE 25-29

The fi nal step involves providing a suitable name for the profi le and clicking the Generate button.
When the profi le is created, you will be provided an option to download it onto your computer (see
Figure 25-30).

Preparing to Use CloudKit ❘ 349

c25.indd 11/04/2015 Page 349

FIGURE 25-30

If you were to now click the All link under the Provisioning section of the left-hand side menu, you
would see an entry for the new profi le in the list of available profi les. You can also download a
provisioning profi le from this list.

350 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 350

Once the profi le has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Enable Appropriate Entitlements in Your Xcode Project
Create a new project in Xcode using one of the standard iOS application templates. In the
Project Options dialog box, make sure you provide the correct value for the Product Name and
Organization Identifi er fi elds so as to create the same App ID that was registered on the iOS
Provisioning Portal. If, for instance, the App ID you registered was com.wileybook.cloudkit-
photos, use cloudkitphotos for the Product Name fi eld and com.wileybook for the Company
Identifi er fi eld.

Applications that use iCloud must be signed with iCloud-specifi c entitlements. These entitlements
ensure that only your applications can access the documents that they create. To enable entitlements,
select the project’s root node in the project navigator and the appropriate build target. Ensure the
Capabilities tab is selected. Locate the iCloud node and enable it. You may be asked to provide your
iOS developer accounts credentials when you enable the iCloud entitlement. Because this lesson is
about CloudKit, ensure the CloudKit checkbox is checked (see Figure 25-31).

1

2

3

4

FIGURE 25-31

COMMON OPERATIONS

In this section, you learn how to perform common operations such as checking for service availabil-
ity, adding/updating records, and retrieving records. While it is possible to create records using the
iCloud dashboard, you will most likely need to be able to do this programmatically in response to
some action taken by the user.

Common Operations ❘ 351

c25.indd 11/04/2015 Page 351

Checking for Service Availability
Before writing data to one of the CloudKit databases (private or public), the user must be signed in
to iCloud. The following snippet uses the accountStatusWithCompletionHandler method of the
CKContainer object to check if the user is signed in:

CKContainer.defaultContainer().accountStatusWithCompletionHandler {
(accountStatus, error) -> Void in

 if accountStatus == CKAccountStatus.NoAccount {

 let alert = UIAlertController(title: "Sign in to iCloud",
 message: "You need to sign in to iCloud to create records.",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)
 }
 else {
 // show the view controller to allow the user to create a
new record.
 }
 }

Creating Records Programmatically
To create a record, you will fi rst need to give it a unique record identifi er. CloudKit only generates
unique record identifi ers for records created using the dashboard. To generate unique record identi-
fi ers, use the UDIDString method of the NSUDID class to generate a unique record name:

let uuid:String = NSUUID().UUIDString

and then create a CKRecordID instance with that name:

let photoRecordID = CKRecordID(recordName: uuid)

The next step is to create a CKRecordInstance. To create one, you will need to provide a string that
represents the record type and the unique record identifi er for the new record. This is shown in the
following snippet:

let photoRecord:CKRecord = CKRecord(recordType: "Photo", recordID: photoRecordID)

You can set up the values of individual fi elds in the record using key-value coding:

photoRecord["photoCaption"] = "By the lake"
photoRecord["photoDescription"] = "Photo by Andy Brown"

Finally, save the CKRecord instance to CloudKit by using the saveRecord method of a CKDatabase
instance. The following snippet demonstrates how to save a record to the public database:

352 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 352

let publicDatabase:CKDatabase = CKContainer.defaultContainer().publicCloudDatabase

publicDatabase.saveRecord(photoRecord) { (newRecord, error) -> Void in

 if error != nil {
 // handle the error in some way.
 }
}

Retrieving Records
If you know the record identifi er (listed as “record name” on the CloudKit dashboard) for the record
you want to retrieve, you can create a CKRecordID instance with that identifi er and then use the
fetchRecordWithID() method of the CKDatabase instance. This is demonstrated in the following
snippet:

let publicDatabase = CKContainer.defaultContainer().publicCloudDatabase

let someRecordID:CKRecordID = CKRecordID(recordName: "9181.a8d5xv26")

publicDatabase.fetchRecordWithID(someRecordID) { (record:CKRecord?,
error:NSError?) -> Void in
 // examine error, if no error then do something with record.
}

The fetchRecordWithID method requires two arguments. The fi rst is a CKRecordID that contains
the record identifi er for the record you wish to retrieve; the second parameter is a completion block
that will be called by CloudKit with the results of the fetch operation.

If you do not know the record identifi er, then you will need to perform a query on the database to
retrieve all records that satisfy some criteria and then iterate through the results. The following code
snippet performs a query on the database to retrieve all records from the Photographer table that
have the name fi eld containing the value Arthur:

let publicDatabase:CKDatabase = CKContainer.defaultContainer().publicCloudDatabase

let predicate:NSPredicate = NSPredicate(format: "name = ",
 argumentArray: ["Arthur"])

let query:CKQuery = CKQuery(recordType: "Photographer",
 predicate: predicate)

publicDatabase.performQuery(query,
 inZoneWithID: nil,
 completionHandler: { (results:[CKRecord]?, error:NSError?) -> Void in
 // if error is nil, then examine the contents of the array results
})

TRY IT

In this Try It, you build a new Xcode project based on the Single View Application template called
CloudKitPhotos. In this application, you use CloudKit to share photos with other users of your appli-
cation using a public database. You also use Core Data to save these photos locally on your device.

Try It ❘ 353

c25.indd 11/04/2015 Page 353

Lesson Requirements
 ➤ Create a new Universal application project based on the Single View Application template.

 ➤ Register the App ID with the iOS Provisioning Portal.

 ➤ Create a development provisioning profi le.

 ➤ Download and install the development provisioning profi le.

 ➤ Create a Table View Controller based user interface.

 ➤ Create a data model with Core Data.

 ➤ Check iCloud service availability in the viewDidLoad method of the view controller class.

 ➤ Load previously downloaded content into the table view.

 ➤ Build a detail view to show information on a photo selected in the table view.

 ➤ Build a view controller that allows users to upload new pictures.

 ➤ Implement code to upload new images to the public CloudKit database.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To make best use of this application, you will need at least two iOS devices set up to use the

same iCloud account.

 ➤ You must ensure iCloud has been set up on each test device.

 ➤ Testing your apps on iOS devices is covered in Appendix B.

Step-by-Step
 ➤ Create a Single View Application in Xcode called CloudKitPhotos.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: cloudkitphotos (in lowercase)

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.wileybook.cloudkitphotos

 ➤ Language: Swift

 ➤ Devices: Universal

http://www.wrox.com/go

354 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 354

 ➤ Use Core Data: Checked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Register an App ID with the iOS Provisioning Portal.

 1. Log in to the iOS Provisioning Portal, and register a new App ID with the following
details:

 ➤ Description: CloudKitPhotos AppID

 ➤ Bundle Seed ID: Use Team ID

 ➤ Bundle Identifi er: com.wileybook.cloudkitphotos

 2. Enable the App ID to use with iCloud.

This process is covered in the section “Create an iCloud-Enabled App ID” earlier in
this lesson.

 ➤ Create a development provisioning profi le using the App ID created in the previous step.

 1. The process of creating the provisioning profi le is covered in the section “Creating an
Appropriate Provisioning Profi le” earlier in this lesson. Follow those instructions to cre-
ate a development provisioning profi le called “Swift Cloud Test Development Profi le.”

 2. Download and install the provisioning profi le by double-clicking on the profi le after it
has been downloaded to your computer.

 ➤ Enable iCloud-specifi c entitlements for the application target.

 1. Select the project’s root node in the project navigator and select the appropriate build
target. Ensure the Capabilities tab is selected. Scroll down to the iCloud option and
enable it.

 2. Once the iCloud entitlement has been enabled, ensure the CloudKit checkbox has been
selected.

 ➤ Build the user interface of the application.

 1. Open the Main.storyboard fi le from the project explorer and drag-and-drop a Table
View Controller object onto the storyboard. This will create a new scene in the story-
board (see Figure 25-32).

Try It ❘ 355

c25.indd 11/04/2015 Page 355

FIGURE 25-32

A table view controller is an instance of UITableViewController and is used to man-
age a table view. The table view in this application will be used to present a list of pho-
tos in the local database to the user.

 2. Position the two scenes side by side, and zoom out of the storyboard a little if neces-
sary. To zoom in/out, select Editor ➪ Canvas ➪ Zoom.

 3. Set up the Table View Controller scene to replace the default scene of the storyboard.

 ➤ Select the Table View Controller scene in the storyboard.

 ➤ Ensure the Attribute inspector is visible and scroll down to the View Controller
section.

 ➤ Ensure the Is Initial View Controller option is selected. When you select this
option, the Storyboard Entry Point indicator will jump to the table view controller
scene (see Figure 25-33).

356 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 356

FIGURE 25-33

 4. Delete the View Controller scene from the storyboard. Your storyboard should now
have just one scene (the Table View Controller scene).

 5. Embed the Table View Controller scene in a navigation controller.

Select the Table View Controller scene from the document outline panel and then
select Editor ➪ Embed In ➪ Navigation Controller.

This action will add a Navigation Controller scene to the storyboard and make it the
default scene of the storyboard. Your Table View Controller scene will now be embed-
ded in the Navigation Controller (see Figure 25-34).

FIGURE 25-34

Try It ❘ 357

c25.indd 11/04/2015 Page 357

 6. Set up the table view’s appearance.

 ➤ Select the table view and ensure the Attribute inspector is visible.

 ➤ Ensure the Content attribute is set to Dynamic Prototypes.

 ➤ Ensure the value of the Prototype Cells attribute is 1.

 ➤ Ensure the Style attribute is set to Grouped.

 7. Set up the prototype cell.

 ➤ Expand the table view in the document outline; this will reveal the table
view cell.

 ➤ Select the table view cell.

 ➤ Use the attribute editor to ensure that the value of the identifi er attribute is
prototypeCell1.

 ➤ Ensure the Style attribute is set to Basic.

 8. Set up the ViewController class (implemented in ViewController.swift) to inherit
from UITableViewController instead of UIViewController.

 ➤ Open the ViewController.Swift fi le.

 ➤ Locate the following line in the fi le:

 class ViewController: UIViewController {

 ➤ Change it to

 class ViewController: UITableViewController {

 9. Add a right bar button item to the navigation bar of the Table View Controller scene.

 ➤ Expand the document outline for the storyboard and select the Navigation
Item under the Table View (see Figure 25-35).

FIGURE 25-35

 ➤ Drag and drop a Bar Button Item from the object library onto the right edge
of the Navigation Item (see Figure 25-36).

358 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 358

FIGURE 25-36

 ➤ Select the new Bar Button Item and use the Attribute inspector to set the value
of its System Item attribute to Add (see Figure 25-37).

FIGURE 25-37

Try It ❘ 359

c25.indd 11/04/2015 Page 359

 10. Link the Table View Controller scene in the storyboard to the ViewController class.

 ➤ Select the Table View Controller scene.

 ➤ Use the Identity Inspector to change the Custom Class to ViewController.

 11. Add a detail view controller scene. This view controller will be used to show details on
a photo selected in the table view.

 ➤ Drag and drop a View Controller object onto the storyboard. This will create
a new scene.

 ➤ Create a Show detail segue between the table view cell and the new view
controller. Hold down the Control key on your keyboard and drag from the
prototype cell in the Table View Controller and drop onto the new scene you
have added (see Figure 25-38).

FIGURE 25-38

Your storyboard will now have three scenes and will resemble Figure 25-39.

360 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 360

FIGURE 25-39

 ➤ Select the segue that you have just created, and use the Attribute inspector to
set the identifi er property of the segue to showPhotoDetail.

 ➤ Create a new Swift fi le called DetailViewController.swift and replace its
contents with the following code:

import UIKit

class DetailViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

Try It ❘ 361

c25.indd 11/04/2015 Page 361

 ➤ Use the Identity Inspector to change the Custom Class of the new scene to
DetailViewController.

 12. Add user interface elements to the Detail View Controller scene.

 ➤ Drag-and-drop an image view and two label objects onto the Detail View
Controller scene and position them to resemble Figure 25-40.

FIGURE 25-40

You will need to zoom in to 100 percent magnifi cation to be able to add objects onto
scenes.

 ➤ Create layout constraints for each of elements on the storyboard scene using
the information in Table 25-2. When creating layout constraints using the pin
constraints dialog box, ensure the Constrain to margins option is unchecked
and Update Frames is set to None.

TABLE 25-2: Layout Constraints

ELEMENT LEFT TOP RIGHT BOTTOM

Image view 20 20 20 20

Caption label 20 20 20 20

Description label 20 20 20 20

 ➤ Select the Detail View Controller scene in the document outline and select
Editor ➪ Resolve Auto Layout Issues ➪ All Views ➪ Update Frames to
update the storyboard scene with the layout constraints you have just applied.

362 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 362

 ➤ Using the Assistant Editor, create an outlet in the DetailViewController
class called imageView and connect it to the image view.

 ➤ Using the Assistant Editor, create an outlet in the DetailViewController
class called captionLabel and connect it to the fi rst label.

 ➤ Using the Assistant Editor, create an outlet in the DetailViewController
class called detailLabel and connect it to the second label.

The code in DetailViewController.swift should now resemble the following:

import UIKit

class DetailViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var captionLabel: UILabel!
 @IBOutlet weak var detailLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
}

 13. Add a new view controller scene to the storyboard scene. This will be used when the
user wants to add a photo to iCloud using CloudKit.

 ➤ Drag-and-drop a View Controller object onto the storyboard. This will create
a new scene.

 ➤ Create a Present modally segue between the right bar button item and the new
view controller.

 ➤ Your storyboard will now have four scenes and will resemble Figure 25-41.

 ➤ Select the segue that you have just created and use the Attribute inspector to
set the identifi er property of the segue to addPhoto.

 ➤ Create a new Swift fi le called AddPhotoViewController.swift and replace
its contents with the following code:

import UIKit

class AddPhotoViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

Try It ❘ 363

c25.indd 11/04/2015 Page 363

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

FIGURE 25-41

 ➤ Use the Identity inspector to change the Custom Class of the new scene to
AddPhotoViewController.

 14. Add user interface elements to the Add Photo View Controller scene.

 ➤ Drag-and-drop an image view, two text fi elds, and three buttons onto the Add
Photo View Controller scene and position them to resemble Figure 25-42.

364 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 364

FIGURE 25-42

You will need to zoom in to 100 percent magnifi cation to be able to add objects onto
scenes.

 ➤ Create layout constraints for each of elements on the storyboard scene using
the information in Table 25-3. When creating layout constraints using the pin
constraints dialog box, ensure the Constrain to margins option is unchecked
and Update Frames is set to None.

TABLE 25-3: Layout Constraints

ELEMENT LEFT TOP RIGHT BOTTOM HEIGHT

Text fi eld 1 20 20 20 20 30

Text fi eld 2 20 20 20 20 30

Image view 20 20 20 20

Select button 20 20 20 40

Save button 20 10 20 10 40

Cancel button 20 10 20 20 40

 ➤ Select the Add Photo View Controller scene in the document outline and
select Editor ➪ Resolve Auto Layout Issues ➪ All Views ➪ Update Frames to
update the storyboard scene with the layout constraints you have just applied.

Try It ❘ 365

c25.indd 11/04/2015 Page 365

 ➤ Using the Assistant editor, create outlets in the AddPhotoViewController
class called imageView, captionField, and descriptionField and then
connect the image view, fi rst text fi eld, and second text fi eld respectively.

 ➤ Create action methods in the AddPhotoViewController class called on
SelectPicture, onSaveRecord, and onCancel and connect them to the
Select Picture, Save, and Cancel buttons respectively.

The code in AddPhotoViewController.swift should now resemble the following:

import UIKit

class AddPhotoViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var captionField: UITextField!
 @IBOutlet weak var descriptionField: UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func onSelectPicture(sender: AnyObject) {

 }

 @IBAction func onSaveRecord(sender: AnyObject) {

 }

 @IBAction func onCancel(sender: AnyObject) {

 }
}

 ➤ Build the client-side data model using Core Data.

 1. Select the cloudkitphotos.xcdatamodeld fi le in the project navigator to open it in
the Xcode editor.

 2. Add an Entity to the data model to represent photos.

 ➤ Select Editor ➪ Add Entity and name the new entity Photo.

 ➤ Add the following attributes to the Photo entity:

 photoCaption: String

 photoDescription: String

 fileName: String

 dateTaken: Date

 ckRecordID: String

mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0

366 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 366

 3. Use the Editor ➪ Create NSManagedObject subclass menu item to create
an NSManagedObject subclass to represent the Photo entity. While creating
the NSManagedObject subclass, ensure the language is set to Swift.

 4. Ensure the Photo.swift fi le has the following import statements at the top:

 import Foundation
 import CoreData
 import CloudKit
 import UIKit

 5. Add a method called saveImageToDocumentsDirectory, which saves a UIImage
instance to a JPEG fi le in the documents directory and returns the path to the saved fi le:

static func saveImageToDocumentsDirectory(image: UIImage,
 _ fileName:String) -> NSURL {

 let documentsURL =
 NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains:.UserDomainMask)[0]

 let fileURL =
 documentsURL.URLByAppendingPathComponent(fileName)

 UIImageJPEGRepresentation(image, 0.5)?.
 writeToURL(fileURL,
 atomically: true)

 return fileURL
}

This method has been defi ned with the static keyword; therefore, you do not need an
instance of Photo to use this method. You can simply call it on the class.

 6. Add a static method called addFromCKRecord, which creates a Photo entity in Core
Data from a CKRecord instance.

static func addFromCKRecord(record:CKRecord) {

 // read fields from CKRecord
 let recordIdentifier:String = record.recordID.recordName

 guard let
 dateTaken:NSDate = record["dateTaken"] as? NSDate,
 fileName:String = record["filename"] as? String,
 photoCaption:String = record["photoCaption"] as? String,
 photoDescription:String = record["photoDescription"] as? String,
 asset:CKAsset = record["photoAsset"] as? CKAsset else {
 return
 }

 // save asset to documents directory
 guard let image = UIImage(contentsOfFile:asset.fileURL.path!) else {
 print ("unable to download image")
 return
 }

Try It ❘ 367

c25.indd 11/04/2015 Page 367

 saveImageToDocumentsDirectory(image, fileName)

 // insert new record.
 let appDelegate = UIApplication.sharedApplication().delegate as!
 AppDelegate

 let newItem =
 NSEntityDescription.insertNewObjectForEntityForName("Photo",
 inManagedObjectContext: appDelegate.managedObjectContext) as! Photo

 newItem.ckRecordID = recordIdentifier
 newItem.fileName = fileName
 newItem.dateTaken = dateTaken
 newItem.photoCaption = photoCaption
 newItem.photoDescription = photoDescription

 // save managed object context.
 do {
 try appDelegate.managedObjectContext.save()
 }
 catch {
 print("error saving managed object context")
 }
}

The preceding code snippet extracts fi elds from the CKRecord instance, downloads
the asset into the documents directory, and creates a managed object in the local data
store.

 ➤ Build the server-side data model using the CloudKit Dashboard.

 1. Log in to the CloudKit dashboard at https://icloud.developer.apple.com/
dashboard/.

 2. Ensure the dashboard is set to use the correct container. The cloudkitphotos con-
tainer should be selected in the drop-down menu located at the top-left corner of the
dashboard.

 3. Ensure you are working with the development environment. The development environ-
ment should be selected in the drop-down menu located at the bottom-left corner of the
dashboard.

 4. Add a record type called Photo. To this record type, add the following fi elds:

 ➤ dateTaken: Date/Time

 ➤ fileName: String

 ➤ photoAsset: Asset

 ➤ owner: Reference

 ➤ photoCaption: String

 ➤ photoDescription: String

https://icloud.developer.apple.com
https://icloud.developer.apple.com/dashboard/

368 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 368

Adding record types using the CloudKit dashboard has been covered earlier in this
lesson.

 ➤ Add code to the ViewController.swift fi le to Fetch initial data from CloudKit and save to
the managed objects using Core Data.

 1. Ensure both CloudKit and CoreData have been imported at the top of the
ViewController.swift fi le:

import CloudKit
import CoreData

 2. Declare a protocol called CloudLoaderDelegate as follows:

protocol CloudLoaderDelegate : NSObjectProtocol {

 func willProcessRecords(recordType:String, _ records:[CKRecord]?)

 func processCKRecord(recordType:String, _ record:CKRecord)

 func didProcessRecords(recordType:String, _ records:[CKRecord]?)

 func didReceiveError(recordType:String, _ error:NSError?)
}

 3. Add the following variable declarations to the ViewController.swift fi le:

var photos:[Photo]?
var publicDatabase:CKDatabase?
var matchAllPredicate:NSPredicate?

 4. Ensure the ViewController class implements the CloudLoaderDelegate protocol by
changing the following line:

class ViewController: UITableViewController {

to

class ViewController: UITableViewController, CloudLoaderDelegate {

 5. Declare a block called recordDownloadBlock, which takes as input a record
type, CKDatabase instance, a predicate, and a delegate object that implements
CloudLoaderDelegate as follows:

let recordDownloadBlock: (String, CKDatabase, NSPredicate,
 CloudLoaderDelegate) -> Void =
{ (recordType, database, predicate, delegate) -> Void in

 let query = CKQuery(recordType: recordType, predicate: predicate)

 database.performQuery(query, inZoneWithID: nil) { results, error in

 if error != nil{
 delegate.didReceiveError(recordType, error)
 return
 }

 guard let results = results else {

Try It ❘ 369

c25.indd 11/04/2015 Page 369

 delegate.didProcessRecords(recordType, nil)
 return
 }

 // delete photographer records from Core Data
 delegate.willProcessRecords(recordType, results)

 for record in results {
 delegate.processCKRecord(recordType, record)
 }

 delegate.didProcessRecords(recordType, results)
 }
}

This block will perform a query on a CloudKit database to retrieve records of a spe-
cifi c record type and call methods on the delegate object when it has retrieved records.

The code in ViewController.swift should now resemble the following:

import UIKit
import CloudKit
import CoreData

protocol CloudLoaderDelegate : NSObjectProtocol {

 func willProcessRecords(recordType:String, _ records:[CKRecord]?)

 func processCKRecord(recordType:String, _ record:CKRecord)

 func didProcessRecords(recordType:String, _ records:[CKRecord]?)

 func didReceiveError(recordType:String, _ error:NSError?)
}

class ViewController: UITableViewController, CloudLoaderDelegate {

 var photos:[Photo]?
 var publicDatabase:CKDatabase?
 var matchAllPredicate:NSPredicate?

 let recordDownloadBlock: (String, CKDatabase, NSPredicate,
 CloudLoaderDelegate) -> Void = { (recordType, database, predicate,
 delegate) -> Void in

 let query = CKQuery(recordType: recordType, predicate: predicate)

 database.performQuery(query, inZoneWithID: nil) { results, error in

 if error != nil{
 delegate.didReceiveError(recordType, error)
 return
 }

 guard let results = results else {
 delegate.didProcessRecords(recordType, nil)
 return

370 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 370

 }

 // delete photographer records from Core Data
 delegate.willProcessRecords(recordType, results)

 for record in results {
 delegate.processCKRecord(recordType, record)
 }

 delegate.didProcessRecords(recordType, results)
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

 6. Get a reference to the public CloudKit database and create a predicate that will return
all records in a record type in the viewDidLoad method:

override func viewDidLoad() {

 super.viewDidLoad()

 self.publicDatabase =
 CKContainer.defaultContainer().publicCloudDatabase

 self.matchAllPredicate = NSPredicate(value: true)
}

 7. Override the viewDidAppear method in your ViewController.swift fi le as follows:

override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 fetchListOfPhotos()
 tableView.reloadData()

 downloadPhotosFromCloud(recordDownloadBlock)
}

This method fetches all Photo entities from the CoreData store and then reloads the
contents of the table view. It then attempts to download Photo records from CloudKit
if the user has signed into the device with a CloudKit account.

 8. Implement the fetchListOfPhotos methods in the ViewController.swift fi le as
follows:

func fetchListOfPhotos() {

Try It ❘ 371

c25.indd 11/04/2015 Page 371

 let fetchRequest = NSFetchRequest(entityName: "Photo")

 let appDelegate = UIApplication.sharedApplication().delegate as!
 AppDelegate

 do {
 self.photos = try
 appDelegate.managedObjectContext.executeFetchRequest(fetchRequest)
 as? [Photo]
 }
 catch {
 print ("error retrieving list of photos from local database.")
 }

}

 9. Implement the downloadPhotosFromCloud method as follows:

func downloadPhotosFromCloud(completionBlock : (String, CKDatabase,
 NSPredicate, CloudLoaderDelegate) -> Void) {

 CKContainer.defaultContainer().accountStatusWithCompletionHandler {
 (accountStatus, error) -> Void in

 if accountStatus == CKAccountStatus.NoAccount {
 // user has not signed in to iCloud, show an alert.
 let alert = UIAlertController(title: "Sign in to iCloud",
 message: "You need to sign in to iCloud to create records.",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)
 }
 else {
 // user has signed in to iCloud, download Photo from server
 completionBlock("Photo", self.publicDatabase!,
 self.matchAllPredicate!, self);
 }
 }
}

This method takes as input, a block that will be called to fetch data from CloudKit.
However, this block will only be called if the user has signed in to iCloud on the
device.

 10. Implement the CloudLoaderDelegate methods as follows:

func willProcessRecords(recordType:String, _ records:[CKRecord]?)
{
 // delete all Photos from core data before
 // processing new ones in CloudKit

372 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 372

 let fetchRequest = NSFetchRequest(entityName: "Photo")
 let appDelegate = UIApplication.sharedApplication().delegate
 as! AppDelegate

var results:[Photo]? = nil

 do {
 results = try
 appDelegate.managedObjectContext.executeFetchRequest(fetchRequest)
 as? [Photo]

 guard let results = results else {
 return
 }

 for photo in results {
 appDelegate.managedObjectContext.deleteObject(photo)
 }

 try appDelegate.managedObjectContext.save()
 }
 catch {
 print ("error retrieving list of photos from local database.")
 }
}

func processCKRecord(recordType:String, _ record:CKRecord)
{
 if recordType.compare("Photo") == NSComparisonResult.OrderedSame {
 Photo.addFromCKRecord(record)
 }
}

func didProcessRecords(recordType:String, _ records:[CKRecord]?)
{
 if recordType.compare("Photo") == NSComparisonResult.OrderedSame {
 fetchListOfPhotos()
 tableView.reloadData()
 }
}

func didReceiveError(recordType:String, _ error:NSError?)
{
 print ("received error \(error) for record type \(recordType)")
}

 11. Override the prepareforSegue methods in the ViewController.swift fi le to pass the
selected item in the table view to the photo detail view controller:

override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {

 guard let identifier = segue.identifier else {

Try It ❘ 373

c25.indd 11/04/2015 Page 373

 return
 }

 if identifier.compare("showPhotoDetail") ==
 NSComparisonResult.OrderedSame {

 guard let
 detailViewController =
 segue.destinationViewController as?
 DetailViewController else {
 return
 }

 guard let indexPath =
 tableView.indexPathForSelectedRow,
 arrayOfPhotos = self.photos else {
 return
 }

 let modelObject:Photo = arrayOfPhotos[indexPath.row]
 detailViewController.modelObject = modelObject
 }
 }

 ➤ Implement UITableViewDataSource methods in the ViewController.swift fi le.

 1. Implement the tableView(tableView, numberOfRowsInSection) method as
follows:

override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int
{

 if photos != nil {
 return photos!.count
 }

 return 0
}

 2. Implement the tableview(tableView, cellForRowAtIndexPath) method as follows

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell
{
 let cell:UITableViewCell =
 tableView.dequeueReusableCellWithIdentifier("prototypeCell1",
 forIndexPath: indexPath)

 let somePhoto:Photo! = photos![indexPath.row]

 cell.textLabel?.text = somePhoto.photoCaption

 return cell
}

374 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 374

 ➤ Add code to the DetailViewController.swift fi le to display information on a Photo
instance.

 1. Declare an optional variable called modelObject in the DetailViewController class.

var modelObject:Photo?

 2. Update the code in the viewDidLoad method to resemble the following:

override func viewDidLoad() {
 super.viewDidLoad()

 guard let
 modelObject = modelObject,
 photoDescription = modelObject.photoDescription,
 photoCaption = modelObject.photoCaption,
 imageFileName = modelObject.fileName else {
 return
 }

 detailLabel.text = photoDescription
 captionLabel.text = photoCaption
 loadImageFromFileInDocumentsDirectory(imageFileName)
}

The preceding snippet extracts the photoCaption, photoDescription, and fileName
attributes of the Photo entity and updates information on the view.

 3. Implement a method called loadImageFromFileInDocumentsDirectory(imageFile
Name), which is given the name of a fi le in the documents directory and loads the image
into the image view:

func loadImageFromFileInDocumentsDirectory(imageFileName:String) {

 let documentsURL =
NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
 inDomains: .UserDomainMask)[0]

 let fileURL = documentsURL.URLByAppendingPathComponent(imageFileName)

 let image:UIImage? = UIImage(contentsOfFile: fileURL.path!)

 if (image != nil) {
 imageView.image = image
 imageView.contentMode = UIViewContentMode.ScaleAspectFit
 }

}

 ➤ Add code to the AddPhotoViewController.swift fi le to allow the user to add a photo to
the public CloudKit database.

 1. Import the CloudKit framework at the top of the AddPhotoViewController
.swift fi le.

 2. Create an action method in the AddPhotoViewController class and associate it with
the Did End On Exit events of the two text fi elds.

Try It ❘ 375

c25.indd 11/04/2015 Page 375

 ➤ Right-click the fi rst UITextField object to display its context menu, and
drag from the circle beside the Did End On Exit item to an empty line in the
AddPhotoViewController.swift fi le.

 ➤ Name the new Action onDismissKeyboard.

 ➤ Right-click the second UITextField object to display its context menu, and
drag from the circle beside the Did End On Exit item to the icon representing
the view controller in the dock.

 ➤ Release the mouse button over the yellow view controller icon in the dock
to present a list of existing action methods in the view controller. Select the
onDismissKeyboard method.

 3. Click the AddPhotoViewController.swift fi le in the project navigator to open it.

Add the following code to the implementation of the onDismissKeyboard method:

captionField.resignFirstResponder()
descriptionField.resignFirstResponder()

 4. Add a tap gesture recognizer and use it to dismiss the keyboard when the background
area of the view is tapped.

 ➤ Add the following method declaration to the AddPhotoViewController
.swift fi le:

func handleBackgroundTap(sender: UITapGestureRecognizer) {
 captionField.resignFirstResponder()
 descriptionField.resignFirstResponder()
}

 ➤ Add the following code to the viewDidLoad method after the super
.viewDidLoad() line:

let tapRecognizer = UITapGestureRecognizer(target:self,
 action: Selector("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer(tapRecognizer)

 5. Set up placeholder text in the text fi elds when the view is loaded.

Add the following code to the viewDidLoad method after the supe.viewDidLoad()
line:

captionField.placeholder = "Photo caption"
descriptionField.placeholder = "Photo description"

Your viewDidLoad method of AddPhotoViewController.swift should now resemble
the following:

override func viewDidLoad() {
 super.viewDidLoad()

 captionField.placeholder = "Photo caption"
 descriptionField.placeholder = "Photo description"

376 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 376

 let tapRecognizer = UITapGestureRecognizer(target:self ,
 action: Selector("handleBackgroundTap:"))

 tapRecognizer.cancelsTouchesInView = false
 self.view.addGestureRecognizer(tapRecognizer)
}

 6. Add code to allow the user to select a picture from the photo library on the device.
Selecting pictures from the photo library is covered in Lesson 31.

 ➤ Replace the implementation of the onSelectPicture method with the
following:

@IBAction func onSelectPicture(sender: AnyObject) {

 guard let cameraButton = sender as? UIButton else {
 return
 }

 let imagePicker:UIImagePickerController = UIImagePickerController()
 imagePicker.sourceType = UIImagePickerControllerSourceType.PhotoLibrary
 imagePicker.delegate = self

 if UIDevice().userInterfaceIdiom == UIUserInterfaceIdiom.Pad
 {
 imagePicker.modalPresentationStyle =
 UIModalPresentationStyle.Popover

 self.presentViewController(imagePicker,
 animated: true, completion: nil)

 let presentationController:UIPopoverPresentationController =
 imagePicker.popoverPresentationController!

 presentationController.permittedArrowDirections =
 UIPopoverArrowDirection.Left

 presentationController.sourceView = self.view
 presentationController.sourceRect = cameraButton.frame
 }
 else
 {
 self.presentViewController(imagePicker,
 animated: true, completion: nil)
 }
}

 ➤ AddPhotoViewController class from

class AddPhotoViewController: UIViewController {

to

class AddPhotoViewController: UIViewController,
 UIImagePickerControllerDelegate,
 UINavigationControllerDelegate {

Try It ❘ 377

c25.indd 11/04/2015 Page 377

 ➤ Add the following implementation of UIImagePickerDelegate methods in
the AddPhotoViewController.swift fi le:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject]) {
 let image:UIImage =
 info[UIImagePickerControllerOriginalImage] as! UIImage
 imageView.image = image

 picker.dismissViewControllerAnimated(true, completion: nil)
}

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{
 picker.dismissViewControllerAnimated(true, completion: nil)
}

 7. Add code to dismiss the AddPhotoViewController when the Cancel button is tapped.

Replace the implementation of the OnCancel method with the following:

@IBAction func onCancel(sender: AnyObject) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

 8. Add code to save the image to the local fi le system and update CloudKit when the Save
button is tapped.

Replace the implementation of the OnSaveRecord method with the following:

@IBAction func onSaveRecord(sender: AnyObject) {

 // ensure data has been filled.
 guard let
 photoCaption = captionField.text,
 photoDescription = descriptionField.text,
 image = imageView.image else {

 // user has not filled in all fields
 let alert = UIAlertController(title: "Incomplete information!",
 message: "You must select an image, provide a caption and a
 description.",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)

 return
 }

 if photoCaption.characters.count == 0 ||

378 ❘ LESSON 25 INTRODUCTION TO CLOUDKIT

c25.indd 11/04/2015 Page 378

 photoDescription.characters.count == 0 {
 // user has not filled in all fields
 let alert = UIAlertController(title: "Incomplete
information!",
 message: "You must select an image, provide a
caption and a description.",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)

 return
 }

 // generate a unique record identifier
 let uuid:String = NSUUID().UUIDString
 let photoRecordID:CKRecordID = CKRecordID(recordName: uuid)

 // save the image to a file in the documents directory
 let fileName:String = "\(uuid).jpg"
 let fileURL:NSURL =
 Photo.saveImageToDocumentsDirectory(image, fileName)

 // make a CKAsset from the file.
 let photoAsset:CKAsset = CKAsset(fileURL: fileURL)

 // create a photoRecord
 let photoRecord:CKRecord = CKRecord(recordType: "Photo",
 recordID: photoRecordID)

 photoRecord["photoCaption"] = photoCaption
 photoRecord["photoDescription"] = photoDescription
 photoRecord["dateTaken"] = NSDate()
 photoRecord["filename"] = fileName
 photoRecord["photoAsset"] = photoAsset

 // save the record to the public database with CloudKit
 let publicDatabase:CKDatabase =
 CKContainer.defaultContainer().publicCloudDatabase

 publicDatabase.saveRecord(photoRecord)
 { (newRecord, error) -> Void in

 if error != nil {
 let alert = UIAlertController(title: "Error!",
 message: "Error saving to Cloudkit",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",

Try It ❘ 379

c25.indd 11/04/2015 Page 379

 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert,
 animated: true,
 completion: nil)

 return
 }
 self.dismissViewControllerAnimated(true,
 completion: nil)
 }

}

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

 2. When you launch the app for the fi rst time, you will be presented with an empty table
view. Use the Add button to add a photo to your CloudKit database. Once you have
added a photo, wait for a few seconds for the table view to refresh its contents. You
will see a row in the table view for each photo you add to CloudKit.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 25 video online at www.wrox.com/go/swiftios v i d.

http://www.wrox.com/go/swiftios

c26.indd 11/03/2015 Page 381

Introduction to Core Data
The Core Data framework provides solutions to tasks commonly associated with managing
the lifecycle of objects in your application, including object serialization. Prior to Core Data,
programmers relied on SQLite to store their application data; Core Data can be viewed as an
object-oriented wrapper around a SQLite database. It provides you with a convenient mecha-
nism to create, update, and delete entities in the database without having to write a single line
of SQL. In this lesson, you learn to use Core Data to implement simple object persistence in
your applications.

BASIC CONCEPTS

Core Data is based on the Model-View-Controller pattern and essentially fi ts in at the
model stage. It forces you to think of your applications data in terms of objects. Core Data
introduces quite a few new concepts and terminology. These are discussed briefl y in this
section. Figure 26-1 provides an overview of the key classes introduced by Core Data.

Managed Object
A managed object is a representation of the object that you want to save to the data store.
This is conceptually similar to a record in a relational database table and typically contains
fi elds that correspond to properties in the object you want to save. The lifecycle of managed
objects is managed by Core Data; you should not hold strong references in your code to man-
aged objects. Managed objects are subclasses of NSManagedObject and not NSObject.

Managed Object Context
The managed object context is akin to a buffer between your application and the data store.
It contains all your managed objects before they are written to the data store and manages
their lifecycles. Inside this context you can add, delete, or modify managed objects. When you
load data from the underlying data store, managed objects that are created as a result will
live within the managed object context. When you need to read, insert, or delete objects, you

26

382 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 382

will call methods on the managed object context. A managed object context is represented by an
instance of the NSManagedObjectContext class. Managed object contexts should only be accessed
from the thread in which they were created. An application can have multiple managed object con-
texts all of which can be connected to a single persistent store coordinator, and in effect are talking
to the same database.

Managed Object
(Organization 1)

Managed Object
(Employee 1)

Entity Description 1
(Organization)

Managed Object Model

Persistent Store Coordinator

Entity Description 2
(Employee)

Persistent Store
(SQLite Database 1)

Managed Object
(Employee 1)

Managed Object
(Employee 1)

Managed Object
(Organization 2)

Managed Object Context

FIGURE 26-1

Persistent Store Coordinator
The persistent store coordinator is an instance of NSPersistentStoreCoordinator and represents
the connection to the data store. It contains low-level information, such as the name, location, and
type of the data store to be used, as well as handling the task of communicating with the store. Your
application will have one instance of the persistent store coordinator for each database that it needs
to interact with.

The persistent store coordinator is used by the managed object context, and in most cases, you will
not need to deal with it directly. Multiple managed object contexts can share the same instance of
the persistent store coordinator, and Core Data handles the synchronization of data across all these
contexts.

You may have more than one managed object context sharing the persistent store coordinator if you
want to access your managed objects from different threads. In such cases you will have one man-
aged object context per thread.

Basic Concepts ❘ 383

c26.indd 11/03/2015 Page 383

Entity Description
An entity description is an instance of NSEntityDescription and essentially describes a table
within the database. In Core Data terms, database tables are called entities. It is rare for a program-
mer to create entity descriptions programmatically, but it can be done. The most common method to
create entity descriptions is to use the graphical Core Data editor included within XCode.

It is worth nothing that an entity description is similar to the schema for a database table. It does
not contain the actual data; it is used internally by Core Data to create tables in the underlying
database.

Managed Object Model
The managed object model is an instance of NSManagedObjectModel and is a collection of entity
descriptions. When Core Data is used in a project, the project contains a fi le that ends with the
extension .xcdatamodeld. This fi le is used by XCode to build a graphical editor for the managed
object model (see Figure 26-2).

FIGURE 26-2

When your project is compiled into an executable, this fi le is compiled into a .mom fi le, which is the
managed object model in binary format. For most practical purposes, the .xcdatamodel fi le can be
considered to be the managed object model. However, it is important to keep in mind that this fi le
will be compiled to produce the managed object model.

384 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 384

ADDING CORE DATA TO A PROJECT

When you create a new project based on the Master Detail or Single View Application
templates, you have the option to include Core Data in the project in the project options dialog box
(see Figure 26-3).

FIGURE 26-3

However, for other application types, this checkbox does not exist. This section walks you through
what you need to do to add Core Data into a project manually.

To add Core Data to your project, you fi rst need to add a reference to the framework. You can do
this from the Project Settings page in Xcode. Select the project node in the project navigator to
display the settings page. On the settings page, select the appropriate build target and then switch
to the Build Phases tab. Click the + button under the Link Binary With Libraries category. Select
CoreData.framework from the list of available frameworks (see Figure 26-4).

The next step is to create a managed object model for the project. To create an empty model fi le
(into which you will later add entities), right-click the project group in the project navigator and
select New File from the context menu. Select the Data Model template from the Core Data section
and create the new fi le (see Figure 26-5).

To open the model in the Xcode editor, simply click the fi le in the project navigator (the model fi le
has the .xcdatamodeld extension). The new model fi le is initially empty (see Figure 26-6), and as
such is not much use to you in this state.

Adding Core Data to a Project ❘ 385

c26.indd 11/03/2015 Page 385

1

3

2

FIGURE 26-4

FIGURE 26-5

386 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 386

FIGURE 26-6

To persist objects into the underlying data store, you fi rst need to defi ne an entity in the data model
for each object that you want to persist. Defi ning entities is trivial with the Xcode editor: To add a
new entity called ContactData, select Editor ➪ Add Entity and name the new entity appropriately.
You will see the new entity listed under the Entities section of the Xcode editor (see Figure 26-7).

After you have defi ned an entity, you need to add attributes to it. Attributes represent the actual
data fi elds in the entities themselves. Assuming the ContactData entity represents customer contact
information, some of its attributes may be:

 ➤ Customer Name

 ➤ Phone Number

 ➤ Postcode

To add an attribute to the currently selected entity, select Editor ➪ Add Attribute. This adds a new
row to the Attributes section of the Xcode model editor (see Figure 26-8).

Adding Core Data to a Project ❘ 387

c26.indd 11/03/2015 Page 387

FIGURE 26-7

FIGURE 26-8

Type in an appropriate name for the attribute and specify the attribute type. Attribute names must
begin with a lowercase letter and cannot contain whitespace. The attribute type is similar to the
data type of a variable, and determines what type of data the attribute contains. Core Data provides
several data types that can be selected from a drop-down list (see Figure 26-9). The type for each
attribute of the ContactData entity can be String.

388 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 388

FIGURE 26-9

At this stage, you have created a new data model and added an entity to it. Now you need an
actual Swift class that maps to the entity defi ned in the model. To do this, select Editor ➪ Create
NSManagedObject Subclass. This presents a dialog box asking you where to save the file for the
new class. In this dialog box, ensure the language is set to Swift (see Figure 26-10).

FIGURE 26-10

Instantiating Core Data Objects ❘ 389

c26.indd 11/03/2015 Page 389

The name of the class will be the same as the name of the entity. The ContactData class that is
created for you by Xcode is a subclass of NSManagedObject and maps to the entity with the same
name. Its interface is listed here:

import Foundation
import CoreData

class ContactData: NSManagedObject {

 @NSManaged var customerName: String
 @NSManaged var phoneNumber: String
 @NSManaged var postCode: String

}

You need to ensure that the name of the class that corresponds to the entity in the data model is set
up correctly. To do this, select the Entity in the xcdatamodeld fi le and switch to the Data Model
Inspector by selecting View ➪ Utilities ➪ Show Data Model Inspector. Examine the value of the
Class property; it should be set to <your project name>.ContactData.

It is worth mentioning that if you now decided to make changes to the entity in the .xcdatamodel
fi le, the managed object class will not automatically update. You will need to regenerate the man-
aged object class and this process will overwrite the contents of the previous managed object class
header and implementation fi les. If you need to add code to the Core Data–generated class fi les, it is
best to do so in a subclass of the class generated by Core Data.

INSTANTIATING CORE DATA OBJECTS

Before you can read or write model objects to the underlying data store, you will need to instantiate
the managed object model, the managed object context, and the persistent store coordinator.

The managed object model is represented by an instance of the NSManagedObjectModel class, and
you instantiate a single instance for the .xcdatamodeld fi le in your project using the following
snippet.

let modelURL = NSBundle.mainBundle().URLForResource("withCoreData",
 withExtension: "momd")!

var managedObjectModel: NSManagedObjectModel =
 NSManagedObjectModel(contentsOfURL: modelURL)!

Once you have an NSManagedObjectModel instance, you can create an instance of the
NSPersistentStoreCoordinator class, which represents the persistent store coordinator. Recall
that the persistent store coordinator handles the low-level connection with underlying data stores.
Individual databases are referred to as persistent stores.

390 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 390

To create an NSPersistentStoreCoordinator instance, use the following snippet:

var coordinator: NSPersistentStoreCoordinator? =
NSPersistentStoreCoordinator(managedObjectModel:
self.managedObjectModel)

Once you have the store coordinator, you need to give it a data store to manage. You do this by call-
ing the addPersistentStoreWithType(storeType, configuration, URL, options)method
on the store coordinator object. For instance, the following code snippet sets up a SQLite database
as the data store:

let urls =
NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
inDomains: .UserDomainMask)

var applicationDocumentsDirectory:NSURL = urls[urls.count-1] as! NSURL

let url = applicationDocumentsDirectory.URLByAppendingPathComponent("data.sqlite")

do {
 try coordinator.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil, URL: url, options: nil)
 } catch {
 // Report any error.
 }

Finally, with the store coordinator object in place, it is time to instantiate a managed object context.
Recall that a managed object context is like a buffer where you place your managed objects before
writing to (or reading from) the database. The managed object context is represented by an instance
of the NSManagedObjectContext class and can be created as follows:

var managedObjectContext = NSManagedObjectContext(
 concurrencyType: .MainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator = coordinator

WRITING MANAGED OBJECTS

Instantiating a managed object is slightly different from the usual process. With managed objects,
you allow Core Data to instantiate them within a managed object context. Once the object has been
instantiated, you can use it as you would any other object. To instantiate a ContactData object, use
the following code:

let newContact =
NSEntityDescription.insertNewObjectForEntityForName("ContactData",
inManagedObjectContext:managedObjectContext) as! ContactData

Now that you have instantiated a ContactData object, you can set up its attributes just as you
would for any object:

newContact.customerName = "John Smith";
newContact.phoneNumber = "+44 78901 78192";
newContact.postcode = "PB2 7YK";

Try It ❘ 391

c26.indd 11/03/2015 Page 391

To write managed objects to the data store, simply call the save method of the managed object
context. Doing so saves any new objects to the underlying data store (by using the persistent store
coordinator). The save method returns a Boolean value indicating success or failure.

do {
 try managedObjectContext.save()
} catch {
 // handle error.
}

READING MANAGED OBJECTS

Reading objects from a data store with Core Data is quite straightforward. You simply create an
appropriate fetch request and ask the managed object context to execute the request. The managed
object context will then return an array of objects read from the data store.

A fetch request is an instance of the NSFetchRequest class, and is similar to a SELECT statement in
SQL. When creating a fetch request, you need to specify the entity that you want to fetch. The entity
has to be one that exists in the data model. To create a fetch request that retrieves all ContactData
entities from the data store, use the following code:

let fetchRequest = NSFetchRequest(entityName: "ContactData")

To retrieve an array of managed objects from the data store, you need to ask the managed object
context to execute the fetch request, as shown in the following snippet:

do {
 if let fetchResults = try
 appDelegate.manaedObjectContext!.executeFetchRequest(fetchRequest)
 as? [ContactData] {
 // fetchReults is now an array of ContactData objects.
 }
} catch {
 // handle errors here.
}

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
CoreDataTest that can serialize/de-serialize object data to an SQLite database using Core Data.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Add an entity to the data model.

 ➤ Create an NSManagedObject subclass.

 ➤ Create a simple user interface with a storyboard.

392 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 392

 ➤ Initialize Core Data objects.

 ➤ Save managed objects to the database with Core Data.

 ➤ Read managed objects from the database with Core Data.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

 ➤ Ensure the Use Core Data option is selecting when creating the project.

Step-by-Step
 ➤ Create a Single View Application in Xcode called CoreDataTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: CoreDataTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Checked

 4. Save the project onto your hard disk.

 ➤ Edit the data model fi le.

 1. Select the CoreDataTest.xcdatamodeld fi le in the project navigator to open it in the
Xcode editor.

 2. Add an Entity to the data model to represent contact data instances.

Select Editor ➪ Add Entity and name the new entity ContactData.

 3. Add attributes to the ContactData entity.

http://www.wrox.com/go

Try It ❘ 393

c26.indd 11/03/2015 Page 393

 ➤ Select Editor ➪ Add Attribute to create a new attribute. Name it customer-
Name and set its type to String.

 ➤ Add two more String attributes, phoneNumber and postCode, to the entity.

 ➤ Create an NSManagedObject subclass to represent the ContactData entity.

 1. Select Editor ➪ Create NSManagedObject Subclass. You will be aksed to select the
entities for which you wish to create NSManagedObject subclasses. Ensure the check
box beside the ContactData entity is selected.

 2. Accept the default fi le location, but ensure the language is set to Swift. Click Save to
create a new class called ContactData in your project.

 3. Select the Entity in the CoreDataTest.xcdatamodeld fi le and switch to the Data
Model Inspector by selecting View ➪ Utilities ➪ Show Data Model Inspector.

 4. Ensure the value of the Class fi eld is CoreDataTest.ContactData.

 ➤ Create a simple user interface using a storyboard.

 1. Open the Main.storyboard fi le in Interface Builder.

 2. From the Object library, drag and drop fi ve Label objects, three Text Field objects, one
Button object, and one Table View object onto the scene.

 3. Arrange these objects to resemble Figure 26-11.

FIGURE 26-11

 4. Create three outlets in the view controller class corresponding to the three Text Field
objects in the scene. Name the outlets nameField, phoneNumberField, and postcode-
Field, respectively.

394 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 394

 5. Create an action method called onAdd in the view controller class and connect it to the
Touch Up Inside event of the Add New Record To Database button.

 6. Create an outlet in the view controller class corresponding to the Table View object in
the scene. Name the outlet tableOfContacts.

 7. Select the table view in the scene. Use the Assistant Editor to set its content type to
Dynamic Prototypes and the number of prototype cells for the table view to 1.

 8. Select the prototype cell within the table view. Use the Assistant Editor to set the table
view cell style to Basic and the Identifi er to ContactDataTableViewCellIdentifier.

 ➤ Setup constraints in the default scene.

 1. Select the New Contact label.

 ➤ Select Editor ➪ Size To Fit Contents. This will ensure the size of the label is
precisely what is needed to show all its contents.

 ➤ Select Editor ➪ Align ➪ Horizontal Center in Container to center this label
horizontally in the scene.

 ➤ Ensure the label is selected and bring up the Pin Constraints dialog box.

 ➤ Ensure the Constrain to Margins option is unchecked.

 ➤ Pin the distance from the top of the label to the view to 20.

 ➤ Pin the width of the label.

 ➤ Pin the height of the label.

 2. Select the Name label and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 31

 ➤ Top: 37

 ➤ Width: 46

 ➤ Height: 21

 3. Select the Phone number label and use the Pin Constraints dialog box to set up the fol-
lowing constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 31

 ➤ Top: 18

 ➤ Width: 113

 ➤ Height: 21

 4. Select the Postcode label and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 31

 ➤ Top: 18

Try It ❘ 395

c26.indd 11/03/2015 Page 395

 ➤ Width: 79

 ➤ Height: 21

 5. Select the Name text fi eld and use the Pin Constraints dialog box to set up the follow-
ing constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 114

 ➤ Top: 12

 ➤ Right: 26

 ➤ Height: 30

 6. Select the Phone number text fi eld and use the Pin Constraints dialog box to set up the
following constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 47

 ➤ Top: 10

 ➤ Right: 26

 ➤ Height: 30

 7. Select the Postcode text fi eld and use the Pin Constraints dialog box to set up the fol-
lowing constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 81

 ➤ Top: 8

 ➤ Right: 26

 ➤ Height: 30

 8. Select the Add New Record To Database button and use the Pin Constraints dialog box
to set up the following constraints while ensuring the Constrain to Margins option is
unchecked.

 ➤ Top: 13

 ➤ Right: 26

 ➤ Width: 236

 ➤ Height: 37

 9. Select the Existing Contacts label.

 ➤ Select Editor ➪ Size To Fit Contents. This will ensure the size of the label is
precisely what is needed to show all its contents.

 ➤ Select Editor ➪ Align ➪ Horizontal Center in Container to center this label
horizontally in the scene.

 ➤ Ensure the label is selected and bring up the Pin Constraints dialog box.

 ➤ Ensure the Constrain to Margins option is unchecked.

396 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 396

 ➤ Pin the distance from the top of the label to the view to 18.

 ➤ Pin the width of the label.

 ➤ Pin the height of the label.

 10. Select the table view and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

 ➤ Left: 31

 ➤ Top: 13

 ➤ Right: 26

 ➤ Bottom: 15

 11. Update the frames to match the constraints you have set.

 ➤ Click on the View controller item in the dock above the storyboard scene.
This is the fi rst of the three icons located directly above the selected story-
board scene.

 ➤ Select Editor ➪ Resolve Auto Layout Issues ➪ Update Frames.

 ➤ Create a managed object in the data store when the Add New Record To Database button is
tapped.

 1. Import the CoreData header fi les at the top of the ViewController.swift fi le by add-
ing this line:

import CoreData

 2. Update the implementation of the onAdd method to the following:

@IBAction func onAdd(sender: AnyObject) {

 nameField.resignFirstResponder()
 phoneNumberField.resignFirstResponder()
 postCodeField.resignFirstResponder()

 let appDelegate = UIApplication.sharedApplication().delegate
 as! AppDelegate

 let newCustomerName:String! = nameField.text
 let newCustomerPhoneNumber:String! = phoneNumberField.text
 let newCustomerPostcode:String! = postCodeField.text

 if newCustomerName.isEmpty &&
 newCustomerPhoneNumber.isEmpty &&
 newCustomerPostcode.isEmpty
 {
 return
 }

 let newItem =

Try It ❘ 397

c26.indd 11/03/2015 Page 397

 NSEntityDescription.insertNewObjectForEntityForName(
 "ContactData",
 inManagedObjectContext: appDelegate.managedObjectContext)
 as! ContactData

 newItem.customerName = newCustomerName
 newItem.phoneNumber = newCustomerPhoneNumber
 newItem.postCode = newCustomerPostcode

 var error:NSError? = nil
 appDelegate.managedObjectContext!.save(&error)

 fetchExistingContacts()
 tableOfContacts.reloadData()

 }

 ➤ Read managed objects from the database and display them in a table view.

 1. Ensure the ViewController class implements the UITableViewDataSource and
UITableViewDelegate protocols by changing its declaration to the following:

class ViewController: UIViewController,
 UITableViewDataSource,
 UITableViewDelegate

 2. Add the following variable declaration to the ViewController.swift fi le:

var listOfContacts:Array<ContactData>? = nil

 3. Create a new method in the ViewController.swift fi le called fetchExisting
ContactData as follows:

func fetchExistingContacts()
 {
 let fetchRequest = NSFetchRequest(entityName: "ContactData")

 let appDelegate = UIApplication.sharedApplication().delegate
 as! AppDelegate

 do {
 self.listOfContacts = try
 appDelegate.managedObjectContext.executeFetchRequest
 (fetchRequest) as? [ContactData]
 } catch {
 // handle errors here.
 }
 }

 4. Add the following lines of code to the end of the viewDidLoad method. These lines
set up the datasource and delegate properties of the table view object and call the
fetchExistingContactData method.

 fetchExistingContacts()
 tableOfContacts.dataSource = self
 tableOfContacts.delegate = self

398 ❘ LESSON 26 INTRODUCTION TO CORE DATA

c26.indd 11/03/2015 Page 398

 5. Implement UITableViewDataSource and UITableViewDelegate methods in the
ViewController.swift fi le as follows:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int)
 -> Int
 {
 return listOfContacts!.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell
 {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ContactDataTableViewCellIdentifier",
 forIndexPath: indexPath)

 var someContactData:ContactData! =
 listOfContacts![indexPath.row]

 cell.textLabel?.text = someContactData.customerName

 return cell
 }

 ➤ Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 26
video online at www.wrox.com/go / swiftiosvid.

http://www.wrox.com/go

c27.indd 11/04/2015 Page 399

Consuming RESTful JSON Web
Services

A web service is essentially a web application that runs on a web server and provides a list of
methods that allow users to access server-side resources. These resources can be web pages,
business data, images, or video fi les. You access the web service as you would any other web-
site using a URL.

Web services themselves can be written using one of several technologies including Node.js,
PHP, ASP.NET, and ColdFusion. Creating a web service is outside the scope of this book.

The examples in this lesson use a simple web service called MathService. Table 27-1 lists the
operations supported by the web service, the web service end point, and a brief description
of each.

TABLE 27-1: MathService Methods

METHOD NAME ENDPOINT URL SUPPORTED

HTTP

OPERATIONS

DESCRIPTION

CircleArea www.asmtechnol-

ogy.com/MathService/

CircleArea/?radius=X

GET Input: radius

Output: Returns
the area of a
circle with speci-
fi ed radius.

RectangleArea www.asmtechnology.com/

MathService/RectangleArea/?

length=X&breadth=Y

GET Input: length,
breadth

Output: Returns
the area of a
rectangle with
specifi ed length
and breadth.

27

continues

http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnology.com

400 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 400

METHOD NAME ENDPOINT URL SUPPORTED

HTTP

OPERATIONS

DESCRIPTION

SquareArea www.asmtechnol-

ogy.com/MathService/

SquareArea/?length=X

GET Input: length

Output: Returns
the area of a
square whose
sides are of
specifi ed length.

TriangleArea www.asmtechnol-

ogy.com/MathService/

TriangleArea?base=X&height=Y

GET Input: base,
height

Output: Returns
the area of a tri-
angle with speci-
fi ed base length
and height.

TYPES OF WEB SERVICES

There are two kinds of web services:

 ➤ RESTful

 ➤ SOAP

RESTful Web Services
REST is an acronym for Representational State Transfer. REST is an architecture style, primar-
ily used to build lightweight, scalable web services. Each server-side resource that is exposed by a
RESTful web service will have at least one URL. It is quite common for RESTful web services to
return responses in either XML or JSON formats with the latter gaining popularity in recent years.

A RESTful service URL resembles a directory-like structure and identifi es a resource or collection
of resources as objects. A key differentiating point between web services that are RESTful and those
that aren’t is how resources are accessed.

When a resource is accessed through a RESTful web service, the actual operation that will be
performed on the server is determined by the HTTP verb specifi ed when making the request. The
response from the server includes a status code that can be inspected to determine success or failure.
A list of HTTP status codes can be found at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html.

TABLE 27-1 (continued)

http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

JSON and NSJSONSerialization ❘ 401

c27.indd 11/04/2015 Page 401

The most common HTTP verbs are GET, POST, and DELETE. The same URL can be called with
different HTTP verbs to perform different operations. This is different from non-RESTful web
services where one would have a different URL for each operation that is to be performed on the
server.

For instance, if you had a database of employees on a server that you wished to expose publicly with
a RESTful web service, the URL to identify an employee (with unique identifi er of 1790716) would
resemble the following:

http://www.example.com/Employee/1790716

If you were to send an HTTP GET request to this URL, the service would typically return some
information about that particular employee. If, on the other hand, you were to send an HTTP
DELETE request to the same URL, the service could potentially delete the employee record.

Needless to say, web service designers carefully decide which operations will be supported on a web
service.

SOAP Web Services
SOAP is an acronym for Simple Object Access Protocol. It is an XML-based message format, which
allows different applications to exchange objects with each other. SOAP web services often con-
tain a machine-readable description of the functions exposed by the web service written in WSDL
(Web Services Description Language). SOAP web services are generally used when communicating
between enterprise applications. SOAP requests and responses are larger than equivalent RESTful
versions and are therefore not suited to processing on mobile devices.

JSON AND NSJSONSERIALIZATION

JSON is an acronym for JavaScript Object Notation and provides constructs that allow you to con-
veniently serialize objects to UTF-8 text. It is used primarily to communicate between servers and
clients as an alternative to XML.

JSON is preferred over XML because JSON data takes fewer bytes to represent the same informa-
tion. For example, the following snippet shows how a collection of Organization objects would
be encoded in JSON and XML. As you can see, the JSON representation is more compact, which
translates to fewer bytes being sent over the network.

{"organizations":[
 {«name»:"ACME Corportation", "address":"112, Fleming Drive, LE3 4F6, UK"},
 {«name»:"Bright Ideas LLC", "address":"26, Syon Lane, London TW3 3P2"},
 {«name»:"Chromatic Inks Ltd", "address":"178, Lexuar Drive, Langley, SL6 3U0"}
]}

<organizations>
 <organization>
 <name>ACME Corportation</name>

http://www.example.com/Employee/1790716

402 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 402

<address>112, Fleming Drive, LE3 4F6, UK</address>
 </organization>
 <organization>
 <name>Bright Ideas LLC</name>
<address>26, Syon Lane, London TW3 3P2</address>
 </organization>
 <organization>
 <name>Chromatic Inks Ltd</name>
<address>178, Lexuar Drive, Langley, SL6 3U0</address>
 </organization>
</organizations>

NSJSONSerialization is a class that is part of the Foundation framework and can be used to con-
vert JSON objects into Foundation objects and vice versa. NSJSONSerialization requires that the
top level object is an array or dictionary and that all objects in the JSON are either strings, numbers,
arrays, or dictionaries. Table 27 -2 lists the mapping between Foundation types and JSON types

TABLE 27-2: Mapping Foundation to JSON Types

JSON TYPE FOUNDATION TYPE

Array NSArray

Dictionary NSDictionary

String NSString

Number NSNumber

Assuming you have an NSData instance that contains JSON objects, you can convert them to
Foundation objects using the JSONObjectWithData class method:

class func JSONObjectWithData(_data: NSData, options opt: NSJSONReadingOptions)
 throws -> AnyObject

The fi rst parameter to this method is an NSData instance that contains JSON objects, encoded using
either UTF-8, or UTF-16. The second parameter is used to specify how Foundation objects are gen-
erated from JSON objects, and can be a combination of the following:

 ➤ MutableContainers: Creates NSMutableArray and NSMutableDictionary instead of
NSArray and NSDictionary.

 ➤ MutableLeaves: Specifi es that leaf nodes that contain string data will convert to
NSMutableString instead of NSString.

 ➤ AllowFragments: Specifi es that the parser should allow top-level objects that are not arrays
or dictionaries.

This method returns a non-optional result and will throw an error if it was unable to parse the
JSON input. The following snippet shows how you would use this method:

do {
 let JSONObject = try NSJSONSerialization.JSONObjectWithData(data!,

NSURLSession and Application Transport Security ❘ 403

c27.indd 11/04/2015 Page 403

 options: .MutableContainers)

 // use JSONObject
}
catch {
 // handle exceptions.
}

NSURLSESSION AND APPLICATION TRANSPORT SECURITY

NSURLSession refers to a class from a set of related classes that allow you to download con-
tent via HTTP. It was introduced in iOS7 and supersedes the NSURLConnection API. The
new NSURLSession API is asynchronous by design and provides several improvements over
NSURLConnection including the following:

 ➤ Support for HTTP2.0 out of the box

 ➤ Support for per-session cache, cookies, and auth credentials

 ➤ Support for background downloads

NOTE NSURLConnection is deprecated on iOS 9 and is not available for
WatchOS. If you are developing a WatchOS application and need access to net-
working APIs then you must use NSURLSession.

With the NSURLSession API, your app can create multiple sessions, with each session coordinating a
group of data transfer tasks. A session is analogous to a tab in a browser window, and a data trans-
fer task to a request to fetch a single resource such as an image. Within each session you could hit
the server multiple times for different resources. Each session has its own cache and HTTP security
credentials.

Some of the key classes in the NSURLSession API are:

 ➤ NSURLSession: Represents a session object

 ➤ NSURLSessionConfiguration: Represents a confi guration object used while creating a ses-
sion object

 ➤ NSURLSessionDataTask: Represents a task for retrieving the contents of a URL as an
NSData object

 ➤ NSURLSessionDownloadTask: Represents a task for retrieving the contents of a URL as a
temporary fi le on the disk

 ➤ NSURLSessionUploadTask: A task for uploading an NSData object to a fi le

 ➤ NSURLSessionStreamTask: A task that lets you communicate using raw TCP/IP sockets.
This is useful if you want to use a protocol other than HTTP/HTTPS such as IRC.

404 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 404

The API also provides several protocols that defi ne delegate methods you can implement in your
code for better control over session and task behavior:

 ➤ NSSessionDelegate: Contains delegate methods to handle session level events

 ➤ NSURLSessionTaskDelegate: Contains delegate methods to handle events common to all
task types

 ➤ NSURLSessionDataDelegate: Contains delegate methods to handle events specifi c to data
and upload tasks

 ➤ NSURLSessionDownloadDelegate: Contains delegate methods to handle events specifi c to
download tasks

 ➤ NSURLSessionStreamDelegate: Contains delegate methods to handle events specifi c to
stream tasks

Creating an NSURLSession
To create an NSURLSession instance, you must fi rst create a session confi guration; use the default-
SessionConfiguration() method of the NSURLSessionClass:

let configuration = NSURLSessionConfiguration.defaultSessionConfiguration()

Once you have a session confi guration, you can fi ne-tune it by editing some of its attributes, includ-
ing the following:

 ➤ allowsCellularAccess: A value that indicates if the request should proceed over cellular
networks

 ➤ timeoutIntervalForRequests: A value that will cause a timeout if no data is transmitted
after this interval has elapsed

 ➤ HTTPAdditionalHeaders: Additional headers for outgoing HTTP requests

 ➤ HTTPMaximumConnectionsPerHost: Limits the maximum number of simultaneous connec-
tions to a server

NOTE NSURLSession also provides two more class methods to create sessions:

 ➤ ephemeralSessionConfiguration()returns a confi guration with no per-
sistent store for cookies, caching, or user credentials. This could be ideal to
create a private browsing mode like feature in an app.

 ➤ backgroundSessionConfigurationWithIdentifier(identifier:)
returns a confi guration that can be used to create a background session. A
background session is one that can upload and download data when the app
is in the suspended or inactive modes.

NSURLSession and Application Transport Security ❘ 405

c27.indd 11/04/2015 Page 405

The following code snippet shows how to set a custom HTTP request header to support HTTP basic
authentication in your code:

let configuration = NSURLSessionConfiguration.defaultSessionConfiguration()

let userPasswordString = "username@yourcompany.com:password"

let userPasswordData = userPasswordString.dataUsingEncoding(NSUTF8StringEncoding)

let base64EncodedCredential =
userPasswordData!.base64EncodedStringWithOptions(
NSDataBase64EncodingOptions.Encoding64CharacterLineLength)

let authString = "Basic \(base64EncodedCredential)"
configuration.HTTPAdditionalHeaders = ["Authorization" : authString]

To learn more about how HTTP basic authentication works, refer to the section “Basic
Authentication Scheme” in the HTTP reference documentation at http://www.w3.org/Protocols/
HTTP/1.0/spec.html#BasicAA.

Once you have a session confi guration, you can create a session using the following:

let session: NSURLSession! = NSURLSession(configuration: configuration,
 delegate: nil, delegateQueue: nil)

The delegate is optional, and is an object that implements the NSURLSession protocol. The fi nal
parameter, delegateQueue, is a queue for scheduling the delegate calls and completion handlers. If
nil, the session creates a serial operation queue. It is important to note that your delegate methods
(or completion handler) will be called on this queue. If you intend to update the user interface within
these callbacks, then you must make sure that the code that updates the UI is called on the main
queue.

One way to do this is by using NSOperationQueue.mainQueue() as the fi nal parameter while creat-
ing the NSURLSesssion:

let session: NSURLSession! = NSURLSession(configuration: configuration,
 delegate: nil,
 delegateQueue: NSOperationQueue.mainQueue())

Creating a Data Task
If you wanted to call a method on a web service, chances are that you will end up using a data task.
To create a data task, you can use any of the following methods of the session object.

dataTaskWithRequest(urlRequest)

dataTaskWithRequest(urlRequest:completionHandler:)

mailto:username@yourcompany.com:password
http://www.w3.org/Protocols
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA

406 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 406

There are two versions of this method. Use the fi rst one if you want to supply a delegate object;
the second one takes a block that is called when the request completes. The following code snippet
shows how you could create a data task with a completion handler:

let task : NSURLSessionDataTask! = session.dataTaskWithRequest(request,
 completionHandler: {(data, response, error) in

});

The fi rst parameter to both these methods is an NSURLRequest instance. An NSURLRequest instance
allows you to specify not only the URL but also additional information such as the request type
(GET/POST). NSURLRequest defaults to creating a GET request, but Apple provides a mutable ver-
sion called NSMutableURLRequest that allows you to set the content type. In general, it is common
practice to use NSMutableURLRequest in your code as you always have the option of changing the
request type when needed.

The following code snippet shows how you could create an NSMutableURLRequest from a URL and
set the request type to POST:

let serviceURL:String =
"http://www.asmtechnology.com/MathService/CircleArea/?radius=\(radius)"

let url:NSURL! = NSURL(string: serviceURL)
let request: NSMutableURLRequest = NSMutableURLRequest(URL: url)
request.HTTPMethod = "POST"

NOTE To fi nd out how to create, download, and upload tasks, refer to the
NSURLSession programming guide at:

https://developer.apple.com/library/ios/documentation/Foundation/
Reference/NSURLSession_class/#//apple_ref/occ/instm/NSURLSession/
dataTaskWithURL:completionHandler

Once you have created an appropriate task, you need to call its resume() method to begin it:

task.resume()

Application Transport Security
Application Transport Security (ATS) is a new feature in iOS 9 that helps prevent accidental disclo-
sure of data while making network requests by encouraging your application to make secure con-
nections to web services.

By default, ATS prevents calls to HTTP URLs. In fact, even if you provided an http:// prefi x to your
URL, The NSURLSession API will end up making an HTTPS call. This is fi ne if your server sup-
ports HTTPS, but if it doesn’t, then you will need to confi gure an exception for one or more URLs
in your application’s Info.plist fi le.

https://developer.apple.com/library/ios/documentation/Foundation
http://prefi
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSession_class/#//apple_ref/occ/instm/NSURLSession/dataTaskWithURL:completionHandler

NSURLSession and Application Transport Security ❘ 407

c27.indd 11/04/2015 Page 407

To confi gure ATS, you need to add a new key to your Info.plist fi le called
NSAppTransportSecurity and set its type to be a Dictionary.

To disable ATS completely (not recommended), thereby allowing all http:// URL requests to pass
through, add a new Boolean value to this dictionary called NSAllowsArbitraryLoads and set its
value to YES (Figure 27-1).

FIGURE: 27-1

If, on the other hand, you want ATS to allow only specifi c insecure connections, you need to use a
different key called NSExceptionDomains (which is also a dictionary). Within this dictionary, you
can confi gure exceptions on a domain basis.

For each domain you want to confi gure, you need to provide a child dictionary within the
NSExceptionDomains dictionary. This domain-specifi c confi guration dictionary can have any of the
following keys:

 ➤ NSIncludesSubdomains

 ➤ NSExceptionAllowsInsecureHTTPLoads

 ➤ NSExceptionRequiresForwardSecrecy

 ➤ NSExceptionMinimumTLSVersion

For instance, if you wanted to allow insecure http requests for all URLs in the asmtechnology.com
domain, your Info.plist fi le would resemble Figure 27-2.

http://URL

408 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 408

FIGURE 27-2

In the next session you will see how to put all of this together to call a web service.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called RESTClient, which uses a RESTful web service (described in Table 27-1) to calculate the area
of a circle.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add a UIButton to the default scene and an appropriate action method to the view control-
ler class.

 ➤ Add a UITextField to the default scene and an appropriate outlet to the view controller
class.

 ➤ Add a scrolling UITextView to the default scene and an appropriate outlet to the view con-
troller class.

 ➤ Dismiss the text fi eld when the Return button is pressed on the keyboard by implementing a
UITextFieldDelegate method.

Try It ❘ 409

c27.indd 11/04/2015 Page 409

 ➤ Send a GET request to a RESTful web service when the UIButton is pressed.

 ➤ Parse and display the response in the UITextView.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ The math web service implements a web method called CircleArea that requires a single

parameter called radius. The service endpoint is http://www.asmtechnology.com/
MathService/CircleArea.

 ➤ When creating a new project, you can use your website’s domain name as the Company
Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called RESTClient.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: RESTClient

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add UI elements to the default scene.

http://www.wrox.com/go
http://www.asmtechnology.com
http://www.asmtechnology.com/MathService/CircleArea

410 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 410

 1. Open the Main.storyboard fi le in the Interface Editor

 2. From the Object library, drag and drop a button, text fi eld, and text view objects onto
the scene and place to resemble Figure 27-3.

FIGURE 27-3

 3. Select the Text fi eld and use the Attribute inspector, to change the value of the
Placeholder attribute to Enter Radius.

 4. Select the Button and use the Attribute inspector to change its background color to a
shade of gray and its caption to “Compute Area of Circle”

 5. Select the Text view and use the Attribute inspector to change its background color to a
lighter shade of gray than the button.

 6. With the Text view still selected, uncheck the Editable attribute (see Figure 27-4). This
will ensure that the user cannot change the contents of the text view.

 7. Create layout constraints for each of the elements on the storyboard scene using the
information in Table 27-3. When creating layout constraints using the pin constraints
popup, ensure the Constrain to margins option is unchecked and Update Frames is set
to Items of New Constraints.

Try It ❘ 411

c27.indd 11/04/2015 Page 411

FIGURE 27-4

TABLE 27-3: Layout Constraints

ELEMENT LEFT TOP RIGHT BOTTOM WIDTH HEIGHT

Text Field 16 20 16 30

Button 56 16 176 38

Text View 16 8 16 20

 8. Use the assistant editor to create an outlet for the Text fi eld in the view controller class.
Name the outlet radiusField.

 9. Set up the delegate property for the Text fi eld.

 ➤ Ensure the Assistant Editor is visible and the ViewController.swift fi le is
loaded in it.

412 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 412

 ➤ Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “View Controller”
in the document outline.

 10. Create an action method in the ViewController class and associate it with the Did
End On Exit event of the text fi eld.

 ➤ Right-click the UITextField object on the scene to display its context menu,
and drag from the circle beside the Did End On Exit item to an empty line in
the ViewController.swift fi le.

 ➤ Name the new Action onDismissKeyboard.

 11. Use the assistant editor to create an outlet for the Text view in the view controller class.
Name the outlet serverResponseView.

 12. Create an action in the view controller class and connect it with the Touch Up Inside
event of the button.

 ➤ Ensure the Assistant editor is visible and the ViewController.swift fi le is
loaded in it.

 ➤ Right-click the button in the scene to display its context menu, and drag
from the circle beside the Touch Up Inside item to an empty line in the
ViewController.swift fi le.

 ➤ Name the new action onCalculateArea.

 ➤ Ensure the ViewController class implements the UITextFieldDelegate protocol.

Modify the declaration of the ViewController class from:

class ViewController: UIViewController

to

class ViewController: UIViewController, UITextFieldDelegate

 ➤ Modify code in the view controller class.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Add the following line to the implementation of the onDismissKeyboard method:

radiusField.resignFirstResponder()

 ➤ Add a tap gesture recognizer and use it to dismiss the keyboard when the background area of
the view is tapped.

 1. Add the following method to the ViewController.swift fi le:

func handleBackgroundTap(sender: UITapGestureRecognizer) {
 radiusField.resignFirstResponder()
}

 2. Add the following code to the viewDidLoad method of the view controller class, after
the super.viewDidLoad() line:

let tapRecognizer = UITapGestureRecognizer(target:self ,
action: Selector("handleBackgroundTap:"))

Try It ❘ 413

c27.indd 11/04/2015 Page 413

tapRecognizer.cancelsTouchesInView = false

self.view.addGestureRecognizer(tapRecognizer)

 3. Add code to clear the initial contents of the text view when the view is loaded.

 ➤ Add the following line to the end of the viewDidLoad method:

serverResponseView.text = ""

 ➤ The viewDidLoad method in your ViewController.swift fi le should now
resemble the following:

override func viewDidLoad() {

 super.viewDidLoad()

 let tapRecognizer = UITapGestureRecognizer(target:self ,
 action: Selector("handleBackgroundTap:"))

 tapRecognizer.cancelsTouchesInView = false

 self.view.addGestureRecognizer(tapRecognizer)

 serverResponseView.text = ""
}

 4. Replace the implementation of the onCalculateArea method with the following:

@IBAction func onCalculateArea(sender: AnyObject) {

 let radius:String = radiusField.text!
 if radius.isEmpty
 {
 return;
 }

 let serviceURL:String =
"http://www.asmtechnology.com/MathService/CircleArea/?radius=\(radius)"
 let url:NSURL! = NSURL(string: serviceURL)
 let request: NSMutableURLRequest = NSMutableURLRequest(URL: url)

 let configuration =
NSURLSessionConfiguration.defaultSessionConfiguration()
 configuration.timeoutIntervalForRequest = 15.0

 let session: NSURLSession! =
 NSURLSession(configuration: configuration,
 delegate: nil,
 delegateQueue: NSOperationQueue.mainQueue())

 let task : NSURLSessionDataTask! =
 session.dataTaskWithRequest(request,
 completionHandler: {(data, response, error) in

 if data != nil

414 ❘ LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

c27.indd 11/04/2015 Page 414

 {
 let decodedString = NSString(data: data!,
 encoding: NSUTF8StringEncoding)
 self.serverResponseView.text = decodedString as! String
 }

 });

 task.resume()
}

 ➤ Confi gure Application Transport Security to allow an insecure HTTP connection for the
asmtechnology.com domain.

 1. Expand the RESTClient group in the project navigator and click on the Info.plist
fi le to open it in the property list editor.

 2. Add a new key to the Info.plist fi le called NSAppTransportSecurity and set its
type as Dictionary.

 3. Expand the NSAppTransportSecurity key and add a new child key called
NSExceptionDomains, also of type Dictionary.

 4. Expand the NSExceptionDomains key and add a child key called asmtechnology.com,
also of type Dictionary.

 5. Expand the asmtechnology.com key and add two Boolean keys, both set to YES, called
NSIncludesSubdomains and NSExceptionAllowsInsecureHTTPLoads.

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

 2. Ensure your computer has an active Internet connection.

 3. Enter a numeric value for the radius fi eld and tap the Compute Area of Circle button.

REFERENCE To see some of the examples from this lesson, watch the Lesson 27
video online at www.wrox.com/go/swiftiosvi d .

http://www.wrox.com/go/swiftiosvi

c28.indd 12/01/2015 Page 415

 SECTION IV
Beyond the Basics

 ▸ LESSON 28: Social Media Integration

 ▸ LESSON 29: Where Am I? Introducing Core Location

 ▸ LESSON 30: Introduction to Map Kit

 ▸ LESSON 31: Using the Camera and Photo Library

 ▸ LESSON 32: Introduction to User Interface Testing

 ▸ LESSON 33: Introduction to Test Driven Development

c28.indd 12/01/2015 Page 417

Social Media Integration
Social media integration is not something that most apps can ignore. These days, social media
integration in apps is the norm rather than the exception. Fortunately for you, Apple has
integrated support for Facebook Twitter, Sina Webo, and Tecent Webo into iOS 9. Posting to
social media services has never been easier!

In this lesson, you learn to integrate the Social framework in your iOS apps and allow the
user to share a post on Facebook and Twitter from your apps. You can build more complex
clients that can access the entire Facebook/Twitter API, but this topic is beyond the scope of
this book.

The Social framework is not included in any of the standard iOS project templates that you
use when creating a new project. You will need to add a reference to this framework manually.
You can do this from the Project Settings page in Xcode. Select the project node in the project
navigator to display the settings page. On the settings page, select the build target and switch
to the Build Phases tab. Click the plus (+) button under the Link Binary With Libraries cat-
egory and select Social.framework from the list of available frameworks (see Figure 28-1).

28

418 ❘ LESSON 28 SOCIAL MEDIA INTEGRATION

c28.indd 12/01/2015 Page 418

1

2

3

FIGURE 28-1

THE SHARE SHEET

The Social framework provides a share sheet that you should use in your apps if all you want is a
simple “share” feature. The share sheet is an instance of the SLComposeViewController class and
provides a convenient user interface to allow the user to type a message, attach an image, and add
the current location (see Figure 28-2).

The keyboard is displayed automatically when the share sheet appears and disappears automatically
when the user presses the Send or Cancel buttons. Creating and displaying the share sheet confi g-
ured to one of the supported services is a simple matter of instantiating it and presenting it modally:

let facebookMessageComposer:SLComposeViewController =
SLComposeViewController(forServiceType: SLServiceTypeFacebook)

self.presentViewController(facebookMessageComposer,
animated: true, completion: nil)

When creating an SLComposeViewController instance, you must provide a single argument
that indicates what social media service you want to use. This argument can have one of four
possible values:

 ➤ SLServiceTypeTwitter

 ➤ SLServiceTypeFacebook

The Share Sheet ❘ 419

c28.indd 12/01/2015 Page 419

 ➤ SLServiceTypeSinaWeibo

 ➤ SLServiceTypeTencentWeibo

FIGURE 28-2

The options displayed in the share sheet will vary depending on the social media service that is con-
fi gured. Typically, you will want to do this in an action method that is triggered when your user taps
on a button in the user interface. Before you show the share sheet for a particular service, you must
check to see if the user has created an appropriate account on the system (see Figure 28-3).

For instance, if you detect that the user has not created a Twitter account on the system, you may
want to hide the Tweet button from your user interface entirely, or display an alert when the user
taps it.

To check the availability of a service, use the isAvailableForServiceType(serviceType:
String!) class method of the SLComposeViewController class as follows:

if SLComposeViewController.isAvailableForServiceType(SLServiceTypeFacebook)
{
 // service is available
}
else
{
 // service is not available, perhaps show an alert to the user?
}

You can set up the initial text displayed in the tweet sheet prior to displaying it by calling the
setInitialText() method on the SLComposeViewController instance:

func setInitialText(text: String!) -> Bool

420 ❘ LESSON 28 SOCIAL MEDIA INTEGRATION

c28.indd 12/01/2015 Page 420

FIGURE 28-3

This method takes one String argument that contains the text you want to set and returns a
Boolean value that contains the result of the operation. Common reasons why the operation may not
be successful are:

 ➤ The length of the message is longer than the maximum character limit set by the service.

 ➤ You are trying to set the text in the share sheet after it has been displayed.

 ➤ The social media service does not allow you to pre-populate content in a share sheet because
of legal reasons.

You can attach an image to the share sheet by calling the addImage() method on the
SLComposeViewController instance:

func addImage(image: UIImage!) -> Bool

This method has one argument that is a UIImage object and returns a Boolean result. The image is
automatically resized and uploaded to the appropriate social media service by the framework. You
must examine the return value to determine if the operation was successful.

To add a URL to the share sheet, use the addURL() method:

func addURL(url: NSURL!) -> Bool

As with the setInitialText() and addImage() methods, the addURL() method returns a Boolean
value indicating success or failure. It is important to note that images and URLs take up part of the
character limit imposed by the social media service.

Try It ❘ 421

c28.indd 12/01/2015 Page 421

You can provide an optional block completion handler that will be executed when the operation has
completed. Assuming messageComposer is an instance of an SLComposeViewController confi g-
ured for Twitter, you can do this as follows:

messageComposer.completionHandler = (result:SLComposeViewControllerResult) in
 // place your code here
}

Within the block, you can examine the value of the result parameter to get more information on
the result of the operation. The value of the result parameter depends on which button was pressed
by the user, and can be either of the following:

 ➤ Cancelled

 ➤ Done

You will need to dismiss the tweet sheet by calling the dismissModalViewControllerAnimated()
method of the presenting view controller. If you do not provide a block completion handler, the
tweet sheet is dismissed automatically regardless of the result of the operation.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called SocialTest that displays Facebook and Twitter share sheets with pre-populated contents.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add two UIButton instances to the default scene and appropriate action methods to the view
controller class.

 ➤ Add the Social framework to the build target.

 ➤ Add code to display pre-populated share sheets.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ To use a share sheet you must add a reference to the Social framework.

 ➤ When creating a new project, you can use your website’s domain name as the Company
Identifi er in the Project Options dialog box.

http://www.wrox.com/go

422 ❘ LESSON 28 SOCIAL MEDIA INTEGRATION

c28.indd 12/01/2015 Page 422

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called ShareTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: ShareTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add image resources to your project.

 1. Ensure the project navigator is visible. To show it, select View ➪ Navigators ➪ Show
Project Navigator.

 2. Open the Assets.xcassets fi le by clicking on it in the project navigator.

 3. Navigate to the Images folder in this chapter’s resources from the website.

 4. Create a new Image set by selecting Editor ➪ New Image Set, and name this new image
set Petal.

 5. Drag the Petal_1x.jpg, Petal_2x.jpg, and Petal_3x.jpg images from this chap-
ter’s resources into the appropriate placeholders in the image set.

 ➤ Add UI elements to the default scene.

 1. Open the Main.storyboard fi le in the Interface Editor.

 2. From the Object library, drag and drop two buttons onto the scene and place to
resemble Figure 28-4.

 3. Select the fi rst button and use the Attribute inspector to change its caption to Share on
Facebook and the background color to a shade of gray.

Try It ❘ 423

c28.indd 12/01/2015 Page 423

 4. Select the second button and use the Attribute inspector to change its caption to Share
on Twitter and the background color to a shade of gray.

FIGURE 28-4

 5. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 28-1. When creating layout constraints using the constraints editor
popover, ensure the Constrain to margins option is unchecked and Update Frames is set
to Items of New Constraints.

TABLE 28-1: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT

Facebook button 20 20 20 40

Twitter button 20 20 20 40

 6. Create an action in the view controller class and connect it with the Touch Up Inside
event of the Share on Facebook button.

 ➤ Ensure the Assistant editor is visible and the ViewController.swift fi le is
loaded in it.

 ➤ Right-click the Share on Facebook button in the scene to display its context
menu, and drag from the circle beside the Touch Up Inside item to an empty
line in the ViewController.swift fi le.

 ➤ Name the new action onFacebookShare.

424 ❘ LESSON 28 SOCIAL MEDIA INTEGRATION

c28.indd 12/01/2015 Page 424

 7. Create an action in the view controller class and connect it with the Touch Up Inside
event of the Share on Twitter button.

 ➤ Ensure the Assistant editor is visible and the ViewController.swift fi le is
loaded in it.

 ➤ Right-click the Share on Twitter button in the scene to display its context
menu, and drag from the circle beside the Touch Up Inside item to an empty
line in the ViewController.swift fi le.

 ➤ Name the new action onTwitterShare.

 ➤ Import the Social framework into the project. The Social framework is not included in any of
the standard iOS project templates that you use when creating a new project. You will need
to add a reference to this framework manually. You can do so from the Project Settings page
in Xcode.

Ensure the following import statements are located at the top of the ViewController
class:

import UIKit
import Social

 ➤ Add code to post a tweet.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Update the empty implementation of the onTwitterShare method to resemble the
following:

@IBAction func onTwitterShare(sender: AnyObject) {

 if
SLComposeViewController.isAvailableForServiceType(SLServiceTypeTwitter)
{
 let twitterMessageComposer:SLComposeViewController =
 SLComposeViewController(forServiceType: SLServiceTypeTwitter)

 twitterMessageComposer.setInitialText("Test Twitter Post")

 twitterMessageComposer.addURL(NSURL(string: "http://www.asmtechnology.com"))

 twitterMessageComposer.addImage(UIImage(named: "Petal"))

 self.presentViewController(twitterMessageComposer,
 animated: true, completion: nil)
}
else
{
 let twitterNotConfiguredAlert =
 UIAlertController(title: "Twitter Not Configured",
 message: "Please setup a twitter account.",
 preferredStyle: UIAlertControllerStyle.Alert)

 twitterNotConfiguredAlert.addAction(UIAlertAction(title: "OK",
 style: UIAlertActionStyle.Default, handler: nil))

http://www.asmtechnology.com

Try It ❘ 425

c28.indd 12/01/2015 Page 425

 self.presentViewController(twitterNotConfiguredAlert,
 animated: true, completion: nil)
 }
}

 ➤ Add code to post to the Facebook timeline.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Update the empty implementation of the onFacebookShare method to resemble:

@IBAction func onFacebookShare(sender: AnyObject) {

if
SLComposeViewController.isAvailableForServiceType(SLServiceTypeFacebook)
{
 let facebookMessageComposer:SLComposeViewController =
 SLComposeViewController(forServiceType: SLServiceTypeFacebook)

 facebookMessageComposer.addURL(NSURL(string:
 "http://www.asmtechnology.com"))

 facebookMessageComposer.addImage(UIImage(named: "Petal"))

 self.presentViewController(facebookMessageComposer,
 animated: true, completion: nil)

}
else
{
 let facebookNotConfiguredAlert =
 UIAlertController(title: "Facebook Not Configured",
 message: "Please setup a facebook account.",
 preferredStyle: UIAlertControllerStyle.Alert)

 facebookNotConfiguredAlert.addAction(UIAlertAction(title: "OK",
 style: UIAlertActionStyle.Default, handler: nil))

 self.presentViewController(facebookNotConfiguredAlert,
 animated: true, completion: nil)
}
 }

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project ➪ Run.

 2. Ensure your computer has an active Internet connection.

 3. Enter a numeric value for the radius fi eld and tap the Compute Area of Circle button.

REFERENCE To see some of the examples from this lesson, watch the Lesson 28
video online at www.wrox.com/go/swiftiosvi d .

http://www.asmtechnology.com
http://www.wrox.com/go/swiftiosvi

c29.indd 11/04/2015 Page 427

Where Am I? Introducing
Core Location

Core Location is a framework that allows applications to retrieve the location and heading of
the device they are running on. To do this, Core Location can use a combination of a compass
for heading, and either GPS, cellular radio, or WiFi technologies for location. Cellular radio
and WiFi-based location is less accurate than GPS.

Applications cannot specify which method will be used, but they can specify a desired level of
accuracy. Depending on the desired level of accuracy, Core Location tries to use the GPS hard-
ware, cellular radio, or WiFi in that order.

This framework is not included in any of the standard iOS application templates. To use this
framework in your code, you will need to add it manually to your project. You can do this
from the Project Settings page in Xcode. Select the project node in the project navigator to
display the settings page. On the settings page, switch to the Build Phases tab and click the +
button under the Link Binary With Libraries category. Select CoreLocation.framework from
the list of available frameworks (see Figure 29-1).

Core Location defi nes a manager class called CLLocationManager that you can use to interact
with the framework. It allows you to specify the desired frequency and accuracy of location
information. To receive location updates in an application, you need to create an instance of
the CLLocationManager class and provide a delegate object to receive location updates and
errors. This delegate object must implement the CLLocationManagerDelegate protocol.

The delegate object is often a view controller class but could also be any other class in your
application. Using location hardware can have a signifi cant drain on the device’s batteries, and
hence applications need to turn on and turn off receiving location updates.

29

428 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 428

FIGURE 29-1

PERMISSIONS

From iOS 8 onward, Apple requires that applications ask the user for permission before attempting
to access location information. There are two types of permissions available:

 ➤ Always Authorization: For apps that need to access location information while in both the
foreground and background modes

 ➤ When In Use Authorization: For apps that need only access location information in the fore-
ground mode

You need to ask for either type of permission, but not both. The process of asking for permission
has two parts. The fi rst part involves adding a key to the Info.plist fi le that contains some text
that will be presented to the user while asking for permission. This text should describe the reason
for application requiring access to location data.

Depending on the type of permission you wish to ask for, you need to add either of the following
keys to the Info.plist fi le (see Figure 29-2).

 ➤ NSLocationAlwaysUsageDescription

 ➤ NSLocationWhenInUseUsageDescription

Permissions ❘ 429

c29.indd 11/04/2015 Page 429

FIGURE 29-2

The second part requires that you make a call to either the requestWhenInUseAuthorization()
or requestAlwaysAuthorization() class methods of CLLocationManager and fi nd out the user’s
decision in a delegate method:

func locationManager(manager: CLLocationManager,
 didChangeAuthorizationStatus status: CLAuthorizationStatus)

The user’s decision is returned in the second parameter of this delegate method and can be one of
the following:

 ➤ Denied

 ➤ AuthorizedAlways

 ➤ AuthorizedWhenInUse

The following code assumes that you wish to request When-in-use authorization, and demonstrates
the basic setup required to receive location updates:

let locationManager = CLLocationManager()
locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracyBestForNavigation
locationManager.requestWhenInUseAuthorization()

...

...

...

func locationManager(manager: CLLocationManager,
 didChangeAuthorizationStatus status: CLAuthorizationStatus)
{

430 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 430

 var shouldAllow = false

 switch status {
 case CLAuthorizationStatus.AuthorizedWhenInUse:
 shouldAllow = true
 case CLAuthorizationStatus.AuthorizedAlways:
 shouldAllow = true
 default:
 shouldAllow = false
 }

 if shouldAllow == true {
 manager.startUpdatingLocation()
 }

}

If your application just cannot function without location services, add the
UIRequiredDeviceCapabilities key to the Info.plist fi le. This key is a dictionary and can con-
tain a list of strings each of which describe a single capability required by your application. The App
Store examines the information in this key when users try to download your app and will prevent
users from downloading your application to devices that don’t contain the listed features.

The values to include for location service hardware are:

 ➤ location-services: Your application requires location services in general.

 ➤ gps: Your application requires the accuracy offered only by GPS hardware.

ACCURACY

An application can set up the desiredAccuracy property of the CLLocationManager instance to
specify a desired accuracy. Core Location will try its best to achieve the desired accuracy. The more
accurate a reading required, the more battery power is needed.

Applications should, in general, try to use the least accuracy possible to satisfy their requirements.
The property can have the following values, listed in decreasing order of accuracy:

 ➤ kCLLocationAccuracyBestForNavigation

 ➤ kCLLocationAccuracyBest

 ➤ kCLLocationAccuracyNearestTenMeters

 ➤ kCLLocationAccuracyHundredMeters

 ➤ kCLLocationAccuracyKilometer

 ➤ kCLLocationAccuracyThreeKilometers

An application can also set up the distanceFilter property of the CLLocationManager instance
to specify the minimum distance in meters a device must move before an update is provided to the
application.

The default value of this property is kCLDistanceFilterNone, which specifi es the application wants
to know of all movements.

Receiving Location Updates ❘ 431

c29.indd 11/04/2015 Page 431

RECEIVING LOCATION UPDATES

To start receiving location updates, you must call the startUpdatingLocation() method on the
CLLocationManager instance.

locationManager.startUpdatingLocation()

When your application does not want to receive location updates, it must call the stopUpdating
Location method of the CLLocationManager instance:

locationManager.stopUpdatingLocation()

The CLLocationManagerDelegate protocol defi nes two methods that are used by an application to
handle a location update:

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [AnyObject])

func locationManager(manager: CLLocationManager,
 didFailWithError error: NSError)

A typical implementation of the locationManager(manager: CLLocationManager, didUpdate-
Locations locations: [AnyObject]) would resemble the following:

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [AnyObject])
{
 let locationArray = locations as NSArray
 for newLocation in locationArray
 {
 // lat/lon values should only be considered if
 // horizontalAccuracy is not negative.
 if newLocation.horizontalAccuracy >= 0
 {
 let currentLatitude:CLLocationDegrees =
 newLocation.coordinate.latitude;

 let currentLongitude:CLLocationDegrees =
 newLocation.coordinate.longitude;

 // do something with currentLatitude and currentLongitude.
 }

 // altitude values should only be considered if
 // verticalAccuracy is not negative.
 if (newLocation.verticalAccuracy >= 0)
 {
 let currentAltitude:CLLocationDegrees = newLocation.altitude;

 // do something with currentAltitude
 }

 }

}

432 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 432

The locationManager(manager: CLLocationManager, didUpdateLocations locations:
[AnyObject]) method’s arguments are the CLLocationManager instance, and an array of location
updates in chronological order. Each element in this array is an instance of CLLocation.

A CLLocation object encapsulates a location. It contains a coordinate property that is a structure
containing a latitude and longitude member, each expressed as CLLocationDegrees values.
CLLocationDegrees is an alias for a fl oating-point (decimal) value.

The location object also has the horizonalAccuracy property that signifi es the radius of a
circle centered at the coordinate property. The device can be anywhere within this circle. A
larger horizontalAccuracy implies a larger circle, and thus a less accurate measurement. If the
horizontalAccuracy property is negative, the reading should be discarded as being inaccurate.

The CLLocation object also provides altitude information using two properties: altitude and
verticalAccuracy. A positive altitude value is a height above sea level, and a negative altitude
is below sea level. A positive verticalAccuracy implies that the altitude measurement is off that
amount; a negative value implies an invalid altitude measurement.

NOTE Although the location updates are served to your delegate in chronologi-
cal order, the horizontalAccuracy and verticalAccuracy values may vary
across the updates. In general, if you wait for more updates, the accuracy of the
readings will increase. When using the startUpdatingLocation()method, you
need to provide custom logic in your application to pick the reading with the
best accuracy and this can be a tradeoff between taking an earlier but somewhat
inaccurate location, or waiting until you get a suffi ciently accurate reading.

Starting with iOS9, Core Location has a new method called requestLocation(), which can be
used to get a single location reading. When you call requestLocation(), behind the scenes Core
Location will collect a number of readings and provide you one that it feels is reasonably accurate.

requestLocation() is mutually exclusive with startUpdatingLocation() with the latter taking
precedence. Thus, if you call startUpdatingLocation() while a previous call to request
Location() hasn’t completed, the call to requestLocation() will automatically be cancelled.

You can measure the distance between two locations using the distanceFromLocation() method
of the CLLocation class. The distance in meters is expressed as a CLLocationDistance value,
which is also an alias for a fl oating-point value:

Let distanceTravelled = oldLocation.distanceFromLocation(newLocation)

To compute the distance of a location update from a fi xed point, you can instantiate a CLLocation
object that represents the fi xed point and use the distanceFromLocation() method as normal.
For example, if you want to fi nd out the distance of a location update from the center of London
(lat = 51.5001524, lon = –0.1262362), you can use code similar to the following:

let londonLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

let distanceTravelled = londonLocation.distanceFromLocation(newLocation as!
 CLLocation)

Handling Errors and Checking Hardware Availability ❘ 433

c29.indd 11/04/2015 Page 433

HANDLING ERRORS AND CHECKING HARDWARE AVAILABILITY

If Core Location is unable to get a location fi x, your delegate’s locationManager(manager:
CLLocationManager, didFailWithError error: NSError) method will be called. The error
argument is of type NSError. Its code property can be examined to determine the reason for failure:

 ➤ kCLErrorDenied: The user has denied access to location data.

 ➤ kCLErrorLocationUnknown: Core Location has tried, but could not get a location fi x.

 ➤ kCLErrorNetwork: There is no means for Core Location to get a location fi x.

If the user has denied access to Core Location, then the CLLocationManager will not try to get a
location fi x again, and in such a case, it is best to call the stopUpdatingLocation() method to the
instance.

Some location services require the presence of specifi c hardware on the device. In general, you must
check whether the desired service is available before attempting to use it. Table 29-1 lists some of the
methods provided by the CLLocationManager class to test service availability.

TABLE 29-1: CLLocationManager Service Availability Methods

METHOD DESCRIPTION

func locationServicesEnabled() ->

Bool
Returns True if location services are enabled
on the device. The user can disable location ser-
vices from device settings.

func isMonitoringAvailableForClass

(regionClass: AnyClass) -> Bool
Returns True if region monitoring is supported
on the current device for the specifi c type of
region.

isRangingAvailable() -> Bool Returns True if ranging is supported on the
current device.

func headingAvailable() -> Bool Returns True if the location manager is able to
generate heading-related events.

func significantLocationChange

MonitoringAvailable() -> Bool
Returns True if signifi cant location change moni-
toring is available on the current device.

func authorizationStatus() ->

CLAuthorizationStatus
Returns a value indicating whether an applica-
tion is authorized to use location services.

NOTE The iOS Simulator can simulate either a device at a fi xed location or
a device that is moving along one of three preset routes. These features can be
accessed from the Debug ➪ Location menu of the iOS Simulator.

434 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 434

GEOCODING AND REVERSE GEOCODING

Geocoding involves converting between a latitude/longitude coordinate pair and an address. Core
Location provides the CLGeocoder class that provides methods to perform both forward and reverse
geocoding. Forward-geocoding involves converting from an address to a latitude/longitude value.
Reverse-geocoding involves converting a latitude/longitude value into an address. The result of a
geocoding request is represented by a CLPlacemark object. A forward-geocoding request returns an
array of CLPlacemark objects because multiple results may be returned.

You should try to use one geocoding request per action and avoid making the same geocod-
ing request multiple times. To perform a forward-geocoding request from an address string,
you can call the geocodeAddressString(addressString: String, completionHandler:
CLGeocodeCompletionHandler) method on a geocoder instance. This message requires you to
specify a String object that contains an address string and a block handler that is called when the
geocoding operation is complete. The following code snippet converts an address string into a
latitude/longitude coordinate pair:

let localGeocoder = CLGeocoder()
let addressString = "170 Bilton Road, Perivale, UB6 7HL, United Kingdom"

localGeocoder.geocodeAddressString(addressString) { (placemarks:[CLPlacemark]?,
 error:NSError?) -> Void in

 if placemarks != nil
 {
 let firstPlacemark = placemarks!.first
 let latValue = firstPlacemark!.location.coordinate.latitude;
 let lonValue = firstPlacemark!.location.coordinate.longitude;
 }
}

You can send the geocoder a reverse-geocoding request by calling the reverseGeocodeLocation
(location: CLLocation, completionHandler: CLGeocodeCompletionHandler)method, as
shown in the following snippet:

let localGeocoder = CLGeocoder()
let londonLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

localGeocoder.reverseGeocodeLocation(londonLocation) {
 (placemarks:[CLPlacemark]?,
 error:NSError?) -> Void in

if placemarks != nil {

 let firstPlacemark = placemarks!.first

 let countryCode = firstPlacemark!.ISOcountryCode
 let countryName = firstPlacemark!.country
 let adminArea = firstPlacemark!.administrativeArea
 let city = firstPlacemark!.locality
 let postCode = firstPlacemark!.postalCode
 let streetAddress1 = firstPlacemark!.thoroughfare
 }
};

Obtaining Compass Headings ❘ 435

c29.indd 11/04/2015 Page 435

The message requires you to provide a CLLocation object that represents a latitude/longitude coor-
dinate pair and block handler that is called with the results of the reverse-geocoding operation. The
CLLocation instance in this example is created with a fi xed set of coordinates (lat=51.5001524,
lon=–0.1262362) but could have just as well been obtained from a location update.

The actual geocoding operation is performed asynchronously. The results are supplied as an array of
CLPlacemark objects, but in this case, the array will contain just one element. If an error occurred,
the array is nil and the error variable contains more information on the error.

A CLPlacemark object contains several properties that encapsulate information on an address asso-
ciated with a specifi c coordinate. Some of the properties are:

 ➤ location: A CLLocation object that provides the coordinate pair associated with the
placemark

 ➤ ISOcountryCode: An NSString object that contains the abbreviated country code

 ➤ country: An NSString object that contains the name of country

 ➤ postalCode: An NSString object that contains the postal code

 ➤ administrativeArea: An NSString object that contains the state/province

 ➤ locality: An NSString object that contains the city

 ➤ thoroughfare: An NSString object that contains the street address

 ➤ subThoroughfare: An NSString object that contains additional street address information

If the coordinates lie over an inland water body, or an ocean, this information can be accessed
through the inlandWater and ocean properties, respectively, both of which are String objects.

OBTAINING COMPASS HEADINGS

You can determine if a compass is available on a device by calling the headingAvailable() method
of the location manager. If a compass is available on the device, you can use the location manager to
receive heading updates. Heading updates work much like location updates. Once you have set up
the CLLocationManager instance, you can call the startUpdatingHeading() and stopUpdating-
Heading() methods to begin receiving heading updates.

The CLLocationManagerDelegate protocol defi nes two methods that are related to heading
updates:

func locationManager(manager: CLLocationManager,
 didUpdateHeading newHeading: CLHeading)

func locationManagerShouldDisplayHeadingCalibration(manager: CLLocationManager)
 -> Bool

Heading data is supplied as a CLHeading object to the locationManager(manager:
CLLocationManager, didUpdateHeading newHeading: CLHeading) delegate method. The
CLHeading class encapsulates the magnetic heading, the true heading, and an accuracy measure in
its magneticHeading, trueHeading, and headingAccuracy properties, respectively.

436 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 436

The earth’s geographic North Pole is different from the magnetic north pole. The geographic North
Pole is fi xed at the North Pole, whereas the magnetic north pole is a few hundred miles away. Make
sure you know the difference between geographic north and magnetic north when you build any
application that uses the compass feature.

The geographic North Pole heading is contained in the trueHeading member of the CLHeading
instance. Data in this member is available only if you enable both heading updates and location
updates.

The locationManagerShouldDisplayHeadingCalibration(manager: CLLocationManager) is
called on the delegate object when the location manager wants to display a calibration prompt to the
user. If you fi nd this prompt annoying, you can implement this method to return NO. If you were to
do so, the compass would try to calibrate itself automatically but the results of the calibration pro-
cess might not be accurate.

NOTE The iOS Simulator cannot simulate compass headings. You need to test
applications that require this feature on an actual device.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called CLTest that displays the current location and the distance traveled since the last location
reading was obtained.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add a few UILabel elements that will display the location readings. Create outlets for these
in the view controller class.

 ➤ Add a UIButton that will be used to stop/start receiving location updates. Create an appro-
priate outlet and action.

 ➤ Initialize Core Location when the button is pressed. Stop receiving location updates when the
button is pressed a second time.

 ➤ Implement CLLocationManagerDelegate methods.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

http://www.wrox.com/go

Try It ❘ 437

c29.indd 11/04/2015 Page 437

Hints
 ➤ You must add the NSLocationWhenInUseUsageDescription key to the Info.plist fi le in

the project. The value of this key should be a string that describes what your application will
do with the user’s location data.

 ➤ Before calling startUpdatingLocation() on the CLLocationManager instance, you must
check if the user has allowed your app to access location data.

 ➤ When creating a new project, you can use your website’s domain name as the Company
Identifi er in the Project Options dialog box.

 ➤ You will need to add a reference to the Core Location framework to the project.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called CLTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: CLTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a reference to the Core Location framework.

 1. In Xcode, make sure the project navigator is visible. To show it, select View ➪
Navigators ➪ Show Project Navigator.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the Build Phases tab.

 4. Expand the Link Binary With Libraries group in this tab.

438 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 438

 5. Click the + button at the bottom of this group and select CoreLocation.framework
from the list of available frameworks.

 6. Click the Add button.

 ➤ Add UI elements to the default scene.

 1. Open the Main.storyboard fi le in the Interface Editor.

 2. From the Object library, drag and drop six labels onto the scene and place to resemble
Figure 29-3.

FIGURE 29-3

 3. Double-click each label in turn and change its text to Latitude, Longitude, Distance
Traveled, latitudeValue, longitudeValue, and distanceValue respectively.

 4. Create layout constraints for each of the elements on the storyboard scene using the
information in Table 29-2. When creating layout constraints using the pin constraints
dialog box, ensure the Constrain to margins option is unchecked and Update Frames is
set to Items of New Constraints.

TABLE 29-2: Layout Constraints

ELEMENT LEFT TOP WIDTH HEIGHT

Latitude label 39 8 63 21

Longitude label 39 26 77 21

Try It ❘ 439

c29.indd 11/04/2015 Page 439

ELEMENT LEFT TOP WIDTH HEIGHT

Distance Travelled label 39 26 141 21

latitudeValue label 99 8 99 21

longitudeValue label 85 26 114 21

distanceValue label 21 26 107 21

 5. Using the assistant editor, create outlets for the latitudeValue, longitudeValue,
and distanceValue labels. Call these outlets latitudeValue, longitudeValue, and
distanceValue, respectively.

 ➤ Add a UIButton instance to start/stop receiving location updates.

 1. Ensure the Object library is visible. You can show it by selecting View ➪ Utilities ➪
Show Object Library.

 2. Use the Object library to add a UIButton instance and place it below the labels.

 3. Double-click the button and set its title to Start Location Updates.

 4. Select the button and display the pin constraints dialog box. Ensure the Constrain to
margins options is unchecked and Update Frames is set to Items of New Constraints.
Create the following layout constraints:

 ➤ Left: 20

 ➤ Top: 20

 ➤ Right: 20

 ➤ Height: 40

 5. Using the assistant editor, create an outlet called toggleButton in the
ViewController class and connect it to the button.

 6. Using the assistant editor, create an action method in the view controller class
and connect it to the Touch Up Inside event of the button. Call the new method
onButtonPressed.

 ➤ Add code to receive location updates to the View controller class.

 1. Open the ViewController.swift fi le in the project explorer.

 2. Import the Core Location framework into the view controller.

 3. Ensure the following import statements are located at the top of the ViewController
class:

import UIKit
import CoreLocation

 4. Add the following variable declarations to the view controller class:

var locationManager:CLLocationManager? = nil

440 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 440

var lastLocation:CLLocation? = nil
var isReceivingLocationUpdates:Bool = false

 5. Ensure the View controller class implements the CLLocationManager delegate protocol
by ensuring the class is declared as:

class ViewController: UIViewController, CLLocationManagerDelegate

 6. Update the stub implementation of the viewDidLoad method to resemble the following:

override func viewDidLoad() {

 super.viewDidLoad()

 locationManager = CLLocationManager()
 locationManager!.delegate = self
 locationManager!.desiredAccuracy = kCLLocationAccuracyBestForNavigation

 lastLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

 toggleButton.titleLabel!.text = "Start location updates"
}

 7. Update the empty implementation of the onButtonPressed method to resemble the
following:

@IBAction func onButtonPressed(sender: AnyObject) {

 if isReceivingLocationUpdates == false
 {
 if CLLocationManager.authorizationStatus() !=
 CLAuthorizationStatus.AuthorizedWhenInUse
 {
 locationManager!.requestWhenInUseAuthorization()
 }
 else
 {
 isReceivingLocationUpdates = true
 toggleButton.titleLabel!.text = "Stop location updates"
 locationManager!.startUpdatingLocation()
 }
 }
 else
 {
 isReceivingLocationUpdates = false
 toggleButton.titleLabel!.text = "Start location updates"
 locationManager!.stopUpdatingLocation()
 }

}

 8. Implement the locationManager(manager: CLLocationManager, didChange
AuthorizationStatus status: CLAuthorizationStatus) delegate method in the
view controller class:

Try It ❘ 441

c29.indd 11/04/2015 Page 441

func locationManager(manager: CLLocationManager,
 didChangeAuthorizationStatus status: CLAuthorizationStatus)
{
 var shouldAllow = false

 switch status {
 case CLAuthorizationStatus.AuthorizedWhenInUse:
 shouldAllow = true
 case CLAuthorizationStatus.AuthorizedAlways:
 shouldAllow = true
 default:
 shouldAllow = false
 }

 if shouldAllow == true {
 isReceivingLocationUpdates = true
 toggleButton.titleLabel!.text = "Stop location updates"
 manager.startUpdatingLocation()
 }
}

 9. Implement the locationManager(manager: CLLocationManager, didUpdate
Locations locations: [CLLocation]) delegate method in the view controller class:

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation])
{
 let locationArray = locations as NSArray
 for newLocation in locationArray
 {
 // lat/lon values should only be considered if
 // horizontalAccuracy is not negative.
 if newLocation.horizontalAccuracy >= 0
 {
 let currentLatitude:CLLocationDegrees =
 newLocation.coordinate.latitude;

 let currentLongitude:CLLocationDegrees =
 newLocation.coordinate.longitude;

 let distanceTravelled =
 newLocation.distanceFromLocation(lastLocation!)

 latitudeValue.text = "\(currentLatitude)"
 longitudeValue.text = "\(currentLongitude)"
 distanceValue.text = "\(distanceTravelled)"

 lastLocation = newLocation as? CLLocation
 }
 }
}

442 ❘ LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

c29.indd 11/04/2015 Page 442

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can select Project ➪ Run.

 2. Click the Start Location Updates button.

 3. Use the iOS Simulator’s ability to simulate a device on the move by selecting Debug ➪
Location ➪ City Bicycle Ride.

REFERENCE To see some of the examples from this lesson, watch the Lesson 29
video online at www.wrox.com/go/swiftios v id.

http://www.wrox.com/go/swiftios

c30.indd 12/07/2015 Page 443

Introduction to Map Kit
In the previous lesson, you learned how to locate a device using Core Location. In this lesson,
you learn how to integrate a map within your application.

The Map Kit framework provides the MKMapView class for adding maps into your views. Map
Kit also provides additional classes for annotating the map. The Map Kit framework uses
Apple’s map service internally.

The Map Kit framework is often used in conjunction with the Core Location framework, neither
of which are included in any of the standard iOS application templates. To use these frameworks
in your code, you need to add them manually to your project. You can do this from the Project
Settings page in Xcode. Select the Project node in the project navigator to display the settings
page. On the settings page, switch to the Build Phases tab and click the + button under the Link
Binary With Libraries category. Select the Map Kit framework from the list of available frame-
works (see Figure 30-1). Repeat this step for the Core Location framework.

FIGURE: 30-1

30

444 ❘ LESSON 30 INTRODUCTION TO MAP KIT

c30.indd 12/07/2015 Page 444

You can add a Map Kit view to an existing view controller or story-
board using the Object library. Simply drag an instance of a Map Kit
view and create an outlet for it in the view controller class.

The map view handles zooming and scrolling automatically. You can
use the Attribute inspector to choose from Map, Satellite, and Hybrid
modes (see Figure 30-2). You can also set up the map to use Core
Location to display the user’s location by checking the Shows
User Location property.

You can also set up these properties programmatically by using the mapType property of the
MKMapView instance to specify the map mode. The mapType property can take one of fi ve values:

 ➤ Standard

 ➤ Satellite

 ➤ Hybrid

 ➤ SatelliteFlyover

 ➤ HybridFlyover

To enable/disable zooming and scrolling, use the zoomEnabled and scrollEnabled properties, respec-
tively. To have the map display the user’s location, set the showsUserLocation property to true.

You can set up the initial coordinate and zoom factor of the map by defi ning a map region and using the
setRegion(region: MKCoordinateRegion, animated: Bool) method of the MKMapView instance.

A region is represented by the MKCoordinateRegion structure and has members called center and
span. The center member is a CLLocationCoordinate2D structure and has the members latitude
and longitude. The span member is an MKCoordinateSpan structure and has the member’s
latitudeDelta and longitudeDelta, which specify a rectangular region around the center in
degrees of latitude and longitude.

To create a region and apply it, you use code similar to the following:

// setup the map's location and zoom factor
var mapRegion:MKCoordinateRegion = MKCoordinateRegion();
mapRegion.center.latitude = 51.5001524;
mapRegion.center.longitude = -0.1262362;
mapRegion.span.latitudeDelta = 0.2;
mapRegion.span.longitudeDelta = 0.2;

mapView.setRegion(mapRegion, animated: true)

The preceding code snippet assumes that mapView is an outlet connected to the Map View object
created with Interface Builder.

ADDING ANNOTATIONS

The MKMapView class enables you to add custom annotations to a map. Because a map can poten-
tially display several annotations at the same time, the designers of Map Kit decided to use separate

FIGURE: 30-2

Adding Annotations ❘ 445

c30.indd 12/07/2015 Page 445

objects to represent the data contained in an annotation and the view used to display it. The idea
was that view objects could be reused with different data objects.

The data portion of an annotation is encapsulated by an instance of a class that implements the
MKAnnotation protocol and contains information about the coordinates on the map and a descrip-
tion that is displayed in a callout.

The MKAnnotation protocol defi nes the coordinate, title, and subtitle properties. The coor-
dinate property is a CLLocationCoordinate2D structure, and the title and subtitle properties
are NSString objects. To conform to this protocol, your class must contain these properties. An
example of such a class, PlacemarkClass.swift, is shown here:

import Foundation
import MapKit

class PlacemarkClass: NSObject, MKAnnotation {

 var coordinate:CLLocationCoordinate2D
 var title:String?
 var subtitle:String?

 init(coordinate: CLLocationCoordinate2D, title: String, subtitle: String) {
 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle
 }

}

Note that the class has an initializer method that enables you to specify an initial coordinate, title,
and subtitle. To instantiate a PlacemarkClass object and add it as an annotation to the mapView
object, you can use the addAnnotation:animated: method, as demonstrated by the following code:

// drop a pin on parliament square
let parliamentLocation:CLLocationCoordinate2D =
 CLLocationCoordinate2DMake(51.5001524, -0.1262362)

let parliamentAnnotation = PlacemarkClass(coordinate: parliamentLocation,
 title: "Parliament Square",
subtitle: "Big Ben is here!")

mapView.addAnnotation(parliamentAnnotation)

The view portion of an annotation is represented by a subclass of the MKAnnotationView class.
Apple provides a subclass called MKPinAnnotationView that you can use for standard pin/call-
out annotations. The MKMapView instance requests this view from a delegate object when it is
required. The delegate object must implement the MKMapViewDelegate protocol, which defi nes
the mapView(mapView: MKMapView, viewForAnnotation annotation: MKAnnotation) ->
MKAnnotationView? method.

Typically, the delegate object will be your view controller class. You can set up the delegate by using
either the Interface Builder (see Figure 30-3) or setting the delegate property of the MKMapView
instance.

446 ❘ LESSON 30 INTRODUCTION TO MAP KIT

c30.indd 12/07/2015 Page 446

FIGURE 30-3

A typical implementation of this delegate method follows:

func mapView(mapView: MKMapView,
viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView?
{
 let newAnnotation:MKPinAnnotationView =
 MKPinAnnotationView(annotation: annotation,
 reuseIdentifier: "annotation1")

 newAnnotation.pinTintColor = UIColor.yellowColor()
 newAnnotation.animatesDrop = true
 newAnnotation.canShowCallout = true
 newAnnotation.setSelected(true, animated: true)

 return newAnnotation
}

The annotation object for which a view is required is speci-
fi ed in the annotation parameter. Once you have allocated an
MKPinAnnotationView instance, you can set up its pin color using
the pintTintColor property. If you want the pin to display a callout
when tapped, set the canShowCallout property to YES. If you want
the pin drop animation, set animatesDrop to YES. The resulting pin
and callout box is shown in Figure 30-4. FIGURE 30-4

Try It ❘ 447

c30.indd 12/07/2015 Page 447

ACCESSORY VIEWS

An annotation callout can have up to three accessory views (see Figure 30-5):

FIGURE 30-5

 ➤ leftCalloutAccessoryView: This view is displayed to the left of the popup content. It dis-
plays alongside the title and subtitle.

 ➤ rightCalloutAccessoryView: This view is displayed to the right of the popup content. It
displays alongside the title and subtitle.

 ➤ detailedCalloutAccessoryView: Added in iOS9, this property can be used to present a
custom UIView subclass in place of the subtitle of the annotation view. For instance, to use
an image of Big Ben in the callout box attached to an annotation, you can use the following
snippet:

let newAnnotation:MKPinAnnotationView =
MKPinAnnotationView(annotation: annotation,
reuseIdentifier: "annotation1")

newAnnotation.pinTintColor = UIColor.yellowColor()
newAnnotation.animatesDrop = true
newAnnotation.canShowCallout = true

let bigBenImageSmall = UIImage(named: "BigBen")
newAnnotation.detailCalloutAccessoryView =
UIImageView(image: bigBenImageSmall)

newAnnotation.setSelected(true, animated: true)

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called MapTest that displays the current location and the location of Big Ben on a map. The user can
use a segmented control to change the map style to standard, satellite, or hybrid.

448 ❘ LESSON 30 INTRODUCTION TO MAP KIT

c30.indd 12/07/2015 Page 448

NOTE Although this book does not have a lesson dedicated specifi cally to the
segmented control, it is often used with maps. You can follow the steps outlined
in this Try It to use a segmented control with a map. However, if you would like
more information on the segmented control, refer to the UISegmentedControl
class reference, available at:

http://developer.apple.com/library/ios/#documentation/uikit/ref-
erence/UISegmentedControl_Class/Reference/UISegmentedControl.html

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add a map kit view to the default scene and create an outlet for it in the view controller
class.

 ➤ Add a segmented control and add an action for it in the view controller class.

 ➤ Add a reference to the Map Kit and Core Location frameworks.

 ➤ Create a subclass of NSObject that implements the MKAnnotation protocol to use as the
annotation data class.

 ➤ Initialize the map view in the view controller’s viewDidLoad method.

 ➤ Implement the MKMapViewDelegate protocol in your view controller class.

 ➤ Change the map style when the active segment in the segmented control is changed.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ You will need to add a reference to both the Map Kit and the Core Location frameworks to
the project.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://www.wrox.com/go

Try It ❘ 449

c30.indd 12/07/2015 Page 449

Step-by-Step
 ➤ Create a Single View Application in Xcode called MapTest.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen, use the following values:

 ➤ Product Name: MapTest

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a reference to the Core Location framework.

 1. In Xcode, make sure the project navigator is visible. To show it, select View ➪
Navigators ➪ Show Project Navigator.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the Build Phases tab.

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreLocation.framework
from the list of available frameworks.

 6. Click the Add button.

 ➤ Add a reference to the Map Kit framework.

 1. In Xcode, make sure the project navigator is visible. To show it, select View ➪
Navigators ➪ Show Project Navigator.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the Build Phases tab.

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select MapKit.framework from the
list of available frameworks.

 6. Click the Add button.

450 ❘ LESSON 30 INTRODUCTION TO MAP KIT

c30.indd 12/07/2015 Page 450

 ➤ Add a segmented control to the scene.

 1. Ensure the Object library is visible. You can show it by selecting View ➪ Utilities ➪
Show Object Library.

 2. Use the Object library to add a Segmented Control instance.

 3. Use the Attribute inspector to set the number of segments to 3.

 4. Use the Attribute inspector to name the three segments Map, Satellite, and Hybrid,
respectively (see Figure 30-6).

FIGURE 30-6

 5. Select the segment control and display the pin constraints popup window. Ensure the
Constrain to margins options is unchecked and Update Frames is set to Items of New
Constraints. Create the following layout constraints:

 ➤ Left: 20

 ➤ Top: 20

 ➤ Width: 275

 ➤ Height: 28

 6. Using the assistant editor, create an outlet in the view controller class called mapMode-
SegmentControl and connect it to the segmented control in the default scene.

 7. Using the assistant editor, create an action in the view controller class and connect
it to the Value Changed event of the UISegmentedControl. Call the new method
onSegmentChanged.

 ➤ Ensure the top of the ViewController.Swift fi le contains the following import statements:

import UIKit
import MapKit

 ➤ Add a Map Kit view to the default scene.

 1. Ensure the Object library is visible. You can show it by selecting View ➪ Utilities ➪
Show Object Library.

 2. Use the Object library to add a Map Kit view to the default scene of the storyboard.

Try It ❘ 451

c30.indd 12/07/2015 Page 451

 3. Using the Assistant editor, create an outlet called mapView and connect it to the map
view instance in the default scene.

 4. With the Map Kit view selected, sqitch to the Attribute inspector and ensure the
“Shows User Location” attribute is unchecked.

 5. Select the Map Kit view and display the pin constraints dialog box. Ensure the
Constrain to margins option is unchecked and Update Frames is set to Items of New
Constraints. Create the following layout constraints:

 ➤ Left: 0

 ➤ Top: 20

 ➤ Right: 0

 ➤ Bottom: 0

 ➤ Create a new Swift class to represent annotation data.

 1. Create a new Swift class by selecting File ➪ New ➪ File.

 2. Select the Swift File template and click Next.

 3. Name the new class PlacemarkClass.

 4. Edit the class to resemble the following:

import Foundation
import MapKit

class PlacemarkClass: NSObject, MKAnnotation {

 var coordinate:CLLocationCoordinate2D
 var title:String?
 var subtitle:String?

 init(coordinate: CLLocationCoordinate2D,
 title: String, subtitle: String) {
 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle
 }

}

 ➤ Declare the ViewController.Swift class to conform to the MKMapViewDelegate protocol
by modifying its declaration as follows:

class ViewController: UIViewController, MKMapViewDelegate

 ➤ Update the viewDidLoad method of the ViewController class to resemble the following:

override func viewDidLoad() {

 super.viewDidLoad()

 // setup the map's location and zoom factor

452 ❘ LESSON 30 INTRODUCTION TO MAP KIT

c30.indd 12/07/2015 Page 452

 var mapRegion:MKCoordinateRegion = MKCoordinateRegion();
 mapRegion.center.latitude = 51.5001524;
 mapRegion.center.longitude = -0.1262362;
 mapRegion.span.latitudeDelta = 0.2;
 mapRegion.span.longitudeDelta = 0.2;
 mapView.setRegion(mapRegion, animated: true)

 // drop a pin on parliament square
 let parliamentLocation:CLLocationCoordinate2D =
CLLocationCoordinate2DMake(51.5001524, -0.1262362)
 let parliamentAnnotation = PlacemarkClass(coordinate:
parliamentLocation, title: "Parliament Square", subtitle: "Big Ben is here!")
 mapView.addAnnotation(parliamentAnnotation)
}

 ➤ Implement the MKMapViewDelegate method mapView(mapView: MKMapView, viewFor
Annotation annotation: MKAnnotation) -> MKAnnotationView? in your view
controller class as follows:

func mapView(mapView: MKMapView, viewForAnnotation annotation:
MKAnnotation) -> MKAnnotationView?
{
 let newAnnotation:MKPinAnnotationView =
MKPinAnnotationView(annotation: annotation, reuseIdentifier: "annotation1")

 newAnnotation.pinTintColor = UIColor.yellowColor()
 newAnnotation.animatesDrop = true
 newAnnotation.canShowCallout = true
 newAnnotation.setSelected(true, animated: true)

 return newAnnotation
}

 ➤ Add the following code to the onSegmentChanged(sender: AnyObject) method of the
view controller class:

if mapModeSegmentControl.selectedSegmentIndex == 0
{
 mapView.mapType = MKMapType.Standard;
}
else if mapModeSegmentControl.selectedSegmentIndex == 1
{
 mapView.mapType = MKMapType.Satellite;
}
else if mapModeSegmentControl.selectedSegmentIndex == 2
{
 mapView.mapType = MKMapType.Hybrid;
}

Try It ❘ 453

c30.indd 12/07/2015 Page 453

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project ➪
Run menu item.

 2. Switch between the different segments on the segment control to change map types.

REFERENCE To see some of the examples from this lesson, watch the Lesson 30
video online at www.wrox.com/go/sw i ftiosvid.

http://www.wrox.com/go/sw

c31.indd 11/04/2015 Page 455

Using the Camera and Photo
Library

All iOS 9 devices have at least one camera. When a user takes a picture with the camera, the image
is stored in the device’s photo library. This lesson shows you how to allow the user to pick an
image from the photo library or take a new picture with the camera and use it in your application.

The UIKit framework contains a class called UIImagePickerController designed specifi -
cally to allow you to access the camera and photo library from your applications. This class
presents its own user interface (see Figure 31-1) that allows a user to browse through the photo
library or control the camera. All you have to do is present this view controller in your appli-
cation and provide a delegate method whose methods are called when the user has fi nished
selecting an image.

FIGURE 31-1

31

456 ❘ LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

c31.indd 11/04/2015 Page 456

The image picker controller can also be used to record videos and access these recorded videos
within your application.

SELECTING THE IMAGE SOURCE

The UIImagePickerController class can be used to access the contents of either the photo
library, saved photos album, or the camera. You can specify the source by providing a value for the
sourceType property. This value can be one of the following:

 ➤ UIImagePickerControllerSourceType.PhotoLibrary

 ➤ UIImagePickerControllerSourceType.Camera

 ➤ UIImagePickerControllerSourceType.SavedPhotosAlbum

To check if a particular source type is available, use the isSourceTypeAvailable(sourceType:
UIImagePickerControllerSourceType) -> Bool class method of the UIImagePickerController
class as follows:

let hasCamera:Bool = UIImagePickerController.isSourceTypeAvailable(
UIImagePickerControllerSourceType.Camera)

When the sourceType is set to use the camera, you can specify which camera is to be used if
your device has multiple cameras. By default, the image picker uses the rear camera. To fi nd out
if front and rear cameras are available, use the isCameraDeviceAvailable(cameraDevice:
UIImagePickerControllerCameraDevice) -> Bool class method, as shown in the following code
snippet:

let hasFrontCamera:Bool =
UIImagePickerController.isCameraDeviceAvailable(
UIImagePickerControllerCameraDevice.Front);

let hasRearCamera:Bool =
UIImagePickerController.isCameraDeviceAvailable(
UIImagePickerControllerCameraDevice.Rear);

Once you have determined that the camera you want to use is available, you can specify it using the
cameraDevice property of the image picker instance. For instance, to use the front camera, use the
following code:

imagePicker.cameraDevice = UIImagePickerControllerCameraDevice.Front;

PRESENTING THE IMAGE PICKER

To display the image picker as a modal sheet, use the presentViewController(viewControllerTo
Present: UIViewController, animated flag: Bool, completion: (() -> Void)?) method
on your active view controller object:

self.presentViewController(imagePicker, animated: true, completion: nil)

Presenting the Image Picker ❘ 457

c31.indd 11/04/2015 Page 457

On an iPad, you can also display an image picker in a popover controller. The following code snippet
shows how this can be done programmatically from a method in your view controller class:

if UIDevice().userInterfaceIdiom == UIUserInterfaceIdiom.Pad
{
 imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
 self.presentViewController(imagePicker, animated: true, completion: nil)

 // Get the popover presentation controller and configure it.
 let presentationController:UIPopoverPresentationController =
 imagePicker.popoverPresentationController!

 presentationController.permittedArrowDirections =
 UIPopoverArrowDirection.Left

 presentationController.sourceView = self.view
 presentationController.sourceRect = popoverPresetingButton.frame
}

The preceding code assumes that you have imagePicker as an instance of UIImagePickerController
and popoverPresentingButton as an outlet in your view controller class.

UIImagePickerController requires a delegate object that implements both the
UIImagePickerControllerDelegate and UINavigationControllerDelegate protocols. The for-
mer defi nes two methods that are called when the user has selected an image or selected the Cancel
button in the image picker:

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject])

func imagePickerControllerDidCancel(picker: UIImagePickerController)

The imagePickerControllerDidCancel(picker: UIImagePickerController) delegate method
has one parameter that contains a reference to the image picker controller. A typical implementation
of this delegate method dismisses the image picker controller if it was presented modally:

picker.dismissViewControllerAnimated(true, completion: nil)

The imagePickerController(picker: UIImagePickerController, didFinishPicking
MediaWithInfo info: [String : AnyObject])delegate method has two parameters, the fi rst of
which is a reference to the image picker. The second parameter is an NSDictionary object that con-
tains a UIImage object corresponding to the selected image.

To access this image in this delegate method, you can use code similar to the following to retrieve
the value in the dictionary that corresponds to the UIImagePickerControllerOriginalImage key:

let image:UIImage = info[UIImagePickerControllerOriginalImage] as! UIImage

Often, you may want to save this UIImage instance to a fi le. To do that, you must fi rst obtain an
NSData instance that contains the pixels in the UIImage instance in a specifi c fi le format. Once you
have this NSData instance, you can write it to a fi le by sending it the writeToFile:atomically:
message.

458 ❘ LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

c31.indd 11/04/2015 Page 458

To obtain an NSData instance that contains the image as a PNG fi le, use the
UIImagePNGRepresentation function as follows:

let imageData:NSData = UIImagePNGRepresentation(image)!

To obtain an NSData instance that contains the image in JPEG format, use the
UIImageJPEGRepresentation function as follows:

let imageData:NSData = UIImageJPEGRepresentation(image, 1.0)!

The fi rst parameter to this function is the UIImage instance; the second is a number between 0.0
and 1.0 that indicates the desired JPEG quality, with 0.0 being representing the lowest quality and
1.0 the highest quality.

The following implementation of the imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) delegate method shows how to
save the selected image to a PNG fi le in the Documents directory:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject])
{
 let image:UIImage = info[UIImagePickerControllerOriginalImage] as!
 UIImage

 let imageData:NSData = UIImagePNGRepresentation(image)!

 let documentsDirectory =
 NSSearchPathForDirectoriesInDomains(.DocumentDirectory,
 .UserDomainMask,
 true)[0]

 let outFile:String = documentsDirectory + "savedImage.png"

 imageData.writeToFile(outFile, atomically: true)

 picker.dismissViewControllerAnimated(true, completion: nil)
}

If you provide a delegate for the image picker, then you are responsible for dismissing the picker. To
do so, add the following line of code:

picker.dismissViewControllerAnimated(true, completion: nil)

 to the end of both delegate methods:

 ➤ imagePickerControllerDidCancel(picker: UIImagePickerController)

 ➤ imagePickerController(picker: UIImagePickerController, didFinishPicking

MediaWithInfo info: [String : AnyObject])

Try It ❘ 459

c31.indd 11/04/2015 Page 459

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
ImagePicker that allows the user to select an image from the photo library, or take a picture using
the camera and display the image in an image view.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template.

 ➤ Add a UIImageView instance to the scene and an appropriate outlet in the view
controller fi le.

 ➤ Add two UIButton instances to the scene and connect them to appropriate action methods in
the view controller class.

 ➤ Allow the user to select an image from the photo library and display the selected image in the
image view.

 ➤ Allow the user to take a picture using the camera and display the image in the image view.

 ➤ Hide the camera button if the device does not have a camera.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

Step-by-Step
 ➤ Create a Single View Application in Xcode called ImagePicker.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

460 ❘ LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

c31.indd 11/04/2015 Page 460

 3. In the project options screen use the following values:

 ➤ Product Name: ImagePicker

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include UI Tests: Unchecked

 ➤ Include Unit Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add a UIImageView instance to the default scene and connect it to an outlet in the view con-
troller class.

 1. Open the storyboard fi le and use the Object library to drag and drop an image view
onto the scene.

 2. Select the image view and display the pin constraints dialog box. Ensure the Constrain
to margins options is unchecked and Update Frames is set to Items of New Constraints.
Create the following layout constraints:

 ➤ Left: 0

 ➤ Right: 0

 ➤ Top: 20

 ➤ Bottom: 0

 3. Use the assistant editor to create an outlet in the view controller class and connect it to
the image view. Name the outlet imageView.

 4. Select the image view and use the attribute editor to set the view mode of the image
view to Aspect Fit.

 ➤ Add two UIButton instances to the scene and connect their Touch Up Inside events to appro-
priate action methods in the view controller class.

 1. Drag and drop two UIButton instances onto the default scene and position them one
below the other (see Figure 31-2).

 2. Set the title of the fi rst button to Camera. Set its background color to a shade of gray.

 3. Set the title of the second button to Photo Library. Set its background color to a
shade of gray.

 4. Name the action method corresponding to the fi rst button onCamera.

 5. Name the action method corresponding to the second button onPhotoLibrary.

Try It ❘ 461

c31.indd 11/04/2015 Page 461

FIGURE 31-2

 6. Create an outlet called cameraButton in the view controller class and connect it to the
button titled Camera in the scene.

 7. Create layout constraints for the buttons on the storyboard scene using the information
in Table 31-1. When creating layout constraints using the pin constraints dialog box,
ensure the Constrain to margins option is unchecked and Update Frames is set to Items
of New Constraints.

TABLE 31-1: Layout Constraints

ELEMENT LEFT BOTTOM RIGHT HEIGHT

Camera button 20 13 20 51

Photo Library 20 20 20 51

 ➤ Ensure the view controller class conforms to the UINavigationControllerDelegate
and UIImagePickerControllerDelegate protocols. Modify the declaration of the
ViewController class to resemble the following.

class ViewController: UIViewController,
 UIImagePickerControllerDelegate,
 UINavigationControllerDelegate

462 ❘ LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

c31.indd 11/04/2015 Page 462

 ➤ Add the following code to the implementation of the onCamera() method in the
ViewController.swift fi le:

let imagePicker:UIImagePickerController = UIImagePickerController()
imagePicker.sourceType = UIImagePickerControllerSourceType.Camera
imagePicker.delegate = self

if UIDevice().userInterfaceIdiom == UIUserInterfaceIdiom.Pad
{
 imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
 self.presentViewController(imagePicker, animated: true, completion: nil)

 let presentationController:UIPopoverPresentationController =
 imagePicker.popoverPresentationController!
 presentationController.permittedArrowDirections =
 UIPopoverArrowDirection.Left
 presentationController.sourceView = self.view
 presentationController.sourceRect = cameraButton.frame
}
else
{
 self.presentViewController(imagePicker, animated: true, completion: nil)
}

 ➤ Add the following code to the implementation of the onPhotoLibrary() method in the
ViewController.swift fi le:

let imagePicker:UIImagePickerController = UIImagePickerController()
imagePicker.sourceType = UIImagePickerControllerSourceType.PhotoLibrary
imagePicker.delegate = self

if UIDevice().userInterfaceIdiom == UIUserInterfaceIdiom.Pad
{
 imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
 self.presentViewController(imagePicker, animated: true, completion: nil)

 let presentationController:UIPopoverPresentationController =
 imagePicker.popoverPresentationController!
 presentationController.permittedArrowDirections =
 UIPopoverArrowDirection.Left
 presentationController.sourceView = self.view
 presentationController.sourceRect = cameraButton.frame
}
else
{
 self.presentViewController(imagePicker,
 animated: true,
 completion: nil)
}

Try It ❘ 463

c31.indd 11/04/2015 Page 463

 ➤ Implement UIImagePickerControllerDelegate methods in your view controller class.

 1. Add the following code in your ViewController.swift fi le to implement the image
PickerControllerDidCancel(picker: UIImagePickerController) delegate
method:

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{
 picker.dismissViewControllerAnimated(true, completion: nil)
}

 2. Add the following code in your ViewController.swift fi le to implement the
imagePickerController(picker: UIImagePickerController, didFinish

PickingMediaWithInfo info: [String : AnyObject]) delegate method:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject])
{
 let image:UIImage = info[UIImagePickerControllerOriginalImage] as!
 UIImage

 imageView.image = image

 picker.dismissViewControllerAnimated(true, completion: nil)
}

 ➤ Hide the camera button if the device does not have a camera. Add the following code to the
end of the viewDidLoad method of your view controller class:

override func viewDidLoad() {
 super.viewDidLoad()

 let hasCamera = UIImagePickerController.isSourceTypeAvailable(
 UIImagePickerControllerSourceType.Camera)
 if hasCamera == false
 {
 cameraButton.hidden = true;
 }
}

 ➤ Test your application on an iPhone or iPod touch.

 1. Connect your device to your Mac and select it from the Scheme/Target selector in the
Xcode toolbar.

 2. Click the Run button in the Xcode toolbar. Alternatively you can select Project ➪ Run.

464 ❘ LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

c31.indd 11/04/2015 Page 464

 3. Tap the Photo Library button and select a photo from the contents of your device’s
photo library. Alternately, tap the Camera button to take a picture. After selecting the
image, your device screen will resemble Figure 31-3.

FIGURE 31-3

REFERENCE To see some of the examples from this lesson, watch the Lesson 31
video online at www.wrox.com/go/swiftiosvi d .

http://www.wrox.com/go/swiftiosvi

c32.indd 11/04/2015 Page 465

Introduction to User Interface
Testing

User Interface Testing (UI Testing) is a new feature in Xcode 7 that allows you to write code
that can launch an instance of your application, interact with UI elements of the application
programmatically, and validate the state and properties of these elements.

A related feature, called UI recording, has been introduced in Xcode 7. When UI recording is
enabled, you can launch the app and interact with it as you normally would. XCode records
your interaction with the app and builds a user interface test that can perform the same
sequence of interactions for you.

UI Testing is built upon XCTest, which is Xcode’s testing framework. XCTest is used by both
user interface tests as well as traditional unit tests. Unit tests are covered in Lesson 34.

ADDING SUPPORT FOR UI TESTING TO YOUR PROJECT

Adding support for UI testing involves making a few changes to an Xcode project. For starters
a new build target must be added that will be used to run the user interface tests. A suitable
unit testing framework will also need to be linked with the project.

If you are creating a new project in Xcode, adding support for unit tests is a simple matter
of ensuring the Include UI Tests check box is selected in the project options dialog box (see
Figure 32-1).

When you do this, you will notice a few changes:

 ➤ A new group has been added to the project explorer. This group will be used to contain
your unit test fi les.

 ➤ A new build target is added to the project settings. This new build target is called the
test target.

 ➤ The test target is preconfi gured to test the host application.

32

466 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 466

FIGURE 32-1

All of these points are visible in Figure 32-2.

1

2

3

FIGURE 32-2

Adding support for UI tests to an existing project is slightly more tricky. First you need to add a new
build target to your Xcode project by selecting File ➪ New ➪ Target.

Adding Support for UI Testing to Your Project ❘ 467

c32.indd 11/04/2015 Page 467

In the target template dialog box, select iOS UI Testing Bundle under the Test category
(see Figure 32-3).

FIGURE 32-3

You will then be presented with the target options dialog box, which is similar in many respects to
the project options dialog box you encounter when creating a new project. Accept the default values
in this dialog box and click Finish (see Figure 32-4).

FIGURE 32-4

468 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 468

ANATOMY OF A TEST CASE

Previously in this lesson, you learned that UI tests are stored under their own group in the project
explorer. The unit being tested is always a .swift class fi le, and all the tests related to that class are
grouped in a single test class. A test class is just a Swift class that inherits from XCTestCase and can
contain three types of methods:

 ➤ Setup method: This method appears as setUp() and is called before each test method is
executed in the test class.

 ➤ Teardown method: This method appears as tearDown() and is called after each test method
is executed in the test class.

 ➤ Test methods: These methods all begin with the word test. Each method encapsulates a
single test.

The following code snippet shows what a typical UI test class looks like:

import XCTest

class SwiftTableViewSampleUITests: XCTestCase {

 override func setUp() {
 super.setUp()

 continueAfterFailure = false
 XCUIApplication().launch()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testExample() {

 }

}

To execute all unit tests (in all test classes) in a project, use the Product ➪ Test menu item. Doing so
will launch the app on the iOS Simulator or iOS device and execute all methods that begin with the
word test in each test case sequentially.

NOTE If your project has both unit tests and user interface tests, then the user
interface tests will be executed only after all the unit tests fi nish regardless of any
unit test failures.

The result of the testing phase is visible in the Test Navigator, which can be accessed by selecting
View ➪ Navigators ➪ Show Test Navigator (see Figure 32-5).

New Classes for UI Testing ❘ 469

c32.indd 11/04/2015 Page 469

FIGURE 32-5

You will see a green tick box next to each test that has passed, and a red one next to each test that
has failed. Keep in mind that test code must be able to compile for the tests to begin executing. If
your project has compilation errors, you will need to fi x these before the tests can run.

You can add additional test classes to your project by using the Add button (+) and the New UI Test
Class command in the Test Navigator (see Figure 32-6).

FIGURE 32-6

NEW CLASSES FOR UI TESTING

UI testing is part of the XCTest framework, which is Xcode’s standard testing framework. UI testing
introduces four new classes, and two new protocols, which are discussed in this section.

XCUIApplication
An XCUIApplication instance is used to launch an instance of your application for testing.
Typically, you instantiate an XCUIApplication instance in your test class’s setup() method and
call the launch method:

470 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 470

override func setUp() {
 super.setUp()
XCUIApplication().launch()
}

You can also set specifi c arguments of environment variables by setting the launchArguments
and launchEnvironment properties. For example, the following snippet passes a launch argument
USE_DEBUG_SERVER to the UIApplication instance:

override func setUp() {
 super.setUp()

 let application = XCUIApplication()
 application.launchArguments = ["USE_DEBUG_SERVER"]
 application.launch()
}

The application can look out for this argument in application(application, didFinish
LaunchingWithOptions)and take appropriate action (such as load web service end points for a
staging server):

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
[NSObject: AnyObject]?)
 -> Bool {

 let launchArguments = Process.arguments

 for var index = 1; index < launchArguments.count; index++ {
 let argument = launchArguments[index] as String
 if argument.compare("USE_DEBUG_SERVER") ==
 NSComparisonResult.OrderedSame{
 // do something here to load endpoints for a debug server.
 }
 }

 return true
}

The preceding snippet retrieves any launch arguments as an array of strings by calling Process
.arguments. The fi rst element in this array is always the full path to the application, which is why it
examines elements from index 1 onward.

To terminate an app, you could call the terminate() method on and XCUIApplication instance.
This is not strictly necessary as XCTest will terminate the application instance automatically every
time a test fi nishes executing.

XCUIDevice
An instance of this class represents the device on which the test is running. There is always only one
instance of this device that can be accessed as follows:

let device = XCUIDevice.sharedDevice()

New Classes for UI Testing ❘ 471

c32.indd 11/04/2015 Page 471

At the time of this writing, XCUIDevice has only one property called orientation that returns the
orientation of the device. Setting this property changes the orientation of the device.

The following setup method passes a launch argument and changes the device to landscape orienta-
tion before running a UI test.

override func setUp() {
 super.setUp()

 let application = XCUIApplication()
 application.launchArguments = ["USE_DEBUG_SERVER"]
 application.launch()

 let device = XCUIDevice.sharedDevice()
 device.orientation = UIDeviceOrientation.LandscapeLeft
}

XCUIElementQuery
An instance of this class can be used to locate a UI element in the application’s user interface. This
class, along with XCUIElement is the primary class used for UI testing.

In most cases you will not instantiate an XCUIElementQuery explicitly; instead you will use one of
the properties defi ned by the XCUIElementTypeQueryProvider protocol on the XCUIApplication
instance to obtain an XCUIElementQuery instance.

XCUIApplication implements the XCUIElementTypeQueryProvider protocol; the protocol is
discussed later in this lesson.

XCUIElementQuery defi nes several instance methods, as shown in Table 32-1. Some of these meth-
ods return an XCUIElement, while others return another XCUIElementQuery instance. In the lat-
ter case, the returned XCUIElementQuery instance is usually used to obtain a smaller subset of
elements.

TABLE 32-1: XCUIElementQuery Methods

PROPERTY/METHOD NAME DESCRIPTION

var count: UInt { get } Resolves the query and returns the num-
ber of elements matched by the query

func elementBoundByIndex(index: UInt) ->

XCUIElement
Resolves the query and returns an ele-
ment at the specifi ed index

func elementMatchingType(elementType:

XCUIElementType, identifier: String?) ->

XCUIElement

Resolves the query and returns an ele-
ment that matches a specifi c type and
accessibility identifi er

func childrenMatchingType(type:

XCUIElementType) -> XCUIElementQuery
Returns a query that can be used to
extract children of a specifi c type

472 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 472

Figure 32-7 shows the storyboard of an application that has a single view controller with three but-
tons on it.

FIGURE 32-7

The following code snippet will return the number of buttons in the view controller that is currently
visible on the screen (which in this case will be 3). The code snippet uses application.buttons to
create a query that returns all the visible buttons on the device’s screen. This query will be explained
when we discuss XCUIElementQueryProvided later in this lesson.

let application = XCUIApplication()
let query = application.buttons

print (query.count)

XCUIElement
An XCUIElement instance encapsulates the information required to locate a user interface ele-
ment in your application. It is almost always obtained by calling one of the methods on an
XCUIElementQuery instance.

The information within an XCUIElement is only evaluated when a method is called on the
XCUIElement. At the time of evaluation, if the XCUIElement does not resolve into an actual element
an error will be raised.

It is important to keep in mind that the XCUIElement instance does not let you access the underlying
user element directly. For instance, if you had an XCUIElement that represents a text fi eld instance

New Classes for UI Testing ❘ 473

c32.indd 11/04/2015 Page 473

on a view, you cannot dereference the XCUIElement to arrive at the underlying UITextField object
and then attempt to manipulate the underlying object.

However, an XCUIElement does allow you to interact with the underlying element programmatically
as an end user would while using your app. To achieve this, XCUIElement provides a number of
properties and methods that you could call on a concrete instance, some of which are listed in
Table 32-2.

TABLE 32-2: XCUIElement Methods

PROPERTY/METHOD NAME DESCRIPTION

var exists: Bool { get } Returns true if the XCUIElement resolves into an
actual UI element in the app

func tap() Sends a tap event to the underlying UI element

func doubleTap() Sends a double tap event to the underlying UI
element

func pressForDuration(duration:

NSTimeInterval)
Sends a long press gesture event to the underlying UI
element

pressForDuration(duration:

NSTimeInterval, thenDragToEle-

ment otherElement: XCUIElement)

Sends a press and hold gesture to the underlying UI
element that then drags to another element

func swipeUp() Sends a swipe up gesture to the underlying UI
element

func swipeDown() Sends a swipe down gesture to the underlying UI
element

func swipeLeft() Sends a swipe left gesture to the underlying UI
element

func swipeRight() Sends a swipe left gesture to the underlying UI
element

XCUIElement also conforms to the XCUIElementAttributes and XCUIElementTypeQueryProvider
protocols, both of which are defi ned later in the lesson.

Take a moment to look at Figure 32-7 again. In the previous section you learned that the following
snippet will result in an XCUIElementQuery that resolves to three objects:

let application = XCUIApplication()
let query = application.buttons

print (query.count)

474 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 474

That being the case, you could attempt to get an XCUIElement instance that represents the green
button using the elementBoundByIndex method:

let greenButton = query.elementBoundByIndex(1)

To verify you have indeed gotten the green button, simply inspect the value of the label property on
the XCUIElement instance (greenButton):

print (greenButton.label)

In case you were wondering, the label property is defi ned in the XCUIElementAttributes proto-
col, which is implemented by XCUIElement. As mentioned earlier, this protocol will be discussed
later in this lesson.

This type of code is sensitive to the layout of the user interface. A far better approach is to set up an
accessibility identifi er for the buttons in the storyboard and use the accessibility identifi er to retrieve
the green button regardless of how the storyboard scene was laid out.

To set up an accessibility identifi er for your user interface elements, select the user interface element
in the storyboard and use the Identity Inspector (see Figure 32-8)

FIGURE 32-8

Once an element has an accessibility identifi er set up, you could use the following snippet to return
an XCUIElement instance that will resolve to the green button regardless of how the user interface is
laid out.

let application = XCUIApplication()
let query = application.buttons
let greenButton = query.elementMatchingType(.Button, identifier: "greenButton")

New Classes for UI Testing ❘ 475

c32.indd 11/04/2015 Page 475

The last line of the preceding snippet retrieves an XCUIElement of a specifi c type with a specifi c
identifi er. Alternately, you could have written the last line as:

let greenButton = query["greenButton"]

 This alternate statement uses the subscript operator ([]) to retrieve an element by accessibility
identifi er.

XCUIElementAttributes
The XCUIElementAttributes protocol defi nes several properties that return commonly used attri-
butes and is implemented by XCUIElement as one would expect. Table 32-3 lists some of the com-
monly used properties defi ned in XCUIElementAttributes.

TABLE 32-3: XCUIElementAttribute Properties

PROPERTY NAME DESCRIPTION

var identifier: String { get } Returns the accessibility identifi er of the
element

var frame: CGRect { get } Returns the frame property of the element

var title: String { get } Returns the accessibility title of the
element

var label: String { get } Returns the caption of the element (if
applicable)

var elementType: XCUIElementType Returns an enumeration value that repre-
sents the type of the element

var enabled: Bool { get } Returns true if the element is enabled for
user interaction

func swipeDown() Sends a swipe down gesture to the under-
lying UI element

func swipeLeft() Sends a swipe left gesture to the underly-
ing UI element

func swipeRight() Sends a swipe right gesture to the under-
lying UI element

The elementType property is an enumerated value that represents the type of element.
XCUIElementType is a very large enumeration and some of its members do not apply to iOS applica-
tions. Some of the more commonly used values are listed here:

 ➤ XCUIElementType.Alert

 ➤ XCUIElementType.Button

 ➤ XCUIElementType.NavigationBar

476 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 476

 ➤ XCUIElementType.TabBar

 ➤ XCUIElementType.ToolBar

 ➤ XCUIElementType.ActivityIndicator

 ➤ XCUIElementType.SegmentedControl

 ➤ XCUIElementType.Picker

 ➤ XCUIElementType.Image

 ➤ XCUIElementType.StaticText

 ➤ XCUIElementType.TextField

 ➤ XCUIElementType.DatePicker

 ➤ XCUIElementType.TextView

 ➤ XCUIElementType.WebView

XCUIElementTypeQueryProvider
XCTest also defi nes a new protocol XCUIElementTypeQueryProvider. This protocol defi nes several
properties that return preconfi gured XCUIElementQuery instances. Both XCUIApplication and
XCUIElement implement this protocol.

Some of the properties defi ned in this protocol are listed in Table 32-4. Typically, you will use one of
these methods on the XCUIApplication instance to return an initial XCUIElementQuery, and you
will then use the methods defi ned in XCUIElementQuery to fi lter down to a specifi c element.

TABLE 32-4: XCUIElementTypeQueryProvider Methods

PROPERTY/METHOD NAME DESCRIPTION

var windows: XCUIElementQuery {

get }
Returns a query that provides access to all win-
dows that are currently visible in app. iOS applica-
tions have just a single window.

var alerts: XCUIElementQuery { get

}
Returns a query that provides access to all alerts
that are currently visible in app. Usually there is
only one alert visible in an app at a time.

var buttons: XCUIElementQuery {

get }
Returns a query that provides access to all
buttons that are currently visible in app.

var navigationBars:

XCUIElementQuery { get }
Returns a query that provides access to all naviga-
tion bars that are currently visible in app.

tables: XCUIElementQuery { get } Returns a query that provides access to all table
views that are currently visible in app.

var collectionViews:

XCUIElementQuery { get }
Returns a query that provides access to all collec-
tion views that are currently visible in app.

Test Assertions ❘ 477

c32.indd 11/04/2015 Page 477

PROPERTY/METHOD NAME DESCRIPTION

var staticTexts: XCUIElementQuery

{ get }
Returns a query that provides access to all labels
that are currently visible in app.

var textFields: XCUIElementQuery {

get }
Returns a query that provides access to all text
fi elds that are currently visible in app.

textViews: XCUIElementQuery { get

}
Returns a query that provides access to all text
views that are currently visible in app.

var maps: XCUIElementQuery { get } Returns a query that provides access to all map
views that are currently visible in app.

var otherElements: XCUIElementQuery

{ get }
Returns a query that provides access to all view
controllers that are currently visible in app.

TEST ASSERTIONS

An assertion represents a failure of a unit test. Typically your UI test case will use one of the proper-
ties defi ned by the XCUIElementTypeQueryProvider protocol on the XCUIApplication instance
to obtain an XCUIElementQuery instance. It will then resolve the XCUIElementQuery into an
XCUIElement and inspect some of the attributes of the underlying UI element.

If the value of the underlying attribute being tested does not match the expected value, the test will
fail by fi ring an assertion. XCTest provides several macros to help you create assertions. Table 32-5
lists some of the more commonly used assertions.

TABLE 32-5: XCTest Assertion Macros

MACRO DESCRIPTION

XCTAssert(expression, String) Generates a failure if the expression evaluates to
false. An optional string message may be provided
to indicate failure.

XCTAssertEqual(expression1,

expression2, String)
Generates a failure when expression1 is not equal
to expression2. This test is for primitive data
types.

XCTAssertNil (expression, String) Generates a failure when the expression is not nil.

XCTAssertNotNil(expression,

String)
Generates a failure when the expression is nil.

XCTAssertTrue (expression) Generates a failure when the expression evaluates
to false. Identical to XCTAssert().

XCTAssertFalse (expression) Generates a failure when the expression evaluates
to true.

478 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 478

The following code snippet lists a UI test case that will try to locate a button with a specifi c acces-
sibility identifi er and assert if the button was not found:

func testGreenButtonExists() {
 let application = XCUIApplication()
 let query = application.buttons
 let greenButton = query.elementMatchingType(.Button, identifier: "greenButton")
 XCTAssert(greenButton.exists)
}

It is worth noting that XCTAssert was used instead of XCTAssertNotNil. This is because green-
Button is an XCUIElement instance.

Recall that XCUIElement is not the actual user element on the screen; it just represents the infor-
mation needed by the testing framework to attempt to locate a user interface element. Only when
you try to access the underlying element (by calling exists() on the XCUIElement) will the testing
framework try to resolve the XCUIElement into an actual user interface element.

The following snippet builds on the previous test and asserts if the label on the button does not
match a specifi c value.

func testGreenButtonHasCorrectLabel(){
 let application = XCUIApplication()
 let query = application.buttons
 let greenButton = query.elementMatchingType(.Button,
 identifier: "greenButton")
 let buttonLabel = greenButton.label
 XCTAssertEqual(buttonLabel, "Green",
 "expected button label to be Green, but
 found \(buttonLabel) instead.")
 }

UI RECORDING

One of the coolest new features added to Xcode 7 is UI recording. With UI recording, you can
launch an instance of your application and interact with it as normal. While you interact with your
app, Xcode will record your taps, gestures, selections, and key strokes into a UI test script.

UI recording is tightly coupled with UI testing. To begin UI recording, simply place the text
cursor within a UI test case and tap the red record button at the bottom of the Xcode editor (see
Figure 32-9).

FIGURE 32-9

To stop recording simply tap the stop button, which replaces the record button during a recording
session. UI recording provides a good starting point to build your UI tests; you can then fi ne-tune
the code generated by UI recording and add appropriate XCTAssert statements.

Waiting for Elements in a UI Test ❘ 479

c32.indd 11/04/2015 Page 479

WAITING FOR ELEMENTS IN A UI TEST

Sometimes it is necessary to wait for an asynchronous operation to complete and verify the data
displayed on the screen when this asynchronous operation has completed. For instance, imagine a
button that attempts to retrieve the current time from a web service and displays the result in a label
on the screen.

You could easily simulate a tap on the button using a simple statement such as this:

XCUIApplication().buttons["serviceLauncherButton"].tap()

However, you could not immediately go and inspect the text of the label and expect it to have
changed because tapping the button has sent out a web service request to an external resource and
could take a few seconds to come back with the response.

You need to be able to wait for a few seconds for the text in the label to change. Fortunately, XCTest
has just the thing in the form of test expectations.

A test expectation is an instance of XCTestExpectation and represents an expected result. For
example, to set up an expectation that indicates a UILabel with the caption “11 December, 2015”
exists, you could use the following snippet:

let label = XCUIApplication().staticTexts["Hello Alex"]
let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectationForPredicate(predicate, evaluatedWithObject: label, handler: nil

The preceding snippet starts out by retrieving an XCUIElement instance for a label with text Hello
Alex.

let label = XCUIApplication().staticTexts["Hello Alex"]

 The label does not yet exist, but that is not a problem as an XCUIElement just represents the
information needed to locate an element and not an actual element. An attempt to locate the actual
element is only made when you call a method such as exists() on the XCUIElement instance.

Once an XCUIElement instance has been obtained, an expectation is set up using the expectation
ForPredicate () method of the XCTestCase class. (Recall that all UI test classes inherit from
XCTestCase)

let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectationForPredicate(predicate, evaluatedWithObject: label, handler: nil

The expectation is expressed as a predicate that is evaluated on an object. The object in this case is
the label, and the predicate is set up to call the exists() method and ensure the result is 1.

The net result is that the expectation represents a situation where a label with the caption Hello
Alex exists.

Once an expectation has been set up, you need to call the waitForExpectationsWithTimeout()
method on an XCTestCase instance:

self.waitForExpectationsWithTimeout(5, handler: nil)

480 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 480

The waitForExpectationsWithTimeout() method waits a specifi ed amount of time (in seconds)
and then evaluates all expectations that have been set up in the test method. If any of the expecta-
tions are not fulfi lled, the test will fail.

If multiple expectations have been set up, they are evaluated in the order in which they are created.
Use of XCTestExpectation is demonstrated in this lesson’s Try It.

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
SimpleButton that presents a simple user interface to the user with a button and a label.

When the button is tapped, the user is prompted to type in her name. The name is displayed in the
text fi eld when the alert is dismissed. You will then write a few UI test cases to augment the applica-
tion and verify that things are working as expected.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template with UI testing
support.

 ➤ Add a UIButton instance to the scene and connect it to the appropriate action method in the
view controller class.

 ➤ Add a UILabel instance to the scene and connect it to an outlet in the view controller.

 ➤ Add code to display an alert when the button is tapped.

 ➤ Write UI test cases to verify the behavior of the application.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To include support for UI tests in your project, ensure the Include UI Tests check box is
enabled in the project options dialog box.

 ➤ To show the Test navigator, select View ➪ Navigators ➪ Show Test Navigator.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

http://www.wrox.com/go

Try It ❘ 481

c32.indd 11/04/2015 Page 481

Step-by-Step
 ➤ Create a Single View Application in Xcode called SimpleButton.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project
menu item.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: SimpleButton

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Unchecked

 ➤ Include UI Tests: Checked

 4. Save the project onto your hard disk.

 ➤ Add user interface elements to your storyboard’s scene.

 1. Use the Object library to add a UIButton and a UILabel instance to the default scene.
Name and position them to resemble Figure 32-10.

FIGURE 32-10

482 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 482

 2. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 32-6. When creating layout constraints using the pin constraints dia-
log box, ensure the Constrain to margins option is unchecked and the Update Frames
combo box is set to None.

TABLE 32-6: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT

Button 20 20 20 50

Label 20 20 20 40

 3. Select the view controller object and update frames by selecting Editor ➪ Resolve Auto
Layout Issues ➪ Update Frames.

 4. Use the assistant editor to create outlets for the label in the view controller class. Name
the outlet greetingLabel.

 5. Use the assistant editor to create an action method in the view controller class called
onButtonTapped and connect it to the button on the scene.

 6. Using the Identity Inspector to set the accessibility identifi er of the button to alert-
LauncherButton and the accessibility identifi er of the label to alertResultLabel.

 ➤ Present an alert when the button is tapped.

 1. Replace the implementation of the onButtonTapped method with the following:

@IBAction func onButtonTapped(sender: AnyObject) {

 var inputTextField: UITextField?

 let alert = UIAlertController(title: "What is your name?",
 message: nil,
 preferredStyle: UIAlertControllerStyle.Alert)

 let alertAction = UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: { action -> Void in
 guard let textField = inputTextField else {
 return
 }

 self.greetingLabel.text = "Hello \(textField.text!)"

 })

 alert.addAction(alertAction)

 alert.addTextFieldWithConfigurationHandler { (textField) -> Void in
 inputTextField = textField;
 inputTextField!.text = ""

Try It ❘ 483

c32.indd 11/04/2015 Page 483

 }

 self.presentViewController(alert, animated: true, completion: nil)
}

 2. Replace the implementation of the viewDidLoad method with the following:

override func viewDidLoad() {
 super.viewDidLoad()
 greetingLabel.text = ""
}

 ➤ Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project ➪
Run menu item.

 2. Tap the button, type in your name when asked, and observe the text in the label
changes.

 ➤ Create a UI test that will tap the button, type in some text in the alert view, and verify that
the text on the label updates correctly.

 1. Locate the SimpleButtonUITests.swift fi le in the Project Explorer and open it.

 2. Delete the textExample() method at the bottom of the fi le.

 3. Add a new method, testWhenButtonTapped_AlertAppears, to the UI test class:

func testWhenButtonTapped_AlertAppears () {
 XCUIApplication().buttons["alertLauncherButton"].tap()
 let alert = XCUIApplication().alerts.element
 XCTAssertNotNil(alert.exists)
 }

This test aims to verify that an alert view is displayed when the button is tapped.

 4. Add another method called testWhenButtonTapped_
AlertAppearsWithCorrectTitle to the UI test class:

func testWhenButtonTapped_AlertAppearsWithCorrectTitle () {
 XCUIApplication().buttons["alertLauncherButton"].tap()
 let alert = XCUIApplication().alerts.element
 let alertTile:String = alert.label
 XCTAssertEqual(alertTile, "What is your name?")
}

This test aims to verify that the alert view that is displayed when the button is tapped
has the correct title.

 5. Add another method called testWhenAlertDismissed_LabelUpdatesCorrectly to
the unit test class:

func testWhenAlertDismissed_LabelUpdatesCorrectly () {

 XCUIApplication().buttons["alertLauncherButton"].tap()
 let alert = XCUIApplication().alerts.element

484 ❘ LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

c32.indd 11/04/2015 Page 484

 alert.textFields.elementBoundByIndex(0).typeText("Alex")
 alert.buttons.elementBoundByIndex(0).tap()

 let label = XCUIApplication().staticTexts["Hello Alex"]
 let predicate = NSPredicate(format: "exists == 1",
 argumentArray: nil)

 self.expectationForPredicate(predicate,
 evaluatedWithObject: label,
 handler: nil)

 self.waitForExpectationsWithTimeout(5, handler: nil)
}

This test enters the name Alex in the alert view and dismisses the alert view by
tapping OK on the alert view. It then verifi es that the text on the label has been
updated to Hello Alex.

 6. Run the unit tests using the Product ➪ Test menu item once again and observe that the
product compiles and all tests pass.

REFERENCE To see some of the examples from this lesson, watch the Lesson 32
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

c33.indd 11/04/2015 Page 485

Introduction to Test Driven
Development

Test Driven Development (TDD) is an approach to software development that aims to reduce
the number of bugs in the fi nal product. A developer who practices TDD techniques not only
writes actual code to carry out the app’s functionality but also test code that ensures his appli-
cations code does what it is supposed to do.

This test code is called a unit test, and it is common for an application to have several hun-
dred unit tests with each test testing a very small piece of the code base. The code that forms
these unit tests is not part of the code base that will ship to the end users of the application.
Typically these units tests are executed every time a developer attempts to create a build and if
any unit tests were to fail then a build would not be created. TDD makes it very cost effective
to catch regression bugs (bugs that were fi xed at an earlier point in time but have been reintro-
duced due to subsequent development work).

It is not necessary for the same developer to write both the class as well as the test case. In
fact, it is quite common for a senior developer to specify the behavior of a class for a junior
developer by creating a bunch of unit tests. Given these tests, the junior developer can imple-
ment the class and knows his work is done when all the unit tests pass.

One of the key principles of TDD is that the tests are written fi rst and development focuses on
writing the minimum amount of code needed to make all tests pass. Once all tests pass, the
feature in question is deemed to be complete. This process is iterative, with each iteration cre-
ating new tests and code to make these tests pass.

A company that practices TDD will discover that over time not only will the number of defects
decrease, but also defects are found earlier in the development process.

TDD requires an upfront investment in the time required to write the test code in addition to
the production code, and the time required to maintain test code as the application is devel-
oped further, but it could be argued that teams that do not practice TDD techniques could end
up spending a signifi cant amount of time fi xing bugs.

33

486 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 486

ADDING SUPPORT FOR UNIT TESTING TO YOUR PROJECT

Adding support for TDD involves making a few changes to an Xcode project. For starters, a new
build target must be added that will be used to run the unit tests. A suitable unit testing framework
will also need to be linked with the project.

If you are creating a new project in Xcode, adding support for unit tests is a simple matter of ensur-
ing the Include Unit Tests check box is checked in the project options dialog box (see Figure 33-1).

FIGURE: 33-1

When you do this, you will notice a few changes:

 ➤ A new group has been added to the project explorer. This group will be used to contain your
unit test fi les.

 ➤ A new build target is added to the project settings. This new build target is called the test
target.

 ➤ The test target is pre-confi gured to test the host application.

All of these points are visible in Figure 33-2.

Adding support for unit tests to an existing project is slightly more tricky. First you need to add a
new build target to your Xcode project by selecting File ➪ New ➪ Target.

Adding Support for Unit Testing to Your Project ❘ 487

c33.indd 11/04/2015 Page 487

In the target template dialog box, select iOS Unit Testing Bundle under the Test category (see
Figure 33-3).

1

2

3

FIGURE: 33-2

FIGURE: 33-3

You will then be presented with the target options dialog box, which is similar in many respects to
the project options dialog box you encounter when creating a new project. Accept the default values
in this dialog box and click Finish (see Figure 33-4).

488 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 488

FIGURE: 33-4

TDD TECHNIQUES

This section examines some of the common techniques practiced by developers who work in a TDD
environment.

Test First
This practice encourages developers to write the tests before the code that will be tested. The tests
defi ne the acceptance criteria of the project. If you have a comprehensive suite of tests, the code is
considered ready as soon as all tests pass and no further changes to the code base are required.

In practice, a developer writes a single test, and then runs it to check if it fails. The developer then
proceeds to write the code to make this one test pass. This is an iterative process and over time a
comprehensive set of tests is created by the developer, which serves as both the acceptance criteria as
well as living documentation for the code base.

Red-Green-Refactor
This practice builds upon the previous principle. When a test is written for code that does not yet
exist, it is quite possible the test may not even compile, and if it does it will defi nitely fail. This stage
of development that involves writing a failing test that encapsulates the desired behavior of a system
is called the Red stage. The color red has to do with popular IDE’s like Xcode and Visual Studio
using red as the color to indicate failed tests in a summary view.

If the fi rst stage toward implementing TDD is getting a failing test, then the next one is obviously
writing the code to make the test pass. This second stage is called the Green stage. Reaching this
second stage may mean creating a new class or method, or changing some existing code. At this

Anatomy of a Test Case ❘ 489

c33.indd 11/04/2015 Page 489

stage, you should not focus on writing the most optimum code to fi x the test; something that is good
enough will do fi ne.

The fi nal stage involves optionally refactoring the code that was written in the second stage while
ensuring that you do not break any existing tests.

Don’t Write Code You Do Not Yet Need
This practice requires the developer to not write any code that is not needed at the moment. It is
tempting to add features to a class anticipating future uses of the class, but a good TDD practitioner
must resist this temptation. There may be a user story in the future that could use this code that you
want to write now; it is best to write it when you are addressing the specifi c user story, complete
with its own set of tests.

ANATOMY OF A TEST CASE

Previously in this lesson, you learned that unit tests are stored under their own group in the project
explorer. The unit being tested is always a .swift class fi le, and all the tests related to that class are
grouped in a single test class. A test class is just a Swift class that inherits from XCTestCase and can
contain fi ve types of methods:

 ➤ Setup method: This method is called setUp() and is called before each test method is exe-
cuted in the test class.

 ➤ Teardown method: This method is called tearDown() and is called after each test method is
executed in the test class.

 ➤ Test methods: These methods all begin with the word “test.” Each method encapsulates a
single test.

 ➤ Performance testing methods: These methods all begin with testPerformance. Performance
testing is outside the scope of this book.

 ➤ Other Swift methods: A test class is a Swift class and can contain any other methods just like
any other Swift class. These methods are usually written to support other test methods.

The following code snippet shows what a typical test class looks like:

import XCTest
@testable import SwiftCalculator

class SwiftCalculatorTests: XCTestCase {

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called
 // before the invocation of each test method in the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called

490 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 490

 // after the invocation of each test method in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your
 // tests produce the correct results.
 }

}

To execute all unit tests (in all test classes) in a project, select Product ➪ Test. Doing so will launch
the app on the iOS Simulator or iOS device and execute all methods that begin with the word “test”
in each test case sequentially.

It is important to note that only setUp(), teardown(), and methods that begin with test (or test-
Performance) will be executed automatically as part of the testing cycle.

The result of the testing phase is visible in the Test Navigator, which can be accessed by selecting
View ➪ Navigators ➪ Show Test Navigator (see Figure 33-5).

FIGURE 33-5

You will see a green tick box next to each test that has passed and a red one
next to each test that has failed. Keep in mind that test code is also code and
must be able to compile for the tests to be executed. If your project has com-
pilation errors, you will need to fi x these before the tests can run. FIGURE 33-6

Test Assertions ❘ 491

c33.indd 11/04/2015 Page 491

You can add additional test classes to your project by using the Add button (+) and the new test class
command in the Test Navigator (see Figure 33-6).

TEST ASSERTIONS

Assertions are the bread and butter of unit tests. An assertion represents a failure of a unit test.
Typically, your unit test will call a method on an object and this method will change some values in
your application. The unit test will call the method with known inputs and expect a specifi c output.
If the output from the method being tested does not match the expected value, the test will fail by
fi ring an assertion. The standard unit testing framework in XCode is called XCTest and it provides
several macros to help you create assertions. Table 33-1 lists some of the more commonly used
macros.

TABLE 33-1: XCTEST ASSERTION MACROS

MACRO DESCRIPTION

XCTAssert(expression, String) Generates a failure if the expression evaluates
to false. An optional string message may be pro-
vided to indicate failure.

XCTAssertEqualObjects(expression1,

expression2, String)
Generates a failure when expression1 is not equal
to expression2 (or one object is nil and the other
is not).

XCTAssertNotEqualObjects(express

ion1, expression2, String)
Generates a failure when expression1 is equal to
expression2.

XCTAssertEqual(expression1,

expression2, String)
Generates a failure when expression1 is not equal
to expression2. This test is for primitive data
types.

XCTAssertNotEqual(expression1,

expression2, String)
Generates a failure when expression1 is equal to
expression2. This test is for primitive data types.

XCTAssertNil (expression, String) Generates a failure when the expression is not nil.

XCTAssertNotNil(expression, String) Generates a failure when the expression is nil.

XCTAssertTrue (expression) Generates a failure when the expression evaluates
to false. Identical to XCTAssert().

XCTAssertFalse (expression) Generates a failure when the expression evaluates
to true.

492 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 492

The following code snippet lists a unit test that will fail using the XCTAssertEqual macro:

func testNumbersAreEqual() {
 let number1 = 10
 let number2 = 20
 XCTAssertEqual(number1, number2, "number1 and number2 should be equal")
}

Figure 33-7 shows the Test Navigator with the failed unit test.

FIGURE 33-7

This test fails because the test expects number1 and number2 to have the same value. Fixing it is a
simple matter of setting number 2 to 10:

func testNumbersAreEqual() {
 let number1 = 10
 let number2 = 10
 XCTAssertEqual(number1, number2, "number1 and number2 should be equal")
}

This particular test method does not test any production code. It is only presented to serve as an
example of how assertions work. In a real-world scenario, the items being compared will be member
variables in classes from your production code base.

A more practical example of TDD techniques is presented in this lesson’s Try It, where you build a
simple calculator app using TDD techniques.

Try It ❘ 493

c33.indd 11/04/2015 Page 493

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
SwiftCalculator that allows the user to perform simple arithmetic operations on a pair of num-
bers and display the result. You will approach this application with a TDD mindset, writing unit
tests and incrementally adding functionality.

Lesson Requirements
 ➤ Launch Xcode.

 ➤ Create a new iPhone project based on the Single View Application template with unit test
support.

 ➤ Add two UILabel and two UITextField instances to the scene with appropriate outlets in
the view controller fi le.

 ➤ Add four UIButton instances to the scene and connect them to appropriate action methods
in the view controller class.

 ➤ Create a class ArithmeticCalculator that performs arithmetic operations on two numbers.

 ➤ Write unit tests for the ArithmeticCalculator class.

 ➤ Connect the ArithmeticCalculator class to the action methods of the UIButton instances.

 ➤ Display results in an alert.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identifi er in the Project Options dialog box.

 ➤ To include support for unit tests in your project, ensure the Include Unit Tests check box is
enabled in the project options dialog box.

 ➤ To show the Test navigator, select View ➪ Navigators ➪ Show Test Navigator.

 ➤ To show the Object library, select View ➪ Utilities ➪ Show Object Library.

 ➤ To show the assistant editor, select View ➪ Assistant Editor ➪ Show Assistant Editor.

http://www.wrox.com/go

494 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 494

Step-by-Step
 ➤ Create a Single View Application in Xcode called SwiftCalculator.

 1. Launch Xcode and create a new application by selecting File ➪ New ➪ Project.

 2. Select the Single View Application template from the list of iOS project templates.

 3. In the project options screen use the following values:

 ➤ Product Name: SwiftCalculator

 ➤ Organization Name: your company

 ➤ Organization Identifi er: com.yourcompany

 ➤ Language: Swift

 ➤ Devices: iPhone

 ➤ Use Core Data: Unchecked

 ➤ Include Unit Tests: Checked

 ➤ Include UI Tests: Unchecked

 4. Save the project onto your hard disk.

 ➤ Add user interface elements to your storyboard’s scene.

 1. Use the Object library to add two UILabel instances, two UITextField instances, and
four UIButton instances to the default scene. Name and position them to resemble
Figure 33-8.

FIGURE 33-8

 2. Create layout constraints for each of the elements on the storyboard scene using the
information in Table 33-2. When creating layout constraints using the pin constraints

Try It ❘ 495

c33.indd 11/04/2015 Page 495

dialog box, ensure the Constrain to margins option is unchecked and the Update
Frames combo box is set to None.

TABLE 33-2: Layout Constraints

ELEMENT LEFT TOP RIGHT WIDTH HEIGHT

Number 1 (Label) 20 20 92 21

Number 1 (Text fi eld) 28 20 20 30

Number 2 (Label) 20 20 92 21

Number 2 (Text fi eld) 28 14 20 30

Add (Button) 20 22 20 37

Subtract (Button) 20 15 20 37

Multiply (Button) 20 15 20 37

Divide (Button) 20 15 20 37

 3. Select the view controller object and update frames by selecting Editor ➪ Resolve Auto
Layout Issues ➪ Update Frames.

 4. Use the assistant editor to create outlets for each of the text fi elds in the view controller
class. Name the outlets numberField1 and numberField2.

 5. Use the assistant editor to create action methods in the view controller class. Name the
action methods onAdd, onSubtract, onDivide, and onMultiply and connect these
methods to the buttons on the scene.

 ➤ Create Unit Tests and develop the ArithmeticCalculator class from the unit tests.

 1. Add a new test class to the SwiftCalculatorTests group called Arithmetic
CalculatorTests by selecting File ➪ New ➪ File. Use the Unit Test Case template
under the iOS ➪ Source category.

 2. Delete the contents of the ArithmeticCalculatorTests.swift fi le and replace it with
the following:

import XCTest

class ArithmeticCalculatorTests: XCTestCase {

 override func setUp() {
 super.setUp()

 }

 override func tearDown() {

 super.tearDown()
 }

496 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 496

 func testInitializerDoesNotReturnNilInstance() {
 XCTAssertNotNil(ArithmeticCalculator())
 }
}

The preceding code snippet adds a new test method called testInitializerDoes-
NotReturnNilInstance. This test will fail if an ArithmeticCalculator instance
could not be instantiated.

 3. Run the unit tests by selecting Product ➪ Test and observe that the product fails to
compile. The specifi c error you will get in this case is “Use of undeclared identifi er
'ArithmeticCalculator'” in the test case class (see Figure 33-9).

FIGURE 33-9

This failure to compile can be thought of as an indication that you need to write
some code to rectify the situation and can be used as the starting point for imple-
menting TDD methods in this project.

 4. In order to make this fi rst test pass, create a new class called ArithmeticCalculator
by selecting File ➪ New ➪ File. Use the Swift File template under the iOS ➪ Source
category. In the fi le location dialog box, ensure that the new class will be available to
both the SwiftCalculator and SwiftCalculatorTests targets by ensuring that the
corresponding checkboxes beside these items are checked (see Figure 33-10).

 5. Replace the contents of ArithmeticCalculator.swift with the following empty class
defi nition:

import Foundation

class ArithmeticCalculator: NSObject {

}

Try It ❘ 497

c33.indd 11/04/2015 Page 497

FIGURE 33-10

 6. Run the unit tests by selecting Product ➪ Test once again and observe that the product
compiles and all tests pass.

 7. The ArithmeticCalculator class will end up containing the following methods, each
of which accepts two Doubles as input and returns a Double as output:

 ➤ addNumbers()

 ➤ subtractNumbrs()

 ➤ divideNumbers()

 ➤ multiplyNumbers()

The divideNumbers() method returns an optional that will be nil if the denomi-
nator is zero. With this design in mind, you need to work out some of the test cases
that could be used to test the behavior of these methods. In order to keep this Try
It focused, you will develop unit tests for the following test cases (see Table 33-3).
These test cases are by no means exhaustive but should give you a starting point to
create some of your own test cases.

TABLE 33-3: Test Cases

METHOD N1 N2 EXPECTED RESULT

addNumbers 10 20 30

addNumbers 10 0 10

subtractNumbers 20 10 10

multiplyNumbers 20 10 200

continues

498 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 498

METHOD N1 N2 EXPECTED RESULT

multiplyNumbers –20 –10 20

divideNumbers 20 10 2

divideNumbers –20 –10 2

divideNumbers 20 0 nil

 8. Add the following unit tests to the ArithmeticControllerTests.swift fi le:

func testAddNumbers_PositiveN1_PositiveN2_ReturnsValidResult() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 10
 let n2:Double = 20
 let result:Double = calculator.addNumbers(firstNumber: n1,
 secondNumber: n2)
 XCTAssertEqual(result, n1 + n2)
}

func testAddNumbers_PositiveN1_ZeroN2_ReturnsNumber1() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 10
 let n2:Double = 0
 let result:Double = calculator.addNumbers(firstNumber: n1
 secondNumber: n2)
 XCTAssertEqual(result, n1)
}

func testSubtractNumbers_PositiveN1_SmallerPositiveN2_ReturnsValidResult()

{
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 20
 let n2:Double = 10
 let result:Double = calculator.subtractNumbers(firstNumber: n1,
 secondNumber: n2)
 XCTAssertEqual(result, n1 - n2)
}

func testMultiplyNumbers_PositiveN1_PositiveN2_ReturnsValidResult() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 20
 let n2:Double = 10
 let result:Double = calculator.multiplyNumbers(firstNumber: n1,
 secondNumber: n2)
 XCTAssertEqual(result, n1 * n2)
}

func
testMultiplyNumbers_NegativeeN1_NegativeN2_ReturnsValidPositiveResult() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 20

TABLE 33-3 (continued)

Try It ❘ 499

c33.indd 11/04/2015 Page 499

 let n2:Double = 10
 let result:Double = calculator.multiplyNumbers(firstNumber: n1,
 secondNumber: n2)
 XCTAssert(result >= 0)
}

func testDivideNumbers_PositiveN1_PositiveN2_ReturnsValidResult() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 20
 let n2:Double = 10
 let result:Double? = calculator.divideNumbers(numerator: n1,
 denominator: n2)
 XCTAssertEqual(result!, n1 / n2)
}

func testDivideNumbers_NegativeN1_NegativeN2_ReturnsValidPositiveResult() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = -20
 let n2:Double = -10
 let result:Double? = calculator.divideNumbers(numerator: n1,
 denominator: n2)
 XCTAssert(result! >= 0)
}

func testDivideNumbers_PositiveN1_ZeroN2_ReturnsNil() {
 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let n1:Double = 20
 let n2:Double = 0
 let result:Double? = calculator.divideNumbers(numerator: n1,
 denominator: n2)
 XCTAssertNil(result)
}

 9. Run the unit tests by selecting Product ➪ Test once again and observe that, once again,
the product does not compile. This is because you have not implemented the add
Numbers, subtractNumbers, divideNumbers, and multiplyNumbers methods.

 10. In order to ensure these new unit tests also pass, update the code in the
ArithmeticCalculator.swift fi le to resemble the following:

import Foundation

class ArithmeticCalculator: NSObject {

 func addNumbers(firstNumber number1:Double,
 secondNumber number2:Double) -> Double{

 return number1 + number2
 }

 func subtractNumbers(firstNumber number1:Double,
 secondNumber number2:Double) -> Double{

500 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 500

 return number1 - number2
 }

 func divideNumbers(numerator number1:Double,
 denominator number2:Double) -> Double? {

 if number2 == 0 {
 return nil
 }

 return number1 / number2
 }

 func multiplyNumbers(firstNumber number1:Double,
 secondNumber number2:Double) -> Double{

 return number1 * number2
 }
}

 11. Run the unit tests by selecting Product ➪ Test once again and observe that the product
compiles and all tests pass.

 ➤ Integrate the ArithmeticCalculator class into the ViewController class.

 1. Implement the onAdd action method in the ViewController.swift fi le as follows:

@IBAction func onAdd(sender: AnyObject) {

 numberField1.resignFirstResponder()
 numberField2.resignFirstResponder()

 let number1:String? = numberField1.text
 let number2:String? = numberField2.text

 if let n1 = number1, n2 = number2 {

 if n1.isEmpty || n2.isEmpty {
 return
 }

 let firstNumber:Double? =
NSNumberFormatter().numberFromString(n1)?.doubleValue

 let secondNumber:Double? =
NSNumberFormatter().numberFromString(n2)?.doubleValue

 if let fN = firstNumber, sN = secondNumber {

 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let result:Double = calculator.addNumbers(firstNumber: fN,
 secondNumber: sN)

 let alert = UIAlertController(title: "",
 message: "\(fN) + \(sN) = \(result)",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",

Try It ❘ 501

c33.indd 11/04/2015 Page 501

 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }
}

 2. Implement the onSubtract action method in the ViewController.swift fi le as
follows:

@IBAction func onSubtract(sender: AnyObject) {

 numberField1.resignFirstResponder()
 numberField2.resignFirstResponder()

 let number1:String? = numberField1.text
 let number2:String? = numberField2.text

 if let n1 = number1, n2 = number2 {

 if n1.isEmpty || n2.isEmpty {
 return
 }

 let firstNumber:Double? =
NSNumberFormatter().numberFromString(n1)?.doubleValue

 let secondNumber:Double? =
NSNumberFormatter().numberFromString(n2)?.doubleValue

 if let fN = firstNumber, sN = secondNumber {

 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let result:Double = calculator.subtractNumbers(firstNumber: fN,
 secondNumber: sN)

 let alert = UIAlertController(title: "",
 message: "\(fN) - \(sN) = \(result)",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default, handler: nil))

 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }

}

 3. Implement the onDivide action method in the ViewController.swift fi le as follows:

@IBAction func onDivide(sender: AnyObject) {

 numberField1.resignFirstResponder()

502 ❘ LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

c33.indd 11/04/2015 Page 502

 numberField2.resignFirstResponder()

 let number1:String? = numberField1.text
 let number2:String? = numberField2.text

 if let n1 = number1, n2 = number2 {

 if n1.isEmpty || n2.isEmpty {
 return
 }

 let firstNumber:Double? =
NSNumberFormatter().numberFromString(n1)?.doubleValue

 let secondNumber:Double? =
NSNumberFormatter().numberFromString(n2)?.doubleValue

 if let fN = firstNumber, sN = secondNumber {

 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let result:Double! = calculator.divideNumbers(numerator: fN,
 denominator: sN)

 if result == nil {

 let alert = UIAlertController(title: "Error",
 message: "Division by Zero",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default, handler: nil))

 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 else
 {
 let alert = UIAlertController(title: "",
 message: "\(fN) / \(sN) = \(result!)",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default, handler: nil))

 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }
 }
}

 4. Implement the onMultiply action method in the ViewController.swift fi le as
follows:

@IBAction func onMultiply(sender: AnyObject) {

 numberField1.resignFirstResponder()

Try It ❘ 503

c33.indd 11/04/2015 Page 503

 numberField2.resignFirstResponder()

 let number1:String? = numberField1.text
 let number2:String? = numberField2.text

 if let n1 = number1, n2 = number2 {

 if n1.isEmpty || n2.isEmpty {
 return
 }

 let firstNumber:Double? =
NSNumberFormatter().numberFromString(n1)?.doubleValue

 let secondNumber:Double? =
NSNumberFormatter().numberFromString(n2)?.doubleValue

 if let fN = firstNumber, sN = secondNumber {

 let calculator:ArithmeticCalculator = ArithmeticCalculator()
 let result:Double = calculator.multiplyNumbers(firstNumber: fN,
 secondNumber: sN)

 let alert = UIAlertController(title: "",
 message: "\(fN) * \(sN) = \(result)",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default,
 handler: nil))

 self.presentViewController(alert, animated: true, completion: nil)
 }
 }

}

 ➤ Test your app in the iOS Simulator. Click the Run button in the Xcode toolbar. Alternatively,
you can select Project ➪ Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 33
video online at www.wrox.com/go/swiftiosv i d.

http://www.wrox.com/go/swiftiosv

bapp01.indd 11/04/2015 Page 505

SECTION V
Reference

 ▸ APPENDIX A: Testing Your App on a Device

 ▸ APPENDIX B: Beta Testing with TestFlight

 ▸ APPENDIX C: App Store Distribution

bapp01.indd 11/04/2015 Page 507

Testing Your App on a Device
The iOS Simulator is a handy tool for testing your application as you are developing it.
However, it is no substitute for testing on an actual device. Certain features, such as the accel-
erometer and camera, cannot be tested on the simulator at all.

Testing your application on your device is slightly different from giving it to a small number of
users for beta testing. When it is your own device, you can physically connect it to your Mac
and use Xcode to test/debug your app while it executes on the device. Distributing your app
to a few users for beta testing is achieved through TestFlight, a process covered in detail in
Appendix B.

Before you can test your app on a device, you need to prepare the device for testing and confi g-
ure a few options in Xcode. The process itself can seem quite complicated at fi rst. This appen-
dix goes through the various steps required to test your apps on a device with Xcode.

OBTAINING AND REGISTERING UDIDS

Each iOS device has a unique 40-digit identifi er, commonly referred to as the device UDID.
Before you can test your app on a device with Xcode, you will need to register the UDID of
that device with the iOS Provisioning Portal. You can obtain this UDID through the Xcode
Device Manager.

To obtain the UDID for a device, simply connect it to your Mac and access the Devices
Manager by selecting Window ➪ Devices. Click the device in the list on the left-hand side and
note the value of the Identifi er fi eld (see Figure A-1).

A

508 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 508

FIGURE A-1

To register a device for development, simply click the Use for Development button in the
Devices Manager window. You will be asked to provide the Apple ID and password you used to
register as an iOS developer. If the device has already been set up for development, then the Use for
Development button will not be visible.

You can also register UDIDs manually. To do this, you must log in to your iOS developer account at
https://developer.apple.com/ios. Click the Member Center link on the top-right corner of the
page to navigate to the member center. Within the member center, click the Certifi cates, Identifi ers
& Profi les link (see Figure A-2).

FIGURE A-2

https://developer.apple.com/ios

Obtaining and Registering UDIDs ❘ 509

bapp01.indd 11/04/2015 Page 509

Next, click the Devices link in the iOS Apps category on the left-hand side of the page
(see Figure A-3).

FIGURE A-3

The Devices screen shows you a list of devices registered to your account. You can register up to 100
devices of each type a year (note that deleting a device does not count toward this limit). There are
fi ve device types:

 ➤ iPhone

 ➤ iPad

 ➤ iPod Touch

 ➤ Apple Watch

 ➤ Apple TV

To add a device to your account, click the Add button located above the list of devices and fi ll in
the UDID of the device along with a name with which you would like to refer to the device (see
Figure A-4). Click Continue to add the UDID to the device list. This list can be reset once a year,
when you renew your paid membership.

510 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 510

FIGURE A-4

Creating an App ID (Bundle Identifi er) ❘ 511

bapp01.indd 11/04/2015 Page 511

CREATING AN APP ID (BUNDLE IDENTIFIER)

The next step involves creating and registering a unique identifi er for your app; this is known as
the App ID (or Bundle ID). In addition to uniquely identifying your application, an App ID allows
your application to receive remote notifi cations, communicate with external accessories, or share
keychain data with other applications in a suite, and use iCloud services.

An App ID consists of an organization identifi er and an application identifi er (see Figure A-5). When
you create a new project in Xcode, you are asked to provide an organization identifi er, and the
App ID is generated for you by appending the name of the project to the organization identifi er. To
distribute the application through the App Store, the identifi er used to create the Xcode project must
be registered with your iOS developer account. You can always change the Bundle Identifi er for an
existing application by editing the Bundle Identifi er key in the project’s info.plist fi le.

FIGURE A-5

To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link in the top-right corner of the page to navigate to
the member center. Within the member center, click the Certifi cates, Identifi ers & Profi les link, and
then in the Identifi ers section under the iOS Apps category click on the link to App IDs.

To create a new App ID, click the New App ID button on the top-right side (see Figure A-6).

Provide a descriptive name for the new App ID in the Name fi eld and select Team ID in the App
ID prefi x drop-down. Select the Explicit App ID radio button under the App ID suffi x section and
provide a unique identifi er in the Bundle ID fi eld that ends in the name of the Xcode project you are
going to create (or have created).

Typically, you create this identifi er by combining the reverse-domain name of your website and the
name of your Xcode project. For example, if your company identifi er is com.acmecorp and your
Xcode project is called cloudkitphotos, then the bundle identifi er specifi ed should resemble com
.acmecorp.cloudkitphotos. Your browser window should resemble Figure A-7.

https://developer
https://developer.apple.com/ios

512 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 512

FIGURE A-6

FIGURE A-7

Creating a Development Certifi cate ❘ 513

bapp01.indd 11/04/2015 Page 513

If you do not mind your apps sharing data between them, you can use an asterisk instead of the
application name, thus creating a string of the form com.domainname.*.

Such an App ID is called a wildcard App ID and can be used repeatedly across multiple applications.
If you want to create a wildcard App ID, simply select the relevant radio button on the page (see
Figure A-8).

FIGURE A-8

The downside of wildcard App IDs is that certain features such as Remote Push Notifi cations and
iCloud support are not available.

Click the Continue button to proceed. You will be presented with a summary of the App ID infor-
mation. Click on Submit to fi nish creating the App ID.

CREATING A DEVELOPMENT CERTIFICATE

The next step is to create and install a development certifi cate. Creating a development certifi -
cate involves creating an appropriate certifi cate request and submitting this request to the iOS
Provisioning Portal. Once the certifi cate is ready, you will be able to download and install it on
your Mac.

To create a certifi cate request, launch the Keychain Access utility from the Applications folder
on your Mac. When the Keychain Access utility is running, choose Keychain Access ➪ Certifi cate
Assistant ➪ Request a Certifi cate from a Certifi cate Authority.

514 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 514

In the Certifi cate Assistant dialog box (see Figure A-9), specify the e-mail address and account name
used to access the iOS Developer Program, and ensure the Saved to Disk radio button is selected.
Click the Continue button to save the certifi cate request as a fi le on your Mac.

FIGURE A-9

To create a development certifi cate from your certifi cate request fi le, log in to your iOS developer
account at https://developer.apple.com/ios. Click the Member Center link on the top-
right corner of the page to navigate to the member center. Within the member center, click the
Certifi cates, Identifi ers & Profi les link, and then under the iOS Apps category, look under
the Certifi cates category and click on All.

To create a new development certifi cate, click the Add button (+) on the top-right side (see
Figure A-10).

FIGURE A-10

You will now be asked to choose the type of certifi cate you want to create. Select iOS App
Development from the list of options (see Figure A-11), scroll down to the bottom of the page, and
click Continue.

https://developer.apple.com/ios

Creating a Development Certifi cate ❘ 515

bapp01.indd 11/04/2015 Page 515

FIGURE A-11

The next screen contains some general information on what a certifi cate request fi le is and how to
create one (see Figure A-12). Because you have already created one, scroll to the bottom of the page
and click Continue.

In the next screen, use the Choose File button to select the certifi cate request fi le that you saved on
your Mac and then click the Generate button to create the development certifi cate (see Figure A-13).

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certifi cate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to fi rst
approve the certifi cate request. When your certifi cate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certifi cate and save it to your Mac; by default, the certifi cate should be saved to your
Downloads folder.

If you haven’t done so already, download the Worldwide Developer Relations Certifi cate from the
Apple PKI authority page (see Figure A-14). This page is located at https://www.apple.com/
certificateauthority/.

https://www.apple.com
https://www.apple.com/certificateauthority/

516 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 516

FIGURE A-12

FIGURE A-13

Creating a Development Certifi cate ❘ 517

bapp01.indd 11/04/2015 Page 517

This certifi cate is also available to download at the bottom of the Create Certifi cate page, where you
select the type of certifi cate to generate (Figure A-15).

FIGURE A-14

FIGURE A-15

518 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 518

CREATING A PROVISIONING PROFILE

After having registered your device UDID, App ID, and creating a development certifi cate, you
will need to create a development provisioning profi le. A provisioning profi le groups an App ID, a
certifi cate, and device UDIDs into a single entity. The certifi cate in question would be the develop-
ment certifi cate you just generated in the previous section, and the device-specifi c information would
be a list of UDIDs on which you want to debug your application.

To create a development provisioning profi le, log in to your iOS developer account at https://
developer.apple.com/ios. Click the Member Center link on the top-right corner of the page
to navigate to the member center. Within the member center, click the Certifi cates, Identifi ers &
Profi les link, and then under the iOS Apps category, fi nd Provisioning Profi les and click All.

Click the New Profi le button on the top-right side (see Figure A-16).

FIGURE A-16

You will be asked to choose between a development or a distribution provisioning profi le. A distri-
bution provisioning profi le is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure A-17).

As mentioned earlier in this section, a development provisioning profi le connects three pieces of
information:

 ➤ A single App ID

 ➤ One or more public keys

 ➤ A list of test device IDs

The next step requires you to select an App ID that will be associated with this provisioning profi le.
Select an App ID from the list of available identifi ers (see Figure A-18) and click Continue.

https://developer.apple.com/ios
https://developer.apple.com/ios

Creating a Provisioning Profi le ❘ 519

bapp01.indd 11/04/2015 Page 519

Select one or more development certifi cates that will be included in the profi le. You must make sure
to sign the app in Xcode using one of the certifi cates you select here. Select a suitable certifi cate and
click Continue (see Figure A-19).

FIGURE A-17

520 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 520

FIGURE A-18

Next, you must select one or more devices that will be included in this provisioning profi le. The
corresponding identifi ers for these devices must be registered with your development account. Your
app will only be testable on these devices (see Figure A-20).

Creating a Provisioning Profi le ❘ 521

bapp01.indd 11/04/2015 Page 521

FIGURE A-19

The fi nal step involves providing a suitable name for the profi le and clicking the Generate button.
When the profi le is created, you will be provided an option to download it onto your computer. (see
Figure A-21).

522 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 522

 FIGURE A-20

If you were to now click the All link under the Provisioning section of the left-hand side menu, you
should see an entry for the new profi le in the list of available profi les. You can also download a
provisioning profi le from this list.

Once the profi le has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Confi guring Your Project ❘ 523

bapp01.indd 11/04/2015 Page 523

FIGURE A-21

CONFIGURING YOUR PROJECT

The fi nal step in the process involves setting up your Xcode project and preparing an appropriate
build. Before you begin, make sure you have installed both your development certifi cate and devel-
opment provisioning profi le.

524 ❘ APPENDIX A TESTING YOUR APP ON A DEVICE

bapp01.indd 11/04/2015 Page 524

Open the project that you want to test on a device. If the project’s App ID is different from what has
been registered with the iOS Provisioning Portal, edit the value of the Bundle identifi er key in the
project’s info.plist fi le to match.

Save the info.plist fi le if you have edited it, and then connect one of the provisioned iOS devices
to your Mac and ensure that the Scheme/Target selector in the Xcode toolbar is set to build for an
iOS device (see Figure A-22).

FIGURE A-22

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

Scroll down to the Code Signing section and locate the node labeled Provisioning Profi le. You
may need to expand this node to see the values for individual build confi gurations (such as debug,
release). Select the provisioning profi le you created earlier from the list of profi les for the debug
confi guration (see Figure A-23).

FIGURE A-23

Confi guring Your Project ❘ 525

bapp01.indd 11/04/2015 Page 525

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Debug,
and then expand the Debug node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the development certifi cate you created and installed earlier (see Figure A-24).

FIGURE A-24

Your Xcode project is now ready to be tested on an iOS device. Simply click the Run button on the
Xcode toolbar to begi n.

bapp02.indd 11/04/2015 Page 527

Beta Testing with TestFlight
As an iOS application developer, there will be times when you need to try out your app on
multiple test devices before submitting it to Apple for the App Store approval process.

If the number of test devices are few and you are the only person doing all the testing, then
you can always set up the devices for development and use Xcode to debug applications on the
devices.

However, in most cases, you will have a team of beta testers and product owners, each with
their own devices. Connecting each team member’s device to your Mac one by one and
deploying debug builds with Xcode is simply not feasible anymore. Add to this the fact that
you will need to repeat the entire deployment process every time a bug is fi xed and your app
needs retesting.

TestFlight is a service provided by Apple that acts as a central build deployment solution where
you upload the new build, and all interested parties are sent notifi cations to download the new
build onto their devices. TestFlight is available to apps that target iOS8 or later.

PREPARING A DISTRIBUTION BUILD FOR TESTFLIGHT

To distribute your app to testers, you will fi rst need to prepare a suitable build and upload it to
iTunes Connect using Xcode. In order to prepare the build, you will need the following:

 ➤ An App ID that is registered with your iOS developer account

 ➤ A distribution certifi cate installed on your Mac

 ➤ A distribution provisioning profi le installed on your Mac

 ➤ An iTunes Connect record for the application

 ➤ An appropriately confi gured Xcode project

B

528 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 528

Creating an App ID
An App ID is a unique identifi er that is used internally by Apple to identify your app in the App
store. The process of creating an App ID (also known as a Bundle ID) is covered in Appendix A.

Creating a Distribution Certifi cate
Creating a distribution certifi cate is similar to creating a development certifi cate and involves creat-
ing an appropriate certifi cate request and submitting this request to the iOS Provisioning Portal.
Once the certifi cate is ready, you will be able to download and install it on your Mac.

To create a certifi cate request, launch the Keychain Access utility from the Applications folder
on your Mac. When the Keychain Access utility is running, choose Keychain Access ➪ Certifi cate
Assistant ➪ Request a Certifi cate from a Certifi cate Authority.

In the Certifi cate Assistant dialog box (see Figure B-1), specify the e-mail address and account name
used to access the iOS Developer Program, and ensure the Saved to Disk radio button is selected.
Click the Continue button to save the certifi cate request as a fi le on your Mac.

FIGURE B-1

To create a distribution certifi cate from your certifi cate request fi le, log in to your iOS developer
account at https://developer.apple.com/ios, navigate to the Certifi cates link under the
Member Center ➪ Certifi cates, Identifi ers & Profi les ➪ iOS Apps category, and click the New
Certifi cate button on the top-right side (see Figure B-2).

You will now be asked to choose the type of certifi cate you want to create. Select App Store and Ad
Hoc from the list of options in the Production category (see Figure B-3).

https://developer.apple.com/ios

Preparing a Distribution Build for TestFlight ❘ 529

bapp02.indd 11/04/2015 Page 529

FIGURE B-2

FIGURE B-3

Scroll down to the bottom of the page and use the link provided to download the Intermediate
Certifi cate (see Figure B-4) and click Continue. The intermediate certifi cate is used to validate your

530 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 530

distribution certifi cate and must be present in your Mac’s keychain in addition to the distribution
certifi cate.

FIGURE B-4

The next screen contains some general information on what a certifi cate request fi le is and how
to create one. Because you have already created one, scroll to the bottom of the page and click
Continue.

In the next screen, use the Choose File button to select the certifi cate request fi le that you saved on
your Mac and then click the Generate button to create the distribution certifi cate (see Figure B-5).

FIGURE B-5

Preparing a Distribution Build for TestFlight ❘ 531

bapp02.indd 11/04/2015 Page 531

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certifi cate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to fi rst
approve the certifi cate request. When your certifi cate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certifi cate and save it to your Mac. By default, the certifi cate should be saved to your
Downloads folder.

Creating a Distribution Provisioning Profi le
To create a distribution provisioning profi le, log in to your iOS developer account at https://
developer.apple.com/ios, navigate to the Provisioning Profi les link under the Member Center
➪ Certifi cates, Identifi ers & Profi les ➪ iOS Apps category, and click the New Profi le button on the
top-right side (see Figure B-6).

FIGURE B-6

You will now be asked to choose the type of profi le you want to create. Select App Store from the
list of options under the Distribution category (see Figure B-7) and click Continue.

FIGURE B-7

https://developer.apple.com/ios
https://developer.apple.com/ios

532 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 532

The next step requires you to select an App ID that will be associated with this provisioning profi le.
Select an App ID from the list of available identifi ers (see Figure B-8) and click Continue.

FIGURE B-8

On the next screen, select the distribution certifi cate that you created in a previous step and click
Continue (see Figure B-9). You must make sure to sign the app in Xcode using the same certifi cate
you select here.

The fi nal step involves providing a suitable name for the profi le and clicking the Generate button.
When the profi le is created, you will be provided with an option to download it onto your computer
(see Figure B-10).

Preparing a Distribution Build for TestFlight ❘ 533

bapp02.indd 11/04/2015 Page 533

FIGURE B-9

FIGURE B-10

534 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 534

Once the profi le has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Creating an iTunes Connect Record
To create an iTunes Connect record, log in to the iTunes Connect portal at https://itunesconnect
.apple.com/ with your iOS developer account credentials. Once you have logged in to the portal,
click the My Apps link (see Figure B-11).

FIGURE B-11

On this screen, you will see all your iOS and MacOS applications. You can either add a new applica-
tion or manage one of the existing ones. To create a new application profi le, click the Add New App
button in the top-left corner of the window (see Figure B-12).

https://itunesconnect
https://itunesconnect.apple.com/

Preparing a Distribution Build for TestFlight ❘ 535

bapp02.indd 11/04/2015 Page 535

FIGURE B-12

When you select the New App option, a popup window appears. You’ll need to enter some basic
information on your new app, including the name, Bundle ID, and version number (see Figure B-13).

FIGURE B-13

The Bundle ID (also known as an App ID) must be registered with your iOS developer account. If
you haven’t created an App ID, you will need to do so now, before you can proceed with the next
steps. Once you have fi lled in the fi elds in the popup window, click Create to go to the Application
Information screen (see Figure B-14).

536 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 536

FIGURE B-14

At the top of the page is a tabbed menu bar (see Figure B-15) with four tabs: App Store, Features,
TestFlight, and Activity.

FIGURE B-15

The App Store tab is selected by default, and the new application’s status is displayed on the left side
of the screen. A new application profi le starts out in the Prepare For Submission state. You then fi ll
in all the relevant information to complete the application profi le and click on the Save button to
save this information (see Figure B-16).

FIGURE B-16

Preparing a Distribution Build for TestFlight ❘ 537

bapp02.indd 11/04/2015 Page 537

Creating an iTunes Connect record for an application requires that you fi ll in several screens of
information, select pricing and distribution information, confi gure app rating, and upload screen-
shots. If your aim is to just distribute the app to beta testers (and not release to the app store just
yet), you can get away with fi lling in very little information at this stage.

 If your testers are all internal testers, then you do not need to add any metadata beyond creating a
barebones application record, which you have just done by following the steps in this section so far.

If your test team involves external testers, then you only need to supply a small subset of informa-
tion to begin testing with TestFlight. You will, however, need to create a complete application record
before you can submit the app to the App Store. Submitting applications to the App Store is covered in
Appendix C.

The subset of information you need to provide in order to begin using TestFlight with external tes-
ters is located on the App Store tab.

The screen accessed via the App Store tab has a menu on the left side that provides the following
options:

 ➤ App Information

 ➤ Pricing and Availability

 ➤ Versions

App Information
On this screen, you need to specify basic information on the app, including an application name, a
SKU code, and an application Bundle ID. The Bundle ID you specify on this screen must match the
one have used in your Xcode project’s info.plist fi le.

The SKU code is not used by Apple, but is used to identify the application on the monthly fi nancial
report provided by Apple.

Toward the bottom-right corner of the screen, you will fi nd options to select a Primary and
Secondary Category under which your app will be listed in the App Store (see Figure B-17).

Pricing and Availability
You do not need to fi ll out this section for beta testing with TestFlight.

Versions
This section enables you to provide screenshots and videos, and to confi gure application metadata
for each version of your app. A node in the left-hand side menu represents each version (see
Figure B-18).

538 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 538

FIGURE B-17

FIGURE B-18

The options in this screen are grouped into several subsections:

 ➤ Version Information

 ➤ Apple Watch

 ➤ Build

Preparing a Distribution Build for TestFlight ❘ 539

bapp02.indd 11/04/2015 Page 539

 ➤ General App Information

 ➤ Game Center

 ➤ App Review Information

 ➤ Version Release

Version Information
The Version Information section is shown in Figure B-19. Here you need to specify the following
information:

 ➤ Screenshots: You do not need to provide screenshots for beta testing with TestFlight.

 ➤ Description: This is the description, as you want it to appear on the App Store. It can be no
more than 4,000 characters.

 ➤ Keywords: One or more keywords that describe the app you are adding. When users search
the App Store, the terms they enter are matched with these keywords.

 ➤ Support URL: A URL that links to the application’s support site.

 ➤ Marketing URL: An optional URL that links to the application’s website.

FIGURE B-19

540 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 540

Apple Watch
The Apple Watch section contains options that allow you to upload screenshots and an icon for
your Apple Watch app (see Figure B-20). Creating Apple Watch apps is beyond the scope of this
book. If you are interested, you should read the Apple Watch Programming Guide at https://
developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/

WatchKitProgrammingGuide/.

FIGURE B-20

Build
The Build section contains the application binary that has been uploaded for the current applica-
tion version. If no binary has been uploaded, this section is empty (see Figure B-21). The process of
uploading an application binary to iTunes Connect with Xcode is covered later in this appendix.

When no binary has been uploaded

After a binary has been uploaded

FIGURE B-21

General App Information
The general app information section resembles Figure B-22. Here you need to specify the following
information:

 ➤ App Icon: The icon that will be used on the App store. This icon must be 1024 x 1024 in the
JPEG or PNG format and must not have rounded corners.

https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/

Preparing a Distribution Build for TestFlight ❘ 541

bapp02.indd 11/04/2015 Page 541

 ➤ Version: This must match the value set in the Xcode project.

 ➤ Copyright: The name of the person or entity that owns the copyright to the app.

FIGURE B-22

Game Center
The Game Center section is disabled by default and should be enabled for applications that support
Game Center. When enabled, you will have options to confi gure leader boards, achievements, and
multiplayer compatibility. A detailed discussion of Game Center is beyond the scope of this book. If
you are interested, you should read the Game Center Programming Guide at https://developer
.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/

Introduction/Introduction.html.

App Review
The App Review section allows you to provide special testing instructions to Apple engineers when
they review your app, as well as contact information for a person in your company who will be con-
tacted if there are problems with your app.

Confi guring Your Xcode Project
The next step in the process involves setting up your Xcode project and submitting a build to iTunes
Connect. Before you begin, make sure you have installed both your distribution certifi cate and dis-
tribution provisioning profi le.

Open the project that you want to submit in Xcode. If the project’s App ID is different from what
has been registered with the iOS Provisioning Portal, edit the value of the Bundle identifi er key in
the project’s info.plist fi le to match.

https://developer
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html

542 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 542

Save the info.plist fi le.Disconnect any connected devices, and ensure that the Scheme/Target
selector in the Xcode toolbar is set to build for a generic iOS device (see Figure B-23).

FIGURE B-23

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

Scroll down to the Code Signing section and locate the node labeled Provisioning Profi le. You
may need to expand this node to see the values for individual build confi gurations (such as Debug,
Release). Select the provisioning profi le you created earlier from the list of profi les for the release
confi guration (see Figure B-24).

FIGURE B-24

Preparing a Distribution Build for TestFlight ❘ 543

bapp02.indd 11/04/2015 Page 543

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Release,
and then expand the Release node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the distribution certifi cate you created and installed earlier (see Figure B-25).

FIGURE B-25

Select the Edit Scheme menu from the Scheme/Target multi-selector in the Xcode toolbar (see
Figure B-26).

FIGURE B-26

In the Edit Scheme dialog box, select Archive from the left menu to bring up archive-specifi c
options. Ensure the Reveal Archive in Organizer option is checked and the Build Confi guration is
set to Release (see Figure B-27). Click OK to dismiss this dialog.

FIGURE B-27

544 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 544

Uploading a Build to iTunes Connect
If you have followed all the steps so far, you are ready to prepare an archive that can be distributed
to your clients/beta testers. To prepare an archive, simply select Product ➪ Archive in Xcode. This
builds your project for App Store distribution. During the build process, Xcode may ask you to
allow access to your distribution certifi cate.

If it does, click the Allow button. When the archive is successfully built, the Organizer opens auto-
matically, revealing the archive.

To submit the archive to the iTunes Connect portal, ensure the relevant archive is selected, and click
the Upload to App Store button. The Organizer will ask you for your iTunes Connect login creden-
tials, and upload the archive to iTunes Connect (see Figure B-28).

FIGURE B-28

INTERNAL AND EXTERNAL TESTERS

With TestFlight you can distribute prerelease builds of your app to your beta test team. TestFlight
requires that members in your beta test team be part of one of two groups:

 ➤ Internal testers: These are individuals who are part of your iTunes Connect team with the
Admin, Legal, or Technical role. You can invite up to 25 internal testers per app.

 ➤ External testers: These are individuals who are not part of your iTunes Connect team.
They do not need to be in your organization. In fact, you can invite any user with an e-mail
address to be an external tester. The maximum number of external testers per app is 1,000.

Another key difference between internal and external testers is that in order to distribute a build to
an external tester, Apple must fi rst approve the build. This is not a requirement when the build is
being distributed to internal testers.

Internal and External Testers ❘ 545

bapp02.indd 11/04/2015 Page 545

Registering Internal Testers
Before you can invite internal testers to test your app, you must make sure they have been added to
your iTunes Connect team with the Admin, Legal, or Technical role.

To add a user to your iTunes Connect team, log in to the iTunes Connect portal at https://
itunesconnect.apple.com/ with your iOS developer account credentials. Once you have logged in
to the portal, click the Users and Roles link (see Figure B-29).

FIGURE B-29

On this screen, you will see all your team members listed along with their roles. Click on the (+) link
on the page to add a new user (see Figure B-30).

You are presented with a screen where you need to type the name and e-mail address of the new
user (see Figure B-31). An invitation to join your team will be sent to this e-mail address. Fill in the
fi elds and click Next.

https://itunesconnect.apple.com
https://itunesconnect.apple.com

546 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 546

FIGURE B-30

FIGURE B-31

On the screen that follows, you will need to assign a role to the new user. You can choose from
Admin, Technical, Finance, Sales, or Marketing (see Figure B-32). Select the role for the new team
member and click Next.

The next screen lets you to set up e-mail notifi cations that will be sent to the new user account
(see Figure B-33). You can decide whether the new user account should receive notifi cations
pertaining to:

 ➤ App Status

 ➤ Legal Agreements

 ➤ Financial (Sales) Reports

 ➤ Payments

Internal and External Testers ❘ 547

bapp02.indd 11/04/2015 Page 547

Once you have set up the options on this screen, click Save to add the new user to your team.

FIGURE B-32

FIGURE B-33

548 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 548

Once a user has been added to your iTunes Connect team, adding that user as a beta tester for an
app is fairly straightforward. A user in your team can beta test up to 10 of your apps simultaneously.

Access your application record on iTunes Connect and navigate to the TestFlight tab (see
Figure B-34).

FIGURE B-34

Use the Select Version to Test link on the page to select the app version that you want to distribute
via TestFlight (see Figure B-35). If you have only just uploaded a build with Xcode, keep in mind
that you may need to wait up to 30 minutes before the build has been processed by Apple’s servers
and is available for you to select.

FIGURE B-35

Internal and External Testers ❘ 549

bapp02.indd 11/04/2015 Page 549

Use the Add button (+) to add up to 25 internal testers. When you click the Add button, you will
be presented with a list of iTunes Connect team members see (see Figure B-36). If a team member’s
e-mail address is not present in the list, then it is likely that he has not confi rmed his membership in
your team. When you add an individual to your team, a message with a confi rmation link is sent out
to the new member’s e-mail address.

FIGURE B-36

When you invite one or more team members to beta test your build, the Start Testing button at the
top-right corner of the page will be enabled (see Figure B-37). Click this button to start the beta test
process.

FIGURE B-37

Once you start the beta test process, each tester will receive an e-mail with instructions on how to
download and install the beta version of your app on his or her test device (Figure B-38). For the
beta test process to work correctly, the tester should access this e-mail message on the test device, as
the email contains links that will install an app on his or her device).

Registering External Testers
To register external testers, access your application record on iTunes Connect and navigate to the
TestFlight tab. Within the TestFlight tab, navigate to the External Testing section (see Figure B-39).

550 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 550

FIGURE B-38

The process of registering external testers is very similar to that of registering internal testers. You
need to click the Select Version to Test link on the page to select the app version that you want to
distribute via TestFlight. After you select the version, you may be prompted to fi ll in some applica-
tion meta data if you have not done so when you created the application record (see Figure B-40).

Internal and External Testers ❘ 551

bapp02.indd 11/04/2015 Page 551

FIGURE B-39

FIGURE B-40

552 ❘ APPENDIX B BETA TESTING WITH TESTFLIGHT

bapp02.indd 11/04/2015 Page 552

External testers need not be members of your iTunes Connect team. You can invite up to 1,000
external testers for your app. When you click the Start Testing button, the build will need to go
through Apple’s App Store review process. This process can take up to a week, and once the build
has passed the review process, your testers will get an e-mail notifying them that a build is ready to
download. Your testers will need to access this e-mail message on their test device and follow the
instructions contained in the message to begin test ing.

bapp03.indd 11/04/2015 Page 553

App Store Distribution
In most cases, after your app is ready and tested, you will want to list it in the App Store.
Regardless of your pricing strategy (free or paid) every application that is submitted to Apple
for distribution via the App Store is subject to an approval process. The approval process
usually takes about a week. Updated versions of an existing application also need to go
through an approval process.

To distribute your application via the App Store, you will need a standard, paid, iOS developer
account. If you have an enterprise iOS developer account, you cannot distribute your applica-
tions through the App Store. Submitting an application to Apple for inclusion in the App Store
is a two-stage process. First, you need to create an application profi le on the iTunes Connect
portal, and then you need to upload your application binary to iTunes Connect using Xcode.

CREATING AN APPLICATION PROFILE

To start the App Store submission process, log in to the iTunes Connect portal at https://
itunesconnect.apple.com/ with your iOS developer account credentials. Once you have
logged in to the portal, click the My Apps link (see Figure C-1).

C

https://itunesconnect.apple.com
https://itunesconnect.apple.com

554 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 554

FIGURE C-1

On this screen you will see all your iOS and Mac OS applications. You can either add a new applica-
tion or manage one of the existing ones. To create a new application profi le, click the Add New App
button in the top-left corner of the window (see Figure C-2).

FIGURE C-2

Creating an Application Profi le ❘ 555

bapp03.indd 11/04/2015 Page 555

Selecting the New App option will display a popup window where you need to enter some basic
information on your new app, including the Name, Bundle ID, and version number (see Figure C-3).

FIGURE C-3

The Bundle ID (also known as an App ID) must be registered with your iOS developer account. If
you haven’t created an App ID, you will need to do so now, before you can proceed with the next
steps. Creating an App ID has been discussed in Appendix A. To get started, log in to your iOS
developer account at https://developer.apple.com/ios and navigate to the Identifi ers section of
the website.

Once you have fi lled in the fi elds in the popup window, click Create to go to the Application
Information screen (see Figure C-4).

At the top of the page is a tabbed menu bar (see Figure C-5) with four tabs labeled App Store,
Features, TestFlight, and Activity.

The App Store tab is selected by default, and the new application’s status is displayed in the left-
hand side of the screen. A new application profi le starts out in the Prepare For Submission state. You
then fi ll in all the relevant information to complete the application profi le and click the Save button
to save this information (see Figure C-6).

Once you have saved the application profi le, you will need to upload a build from Xcode. The pro-
cess of uploading a build is covered later in this appendix. First let’s examine each of the tabs on the
application profi le screen.

https://developer.apple.com/ios

556 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 556

FIGURE C-4

FIGURE C-5

FIGURE C-6

Creating an Application Profi le ❘ 557

bapp03.indd 11/04/2015 Page 557

App Store Tab
This screen has a menu on the left-hand side that provides the following options:

 ➤ App Information

 ➤ Pricing and Availability

 ➤ Versions

App Information
On this screen you need to specify basic information on the app, including an application name, a
SKU code, and an application Bundle ID. The Bundle ID you specify on this screen must match the
one have used in your Xcode project’s info.plist fi le.

The SKU code is not used by Apple, but is used to identify the application on the monthly fi nancial
report provided by Apple.

Toward the bottom-right corner of the screen, you will fi nd options to select a Primary and
Secondary Category under which your app will be listed in the App Store (see Figure C-7).

FIGURE C-7

558 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 558

Pricing and Availability
This screen contains options that let you specify the price of the app as well as the territories where
your app will be available for purchase (see Figure C-8).

FIGURE C-8

If you would like to provide a discount to business buyers, or educational institutions when they buy
multiple copies of your app, you can select one of the options under the Volume Purchase Program
section of the page (see Figure C-9).

FIGURE C-9

Click the Save button to save the changes you have made to this page before moving on to the
next section.

Creating an Application Profi le ❘ 559

bapp03.indd 11/04/2015 Page 559

Versions
This section allows you to provide screenshots and videos, and to confi gure application metadata for
each version of your app. A node in the menu on the left-hand side represents each version
(see Figure C-10).

FIGURE C-10

The options in this screen are grouped into several subsections:

 ➤ Version Information

 ➤ Apple Watch

 ➤ Build

 ➤ General App Information

 ➤ Game Center

 ➤ App Review Information

 ➤ Version Release

Version Information
The version information section resembles Figure C-11. Here you need to specify the following
information:

 ➤ Screenshots: You can provide up to fi ve screenshots and a video preview for different devices.
If you are submitting a universal application, you will need to provide both iPhone and iPad
screenshots.

 ➤ Description: This is the description, as you want it to appear on the App Store. It can be no
more than 4,000 characters.

 ➤ Keywords: One or more keywords that describe the app you are adding. When users search
the App Store, the terms they enter are matched with these keywords.

560 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 560

 ➤ Support URL: A URL that links to the application’s support site.

 ➤ Marketing URL: An optional URL that links to the application’s website.

FIGURE C-11

Apple Watch
The Apple Watch section contains options that allow you to upload screenshots and an icon for
your Apple Watch app (see Figure C-12). Creating Apple Watch apps is a topic beyond the scope
of this book; if you are interested, you should read the Apple Watch Programming Guide located
at https://developer.apple.com/library/prerelease/ios/documentation/General/
Conceptual/WatchKitProgrammingGuide/.

FIGURE C-12

https://developer.apple.com/library/prerelease/ios/documentation/General
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/

Creating an Application Profi le ❘ 561

bapp03.indd 11/04/2015 Page 561

Build
The Build section will contain the application binary that has been uploaded for the current applica-
tion version. If no binary has been uploaded, this section will be empty (see Figure C-13). The process
of uploading an application binary to iTunes Connect with Xcode is covered later in this appendix.

When no binary has been uploaded

After a binary has been uploaded

FIGURE C-13

General App Information
The general app information section resembles Figure C-14. Here you need to specify the following
information:

 ➤ App Icon: The icon that will be used on the App store. This icon must be 1024 x 1024 in the
JPEG or PNG format and must not have rounded corners.

 ➤ Version: This must match the value set in the Xcode project.

 ➤ Copyright: The name of the person or entity that owns the copyright to the app.

FIGURE C-14

562 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 562

Tapping on the Edit button next to the Rating link will bring up a popup window that consists of
a series of questions, the answers to which determine a rating category for your application (see
Figure C-15). The rating determines the parental controls that will apply to your application. As you
change the answers to these questions, the age limit will change.

FIGURE C-15

Game Center
The Game Center section is disabled by default, and should be enabled for applications that support
Game Center. When enabled, you will have options to confi gure leader boards, achievements, and
multiplayer compatibility. Game Center is a topic beyond the scope of this book, but if you are inter-
ested, you should read the Game Center Programming Guide located at https://developer
.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/

Introduction/Introduction.html.

App Review
The App Review section allows you to provide special testing instructions to Apple engineers when
they review your app, as well as contact information for a person in your company who will be con-
tacted if there are problems with your app.

https://developer
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html

Preparing and Uploading the Application Binary ❘ 563

bapp03.indd 11/04/2015 Page 563

Features Tab
The features tab provides options to confi gure In-App purchases and Game Center for an app.
In-App Purchases and Game Center are not covered in this book. If your app does not utilize either
of these technologies, you can ignore the contents of this tab.

TestFlight Tab
This tab provides options to distribute prerelease builds of your app to internal and external testers
using TestFlight. This is covered in Appendix B.

Activity Tab
This tab provides options to examine beta test activity. This is covered in Appendix B.

PREPARING AND UPLOADING THE APPLICATION BINARY

Once you have created and saved the application profi le, the next step involves using Xcode to
upload the binary to iTunes Connect. Before you can do this, you may need to do certain housekeep-
ing tasks; these are especially relevant when you are submitting your fi rst application.

Creating a Distribution Certifi cate
The process of creating a distribution certifi cate is very similar to that of creating a development
certifi cate. Creating a development certifi cate is covered in Appendix A.

To create a distribution certifi cate, create a Certifi cate Signing Request (.csr fi le) using the Keychain
Access utility on your Mac, and save this fi le onto your computer. You can use the same .csr fi le
that you used to create a development certifi cate.

Log in to your iOS developer account at https://developer.apple.com/ios and navigate to the
Certifi cates section of the developer portal. Click the New Certifi cate button on the top-right side of
the screen and choose App Store and Ad Hoc under the Production category (see Figure C-16).

Scroll down to the bottom of the page and download the Worldwide Developer Relations
Intermediate Certifi cate using the link provided if you haven’t done so already. To proceed with
creating the distribution certifi cate, click Continue.

On the next screen, upload the certifi cate request fi le that you saved on your Mac and then click the
Generate button to create the distribution certifi cate.

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certifi cate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to fi rst
approve the certifi cate request. When your certifi cate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certifi cate and save it to your Mac. By default, the certifi cate should be saved to your
Downloads folder.

https://developer.apple.com/ios

564 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 564

FIGURE C-16

Creating a Distribution Provisioning Profi le
The process of creating a distribution provisioning profi le is similar to that of creating a devel-
opment provisioning profi le. Creating a development provisioning profi le has been covered in
Appendix A.

Before you create a distribution provisioning profi le, you must ensure that you have created a distri-
bution certifi cate and have registered an App ID with your developer account.

The main differences between a distribution provisioning profi le and a development provisioning
profi le are that a distribution profi le does not have a list of devices included in it and requires a
distribution certifi cate.

To create a distribution provisioning profi le, log in to your iOS developer account at https://
developer.apple.com/ios. Navigate to the Provisioning Profi les section and click the New Profi le
button on the top-right side of the screen.

When you are asked to choose the profi le type, choose App Store from the list of available options
and click Continue (see Figure C-17).

https://developer.apple.com/ios
https://developer.apple.com/ios

Preparing and Uploading the Application Binary ❘ 565

bapp03.indd 11/04/2015 Page 565

FIGURE C-17

In the next screen, select the App ID that corresponds to the app that you want to submit to iTunes
Connect and click Continue. Finally, select the distribution certifi cate and generate the provisioning
profi le. Download the provisioning profi le and double-click the downloaded fi le to install the distri-
bution profi le in Xcode.

Confi guring the Xcode Project
The next step in the process involves setting up your Xcode project and submitting a build to iTunes
Connect. Before you begin, make sure you have installed both your distribution certifi cate and
distribution provisioning profi le.

Open the project that you want to submit in Xcode. If the project’s App ID is different from what
has been registered with the iOS Provisioning Portal, edit the value of the Bundle identifi er key in
the project’s info.plist fi le to match.

Save the info.plist fi le, disconnect any connected devices, and ensure that the Scheme/Target
selector in the Xcode toolbar is set to build for a generic iOS Device (see Figure C-18).

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

566 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 566

FIGURE C-18

Scroll down to the Code Signing section and locate the node that’s labeled Provisioning Profi le. You
may need to expand this node to see the values for individual build confi gurations (such as Debug
or Release). Select the provisioning profi le you created earlier from the list of profi les for the release
confi guration (see Figure C-19).

FIGURE C-19

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Release,
and then expand the Release node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the distribution certifi cate you created and installed earlier (see Figure C-20).

Preparing and Uploading the Application Binary ❘ 567

bapp03.indd 11/04/2015 Page 567

FIGURE C-20

Select the Edit Scheme menu from the Scheme/Target multi-selector in the Xcode toolbar (see
Figure C-21).

FIGURE C-21

In the Edit Scheme dialog box, select Archive from the left menu to bring up archive-specifi c
options. Ensure the Reveal Archive in Organizer option is selected and Build Confi guration is set to
Release (see Figure C-22). Click OK to dismiss this dialog box.

FIGURE C-22

568 ❘ APPENDIX C APP STORE DISTRIBUTION

bapp03.indd 11/04/2015 Page 568

At this point you are ready to prepare an archive that can be distributed to your clients/beta-testers. To
prepare an archive, simply select Product ➪ Archive in Xcode. This builds your project for App Store dis-
tribution. During the build process, Xcode may ask you to allow access to your distribution certifi cate.

If it does, click the Allow button. When the archive is successfully built, the Organizer opens auto-
matically, revealing the archive.

To submit the archive to the iTunes Connect portal, ensure the relevant archive is selected, and click
the Upload to App Store button. The Organizer will ask you for your iTunes Connect login creden-
tials, and upload the archive to iTunes Connect (see Figure C-23).

FIGURE C-23

SUBMITTING THE APP FOR REVIEW

Once the application binary has been uploaded to iTunes Connect, you will need to log in to iTunes
Connect once again, and click the Submit for Review button in your application record page to sub-
mit the app for review (see Figure C-24).

FIGURE C-24

569

bindex.indd 12/07/2015 Page 569

INDEX

Symbols

! (exclamation mark), for implicitly unwrapped
optional, 42

/ and /, for multi-line comments, 39
// (forward slashes), for comments, 39
: (colon), for superclass and subclass

relationship, 74–75
? (question mark), appending to data type, 41
[] (subscript operator), for index numbers, 181
{ } (curly braces), for closure expression, 59
+ operator, for concatenating strings, 39–40
+= operator, to append string to another, 40
-> (return arrow), 53–55, 64
1x version of image, 169
2x version of image, 169
3x version of image, 169

A

accelerometer, iOS Simulator lack of support
for, 33

acceptance criteria, of project, 488
accessibility identifi er, for buttons, 474
accessory views, for annotation callout, 447
accountStatusWithCompletionHandler

method, of CKContainer object, 351
action methods, 145

associating with bar button item, 238
in view controller class, 114, 135–136

action sheets, 159–160
actions, creating, 110

in ViewController.swift fi le, 163

Activate Console menu item, 60
active build scheme, running/stopping,

30
active user interface element, 145
Adaptive layout feature of iOS8, 90
adaptive layout problem, 102
Add Contract button type, 98
Add New Record To Database button,

managed object in data store from,
396–397

addAction method, 156–157
addAnnotation:animated: method, 445
addFromCKRecord method, 366–367
addImage method, 420
AddPhotoViewController class

action methods in, 365
creating outlets in, 365

AddPhotoViewController.swift fi le,
362–363, 365, 374–375

code to dismiss, 377
onDismissKeyboard method, 375
UIImagePickerDelegate methods, 377
viewDidLoad method, 375–376

addTextFieldWithConfigurationHandler
method, of UIAlertController class,
157–158

addURL method, 420
ad-hoc distribution, 5
administrativeArea property, of

CLPlacemark object, 435
alert views, 155–159

vs. action sheets, 159
cancel button in, 156

570

alerts:XCUIElementQuery method – ArithmeticCalculator class

bindex.indd 12/07/2015 Page 570

displaying, 157
verifying display, 483

alerts:XCUIElementQuery method, 476
Align button, on storyboard, 104
Align constraints popup window, 14, 15–16
alignment constraint editor, 100–101, 175

for button, 131, 133
AllowFragments parameter, 402
allowsCellularAccess attribute, of

NSURLSession, 404
altitude property, of CLLocation object, 432
Always Authorization permission type, 428
Anchor attribute, of popover, 258
animation, 170–172
animationDuration property, of image view,

172
animationImages property, of image view,

170–172
annotations

accessory views for callout, 447
adding to map, 444–446
Swift class to represent data, 451

app. . See applications
app icons, in asset catalog, 168
App ID (Bundle ID), 555, 557

associating with provisioning profi le, 518, 520
creating, 511–513
creating iCloud-enabled, 297–302
for provisioning profi le, 532
registering, 535
registering with iOS Provisioning Portal, 316,

354
wildcard, 513

App Store distribution, 553–568
append() method, 181
appending strings, 40
AppIcon, 88
Apple

app review criteria, 9
approval of build for external testers, 544
TestFlight service, 9

Apple iOS SDK, 4, 6

Apple servers, uploading data to, 296
Apple Watch, 540, 560
Apple Watch Programming Guide, 560
application binary, 8

distribution certifi cate creation, 563–564
distribution provisioning profi le for, 564–565
preparing and uploading, 563–568
submitting for review, 568

application data, Documents directory for, 296
application identifi er, in App ID, 511
Application Information screen, 535–541,

555–556, 557
App Review section, 541
Apple Watch, 540
Build section, 540
Code Signing section, 542, 566
Game Center section, 541
General App Information, 540–541
pricing and availability, 537
versions, 537–539

application method, 470
application profi le, 553

creating, 534–535
application sandbox, 296
application settings, 285–294
Application Transport Security (ATS), 406–408

confi guring to allow insecure HTTP
connection, 414

disabling, 407
applications

development process, 6–9
installing and uninstalling, 32
running on iOS Simulator, 115
terminating with runtime error, 41

approval process for application, 553
ARC (Automatic Reference Counting), 73
archive

for clients/beta testers, 544
options, 567
preparing, 568

argument label, 54
ArithmeticCalculator class, methods, 497

571

ArithmeticCalculator.swift fi le – build

bindex.indd 12/07/2015 Page 571

ArithmeticCalculator.swift fi le, 496
updating code, 499–500

ArithmeticCalculatorTests.swift fi le,
495–496

Array variable, adding to ViewController
class, 130

arrays
for data from picker view, 180
declaring, 213
for-in loop to iterate across, 47
Preference Items, 287–288
for property list, 279
of strings, declaring, 242
in Swift, 180–181
of UIImage objects, 170–172
variadic parameters and, 55
in view controller class, 188

Aspect Fill, for View Mode attribute, 175
assertions, unit test failure, 477–478
asset bundle, for application icon, 88
asset catalog, of project, 167
Asset fi eld type, in CloudKit, 329
Assets.xcassets fi le, 88, 125, 167–168, 186,

223
creating new image set, 173

assistant editor, 26, 28, 106, 188
displaying, 108, 110, 132

asynchronous operation, waiting for completion,
479

ATS (Application Transport Security), 406–408
confi guring to allow insecure HTTP

connection, 414
disabling, 407

attribute editor
Initial View Controller option, 195
for label font size, 133

Attribute Inspector, 16, 92
for button background color change, 127
for button properties, 97
for collection views, 224
Content property for table view, 205, 206
displaying, 14

for Image attribute of image view, 175
for map view, 444
for Scale Factors property, 240
for segue, 120, 121
for tab bar item content, 232–233
for table view, 213
for text attribute of label, 149, 173
for text fi eld, 143

attributes, for entity in data model, 386
authentication, setting custom HTTP request

header to support, 405
authorizationStatus method, 433
availability, information for App Store, 537

B

background color
action sheet to change, 161–165
changing, 14

for button, 135, 410
background image

adding, 131
for button, 98
for default scene of storyboard, 126

background of screen, tapping to dismiss
keypad, 146

background process, for synchronization,
296–297

backgroundSessionConfiguration

WithIdentifier method, 404
base class, 74
beta testing, 507. See also TestFlight service

(Apple)
adding user, 548

.bmp fi le format, 167
body of loop, 45, 47, 48
boilerplate code, adding, 21
Bool data type, 38
break statement, 49
defer statement and, 66

breakpoint navigator, 26
build, 8

572

build target – CLLocationManager instance

bindex.indd 12/07/2015 Page 572

uploading to iTunes Connect, 544
build target, 465
Bundle ID (App ID), 21, 340, 555, 557

creating, 511–513
for provisioning profi le, 532
registering, 535

buttons
adding to navigation bar, 196–197
adding to scene, 135
adding to storyboard, 112, 126–128, 199
in alert view, 156–157
alignment constraint editor for, 131, 133
background color, 410
connecting to Touch Up Inside event, 114
constraints for sizing, 127, 128
images for, 98
standard types, 98

buttons:XCUIElementQuery method, 476
Bytes fi eld type, in CloudKit, 329

C

Caches directory, 296
Calculator class, building, 81–83
calculator function, 61
camera, 455–464

hiding button for device without, 463
iOS Simulator lack of support for, 33
specifying, 456

Cancel button, 377
in alert view, 156

canShowCallout property, in
MKPinAnnotationView class, 446

case clause, 44–45
case keyword, for enumerations, 77
catch-all clause, 65
catching errors, 64–66
categories, for application in App Store, 557
cell styles, for table row, 206–207
cellForRowAtIndexPath method, 210, 214,

242–243, 283
cells, in collection views, 219–220

cellular radio, 427
center member of region, 444
centering labels, 92

constraints for, 100
Certifi cate Assistant dialog box, 514, 528
certifi cate request, 513

creating for distribution certifi cate, 528–531
information on, 515, 516
team manager approval of, 515, 531

Certifi cate Signing Request, 563
Character data type, 38
childrenMatchingType method, 471
CircleArea method, 399, 409
CKAsset class, in CloudKit, 329
CKContainer objects, 327
CKDatabase instance
fetchRecordWithID method of, 352
saveRecord method of, 351–352

CKRecord objects, 329
CKRecordID instance, creating, 351
CKReference class, in CloudKit, 329
CKReference data type, 333
class keyword, 70
classes

computed properties, 76–77
conforming to multiple protocols, 78
creating with Swift, 70
inheritance, 74–76
methods, 71–73
properties, 70–71
saving fi le for new, 388
for user interface testing, 469–470

cleanup code, for error, 66
CLGeocoder class, 434
client-side data model, Core Data for, 365–367
CLLocation class, in CloudKit, 329
CLLocation object, 432
CLLocationDegrees value, 432
CLLocationManager class, 428
desiredAccuracy property of instance, 430
service availability methods, 433

CLLocationManager instance

573

CLLocationManagerDelegate protocol – ContactData class

bindex.indd 12/07/2015 Page 573

distanceFilter property of, 430
retrieving location updates, 431

CLLocationManagerDelegate protocol,
428, 440

methods for location update, 431
methods relating to heading updates, 435

close button, and modal view, 262
closures, 57–61

closure expressions, 59
types, 58–59

CloudKit, 327–379
checking for service availability, 351
code to fetch initial data from, 368–373
common operations, 350–352
creating records programmatically, 351–352
development and production environments,

330
preparing to use, 338–350

CloudKit dashboard, 330, 331–338
for adding new record, 335
building server-side data model with, 367
creating record type, 331–333
generation of unique record identifi ers, 351

CloudKitPhotos application, 352–379
DetailViewController.swift fi le, 360
user interface elements, 354–365

CloudLoaderDelegate method,
implementing, 371–372

CloudLoaderDelegate protocol, 368
CLPlacemark objects, 434, 435
Cocoa Touch class, 265
Cocoa Touch layer, 96
Code Signing Identity node, 543

Debug node, Any iOS SDK node, 525
Release, Any iOS SDK, 566

Code Signing section, 542, 566
coding, 8
collection views, 217–227

appearance setup, 224
cell setup, 225
cells, 219–220
delegate and data source, 220–222

Interface Builder for creating, 218–219
user selection of item, 221

collectionView method, 221, 226–227
collectionViews:XCUIElementQuery

method, 476
colon (:), for superclass and subclass

relationship, 74–75
color, background

action sheet to change, 161–165
changing, 14

for button, 135, 410
comments, 39
Company Identifi er, domain name as, 239
comparing dates, 182–183
compass, 427
compass headings, 435–436
compilation, 8
compile-time errors, 490

issue navigator to list, 24–25
components, returning number in picker view,

179
computed properties, 76–77
concatenating strings, 39–40
Connect button, to create outlet, 109
ConnectionDelegate protocol, 80
constants, creating and naming, 37–38
constraints, 95, 99–106

for centering labels, 100, 112
in default scene for CoreDataTest

application, 394–395
popover layout, 266
for scroll view, 250, 252–253
specifying programmatically, 248
for toolbar, 235, 236, 264
updating frames to match, 127

constraints editor, 132
for collection view cell, 225
for collection views, 224
displaying, 126
for image view, 131
for table view, 212, 281

ContactData class, 389

574

ContactData entity – date and time

bindex.indd 12/07/2015 Page 574

ContactData entity, NSManagedObject class
to represent, 393

containers for iCloud data, 327
adding records, 334–336

content area of scroll view, height and width,
246

contentOffset property, and scrolling
behavior, 246, 247

contentsForType() method, 310
contentSize property, 246
continue statement, 49–50
control fl ow statements, 42–49
if statement, 42–43
if-else statement, 43–44
loops, 45–49

breaking out of, 49–50
for-in loop, 46–47
for loop, 45–46
repeat-while loop, 48–49
while loop, 47–48

switch-case statement, 44–45
control transfer statements, 49–50
coordinate property

of CLLocation object, 432
in MKAnnotation protocol, 445

copyright, 541, 561
Core Data, 381–398

adding to project, 384–389
basics, 381–383
for client-side data model, 365–367
vs. CloudKit, 327
instantiating objects, 389–390
persisting objects into database, 21
to serialize/de-serialize object to SQLite

database, 391–398
Core Location, 427–442

accuracy, 430
adding reference to, 437–438, 449
compass headings, 435–436
error handling, 433
permissions, 428–430
receiving updates, 431–432

CoreDataTest application, 391–398
constraints in default scene, 394–395
data model fi le for, 392

CoreGraphics framework, 96
count method, 181
country property, of CLPlacemark object, 435
createDocument method, 323–324
.csr fi le, 563
curly braces ({ }), for closure expression, 59
current date and time, 182
custom button type, 98
custom pickers, 184–185
custom segues, 120
CustomPickerTest application, 186–192

D

dashboard. . See CloudKit dashboard
data classes, 310
Data Formatting Guide, 184
data in iCloud, 327
data model fi le, for CoreDataTest

application, 392
data source methods

for collection views, 225–227
implementing in view controller, 213

data source object
for dynamic table views, 209
for picker, 177

setup, 178
data source property, for table view, 212
data types, 38–39

appending ? to, 41
default, for property list items, 279
retrieving preference values of different,

289–290
database

persistent store coordinator for, 382
persisting objects into, 21
reading managed objects from, 397–398

database tables, as entities, 383
date and time, current, 182

575

date picker – distanceFromLocation method

bindex.indd 12/07/2015 Page 575

date picker, 177
date property, of date picker, 182
dates, in Swift, 182–184
Date/Time fi eld type, in CloudKit, 329
debug navigator, 26
debugger area in workspace window, 30
declaration

of constant or variable, 38
of functions, 53

default case, in switch statement, 44–45
default container, 327
default image, for image view, 170
default scene

adding UILabel object, 149, 187
adding UITableView instance, 212
embedding as root view controller, 200

Default state, for UIButton object, 98
default values for member variables, initializer

for, 73
default zone, 335
defaultContainer class method, of

CKContainer class, 328
DefaultValue key, in Preference Items

property, 288
defer statement, 66
deinit keyword, 73
deinitializer, 73
delegate methods

for collection views, 225–227
implementing in view controller, 213

delegate object
for dynamic table views, 209
for picker, 177

setup, 178
for receiving location updates, 428

delegate property, for table view, 212
DELETE (HTTP verb), 401
DeleteSelf, for fi eld, 336
deleting

fi elds in CloudKit records, 333
fi les and groups, 23
item from Root.plist fi le, 291

record type, 333
records in CloudKit, 336

deploying to production, 337–338
desiredAccuracy property, of

CLLocationManager instance, 430
destructive button on action sheets, 159

creating, 160
Detail Disclosure button type, 98
detail view controller scene, 359
DetailViewController.swift fi le, code to

display information on Photo instance, 374
development certifi cates

creating, 513–517
including in provisioning profi le, 519, 521
for profi le, 305–306

development environment, 330
development provisioning profi le, 304

creating, 316, 354, 518
vs. distribution provisioning profi le, 564
information on, 345

development schema, resetting, 337
Device Manager window, to register device for

development, 508
device-independent units, for screen size, 86
devices. . See iOS devices
dictionary

adding to view controller class, 189
of key-value pairs for preferences, 289
in Preference Items property, 288
for property list, 279

Dictionary object, 186
Did End On Exit event, 412

of text fi eld, 145
directory, for application on device fi le

system, 296
Disabled state, for UIButton object, 98
dismissing popovers, 257–258
dismissViewControllerAnimated method, 262
distanceFilter property, of

CLLocationManager instance, 430
distanceFromLocation method, of

CLLocation object, 432

576

distribution build – Explicit App ID

bindex.indd 12/07/2015 Page 576

distribution build
creating distribution certifi cate, 528–531
preparing for TestFlight, 527–544

distribution certifi cate, creating, 528–531,
563–564

distribution provisioning profi le, 304, 518
for application binary, 564–565
creating, 531–534

DivisionByZero, error handling, 67–68
do . . . catch statement, 64–65
dock, 117, 118
document outline, 119
documents

opening existing, 312
saving to iCloud, 312–313
searching iCloud for, 313–315

Documents directory, for application, 296
domain names

as Company Identifi er, 239
uniqueness of, 21

Double data type, 38
in CloudKit, 329

doubleTap method, 473
downloading

development certifi cate, 515
distribution certifi cate, 531
provisioning profi le, 349–350, 522
Xcode, 6, 7

downloadPhotosFromCloud method,
implementing, 371

dragging, recognizing, 270
dynamic table views, 207–211

E

earlierDate method, 182–183
Edit Scheme dialog box, 543, 567
editor area in playground screen, 36
editor area in workspace window, 26–28

opening fi les in, 33–34
elementBoundByIndex method, 471, 474

ElementCollectionViewCell class, 221, 225
elementMatchingType method, 471
elementType property, of XCUIElement

Attributes protocol, 475
else clause, for if statement, 43–44
e-mail notifi cation, to new user account, 546,

549
empty string, initializing, 39
enabled property, of XCUIElement

Attributes protocol, 475
encapsulation, 76
encodeWithCoder method, 279
Enterprise iOS Developer Program, 5
entities

defi ning in data model, 386
description, 383

entitlements
enabling for application target, 354
enabling in Xcode project, 308–309, 350
iCloud-specifi c, 317

enum keyword, 77
enumerations, 77

creating to represent errors, 67
to represent errors, 63

environment variables, setting arguments of,
470

ephemeralSessionConfiguration
method, 404

error handling, 63–68
defer statement, 66
suppressing, 65
throwing and catching, 64–66

Errortype protocol, 63
exception

from failure to load document, 310
in web services connection constraints, 407

exclamation mark (!), for implicitly unwrapped
optional, 42

expectationForPredicate method, of
XCTestCase class, 479

Explicit App ID, 340

577

external testers – .gif fi le format

bindex.indd 12/07/2015 Page 577

external testers
information for, 537
registering, 549–552

F

Facebook. See also social media integration
actions for sharing on, 423
code to post to timeline, 425
displaying share sheets, 421–425

fetch request, 391
fetchExistingContactData method, 397
fetchListOfPhotos method, implementing,

370–371
fetchRecordWithID method, of CKDatabase

instance, 352
fi elds

adding to record type, 332
in CloudKit records, 329

fi le coordinator object, 310
fi le formats, UlImage supported, 167
fi le options dialog box, 122

iOS Resource section, Property List, 277–278
fi le presenter object, 310
fi les

creating empty, on iCloud, 324
deleting, 23
opening in editor area, 33–34

final keyword, 76
fi nd navigator, 24
fi rst responder, 145
Fixed Space style, for toolbar buttons, 237
fl at app structure, 230

tab bar controller for, 229
Flexible Space style, for toolbar buttons, 237–

238
Float data type, 38
font property, of UILabel class, 99
font size, for labels, 133
footer, in table views, 203
for loop, 45–46

forced try expression, 65
foreground image, for button, 98
for-in loop, 46–47
form sheet presentation style, 260
format strings, for dates, 183–184
forward slashes (//), for comments, 39
forward-geocoding, 434
Foundation framework, 96

mapping objects to JSON types, 402
frame property, of XCUIElementAttributes

protocol, 475
frames, updating, 128
framework, 95

layers in, 96
freeing resources, deinit method for, 73
FruitDetailViewController class, outlets

in, 134
FruitList template, 124–139

image resources, 125–126
FruitList.swift fi le, 129–130
full screen presentation style, 260
func keyword, 53, 58
function types, 57
functions, 53–56

declaration, 53
parameters and return values, 53–55

G

Game Center Programming Guide, 541, 562
geocodeAddressString method, 434
geocoding, 434–435
geographic North Pole, 436
gesture recognizers, 270–271

adding to view controller class, 146
tap, 175

gestures, XCUIElement methods for,
473

GET (HTTP verb), 401
getter, 76
.gif fi le format, 167

578

Git repository – image resources

bindex.indd 12/07/2015 Page 578

Git repository, 21
global closures, 58
GPS, 427
Green stage, 488
group

creating, 23
deleting, 23
for unit test fi les, 465, 486

grouped table view, 203, 211–215

H

hard disk space, for app development, 3
header, in table views, 203
heading updates, 435
headingAvailable method, 433, 435
height of picker rows, 185
HelloSwift project, opening, 33
hierarchical app structure, for navigation

controllers, 229, 230
hierarchical settings pages, in Settings

application, 287
Highlighted state, for UIButton object, 98
Home screen icon, 9–10
horizonalAccuracy property, of location

object, 432
HTTP connection, confi guring ATS to allow

insecure connection, 414
HTTP request header, setting custom to support

authentication, 405
HTTP status codes, 400
HTTPAdditionalHeaders attribute, of

NSURLSession, 404
HTTPMaximumConnectionsPerHost attribute,

of NSURLSession, 404

I

iCloud account, 328
iCloud architecture, 296–297
iCloud storage, 295–325

basics, 295–297

checking for service availability, 309–310
creating empty fi le on, 324
creating new document, 311–312
opening existing document, 312
preparation to use APIs, 297–309
saving documents, 312–313
searching for documents, 313–315
using document storage, 310–315
viewDidLoad method for implementing, 320

iCloud Storage APIs, 296, 297–309
creating iCloud-enabled App ID, 297–302

iCloud-enabled App ID, 345
creating, 338–343
creating provisioning profi le, 302–308

iCloud-specifi c entitlements, 308–309, 317
icon

for App store, 540
Home screen, 9–10
size for application, 87–88

icon fi le, for settings application, 286–287
IDE (integrated development environment). . See

Xcode
identifi er, for default container, 327–328
identifi er attribute, of collection view

cell, 225
Identifier key, in Preference Items

property, 288
identifier property, of XCUIElement

Attributes protocol, 475
Identity inspector, 201

for accessibility identifi er, 474
if statement, 42–43

optional binding in, 41–42
Image attribute, setting for image view, 174–175
image picker

displaying, 456–458
displaying in popover controller, 457

image resources
adding to project, 173, 186, 223, 263
for FruitList template, 125–126
for share sheet, 422
for tabbed application, 240

579

image sets – iOS developer account

bindex.indd 12/07/2015 Page 579

image sets
in asset catalog, 168
creating, 186

image source, selecting, 456
image view
animationDuration property of, 172
animationImages property, 170–172
default image for, 170
selecting from Object library, 131
startAnimating method of, 172

ImageInformationViewController
class, 265

ImageInformationViewController.swift
fi le, 267–268

ImagePicker application, 459–464
layout constraints for, 461

imagePickerController method, 457, 458
imagePickerControllerDidCancel method,

457, 463
images

adding to view, 167–176
attaching to share sheet, 420
for button, 98

immutable array, 180
immutable strings, 39
implicitly unwrapped optional, ! (exclamation

mark) for, 42
import statement, 439
in keyword, 59
increment expression, in for loop, 45–46
index, CloudKit creation, 338
index numbers

for array, 180
for values in tuple, 40

individual membership, for registered Apple
Developer, 4–5

Info Dark button type, 98
Info Light button type, 98
info.plist fi le, 89–90

Bundle identifi er key, 511, 524, 541–543,
557, 565

for confi guring ATS, 407
NSLocationWhenInUseUsageDescription

key, 437
for permission, 428–429
UIRequiredDeviceCapabilities key, 430

inheritance, 74–76
init initializer, 311
init? method, 279
initial expression, in for loop, 45–46
initializing, 73

empty string, 39
inspector area in workspace window, 28
installing

applications, 32
Xcode, 6, 7

instance variable, in view controller class,
108

instantiating
Core Data objects, 389–390
objects, 74

Instruments tool, 6
Int data type, 38
Int fi eld type, in CloudKit, 329
InteractionSample template, 110–115
Interface Builder, 6, 12–13, 110

creating table view with, 205–211
Interface editor

adding gesture recognizer to, 270
for delegate and data source object setup, 178

interfaces, 78. . See also protocols
intermediate certifi cate, 529–530
internal testers, registering, 545–549
iOS, 3
iOS 8

Adaptive layout feature, 90
devices not supporting, 4

iOS Dev Center, 5
iOS developer account, 4–5, 555

for application distribution through App
Store, 553

Certifi cates section, 563

580

iOS developer essentials – iTunes Connect

bindex.indd 12/07/2015 Page 580

for creating App ID, 511
for creating development certifi cate, 514
for creating distribution certifi cate, 528
for creating distribution provisioning profi le,

531–534
devices registered to, 509–510
Member Center, 508–509

Certifi cates, Identifi ers & Profi les, 338–
339

iOS developer essentials
Mac, 3
testing device, 4

iOS devices
device UDID, 507–510
differences, 86–90
inclusion in provisioning profi le, 347–348,

520, 522
location hardware, and battery drain, 428
orientations for, 89–90
supporting multiple types, 85–93

iOS Provisioning Portal
certifi cate request submission, 513
registering App ID with, 316, 354
registering UDID with, 507–510

iOS SDK (Software Development Kit), 4, 6
iOS Simulator, 4, 6, 19, 31–33

and device at fi xed location, 433
executing all unit tests in, 468
limitations, 33
rotating, 32
running app on, 115
testing app in, 17

iOS template category, 21
iPad, 85

action sheet on, 159, 160
displaying image picker in popover

controller, 457
Home screen icon sizes for, 10
icon sizes, 87–88
Mac for app development, 3
orientation support for applications, 89
physical vs. logial size, 87

user interface, vs. iPhone version, 90
iPad Simulator, running app on, 93
iPhone, 3, 85

action sheets on, 159–160
Home screen icon sizes for, 10
icon sizes, 87–88
image for, 169
Mac for app development, 3
orientation support for applications, 89
physical vs. logial size, 87
tab bar controller, limits on tab

display, 230
iPhone 5S simulator, 31
iPhone Simulator, running app on, 92
iPod Touch, as testing device, 4
Is Initial View Controller option, 355–356
is-a relationship, 74
isAvailableForServiceType method, 419
isCameraDeviceAvailable method, 456
isEqualToDate method, 182–183
isMonitoringAvailableForClass

method, 433
ISOcountryCode property, of CLPlacemark

object, 435
isRangingAvailable method, 433
isSourceTypeAvailable method, of

UIImagePickerController class, 456
Issue Navigator, 24–25, 102–103
items, in collection view, 218
iTunes App Store, 9

submitting applications to, 537
iTunes Connect

adding user to team, 545–546
App Store tab, 557–562

App information, 557
App Review section, 562
Apple Watch, 560
Build, 561
Game Center section, 562
general app information, 561–562
pricing and availability, 558
rating link, 562

581

iTunes store – let keyword

bindex.indd 12/07/2015 Page 581

versions, 559–560
creating application profi le, 553–556
creating record for application, 534–541
Features tab, 563
My Apps link, 553–554
New App option, popup window for, 555
submitting applications to, 304
submitting archive to, 568
TestFlight tab, 563
uploading beta test build to, 527
uploading build to, 544

iTunes store, unique identifi er for application,
21

J

JavaScript Object Notation (JSON), 401
JPEG fi le, 167

obtaining NSData instance for image in, 458
saving image to, 366

JSON (JavaScript Object Notation), 401
mapping Foundation objects to, 402

JSONObjectWithData method, 402
jump bars in workspace editor area, 26

K

keyboardDidHide method, 254
keyboardDidShow method, 254

implementing, 255–256
keyboards

associating with text fi eld, 143–144
displaying and dismissing, 145–146
for editable text views, 146
for share sheet, 418
tap gesture recognizer to dismiss, 153–154,

412–414
view controller class notifi cation of, 254

Keychain Access utility, 513, 528, 563
key-value pairs

in CloudKit records, 329
data storage, 295

keywords, in Application Information screen,
539, 559

L

label property, of XCUIElementAttributes
protocol, 475

labels, 14
adding to storyboard, 92, 128–129, 133
centering, 92

constraints for, 100, 112
font size for, 133
resizing, 92
on storyboard, orange outline for, 102
updating text after button press, 114

laterDate method, 182–183
latitude member, of CLLocation object, 432
latitude/longitude, conversion to address, 434
launch fi le, 10

setting up, 16
launch image

for app, 10–11
in asset catalog, 168

launchArguments property, 470
launchEnvironment property, 470
LaunchScreen.storyboard document, 10
layout

for collection views, 217
constraints, 14
preview of, 106–107

layout constraints
for CloudKitPhotos application, 364
for CLTest application, 438–439
for iCloud document, 318
for ImagePicker, 461
for RESTClient application, 411
for share sheet, 423
for SimpleButton application, 482
on storyboard scene, 361
for SwiftCalculator, 494–495

leading attribute, of views, 102
let keyword, 37, 180, 186

582

library area in workspace window – MKPinAnnotationView class

bindex.indd 12/07/2015 Page 582

library area in workspace window, 28–29
List fi eld type, in CloudKit, 329
loadDocument method, 320
loadFromContents method, 310, 318
loadImageFromFileInDocumentsDirectory

method, 374
locality property, of CLPlacemark object,

435
location

retrieval. . See Core Location
simulating test location, 32
of storage for saving playground, 36

Location fi eld type, in CloudKit, 329
location hardware, and battery drain, 428
location property, of CLPlacemark object,

435
location updates

adding code to receive, 439–441
UIButton instance to start/stop, 439

locationManager method, implementing,
431–432, 440–441

locationManagerShouldDisplay

HeadingCalibration method, 435, 436
locationServicesEnabled method, 433
LoginSample project, 147–154
longitude member, of CLLocation object,

432
loop condition, in while loop, 47

M

Mac, 3
MacOS X, 3
macros

to create assertions, 477
for XCTest assertions, 491

magnetic North Pole, 436
Main.storyboard fi le, 92, 117–118
managed object context, 381–382

instantiating, 390
managed object model, 383

creating, 384
instantiating, 389

managed objects, 381
reading, 391
reading from database, 397–398
writing, 390–391

mandatory methods, implementing in
conforming class, 189

Map Kit, 443–453
accessory views, 447
adding annotations to, 444–446
adding reference to, 449
adding view, 450–451

Maps application, toolbar, 235
maps:XCUIElementQuery method, 477
MapTest application, 447–453
mapType property, of MKMapView instance, 444
mapView method, 446, 452
Marketing URL, in Application Information

screen, 539, 560
MathService web service, 399–400
member variables, in protocol, 78
memory (RAM)

for app development, 3
for images, 167

MessageListener protocol, 78–79
method names, in protocol, 79
methods, 71–73

overriding, 75
variables passed as parameters to, 38

microphone, iOS Simulator lack of support
for, 33

minmax function, 55–56, 60–61
MKAnnotation protocol, 445
MKAnnotationView class, 445
MKCoordinateRegion structure, 444
MKMapView class, 443
mapType property of, 444
setRegion method of, 444

MKMapViewDelegate protocol, 445, 451
MKPinAnnotationView class, 445

583

modal segues – NSObject subclass

bindex.indd 12/07/2015 Page 583

canShowCallout property in, 446
pinTintColor property, 446

modal segues, 120
modal views, 257, 260–262

alert views as, 155
mode, of date picker, 181
Model-View-Controller pattern, and

Core Data, 381
.mom fi le extension, 383
multi-line comments, 39
multi-touch gestures, simulating, 32
mutable array, adding element, 181
mutable strings, 39
MutableContainers parameter, 402
MutableLeaves parameter, 402

N

names
of App ID, 340
of constants, 38
of new class, 389
of provisioning profi le, 348, 521, 523
of record type, 332
of variables, 38

nameToImageMapping dictionary, 191
navigation bar, 196
navigation controllers, 193–201

adding to storyboard, 193–195
embedding default scene as root view

controller, 200
embedding Table View Controller scene in,

356
hierarchical app structure for, 229, 230
interface, 196–197

navigationBars:XCUIElementQuery
method, 476

Navigator area in Xcode workspace, 22–26
nested closures, 58
NetworkManager class, 78–79
NetworkTimeout, as NetworkError

enumeration, 63

nil, 41, 71
non-retina device, image for, 169
North Pole, geographic, vs. magnetic, 436
NSAllowsArbitraryLoads dictionoary, 407
NSAppTransportSecurity key, 414
NSArray class, in CloudKit, 329
NSCoding protocol, 279
NSData class, 457–458

in CloudKit, 329
NSDate class, 182

in CloudKit, 329
NSDate Class Reference, 183
NSDateFormatter class, 183
NSEntityDescription class, 383
NSError, 433
NSExceptionDomains, 407
NSFetchRequest class, 391
NSFileManager class, URLForUbiquity

ContainerIdentifier() method
of, 309

NSFilePresenter protocol, 310
NSJSONSerialization class, 402
NSLayoutConstraint Class Reference, 95
NSLayoutConstraint instance, 95
NSLocationWhenInUseUsageDescription

key, 437
NSManagedObject class, 366, 381, 389

to represent ContactData entity, 393
NSManagedObjectContext class, 382
NSManagedObjectModel class, 383, 389
NSMetadataQuery class, 315
startQuery method of, 314

NSMetadataQuery Class Reference, 315
NSMetadataQuery object, statements to

instantiate, 321
NSMetadataQueryDidFinishGathering

Notification message, 314
NSMutableString class (Objective-C), 39
NSMutableURLRequest, creating from

URL, 406
NSNumber class, in CloudKit, 329
NSObject subclass, creating, 129

584

NSPersistentStoreCoordinator class – onFacebookShare method

bindex.indd 12/07/2015 Page 584

NSPersistentStoreCoordinator class, 382
creating instance, 390

NSPredicate class, 313–314
NSSessionDelegate protocol, 404
NSString class, 39

in CloudKit, 329
NSUDID class, UDIDString method of, 351
NSURL instance, retrieving, 314
NSURLConnection API, 403
NSURLRequest instance, 406
NSURLSession API, 403–404

protocols in, 404
NSURLSession class

creating instance, 404–405
data task creation, 405–406

NSURLSession programming guide, 406
NSURLSessionConfiguration class, 403
NSURLSessionDataDelegate protocol, 404
NSURLSessionDataTask class, 403
NSURLSessionDownloadDelegate

protocol, 404
NSURLSessionDownloadTask class, 403
NSURLSessionStreamDelegate protocol, 404
NSURLSessionStreamTask class, 403
NSURLSessionTaskDelegate protocol, 404
NSURLSessionUploadTask class, 403
NSUserDefaults object, 289, 290
numberOfComponentsInPickerView

method, 190
numberOfLines property, of UILabel class, 99
numberOfRowsInSection data source method,

210, 213–214, 242, 283
numberOfSectionsInCollectionView data

source method, 221, 226–227
numberOfSectionsInTableView data source

method, 210, 213, 283
implementing, 242

O

Object library, 14–15
Bar Button Item, 235, 236, 357–358

Collection View object, 224
Date Picker component, 181
displaying, 110, 131
Image view, 264
Label object, 201
Map Kit view, 444, 450–451
Navigation Controller, 193
Picker View component, 177–178, 187
Scroll View, 245, 250
Segmented Control instance, 450
selecting label from, 133
Tab Bar Item, 234
Table View object, 281
Text Field object, 143, 144
Text View element, 146
Toolbar, 235, 264
View Controller object, 200–201, 233

Objective-C, 8, 35
custom getters and setters, 76
NSMutableString class, 39
NSString class, 39

object-oriented programming (OOP), 69–83
objects. See also managed objects

instantiating, 74
persisting into database, 21

observers, removing all, 255
onAdd method

implementing, 396–397
in ViewController.swift fi le, 500–501

onButtonPressed method, implementing, 440
onButtonTapped method, implementing,

482–483
onCalculateArea method, implementing,

413–414
onCamera method, in ViewController.

swift fi le, 462
onDismissKeyboard method, 375
onDivide method, 501–502
one-to-many relationship, between record types

in CloudKit, 333
one-to-one relationship, 333
onFacebookShare method, 425

585

onMultiply method – Placeholder attribute

bindex.indd 12/07/2015 Page 585

onMultiply method, 502–503
onPhotoLibrary method, in

ViewController.swift fi le, 462
onPresentActionSheet method, 164–165
onSaveDocument method, 323
OnSaveRecord method, implementing, 377–

379
onSegmentChanged method, of view controller

class, 452
onSelectPicture method, 376
onSubtract method, in ViewController.

swift fi le, 501
OnTapGestureDetected method, 273
onTwitterShare method, 424–425
OOP (object-oriented programming), 69–83
openWithCompletionHandler method, 312
optional attribute, for method or property, 80
optional binding, 41
optionals, 41–42

return values as tuple, 54
orange outline, for label on storyboard, 102
organization identifi er, in App ID, 511
orientation property, of XCUIDevice, 471
otherElements:XCUIElementQuery

method, 477
outlets, 108–109

Connect button to create, 109
creating and connecting to image view, 132
creating in AddPhotoViewController

class, 365
creating in ViewController class, 152
in DetailViewController class, 362
for iCloud Service, 319
mapModeSegmentControl, 450
for popover text fi elds, 266–267
for Scroll View object, 245
for table view, 240
for text fi elds on scroll view, 253
in view controller class, 112, 145

override keyword, 75

P

parameters
closure used as, 59
of functions, 53–55
variables passed as, 38

parental controls, 562
Passthrough attribute, of popover, 258
password

constraints for label, 149
user interface to collect, 147–154

performance testing methods, 489
period characters (. . .), 55
permissions, to access location information,

428–430
persistent store coordinator, 382
persistent stores, 389
photo library, 455–464
Photo record type, 367
photo sharing, CloudKitPhotos application

for, 352–379
picker view, 177

returning number of components, 179
pickers, 177–192

custom, 184–185
pickerView method, 179, 185, 190, 191
pickerView:didSelectRow:inComponent:

delegate method, 192
Pin button

for constraints, 112
for displaying constraints editor popup, 126
on storyboard, 104

pin constraints dialog box, 187
adding constraints with, 149

for CLTest application, 438–439
for image view, 460

pinch, simulating, 32
pinTintColor property, in

MKPinAnnotationView class, 446
pixels, 86
Placeholder attribute, of text fi eld, 150, 410

586

placeholders – properties

bindex.indd 12/07/2015 Page 586

placeholders
in message variable, 40
in text fi elds, 143, 375

PlacemarkClass.swift fi le, 445
plain table view, 203, 204
playgrounds, Xcode, 35–37
plist fi le, code to create, 282
PNG fi les (Portable Network Graphics), 167

for button image, 98
dimensions for icons, 10
saving selected image to, 458

popover controller, displaying image picker in,
457

popoverPResentingButton class, 457
popovers, 257–259

for action sheets, 160
PopoverTest application, 262–268
POST (HTTP verb), 401
creating NSMutableURLRequest from URL,

406
postalCode property, of CLPlacemark

object, 435
predicate property, 314
predicates, 313–314

to return all records in record type, 370
Preference Items array, 287–288

reading with code, 289–290
preferences, default values in settings bundle,

290
Preferences and Settings Programming

Guide, 287
prepareForSegue method, 210, 221, 265

overriding, 122, 372–373
Present As Popover, for view

presentation, 120
Present Modally, for view presentation, 120
Present Modally segue, 260
presentation sheets, 260
presentViewController method, 456–457

of UIViewController, 157
pressForDuration method, 473

preview, of layout, 106–107
pricing, information for App Store, 537
Priority property, and constraints, 102
private database, in container, 328
private keyword, 58
private method variables, 76
privateCloudDatabase method, of

CKContainer class, 328
processor speed, for app development, 3
production environment, 330

deploying to, 337–338
project navigator, 22–26, 173

displaying, 14
root project node in, 524

Project Options dialog box, 12–13, 21
domain name as Company Identifi er, 239
for FruitList template, 125
Include Unit Tests check box, 486
option to include Core Data, 384
Organization Identifi er fi eld, 308, 350
Product Name fi eld, 308, 350
Universal device type, 85–86

Project Settings page
to add Core Data to project, 384–385
Build tab, Link Binary With Libraries

CoreLocation framework, 427, 428
Map Kit framework, 443

Social.framework, 417–418
projects, 20

acceptance criteria of, 488
adding Core Data to, 384–389
adding image resources to, 173
adding support for UI testing, 465–467
asset catalog of, 167
build targets for, 30–31
confi guring, 523–525, 541–543, 565–568
creating, 11
executing all unit tests in, 490

properties
of classes, 70–71
computed, 76–77

587

property list editor – removeAtIndex method

bindex.indd 12/07/2015 Page 587

of project, 524
protocols and, 78
of UILabel class, 99

property list editor, 277
property lists, 277–284

adding new entry to, 278
creating, 277–279
reading, 279–280

PropertyListTest application, 280–284
protocol keyword, 78
protocols, 77–80
in NSURLSession API, 404
prototype cell, 207–208

setup, 241, 357
provisioning profi le

App ID associated with, 305
creating, 344–350, 518–523
creating for iCloud-enabled App ID, 302–308
device inclusion in, 347–348
downloading, 349–350, 522
names for, 348

public database, in container, 328
publicCloudDatabase method, of

CKContainer class, 328
Push, for view presentation, 120

Q

queries
of iCloud, 313–315
for retrieving records, 352
XCUIElementTypeQueryProvider methods

for, 476
queryDidFinish method, 321–323
question mark (?), appending to data type, 41

R

RAM
for app development, 3
for images, 167

rating link, 562

reading property lists, 279–280
read-only text view, 146
recordDownloadBlock block, 368–369
recording, 478
records in CloudKit, 327, 329

adding to container, 334–336
creating programmatically, 351–352
creating relationships between types, 333–334
creating type with dashboard, 331–333
modifying and deleting, 336
resetting schema and, 337
retrieving, 352
types, 328–329

RectangleArea method, of MathService web
service, 399

red-green-refactor, 488–489
reference, to default iCloud container, 328
reference type, 39

in CloudKit, 329
refreshDocumentPreview method,

318, 324
regions, 444
registerDefaults method, of

NSUserDefaults object, 290
registered Apple Developer, membership

options, 4–5
registering

external testers, 549–552
internal testers, 545–549
UDIDs, 507–510

regression bugs, 485
regression testing, 9
Relation propery, and constraints, 102
Relationship Segue, 193

for tab bar, 234
relationships

between containers, databases, and records,
329

creating between record types, 333–334
relationships between classes, 74
relationships between records, in CloudKit, 327
removeAtIndex method, 181

588

bindex.indd 12/07/2015 Page 588

repeat-while loop – scenes

repeat-while loop, 48–49
Replace, for view presentation, 120
report navigator, 26
requestAlwaysAuthorization method, 429
requestLocation method, 432
requestWhenInUseAuthorization

method, 429
research materials

Apple Watch Programming Guide, 540, 560
Data Formatting Guide, 184
Game Center Programming Guide, 541
HTTP documentation, 405
iCloud Design Guide, Designing for Key-Value

Data, 293
NSLayoutConstraint Class Reference, 95
NSMetadataQuery Class Reference, 315
NSURLSession programming guide, 406
Preferences and Settings Programming

Guide, 287
UIDocument Class reference, 313
UISegmentedControl class reference, 448
Working with Auto Layout Guide, 248

resignFirstResponder method, of text fi eld
object, 145–146

resizing labels, 92
Resolve Auto Layout Issues button, on

storyboard, 104
resource fi les, 8
ResourceNotFound, as NetworkError

enumeration, 63
resources, 16–17

access with RESTful web service, 400
deinit method to free, 73

RESTClient application, 408–414
layout constraints for, 411

RESTful JSON web services, 399–414
RESTful web services, 400–401
results area, in playground screen, 36
resume method, of task, 406
Retina display, 86
return arrow (->), 53–55, 64

return statement, defer statement and, 66
return values, of functions, 53–55
reusable rows, 185
reverse-domain name of website, for App ID,

299–300
reverseGeocodeLocation method, 434–435
reverse-geocoding, 434
role, for iTunes Connect user, 546
root node, for property list fi le, 277
root view controller, 196

embedding default scene as, 200
Root.plist fi le, 287

editing, 291
rotating simulator, 32
rotation, recognizing, 270
row in table view, 203
rows in picker, height of, 185
running app, on iOS Simulator, 115
runtime error

from catch clause, 64
terminating app with, 41

S

save method, for objects to data store, 391
saveImageToDocumentsDirectory

method, 366
saveRecord method, of CKDatabase instance,

351–352
saveToURL method, 311
saving

documents to iCloud, 312–313
fi le for new class, 388
image to JPEG fi le, 366

Scale Factors property, 240
scenes. See also default scene

adding buttons, 135
adding objects, 361
adding UIButton instances to, 150–151
adding UITableView instance, 281
adding user interface elements to, 131–139

589

schema – SimpleButtonUITests.swift fi le

bindex.indd 12/07/2015 Page 589

in default storyboard fi le, 121
objects within, 120
on storyboard, 117

creating, 130–131
transition between, 120

schema, 329
CloudKit generation of, 330
deploying, 337

Scheme/Target multi-selector, 30
screens

size of, 86–87
storyboard for overview, 117

screenshots, in Application Information screen,
539, 559, 560

scrolling views, 245–256
adding user interface elements to, 251
map view, 444
and text fi elds, 248–249
UIScrollView class, 245–248
vertical, in table view, 203

search, for documents on iCloud, 313–315
search fi lter for iCloud documents, 313
searchScopes property, 313
sections in table views, 203, 204

returning number of, 210
secure connections, for web services, 406
segmented control, 448

adding to Map Kit scene, 450
segregating data, by zones, 335
segue, 120

creating, 122, 201, 221
in storyboard, 136–138

identifi er property of, 360
popover presentation, confi guring, 258
Present Modally, 260

Select Version to Test link
for external testers, 550
for internal testers, 548

Selected state, for UIButton object, 98
selector bar, for library area, 29
ServerError, as NetworkError

enumeration, 63

server-side data model, building with CloudKit
Dashboard, 367

server-side resources, users access to, 399
service availability

of Core Location, methods to test, 433
of iCloud, 351

checking for, 309–310
sessions

methods to create, 404
multiple, with NSURLSession API, 403

setInitialText method, 419–420
setLocalizedDateFormatFromTemplate

method, 183
setRegion method, of MKMapView instance,

444
setter, 76
Settings application, reading and displaying

user preference values, 293
settings bundle

adding to application, 285–289
default values for preferences in, 290
dictionary of key-value pairs for preferences,

289
element types in, 288–289

Settings.bundle fi le, 285, 290, 291
SettingsTest application, 290–294
setUp method, 489

in test class, 468
shake gestures, simulating, 32
Share on Facebook button, creating action

for, 423
Share on Twitter button, creating action for,

424
share sheet, 418–421

adding URL to, 420
attaching image to, 420

Show detail segue, 359–360
significantLocationChange

MonitoringAvailable method, 433
Simple Object Access Protocol (SOAP), 401
SimpleButton application, 480–484
SimpleButtonUITests.swift fi le, 483

590

bindex.indd 12/07/2015 Page 590

Sina Webo – strings

Sina Webo. . See social media integration
Single View Application

creating, 11–12
InteractionSample template, 110–115
template, 23
universal project using template, 91–93

size
of button, constraints for, 135
of screens, 86–87

Size inspector, 102
for bar button item, 237

Size To Fit Content menu item, 14, 92
for labels, 149

SKU code, 537, 557
SLComposeViewController class, 418
isAvailableForServiceType method, 419
setInitialText method, 419–420
SOAP web services, 401
Social framework, 417

importing into project, 424
share sheet, 418–421

social media integration, 417–425
availability, 419
character limit for, 420
share sheet, 418–421

SocialTest application, 421–425
source editor, 26

displaying, 110
sourceType property, for image source, 456
spacing between cells, Size Inspector for editing,

219–220
span member of region, 444
specifi cation, writing for app, 8
splitting tuple, into separate variables, 41
SQLite database

code to setup, 390
Core Data to serialize/de-serialize object data

to, 391–398
square canvas, 99–100
SquareArea method, of MathService web

service, 400

Stack button, in storyboard, 103
startAnimating method, of image view, 172
startQuery method, of NSMetadataQuery

class, 314
startUpdatingHeading method, 435
startUpdatingLocation method, 431, 432

permission and, 437
states, of UIButton object, 98
Static Cells, for table view Content property,

206
static keyword, 366
static table views, 206–207
staticTexts:XCUIElementQuery

method, 477
status window, 31
stopUpdatingHeading method, 435
stopUpdatingLocation method, 433

of CLLocationManager instance, 431
storage location, for saving playground, 36
storyboard, 117–139

adding buttons, 112, 199
adding navigation controller, 193–195
adding view controller for photo to iCloud,

362
auto layout-specifi c buttons, 103
background image for default scene, 126
creating new scene, 130–131
creating segue, 136–138
labels

adding, 92, 112, 128–129, 133
orange outline for, 102

scene in default fi le, 121
viewing entire, 120
zoom for, 355

String class, 145
String data type, 38

in CloudKit, 329
strings, 39–40

appending, 40
concatenating, 39–40
initializing empty, 39

591

structured programming – taps

bindex.indd 12/07/2015 Page 591

structured programming, 69
styles, for toolbar buttons, 235, 237–238
subclassing, 74
subscript operator ([]), for index numbers, 181
subThoroughfare property, of CLPlacemark

object, 435
summary view, failed tests in TDD, 488
superclass, 74

overriding method, 75
Support URL, in Application Information

screen, 539, 560
suppressing error handling, 65
Swift (programming language), 3, 35–51. See

also object-oriented programming (OOP)
arrays in, 180–181
class creation in, 70
dates in, 182–184
opening code, 108

SwiftCalculator, 492–503
onAdd method, 500–501
onDivide method, 501–502
onMultiply method, 502–503
onSubtract method, 501
test cases, 497–499

SwiftCloudTest application, 315–325
SwiftCloudTestDocument class,

310–312
SwiftCloudTestDocument.swift fi le,

317–318
swipeDown method, 473

of XCUIElementAttributes protocol, 475
swipeLeft method, 473

of XCUIElementAttributes protocol, 475
swipeRight method, 473

of XCUIElementAttributes protocol, 475
swipes

recognizing, 270
simulating, 32

swipeUp method, 473
switch-case statement, 44–45
switching devices, in iOS Simulator, 31

symbol navigator, 24
synchronization

background process for, 296–297
of data. . See iCloud storage

synchronize method, of NSUserDefaults
object, 290

System button type, 98

T

tab bar controller, 229
adding new tab to, 233
creating, 231–234

Tabbed Application template, 231
Table View Controller, 205

embedding scene in navigation controller, 356
linking scene to ViewController class, 359
scene to replacing default scene, 355
on storyboard, 354–365

table views, 203–215
appearance, 203–204, 241, 357
Content property for, 206
creating with interface builder, 205–211
displaying managed objects from database in,

397–398
dynamic, 207–211
sections in, 203, 204
static, 206–207

tables:XCUIElementQuery method, 476
tableview method, implementing, 373
TableViewTest project, 211–215
tabs

adding user interface elements to, 240, 241
view controllers for content, 230

tap gesture recognizer, 153–154, 175
adding to dismiss keyboard, 412–414
adding to view, 271

tap method, 473
taps

recognizing, 270
simulating, 32

592

target options dialog box – toolbar

bindex.indd 12/07/2015 Page 592

target options dialog box, 467, 487–488
target template dialog box, 467, 487
tasks, creating, downloading and uploading,

406
TDD. . See Test Driven Development (TDD)
team manager, approval of certifi cate request,

515, 531, 563
tearDown method, 489

in test class, 468
Tecent Webo. . See social media integration
template

for new project, 20–21
Single View Application, universal project

using, 91–93
universal Xcode, 90

template cell, 207–208. . See also prototype cell
terminate method, 470
terminating app, with runtime error, 41
termination expression, in for loop, 45–46
test class, 468

code snippet of typical, 489–490
test condition, for if statement, 42
Test Driven Development (TDD), 485–503

adding support for unit testing, 486–488
techniques, 488–489
test assertions, 477–478, 491–492
test case

anatomy, 468–469, 489–491
for SwiftCalculator, 497–499

test expectation, 479
test methods, in test class, 468
Test Navigator, 25, 468–469, 490

with failed unit test, 492
test target, 486
TestFlight service (Apple), 9, 527–552

internal and external testers, 544–552
preparing distribution build for, 527–544

testing. See also user interface testing
in app development, 8–9
app on device, 507–525
device for, 4

in iOS Simulator, 17
testWhenAlertDismissed_LabelUpdats

Correctly method, 483–484
testWhenButtonTapped_AlertAppears

method, 483
testWhenButtonTapped_

AlertAppearsWithCorrectTitle
method, 483

text
accessing displayed text from code, 145
on label, updating after button press, 114

Text Field object, adding preference, 292
text fi elds, 143–146

Placeholder attribute of, 150, 410
placeholders in, 375
scroll views and, 248–249

text property, of UILabel class, 99
text views, 143, 146–147
textAlignment property, of UILabel class, 99
textColor property, of UILabel class, 99
textFieldDidBeginEditing method, 256
textFields:XCUIElementQuery method,

477
textViews:XCUIElementQuery method, 477
thoroughfare property, of CLPlacemark

object, 435
throwing errors, 64–66
throws keyword, 64
.tif fi le format, 167
timeoutIntervalForRequests attribute, of

NSURLSession, 404
title, in navigation bar, 196
Title key, in Preference Items property,

288
title property, of XCUIElementAttributes

protocol, 475
titleForHeaderInSection data source

method, 214, 242
tmp directory, for application, 296
toolbar, 235–238

in workspace window, 30

593

touch and hold – UIDatePicker class

bindex.indd 12/07/2015 Page 593

touch and hold, recognizing, 270
touch events, 269–270
of UIButton class, 97
Touch Up Inside event

action connected with, 153, 163
connecting to method, 110

touchesBegan method, 269–270
touchesCancelled method, 270
touchesEnded method, 269–270
touchesMoved method, 269–270
trailing attribute, of views, 102
transition, between scenes, 120
TriangleArea method, of MathService web

service, 400
try!, 65
Try It
ActionSheetSample, 161–165
CloudKitPhotos application, 352–379
CLTest application, 436–442
CollectionViewTest project, 222–227
CoreDataTest application, 391–398
FruitList template, 124–139
function for arithmetic operation, 60–61
function throwing exception, 66–68
GestureTest, 271–274
“Hello Swift” iPhone application, 11–17
ImagePicker application, 459–464
LoginSample project, 147–154
MapTest application, 447–453
NavigationControllerTest template, 197
opening fi le in editor area, 33–34
optionals, 50–51
playground for function, 55–56
PopoverTest application, 262–268
PropertyListTest application, 280–284
RESTClient application, 408–414
ScrollingForms application, 249–256
SettingsTest application, 290–294
SimpleButton application, 480–484
SocialTest application, 421–425

SwiftCalculator, 492–503
SwiftCloudTest application, 315–325
Tabbed Application template, 238–243
TableViewTest project, 211–215
three-component custom picker view,

185–192
TreasureHunt project, 172–176

try keyword, 64
tuples, 40–41

to return multiple values from function, 54
tweet, code to post, 424
tweet sheet, dismissing, 421
Twitter. See also social media integration

actions for sharing on, 423
displaying share sheets, 421–425
messageComposer instance for, 421

Type key, in Preference Items property, 288

U

UDIDs, obtaining and registering, 507–510
UDIDString method, of NSUDID class, 351
UI recording, 465, 478
UIAlertController class, 156
addTextFieldWithConfigurationHandler

method of, 157–158
UIApplication class, 96
UIBarButtonItem class, for toolbar option,

235
UIButton class, 97–98

adding instances to scene, 150–151, 162
object states, 98

UICollectionView class, 218
adding instances to scene, 224

UICollectionViewCell class, 219, 220,
224–225

UICollectionViewDataSource protocol,
220–222

UICollectionViewDelegate protocol,
220–222

UIDatePicker class, 181

594

UIDocument class – unit tests

bindex.indd 12/07/2015 Page 594

UIDocument class, 310, 313
creating, 317

UIEventTypeTouches object, 269
UIGestureRecognizer class, 270
UIImage class, 167–170

loading image set into object, 169
UIImagePickerController class, 455,

456, 457
isSourceTypeAvailable method of, 456

UIImagePickerControllerDelegate
method, 463

UIImagePickerControllerDelegate
protocol, 461

UIImagePickerDelegate methods, 377
UIImagePNGRepresentation function, 458
UIImageView object, 170–172

adding to default scene, 174, 460
UIKeyboardDidShowNotification event,

254
UIKit framework, 95–99
UILabel class, 98–99, 143

adding instances to scene, 149, 173, 187, 293
UILongPressGestureRecognizer class, 270
UINavigationController class, 193, 197
UINavigationControllerDelegate

protocol, 461
UIPanGestureRecognizer class, 270
UIPickerView class, 177
UIPickerView instance, 187
UIPickerViewDataSource protocol, 179, 189
UIPickerViewDelegate protocol, 184, 189

methods, 179–180
UIPinchGestureRecognizer class, 270
UIPPickerViewDelegate protocol, 177
UIRequiredDeviceCapabilities key, in

Info.plist fi le, 430
UIRotationGestureRecognizer class, 270
UIScrollView class, 245–248
UISegmentedControl class reference, 448
UIStackView, 103
UIStoryboardSegue object, 123–124
UISwipeGestureRecognizer class, 270

UITableView, 240
UITableViewCell class, 203

create outlets/actions in, 208
UITableViewController, 355
UITableViewDataSource method, of

ViewController.swift fi le, 398
UITableViewDataSource methods,

implementing, 373–374, 397
UITableViewDataSource protocol, 209–210
UITableViewDelegate method,

implementing, 397
UITableViewDelegate protocol, 209–210
UITapGestureRecognizer class, 270
UITapGestureRecognizer object, 146
UITextField class, 143

adding instances to scene, 149–150
context menu, New Referencing Outlet, 152
reference to, in alert controller, 158

UITextFieldDelegate protocol, 253
implementing, 412
textFieldDidBeginEditing method, 256

UITextView class, 143
UITTableViewDelegate method, of

ViewController.swift fi le, 398
UIView class, 96

scroll view dimensions, 246
UIViewController class, 96, 234

adding new subclass, 130
associating with new scene, 122
creating, 121
DetailViewController subclass, 200
presentViewController method of, 157

UIWindow class, 96
uninstalling applications, 32
unique identifi ers

to access cell programmatically, 220
for records, 351

unit tests, 485
adding support for, 486–488
executing all in project, 490
failure of, 491
for SwiftCalculator, 495–500

595

universal application – ViewController class

bindex.indd 12/07/2015 Page 595

universal application, 85
universal project in Xcode, creating, 91–92
universal Xcode template, 90
unwrapping optional, 41
uploading build, to iTunes Connect, 544
uploading data, to Apple servers, 296
URLForUbiquityContainerIdentifier()

method, of NSFileManager class, 309
“Use of undeclared identifi er” error, 496
user input, 143–154
user interface elements, 108. See also gesture

recognizers
actions, 110
active, 145
adding to scene, 131–139
adding to scroll view, 246–248, 251
adding to tab, 240, 241
for CLTest application, 438
for CoreDataTest application, 393–394
encapsulation of information to locate,

472–475
Interface Builder to create, 318
for share sheet, 422–424
for SimpleButton application, 481
for SwiftCalculator, 494
table view for list of items, 203
touch events, 269–270
updating with NSOperationQueue, 405

user interface testing, 465–484
adding support to project, 465–467
new classes for, 469–470
waiting for elements in, 479–480

username
constraints for label, 149
user interface to collect, 147–154

utilities area in workspace window, 28–29

V

value type, 38
var keyword, 38, 180
variables

declarations in ViewController.swift fi le,
253–254

default values, 73
defi ning, 38
naming, 38
and properties, 71
splitting tuple into separate, 41

variadic parameter, 54–55
version control, 21
version editor, 27–28
versions, information for App Store, 537–539,

559–560
vertical scrolling, in table view, 203
verticalAccuracy property, of CLLocation

object, 432
video, 17
view controller

adding and removing on navigation stack, 197
for photo to iCloud, 362
title property, 196

view controller class
action method in, 114, 135–136, 152
adding Array variable to, 130
adding dictionary to, 189
adding gesture recognizer to, 146
code for, 265
dropping object into storyboard, 121
instance variable in, 108
nonconforming protocols, 189
notifi cation of keyboard, 254
onSegmentChanged method of, 452
outlets in, 112
prepareForSegue:sender method, 138
viewDidLoad method, 175, 246

view controllers
for tab content, 230
for tabs on tab bar, 231–232

View Mode attribute, 174
Aspect Fill for, 175

ViewController class, 284
action method associated with Did End On

Exit event, 412

596

ViewController class – workspace window in Xcode IDE

bindex.indd 12/07/2015 Page 596

ViewController class, linking Table View
Controller scene to, 359

ViewController.swift fi le, 213
code to fetch initial data from CloudKit,

368–373
connecting action with Touch Up Inside

event, 153
imagePickerController method, 463
imagePickerControllerDidCancel

method, 463
implementing UITableViewDataSource

methods, 373–374
method for tap gesture, 175–176
onAdd method in, 500–501
onCamera method in, 462
onDivide method, 501–502
onMultiply method, 502–503
onPhotoLibrary method in, 462
onSubtract method in, 501
overriding prepareforSegue method,

372–373
UITableViewDataSource method, 398
UITTableViewDelegate method, 398
variable declaration in, 397

viewDidDisappear method, overriding,
254–255

viewDidLoad method, 160, 265, 370, 374, 413
of AddPhotoViewController.swift fi le,

375–376
implementing, 293–294
implementing for iCloud service, 320
for map, 451–452
overriding, 370
for plist fi le, 283
for SimpleButton application, 483
stub implementation of, 440
of view controller class, 175, 246

views. See also scrolling views
adding images to, 167–176
adding tap gesture recognizer, 271
adding UIButton to, 97
managing hierarchy of, 197

X and Y attributes of, 102
Volume Purchase Program, 558

W

waitForExpectationsWithTimeout
method, 479–480

warnings, issue navigator to list, 24–25
WatchOS application, 403
web services

Application Transport Security (ATS),
406–408

data task creation, 405–406
RESTful, 400–401
RESTful JSON web services, 399–414

Web Services Description Language
(WSDL), 401

welcome screen, for Xcode, 19–20
When In Use Authorization permission

type, 428
while loop, 47–48

optional binding in, 41–42
width, of picker component, 184
WiFi-based location, 427
wildcard App ID, 513
windows:XCUIElementQuery method, 476
wireframes, 8
Working with Auto Layout Guide, 248
workspace fi le, 23
workspace window in Xcode IDE, 22–31

breakpoint navigator, 26
debug navigator, 26
debugger area, 30
editor area, 26–28
fi nd navigator, 24
issue navigator, 24–25
Navigator area, 22–26
project navigator, 23–24
report navigator, 26
symbol navigator, 24
test navigator, 25
toolbar, 30

597

Worldwide Developer Relations Certifi cate – zoom

bindex.indd 12/07/2015 Page 597

utilities area, 28–29
Worldwide Developer Relations Certifi cate,

downloading, 515, 517
Worldwide Developer Relations Intermediate

Certifi cate, 563
writeToFile:atomically message, 457
WSDL (Web Services Description Language),

401

X

.xcdatamodeld fi le, 383, 389
XCIUElementAttributes protocol, 474
Xcode, 4, 6, 19

creating project in, 20–21
downloading and installing, 6, 7
enabling appropriate entitlements in, 308–309
enabling entitlements in, 350
testing framework, 465
welcome screen, 19–20

Xcode editor, opening model in, 384, 386
Xcode IDE, 8, 22–31
Xcode playgrounds, 35–37

parts, 36–37
.xcodeproj fi le extension, 20
XCTAssert macro, 477, 491
XCTAssertEqual macro, 477, 491
XCTAssertEqualObjects macro, 491

XCTAssertFalse macro, 477, 491
XCTAssertNil macro, 477, 491
XCTAssertNotEqual macro, 491
XCTAssertNotEqualObjects macro, 491
XCTAssertNotNil macro, 477, 491
XCTAssertTrue macro, 477, 491
XCTest, 465, 491
XCTestCase class, 489
expectationForPredicate method of, 479

XCTestExpectation, 479
XCUIApplication class, 469–470, 471
XCUIDevice class, 470–471
XCUIElement instance, 472–475, 478
XCUIElementAttributes protocol, 473,

475–476
XCUIElementQuery class, 471–472, 473
XCUIElementTypeQueryProvider protocol,

471, 473, 476–477
.xcworkspace fi le extension, 23
XIB fi le, 10
XML, vs. JSON, 401–402

Z

zones in database, 335
zoom

for map view, 444
for storyboard, 120, 355

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright
	Contents���������������
	Introduction
	Section I Hello iOS!
	Lesson 1 Hello iOS!
	iOS Developer Essentials�������������������������������
	A Suitable Mac���������������������
	A Device for Testing���������������������������
	An iOS Developer Account�������������������������������
	The Official iOS SDK���������������������������
	The Typical App Development Process��
	Wireframes and Design����������������������������
	Coding�������������
	Testing��������������
	Home Screen Icon�����������������������
	Application Launch Image�������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 2 A Tour of Xcode and the IOS Simulator���
	The Welcome Screen�������������������������
	Creating a New Project�����������������������������
	An Overview of the Xcode IDE�����������������������������������
	The Navigator Area�������������������������
	The Editor Area����������������������
	The Utilities Area�������������������������
	The Debugger Area������������������������
	The Toolbar������������������

	Features of the iOS Simulator������������������������������������
	Installing and Uninstalling Applications���
	Limitations of the iOS Simulator���������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 3 Introducing Swift���������������������������������
	Introducing Xcode Playgrounds������������������������������������
	Constants and Variables������������������������������
	Data Types�����������������
	Comments���������������
	Strings��������������
	Tuples�������������
	Optionals����������������
	Control Flow Statements������������������������������
	if-else��������������
	switch-case������������������
	Loops������������

	Control Transfer Statements����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 4 Functions�������������������������
	Declaring Functions��������������������������
	Parameters and Return Values�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 5 Closures������������������������
	Function Types���������������������
	Closure Types��������������������
	Global Closures����������������������
	Nested Closures����������������������
	Closure Expressions��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 6 Error Handling������������������������������
	The ErrorType Protocol�����������������������������
	Throwing and Catching Errors�����������������������������������
	Suppressing Error Handling���������������������������������
	The defer Statement��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step by Step�������������������

	Lesson 7 Object-Oriented Programming with Swift��
	Creating Classes with Swift����������������������������������
	Properties�����������������
	Methods��������������
	Instantiating Objects����������������������������
	Inheritance������������������
	Computed Properties��������������������������
	Enumerations�������������������
	Protocols����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 8 Supporting Multiple Device Types��
	Device Differences�������������������������
	Screen Size������������������
	Icon Size����������������
	Device Orientation�������������������������

	The Universal XCode Template�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 9 Introduction to UIKit and Adaptive Layout���
	Introducing the UIKit Framework��������������������������������������
	The UIButton Class�������������������������
	The UILabel Class������������������������

	Basic Constraints������������������������
	Previewing Your Layout�����������������������������
	Creating Outlets�����������������������
	Creating Actions�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 10 Introduction to Storyboards��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section II More iOS Development
	Lesson 11 Handling User Input������������������������������������
	Text Fields������������������
	Text Views�����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 12 Alert Views and Action Sheets��
	Alert Views������������������
	Action Sheets��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 13 Adding Images to Your View���
	The UIImage Class������������������������
	The UIImageView Class����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 14 Pickers������������������������
	Date Pickers�������������������
	Custom Pickers���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 15 Navigation Controllers���������������������������������������
	Adding a Navigation Controller to a Storyboard���
	The Navigation Controller Interface��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 16 Table Views����������������������������
	Table View Appearance����������������������������
	Creating a Table View with Interface Builder���
	Static Table Views�������������������������
	Dynamic Table Views��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 17 Collection Views���������������������������������
	Creating a Collection View with Interface Builder��
	Collection View Cells����������������������������
	Collection View Delegate and Data Source���
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 18 Tab Bars and Toolbars��������������������������������������
	Creating a Tab Bar Controller������������������������������������
	Toolbars���������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 19 Creating Views That Scroll���
	The UIScrollView Class�����������������������������
	Scroll Views and Text Fields�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 20 Popovers and Modal Views���
	Popovers���������������
	Modal Views������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 21 Touches and Gestures�������������������������������������
	Touch Events�������������������
	Gesture Recognizers��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section III Storing Data and Network Programming���
	Lesson 22 Property Lists�������������������������������
	Creating Property Lists������������������������������
	Reading Property Lists�����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 23 Application Settings�������������������������������������
	Adding a Settings Bundle�������������������������������
	Reading Preferences with Code������������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 24 Introduction to ICloud Storage���
	Basic Concepts���������������������
	Preparing to Use the iCloud Storage APIs���
	Creating an iCloud-Enabled App ID��
	Creating an Appropriate Provisioning Profile���
	Enabling Appropriate Entitlements in Your Xcode Project��

	Checking for Service Availability��
	Using iCloud Document Storage������������������������������������
	Creating a New iCloud Document�������������������������������������
	Opening an Existing Document�����������������������������������
	Saving a Document������������������������
	Searching for Documents on iCloud��

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 25 Introduction to CloudKit���
	Containers, Databases, and Records���
	Development and Production Environments��
	The CloudKit Dashboard�����������������������������
	Creating a Record Type�����������������������������
	Deleting a Record Type�����������������������������
	Creating Relationships Between Record Types��
	Adding Records���������������������
	Modifying and Deleting Records�������������������������������������
	Resetting the Development Schema���������������������������������������
	Deploying to Production������������������������������

	Preparing to Use CloudKit��������������������������������
	Create an iCloud-Enabled App ID��������������������������������������
	Create an Appropriate Provisioning Profile���
	Enable Appropriate Entitlements in Your Xcode Project��

	Common Operations������������������������
	Checking for Service Availability��
	Creating Records Programmatically��
	Retrieving Records�������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 26 Introduction to Core Data��
	Basic Concepts���������������������
	Managed Object���������������������
	Managed Object Context�����������������������������
	Persistent Store Coordinator�����������������������������������
	Entity Description�������������������������
	Managed Object Model���������������������������

	Adding Core Data to a Project������������������������������������
	Instantiating Core Data Objects��������������������������������������
	Writing Managed Objects������������������������������
	Reading Managed Objects������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 27 Consuming RESTFUL JSON Web Services��
	Types of Web Services����������������������������
	RESTful Web Services���������������������������
	SOAP Web Services������������������������

	JSON and NSJSONSerialization�����������������������������������
	NSURLSession and Application Transport Security��
	Creating an NSURLSession�������������������������������
	Creating a Data Task���������������������������
	Application Transport Security�������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section IV Beyond the Basics�����������������������������������
	Lesson 28 Social Media Integration���
	The Share Sheet����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 29 Where AM I? Introducing Core Location��
	Permissions������������������
	Accuracy���������������
	Receiving Location Updates���������������������������������
	Handling Errors and Checking Hardware Availability���
	Geocoding and Reverse Geocoding��������������������������������������
	Obtaining Compass Headings���������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 30 Introduction to Map Kit��
	Adding Annotations�������������������������
	Accessory Views����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 31 Using the Camera and Photo Library���
	Selecting the Image Source���������������������������������
	Presenting the Image Picker����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 32 Introduction to User Interface Testing���
	Adding Support for UI Testing to Your Project��
	Anatomy of a Test Case�����������������������������
	New Classes for UI Testing���������������������������������
	XCUIApplication����������������������
	XCUIDevice�����������������
	XCUIElementQuery�����������������������
	XCUIElement������������������
	XCUIElementAttributes����������������������������
	XCUIElementTypeQueryProvider�����������������������������������

	Test Assertions����������������������
	UI Recording�������������������
	Waiting for Elements in a UI Test��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 33 Introduction to Test Driven Development��
	Adding Support for Unit Testing to Your Project��
	TDD Techniques���������������������
	Test First�����������������
	Red-Green-Refactor�������������������������
	Don’t Write Code You Do Not Yet Need���

	Anatomy of a Test Case�����������������������������
	Test Assertions����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section V: Reference���������������������������
	Appendix A Testing Your App on a Device��
	Appendix B Beta Testing with TestFlight��
	Appendix C App Store Distribution��

	Index
	EULA

