Join the discussion @ p2p.wrox.com Wrox Programmer to Programmer™

Swift 10S
%24—Hour Trainer

Complete learning package with online video tutorials

Abhishek Mishra

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

SWIFT™ iOS 24-HOUR TRAINER

INTRODUCTION . .. i i ettt i i i et et XXiii

» SECTION I: HELLO iOS!

LESSON 1:
LESSON 2:
LESSON 3:
LESSON 4:
LESSON 5:
LESSON 6:
LESSON 7:
LESSON 8:
LESSON 9:
LESSON 10

HELLO iOS! . .. i i e 3
A TOUR OF XCODE AND THE iOS SIMULATOR. 19
INTRODUCING SWIFT. . it i i e e e i e e i e i 35
FUNCTIONS .. ettt ettt e e i e i e 53
CLOSURES. . . . i i i i i i i i e e i e i i 57
ERRORHANDLING ittt e i i i i e 63
OBJECT-ORIENTED PROGRAMMING WITHSWIFT 69
SUPPORTING MULTIPLE DEVICETYPES. 85
INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT. 95
: INTRODUCTION TOSTORYBOARDS ...ttt 117

» SECTION Il: MORE iOS DEVELOPMENT
LESSON 11: HANDLING USERINPUTo oo 143

LESSON 12

LESSON 13:
LESSON 14:
LESSON 15:
LESSON 16:
LESSON 17:
LESSON 18:
LESSON 19:
LESSON 20:
LESSON 21:

: ALERT VIEWS AND ACTIONSHEETS 155
ADDING IMAGES TOYOURVIEW i 167
PICKERS. . .. i i i i it i i 177
NAVIGATION CONTROLLERS o i 193
TABLE VIEWS. . . . 203
COLLECTION VIEWSo i i i i i i 217
TABBARSAND TOOLBARS i 229
CREATING VIEWS THATSCROLL i 245
POPOVERS AND MODAL VIEWS o i, 257
TOUCHES AND GESTURES 269

Continues

vww.allitebooks.cond

http://www.allitebooks.org

» SECTION lll: STORING DATA AND NETWORK PROGRAMMING

LESSON 22: PROPERTY LISTS. i i i ie e 277
LESSON 23: APPLICATION SETTINGS i, 285
LESSON 24: INTRODUCTION TO iCLOUD STORAGE., 295
LESSON 25: INTRODUCTIONTOCLOUDKITt 327
LESSON 26: INTRODUCTIONTO COREDATA it 381
LESSON 27: CONSUMING RESTful JSONWEBSERVICES 399

» SECTION IV: BEYOND THE BASICS

LESSON 28: SOCIAL MEDIA INTEGRATION i 417
LESSON 29: WHERE Am 1? INTRODUCING CORE LOCATION 427
LESSON 30: INTRODUCTION TOMAPKIT. i 443
LESSON 31: USING THE CAMERA AND PHOTO LIBRARYt 455
LESSON 32: INTRODUCTION TO USER INTERFACE TESTING 465
LESSON 33: INTRODUCTION TO TEST DRIVEN DEVELOPMENT. 485

» SECTION V: REFERENCE

APPENDIX A: TESTING YOURAPPONADEVICEttt 507
APPENDIX B: BETATESTINGWITH TESTFLIGHTo i 527
APPENDIX C: APP STOREDISTRIBUTION. i 553
INDEX .. i e i e e 569

vww.allitebooks.cond

http://www.allitebooks.org

Swift™ iOS 24-Hour Trainer

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Swift™ iOS 24-Hour Trainer

Abhishek Mishra

A Y

WFroXxX

A Wiley Brand

vww . allitebooks.cond

http://www.allitebooks.org

Swift™ iOS 24-Hour Trainer

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-07355-0
ISBN: 978-1-119-07346-8 (ebk)
ISBN: 978-1-119-07342-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http: //book-
support .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015957030

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Swift is a trademark of Apple, Inc. All other trademarks are the prop-
erty of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in

this book.

vww.allitebooks.cond

http://www.wiley.com
http://www.wiley.com/go/permissions
http://book-support.wiley.com
http://booksupport.wiley.com
http://book-support.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ABOUT THE AUTHOR

ABHISHEK MISHRA has been developing software for over 18 years and has experience with a
diverse set of programming languages and platforms. He is the author of iPhone and iPad App
24-Hour Trainer and the technical reviewer of Professional iOS Programming. He holds a Master’s
degree in Computer Science from the University of London and is a freelance consultant and
trainer specializing in mobile application development. His clients include British Sky Broadcasting,
Centrica PLC, Expedia Inc., Kantar Media, and Havas Media. He lives with his wife and daughter
in London.

ABOUT THE TECHNICAL EDITOR

CHAIM KRAUSE is a Simulation Specialist for the U.S. Army. One of his responsibilities is to develop
small games for use at the Army University. Chaim has been developing software for about 30
years, progressing through BASIC, Delphi/Pascal, C++, Java, Objective-C, and C# on platforms
from the TRS-80 through Windows, OS X, Android, and iOS. He has also worked with Arduinos.
Chaim has been the Technical Editor for a dozen books on topics as varied as iPhone/iPad, Android,
iWatch, Arduino, and Unity. When not working in front of a computer at his day job, Chaim is
often sitting in front of a computer at home playing wargames or developing his own game. Chaim
can be reached at chaim@echaim. com.

vww.allitebooks.cond

mailto:chaim@chaim.com
http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

CREDITS

ACQUISITIONS EDITOR
Aaron Black

PROJECT EDITOR
Christina Haviland

TECHNICAL EDITOR
Chaim Krause

PRODUCTION EDITOR
Joel Jones

COPY EDITOR
Nancy Rapoport

MANAGER OF CONTENT DEVELOPMENT &
ASSEMBLY
Mary Beth Wakefield

PRODUCTION MANAGER
Kathleen Wisor

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
© nyul/iStockphoto

ACKNOWLEDGMENTS

This book would not have been possible without the support of the team at John Wiley and
Sons—Aaron Black, Christina Haviland, Nancy Rapoport, and Mariann Barsolo. I would also like
to thank Chaim Krause for taking the time to read the entire manuscript and his keen eye for detail.
It has been my privilege to work with you. Thank you.

CONTENTS

INTRODUCTION xxiii

LESSON 1: HELLO iOS! 3
iOS Developer Essentials 3
A Suitable Mac 3

A Device for Testing 4
An iOS Developer Account 4
The Official iOS SDK 6
The Typical App Development Process 6
Wireframes and Design 8
Coding 8
Testing 8
Home Screen Icon 9
Application Launch Image 10
Try It 11
Lesson Requirements 1
Hints 1
Step-by-Step 1
LESSON 2: A TOUR OF XCODE AND THE iOS SIMULATOR 19
The Welcome Screen 19
Creating a New Project 20
An Overview of the Xcode IDE 22
The Navigator Area 22
The Editor Area 26
The Utilities Area 28
The Debugger Area 30
The Toolbar 30
Features of the iOS Simulator 31
Installing and Uninstalling Applications 32
Limitations of the iOS Simulator 33
Try It 33
Lesson Requirements 33
Hints 33
Step-by-Step 33

CONTENTS

LESSON 3: INTRODUCING SWIFT 35
Introducing Xcode Playgrounds 35
Constants and Variables 37
Data Types 38
Comments 39
Strings 39
Tuples 40
Optionals 41
Control Flow Statements 42

if-else 42
switch-case 44
Loops 45
Control Transfer Statements 49
Try It 50
Lesson Requirements 50
Hints 50
Step-by-Step 50

LESSON 4: FUNCTIONS 53
Declaring Functions 53
Parameters and Return Values 53
Try It 55

Lesson Requirements 55
Hints 55
Step-by-Step 55

LESSON 5: CLOSURES 57
Function Types 57
Closure Types 58

Global Closures 58
Nested Closures 58
Closure Expressions 59
Try It 60
Lesson Requirements 60
Hints 60
Step-by-Step 60

LESSON 6: ERROR HANDLING 63
The ErrorType Protocol 63
Throwing and Catching Errors 64

Xiv

CONTENTS

Suppressing Error Handling 65
The defer Statement 66
Try It 66
Lesson Requirements 66
Hints 67
Step by Step 67
LESSON 7: OBJECT-ORIENTED PROGRAMMING WITH SWIFT 69
Creating Classes with Swift 70
Properties 70
Methods 71
Instantiating Objects 74
Inheritance 74
Computed Properties 76
Enumerations 77
Protocols 77
Try It 81
Lesson Requirements 81
Hints 81
Step-by-Step 81
LESSON 8: SUPPORTING MULTIPLE DEVICE TYPES 85
Device Differences 86
Screen Size 86
Icon Size 87
Device Orientation 89
The Universal XCode Template 90
Try It 91
Lesson Requirements 91
Hints 91
Step-by-Step 91
LESSON 9: INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT 95
Introducing the UIKit Framework 95
The UIButton Class 97
The UlLabel Class 98
Basic Constraints 99
Previewing Your Layout 106
Creating Outlets 108
Creating Actions 110
Try It 110

XV

CONTENTS

XVi

Lesson Requirements
Hints
Step-by-Step

110
1M1
1M1

LESSON 10: INTRODUCTION TO STORYBOARDS 117
Try It 124
Lesson Requirements 124
Hints 125
Step-by-Step 125

SECTION II: MORE iOS DEVELOPMENT

LESSON 11: HANDLING USER INPUT 143
Text Fields 143
Text Views 146
Try It 147

Lesson Requirements 147
Hints 148
Step-by-Step 148

LESSON 12: ALERT VIEWS AND ACTION SHEETS 155
Alert Views 155
Action Sheets 159
Try It 161

Lesson Requirements 161
Hints 161
Step-by-Step 161

LESSON 13: ADDING IMAGES TO YOUR VIEW 167
The Ulimage Class 167
The UllmageView Class 170
Try It 172

Lesson Requirements 172
Hints 172
Step-by-Step 172

LESSON 14: PICKERS 177
Date Pickers 181
Custom Pickers 184
Try It 185

CONTENTS

Lesson Requirements 185
Hints 185
Step-by-Step 186
LESSON 15: NAVIGATION CONTROLLERS 193
Adding a Navigation Controller to a Storyboard 193
The Navigation Controller Interface 196
Try It 197
Lesson Requirements 198
Hints 198
Step-by-Step 198
LESSON 16: TABLE VIEWS 203
Table View Appearance 203
Creating a Table View with Interface Builder 205
Static Table Views 206
Dynamic Table Views 207

Try It 21
Lesson Requirements 211
Hints 211
Step-by-Step 21
LESSON 17: COLLECTION VIEWS 217
Creating a Collection View with Interface Builder 218
Collection View Cells 219
Collection View Delegate and Data Source 220
Try It 222
Lesson Requirements 222
Hints 223
Step-by-Step 223
LESSON 18: TAB BARS AND TOOLBARS 229
Creating a Tab Bar Controller 231
Toolbars 235
Try It 238
Lesson Requirements 239
Hints 239
Step-by-Step 239

Xvii

CONTENTS

LESSON 19: CREATING VIEWS THAT SCROLL 245
The UlScrollView Class 245
Scroll Views and Text Fields 248
Try It 249

Lesson Requirements 249
Hints 250
Step-by-Step 250

LESSON 20: POPOVERS AND MODAL VIEWS 257
Popovers 257
Modal Views 260
Try It 262

Lesson Requirements 262
Hints 263
Step-by-Step 263

LESSON 21: TOUCHES AND GESTURES 269
Touch Events 269
Gesture Recognizers 270
Try It 271

Lesson Requirements 271
Hints 272
Step-by-Step 272

LESSON 22: PROPERTY LISTS 277
Creating Property Lists 277
Reading Property Lists 279
Try It 280

Lesson Requirements 280
Hints 280
Step-by-Step 280

LESSON 23: APPLICATION SETTINGS 285
Adding a Settings Bundle 285
Reading Preferences with Code 289
Try It 290

xviii

vww.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Lesson Requirements 290
Hints 290
Step-by-Step 291
LESSON 24: INTRODUCTION TO iCLOUD STORAGE 295
Basic Concepts 295
Preparing to Use the iCloud Storage APIs 297
Creating an iCloud-Enabled App ID 297
Creating an Appropriate Provisioning Profile 302
Enabling Appropriate Entitlements in Your Xcode Project 308
Checking for Service Availability 309
Using iCloud Document Storage 310
Creating a New iCloud Document 31
Opening an Existing Document 312
Saving a Document 312
Searching for Documents on iCloud 313
Try It 315
Lesson Requirements 315
Hints 316
Step-by-Step 316
LESSON 25: INTRODUCTION TO CLOUDKIT 327
Containers, Databases, and Records 327
Development and Production Environments 330
The CloudKit Dashboard 331
Creating a Record Type 331
Deleting a Record Type 333
Creating Relationships Between Record Types 333
Adding Records 334
Modifying and Deleting Records 336
Resetting the Development Schema 337
Deploying to Production 337
Preparing to Use CloudKit 338
Create an iCloud-Enabled App ID 338
Create an Appropriate Provisioning Profile 344
Enable Appropriate Entitlements in Your Xcode Project 350
Common Operations 350
Checking for Service Availability 351
Creating Records Programmatically 351
Retrieving Records 352

XiX

CONTENTS

Try It 352
Lesson Requirements 353
Hints 353
Step-by-Step 353

LESSON 26: INTRODUCTION TO CORE DATA 381

Basic Concepts 381
Managed Object 381
Managed Object Context 381
Persistent Store Coordinator 382
Entity Description 383
Managed Object Model 383

Adding Core Data to a Project 384

Instantiating Core Data Objects 389

Writing Managed Objects 390

Reading Managed Objects 391

Try It 391
Lesson Requirements 391
Hints 392
Step-by-Step 392

LESSON 27: CONSUMING RESTful JSON WEB SERVICES 399

Types of Web Services 400
RESTful Web Services 400
SOAP Web Services 401

JSON and NSJSONSerialization 401

NSURLSession and Application Transport Security 403
Creating an NSURLSession 404
Creating a Data Task 405
Application Transport Security 406

Try It 408
Lesson Requirements 408
Hints 409
Step-by-Step 409

LESSON 28: SOCIAL MEDIA INTEGRATION 417

The Share Sheet 418

Try It 421

XX

CONTENTS

Lesson Requirements 421
Hints 421
Step-by-Step 422
LESSON 29: WHERE Am |I? INTRODUCING CORE LOCATION 427
Permissions 428
Accuracy 430
Receiving Location Updates 431
Handling Errors and Checking Hardware Availability 433
Geocoding and Reverse Geocoding 434
Obtaining Compass Headings 435
Try It 436
Lesson Requirements 436
Hints 437
Step-by-Step 437
LESSON 30: INTRODUCTION TO MAP KIT 443
Adding Annotations 444
Accessory Views 447
Try It 447
Lesson Requirements 448
Hints 448
Step-by-Step 449
LESSON 31: USING THE CAMERA AND PHOTO LIBRARY 455
Selecting the Image Source 456
Presenting the Image Picker 456
Try It 459
Lesson Requirements 459
Hints 459
Step-by-Step 459
LESSON 32: INTRODUCTION TO USER INTERFACE TESTING 465
Adding Support for Ul Testing to Your Project 465
Anatomy of a Test Case 468
New Classes for Ul Testing 469
XCUIApplication 469
XCUIDevice 470
XCUIElementQuery 471
XCUIElement 472

XXi

CONTENTS

XXii

XCUIElementAttributes 475
XCUIElementTypeQueryProvider 476
Test Assertions 477
Ul Recording 478
Waiting for Elements in a Ul Test 479
Try It 480
Lesson Requirements 480
Hints 480
Step-by-Step 481
LESSON 33: INTRODUCTION TO TEST DRIVEN DEVELOPMENT 485
Adding Support for Unit Testing to Your Project 486
TDD Techniques 488
Test First 488
Red-Green-Refactor 488
Don’t Write Code You Do Not Yet Need 489
Anatomy of a Test Case 489
Test Assertions 491
Try It 493
Lesson Requirements 493
Hints 493
Step-by-Step 494

SECTION V: REFERENCE

APPENDIX A: TESTING YOUR APP ON A DEVICE 507
APPENDIX B: BETA TESTING WITH TESTFLIGHT 527
APPENDIX C: APP STORE DISTRIBUTION 553
INDEX 569

INTRODUCTION

WHEN | FIRST BEGAN LEARNING 10S DEVELOPMENT, I started out like most developers, from the
humble Hello World application. I was overwhelmed with new concepts, such as view control-
lers and table views. My background with C++ did not help much when it came to working with
Objective-C, and I had to start from scratch. There was no book written on the subject and every-
thing had to be learned from Apple’s documentation and personal blogs.

Eventually I came to grips with Objective-C, and with practice, I grew more proficient. With the
launch of iOS 7, Apple announced a new language called Swift, and it felt almost like going back to
square one again, as I learned how to perform familiar tasks with a new language.

This book is written to help someone new to iOS development learn the basic concepts and (I hope)
avoid making the mistakes I made when starting out myself. That being said, this book should also
be useful for an experienced Objective-C developer who is looking to transition over to Swift. This
book adopts a hands-on Try It approach, and you get to try out each new concept as you progress
through the book.

iOS application development is a huge topic, and it is just not possible to include every single topic
related to iOS application development in this book. When selecting topics to include in this book,
I have tried to strike a balance between the absolute basics and more advanced topics such as Test
Driven Development, CloudKit, and UI testing.

This book has been written for you, the reader. I hope that after reading this book, you can take
your first steps into the wildly exciting world of iOS App development.

WHO THIS BOOK IS FOR

This book is for beginners with little programming experience who want to pursue a career in the
exciting world of iOS development. It is also for experienced Objective-C developers who want to
learn Swift programming.

Although you do not need to have any prior programming experience, a little knowledge will help
you move faster through the initial lessons, particularly the basics of object-oriented software devel-
opment. If you are a more experienced developer, then this book can help you get up-to-speed with
new concepts relating specifically to i0S 9 development and Swift.

WHAT THIS BOOK COVERS

This book covers iOS 9 application development with Swift 2. That includes development for both
the iPhone and the iPad. The lessons in this book use XCode 7.0 and make use of new Swift features
such as the guard 1let clause. All of the lessons use storyboards to construct user interfaces.

INT

RODUCTION

The book starts off with an introduction to the Swift language followed by lessons that will teach
you how to perform common tasks such as displaying alerts, pickers, and collection views. Toward
the end of the book, you will find slightly more advanced topics such as iCloud document storage,
CloudKit, Test Driven Development, and Ul testing.

The appendixes cover ways to test and deploy your apps, ranging from deploying a build to your
personal device to distributing your app to beta testers via TestFlight.

HOW THIS BOOK IS STRUCTURED

IN

This book consists of 33 short lessons and 3 appendixes. Each lesson introduces a single topic and
ends with a step-by-step Try It section where you get to apply the concepts you’ve learned in the
lesson to create a simple iOS application. The source code for the Try It exercises is available for
download at www.wrox.com/go/swiftios. Lessons toward the beginning of the book are simpler
and progress in complexity as you work your way through the book.

If you are an absolute beginner to iOS development, you should progress through the lessons from
cover to cover, sequentially. If you have prior experience with iOS development and want to read
this book for a particular topic of interest, then you can jump right in with the relevant lessons.

i0S development is a vast topic and no single book can cover everything related to iOS development.
However, several lessons contain sources for where to find additional information on the web.

When you’re finished reading the book and watching the accompanying videos, you’ll find lots of
support in the P2P forums.

STRUCTIONAL VIDEOS

Learning is often enhanced by seeing in real time what’s being taught, which is why most lessons in
the book have a corresponding video tutorial available at www.wrox.com/go/swiftiosvid. And of
course it’s vital that you play along at home—fire up Xcode and try out what you read in the book
and watch on the videos.

CONVENTIONS

XXiv

To help you get the most from the text and keep track of what’s happening, I’ve used a number of
conventions throughout the book.

NOTE Boxes like this one hold important, not-to-be forgotten information that
is directly relevant to the surrounding text.

http://www.wrox.com/go/swiftios
http://www.wrox.com/go/swiftiosvid

INTRODUCTION

REFERENCE References like this one point you to other lessons in the book, the
book’s website, and the instructional videos that accompany a given lesson.

As for styles in the text:
> T highlight new terms and important words when they are first introduced.
> Ishow URLs within the text like this: www.wrox . com.

> I present code in monofont type like this: persistence.properties.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata you may
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
WWW.Wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the
form to send us the error you have found. We’ll check the information and, if appropriate, post a
message to the book’s errata page and fix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

XXV

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://p2p.wrox.com

INTRODUCTION

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotonttp://p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVi

http://p2p.wrox.com
http://p2p.wrox.com

SECTION |
Hello iOS!

» LESSON 1: Hello iOS!

» LESSON 2: A Tour of Xcode and the iOS Simulator

» LESSON 3: Introducting Swift

» LESSON 4: Functions

» LESSON 5: Closures

» LESSON 6: Error Handling

» LESSON 7: Object-Oriented Programming With Swift
» LESSON 8: Supporting Multiple Device Types

» LESSON 9: Introduction to UIKit and Adaptive Layout

» LESSON 10: Introduction to Storyboards

vww.allitebooks.cond

http://www.allitebooks.org

Hello iOS!

Hello and welcome to the exciting world of iOS application development. iOS is Apple’s operat-
ing system for mobile devices; the current version at the time of this writing is 8.0. It was origi-
nally developed for the iPhone (simply known as iPhone OS back then), and was subsequently
extended and renamed in June 2010 to iOS to support the iPad, iPhone, and iPod Touch.

At its core, iOS is Unix-based and has its foundations in MacOS X, which is Apple’s desktop
operating system. In fact, both iOS and MacOS X share a common code base. As new ver-
sions of mobile operating systems have appeared, Apple has brought over more functionality
from MacOS X. This is part of Apple’s strategy to bridge the difference between desktop and
mobile computing.

With the launch of version 8.0, Apple has not only pushed the boundaries on what is achiev-
able on smart phones and tablet computers, but has also given us a brand new programming
language called Swift. This book covers iOS development with Swift only, but at the time of
this writing, it is possible to create iOS applications with both the older language Objective-C
as well as Swift.

This lesson introduces you to the arena of iOS development.

iOS DEVELOPER ESSENTIALS

Before you get started on your journey to becoming an iOS developer, you will need some
essential resources. This section covers these basic requirements.

A Suitable Mac

To develop apps for the iPhone and the iPad using the official set of tools provided by Apple,
you will first need an Intel-based Mac running Mac OS X Yosemite (10.10) with a minimum
4GB of RAM and at least 11GB of free space on your hard disk. You do not need a top-spec
model to get started. In fact a Mac Mini or a low-end MacBook will work just fine.

Processor speed is not going to make much difference to you as a developer. You will be better
off investing your money in more RAM and hard disk space instead. These are things you can
never get enough of. A large screen does help, but it is not essential.

4 | LESSON 1 HELLOIOS!

A Device for Testing

If you are reading this book, chances are that you have used an iPhone, iPad, or iPod Touch and
probably even own one or more of these nifty devices.

As far as development is concerned, there aren’t many differences between developing for any of
these devices. The obvious differences are screen size and the fact that only iPhones can make
phone calls. When you are starting out as an iOS developer, you will test your creations on the iOS
Simulator. The iOS Simulator is an application that runs on your Mac and simulates several func-
tions of a real iOS device (more on this later).

At some point, however, you will want to test your apps on a physical device. As good as the iOS
Simulator may be, you must test on a physical device before submitting your app to the App Store.

Another good reason to test on a physical device is that the processor on your Mac is much faster
than that on the iPhone/iPad. Your app may appear to execute much faster on your Mac (in the iOS
Simulator) than it does on the real thing.

If the app you are going to make is targeted at iPhone users, you can also use an iPod Touch as the
test device. These are significantly cheaper than iPhones and for the most part offer the same func-
tionality as their phone counterparts.

Most of Apple’s devices support iOS 8; however, iOS 8 is not supported for the following:
> iPhones prior to the iPhone 45
> iPads prior to the iPad 2

> iPod Touch devices prior to the iPod Touch Sth generation

An iOS Developer Account

To develop your apps you will need to download the latest version of Xcode and the iOS SDK
(Software Development Kit). To do this, you must sign up to the Apple Developer Program to
become a registered developer.

The signup process is free and you can immediately begin to develop your first apps. Limitations
exist as to what you can do for free. To submit your apps to the App Store, get access to beta ver-
sions of the iOS/SDK, or test your apps on a physical device, you need to become a paying member.

Most of the concepts and apps presented in this book will work just fine with the free membership.
The only exceptions would be examples that require the camera, accelerometer, and GPS for which
you would need to try the app on a physical device.

You can choose from two forms of paid membership as a registered Apple Developer: Individual and
Enterprise.

Individual

The Individual iOS Developer Program costs $99 a year and is for individuals or companies that
want to develop apps that will be distributed through the App Store. You can also test/distribute

iOS Developer Essentials | 5

your apps on up to 100 devices without having to go through the App Store. This form of deploy-
ment (without having to submit them to the App Store) is called ad-hoc distribution and is a great
way to submit a preview of the app to a client. This form of distribution is covered in detail in
Appendix C.

Enterprise

The Enterprise iOS Developer Program costs $299 a year and is for large companies that want to
develop apps for internal use and will not distribute these apps through the App Store. With the
Enterprise iOS Developer Program there is no restriction to the number of devices on which your
in-house application can be installed.

To start the registration process, visit the iOS Dev Center (see Figure 1-1) at https://developer
.apple.com/programs/enroll/.

aae < > @ w developer.apple.com [}]

s}
il

Apple DeV@iOper Program Overview What's Included How It Works

What You Need to Enroll

Enrolling as an Individual

If you are an individual or sole proprietor/single person business, sign in with your
Apple ID to get started. You'll need to provide basic personal information, including your
legal name and address.

() Enrolling as an Organization

If you're enralling your organization, you'll need an Apple 1D as well as the following to
get started:

A D-U-N-5% Number

Your organization must have a D-U-N-5 Number so that we can vel

y your organization's identity

and legal entity status, These unique nine-digit numbers are assigned by Dun & Bradstreet and are

widely used as standard business identifiers, You can check to see if your organization already has a

D-U-N-5 Number and request ene if =ssary, They are free in most jurisdictions. Learn maore »

Legal Entity Status

‘Your organization must be a legal entity to so that it can enter into contracts with Apple. We do not

accept DBAs, Fi Businesses, Trade names, or branches

Legal Binding Authority

As the person enrolling your arganization in the Apple Developer Program, you must have the legal

authority to bind your organization to legal agreements. You must be the organization’s
founder, executive team member, senior project lead, or have legal authority granted to you

owne:

by a senior employee,

Start Your Enrollment

FIGURE 1-1

https://developer
https://developer.apple.com/programs/enroll/

6 | LESSON1 HELLOIOS!

The Official iOS SDK

The Apple iOS SDK (Software Development Kit) is a collection of tools and documentation that you
can use to develop iOS apps. The main tools that make up the SDK are:

> Xcode: Apple’s integrated development environment (IDE) that enables you to manage your
products, type your code, trace and fix bugs (debugging), and lots more.

> Interface Builder: A tool fully integrated into the Xcode IDE that enables you to build your
application’s user interface visually.

> 10S Simulator: A software simulator to simulate the functions of an iPhone or an iPad on
your Mac.

> Instruments: A tool that will help you find memory leaks and optimize the performance of
your apps. Instruments are not covered in this book.

In addition to these tools, the iOS SDK also includes extensive documentation, sample code, How-
To’s, and access to the Apple Developer Forums.

The iOS SDK is available as a free download to registered members (registration is free). However,
there are benefits to paid membership, including the ability to debug your code on an iOS device,
distribution of your applications, and two technical support incidents a year where Apple engineers
will provide you code-level assistance.

Downloading and Installing

You can download and install Xcode 7 for Mac OS X El Capitan and the iOS SDK from the Mac
App Store (see Figure 1-2).

If you have a paid membership, you can download the latest version of Xcode as well as prior ver-
sions by logging in to the i0S developer portal at https://developer.apple.com/devcenter/
ios/index.action.

The Typical App Development Process

Whether you intend to develop iOS apps yourself or manage the development of one, you need to
be familiar with the basic steps in the development process (see Figure 1-3). This section introduces
these steps briefly.

https://developer.apple.com/devcenter
https://developer.apple.com/devcenter/ios/index.action

iOS Developer Essentials | 7

< Featured

g

Top Charts Categorles Pu 585

£
g
g

Q xcode

Xcode (3]
[Essentais J

¥code provides everything developers need to create great applications for Mac, iPhone, and iPad, Xcode brings user interface design,
coding, testing, and debugging all Into a unified workflow. The Xcode IDE combined with the Cocea and Cocoa Touch frameworks, and
the Swift programming language make developing apps easier and more fun than ever before

What's New in Version 6.4
Xeode 6.4 adds support for 105 B.4

...More

W Moo Fle Edt View Pl Maogais Bfu Pmdsct Doty Deume Conmi Windes Hep
T —

DT e a =

atmtngi | bk e etitan Soiwednd | Tadie €801 M oo DS 0

= |

R T T T L DTt e r———

Sﬁuﬁerﬁug&

Apple Wab Sita
Xcode Support
App Licensa Agreamant

Privacy Policy

Information

Category: Developer Tools
Updated: 30 June 2015

Version
Price: Free

Size: 2.61 GB

Family Sharing: Yes
Language: English
Developer: Munes S.arl
© 19992014 Apple Inc.

Rated 4+
FIGURE 1-2
. Wireframes
S Written e and e Coding <
pecification Desi
esign
Final -« Testin
Product 9

FIGURE 1-3

8 | LESSON1 HELLOIOS!

Writing a Specification
The development of an app begins with a concept. It is good practice to formally put this concept on

paper and create a specification. You do not necessarily need to type this specification, although it’s
a good idea to do so.

At the end of the project you should come back to the specification document to see how the final
product that was created compares with the original specification.

As you build your experience developing iOS applications, this difference will become smaller. The
specification must address the following points:

> A short description in 200 words or less

The target audience/demographic of the users

How will it be distributed (App Store, or direct to a small number of devices)
A list of similar competing apps

A list of apps that best illustrate the look-and-feel your app is after

Y VYV VY Y Y

The pricing model of competing apps and potential pricing for your app

Wireframes and Design

A wireframe is a large drawing that contains mockups of each screen of your app as well as lines
connecting different screens that indicate the user’s journey through your application.

Wireframes are important because they can help identify flaws in your design early on (before any
coding has been done). They can also be used to show potential clients how a particular app is likely
to look when it’s completed.

There is no right or wrong way to make a wireframe. If it is for your personal use, you can just use
a few sheets of paper and a pen. If it is for a client, you might want to consider using an illustration
package.

Coding

The actual process of creating an iOS app involves using the Xcode IDE to type your code. iOS apps
can be written in either Swift or Objective-C. This book covers iOS development with Swift only.

An iOS app typically consists of several files of Swift code along with resource files (such as images,
audio, and video). These individual files are combined together by a process called compilation into
a single file that is installed onto the target device. This single file is usually referred to as the appli-
cation binary or a build.

Testing

It might sound obvious, but you must test your app after it has been developed. As a developer, you
test your code frequently as you write it. You must also perform a comprehensive test of the entire
application as often as possible to ensure things that were working in the past continue to do so.

iOS Developer Essentials | 9

This form of testing is called regression testing. It helps to make a test plan document. Such a docu-
ment basically lists all the features that you want to test and the steps required to carry out each
test. The document should also clearly list which tests failed. The ones that fail will then need to be
fixed and the test plan document can provide the replication procedure for the defect in question.

When your app is ready, you will want to list it in the iTunes App Store. To do so involves submit-
ting your app for review to Apple. Apple has several criteria against which it reviews applications
and if your app fails one or more of these criteria it will be rejected—in which case you will need to
fix the appropriate code and resubmit. It is best to test your apps thoroughly before submitting them
in the first place. Distributing your apps via the App Store is covered in Appendix D.

You must always test on a real iOS device before submitting your app for the App Store review pro-
cess, or giving it to a client to test. Testing on the iOS Simulator alone is not sufficient.

If you are developing for a client, you will probably need to send the client a testable version of your
work periodically for review. The recommended way to do this is by using Apple’s TestFlight ser-
vice, which is covered in Appendix C.

Home Screen lcon

Unless you provide an icon for your application, iOS will use a standard gray icon to represent your
application in the home screen (see Figure 1-4).

Carrier = 10:02 PM L

B . .
ter ras H ift v

Ext:

Safari

FIGURE 1-4

10 | LESSON 1 HELLOIOS!

To replace this icon, you will need to provide one or more PNG files with appropriate dimen-
sions. These dimensions are listed in Table 1-1 and are different for iPhone-based and iPad-based
applications.

TABLE 1-1: Home Screen lcon Sizes

DEVICE ICON SIZE (IN PIXELS)
iPhone 4s 120 x 120

iPhone 5 and iPhone 6 120 x 120

iPhone 6Plus 180 x 180

iPad Retina and iPad Mini Retina 152 x 152

iPad and iPad Mini (without Retina) 76 x76

You learn to use these icons in this lesson’s Try It section.

Application Launch Image

A launch image is a placeholder image that you must provide as part of your iOS application.
When a user taps your application’s icon on the home screen, iOS displays this image while the app
starts up.

Once your application has finished loading, iOS gives it control and simultaneously hides the launch
image. The overall effect of the launch image is to give your users the perception that your applica-
tion has launched quickly.

NOTE The launch image provided as part of your application may not always
be used. When an app is suspended into the background state (perhaps because
the user tapped the home button on the device), iOS creates a snapshot of the
current screen before suspending the app. If the app is resumed within a short
period of time then this cached image is used in place of the launch image.
However, if the user killed the app, uninstalled it, or hasn’t used the app for an
extended period of time then the launch image will be used.

Prior to 10S8, as a developer you had to provide a static PNG version of the launch image for every
screen size and orientation that was supported by your app.

While it is still possible to provide static launch images, with the launch of iOS 8 Apple has intro-
duced the concept of a single launch file. A launch file is an XIB (or a storyboard file) that describes
the user interface for the launch image. An empty document called LaunchScreen. storyboard is
provided with every iOS project that you create.

Trylt | 11

The idea behind providing a single launch file over several individual launch images is that iOS will
generate the launch images it needs from the launch file for the device on which the app is being
used.

You learn to use a launch file in this lesson’s Try It section.

TRY IT

In this Try It, you build a simple iPhone application using Xcode 7 that displays the text “Hello
Swift” in the center of the screen. You will also provide application icons and a launch file.

Lesson Requirements
> Launch Xcode.
Create a new project based on the Single View Application template.
Edit a storyboard in Interface Builder.
Display the Xcode Utilities area.
Set up an application icon.

Set up a launch file.

Y Y Y Y Y Y

Test an app in the iOS Simulator.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

Hints

Download and install the latest version of Xcode and the iOS SDK on your Mac; then launch
Xcode.

Step-by-Step
> Create a Single View Application in Xcode called HelloSwift.
1. Launch Xcode.
2. To create a new project, select the File & New = Project menu item.

3. Choose the Single View Application (see Figure 1-5) template for iOS and click Next.

http://www.wrox.com/go

12 | LESSON 1 HELLOIOS!

Choose a template for your new project:

ios
Application - oo 1 ® e
Framework & Library
Master-Detail Page-Based Single View Tabbed
Watch 05 Application Application Application Application
Application
Framework & Library E&.
05X -
Application G

Framework & Library

System Plug-in

Other

Single View Application

This templete provides & starting polnt for an application that uses a single view. It provides

a view controller to manage the view, and a storyboard or nib file that contains the view.
Concel -

4. Use the following information in the project options dialog box (see Figure 1-6) and
click Next.

Product Name: HelloSwift
Organization Name: Your company
Organization Identifier: com.wileybook
Language: Swift

Devices: Universal

Use Core Data: Unchecked

Include Unit Tests: Unchecked

> Include UI Tests: Unchecked

Y Y Y Y Y VY

5. Select a folder where this project should be created.
6. Ensure the Source Control checkbox is not selected.
7. Click Create.

> Edit the Main.storyboard file in Interface Builder (see Figure 1-7).

Trylt | 13

Choose options for your new project:

Qrganization Name:

Product Name: IHBIIM

asm technology hd

com.

Bundle

com. !

Language:

Devices:

Swift
iPhone

Use Core Data
Include Unit Tests
Include Ui Tests

Cancel

FIGURE 1-6

@ 0@ F B A Helubeit | S Phoed

¥ Mk + [View Cantrotar Scans

¥ [Helosa

+18 s IE

BERasomo B |EC B vwoit | 0

kot sy | Today at 0518

st

Ay Any

!

£

H

i
nonem

| . SteryScard Reference - Frices 1
™

Mavigation Canteuter - 4
) convobar muat manages nawgeton
|

I
E B o) la |33

FIGURE 1-7

14 | LESSON 1 HELLOIOS!

1. Ensure the project navigator is visible and the HelloSwift project is selected and
expanded. To show the project navigator, use the View & Navigators = Show Project
Navigator menu item. To expand a project, click the triangle next to the project name
in the project navigator.

2. Click the Main. storyboard file to select it.

3. Ensure the Attribute inspector is visible by selecting the View = Utilities & Show
Utilities menu item.

4. Click the white background area of the default scene in the storyboard.

5. Under the View section of the Attribute inspector, click once on the Background item
to change the background color. This is shown in Figure 1-8. Pick any color you want.

O @ B’ E RO
View
Mode Scale To Fill o]
Semantic Unspecified g

Tag V]

Interaction User Interaction Enabled
Multiple Touch

Iint EEEE Default

Drawing £ Opaque Hidden
Clears Graphics Context
Clip Subviews
Autoresize Subviews
Stretching (1] 1]
X ¥
10 1
Width Height
FIGURE 1-8

6. From the Object library in the bottom-right corner, select Label and drop it onto the
View (see Figure 1-9). You can use the search box to narrow your choices.

7. Change the text displayed in the Label to “Hello Swift” by editing the value of the Text
attribute in the Attribute inspector.

8. Position the label anywhere within the scene using the mouse.
> Create layout constraints.

1. Select the label in the storyboard scene by clicking on the label once. Change the size of
the label so that the label is large enough to show the text “Hello Swift” fully. To do
this use the Editor = Size To Fit Content menu item.

2. Select the label in the storyboard and bring up the Align constraints popup window by
clicking the Align button at the bottom right corner of the storyboard (see Figure 1-10).

Trylt | 15

1 =) 0 L] i |
* [Viaw Cantrailsr Scune |

w) View Carmrier B
Top Loy Guide Seramte Unupacifiss B

Betine Layeun Gude | ng oin
eracrian (8 User imemction Enanies

E
j

- Storybears Esiry Puini o

00®eno

| "":j L e ——
W =

Latel m;gm---)

Butten - irfercests Srth svents e
BUTTOn serds an scten messege 2 @ Lirget
| [y

5] AR hARy R o ted|

B

+®

FIGURE 1-9

Dne=L¢le

B¢ & Helloswitt | 0 HetoSwitt | [l Mainstorybosrs [l Mnin.storyboard (Base) | Mo Seiection

7 [View Cantraller Scene.
¥ () View Cantrolier
__ Ton Layaut Quide
_ #ostom Layout Guide
v view O @ B
L Hella Switt
@ First Respande:
E eait
* Shoeyboard Entry Paint

No Selection

‘Aded Hew Alignment Constraints
B Losding Exdges =
- k8
B top Edges : "o eo

B8 Rattam Edgen

g Edyes

B Horizontat Conters " ot~ Provides o tesplate tor

B s curivie « itnand controlrs not diwesly
5 tole in Intertace Buider,

B sasnlines L

B tarzomtaly in Cortainer D - A sty aizud amoun ot
{8 vruically in Continer - e

Updata Framas | Mana. g
on - Intercepts seuch events and

1 & an action message to @ target
[T —"

—
=] O wAny ANy BB ol | @

FIGURE 1-10

16 | LESSON 1 HELLOIOS!

In this popup window, setup the following options (see Figure 1-11):
> Horizontally in Container: Checked
> Vertically in Container: Checked

> Update Frames: All Frames In Container

Add New Alignment Constraints

Add 2 Constraints
1 pepr
BB ot B @

FIGURE 1-11

Click the Add 2 constraints button in the popup to apply these layout constraints to
the label and dismiss the popup.

NOTE Selecting All Frames in Container in the Update Frames combo box will
force the scene to update the position of the label using the constraints you have
just specified.

> Set up a launch file.
1. Select the LaunchScreen. Storyboard file in the project navigator.

2. Use the Attribute Inspector to change the background color of the launch file to a dif-
ferent color than that of the scene in the main storyboard.

> Set up an application icon.

1. Select the Assets.xcassets item in the project navigator to open the asset bundle.
Select the Applcon asset within this bundle.

2. Use drag-and-drop to assign images to the iPhone App and iPad App placeholders. You
can obtain the images from the resources available for this lesson on the book’s website
at www.wrox.com/go/swiftios.

> iPhone App 2x: Use the file
iPhoneAppIcon2x.pngd.

http://www.wrox.com/go/swiftios

Trylt | 17

> iPhone App 3x: Use the file
iPhoneAppIcon3x.png.

> iPad App 1x: Use the file
iPadAppIconlx.png.

> iPad App 2x: Use the file
iPadAppIcon2x.pngd.

After these assignments are made, your scene should resemble Figure 1-12.

ace » B A HelSe) iPhone 6 HilleSmitt: Rmady | Todday at 06:40 = @« 0O &0
ODEQ A9 mDo @ (#i<¢ [MalioSmt | vmtetwiit | B Akt ccsnets | B Applcon ne e
v B tetsmn EITTTY Ao aon
¥ 1 bbanity i pr— o
+ hopDsiegneswitt Apsia erizh | Al
+ ViewConimier switt carpimy | Al
uain storytaans Fac B 1028 20 e Lt
B Adsas seassats | = = 105 8.1 and Price
Lunamet iz wn ateeylnant = i ‘ - = = rore [1625 8 s Later
s sl Fhoen Frone Spseignt Erone Ann 601055 70 mnd Later
Spatiigh - 105 &8 os a5 10 1025 6.1 pe Brier
[Pcucts Sertiegs - 08 58 Aipt [MoVl
opc
1625 iczin In pra-randered
Pad Sattings Pud Sporigra Puct App
05 5-8 T 08 78
2900 aopt Teet
Doeao
Objmet - Provides & swmplats for
atjectsard carerabers ran diesty
v In inface Subder,
Rabed - & variashy sized amvoure of
LaDe! e et
utton - imarents much s and
BUTION st an srbon massage 1o & el
tfact whan s tazped
4 |8 nEl + taw Shicing | 31

> Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project @ Run menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 1
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftio

A Tour of Xcode and the iOS
Simulator

Xcode is Apple’s IDE (integrated development environment), which you use to create iOS
applications. The word “integrated” refers to the fact that Xcode brings together several
different tools into a single application.

Xcode contains several tools, but the ones you’ll use most of the time are the source code
editor, debugger, and the Interface Builder. At the time of this writing, the current version of
Xcode is 7.0.

The iOS Simulator is an application that runs on your Mac and allows you to test your apps
without using an actual iOS device. The iOS Simulator is part of the standard iOS SDK instal-
lation. When you run your app in Xcode, you have the choice of launching it in the simulator
or an actual device. If you choose to launch it in the simulator, Xcode will launch the iOS
Simulator automatically.

In this lesson, you explore various commonly used features of Xcode and the iOS Simulator.

THE WELCOME SCREEN

When you launch Xcode, you are presented with the welcome dialog box (Figure 2-1). You
can use the welcome dialog box to quickly create a new project, connect to a source code
repository, open a recently used project, or create a Swift playground.

20 | LESSON 2 ATOUR OF XCODE AND THE I0S SIMULATOR

Welcome to Xcode

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project

Start building a new iPhane, iPad or Mac application

| Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

[

BB PP

LiteraryGenius
_rojects{LiteraryGenius/v2/iDS/obiCVersion

trivia
rojects/Literary Genius/v2 i0SiswittVarsion

InteractionSample
-AReview/073550 ch08_PE_TE_.CE_AR/Try it

CapitalCities
—_ncuments/Swilt Training/UITestingSasaion

UniversalTest
ARaviow[073650 chO8_PE_TE_CE_AR/Try It

Assets

~|Deskton

ClassPlayground.playground

—AReview/073650 ch07 PE_TE_CE_AR(Try It

E ; I d
layar ground

_AReview/073650 chB_PE_TE_ CE_AR|Try It

ClesurePlayground.playground
ARoview/073550 ch05_PE_TE_CE_AR/Try It

Open anather project...

FIGURE 2-1

The first step in creating an iOS application is to create an appropriate project in Xcode. An Xcode
project has the file extension .xcodeproj and tells the Xcode IDE (among other things) the name of
your application, what kind of application it is (iPhone/iPad/Universal), and where to find the code

files and resources required to create the application.

CREATING A NEW PROJECT

When you create a new project in Xcode, you first need to select a template on which to base the
project. Xcode templates contain files that you need to start developing a new application. Xcode

provides a list of project templates to select from (Figure 2-2).

Choose a template for your new project:
i0s
Avpiication | = 1
Framework & Library
Master-Detail Page-Based Single View Tabbed
Watch OS Application Application Application Application
Application
Framework & Library §
05X -
Application Game
Framework & Library
System Plug-in
Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storybeard or nib file that contains the view.
Cancel T

FIGURE 2-2

Creating a New Project | 21

The Xcode template window has multiple template categories to choose from. In this book, you cre-
ate iOS applications, and thus need to make sure the iOS template category is selected.

After you have selected a suitable template, Xcode presents the project options dialog box
(Figure 2-3).

Choose options for your new project:

Product Name: Hello\'n\:lrid
Organization Name: asm technology Itd

Organization identifier: com h

Bundle Identifier: com.asmiechne

Language: Swift 2]
Devices: iPhane a
Use Core Data
Include Unit Tests
Include Ul Tests
cancel previous [

FIGURE 2-3

This is where you provide the name of the project and the name of your company, choose the lan-
guage (Objective-C or Swift), and specify the target device (iPhone, iPad, or Universal).

To uniquely identify your application in the iTunes store (and on an iOS device), each project must
have a unique identifier. This identifier is known as a bundle identifier and is created by combining
the name of the project along with a company identifier that you provide in the project options dia-
log box. It is best to provide your website domain name in reversed format as the company identifier
because domain names are guaranteed to be globally unique.

Checking the Use Core Data checkbox will add necessary boilerplate code to allow your applica-
tion to persist objects into a database using Core Data. Core Data is covered in Lesson 26; for the
moment you can leave this box unchecked.

Checking the Include Unit Tests and Include UI Tests checkboxes will create a project that includes
unit interface tests and user tests, topics that are covered in Lessons 33 and 34, respectively. For the
moment you should leave these boxes unchecked.

When you click Next, Xcode will ask you to provide a location on your Mac where you would like
to save the new project. Toward the bottom of this dialog box, you have the option to create a new
Git repository for version control. Version control is beyond the scope of this book, so just uncheck
the Source Control option in the dialog box.

22 | LESSON 2 ATOUR OF XCODE AND THE IOS SIMULATOR

AN OVERVIEW OF THE XCODE IDE

The Xcode IDE features a single window, called the workspace window (Figure 2-4), where you get
most of your work done.

ece » B A Helioworld) g IPhane & HelioWorld: Ready | Today at DE:36 = @ & =]
AR a M o8B oc 8 B & Helloworid ne
ve]} Genaral Capabilities Resourcs Tags Infa Bulld Settings Bulld Phases Bulld Aules Quick Halp
v il !
HellaWarld . T :
= AppDelegate.swilt ¥ Identity Mo Quick Help
z & Hetaworid
« ViewConiroller swift
Main.storyboard TAROETY Bundle identifler com.asmtechaciogy.HellaWarld
W hssets scassets i HelaWorld
varslon 1.0
LsunchScreen. storyboard
Infoplist -
» 1 Produicts
Team Nana B8
Na matching pravisioning prafiles found
e
Fix lssue
* Deployment info
Depl e e
eployment Target -] DO oo
Devices [Phone]
3 Cocoa Touch Class - & Cocon
Main Intarface Main [~] Touch tiase
Devies Orientation Portrait
Upslda Down Ul Tost Case Class - A cuan
B Landscape Left implementing & unit test
Landscape Right
Status Bar Styla Default 8 = Unit Test Case Class - A class
U implementing o unit tes:
Hide status bar
=) + — |® Requines full screen g =

The Navigator Area

The left side of the workspace window is the navigator area (Figure 2-5).

|

(=5 1=

B R Q & ©
¥ & HelloWorld
v HelloWarld
+ AppDelegate.swift

4 ViewController.swift
Main.storyboard
Sl Assets.xcassets
LaunchScreen.storyboard
Info.plist
> Products

FIGURE 2-5

vww.allitebooks.cond

http://www.allitebooks.org

An Overview of the Xcode IDE |

The navigator area consists of eight tabs; each of these tabs (called
navigators) shows different aspects of the same project. You can switch
between navigators using the navigator selector bar at the top of the
navigator area (Figure 2-6).

The Project Navigator

The project navigator (Figure 2-7) shows the contents of your project.
Individual files are organized within groups that are represented as
folders in a tree structure. The top-level node of this tree structure rep-
resents the project itself. These groups are purely logical and provide a
convenient way to organize the contents of your project. A group may
not necessarily correspond to actual folders on your hard drive.

When a new project is created, Xcode will create two groups (folders)
under the project node. Figure 2-7 shows what the project navigator
would look like if you were to create a new project using the Single
View Application template called HelloWorld without unit tests or
user interface tests.

As you can see, the top-level node is called HelloWorld, and the two
groups below that node are:

> HelloWorld: Contains the source code for your application.

> Products: Contains the finished products, created after the source

code compiles successfully.

In most cases, you will work with a single project at a time in the
Xcode workspace window; however, it is possible to open multiple
projects in the project navigator using a workspace file. A workspace
file has the file extension .xcworkspace and contains references to one
or more project files. You will not be creating workspaces in this book;
however, if you were to open a workspace file, the workspace window
would display information on multiple projects contained within the
workspace (Figure 2-8).

To create a new group, right-click an existing node in the project navi-
gator and select New Group from the context menu. You can move
files between groups by using simple drag-and-drop operations in the
project navigator. If the groups in the project navigator correspond to
actual folders on your Mac, then moving things around in the project
navigator will not move the corresponding files into new locations on
your Mac.

’ Bm QM e = 8
FIGURE 2-6

¥ & Helloworld
v HelloWarld

s AppDelegate.swift

4 ViewController. swift
Main.storyboard
Assets.xcassets
LaunchScreen.storyboard
Info.plist

¥ [Products
% HelloWorld.app

[

FIGURE 2-7
B &R a4 & © 2o B
¥ = FirstProject |
» [FirstProject Project 1
o Products |

v & SecondProject
¥ [SecondProject
s AppDelegate. swift
= ViewController.swift
Main.storyboard Project 2
W Assets.xcassets
LaunchScreen.storyboard
Info._plist

> Products
v & ThirdProject

» - ThirdProject Project 3
» | Products
FIGURE 2-8

To delete a file, simply select the item and hit the backspace key on your keyboard. Xcode then asks
you if you intended to delete the actual file from your Mac or just remove the reference from the
project. The process of deleting a group is similar to that of a file; keep in mind that deleting a group

deletes any files within that group.

23

24 | LESSON2 ATOUR OF XCODE AND THE IOS SIMULATOR

At the bottom of the project navigator is a set of icons. You can use these icons to filter what is dis-
played in the project navigator based on certain criteria.

NOTE To learn more about the project navigator, read the Project Navigator
Help document at http://developer.apple.com/library/ios/#recipes/
xcode help-structure navigator/ index.html.

The Symbol Navigator

The symbol navigator (Figure 2-9) shows the classes in your project along with their methods and
member variables. A top-level node in a tree-like structure represents each class. Expanding the class

node reveals all its member variables and methods.

BEREAaso=Eo &

¥ (£ AppDelegate
[application(_:didFinishLaunchingWit...
[applicationDidBecomenctive(_:)
[epplicationDidEnter and(_:)
m applicationWillEnterForeground(_:)
[applicationwillResignActive(_:)
@ applicationwiliTerminate(_:)
& window

v [& viewController
[l didReceiveMemoryWarningf)
(@ viewDidLoad()

@® | k{0
FIGURE 2-9

The Find Navigator
The find navigator (Figure 2-10) lets you find all occurrences of some text, across all files of the
project.

A root-level node in a tree represents each file that has one or more occurrences of matching text.
Expanding the node reveals the exact positions within that file where these matches were made.

The Issue Navigator
The issue navigator (Figure 2-11) lists all compile-time errors and warnings in your project.
While compiling a file, Xcode raises an issue each time it finds a problem with the file. Severe show-
stopping issues are flagged as errors, whereas less severe issues are flagged as warnings.

http://developer.apple.com/library/ios/#recipes
http://developer.apple.com/library/ios/#recipes/xcode_help-structure_navigator/_index.html

An Overview of the Xcode IDE

| 25

BERQASCEoo B BR Qe =8
Find ' Text : Containing By Type

Q- delegate o ¥ i FirstProject 2 issues (1]
= In Project Ignoring Case ¥ g AppDelegate.swift

@ Use of undeclared type ‘Bol'
ClretPrale »> Non-@objc method ‘application
Y5 AppDeiagate sl Fistiolect (_:didFinishLaunchingWithOptions

|l AppDelegate.swift :)' cannot satisfy optional ..,
& class AppDelegate: UIResponder,
UlApplicationDelegate {
[class AppDelegate: UiResponder,
UlApplicationDelegate {

3 results in 1 file

® ® 00
FIGURE 2-10 FIGURE 2-11

Each file with one or more errors/warnings is represented by a root-level node in a tree-like struc-
ture. Expanding the node reveals the exact positions within that file where these errors/warnings

were encountered.

The Test Navigator

The test navigator (Figure 2-12) gives you a snapshot of all the unit tests created with the project. A
root-level node in a tree-like structure represents each test suite. Expanding this node reveals the test
fixtures within that test suite. Clicking a test fixture (method) will open the corresponding code in
the editor area. To run a test, you could click the play icon to the right of the test fixture.

[] ® » [] i Helloworld i iPhone B | Build | Today at DB:50
B8 a & © 2o 8 BB < & HetioWorld Tests | = switt) [@ Tests
7

¥ HelloWoridTests & t=sts
¥ [HelloWoridTests
111 mstExamalal)
3 testPerformanceExample])
» [HelloWoridTests. HelioWarld Tests

// HelloWorldTests.swift
/f HelloWorldTests

Created by Abhishek Mishre an 21/07/2015.
/f Copyright © 281% asm technology Ltd. All rights reserved.
"

00

inport XCTest
@testable import HelloWorld

@ class HelloworldTests: XCTestCase {

averride func settp() {
super.setip(}

¥
averride func tearDewni) {
super. tearDowni)
& func testExample(] {
/T

his is an example of & functional test case.
/¢ Use XCTAssert and related functions to verify your tests produce the correct results.

o func testPerformanceExanple() {
/f This 1s an example of & perfarmance test case.
self.measureBlack {
/f Put the code you want to measure the time of here.

+ |

/¢ Put setup code here. This method is called before the invocation of each test method in the class.

#f Put teardown code here. This methad is called after the invocation of each test method in the class.

Time: 0,000 se< (V3% STOEV) &

FIGURE 2-12

26 | LESSON2 ATOUR OF XCODE AND THE IOS SIMULATOR

The Debug Navigator

The debug navigator is used during an active debugging session and lists the call stack for each run-
ning thread. Debugging is an advanced topic and is not covered in this book.

The Breakpoint Navigator

The breakpoint navigator lists all breakpoints in your code and allows you to manage them. A
breakpoint is an intentional pause-point that you can set in your project. When the app is being
executed, Xcode interrupts the execution of the application when it encounters one of these pause-
points and transfers control to the debugger. This is extremely useful when trying to figure out why
a particular piece of code does not work and you want to inspect the values of variables and con-
tent of memory. Breakpoints and the debugger work only when the application is being executed in
debug mode. Breakpoints and debugging are advanced topics, and are not covered in this book.

The Report Navigator

The report navigator shows you a history of build logs and console debug sessions. Building is the
complete process of creating an executable application from your source code files. Compilation is a
part of the build process. Each time you build a new executable, Xcode creates a build log that con-
tains, among other things, a list of files that were compiled.

The Editor Area

The right side of the workspace window is the editor area (Figure 2-13). Xcode includes editors for many
file types, including source code, user interface files, XML files, and project settings, to name a few.

ese p % HelioWorid) @ iPhone & Build : Today at 06:50 =@ S0 B 3
BRaAO6@&oc B (MHi¢ B Heliow oo . switt) [1] AppDelepate o ®
v & Heliowork 4 identity ane Type
bl 1/ hppoelegate, swift LRl
¥ [HellaWiord i Hellowarld Hame AppDelegate.swift
<[RenCvbe:s 7/ Created by Aphishek Mishra an 21/87/2015. Tye Default - Swift Source |
= ViawCantroller switt // Copyright © 2015 psm technology ltd. ALL rights reserved.
Wale, storyboard " Location Relative to Group %]
Delegate swilt ™
0 Assats xcassets inport UIKit Agpsge
Full Path fUsersfabhishelcmisnra/
gl @IIApplicationMain Desktop/HalloWarld]
Info.plist class AppDelegate: UIRespander, UIApplicationDelshate { HelioWorld/
i AppDelegateswift ©
~ HellaWorkiTests var window: UIWindow?
= p On Demard Aessurce Tags

func applicationiapplication: ULApplicaticn, digFinishLaunchingWithOptions launchiptions:
[MSObject: AnyDbject]?) —= Bool {
f{ Override point for customization after application launch.

return true Target Membership
¥ B A Helioword
func applicationWillResignActive(application: UTApplication) { HelloWorldTests

/4 Sent when the application is about to move from active to Lnactive state. This can
sccur for certain types of temporary interruptions {such as an incoming phone call
ar SMS nessage) or when the user quits the application and it begins the transition Taxt Sattings.
to the background state,
/4 Use this method to pause ongoing tesks, disable timers, and throttle down OpenGL €S Text Enceding Default - Unicode (UTF-8) [}
frame rates. Games should use this method to pause the ganme.

3 Uing Endings Defautt - 05 ¥/ unix (LF) [
func spplicstionDidEnterBackground(application: UlApplicstion) { Ingent Usihg Spaces =
/{ Use this method to relesse shared rescurces, save user dats, invelidate timers, and Wi e 2l

store encugh application state information to restore your spplicotion to its
current state in case it is terminated later,

/¢ If your application supports background execution, this method is called instead of 0O
applicationWillTerninate: when the user quits.

Cocoa Touch Class - & Cocoa
@ Touch class

func appli 11EnterForegr application: UlApplication) {
/f Called as part of the transition from the background to the inactive state; here you
can undo many of the changes made on entering the background.

}

= Ul Test Case Class - A class

func applicationDidBeconeActive(application: UIApplication) { ol ey 8 .
// Restart any tasks that were paused {or not yet started) while the application was
inactive, If the application was previously in the background, optionally refresh
, the user interface. i
BB imiemantioga et e
func applicationWiliTerninate(application: UTApplication) {
D /¢ Called when the spplication is about to terminate, Save data if sppropriste. See also 5 | &

applicationDidEnterBackground:.

FIGURE 2-13

An Overview of the Xcode IDE | 27

The content of the editor area depends on the current selection in the navigator area. When you
select a file in the navigator area, Xcode tries to find an appropriate editor for that file type. If it
can’t find one, it opens the file using Quick Look (which is also used by the Finder).

Jump Bars

At the top of the editor area is the jump bar (Figure 2-14). The jump bar displays the path to the
current file being edited and can be used to quickly select another file in the workspace. The jump
bar also has back and forward buttons to move through a history of files edited. Each element in the
path displayed in the jump bar is a pop-up menu (Figure 2-15) that you can use to navigate around
your project.

’I-'— < . Helloworid HelloWorld | = AppDelegate.swift) [5] AppDelegate ‘
FIGURE 2-14
B < & HelloWorid HelloWar . AppDelegate.swift

i B viewController.swift

{/{ AppDelegate.swift

7¢ HelloWorld Main.storyboard >
' Assets.xcassets

// Created by Abhishek Mishra or

/¢ Copyright © 2015 asm technoly LaunchScreen.staryboard >
s Info.plist

PRNTL VIS

FIGURE 2-15

The contents of the jump bar depend on the type of file you’re viewing. When editing a user inter-
face file, for example, the jump bar enables you to navigate to individual interface elements.

The Source Editor

When you select a source-code file in the navigator area, or a text/ XML file, Xcode uses the source
editor to open the file. This is the editor with which you will spend most of your time when you
write your code. The source editor has several helpful features, such as syntax highlighting and
code completion hints. You can configure individual features of the source editor using Xcode
preferences.

The Assistant Editor

The assistant editor (Figure 2-16) was introduced in Xcode 4 and enables you to view multiple files
side-by-side.

The assistant editor is not visible by default and can be accessed by using the editor selector buttons
in the Xcode toolbar or by selecting View = Assistant Editor = Show Assistant Editor. Option-
clicking a file in the project navigator or symbol navigator opens it in the assistant editor. You can
create additional assistant editor panes by using the + button in the jump bar of the assistant editor.

The Version Editor

If your project is under version control, you can use the version editor to compare the current ver-
sion of a file with a previous version. Like the assistant editor, the version editor is not visible by

28 | LESSON2 ATOUR OF XCODE AND THE IOS SIMULATOR

default and can be accessed by using the editor selector buttons in the Xcode toolbar. Version con-
trol is not covered in this book.

sve » o Helioworld | i iPhone & Heiloword | Bulid Hedoworkd: Succoeded | Today ot 006:50 ;@ =l 1
BRAasaoso B WL & Heloworld Hutawerid | [l Main storyboard | [l Meinstonybosrd (Base) | Mo Saketion | 2) Automatic |+ ViawConirellessmift | N Sactisn
¥ B Heloword ¥ [View Conirolier Scene
HelioiWorid Wiem Controber
+ AppDwagain.wwilt Top Layeus Guidn
- Viwt ift Sottom Layout G...
View
Assots scassens @ Frsz Rasponder
Launchcresn. storyboard [et
R Sterybuard Entry Po.
[0 blicWard et -
1 Products
Assistant
Editor
=} Arey Any

The Utilities Area

The utilities area (Figure 2-17) supplements the editor area. You can display it by selecting View o
Utilities = Show Utilities or by clicking the utility button in the toolbar.

The Inspector Area

The top portion of the utilities area contains the inspector area (Figure 2-18). Like the navigator
area, the inspector area also contains multiple tabs that can be switched using a selector bar at the
top of the window.

The number of tabs available depends on the currently selected item in the project navigator.
Regardless of what is selected in the project navigator, the first two tabs are always the file inspector
and the quick help inspector. The file inspector provides access to the properties of the current file.
The quick help inspector provides a short description of the current file.

The Library Area

The bottom portion of the utilities area contains the library area (Figure 2-19). This area con-
tains a library of file templates, user interface objects, and code snippets that you can use in your
applications.

An Overview of the Xcode IDE

| 29

ece p B\ Helloworld) @@ iPhane & uild el | Taday at 08:50 = <0 (|
BREQ A6 BB |HH ¢ B s Mo Selection 0O @
v 1 | " and Type
1 Helnio 71 ViewController.swift Gl
¥ [HeilaWarld // HelloWorld ame ViewContraller. swift
. i i .
£ AnpDelegai.ewift 7/ Created by Abhishek Mishra on 21/67/2015, Tyon Ootault - Swift Source /B
|2 | #f Copyright © 2815 asm technology ltd. AlL rights reserved.
Rkt dard " cation Falative ta Group <]
ntraller. swift -
B Assets xcassets inpart UIKit e z i -
Fullfath [Usersiabhishekmis
Lt Smars ool class ViewContraller: UIViewContreller { e
It plist HallaWarid/
override func viewdidload(} { ViewCantrallor.swi o
= [0 HelloWorldTests super.viewDidload()
i/ L frer | g t o y f nib.
> Products N // Do any additional setup after loading the view, ypically from a nib, On Damane R rew Tags
ouerride func didRecelveNenaryWarningl) {
super.didfleceiveMenorywarning)
/f Dispose of any resources that can be recreated. Target Mamnbers!
+ B A Hesawordd
¥ Utilities
Textse Area
Text Encading Defalit -\iricede (UTF-8) [
- o

Toue) class

Test Case Class - &
plamenting b unit st

Unit Test Case Class - 4 c
implementing o unit test

Playground - &n i0S Playground

FIGURE 2-17

[}
Identity and Type
Name ViewController.swift
Type Default - Swift Source a
Location Relative to Group o]
ViewController.swift]

Full Path /Usersfabhishekmishra/
Desktop/Helloworld/
HelloWorld/
ViewController.swift ~ ©

On Demand Resource Tags

Target Membership
B A HelloWorld
HelloWorldTests

Toxt Settings

Text Encoding Default - Unicode (UTF-8) [
-~

FIGURE 2-18

og | &=y
oo |&

bD0De =

Cocoa Touch Class - A Cocea
Touch class

Ul Test Case Class - A class
implementing a unit test

Unit Test Case Class - A class
implementing a unit test

d - An IOS PI

FIGURE 2-19

The library area also provides a convenient method to access all the media files in your project.
A selector bar at the top of the library area provides access to four different library categories.

30 | LESSON2 ATOUR OF XCODE AND THE IOS SIMULATOR

The Debugger Area

The debugger area (Figure 2-20) also supplements the editor area. You can access it by selecting

View @ Show Debug Area or by clicking the debugger button in the toolbar.

[] e » i+ o HelloWorld | g iPhane & Build eid: | Taday at 06:50
BEQAOCBOCD ¢ B 4 ViewC ift No Selection
v B Helawor A
i bl 7/ ViewController.swift
¥ HellaWarld /f HelloWorild
« AppDelegate.swilt o

/f Created by Abhishek Mishra on 21/87/2015,
/f Copyright © 2815 asm technology ltd. ALL rights reserved.
Main.storyboard "

W Assets xcassets impart UIKit

LaunchScreen.storybaard cless ViewContraller: UIViewController {
Infoplist
werride fu wilidLoad
» i Hetoorgrests gt 4 et
R i #f Do any additional setup after loading the view, typically from a nib.

owerride func didRecelveMenaryWarning() {
super . d idfece fveMencryarning)
// Dispose of any resources that can be recreated.

= =
Debugger
Area
+ @ OE || Ao =) Al Qutput 3 iy |03 | 83

Identity and Type
Mame ViewController swift
Typn Dofault - Swift Scurce 8

Locatian Relative ta Group <]
ViewCantrolier.swift -

Full Fath [Users/abhishekmisheal
Desktop/HelloWorld/
HalloWorld/

ViewCantrolier.swift

On Dumand Rasourcs Tags

Target Mamberahip
B A HelaWodd
HefoWorldTests

Text Settings
Text Encocing - Default - Unicode (UTF-8) [
e

S R

Cocoa Touch Class - & Cocoa
Toueh class

Ul Test Case Class - & cass
implamanting & unit 1est

B &

Unit Test Case Class - & class
implementing & unit test

&

Playground - A1 iCS Playground

a

FIGURE 2-20

The debugger area is used while debugging an application and to access the debug console window.

You can use this area to examine the values of variables in your programs.

The Toolbar

The Xcode toolbar (Figure 2-21) is located at the top of the workspace window. Use the first two
buttons on the left side to run/stop the active build scheme. Immediately following the stop button is
the Scheme/Target multi-selector. When you create an iOS project, Xcode creates a scheme with the

same name as the project and several build targets.

\ [] e p i5 Ay Helioworld | @ IPhane & Bulld : | Taday at 06:50

FIGURE 2-21

The build targets that are typically generated for a project include:
> i0S Device
> iPad 2 (if it is an iPad or Universal project)

> iPad Air (if it is an iPad or Universal project)

Features of the iOS Simulator | 31

iPad Retina (if it is an iPad or Universal project)
iPhone 4S (if it is an iPhone or Universal project)
iPhone 5 (if it is an iPhone or Universal project)

iPhone 5§ (if it is an iPhone or Universal project)

iPhone 6 Plus (if it is an iPhone or Universal project)

Y Y Y VY Y Y

iPhone 6 (if it is an iPhone or Universal project)

You can use the Scheme/Target multi-selector to switch build targets and create/edit schemes.
Managing schemes is an advanced topic beyond the scope of this book.

To the right of the Scheme/Target multi-selector is a status window. Following the status window,
the toolbar contains the editor selector and utility selector buttons, which have been covered in the
previous sections.

FEATURES OF THE iOS SIMULATOR

When you run an application from the Xcode IDE, unless you have selected a device in the Scheme/
Target multi-selector, your application will be launched in the iOS Simulator. Figure 2-22 shows the
iPhone 35S simulator. You can use the iOS Simulator to simulate different device and SDK versions.
To switch devices use the Hardware = Device menu.

6:25 PM

Safari

FIGURE 2-22

32 | LESSON2 ATOUR OF XCODE AND THE IOS SIMULATOR

You can rotate the simulator by using the Rotate Left or Rotate Right menu items from the
Hardware menu. The iOS Simulator allows you to simulate a variety of one and two-finger multi-
touch gestures. Single-finger gestures such as taps and swipes can be performed by clicking and
dragging with the mouse. The only two-finger gesture that you can simulate is the pinch. To do so,
hold down the Option key on your keyboard while clicking and dragging with the mouse in the
simulator window. Shake gestures can be performed by using the Hardware = Shake Gesture menu
item.

If you are developing an app that requires location data, you can use the iOS Simulator to simulate a
test location while you are running your application within the simulator. Select Debug =& Location
> Custom Location to specify a latitude and longitude pair (Figure 2-23). Creating location-based
applications is covered in Lessons 29 and 30.

Custom Location

Enter a |atitude and longitude for the location you would
like to simulate.

Latitude: | 37.785834

Longitude: -122.406417

cancel (CISNED

FIGURE 2-23

The simulator can also simulate changing locations. This is particularly useful if your app is
designed to be used while on the move. From the Debug = Location menu, you can select from a
list of prerecorded location sets. The simulator will then periodically cycle between the locations in
the selected set. The sets are:

> Apple Stores
> City Bicycle Ride
> City Run
>

Freeway Drive

Installing and Uninstalling Applications

To install an application to the iOS Simulator, you need to open its corresponding . xcodeproj file
in Xcode and click the Run button in the Xcode toolbar.

You cannot delete the default iOS Simulator applications (such as Photos, Settings, Game Center,
Safari, and so on). To uninstall (delete) one of your applications from the iOS Simulator, click and
hold the mouse button down on the icon of the app until all the icons start to wiggle. Once they
start to wiggle, you will notice an X button on the top-left corner of each icon.

Release the mouse button if you are still holding it down; the icons will still continue to wiggle.
Click the X button on the icon of the app you want to delete. An alert window will appear asking
you to confirm this action.

Trylt | 33

Limitations of the iOS Simulator

As good as the iOS Simulator may be, it has its limitations. For starters, you cannot make calls, send
or receive text messages, or install apps from the App Store.

The performance of the iOS Simulator depends on the speed of your Mac, and in certain cases your
application may appear to execute much faster on your Mac (in the iOS Simulator) than it does on
the real device.

Accelerometer, camera, and microphone functions are not supported in the iOS Simulator. If you are
developing OpenGL/ES-based applications, you should keep in mind that several OpenGL/ES func-
tions are not supported on the iOS Simulator.

The iOS Simulator is a useful tool to test your apps but it is definitely not a replacement for testing
on a real device.

TRY IT

In this Try It, you launch Xcode and open the project that you created in the Try It for Lesson 1.
This project was built using the Single View Application template. Once the project is opened in
Xcode, you will open a file in the editor area and display the assistant editor, debugger, and utilities
areas.

Lesson Requirements

» Launch Xcode.

> Create a new project using a template.
> Open a file in the editor area.
> Show the assistant editor.
> Show the debug area.
> Show the utilities area.
Hints

This Try It builds on the HelloSwift project you created at the end of Lesson 1.

Step-by-Step

1. Open the HelloSwift project you created at the end of Lesson 1 by double-clicking the
HelloSwift.xcodeproj file in the finder.

2. Open the Appbelegate. swift file in the Xcode editor. Ensure the project navigator is visible
and the iOSTest project is open.

34 | LESSON 2 ATOUR OF XCODE AND THE I0S SIMULATOR

3. Show the assistant editor using the editor selector buttons on the Xcode toolbar.
4. Show the debug area using the view selector buttons on the Xcode toolbar.

5. Show the utilities area using the view selector buttons on the Xcode toolbar.

REFERENCE To see some of the examples from this lesson, watch the Lesson 2
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/swifti

Introducing Swift

Prior to the launch of iOS8, Objective-C was the official language used to make native applica-
tions. With the launch of iOS 8, Apple provided an alternative language called Swift. Now it

is possible to code i0S (and Mac OSX) applications in both Objective-C and Swift. This book
targets Swift 2.0, which is supported on iOS 9 and later. This lesson introduces some of the
basic concepts of Swift.

INTRODUCING XCODE PLAYGROUNDS

Playgrounds are a new feature of Xcode (available from versions 6 and above) that allow you
to rapidly prototype Swift code. You cannot create a complete app in a playground, but if you
want to quickly try out an algorithm or just want to get a feel for the Swift programming lan-
guage, then playgrounds are for you.

To create a playground, you can either select the Get started with a playground option in the
Xcode welcome screen (Figure 3-1), or select the File > New => Playground menu item.

Mo Recent Projects

Welcome to Xcode

| Get started with a playground

"-'] Explora new ideas quickly and easily.
\i Create a new Xcode project

_’J Start building a new iPhane, iPad or Mas application

\:"‘ Check out an existing project
__| Start working on something from an SCM repository.

8 Show this window when Xcode launches Open another project. ..

FIGURE 3-1

36 | LESSON 3 INTRODUCING SWIFT

Xcode will then ask you to provide a name for the playground as well as the platform. In this book,
only iOS playgrounds are explored (Figure 3-2).

Choose options for your new playground:

Mame | Playground1|

Platform: 108 7]

Cancel Previous m

FIGURE 3-2

Xcode will then prompt you to provide a location where the playground should be saved on your
hard disk. You can, of course, use any location of your choice.

The main playground screen is divided into two parts (Figure 3-3).

> Editor area: This forms the left-hand side of the playground screen and is where you type
your Swift statements. Every time you press Enter on your keyboard to type a new line, the
playground will try to execute the line you have just finished.

> Results area: This forms the right-hand side of the playground and is where results are dis-
played. When the playground executes a line of Swift code, it will try and put the result in the
same vertical position as the line of code that was executed.

If the Swift code you have typed in the editor area contains print statements, then the output of
these statements will be visible in the console. To display the console in a playground, use the View
> Debug Area = Activate Console menu item.

Constants and Variables | 37

L I Ready | Today at 13:37
= = Playground1
let message = "Hello World!™ Hello World!
var number = 1 1
while number < 5 {
print (message) (4 times)
(4 times)

numbe r++

}

[=]
FIGURE 3-3

CONSTANTS AND VARIABLES

The 1et keyword is used to create a constant. A constant is a quantity whose value cannot change once
it is assigned. The following statement creates a constant called maximumsScore with a value of 200:

let maximumScore = 200

38

LESSON 3 INTRODUCING SWIFT

If you are familiar with programming in C or Objective-C, you will immediately notice that Swift
statements do not need to end in a semicolon.

A variable quantity is one whose value can change over the life of the application. A variable is
defined using the var keyword as follows:

var currentScore = 20

There are a few rules that you must stick to when it comes to naming constants and variables.
Constants and variables cannot begin with a number, contain spaces, or contain mathematical sym-
bols. You cannot change a constant into a variable or vice versa.

DATA TYPES

Unlike C or Objective-C, Swift does not require you to specify a data type when you are declaring
a constant or variable. The Swift compiler uses type inference to work out the data type from the
value you assign. If, however, you wish to be explicit, you can specify the data type of a constant or
variable while declaring them as follows:

let maximumScore:Int = 200
var bookCategory:String = "fiction"

Once a constant or variable has been created with a certain type, its type cannot be changed.
Table 3-1 lists some of the common data types in Swift.

TABLE 3-1: Common Swift Data Types

TYPE DESCRIPTION

Int Used to represent whole positive or negative numbers such as 1, 2, 300, 5000.
Float Used to represent positive or negative fractional numbers such as 11.9482.

Double Used to represent positive or negative fractional numbers (with a greater degree of

precision than Float), such as -11.948281731.

Bool Used to represent Boolean values; can be true or false.

String Used to represent a sequence of characters enclosed in double quotes, such as
“Hello World!”

Character Used to represent a single character in a string.

Variables in Swift are classed as either value types or reference types depending on how they behave
when they are passed as parameters to a method. (A method is a block of code that will be described
later).

A value type is a variable whose value is copied when it is passed as a parameter to a method. Any
changes made by the method to the variable only apply to its private copy of the original variable
and do not affect the value of the original variable in any way.

Strings | 39

A reference type, on the other hand, is passed by reference. If the receiving method changes the
value of a reference type then the change will be visible outside the scope of the function.

COMMENTS

Comments are used to add some descriptive text to your code that you want the compiler to ignore.
Typically, these are used to provide a human readable description about what is happening in the
code for reference purposes. Comments in Swift are similar to C-style comments. A single line com-
ment begins with two forward slashes (/). For example:

// this is a single line comment.

When the compiler encounters a line that starts with two forward slashes, it ignores everything on
that line.

If you would like to create a comment that spans over multiple lines, you could use multiple single
line comments. Alternatively you can use a multi-line comment. A multi-line comment begins with

a forward slash asterisk (/*) and ends with an asterisk forward slash (*/) for example:

/* this is a very
long comment that spans
three lines */

STRINGS

A string is a sequence of characters represented by the string type, and each character in a string is
of the character type. For example:

var stringVariable = "the man in the moon"

You can initialize an empty string as follows:

var anEmptyString:String = ""

If you have programmed in Objective-C, you will be familiar with the concept of mutable and
immutable strings. A mutable string is one whose contents can be changed, and Objective-C uses
two different classes (NSString and NSMutableString) to indicate whether a string can be mutated.
You will be pleased to know that there is only one string type in Swift; mutability is established

by creating a string variable. If you wish to create an immutable string, create a string constant as
follows:

let immutableString = "this string cannot be changed"

Strings can be concatenated (added together) to produce longer strings using the + operator as
follows:

let firstString = "Happy"
let secondString = "Birthday"
var concatenatedString = firstString + secondString

40

LESSON 3 INTRODUCING SWIFT

The variable concatenatedstring will now contain "HappyBirthday" (without a space, as there is
no space in any of the original strings.

You can append a string to an existing string variable using the += operator as follows:

var myString = "two times two is "
myString += "four"

The variable mystring will now contain "two times two is four". The space between is and
four is part of the original value of myString.

Swift uses string interpolation to create a new string from a mix of constants, variables, and
expressions. If you are an Objective-C programmer, then string interpolation in Swift is similar
to Objective-C’s [NSString stringWithFormat] class method. This is best explained with an
example:

var patientName = "Jason"
var patientHeight = 84
var message = "\ (patientName) is \ (patientHeight) cm tall."

The result of this snippet will be a string that contains "Jason is 84 cm tall." In this example the
variables patientName and patientHeight are inserted as \ (patientName) and \ (patientHeight)
placeholders. When the message variable is evaluated, these placeholders are replaced by actual values
and any associated type conversions are performed automatically.

Placeholders aren’t restricted to names of constants and variables; you can put a complete expression
in a placeholder. For example, the statement

let result = "\ (2 + 2) is equal to four"

will create a string constant called result with the value "4 is equal to four".

TUPLES

A tuple is a compound value that groups multiple values. The individual values within a tuple can be
of different data types. The following line of code declares a tuple called applicantDetails with
two values—the first is an Int, the second a String.

let applicantDetails = (12, "Henry")

There are a few different ways to access individual values in a tuple. One way is to use index num-
bers starting at zero:

print ("Applicant age is \ (applicantDetails.0)")
print ("Applicant name is \ (applicantDetails.l)")

If you have named the elements in the tuple when it is defined, you can use these names to access
individual values, as you can see in the following code snippet:

let applicantDetails = (applicantAge:12, applicantName:"Henry")
print ("Applicant age is \ (applicantDetails.applicantAge)")
print ("Applicant name is \ (applicantDetails.applicantName)")

Optionals | 41

You can also split a tuple into separate variables, which you can then access as follows:

let applicantDetails = (12, "Henry")

let (applicantAge, applicantName) = applicantDetails
print ("Applicant age is \ (applicantAge)")

print ("Applicant name is \ (applicantName)")

The output of any of these three methods would be the same:

Applicant age is 12
Applicant name is Henry

OPTIONALS

An optional is a new concept in Swift. An optional variable can either contain a value or have no
value. The closest thing in Objective-C would be the use of nil to indicate the absence of an object,
but in Objective-C, nil cannot be used with primitive data types, structures, or enumerations.
Unlike Objective-C, Swift’s optionals can be used to indicate the absence of a value for any data

type.

While declaring a variable, you indicate that it is an optional by appending a (?) to the data type.
Thus, an optional Double is a Double? For example:

var optionalDouble : Double? = 17.7681

If you define an optional without providing a value, it is automatically set to nil. Alternately, you
can set an optional variable to contain no value by assigning ni1 to it as follows:

optionalDouble = nil

nil is interpreted as a valueless state to an optional. If an optional contains a value, you can access
this value by unwrapping the optional. To unwrap an optional, simply add an exclamation mark to
the end of the variable name.

If you attempt to unwrap an optional that has no value, your app will be terminated with a runtime
error. You can test whether an optional has a value by comparing it with nil in a simple if state-
ment, as in the following:

var score : Int? = 10

if (score != nil)

{
}

print ("Your score is \ (score!)")

Another way to execute a bunch of statements if an optional contains a value is to use an optional
binding. An optional binding allows you check if an optional has a value and, at the same time,
extract this value into a constant or variable. Optional bindings can only be used in if and while
statements, both of which are covered later in this lesson. Consider the following example:

var score : Int? = 10
if let unwrappedScore = score

{
}

print ("Your score is \ (unwrappedScore)")

42 | LESSON 3 INTRODUCING SWIFT

In this example, the optional score will automatically be unwrapped into the constant unwrapped-
Score if it contains a value. unwrappedscore can now be used just like a normal constant and does
not need any further unwrapping.

If an optional is guaranteed to always contain a value, then you can skip having to unwrap it every
time by implicitly unwrapping it when you declare the optional. An implicitly unwrapped optional
is declared with an exclamation mark after the data type, instead of a question mark. Attempting to
assign nil to an implicitly unwrapped option will result in a compile time error.
Some scenarios where you may want to use an implicitly unwrapped optional are:

» As a return value from a function, this ensures the function will not return nil.

> Asan argument to a function, this ensures the function cannot be called with a nil argument.

> When creating IBoutlets to elements in xib files. Interface builder and xib files will be cov-
ered in Lesson 9.

In the following example, score is an implicitly unwrapped optional:

var score : Int! = 10
print ("Your score is \ (score)")

CONTROL FLOW STATEMENTS

A control flow statement allows you to modify the order of statements executed, execute certain
statements multiple times, or execute certain statements conditionally.

if-else

The if statement is one such control statement. In its basic form an if statement executes a block of
statements only if a specific condition is met.

if condition evaluates to true

{
}

statement to execute

The test condition is usually a Boolean variable, or an expression that evaluates to a Boolean vari-
able. If the test condition evaluates to true, the following statement (or block of statements) is
executed. The following is a simple example:

var numberOfRedMarbles = 20;
var numberOfBlueMarbles = 5;
if numberOfRedMarbles > numberOfBlueMarbles

{
}

print ("Game over, you won!");

Control Flow Statements | 43

In this hypothetical game example, a player is required to collect a certain number of red and blue

marbles. A player wins the game if he collects more red marbles than blue ones. The test condition
in this case is the expression

numberOfRedMarbles > numberOfBlueMarbles

which evaluates to true in this particular case. Note the complete if statement contains both the
test condition and the block of statements that go with the test condition.

The else Clause

A modified version of the if statement allows you to specify an additional block of statements that
are executed should the test condition fail. This additional alternate-scenario statement is completely
optional and should you need to specify it, you can use the modified form of the if statement:

if condition evaluates to true

{
}
else

{
}

statements to execute

some other statements to execute

This modified form of the if statement is known as the if-else statement. The else portion is

optional. The statement (or block of statements) following the else clause is executed only if the test
condition evaluates to false. A simple example follows:

var numberOfRedMarbles = 20;
var numberOfBlueMarbles = 5;
if numberOfRedMarbles > numberOfBlueMarbles

{
}
else

{
}

print ("Game over, you won!");

print ("Better luck next time!");

In this example, if numberofRedMarbles is greater than numberofBlueMarbles then

print ("Game over, you won!");

will be executed. Otherwise,

print ("Better luck next time!");

will be executed. Now it just so happens to be the case that 20 is greater than 5 and hence the block
associated with the else clause will not execute in this example.

44 | LESSON 3 INTRODUCING SWIFT

In the examples so far, the conditional expressions are trivial (such as 20 is greater than 5) and
strictly speaking, the if statement is not being used to its true potential. In a real-world application,
the values of the operands in the conditional expression would be dynamic—for instance, the num-
ber of times a tap is detected, or the number of alien spaceships destroyed by the player as a game
proceeds. In these cases, the if and if-else statements are extremely useful.

Just as with an if statement, statements that appear after the if-else statement would continue to
execute regardless of what happened in the if-else statement.

switch-case

A switch-case statement is convenient when you want to examine a variable and take a different
course of action for different values of the variable.

switch variable {

case value:
statements

case value:
statements

default:
statements
}

The variable being examined in a switch-case statement can be an Integer, Boolean, Tuple, or
Optional. You use the case clause to handle a specific value (or set of values). If the value of the
variable is found to match one of the scenarios handled by a case statement, then the corresponding
statement (or block of statements) will be executed. The following example shows a switch-case
statement:

let numberOfMarbles = 1;
switch numberOfMarbles {

case 1:
print ("You have just one marble.")

case 2,3,4,5:
print ("You have a few marbles.")

default:
print ("You have way too many marbles!")
}

The last case in a switch-case statement is always labeled default. The default case is executed if
none of the preceding cases have matched the value of the variable. Once a case is executed, control
moves out of the entire switch-case block and the statement following the switch-case block will
be executed.

Control Flow Statements | 45

Every case must have at least one statement; the following will NOT work in Swift:

let numberOfMarbles = 1;
switch numberOfMarbles {

case 0:
case 1:
print ("You have just one marble.")

case 2,3,4,5:
print ("You have a few marbles.")

default:
print ("You have way too many marbles!")
}

It is possible to achieve the overall effect of a switch-case statement with multiple if-else state-
ments, but the resulting code would be cumbersome.

Loops

A loop is a programming construct used to execute a bunch of statements multiple times. Typically,
a Boolean expression is evaluated either at the beginning or at the end of each pass of the loop. If the
expression evaluates to true then the loop will continue for another pass.

for Loop
The for loop has its roots in the C programming language. The general form of this loop is

for initial expression; termination expression; increment expression

{

loop statements

> Initial expression: This expression usually involves an assignment (where a value is assigned
to a variable).

> Termination expression: This expression usually involves a comparison operator and evalu-
ates to either true or false. If this expression evaluates to false the body of the loop will
not be executed.

> Increment expression: This expression usually adds an integer to the variable used in the ini-

tial expression.

The loop statements are a block of Swift statements that are executed at each pass of the loop. These
statements are also known as the body of the loop.

46

LESSON 3 INTRODUCING SWIFT

When a for loop is encountered, the following happens:
1. The initial expression is evaluated.
2. The termination expression is evaluated.

3. If the termination expression evaluates to false, the for statement terminates, and execution
continues at the first statement after the loop block.

4. If the termination expression evaluates to true, the loop statement/block is executed once.
5. The increment expression is evaluated, and execution continues from Step 2.

For an example of a for statement in action, consider the following snippet:

for var number = 10; number < 15; number++ {
print ("The value of number is \ (number)")
}

This snippet would result in the following output:

The value of number is 10
The value of number is 11
The value of number is 12
The value of number is 13
The value of number is 14
In this example, the initial expression sets the value of the variable number to 10:

number = 10

The termination expression is a conditional expression that evaluates to true or false. In this case,
the expression tests if the value of number is less than 15:

number < 15
The increment expression adds 1 to the value of the variable number:
number++

Without this expression, the value of number would never change, and the termination expression
would never evaluate to false. Consequently the loop would go on indefinitely.

for-in Loop

The for-in loop executes a block of statements for each item in a range or collection. Unlike the
for loop, there is no termination expression to be evaluated. The general form of this loop is

for item in range

{
}

loop statements

where:

> Ttem: This is a variable that is automatically assigned the next value in the collection of
values being iterated across.

> Range: This is an ordered collection of values over which the loop iterates.

Control Flow Statements | 47

The following snippet provides an example of the for-in statement in action:

for number in 1...3

{
}

print ("The value of number is \ (number)"

This snippet would result in the following output:

The value of number is 1
The value of number is 2
The value of number is 3

In this example, the range of values across which the loop iterates is expressed as a closed range
of numbers from 1 to 3 using the range operator (. . .). The variable number does not have to be
declared before it is used as Swift will implicitly declare it because it is included in the loop.

You can also use the for-in loop to iterate across an array or dictionary. An example of iterating
over an array of strings follows:

let places = ["Geneva", "Rome", "Zurich"]
for place in places

{
}

print ("\ (place) is a nice city to visit.")

This snippet would result in the following output:

Geneva 1s a nice city to visit.
Rome is a nice city to visit.
Zurich is a nice city to visit.

while Loop

The while loop executes a block of statements as long as a specified condition holds true. The gen-
eral form of the while statement is:

while loop condition

{
}

loop statements

The loop condition is typically a Swift expression that evaluates to true or false. The loop state-
ments are a block of Swift statements that are executed at each pass of the loop. These statements
are also known as the body of the loop.

When a while loop is encountered, the following happens:
1. The loop condition is evaluated.

2. If the loop condition evaluates to false, the while statement terminates, and execution con-
tinues at the first statement after the loop block.

3. If the loop condition evaluates to false, the loop statement/block is executed once, after
which execution continues from Step 1.

48 | LESSON 3 INTRODUCING SWIFT

The following code snippet provides an example of a while loop in action:

var number = 1

while number < 5

{
print ("The value of number is \ (number)")
number = number + 1;

This snippet would result in the following output:

The value of number is
The value of number is
The value of number is
The value of number is

B w N

In this example, the loop condition is a conditional expression that evaluates to true or false. In
this case, the expression tests if the value of number is less than 5:

number < 5

It is worth noting that the value of number is incremented by 1 in the body of the while loop. If this
were not done, then number would always equal 1, and this loop would never terminate.

repeat-while Loop

The repeat-while loop first executes a block of statements and then checks a specified condition
to determine if the preceding block should be executed again. The general form of the while
statement is:

repeat {
loop statements
}

while loop condition

Once again, loop condition is typically a Swift expression that involves a conditional operator and
evaluates to true or false. The loop statements are a block of Swift statements that are executed at
each pass of the loop. These statements are also known as the body of the loop.

When a repeat-while loop is encountered, the following happens:
1. The loop body is executed.
2. The loop condition is evaluated.

3. If the loop condition evaluates to false, the repeat-while loop terminates, and execution
continues at the first statement after the loop block.

4. If the loop condition evaluates to true, execution continues from Step 1.
Consider the following example of a repeat-while loop in action:

var number = 1
repeat

{

print ("The value of number is \ (number)")

Control Transfer Statements | 49

number = number + 1

while number < 5

This snippet would result in the following output:

The value of number is
The value of number is
The value of number is
The value of number is

IO

It’s important to note that the body of the repeat-while loop is guaranteed to execute at least once
because the loop condition is evaluated after the loop body is executed.

CONTROL TRANSFER STATEMENTS

Control transfer statements change the order in which your program’s instructions are executed.
They are commonly used to break out of a loop prematurely, or skip one or more iterations.

You can use the break statement as part of the statements that form the body of a for, for-in,
while, or repeat-while loop, to end the loop prematurely. Programs that use loops generally rely
on the loop to come to a natural end at some point.

However, sometimes you need to break out of a loop prematurely (perhaps in response to some
external factor) and in such cases you can use the break statement. The break statement is written
on its own, on a single line:

break

Any other statements in the block after the break statement will not be executed. The following
example demonstrates the use of the break statement. In this example a while loop is used to iterate
over integers between 1 and 200 and print the first number that is divisible by both 5 and 7

var number = 1
while number < 200

{

if ((number % 5 == 0) && (number %% 7 == 0) {
print ("The first number divisible by both 5 and 7 is \ (number)")
break

}

number = number + 1;

The continue statement, when used in the body of a loop, causes execution to skip one iteration of
the loop. The continue statement is also written on its own, on a single line:

continue

Any statements after a continue statement will be skipped for that iteration. The following example
demonstrates the use of the continue statement. In this example a while loop is used to iterate over
integers between 1 and 200 and print all numbers that are not divisible by 13.

50 | LESSON 3 INTRODUCING SWIFT

var number = 1
while number < 200

{

if ((number % 13 == 0){
number = number + 1
continue

}

print ("\ (number) is not divisible by 13.")
number = number + 1;

TRY IT

In this Try It, you launch Xcode and create a new Swift playground. You will then perform a few
basic operations with optionals.

Lesson Requirements
» Launch Xcode.

> Create a new Swift playground.

> Perform basic operations with optionals.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

Hints

To view the console inside the playground window, use the View > Assistant Editor = Show
Assistant Editor menu item.

Step-by-Step
> Create a new Swift playground.

1. Launch Xcode and create a new Swift playground by selecting the File = New
Playground menu item.

2. In the playground options screen, use the following values:
> Name: Playground1

> Platform: iOS

http://www.wrox.com/go

Trylt | 51

>

3. Save the playground onto your hard disk.
Create a simple program in the playground.
1. Delete the default contents of the playground file.

2. Type the following lines:

import UIKit

var blueBallCount : Int! = 20
var redBallCount : Int? = 100

if redBallCount != nil

{
print ("number of red balls is \(redBallCount!)")
print ("total number of balls is \(redBallCount! + blueBallCount)")

}

else

{
}

print ("redBallCount has no value")

3. Observe the results of this program in the Assistant Editor. You should see two lines:

"number of red balls is 100"
"total number of balls is 120

Modify the program slightly.
1. Change the third line of code to

var redBallCount : Int?;

2. Once again, observe the results of this program. You should now see only one line:

" redBallCount has no value"

REFERENCE To see some of the examples from this lesson, watch the Lesson 3
video online at www .wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

Functions

A function is a collection of instructions that perform a specific task; the task is usually some-
thing that needs to be performed multiple times over the life of the application. A function has
a name, which is used to call it from other parts of your application. A function may return a

value (perhaps the result of a computation) and could also have one or more input parameters.

DECLARING FUNCTIONS

Every function has a name; the name given to a function typically describes what it does.
Functions are declared in Swift using the func keyword. The following example declares a
simple function called greetUser that prints a line to the console using print:

func greetUser ()

{
}

print ("Hello there!")

To call this function from other parts of your code, you will simply need to mention the name
of the function:

greetUser ()

PARAMETERS AND RETURN VALUES

As mentioned earlier, functions can return values and accept input parameters; both of these
are optional but at the very least, most functions accept one or more input parameters. The
following example declares the function cubeNumber, which accepts a single integer as input
and returns its cube as output.

func cubeNumber (inputValue:Int) -> Int

{
}

return inputValue * inputValue * inputValue

54 |

LESSON 4 FUNCTIONS

Any input parameters are declared in the parentheses, and the return type of the function is speci-
fied using the return arrow (->). Functions aren’t restricted to a single input parameter. The follow-
ing example declares the function greetUserBetter, which accepts an Int and String as input
parameters and writes a line to the console.

func greetUserBetter (age:Int, userName:String)

{
}

print ("Hello \ (userName). You are \(age) year(s) old.")

To call this function from other parts of your code, you will simply need to mention the name of the
function and supply the values for the two arguments in the order in which they were declared:

greetUserBetter (12, userName:"John")

Functions can only return a single value (or none at all), but you can still use tuples to return multi-
ple values from a function. Essentially the multiple values that the function would like to return will
be grouped into a single tuple and returned. This is demonstrated in the following example:

func retrievePersonnelDetails (personnelID:String) -> (String?, Int?)

{

if personnelID == "100-182"

{

}

else if personnellID == "100-876"

{
}

return (nil, nil)

return ("John Woods", 37)

return ("Jason Lee", 45)

It is worth mentioning that the return value for this function is a tuple of optionals. This implies that
for some cases of personneliD this function will return the tuple (nil, nil), indicating that no data
was available. You could instead have used an optional tuple (as opposed to a tuple of optionals) for
the return value. Using an optional tuple means that the function will return (String, Int),ornil.

Swift allows you to specify an optional external name (known as an argument label) for each
parameter to a function. The idea is to provide descriptive names for each parameter that indicate
the purpose of the parameter. The retrievePersonnelDetails function could be declared using
external and internal parameter names as follows:

func retrievePersonnelDetails (acmeEmployeeNumber personnelID:String) ->
(String?, Int?)
When this method is now called, you will use the external parameter name:

retrievePersonnelDetails (acmeEmployeeNumber:"100-876")

If you want a function parameter to accept zero or more items of the same type, you will need to
declare the parameter as a variadic parameter. A variadic parameter is declared by adding three

Trylt | 55

period characters (. . .) to the end of the data type in the functions parameter list. The values of a
variadic parameter are presented to the function as an array. Variadic parameters will be explored
in this lesson’s Try It.

TRY IT

In this Try It, you create a new Swift playground and build a function that uses several concepts
covered in this lesson, including returning tuples, variadic parameters, and external parameter
names.

Lesson Requirements
> Launch Xcode.
> Create a new Swift playground.

> Create a function that finds the minimum and maximum height from a variable number of

heights.

> Display the results in the console.

REFERENCE The code for this Try It is available at www . wrox.com/go/

swiftios.

Hints

To view the console inside the playground window, use the View = Debug Area = Activate Console
menu item.

Step-by-Step
> Create a new Swift playground.

1. Launch Xcode and create a new Swift playground by selecting File & New
Playground.

2. In the playground options screen, use the following values:
> Name: FunctionPlayground
> Platform: iOS
3. Save the playground onto your hard disk.
> Create the minmax function.

1. Delete the default contents of the playground file.

http://www.wrox.com/go

56 | LESSON4 FUNCTIONS

2.

Type the following lines:

func minmax (heights inputValues:Int...) -> (Int, Int)
{

var minHeight = 100000

var maxHeight = -10000

for height in inputValues

{

if height > maxHeight

{
}

if height < minHeight

{
}

maxHeight = height

minHeight = height
}

return (minHeight, maxHeight)

}

» (Call the minmax function.

1.

2.

Type the following lines after the end of the minmax function definition:

let result = minmax(heights:10, 12, 8, 5, -2, 13)
print ("Shortest height = \ (result.0). Tallest height = \(result.l1l)")

Observe the results of this program in the console. You should see the following line in
the console:

Shortest height = -2. Tallest height = 13

REFERENCE To see some of the examples from this lesson, watch the Lesson
4 video online at www .wrox .com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvid

Closures

A closure is a block of code that can be passed around and used in your code. Functions
are special cases of closures. Closures in Swift are similar to blocks in Objective-C and can
capture any constants and variables in their enclosing scope.

FUNCTION TYPES

In the last lesson you learned about functions—which are a special case of closures. Just like
primitive data types Int, String, Double, and so on, functions have their own data types in
Swift. The data type of a function is called a function type and is simply a collection of the
parameters and return values of the function. For example, if given the function cubeNumber:

func cubeNumber (inputValue:Int) -> Int

{
}

return inputValue * inputValue * inputValue

its function type is simply (Int) -> Int.

It is possible for different functions to have the same function type. In the following example,
you can see that the function type for another function called squareNumber is exactly the
same as for cubeNumber:

func squareNumber (inputValue:Int) -> Int

{
}

return inputValue * inputValue

Function types are first class data types. You can declare a variable to be of a function type
and assign an appropriate function to that variable as follows:

var mathFunction: (Int) -> Int = squareNumber

58 | LESSON5 CLOSURES

Function types can be used as parameters to functions as well as return values.

CLOSURE TYPES

There are three types of closures in Swift: global closures, nested closures, and closure expressions.
Each of these will be explored in this section.

Global Closures

Global closures are the functions you have learned about so far, declared with the func keyword.
Unless explicitly specified, these global closures are part of the public interface of the class in which
they are declared. You can restrict the visibility of the global closure to the containing class by using
the private keyword.

Nested Closures

A nested closure is a function defined within the body of another function. The nested closure
would not be visible to code outside the enclosing function but could still be used within the enclos-
ing function. The enclosing function can, however, return one of the nested functions to the caller.
For this to happen, the return type of the enclosing function would have to be a function type. In
the following example, the function mathFunctionFactory returns one of two nested closures
depending on the input parameter:

func mathFunctionFactory (operationId : String) -> (Int) -> Int

func squareNumber (inputValue : Int) -> Int

{
}

func cubeNumber (inputValue : Int) -> Int

{
}

return (operationId == "square") ? squareNumber : cubeNumber

return inputValue * inputValue

return inputValue * inputValue * inputValue

You could use mathFunctionFactory to square a number as follows:

var mathFunction : (Int) -> Int = mathFunctionFactory ("square")
println("The square of 2 is \ (mathFunction(2))")

Closure Types | 59

Closure Expressions

Closure expressions are a way to write inline closures. They are the equivalent of blocks in
Objective-C, or lambdas in other languages. Usually when one mentions the word closure in Swift,
they are referring to closure expressions. The syntax of the closure expression is as follows:

{ (parameters) -> return type in
statements

}

The cubeNumber function discussed earlier in this lesson could be written using a closure expression
as follows:

var cubeNumber : (Int) -> Int =

{

(inputvalue : Int) -> Int in
return inputValue * inputValue * inputValue

Note that cubeNumber is now a variable of function type (Int) -> Int and is assigned a closure
expression of the same function type. The closure expression is everything between the pair of curly
braces.

{

(inputValue : Int) -> Int in
return inputValue * inputValue * inputValue

The body of the closure expression starts after the in keyword. The definition of the closure’s
parameters and return types always precedes the in keyword.

If you have looked at the closure version of cubeNumber, you may have noticed that mentioning the
function type twice seems redundant. Swift can infer the function type of the closure expression
automatically. Thus, the closure version of cubeNumber can be reduced to this:

var cubeNumber : (Int) -> Int =

{

inputValue in
return inputValue * inputValue * inputValue

When you program with closures, it is unlikely you will store them in a variable as in the preceding
example. Most of the time, a closure is used as a parameter to a function. This is illustrated in this
lesson’s Try It.

60 | LESSON5 CLOSURES

TRY IT

In this Try It, you create a new Swift playground and build a function that performs a simple arith-
metic operation on two numbers. The operation to be performed on the numbers is passed to the
function as a closure.

Lesson Requirements
> Launch Xcode.
> Create a new Swift playground.
> Create a function that performs a mathematical operation on two numbers using a closure.
>

Display the results in the console.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

To view the console inside the playground window, select View > Debug Area & Activate Console
menu item.

Step-by-Step
> Create a new Swift playground.

1. Launch Xcode and create a new Swift playground by selecting File = New
Playground.

2. In the playground options screen, use the following values:
> Name: ClosurePlayground
> Platform: iOS
3. Save the playground onto your hard disk.
> Create the minmax function.
1. Delete the default contents of the playground file.

2. Type the following lines:

func calculator (firstOperand : Double,
secondOperand : Double,
calculatorFunction: (Double, Double) -> Double)

http://www.wrox.com/go

Trylt | 61

let result : Double = calculatorFunction (firstOperand, secondOperand)
print ("operand 1 = \(firstOperand), operand 2 = \ (secondOperand),
result = \ (result)")

}

Call the calculator function.

1. Type the following lines after the end of the calculator function definition:

calculator(12.4,
secondOperand:17.5,
calculatorFunction: {
(vl:Double, v2:Double) -> Double in
return vl - v2}

)

2. Observe the results of this program in the console. You should see the following line in
the console:

operand 1 = 12.4, operand 2 = 17.5, result = -5.1

REFERENCE To see some of the examples from this lesson, watch the Lesson §
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

vww.allitebooks.cond

http://www.allitebooks.org

Error Handling

Error handling refers to the process of handling error conditions in your app. Swift 2.0 adds
new statements that give you the ability to throw, catch, and manipulate runtime errors.
Prior to Swift 2.0, if your function wanted to indicate failure, it would do so by returning an
Optional variable with a nil value. Errors provide a streamlined solution to the problem of
indicating failure within a function and handling the failure.

THE ERRORTYPE PROTOCOL

An error can be represented by a class, struct, or enumeration that implements the ErrorType
protocol. In most cases, you will use enumerations to represent errors. The following code
snippet lists an enumeration called NetworkError that could be used to represent error condi-
tions encountered while making a network request.
enum NetworkError: ErrorType
case ResourceNotFound

case ServerError (httpErrorCode:Int)
case NetworkTimeout

NetworkError could be used to represent three potential scenarios:
> ResoureNotFound: The URL you were trying to reach couldn’t be located.
> NetworkTimeout: The network request timed out.

> gerverError: Any other error generated by the server, the HTTP error code will be
included as an associated value—httpErrorcode.

64

LESSON 6 ERROR HANDLING

THROWING AND CATCHING ERRORS

To indicate that a function can throw a runtime error, you must add the throws keyword to the end
of the function declaration:

func doSomething() throws {
}
If your function returns a value, then you must add the throws keyword before the return arrow

(->):

func downloadResource (resourceName:String) throws -> NSData?

{
}

If a function is not declared with the throws keyword, it cannot throw a runtime error. To throw an
error from a throwing function, you can use the throw keyword:

func downloadResource (resourceName:String) throws -> NSData?
if resourceName.isEmpty

{
}

return nil;

throw NetworkError.ResourceNotFound

When calling a function that can throw, you must write try in front of the function call. This key-
word is used to indicate the fact that the function being called may throw an error and the lines of
code after the function call may not be executed as a result. The following snippet shows how you
would call the downloadrResource function.

let homeScreenBanner:NSData? = try downloadResource ("homeScreenBanner.png")
Adding a try statement before a function call does not catch or handle any of the errors that can be
generated by the function. It simply serves to highlight the fact that the function you are calling can

throw one or more errors. To catch and handle errors, you wrap the call to the functioninado. ..
catch statement: The general form of the do . . . catch statement is presented next:

do{
}
}

try A function that throws an error

catch An Error Matching Pattern {

If a function throws an error, that error propagates up the call stack until a suitable catch clause is
found that can handle the error. If no catch clause is found, then the application is terminated with
a runtime error. A catch clause is followed by an optional pattern used to match errors and a bunch
of statements that will be executed if the match is a success.

Throwing and Catching Errors | 65

You can have multiple catch clauses in a do . . . catch statement. You can also create a catch-all
clause by omitting the pattern. Multiple catch clauses, and a catch-all clause are demonstrated in
the following code snippet:

func loadHomeScreenImages () {

do {
let homeScreenBanner:NSData? = try downloadResource ("homeScreenBanner.png")
} catch (NetworkError.NetworkTimeout) {
print ("Network error occurred!")
} catch {
print ("Some other error occurred!")
}

catch clauses must be exhaustive; you need to either provide a catch clause for every exception that
can be generated by the throwing function or include a catch-all clause.

You can, however, decide to handle some of the errors and pass the rest higher up the call stack. To
do so, simply append the throws keyword to the method that is handling the partial list of errors.
For example, the following code snippet will compile fine even though it does not handle every pos-
sible error that the downloadrResource method can throw:

func loadHomeScreenImages () throws
do{

}

catch (NetworkError.NetworkTimeout)

{
}

let homeScreenBanner:NSData? = try downloadResource ("homeScreenBanner.png")

print ("Network error occured!")

This code will compile because 1oadHomeScreenImages itself is declared as a method that can
throw errors (in this case, propagate errors from the downloadResource function).

Suppressing Error Handling

If you are sure that a throwing function will, in fact, not throw an error at runtime, you can opt to
suppress error handling by using the forced try expression (try!). The following snippet uses the
forced try expression in the call to downloadResource to suppress error handling.

func loadHomeScreenImages () {
let homeScreenBanner:NSData? = try! downloadResource ("homeScreenBanner.png")
print ("\ (homeScreenBanner) ")

If a method that is called with the forced try expression generates a runtime error, then your appli-
cation will be terminated.

66

LESSON 6 ERROR HANDLING

The defer Statement

When a runtime error occurs, code execution usually leaves the current block of code and propa-
gates up the call stack until an appropriate catch expression is found. Often you may want to exe-
cute some cleanup code when an error occurs, before code execution leaves the current scope. The
defer statement allows you to do just that.

A defer statement delays execution until the current scope is exited:

func downloadResource (resourceName:String) throws -> NSData?

{

if resourceName.isEmpty

throw NetworkError.ResourceNotFound
defer {

// insert cleanup code here.
}
}

else

{
}

return nil;

return NSData (contentsOfURL: NSURL(string: resourceName) !)

You cannot execute any code in a defer block that would cause execution control to jump out
of the block. Therefore, you cannot use the break statement or the return statement, or throw
an error.

TRY IT

In this Try It, you create a new Swift playground and build a function that divides two numbers and
throws an exception if the denominator is zero.

Lesson Requirements

> Launch Xcode.

> Create a new Swift playground.

> Create a function called divideNumbers that divides two numbers and throws an exception.
>

Create a function that calls divideNumbers and handles any exceptions that are thrown by
divideNumbers.

\

Display the results in the console.

Trylt | 67

REFERENCE The code for this Try It is available at www .wrox.com/go/

swiftios.

Hints

To view the console inside the playground window, select View = Debug Area = Activate Console.

Step by Step
> Create a new Swift playground.

1. Launch Xcode and create a new Swift playground by selecting File = New
Playground.

2. In the playground options screen, use the following values:
> Name: ExceptionsPlayground
> Platform: iOS
3. Save the playground onto your hard disk.
> Create an enumeration to represent errors.
1. Delete the default contents of the playground file.

2. Type the following lines:

enum ArithmeticError: ErrorType {
case DivisionByZero

> Create the divideNumbers function.
Type the following lines after the definition of the ArithmeticError enumeration:

func divideNumebrs (numerator n:Double, denominator d:Double) throws -> Double

{
if d == 0

{
}

return n / d

throw ArithmeticError.DivisionByZero

}

> Create a function that calls the divideNumbers function and handles any errors that may be
generated.

http://www.wrox.com/go

68 | LESSON 6 ERRORHANDLING

Type the following lines after the definition of the divideNumbers enumeration:
func performDivision (numberl:Double, _ number2:Double)
{
dof
let result = try divideNumbers (numerator: numberl,
denominator: number2)

print ("\ (numberl) divided by \ (number2) equals \ (result)")

}

catch

{
}

print ("number2 is zero!")

}

» (Call the performbivision function.

1. Type the following line after the end of the performpivision function definition:

performDivision (10, 2)

2. Observe the results of this program in the console. You should see the following line in
the console:

"10.0 divided by 2.0 equals 5.0\n"

REFERENCE To see some of the examples from this lesson, watch the Lesson 6
video online at www.wrox.com/go/swiftiosvid

http://www.wrox.com/go/swiftiosv

Object-Oriented Programming
with Swift

Over the years, computer application developers have developed various strategies to create
applications that can solve complex problems. One of the earliest approaches to problem solv-
ing was the concept of structured programming.

Structured programming (which predates object-oriented programming) centered on a divide-
and-conquer philosophy. A complex program was broken down into a set of tasks, and then
each task into a set of simpler sub-tasks. A key feature of structured programming is that there
is a clear separation between data and the code that operates on that data.

Structured programming is still in use in some types of applications today, but it has a few
drawbacks:

> People generally think of data (account numbers) and what they can do with it (com-
pute balance, interest, and so on) as related concepts. It is not natural to think of them
in isolation.

> Programmers were constantly reinventing the wheel, creating solutions for things
that had been solved over and over again by others. Structured programming did not
address the need to reuse existing functions (either written by you or someone else)
conveniently.

> A new approach to programming, object-oriented programming (OOP), was created.
Essentially, OOP tries to address the deficiencies in the structured programming
model by:

> Providing techniques to achieve re-use of software components.
> Coupling data with the functions that act on them.

Core to object-oriented programming is the idea of treating data and functions that act upon
them as an independent entity known as an object.

70

LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

CREATING CLASSES WITH SWIFT

A class can be thought of as a template or blueprint of an object. This is best understood by an
example. If you were to go down to your local car dealer, you would likely find several cars there.
Each of these cars share some common characteristics with each other; for instance, each has

seats, wipers, four wheels, and so on. Looking at this situation from an object-oriented perspec-
tive, you can say that each of these cars is an instance of a class of objects called automobiles. The
Automobile class (see Figure 7-1) could then be thought to define some characteristics that are com-
mon to each instance (such as the fact that each car has four wheels).

CLASS: Automobile

Has 4 Wheels

Has Seats

Has 1 Steering Wheel
Has Windows

Has Brake Pedal

/ A

OBJECT: Ford Focus OBJECT: BMW X5 OBJECT: Aston Martin DB9

FIGURE 7-1

Classes are created in swift using the class keyword followed by the name of the class. Unlike
Objective-C, the external interface and implementation of a class is contained in a single file. A
bare-bones Automobile class would resemble the following:

class Automobile : NSObject

{
}

The statements that will make up the body of the class are contained within the pair of curly braces.
Just like Objective-C, Swift classes generally inherit from NSObject either directly or indirectly.

PROPERTIES

Common characteristics between the various instances of the Automobile class can be easily
represented using variables; for example, the number of wheels could be represented by an integer

Methods | 71

variable named wheelcCount and so on. Table 7-1 lists the characteristics of the Automobile class
and the equivalent variables that could be used to represent them.

TABLE 7-1: Characteristics of the Automobile Class

CHARACTERISTIC VARIABLE

Has 4 wheels Int wheelCount

Has seats Bool hasSeats

Has 1 steering wheel Int numberOfSteeringWheels
Has windows Bool hasWindows

Has brake pedal Bool hasBrakePedal

Unlike Objective-C, Swift does not have an explicit @property syntax. Properties in Swift are
simply public member variables of the class. With this in mind, the Automobile class now becomes:

class Automobile : NSObject

{

var wheelCount:Int?

var hasSeats:Bool?

var numberOfSteeringWheels:Int?
var hasWindows:Bool?

var hasBreakPedal:Bool?

Notice how every variable is declared as an optional type. The class does not have an init ()
method at this point so the default values of all these variables will automatically be ni1, and you
need optionals to handle nil values in Swift.

METHODS

To be compliant with the principles of object-oriented design, this Automobile class must also
define some operations that do something with these variables (see Figure 7-2). Whatever these oper-
ations may be, each concrete instance of the Automobile class will be able to perform them.

These operations are best thought of as commands you could give to a car (instance of Automobile
class). This is perhaps where object-oriented solutions differ from real-world situations. In the real
world, you can’t command a car to drive itself (except in the movies); you need to drive the car. In
an object-oriented world, however, the car would drive itself and all you would have to do is tell the
car to start driving. Table 7-2 lists a few possible operations that the Automobile class could define.

72 | LESSON7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

CLASS: Automobile

Has 4 Wheels

Has Seats

Has 1 Steering Wheel
Has Windows

Has Brake Pedal

RollDownWindows

StopMoving
StartMoving
/ 0 \
OBJECT: Ford Focus OBJECT: BMW X5 OBJECT: Aston Martin DB9

FIGURE 7-2

TABLE 7-2: Operations in the Automobile Class

OPERATION DESCRIPTION

rollDownWindows The car rolls down all its windows.
stopMoving The car stops moving.
startMoving The car starts moving.

Just as you use variables to represent the common characteristics, each of these operations would be
represented using blocks of code (methods). These blocks of code would operate on the data (vari-
ables) within the class to achieve the desired outcome. The following is the modified definition of the
Automobile class:

class Automobile : NSObject
{
var wheelCount:Int?
var hasSeats:Bool?
var numberOfSteeringWheels:Int?
var hasWindows:Bool?
var hasBreakPedal:Bool?
var speed:Int?

func rollDownWindows () {

println("windows are now open") ;
}

func stopMoving() {
speed = 0

Methods | 73

println("car has stopped moving")

}

func startMoving()
speed = 10
println("car is moving")

An initializer is a special method in a class that is used to create an instance of the class. This is
similar to the concept of a constructor in other languages. The process of initialization typically
involves setting up default values for member variables and any other setup tasks that may be neces-
sary. Unlike Objective-C, initializers in Swift do not return a value.

When it comes to specifying default values for member variables, you can either specify them at
the time of declaration or set them up in an initializer. The initializer for the Automobile class
would be:

init (numWheels:Int, seats:Bool,
steeringWheelCount:Int, windows:Bool,
breakPedal:Bool) {
wheelCount = numWheels
hasSeats = seats
numberOfSteeringWheels = steeringWheelCount
hasWindows = windows
hasBreakPedal = breakPedal

You can also create an initializer without any parameters; however, because the Automobile class
inherits from NSObject, you will end up overriding the default no-parameter initializer provided by
NSObject. A default initializer for the Automobile class would resemble the following:

override init () {
wheelCount = 4
hasSeats = true
numberOfSteeringWheels = 1
hasWindows = true
hasBreakPedal = true

A deinitializer is a method that is called immediately before a class is deallocated. Deinitializers are
written with the deinit keyword, and are called automatically for you.

deinit {

}

Swift uses ARC (Automatic Reference Counting) to manage your memory for you so you do not
usually need to use deinitializers. However, if you are managing your own resources outside of
ARC, you will need to use a deinit method to free these resources.

To find out more about ARC, refer to the Automatic Reference Counting guide available at:

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift
Programming Language/AutomaticReferenceCounting.html

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html

74 | LESSON7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

INSTANTIATING OBJECTS

When it comes to using a class, in most cases you need to instantiate it into a concrete object first.
All subsequent interaction will be with the object and not the class. The Automobile class in this
example is not an actual car; it is just the definition of what a car should be.

The following example shows how an instance of the Automobile class may be instantiated and
used:
var bmwThreeSeries: Automobile = Automobile (numWheels:4,

seats:true, steeringWheelCount:1,
windows:true, breakPedal:true)

bmwThreeSeries.rollDownWindows ()
bmwThreeSeries.startMoving ()
bmwThreeSeries.stopMoving ()

INHERITANCE

When developing an application, you are likely to create more than one class. The classes you define
are likely to have some relationships with each other. Object-oriented programming allows you to
specify different types of relationships between classes.

The concept of inheritance implies that a new class can be created that inherits the functionality
of an existing class. This new class will provide the functionality of the parent class and provide
some additional functionality of its own. Inheriting from a base class is known as subclassing. By
subclassing an existing class, the designer of an object-oriented solution is reusing the functionality
present in an existing class and not duplicating it. The parent class is commonly referred to as the
base class, and the child as the subclass.

As an example, consider a hypothetical class Dog (see Figure 7-3). Such a class could either be
created in isolation, or more likely inherit from a more general class Mammal. The attributes and
methods present in the Mammal class would be a part of the Dog class. In addition, the Dog class
would add a few attributes and methods of its own.

When you use inheritance to create a relationship between two classes, you are essentially creating
an is-a relationship between them. In the preceding example, a Dog is a Mammal. When one class
inherits from another, the parent class is known as the superclass and the derived class is known as
the subclass.

To indicate a class inherits from a superclass, you indicate the name of the superclass after the sub-
class, separating the two names with a colon. For example, if Mamma1l is the superclass, and bog a
subclass, then this relationship can be defined in Swift as follows:

class Mammal : NSObject{
var isMale:Bool = false

func play() {
println("Mammal's play() called")
}

Inheritance | 75

func rest() {
println("Mammal's rest() called")
}

func eat () {
println("Mammal's eat () called")
}

class Dog : Mammal{
var hasFourLegs:Bool = true

func bark () {
println("Dog's bar() called")
}

CLASS: Mammal

Has Gender

Play
Rest

Eat

CLASS: Dog (is-a Mammal)

Has Gender

Has 4 Legs

Play
Rest
Eat

Bark
A A

OBJECT: Ben's Dog OBJECT: Jane's Dog

FIGURE 7-3

A subclass can provide its own implementation of a method that is defined in a superclass. This
behavior is called method overriding, and the subclass’s version of the method will be used instead
of the superclass. When overriding a superclass method, Swift requires that you prefix your over-
riding version in the subclass with the override keyword. Within your overriding version, you

76 | LESSON7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

can access the variables and methods of the superclass using the super keyword. In the following
code snippet, the Dog class overrides the eat method, which it would have otherwise inherited from
Mammal:

class Dog : Mammal{
var hasFourLegs:Bool = true

override func eat() {
super.eat ()
println("Dog's eat () called")

}

func bark () {
println("Dog's bar() called")
}

}

The overriding version of eat in the Dog class first calls the superclass’s version of eat. This is not
strictly required but is a good idea. If you want to prevent a method from being overridden in a sub-
class, you need to append the £inal keyword before the method declaration.

COMPUTED PROPERTIES

Swift provides the concept of computed properties. These are similar to custom getters and setters in
Objective-C.

A getter is a method that provides read-only access to a private member variable of an object. A
setter is a method that allows another object to change the value of a private member variable.

In object-oriented design it is common practice to create private member variables in a class and
selectively provide getters/setters to define the operations that can be performed on these variables.
This practice is known as encapsulation and allows one to use a class without knowing the details
about how specific functionality is implemented in the class. Encapsulation also provides the class
designer with a degree of control over how the class will be used.

It is not necessary to have both getter and setter methods for a member variable. Providing just
a getter method (without a setter method) would in effect make the underlying member variable
read-only.

Computed properties do not actually store a value; instead, you provide a getter and (an optional)
setter method that compute the value of the property based on other properties of the class. This is
illustrated in the following example:

class Rectangle : NSObject {

var length:Double
var breadth:Double

Protocols |

77

init (length:Double, breadth:Double) {
self.length = length
self.breadth = breadth

var area : Double {
get{

}

return length * breadth

ENUMERATIONS

An enumeration is a data type that groups a set of named values. The named values are referred
to as elements of the enumeration. Unlike C, Swift enumerations can contain computed properties,
initializers, and member methods.

Enumerations in Swift are defined using the enum keyword, and the member values within that enu-
meration are prefixed with the case keyword, as shown here:

enum EmployeeType {

case
case
case
case
case
case

CEO

CTO

Manager
Receptionist
Developer
ProductOwner

To use this enumeration, you will need to declare an appropriate variable and assign it one of the
values in the enumeration as follows:

var acmeEmployee : EmployeeType = EmployeeType.Developer

PROTOCOLS

A protocol can be thought of as a contract that a class agrees to abide by. Technically speaking, the
class is said to implement the protocol in question. But what form does this contract take?

This contract (protocol) is basically a list of methods. These methods can be grouped as either
required or optional. Any class that wishes to conform to a protocol must provide implementations
of all required methods in the protocol. A class can implement multiple protocols (see Figure 7-4),
and multiple classes may implement a given protocol.

78

LESSON 7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Protocol 2
(Contract)

Protocol 1
(Contract)

CLASS 1 CLASS 2 CLASS 3 CLASS 4

FIGURE 7-4

Just because a class implements a protocol does not mean that the class cannot have additional
methods of its own (in addition to the ones defined in the protocol). The manner in which protocols
are used depends on the designer of the object-oriented system. In other object-oriented languages
like C++, protocols are known as interfaces.

Protocols are defined in Swift using the protocol keyword:

protocol MessageListener {

A class conforms to a protocol by including the names of the protocol in its declaration after a
colon. A class can conform to multiple protocols by listing the names of the protocols separated
by commas. If a class has a superclass, the name of the superclass must be listed before any proto-
cols. The following code snippet lists a class called NetworkManager that is a subclass of Nsobject
(inheritance) and implements the MessageListener protocol:

class NetworkManager: NSObject, MessageListener {

If a protocol contains member variables (property definitions), then conforming classes will need

to provide appropriate properties with the same name in their declarations. The protocol does not
specify the manner in which a conforming class may implement properties. A conforming class
could provide a stored property or a computed property implementation. A protocol, however, does
specify whether each property must be gettable, settable, or both. The following snippet shows the
MessageListener protocol with a few property definitions as well as the corresponding implemen-
tation in the NetworkManager class:

import Foundation
protocol MessageListener {

var hasNewMessage:Bool {get}
var messagePollInterval:Int {get set}

class NetworkManager: NSObject, MessageListener {

private var isDirty : Bool = false

Protocols | 79

private var pollInterval : Int = 10

var hasNewMessage : Bool {
get {
return isDirty

}

var messagePollInterval: Int {
get {
return pollInterval

}
set {

self.pollInterval = newValue
}

A protocol can also contain method names that conforming classes must implement. The follow-
ing code snippet builds on the MessageListener protocol and NetworkManager class by adding

methods:

protocol MessagelListener (

}

class NetworkManager: NSObject, MessageListener {

var hasNewMessage:Bool {get}

var messagePollInterval:Int {get set}

func beginListening()
func endListening()

private var isDirty : Bool = false
private var pollInterval : Int = 10

var hasNewMessage : Bool {
get {
return isDirty

}

var messagePollInterval: Int {
get {
return pollInterval

set {
self.pollInterval = newValue
1

}

func beginListening() {

println("NetworkManager beginListening()

is called")

80 | LESSON7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

}

func endListening() {
println ("NetworkManager endListening() is called")
}

If a method or property is prefixed with the optional attribute in the protocol, then conforming
classes need not provide implementations for these. If a protocol contains an optional property or
method in its definition, then the entire protocol must be marked with the @objc attribute, as you
can see in the following code snippet:

@objc protocol ConnectionDelegate {
optional func setupConnectionAttributes (ipaddress:String, port:Int) -> Bool
}

class NetworkManager: NSObject, Messagelistener, ConnectionDelegate {

private var isDirty : Bool = false
private var pollInterval : Int = 10

var hasNewMessage : Bool {
get {
return isDirty
}

}

var messagePollInterval: Int
get {
return pollInterval
}

set {
self.pollInterval = newValue
}

}

func beginListening() {
println("NetworkManager beginListening() is called")
}

func endListening() {
println ("NetworkManager endListening() is called")
}

// NOTE: this class does not need to provide an implementation for

// the optional method in the ConnectionDelegate protocol, but it does

// in this case

func setupConnectionAttributes (ipaddress:String, port:Int) -> Bool{
return false

}

Trylt | 81

TRY IT

In this Try It, you create a new Swift playground and build a class called Calculator that performs
arithmetic calculations.

Lesson Requirements
Launch Xcode.

>

>
>
>

Create a new Swift playground.

Create a class called calculator that performs arithmetic calculations.

Display the results in the console.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

To view the console inside the playground window, use the View @ Debug Area & Activate Console

menu item.

Step-by-Step

>

Create a new Swift playground.

1.

2.

Launch Xcode and create a new Swift playground by selecting the File ©> New >
Playground menu item.

In the playground options screen, use the following values:
> Name: ClassPlayground
> Platform: iOS

Save the playground onto your hard disk.
> Create the calculator class.

Delete the default contents of the playground file.

Type the following lines:

import UIKit

class Calculator : NSObject

http://www.wrox.com/go

82 | LESSON7 OBJECT-ORIENTED PROGRAMMING WITH SWIFT

func AddTwoNumbers (firstNumber:Double, secondNumber:Double) -> Double {
return firstNumber + secondNumber
}

func SubtractTwoNumbers (firstNumber:Double,
secondNumber:Double) -> Double {
return firstNumber - secondNumber

}

func MultiplyTwoNumbers (firstNumber:Double,
secondNumber :Double) -> Double {
return firstNumber * secondNumber

}

func DivideTwoNumbers (firstNumber:Double,
secondNumber :Double) -> Double? {
if (secondNumber == 0) {
return nil
}

return firstNumber / secondNumber

}
» Create an instance of the calculator class and call some of its methods.
1. Type the following lines after the end of the calculator class definition:

var arithmeticCalculator:Calculator = Calculator()

let numl = 17.5
let num2 = 19.76

let sum = arithmeticCalculator.AddTwoNumbers (numl, secondNumber: num2)
let difference = arithmeticCalculator.SubtractTwoNumbers (numl,
secondNumber: num2)

let product = arithmeticCalculator.MultiplyTwoNumbers (numl,
secondNumber: num2)

let division = arithmeticCalculator.DivideTwoNumbers (numl, secondNumber:
num2)

print ("\ (numl) + \(num2) is \ (sum)"

print ("\ (numl) - \(num2) is \(dlfference))

print ("\ (numl) \ (num2) is \ (product)")

print ("\ (numl) / \ (num2) is \(division!)")

2. Observe the results of this program in the console. You should see the following output
in the console:

17.5 + 19.76 is 37.26
17.5 - 19.76 is -2.26

Trylt | 83

17.5 * 19.76 1is 345.8
17.5 / 19.76 is 0.885627530364372

REFERENCE To see some of the examples from this lesson, watch the Lesson 7
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

Supporting Multiple
Device Types

If you have been developing iOS applications for a few years, you will have noticed the steady
increase in the number of i0S-enabled devices in the market today. In this lesson, you learn
about some of the differences between the different iOS devices and how to support them from
a single code base.

When it comes to supporting the different devices, broadly speaking there are two main device
families, iPhones and iPads. The obvious difference is the screen size, but there are some more
subtle differences. For example, iPads cannot make phone calls or send text messages.

You could create separate binaries of your application for the iPhone and iPad, although the
commonly accepted method is to create a single binary that works on both device families.
Such a binary is called a universal application.

To create a universal application project in Xcode, set the device type to be Universal in the
project options dialog box (see Figure 8-1). Although you can use any Xcode template to create
a universal application, this lesson is based on the Single View Application template.

86 | LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

Choose options for your new project:

Product Name:

o ization Name: asm Itd
[s] ization identifier: com.
Bundle identifier: com.asmtechnology. Productiame
Language: Swift 2]
Device A

iPhone

iPad
IR U e
Include Ul Tests

Cancel Previous

FIGURE 8-1

DEVICE DIFFERENCES

While there are two main iOS device families (iPhones and iPads), within each family there are sev-
eral devices. This section introduces the differences between these devices.

Screen Size

By far, the most visible aspect of a device is its screen size. There is a subtle difference in units when
it comes to expressing screen dimensions from a hardware versus a software point of view.

From a hardware point of view, screen size is expressed in terms of physical pixels, whereas iOS
applications refer to the same screen size in device-independent units and not pixels. Starting with
i0S4 and the introduction of the Retina display on the iPhone 4, Apple has introduced a new
device-independent coordinate system. Application developers express sizes and positions in this
new system.

Depending on the physical device on which the app is executed, these device-independent coordi-
nates are converted to device-dependent coordinates by multiplying them with a scale factor. In
the case of a device that does not have a Retina display (such as the iPhone 3GS), this scale factor
happens to be 1. Table 8-1 provides a summary of screen sizes both in hardware pixels and device-
independent units.

Device Differences | 87

TABLE 8-1: Summary of Screen Sizes

DEVICE TYPE
iPhone 4S
iPhone 5/5S
iPhone 6

iPhone 6Plus
iPad 2, iPad mini

iPad mini Retina, iPad Air,
iPad Air 2

Icon Size

SCALE FACTOR

2

2
2
3

PHYSICAL SIZE (PIXELS)
640 x 960

640 x 1136

750 x 1334

1242 x 2208

768 x 1024

1536 x 2048

LOGICAL SIZE (UNITS)
320 x 480

320 x 568

375 x 667

414 x 736

768 x 1024

768 x 1024

Every application has an icon that is used to represent it on the springboard, settings app, and
spotlight search results. The sizes of these icons have changed over the years as iOS has evolved.
Table 8-2 presents the sizes of these icons for iOS 7.0 and 8.0.

TABLE 8-2: Icon Sizes

DEVICE

iPhone 4S/5/5S
iPhone 6

iPhone 6 Plus
iPad 2, iPad mini

iPad mini Retina, iPad Air, iPad
Air 2

iPhone 4S/5/5S
iPhone 6
iPhone 6 Plus

iPad 2, iPad mini

10S VERSION
7.0
8.0
8.0
7.0
8.0

7.0
8.0
8.0
7.0

ICON TYPE

Springboard
Springboard
Springboard
Springboard
Springboard

Spotlight results
Spotlight results
Spotlight results

Spotlight results

ICON SIZE (PIXELS)
120 x 120

120 x 120

180 x 180

76 x76

152 x 152

80 x 80
80 x 80
120 x 120
40 x 40

continues

88 | LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

TABLE 8-2 (continued)
DEVICE

iPad mini Retina, iPad Air, iPad
Air 2

iPhone 4S/5/5S
iPhone 6

iPhone 6 Plus
iPad 2, iPad mini

iPad mini Retina, iPad Air, iPad
Air 2

10S VERSION

8.0

7.0
8.0
8.0
7.0
8.0

ICON TYPE

Spotlight results

Settings app
Settings app
Settings app
Settings app

Settings app

ICON SIZE (PIXELS)

58 x 58

58 x 58
58 x 58
87 x 87
29 x 29
58 x 58

As an i0S developer, you will need to include your application icon in different sizes as part of your
project. This is typically done using an asset bundle. Every Xcode project has an asset bundle called
Assets.xcassets and within this bundle is an entry called AppIcon that represents the application

icons (see Figure 8-2).

¥ 1 UniversaiTess
= AppOuiegate swifl
= ViewConbroller switt
Main storyboard
Assets anassats
LaunchScreen storyboard
infn st

* I Products

s (@ 1|+ — (@

ene » K 4 UniversalTas: | g Whoea s lus UirivarsalTast: Raady | Today & 13145
BR a4 M ©=po B BIL & UniversaiTest UniversaiTest Assots scassets Appicon
B unversalTest e ZR ppicon

Fnane

Spallgh - 105 56

Settings - 105 -8
2008

Pad Settings
08 58

260t

IPhone Spatight
08 7-0
Aapt
Proca App
0% -9
saat
Pad Spotight
o5 70
4apt
PFad Az
0s7-9
e

Hame
Asple Watch
Caray

Appicon
Al
All

wuet [05 70 and Lt
108 81 and Priee
iPrana B 105 70 and Laser
K5 .1 and Prior

Wz

Al

K5 ean b pre-r

0e o

Mo Matches

e

FIGURE 8-2

Device Differences | 89

Device Orientation

There are four device orientations for iOS devices:

> Portrait

> Portrait upside-down

> Landscape left (the Home button is on the left)

> Landscape right (the Home button is on the right)
It is common for iPhone applications to support a single orientation (portrait), but for iPad applica-
tions, Apple recommends that you support every orientation. You can configure the layouts sup-
ported by your application in the Xcode project settings page (see Figure 8-3). You will notice that

the default orientation options for iPhone applications are set up so as to exclude support for the
portrait upside-down mode. This makes sense because people generally do not use their iPhones

upside-down.

e e » A | g IPhone Bs Plus UniversalTest: Ready | Today at 13:52 = @020
BgE QA © Epo B BH|L L UniversaiTast
= UniversalTest it i i
Ti= |m] Genera Capabliities Resource Tags info Bulld Settings Bulld Phases Bulld Rues
¥ 0 UniversalTest pracps
s AppDelegate. swift Tearn Maone B
& UniversalTest
« ViewController.switt bbbkl y _— -
TARGETS Mo matching provisioning profiles found
Main. storyboard = o
10 Assots.xcassats vis UniversalTest
LaunchScreen.storyboard
Info.plist
» [Products
¥ Deployment info
Deplayment Target [~]
Devices Universal B
Main Interface | Maln [~}
Device Orientation Partrait
Upside Dawn
Landscape Left
Landscape Right
Status Bar Style Default B
Hide status bar
Requires full scraen
¥ App lcons and Launch Images
App leons Souree Appleon Be
Launch images Source Usa Asset Catalog
Launch Screen File LeunchScraen n
¥ Embedded Binaries
DE||+ — (€ T

When you use the Xcode project settings page to set up the list of orientations supported by your
app, behind the scenes Xcode adds entries to the “Supported interface orientations and Supported
interface orientations (iPad)” keys in your project’s Info.plist file (see Figure 8-4). The 1nfo
.plist file can be found in the Supporting Files group in the project explorer.

90 | LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

[] e o | @@ Phone 65 Plus UneversalTest: Ready | Today at 13:55 = O < O
B g8 a A 2 o @ @ < & UnlversaiTast UniversalTest info.plist No Selection
v & universalTest Ky Type Vals
¥ 1 UniversalTest ¥ Infarmation Property List 115 items}
= AppDelegate swift Localization native development re_. . en a
= ViewController.swilt Executable flie b ¢+ - S[EXECUTABLE_MAME]
Main,storyboard Bundle identifier . $IPRODUCT_BUNDLE_IDENTIFIER)
. InfaDictionary version » [:11]
¥ Assots. xcassats .
e s Ayt Bundle name = $IPRODUCT_NAME]
Bundle 05 Type code = APPL
|ﬂfﬂ.w‘ Bundie versions string, short - 1.0
I Procics Bundle creator 05 Type code 2 e
Bundle version =3 1
Application requires iPhone enviro... - YES :
Launch screen interface file base—. 4 LaunchScreen
Main storyboard file base name & Main
» Required device capabllities o 1 Item)
¥ Supported interface orientations 13 itams)
ftem 0 Portrait [bottom home buttan) -~
Freem 1 Landscape (laft home button) i~
Ham 2 Landscape (right hame button} 5
¥ Supported interface orlentations (i_. 2 tema|
ftem O Portrait (bottom home button) =
e 1 Portrait {top hame buttan) H
Item 2 Landseape (left heme button) -
ftem 3 Landscape (right home button} o
ol
FIGURE 8-4
If you create a new universal Xcode project using the Single B2 Qho=o D
view Application template, the project navigator will resemble p Universaifast
. ™ 2 targets, /08 SDK 8.2
Figure 8-5. Notice the project contains a single view controller Rl
file and a single storyboard. This may be a surprise to you if you h AppDelegate.n
. m AppDelegate.m
have been developing applications prior to iOS8. B\ ViswContralisch
m ViewController.m
Prior to i0OS 8, a universal application template consisted of two . Main.storyboard
. . . Y Images.xcassets
different storyboards, one for the iPhone and one for the iPad. e
This has now been done away with but introduces a slight com-
. . . . Info.plist
plication into the mix. w mainm
» universalTestTests
The iPad user interface for an app is usually different from the » [0 Products
iPhone version. In general, because the iPad screen is larger,
developers tend to use different on-screen layouts and in some FIGURE 8-5

cases even provide the user with additional options on the iPad
version of the same app.

With just a single storyboard file, how can this be accomplished? The answer to this is the new
Adaptive layout feature of iOS8 with support for size classes. Adaptive layout will be discussed in

the next lesson.

Trylt | 91

TRY IT

In this Try It, you launch Xcode and create a new universal project using the Single View
Application template. You then add a label to the main scene of the storyboard and examine the
application on both the iPhone and iPad simulators.

Lesson Requirements
> Launch Xcode.
Create a new project using a template.
Use the interface editor to update a storyboard scene.

Launch the app in the iPhone simulator.

Y Y VY VY

Launch the app in the iPad simulator.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

To run an application in the iOS Simulator first select the appropriate device in the scheme selector
drop-down; then select Product & Run.

Step-by-Step
> Create a new universal project in Xcode.
1. Launch Xcode and create a new application by selecting File > New > Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen use the following values:
> Product Name: UniversalTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: Universal

Use Core Data: Unchecked

Y Y Y VY Y

http://www.wrox.com/go

92 | LESSON 8 SUPPORTING MULTIPLE DEVICE TYPES

4.

» Include Unit Tests: Unchecked
» Include UI Tests: Unchecked

Save the project onto your hard disk

> Open the Main. storyboard file in the Xcode editor.

1.
2.

Ensure the project navigator is visible and the UniversalTest project is open.

Click the Main.storyboard file.

> Add a label to the storyboard:

1.

2.

Ensure the Object Library is visible by selecting View = Utilities &> Show Object
Library.

Select a label from the Object Library and drag it onto the single scene of the story-
board. The position of the label does not matter at this point.

In the Attribute inspector, change the text of the label to “Hello World!” You can dis-
play the Attribute inspector by selecting View = Utilities = Show Attribute Inspector.

Use the Attribute inspector to change the alignment of the label to Centered.

Select Editor = Size to Fit Content to resize the label so that its contents are not
truncated. This option will not be visible in the menu if the label’ contents are not
truncated.

> Set up a few basic layout constraints to center the label on the screen regardless of the device
family the app may be run on.

Ensure the label is selected. If it is not, simply click it once.

1.

2.

3.
4.

With the label selected, click the Align button located at the bottom right of the story-
board editor to bring up the alignment constraint editor.

Ensure the Horizontally In Container and Vertically In Container options are selected
in the popup window.

Ensure the value of the Update Frames combo box is set to Items of New Constraints.

Click on the Add 2 Constraints button.

> Run the app on the iPhone Simulator.

1.

2.

Use the scheme/target selector buttons on the Xcode toolbar to select the iPhone6
simulator.

Run the application by selecting Product &> Run. Notice the label is centered in the
simulator.

Go back to Xcode and stop the app in the simulator by selecting Product = Stop.

Trylt | 93

> Run the app on the iPad Simulator.

1. Use the scheme/target selector buttons on the Xcode toolbar to select the iPad Air
simulator.

2. Run the application by selecting Product & Run. Notice the label is centered in the
simulator.

3. Go back to Xcode and stop the app in the simulator by selecting Product & Stop.

REFERENCE To see some of the examples from this lesson, watch the Lesson 8
video online at www .wrox .com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvid

Introduction to UIKit and
Adaptive Layout

With the launch of i0S8, Apple has made it possible to build an application that can run on
any device with a single storyboard. In Apple’s terminology, the application adapts to the
device it is running on. Prior to iOS8, it was common to have different storyboards for
each device family.

Instead of specifying explicit sizes and positions for Ul elements, with adaptive layout you
specify constraints between the user interface elements of your view and have iOS apply these
constraints at run time to work out the size and position the elements. A constraint is a math-
ematical description of the relationship between elements.

Most of the time, you apply these constraints using Interface Builder, but it is pos-

sible to specify these constraints programmatically in your code by creating instances of
NSLayoutConstraint. Creating NSLayoutConstraint instances programmatically is outside
the scope of this book. If you are interested in learning more about creating layout constraints
programmatically, refer to the NSLayoutConstraint Class Reference at:

https://developer.apple.com/library/ios/documentation/AppKit/Reference/
NSLayoutConstraint Class/

INTRODUCING THE UIKIT FRAMEWORK

A framework is a collection of classes that you can use to write your apps. Apple provides a
large number of frameworks that enforce consistent implementation of features across applica-
tions from different developers. All the familiar user interface features such as navigation bars,
toolbars, back buttons, and so on that you commonly use in iOS apps are, in fact, classes in
one of the frameworks provided by Apple.

Although the idea of sticking to user interface elements that only appear in an Apple frame-
work may seem limiting, it is in fact not the case. Apple’s frameworks have a large number of
classes; in fact, some frameworks do not have any user interface—specific classes at all. You

https://developer.apple.com/library/ios/documentation/AppKit/Reference
https://developer.apple.com/library/ios/documentation/AppKit/Reference/NSLayoutConstraint_Class/

96 | LESSON9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

must always try to use classes from one of the standard frameworks when possible; this will ensure
that you do not spend time reinventing the wheel.

The frameworks are grouped together into layers, with frameworks in higher layers building upon
frameworks found in lower layers. Figure 9-1 shows the different layers with examples of some of
the frameworks they contain. In general, using a class from a framework in a lower layer requires
you to write more code than using one from a higher layer.

A
Cocoa Touch

UIKit MapKit GameKit
Media
10S Framework CoreGraphics AVFoundation
Layers
Core Services
Foundation CoreData Corelocation
CoreOS
Accelerate Security

FIGURE 9-1

The top-most layer is known as Cocoa Touch and contains a large number of classes distributed
within multiple frameworks that handle the most common aspects of iOS applications, including but
not limited to processing events, touches, gestures, multithreading, map support, and accelerometer.

Every Xcode project that is created from one of the standard iOS application templates includes
three key frameworks: CcoreGraphics, Foundation, and UIKit. Most simple apps do not need to
use classes from any other framework.

Of all the Cocoa Touch frameworks, perhaps the most important and commonly used is UTKit. The
name UIKit may lead you to conclude that it contains only user interface—specific classes. This is,
however, not true. Besides user interface—specific classes, UTKit contains classes for handling events,
touches, gestures, and general application support.

Classes that are part of UTKit always begin with the UT prefix. Thus, the UIApplication,
UIWindow, UIView, and UIViewController classes that you have encountered earlier in this lesson
are all part of UIKit.

Introducing the UIKit Framework | 97

The UlButton Class

The UTButton class is part of the UIkit framework and encapsulates the functionality of a button
on a touch screen. A UIButton object sends a message to a target object when it intercepts one or
more touch events.

UIButton objects can intercept different types of touch events; some of the most common ones are
briefly summarized in Table 9-1.

TABLE 9-1: UIButton Touch Events

EVENT

Touch Up
Inside

Touch Up
Outside

Touch
Down

Touch Drag
Enter

Touch Drag
Exit
Touch Drag

Inside

Touch Drag
Outside

DESCRIPTION

The user has lifted his finger from the touch screen inside the area of the button.

The user had pressed this button but has lifted his finger outside the area of the
button (that is, dragged his finger outside the button before lifting it).

The user has just pressed this button and hasn't yet lifted his finger, or moved it.

The user has pressed this button, then dragged his finger outside the button, and
has just entered the area of the button again (without lifting the finger).

The user has pressed this button, then dragged his finger and, as a consequence
of dragging, has just left the area of the button.

The user has pressed this button and is dragging his finger within the area of the
button.

The user has pressed this button and is now dragging his finger outside the area
of the button. The user would have had to move his finger out of the button and
continued to drag without lifting his finger to receive this event.

By and large, the most common event that you will use in your code is the Touch Up Inside event.

Adding a UTButton to the view is a simple matter of dragging a Button

object from the Object library onto the client area of the scene. You can D e =9 06

use the Attributes inspector to set up some common properties of the Button Custom

new button. However, keep in mind that each of these properties can AL — .

also be set up using Objective-C code. If you just want to add a title o :T: W ;

to a button quickly, simply double-click the button and type in a Add Contact

suitable title. Font System 15.0 @i:
o . . . Text Color EEEEI Default i

The default button created by Xcode is, in fact, quite boring. To make it | swsowcor == pefaut B

more interesting you can change its appearance using use the Attribute Image -]

inspector (View = Utilities & Show Attributes Inspector). You can select | ®eckaround -

from common button types using the Type drop-down (see Figure 9-2). FIGURE 9-2

98 | LESSON9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

The standard button types are:

> Custom: A button without any specific appearance, invisible unless you set up an image.
Typically used to create hotspots or graphical buttons.

System: This is the default.

> Detail Disclosure: A button with an arrow; usually indicates that tapping it will reveal addi-
tional information.

> Info Light: The standard “i” icon, intended to be used over dark backgrounds.
Info Dark: The standard “i” icon, intended to be used over light backgrounds.

» Add Contact: The standard + icon.

A UTButton object can be in one of four states:
> Default: The button is visible on the screen; the user is not interacting with it.
> Highlighted: The user is currently pressing down the button.

> Selected: A uTButton object does not ordinarily move into this state as a result of user inter-
action, but this state can be set up programmatically.

> Disabled: The button is visible on the screen, but the user cannot interact with it.

For each state you can provide a different background color, title, and De =¢0 0

background image. You can use the Attribute inspector’s State Config ~ [sutton

drop-down to select a state and set up attributes for that state. This is VRS Svitem &
in Fi - state ConfRACL Y

shown in Figure 9-3. e ahighted 3

. . . Selected
To assign an image for your button, you will need to create a PNG Disabled _
image for each state and import the images into your Xcode project. ' = 52'" 1;': : mﬁ
. Text Calor ault

When applying an image to a button, you can assign the image to either | _ =~ B

the Image attribute or the Background attribute. There is a slight differ- image

ence between the two. The background image is scaled to fill the entire Background i

area of the button and is displayed behind the title. The foreground FIGURE 9-3

image is displayed beside the title.

NOTE To learn more about the UIButton class, read the UlButton Class
Reference documentation available at http: //developer.apple.com/library/
IOs/#documentation/UIKit/Reference/UIButton Class/UIButton/
UIButton.html.

The UlLabel Class

The utLabel class allows you to draw one or multiple lines of static text onto your view. The
UILabel class does not normally generate touch events but provides several properties that allow
you to customize its appearance. The most common ones are described in Table 9-2.

http://developer.apple.com/library
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/UIButton.html

Basic Constraints | 99

TABLE 9-2: UlLabel Properties
PROPERTY
text
numberOfLines

textAlignment

DESCRIPTION

The maximum number of lines of text to be drawn.

Sets the text displayed by the label using the current font.

Defines the horizontal alignment of text in the label. Permissible val-

ues are UITextAlignmentLeft, UITextAlignmentRight, and

UITextAlignmentCenter.

textColor

Sets the color used to display the text. You can set the color by providing a

UIColor object. The UIColor class is discussed later in this lesson.

font

Sets the font that is used to display the text.

UILabel.html.

NOTE To learn more about the UlLabel class, read the UlLabel Class refer-
ence documentation available at http://developer.apple.com/library/
I0s/#documentation/UIKit /Reference/UILabel Class/Reference/

BASIC CONSTRAINTS

If you have developed iOS applications in the past, the first change you will notice when you open a
nib or a storyboard is that each view is now represented using a square canvas instead of a rectangu-

lar one (see Figure 9-4).

are »

A InteraconSarpie | B 1P=one s P

Inferactionsanpie Ready

Taday a1 30:08

[Mainmorpbosnd {Base) | [View Contioiker Scens

mRaAS = (@« &
» B mieactmiange
[—

* [5 View Contraller Soene

Storyboars Eniry Prine

Ay ANy

View Contioviar

View

L o bl

Demena

iew
wotn Soaie To Al B
e Uncec B
oy [l

reersotisn @ Uner intarscton Enabies

M Teueh
neta

Seckprouss [White Color S
T et B

Crameg B Opacus Hidewn

B Cears Graghios Comest
Gl Satrvnn
B Minoresive Subwviews

&) Bumton L

FIGURE 9-4

http://developer.apple.com/library
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/UILabel.html

100 | LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

This may seem a little odd at first because the iPhones and iPads all have rectangular form factors.
Apple has introduced a square canvas because they do not want you to think in terms of a specific
device when designing your UL Instead, you build your user interface for a generic square canvas
and i0OS will adapt it to fit the specific device based on the constraints you have specified.

The fundamental building block of this new layout system is the constraint. A constraint is a math-
ematical rule that helps lay out UI elements. Constraints can specify an element’s height, width,
horizontal position, or vertical position from another element. Constraints can be added, removed,
and edited to affect the layout of your application’s UI.

For instance, to position a label centered (horizontally and vertically) in the screen, you will need to
add a few constraints. Start by dragging a Label object from the Object Library and placing it at an
arbitrary location on the storyboard canvas (see Figure 9-5).

L] * » dy interactionSamoie | @ Prane s Pus. InteractionSample; Aeady | Today at 20:22 2 <« L] 3 i
g ¢ & InternctionSample | 0 ntaractionSample | [l Makstoryocard | [l Main.storybosed] ® View Deomvle
* [Viow Controlier Scene it
[r— wsds Scale To il B
Top Layout Guioe D B Bemantic Urnpecifing B
Bottem Layeut Guid 1
Tog [
view -
& First Rusponcar intwacsion) User Intractan Eratied
i = B s Mustiphe Teuen
Storyboard Entry Ront e e
» Backgroumd 1 ‘Wiite Color B
Toi - Cutwdt B
Demwing B Gpon Hisdan
{0 Ciears Graphics Conbest
Cip Sutmviws
B Mutoresize Subviews

Bimishing Bl oiz
L ¥

Ji= 112
Wit gt

i Ay ATy 5 B o hed | B) Labe]

FIGURE 9-5

With the Label selected, you bring up the alignment constraint editor by clicking the Align button
located at the bottom-right corner of the storyboard editor (see Figure 9-6).

In the alignment constraint editor, ensure the Horizontally in Container and Vertically in Container
options are enabled and their corresponding values are both zero. Click on the Add 2 Constraints
button to add these constraints. When you do this, you will notice two new constraints has been
added between the label and the view (see Figure 9-7).

Basic

Constraints | 101

B Traliing Edges

B Top Eoges

B sotiom Edges

B Haorizontal Centors

B vartical Canters

E Baselines

B Harizontally in Container
[verticatly in Container

Add Conss

whAny bAny

Shadow [Default B
r Shadow Offset 0}iZ 12
{1‘ Harizontal Vartical
-
Mads Left B
Semantic Unspecified B
Tag 0l
Interaction Usar Interaction Enabled
Multiple Touch
Alpha 1,
Background [Default B
Tint EEER Detault B
Drawing Opague ~ Hidden
{0 Ciears Graphics Context
Clip Subviews.
Meg 3 Autoresize Subviews
% Stretching 02 0
1 x ¥
Add New Alignment Constraints 12 147
i Width Height
Leading Edges
Installed

choean

= i Contraller - A contrailer hat
- 1D8S 8 view.

yboard Reference - Provides 3
{halder far a view controller in an
ral storybaard.

/!

“ gation Controller -
wller that manages navigation
Igh a hlararchy of views,

ermNEices

FIGURE 9-6

sne »

BRaaA@e
v B inmractionSampln
¥ | wisractionSamaie
= AcpOelegate.swin
+ ViewCartrolierowét

[~ T——"
o LaunchS e sloryboad
Into plist
* % Products

+ =

5 @ @

B A imerctionSample | @ iPhone B3 Pl

[View Controlier Soene

C View Controfer
Top Layout Gulte
Bettem Layeut Guide

InteractionSampie: Ready | Today at 07:55

& imaraetionSampls | 0 inteiee Sempls | [Main storyboard |) Maiest (Base) 5] View Cr Seena) Viem Cortraliar

&

o) Lo [€ D)

O 9 B

ey hny

EE B 1o bal

= o OO0
L e G

Labet
Tast Plain
Label
Conr NS Cafaul
Font | Systam 170

Mgnoen = w wm .

Lines
Besavior B Erabled
Highlighted
Ussine Afgn Basainus
Line ireata Trarcana Tail
Autpabrek | Fined Fent Size
Tighten Lettar Spacing
Hghiighted IR Cefaul
Shadow =1 Defaut

Shadsw Offst [H
Harisnrial

L

Mode | Lafl
Samantic | Unssucified

&
o

imeractinn User innraction Erabied
Musitiphe Touch

hn
bDO@o

Anterance - Frovides
lacmbaiktas for o viw contraler in
autieral shonasnd.

FIGURE 9-7

102 | LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

If you select one of the constraint in the view hierarchy, you can update @ o 00
its properties using the size inspector (see Figure 9-8). Center Y Alignment Constraint
First ltem Label.Center ¥ | -]
Mathematically, any constraint can be expressed using the following Reletion | Equal B
equation: Secand fiem SuperviewCenter Y B
Constant 0 viiy
Y = multiplier * X + Constant o) T <l
Multipiier |1 wlic

X and Y are attributes of views and can be either 1eft, right, top,
bottom, leading, trailing, width, height, centerX, centery, or

Identifier

i Placeholder | Remave at bulld time
baseline. Installed

The attributes 1eading and trailing are the same as left and right FIGURE 9-8

for left-to-right languages such as English. However, in a right-to-left

language such as Arabic, leading and trailing are interpreted as right and left. When you
create constraints, you should usually use 1eading and trailing (instead of 1eft and right) to
make sure your interface is laid out appropriately in all languages.

Some of the other properties relevant to constraints are:

> Relation: The relationship between the attributes represented in a constraint can be one of
equality (=), greater than or equal to (>=), or less than or equal to (<=)

> Priority: When multiple constraints are defined for a given attribute, those with higher prior-

ity levels are satisfied before those with lower priority.

At this point, even though you have added constraints to center the label horizontally and vertically,
the label is still where you left it on the storyboard. If you were to run the application now, you
would find that the label is indeed centered as you would expect.

If you select the label on the storyboard, you will notice that it has an orange outline. An orange
outline implies that there is an adaptive layout problem. There are three typical problems that you
will encounter:

> The constraints are correct, but the size/position of the Ul elements will be different from
what you see on the storyboard in Interface Builder

> You don’t have enough constraints to specify both the size and position of a Ul element
> You have ambiguous constraints, i.e. either none or too many constraints are specified for the

same attribute, with the same priority level.

You can find out what the problem is by switching to the Issue Navigator (see Figure 9-9).

S

By File By Type

¥ o InteractionSample

Q A © = o 3

v Main.storyboard

v Frame for “Label” will be different at run time,

Height will be 20 at run time but is 21 in the
canvas.

FIGURE 9-9

Basic Constraints | 103

In this particular case there is just one issue with the constraints on this storyboard scene, and is

listed as

» Frame for “Label” will be different at run time.

To fix this particular issue, select the label and then select Editor = Resolve Auto Layout Issues =

Update Frames.

The storyboard should now resemble Figure 9-10.

BH | < o] i p

v [View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
v View
Label
¥ (&) constraints
B Label.centery = cente...
(&) Label.centerX = cente...
0 First Responder
= exit

* Storyboard Entry Point

@

Main.storyboard) [l Main.sto..d (Base) | [5 View Co..er Scene

=

View Controller View) L Label

@ Filte]

wAny hAny

Ed B Iof sl

FIGURE 9-10

If you pay attention to the bottom-right corner of the storyboard, you will notice four auto layout—

specific buttons (see Figure 9-11):

l (] whny hAny

B3 2 o hﬂ‘

FIGURE 9-11

> Stack: This button is only enabled if one or more items are selected in a storyboard scene.
When this option is available, using it will embed the selected items into a UlStackView.

104 |

LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

> Align: This button enables you to add an alignment constraint to the selected UI element rela-
tive to another element in the scene. Clicking this button will bring up a popup that contains
various alignment options.

> Pin: This button enables you to set the position of a Ul element relative to other elements and
to apply size constraints.

> Resolve Auto Layout Issues: This button enables you to correct layout problems. Clicking
this button will bring up a popup menu that is identical to the Editor = Resolve Auto Layout
Issues menu item.

If you now wanted to add a button to the right of the label, you could do this by first dragging a
Button object from the object library and placing it in the approximate location on the scene (see
Figure 9-12).

M €] g Main.story W mainsto_d (Base) | [view Co..er Scene View Controller Wiew | L Label B ®
v [View Controller Scene
v () View Controller
Tap Layout Guide 2 B
Battom Layout Guide
i -
v View
L |Labal
v [@ constraints
B Labetcentery = cente...
[Labetconter) = cente...
i First Respandar
[Exit
Storyboard Entry Point
No Selection
Lo
Button - Inercepts touch & and
[1 sends an action message to a ta)
object when it's lspped.
— | Segmented Control - Disolays
“ 2 | muttipte sagmants, each of which
< functions 8s 8 discrete button,
Text Flald - Displays editable text
Text and sends an action message ta a
target chject when Return is tapped.
EF [m} S Ay 0 ARy Ed B o tal BB =

You can then use the Pin button to create constraints that fix the size of the button and its horizon-
tal distance from the label, as shown in Figure 9-13.

To align the top of the button with the top of the label, select both the button and label (in that
order), and then use the alignment constraint editor to add a new alignment constrained for Top
Edges (see Figure 9-14).

Basic Constraints | 105

Button
Type System B
m State Config Default B
= Titte Plain v
Button

B
L3

Font System 15.0
Text Color EEEEN | Default
Shadow Color =1 | Default
Image
Background

- Doom

o

Shadow Offset 0|
Width Height
Reverses On Highlight
Drawing || Shows Touch On Highlight
B Highlighted Adjusts Image
. = Disabled Adjusts Image

D oo Add New Canstraints Truncate Middle
% Label =uttom | 1 E
o IJtl: o o = -] Content w
— of3 o3
- o~ 1M R = | Lert Top
| 0z [
24 ak | Battom Right
Spacing to nearest neighbor
& Constrain to margins E
Width e ~Jil 0e o
Height 30 T n-Intercepts touch events and
an action message to a target
Equal Widths when it's tapped.
m Equal Helghts r
[E Aspect Ratio ented Control - Displays

& segments, each of which

E Align | Leading Edges ns as a discrete button,

| Update Frames | None = ield - Displays editable text

? | nds an action message toa
Adc 3 Consiralots abject when Return is tapped.
N A
] wAny nAny B3 12 tof kel | B (@ e
FIGURE 9-13
o Autoresize WS
Stretching 0| o2
% ¥
1)z 1]z
Width Height
sk & Installed
‘Add New Alignment Constraints
Leading Edges : [-
Trailing Edges 0 v
9 BB Top Edges o ~|
Bottom Edges 0 41 0@ @
EB Horizontal Centers o " 1Controller - A controller that
BB vertical Centers 0 v lgesaview.
ED Baselines 0 -
rd Reference - Provides a
EB Horizontally in Container 0 | tholder for a view controller in an
B vertically in Container 0 ||l moryhaard.
" Update Frames | Nane ©! gation ller - &
(Add 1 Constraint | ‘oller that manages navigatien
L —————— ————— ighahierarchy of views.
whAny hAny ER 1B o baf| 55

FIGURE 9-14

106 | LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

To reflect these changes on the storyboard, select Editor => Resolve Auto Layout Issues @ Update
Frames.

PREVIEWING YOUR LAYOUT

If you would like to know how your storyboard will appear on a specific device without running the
application, you can use the assistant editor. First, ensure a scene is selected in your storyboard and
show the assistant editor by selecting View = Assistant Editor &> Show Assistant Editor.

Next, use the assistant editor’s jump bar to switch to the layout preview (see Figure 9-15). The assis-
tant editor will now display a preview of the storyboard in one of the standard iOS screen sizes.

B B imeractionSample) 551 Inter_ple Mai.board | Mainstoryboard (Base] | N Selection | 5 @ hutomatic (1] » lier.swift | No Selection + X
- 77
» [view cantroller Scene 4/ Wi @ Top Level Objects
4o
@ Localizations

View Controllg e 16/99/2015.
i)

¢ Co @ Notification Payloads ¥ ltd, ALL rights reserved.
'

Tan @ Proview (1) » Mainsoryboard (Praviaw)
class ViewController: UIViewController {

override func viewDidLoad() {
super. viewDidioad()
#f Do any sdditional setup after loading the view, typically from a nib.

}

override func didReceiveMenoryWarning() {
super.didRece lveMemaryWarning
/1 Dispose of any resources that can be recreated.

13

Label

=1] wAny nAny B B b ke

FIGURE 9-15

You can add additional screen sizes to the preview area by clicking the plus sign (+) button at the
bottom-left corner of the preview window (see Figure 9-16). You can also toggle the orientation of
the preview between portrait and landscape by clicking the device name (see Figure 9-17).

Previewing Your Layout

| 107

] & interactionSample | (1 InteractonSampls | Manstoryboard | Mainstorybosed [Bass) | Mo Selection ®mi< (3 Preview | Malnstorybosd (Preview) a4 x

» [View Controlar Scana | |
View Cantrolier
-
Label i
4, Label Button i
Phuna d-ineh

=L O whty ANy Erglish
FIGURE 9-16

HH | € > | @ Preview ! - Main.storyboard (Preview) &+ x

Label gutton
C5 iPhone 4-inch
+ English

FIGURE 9-17

108

LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

CREATING OUTLETS

User interface elements are usually defined in storyboards, and even though you can set their prop-
erties graphically using Interface Builder, there will be times when you will need to read or change a
property from your code while your application is running. To do so, you need to create an appro-
priate instance variable in the view controller class and connect it to the user interface element in
the scene. These connections are known as outlets, and can be created quickly using the assistant
editor. To display the assistant editor, select View > Assistant Editor & Show Assistant Editor. If the
assistant editor is in Automatic mode, selecting a user interface element in one of the scenes of the
storyboard file automatically opens the Swift code (. swift) file of the corresponding view controller
class. You can switch the assistant editor into Automatic mode using the jump bar. This is shown in

Figure 9-18.

ase » A InteractionSample | [l IPhona 65 Plus Finishad running WienactionSampis an iPhona s Plus A | - e |
Main sieeybaind nnwing b
B8 QA ¢ = o & H | < N InaractionSample [T M._ard Main steryboard (Basal - No Selection | 55 | 4) Automatic | = ViewConiroberswift | No Selection

¥ | InternctionSampie &[5 View Cantraller Scann

!

¥ [0 imeractionSample

= AppDalagata.switt 4e

= ted by Abhishek Mishra on 16/99/2015.

View Controll s ropyrigat © 2815 asm technology Ltd. ALL rights ressrved.
1

s ViewContratersmift

import UIKit
class ViewController: UIViswControlier {
Laadi] {

i

mal setup after londing the visw, typically from o

func didReceiveMemorywarningl) {
ece.L rning(}

of sources that can be recrested.

Label

& [} Any 1 Ay B R bl el

FIGURE 9-18

To create an outlet for the button object, right-click the button to bring up a context menu and drag
from the circle beside the New Referencing outlet line to an empty line in the Swift class (see
Figure 9-19).

Release the mouse button on an empty line in the header file to open a dialog box that allows you
to type in a name for the outlet (see Figure 9-20). Type a name for the outlet variable—for our pur-
poses here, let’s name it someButton.

Creating Outlets | 109

By Tyne * [view Controlier Boene

v () Vinw Controller
Tom Layout Guide
Botiom Liyout Guids
v view
L Label impart UIKLL
¥ & [gution
» [# Corstrants
v [corstrains e
) Labelcenary - cente...
D Labolcomont = cente
(B Button inasing = Lae_.. 3
[sutton top = Laksl top
it Fouspandar

)
)
)
! shra on 16/89/2015.

4 chnalogy Ltd., ALL rights reserved.
F}

class ViewControllers UTView

viewlioLredi) |

Logal setup after view, typically

= didhe
L
[Ext

Suenybeard Emry P

ebenarywarningt) {
[

Label-

E 20 | & [s] Ay Ay BB B K b

FIGURE 9-19

// Copyright © 2815 asm technology ltd. All rights reserved.
/i

Connection = Outlet

Object View Controller

import UIKit

class ViewController: UIViewController {
Name | someButton

override func viewDidLoad() {
duge UlButton ﬁ super.viewDidLoad()
Storage | Weak // Do any additional setup after loading the view, typically
from a nib.
Cancel Connect }
[override func didReceiveM viarnina() {

FIGURE 9-20

Click the Connect button in the popup dialog box to finish creating the outlet. Notice how Xcode
has created an optional var of type UTButton in your class.

@IBOutlet weak var someButton: UIButton!

To signify that the variable refers to an object defined in the storyboard file, Xcode adds the
@1Boutlet keyword to the variable declaration.

110 | LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

CREATING ACTIONS

Most user interface elements generate a variety of events as a result of user interaction. As a pro-
grammer, you will be interested in some of these user-generated events and will want your code to
be executed when these events occur. To achieve this, you need to create one or more methods in the
view controller class and wire them up to appropriate events generated by the user interface element.
These methods in the view controller class that are called when an event has been triggered as a
result of user interaction are referred to as actions.

As you might expect, both of these steps can be performed graphically with the Interface Builder.
To show a list of events that can be intercepted by a user interface object, simply right-click the user
interface element in Interface Builder and browse through the entries under the Sent Events category
of the context menu.

You will see all the familiar touch events listed there along with a few others. To wire up the Touch
Up Inside event to a method in your class, simply drag from the circle beside the name of the event
to an empty line in your view controller class.

When you release the mouse on the view controller, Xcode presents a popup window in which you
can provide a name for the new method. Call the new method onButtonPressed.

Note that the onButtonPressed method takes in a single argument of type Anyobject called
sender. This parameter always contains a reference to the object that sent this message to your view
controller. In this particular case, the sender would be the user interface object that generated the
corresponding event.

Once you have an action method wired up to the button’s Touch Up Inside event, you can write
Swift code that will be executed when the user interacts with this button. This is examined in this
lesson’s Try It.

TRY IT

In this Try It, you launch Xcode and create a new Xcode project using the Single View Application
template called Interactionsample. You use the Interface Builder to create an instance of a
UIButton and a UTLabel class and then write code to update the text displayed in the label when
the button is pressed.

Lesson Requirements

> Launch Xcode.

> Create a new project based on the Single View Application template.
> Edit the storyboard with Interface Builder.
>

Add a utLabel and a UTButton object to the default scene in the storyboard.

Try lt | 111

Create and connect the UILabel to an outlet in the view controller class.

> Create and connect the Touch Up Inside event of the UTButton instance to an action method
in the view controller class.

> Change the text of the label when the button is clicked.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

Hints
> To show the Object library, select View = Utilities = Show Object Library.
» To show the assistant editor, select View = Assistant Editor Show Assistant Editor.

» To show the source editor, select View =& Source Editor &> Show Standard Editor.

Step-by-Step
> Create a Single View Application in Xcode called Interactionsample:
1. Launch Xcode and create a new application by selecting File & New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product name: InteractionSample
Organization name: your company
Organization identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y YV Y VY Y Y

4. Save the project to your hard disk.
> Open the Main.storyboard file in the Xcode editor:
1. Ensure the project navigator is visible and the InteractionSample project is open.

2. Click the Main.storyboard file.

http://www.wrox.com/go

112 | LESSON 9

INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

> Add a label to the storyboard:

1.

2.

3.
4.

Ensure the Object Library is visible by selecting View o> Utilities &> Show Object
Library.

Select a label from the Object Library and drag it onto the single scene of the story-
board. The position of the label does not matter at this point.

Use the Attribute inspector to change the alignment of the label to Centered.

Select Editor = Size to Fit Content to resize the label so that its contents are not trun-
cated. This option is only visible if the text in the label is currently truncated.

> Set up a few basic layout constraints to center the label on the screen:

1.
2.

3.

Ensure the label is selected; if it is not, simply click it once.

Center the label horizontally and vertically by using the alignment constraint editor
popup window.

Update the storyboard to display the new position of the label accurately by selecting
Editor = Resolve Auto Layout Issues &> Update Frames.

> Add a button to the storyboard:

1.
2.
3.

o

From the Object library, select a Button and drop it onto the scene.
Double-click the button and change the text displayed in it to Greet Me!

Drag the button to sit a short distance below the label. The precise position does not
matter.

Ensure the button is selected; if it is not, simply click it once.
Center the button horizontally by using the alignment constraint editor popup window.
Use the pin button to add the following constraints (see Figure 9-21)

> Pin the distance between the top of the button and its nearest neighbor in the
storyboard (the label).

Pin the height of the button.

> Pin the width of the button.

» Create an outlet in the view controller class and connect it to the label.

1.

Ensure the assistant editor is visible. To show it, select View = Assistant Editor =
Show Assistant Editor. Ensure the viewController.swift file is open in the assistant
editor. If it’s not, use the jump bars to select it.

Right-click the label to show the context menu. Ensure you have right-clicked the label
and not the layout constraint.

Drag from the circle beside New Referencing Outlet to an empty line in the
ViewController.swift file in the assistant editor.

Trylt | 113

Name the new connection textLabel in the popup dialog that appears and click the

Connect button. The code in the assistant editor should now resemble the following;:

import UIKit

class ViewController: UIViewController {

@IBOutlet weak var textLabel: UILabel!

override func viewDidLoad() ({

super.viewDidLoad ()

// Do any additional setup after loading the view,
// typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
// Dispose of any resources that can be recreated.

B8 & InteractionSample | Intera.Sample . [l Main.s._beard) [l Mains...(Base) | [View_r Seene View..ontralles || View | B Some Button { [3| O a0 @
+ [7] View Controller Scene | Button
v () View Cantrotier Type System B
Tor Layuist Guide o -EI 3 Stte Canfig Default B
Bottam Layout Guide
v [| view — Title Plain]
L Label Greet Me!
| Same Button Fort | System 15.0 M=
¥ B Constraints Text Calor EEEED | Default B
B Lsbal.cantary = centa.. P sy 7]
[EB Labal.centarx = cente. sl i
(BB 50me Button.centerx... Image [~]
@ First Responder Background -]
[Exit - =
Storyboard Entry Point Shekr Ofset LI O
Width Height
Reverses On Highlight
Drawing Shows Touch On Highlight
[Highlighted Adjusts Image
) Disabled Adjusts Image
Ling Braak Truncate Middie 8
._\ Lzbel Edge Content 2]
/
—— Inset 0 0l
’E_E.E[N 1,; Latt Top
i o Add New Constraints I olt 0t
185 - Battam Right
I
248 w1244 -
D MO B8
240 v Horlzontal
Spacing to nearest neighbar o ﬁw. o m
Constrain to margins
& B width &8 -8 o
(8] He 30 -
. sk Zontroller - A controller that
Beowl 85 3 viaw,
""" B Aspact Ratio 3oard Reference - Frovices a
plder far 8 view contralier in an
#ign | Leading Edges F strybomrd.
Update Frames | None < ation Controller - A
Add 3 Consirints lar that manages nawigation
ha higrarchy of views.
(=L =] wAny ARy B2 1B to faf | B & s

FIGURE 9-21

114 | LESSON 9 INTRODUCTION TO UIKIT AND ADAPTIVE LAYOUT

> Create an action method in the view controller class and connect it to the Touch Up Inside
event of the button:

1. Right-click the button to show the context menu.

2. Drag from the circle beside the Touch Up Inside event to an empty line in the
ViewController.swift file in the assistant editor.

3. Name the new method onButtonPressed in the popup dialog that appears and
click the Connect button. The code in the assistant editor should now resemble the
following;:

import UIKit
class ViewController: UIViewController {
@IBOutlet weak var textLabel: UILabel!

@IBAction func onButtonPressed (sender: AnyObject) {

}

override func viewDidLoad() ({
super.viewDidLoad ()
// Do any additional setup after loading the view,
// typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
// Dispose of any resources that can be recreated.

}
> Write code to update the text of the label when the button is pressed:

1. Scroll down and locate the implementation of the onBut tonPressed method in the
Assistant Editor.

2. Replace it with the following code to change the text of the label:

@IBAction func onButtonPressed (sender: AnyObject) {
textLabel.text = “Greetings mighty coder!”
}

Trylt | 115

Run the app on the iOS Simulator:
1. Use the scheme/target selector buttons on the Xcode toolbar to select an iOS simulator.

2. Run the application by selecting Product & Run. Tap the button and observe the text in
the label change.

3. Go back to Xcode and stop the app in the simulator by selecting Product & Stop.

REFERENCE To see some of the examples from this lesson, watch the Lesson 9
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/g

10

Introduction to Storyboards

Most i0S applications are made up of several screens of content with the user typically navi-
gating from one screen to another. A storyboard is a feature in Xcode that lets you view all
the screens as well as the connections between them in a single place. In general, storyboards
provide a better high-level overview of all the screens in your application and the relationships
between them.

Storyboards involve two key concepts, scenes and segues. A scene is defined by a view control-
ler and is the major visual component of a storyboard. It represents one screen of content in
your application.

If you have been programming iOS applications prior to iOS35, everything you know about
Interface Builder applies to scenes. When you create a new project from any of the iOS
Application templates, Xcode creates a single storyboard file for you called Main.storyboard
(see Figure 10-1).

Figure 10-2 shows the scenes that make up the storyboard of a simple iOS application. As you
can see, each scene contains familiar UTkit controls like image views, buttons, and labels.
Clicking one of the scenes in the storyboard selects it. The selected scene has a dark gray out-
line around it.

Toward the upper portion of the selected scene you will notice three icons (see Figure 10-3)
in a white strip. This strip is called the dock and the three icons represent the top-level
items in the scene. The first two of these represent the view controller class associated

with the scene, the second represents the first responder, and the third icon represents the
exit item.

118 | LESSON 10 INTRODUCTION TO STORYBOARDS

= <D0 QO

Randy | Today u 16:01

Demeda

sa® P B A L.
B & O M @ @ o E B < > B Soybowdtest) (o StoryboardTest | [l Main.storyboard | [l Main.storyboard {Base) | Mo Selection
w & StorybourdTest w [View Contraller Scans
¥ [0 StoryboardTest v () view Controlier
= AppDakegate. swilt | Top Layout Quice
= ViewComtraber switt || Battem Lot G
[view O ®
[Aasets ozt @ First Aesponder r—
|+ LaunchScreen staryboard Ben
 Info st — Starybeard Entry Pol...
* [Products
No Selection
Do@ao
View Controller - & contralier that
manages a view,
- Brakdan u
| placsbclder o » view contraber in an
- waterral storyooard.
Controliar -
contrmiar that marages ravigaton
tteough » hierarchy of views.
+ B oOmE||[@ o wAny Ay B kol bl | B @ i
FIGURE 10-1

= @ D=0

B A e S Prosss Ao Pritbint | Bud Frutlis: Sucewaded | Tosey a1 0740

:I 0 4a L_B " o w_.us ¢ ¥ lm-mm;-umm;.mmmlm}nm

iy dey

Imags View

B B ol ki

+ (B ol o

FIGURE 10-2

FIGURE 10-3

Introduction to Storyboards | 119

The actual user-interface elements in the view controller are not top-level objects because they are
contained by the view controller and hence do not appear in the dock. These appear in the docu-

ment outline, which can be expanded using the Document Outline button at the bottom-left corner
of the storyboard (see Figure 10-4).

@ ® P> W A Fitist) @ iPhone 6s Plus Fruitlist | Convert FruitList: Failed | Today at 16:43 L1102 e (=i}
B2 aQaA o @ o @ ZE < | [EFmist) o Futtist) | Mainstoryboard) [Main storyboard (Base)) No Selection <A
v B st
v i Fruittist
ppDelegate.swit

‘ 0O e = Frult Detail View Controller

 LaunchScreen.ib
¥ (24 Supporting Files
= FruitClass.swift ‘
- FuiDetaivieControlleravit ‘
» 1 Fruitistrests
» 1 Products

Apple Image View

Banana

+ (@ o@ o) whnl bl = B ol

ese » || ® AFm‘M‘s&).iPﬁmﬂEs& Fruilist | Convert FritList: Failed | Today at 16:43 0102 =0 <o OO0

BRQaAHOEDB f i = L]) W Main storyboard (Base)) No Selection <Al
v B Fruiist [View Controller Scene
i Pt v () View Contraller
P legate.switt | Top Layout Guide
2 vercome ETPLW‘G h i o9 Fruit Detall View Cor
Bottom Layout Guide
v [view =
T background
' LaunchScreen.xib > [B]#prie
» [Supporting Files : L :.:““'"'
4 FruitClass.swift =
3 v @

» 1 Frutistrests @ First Responder
» 1 products Hext

> Storyboard Entry Point
(©) appiesegue
@banarasegue <

() orangeSegue Orange
2] Fruit Detail View Controller Scene

¥ () Fruit Detail View Controller
1~ Top Layout Guide
| Bottom Layout Guide Aple
v [View
background
w || Frut Image Banana
» (@ Constraints
L You have selected
L Frult Name Label
L Frult Family Label
L Frult Genus Label
> 8 Back
» (@ constraints
@ First Responder

& Exit

+ [@Flie @] | Qupiter |y

FIGURE 10-4

wAny hAny B iof i

120 | LESSON 10

INTRODUCTION TO STORYBOARDS

Objects contained within the scene are shown hierarchically (see

Figure 10-5). Clicking an object in the hierarchy selects it in the cor-

responding scene.

To view the entire storyboard at a glance, simply double-click the
canvas to zoom out. Double-click a scene to select and zoom in to
the storyboard.

A segue represents the transition between one scene to another.
It also represents the manner in which the new scene is
presented. Segues are represented by arrows between scenes
(see Figure 10-6). There can be multiple segues between
scenes.

When using segues, there are four different ways in which a view
can be presented: Push, Replace, Present Modally, Present As
popover. Modal segues are used to present modal content; they
enable you to specify a transition style, the most common of which
is one where the new scene slides up from the bottom of the screen.
Push segues are used in conjunction with a navigation controller

to slide a new scene onto the screen. Custom segues enable you to
specify the presentation style.

You can set up the type and Attribute of a segue by selecting it and
using the Attribute inspector (see Figure 10-7).

¥ [View Controller Scene
¥ () View Controller
[~ Top Layout Guide
| Bottom Layout Guide
¥ [view
_ background
» 8 Apple
» B Banana
* B Orange
L Select a fruit
> Constraints
{0 First Responder
[E3 Exit
— Storyboard Entry Paint
(L) appleSegue
(L) bananaSegue
([l orangeSegue

¥ [Z1 Fruit Detail View Controlier Scene

w () Fruit Detail View Contralier
[T Top Layout Guide
I_ Battom Layout Guide
v | | view
~ background
¥ Fruit Image
> Constraints
L You have selected
L Fruit Name Label
L Fruit Family Label
L Fruit Genus Label
b+ B Back
» (@) constraints
) First Responder

B Exit

@Flllc—r

FIGURE 10-5

ace »
BERAAGwe =B
* B FnitLsr
” 5 Prefiint

+ AppDeiagate et ~
+ ViewConiraiec m# | 0O e B

B A Pttt g P 0 Pl Feuitlist | Comvert FrusiList: Falled | Tody s 1843

& Frattlin 1 Frottin | [l Wairstorpbaerd) [l Mol sarysoars (Besa] | Ko Selecins

9 o st
Lanchcreen wl
b surpsrtng T
« EnACiassawitt
+ PrstDetaiVaaCartrateramit
» i FrotlistFasts
* 10 Producta

=) oE|| D Wiy -

Frait Outail Vi Contraiinr

B ol sl

FIGURE 10-6

Introduction to Storyboards | 121

O ® ¢ 0 e
Storyboard Segue

Identifier orangeSegue

Segue Class o n
Segue Module n
Segus Present Modally
Presentation Default B

Transitig e ICT 2

Cover Vertical
Flip Horizontal
Cross Dissolve
Partial Curl

FIGURE 10-7

You can select a segue by clicking the circle in the middle of the arrow representing the segue on the
storyboard (see Figure 10-8). Each segue in your application must be uniquely identified by a string.
This identifier can also be set up using the Attribute inspector.

FIGURE 10-8

When you create a new Xcode project, the default storyboard file contains a single scene. To add a
new scene to a storyboard, simply drag and drop a View Controller object from the Object library
onto the canvas. You can add interface elements to the new scene by simply dragging and dropping
objects from the Object library; to create outlets and actions for these elements you first need to create
a UTviewController subclass that does not have an associated XIB file and link it to the new scene.

To create a new UIViewController subclass, simply right-click the project in the project navigator
and select New File from the context menu. Select the Cocoa Touch Class template (under the iOS =
Source group) in the dialog box that appears and click Next (see Figure 10-9).

Choose a template for your new file:
05
Source T T e
User Interface
Core Data Cocoa Touch Ul Test Casa Unit Test Case Playground
Class Class Class
Apple Watch
Resource h
Other 3 m C
watchQS Swift File Obijective-C File Header File CFile
Source
User Interface
Core Data C.H M
Resource
Other C++ File Metal File
05X
Source Cocoa Touch Class
User Interface A Cocoa Touch class.
Core Data
Dacnurea.
ceneel

FIGURE 10-9

122 | LESSON 10

INTRODUCTION TO STORYBOARDS

In the file options dialog box for the new class, ensure you have subclassed UTviewController and
have cleared the Also create XIB file option (see Figure 10-10).

Cancel

Choose options for your new file:

Class: ViewController

Subclass of: UIViewConiroller
Also create XIB file

iPhone

Language: Swilt

FIGURE 10-10

After you create your UIViewController subclass, you need to associate it with the new scene in
the storyboard. To do so, simply select the scene in the storyboard, select the view controller object
(the yellow box) in the dock, and choose the appropriate class name in the Identity inspector (see
Figure 10-11).

L @

Custom Class

Cless | FruitDetailViewController o
Yy ruitDetallVie
| GLKViewControlier
Identity [QLPreviewController
Storyboard 1D | UiCallectionViewController
| UllmagePickerController

B U @

Restoration ID

Use Storyboard ID

FIGURE 10-11

To create a segue from an object in one scene to another scene, simply right-click the object to dis-
play a context menu and drag from the circle beside the action entry under the Triggered Segues cat-

egory to the

target scene (see Figure 10-12).

Alternately, you can Ctrl+drag from the object to the target scene and select an option from the con-
text menu that appears when you release the mouse button.

vww.allitebooks.cond

http://www.allitebooks.org

Introduction to Storyboards | 123

Click the new segue to select it, and use the Attribute inspector to give it a unique string identifier.
To perform some tasks in the source view controller when a segue is about to be performed, override
the prepareForsegue method in the source view controller class.

override func prepareForSegue (segue: UIStoryboardSegue, sender: AnyObject?) {

}

w B Frusist
¥ i FrutLin
< AnpDugits. st
=+ ViewCentroler

I mages.acassats
Lawneseiman sin
* [Sugparting Fls O @ B | Frult Dotail View Controller |
o FrofiCas it - -
+ FrutDesaiNewComnitee switt
1 FruittintTasts

* [Progucts

+ i@ OE | O iy fAr B8 B 0 bl

FIGURE 10-12

You could potentially have several buttons in the source view controller, each going to different
scenes of the storyboard with individual segues. If you override the prepareForsegue method in
the source view controller, your version of this method will be called regardless of which segue is in
action. Within this method, you need to provide code to determine which segue is in action and take
appropriate steps.

The first argument of this method is a UTStoryboardsegue object that represents the segue about to
be performed. The second parameter is a reference to the object that initiated the segue.

The UIstoryboardsegue object provides the identifier variable, which contains the unique string
identifier specified using the Attribute inspector. The UTStoryboardsegue object also provides the

124 | LESSON 10 INTRODUCTION TO STORYBOARDS

sourceViewController and destinationViewController variables that you can use to retrieve a
reference to the source and target view controllers involved in the transition. You can use this infor-
mation to set up properties in the destination view controller before it is displayed.

TRY IT

In this Try It, you launch Xcode and create a new Xcode project using the Single View Application
template called FruitList. In the default scene, you present the user with a short list of fruits, and
in the second scene you show detailed information on the fruit selected in the first scene. The user
will be able to get back to the first scene from the second scene.

Lesson Requirements

>

>
>
>
>

A\

Launch Xcode.

Create a new project based on the Single View Application template.
Add image resources to your project.

Add a new NsObject subclass to your project FruitClass.

Add an array to the FruitListViewController class and add three instances of
FruitClass to this array.

Edit the storyboard with Interface Builder.
Add a utLabel and three UIButton objects to the default scene in the storyboard.

Create an additional scene in the storyboard and a new UIviewController subclass called
FruitDetailViewController in the project.

Use the Identity inspector to change the Custom class of the new scene to
FruitDetailViewController.

Create segues from the four buttons in the first scene to the second scene.

Override the prepareForSegue: sender method in the ViewController class to pass infor-
mation on the selected fruit to the second scene.

Add user interface elements and code to the second scene to display information on a fruit.

Add a UIButton to the second scene to dismiss it.

REFERENCE The code for this Try It is available at www . wrox.com/go/

swiftios.

http://www.wrox.com/go

Trylt | 125

Hints

> To show the Object library, select View = Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step

> Create a Single View Application in Xcode called FruitList.

1.
2.
3.

4.

Launch Xcode and create a new application by selecting File ©> New = Project.
Select the Single View Application template from the list of iOS project templates.
In the project options screen, use the following values:
> Product Name: FruitList
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y Y Y VY Y VY

Save the project to your hard disk.

> Add image resources to your project.

1.

w

Ensure the project navigator is visible. To show it, select View => Navigators = Show
Project Navigator.

Open the Assets.xcassets file by clicking on it in the project navigator.
Navigate to the Tmages folder in this chapter’s resources from the website.

Create a new image set by selecting Editor & New Image Set, and name this new image
set apple.

Drag the applelx.png, apple2x.png, and apple3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

Create a new image set by selecting Editor & New Image Set, and name this new image
set banana.

Drag the bananalx.png, banana2x.png, and banana3x.png images from this chap-
ter’s resources into the appropriate placeholders in the image set.

126 | LESSON 10

INTRODUCTION TO STORYBOARDS

>

>

>

10.

1.

Create a new image set by selecting Editor &> New Image Set, and name this new image
set orange.

Drag the orangelx.png, orange2x.pngd, and orange3x.png images from this Chap-
ter’s resources into the appropriate placeholders in the image set.

Create a new image set by selecting Editor &> New Image Set and name this new image
set background.

Drag the backgroundlx.png, background2x.png, and background3x.png images
from this chapter’s resources into the appropriate placeholders in the image set.

Open the Main.storyboard file in the Xcode editor.

1.
2.

Ensure the project navigator is visible and the FruitList project is open.

Click the Main.storyboard file.

Add a background image to the default scene of the storyboard.

1.

Ensure the Object library is visible by selecting View => Utilities = Show Object
Library.

Select an Image View from the Object library and drag it onto the single scene of the
storyboard. The size and position of the image view does not matter at this point.

Use the Attribute inspector to set the Image attribute of the image view to background.
Ensure the image view is selected; if it is not, simply click it once.
Use the Pin button to display the constraints editor popup.

> Uncheck the Constrain to margins option.

> Pin the distance between the top of the image view and its nearest neighbor
to 0.

> Pin the distance between the bottom of the image view and its nearest
neighbor to 0.

> Pin the distance between the left edge of the image view and its nearest neigh-
bor to 0.

> Pin the distance between the right edge of the image view and its nearest
neighbor to 0.

> Click the Add 4 Constraints button to dismiss the constraints editor popup.

Add a button to the storyboard.

1.
2.
3.

From the Object library, select a button and drop it onto the scene.
Double-click the button and change the text displayed in it to Apple.

Drag the button to position it near the center of the scene. The precise size or position
does not matter.

Trylt | 127

>

>

4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector; you may need to scroll down a little to access it.

5. Ensure the button is selected; if it is not, simply click it once.

6. Use the Align button to display the alignment constraint editor and add two constraints
to center the button both horizontally and vertically.

7. Ensure the button is selected and use the Pin button to display the constraints editor
popup.
> Pin the width of the button to 1635.
> Pin the height of the button to 40.
> Click the Add 2 Constraints button to dismiss the constraints editor popup.

Update the frames to match the constraints you have set.

1. Click the View controller item in the dock above the storyboard scene. This is the first
of the three icons located directly above the selected storyboard scene.

2. Select Editor & Resolve Auto Layout Issues = Update Frames.

Add a second button to the storyboard.

1. From the Object library, select a button and drop it onto the scene.

2. Double-click the button and change the text displayed in it to Banana.

3. Drag the button to position it a short distance below the Apple button. The precise size
or position does not matter.

4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector. You may need to scroll down a little to access it.

5. Ensure the button is selected; if it is not, simply click it once.

6. Use the Align button to display the alignment constraint editor and add a constraint to
center the button horizontally.

7. Ensure the button is selected and use the Pin button to display the constraints edi-
tor popup. While setting these constraints ensure the Constrain to margins option is
unchecked.

> Pin the width of the button to 165.

> Pin the height of the button to 40.

> Pin the distance between the top of the button and its nearest neighbor to 30.
>

Click the Add 3 Constraints button to dismiss the constraints editor popup.

128 | LESSON 10 INTRODUCTION TO STORYBOARDS

8. Update the frames to match the constraints you have set.

> C(Click the View controller item in the dock above the storyboard scene. This is
the first of the three icons located directly above the selected storyboard scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.
> Add a third button to the storyboard.
1. From the Object library, select a button and drop it onto the scene.
2. Double-click the button and change the text displayed in it to orange.

3. Drag the button to position it a short distance above the Apple button. The precise size
or position does not matter.

4. Use the Attribute inspector to change the background color of the button to White
Color. The background color attribute is located in the View subsection of the
Attribute inspector. You may need to scroll down a little to access it.

5. Ensure the button is selected. If it is not, simply click it once.

6. Use the Align button to display the alignment constraint editor and add a constraint to
center the button horizontally.

7. Ensure the button is selected and use the pin button to display the constraints edi-
tor popup. While setting these constraints ensure the Constrain to margins option is
unchecked.

> Pin the width of the button to 165.
> Pin the height of the button to 40.

> Pin the distance between the bottom of the button and its nearest neighbor
to 30.

> Click the Add 3 Constraints button to dismiss the constraints editor popup.
8. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.
> Add a label to the storyboard.

1. Ensure the Object library is visible by selecting View = Utilities = Show Object
Library.

2. Select a label from the Object library and drag it onto the single scene of the story-
board. Place the label a short distance above the Orange button.

3. Use the Attribute inspector to change the alignment of the label to Centered.
4. Double-click the label and change the text displayed in it to Select a fruit.

5. Use the Attribute inspector to change the font size of the label to 36.

Trylt | 129

6. Select Editor = Size to Fit Content to resize the label so that its contents are not
truncated.

7. Center the label horizontally by selecting Editor > Align &> Horizontal Center in
Container.

8. Ensure the label is selected and use the Pin button to display the constraints editor
popup.

> Pin the distance between the bottom of the label and its nearest neighbor
to 30.

> Click the Add 1 Constraint button to dismiss the constraints editor popup.
9. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor & Resolve Auto Layout Issues = Update Frames.
» Create an NSObject subclass called Fruitclass.
1. Ensure the project navigator is visible.
2. Right-click the FruitList group and select New File from the context menu.
3. Select the Cocoa Touch Class template and click Next.
4

. Call the new class FruitClass and ensure that the new class is a subclass of NSObject
by selecting NSObject in the drop-down combo box, and click Next.

o

Select a folder where files should be created. It is best to accept the default location pro-
vided by Xcode.

6. Modify the Fruitclass.swift file to resemble the following:

import UIKit
import Foundation

class FruitClass: NSObject {

var fruitName:String!

var fruitImage:String!
var fruitFamily:String!
var fruitGenus:String!

init (fruitName:String,
fruitImage:String,
fruitFamily:String,
fruitGenus:String)
self.fruitName = fruitName;
self.fruitImage = fruitImage;
self.fruitFamily = fruitFamily;
self.fruitGenus = fruitGenus;

130 | LESSON 10 INTRODUCTION TO STORYBOARDS

> Add an Array variable to the viewController class and populate it with three FruitClass
instances. Do this bymodifying the ViewController.swift file to resemble the following:

import UIKit

class ViewController: UIViewController {
var arrayOfFruits: [FruitClass] = [FruitClass] ()

override func viewDidLoad() ({
super.viewDidLoad ()

let apple:FruitClass = FruitClass(fruitName: "Apple",
fruitImage: "apple",
fruitFamily: "Rosacae",
fruitGenus: "Malus")

let banana:FruitClass = FruitClass(fruitName: "Banana"
fruitImage: "banana',
fruitFamily: "Musacae",
fruitGenus: "Musa")

’

let orange:FruitClass = FruitClass (fruitName: "Orange",
fruitImage: "orange",
fruitFamily: "Rutacae",
fruitGenus: "Citrus")

override func didReceiveMemoryWarning() {
super .didReceiveMemoryWarning ()
// Dispose of any resources that can be recreated.

}
> Add a new subclass of UIViewController called FruitDetailviewController.
1. Ensure the project navigator is visible.
2. Right-click the FruitList group and select New File from the context menu.
3. Select the Cocoa Touch Class template and click Next.
4

. Call the new class FruitDetailViewController and ensure that the new class is a
subclass of UTViewController by selecting UIViewController in the drop-down
combo box.

5. Ensure that Also create XIB file option is not selected, and click Next.

6. Select a folder where files should be created. It is best to accept the default location
provided by Xcode.

> Create a new scene in the storyboard.

1. Ensure the Main.storyboard file is open. If it is not, then select it in the project
navigator.

2. Draga View Controller object from the Object library onto the storyboard canvas.

Trylt | 131

>

3. Double-click the canvas to zoom out.

4. Position the new scene alongside the original scene.

5. Select the new scene in the storyboard, select the View Controller object from
the dock, and use the Identity inspector to change its Custom class attribute to
FruitDetailViewController. To show the Identity inspector, select View o> Utilities
> Show Identity inspector.

Add user interface elements to the new scene.

1. Select the Fruit Detail View Controller scene to select it, and use the scroll bars to cen-
ter it in the view area.

2. Add a background image to the new scene.

>

e.

f.

Ensure the Object library is visible by selecting View = Utilities = Show
Object Library.

Select an image view from the Object library and drag it onto the single scene
of the storyboard. The size and position of the image view does not matter at
this point.

Use the Attribute inspector to set the Image attribute of the image view to
background.

Ensure the image view is selected; if it is not, simply click it once.
Use the Pin button to display the constraints editor popup:
Clear the Constrain to margins option.

Pin the distance between the top of the image view and its nearest neighbor
to 0.

Pin the distance between the bottom of the image view and its nearest
neighbor to 0.

Pin the distance between the left edge of the image view and its nearest
neighbor to 0.

Pin the distance between the right edge of the image view and its nearest
neighbor to 0.

Click the Add 4 Constraints button to dismiss the constraints editor popup.

3. Add an additional image view to the new scene. This will be used to display a picture of
the fruit selected in the first scene.

>

Ensure the Object library is visible by selecting View = Utilities => Show
Object Library.

Select an Image View from the Object library and drag it onto the single scene
of the storyboard. The size and position of the image view does not matter at
this point.

Use the Align button to display the alignment constraint editor and add con-
straints to center the button horizontally and vertically.

132

LESSON 10

INTRODUCTION TO STORYBOARDS

> Use the Pin button to display the constraints editor popup.

a. Pin the height of the image view to 128.

b. Pin the width of the image view to 128.

C. Click the Add 2 Constraints button to dismiss the constraints editor popup.

> Update the frames to match the constraints you have set.

a.

b.

Click the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected
storyboard scene.

Select Editor = Resolve Auto Layout Issues = Update Frames.

> Create an outlet in the FruitDetailViewController class and connect it to
the image view.

a.

Ensure the assistant editor is visible. To show it, select View

> Assistant Editor & Show Assistant Editor. Ensure the
FruitDetailViewController.swift file is open in the assistant
editor; if not, then use the jump bars to select it.

Right-click the image view to show the context menu. Ensure you have
right-clicked the image view and not the layout constraint.

Drag from the circle beside New Referencing Outlet to an empty line
in the FruitDetailViewController.swift file in the assistant editor.

Name the new outlet fruitImage in the popup dialog that appears and
click the Connect button. The code in the assistant editor should now
resemble the following:

import UIKit
class FruitDetailViewController: UIViewController {
@IBOutlet weak var fruitImage: UIImageView!

override func viewDidLoad() ({
super.viewDidLoad ()

// Do any additional setup after loading the view.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()

Trylt | 133

// Dispose of any resources that can be recreated.

}
}

4. Add a label to the storyboard.

>

>

Ensure the Object library is visible by selecting View = Utilities © Show
Object Library.

Select a label from the Object library and drag it onto the single scene of the
storyboard. Place the label a short distance above the image view added in the
previous step.

Use the Attribute inspector to change the alignment of the label to Centered.

Double-click the label and change the text displayed in it to You have
selected.

Use the attribute editor to change the font size of the label to 26.

Select Editor = Size to Fit Content and resize the label so that its contents are
not truncated.

Use the Align button to display the alignment constraint editor and add a con-
straint to center the button horizontally.

Ensure the label is selected and use the pin button to display the constraints
editor popup.

a. Pin the distance between the bottom of the label and its nearest neigh-
bor to 30.

b. Click the Add 1 Constraint button to dismiss the constraints editor
popup.

Update the frames to match the constraints you have set.

5. Add three additional labels to the scene below the image view.

>

>
>
>

\

Repeat the steps.
Ensure the Text Alignment attribute of each label is Centered.
Place them one below the other, and all of them below the image view.

Ensure the labels are centered horizontally in the scene and are at an even dis-
tance of 15 units from each other.

Change the caption of the labels to Fruit Name, Fruit Family, Fruit Genus.

When complete, your scene should resemble Figure 10-13.

134 | LESSON 10 INTRODUCTION TO STORYBOARDS

Image View

FIGURE 10-13

Create three outlets in the FruitDetailviewController class and connect
them to the three labels you have just created on the storyboard scene. Name
these outlets fruitNameLabel, fruitFamilyLabel, and fruitGenusLabel.
The code in the assistant editor should now resemble the following:

import UIKit

class FruitDetailViewController: UIViewController {
@IBOutlet weak var fruitImage: UIImageView!
@IBOutlet weak var fruitNameLabel: UILabel!
@IBOutlet weak var fruitFamilyLabel: UILabel!
@IBOutlet weak var fruitGenusLabel: UILabel!

override func viewDidLoad () {
super.viewDidLoad ()

// Do any additional setup after loading the view.

}

override func didReceiveMemoryWarning() {

Trylt | 135

super.didReceiveMemoryWarning ()
// Dispose of any resources that can be recreated.

}
6. Add a button to the scene.
> From the Object library, select a Button object and drop it onto the scene.
> Double-click the button and change the text displayed in it to Back.

> Drag the button to position it a short distance below the Fruit Genus label.
The precise size or position does not matter.

> Use the Attribute Editor to change the background color of the button to
White Color. The background color attribute is located in the View subsec-
tion of the Attribute Editor; you may need to scroll down a little to access it.

> Ensure the button is selected. If it is not, simply click it once.

> Center the button horizontally by selecting Editor = Align => Horizontal
Center in Container.

> Ensure the button is selected and use the pin button to set up the following
constraints:

a. Pin the width of the button to 165.
b. Pin the height of the button to 40.

C. Pin the distance between the top of the button and its nearest neighbor
to 15.

> Click the Add 3 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

a. Click on the View controller item in the dock above the storyboard
scene. This is the first of the three icons located directly above the
selected storyboard scene.

b. Select Editor & Resolve Auto Layout Issues & Update Frames.

» Create an action method in the view controller class and connect it to the
button.

a. Ensure the assistant editor is visible. To show it, select View
> Assistant Editor & Show Assistant Editor. Ensure the
FruitDetailViewController.swift file is open in the assistant editor;
if not, then use the jump bars to select it.

b. Right-click the button to show the context menu. Ensure you have
right-clicked the label and not the layout constraint.

136

LESSON 10

INTRODUCTION TO STORYBOARDS

C. Drag from the circle beside Touch Up Inside to an empty line in the
FruitDetailViewController.swift file in the assistant editor.

d. Name the new action method onBack in the popup dialog that appears
and click the Connect button.

€. Add the following line of code to the implementation of the onBack
method in the FruitDetailViewController.swift file:

self.dismissViewControllerAnimated (true, nil);

The code in the assistant editor should now resemble the following:

import UIKit

class FruitDetailViewController: UIViewController {

}

@IBOutlet weak var fruitImage: UIImageView!
@IBOutlet weak var fruitNameLabel: UILabel!
@IBOutlet weak var fruitFamilyLabel: UILabel!
@IBOutlet weak var fruitGenusLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad ()

// Do any additional setup after loading the view.

}

override func didReceiveMemoryWarning () {
super.didReceiveMemoryWarning ()
// Dispose of any resources that can be recreated.

}

@IBAction func onBack(sender: AnyObject) {
self.dismissViewControllerAnimated (true, completion: nil);
}

> Create segues in the storyboard.

Open the Main.storyboard file in Interface Builder

Double-click the canvas to zoom out. Position the two scenes sufficiently apart on the
canvas by dragging them.

Double-click the first scene to activate it.

Right-click the Orange button to bring up a context menu. Drag from the circle beside
the action item under the Triggered Segues category in the context menu to the Fruit
Detail View Controller scene (see Figure 10-14).

When you release the mouse button, you will be asked to select the segue type. Select
Present Modally.

Trylt | 137

6. Select the segue by clicking the circle along the line joining the two scenes and use the
Attribute inspector to change the identifier to orangeSegue (see Figure 10-15).

B B FruiiList Fruitiist * [Muinstorybosed | [Main storyboard (Bass| | [View Controfer Scene View Ceeraliar View | 8 Qrenge A

+ [View Controller Scene
¥ () View Controliar
7 Top Layaut Guide
Battom Layout G..
A View
‘background
* o Orange
* A Banana
* B Apple
L Select a frt
» & constraints
@ First Responder
[E3 Exit
+ Storyboard Entry P,
[Fruit Detail View Cant...
v (20 Frut Detsil View Ca...
| Top Layaut Guida
Batiom Layout 6.
I View
. Background
* B Back
L You have sele...
L Frudt Name La.-
L Fruit Family La_
L Fruit Genus Lo

Fruit Detail View Controller

B widit =..
v @] Constraines

[tackgroun._.
B traifrg = b
[E8 backgroun...
[EB You have s
B Frun image...
8 Frun image..,
[EB Frur image...
[EB Fruit Name_.
8 Pt Nama..
[EB Frur Fame..

Frut FamiL..
B Frun Fami..
1 Fruk Gerw
B Fruit Geru_

FIGURE 10-14

0 ® O 0 @
Storyboard Segue

Idem!‘l'[erl orangeSegue

Segue Class

0

(ol odol <] <

Segue Module

Segue Present Modally
Presentation Default
Transition Default
8 Animates

FIGURE 10-15

138 | LESSON 10

INTRODUCTION TO STORYBOARDS

7. Similarly, create segues from each of the other two buttons (Apple, Banana) in the first
scene to the second scene. Name these segues applesSegue and bananaSegue respec-

tively. Your storyboard canvas should resemble Figure 10-16.

@ ® P B AFrost B IPhoneBsPls FruisList Ready | Today at 07:40 = QoS00 0
B g a4 A @ @ o B @< |5 Frets) i Fuist) [l Mainstoryboard) [l Mainstoryboard (Base)) No Selection
B Fruttist v [view Controlier Scens
¥ [FrustList ¥ () View Cantrotiar
= AppDelegate. swift Top Layout Gukie
= ViewCantraller.swift .| Bottam Layout ..,
B W ¥ | view B P Dt Ve Comrmir
8 Assels aassats | background = =
| LaunchScreen storyboard ¥ | B Orange
- info.plist - Farnne
= FrultClass.swift 2 :
L | Select 3 fruit
B FruitDetailViewCantraller. swift » (@ constraints
» 1 Products. 1 First Responder
[Exit
—+ Staryboard Entry Poi_
[appleSegue
1| bananaSegue
L oranpeSegue
w = Fruit Detail View Cont...
w () Fruit Detsd View Co...
| Tap Layout Guide
"1 Bottom Layout G..
v || view
| packground
» B Back
L You have sele...
+ (@ OH||[&Fie O wAny 1ny BB o
FIGURE 10-16

> Modify the implementation of the viewController class by adding the following implemen-
taﬁonfortheprepareForSegue:sender:nkﬁhodinViewController.swifu

override func prepareForSegue (segue: UIStoryboardSegue, sender: AnyObject?) {

if (segue.identifier == "appleSegue") ({
var objectData:FruitClass = self.arrayOfFruits[0]
let destination = segue.destinationViewController
as! FruitDetailViewController

destination.dataObject = objectData;

else if (segue.identifier == "bananaSegue") {
var objectData:FruitClass = self.arrayOfFruits([1]
let destination = segue.destinationViewController

as! FruitDetailViewController
destination.dataObject = objectData;
else if (segue.identifier == "orangeSegue") ({

var objectData:FruitClass = self.arrayOfFruits[2]
let destination = segue.destinationViewController
as! FruitDetailViewController

destination.dataObject = objectData;

Trylt | 139

When you finish typing these lines, you may notice the compiler complaining about the line:
destination.dataObject = objectData;
Ignore the issue momentarily as we will address it in the next step.

Modify the interface of the FruitDetailViewController class.

1. Add the following variable directive to the top of the FruitDetailviewController
.swift file:

var dataObject:FruitClass?

2. Modify the implementation of the viewbidLoad method as follows:

override func viewDidLoad() {
super.viewDidLoad ()
guard let dataObject = dataObject else {

return

}
fruitImage.image = UIImage (named: dataObject.fruitImage)
fruitNameLabel.text = "Name: \ (dataObject.fruitName)"
fruitFamilyLabel.text = "Family: \ (dataObject.fruitFamily)"
fruitGenusLabel.text = "Genus: \(dataObject.fruitGenus)"

}

Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can select Project = Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 10
video online at www.wrox.com/go/swiftiosvid.

http://www.w

SECTION 1i
More iOS Development

» LESSON 11: Handling User Input

» LESSON 12: Alert Views and Action Sheets
» LESSON 13: Adding Images to Your View
» LESSON 14: Pickers

» LESSON 15: Navigation Controllers

» LESSON 16: Table Views

» LESSON 17: Collection Views

» LESSON 18: Tab Bars and Toolbars

» LESSON 19: Creating Views That Scroll

» LESSON 20: Popovers and Modal Views

» LESSON 21: Touches and Gestures

11

Handling User Input

In Lesson 9 you were introduced to the UTButton and UILabel classes. The UTLabel class
enables you to display static text on the screen. In this lesson, you learn to use text fields and
text views to accept input from users. Text fields enable users to type a single line of text and
are instances of the UITextField class. Text views, on the other hand, enable users to type in
multiple lines of text and are instances of the UITextView class. Both classes are part of the
UIKit framework.

TEXT FIELDS

To create a text field, simply drag and drop a Text Field object from the Object library onto a
storyboard scene (see Figure 11-1).

You can use the Attribute inspector to set up several attributes of the text field, including the
Placeholder, Alignment, Border Style, Text Color, Font, and the type of keyboard that is dis-
played when the user taps on the text field (see Figure 11-2).

A placeholder is some text that is displayed in the text field when it is empty, typically prompt-
ing the user to enter some information in the field. You can choose from seven different key-
boards to associate with a text field; the choice you make will depend on the type of data you
expect. These keyboard styles can be selected using the Attribute inspector and are displayed
in Figure 11-3.

144 | LESSON 11

HANDLING USER INPUT

+& Q)| (&

vy ey

BB fof bed | e o

FIGURE 11-1

O®@E Y E O

Text Field

Text Plain B
Color M | Default B
4 Font System 14.0 Mz
Mgement = = = = [

Placahaldar © e
Background B
Disabled nd image)
sorderse 0 OO O =N
Clear Button Never appears. B

| Clear when editing begins

Min Font Size 72
@ hdjust to Fit

Capitalization Mone B

Correction Detault B

Spell Chacking _Default B

Keyboard
Appearant
Return Ki

ASCII Capable
Numbers and Punctuation
URL

Number Pad

Phone Pad

Name Phone Pad

E-mail Address

Decimal Pad |
| Twitter

Te Web Search

target object whan Return (s tapped,

Text

Text View - Displays multiple lines
of aditable text and sends an action
message to a target object when Re...

B eTm o
FIGURE 11-2

Twitter

QIWIERITIYJURLIOIP| (QIWIE[RITIVIU]IFOiP) [132]3]4}5]6]7]819)0
ASDFGHUJKL alslolrlainlalelc B [-Ee):]: (] salel"
zxcvanmnnzxc'va'.nmn.,.?l'n
5 - B - s -
Default ASCIl Capable Numbers & Punctuation
QWERTYUI QP 1 2 3 1 2 3
ASDFGHJKL &8 | B &1 8 | &
zixfcivielnivid I | 8 | 2 L | 8 | &
o
8 . o 0 a P 0 a
URL Number Pad Phone Pad
QWERTYUIOP QWERTYU I oOP | 2 3
A'SDFGHJKL ASDFGHJKL 5 5
zxcvenwf] Blzxcvenwi L & 2
8 -~ fmm w8 o fm | o e
MName Phone Pad E-mail Address Decimal Pad
QWERTYUIOP QWERTYUIOFP
ASDFGHUJKL ASDFGHUJKL

Web Search

FIGURE 11-3

Text Fields | 145

The text displayed in a text field is an instance of a string object. The string class is defined in

the Foundation framework, and its instances represent sequences of characters (alphabets, numbers,
punctuation marks).

To be able to access the text displayed in a text field object from code, you first need to create an
outlet in the view controller class and then read the value of the text property in your code. For
example, if usernameField is an outlet created using the assistant editor, you can use the following
code to get the text displayed in the field:

let text:String = usernameField.text;

Tapping on a text field signifies that the user wants to interact with it, and as a result makes it the
active user interface element. The active user interface element is formally known as the “first
responder.” When a text field receives first responder status, it automatically displays a keyboard.

To dismiss a keyboard when the Done button is pressed on the keypad, you will have to use the
assistant editor to create a method in the view controller class and connect it to the Did End on
Exit event of the text field (see Figure 11-4). A method in a view controller class that is wired to one
of the events generated by a user interface element is commonly referred to as an action method.

2 Phire 5 Firinhed running TextFiskds on iPhone 5
TextFiaid @
* (2 TaxtFinids ™ [View Controiler TextFields
= AppDakgate.awift Top Layout Guide n B /# Created by Abhizhek
I VewContrailarswift Bettoen Layaut G... T - — 7 Copyright (cl 2015 & sy
[Man storyboam T L v
% Images acassets F Aound Styla T... port UIKLE
) First Rasponcer
LawrchScrom. st - P
& Buisorting Plas [Exit ViewController: UT 1
» % TaxiFigidaTests Storyboard Entry Point 1l war usernameField: UTTextFisld
» i Products Imeert Action|
Fier func wiewidloadl) {
lewDidLoaa()
ol Fladd a N v i,
b
o unc didReceiveMemorywarning() {
LdRece iveMenoryWarning()
08 of any rescurces that can | sated
¥
}
= i} Any rAny (= =

In your action method, you need to ask the text field to resign from first responder status. You can
do this by calling the resignFirstResponder method of the text field object as shown in the fol-
lowing snippet:

@IBAction func onDismissKeyboard(sender: AnyObject) {
self.usernameField.resignFirstResponder () ;

146 | LESSON 11 HANDLING USER INPUT

Note that the sender parameter will contain a reference to the source of the event that triggered this
method (which will be the text field).

This method of dismissing the keypad works for most keyboard styles, except for the numeric key-
pads, which don’t have a Done button. It is common practice for applications to allow the user to
tap the background of the screen (outside the keypad or any other text field) to dismiss the keypad.
One way to achieve this is by using a UITapGestureRecognizer object. Gesture recognizers are
covered in detail in Lesson 21. For the moment, you can add a gesture recognizer to the view con-
troller class by following these simple steps.

1. Add the following method declaration to the view controller class:

func handleBackgroundTap (sender: UITapGestureRecognizer) {

}

2. Add the following code to the viewDidLoad method of the view controller class:

let tapRecognizer = UITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

3. Implement the handleBackgroundTap: method as follows:

func handleBackgroundTap (sender: UITapGestureRecognizer) {
self.usernameField.resignFirstResponder () ;
}

TEXT VIEWS

Text views are similar to text fields in many respects. The key difference, however, is that text views
can handle multiple lines of text. Text views handle the scrolling of text automatically, and can also
be used as a read-only view, thus providing a convenient way to display scrollable multi-line text.

To create a text view, simply drag and drop a Text View element from the Object library onto the
view (see Figure 11-5). By default a text view is sized to fit the entire screen, but you can resize/
reposition it as needed.

To create a read-only text view, simply uncheck its Editable property in the Attribute inspector. A
read-only text view does not display a keypad when tapped. Editable text views also enable you

to select from one of seven different keypad types that will appear when the user taps them. The
keypad associated with a text view, however, does not have a Done button; instead, it has a Return
button that adds a new line to the text. Thus, to dismiss the keypad you will have to use the gesture
recognizer technique discussed for text fields.

Trylt | 147

B« £ TextFields
¥ [] View Controller Scene
v View Controller
Tap Layout Guide
Battom Layout Guide
v View
Text View
@) First Resporsier

[exn

Storyboard Entry Point

TextFieids | i Mainstoryboard | [l Main staryboard (Base) | [T view Controller Scene

a o o

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecy, sed do eiusmod tempar
Hincididunt ut labore et dolore o
magna aligua. Lt enim ad minim
veniam, quis nostrud exercitation
:ullamcu labaris ﬂféi ut aliquip ex ea "

O ® Lo <
| Tont view

Text Plain B

Larem Ipsum golor sit ar allt
lamat, consactataur cllilum
adipisicing pacu, sed oo
Elusmad tempor Incigidunt ut
labare et dolore magna aligua.
Ut enim ad minim veniam,
quis nestrud exercitation
ullames laboris nisl ut afiguip
X g8 COMMOGD Consequal.
Dusis aute irure dolor in
reprehenderit in voluptate
welit esse cillum dolore eu
fugiat rulla pariatur.
Excepteur sint occaecat
cupidatat nan preident, sunt
in culpa gui officia deserunt
mollit anim id est labarum.
Nam liber te conscient to
factor tum poon lagum
odizque clviuda

Color W | Dofault B8

Fort System 14.0

Alignment

Behavior [Editable

@m:
= =52
3 Selectable

vy o Ay

0DOeO

Text View - O smultigle lines
of ditable text and sends an action
| Mesgage b @ terget object whan Ae...

EE B b e | BE ey o

FIGURE 11-5

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
LoginSample that presents a simple user interface to collect a username and password combination
from the user. The user interface will also contain a Login button that displays a customized greet-
ing to the user when it is tapped.

Lesson Requirements

> Launch Xcode.
> Create a new project based on the Single View Application template.

> Edit the storyboard with Interface Builder.

148 | LESSON 11 HANDLING USER INPUT

» Add two UTLabel instances to the default scene, with the text User name: and Password:,
respectively.

> Add two UITextField instances to the same scene, corresponding to the username and pass-
word fields, and create appropriate outlets in the view controller for them.

» Create an action method called dismissKeyboard () in the view controller class that calls the
resignFirstResponder method on each text field, and connect the Did End On Exit event
of each text field to this action method.

> Add a urButton instance to the scene that, when tapped, displays a message in an alert view.

Use a tap gesture recognizer to dismiss the keyboard when the background is tapped.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

> To show the Object library, use the View = Utilities & Show Object Library menu item.

» To show the assistant editor, use the View = Assistant Editor & Show Assistant Editor menu
item.

Step-by-Step
> Create a Single View Application in Xcode called Loginsample.
1. Launch Xcode and create a new application by selecting File ©> New Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: LoginSample
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y Y Y Y Y Y

4. Save the project to your hard disk.

http://www.wrox.com/go

Trylt | 149

> Open the Main.storyboard file in the Xcode editor.

1.
2.

Ensure the project navigator is visible and the LoginSample project is open.

Click the Main.storyboard file.

> Add two UILabel instances to the default scene.

1.

2.

7.

8.

Ensure the Object library is visible. To show it, select View = Utilities &> Show Object

Library.

From the Object library, drag and drop two Label objects onto the scene.

Use the Attribute inspector to set the text attribute of the first label to User name:. To
show the Attribute inspector, select View = Utilities & Show Attributes Inspector.

Change the text attribute of the second label to Password:.

Select both labels in the scene and select Editor = Size to Fit Contents to ensure the
labels are large enough to show their contents.

Add the following constraints using the pin constraints dialog box for the user name

label:

Y Y VY

>

Ensure the Constrain to margins option is unchecked.

The distance from the left edge of the label to the view is 10.
The distance from the top of the label to the view is 15.

The width of the label is 91.

The height of the label is 21.

Add the following constraints using the pin constraints dialog box for the password

label:

Y Y Y VY Y

Ensure the Constrain to margins option is unchecked.
The distance from left edge of the label to the view is 10.
The vertical distance between the two labels is 15.

The width of the label is 91.

The height of the label is 21.

Update the frames to match the constraints you have set.

>

>

Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

Select Editor = Resolve Auto Layout Issues & Update Frames.

> Add two UITextField instances to the scene.

150 | LESSON 11 HANDLING USER INPUT

1. From the Object library, drag and drop two Text Field objects onto the scene and posi-
tion them beside the two labels created in the previous step.

2. Use the Attribute inspector to set the Placeholder attribute of the first text field to
Enter user name.

3. Use the Attribute inspector to set the Placeholder attribute of the second text field to
Enter password.

4. Select both text fields in the scene and select Editor & Size to Fit Contents to ensure the
labels are large enough to show their contents.

5. Select the user name field in the scene and click the Pin button to display the constraints
editor. Set the following constraints.

> Ensure that Constrain to margins is unchecked.

The distance between the text field and the label should be 15.

The distance from the top of the text field to the view should be 10.
The width of the text field should be 200.

> The height of the text field should be 30.

6. Add the following constraints for the password field:

Y Y VY

> Ensure the Constrain to margins option is unchecked.
> The distance between the text field and the label should be 15.
> The vertical distance between the two text fields should be 10.
> The width of the text field should be 200.
> The height of the text fields should be 30.

7. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.
> Add a uTButton instance to the scene.
1. From the Object library, drag and drop a Button object onto the scene.
2. Double-click it and set the text in the button to Login.

3. Select the button in the scene and click the Pin button to display the constraints editor.
Set the following constraints:

Try lt | 151

The width of the button should be 64.
The height of the button should be 40.

Y Y Y Y Y

Ensure the Constrain to margins option is unchecked.

The horizontal distance between the button and the view should be 116.

The vertical distance between the button and the password field should be 10.

[»3 o Ot

4. Change the background color for the button to a dark gray color so that it is visible
against a white background.
5. Update the frames to match the constraints you have set.
> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.
> Select Editor &> Resolve Auto Layout Issues @ Update Frames.
Your storyboard should resemble Figure 11-6.
B < B LoginSample » 7 LoginSample) [} Main....yboard » [Main....[Base)) I View...r Scene)) View Controller) | | View) B Login | 0Deaa 9§ e
v [Z] View Controller Scene vares
= 8 Contert | Selected [Enabled
¥ L View Controllar ® B - Highlighted
Top Layout Guide -
Bottom Layout G... | Viaw
¥ L1 ¥iew User Name: Mode Scals To Fill 2]
P L User Name: =
b L Password: Password: b i
¥ F Enter user name Intaraction B User Interaction Enablod
,

F Enter password
» BlLogin
» [constraints
%1 First Responder
[E] Exit

Storyboard Entry Point

| [— - [

i

Alpha

Multiple Touch

1
—

Tirt

Drawing

Stretehing

tem

whny hAny

B o taf B | B |® Button

o0

Buttol
Button sends an action messaga to a targat
object when It's tapped.

Bar Button Item - Represants an
itam on a UlToolbar or
UlNavigationitern object.

Fixed Space Bar Button Item -
Rapresents a fixed space ftem on a
UlToolbar object.

BE

N Default

Opaqua Hidden
& Clears Graphics Contaxt
Clip Subvisws
Autoresize Subviews
1] ajc
X Y
1= 1]
Width Hesgnt

B installad
@ 0

n - Intercepts touch events and

FIGURE 11-6

152 | LESSON 11 HANDLING USER INPUT

» Create outlets in the ViewController class and connect these outlets to the text fields in the
scene.

1. Ensure the assistant editor is visible. To show it, select View © Editor & Show
Assistant Editor.

2. Right-click the UTTextField object corresponding to the user name to display a con-
text menu. Drag from the circle beside the New Referencing Outlet option in the con-
text menu to an empty line in the ViewController.swift file.

3. Name the new outlet usernameField.

4. Repeat this procedure for the password text field, and name the corresponding outlet
passwordField.

» Create an action method in the ViewController class and associate it with the Did End On
Exit events of the two text fields.

1. Right-click the uTTextField object corresponding to the username to display its con-
text menu, and drag from the circle beside the Did End On Exit item to an empty line
in the viewController.swift file.

2. Name the new Action onDi smissKeyboard.

3. Right-click the UTTextField object corresponding to the password to display its con-
text menu, and drag from the circle beside the Did End On Exit item to the icon repre-
senting the view controller in the dock (see Figure 11-7).

. LaginSampia T "
TS g e, (05 50K 8.2 VM Cortrr Som View Centrober

LoginSample
= AppDalagate swift Top Layout Guide
B ViewContralie swift Battam Layout G
[Mainstoryooarg v vew
Images xoassets * L User Name:
LawrenScien ot L
* [Supporting Flies * F Enter user rame
* 10 LesginBampliaTests * F Entar paasword
» Products * B Login
» [E coratmints
) First Responder
& et
Storyboard Entry Port

¥) Vimw Cantrollar

o by Abhishek Mi
ight [c] 2015 ase

+ AL rights reserved,

L Passward;
er: UIViewController {

var usernamefield: UIText(
var passwordField: UTTextF

al setup after loading the view, typically from a

didReceivetenarywarning(} {
cebweMenoryWarning(
of any resources that can be

onDisnisskeyboard{sender: Anylbject) {

= =) Any HAny B ol lal E1

FIGURE 11-7

Trylt | 153

Release the mouse button over the yellow view controller icon in the dock to present
a list of existing action methods in the view controller. Select the onDismissKeyboard
method.

Click the ViewController.swift file in the project navigator to open it.

Add the following code to the implementation of the onDismissKeyboard method:

usernameField.resignFirstResponder ()
passwordField.resignFirstResponder ()

> Create an action in the ViewController.swift file and connect it with the Touch Up Inside
event of the login button.

1.

Select the storyboard in the project navigator.

Right-click the Login button in the scene to display its context menu, and drag from the
circle beside the Touch Up Inside item to an empty line in the ViewController.swift

file.
Name the new action method onLogin.
Click the viewController.swift file in the project navigator to open it.

Add the following code to the implementation of the onLogin method:

usernameField.resignFirstResponder ()
passwordField.resignFirstResponder ()

let userName:String = usernameField.text!
let length:Int = userName.characters.count

if length == 0 {
return
}

let alert = UIAlertController(title: "",
message: "Login succesfull",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

> Add a tap gesture recognizer and use it to dismiss the keyboard when the background area of
the view is tapped.

1.

Add the following code to the viewDidLoad method of the viewController.swift
file, after the super.viewDidLoad () line:

let tapRecognizer = UITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

154 | LESSON 11 HANDLING USER INPUT

tapRecognizer.cancelsTouchesInView = false

self.view.addGestureRecognizer (tapRecognizer)
Implement the handleBackgroundTap () method in the ViewController.swift file as
follows:

func handleBackgroundTap (sender: UITapGestureRecognizer) {

usernameField.resignFirstResponder ()
passwordField.resignFirstResponder ()

}

> Test your app in the iOS Simulator.
Click the Run button in the Xcode toolbar. Alternatively, you can use the Project = Run

menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 11
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/s

A

Alert Views and Action Sheets

The user interface elements you have encountered so far have all been created by dragging
and dropping from the Object library. In this lesson you are introduced to alert views and
action sheets, two user interface elements that are created only with code. Prior to iOS 8,
alert views and action sheets were represented by the UTAlertview and UTActionSheet
classes. This is no longer the case with iOS 8; both of these are now handled by a single class
UIAlertController.

ALERT VIEWS

An alert view is a special modal view that is used to display a short message to the user and
typically enables the user to choose from a small number of options. The most common use of
an alert view is to display information on success or failure of an operation; for example, on
success a typical login operation may display an alert view, as shown in Figure 12-1.

Login successful
Helle Andrew. Welcome to the app!

Ok

FIGURE 12-1

156 | LESSON 12 ALERT VIEWS AND ACTION SHEETS

When an alert view is displayed, the screen is dimmed automatically for you. You can specify a title,
a message, and one or more buttons to present the user with options. When multiple options are pre-
sented to the user, it is common to designate one of the buttons to act as the cancel button. You can
change the text displayed in the cancel button, but it is always displayed at the bottom of the alert
view with a boldface font, as shown in Figure 12-2.

This is the title
This s the messags fext

Option 1

Option 2

Optlon 3

Cancel

FIGURE 12-2

An alert view is managed by an instance of the UIAlertController class, which is part of the
UIKit framework and is created in code as follows:

let alert = UIAlertController(title: "This is the title",
message: "This is the message text",
preferredStyle: UIAlertControllerStyle.Alert)

The first parameter is the title of the alert view. This is followed by the message. The third param-
eter should be UTAlertcontrollerStyle.Alert if you want an alert view.

Once you have created an alert view, you need to add buttons to it. This is achieved by creat-
ing instances of the UTAlertAction class and adding them to the alert view using the addaction
method. The following code snippet creates two buttons, one of them being the Cancel button.

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

alert.addAction (UIAlertAction(title: "Cancel",
style: UIAlertActionStyle.Cancel,
handler: nil))

Alert Views | 157

The first parameter to the UTAlertAction constructor is the title that appears on the button; this is
followed by the type of button (Default or Cancel). The final parameter is an optional closure that is
executed when the button is pressed.

The following code snippet creates an alert view with two actions. The first action has a closure
associated with it that will display another alert view:

let alert = UIAlertController(title: "Help",
message: "Would you like to call customer services?",
preferredStyle: UIAlertControllerStyle.Alert)

let dialActionHandler = { (action:UIAlertAction!) -> Void in
let alertMessage = UIAlertController(title: "Error",
message: "Sorry, unable to make a call at the moment.",
preferredStyle: UIAlertControllerStyle.Alert)

alertMessage.addAction (UIAlertAction(title: "OK",
style: .Default,
handler: nil))

self.presentViewController (alertMessage,
animated: true,
completion: nil)

}

alert.addAction (UIAlertAction(title: "Call +44 7922 394132",
style: UIAlertActionStyle.Default,
handler: dialActionHandler))

alert.addAction (UIAlertAction(title: "Cancel",
style: UIAlertActionStyle.Cancel,
handler: nil))

To show the alert view, simply use the presentviewController method of UIViewController as
follows:

self .presentViewController (alert, animated: true, completion: nil)

The alert view object enables you to add up to two text fields, in addition to buttons. This

comes in handy when you want to collect username and password information from the user (see
Figure 12-3).

To do this, you can use the addTextFieldWithConfigurationHandler method of the
UIAlertController class. The following code snippet creates an alert view with a text field:
let alert = UIAlertController(title: "Enter name",

message: "",
preferredStyle: UIAlertControllerStyle.Alert)

158 | LESSON 12 ALERT VIEWS AND ACTION SHEETS

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

alert.addTextFieldWithConfigurationHandler ({ (textField: UITextField!) in
textField.placeholder = "What is your name?"
I

self.presentViewController (alert, animated: true, completion: nil)

This is the title
This is the title This is the message text

This is tha message text

FIGURE 12-3

To retrieve the value typed by the user when the alert view is dismissed, you need to retrieve a refer-
ence to the UTTextField object within the alert controller and read its text as follows:

let alert = UIAlertController(title: "Enter name",
message: "",
preferredStyle: UIAlertControllerStyle.Alert)

let okActionHandler = { (action:UIAlertAction!) -> Void in
var nameField = alert.textFields![0] as UITextField
let alertMessage = UIAlertController(title: "Hello",
message: "\ (nameField.text)",
preferredStyle: UIAlertControllerStyle.Alert)
alertMessage.addAction (UIAlertAction(title: "OK",

style: .Default,
handler: nil))

Action Sheets | 159

self.presentViewController (alertMessage,
animated: true,
completion: nil)

}

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: okActionHandler))

alert.addTextFieldWithConfigurationHandler ({ (textField: UITextField!) in

textField.placeholder = "What is your name?"
H

self.presentViewController (alert, animated: true, completion: nil)

ACTION SHEETS

An action sheet is another user interface component that is created through code and can be used to
present a list of choices to a user. Action sheets are similar to alert views in many respects, but they
have several important differences. To start with, action sheets look significantly different from alert
views, and they look different on an iPhone and an iPad (see Figure 12-4).

This is the title

his |5 the message

Ok

Destructive

Cancel

FIGURE 12-4

On an iPhone, they slide up from the bottom of the screen, and on the iPad they display as popover
windows. On an iPad, the cancel button is not visible. If the user taps outside the action sheet on an
iPad, the action sheet is dismissed.

Action sheets enable you to highlight one of the buttons in red—this button is referred to as the
destructive button. The following code snippet shows how to create an action sheet on an iPhone:

160 | LESSON 12 ALERT VIEWS AND ACTION SHEETS

let alert = UIAlertController(title: "This is the title",
message: "This is the message",
preferredStyle: UIAlertControllerStyle.ActionSheet)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

alert.addAction (UIAlertAction(title: "Cancel",
style: UIAlertActionStyle.Cancel,
handler: nil))

alert.addAction (UIAlertAction(title: "Destructive",
style: UIAlertActionStyle.Destructive,
handler: nil))

self.presentViewController (alert, animated: true, completion: nil)

As you can see, the parameters are very similar to those of an alert view, with the main dif-
ference being that the third argument to the UIAlertController constructor is now
UIAlertControllerstyle.ActionSheet.

The destructive button is created by instantiating a UIAlertAction object with the style parameter
set to UIAlertActionStyle.Destructive

alert.addAction (UIAlertAction(title: "Destructive",
style: UIAlertActionStyle.Destructive,
handler: nil)

Showing an action sheet on an iPhone is identical to alert views:

self.presentViewController (alert, animated: true, completion: nil)

However, on an iPad you will need additional code, as the action sheet is presented in a popover. To
show an action sheet on an iPad, use the following snippet:

alert.modalPresentationStyle = UIModalPresentationStyle.Popover

if let popoverController = alert.popoverPresentationController {
popoverController.sourceView = sender as UlView;
popoverController.sourceRect = sender.bounds;

}

self.presentViewController (alert, animated: true, completion: nil)

You cannot display an action sheet in the viewDidLoad method of a view controller class on the
iPad. Another important distinction between action sheets and alert views is that the former cannot
have text fields in them.

Try lt | 161

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
ActionSheetSample that presents an action sheet with a list of colors when a button is tapped.
When the user selects a color from the action sheet, the background color of the scene will be
updated to match the selected color.

Lesson Requirements

» Launch Xcode.

> Create a new project based on the Single View Application template.

> Edit the storyboard with Interface Builder.

> Add UlButton instance to the default scene.

> Write code to display a list of colors to the user when the button is tapped.

> Write code to update the background color of the scene to reflect the selected color.
REFERENCE The code for this Try It is available at www .wrox .com/go/
swiftios.

Hints

> To show the Object library, select View = Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called ActionSheetSample.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: ActionSheetSample
> Organization Name: your company

> Organization Identifier: com.yourcompany

http://www.wrox.com/go

162 | LESSON 12 ALERT VIEWS AND ACTION SHEETS

4.

Language: Swift

Devices: iPhone

Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y Y VY VY

Save the project to your hard disk.

> Open the Main.storyboard file in the Xcode editor.

1.
2.

Ensure the project navigator is visible and the ActionSheetSample project is open.

Click the Main. storyboard file.

» Add a uIButton instance to the scene.

1.
2.
3.

From the Object library, drag and drop a Button object onto the scene.
Double-click it and set the text in the button to Change Background Color.

Select the button in the scene and click the Pin button to display the constraints editor.
Set the following constraints:

> The width of the button should be 210.
> The height of the button should be 40.

Change the background color for the button to a dark gray color so that it is visible
against a white background.

Select the button in the scene and click the Align button to display the alignment con-
straint editor. Add two constrains to center the button both horizontally and vertically
(see Figure 12-5).

Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor & Resolve Auto Layout Issues = Update Frames.

Your storyboard should resemble Figure 12-6.

Trylt | 163

B«
v [5 view Controller Seene ©
¥ [View Contraller
Top Layout Guide
Bottom Layout G...
v View
¥ | B Change Backg...
) First Respander
[E Exit

- Storyboard Entry Poi..

& ActionSheetSample

Acti...phe Mal..ard | [l Mai_se) | B vie_ene Vie..oller View | B Change Background Color | ¢

® B

Add New Alignment Constraints

[Horizontally in Container
[vertically in Container

Update Frames | None
“Add 2 Constraints

>

| Control

De=$E O

Top

[Jes 0
Battom

Left

Right

Alignmant

=l sl

Horlzontal

O =N O

Vertical
3 Enabled

H
[H]

Selected
Highlighted

Content

Mode Scale To Fll

Semantic Unspecified

Tag]

Interaction) User Interaction Enabled
Multiple Touch

Alpha 1

wi-+ EEEE Default

Opague Hidden
= [Clears Graphics Context
= | Clip Subviews

S0 e o

on - Intercepts touch events and
& an action message to a target
» ftwhen it's tapped,

+ Button Item - Rapresents an
on a UiTealbar ar
wigatianitam ohject.

d Space Bar Button Htem -
peents @ fooed space itam an a
albar object.

whny hAny

T
B3 2 iof i | BH | © Butien

FIGURE 12-5

>

event of the Change Background Color button.

1.
2.

Select the storyboard in the project navigator.

Create an action in the ViewController.swift file and connect it with the Touch Up Inside

Right-click the Change Background Color button in the scene to display its context

menu, and drag from the circle beside the Touch Up Inside item to an empty line in the
ViewController.swift file.

3.

Name the new action method onPresentActionSheet.

164 | LESSON 12 ALERT VIEWS AND ACTION SHEETS

88 < 2. ActionSheetSample | Actl..mple . Main...oard . Main...ase)) [=] View...cene View...oller View ' B Change Background Color

¥ [#] view Controller Scene

v View Controller
Top Layout Guide ®
Bottom Layout G... L]
v View
» B |Change Backg...
> Constraims
) First Responder
[ES Exit

» Storyboard Entry Poi...

@ Filter (] whAny hAny EE = o bad
FIGURE 12-6

4. Click the viewController.swift file in the project navigator to open it.

5. Add the following code to the implementation of the onPresentactionSheet method:

let alert = UIAlertController(title: "Change background color",
message: "Select a color",
preferredStyle: UIAlertControllerStyle.ActionSheet)

alert.addAction (UIAlertAction(title: "Red",
style: UIAlertActionStyle.Default,
handler: { (action: UIAlertAction) -> Void in
self.view.backgroundColor = UIColor.redColor()

13D

alert.addAction (UIAlertAction(title: "Green",
style: UIAlertActionStyle.Default,
handler: { (action: UIAlertAction) -> Void in
self.view.backgroundColor = UIColor.greenColor ()

Trylt | 165

)

alert.addAction (UIAlertAction(title: "Blue",
style: UIAlertActionStyle.Default,
handler: { (action: UIAlertAction) -> Void in
self.view.backgroundColor = UIColor.blueColor()
)

alert.addAction (UIAlertAction(title: "Yellow",
style: UIAlertActionStyle.Default,
handler: { (action: UIAlertAction) -> Void in
self.view.backgroundColor = UIColor.yellowColor ()
)

alert.addAction (UIAlertAction(title: "Cancel",
style: UIAlertActionStyle.Cancel,
handler:nil)

self.presentViewController (alert, animated: true, completion: nil)
Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can use the Project & Run
menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 12
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftio

13

Adding Images to Your View

The UIKit framework provides classes that enable you to represent and display images. In this
lesson, you learn how to use the UTTmage and UTITImageview classes.

THE UIIMAGE CLASS

A UIImage object represents image data that has either been read from a file or created using
Quartz primitives. Instances are immutable. Thus, their properties can’t be changed once they
have been created. UITImage instances do not provide access to the underlying image data, but
do enable you to retrieve a PNG or JPEG image representation in an NSData object.

Images generally require large amounts of memory to store, and you should avoid creating
image objects larger than 4096 x 4096 pixels. To load an image from a file into a UTTmage
object, you first need to ensure the file is in one of the formats listed in Table 13-1.

TABLE 13-1: Ullmage Supported File Formats

DESCRIPTION FILE EXTENSIONS
Portable Network Graphics -png

Joint Photographic Experts Group .jpeg, -ipg
Graphics Interchange Format .gif

Windows Device Independent Bitmap -bmp

Tagged Image File Format .tif, .tiff

You also need to ensure that the file is part of the project’s asset catalog. To access the asset
catalog for your project, simply click on the Assets.xcassets file in the Project Explorer (see
Figure 13-1).

168 | LESSON 13 ADDING IMAGES TO YOUR VIEW

ene » A, Tramsurutunt | B IPrane 85 Flus Trassurstunt: Rescly | Toduy #t 18:02 o I

—_ [
38| € £ TreasureHunt | TreasurmHunt | 4 Assets xoamsets | Apgioan nDe o
Appicon (- Wity and Type

“ame Asasts.xcasants

TraasroHunt
= AppDalugata.wift
+ ViewComtrotluer swilt
o Locatier Retative o Groun
sl sewsnals
Aaswtn sasnaln
" P e B Full Path Users/aihishekmishr)
Launchtcren staryboard Dasktop/Tresaurstunt!
Inlo, pisi IPnana #hoes Spatignt sy
Spotight - K05 5,0 0878
» [Procucts Satting - 05 §-8 Aapt
29p1

Trom Delaul - AEsatcstuicg

om

Targat Membersiin
B A Teanumbunt

‘Soeroa Control
Rnpoatory TremsureHunt
Trew Git

IPnane Ao
OETE Curmare Bran &h magtar

L Vrwion —
Status No changss
Lacation. MUaraAbhishwhmisho
Dusitop/TreasursHunt!
TremzureHunt/Assets xoasaets

#ac Spatiight
08 7.8

Do eo

— Cocoa Touch Class - A Cocca
| C Jerrten

" Ul Test Case Class - A class
2 T [ty

(Pad App.
0574
THpe B Unit Test Case Clags - A clasa

mplamanting & wnf tut

Show Slicing

FIGURE 13-1

An asset catalog lets you keep all the images in your project in one place and access them conve-
niently. An asset catalog can contain the following:

> Image sets: An image set contains all the versions of an image, at different sizes to support
different device scale factors.

> App icons: An app icon contains the application icon in different sizes. The application icon
is used to represent the application on the iOS home screen, settings app, spotlight results,
and the app store.

> Launch images: A launch image is a placeholder image used by iOS to stand in place of an
application while the application is being loaded in the background. Once the application is
loaded, iOS swaps the static launch image with the application’s first screen. You will need to
provide the launch image in different sizes.

Each image set in an asset catalog has a unique name that can be used to refer to the asset from
both the Interface editor and code. To add a new image set to an asset catalog, select Editor & New
Image Set. Double-click the new image set entry within the asset catalog to rename it.

For any given image set, you must provide at least one image. It is highly recommended that you
provide multiple versions at different sizes. When you create a new image asset, you can provide
three sizes of the image (see Figure 13-2).

The Ullmage Class | 169

oce p J) @#i. TreasureHunt: Ready | Today at 18:02 = @ &

BRE aaAo© = 8 B« 2 funt) Tr Hunt) i Assets No

¥ & TreasureHunt Apploon E
¥ [TreasureHunt Image]
s AppDelegate swift
= ViewController.swift
Main_storyboard
~ Assets.xcassets M 1% 2% ax
LaunchScreen.storyboard
Info.plist Universal
L3 Products

+|@ OHE|l+ — |©®

FIGURE 13-2

Show Slicing

The base version of the image is called the 1x version, and is used when your app is running on

a non-retina device. The only non-retina devices that are supported under iOS9 are the early
generation iPads. To support retina devices, you provide an image that is twice the size of the base
(non-retina) version. This larger image is called the 2x version. When the iPhone 6Plus was intro-
duced with its larger screen size, a third larger image size was introduced into the mix to support
this device. This larger image size, which is only used with the iPhone 6 Plus, is called the 3x version
and is three times as large as the base 1x version.

Alternately, you can provide device-specific sizes by selecting Device Specific in the Devices drop-
down of the Attribute Editor (see Figure 13-3).

If you have an image set called cat and want to load it into a UTTmage object, you use the following
code:

let catImage:UIImage! = UIImage (named: "cat")

This code uses one of the constructors of the UIImage class, which in turn implements an internal
system cache. Thus, if you were to use this method to repeatedly load the same image file, the image
data would be loaded only once and shared between the UTImage instances.

Loading images from your application bundle is not the only way to use UIImage objects. You
can also create one from an online data source by downloading the data available at the URL into
an NSData object and then instantiating a UTImage using an overloaded constructor that takes an
NSData variable as input.

The following code snippet shows how to do this synchronously, but in production code, you should
try and download any data from the web, including images, asynchronously. Downloading images
asynchronously is an advanced topic and is not covered in this book.

170 | LESSON 13 ADDING IMAGES TO YOUR VIEW

let url = NSURL(string:"http://...")
let data = NSData(contentsOfURL: url!)
let image:UIImage! = UIImage (data: datal)
9 » 3 A T..) Wl Phone B8 Plus TreasureHunt: Ready | Today at 18:03 = |00
B2 QA a8 o B8 B« & TreasureHunt TreasureHunt Assats xoassats Image m e ¢
v & TreasureHunt Applean g e
¥ [TreasunaHunt mngs s m Mams Image <
A .Qppnulnqn:u.swlfk. e
- ViewCaniroBer swit T
Main_storyboard 105 8 iPhone
Apsets XCassets L] 3 8 Pad
LaunchBcrean.storyboard 05X Mac
info.plist IPhone watehDS — Appla Watch
* I Froduols width Aay e
Heght Ay B
Memary 168
208
x " Graphics Metal 1v2
Pad Metal 2v2
Metal v1
Scals Factors Multipla B
Render As Default B
Do e o
Cocoa Touch Class - A Cocoa
Touch class

LN Test Case Class - A class
implementing & unit test

Unit Test Case Class - A class
Implementing a unit test

= oOR|l + — [@ Show Slicing | B8 | =

FIGURE 13-3

THE UIIMAGEVIEW CLASS

A UIImageView object provides a container for displaying either a single UIImage object or an ani-
mated series of UIImage objects. To add a UTImageview object to a view controller or storyboard
scene, simply drag an Image View object from the Object library (see Figure 13-4).

To set up the default image displayed in the image view, simply select an image from the project’s
asset catalog for the image property in the Attribute inspector (see Figure 13-5).

If you wish to display a UIImage object in an image view programmatically, you need to create an
outlet for the image view in the view controller class and set up its image property as follows:

imageView.image = UIImage (named: "cat")

To use a UIImageView object to perform simple frame animation, simply provide an array of
UITmage objects in the image view’s animationImages property as follows:

let animationImageList: [AnyObject] = [
UIImage (named: "framel")!,

The UlimageView Class | 171

UIlmage (named: "frame2")!,
UIlmage (named: "frame3")!,
UIImage (named: "frame4")!

imageView.animationImages = animationImageList

ese > =& Treasurstunt: Rendy | Tokay ot 16:04
BRE QA O
¥ B Treamursbiunt
v TraasunsHunt
2 AppOsiegate switt
& WawControlerswill

o TramsrnHunt |) Phors 85 Plus

= o> B @< [Treasurabunt - TreasursHunt | [} Main...yboaed [l Main._(Bass) | [Viaw.r Scona | () View Cantrabor

¥ 151 Voew Gomtroller Scane
* L) Vaw Correilar

Top Layout Guide

Eottom Layout...

= O Sa0n

mmm..DGI'ﬂ-ﬂ@

Cukch Halp
Cuseiptien AN IMagn view obiect provides.
a view-based container for
displnying esher a single
image or for animating & secss:

Main.storyboard YLV) @ B

of images. Far
imagas, the LlimageViaw claas

@ First Ansponder
Eea
- Steegbeard Enlry Peint

I Asanta scunsets]
LaunchSoreen storyboard
Infa piise
» 1 Products

conrols ta et the

Overviow
When a Lilimageiew obyect
cispluys orw of its images, the
actual beravior & based an
the proparties of the image
and the view. If either of the
image's ieRCapWidth ar

praperty of the view, It s
fout nat
required] that you Laa Images.
that are all the same size. #
the irmages are differert uces,
oach will be acdusted 1o 1
separasey based an that
mode.
/Al images assocated weh o
Ullmageiiew otyect shauld
usa e sama scale, If your
appication uses imagen with

oDonean
|| image View - Disliers u singia
imiGe, ar an anmatcn descibad by
an sy of image.

Il whny Ay

B8 B jof bl | HE | ©mage o

FIGURE 13-4

Des9E o

magell @

mghughm] apple r

View

Scale To Fill

Moda

0 <

o

Tag

User Interaction Enabled
Multiple Touch

Interaction

o

Alpha
Background
Tint

FIGURE 13-5

3 Default
N Default

172 | LESSON 13 ADDING IMAGES TO YOUR VIEW

To kick off the animation, call the startanimating method of the image view:

imageView.startAnimating ()

Specify the duration of the animation in seconds, using the animationDuration property:

imageView.animationDuration = 2

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
TreasureHunt that displays an image and asks the user to find an object in the image. When the
user taps the object, a short congratulatory animation sequence is displayed.

Lesson Requirements
> Launch Xcode.
Create a new project based on the Single View Application template.
Edit the storyboard with Interface editor.
Import image resources into the project.
Add a ulLabel instance to the default scene.
Add two UTImageView instances to the default scene.

Use a gesture recognizer to detect a tap on the image and display an alert view.

Y YV Y Y Y Y Y

If the tap occurs over a specific region of the image, display a congratulatory frame
animation.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints
> To show the Object library, select View = Utilities => Show Object Library.

» To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called Treasurenunt.
1. Launch Xcode and create a new application by selecting File &> New > Project.

2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

Trylt | 173

3. In the project options screen, use the following values:
> Product Name: TreasureHunt

Organization Name: your company

Organization Identifier: com.yourcompany

Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include Unit Tests: Unchecked

Include UI Tests: Unchecked

Y YV Y Y Y Y Y

4. Save the project onto your hard disk.
> Add image resources to your project.

1. Ensure the project navigator is visible. To show it, select View = Navigators > Show
Project Navigator.

2. Open the Assets.xcassets file by clicking on it in the project navigator.
3. Navigate to the Tmages folder in this chapter’s resources from the website.

4. Create a new image set by selecting Editor © New Image Set and name this new image
set beads.

5. Drag the beads1x.png, beads2x.png, and beads3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

6. Create a new Image set by selecting Editor &> New Image Set and name this new image
set animframel.

7. Drag the animframel 1x.png, animframel 2x.png, and animframel 3x.png images
from this chapter’s resources into the appropriate placeholders in the image set.

8. Similarly, create new image sets called animframe2, animframe3, animframe4, anim-
frames, and animframes, and use the appropriate images from this chapter’s resources

folder.
» Add a UTILabel instance to the default scene.
1. Open the Mainstoryboard.storyboard file in Interface Builder.

2. Ensure the Object library is visible. To show it, select View = Utilities & Show Object
Library.

3. From the Object library, drag and drop a Label object onto the scene.

4. Use the Attribute inspector to set the Text attribute of the label to Tap the blue
bead! To show the Attribute inspector, select View = Utilities & Show Attributes
Inspector.

174 |

LESSON 13 ADDING IMAGES TO YOUR VIEW

>

Select the label in the scene, and select Editor = Size to Fit Contents to ensure the label
is large enough to show its contents.

Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

Select the label in the scene and click the Pin button to display the constraints editor.
Ensure the Constrain to margins options is unchecked and set the following constraint:

> The distance from the top of the label to the view should be 10.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

Add two UTImageView instances to the default scene.

1.

2.

From the Object library, drag and drop an Image View object onto the scene, and place
it below the label.

Use the Attribute inspector to set the Image attribute of the image view to bead. To
show the Attribute inspector, select View = Utilities &> Show Attributes Inspector.

Using the Attribute inspector, set the View Mode attribute to Aspect Fill.

Select the image view in the scene, and select Editor = Size to Fit Contents to ensure the
image view is large enough to show its image.

Select the image view in the scene and click the Align button to display the alignment
constraint editor. Add a constraint to center the image view horizontally.

Select the image view in the scene and click the Pin button to display the constraints
editor. Ensure the Constrain to margins options is unchecked and set the following
constraint:

> The vertical distance between the label and the image view should be 10.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

Use the assistant editor to create an outlet in the view controller class called 1arge
Image and connect the image view to it.

From the Object library, drag and drop a second Image View object to the scene.

Trylt | 175

10. Use the Attribute inspector to set the Image attribute of the image view to animframe1.
To show the Attribute inspector, select View = Utilities & Show Attributes Inspector.

11. Using the Attribute inspector, set the View Mode attribute to Aspect Fill.

12. Select the image view in the scene and click the Align button to display the alignment
constraint editor. Add a couple of constrains to center the image view horizontally and
vertically.

13. Update the frames to match the constraints you have set.

14. Use the Assistant editor to create an outlet in the view controller class called animated
Image and connect the image view to it.

Add a tap gesture recognizer and use it to show an animated image sequence when the blue
bead is tapped. Gesture recognizers are covered in detail in Lesson 21.

1. Update the viewbpidLoad method of the view controller class to resemble the following:

override func viewDidLoad() ({
super.viewDidLoad ()

// install tap gestue recognizer.
let tapRecognizer = UlITapGestureRecognizer (target: self,
action:"handleTap:")

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

// setup animatedImage
let frameArray: [UIImage] = [
UIImage (named: "animframel"
UIImage (named: "animframe2"
UIlmage (named: "animframe3"
UIImage (named: "animframe4"
(
(

i

1

UIImage (named: "animframe5"
UIlmage (named: "animframe6"

'

) !
) !
) !
) !
) !
) !

]

animatedImage.animationImages = frameArray
animatedImage.animationDuration = 0.5
animatedImage.animationRepeatCount = 1
animatedImage.userInteractionEnabled = false
animatedImage.hidden = true

}
2. Add the following method to the viewController.swift file:

func handleTap (sender:UITapGestureRecognizer) {

let startLocation:CGPoint =

176 |

LESSON 13 ADDING IMAGES TO YOUR VIEW

sender.locationInView(self.largeImage)
let scaleFactor = self.largelmage.frame.size.height / 430.0;

if ((startLocation.y >= 211 * scaleFactor) &&
(startLocation.y <= (211 + 104) * scaleFactor))
{

animatedImage.hidden = false
animatedImage.startAnimating()

}
Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 13
video online at www .wrox . com/go/swiftiosvideo.

http://www.wrox.com/go

14

Pickers

A picker view is a user interface component that enables a user to
pick a value from a set of related values using a slot machine—style Mountain View
interface. An example is shown in Figure 14-1. nnyvale

Cupertino
Each wheel of the picker view is called a component, and it is fairly e
common to have picker view with multiple components. Each com-

ponent can have a different number of items in it (see Figure 14-2). FIGURE 14-1

A picker view is encapsulated by the UTPickerview class, which is part of the UIKit frame-
work. Apple provides a special picker for allowing the user to select date and time. This
component is called the date picker.

A picker requires a data source object and a delegate :
object. The data source object is one that implements the Paris Theaters
UIPickerViewDataSource protocol and provides informa-

tion on the number of components, and rows-per-component,

of the picker. FIGURE 14-2

The delegate object implements the UTPickerviewDelegate protocol and has methods that
are called when the current selection in a component has changed.

The delegate and data source objects could both be the same object, and in many cases the
duties of these objects are performed by the view controller. However, it is very possible for
them to be independent objects.

Creating a picker view is a simple matter of dragging the Picker View component from the
Object library onto your storyboard or XIB file (see Figure 14-3) and then creating an appro-
priate outlet in your view controller class using the assistant editor.

178 | LESSON 14 PICKERS

=B

 Visual Effect View with Blur -
Provides a blur effect

~ Visual Effect Views with Blur and
~ Vibrancy - Provides a blur effect,
| plus vibrancy for nested views

| MapKit View - Displays maps and
i An amh tn

B e

FIGURE 14-3

The delegate and data source objects can be set up using the Interface editor (see Figure 14-4) or by
setting up the delegate and dataSource properties in code.

»]
BRAQAO

pickerTest
¥ B agots 108 soK A3

+ioHE S

e p...t | @l Phona 8

= o B3

pickerTest | Build pickerTest: Succesdad | Today at 09:35

L A e |

B pickerTest + 0 pickarTest « - Main. B Mein {Base) - [View Controller Scene © £ View Controller View

o @ B

[] whny nAny

B iof taf

FIGURE 14-4

Pickers | 179

The following code snippet assumes pickerView is an outlet that is connected to a UIPickerView
instance and sets up the view controller to be the delegate and the data source object:

override func viewDidLoad() ({
super.viewDidLoad ()

pickerView.delegate = self
pickerView.dataSource = self

The UTPickerViewDataSource protocol defines two methods:

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int

func pickerView(pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int

You must return the number of components in the picker view from the numberOfComponents
InPickerView method. The number of rows in each component should be returned by the
pickerView (pickerView, numberOfRowsInComponent) Hmthod.Forexanqﬂe,atWD-dmnponent
picker can be set up as follows:

// returns the number of 'columns' to display.
func numberOfComponentsInPickerView (pickerView: UIPickerView) -> Int

{
}

return 2

// returns the # of rows in each component. .
func pickerView (pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int

if component ==

{
}
else

{
}

return cities.count

return placesOflInterest.count

The following are the most commonly used UIPickerViewDelegate methods:

func pickerView(pickerView: UIPickerView,
titleForRow row: Int,
forComponent component: Int) -> String!

func pickerView(pickerView: UIPickerView,
didSelectRow row: Int,
inComponent component: Int)

180 | LESSON 14 PICKERS

The text to be displayed in each row of each component is to be returned by the pickerview
(pickerView, titleForRow, forComponent) delegate method. When the user selects a row in
any component of the picker, your delegate object’s pickerView (pickerView, didSelectRow,
inComponent) method will be called.

Typically, the data for each component of a picker view is stored in an array. Assuming that cities
and placesOfInterest are arrays of String objects that contain the data for the two components
of a picker view, the pickerView (pickerView, titleForRow, forComponent) delegate method
can be implemented as follows:

var cities = ["New York", "London","Paris", "Chicago"]
var placesOfInterest = ["Hotels","Cinemas", "Theaters", "Airports", "Museums", "Clubs"]
func pickerView(pickerView: UIPickerView,

titleForRow row: Int,

forComponent component: Int) -> String!

if component == 0

{
}
else

{
}

return cities[row]

return placesOfInterest [row]

ARRAYS IN SWIFT

Arrays are one of two collection types provided in Swift (the other being the dic-
tionary). An array is an ordered collection of similar objects, and each object in the
array has an index. The index of the first object is zero.

If you create an array and assign it to a constant using the let keyword, that array
will be immutable. This means that you cannot change the contents of that array
after you have created it.

If, however, you create an array and assign it to a variable using the var keyword,
then this array will have no such restriction. However, you must keep in mind that
inserting/deleting objects from an array can be a time-consuming operation, and
thus you should aim to use mutable arrays wherever possible.

To create an array variable instance, and add four string objects to it in the same
step, you can use code similar to the following:

var cities: [String] = ["New York", "London","Paris", "Chicago"]

Date Pickers | 181

To retrieve an object at a specific index position, you can use the subscript operator
(11). Index numbers start from zero.

var someCity:String! = cities[0]

To retrieve the number of objects in an array, you can use the count method:

var arrayCount:int = cities.count

To add an element to the back of a mutable array, you can use the append ()
method:

cities.append ("Tokyo")

To remove an object at a specific index position from a mutable array, you can use
the removeAtIndex method.

DATE PICKERS

Although it is possible to create a picker view with several components to allow your user to enter a
date, Apple provides a special user interface component for precisely this purpose. The date picker is
a special picker that can be used to select dates and times. You can configure it to display only time,
only date, or both date and time as shown in Figure 14-5.

10 49 AM April 26 2015 Today 10 49 AM

FIGURE 14-5

The UIDatePicker class provides the functionality of a date picker, which is part of the UIKit
framework. The UIDatePicker class privately uses a UTPickerView instance, but you cannot access
this instance directly.

A date picker is much simpler to use than a picker view. For starters, it does not require you to pro-
vide a delegate or data source object. Creating a date picker is a simple matter of dragging the Date
Picker component from the Object library onto a scene in your storyboard.

The mode of the date picker refers to whether it displays date, time, or both date and time. You can
also specify the range of values that should be displayed by the date picker. Both these tasks can be
accomplished by using the assistant editor (see Figure 14-6).

182

LESSON 14 PICKERS

O & @m 4 0 &
Time
Date Picker Date

W& Oute anc Tme |

Loca Count Down Timer

Interval 1 minute g
Date Current Date B
Constraints | | Minimum Date
01/01/1970 12:00:00
Maximum Date
31/12/2037 11:00:00

Timer [}t
Count Down in Seconds

FIGURE 14-6

You can read the date currently selected in the picker by accessing the date picker’s date property.
The result is returned as an NSDate instance:
// get date from date picker

var pickerDate:NSDate! = datePicker.date

The date picker provides a value Changed event that is fired when the user changes the selection in
the picker. You can use the assistant editor to create and associate an action method in your view
controller class with this event.

DATES IN SWIFT

Swift provides an NSDate class, instances of which represent a combined date and
time value. To create an NSDate object that has the current date and time, use the
following code:

let todaysDate:NSDate = NSDate ()

To create an NSDate object dated at a specific interval of time from the current
date, you can use the NSDate (timeIntervalSinceNow) method. This method
requires a single argument, which is the number of seconds in the past or future
from the current date. A positive number indicates a future date.

Thus, to create an NSDate object exactly 24 hours from the current date, you can
use the following code:

let tomorrowsDate:NSDate = NSDate (timeIntervalSinceNow: 24 * 3600)

If you want to create an NSDate without reference to the current date, you can use
the NSDate (timeIntervalSinceReferenceDate) method to create a date that is at
a specified interval from January 1, 1970. The interval is specified in seconds.

NSDate instances also provide several useful methods to compare dates, including:
> isEqualToDate: Returns true if two NSDate instances are equal
> ecarlierDate: Returns the earlier of two NSDate objects

» laterDate: Returns the later of two NSDate objects

Date Pickers

183

The following examples contain these methods:

For information on NSDate objects, refer to the NSDate Class Reference at

let comparisonResult:Bool = pickerDate.isEqualToDate (todaysDate)

let firstDate:NSDate = pickerDate.earlierDate (todaysDate)

https://developer.apple.com/library/prerelease/ios//

documentation/Cocoa/Reference/Foundation/Classes/NSDate Class/

index.html

Creating a formatted representation of the contents of an NSDate object requires

the use of another class: NSpDateFormatter.

To use an NSDateFormatter, you need to first instantiate it and use the setLocal-
izedDateFormatFromTemplate method on the instance to specify the internal for-
mat used by the date formatter object. This internal format is specified as a string.
Once a date formatter is instantiated, you can use it to create a textual representa-
tion of an NSDate object using the stringFromDate method. This is demonstrated
in the following code:

let todaysDate:NSDate = NSDate ()

var dateFormatter:NSDateFormatter

NSDateFormatter ()

dateFormatter.setLocalizedDateFormatFromTemplate ("MMMM d, yyyy")

let textualRepresentation:String

(todaysDate)

dateFormatter.stringFromDate

The format string consists of a series of characters that represent parts of a date
and time. The characters themselves are case-sensitive. Some of the most common
format strings are:

>

Y Y Y VY VY VY Y

mvmM: The full name of the month
d: The day of the month

vYyy: The four-digit year

hh: Two-digit hour of the day

mm: Two-digit minute

ss: Two-digit second

a: AM

p: PM

continues

https://developer.apple.com/library/prerelease/ios
https://developer.apple.com/library/prerelease/ios//documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/index.html

184 | LESSON 14 PICKERS

continued

For a complete list of format strings, refer to the Data Formatting Guide,
available at

https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual /DataFormatting/Articles/dfDateFormattingl0 4.html#//
apple ref/doc/uid/TP40002369-SW1

For more information on the NSDateFormatter class, refer to the NSDateFormatter
Class Reference, available at

https://developer.apple.com/library/ios/documentation/Cocoa/
Reference/Foundation/Classes/NSDateFormatter Class/

CUSTOM PICKERS

Picker views do not have to be restricted to displaying text; in fact, they can just as easily display
images, or a combination of images and text. In this section, you learn how to provide your own
UTView subclasses for individual elements of a picker view, thus creating pickers that have images
instead of text, as shown in Figure 14-7.

FIGURE 14-7

The key to implementing this functionality lies in three optional methods of the
UIPickerViewDelegate protocol:

func pickerView(pickerView: UIPickerView,
widthForComponent component: Int) -> CGFloat

func pickerView(pickerView: UIPickerView,
rowHeightForComponent component: Int) -> CGFloat

func pickerView(pickerView: UIPickerView,
viewForRow row: Int,
forComponent component: Int,
reusingView view: UIView!) -> UIView

You can customize the width of each picker component by returning an appropriate value from the
pickerView (pickerView, widthForComponent) delegate method. If you do not implement this
method, the picker view distributes the available width equally between its components.

https://developer.apple.com/library/ios/documentation/Cocoa
https://developer.apple.com/library/ios/documentation/Cocoa
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW1
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/

Trylt | 185

The pickerView (pickerView, rowHeightForComponent) delegate method enables you to SpeCify
the height of each row in a given component. All rows in a component must have the same height.

You need to return a UTview subclass in the pickervView (pickerView, viewForRow, forCompo-
nent, reusingView) delegate method. This method’s arguments include a reference to the picker
view, the row, and the component number.

The view returned by this method can be an instance of an existing UIKit class such as
UIImageView or UILabel. You can also provide instances of your own UIview subclass in which
you have implemented custom drawing logic. Subclassing UTview is outside the scope of this book.

The last argument of this delegate method is a reference to an existing UTView object. If this argu-
ment is not nil, it will refer to one of the view objects provided by this method on a previous occa-
sion. You should try to reuse it instead of creating one from scratch.

When you scroll a row in one of the components off the screen, the picker does not immediately
destroy the corresponding view; instead it adds it to an internal cache of “reusable views.” When it
is time to display a new row in the same component, the picker provides one of these cached views
to your delegate method, encouraging you to reuse it instead of instantiating a fresh copy.

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
CustomPickerTest, which displays three-component custom picker view with images of fruits.

Lesson Requirements
> Launch Xcode.
Create a new project based on the Single View Application template.
Edit the storyboard with Interface Builder.
Import image resources into the project.

Add a picker view and create an outlet for it in the view controller class.

Y Y ¥ VY Y

Add three data arrays with the names of fruits to be displayed for each picker component in
the view controller class and populate them in the viewDidLoad method.

\

Add a pictionary object that maps names of fruits to image filenames.

Implement the UIPickerViewDataSource and UIPickerViewDelegate protocols in your
view controller class.

Hints
> To show the Object library, select View = Utilities = Show Object Library.

> To show the assistant editor, select View = Assistant Editor &> Show Assistant Editor.

186 | LESSON 14 PICKERS

> A Dictionary object contains a list of mappings between keys and values. Each key in a dic-
tionary is unique.

> Use the 1et keyword to create an array whose contents will not change.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Step-by-Step

> Create a Single View Application in Xcode called custompickerTest.

1.
2.
3.

4.

Launch Xcode and create a new application by selecting File ©> New = Project.
Select the Single View Application template from the list of iOS project templates.
In the project options screen, use the following values:
> Product Name: CustomPickerTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y Y VY Y Y Y

Save the project onto your hard disk.

> Add image resources to your project.

1.

w

Ensure the project navigator is visible. To show it, select View => Navigators &> Show
Project Navigator.

Open the Assets.xcassets file by clicking on it in the project navigator.
Navigate to the Tmages folder in this chapter’s downloads from the website.

Create a new Image set by selecting Editor = New Image Set and name this new image
set appleImages.

Drag the applelx.png, apple2x.png, and apple3x.png images from this chapter’s
resources into the appropriate placeholders in the image set.

Similarly, create new image sets called bananaImages, lemonImages, orangeImages,
peachImages, pearImages, and pineappleImages and use the appropriate images
from this chapter’s resources folder.

http://www.wrox.com/go

Trylt | 187

» Add a urpickerView instance to the default scene.

Open the MainStoryboard.storyboard file in Interface Builder.

Ensure the Object library is visible. To show it, select View = Utilities &> Show Object
Library.

From the Object library, drag and drop a Picker View object onto the scene.

Select the picker view in the scene and click the Align button to display the alignment
constraint editor. Add a constraint to center the picker view horizontally.

Select the picker view in the scene and click the Pin button to display the constraints
editor. Ensure the Constrain to margins options is unchecked, and set the following
constraints:

> The distance from the top of the picker to the view should be 0.
> The height of the picker should be 162.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor & Resolve Auto Layout Issues = Update Frames.

Use the assistant editor to create an outlet in the view controller class called picker-
view and connect the picker to it.

Set up the view controller as the delegate and data source of the picker.
> Ctrl+Click on the picker object in the storyboard scene to reveal a popup menu.

> Drag from the circle beside the delegate item in the popup menu onto the view
controller object in the dock (see figure 14-8).

> Drag from the circle beside the datasource item in the popup menu onto the view
controller object in the dock.

» Add a uUILabel instance to the default scene.

1.

2.

From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

Select the label and center it horizontally in the storyboard by selecting Editor &> Align
> Horizontal Center In Container.

Select the label in the scene and select Editor = Size to Fit Contents to ensure the label
is large enough to show its contents.

Add the following constraints using the pin constraints dialog box for the label:
> Ensure the Constrain to margins option is unchecked.

> The distance from the top of the label to the view = 32.

188 | LESSON 14 PICKERS

5. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

| 2 o Cu..Tost) @ iPhono B3 Plus | CustomPickerTest | Busd CustomPickerTest Succeaded | HVDH/Z016 ot 11:35 bt ==l N A s = Bl |
BER Q@ & € ==l] & customPickerfast Cuato.. karTest) [l Manstoryboard) [l Man.s...(Basa)) [View C...Scana View Contraller | || View | — Picker View < A >
F & CustomPickerTest ¥[8 View Controler Scene
I Covoraiokiriet ¥ () View Cantrolier
" Top Layout Guide
|| Battam Layout Guide
v | view
¥ | Picker Viaw
» [E) Constraints
L Results Label
» [@ constrants
@ First Aespancar
B Exit
E A - Staryboard Entry Paint
| A
g
-
]
- ® oF |® [n] whiy hAny 1B b kel

6. Use the assistant editor to create an outlet in the view controller class called results-
Label and connect the label to it.

> Add three arrays called dataForComponentl, dataForComponent2, and dataForCompo-
nent3 to the view controller class.

let dataForComponentl: [String] = ["Apple", "Banana", "Lemon",
"Orange", "Peach", "Pear",

"Pineapple"]

let dataForComponent2: [String] = ["Banana", "Orange", "Pear",
"Apple", "Pineapple", "Lemon",
"Peach"]

let dataForComponent3: [String] = ["Pear", "Peach", "Lemon",

"Pineapple", "Apple", "Banana'",
"Orange"]

Trylt | 189

> Add a dictionary nameToImageMapping to the view controller class.

let nameToImageMapping: [String:String] = ["Apple":"appleImages",
"Banana":"bananalmages",
"Lemon":"lemonImages",
"Orange":"orangeImages",
"Peach":"peachImages",
"Pear":"pearImages",
"Pineapple": "pineappleImages"]

> Add the following code to your view controller’s viewDidLoad method to set up the initial
text of the UILabel instance resultsLabel:

resultsLabel.text = "Match the fruits in each row!";

> Have your view controller class conform to the UIPickerviewDataSource and
UIPickerViewDelegate protocols by modifying its declaration to the following:
class ViewController: UIViewController,

UIPickerViewDataSource,
UIPickerViewDelegate {

At this point, your compiler will issue an error that the view controller does not conform to the
UIPickerViewDataSource and UIPickerViewDelegate protocols. This is because these protocols
contain mandatory methods that must be implemented by a conforming class. We will implement
these methods over the next few steps; for the moment ignore this error.

> Your view controller class should now resemble the following:

class ViewController: UIViewController,
UlPickerViewDataSource,
UIPickerViewDelegate {

@IBOutlet weak var pickerView: UIPickerView!
@IBOutlet weak var resultsLabel: UILabel!

let dataForComponentl: [String] ["Apple", "Banana", "Lemon",
"Orange", "Peach", "Pear",

"Pineapple"]

let dataForComponent2: [String] = ["Banana", "Orange", "Pear",
"Apple", "Pineapple", "Lemon",
"Peach"]

let dataForComponent3: [String] = ["Pear", "Peach", "Lemon",
"Pineapple", "Apple", "Banana",
"Orange"]

let nameToImageMapping: [String:String] = ["Apple":"appleImages",

"Banana":"bananalmages",
"Lemon": "lemonImages",
"Orange" : "orangeImages",
"Peach":"peachImages",
"Pear":"pearImages",
"Pineapple": "pineappleImages"]

190 | LESSON 14 PICKERS

override func viewDidLoad() ({
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
}

}

> Implement the numberofComponentsInPickerview () delegate method in your view con-
troller as follows:

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int

{
}

This delegate method must return the number of columns in the picker view. In this project, you
return 3 as the project builds a three-column picker.

return 3

> hnpkﬁnentthepickerview(pickerview, numberOfRowsInComponent) data source
method in your view controller as follows:

func pickerView(pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int

{

if component == 0

{
}

else if component == 1

{
}
else

{
}

return dataForComponentl.count

return dataForComponent2.count

return dataForComponent3.count

}

This data source method must return the number of rows in each component of the picker. In this
project, since the data for each component is stored in an array, the snippet simply returns the num-
ber of elements in the array for the each component.

> hnphﬂnentthepickerView(pickerView, rowHeightForComponent) ddegaterncthodin
your view controller as follows:

func pickerView(pickerView: UIPickerView,
rowHeightForComponent component: Int) -> CGFloat

{
}

return 50

This delegate method must return the height of each row in a given component of the picker. In this
project, you return 50 as the row height is the same for all three components of the picker.

Trylt | 191

> hnpknnentthepickerview(pickerviewm viewForRow, forComponent, reusingView)
delegate method in your view controller as follows:

func pickerView (pickerView: UIPickerView,
viewForRow row: Int,

forComponent component: Int,

reusingView view: UIView!) -> UIView

{

// get the fruit name
var keyString:String? = nil

if component == 0

{

}

else if component ==

{

}

else if component == 2

{
}

var imageFileName:String? = nameToImageMapping[keyString!]

keyString = dataForComponentl [row]

keyString = dataForComponent2 [row]

keyString = dataForComponent3 [row]

if view == nil

{
}

var imageView:UIImageView = view as! UIImageView

return UIImageView(image:UIImage (named: imageFileName!)) ;

imageView.image = UIImage (named: imageFileName!)

return view;

}

This delegate method is called by the picker view when it needs a view for a specific column
and row position. The column and row position for which a view is required are passed in
as parameters to the delegate method.

In this snippet you query the underlying data array for the requested component to retrieve
the name of the fruit that should be displayed in the specified column and row position.
Once you have the name of the fruit, you obtain the name of an image in the asset bundle
that corresponds to the fruit by using the nameToImageMapping dictionary.

The third parameter to this delegate method is a UTview optional. If this parameter is not
nil, then you need to reuse it (modify its contents in some way) and return it to the picker.
If the parameter is nil you need to create a new view and return the new view to the picker.
This is achieved in the final part of the code snippet:

if view == nil{
return UIImageView (image:UIImage (named: imageFileName!)) ;

var imageView:UIImageView = view as! UIImageView

192 | LESSON 14 PICKERS

imageView.image = UIImage (named: imageFileName!)
return view;

> Implement the pickervView:didSelectRow: inComponent : delegate method in your view

controller as follows:

func pickerView(pickerView: UIPickerView,

didSelectRow row: Int,

inComponent component: Int)

{
// get selected fruit in each component
var selectedRowInComponentl = pickerView.selectedRowInComponent (0)
var fruitInComponentl:String! =

dataForComponentl [selectedRowInComponentl]

var selectedRowInComponent2 = pickerView.selectedRowInComponent (1)
var fruitInComponent2:String! =
dataForComponent2 [selectedRowInComponent2]

var selectedRowInComponent3 = pickerView.selectedRowInComponent (2)
var fruitInComponent3 = dataForComponent3 [selectedRowInComponent3]

// if the same fruit is selected in
// each row, then show a message

if fruitInComponentl == fruitInComponent2 &&
fruitInComponent2 == fruitInComponent3

{ resultsLabel.text = "Jackpot!";

ilse

{ resultslLabel.text = "Match the fruits in each row!";

}
}

This delegate method is called when the user moves one of the wheels of the picker to
update the current selection in the picker. The picker passes the row and column whose
value has been changed as parameters to this delegate method.

In this snippet you retrieve the name of the fruit selected in each component of the picker.
If the same fruit has been selected in each component of the picker, you display a message
on the screen.

> Test your app in the iOS Simulator.
1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project & Run.

2. Change the selection in the components of the picker. If you get three fruits of the same
kind in the central row, you should see the Jackpot! message.

REFERENCE To see some of the examples from this lesson, watch the Lesson 14
video online at www.wrox.com/go/swiftiosvideo.

http://www.wrox.com/go/swif

15

Navigation Controllers

A navigation controller is a class that manages the presentation of a stack of view controllers

one at a time. The topmost item on the stack is visible, and users can navigate down the stack one
view controller at a time. Whenever a view controller is pushed on—or off the navigation control-
ler’s stack—iOS applies an appropriate slide animation automatically. Navigation controllers are
implemented in the UINavigationController class in the UTKit framework and can be found in
several standard applications such as the iOS Mail, and Settings apps.

ADDING A NAVIGATION CONTROLLER TO A STORYBOARD

To create a navigation controller using the interface editor, simply select the storyboard scene
that you want to use as the root view controller of the navigation stack and select Editor =
Embed In > Navigation Controller. You can optionally drag a Navigation Controller object
from the Object library to the storyboard. When you create a navigation controller in this
manner, Xcode creates a default scene that is set up to act as the root view controller for the
navigation controller (see Figure 15-1).

In most cases, you will want to use one of the existing scenes in the storyboard as the root
view controller. To do this, first select the Relationship Segue between the navigation control-
ler and the default root view controller and delete it (see Figure 15-2).

Now select the navigation controller scene, hold down the Ctrl key, and drag from the navi-
gation controller scene to whatever scene you want to use as the root view controller. When
you release the mouse pointer you will be presented with a list of segue types to use; select
Relationship Segue (see Figure 15-3).

194 | LESSON 15 NAVIGATION CONTROLLERS

B < & navs ' [navs ' [Main.storyboard © [l Main.storyboard (Base) ' [5] Root View Controller Scene & ! Root View Controller {0>

v [View Controller Scene

¥ I View Controller Viaw Cormrzter
Top Layout Guide -
Bottom Layout G...
View
4 Navigation Item
) First Responder
E Exit
+ Btoryboard Entry Point

¥ [l Root View Controller §...
v Root View Controller
> Table View
< Root View Controller
) First Responder
Exit
v [Navigation Controller...
¥ & Navigation Controlier
' Navigation Bar

70 First Responder eeipation Dorosier T
Exit — —
Relationship “root vie... IRoot View Cantrollar
Prototype Cebs
=) (] whny nAny = tof tad
FIGURE 15-1
Fioot View Contrallar
Prototype Cells
FIGURE 15-2

You can now delete the previous root view controller scene, which is now unused if you wish. If the
navigation controller is going to be the primary view controller of your application, then you must

Adding a Navigation Controller to a Storyboard | 195

ensure that the Is Initial View Controller option in the Attribute Editor is selected for the navigation
controller (see Figure 15-4).

B < & nave navs » [l Main storyooard « [l Main (Base) | [Controlier Scana 1 € Navigation Controliar L0 D ® @m0
¥ 7] View Coniroller Scena Simuilsted Metric
¥ () View Controller Sz Infarad B
Top Layout Guide - Crientation inferred B
Battom Layout @... Status Bar Inforred B
Viaw Top Bar Inferred B
< Navigation Item gt T
@ First Respunder Boticen Bar Infermed B
[Exit
Storyboard Entry Foint MNavigatian Controller
Bar Visisilny) Shows Navigation Bar
+ [Roat View Controller S... Showes Toolber
v () Root View Contraller Hida Bars On Swipe
|| Table View On Tep
< Rioot Viaw Conrofier Wihen Keyboard Agpears
&) First Respander Winen Vertically Compact
B Exit |
View Cantraller
+ [Navigation Cantrolier...
¥ ¢ Mavigation Contraller .
Navigation Bar & Initial View Garttroller
0 First Responder R [T S— Layout) Adjust Sarol View Inssts
Ext - Frosttyrs Ovts. - Hide Battorn Bar an Push
FResize View From NIB
Use Full Screan (Deprecated)
Exterdd Edgas) Linder Top Bars
18 Under Bottom Bars
Linetas Aamis Hass
ODoDeo
Wiew Controfler - A controder that
supports the fundamertal view-
managoement modal in 108,
Mavigation Controlier - &
< controlier that manages navigation
through & hisrarchy of views.
Table View Controlier - &
controber that manages a table view,
= o wlny LAny

bD®@E YL
Simulated Metrics
Size Inferred
Orientation Inferred
Status Bar Inferrad

Top Bar Inferred

(o] of of of of

Bottom Bar Inferred

Mavigation Controller
Bar Visiblity B Shows Navigation Bar
Shows Toolbar
Hide Bars On Swipe
On Tap
When Keyboard Appears
When Vertically Compact

View Controller

e
Is Initial View Controller

Layout B} AdJUST SCToN View Insets
Hide Bottom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
Extond Edges @ Under Top Bars
Under Bottom Bars
Under Opague Bars

FIGURE 15-4

196 |

LESSON 15 NAVIGATION CONTROLLERS

THE NAVIGATION CONTROLLER INTERFACE

A navigation controller contains two key components, as shown in Figure 15-1.

Camer & 596 PM -]
— Navigation bar
Root View
— Root View Controller
Show Detall
FIGURE 15-5

> Navigation bar: This is the horizontal header on the top of the view, just below the status
bar; it typically contains the title of the view being displayed and an optional back button.

> Root view controller: This is the base view controller at the bottom of the navigation stack; it
cannot be removed from the navigation controller. When this view controller is visible, there
is no back button available to the user.

To set the title that is displayed in the navigation bar when a view controller is on the top of the
stack, you can set up the view controller’s title property as follows:

self.title = "Root View";

You can add buttons to the navigation bar that perform custom actions. The following code snip-
pet adds a Share button to the right side of the navigation bar (see Figure 15-6). When this button is
tapped, the onshare method will be called.

override func viewDidLoad ()

{

super.viewDidLoad ()
self.title = "Root View";

let shareButton:UIBarButtonItem = UIBarButtonItem(barButtonSystemItem:
UIBarButtonSystemItem.Action,
target: self,
action: "onShare:")

Trylt | 197

self.navigationItem.setRightBarButtonItem(shareButton, animated: false)

}

func onShare (sender: UIBarButtonItem)

}

Camer ¥ T22PM -
Root View M
FIGURE 15-6

You can add and remove view controllers onto the navigation stack by using the following methods:
pushViewController (viewController, animated)

popViewControllerAnimated (animated)

The UTNavigationController class provides the following two additional methods that enable you
to pop all view controllers down to a specific view controller:

popToRootViewControllerAnimated (animated: Bool)
popToViewController (viewController, animated)

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
NavigationControllerTest that uses a navigation controller to manage a hierarchy of views.

REFERENCE The code for this Try It is available at www .wrox .com/go/
swiftios.

http://www.wrox.com/go

198 | LESSON 15 NAVIGATION CONTROLLERS

Lesson Requirements

>

Y Y Y Y Y Y

Hints
) 4

>

Launch Xcode.

Create a new project based on the Single View Application template.
Edit the storyboard with Interface Builder.

Embed the default storyboard scene in a navigation controller.

Add a button to the default scene.

Add a second scene to the storyboard.

Create a segue from the button in the first scene to the second scene.

To show the Object library, select View = Utilities & Show Object Library.

To show the assistant editor, select View = Assistant Editor Show Assistant Editor.

Step-by-Step

>

>

Create a Single View Application in Xcode called NavigationControllerTest.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: NavigationControllerTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
Include UI Tests: Unchecked

Y Y Y Y Y Y Y

4. Save the project onto your hard disk.
Add a utLabel instance to the default scene.

1. From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

2. Edit the text displayed in the label to Root View.

Trylt | 199

>

>

Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label vertically.

Select the label in the scene and select Editor = Size to Fit Contents to ensure the label
is large enough to show its contents.

Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

Add a button to the storyboard.

1.
2.
3.

From the Object library, select a button and drop it onto the scene.
Double-click the button and change the text displayed in it to Show Detail.

Drag the button to position it near the center of the scene, beneath the label. The pre-
cise size or position does not matter.

Use the Attribute inspector to change the background color of the button to a shade of
gray. The background color attribute is located in the View subsection of the Attribute
inspector; you may need to scroll down a little to access it.

Ensure the button is selected; if it is not, simply click it once.

Center the button horizontally by selecting Editor = Align = Horizontal Center in
Container.

Ensure the button is selected and use the Pin button to display the constraints editor
popup.

> Pin the width of the button to 165.

> Pin the height of the button to 40.

> Pin the distance between the button and the label to 50.

> Click the Add 3 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor => Resolve Auto Layout Issues > Update Frames.

Embed the default scene in a navigation controller.

200 | LESSON 15 NAVIGATION CONTROLLERS

1. Click on the View controller item in the dock above the storyboard scene. This is the

first of the three icons located directly above the selected storyboard scene.

2. Select Editor & Embed In & Navigation Controller to embed the default scene as the

root view controller of a navigation controller. Your storyboard should resemble

Figure 15-7.
ene » % NmigationConiraleriest | @ Phone § MavigationControlinTest: Ready | Today &t 06:3¢ e |
B R Q& & 5cB 3 -] B rainsoryboard © [lj Main.storyboard [Base) - No Seection
= ¥ [View Controlier map s
I aroein, 108 ST 83 - . Scene =
¥ I NavigarenConrlierTast Vi Conimilie
% Acpisagaia.switt Top Layout Guite
+ ViewCantrodoeswify Pt Lyt 01
Sy v Pl
S s et L. Finat View
LurchSomen b % LIS B e, DN
» I Supporting Fles (H Coratrants
» 1 NavigatonConmller TastTasts N ot ¥ A
1 Products. [conter X A [
[0 coantar % A1
[vartical Spa., Sl
< Mavigation am
i First Responder
[ext
¥ [Mawigation Consroller...
* i Nowgation Contratar
Navigatian Bar
& First Respondsr -
[extt
SAoryboard Entry Port
Peintionship “roat vie.
+ O E S [n] Any Ay B fof el

>

Add a new subclass of UIViewController called DetailviewController.

1. Ensure the project navigator is visible.

2. Right-click the NavigationControllerTest group and select New File from the con-

text menu.

3. Select the Cocoa Touch Class template and click Next.

4. Call the new class DetailviewController and ensure that the new class is a subclass
of UTviewController by selecting UTviewController in the drop-down combo box.

5. Ensure that the Also create XIB file option is unchecked and click Next.

6. Select a folder where files should be created. It is best to accept the default location

provided by Xcode.

Create a new scene in the

1. Ensure the Main.storyboard file is open. If it is not, then select it in the project

navigator.

storyboard.

2. Draga View Controller object from the Object library onto the storyboard canvas.

Try lt | 201

>

>

3. Double-click the canvas to zoom out.
4. Position the new scene alongside the original scene.

5. Select the new scene in the storyboard, select the View Controller object from the dock,
and use the Identity inspector to change its Custom Class to DetailviewController.
To show the Identity inspector, select View = Utilities &> Show Identity inspector.

Add a ulLabel instance to the new scene.

1. From the Object library, drag and drop a Label object onto the scene and position it
beneath the picker.

2. Edit the text displayed in the label to Detail View.

3. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label horizontally.

4. Select the label in the scene and click the Align button to display the alignment con-
straint editor. Add a constraint to center the label vertically.

5. Select the label in the scene and choose Editor = Size to Fit Contents to ensure the label
is large enough to show its contents.

6. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.
Create a segue from the button in the first scene to the new scene.

1. Double-click the canvas to zoom out. Position the two scenes sufficiently apart on the
canvas by dragging them.

2. Double-click the first scene to activate it.

3. Right-click the Show detail button in the first scene to bring up a context menu. Drag
from the circle beside the action item under the Triggered Segues category in the
context menu to the second scene.

4. When you release the mouse button, you will be asked to select the segue type. Select
Show.

Test your app in the iOS Simulator.
1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

2. Tap on the Show Detail button and observe the second scene pushed onto the naviga-
tion controller stack.

REFERENCE To see some of the examples from this lesson, watch the Lesson 15
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/sw

16

Table Views

A table view is a user interface component used to present a list of items to the user. Table views
are instances of the UITableView class and are part of the UTKit framework. Table views are
one of the most versatile user interface components in UTKit and can be found in several apps,
including Apple’s own contacts, and mail applications. In this lesson, you learn to use table
views in your applications.

TABLE VIEW APPEARANCE

A table view allows you to present a single column of values. Each value is presented vertically
in its own row. A user can scroll through the rows vertically. Vertical scrolling is automatically
managed by the table view and is enabled when the number of rows exceed the visible height
of the table view.

Each row in a table view is an instance of another UTIKit class called UITableviewcell. The
table view has a mechanism in place that allows you to reuse table view cells instead of creat-
ing a new one for each row.

Data in table views are presented in sections. Sections are numbered from zero and run
vertically down the table (see Figure 16-1).

Each section can have an optional header and footer. The default table view has just one
section with no visible header or footer (see Figure 16-2).

Rows within each section are also numbered from 0 and run vertically down the table, within
the section.

Additionally, a table view has one of two presentation styles, plain and grouped (see Figure 16-3).
A plain table view is a continuous list; a grouped table view has gaps between sections.

204 | LESSON 16 TABLE VIEWS

Carrier & Ba1Pm -
Asia

Bangkok

New Delhi
Singapore
Tokyo

North America
San Francisco
Cupertino
Europe
Landon

Paris

Rome

Athens
Australia

FIGURE 16-1

Carrier ¥ B3I PM -

Bangkok
San Francisco
Cupertino
New Dalhi
Singapore
Takye
Sydney
Melbourne
Caims
Landon
Paris

Rome

FIGURE 16-2

Camer ¥ w1 PM -
Asia

Bangkaok

Mew Delhi
Singapore
Tokyo

North America
San Francisco
Cuperting
Europe
Londan

Faris

Rome

Athens
Australia

ASIA

Bangkak

MNew Delhi
Singapore
Tokyo

HOATH AMERICA
San Francisco
Cupertina
EUROPE
Londan

Paris

Fiome

FIGURE 16-3

Creating a Table View with Interface Builder | 205

CREATING A TABLE VIEW WITH INTERFACE BUILDER

To add a new scene in your storyboard that contains a table view, simply drag and drop a Table
View Controller object into your scene. A table view controller is an object that manages a table
view (see Figure 16-4).

H | < & tablay tablav Main.storytoard | [l Main.storyboerd (Base} | [] View Controller Scene | () Viaw Contraller Dea$in

* [7] View Controfier Scana Simustated Matrice

¥ View Contraller
Top Layout Guide

Sas nlerred
Orientation Inferred
Bottom Layout G... p— o v S Stutua Bar nfermed
s
Too Bar Inferned
) Fonl Responser e
= Ext

Staryboard Entry Point
. View Conlullar

Botom Bar | iferred

Titie
= initial View Comtroller
Layeut [Adjust Scroil View insets:
Hide Botiom Bar on Push
1B Resze View From NIB
s Full Seroan (Daprecatad]
Extund Eoges [Under Top Bars
) Uncar Botiom Bara
Under Coague Bars
Transition Sryla | Cover Vertical B
Presantatian Full Berean B
Datines Contaxt
Frovides Context
Contant Siza Use Preferred Explicit Size

with Height

Hev Commands

0O0@e o

Navigation Contralier - &
< controber that manages navigation
thenugh a Rararchy af views,

Tabe View Controller - 4
‘contralior thak manages a tabls view.

T Bar ComrEer - A consralier
1hat marages a aet of viw contradan
that represent taD bar ftams.

@ O JAny nAny B 1ol fa| f

FIGURE 16-4

If, however, you want to add a table view to an existing scene, drag and drop a table view

object onto the scene. When using a table view, your view controller class will be responsible

for managing the table view, and will need to implement the UTTableviewDataSource and
UITableViewDelegate protocols. You can use the Attribute inspector to set up the table views style
as plain or grouped (see Figure 16-5).

b @ T E @
Table View
Content Dynamic Prototypes
Prototype Cells 1
Style Plain
Separator Defaul
1 Default

gog o

FIGURE 16-5

You can set up your table view to show static or dynamic content by using the Content property in
the Attribute inspector.

206 | LESSON 16 TABLE VIEWS

Static Table Views

A table view with static content has a fixed number of rows that are configured at design time in the
storyboard. Static cells can only be used with table view controllers.

If you are using a table view controller and wish to populate it with static content, simply use the
Attribute inspector to set the Content property of the table view to Static Cells.

You can then use the Sections attribute to configure the number of sections in the table view. To
edit the number of rows, section header, or section footer for each section, simply select the section
from the document outline and use the Attribute inspector (see Figure 16-6).

H | < B tableviewcantroier tabieviowcantralier | (i Main ssoryboard ¢ [l Mainst...d (Baso) 1 [Tabio Vi...r Scens Tabia V., -ntralier Tabio View | @@ Section-1 ¢ 4 3 O® @9 0a
¥ [X View Contralier Scane Tabile View Section
¥ 0 View Cortralier ® B Fows ajc
Top Layaut Guide Section-1 =
Haodar Section-1
Battom Layout Guide e =
v [lview Foatar
Table View
@ First Rasponder
[E Bt
Storyboard Entry Point
¥ [Table View Controller Scens
¥) Table View Controfer Section-2
Cantent View
Ad Tabie View Cell
Cantant View
Tabie View Call
*] Saction-2
@) First Responder
[E Exit
0Doneao
Table View Controller - A
canirciler that manages a tabla view.
Table View - Dispiaya data In a ist
of plnin, sactianed, or grouped mwa.
Table View Cedl - Definas i
attribies and behavicr of oals (rows)
in a taile view.
= 0 whny tAny B o ta | B O Tk]

FIGURE 16-6

To edit the content of each row, select a row in the document outline and drag standard compo-
nents, such as labels and image views, into the cell. You will need to set up the constraints for each
cell individually (see Figure 16-7).

If the layout for your cell is simple, you can optionally use a standard cell style for each row. This
can be done by selecting the row in the document outline and using the Attribute inspector to
change the cell style to one of four options:

> Basic

> Right Detail
> Left Detail
>

Subtitle

Creating a Table View with Interface Builder | 207

Selecting one of these options will add one or more labels into the cell at fixed positions; you can
simply edit the text in these labels by double-clicking the label (see Figure 16-8).

2] View Controller Scene
¥] View Contralier
| Top Layout Guide
| Bottom Layout Guide
v [view
| Table View

£ -] Table View Contraller Scene
¥ () Table View Controller

@ o wAny nAny B lof faf
FIGURE 16-7

FIGURE 16-8

Dynamic Table Views

If the contents of your table view are to be managed at runtime, you need to set the Content attri-
bute to Dynamic Prototype. When using dynamic table views, you will first need to design a tem-
plate cell in the storyboard. This template cell is known as a prototype cell and will be instantiated
programmatically at runtime and populated with content for each row.

It is possible to register multiple prototype cells with a table view, but this is not often used as the
rows in a table view generally share the same visual layout, differing only in content.

208 | LESSON 16 TABLE VIEWS

To set up the number of prototype cells in a dynamic table view, select the table view and change the
value of the Prototype Cells property in the Attribute inspector (see Figure 16-9)

b @ T E O
Table View
Content Dynamic Prototypes B
Prototye
Style Plain B
Separator Default
=1 Default
FIGURE 16-9

For each prototype cell in a dynamic table view, you will need to provide a unique string for the
Identifier property in the Attribute inspector By default, each prototype cell is an instance of

UITableViewCell. UITableViewCell provides an image view and a text label, accessed via the
imageView and textLabel properties.

If, however, your prototype cell contains more than just a single line of text and an image view,
you will need to first create a subclass of UTTableviewCell and associate it with the cell using the
Identity inspector (see Figure 16-10).

bR QA & BB B (B <

tableviewcomtroler
¥ B e 08 50w 8.9

.

+ OHE @

1) Firwt Rusgandn

e » | A tabraveweorrole @) Phane 8

& tblevewcortroller

* [View Cantrolier Scena

¥ fabladawcontoler ¥ '] Table View Controller...
= AppDalsguta.wwitt ¥) Tuksle View Cortrolier
& ¥ Tuble View

Tatrie Vaw Cul
Corsert View

tablwviswcontmiier: Auady | Today at 20:43

el oo - [Malcard) [Mai.ose B Tal..ene

| Prototype Cells

This s a title

Any

Tt

alar

Tatrle View

Table View Call | { >

B ol b | B

| Usar Dafined Runtima Attriutes

Docsmant

Wy Pat Typa Vadun

Labisl
x e
Objoct i AH-ho-MZ)
Lock Inharited - (Nathing] B
Mol 0 W W — O —

[re—
Apcessiley Enabied

i IR 1]

Lt - & sty sizet ot of
Label atwic fwet.

) L a

FIGURE 16-10

You can then drag and drop standard user interface elements onto the prototype cell and create
outlets/actions in the associated UTTableviewCell subclass.

Creating a Table View with Interface Builder | 209

Dynamic table views require a data source and a delegate object. A data source object must
implement the UITablevViewDataSource protocol, and the delegate object must implement the
UITableViewDelegate protocol.

If the table view was added to an existing scene, then the data source and delegate are both usually
set to be the view controller, with the view controller implementing the relevant methods from both
protocols (see Figure 16-11).

BH| < | & tableviewcontroller » [0 table...troller » [l Main....card ' [Main...Base)) [View...cena) [View...troller ' || View) | Table View | < 44 >

O ® B

» Table View...
‘ First Responder
[Exit
~ Storyboard Entry Point

» [=] Table View Controller...

@] wARy hAny Bt bad
FIGURE 16-11

The UTTableViewDataSource and UITableViewDelegate protocols define several methods, most
of which are optional. The most common UITableViewDataSource methods you are likely to
implement are:

func numberOfSectionsInTableView(tableView: UITableView) -> Int

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell

210

LESSON 16 TABLE VIEWS

You should return the number of sections in your table view from the numberofSectionsInTableView
method. If this method is not implemented, the table view assumes a single section. The number of rows
in each section are to be returned from numberofRowsInSection and a UTTableViewCell instance for
each row within each section is to be returned from cellForRowAt IndexPath.

The most common UITableViewDelegate method that you are likely to implement is:

func tableView (tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath)

This method is called when the user selects a row in your table view. If, however, you have created
segues in your storyboard from your table view to another scene, then prepareForSegue is called
instead.

If on the other hand, you are using a table view controller in your storyboard, then you will need to
associate a custom UITableViewController subclass with the table view controller in the Identity
Inspector and implement the data source and delegate methods in this subclass.

The following code snippet shows how these data source and delegate methods are implemented in a
view controller:

class ViewController: UIViewController, UITableViewDataSource,
UlTableViewDelegate {

var fruits:Array<String> = ["Apple", "Banana',
"Mango" , "Pegr" s
"Peach", "Plum",
"Grape", "Melon",
"Orange"]

override func viewDidLoad() ({
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() ({
super.didReceiveMemoryWarning ()
}

func numberOfSectionsInTableView (tableView: UITableView) -> Int

{
}

func tableView (tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

{
}

func tableView (tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell
{

return 1

return fruits.count

var cell:UITableViewCell =

Try lt | 211

tableView.dequeueReusableCellWithIdentifier ("cellPrototypel")
as! UlITableViewCell

cell.textLabel?.text = fruits[indexPath.row]

return cell

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
TableViewTest that adds a grouped table view with multiple sections to an existing scene of the
default storyboard.

Lesson Requirements
> Launch Xcode.
Create a new project based on the Single View Application template.
Edit the storyboard with Interface Builder.
Add a table view to the default scene.
Set up a prototype cell.
Set up table view attributes with the Attribute inspector.

Set up the data source and delegate property of the table view.

Y Y Y VY VY VY Y

Implement UITableViewDataSource and UITableViewDelegate methods.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints
> To show the Object library, select View = Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called TableviewTest.
1. Launch Xcode and create a new application by selecting File &> New > Project.

2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

212 | LESSON 16 TABLE VIEWS

3.

4.

In the project options screen, use the following values:

>

Y Y Y Y VY Y

>

Product Name: TableViewTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include Unit Tests: Unchecked

Include UI Tests: Unchecked

Save the project onto your hard disk.

» Add a UITableView instance to the default scene.

1.
2.

From the Object library, drag and drop a Table View object onto the scene.

Ensure the table view is selected and use the Pin button to display the constraints editor

popup.

Y Y Y Y Y

>

Ensure the Constrain to margins option is unchecked.

Pin the distance between the left edge of the view and the table view to 0.
Pin the distance between the right edge of the view and the table view to 0.
Pin the distance between the bottom of the view and the table view to 0.
Pin the distance between the top of the view and the table view to 20.

Click the Add 4 Constraints button to dismiss the constraints editor popup.

Update the frames to match the constraints you have set.

>

>

Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

Select Editor &> Resolve Auto Layout Issues & Update Frames.

Set up the data source and delegate properties.

>

Right-click the table view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “View Controller”
in the document outline.

Trylt | 213

> Set up the table view’s appearance:
1. Select the table view and ensure the Attribute inspector is visible.
2. Ensure the Content attribute is set to Dynamic Prototypes.
3. Ensure the value of the Prototype Cells attribute is 1.
4. Ensure the Style attribute is set to Grouped.
> Set up the prototype cell:
1. Expand the table view in the document outline; this will reveal the table view cell.
2. Select the table view cell.

3. Use the attribute editor to ensure that the value of the identifier attribute is
prototypeCelll.

4. Ensure the Style attribute is set to Basic.
> Implement the data source and delegate methods in the view controller.

1. Add the following code snippet to the viewController.swift file to declare five arrays

of strings:
var continents:Array<String> = ["Asia", "North America",

"Europe", "Australia"]
var citiesInAsia:Array<String> = ["Bangkok", "New Delhi",

"Singapore", "Tokyo"]

var citiesInNorthAmerica:Array<String> = ["San Francisco", "Cupertino"]
var citiesInEurope:Array<String> = ["London", "Paris", "Rome", "Athens"]
var citiesInAustralia:Array<String> = ["Sydney", "Melbourne", "Cairns"]

2. Implement the numberofSectionsInTableView data source method as follows:

func numberOfSectionsInTableView(tableView: UlTableView) -> Int

{
}

3. Implement the numberofRowsInSection data source method as follows:

return continents.count;

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

if section == 0
return citiesInAsia.count
else if section == 1

return citiesInNorthAmerica.count

}

214 | LESSON 16 TABLE VIEWS

else if section ==

{
}
else if section == 3

{
}

return 0

return citiesInEurope.count

return citiesInAustralia.count

}

Implement the titleForHeaderInSection data source method as follows:

func tableView(tableView: UlTableView,
titleForHeaderInSection section: Int) -> String?

}

Implement the cellforRowAtIndexPath data source method as follows:

return continents[section];

func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell

{

var cell:UITableViewCell =
tableView.dequeueReusableCellWithIdentifier ("prototypeCelll") as!
UlTableViewCell

if indexPath.section ==

{
}

else if indexPath.section ==

}
else if indexPath.section == 2
{
else if indexPath.section == 3

{
}

return cell

cell.textLabel?.text = citiesInAsia[indexPath.row]

cell.textLabel?.text = citiesInNorthAmerica[indexPath.row]

cell.textLabel?.text = citiesInEurope [indexPath.row]

cell.textLabel?.text = citiesInAustralia[indexPath.row]

Trylt | 215

6. Modify the declaration of the viewController class to inherit from
UIViewController, UITableViewDataSource, and UITableViewDelegate:

class ViewController: UIViewController, UITableViewDataSource,
UlTableViewDelegate {

Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 16
video online at www.wrox. com/go/swiftiosvid.

http://www.wrox.com/go/swiftio

17

Collection Views

In the previous lesson, you learned about table views. Collection views are similar to table
views in many respects; the primary difference between them is that collection views are not
restricted to single column layouts. A collection views layout can be customized programmati-
cally, allowing collection views to present data in grid layouts, circular layouts, and cover-flow
layouts (see Figure 17-1).

iDS Simulstor - [Phone 5s - IPhane 5.
Carriar ¥ G150 PM L

FIGURE 17-1

218 |

LESSON 17 COLLECTION VIEWS

Collection views are instances of the UICollectionvView class and are part of the UIKit framework.
Data in a collection view is referred to as Items that are grouped into sections. Each section can
have an optional header and a footer view.

CREATING A COLLECTION VIEW WITH INTERFACE BUILDER

To add a new scene in your storyboard that contains a collection view, simply drag and drop a
Collection View Controller object into your scene. A collection view controller is an object that
manages a collection view (see Figure 17-2).

® @ » A ColectioriiewTest) il IPhone Bs Plus. CollectionViawTess: Ready | Today at 1812
- & collectionyiawTest CollectianviesTest | [l Mumstoryboard | [l Mainstoryboard (Bese) | [5] Collection View Cantrolier Scare Calction View Controlies <) O @
¥ [View Cantrolier Scene Custom Class
View Controller Clam o
Top Layout Guide Meduie -]
Sottom Laycut Guide
View ety
) Firss Rspondar i ey R
[&t = =
Storyboard Entry Foint Restoration O
Usa Storyboard 1D
[Caliection View Cantrolier Scene
Cofnction View Coniraller s Diefined Runtisss Attsitutes

fuction View Kay Puth Type

B O®@¢

Collection View Controller - &
comroiir that manages & collection
i,

Callection View - Disciays dats in o
cobectian of cels

Callection View Cell - Dufieas tha
i Emhaviat of ealls o &
cabwesion view

[n] Ay ANy B2 B ol kel | BH | @ Collec o

FIGURE 17-2

If, however, you want to add a collection view to an existing scene, drag and drop a collection
view object onto the scene. When using a collection view your view controller class will be respon-
sible for managing the collection view and will need to implement relevant methods from the
UICollectionViewDataSource and UICollectionViewDelegate protocols. You will also need to
set the view controller to act as both the data source and delegate object for the collection view
(see Figure 17-3). The data source and delegate will be discussed in more detail later in this lesson.

Collection View Cells | 219

¥ [View Controlier Scene Callnction View

(7 View Contruter] Reme 1

Tap Layout Guide

ol T

Bottom Layout G... — ? = it B o
v | vew . Scmt Direction Vartical
¥ | Collection Yiew ~% - Accensaries | Secilon Header
Colwction Section Foater
Colection
@ First Aespander Scrll Yiww
Een Btyle Detoult)

Storyboard Erery Poi.. ol igical ¥ Shows Horizantal Indicator

¥ Shaws Varlies indienee
Souting ¥ Sorulling Enstled
Paging Enabied
Direction Lock Enablad
Basnce ¥ Bounces
Bounce Horizontally
Bounce Verticaly

Zoom VT bl
Wi Max
Touch 1| Bounces Zoom
' Delmys Gontent Toughes
+ Cancellable Content Touches

Kmyboard Do nal chamins)
View

Mode Scae To Fill e

Samartic Unsgsecifd -]

Collection View Controller - &
cantrafier that manages 2 collection

Collection View - Dispiayr data inn
cobeciion of cels.

Caollection View Cell - Dofires the
anributes and bahavior of cells in &
enbuetion view.

= =] Any nAny = B ol taf | F @ colection o

FIGURE 17-3

COLLECTION VIEW CELLS

Each item in a collection view is an instance of another UIKit class called UICollectionViewCell.
The collection view has a mechanism in place that allows you to reuse collection view cells instead
of creating one for each item.

When you add a collection view to your storyboard, the collection view has a default cell of dimen-
sions 50 x 50 units. Select the collection view in the document outline, and use the Size Inspector to
edit the dimensions of the cell and the spacing between cells (see Figure 17-4).

220 | LESSON 17 COLLECTION VIEWS

¥ [E] View Contraller Scens
£ View Controlier
Tap Layout Guide
 Battom Layout Guide E
Dot D ® B

+ Coliection View Call
1 Colleetion View Flow Layest
0 Firat Amspandar
Exit
+ Storyboard Entry Port

) Filer o

whny Amy

Cellection View
Cull Sine 2003 200 3
Wt Haight
Header Size 1] & oz
Wt Haig
- Foceer Size [k az
Wadth Height
s Spiieg. o W2
Far Cells For Lives
‘Section insets ol o
Tee Betiom
{2]
Laft Aght
| Serall View
Indicatar Insets oid o
Top Botiom
o]
Laft ight
View
Shew Frame Rectangie B
207 20
® ¥
461 I 3ea
Wit Heght
Aerangs Position View -]
Lapout Margins _ Detautt B
DD @eo

Collection View Controller - &
contraiiar tat manages & colection
view,

BB R ol | EH | cotection o

FIGURE 17-4

Select the collection view cell (not the collection view) in the docu-
ment outline and switch to the Attribute inspector to set up a
unique identifier that will be used to access this cell programmati-
cally (see Figure 17-5).

You will also need to create a custom UICollectionViewCell
subclass and associate it with the collection view cell using the
Identity Inspector (see Figure 17-6).

Unlike table view cells, the default collection view cell is empty.
You will need to build a layout using standard UIkit elements such
as labels and image views, and set up layout constraints within the
cell.

Once a custom UICollectionViewCell subclass is associated with
the collection view cell in the storyboard, you can create outlets
and actions for the elements within the cell in this class.

Demor o6
Collection Reusable View
identifier. ElementCellidentifier |

View
Mode Center
Semantic Unspecified

ol

Tag 0

FIGURE 17-5

0Oboe B + § o

Custom Class

Class| ElementCollectionViewCe © 54

[P ElementCollectionViewCell

UlCollectionViewCell

Identity

Restoration ID ‘

FIGURE 17-6

COLLECTION VIEW DELEGATE AND DATA SOURCE

The utcollectionviewDataSource and UICollectionViewDelegate protocols define several
methods, most of which are optional. The most common UICollectionviewDataSource methods

you are likely to implement are:

Collection View Delegate and Data Source

221

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) -»>
UICollectionViewCell

func numberOfSectionsInCollectionView(collectionView: UICollectionView)

-> Int

You should return the number of sections in your collection view from the numberofSectionsIn

Collectionview method. If this method is not implemented, the collection view assumes a single sec-

tion. The number of items in each section are to be returned from collectionvView(collectionView,
numberOf ItemsInSection), and a UICollectionViewCell instance for each row within each section

is to be returned from collectionView (collectionView, cellForItemAtIndexPath)

The most common UICollectionViewDelegate method that you are likely to implement is:

func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath)

This method is called when the user selects an item in your collection view. If, however, you have
created segues in your storyboard from your table view to another scene, then prepareForsegue is

called instead.

If, on the other hand, you are using a collection view controller in your storyboard, then you

will need to associate a custom UICollectionViewController subclass with the collection view
controller in the Identity Inspector and implement the data source and delegate methods in this

subclass.

The following code snippet shows how these data source and delegate methods are imple-

mented in a view controller; this snippet assumes that ElementCollectionViewCell is a custom

UICollectionViewCell subclass:

class ViewController: UIViewController,

UICollectionViewDataSource,
UlCollectionViewDelegate {

var elements:Array<String> = ["Hi", "He", "Li", "Be", "B",
IINH, ”O“, I|F|l , "Ne”, llNa“’
IlAl", "Sill, |IP", IIS", "Cl",
ngn , ncau]

override func viewDidLoad() ({
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
}

"Mg" ,

"Ar",

"C",

222 | LESSON 17 COLLECTION VIEWS

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int

}

return elements.count;

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell

{
var cell: ElementCollectionViewCell =
collectionView.dequeueReusableCellWithReuseIdentifier ("ElementCell™,

forIndexPath:indexPath) as! ElementCollectionViewCell

var elementName:String = elements[indexPath.row]
cell.elementImage.image = UIImage (named: elementName)

return cell

}

func numberOfSectionsInCollectionView (collectionView: UICollectionView) -> Int

{
}

return 1;

TRY IT

In this Try It, you create a new Xcode project based on the Single View Application template called
CollectionViewTest that adds a collection view with three sections to an existing scene of the
default storyboard. The sections display a few elements from the periodic table sorted into solids,
liquids, and gases.

Lesson Requirements
> Launch Xcode.
Create a new project based on the Single View Application template.
Edit the storyboard with Interface Builder.
Add a collection view to the default scene.
Set up a collection view cell.
Set up collection view attributes with the Attribute inspector.

Set up the data source and delegate property of the table view.

Y YV Y Y Y Y Y

Implement UICollectionViewDataSource and UICollectionViewDelegate methods.

Trylt | 223

REFERENCE The code for this Try It is available at www .wrox.com/go/

swiftios.

Hints

> To show the Object library, select View = Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step

> Create a Single View Application in Xcode called collectionviewTest.

1.
2.
3.

4.

Launch Xcode and create a new application by selecting File = New = Project.

Select the Single View Application template from the list of iOS project templates.

In the project options screen, use the following values:

>
>
>
>
>

>

Product Name: CollectionViewTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Save the project onto your hard disk.

> Add image resources to your project.

1.

w

Ensure the project navigator is visible. To show it, select View > Navigators = Show
Project Navigator.

Open the Assets.xcassets file by clicking it in the project navigator.

Navigate to the Tmages folder in this chapter’s resources from the website.

Create a new Image set by selecting Editor & New Image Set, and name this new image

set Al.

Drag the A1 1x.png, Al 2x.png, and A1 3x.png images from this chapter’s resources
into the appropriate placeholders in the image set.

Similarly, create new image sets called F, Hg, L.i, N, 0, and si, and use the appropriate
images from this chapter’s resources folder.

http://www.wrox.com/go

224

LESSON 17 COLLECTION VIEWS

>

>

>

Add a UIcollectionView instance to the default scene.

1.

2.

From the Object library, drag and drop a Collection View object onto the scene.

Ensure the collection view is selected and use the Pin button to display the constraints
editor popup.

> Ensure the Constrain to margins option is unchecked.

> Pin the distance between the left edge of the view and the table view to 0.

> Pin the distance between the right edge of the view and the table view to 0.

> Pin the distance between the bottom of the view and the table view to 0.

> Pin the distance between the top of the view and the table view to 20.

» Click the Add 4 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor & Resolve Auto Layout Issues = Update Frames.
Set up the data source and delegate properties.

> Right-click the collection view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

> Right-click the collection view to bring up a context menu. Drag from the
item labeled “delegate” in the context menu to the item labeled “View
Controller” in the document outline.

Set up the collection view’s appearance.

Select the collection view and ensure the Attribute inspector is visible.
Ensure the Layout attribute is set to Flow.

Ensure the Scroll Direction attribute is set to Vertical.

Ensure the Section Header check box is unchecked.

Ensure the collection view is selected, and switch to the Size Inspector to set the height
and width of the collection view cell to 150 units each.

Set the Top Section Inset to 10 units.

Add a UIcollectionViewCell subclass.

1.

2.
3.

Option-click the collectionviewTest group in the project explorer and select New
File from the context menu.

Select Swift File under the iOS Templates section.

Name the file ElementCollectionViewCell.swift and click Create.

Trylt | 225

4.

Modify the contents of the ElementCollectionViewCell.swift file to subclass
UICollectionViewCell. The modified contents of this file should resemble the
following:

import UIKit
class ElementCollectionViewCell: UICollectionViewCell {

}

> Set up the collection view cell.

9.

Expand the collection view in the document outline; this will reveal the collection
view cell.

Select the collection view cell.

Use the attribute editor to ensure that the value of the identifier attribute is
ElementCellIdentifier.

Drag and drop an Image view onto the collection view cell.
Ensure the image view is selected and use the pin button to display the constraints edi-
tor popup.

> Ensure the Constrain to margins option is unchecked.

> Pin the distance between the left edge of the view and the table view to 0.

> Pin the distance between the right edge of the view and the table view to 0.

> Pin the distance between the bottom of the view and the table view to 0.

> Pin the distance between the top of the view and the table view to 0.

> Click the Add 4 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Select the collection view cell in the document outline. This will now be listed
as ElementCellIdentifier.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

Select the collection view cell, and use the Identity Inspector to change the custom class
of the cell to ElementCollectionviewCell.

Ensure the assistant editor is visible and the ElementCollectionViewCell.Swift file
is open in it.

Select the image view in the document outline and create an outlet for the image view
in the ElementCollectionViewCell.Swift file. Name the outlet imagevView.

> Implement the data source and delegate methods in the view controller.

1.

Add the following code snippet to the ViewController.swift file to declare four
arrays of strings:

var statesOfMatter:Array<String> = ["Solid", "Liquid", "Gas"]

226 | LESSON 17 COLLECTION VIEWS

var solids:Array<String> = ["Li", "Al", "Si"]
var liquids:Array<Strings> = ["Hg"]
var gasses:Array<Strings> = ["N", "O", "F"]

Implement the numberofSectionsInCollectionView data source method as follows:

func numberOfSectionsInCollectionView (collectionView: UICollectionView)
-> Int

}

hnpkﬁnentthecollectionview(collectionView, numberOfItemsInSection) data
source method as follows:

return statesOfMatter.count;

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int

{

if section == 0

{

else if section == 1
{

}

else if section == 2

{
}

return 0

return solids.count

return liquids.count

return gasses.count

}

hnpkﬁnentthe collectionView(collectionView, cellForItemAtIndexPath) data
source method as follows:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell

var section = indexPath.section

var row = indexPath.row

var cell: ElementCollectionViewCell =
collectionView.dequeueReusableCellWithReuseIdentifier
("ElementCellIdentifier", forIndexPath:indexPath)
as! ElementCollectionViewCell

if section == 0
var elementName:String = solids[indexPath.row]
cell.imageView.image = UIImage (named: elementName)

Try lt | 227

else if section ==

{

var elementName:String = liquids[indexPath.row]
cell.imageView.image = UIImage (named: elementName)

}

else if section ==

var elementName:String = gasses[indexPath.row]
cell.imageView.image = UIImage (named: elementName)

}

return cell

}

5. Modify the declaration of the viewController class to inherit
from UIViewController, UICollectionViewDataSource, and
UICollectionViewDelegate :

class ViewController: UIViewController,
UlICollectionViewDataSource,
UlCollectionViewDelegate {

Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 17
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swif

18

Tab Bars and Toolbars

Lesson 15 discussed navigation controllers, which allowed your application to present a hier-
archy of views one at a time. A tab bar controller, on the other hand, allows you to display
multiple view controllers at the same time (see Figure 18-1).

Carrier ¥ 10:30 PM -
Asia
Bangkok
New Delhi
Singapore
Tokyo

North America

San Francisco

Cupertino
Europe

London
Paris
Rome

Athens
Australia
Sydney

Melbourne

FIGURE 18-1

Navigation controllers are well suited to a hierarchical app structure, where users navigate
one screen at a time to reach their destination. A tab bar controller is handy when it comes to
creating a flat app structure where users can navigate directly from one primary category to
another (see Figure 18-2). Examples of such apps include the Clock and the App store apps on
iOS devices.

230 | LESSON 18 TAB BARS AND TOOLBARS

| Table View Controller
A

| Root View Controller |

¢ Drill down for detail I

v v v

_| Detail View Controller | | Event List View Controller

A ¢ Drill down for more detail

—| More Detail View Controller

Hierarchical structure, works well with navigation controllers Flat structure, works well with tab bar controllers

FIGURE 18-2

Event Search View Controller

| Event Map View Controller

View controllers provide the content of tabs within a tab bar controller. It is quite common to com-
bine tab bar controllers and navigation controllers to create an app that provides the best of both.
The tab bar sits at the top of the view controller hierarchy and some of the tabs could have a naviga-
tion controller within them that provides a drill-down interface for the content within that tab. The
Phone app on the iPhone is an example of such an app, with the Contacts tab containing a naviga-
tion controller that allows you to drill down into a contact’s details.

A tab bar represents a single tab within a tab bar controller. Tab bars are located at the bottom of
the screen and consist of an icon and text to describe the content it represents. Each tab can also
have a badge, which is a red oval with a number in it (see Figure 18-3).

e 07K 4G o7:05 -

Yo o

FIGURE 18-3

On an iPhone, a tab bar controller can only display five tabs at a time. If there are more than five,
then the first four are displayed and the tab bar controller adds a More tab that reveals a list of addi-
tional tabs. The iPad can display more than five tabs because it has a larger screen.

Creating a Tab Bar Controller | 231

CREATING A TAB BAR CONTROLLER

Xcode contains a template specifically for applications that want to present a tabbed interface. This

template is called the Tabbed Application template and can be selected when creating a new project
(see Figure 18-4).

Choose a template for your new project:
i0s
Application - sco 1 T
Framework & Library
Other Master-Detail Page-Based Single View Tabbed
icati icati icati Application
05X
Application %
Framework & Library =
System Plug-in Game
Other
Tabbed Application
This template provides & starting point for an applhication that uses a 1ab bar. It providee a
wser interface configured with a tab bar controiier, and view cantrollers for the tab bar items.
Cancl -

FIGURE 18-4

The template adds a tab bar controller to the default storyboard scene and configures the tab
bar to present two tabs, the contents of which are provided by two view controllers, called
FirstViewController and SecondviewController respectively (see Figure 18-5).

ene » 8 A TobbedApgicationTest | g Fhono & TabbedApgicatonTuss: Ready | Tocay at 15:39 = @ gy |
mEaasoemo® @ ¢ B . w Na Suiection D emT0ae
, 7, TabbesAppAcasnTest - |
L sy Y MR e
¥ 1 TanbedApplicationTest ¥ o Pt =
+ Agplelegais. st Yop Laysud Quice -
B et vl Stz Layeut G..
+ SecondViewControiler swift ¥ i Mow
‘ L Frst Vaw
e L Loaded by Frs..
Lienchscn zit » (B comtrainis
* 1 Bupporting Fiks 3 First
* % TabnedApplication TostTests 0 Fest Responcler = =
= e e e First View
a1 P Ly Pt
+ [0 Tab Busr Gomtrolier Beaws No Selection
.
L] L[]
Oone6e o
Second View
St Bt View Comtralier - & costater ihat
1o -
managerman medel 108,
Nmvigation Gonsrolier - &
i it
I p———
"
Tabia View Gontrofiur - A
cnstrsbir that manages & tathe view
H = (3] vhay nAny B ol fa| B E

FIGURE 18-5

232 | LESSON 18 TAB BARS AND TOOLBARS

Inspecting the storyboard in the document outline reveals that each view controller contains a view
and a tab bar item. The tab bar item is used to represent the view controller within the parent tab
bar controller (see Figure 18-6).

¥ [T First Scene
v First
Top Layout Guide
Bottom Layout Guide
> View
% First
\“ﬁ First Responder
[0 Exit
¥ [7] Second Scene
v Second
Top Layout Guide
Bottom Layout Guide
> View
* Second
ﬁ! First Responder
B Exit
v || Tab Bar Controller Scene
¥ . Tab Bar Controlier
. Tab Bar
ﬁ! First Responder
B Exit
- Storyboard Entry Paint
Relationship "view controllers”® to First
Relationship "view controllers® to Second

FIGURE 18-6

You can use the Attribute inspector to change the contents of the tab bar item. Apple provides a list
of standard tab bar items:

> More
Favorites
Featured
Top rated
Recents
Contacts
History
Bookmarks
Search
Downloads

Most recent

Y Y Y VY Y VY VY VY VY VY'Y

Most visited

You can choose one of these using the System Item drop-down combo in the Attribute inspector (see
Figure 18-7).

Creating a Tab Bar Controller | 233

bOea ¥ E o
Tab Bar ltem
Badge
System lte « Custom '
Selected IM&{ p1ore '
Title Positic Favorites !
Featured
Bar ltem Top Rated
: Recents
Tt Contacts
Imag History '
Bookmarks 5
T Search ¥
Downloads
Most Recent L
Most Viewed
FIGURE 18-7

If you choose one of the standard tab bar items, then Xcode will provide a suitable icon and
caption for you. If, however, you wish to use your own icon and caption, set the System Item to
Custom. Astute readers will note that the default setting for the tab bar items created by the Tabbed
Application template is Custom, with appropriate icons in the project’s asset bundle.

To add a new tab to the tab bar controller, you must first add a new view controller scene to the
storyboard. To do this, drag and drop a View Controller from the Object library onto the story-
board scene (see Figure 18-8).

ane » 5 A TeteiAppicationest |) Phone & TasbedApplcalicrTast: Amady | Tom al 1035

BRGASEo B R« B |] I Main siorproend Base) | Mo Salection oeamea
* [71 First Soane

o [TebbadApsicationTest
B 2 o0
¥ Tuttag catin bast + [7] Besond Soane
¢ ApoDelpae st ® ™

b0 TatbedApication et Teses View Contralisr

Mo Salaction

[m I |

View Gemirtstes - & covini i fal
Suports Tt ursdamastal v
raraguTaT o i 55

‘Tabia Vo Contralier - &
oy that aages. 8 taie s,

Spiit View Comrolar - 4
CAFTOOBE s Cortrdes 18]
rarages bt ard T view et

HOES = o whay nAny B o) 1| B S e Lo o

FIGURE 18-8

234 | LESSON 18 TABBARS AND TOOLBARS

Next, create a new Swift class that subclasses UIviewController and use the Identity Inspector to
associate this class with the view controller you have just dropped onto the storyboard.

To add a tab bar item to the new scene, ensure the scene is selected, and then drag and drop a Tab
Bar Item from the Object library anywhere onto the scene. The tab bar item will automatically snap
to the bottom of the scene regardless of where you drop it. To configure the tab bar item, simply
select it and use the attribute editor.

Finally, to add the new view controller to the tab bar, simply hold down the Ctrl key on your keyboard
and drag from the tab bar onto the new view controller scene (you are creating a segue). When you
release the mouse button, select Relationship Segue from the popup menu (see Figure 18-9).

First View

Lisathet 2y Fratihamstorrmter

Second View

L

[} wAny nAny B o had
FIGURE 18-9

Toolbars | 235

TOOLBARS

Toolbars look similar to tab bars in that both of them appear at the bottom of the screen, but the
similarity ends there. A tab bar is used when you want to present multiple view controllers on the
screen simultaneously. A toolbar is used to present a menu of options related to the content pre-
sented in a view controller. The two are not usually used together. The Maps application uses a
toolbar to present options related to the map being displayed (see Figure 18-10). Tapping the info
button brings up a modal view with options that will change the way in which data is displayed on
the map.

Carrier ¥ 722 PM - Carrier ¥ T24PM -

r" Swearch or entor an address R Maps Dane

Saib el

“Bundee

L | sEdinkirgh .
GI“W'-A_T_: = No

o @!dfan

EM. Hybrid Satsilite
1

Drop a Pin

it Livarposl
- Dublin &

IRELAND”

Shiar

o War Report a Problem
Cardif”

x Laridaf =
Brist

Sguthamptans:

Show Traffic
Plym: oulhD

=1 1) TomTome »

FIGURE 18-10

Typically, the buttons on a tab bar represent command functions that would be used on the current
view. To add a toolbar to a view controller scene, simply drag and drop a Toolbar from the Object
library. Unlike tab bar items, toolbars do not automatically snap to the bottom of the screen. You
will need to provide appropriate constraints to anchor the toolbar to the bottom of the screen (see
Figure 18-11).

Options within a toolbar are instances of the UIBarButtonItem class. You can add to the options
displayed in a toolbar by dragging and dropping a Bar Button Item from the Object library (see
Figure 18-12).

Configuring a bar button item is similar to configuring a tab bar item. You simply select it and bring
up the Attribute inspector to change appropriate properties. Xcode provides a set of standard bar
button item styles that can be selected using the Identifier drop-down combo box in the Attribute
inspector (see Figure 18-13).

236 | LESSON 18 TAB BARS AND TOOLBARS

B4 | B toomaest ; b tocibarkeat - [Mai ‘R -] 'O] view Toalnar
w [View Cantrofier Soona
o 9 B
L
DOoeo
 Toolbar - Provides a mechanien for
(E | the scen.
@ =] Any 1Any B o fal | B @ea °
FIGURE 18-11
B¢ 0| B tookbeTen | 5 tooibarfest © [: Y -] scune 1 1 + i view) Tooloar < item DEe®E o0
v [7] View Gantrolier Scan Custem Class
*) View Gontroiier G { L1 Bl ol
| Tap Liyet Guide
| Botiom Luysut Guide
v vaw
o
v (8 Gonesmits
I st - [a2) - Tooltar
@
| Horizoresl Bnace - View - Tocibar
| Horizoreal Spoce - Tooibar - View
|8 vertical Sonoe - Bottom Layout G, .
@) First Promponcar
[Exn
- Btoryboars Entry Feint
1
ODo0@o
Marvigation Nam - Neresssta
Item nem\ :-:lun-mu.mé.,
Tub Bar itam - Aepreasnts o fem
an 0 Tastler ohist
® = wAny Ay B foi bt | @nem o

FIGURE 18-12

Toolbars | 237

Styla

T

Bar ltem
Tt
imag

Ti

DeE9vI e

Bar Button Item

Bordered

Flexible Space
Fixed Space

Add
Edit
Done
Cancel
Save
Undo
Redao

Compose
Reply
Action
Organize
Trash

Bookmarks
Search
Refresh
Stop

Camera

Play

Pause
Rewind

Fast Forward

Page Curl

O/ Cusom

FIGURE 18-13

Two styles are worth special mention. The first is the Fixed Space style. When applied, the bar
button item renders as empty space (of fixed width) between its neighboring bar button items.
Figure 18-14 shows a toolbar that starts with three bar button items. The Fixed Space style is then
applied to the one in the middle. Note how it changes to represent whitespace. You can edit the

width of a bar button item (even fixed spaces) by using the Size inspector.

ltem I==1 ltam

v

FIGURE 18-14

The second style is the Flexible Space style. The toolbar distributes the available free space across
all bar button items that have this style applied to them. In a toolbar with three items, if this style
were to be applied to the middle item, the neighboring items would be placed at ends of the toolbar
because the width of the flexible spacebar button item would equal all the free space in the toolbar

(see Figure 18-15).

238 | LESSON 18 TAB BARS AND TOOLBARS

FIGURE 18-15

For a toolbar with five items in which the second and fourth items are given the Flexible Space style,
the remaining three items would be spaced apart evenly (see Figure 18-16) because the free space
in the toolbar would be split equally between the two flexible space items.

Y s ianisnaninnisninnnnshis CRNOH 4 hsnsaaai s Kitsssssess st SR

FIGURE 18-16

Last but not least, you will need to associate action methods in your view controller class with each
bar button item. To do this simply use the assistant editor to create a method and associate it with
the bar button item (see Figure 18-17).

B am

class WiesControlier: UT¥isvCoatrotler ©

Sterybrzar Estry Prset

o M tam - Regewasrs an d5m
i LT B st

O ey - Any B ol Ehram °

FIGURE 18-17

TRY IT

In this Try It, you create a simple application based on the Tabbed Application template, called
TabbedApplication, that contains two tabs. The first tab contains a list of cities; the second tab
serves as an About page for the app.

Try lt | 239

Lesson Requirements

>

>
>
>
>

Launch Xcode.

Create a new project based on the Tabbed Application template, with two tabs.
Add a Table View to the first tab.

Use Interface Builder to add several user interface elements to the second tab.

Add code to the view controller class for the first tab to populate the table view.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

Hints

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To show the Object library, select View > Utilities = Show Object Library menu item.

To show the assistant editor, select View = Assistant Editor = Show Assistant Editor.

Step-by-Step

>

Create a Tabbed Application in Xcode called TabbedapplicationTest.

1. Launch Xcode and create a new application by selecting File &> New = Project.

2. Select the Tabbed Application template from the list of iOS project templates.

3. In the project options screen use the following values:

>

Y VYV VY Y Y

>

Product Name: TabbedApplicationTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Include UI Tests: Unchecked

Include Unit Tests: Unchecked

4. Save the project onto your hard disk.

http://www.wrox.com/go

240

LESSON 18 TAB BARS AND TOOLBARS

>

>

Add image resources to the project.

1.
2.

Open the Assets.xcassets asset bundle by clicking it in the project explorer.

Add a new image set called about Image by selecting Editor = Add Assets = New
Image Set menu item.

Select the new image set and use the Attribute inspector to change the value of the Scale
Factors property to Single Vector.

Drag and drop the about . pdf file from this lesson’s resources folder onto the place-
holder in the image set.

Add user interface elements to the first tab.

Open the Main.storyboard file and locate the scene called First Scene.

Delete the two labels that are present on the scene. These should have the captions
“First View” and “Loaded by FirstViewController” respectively.

Add a utTableview instance to the scene using the Object library.

Ensure the table view is selected and use the Pin button to display the constraints editor
popup.

Ensure the Constrain to margins option is unchecked.

Pin the distance between the left edge of the view and the table view to 0.

Pin the distance between the right edge of the view and the table view to 0.

Pin the distance between the bottom of the view and the table view to 0.

Y VYV VY Y Y

Pin the distance between the top of the view and the table view to 20.
> Click the Add 4 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.

Using the assistant editor, create an outlet for the table view in the view controller
class, and call the outlet tableview.

Set up the data source and delegate properties.

> Right-click the table view to bring up a context menu. Drag from the item
labeled “dataSource” in the context menu to the item labeled “First” in the
document outline.

> Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “First” in the
document outline.

Try lt | 241

8. Set up the table view’s appearance.
> Select the table view and ensure the Attribute inspector is visible.
> Ensure the Content attribute is set to Dynamic Prototypes.
> Ensure the value of the Prototype Cells attribute is 1.
> Ensure the Style attribute is set to Grouped.
9. Set up the prototype cell.

> Expand the table view in the document outline; this will reveal the table
view cell.

Select the table view cell.

» Use the attribute editor to ensure that the value of the identifier attribute is
prototypeCelll.

> Ensure the Style attribute is set to Basic.
Update the tab bar item for the first tab.
1. Select the Tab bar item on the scene called First.
2. Use the Attribute inspector to set the value of the System Item property to Top Rated.
Add user interface elements to the second tab.
1. Open the Main.storyboard file and locate the scene called Second Scene.
2. Edit the contents of the “Second View” label to “City Index.”

3. Edit the contents of the “Loaded by SecondViewController” label to “Cities listed by
continent.”

Update the tab bar item for the second tab.

1. Select the Tab bar item on the scene called Second.

2. Use the Attribute inspector to set the value of the Title property to About.
3. Set the value of the Image attribute to about Image.

Ensure the FirstviewController class implements the UTTableviewDataSource and
UITableViewDelegate protocols.

Modify the declaration of the FirstviewController class from

class FirstViewController: UIViewController
to

class FirstViewController: UIViewController,
UlITableViewDataSource,
UlITableViewDelegate

Implement the data source and delegate methods in the view controller.

242 | LESSON 18 TAB BARS AND TOOLBARS

1. Add the following code snippet to the FirstviewController.swift file to declare five
arrays of strings:

let continents:Array<String> = ["Asia", "North America",
"Europe", "Australia"]
let citiesInAsia:Array<String> = ["Bangkok", "New Delhi",
"Singapore", "Tokyo"]
let citiesInNorthAmerica:Array<String> = ["San Francisco", "Cupertino"]
let citiesInEurope:Array<String> = ["London", "Paris", "Rome", "Athens"]
let citiesInAustralia:Array<String> = ["Sydney", "Melbourne", "Cairns"]

2. Implement the numberofSectionsInTableView data source method as follows:

func numberOfSectionsInTableView (tableView: UITableView) -> Int

{
}

3. Implement the numberofRowsInSection data source method as follows:

return continents.count;

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

{

if section == 0

{
}

else if section == 1

{
}
else if section ==
{
}
else if section ==

{
}

return 0

return citiesInAsia.count

return citiesInNorthAmerica.count

return citiesInEurope.count

return citiesInAustralia.count

}

4. TImplement the titleForHeaderInSection data source method as follows:

func tableView (tableView: UITableView,
titleForHeaderInSection section: Int) -> String?

{
}

5. Implement the cellforRowatIndexPath data source method as follows:

return continents[section];

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -»>
UlTableViewCell

{

Try lt | 243

let cell =
tableView.dequeueReusableCellWithIdentifier ("prototypeCelll™",
forIndexPath: indexPath)

if indexPath.section == 0

{
}

else if indexPath.section == 1

{
}

else if indexPath.section == 2

{
}
else if indexPath.section ==

{
}

cell.textLabel?.text = citiesInAsia[indexPath.row]

cell.textLabel?.text = citiesInNorthAmerica [indexPath.row]

cell.textLabel?.text = citiesInEurope [indexPath.row]

cell.textLabel?.text = citiesInAustralia[indexPath.row]

return cell

}
Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 18
de&)Onﬁneatwww.wrox.com/go/swiftiosvid

http://www.wrox.com/go/swift

19

Creating Views That Scroll

When your apps start to get more complex, sooner or later you will need to develop a strategy
to scroll to off-screen content when a user swipes on a view in your app. This is particularly
true if your app requires a user to fill a large form on a device with limited screen size.

You can either try to break up the content of your application and present it across multiple
views using tab bars or navigation controllers, or you could still keep all the content in a single
view but allow the user to scroll through the content of the view.

UIKit provides the UIScrollview class specifically designed to help you create scrollable
views. In this lesson, you learn to use UTScrollview instances in your applications.

THE UISCROLLVIEW CLASS

To create a UTScrollview instance using the Xcode Interface Builder, simply drag and drop
a Scroll View object from the Object library onto a scene, and create an outlet using the
assistant editor (see Figure 19-1).

D006 &

Scroll View - Provides a mechanism to
display content that is larger than the size of
the application's window.

Date Picker - Displays multiple rotating
sm= i E= wheals to allow users to select dates and
times.

Picker View - Displays a spinning-wheal
or slot-machine motif of values.

Visual Effect View with Blur - Provides a
blur effect

oo | =
9H |

FIGURE 19-1

246

| LESSON 19 CREATING VIEWS THAT SCROLL

You can add one or more instances of UIview subclasses as subviews of the scroll view. The collec-
tive dimensions of these subviews can be much larger than the dimensions of the scroll view itself (see
Figure 19-2).

A

///—\
content area

UlScrollView

/ \ contentSize.height

contentSize.width
FIGURE 19-2

A
Y

The dimensions of the content managed by a scroll view can be read (or set) using the contentSize
property. The contentSize property is a CGSize structure and contains two float members, height
and width. Thus, if scrollview is a UIScrollView instance, the following code could be used to
read the height and width of the content area:

var contentHeight = scrollView.contentSize.height
var contentWidth = scrollView.contentSize.width

When you create a scroll view instance with Interface Builder, the size of the content area is exactly
the same as the size of the scroll view. Thus, scroll views, by default, do not scroll. To enable the
scrolling behavior, you need to set up the contentSize property programmatically. You can do this
at any point after the scroll view is instantiated. If you created the scroll view with Interface Builder,
you may want to set it up in the viewDidLoad method of the view controller class that contains the
scroll view, using code similar to the following:

scrollView.contentSize = CGSizeMake (320, 4200);

Another property related to the scrolling behavior is the contentoffset property. This property is
a CGPoint structure and contains two float members, x and v, that represent the distance scrolled by
the user along the horizontal and vertical axes (see Figure 19-3).

You can add user interface elements to a scroll view with Interface Builder by simply dragging

and dropping them from the Object library onto the scroll view. Positioning elements that are not
initially visible in the scroll view can be a bit tricky. One way to solve this problem is to drag and
drop elements onto the scroll view and then provide precise numeric values for the X and Y posi-
tions using the Attribute inspector (see Figure 19-4). If you do this though, you will also need to set

The UlScrollView Class | 247

up the appropriate constraints to ensure that the user elements occupy the current positions on the

screen at runtime.

I contentOffset.y

R —
contentOffset.x

UlScrollView

/ N\

contentSize.width

vd /_\
/ content area
contentSize.height

FIGURE 19-3

eie » =
B R a s e

o [SerollVienTest
£ targuis. 108 BOK 8.3
w [Serat¥iewTast
= AppDoiegate ewitl
= ViewControlier.awift
[Main storyhoard
19 Images scassats.
Laurch3cnen it
* 1 Supporting Fiies.
10 EcroiView TostTests
» 1 Products

A ScrolviewTest |) IPhone

SoraliviewTest: Ready | Today at 10084 | 8=
Bl £ B scuiviewTest Sc.st o B M-ard B Msap 0 B Vi ene s O Vi er Sercll Viaw - F Round Styka Text Fiald o=
 [7] View Contraller Scene Viwr
* () Viaw Controller Show Fraeme Rectangle B
Tap Layout Guide [1d4 200
Bottom Layout G... ® ¥
¥ L Ve a8z o
¥ | Sl viaw : e Huight
i F: Rewnd St = Conatrints
> 8 - The salectest veaws havss 10 constraings. At bubd time,
) First Aosponder nplicit laft, inp, width, and nsght onsesins wil be
B e o =] Ganaratud o the viaw.
Storyboard Entry Paint Imrivm Bizw Dsfault (Systam Defined) B
Add New Constramts
= =
7 <M m -
T bDOeano
550 -
il - Drmimye nileabie st and
Epackg 1o aarest naghbee B nction maszage ko o faget object
Coratnia I marging fEa s o,
8 Ewan B2 T Jow - Cisplays mufiia ines of
[H] Heigt 0 = @ imet and sends an aotion message
ot atject when Ao is tapped.
3 st widies
L G e Hsighes
5 Aapect Rstia
B align | Lending Edgen
Update Frames None
And £ Constrants
- i1 Any 1Ay B o et | B @ o

FIGURE 19-4

248 | LESSON 19 CREATING VIEWS THAT SCROLL

Another way is to resize/reposition the scroll view within the scene and create the user interface
elements visually in their correct positions. Once the elements are in their correct positions, you can
then set up constraints. This approach requires you to move the scroll view about in the scene a few
times until you get the results you want (see Figure 19-5). Don’t forget to reset the scroll view’s
position and size to their initial values after you are done.

ece » A SomiviewTsst | @ Phors § SrmewTeat: Ressy | Tocy at 1044 . =
MR A BB (B¢ B Sorcitamw Tost Scotvmwios | [l Mainstoryboard ¢ [Man.sorybonrd fBasa) | [View Gorrotar Scer R o R TI T
‘BoroViewTest - :
" B wgen, 08 0w s * [Vi Sarsiralier Soues =
¥ 1 BealVawTast ™ L e Cantrbur Sow Frame Arctangn B
+ Appbieingatn switt Top Layout Gude
+ ViewCantroiee swift Batiom Layeut G N " ”
B Wi sty v Wew . .
W imagen acaseate ¥ | Soroll View = - r
LaunchEamen. b F Found Sty —
b Suggting Fias F | Rourd Sty
+ 12 StV Tost Tt F Round Sty
» 1 Produces F Round Sty
F Mourd Sty
F Round Sty
F Rourd Sty
F ourd Sty

F Round sty
» [constraims -

B Frst Bsponder

= Ext =

" smting S 4= Sl &
Easeyboard Entry Pant 1] Lamiing S T 1

Tabing Space i Sceoll Ve Ear

@ Top St Sl v Bt

Gotart Hugging Prarity
Psieainl | 250
Verteal 250
Gemtart Camprassnn Rasirtance Priority
Vasizorim | 150

Verical 150

Taxt Flold - Displays edbatie teot asd
Tast asnce an action message tn a targe) chimct
when Pt & ligped

Tast Viaw - Cvapirya ki s o
ecinisha st and pards an nion messIpe
15 8 Larget atfect whae Matusn b Sapod.

E® = o Any - Any B 0 bed | B BT °

FIGURE 19-5

You could also create the user interface elements programmatically and insert them at the appropri-
ate position within the scroll view. If you create UIKit elements programmatically, then you must
also need to specify constraints programmatically. Creating constraints programmatically is not
covered in this book, but if you are interested, you are encouraged to read the Working with Auto
Layout Guide available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
AutolayoutPG/AutoLayoutinCode/AutolLayoutinCode.html

Regardless of which method you use, you need to set the contentsize property to an appropriate
value to enable scrolling.

SCROLL VIEWS AND TEXT FIELDS

A common scenario in which you are likely to use a scroll view involves multiple text fields in a
scene. If you tap a text field closer to the bottom of the screen, a keyboard automatically pops up
and covers part of the user interface. This is illustrated in Figure 19-6; when a user taps on the

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/AutoLayoutinCode/AutoLayoutinCode.html

Try lt | 249

Address (Line 1): field, the keyboard comes up and covers the text field, thus making it impossible
for the user to see what is being typed.

Camer ¥ 1037 PM - Corrier ¥ 0:37 PM -
Usernamae: Usernama:
Password: Password:
Address (Line 1): Address (Line 1):
Address (Line 2): QWERTVYU | OFP
AIS|DIFIGIH]JK]L
Posteade: ZXICVBHNM
123 @ space retum
FIGURE 19-6

Scroll views provide a simple and elegant solution to this problem; you can change the Y offset of
the content area within the scroll view when a specific text field is tapped, thus moving the content
toward the top by a small amount. This solution is explored next, in this lesson’s Try It section.

TRY IT

In this Try It, you create a simple application based on the Single View Application template called
ScrollingForms that contains several text fields and a scroll view. When a text field is tapped on, the
content of the scroll view is moved up by a small amount to ensure that the iOS keyboard will not
cover the text field.

Lesson Requirements
> Launch Xcode.
> Create a new project based on the Single View Application template.
> Add a scroll view to the default scene of the storyboard.
> Use Interface Builder to add several user interface elements to the scroll view.
> Add code to the view controller class to move the content in the scroll view when a text field
is tapped, thus ensuring the text field is always visible.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

http://www.wrox.com/go

250 | LESSON 19 CREATING VIEWS THAT SCROLL

Hints

>

>

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To show the Object library, select View = Utilities &> Show Object Library.

To show the assistant editor, select View = Assistant Editor &> Show Assistant Editor.

Step-by-Step

>

>

Create a Single View Application in Xcode called scrollingForms.

1. Launch Xcode and create a new application by selecting File ©> New > Project.

2. Select the Single View Application template from the list of iOS project templates.

3. In the project options, screen use the following values:

>

Y Y VY Y Y Y

>

Product Name: ScrollingForms
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include Unit Tests: Unchecked

Include UI Tests: Unchecked

4. Save the project onto your hard disk.

Add user interface elements to your storyboard’s scene.

1. Add aurscroliview instance to the default scene.

Using the Object library, add a Scroll View to the default scene of the storyboard.

2. Ensure the scroll view is selected and use the Pin button to display the constraints
editor popup (see Figure 19-7).

>

Y VYV VY Y Y

Ensure the Constrain to margins option is unchecked.

Pin the distance between the left edge of the view and the table view to 0.
Pin the distance between the right edge of the view and the table view to 0.
Pin the distance between the bottom of the view and the table view to 0.
Pin the distance between the top of the view and the table view to 20.

Click the Add 4 Constraints button to dismiss the constraints editor popup.

Try It | 251

3.

Update the frames to match the constraints you have set.

>

eoe » A SomollingForms ¢ @ Phone & ScrofingForms: Aeady | Today ot 18:22 = @i 0 208
BRE oA o&cEFo B H & BeralingFoms BeralingFoms Main,...board + [Mo {Basa) | [view. Soane Wiorw Controliar || View || Bl View O e mPd e
v [SercilngPorme |+ 2 hew Gomtrotier Scene | mero viaw
2 targees, 108 50K 8.3 - -
¥ 1 SerellingFeems ¥ O Viaw Gontroner Indiatsr lsats 0 o
= AppDelgate swift Tew Layaut Guide Tap =
= ViewGantroberswift Bottom Layout G... _ n
B Main storyboard ¥ | [Vew it it
0 Images. xcassats i e " B iew
LaunehSeman s B First Fesponder e _| :
¥ [Bupporting Fisa [Exit " Show Framo Rectanglo =]
» 1 ScrollingFormsTosts Storyoonrd Entry Port [[)=
¥ 1 Products x ¥
00 600 ©
with Heighe
Constralnts
Tre emleciect viws have no consirairis. A bubd
i, ewpicit 16t top, width. and Feight
constraits wil be genentod for the view.
Intnnac Sigw Dafadt (Systam Daninad} B
Add New Canstraints
0
0 e
o -
Spaging 1 Aamnst naightes
sesrain b mugins
= 0Oe@a
=] wian 500 -
[E] Height 530 = o - Eonpleys metinen fnes of
= v taxt and mrein an action
3 Equm widtes: 7# 1o 0 fargat otyect whan A
[Equn Heigr
Viaw - Privices o mechans=
[Aspect Ratio I i R M
07 the appication’s window.
Eaiign Leaging Edges
Update Frames | Mans cker - Displays muticle
= Whosls to aiow users 1o
-4 Lo Hanes and times.
B = o wAny nAny E o paf | B2

Click on the View controller item in the dock above the storyboard scene.

This is the first of the three icons located directly above the selected story-
board scene.

> Use the Editor = Resolve Auto Layout Issues &> Update Frames menu item.

4. Using the assistant editor, create an outlet for the scroll view in the view controller class
called scrol1view.

>

1.

2.

Add user interface elements to the scroll view.

Use the Object library to add five Label instances and five Text Field instances to the
scroll view. Position them to resemble Figure 19-8.

Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 19-1. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked.

252 | LESSON 19 CREATING VIEWS THAT SCROLL

w [7] View Controlier Scene [+]
v View Controllar
Top Layout Guide
Bottom Layout G...
v View
v Seroll View
L Username:
L Password:
L Address (Li...
L Address (Li...
F Round Styl...
F Round Styl...
F Round Styl...
F Round Styl...
L Postcode:
F Round Styl...
> .Constrajms
» [E) constraints
» [E constraints
{3 First Responder
[Exit
- Btoryboard Entry Peint

4 vy ¥y Y YYYTYTYY

Username:

Password:

Address (Line 1):

Address (Line 2):

Postcode:

whny HAny

= o bad

FIGURE 19-8

TABLE 19-1: Layout Constraints

ELEMENT

Username (Label)
Username (Text field)
Password (Label)
Password (Text field)
Address 1 (Label)
Address 1 (Text Field)

LEFT TOP
32 17
32 8
32 38
32 8
32 59
32 8

WIDTH
84
256
81
256
129
256

HEIGHT
21
30
21
30
21
30

Trylt | 253

ELEMENT LEFT TOP WIDTH HEIGHT
Address 2 (Label) 32 59 129 21
Address 2 (Text Field) 32 8 256 30
Postcode (Label) 32 64 79 21
Postcode (Text Field) 32 8 256 30

3. Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Use the Editor & Resolve Auto Layout Issues => Update Frames menu item.

4. Use the assistant editor to create outlets for each of the text fields in the view controller
class. Name the outlets usernameField, passwordField, addressFieldl, address-
Field2, and postcodeField.

> Ensure the view controller class implements the UTTextFieldDelegate protocol.

Modify the declaration of the view controller class from

class ViewController: UIViewController
to

class ViewController: UIViewController, UITextFieldDelegate
» Add additional variable declarations to the ViewController.swift file.

1. Add the following variable declarations to the ViewController.swift file:

var keyboardHeight:Float
var currentTextField:UITextField!

2. The code in the ViewController.swift file should now resemble the following:

import UIKit
class ViewController: UIViewController, UITextFieldDelegate {

@IBOutlet weak var usernameField: UITextField!
@IBOutlet weak var passwordField: UITextField!
@IBOutlet weak var addressFieldl: UlTextField!
@IBOutlet weak var addressField2: UITextField!
@IBOutlet weak var postcodeField: UITextField!

var keyboardHeight:Float = 0.0
var currentTextField:UITextField!

override func viewDidLoad() {
super.viewDidLoad ()
}

254 |

LESSON 19 CREATING VIEWS THAT SCROLL

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
}

}

> Set up the delegate for the text field instances.

Set up the view controller instance to be the delegate object for the text field instances
by modifying the implementation of the viewDidLoad method to the following:

override func viewDidLoad() ({

}

super.viewDidLoad ()

usernameField.delegate = self
passwordField.delegate = self
addressFieldl.delegate = self
addressField2.delegate = self
postcodeField.delegate = self

> Set up your view controller class to be notified when the keyboard is displayed and dismissed.

1.

You need to tell iOS to call the keyboardpidshow and keyboarbidHide meth-

ods in your view controller class when the keyboard becomes visible/hidden,
respectively. To do this, you need to register these methods as observers for the
UIKeyboardDidShowNotification and UIKeyboardDidHideNotification events.
Add the following code to your view controller class to override the viewwillAppear
method:

override func viewWillAppear (animated: Bool) {
super.viewWillAppear (animated)

NSNotificationCenter.defaultCenter () .addObserver (self,
selector: Selector ("keyboardDidShow:"),

name: UIKeyboardDidShowNotification ,

object: self.view.window)

NSNotificationCenter.defaultCenter () .addObserver (self,
selector: Selector("keyboardDidHide:"),

name: UIKeyboardDidHideNotification ,

object: nil)

}

When your view controller is dismissed, you need to tell iOS that your code is not inter-
ested in the notifications previously registered by overriding the viewDidDisappear
method as follows:

override func viewDidDisappear (animated: Bool) {

super.viewDidDisappear (animated)

Try lt | 255

NSNotificationCenter.defaultCenter () .removeObserver (self,
name: UIKeyboardDidShowNotification,
object: nil)

NSNotificationCenter.defaultCenter () .removeObserver (self,
name: UIKeyboardDidHideNotification,
object: nil)

NOTE The preceding code snippet removes individual observers one by one. If
you want to remove all observers in one line, you can alternately implement the
viewDidDisappear method as:

override func viewDidDisappear (animated: Bool) {

super.viewDidDisappear (animated)

NSNotificationCenter.defaultCenter () .removeObserver (self)

3. Implement the keyboardpidshow method in your view controller class as follows:

func keyboardDidShow (sender: NSNotification!)

{

// get height of keyboard
let info: NSDictionary = sender.userInfo!

let value: NSValue =
info.valueForKey (UIKeyboardFrameEndUserInfoKey) as! NSValue

let keyboardFrame: CGRect = value.CGRectValue()

// convert from Core Graphics CGFloat to Swift Float
let cgFloatKeyboardHeight:CGFloat = keyboardFrame.size.height

keyboardHeight = Float (cgFloatKeyboardHeight)

// ensure current text field is visible,
// if not adjust the contentOffset
// of the scrollView appropriately.
let textFieldTop:Float = Float (currentTextField.frame.origin.y)
let textFieldBottom:Float = textFieldTop +
Float (currentTextField.frame.size.height)

if (textFieldBottom > keyboardHeight)
{
scrollView.setContentOffset (CGPointMake (0,
CGFloat (textFieldBottom - keyboardHeight)),
animated: true)

256 | LESSON 19 CREATING VIEWS THAT SCROLL

The preceding code snippet stores the height of the keyboard in a member variable
keyboardHeight. It then tests to see if the currently active text field is partly or
wholly covered by the keyboard. If it is, it updates the contentoffset property of
the scroll view to rectify the situation.

4. TImplement the keyboardpidHide method in your view controller class as follows:

func keyboardDidHide (sender: NSNotification!)

{
}

The preceding code snippet resets the contentoffset property of the scroll view to
X=0,and Y = 0.

scrollView.setContentOffset (CGPointMake (0, 0), animated: false)

> Implement UITextFieldDelegate methods in your view controller class.

1. Implement the textFieldshouldReturn method of the UITextFieldDelegate
protocol as follows:

func textFieldShouldReturn (textField: UITextField) -> Bool {
textField.resignFirstResponder ()
return true;

}

2. Implement the textFieldDidBeginEditing method of the UITextFieldDelegate
protocol as follows:

func textFieldDidBeginEditing(textField: UITextField)

{

currentTextField = textField

var textFieldTop:Float = Float (currentTextField.frame.origin.y)
var textFieldBottom:Float = textFieldTop +
Float (currentTextField.frame.size.height)

if textFieldBottom > keyboardHeight && keyboardHeight != 0.0

{

scrollView.setContentOffset (CGPointMake (0,
CGFloat (textFieldBottom - keyboardHeight)),
animated: true)

The preceding code snippet is called when the user taps on a text field. It first saves
a reference to the text field in the variable currentTextField. It then checks to see
if the field is wholly/partially obscured by the keyboard. If this is the case, it updates
the contentoffset property of the scroll view to rectify this situation.

> Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project &> Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 19
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

20

Popovers and Modal Views

Popovers and modal views provide ways to temporarily display some information to users.
The information that is displayed is usually contextual and related to an action performed by
the user.

Both popovers and modal views interrupt the user’s journey through your application; the user
must interact with the popover/modal view before using the rest of the application. Popovers
are dismissed by tapping outside the bounds of the popover; modal views are dismissed by
using a user-defined cancel button located in the modal view. Popovers are only available on
iPads, whereas modal views are available on both the iPad and iPhone.

POPOVERS

A popover view is one that is revealed when a control is tapped. A popover appears attached
to the control that was tapped to reveal it (see Figure 20-1).

Popovers are only supported on the iPad, and should be used to display additional information
related to the control that displays it. When presenting a popover, you do not provide a Done
or Cancel button; popovers are dismissed when the user taps outside the popover.

To present a scene in your storyboard in a popover, simply create a popover presentation segue
from a button in one of the other scenes of your view controller to the scene you wish to use
within the popover (see Figure 20-2).

258 | LESSON 20 POPOVERS AND MODAL VIEWS

Height (pixels)
Width (pixels)

Colorspace

Image Information

FIGURE 20-1

You can use the Attribute inspector to configure the popover presentation segue (see Figure 20-3).
The Anchor attribute references a button (or bar button item) in the presenting view controller. The
popover will be anchored to this control. By default, popovers are dismissed as soon as the user taps
outside them. If you do not want the popover to be dismissed when some controls are tapped, you
can set up the Passthrough attribute to reference them.

Popovers | 259

¥ [] View Controlier Scene

 Storyboard Entry Point
v [imaga Information Via...
¥) image information Vi...

<]

35 ¢ | 5 popoverTest) | po..rTest: [Mei.ard + [Mai.se) o [Vie..ene | () Vieoller s View :

Identifier Custom

) whny hAny

ODe=E Q0 a
Bar Button ltem
Sty Bordered

Toolbar © — image Information | € 0 3

Tit =1 Defauit

' Bar ttom
Tith Image Information
Imaga
Tag
8 Enabled

<)

y @ =
Image Information

Image Information View Gontrolier

Callection View - Displays data in a
collection af celis.

|l' Callection View Cell - Definas tha
L | attributes and babavior of calls ina

[=]

FIGURE 20-2

W Segue

DeEv E O

identifier imagelnformation |

Directions @ Up
@ Left

Passthrough o 7

Segue Present As Popover B
& Down
E Right
Anchor | Image Information DO

O

FIGURE 20-3

260 | LESSON 20 POPOVERS AND MODAL VIEWS

MODAL VIEWS

A modal view can be created in a couple of different ways; the most common is to use a Present
Modally segue from a button in a scene to another scene (see Figure 20-4).

») View Cantraller
@) First Responder

£ modalPresentationTast mo...nTest | [l Mai...card Mai...ase) + [7 View Controller Scene Present modally segue to Moodal View Controlier ObeBE ¢ a e

¥ [View Controller Scene Staryboard Sagus

I s
Segue Presert Modally
Preseniabom—Gata 8

E et
Storyboard Entry Paint
Presant modally seg... Transiten Dafautt
g i
v [E Moodal View Contralle... i Animates
¥ () Moodsl View Controller - -

Top Layout Guide
Bottom Layout G...
* Viaw
0 First Respander

[l Exit
D 0@o
Ttn v i primarivet sy 1
. BUETTS e s AU s acting Wiew Controller - & contraliar that
foyerl bl e 2 o o SRR supports the fundamantal view-
s ting management model in 08,
Navigation Controller - & contraller
< that managas navigation through a
hiurarchy af wews
Table View Controller - A contraliar
that manages a table view.
Tab Bar Controller - 4 contralier thst
manages a set af view controllers that
regrasant 1ab bar Sams.
Split View Controlier - A composite
view cantroler that manages left and
right view cantroders,
=)] whny bAny 2 ol b B E

The Present Modally segue has a few presentation styles that can be set up using the Attribute
inspector:

>

>
>
>

Full Screen
Current Context
Form Sheet

Page Sheet

The default setting is to present the modal view so that it takes up the entire screen. A commonly
used presentation style is form sheet. On an iPhone, the form sheet presentation style and the full
screen presentation style achieve identical effects. However, on the iPad, the form sheet presentation

style causes the modal view to appear as a self-contained form centered in the presenting view (see
Figure 20-5).

When a view is presented modally, there is no system-provided means to dismiss it and return back
to the presenting view. If you do not provide a way to dismiss the modal view, then your user will be
unable to use the rest of your application (see Figure 20-6).

Modal Views | 261

FIGURE 20-5

FIGURE 20-6

262 | LESSON 20 POPOVERS AND MODAL VIEWS

Modal views are used when your app needs to collect some vital information before proceeding.
Typically you add a close button in the modal view that, when tapped, will dismiss it. You cannot
use a segue to dismiss a modal view; instead you must call the dismissviewControllerAnimated
method on the modal view controller. This method allows you to provide an optional completion
handler that is executed when the modal view is dismissed.

@IBAction func onDismissModalView (sender: AnyObject) {
self.dismissViewControllerAnimated (true, completion: nil) ;
}

If you do not wish to use a segue, you can alternately present a scene in your storyboard modally by
using the following code snippet attached to a UIButton instance in the presenting view controller:

@IBAction func onPresentModalView (sender: AnyObject) ({
let modalViewController:ModalViewController =
(self.storyboard!.instantiateViewControllerWithIdentifier
("ModalViewController") as? ModalViewController) !
modalViewController.modalPresentationStyle =
UIModalPresentationStyle.FormSheet

self.presentViewController (modalViewController,
animated: true, completion: nil)

}

TRY IT

In this Try It, you create a simple iPad-only application based on the Single View Application tem-
plate called PopoverTest, which displays an image and some information on the image in a popover.

Lesson Requirements
> Launch Xcode.

Create a new iPad-only project based on the Single View Application template.

>

> Create a storyboard with multiple scenes.

> Use Interface Builder to create segues between scenes.
>

Present a scene in a popover.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

http://www.wrox.com/go

Trylt | 263

Hints

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To show the Object library, select View = Utilities = Show Object Library.

To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step

> Create a Single View Application in Xcode called PopoverTest.

1.
2.
3.

4.

Launch Xcode and create a new application by selecting File ©> New = Project.
Select the Single View Application template from the list of iOS project templates.
In the project options screen, use the following values:
> Product Name: PopoverTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPad
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Unchecked

Y Y Y VY Y VY

Save the project onto your hard disk.

> Add image resources to your project.

1.

w

Ensure the project navigator is visible. To show it, select View => Navigators = Show
Project Navigator.

Open the Assets.xcassets file by clicking on it in the project navigator.
Navigate to the Images folder in this chapter’s download from the book website.

Create a new image set using Editor © New Image Set and name this new image set
Sunflower.

Drag the Sunflower 1x.jpg, sunflower 2x.jpg, and Sunflower 3x.jpg images
from this chapter’s resources into the appropriate placeholders in the image set.

264 | LESSON 20 POPOVERS AND MODAL VIEWS

> Add user interface elements to your storyboard’s scene.

1.

7.

Add a toolbar to the bottom of the scene.

Using the Object library, add a Toolbar to the bottom of the storyboard scene.

Ensure the toolbar is selected and use the Pin button to display the constraints editor

> Ensure the Constrain to margins option is unchecked.

> Pin the distance between the left edge of the view and the toolbar to 0.

> Pin the distance between the right edge of the view and the toolbar to 0.

> Pin the distance between the bottom of the view and the toolbar to 0.

> Pin the height of the toolbar to 44.

> Click the Add 4 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor = Resolve Auto Layout Issues = Update Frames.
Edit the toolbar.
Select the default bar button item in the toolbar and rename it to Image Information.
Add a UTImageView instance to the default scene.

Use the Object library to add an Tmage view to the default scene of the storyboard.
Place it above the tab bar.

Ensure the image view is selected and use the Pin button to display the constraints edi-
tor popup.

> Ensure the Constrain to margins option is unchecked.

> Pin the distance between the left edge of the view and the image view to 0.

> Pin the distance between the right edge of the view and the image view to 0.

> Pin the distance between the bottom of the image view and the tab bar to 0.

> Pin the distance between the top of the view and the image view to 20.

» Click the Add 4 Constraints button to dismiss the constraints editor popup.
Update the frames to match the constraints you have set.

> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

> Select Editor & Resolve Auto Layout Issues = Update Frames.

Trylt | 265

8. Using the assistant editor, create an outlet for the image view in the view controller
class called imageview.

» Add code to the view controller class.
1. Add a variable declaration to the view controller class.

var image:UIImage!

2. Add the following snippet to the end of the view controller’s viewDidLoad method to
load an image and set up the image view:
image = UIImage (named: "Sunflower")

imageView.image = image
imageView.contentMode = UIViewContentMode.ScaleAspectFit

3. Add the following implementation of the prepareForSegue (segue: sender:) to the
view controller class.

override func prepareForSegue (segue: UIStoryboardSegue, sender: AnyObject?) {

if segue.identifier == "imageInformationSegue" {
let viewController:ImageInformationvViewController =
segue.destinationViewController as!
ImageInformationvViewController
viewController.imageBeingDisplayed = self.image
}

}

» Create an additional view controller scene.

1. Use the Object library to drag and drop a new View Controller scene onto the
storyboard.

2. Create a new Cocoa Touch class called ImageInformationViewController by select-
ing File = New. Ensure the class is a subclass of UTviewController (see Figure 20-7).

Choose options for your new file:

Class: | ImageinformationiiewController

]
Subclass of: | UlViewCaontrolier u
Also create XIB file
iPhone
Language: Swift E
Cancel Previous .:m.

FIGURE 20-7

266 | LESSON 20 POPOVERS AND MODAL VIEWS

3.

4.

Select the new scene in the storyboard and switch to the Identity Inspector (View =
Utilities & Show Identity Inspector).

Change the Class attribute of the scene to ImageInformationviewController.

> Add user interface elements to your new scene.

1.

Add three labels to the scene.

Using the Object Library, drag and drop three labels onto the scene, position them one
below the other, and name them Height (pixels), Width (pixels), and Colorspace.

Add three text fields to the scene.

> Using the Object Library, drag and drop three text fields onto the scene; posi-
tion them one below the other and beside the three labels you have created in
the previous step.

> Use the Attribute inspector to change the background color of the three text
fields to a shade of dark gray.

Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 20-1. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked.

TABLE 20-1: Layout Constraints

ELEMENT LEFT TOP RIGHT WIDTH HEIGHT
Height (label) 16 20 115 21
Height (text field) 24 0 16 30
Width (label) 16 26 115 21
Width (text field) 24 18 16 30
Colorspace (label) 16 26 115 21
Colorspace (text field) 24 18 16 30
4. Update the frames to match the constraints you have set.
> Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.
> Select Editor @ Resolve Auto Layout Issues = Update Frames.
> Your scene should resemble Figure 20-8.
5. Use the assistant editor to create outlets for each of the text fields in the

ImageInformationViewController.swift class. Name the outlets imageHeight,
imageWidth, and imageColorSpace.

Trylt | 267

Height (pixels)
Wiclth (pixels)

Colorspace

FIGURE 20-8

image file.

1. Add the following variable declarations to the file:

var imageBeingDisplayed:UIImage!

Update the ImageInformationviewController.swift file to display information on the

2. Update the viewDidLoad method in the TmageInformationvViewController.swift

file to resemble the following:

override func viewDidLoad() {
super.viewDidLoad ()

let imageSize = imageBeingDisplayed.size
let height = imageSize.height
let width = imageSize.width

imageHeight.text = "\ (height)"
imageWidth.text = "\ (width)"
imageColorSpace.text = "RGB"

}

>
following:
import UIKit
class ImagelnformationViewController: UIViewController {
@IBOutlet weak var imageHeight: UITextField!

@IBOutlet weak var imageWidth: UITextField!
@IBOutlet weak var imageColorSpace: UITextField!

The code in the ImageInformationViewController.swift file should now resemble the

268 | LESSON 20 POPOVERS AND MODAL VIEWS

var imageBeingDisplayed:UIImage!

override func viewDidLoad()
super.viewDidLoad ()

let imageSize = imageBeingDisplayed.size
let height = imageSize.height
let width = imageSize.width

imageHeight.text = "\ (height)"
imageWidth.text = "\ (width)"
imageColorSpace.text = "RGB"

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()

}

> Create a segue from the Image Information bar button item in the first scene to the Image

Information View Controller scene.

1. Select the Image Information bar button item in the first scene.

2. Ctrl+drag from the bar button item to the second scene. On releasing the mouse but-
ton, you will be presented with a context menu that lets you select the segue type. Select

Popover Presentation from the list.

3. Select the segue in the scene and use the Attribute inspector to set its identifier attribute

to imageInformationSegue.

> Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project & Run.

Lesson 20 video online at www.wrox .com/go/swiftiosvid.

REFERENCE To see some of the examples from this lesson, watch the

http://www.wrox.com/go/swiftiosv

21

Touches and Gestures

Your users interact with your iOS applications using touches and gestures, as opposed to a
keyboard and mouse. While touches and gestures aren’t the only ways users could interact
with your apps, they are definitely the most common, with touches being more prevalent
than gestures. Both touches and gestures are UTEvent instances and are managed by the
UlApplication class.

TOUCH EVENTS

When the user begins a touch sequence, the system generates a touch event and pack-
ages information into this event. A touch event is represented by an instance of the
UIEventTypeTouches object; individual touches themselves are represented by UITouch
instances.

Touch events are placed by UIKkit in an application-level event queue and dispatched by your
application’s run loop to the window that initiated the event. From there they are forwarded
to the first responder, which is usually the view where the touch occurred. If that view cannot
handle the touch event, then the event is forwarded to the next responder in the chain, which
could be the view controller that manages the view.

To place a UIview subclass at the front of the responder chain, you send it the becomeFirst
Responder () message. Some views such as UITextView display a keyboard when they are sent
this message.

If you want to process touch events in your own UIView subclass, you must first override can-
BecomeFirstResponder and return true from this method.

To handle touch events, you need to override one or more of the following methods:

func touchesBegan(_ touches: Set<UITouch>, withEvent event: UIEvent?)
func touchesMoved(touches: Set<UITouch>, withEvent event: UIEvent?)

func touchesEnded(touches: Set<UITouch>, withEvent event: UIEvent?)

func touchesCancelled(touches: Set<UITouch>?, withEvent event: UIEvent?)

270

| LESSON 21 TOUCHES AND GESTURES

The touchesBegan method is called to inform your view when one or more fingers touch down

in a view, touchesMoved is called when the user drags one or more fingers across your view, and
touchesEnded is called when the user lifts one or more fingers off your view. The first parameter is
a set of UTTouch instances, one for each finger. Multi-touch is disabled by default; to enable it, you
must call multipleTouchEnabled on the view in question.

The last method in the list, touchesCancelled, is called if the system cancels the touch event in
response to a low memory warning or an incoming call.

NOTE If you override any of these four methods without calling super in your
implementation, you must also override the other methods, even if you provide
empty implementations.

GESTURE RECOGNIZERS

Touch events provide low-level information on touches as they happen; sometimes they can provide
too much detail, and interpreting a sequence of touches to represent a gesture can be a complex task.
This is where gesture recognizers come it.

A gesture recognizer is a subclass of UIGestureRecognizer and can be used to interpret low-
level touch event data into meaningful gestures. Apple provides the following subclasses of
UIGestureRecognizer to recognize specific types of gestures:

> UITapGestureRecognizer: For single and multiple taps
UIPinchGestureRecognizer: For pinch in, pinch out gestures
UIPanGestureRecognizer: For dragging
UISwipeGestureRecognizer: For swipes

UIRotationGestureRecognizer: For rotation

Y VYV VY Y Y

UILongPressGestureRecognizer: For touch and hold (long press)

To use a gesture recognizer in your view, you can either add one or more appropriate gesture recog-
nizers programmatically, or through the interface editor.

To add a gesture recognizer to a view using the interface editor, simply drag and drop the appropri-
ate gesture recognizer from the Object Library onto your view (see Figure 21-1).

To create a gesture recognizer programmatically, simply instantiate one using the appropriate ini-
tializer and add it to the view using the views addGestureRecognizer method.

Regardless of which method you use to add a gesture recognizer to your view, you will need to pro-
vide a method in your class that will be called when the gesture recognizer has detected an appropri-
ate gesture.

Trylt | 274

006 =

Tap Gesture Recognizer -
Provides a recognizer for tap gestures
which land on the view.

@ Pinch Gesture Recognizer -
Provides a recognizer for pinch
O gestures which are invoked on the...

Rotation Gesture Recognizer -
O @ Provides arecognizer for rotation
gestures which are invoked on the...

Swipe Gesture Recognizer -
® | Provides a recognizer for swipe
gestures which are invoked on the...

@) Pan Gesture Recognizer -
Provides a recognizer for panning
(dragging) gestures which are invok...

Screen Edge Pan Gesture
@ | Recognizer - Provides a recognizer
for panning (dragging) gestures whi...

.A Long Press Gesture Recognizer
b - Provides a recognizer for long press
gestures which are invoked on the...

B8 @ gesture [x]
FIGURE 21-1

The following snippet shows how to add a tap gesture recognizer to a view:

let tapRecognizer = UITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

If you would like your gesture recognizer to forward the underlying touch events to your view after
it has processed them, ensure the cancelsTouchesInviews property is set to false.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called GestureTest that adds a tap gesture recognizers to the main scene of the storyboard and
updates a label when a gesture is interpreted.

Lesson Requirements
> Launch Xcode.

> Create a new iPhone project based on the Single View Application template.

272 | LESSON 21 TOUCHES AND GESTURES

> Add user interface elements to the default scene of the storyboard.

> Add gesture recognizers to the scene using the Interface Editor.

swiftios.

REFERENCE The code for this Try It is available at www .wrox .com/go/

Hints

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

> To show the Object library, select View = Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step

> Create a Single View Application in Xcode called GestureTest.

1. Launch Xcode and create a new application by selecting File &> New > Project.

2. Select the Single View Application template from the list of iOS project templates.

3. In the project options screen use the following values:

>

Y Y Y VY Y

>

Product Name: Gesture

Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include UI Tests: Unchecked

4. Save the project onto your hard disk

> Add a UrLabel instance to the default scene.

1. From the Object library, drag and drop a Label object onto the scene.

2. Ensure the label is selected and use the Pin button to display the constraints editor

popup.

http://www.wrox.com/go

Trylt | 273

>

>

3.

Ensure the Constrain to margins option is unchecked.

Pin the distance between the left edge of the view and the table view to 20.
Pin the distance between the right edge of the view and the table view to 20.
Pin the height of the label to 21.

Pin the distance between the top of the view and the table view to 20.

Y YV VY VY Y Y

Ensure the value of the Update Frames combo box is set to All Frames In
Container. Using this option will automatically update the frames for all
objects in the scene as soon as you finish adding the constraints. The alterna-
tive is to use the Editor & Resolve Auto Layout Issues => Update Frames menu
item after adding the constraints.

> Click the Add 4 Constraints button to dismiss the constraints editor popup.
Add an outlet in the view controller class and connect it to the label in the scene.

> Ensure the Assistant editor is visible. To show it, select View = Assistant
Editor & Show Assistant Editor.

> Right-click the 1abel to display a context menu. Drag from the circle beside
the New Referencing Outlet option in the context menu to an empty line
in the viewController class.

> Name the new outlet gestureType.

Add a tap gesture recognizer to the default scene.

1.

4.

From the Object library, drag and drop a Tap Gesture Recognizer object onto the
scene.

Ensure the Assistant editor is visible. To show it, select View = Assistant Editor =
Show Assistant Editor.

Right-click the tap gesture recognizer to display a context menu. Drag from the
circle beside the first item under the Sent Actions group to an empty line in the
ViewController class (see Figure 21-2).

Name the new action onTapGestureDetected.

Add code to the view controller class.

1.
2.

Open the Viewcontroller.swift file in the project explorer.

Replace the stub implementation of the onTapGestureDetected method to resemble
with following:

@IBAction func onTapGestureDetected (sender: AnyObject) {
gestureType.text = "Tap gesture detected"

274 | LESSON 21 TOUCHES AND GESTURES

A GostureTost | @l iPhons | fendy
B GastuniTagt | M Wiaw Cantrabar Soens Racogniza matic [l ¥ s st ool
v B GestumTest * [] View Contralier Scans 4
¥ o GastursTast w () View Cordrollar W
"
- ——— g
Ao——— Top Layout Gulds 7/ Createn by Abhishek Mishra on 14/06/2015.
B ViewControlioe swert Botior Layout G.. ¢¢ Copyright © 2015 ase technology Lid. ALL rights reserved,
Msir storybeard v [vew
W0 Amsets xcassets * L Labat @ C trpart UINiE
” » [E canstrainis
LA T R ORI ﬂr..—,lui‘n o class ViewContraller: UIViewCantrolter {
inta.pilst E}Lx AR
= Ext Action Tuns urede T Anyoeject
* [GestureTestTasts 'h. 2 ';"' istisn iy enTaphest: tactedisander: Anyoejecs] {
» 1 GostureTostLlTests . . p—
Staryboard Eniryi avers ¢ wiewDidloadd) {
¥ B Produch: ewthidLoad [}
any acditinnal setup after loading the view, typically from a nib,
¥
override func didfeceiveMenoryWarningl} {
er.didRece lvetenorydarning)
// Dispose of any resources that can be recreated,
¥
¥
=) ~RIE =] whny nAny B2 B b bl

FIGURE 21-2

> Test your app in the iOS Simulator.
Click the Run button in the Xcode toolbar. Alternatively, you can select Project & Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 21
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/swif

SECTION IlI

Storing Data and Network
Programming

» LESSON 22: Property Lists

» LESSON 23: Application Settings

» LESSON 24: Introduction to iCloud Storage
» LESSON 25: Introduction to CloudKit

» LESSON 26: Introduction to CoreData

» LESSON 27: Consuming RESTful JSON Web Services

s

Property Lists

A property list is an XML key-value store that allows applications to store small amounts of
data locally. Property lists are best suited to storing small amounts of data (less than a few
hundred kilobytes). It is quite common for applications to use property lists to store applica-
tion configuration information, such as server addresses and URLs.

CREATING PROPERTY LISTS

A property list can be created using the property list editor, or programmatically. The GUI
property list editor that is integrated with XCode displays a property list file as a hierarchy of
nodes and elements, all contained under a root node (see Figure 22-1). The root node can be
either an array or a dictionary.

BH| € & plisteditor plisteditor B names.plist | No Selection
Key Type
¥ Root Array
¥ ltem O Dictionary
name String
age MNumber
address String 117 Bilton Road
¥ ltem 1 Dictionary {3 Items)
name String Jane
age MNumber 45
address String 11 Stucley Avenus
¥ ltem 2 Dictionary (3 items|
name String Paul
age MNumber 25
address 09 String % 17 Leicester Square
FIGURE 22-1

To create a property list, add a new file to the project and select Property List from the iOS
Resource section in the file options dialog box (see Figure 22-2).

278

| LESSON 22 PROPERTY LISTS

Choose a template for your new file:

i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other

watch0S
Saurce
User Interface
Core Data
Resource
Other

05X
Source
User Interface
Core Data

Bae.

cinnoy -

GeoJSON File

® b4

Rich Text File SceneKit

Particle System

v! £ V.

SpriteKit Actlon SpriteKit

Particle File

SpriteKit Scene

Property List

An empty XML property fist file.

Settings Bundle

Scenekit Scene

b4
File
-

Strings File

Cancel

FIGURE 22-2

This will add an empty property list file to your project, with a single dictionary element called Root

(see Figure 22-3).

ece » W A Ei.. plsteditor: Ready | Today at 06:43 = o <l EN
BR anh & 2 o B B 2 plisteditor plisteditor | ~ names.plist ' No Selection 0O ®
= g T T Key Type: Value | Identity and Type
¥ [plistaditor ¥ Foot Dictionary (0 ftems) Name names.plist
+ AppDelegate. swift Type Default - Property List XML [
= ViewController.swift .
Main.storyboard O o @]
0 Assats.xcassets
LaunchScreen.storyboard
Info.plist
names.plist
» [plisteditorTests No Matches
> plisteditorUiTests
13 Products
@ B ®
FIGURE 22-3

To add a new entry to the property list, select the parent node and select Editor = Add Item (see

Figure 22-4).

BE | < g_ plisteditor plisteditor . names.plist ' No Selection
Key 'I\fpe Value
¥ Root Dictionary {1 item)
New item ©@ String <

FIGURE 22-4

Reading Property Lists | 279

The default data type for new items is String; you can change that using the drop-down picker in
the second column. If the parent node is a dictionary, then each child is treated as a key-value pair
with keys being unique Strings.

To create a property list programmatically, you need to build a dictionary or array with data you
wish to save and write it to a file in your application’s documents directory. The following code snip-
pet shows how you can achieve this:

func writeToPlist (fileName:String!, data:NSMutableDictionary!)
{

let paths = NSSearchPathForDirectoriesInDomains (.DocumentDirectory,
.UserDomainMask, true) [0] as String
let path = paths.stringByAppendingPathComponent (fileName)
data.writeToFile(path, atomically: true)

If all the data you wish to write to a property list file can be represented using a combination of
NSNumber, NSString, NSArray, NSDictionary, and NSData instances, then your task is straightfor-
ward. If, however, you wish to write instances of your own classes to a property list file, you must
implement the NSCoding protocol.

NSCoding defines two methods encodeWithCoder (aCoder: NSCoder) and a designated initializer
init? (coder aDecoder: NSCoder).

The following code snippet lists a class Employee that is NSCoding-compliant and can be inserted
into a property list.

import UIKit
class Employee: NSObject, NSCoding {

var name:String?
var address:String?

func encodeWithCoder (aCoder: NSCoder)

{
// write to plist here.
aCoder.encodeObject (name)
aCoder.encodeObject (address)

}

required init? (coder aDecoder: NSCoder)

{

// read from plist here
name = aDecoder.decodeObjectForKey ("name") as? String
address = aDecoder.decodeObjectForKey ("address") as? String }

READING PROPERTY LISTS

To read a property list file, you need to load its contents into an array or dictionary. The following
code snippet assumes you have added a property list file called config.plist to the project:

280 | LESSON 22 PROPERTY LISTS

var plistDictionary: NSDictionary?

if let path = NSBundle.mainBundle () .pathForResource ("Config", ofType: "plist") {
plistDictionary = NSDictionary (contentsOfFile: path)

}

if let unwrappedDictionary = pListDictionary {
// Use unwrappedDictionary here
}

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called PropertyListTest that populates a table view with contents read off a plist file. The contents of
the plist file will be generated programmatically.

Lesson Requirements

> Launch Xcode.

> Create a new iPhone project based on the Single View Application template.
> Create a storyboard with a single scene.
>

Add code to the application delegate object to create the plist file when the application is

launched.
> Read the plist file in the view controller and display its contents in a table view.
REFERENCE The code for this Try It is available at www .wrox .com/go/
swiftios.
Hints

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

> To show the Object library, select View = Utilities = Show Object Library.

» To show the Assistant editor, select View = Assistant Editor = Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called PropertyListTest.

1. Launch Xcode and create a new application by selecting File & New = Project menu
item.

2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

Try lt | 281

3. In the project options screen, use the following values:

>

Y Y Y VY Y VY

>

Product Name: PropertyListTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include Unit Tests: Unchecked

Include UI Tests: Unchecked

4. Save the project onto your hard disk.

» Add a ulTableview instance to the default scene.

1. From the Object library, drag and drop a Table View object onto the scene.

2. Ensure the table view is selected and use the Pin button to display the constraints editor

popup.

Y Y Y VY Y

>

Ensure the Constrain to margins option is unchecked.

Pin the distance between the left edge of the view and the table view to 0.
Pin the distance between the right edge of the view and the table view to 0.
Pin the distance between the bottom of the view and the table view to 0.
Pin the distance between the top of the view and the table view to 20.

Click the Add 4 Constraints button to dismiss the constraints editor popup.

3. Update the frames to match the constraints you have set.

>

>

Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

Select Editor => Resolve Auto Layout Issues = Update Frames.

4. Set up the data source and delegate properties

>

Right-click the table view to bring up a context menu. Drag from the
item labeled “dataSource” in the context menu to the item labeled “View
Controller” in the document outline.

Drag from the item labeled “delegate” in the context menu to the item labeled
“View Controller” in the document outline.

> Set up the table view’s appearance.

1. Select the table view and ensure the Attributes inspector is visible.

282

LESSON 22 PROPERTY LISTS

>

>

>

B W N

Ensure the Content attribute is set to Dynamic Prototypes.
Ensure the value of the Prototype Cells attribute is 1.

Ensure the Style attribute is set to Grouped.

Set up the prototype cell.

2.
3.

4.

Expand the table view in the document outline; this will reveal the table view cell.
Select the table view cell.

Use the attribute editor to ensure that the value of the identifier attribute is
prototypeCelll.

Ensure the Style attribute is set to Basic.

Add code to the application delegate to create a plist file.

1.
2.

Open the AppDelegate.swift file in the project explorer.

Replace the implementation of application (application, didFinishLaunching-
WithOptions) -> Bool with

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

// create contacts.plist in the documents directory, if it does not
exist
let fileManager:NSFileManager! = NSFileManager.defaultManager ()

let documentsDirectory:String =
NSSearchPathForDirectoriesInDomains (
NSSearchPathDirectory.DocumentDirectory, NSSearchPathDomainMask.
UserDomainMask,
true) [0] as String

let plistPath = documentsDirectory + "/contacts.plist"
if fileManager.fileExistsAtPath(plistPath) == false {

let contacts:NSMutableArray = NSMutableArray ()
contacts.addObject ("Elana")

contacts.addObject ("Sonam")
contacts.addObject ("Jane")
contacts.addObject ("Paul")
contacts.addObject ("Abhishek™)
contacts.addObject ("Nick")
contacts.addObject ("Steve")

contacts.writeToFile (plistPath, atomically: true)

}

return true

}

Load the plist file in the view controller class.

Trylt | 283

1. Open the viewcontroller.swift file in the project explorer.
2. Add the following variable declaration to the view controller class:

var arrayOfContacts:NSArray? = nil

3. Replace the implementation of the viewDidLoad method with the following:

override func viewDidLoad() ({
super.viewDidLoad ()

// load contacts.plist into arrayOfContacts

let documentsDirectory:String =
NSSearchPathForDirectoriesInDomains (
NSSearchPathDirectory.DocumentDirectory, NSSearchPathDomainMask.
UserDomainMask,
true) [0] as String

let plistPath = documentsDirectory + "/contacts.plist"

arrayOfContacts = NSArray(contentsOfFile: plistPath)

}
> Implement the data source and delegate methods in the view controller.

1. Implement the numberofSectionsInTableview data source method as follows:

func numberOfSectionsInTableView(tableView: UlTableView) -> Int

{
}

2. Implement the numberofRowsInSection data source method as follows:

return 1;

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int

}

3. Implement the cellforRowAtIndexPath data source method as follows:

return arrayOfContacts!.count

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell
{

let cell = tableView.dequeueReusableCellWithIdentifier ("prototypeCelll",
forIndexPath: indexPath) as UITableViewCell

let contactName:String =
arrayOfContacts!.objectAtIndex (indexPath.row)
as! String

cell.textLabel?.text = contactName
return cell

284 | LESSON 22 PROPERTY LISTS

4. Modify the declaration of the viewcontroller class to inherit from
UIViewController, UITableViewDataSource, and UITableViewDelegate:

class ViewController: UIViewController,
UlITableViewDataSource,
UlTableViewDelegate

> Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project &> Run.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 22 video online at www.wrox .com/go/swiftiosvid.

http://www.wrox.com/go/swifti

23

Application Settings

Most applications that perform complex tasks will at some point need to allow users to cus-
tomize the applications’ operation to suit their specific needs. These customizable options are
usually referred to as application preferences or application settings. i10S applications can
either expose their preferences within Apple’s Settings application, or provide a user interface
within the application where the user can customize them appropriately.

To integrate your application’s preferences with Apple’s Settings application, your application
must include a Settings.bundle file. A settings bundle file enables you to declare the pref-
erences in your application as a property list, and the Settings application provides the user
interface for editing those preferences.

Keep in mind that to access the Settings application your users will have to first exit your
application if they were using it. You should always refresh settings data when the application
is activated so that your application can learn about the changes made by the user via the set-
tings app. In this lesson, you learn to create this file and use it to expose system preferences.

ADDING A SETTINGS BUNDLE

To add a settings.bundle file to your application, right-click your application’s group in the
project navigator and select New File from the context menu. Select the Settings Bundle file
type from the iOS Resource section of the dialog box (see Figure 23-1).

286 | LESSON 23 APPLICATION SETTINGS

Choose a template for your new file:
i0s
Source

User Interface

L i

Core Data GeoJSON File GPY Flle Asset Catalog Settings Bundle

Apple Watch
Resource %) .

Other] b4 pod

watchOS Property List Rich Text File Scenekit SceneKit Scene

— Particle System File

User Interface 1
2o . :o.

Core Data et sl ~

Resource

Spritekit Action Spritekit SpriteKit Scene Strings File

Ottw: Particle File

05X 2
Source Settings Bundle
User Interface Bundle for specifying an i0S Application's settings.

Core Data

Dacnaren

FIGURE 23-1

When the Settings application is launched on an iOS device, every third-party application is checked
to see if it has a Settings.bundle file. For each application on the iOS device that has this file, its
name and icon are added to a list on the main page of the Settings application (see Figure 23-2).

Carrier ¥ 610 PM -
Settings

iCloud

a e

Maps
Safari

Photos & Camera

" e

Game Center

Twitter

Facebook

Flickr

m Vimeo
Developer

SettingsTest

FIGURE 23-2

Tapping on the icon will take the user to the particular application’s settings page. By default, the
Settings application will use an application’s standard icon file when listing it. If you want to provide

Adding a Settings Bundle | 287

a custom icon to be used for your application in the Settings application, include the appropriate 2x
and 3x images for the AppIcon asset in the project’s asset catalog.

The Settings application can display application preferences in a series of hierarchical pages.
Creating hierarchical settings pages is not covered in this lesson, but if you are interested in this
topic, you should read the Preferences and Settings Programming Guide available at https://
developer.apple.com/library/ios/documentation/Cocoa/Conceptual /UserDefaults/
Introduction/Introduction.html.

A settings bundle is actually a collection of files. To see the contents of the bundle, simply click the
triangle beside the settings.bundle file in the project navigator (see Figure 23-3).

BRE A &¢e &= B
v |2 SettingsTest
v SettingsTest
= AppDelegate.swift
= ViewGController.swift
Maln.staryboard
 Assets.ucassets
LaunchScreen.storyboard
Info.plist
v Settings.bundle
> en.|proj
Root.plist
> SettingsTestTests
> SettingsTestUITests
» Products

+ @ [e]i=]

FIGURE 23-3

Inside the settings bundle, you will find a file named Root .plist. This file controls how your appli-
cation’s preferences will appear within the Settings application. Clicking the file opens it in the prop-
erty list editor. When you do this, you will see a table with three columns—xey, Type, and value.
This file contains two properties: an array called Preference Items and a string called strings
Filename (see Figure 23-4).

H < = SeitingsTest SettingsTest Settings.bundle Aoot.plist ' No Selection

Key Type Value
¥ IPhone Settings Schema lictional
Strings Filename

{2 tams)

Root

ar

» Preferance ltems (4 itarms)

FIGURE 23-4

Each preference that you want to expose to your users will be an entry in the Preference Items
array. To see the contents of the Preference Items array, simply expand it within the property
list editor. When you create a new settings bundle, this array contains four items by default (see

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Introduction/Introduction.html

| LESSON 23 APPLICATION SETTINGS

Figure 23-5). Each entry in the array is a dictionary of key-value pairs. Technically speaking, the
Preference Items property is an array of dictionaries.

=< . SeftingsTest SettingsTest Settings.bundle Root.plist | No Selection
Key Type Value

¥ [Phone Settings Schema ctionar (2 items]

Strings Filename

¥ Preference items

Roat

anan

¥ item O (Group - Group)

» Item 1 (Text Figld - Nama)

» Item 2 (Toggle Switch - Enabled)
» item 3 (Slider)

FIGURE 23-5

Each entry within the Preference Items array, given that it’s a dictionary, can have several key-
value pairs, but you will always find four keys in each entry—Title, Type, Identifier, and
DefaultValue.

The value of the Tit1le key is used by the Settings application to label the preference when it is pre-
sented to the user. The value of the Type key determines what kind of preference value it is and thus
what user interface component will be used by the Settings application when presenting it. The value
of the Tdentifier key contains a string that you can use to read the value of the preference in your
Objective-C code. The value of the Defaultvalue key contains the default value for the preference.

The default settings bundle created by Xcode contains four entries in the Preference Items array:
> Group
> Text Field
> Toggle Switch
> Slider

If you were to run this app on an iOS device, and look at its settings page in the Settings application,
you would see something similar to that shown in Figure 23-6.

Table 23-1 describes the element types that can be used in the settings bundle.

TABLE 23-1: Preference Types

TYPE DESCRIPTION

Text Field An editable text field

Toggle Switch On/Off toggle button

Title A read-only text string

Slider A slider to allow the user to select from a range of values

Multi Value A list of values

Reading Preferences with Code | 289

TYPE DESCRIPTION
Group A logical group of preferences
Child Pane Child preferences page, used to implement hierarchical preference pages
Carrier ¥ Eiza PM -
£ Settings SettingsTest
Mame
Enabled [§
FIGURE 23-6

READING PREFERENCES WITH CODE

To read the value of a preference in a settings bundle from your code, you need to use an
NSUserDefaults object. NSUserDefaults is part of the Core Foundation framework and provides
a set of methods that allow you to manage application preferences. NSUserDefaults is a singleton
class, and thus only one object should exist during the lifetime of an application. To get access to
this one instance, use the following code:

let userDefaults = NSUserDefaults()

Recall that each preference within a settings bundle is represented by a dictionary of key-value pairs,
and one of the four keys that each dictionary must contain is Identifier. To retrieve the value of a
preference that has the identifier user name, use the following code:

let userName = userDefaults.valueForKey ("user name") as? String
This code assumes that the value being retrieved is a string. The NSUserDefaults class provides sev-
eral methods that allow you to retrieve preference values of different data types, including:
> boolForKey

» floatForKey

290 | LESSON 23 APPLICATION SETTINGS

> doubleForKey

> integerForKey
Although you have provided default values for the preferences in the settings bundle, these values
will not be applied until the users launch the Settings application on their device after installing

your application. To get around this problem, you should specify a default value for each of your
preferences in code as well as the settings bundle.

You can then use methods in the NSUserDefaults class to ensure that the default values are applied
only once regardless of whether your user launches the Settings application or your application first.
To do this, you need to create a dictionary with the default values of each preference and use the
registerDefaults and synchronize methods of the NSUserDefaults Object as follows:

let registrationDictionary: [String: String] = ["user name":"Paul Woods",
"user age":"28"]

userDefaults.registerDefaults (registrationDictionary)
userDefaults.synchronize ()

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called settingsTest that allows the user to specify a name and age value within the Settings appli-
cation. Your application, when launched, will display this name and age.

Lesson Requirements

> Launch Xcode.
Create a new iPhone project based on the Single View Application template.
Add a settings bundle to the application.

Add user interface elements to the default scene of the storyboard.

Y VYV VY

In the viewDidLoad method, read the preference values and display them in the labels.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

> To display your application’s preferences in the Settings application, you must include a
Settings.bundle file.

> To access the preference values specified by the user in the settings page from within your
code, each preference must have a unique string identifier.

http://www.wrox.com/go

Try lt | 291

>

>

>

>

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To show the Object library, select View = Utilities = Show Object Library.

To show the Assistant editor, select View @ Assistant Editor &> Show Assistant Editor.

Step-by-Step

Create a Single View Application in Xcode called settingsTest.

1. Launch Xcode and create a new application by selecting File & New = Project menu
item.

2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: SettingsTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
> Include UI Tests: Unchecked

Y VYV VY Y Y

4. Save the project onto your hard disk.

Add a settings bundle to the project.

1. Ensure the project navigator is visible.

2. Right-click the settings Test group and select New File from the context menu.

3. Select the Settings Bundle template from the iOS Resources section. Save the file as
Settings.bundle.

Edit the Settings.bundle file.

1. Expand the settings.bundle file in the project navigator and click the Root .plist
file to edit it with the property editor.

2. Expand the preference Items property.

3. Delete items 2 and 3. These are the Toggle Switch and Slider items, respectively. To
delete an item, select it and hit the backspace key.

4. Edit the Text Field preference.
> Expand the Ttem 1 (Text Field - Name) dictionary.

» Set the Title to User Name, Identifier to user_name, and Default Value
to Paul Woods (see Figure 23-7).

292 | LESSON 23 APPLICATION SETTINGS

| < = SettingsTest SeitingsTest © Settings.bundie * [l Root.plist | No Selection
Key Type Value
¥ iPhone Settings Schema Dictionary {2 itams)
Strings Filename + String Root
¥ Preference ltems L Array (2 itams)
¥ item O (Group - Group) Dictionary {2 items) I
¥ ltem 1 (Text Field - User Nama) Dictionary (8 itemns)
Type 4 String Text Field 4
Title 4 String User Name
Identifier s String user_name
Default Value +0© sting - Paul Woods
Text Field Is Secure 4 Boolean NO
Keyboard Typa 4 String Alphabat
Autocapitalization Style & String None
Autocorrection Style 4 String No Autocorrection

FIGURE 23-7

5. Add a new Text Field preference.
> Ensure the Ttem 1 (Text Field - User Name) dictionary is collapsed.

> Right-click the row corresponding to the ITtem 1 (Text Field - User
Name) dictionary and select Add Row from the context menu (see
Figure 23-8).

B < & SettingsTest ' SettingsTest Settings.bundie * B Root.plist | No Selection
Key Type Value
¥ iPhone Settings Schema Dictionary {2 items)
Strings Filenama 3 String Root
¥ Preference Items 4 Array (2 Itams)
¥ Item O {Group - Group) Dictionary {2 tems)
b Item 1 { Cut {B itams)
Copy
Paste
Shift Row Right
Shift Row Left
Value Type >
Add Row

Show Raw Keys/Values
Property List Type >
Property List Editor Help >

FIGURE 23-8

> Expand the newly added preference dictionary.

> Ensure the Type key is set to Text Field, Tit1le is set to Age, and Identifier
is set to user_age.

Trylt | 293

> Add a new key to the dictionary by right-clicking the last key (Identifier)
and selecting Add Row from the context menu.

> Ensure the name of the new key is Default value and the value of the key is
28 (see Figure 23-9).

B < = SettingsTest SettingsTest Settings.bundie ' B Root.piist | No Selection
Key Type Value

¥ IPhone Settings Schema Dictionary {2 items

Strings Filanama

¥ Preference ltems

Root

anan

¥ Item 0 (Group - Group)

* Item 1 (Text Field - User Name)
¥ ltem 2 (Text Field - Age) {
Text Field &

Type : 3
Title . Age
Identifier 4 String user_age
Default Value 4+ 0O String ~ 28
FIGURE 23-9

> Add two UILabel instances to the default scene.
1. Open the Main.storyboard file in the Interface Editor.

2. From the Object library, drag and drop two Label objects onto the scene and place
them one below the other.

3. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 23-2. When creating layout constraints using the pin constraints dialog
box, ensure the Constrain to margins option is unchecked and the value of the Update
Frames combo box is set to Items of New Constraints.

TABLE 23-2: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT
Label 1 20 20 20 21
Label 2 20 20 20 21

4. Use the assistant editor to create outlets for each of the labels in the view controller
class. Name the outlets nameLabel and agelLabel.

> Read and display the preference values provided by the user in the Settings application.
1. Open the viewcontroller.swift file in the project explorer.

2. Replace the implementation of the viewbidLoad method to resemble the following:

override func viewDidLoad() ({
super.viewDidLoad ()

let userDefaults = NSUserDefaults()
let registrationDictionary: [String: String] =

294 | LESSON 23 APPLICATION SETTINGS

["user name":"Paul Woods", "user age":"28"]

userDefaults.registerDefaults (registrationDictionary)
userDefaults.synchronize ()

nameLabel.text = userDefaults.valueForKey ("user_name") as? String
ageLabel.text = userDefaults.valueForKey("user age") as? String

}

> Test your app in the iOS Simulator.

1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project >
Run menu item.

2. After changing preferences in the Settings application, ensure your application is not
running in the background before launching it again.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 23 video online at www.wrox .com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvi

24

Introduction to iCloud Storage

iCloud Storage is a set of classes and services that enable you to share data between instances

of your application running across different devices. In this lesson, you learn to use the iCloud
Storage APIs in your apps.

BASIC CONCEPTS

Apple’s iCloud is a service that allows applications to synchronize data across devices. Your
data is stored across a set of servers maintained by Apple and is made available to copies of
your app across all iCloud-compatible devices. Changes made to this data by one instance
of your application are automatically propagated to other instances.

From a developer’s perspective, you need to use Apple’s iCloud Storage APIs to interact with

the iCloud service. These APIs enable you to store both documents and small amounts of key-
value data.

NOTE This lesson does not cover key-value data storage. For more informa-
tion on storing key-value data with iCloud, refer to the Designing for Key-Value
Data in iCloud section of the iCloud Design Guide, available at:

https://developer.apple.com/library/ios/documentation/General/
Conceptual /iCloudDesignGuide/Chapters/DesigningForKey-ValueDataln-
iCloud.html#//apple ref/doc/uid/TP40012094-CH7-SW1.

https://developer.apple.com/library/ios/documentation/General
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-ValueDataIniCloud.html#//apple_ref/doc/uid/TP40012094-CH7-SW1

296

| LESSON 24 INTRODUCTION TO ICLOUD STORAGE

iCloud applications cannot be tested on the iOS Simulator, and to make the most of this lesson you
should ideally have two iOS devices to test on. iCloud Storage APIs are available to both iOS and
MacOS X developers.

Your iOS applications always execute in a restricted environment on the device known as the appli-
cation sandbox. Some of these restrictions affect where and how your application can store data.

Each application is given a directory on the device’s file system. The contents of this directory are
private to the application and cannot be read by other applications on the device.

Each application’s directory has four locations into which you can store data:
> Preferences

> Documents

> Caches

> tmp

The first of these, Preferences, is not intended for direct file manipulation; however, the other

three are. The most commonly used directories are the Documents and the tmp directories.

The Documents directory is the main location for storing application data. The contents of this direc-
tory can also be manipulated within iTunes. The caches directory is used to store temporary files that
need to persist between application launches. The tmp directory is used to store temporary files that do
not need to persist between application launches.

Applications are responsible for cleaning up the contents of these directories because storage space
on a device is limited. The contents of the caches and tmp directories are not backed up by iTunes.

iCloud Storage conceptually extends this model and allows your applications to upload your data
from its private directory to Apple’s servers. This data then filters down to other iCloud-compatible
devices on which copies of your application are running. Your application also receives notifications
when a document has been created or updated by another copy of the application.

This synchronization is achieved by a background process (also known as a daemon) that runs on
all iCloud-compatible devices. Figure 24-1 illustrates the iCloud architecture.

Preparing to Use the iCloud Storage APIs | 297

il

Files

iCloud service

iCloud iCloud iCloud
il il ik

Files Files Files
O @ @
FIGURE 24-1

PREPARING TO USE THE ICLOUD STORAGE APIS

To use the iCloud Storage APIs in an application, you need to perform three steps:
1. Create an iCloud-enabled App ID.
2. Create an appropriate provisioning profile.

3. Enable appropriate entitlements in your Xcode project.

Creating an iCloud-Enabled App ID

To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link on the right side to navigate to the member center.
Within the member center click, the Certificates, Identifiers & Profiles link (see Figure 24-2).

https://developer
https://developer.apple.com/ios

298 | LESSON 24

INTRODUCTION TO ICLOUD STORAGE

& Apple Inc.

e0e < m

Developer

Programs & Add-ons

Your Account

SDKs

Download the SDKs and the latest beta software.

g

ertificates, |dentifiers & Profiles
Manage your certificates, identifiers, devices, and profile
for your apps.

iTunes Connect

Manage your apps published on the App Store and Mac App
Store

FIGURE 24-2

Next, click the Identifiers link in the iOS Apps category on the left side of the page (see Figure 24-3).

] o U]

o
Member Center

Hi, Abhishek Mishra | Sign out

Forums

Find answers and discuss with other developers and Apple
engineers

Bug Reporting

Submit bugs or request enhancements to APIs and
developer tools.

Technical Support

Request technical support with the development of your
app.

e0e < m

& Apple Inc.

[0 & 5 H’

Technalogies Resources Programs

[Developer

Certificates, Identifiers & Profiles
Wl =

n Certificates

@l 1dentifiers

w Devices

ﬁ Provisioning Profiles

ﬁ Certificates
[l rdentifiers
ﬁ Devices

ﬁ Provisioning Profiles

Learn More Learn More

1 App Distribution Guide 1 App Distribution Guide

Suppart Member Center [o P

Abhishek Mishra =

% Safari Extensions

ﬁ Certificates

Learn More

* Safari Extensions Development Guide

Safari Extensions Reference

FIGURE 24-3

Preparing to Use the iCloud Storage APIs

| 299

To create a new App ID, click the New App ID button on the top-right side (see Figure 24-4).

Production
BritishGas Mobile Energy

0. Identifiers DIYOfficeLunch

App IDs

ese <« @ Ap o 0 & g
‘ DEVe|0per Technologies Resources Programs Support Member Center Q@
Certificates, Identifiers & Profiles Abhishek Mishra =
i05 Apps " i0S App IDs @ a
¥ Certificates 33 App IDs Total
All Name - [+
Pending ARTanks uk.co.asmtechnology.artanks
Davriopment AlienFire uk.co.asmtechnology.alienfire

clients.britishgas.me

uk.co.asmtechnology.divofficelunch

ElectionDay com.asmtechnology_electionday
Pass Type IDs
Website Push 1Ds FTP uk.co.asmtechnology.fitthepleces
ICloud Containers FTPSpain uk.co.asmtechnology.ftpspain
App Groups Gallery3D uk.co.asmiechnology,Gallery30D
Merchant IDs :
Gallery3D PhotoOfTheDay Widget ApplD uk.co.asmtechnology.Gallery3D.PhatoOf TheDay
.| Devices GameOf com.asmtechnology.numbergame

Provide a descriptive name of the new App ID in the Name field and select Team ID in the App ID

prefix drop-down. Select the Explicit App ID radio button under the App ID suffix section and

provide a unique identifier in the Bundle ID field that ends in the name of the Xcode project you are

going to create (or have created).

Typically, you create this identifier by combining the r

everse-domain name of your website

and the name of your Xcode project. For example, the project created in this lesson is called
SwiftCloudTest and the bundle identifier specified is com.wileybook.CloudTest. Your browser

window should resemble Figure 24-5.

300 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

o0 e < lim & Apple Inc & 4]] ul +
Al P
RRGIaUps App ID Description
Merchant IDs
D e Name: Swift iCloud Test
VI
i You cannot use special characters such as @, &, *, %, °

All

Apple TV

Apple Watch App ID Prefix

iPad

iPhone Value: msamvamves (Tesm 10) [

iPod Touch

1 Provisioning Profiles AD[J ID Suffix

All

Development © Explicit App ID

Distribution If you plan to incorporate app services such as Game Center, In-App Purchase, Data
Protection, and iCloud, or want a provisioning profile unique to a single app, you must
register an explicit App 1D for your app.
To create an explicit App D, enter a unique string in the Bundle ID field. This string
should match the Bundle ID of your app.

Bundle ID: comwileybook swifteloudtest
We recommend using a reverse-domain name style string (i.e.,
com.domainname.appname). It cannot contain an asterisk (*).
Wildcard App ID
This allows you to use a single App ID to match multiple apps. To create a wildcard App
ID, enter an asterisk (*) as the last digit in the Bundle ID field.
FIGURE 24-5

Scroll down to reveal the App Services section and ensure the iCloud checkbox is selected and the
Compatible with Xcode 5 option is selected (see Figure 24-6).

Preparing to Use the iCloud Storage APIs | 301

one < 0 & Apple inc v, 0 & O

|T|_

App Services

Select the services you would like to enable in your app. You can edit your choices after this
App 1D has been registered.

Enable Services: App Groups
Associated Domains
Data Protection

Game Center

Healthkit

Homekit

Wireless Accessory Configuration
Apple Pay

s 1Cloud
© Compatible with Xcode 5

Include Cloudkit support
{requires Xcode &)
4 In-App Purchase
Inter-App Audio
Passhook
Push Notifications
WPN Configuration & Control

o

Copyright © 2015 Appde Inc. All rights reserved, Tarma of Use Privacy Policy

FIGURE 24-6

Click the Continue button to proceed. You will be presented with a summary of the App ID infor-
mation (see Figure 24-7). Click on Submit to finish creating the App ID.

302 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

o8® < im]

W EnETs
App IDs
Pass Type IDs
Website Push IDs
ICloud Containers
App Groups

Merchant IDs

& Apple Inc

To complete the registration of this App 1D, make sure your App ID information is correct, and

click the submit button.

App ID Description:
Identifier:

App Groups:

Swift iCloud Test

R53MVZMVHS.com.wileybook.swiftcloudtest

Disabled

[Devices Associated Domains: Disabled
M Data Protection: Disabled
Apple TV

Game Center: @ Enabled
Apple Watch
HealthKit: Disabled
iPad
iPhone Homekit: Disabled
iPod Touch Wireless Accessory Configuration: Disabled
Provisioning Profiles iCloud: ® Enabled
All In-App Purchase: @ Enabled
Development Inter-App Audio: Disabled
Distribution Apple Pay: Disabled
Passbook: Disabled
Push Notifications: Disabled
VPN Configuration & Control: Disabled
g
FIGURE 24-7

Creating an Appropriate Provisioning Profile

To create a provisioning profile for an iCloud-enabled App ID, click the All link (under the
Provisioning category) in the menu on the left side of the iOS Provisioning Portal window (see

Figure 24-8).

Preparing to Use the iCloud Storage APIs | 303

ene < > m

& Apple Inc.

¢ a

o I

© App IDs

% Pass Type IDs

@ Website Push IDs
» iCloud Containers
o App Groups

% Merchant IDs

[] Devices
= Al
= Apple TV
o Apple Watch
® iPad
» iPhone

@ iPod Touch

Provisioning Profiles
= All

o Developmen

ElectionDay

FTP

FTPSpain

Gallery3D

Gallery3D PhotoOfTheDay Widget ApplD
GameOfNumbers

Generic Client Project

Gopher Attack

JobSeeker

LiteraryGenius

MonkeyCandy
MusicQubed Robbie Test
SuperGolf

Swift iCloud Test

com.asmiechnology.electionday

uk.co.asmtechnology. e

uk.co.asmiechnology.fipspain
uk.co.asmtechnalogy.Gallery3D
uk.co.asmtechnalogy.Gallery3D.PhotoOfTheDay

cam.asmtechnol E

com.asmtechnology.clientproject

uk.co. hnal t kK

com.asmtechnology. jobseeker
uk.co.asmtechnology.trivia
uk.co.asmtechnology. mankeycandy
uk.co.asmtechnalogy.robbie
com.asmtechnology.supergolf

com.wileybook. swiftcloudrest

“ Distribution
Tring com.asmtechnology.tring
Tringinfo com.asmtechnology.tringinfo
TrollBridge uk.co.asmtechnology.trollbridge
‘W52014 Presentation ApplD com.asmtechnology.W52014Alpha
Wildcard App 1D 2 uk.co.asmtechnology.”
Copyright £ 2015 Apple Inc. All rights reserved. Terms of Use Privacy Palicy
FIGURE 24-8

Click the New Profile button on the top-right side (see Figure 24-9).

Certificates, Identifiers & Profiles

Abhishek Mishra =

105 Apps

W Certificates

= oAl

= Danclinn

Name A Type

i0S Provisioning Profiles

FIGURE 24-9

304 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

You will be asked to choose between a development or distribution provisioning profile. A distribu-
tion provisioning profile is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure 24-10).

e e < im] & Apple Inc ¢ (4] i =)

o — = i®
All
Pending @‘)
s et What type of provisioning profile do you need?
Production T
2 Identifiers
App IDs Development

Pass Type IDs
© i0S App Development
Webshe Push [0 Create a provisioning profile to install development apps on test devices.

iCloud Containers

App Groups
Merchant IDs 3 : i
Distribution
|, Devices
i App Store
Create a distribution provisioning profile to submit your app to the App Store.
Apple TV
Apple Watch Ad Hoc
= Create a distribution provisioning profile to install your appona limited number of registered
oo devices,
iPhone
Pod Touch

| Provisioning Profiles
All

Development

Distribution Cancel m

FIGURE 24-10

A development provisioning profile ties together three pieces of information:
> Asingle App ID
> One or more public keys

> A list of test device IDs

Preparing to Use the iCloud Storage APIs

| 305

The next step requires you to select an App ID that will be associated with this provisioning profile.
Select the iCloud-enabled App ID you have created (see Figure 24-11) and click Continue.

eee < > M
All
Pending
Development

Production

| Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Croups

Merchant IDs

. Devices
All
Apple TV
Apple Warch
iPad
iPhone

iPod Touch

Provisioning Profiles
All
Development

Distribution

C

& Apple Inc o (4]

tg Select App ID.

PROV

If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,
or want a Bundle ID unique to a single app, use an explicit App ID. If you want to create one
provisioning profile for multiple apps or don't need a specific Bundle |D, select a wildcard
App D, Wildcard App IDs use an asterisk (*) as the last digit in the Bundle |D field. Please
note that i0S App 1Ds and Mac App 1Ds cannot be used interchangeably.

App ID; | Swift iCloud Test (RE3MYZMVHS. com.wileybook swittcloudtest) B

Cancel Back Continue

FIGURE 24-11

Select one or more development certificates that will be included in the profile. You must make sure
to sign the app in Xcode using one of the certificates you select here. Select a suitable certificate and
click Continue (see Figure 24-12).

306 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

] 8 < im] & Apple Inc & (4] i) ol e
= = .t
All
Y
Pending ﬁn
Select certificates.
Development PROV
Production

m/ Identifiers
Select the certificates you wish to include in this provisioning profile. To use this profile to
install an app, the certificate the app was signed with must be included.

App IDs
Pass Type IDs
Website Push IDs select All 1 of 1 feens) selected

iCloud Containers
@ Abhishek Mishra (i05 Development)
App Groups

Merchant IDs

.. Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

. Provisioning Profiles
Al

Development

FIGURE 24-12

Next, you must select one or more devices that will be included in this provisioning profile. The cor-
responding identifiers for these devices must be registered with your development account. Your app
will only be testable on these devices (see Figure 24-13).

0 Identifiers
App IDs
Pass Type [Ds
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

L. Devices
Al
Apple TV
Apple Watch
iPad

iPhane

iPod Touch

Provisioning Profiles
All
Development

Distribution

L

Select the devices you wish to include in this provisioning profile. To install an app signed with

this profile on a device, the device must be included.

[<

e

8 0 8 3 @ O

a

Select All

Abby's iPad mini retina
Abby's iPhones

Abbys IPad2 16G8
Abbys iPhone & Plus
Abhishek's iPhone

Kent Humphries's iPhone
Sameer’s [Phone 45
Sameer’s iPhone G+
Sanam's iPad Mini retina

Sonam's iPhone 45

Back

11 of 11 itemis) selected

Preparing to Use the iCloud Storage APIs | 307
8 < im & Apple Inc ¢ (4] t ul +
Al o o —— — I
Pending 714
@‘ Select devices.
Development ROV
Production

FIGURE 24-13

The final step involves providing a suitable name for the profile and clicking the Generate button.
When the profile is created, you will be provided an option to download it onto your computer (see

Figure 24-14).

308 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

] 8 < im) & Apple Inc of (4] Juil =) =
Certificates, Identifiers & Profiles Abhishek Mishra *
i0S Apps - Add i0S Provisioning Profile 7A=Y
¥ Certificates Select Type Configure Generate Download
Al
Pending @
Your provisioning profile is ready.
Development o P gp Y

Production

0 Identifiers
Al 1D
pp- s Download and Install
Pass Type IDs Download and double click the following file to install your Provisioning Profile.
Website Push IDs

iCloud Caontainers
Name: Swift iCloud Test Dev Profile

App G -
PRI i Type: i05% Development
Merchant IDs App ID: R53MVZMVHS.com wileybook.swiftcloudtest
PROV Expires: Aug 10, 2016
| Devices
All
Apple TV
Apple Watch

iPad E
Documentation

iFhone For more information on using and managing your Provisioning Profile read:

iPod Touch App Distribution Guide

FIGURE 24-14

If you were to now click the All link under the Provisioning section on the left side menu, you should
see an entry for the new profile in the list of available profiles. You can also download a provision-
ing profile from this list.

Once the profile has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Enabling Appropriate Entitlements in Your Xcode Project

Create a new project in Xcode using one of the standard iOS application templates. In the

Project Options dialog box, make sure you provide the correct value for the Product Name and
Organization Identifier fields so as to create the same App ID that was registered on the iOS
Provisioning Portal. If, for instance, the App ID you registered was com.wileybook.swiftcloud-
test, use swiftcloudtest for the Product Name field and com.wileybook for the Company
Identifier field.

Applications that use iCloud must be signed with iCloud-specific entitlements. These entitlements
ensure that only your applications can access the documents that they create. To enable entitlements,
select the project’s root node in the project navigator and the appropriate build target. Ensure the

Checking for Service Availability | 309

Capabilities tab is selected. Locate the iCloud node and enable it. You may be asked to provide your
iOS developer accounts credentials when you enable the iCloud entitlement. Because this lesson

is about iCloud document storage, ensure the iCloud Documents checkbox is checked (see Figure
24-15).

o2e » A S.st @ Phone & SwiftCloudTest: Ready | Today at 20:17 = @00
BRAQAA@S=Z=o 8 8| & swinCloudTest

[+] Genegdl Resource Tags Infe Build Settings Build Phases Build Rules

v

wiftCloudTast
i tCloudTes:) PROJECT
L] swittCloudTest.entitlements v ICloud 3 |
" = SwinCloudTest
2 AppDelegete swilt
TARG

= ViewController, swift

: Services: By -valiE STms
Main storyboard 1 A SwiftCloudTest
Y 4 ICloud Documents)
Assets xcassets Cloudkit
LaunchScresn. storyboard

info.plist Containers: @ Use default container
L5 Products Specify custom containers

iCloud.com.wileybook. swiftcloudtest |

CloudKit Dashboard

» | push Notifications | oFF |
> . Game Center m
(3 * Wallet
» T Apple Pay m
+ | € DE||+ - € »i In-App Purchase

FIGURE 24-15

CHECKING FOR SERVICE AVAILABILITY

If your application intends to make use of the iCloud Storage APIs, you must ensure that the service
is available to the application. This may not necessarily be the case if, for example, the user has not
set up iCloud on the device.

To check for service availability, use the URLForUbiquityContainerIdentifier () method of the
NSFileManager class. This method requires one string parameter that specifies a container identi-
fier that your application uses.

If this method succeeds, the return value is an NSURL instance that identifies the container directory. If
the method fails, the return value is nil.

If your application uses only one container identifier, or you want to use the main container identi-
fier for the application, pass nil for the parameter. If your application accesses multiple containers,
you must call this method for each container identifier to ensure you have access to each container.
The following code snippet shows how to use this method for the main container identifier:

310

| LESSON 24 INTRODUCTION TO ICLOUD STORAGE

let folderURL =
NSFileManager.defaultManager () .URLForUbiquityContainerIdentifier (nil)

if let unwrappedFolderURL = folderURL {
// cloud access is available
}

else {
// cloud access is not available.
}

USING ICLOUD DOCUMENT STORAGE

Any file stored by your application on iCloud must be managed by a file presenter object. A file pre-
senter is an object that implements the NSFilePresenter protocol. Essentially, a file presenter acts
as an agent for a file. Before an external source can change the file, the file presenter for the file is
notified. When your app wants to change the file, it must lock the file by making its changes through
a file coordinator object. A file coordinator object is an instance of the NSFileCoordinator class.

The simplest way to incorporate file presenters and coordinators in your application is to have your
data classes (also known as model classes) subclass UTDocument. The UIDocument class implements
the methods of the NSFilePresenter protocol and handles all of the file-related management. At the
most basic level, you will need to override two UIDocument methods:

public func loadFromContents (contents: AnyObject,
ofType typeName: String?) throws

public func contentsForType (typeName: String) throws -> AnyObject

The 1loadFromContents (contents, ofType) method is overridden by your UTbocument subclass
and is called when the application needs to read data into its data model.

The first parameter of this method, contents, encapsulates the document data to be read. In the
case of flat files, contents is an instance of an NSpata object. It can also be an NSFileWrapper
instance if the data being read corresponds to a file package. The typeName parameter indicates the
file type of the document.

If you cannot load the document for some reason, you should throw an exception encapsulating the
reason for failure.

The contentsForType () method is also overridden by your UIbocument subclass and is called
when the application saves data to a file. This method must return an NSData instance that will be
written to the file. If you cannot return an NSData instance for some reason, you throw an exception
that encapsulates the reason for failure.

The following code presents a simple UIDocument subclass called swiftCcloudTestDocument. The
example assumes that the application where this class is used has a rather simple data model consist-
ing of a single string instance.

import UIKit

enum DocumentReadError: ErrorType {

Using iCloud Document Storage | 311

case InvalidInput

}

enum DocumentWriteError: ErrorType {
case NoContentToSave

class SwiftCloudTestDocument: UIDocument {
var documentContents:String?

override init (fileURL url: NSURL)
super.init (fileURL: url)
}

override func loadFromContents (contents: AnyObject,
ofType typeName: String?) throws {

if let castedContents = contents as? NSData {
documentContents = NSString(data: castedContents,
encoding: NSUTF8StringEncoding) as? String

}

else {
documentContents = nil
throw DocumentReadError.InvalidInput

}

override func contentsForType (typeName: String) throws -> AnyObject {

if documentContents == nil {
throw DocumentWriteError.NoContentToSave

return documentContents!.dataUsingEncoding (NSUTF8StringEncoding) !

Creating a New iCloud Document

To create a new document, initialize an instance of your UIDocument subclass by using the
init (fileURL url: NSURL)initializer and then call saveToURL (url, saveOperation, comple-
tionHandler) on the instance.

The initializer requires a single NSURL parameter that identifies the location where document data is
to be written. This URL is usually composed by appending a filename in the Documents subdirec-
tory to the path to an iCloud container. For instance, to create a new document on iCloud called
phoneNumber . txt, you could use the following snippet:

let containerURL =
NSFileManager.defaultManager () .URLForUbiquityContainerIdentifier (nil)

312

LESSON 24 INTRODUCTION TO ICLOUD STORAGE

let documentDirectoryURL = containerURL!.URLByAppendingPathComponent ("Documents")

let documentURL =
documentDirectoryURL.URLByAppendingPathComponent ("phoneNumber.txt")

let cloudDocument :SwiftCloudTestDocument =
SwiftCloudTestDocument (fileURL: documentURL)

cloudDocument . saveToURL (cloudDocument . fi1eURL,
forSaveOperation: UIDocumentSaveOperation.ForCreating) {
(Bool success) -> Void in
if (success) {
// document was created successfully.
}

The saveToURL (url, saveOperation, completionHandler)method is described later in this
lesson.

Opening an Existing Document

To open an existing document, allocate and initialize an instance of your UIDocument subclass and
call openwithCompletionHandler () on the instance. For example, you could open a file called
phoneNumbers . txt from iCloud using the following snippet:

let containerURL =
NSFileManager.defaultManager () .URLForUbiquityContainerIdentifier (nil)

let documentDirectoryURL = containerURL!.URLByAppendingPathComponent ("Documents")

let documentURL =
documentDirectoryURL.URLByAppendingPathComponent ("phoneNumber.txt")

let cloudDocument:SwiftCloudTestDocument =
SwiftCloudTestDocument (fileURL: documentURL)

cloudDocument .openWithCompletionHandler {
(BOOL success) -> Void in

if (success)

// cloud document opened successfully!

Saving a Document

Once you have an instance of a UIDocument subclass, saving it to iCloud is simply a matter of call-

ing the saveToURL (url, saveOperation, completionHandler) method on it. The first parameter
to this method is an NSURL instance that contains the target URL. You can compose this URL in the

same manner as when you instantiated your UIDocument subclass.

Using iCloud Document Storage | 313

If, however, you want to retrieve the URL corresponding to an existing UIDocument subclass,
simply use the £i1eURL property of the subclass. Thus, if cloudDocument is an instance of a
UIDocument subclass, you can retrieve the URL used when it was instantiated using the following
code:

Let documentURL = cloudDocument.fileURL

The second parameter is a constant that is used to indicate whether the document contents are being
saved for the first time, or overwritten. It can be either of:

> UIDocumentSaveOperation.ForCreating

> UIDocumentSaveOperation.ForOverwriting

The third parameter is a block completion handler.

NOTE For more information on the UlDocument class, refer to the UIDocument
Class reference, available at:

https://developer.apple.com/library/prerelease/ios/documentation/
UIKit/Reference/UIDocument Class/index.html.

Searching for Documents on iCloud

Often, you will need to search iCloud container directories for documents. To do this, you need to
create a search query using an NSMetadataQuery instance, set up an appropriate search filter, and
execute the query.

Queries have two phases: an initial search phase and a second live-update phase. During the live-
update phase, updated results are typically available once every second. The following code snippet
builds a search query:

let searchQuery:NSMetadataQuery = NSMetadataQuery ()
searchQuery.searchScopes = [NSMetadataQueryUbiquitousDocumentsScopel] ;

The searchsScopes property allows you to specify an array of directory strings over which the
search should execute. To specify the iCloud container folder as the search target, you provide an
Array instance with a single object:

NSMetadataQueryUbiquitousDocumentsScope

Before you can execute the query, you need to specify a search filter. Search filters are also known
as predicates and are instances of the NSpredicate class. The following code snippet creates an
NSPredicate instance that filters out a file with a specific name:

let documentFileName = "cloudDocument.txt"

let predicate = NSPredicate(format: "$K == %@",
argumentArray: [NSMetadataItemFSNameKey, documentFileName])

https://developer.apple.com/library/prerelease/ios/documentation
https://developer.apple.com/library/prerelease/ios/documentation/UIKit/Reference/UIDocument_Class/index.html

314 |

LESSON 24 INTRODUCTION TO ICLOUD STORAGE

To apply the predicate to the search query, use the predicate property on the NSMetadataQuery
instance:

searchQuery.predicate = predicate

Search queries execute asynchronously. When the query has finished gathering results, your applica-
tion will receive the NSMetadataQueryDidFinishGatheringNotification notification message.
Use the following code snippet to set up a method in your code called queryDidFinish () to be
called when this notification is received:

NSNotificationCenter.defaultCenter () .addObserver (self,

selector: "queryDidFinish:",

name: NSMetadataQueryDidFinishGatheringNotification ,
object: searchQuery)

Finally, to start the query, call the startQuery method of the NSMetadataQuery instance:

searchQuery.startQuery ()

When you receive the notification message, you can find out the number of results returned by the
search by querying the resultCount property of the NSMetadataQuery instance:

let numResults = searchQuery.resultCount

To retrieve an NSURL instance for each result returned by the search query, you can use a simple for
loop:

for (var resultIndex = 0; resultIndex < numResults; resultIndex++)

{

let item:NSMetadataItem? = searchQuery.results[resultIndex] as?
NSMetadatalItem

if let unwrappedItem = item {
let url = unwrappedItem.valueForAttribute (NSMetadataltemURLKey)
}

If you do not want the search query to continue returning results, use the following code snippet to
stop it:

searchQuery.disableUpdates ()
searchQuery.stopQuery ()

The Try It section for this lesson contains a simple project that uses an NSMetadataQuery instance
to find a document on iCloud and then proceeds to open it.

Trylt | 315

NOTE For more information on the NSMetadataQuery class, refer to the
NSMetadataQuery Class Reference, available at:

https://developer.apple.com/library/prerelease/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSMetadataQuery Class/.

For more information on the NSPredicate class, refer to the NSPredicate Class
Reference available at:

https://developer.apple.com/library/prerelease/mac/documentation/
Cocoa/Reference/Foundation/Classes/NSPredicate Class/index.html.

TRY IT

In this Try It, you build a new Xcode project based on the Single View Application template called
SwiftCloudTest. In this application, you create a simple text document called cloudDocument
.txt and store it on iCloud. This document can then be edited across multiple copies of the applica-
tion running on different iOS devices.

Lesson Requirements
> Create a new Universal application project based on the Single View Application template.
> Register the App ID with the iOS Provisioning Portal.
> Create a development provisioning profile.
> Download and install the development provisioning profile.
> Create a simple user interface that consists of a UTButton instance, a UTLabel instance, and

a UITextView instance.

Create a data class that subclasses UIDocument.

\

Check iCloud service availability in the viewDidLoad method of the view controller class.

Load an existing document stored on iCloud. If the document does not exist, create a
new one.

> Implement code to save the document on iCloud when a button is tapped.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

https://developer.apple.com/library/prerelease/ios/documentation
https://developer.apple.com/library/prerelease/mac/documentation
http://www.wrox.com/go
https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/
https://developer.apple.com/library/prerelease/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/index.html

316 | LESSON 24

INTRODUCTION TO ICLOUD STORAGE

Hints

To make best use of this application, you will need at least two iOS devices set up to use the
same iCloud account.

You must ensure iCloud has been set up on each test device.

Testing your apps on iOS devices is covered in Appendix A.

Step-by-Step

>

Create a Single View Application in Xcode called swiftcloudTest.

1.
2.
3.

4.

Launch Xcode and create a new application by selecting File = New = Project.
Select the Single View Application template from the list of iOS project templates.
In the project options screen, use the following values:
> Product Name: SwiftCloudTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: Universal
Use Core Data: Unchecked
Include UI Tests: Unchecked
> Include Unit Tests: Unchecked

Y Y VY Y Y Y

Save the project onto your hard disk.

Register an App ID with the iOS Provisioning Portal.

1.

2.

Log in to the iOS Provisioning Portal, and register a new App ID with the following
details:

> Description: SwiftCloudTest AppID
> Bundle Seed ID: Use Team ID
> Bundle Identifier: com.wileybook.SwiftCloudTest

Enable the App ID to use with iCloud. This process is covered in the section titled
“Creating an iCloud-Enabled App ID” earlier in this lesson.

Create a development provisioning profile using the App ID created in the previous step.

1.

The process of creating the provisioning profile is covered in the section titled “Creating
an Appropriate Provisioning Profile” earlier in this lesson. Follow those instructions to
create a development provisioning profile called Swift Cloud Test Development Profile.

Download and install the provisioning profile by double-clicking on the profile after it
has been downloaded to your computer.

Trylt | 317

>

Enable iCloud-specific entitlements for the application target.

1.

2.

Select the project’s root node in the project navigator and select the appropriate build

target. Ensure the Capabilities tab is selected. Scroll down to the iCloud option and
enable it.

Once the iCloud entitlement has been enabled, ensure the iCloud Documents checkbox

has been checked

Create a UIDocument subclass.

1.

Right-click your project’s root node in the project navigator and select New File from
the context menu.

Select the Swift file template and click Next.
Name the class SwiftCloudTestDocument and click Create.

Replace the contents of the swiftCloudTestDocument .swift file with the following:
import UIKit

enum DocumentReadError: ErrorType {
case InvalidInput

enum DocumentWriteError: ErrorType {
case NoContentToSave

class SwiftCloudTestDocument: UIDocument {
var documentContents:String?
override init (fileURL url: NSURL) {

super.init (£ileURL: url)
}

override func loadFromContents (contents: AnyObject,
ofType typeName: String?) throws {

if let castedContents = contents as? NSData {
documentContents = NSString(data: castedContents,
encoding: NSUTF8StringEncoding) as? String

NSNotificationCenter.defaultCenter () .
postNotificationName ("refreshDocumentPreview",
object: self)

else {

documentContents = nil
throw DocumentReadError.InvalidInput

}

override func contentsForType (typeName: String)

318

LESSON 24 INTRODUCTION TO ICLOUD STORAGE

}

throws -> AnyObject {

if documentContents == nil {
throw DocumentWriteError.NoContentToSave

return documentContents!.dataUsingEncoding (NSUTF8StringEncoding) !

Recall that the 1oadFromcontents () method is called when a document must be loaded
from a file. In case of iCloud documents, this method is also called automatically when the
contents of the file have changed. This will typically happen when the file was edited by
another copy of the application.

In the preceding implementation, in addition to loading the contents of the file into member
variables of the swiftCloudTestDocument class, you also send out an application-wide
notification called refreshDocumentPreview.

The view controller class listens for these notifications, and treats the arrival of one as a cue
to update the user interface.

> Create a simple user interface with Interface Builder.

1. Open the storyboard file and use the Object library to drag and drop a label, button,
and text view onto the default scene.

2. Select the label and display the Pin constraints popup. Ensure the Constrain to margins
options is unchecked and Update Frames is set to None. Create the following layout

constraints:
> Left: 20
> Right: 20
> Top: 20
>

Height: 21

. elect the button and display the Pin constraints popup. Ensure the Constrain to mar-

3. Select the butt d display the P traints popup. E the Constrain t
gins options is unchecked and Update Frames is set to None. Create the following lay-
out constraints:

>

>

>

>

Left: 20
Right: 20
Top: 20
Height: 30

4. Select the text view and the Pin constraints popup. Ensure the Constrain to margins
options is unchecked and Update Frames is set to All Frames in Container. Create the
following layout constraints:

>

>

Left: 20
Right: 20

Trylt | 319

N o w

O o

> Top: 20

> Bottom: 20

Double-click the button in the scene and change its title to Save Document.
. Change the background color of the button to a shade of gray.

Use the assistant editor to create an outlet called serviceStatus in the

. Use the Attribute inspector to set the text property of the label to iCloud Service Status.

Use the Attribute inspector to set the Alignment property of the label to center.

ViewController class and connect it to the UILabel instance in the default scene.

Use the assistant editor to create an outlet called documentContentView in the

ViewController class and connect it to the UITextView instance in the default scene.

11.

Use the assistant editor to create an action method called onSaveDocument in the

ViewController class and connect it to the Touch Up Inside event of the UIButton
instance in the default scene.

Your storyboard should resemble Figure 24-16.

* »

L]
AR L
v & switCloudTest
¥ [SwiftCloud Test
] swittCioudTast antittemants
2 ApaDelegsle.swift

2 ViewContralier.swift

B Assets rcassols
LaunchSerean storyboard
Infoplist

s SwiftCloudTestDocument sit

» [Products

Ay SWINtCloudTast |) Phone 6

< & SwiftCloudTest

¥ [F] view Controller Scane

v

View Controfer
Tap Layaut Guide
Bottom Layout Guide
v [View
* L Service Status
4 Save Document
* (B constraints
Documnent Cortent View
» [canstraints
@ First Aespander
[Exit
Eroryboard Entry Point

SwiftCloud Test: Ready | Today a1 18:58

SwinCloudTest Main storybosrd Main storyDoard (Basel | B View Contraller Scere View Controbier Wien

® B

iCloud Service Status:
|

40l
Save Document
F
|

Lorem ipsum daobor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do
eiusmod tempaor incididunt ut labare et dolore magna aliqua. Uit enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisl ut aliquip ex ea commodo
congsequat. Duls aute inure dolor In reprehenderit in voluptate velit esse cillum dolore

eu fugiat nulla pariatur. Excepteur sint cccaecat cupidatat non proident, sunt in culpa

qui officia deserunt mollit anim id est laborum. Nam liber te conscient to factor tum
poen legum odiogue civiuda,

n wAny FANY

@

Ei=ln]

W Save Docusment

3

BB o

FIGURE 24-16

>

Edit the ViewController.

swift file.

320 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

1. Add the following member variable declarations to the class:

var cloudServicesAreAvailable:Bool?
var cloudDocument:SwiftCloudTestDocument?
var searchQuery:NSMetadataQuery?

2. Update the implementation of the viewdidLoad method to resemble the following:

override func viewDidLoad() {
super.viewDidLoad ()
documentContentView.text = ""

// register this class as an observer for the 'refreshDocumentPreview'
// notification, this notification is sent by the document class when
// the contents of the document have ben updated.
NSNotificationCenter.defaultCenter () .addObserver (self,

selector: "refreshDocumentPreview:",

name: "refreshDocumentPreview"

object: nil)

// check if cloud services are available.
let containerURL =
NSFileManager.defaultManager () .URLForUbiquityContainerIdentifier (nil)

if containerURL != nil ({
self.cloudServicesAreAvailable = true
serviceStatus.text = "Cloud Service Status: Available"

// load existing document, or create a new document

loadDocument ()
else {
self.cloudServicesAreAvailable = false
serviceStatus.text = "Cloud Service Status: Not Available"

let alert = UIAlertController(title: "Error",
message: "iCloud has not been setup on this device!",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

}

In this method, you check if the iCloud service is available, and if it is, then proceed to
load a specific document from iCloud.

3. Implement the deinit method in your viewController class as follows:

deinit {

Trylt | 321

if cloudDocument != nil {
cloudDocument?.closeWithCompletionHandler (nil)
}

NSNotificationCenter.defaultCenter () .removeObserver (self)

}

4. Add a new method called 1oadpocument method as follows:

func loadDocument () {
// search for cloudDocument.txt
searchQuery = NSMetadataQuery ()

searchQuery!.searchScopes = [NSMetadataQueryUbiquitousDocumentsScopel] ;
let documentFileName = "cloudDocument.txt"
let predicate = NSPredicate(format: "%K == %@",

argumentArray: [NSMetadataItemFSNameKey, documentFileNamel])
searchQuery! .predicate = predicate

NSNotificationCenter.defaultCenter () .addObserver (self,
selector: "queryDidFinish:",

name: NSMetadataQueryDidFinishGatheringNotification ,
object: searchQuery)

UIApplication.sharedApplication () .networkActivityIndicatorVisible = true

searchQuery! .startQuery ()

}

These statements instantiate an NSMetadataQuery object to search the Documents

directory in the application’s iCloud container for a file called cloudDocument . txt.
When the query is complete, the queryDidFinish () method of the view controller

class will be called.

5. Implement the querybidrinish () method as follows:

func queryDidFinish (notifcation: NSNotification) {
UIApplication.sharedApplication () .networkActivityIndicatorVisible = false

// stop the query to prevent it from running constantly
searchQuery! .disableUpdates ()
searchQuery! .stopQuery ()

NSNotificationCenter.defaultCenter () .removeObserver (self,
name: NSMetadataQueryDidFinishGatheringNotification,
object: nil)

// this application expects this gquery to return a single
// result. If no documents were found, then create a new
// document and inform the user.
if searchQuery!.resultCount == 0

{

let alert = UIAlertController (title: ",

322 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

message: "iCloud document not found., creating new document!",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

createDocument ()
return

}

// instantiate a SwiftCloudTestDocument instance and
// open the cloud document
if cloudDocument == nil
let item:NSMetadataltem? = searchQuery!.results[0] as?
NSMetadatalItem

if let unwrappedItem = item {
let url = unwrappedItem.valueForAttribute (NSMetadataItemURLKey)
as! NSURL
cloudDocument = SwiftCloudTestDocument (fileURL: url)

}

cloudDocument ! .openWithCompletionHandler {
(BOOL success) -> Void in
if (success) {
let alert = UIAlertController (title: "',
message: "iCloud document loaded!",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

}

else {
let alert = UIAlertController(title: "",
message: "Could not load iCloud document!",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,

Trylt | 323

animated: true,
completion: nil)

}

The preceding implementation first stops the query from running constantly. If the
query did not return any results, it calls the createbocument method of the view
controller class to create a new document on iCloud; otherwise, it loads the existing
document from iCloud.

6. Implement the onsaveDocument () method as follows:
@IBAction func onSaveDocument (sender: AnyObject) {

if cloudDocument == nil {
return
}

documentContentView.resignFirstResponder ()
cloudDocument ! .documentContents = documentContentView.text

cloudDocument ! . saveToURL (cloudDocument ! . £11eURL,
forSaveOperation: UIDocumentSaveOperation.ForCreating) {
(Bool success) -> Void in
if (success) {
self.cloudDocument!.openWithCompletionHandler (nil)
}

}

This method dismisses the keypad, if it is visible, and saves the
SwiftCloudTestDocument object to the iCloud document.

7. Implement the createDocument () method as follows:

func createDocument () {

if self.cloudDocument == nil {
let containerURL =
NSFileManager.defaultManager () .URLForUbiquityContainerIdentifier (nil)

let documentDirectoryURL =
containerURL! .URLByAppendingPathComponent ("Documents")

let documentURL =
documentDirectoryURL.URLByAppendingPathComponent ("cloudDocument.txt")

cloudDocument = SwiftCloudTestDocument (fileURL: documentURL)

}

cloudDocument ! .documentContents = documentContentView.text

cloudDocument ! .saveToURL (cloudDocument ! . £ileURL,
forSaveOperation: UIDocumentSaveOperation.ForCreating) {
(Bool success) -> Void in

324 | LESSON 24 INTRODUCTION TO ICLOUD STORAGE

if (success) {
self.cloudDocument!.openWithCompletionHandler (nil)
}

}

This method is used to create an empty file called cloudDocument . txt on iCloud, and
is used when the loadDocument method could not find a document to load.

8. Implement the refreshpocumentPreview () method as follows:

func refreshDocumentPreview(notifcation: NSNotification) {
documentContentView.text = cloudDocument!.documentContents;

This method is received when the cloudTestDocument object loads data from the
iCloud document cloudDocument . txt. Here, you simply refresh the user interface.

> Test your app on an iOS device.
1. Connect your iOS device to your Mac.
2. Select your device from the Target/Device selector in the Xcode toolbar.

3. Ensure the correct value has been selected for the Code Signing Entity build settings of
the application target (see Figure 24-17).

ece) B A S.est) @B iPhone & SwifiCioudTest: Ready | Today at 10:57 1 = ® <o OO
BRE A s o &8c B |H < & swiftCloudTest
¥ [SwiftClaudTest 0 General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
¥ 1 SwiftCloudTast
[swiftCloudTest.antitlaments PROJECT sasic ([N (EIIIE tevs L a-
s AppDelegate.swift = SwifiCloudTest ¥ Validate Built Product <Muitiple valuess §
B viewController.swif TARGETE Debug e ":\
Main, storyboard o SwiftCloudTest Releass Yes 3
W Assets cassets
LaunchScreen.storyboard ¥ Cads Slgning
Info.plist
= SwiftCloudTestDocument.switt Signing Entitiements
» B Products ¥ Code Signing Identity tiple values> &
Debug © iPhone Developer: Abhishek Mishra (EPERFEHIMD)
Any [0S SDK & Mishra (i
Release iPhone Developer &
Any i0S SDK iPhone Developer o
Code Signing Resource Rules Path
Other Code Signing Flags
Pravisianing Profile Swilt iCloud Test Dev Profile 5
Additional Strip Flags
Alternate Install Group statf
Alternate Install Dwnes abhishekmishra
Alternate Install Perméssions W E0-W, 84T
Aiternate Permissions Files
Deplayment Location No 3
Deplayment Postprocessing No &
Install Group staff
Install Cwner abhishekmishra
Install Permissions W E0-W,a4 T
Installation Bulld Products Locatlon Nmip/SwiftCloudTest.dst
Installation Directory fApplications
= OHl|l+ - @ 05 X Deployment Target]

FIGURE 24-17

Trylt | 325

4. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project >
Run menu item.

5. When you run the application for the first time, you will see a message similar to
Figure 25-16, telling you that a new iCloud document is going to be created for you.

6. Type some text into the text view and tap the Save Document button.

7. If you now run this application on a different device, you will get a message telling you
that an existing iCloud document has been opened.

REFERENCE To see some of the examples from this lesson, watch the Lesson 24
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

25

Introduction to CloudKit

In Lesson 24, you learned how to create an app that could store documents on iCloud and
access these documents across different devices. In this lesson, you learn about CloudKit,
which is a set of APIs that allow you to move structured data between your app and iCloud.
Whereas iCloud document storage operates on files, CloudKit operates on dictionaries of key-
value pairs called records. To use a relational database analogy, a record is similar to a row in
a table.

CloudKit also allows relationships between records. You may be tempted to use CloudKit to
replace CoreData in your application, but these two technologies complement each other and
are not meant to replace each other. CoreData is concerned with storing model objects locally;
CloudKit is concerned with moving some of the data in these model objects to iCloud so that
they can be accessed by other instances of your application.

When using CloudKit, your application decides when to move data to and from iCloud. The
process is not automatic. It is possible to configure iCloud to inform your application when
changes occur; your application will still need to fetch those changes. In this lesson, you will
look at some of the key concepts involved in building iOS applications with CloudKit.

CONTAINERS, DATABASES, AND RECORDS

Data in iCloud is organized into containers. Containers are represented by instances of
CKContainer objects and every iCloud enabled app has at least one container called the
default container, the identifier of which is the same as that of the app. Conceptually, you can
think of a container to represent storage space for your app on iCloud.

When you add iCloud entitlements in your Xcode project, Xcode adds the identifier for the
app’s default container to the project (see Figure 25-1).

328 | LESSON 25 INTRODUCTION TO CLOUDKIT

ere » = A eloudkiiphatos | i IPhone 8 chondknphatos: Ready | Today a1 0BAS @i D
BREaf &= o B @ & clouditphotos []
o § . ” -
¥ Lo dloudkiphaics [m] Ganers’ Pescurce Tags Il Build Settings Bulld Phsses Build Rules st
» 38 Cloudhit framework
81 Couslit ramew ——)
¥ 8 cloudidtphetos v iclsus [on | No Quick Help
B cioudiitphotos
[2] cloustvitphotos. entaiemants
: AppDelegate switt TAROETE
Services: | Key-value siorage
+ ViewConiralhu swil ¢ clouchitphetos ;i
iCloud Documents

Main starybaand B Clousit

Assetsacassets
Covnainers: @

Infa.pilst
cloudiitphotos.scdatamadeid
* 0 Products

ICiaud.comwileybooic cloudkiphotes

Ciougkit Dashboard

LLLL

O O6E
» | " Push Notiticatisns | oFF |
| Game Cunter =
No Matches
! wallar |oFF |
T Apale Pay | oFF |
(@ o+ — @ = In-Apa Purchase | oFF |

FIGURE 25-1

You have the option to add other container identifiers, which is something you would do if you
wanted to perhaps share data between a group of applications you have developed. Multiple con-
tainer identifiers are outside the scope of this lesson.

To obtain a reference to the default container for your app, simply use the defaultContainer class
method of the ckContainer class:

let defaultContainer = CKContainer.defaultContainer ()

Each Container contains a public database and multiple private databases (there is one private data-
base per user of your app). Databases are represented by instances of CkDatabase objects. Data in a
private database is only visible to the user who created it. Data in a public database is visible to all
users of the app.

You can retrieve a CkDatabase instance for the public or private database using the publiccloud-
Database () or privateCloudDatabase () instance methods of CKContainer:

let privateDatabase:CKDatabase = CKContainer.defaultContainer ().
privateCloudDatabase

let publicDatabase:CKDatabase = CKContainer.defaultContainer () .publicCloudDatabase

At runtime, all the data in the public database will always be readable by your app, even if there is
no active iCloud account on the device. However, a user must set up an iCloud account in order to
write to public databases or access private databases.

Within databases, your app’s data is grouped into record types. In terms of a relational data-
base analogy, record types are the equivalent of database tables. A record type contains a unique

Containers, Databases, and Records | 329

identifier, a collection of records, and some additional metadata required by CloudKit. A collection
of record types is known as a schema.

A record is an instance of a CKRecord objects and is a dictionary of key-value pairs called fields. A
record is similar to a row in a relational database system. CloudKit requires that a record not exceed
1MB in size, and because of this limitation you should save large files such as images in physical
files, and simply store the file name in the record. Table 25-1 shows the commonly used field types.

TABLE 25-1: CloudKit Field Types

FIELD CLASS DESCRIPTION

Asset CKAsset A large file that is stored separately from the record
Bytes NSData Raw binary data stored within the record
Date/Time NSDate A date/time

Double NSNumber A double

Int NSNumber An integer

Location CLLocation A latitude and longitude pair

Reference CKReference A relationship to a field in another record type
String NSString An immutable string

List NSArray An array of any of the above types

The relationship between containers, databases, and records is shown in Figure 25-2.

ID CAPTION FILENAME

1 The Pub ASSET 1

//ASSET 2

Loco otlve ASSET 3

PRIVATE DATABASE PRIVATE DATABASE
(USER ABC@XYZ.COM) (USER PQR@EFG.COM)

2 London Sun?

Container: com.wileybook.swiftcloudtest
FIGURE 25-2

mailto:PQR@EFG.COM
mailto:ABC@XYZ.COM

330 | LESSON 25 INTRODUCTION TO CLOUDKIT

DEVELOPMENT AND PRODUCTION ENVIRONMENTS

CloudKit provides separate development and production environments for your app’s data. The
development environment is only accessible to members of your development team. When you save a
record to a database in the development environment, CloudKit automatically updates the database
schema by creating the associated record type. This feature is called just-in-time schema and is only
available in the development environment.

In the development environment, you can also use the CloudKit Dashboard to modify the schema
and records. In the production environment, you cannot edit the schema but you can modify indi-
vidual records in the public database.

If you decide to use CloudKit to generate the schema for you, keep in mind that once you add a field
to a record, the data type associated with that field cannot be changed programmatically. It can,
however, be changed from the CloudKit dashboard.

Typically, you use the development environment while developing and testing your app. In fact,
when you run your app from Xcode on a simulator or device, it is automatically configured to use
the development environment.

When you use Xcode to submit your app for review, Xcode will automatically configure the app to
target the production environment prior to submission. When you export an app for testing, you
will be asked to specify either the development or production environment.

Once your app appears to be working fine with the development environment, you will want

to switch over to the production environment prior to submitting the app to the iTunes Store.
Switching over to the production environment will require you to deploy the schema into the pro-
duction environment. Deploying a scheme only copies the record types, and not the individual
records themselves.

The first time you deploy the schema from the development environment to the production envi-
ronment, the schema is copied over to the production environment. The next time you deploy the
schema (because perhaps you modified the schema in the development environment), the schema is
merged with the production schema.

To prevent merge conflicts, CloudKit does not allow you to delete fields or record types in a schema
in the development environment that was previously deployed to the production environment.

The CloudKit Dashboard | 331

THE CLOUDKIT DASHBOARD

The CloudKit dashboard (see Figure 25-3) is a web-based application that allows you to manage
both the schema and the records stored on iCloud by your CloudKit-based applications. You can
access it at https://icloud.developer.apple.com/dashboard/.

& Apple inc v ol N, o5 B

Abhishek Mishra ~

Users
Sep 3 2015 8:21 AM Sap 3 2015 8:21 AM Custom
0 0= 0 bytes

Add Field...

FIGURE 25-3

The features of the dashboard only apply to the currently selected container. You can use the drop-
down combo box located at the top left of the dashboard to switch containers. The dashboard will
only display containers that belong to your Apple developer account.

The rest of this section explores some of the common tasks you are likely to perform with the dash-
board. Keep in mind that some of these tasks can be performed programmatically.

Creating a Record Type

A record type is the equivalent of a table in a relational database. To create a record type, first click
on the Record Types option under the Schema group in the left-hand navigation menu. Next, click
the Add (+) button in the upper-left corner of the detail area (see Figure 25-4).

https://icloud.developer.apple.com/dashboard

332 | LESSON 25 INTRODUCTION TO CLOUDKIT

& Apple inc v OiNhEd o+
Q Abhishek Mishra ~
Users
Sop 3 2016 B:21 AM Sep 3 2015 8:21 AM Custom -
0 0 0 bytes
Addl Field...

FIGURE 25-4

Enter a name for the new record type, and then proceed to add fields to the record type. There is
no limit to the number of fields you can have in a record type. A record type must have at least one
field, and to enforce this the dashboard creates one for you by default (see Figure 25-5).

Abhishek Mishra ~

Photo
Dafault +

a T~ 0 bytas

+ Sort

StringFisid Sitring - W Cuary

' Search

Add Field...

Cancal Save

FIGURE 25-5

Every field must have a unique name, and can have one of the data types listed in Table 25-1. To add
additional fields click the Add Field button. When you have finished creating all the fields, click the
Save button on the bottom right side of the detail area to update the schema.

The CloudKit Dashboard | 333

You can delete a field by clicking the delete (X) button located to the right of the field row (see
Figure 25-6). Deleting a field will remove the field from the record type as well as any records.

art +1056%
address String «F Clusry #1085 ».O

FIGURE 25-6

Deleting a Record Type

To delete a record type, simply select it in the list of record types and click the trash icon in the
upper-left corner of the detail area (see Figure 25-7). Deleting a record type will also delete all
records that are based on the record type. Once a development schema has been deployed to the
production environment, you cannot delete record types.

Photo

rhoto

Sep 3 2015 11,18 AM Sep 3 2016 11:18 AM

Photographer

8 f
Users

FIGURE 25-7

Creating Relationships Between Record Types

Relationships between record types are represented using fields that have the ckrReference data
type. Relationships can be used to express hierarchies in the data and can be both one-to-one or
one-to-many.

A cxreference object encapsulates a record identifier of a target record and is added to the source
record. To add a one-to-one relationship between a source and target record types, add the reference
field to the source record type (see Figure 25-8).

PERSON PASSPORT DETAILS
Source Desti;ation
FIGURE 25-8

When adding a one-to-many relationship between record types in CloudKit, the child object is con-
sidered to be the source of the relationship and the ckreference object is added to the child. This

is illustrated in Figure 25-9 where there is a one-to-many relationship between a record type called
Photographer and a record type called Photo.

334 LESSON 25 INTRODUCTION TO CLOUDKIT

PHOTO PHOTOGRAPHER
Sunset in Dorset Paul P
Castlerigg Stone Circle E E Arthur A
Windermere Destination
Bowness Pier
Derwent Water

Source
FIGURE 25-9

The actual process of adding the field from the CloudKit dashboard is a simple matter of selecting
the correct record type and adding a field, whose type is Reference (see Figure 25-10).

bhishek M 1
Photo
Sep3201511:18 AM Sep 3 2015 11:18 AM Default -
[7 0 bytes
' Sort «105%
dateTaken DataTime
" Cluery +105%
' Sort +106%
fileName String " Cuary +106%
' Search +105%
photoAsest Asset Maona
! Save
FIGURE 25-10

While adding references between two record types, it is advisable to create inverse references from
the destination record type to the source record type as well.

Adding Records

To add a new record to a container, you must first decide which database you want to add the record
to. If you add the record to the public database, the record will be visible to all users of your appli-
cation. If you add the record to the private database, then the record will be added to your private
database (as you are accessing the CloudKit dashboard using your developer account).

The CloudKit Dashboard | 335

Data within the database is grouped into zones. A zone is a logical grouping of the records in the
database; every database starts out with a single zone called the Default zone. Additional zones can

be added.

For certain types of applications, segregating the data in the database by zones may make sense (for
example, zones could represent different business functions within an organization such as finance,
marketing, development, and so on). In the examples created in this lesson, however, all databases
use the default zone.

To add a new record using the dashboard, simply select the Default zone for the public or private
database on the left-hand side navigation menu, select the record type, and click the Add (+) button
in the detail area (see Figure 25-11).

FIGURE 25-11

Type in values for the fields and click the Save button to create the record. When you add a record
from the dashboard, CloudKit automatically creates a unique record identifier for the record, which
is visible in the Record Name attribute in Figure 25-12.

336 | LESSON 25 INTRODUCTION TO CLOUDKIT

apher B Abhishek Mishra ~ | (7

A A Arthur John Alexander

Suehtrl3 e 450 BAAH- A TR LT

abecibiz-Zoes-4506-644 al

atidress 4 Bilton Road, Londan, W 20, LU

name Arthur John Akexandar

photos DelataSal Rafererce

cancel | Save

FIGURE 25-12

If the field type is a reference, then you will have a check box labeled Deleteself visible beside the
field value (see Figure 25-13).

name |_N‘lhuf John Alexander String

photas DelateSelf —

FIGURE 25-13

Enabling the Deleteself option implies that the record you are creating will be automatically
deleted if the referenced record is deleted.

Modifying and Deleting Records

To edit a record, simply select the record from the list of records, enter new values for the fields, and
click Save. To delete a record, use the trash icon located at the upper-left corner of the detail area
(see Figure 25-14).

Photographer ~ gl Abhishek Mishra ~ = (%)

Arthur John Alexander Arthur John Alexander

aGeSEO0. 2eeh450u-5435-aB40IBUT BT

a5echblz-2oas-450e-B446-ad4dfBdTEODT

FIGURE 25-14

The CloudKit Dashboard | 337

Resetting the Development Schema

You can reset the development schema to a previous state by using the Deployment = Reset
Development Environment option (see Figure 25-15).

Deployment

- S

CHANGES TO ROLES

CHANGES TO RECORD TYPES

Photographer Mew Typa

Photo Newd Typa

CHANGES TO SUBSCRIPTION TY]

DEVELOPMENT -

FIGURE 25-15

If you have never deployed your schema to the production environment, resetting the schema results
in all records and record types being deleted from all databases.

If, however, you have deployed your schema previously, then resetting the schema
in the development environment results in all records being deleted and the schema
being restored to the production version.

The Deployment option is only available when you are working in the develop-
ment environment. To find out which environment you are working in (or to

switch to the other environment), use the environment drop-down option at the
bottom-left of the dashboard (see Figure 25-16). FIGURE 25-16

Deploying to Production

Once your app appears to be working fine with the development environment, you will want

to switch over to the production environment prior to submitting the app to the iTunes Store.
Switching over to the production environment will require you to deploy the schema into the pro-
duction environment. Deploying a schema only copies the record types, not the individual records
themselves.

338 | LESSON 25 INTRODUCTION TO CLOUDKIT

To deploy a schema to production, click the Deployment option in the left-hand navigation menu
and then click the Deploy to Production button in the detail area (see Figure 25-17).

Deployment
t ‘ Deploy to Production... ’
CHANGES TO RECORD TYPES CHANGES TO ROLES
Photographer MNew Type
Photo New Type

CHANGES TO SUBSCRIPTION TYPES

FIGURE 25-17

If you have unused indexes, you may get a warning message asking you to either deploy unused
indexes or optimize them. An Index helps to improve the speed of fetching records from the
database.

When you add fields to a record type, CloudKit creates an index for the field. Depending on the type
of field, CloudKid will create indexes for sorting, querying, and searching on that field. In produc-
tion, it is wasteful to store indexes you do not use.

PREPARING TO USE CLOUDKIT

To use the CloudKit APIs in an application, you need to perform three steps:
1. Create an iCloud-enabled App ID.
2. Create an appropriate provisioning profile.

3. Enable appropriate entitlements in your Xcode project.

Create an iCloud-Enabled App ID

To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link on the right side to access the member center.
Within the member center, click the Certificates, Identifiers & Profiles link (see Figure 25-18).

https://developer
https://developer.apple.com/ios

Preparing to Use CloudKit | 339

eae < (o]

& Apple Inc

& Developer

Programs & Add-ons

SDKs

Download the 5DKs and the latest beta software.

g

ertificates, Identifiers & Profiles
Manage your certificates, (dentifiers, devices, and profile
for your apps.

iTunes Connect

Manage your apps published on the App Store and Mac App y
Store

FIGURE 25-18

] O 40 &

E2

Member Center
Hi, Abhishek Mishra | Sign out

Forums

Find answers

and discuss with ather develapers :nd Apple
engineers.

Bug Reporting
Submit bugs or request enhancements to APls and
developer tools

Technical Support
Request technical support with the development of your
app

g

Next, click the Identifiers link in the iOS Apps category on the left side of the page (see Figure 25-19).

ece < i8]

& Apple Inc.

Technologies Resouices

[Developer

Programs

Certificates, Identifiers & Profiles

ii iOS Apps

Certificates

ﬁ Devices

ﬁ Provisioning Profiles

o

Certificates

i Identifiers

Devices
Provisioning Profiles

Learn More

" App Distribution Guide

Learn More

" App Distribution Guide

Suppaort Member Center QR Gantnh Developsr

Abhishak Mishra =

% Safari Extensions

ﬂ Certificates

Learn More
7 Safari Extensions Development Guide

" Safarl Extensions Reference

FIGURE 25-19

340 | LESSON 25

INTRODUCTION TO CLOUDKIT

To create a new App ID, click the New App ID button on the top-right side (see Figure 25-20).

BritishGas Mobile Energy
1]
i tdentiners DIYOfficeLunch
App IDs
ElectionDay
Pass Type IDs

‘Website Push IDs AL
iCloud Containers FTPSpain
Appibrotips Gallery3D

Merchant IDs
Gallery3D PhoteOfTheDay Widget ApplD

L] Devices GameOfNumbers

oLe < M & Apple In (4] t '
‘ DeVElOper Technologies Resources Programs Support Member Center Qs
Certificates, Identifiers & Profiles Abhishek Mishra »
i0S Apps i0S App IDs @ Q
¥ Certificates 33 k_pp 1Ds Total
All Name 1D
Pending ARTanks uk.co.asmtechnology.artanks
LAt AlienFire uk.co.asmtechnology.alienfire
Production

clients.britishgas.me
uk.co.asmtechnology.diyofficelunch
com.asmtechnology.electionday
uk.co.asmtechnology.fitthepieces
uk.co.asmtechnology.fipspain
uk.co.asmtechnology.Gallery3D
uk.co.asmtechnology.Gallery3D.PhotoOfTheDay

com.asmtechnolegy.numbergame

| s

FIGURE 25-20

Provide a descriptive name of the new App ID in the Name field and select Team ID in the App ID

prefix drop-down. Select the Explicit App ID radio button under the App ID suffix section and
provide a unique identifier in the Bundle ID field that ends in the name of the Xcode project you are

going to create (or have created).

Typically, you create this identifier by combining the reverse-domain name of your website
and the name of your Xcode project. For example, the project created in this lesson is called
CloudKitPhotos and the bundle identifier Speciﬁed is com.wileybook.cloudkitphotos. Your

browser window should resemble Figure 25-21.

Preparing to Use CloudKit | 341

one < M

iCloud Containers
App Groups

Merchant IDs

[l Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

| Provisioning Profiles
All
Development

Distribution

& Apple Inc. i

App ID Description

Neme: CloudKitPhotos AppiD

You cannot use special characters such as @, &, =, ", "

App ID Prefix

Value: Rs3mvamvHs (Team 1) [

App ID Suffix

© Explicit App ID
If you plan to incorporate app services such as Game Center, In-App Purchase, Data
Protection, and iCloud, or want a provisioning profile unigue to a single app, you must
register an explicit App |D for your app.

To create an explicit App ID, enter a unique string in the Bundle ID field. This string
should match the Bundle |D of your app.

Bundle ID: comwileybook cloudkitphotos

We recommend using a reverse-domain name style string (i.e.,
com.domainname.appname), It cannot contain an asterisk (7).

Wildcard App ID

This allows you to use a single App ID to match multiple apps. To create a wildcard App
ID, enter an asterisk (*) as the last digit in the Bund|e ID field.

FIGURE 25-21

Scroll down to reveal the App Services section and ensure that both the iCloud checkbox and the
Include CloudKit support option are selected (see Figure 25-22).

342 | LESSON 25 INTRODUCTION TO CLOUDKIT

®ne < i & Apple Inc.]]

App Services

Select the services you would like to enable in your app. You can edit your choices after this
App ID has been registered.

Enable Services: App Groups
Associated Domains
Data Protection

Complete Protection

Open

i Until First User Authentication

+ Game Center
HealthKit
HomeKit
Wireless Accessory Configuration

Apple Pay

J iCloud

Compatible with Xcode 5

© Include CloudKit support
(requires Xcode 6)

In-App Purchase

Inter-App Audio

Passbook

Push Notificatiors

VPN Configuration & Control

FIGURE 25-22

Click the Continue button to proceed. You will be presented with a summary of the App ID
information (see Figure 25-23). Click Submit to finish creating the App ID.

Preparing to Use CloudKit | 343

Al
Pending
¢ Development

= Production

o Identifiers
© App IDs
Pass Type IDs.
© Website Push 1Ds
% iCloud Containers
App Groups

* Merchant IDs

] Devices
Al

» Apple TV

= Apple Watch
" iPad
@ iPhone

iPod Touch

. Provisioning Profiles
o Al
¢ Development

Distribution

& Apple Inc. (]

a Confirm your App ID.

|G—-
Q

b+

To complete the registration of this App |D, make sure your App ID information is correct, and
click the submit kutton.

App ID Description: CloudKitPhotos ApplID

Identifier: R53MV2ZMVHS.com.wileybook.cloudk

App Groups: = Disabled

Associated Domains: @ Disabled

Data Protection: © Disabled

Game Center: @ Enabled

HealthKit: @ Disabled

HomeKit: @ Disabled

Wireless Accessory Configuration: © Disabled
iCloud: © Configurable

In-App Purchase: @ Enabled

Inter-App Audio: © Disabled

Apple Pay: @ Disabled

Passbook: © Disabled

Push Motifications: © Disabled

VPN Configuration & Control: @ Disabled

SR

FIGURE 25-23

344 | LESSON 25

INTRODUCTION TO CLOUDKIT

Create an Appropriate Provisioning Profile

To create a provisioning profile for an iCloud-enabled App ID, click the All link (under the
Provisioning category) in the menu on the left-hand side of the iOS Provisioning Portal window (see

Figure 25-24).

o8 < lim]

¢ Developer

i0S Apps

¥ Certificates
All
Pending
Development

Production

1B Identifiers
App 1Ds
Fass Type |Ds
Website Push IDs
ICloud Containers
App Groups

Merchant IDs

[Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

|1 Provisioning Profiles

Distribution

= Apple Inc

Technologies Resources

Certificates, Identifiers & Profiles

Programs

Support

Member Center L=}

Abhishek Mishra =

iNETaam Bravicinninn Brofila: *

Copyright © 2015 Apple Inc. All rights reserved

iNE Nayalnnmant

Terms of Use

Privacy Policy

o Active (Mananad b ¥eadal

i0S Provisioning Profiles + | = Q
53 profiles total.

!\Iame - Type Status
AppStore distribution profile 105 Distribution @ Expired
Development Provisioning Profile i0S Development @ Active
ElectionDayDev i05 Development L Invalid
Gallery3D Development profile 108 Development @ Active
Gallery3D PhotoOfTheDay widget i05 Development @ Active
Gallery3D PhotoOfTheDay widge.., DS Distribution @ Expired
Gallery3D distribution profile 05 Distribution @ Expired
Generic Client Project Dev i05 Development @ Active
Generic Client Project TestFlight 105 Distribution @ Active
NumberXAppstore i0S Distribution @ Expired
NumberXDev 05 Development @ Expired
SuperGolfDev 105 Development @ Active
Swift iCloud Test Dev Profile i05 Development L Invalid
Tring Development Profile 108 Development @ Active
Tringinfo development profile i0S Development @ Active
Tringinformation App Store Dist.. 105 Distribution @ Expired
WS52014PresentationProfile i0S Development @ Active
XC:* i05 Distribution O Expired

FIGURE 25-24

Click the New Profile button on the top-right side (see Figure 25-25).

i0S Apps

Certificates, ldentifiers & Profiles

iOS Provisioning Profiles

Abhishek Mishra ~

©7

FIGURE 25-25

Preparing to Use CloudKit | 345

You will be asked to choose between a development or distribution provisioning profile. A distribu-
tion provisioning profile is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure 25-26).

oce® < im} & Apple Inc h o a |+
‘ DE’VEIDDET Technologies Resources Programs Support Member Center a
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps - Add iOS Provisioning Profile 7| Q
{ Certificates Select Type Config ene ' Download
All
Pending ﬁ
What type of provisioning profile do you need?
Development PROV yp P ap Y
Production

12 Identifiers
App IDs Development
Pass Type |Ds
© i0S App Development

Webisite Pushiliz; Create a provisioning profile to install development apps on test devices.

iCloud Containers

App Groups
Merchant IDs L - .
Distribution
[l Devices
Al App Store
Create a distribution provisioning profile to submit your app to the App Store.
Apple TV
Apple Watch Ad Hoc
2 Create a distribution provisioning profile to install your app on a limited number of registered
e devices.
iIPhone
iPad Touch

.1 Provisioning Profiles

All

Development

Distribution Cancel m

FIGURE 25-26

A development provisioning profile ties together three pieces of information:
> A single App ID
> One or more public keys

> A list of test device IDs

The next step requires you to select an App ID that will be associated with this provisioning profile.
Select the iCloud-enabled App ID you have created (see Figure 25-27) and click Continue.

346 | LESSON 25 INTRODUCTION TO CLOUDKIT

o0 ® < [& Apple Inc. G jua} () I+
‘ DE\"EIOD’EF Technologies Resources Programs Support Member Center Q Sear
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps = Add i0S Provisioning Profile =|[.a
e T—
Al }
Pending @
Select App ID.
Development —
Production

i Identifiers

App IDs If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,
or want a Bundle ID unigue to a single app, use an explicit App ID. If you want to create one
provisioning profile for multiple apps or don't need a specific Bundle 1D, select a wildcard
Website Push IDs App ID. Wildcard App IDs use an asterisk (*) as the last digit in the Bundle ID field. Please
note that iOS App IDs and Mac App IDs cannot be used interchangeably.

Pass Type |Ds

iCloud Containers

App Groups

o - . -
Merchant IDs App ID: AppiD | com

[l Devices
All
Apple TV
Apple Watch
IPad
iPhone

iPod Touch

| Provisioning Profiles
All

Development

FIGURE 25-27

Select one or more development certificates that will be included in the profile. You must make sure
to sign the app in Xcode using one of the certificates you select here. Select a suitable certificate and
click Continue (see Figure 25-28).

Preparing to Use CloudKit | 347

o0 ® < [& Apple Inc. G jua} &
‘ DE\"EIODEF Technologies Resources Programs Support Member Center Q Sear
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps - Add iOS Provisioning Profile =N
¥ Certificates Select Type Configure Generate /) Download
All
Pending @
Select certificates.
Development —
Production

i Identifiers
App IDs Select the certificates you wish to include in this provisioning profile. To use this profile to

install an app, the certificate the app was signed with must be included.
Pass Type |Ds

Wehsite Push IDs Select All 1 of 1 itemis) selected

iCloud Containars
Abhishek Mishra (i05 Development)
App Groups

Merchant IDs

[Devices
All
Apple TV
Apple Watch
iPad
iIPhone

iPod Touch

.1 Provisioning Profiles
All

Development

FIGURE 25-28

Next, you must select one or more devices that will be included in this provisioning profile. The cor-
responding identifiers for these devices must be registered with your development account. Your app
will only be testable on these devices (see Figure 25-29).

348 | LESSON 25 INTRODUCTION TO CLOUDKIT
® @9 < [im] & Apple Inc. G jua} (o) F
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps = Add i0S Provisioning Profile =|[a
Al '
1
Pending

Development

Production

I Identifiers
App IDs
Pass Type [Ds
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

[l Devices
All
Apple TV
Apple Watch
iPad
iPhone

IPod Touch

. Provisioning Profiles
All
Development

Distribution

Select devices.

Select the devices you wish to include in this provisioning profile. To install an app signed with

this profile on a device, the device must be included.

Select All

a o

Abby's iPad mini retina

Abby's iPhone5

(< I <]

Abbys iPad2 16GE

a

Abbys iPhone & Plus

Abhishek's iPhone

e o

Kent Humphries's iPhone

Sameer’s iPhone 45

a

Sameer's IPhone 6+

<]

Sonam's iPad Mini retina

(< I <

Sonam's iPhone 45

Cancel Back

11 of 11 itemis) selected

FIGURE 25-29

The final step involves providing a suitable name for the profile and clicking the Generate button.
When the profile is created, you will be provided an option to download it onto your computer (see

Figure 25-30).

Preparing to Use CloudKit | 349

® ® < B & Apple Inc. v] (] |+
‘ DeVEIOper Technologies Resources Programs Support Member Center Q1 Search Devaloper
Certificates, Identifiers & Profiles Abhishek Mishra
i0S Apps - Add iOS Provisioning Profile [=][a

¥ Certificates Select Type Configure Generate Download

All

Pending
@- Name this profile and generate.

Development

Production

o/ Identifiers

App IDs The name you provide will be used to identify the profile in the portal.

Pass Type IDs 5 .
Profile Name: CloudkitPhotos Dev Profile|

Website Push IDs

Type: 10S Development
iCloud Containers e P!

App ID: CloudKitPhotos ApplD
{R53MVZMVHS.com.wileybook.cloudkitphotos)

App Groups

Merchant IDs
Certificates: 1 Included
[Devices
Devices: 11 Included
All

Apple TV
Apple Watch
iPad

iPhone

iPod Touch

. Provisioning Profiles
All

Development

Distribution ERne Back m

FIGURE 25-30

If you were to now click the All link under the Provisioning section of the left-hand side menu, you
would see an entry for the new profile in the list of available profiles. You can also download a
provisioning profile from this list.

350 | LESSON 25 INTRODUCTION TO CLOUDKIT

Once the profile has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Enable Appropriate Entitlements in Your Xcode Project

Create a new project in Xcode using one of the standard iOS application templates. In the
Project Options dialog box, make sure you provide the correct value for the Product Name and
Organization Identifier fields so as to create the same App ID that was registered on the iOS
Provisioning Portal. If, for instance, the App ID you registered was com.wileybook.cloudkit-

photos, use cloudkitphotos for the Product Name field and com.wileybook for the Company
Identifier field.

Applications that use iCloud must be signed with iCloud-specific entitlements. These entitlements
ensure that only your applications can access the documents that they create. To enable entitlements,
select the project’s root node in the project navigator and the appropriate build target. Ensure the
Capabilities tab is selected. Locate the iCloud node and enable it. You may be asked to provide your
i0S developer accounts credentials when you enable the iCloud entitlement. Because this lesson is
about CloudKit, ensure the CloudKit checkbox is checked (see Figure 25-31).

[] * p by cloudkiiphates | il IPhone & eoudkiphatos: Ready | Today at 08:15 @ e [o N |
B & clouiitphoans oo
[n] Genars: Peseuren Tags il Build Settings Bulkd Phsss Bl Rules Guick Halp
PROJECT 3
v icloud o Quick He
: B clousitphotos [on} TG
e 0s.entalomants
: AppDelegate switt TARGEZS o Eat
s ViewConirolier swift &1 cloudlitphotos rvices "ﬂ walue storage
Choud Decuments
Mainstarybaard 4 B Cloui
Comainers:) Use default ¢
Into,pilst Spacily ¢ antainars
cloudiitphotos scdatamodeld ICioud. com wileybooi cloudkitphotos

1 Products

Ciougkit Dashboard

LLLL

[1 @ |
» @ push Kotiicatins o |
Game Canter | oFF |
= - No Matches
T Apale By | oFF |
L (@ + — @ » £ In-Aps Purchase | oF |

FIGURE 25-31

COMMON OPERATIONS

In this section, you learn how to perform common operations such as checking for service availabil-
ity, adding/updating records, and retrieving records. While it is possible to create records using the
iCloud dashboard, you will most likely need to be able to do this programmatically in response to
some action taken by the user.

Common Operations | 351

Checking for Service Availability

Before writing data to one of the CloudKit databases (private or public), the user must be signed in
to iCloud. The following snippet uses the accountStatuswWithCompletionHandler method of the
CKContainer object to check if the user is signed in:

CKContainer.defaultContainer () .accountStatusWithCompletionHandler {
(accountStatus, error) -> Void in

if accountStatus == CKAccountStatus.NoAccount {

let alert = UIAlertController(title: "Sign in to iCloud",
message: "You need to sign in to iCloud to create records.",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

}

else {
// show the view controller to allow the user to create a
new record.

}
Creating Records Programmatically

To create a record, you will first need to give it a unique record identifier. CloudKit only generates
unique record identifiers for records created using the dashboard. To generate unique record identi-
fiers, use the UDIDString method of the NSUDID class to generate a unique record name:

let uuid:String = NSUUID() .UUIDString

and then create a CKRecordID instance with that name:

let photoRecordID = CKRecordID (recordName: uuid)

The next step is to create a CKRecordInstance. To create one, you will need to provide a string that
represents the record type and the unique record identifier for the new record. This is shown in the
following snippet:

let photoRecord:CKRecord = CKRecord (recordType: "Photo", recordID: photoRecordID)

You can set up the values of individual fields in the record using key-value coding:
photoRecord ["photoCaption"] = "By the lake"
photoRecord ["photoDescription"] = "Photo by Andy Brown"

Finally, save the ckrecord instance to CloudKit by using the saveRecord method of a Ckpatabase
instance. The following snippet demonstrates how to save a record to the public database:

352

| LESSON 25 INTRODUCTION TO CLOUDKIT

let publicDatabase:CKDatabase = CKContainer.defaultContainer () .publicCloudDatabase
publicDatabase.saveRecord (photoRecord) { (newRecord, error) -> Void in

if error != nil {
// handle the error in some way.
}

}

Retrieving Records

If you know the record identifier (listed as “record name” on the CloudKit dashboard) for the record
you want to retrieve, you can create a CKRecordID instance with that identifier and then use the
fetchRecordWithID () method of the ckpatabase instance. This is demonstrated in the following
snippet:

let publicDatabase = CKContainer.defaultContainer () .publicCloudDatabase
let someRecordID:CKRecordID = CKRecordID (recordName: "9181.a8d5xv26")

publicDatabase.fetchRecordWithID (someRecordID) { (record:CKRecord?,
error:NSError?) -> Void in
// examine error, if no error then do something with record.

The fetchRecordwithID method requires two arguments. The first is a CKRecordID that contains
the record identifier for the record you wish to retrieve; the second parameter is a completion block
that will be called by CloudKit with the results of the fetch operation.

If you do not know the record identifier, then you will need to perform a query on the database to
retrieve all records that satisfy some criteria and then iterate through the results. The following code
snippet performs a query on the database to retrieve all records from the Photographer table that
have the name field containing the value Arthur:

let publicDatabase:CKDatabase = CKContainer.defaultContainer () .publicCloudDatabase

let predicate:NSPredicate = NSPredicate(format: "name = ",
argumentArray: ["Arthur"])

let query:CKQuery = CKQuery (recordType: "Photographer",
predicate: predicate)

publicDatabase.performQuery (query,
inZoneWithID: nil,
completionHandler: { (results: [CKRecord] ?, error:NSError?) -»> Void in
// if error is nil, then examine the contents of the array results

H

TRY IT

In this Try It, you build a new Xcode project based on the Single View Application template called
CloudKitPhotos. In this application, you use CloudKit to share photos with other users of your appli-
cation using a public database. You also use Core Data to save these photos locally on your device.

Trylt | 353

Lesson Requirements
> Create a new Universal application project based on the Single View Application template.
Register the App ID with the iOS Provisioning Portal.
Create a development provisioning profile.
Download and install the development provisioning profile.
Create a Table View Controller based user interface.
Create a data model with Core Data.
Check iCloud service availability in the viewDidLoad method of the view controller class.
Load previously downloaded content into the table view.
Build a detail view to show information on a photo selected in the table view.

Build a view controller that allows users to upload new pictures.

Y Y Y Y Y Y VY VY VY'Y

Implement code to upload new images to the public CloudKit database.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

> To make best use of this application, you will need at least two iOS devices set up to use the
same iCloud account.

You must ensure iCloud has been set up on each test device.

Testing your apps on iOS devices is covered in Appendix B.

Step-by-Step
> Create a Single View Application in Xcode called cloudkitPhotos.
1. Launch Xcode and create a new application by selecting File &> New > Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: cloudkitphotos (in lowercase)
> Organization Name: your company
> Organization Identifier: com.wileybook.cloudkitphotos
> Language: Swift
>

Devices: Universal

http://www.wrox.com/go

354 | LESSON 25 INTRODUCTION TO CLOUDKIT

> Use Core Data: Checked
> Include Unit Tests: Unchecked
> Include UI Tests: Unchecked
4. Save the project onto your hard disk.
> Register an App ID with the iOS Provisioning Portal.

1. Login to the iOS Provisioning Portal, and register a new App ID with the following
details:

> Description: CloudKitPhotos AppID

> Bundle Seed ID: Use Team ID

> Bundle Identifier: com.wileybook.cloudkitphotos
2. Enable the App ID to use with iCloud.

This process is covered in the section “Create an iCloud-Enabled App ID” earlier in
this lesson.

> Create a development provisioning profile using the App ID created in the previous step.

1. The process of creating the provisioning profile is covered in the section “Creating an
Appropriate Provisioning Profile” earlier in this lesson. Follow those instructions to cre-
ate a development provisioning profile called “Swift Cloud Test Development Profile.”

2. Download and install the provisioning profile by double-clicking on the profile after it
has been downloaded to your computer.

> Enable iCloud-specific entitlements for the application target.

1. Select the project’s root node in the project navigator and select the appropriate build
target. Ensure the Capabilities tab is selected. Scroll down to the iCloud option and
enable it.

2. Once the iCloud entitlement has been enabled, ensure the CloudKit checkbox has been
selected.

> Build the user interface of the application.

1. Open the Main. storyboard file from the project explorer and drag-and-drop a Table
View Controller object onto the storyboard. This will create a new scene in the story-
board (see Figure 25-32).

Trylt | 355

| < PpT—— i [rr— ODe@E¢D0 @
» [7] View Contrellur Scane
View Controfier
-
Thbsbe Vi Comteallnr
Prototype Cells -
No Selection
D06 oD
ey —————-
0 Any nAny T B o bad |) Table View Contrutu o

FIGURE 25-32

A table view controller is an instance of UITableViewController and is used to man-
age a table view. The table view in this application will be used to present a list of pho-
tos in the local database to the user.

2. Position the two scenes side by side, and zoom out of the storyboard a little if neces-
sary. To zoom in/out, select Editor = Canvas = Zoom.

3. Set up the Table View Controller scene to replace the default scene of the storyboard.
> Select the Table View Controller scene in the storyboard.

> Ensure the Attribute inspector is visible and scroll down to the View Controller
section.

> Ensure the Is Initial View Controller option is selected. When you select this
option, the Storyboard Entry Point indicator will jump to the table view controller
scene (see Figure 25-33).

356 | LESSON 25

INTRODUCTION TO CLOUDKIT

Bl B cloudkitphotos
¥ [£ view Cantrolier Scene
v (L view Controfer
Top Layaut Guide
Batiom Layout &...
View
2 First Resporder
B exit
- | YI View Contraller...

¥ Table View Cortroller
[Tabia view
g First Responder

it
iunm-u Enkry Pai.

cloudkitohotos | [l Main.staryboard | [Main.storybosrd (Base) | [Table View Cortrolier Soene

] Any b Ay

Fresntygs o

Table View Controller

CeBE$0e

Sze Wlerred
Orlentation inferred
Status Bar infarreg
Top Bar inferred
Bettem Bar inforron

Tabln View Cantrailer
Seluction [Cear on Appearance

Bnfreshing Disadled

View Cantralier
Titie
B i Initisl View Cantroler
tayeut [Adfust Scrall View Insets
Hide Bottam Bar on Fush
) Wasize View From NIB
Use Ful Screen [Deprecated]
Extend Edges (8} Under Top Bars

DD@eno

Table View Controller - &
contrnlier that manages a tabln view.

| (B) Tabie View Cantrofler o

FIGURE 25-33

4. Delete the View Controller scene from the storyboard. Your storyboard should now
have just one scene (the Table View Controller scene).

5. Embed the Table View Controller scene in a navigation controller.

Select the Table View Controller scene from the document outline panel and then
select Editor = Embed In & Navigation Controller.

This action will add a Navigation Controller scene to the storyboard and make it the
default scene of the storyboard. Your Table View Controller scene will now be embed-
ded in the Navigation Controller (see Figure 25-34).

FIGURE 25-34

Protatype Calls

Trylt | 357

6. Set up the table view’s appearance.

>

>
>
>

Select the table view and ensure the Attribute inspector is visible.
Ensure the Content attribute is set to Dynamic Prototypes.
Ensure the value of the Prototype Cells attribute is 1.

Ensure the Style attribute is set to Grouped.

7. Set up the prototype cell.

>

>

Expand the table view in the document outline; this will reveal the table
view cell.

Select the table view cell.

Use the attribute editor to ensure that the value of the identifier attribute is
prototypeCelll.

Ensure the Style attribute is set to Basic.

8. Set up the Viewcontroller class (implemented in ViewController.swift) to inherit
from UITableViewController instead of UTViewController.

>

>

Open the viewController.swift file.

Locate the following line in the file:

class ViewController: UIViewController {

>

Change it to

class ViewController: UlTableViewController {

9. Add a right bar button item to the navigation bar of the Table View Controller scene.

>

Expand the document outline for the storyboard and select the Navigation
Item under the Table View (see Figure 25-35).

g5 | € =
¥ [T view Controller Scene

v View Controller
> Table View
< Mavigation ltem
0 First Responder
[E] Exit

showPhotoDetail

» [=] Detail View Controller Scene

» || Navigation Controller Scene

i i . Main.storyboa

FIGURE 25-35

>

Drag and drop a Bar Button Item from the object library onto the right edge
of the Navigation Item (see Figure 25-36).

358 | LESSON 25 INTRODUCTION TO CLOUDKIT

B L L& cioudkitphotos cloudiitphatos | [lj Main.storyboard | [l Main.storgooard (Bass) B View Cortrollar Scena Vigw Controllar |+ ¢ Mavigatian bem L0 O & m$ 0 &
|
[view Controlier Scane | | Mavigatian ttem
¥ () view Contrales it
» | | Tablo view ok
< e Bagk Button
@ First Rusponder |
E e I
showPhatabetsl
» [51 Detail View Controller Scens
[Mavigation Controlier Scene.
@ B
-
Item
FROTOTYPE CELLS
Title
0OD0D@en
Bar Buttan item - Regumnis an
Iem on a UiToomar o
Ulkavigationiiom cbject.
Fixed Space Bar Button Item -
Bervieid Ruprosents » fised sgacs lom oo
UTocibar abject.
| Flexible Space Bar Button item -
(T e Reprenunts o flexibie space item an 8
L) UiTacibar object.
T
S | m} wAny ANy R o baf | S @ barb o

FIGURE 25-36

> Select the new Bar Button Item and use the Attribute inspector to set the value
of its System Item attribute to Add (see Figure 25-37).

OheE ¢ E
-Blrﬂuhnnllum
sty Custom '
system AT I
Edit
T
Done '
—| Cancel =
Bar item B
Tit Undo
irnag Redo '

FIGURE 25-37

Trylt | 359

10. Link the Table View Controller scene in the storyboard to the viewcontroller class.

>

>

Select the Table View Controller scene.

Use the Identity Inspector to change the Custom Class to viewController.

11. Add a detail view controller scene. This view controller will be used to show details on
a photo selected in the table view.

>

Drag and drop a View Controller object onto the storyboard. This will create

a New scene.

Create a Show detail segue between the table view cell and the new view
controller. Hold down the Control key on your keyboard and drag from the
prototype cell in the Table View Controller and drop onto the new scene you

have added (see Figure 25-38).

B < clpudkitphotos
v [view Controller Scene
¥ | View Controller
¥ | Table View
v pratotypeCalll
» Content View
€ Mavigation ltem
¥ First Respander
[E} Exit
w [view Controller Scene
v () View Controller
Tap Layout Guide
Battom Layout Guide
View
@) First Responder

[E] Exit

» [Navigation Contraller Scene

i wAny hAny

FIGURE 25-38

b @ T 0 e

Custom Ciass

Class ViewCaontroSiar

Modide

Hdantity
Staryboard I
Restaration 12

Use Storyboard 1D

User Defined Runtime Attributes
Koy Path Type Valug

Dojoct 1D GX-1W-X00
Lok Inherlted - [Nathing] B
Notes = = = = — [&

il

O o 1]

View Controller - & controller that
TABGEE & viEw.

Storyboard Reference - Provides &
placehalder for a view cantraller in an
wxternal storyboard.

Table View Controller - 4

controlier that mansges a table view.

@ view]

Your storyboard will now have three scenes and will resemble Figure 25-39.

360 | LESSON 25 INTRODUCTION TO CLOUDKIT

< B i i B Main B Main.storyboard (Base)) [5 Table View Controller Scene View Controller

v [view Controller Scene
¥ | View Controller Fadustina Cxmster R —
¥ || Table View
v [prototypeCell
» Content View o
< Navigation Item Title
@) First Respender
[E Exit
Show detall segue to "View Contr..,
v [View Controller Scene
v View Controller
Top Layout Guide
Bottom Layout Guide
View
@ First Responder
[E Exit

» [Navigation Controller Scene

¥iam Canroier

@& Filter [} wAny hAny B B o tat

FIGURE 25-39

> Select the segue that you have just created, and use the Attribute inspector to
set the identifier property of the segue to showPhotoDetail.

> Create a new Swift file called DetailviewController.swift and replace its
contents with the following code:

import UIKit
class DetailViewController: UIViewController {
override func viewDidLoad() {

super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
}

Trylt | 361

> Use the Identity Inspector to change the Custom Class of the new scene to
DetailViewController.

12. Add user interface elements to the Detail View Controller scene.

> Drag-and-drop an image view and two label objects onto the Detail View

Controller scene and position them to resemble Figure 25-40.

Caption
Description

FIGURE 25-40

You will need to zoom in to 100 percent magnification to be able to add objects onto
scenes.

> Create layout constraints for each of elements on the storyboard scene using

the information in Table 25-2. When creating layout constraints using the pin
constraints dialog box, ensure the Constrain to margins option is unchecked
and Update Frames is set to None.

TABLE 25-2: Layout Constraints

ELEMENT LEFT TOP RIGHT BOTTOM
Image view 20 20 20 20
Caption label 20 20 20 20
Description label 20 20 20 20

>

Select the Detail View Controller scene in the document outline and select
Editor => Resolve Auto Layout Issues = All Views = Update Frames to
update the storyboard scene with the layout constraints you have just applied.

362 | LESSON 25 INTRODUCTION TO CLOUDKIT

> Using the Assistant Editor, create an outlet in the DetailviewController
class called imageview and connect it to the image view.

> Using the Assistant Editor, create an outlet in the DetailviewController
class called captionLabel and connect it to the first label.

> Using the Assistant Editor, create an outlet in the DetailviewController
class called detailLabel and connect it to the second label.

The code in DetailviewController.swift should now resemble the following:
import UIKit

class DetailViewController: UIViewController {

@IBOutlet weak var imageView: UIImageView!
@IBOutlet weak var captionLabel: UILabel!
@IBOutlet weak var detaillabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super .didReceiveMemoryWarning ()

}

13. Add a new view controller scene to the storyboard scene. This will be used when the
user wants to add a photo to iCloud using CloudKit.

> Drag-and-drop a View Controller object onto the storyboard. This will create
a new scene.

> Create a Present modally segue between the right bar button item and the new
view controller.

> Your storyboard will now have four scenes and will resemble Figure 25-41.

Select the segue that you have just created and use the Attribute inspector to
set the identifier property of the segue to addpPhoto.

> Create a new Swift file called AddPhotoviewController.swift and replace
its contents with the following code:

import UIKit
class AddPhotoViewController: UIViewController {

override func viewDidLoad() ({
super.viewDidLoad ()

Trylt | 363

}

override func didReceiveMemoryWarning()
super.didReceiveMemoryWarning ()

B | < B i i W M W va [Basa) | No Salaction

v [View Cantralier Seans
‘i Contrabnr
Top Luyout Guide
Botiam Layaun Duide
View
@ First Rospondor
= e
* [View Controlier Scane
‘iow Contrakar
| Tabie view
€ Nawigation item
Left Bar Sutton mems
¥ ight Bar Button hems
= aad
@) Fest Respander
B e
showEhat Dt mr——
Prasant modaly segus b “View C. == =

» [Detall View Controller Scena

* [Mavigation Cantrollar Scane

[m] Ay AR

EE B bl

FIGURE 25-41

> Use the Identity inspector to change the Custom Class of the new scene to

AddPhotoViewController.

14. Add user interface elements to the Add Photo View Controller scene.

> Drag-and-drop an image view, two text fields, and three buttons onto the Add
Photo View Controller scene and position them to resemble Figure 25-42.

364 | LESSON 25 INTRODUCTION TO CLOUDKIT

Select

Cancel

FIGURE 25-42

You will need to zoom in to 100 percent magnification to be able to add objects onto
scenes.

> Create layout constraints for each of elements on the storyboard scene using
the information in Table 25-3. When creating layout constraints using the pin
constraints dialog box, ensure the Constrain to margins option is unchecked
and Update Frames is set to None.

TABLE 25-3: Layout Constraints

ELEMENT LEFT TOP RIGHT BOTTOM HEIGHT
Text field 1 20 20 20 20 30
Text field 2 20 20 20 20 30
Image view 20 20 20 20

Select button 20 20 20 40
Save button 20 10 20 10 40
Cancel button 20 10 20 20 40

> Select the Add Photo View Controller scene in the document outline and
select Editor = Resolve Auto Layout Issues & All Views > Update Frames to
update the storyboard scene with the layout constraints you have just applied.

Trylt | 365

> Using the Assistant editor, create outlets in the AddPhotoViewController
class called imageview, captionField, and descriptionField and then
connect the image view, first text field, and second text field respectively.

» Create action methods in the AddPhotoViewController class called on
SelectPicture,onSaveRecord,and<mnCancel and connect them to the
Select Picture, Save, and Cancel buttons respectively.

The code in AddPhotoviewController.swift should now resemble the following:
import UIKit

class AddPhotoViewController: UIViewController {

@IBOutlet weak var imageView: UIImageView!
@IBOutlet weak var captionField: UITextField!
@IBOutlet weak var descriptionField: UITextField!

override func viewDidLoad() ({
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()

@IBAction func onSelectPicture(sender: AnyObject) {

}

@IBAction func onSaveRecord (sender: AnyObject) {

}

@IBAction func onCancel (sender: AnyObject) {

}
}

> Build the client-side data model using Core Data.

1. Select the cloudkitphotos.xcdatamodeld file in the project navigator to open it in
the Xcode editor.

2. Add an Entity to the data model to represent photos.
> Select Editor => Add Entity and name the new entity Photo.
> Add the following attributes to the Photo entity:
photoCaption: String
photoDescription: String
fileName: String
dateTaken: Date

ckRecordID: String

mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0
mailto:@IBOutletweakvarimageView:UIImageView!@IBOutletweakvarcaptionField:UITextField!@IBOutletweakvardescriptionField:UITextField!c25.indd11/0

366

LESSON 25

INTRODUCTION TO CLOUDKIT

Use the Editor & Create NSManagedObject subclass menu item to create
an NSManagedObject subclass to represent the Photo entity. While creating
the NSManagedobject subclass, ensure the language is set to Swift.

Ensure the Photo.swift file has the following import statements at the top:

import Foundation
import CoreData
import CloudKit
import UIKit

Add a method called saveImageToDocumentsDirectory, which saves a UITmage
instance to a JPEG file in the documents directory and returns the path to the saved file:

static func saveImageToDocumentsDirectory (image: UIImage,
_ fileName:String) -> NSURL {

let documentsURL =
NSFileManager.defaultManager () .URLsForDirectory (
.DocumentDirectory, inDomains: .UserDomainMask) [0]

let fileURL =
documentsURL. URLByAppendingPathComponent (fileName)

UIImageJPEGRepresentation(image, 0.5)7?.
writeToURL (fileURL,
atomically: true)

return f£ileURL

}

This method has been defined with the static keyword; therefore, you do not need an
instance of Photo to use this method. You can simply call it on the class.

Add a static method called addFromCckRecord, which creates a Photo entity in Core
Data from a CKRecord instance.

static func addFromCKRecord (record:CKRecord) {

// read fields from CKRecord
let recordIdentifier:String = record.recordID.recordName

guard let
dateTaken:NSDate = record["dateTaken"] as? NSDate,
fileName:String = record["filename"] as? String,
photoCaption:String = record["photoCaption"] as? String,
photoDescription:String = record["photoDescription"] as? String,
asset:CKAsset = record["photoAsset"] as? CKAsset else {
return

}

// save asset to documents directory

guard let image = UIImage (contentsOfFile:asset.fileURL.path!) else {
print ("unable to download image")
return

Trylt | 367

saveImageToDocumentsDirectory (image, fileName)

// insert new record.
let appDelegate = UIApplication.sharedApplication().delegate as!
AppDelegate

let newItem =
NSEntityDescription.insertNewObjectForEntityForName ("Photo",
inManagedObjectContext: appDelegate.managedObjectContext) as! Photo

newltem.ckRecordID = recordIdentifier
newltem.fileName = fileName
newltem.dateTaken = dateTaken
newltem.photoCaption = photoCaption
newltem.photoDescription = photoDescription

// save managed object context.
do {
try appDelegate.managedObjectContext.save ()

catch {
print ("error saving managed object context")

}

The preceding code snippet extracts fields from the ckrecord instance, downloads
the asset into the documents directory, and creates a managed object in the local data
store.

> Build the server-side data model using the CloudKit Dashboard.

1. Log in to the CloudKit dashboard at https://icloud.developer.apple.com/
dashboard/.

2. Ensure the dashboard is set to use the correct container. The cloudkitphotos con-
tainer should be selected in the drop-down menu located at the top-left corner of the

dashboard.

3. Ensure you are working with the development environment. The development environ-
ment should be selected in the drop-down menu located at the bottom-left corner of the

dashboard.
4. Add a record type called Photo. To this record type, add the following fields:
> dateTaken: Date/Time
fileName: String
photoAsset: Asset
owner: Reference

photoCaption: String

Y VYV VY Y Y

photoDescription:SUﬁng

https://icloud.developer.apple.com
https://icloud.developer.apple.com/dashboard/

368 | LESSON 25 INTRODUCTION TO CLOUDKIT

Adding record types using the CloudKit dashboard has been covered earlier in this
lesson.

» Add code to the ViewController.swift file to Fetch initial data from CloudKit and save to
the managed objects using Core Data.

1. Ensure both CloudKit and CoreData have been imported at the top of the
ViewController.swift file:

import CloudKit
import CoreData

2. Declare a protocol called cloudLoaderDelegate as follows:

protocol CloudLoaderDelegate : NSObjectProtocol {

func willProcessRecords (recordType:String, _ records: [CKRecord]?)
func processCKRecord (recordType:String, _ record:CKRecord)
func didProcessRecords (recordType:String, _ records: [CKRecord]?)
func didReceiveError (recordType:String, _ error:NSError?)

}

3. Add the following variable declarations to the ViewController.swift file:

var photos: [Photo]?
var publicDatabase:CKDatabase?
var matchAllPredicate:NSPredicate?
4. Ensure the ViewController class implements the CloudLoaderDelegate protocol by
changing the following line:
class ViewController: UlTableViewController {

to

class ViewController: UITableViewController, CloudLoaderDelegate {

5. Declare a block called recordpownloadBlock, which takes as input a record
type, CKDatabase instance, a predicate, and a delegate object that implements
CloudLoaderDelegateasfoﬂowm:

let recordDownloadBlock: (String, CKDatabase, NSPredicate,
CloudLoaderDelegate) -> Void =
{ (recordType, database, predicate, delegate) -> Void in

let query = CKQuery (recordType: recordType, predicate: predicate)

database.performQuery (query, inZoneWithID: nil) { results, error in

if error != nil{
delegate.didReceiveError (recordType, error)
return

}

guard let results = results else {

Try lt | 369

delegate.didProcessRecords (recordType, nil)
return

}

// delete photographer records from Core Data
delegate.willProcessRecords (recordType, results)

for record in results {
delegate.processCKRecord (recordType, record)
}

delegate.didProcessRecords (recordType, results)

}

This block will perform a query on a CloudKit database to retrieve records of a spe-
cific record type and call methods on the delegate object when it has retrieved records.

The code in ViewController.swift should now resemble the following:

import UIKit
import CloudKit
import CoreData

protocol CloudLoaderDelegate : NSObjectProtocol {

func willProcessRecords (recordType:String, _ records: [CKRecord]?)
func processCKRecord (recordType:String, _ record:CKRecord)
func didProcessRecords (recordType:String, _ records: [CKRecord]?)
func didReceiveError (recordType:String, _ error:NSError?)

}

class ViewController: UlITableViewController, CloudLoaderDelegate {
var photos: [Photo]?
var publicDatabase:CKDatabase?
var matchAllPredicate:NSPredicate?
let recordDownloadBlock: (String, CKDatabase, NSPredicate,
CloudLoaderDelegate) -> Void = { (recordType, database, predicate,
delegate) -> Void in

let query = CKQuery (recordType: recordType, predicate: predicate)

database.performQuery (query, inZoneWithID: nil) { results, error in

if error != nil{
delegate.didReceiveError (recordType, error)
return

}

guard let results = results else {
delegate.didProcessRecords (recordType, nil)
return

370 | LESSON 25 INTRODUCTION TO CLOUDKIT

}

// delete photographer records from Core Data
delegate.willProcessRecords (recordType, results)

for record in results {
delegate.processCKRecord (recordType, record)
}

delegate.didProcessRecords (recordType, results)

override func viewDidLoad() {
super.viewDidLoad ()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
}

}

6. Get a reference to the public CloudKit database and create a predicate that will return
all records in a record type in the viewDidLoad method:

override func viewDidLoad() ({
super.viewDidLoad ()

self.publicDatabase =
CKContainer.defaultContainer () .publicCloudDatabase

self .matchAllPredicate = NSPredicate (value: true)

}
7. Override the viewDidAppear method in your ViewController.swift file as follows:

override func viewDidAppear (animated: Bool) {
super.viewDidAppear (animated)

fetchListOfPhotos ()
tableView.reloadData ()

downloadPhotosFromCloud (recordDownloadBlock)

}

This method fetches all Photo entities from the CoreData store and then reloads the
contents of the table view. It then attempts to download Photo records from CloudKit
if the user has signed into the device with a CloudKit account.

8. Implement the fetchListofPhotos methods in the ViewController.swift file as
follows:

func fetchListOfPhotos ()

Trylt | 374

let fetchRequest = NSFetchRequest (entityName: "Photo")

let appDelegate = UIApplication.sharedApplication().delegate as!
AppDelegate

do {
self.photos = try
appDelegate.managedObjectContext .executeFetchRequest (fetchRequest)
as? [Photo]

catch {
print ("error retrieving list of photos from local database.")
}

}

9. Implement the downloadPhotosFromCloud method as follows:

func downloadPhotosFromCloud (completionBlock : (String, CKDatabase,
NSPredicate, CloudLoaderDelegate) -> Void) {

CKContainer.defaultContainer () .accountStatusWithCompletionHandler {
(accountStatus, error) -> Void in

if accountStatus == CKAccountStatus.NoAccount {
// user has not signed in to iCloud, show an alert.
let alert = UIAlertController(title: "Sign in to iCloud",
message: "You need to sign in to iCloud to create records.",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

else {
// user has signed in to iCloud, download Photo from server
completionBlock ("Photo", self.publicDatabase!,
self .matchAllPredicate!, self);

}

This method takes as input, a block that will be called to fetch data from CloudKit.
However, this block will only be called if the user has signed in to iCloud on the
device.

10. Implement the cloudLoaderDelegate methods as follows:

func willProcessRecords (recordType:String, _ records: [CKRecord]?)

{

// delete all Photos from core data before
// processing new ones in CloudKit

372

LESSON 25

INTRODUCTION TO CLOUDKIT

1.

let fetchRequest = NSFetchRequest (entityName: "Photo")
let appDelegate = UIApplication.sharedApplication().delegate
as! AppDelegate

var results: [Photo]? = nil

do {
results = try

appDelegate.managedObjectContext .executeFetchRequest (fetchRequest)

as? [Photo]

guard let results = results else {
return
}

for photo in results {
appDelegate.managedObjectContext.deleteObject (photo)
}

try appDelegate.managedObjectContext.save ()

}

catch {
print ("error retrieving list of photos from local database.")
}

func processCKRecord (recordType:String, _ record:CKRecord)

{

if recordType.compare ("Photo") == NSComparisonResult.OrderedSame {
Photo.addFromCKRecord (record)
}

func didProcessRecords (recordType:String, records: [CKRecord]?)

{

if recordType.compare ("Photo") == NSComparisonResult.OrderedSame {
fetchListOfPhotos ()
tableView.reloadData ()

}

func didReceiveError (recordType:String, _ error:NSError?)

{
}

print ("received error \ (error) for record type \ (recordType)")

Override the prepareforsegue methods in the ViewController.swift file to pass the

selected item in the table view to the photo detail view controller:

override func prepareForSegue (segue: UIStoryboardSegue,
sender: AnyObject?) {

guard let identifier = segue.identifier else

Trylt | 373

>

return

}

if identifier.compare ("showPhotoDetail")
NSComparisonResult.OrderedSame {

guard let

detailvViewController =
segue.destinationViewController as?
DetailViewController else {

return

}

guard let indexPath =
tableView.indexPathForSelectedRow,
arrayOfPhotos = self.photos else {

return

let modelObject:Photo = arrayOfPhotos [indexPath.row]
detailViewController.modelObject = modelObject

}

Implement UITablevViewDataSource methods in the ViewController.swift file.

1.

2.

Implement the tableview (tableView, numberOfRowsInSection) method as
follows:

override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int)

{

if photos != nil {
return photos!.count

}

return 0

-> Int

Inqﬂenwntthetableview(tableview, cellForRowAtIndexPath) method as follows

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath)

{

let cell:UITableViewCell =
tableView.dequeueReusableCellWithIdentifier ("prototypeCelll™",
forIndexPath: indexPath)

let somePhoto:Photo!

cell.textLabel?.text

return cell

photos! [indexPath.row]

somePhoto.photoCaption

-> UlTableViewCell

374 | LESSON 25 INTRODUCTION TO CLOUDKIT

Add code to the DetailviewController.swift file to display information on a Photo
instance.

1. Declare an optional variable called mode10bject in the DetailviewController class.

var modelObject:Photo?

2. Update the code in the viewDidLoad method to resemble the following:

override func viewDidLoad() ({
super.viewDidLoad ()

guard let
modelObject = modelObject,
photoDescription = modelObject.photoDescription,
photoCaption = modelObject.photoCaption,
imageFileName = modelObject.fileName else {
return

}

detaillLabel.text = photoDescription
captionLabel.text = photoCaption
loadImageFromFileInDocumentsDirectory (imageFileName)

}
The preceding snippet extracts the photoCaption, photoDescription, and fileName
attributes of the Photo entity and updates information on the view.

3. hnpkﬁnentalneduxicaﬂed loadImageFromFileInDocumentsDirectory (imageFile

Name) , which is given the name of a file in the documents directory and loads the image
into the image view:

func loadImageFromFileInDocumentsDirectory (imageFileName:String) {

let documentsURL =
NSFileManager.defaultManager () .URLsForDirectory (.DocumentDirectory,
inDomains: .UserDomainMask) [0]

let fileURL = documentsURL.URLByAppendingPathComponent (imageFileName)
let image:UIImage? = UIImage (contentsOfFile: fileURL.path!)
if (image != nil)

imageView.image = image
imageView.contentMode = UIViewContentMode.ScaleAspectFit

Add code to the addPhotoviewController.swift file to allow the user to add a photo to
the public CloudKit database.

1. Import the CloudKit framework at the top of the AddPhotoviewController
.swift file.

2. Create an action method in the AddPhotoviewController class and associate it with
the Did End On Exit events of the two text fields.

Trylt | 375

> Right-click the first UITextField object to display its context menu, and
drag from the circle beside the Did End On Exit item to an empty line in the
AddPhotoViewController.swift file.

Name the new Action onDismissKeyboard.

> Right-click the second UITextField object to display its context menu, and
drag from the circle beside the Did End On Exit item to the icon representing
the view controller in the dock.

> Release the mouse button over the yellow view controller icon in the dock
to present a list of existing action methods in the view controller. Select the
onDismissKeyboard method.

Click the addPhotoviewController.swift file in the project navigator to open it.
Add the following code to the implementation of the onDismissKeyboard method:

captionField.resignFirstResponder ()
descriptionField.resignFirstResponder ()

Add a tap gesture recognizer and use it to dismiss the keyboard when the background
area of the view is tapped.
> Add the following method declaration to the AddPhotoviewController
.swift file:

func handleBackgroundTap (sender: UITapGestureRecognizer) {
captionField.resignFirstResponder ()
descriptionField.resignFirstResponder ()

> Add the following code to the viewDidLoad method after the super
.viewDidLoad () line:
let tapRecognizer = UITapGestureRecognizer (target:self,
action: Selector ("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

Set up placeholder text in the text fields when the view is loaded.

Add the following code to the viewDidLoad method after the supe.viewDidLoad ()
line:

captionField.placeholder = "Photo caption"
descriptionField.placeholder = "Photo description"

Your viewDidLoad method of AddPhotoViewController.swift should now resemble
the following:
override func viewDidLoad() ({

super.viewDidLoad ()

captionField.placeholder = "Photo caption"
descriptionField.placeholder = "Photo description"

376 | LESSON 25 INTRODUCTION TO CLOUDKIT

let tapRecognizer = UITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

6. Add code to allow the user to select a picture from the photo library on the device.
Selecting pictures from the photo library is covered in Lesson 31.

> Replace the implementation of the onselectpicture method with the
following:

@IBAction func onSelectPicture (sender: AnyObject) {

guard let cameraButton = sender as? UIButton else {
return

let imagePicker:UIImagePickerController = UIImagePickerController ()
imagePicker.sourceType = UIImagePickerControllerSourceType.PhotoLibrary
imagePicker.delegate = self

if UIDevice() .userInterfaceldiom == UIUserInterfacelIdiom.Pad

{

imagePicker.modalPresentationStyle =
UIModalPresentationStyle.Popover

self.presentViewController (imagePicker,
animated: true, completion: nil)

let presentationController:UIPopoverPresentationController =
imagePicker.popoverPresentationController!

presentationController.permittedArrowDirections =
UIPopoverArrowDirection.Left

presentationController.sourceView = self.view
presentationController.sourceRect = cameraButton.frame

}

else

{

self.presentViewController (imagePicker,
animated: true, completion: nil)

> AddPhotoViewController class from

class AddPhotoViewController: UIViewController {
to
class AddPhotoViewController: UIViewController,

UIImagePickerControllerDelegate,
UINavigationControllerDelegate {

Trylt | 377

> Add the following implementation of UIImagePickerDelegate methods in
the AddPhotovViewController.swift file:

func imagePickerController (picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {
let image:UIlmage =
info [UIImagePickerControllerOriginalImage] as! UIImage
imageView.image = image

picker.dismissViewControllerAnimated (true, completion: nil)

}

func imagePickerControllerDidCancel (picker: UIImagePickerController)

{
}

picker.dismissViewControllerAnimated (true, completion: nil)

Add code to dismiss the AddPhotoviewController when the Cancel button is tapped.
Replace the implementation of the oncancel method with the following:

@IBAction func onCancel (sender: AnyObject) {
self.dismissViewControllerAnimated (true, completion: nil)
}

Add code to save the image to the local file system and update CloudKit when the Save
button is tapped.

Replace the implementation of the onsaveRecord method with the following:

@IBAction func onSaveRecord(sender: AnyObject) {

// ensure data has been filled.

guard let
photoCaption = captionField.text,
photoDescription = descriptionField.text,
image = imageView.image else {

// user has not filled in all fields

let alert = UIAlertController(title: "Incomplete information!",

message: "You must select an image, provide a caption and a
description.",

preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,

completion: nil)

return

}

if photoCaption.characters.count == 0 ||

378 | LESSON 25 INTRODUCTION TO CLOUDKIT

photoDescription.characters.count == {
// user has not filled in all fields
let alert = UIAlertController(title: "Incomplete
information!",
message: "You must select an image, provide a
caption and a description.",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert,
animated: true,
completion: nil)

return

// generate a unique record identifier
let uuid:String = NSUUID() .UUIDString
let photoRecordID:CKRecordID = CKRecordID (recordName: uuid)

// save the image to a file in the documents directory
let fileName:String = "\ (uuid).jpg"

let fileURL:NSURL =
Photo.saveImageToDocumentsDirectory (image, fileName)

// make a CKAsset from the file.
let photoAsset:CKAsset = CKAsset (fileURL: fileURL)

// create a photoRecord
let photoRecord:CKRecord = CKRecord(recordType: "Photo",
recordID: photoRecordID)

photoRecord ["photoCaption"] = photoCaption
photoRecord ["photoDescription"] = photoDescription
photoRecord ["dateTaken"] = NSDate ()
photoRecord["filename"] = fileName

photoRecord ["photoAsset"] = photoAsset

// save the record to the public database with CloudKit
let publicDatabase:CKDatabase =
CKContainer.defaultContainer () .publicCloudDatabase

publicDatabase.saveRecord (photoRecord)
{ (newRecord, error) -> Void in

if error != nil {
let alert = UIAlertController(title: "Error!",
message: "Error saving to Cloudkit",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",

Try lt | 379

style: UIAlertActionStyle.Default,
handler: nil)

self.presentViewController (alert,
animated: true,
completion: nil)

return

}

self.dismissViewControllerAnimated (true,
completion: nil)

}

Test your app in the iOS Simulator.
1. Click the Run button in the Xcode toolbar. Alternatively, you can select Project © Run.

2. When you launch the app for the first time, you will be presented with an empty table
view. Use the Add button to add a photo to your CloudKit database. Once you have
added a photo, wait for a few seconds for the table view to refresh its contents. You
will see a row in the table view for each photo you add to CloudKit.

REFERENCE To see some of the examples from this lesson, watch the
Lesson 25 video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftios

26

Introduction to Core Data

The Core Data framework provides solutions to tasks commonly associated with managing
the lifecycle of objects in your application, including object serialization. Prior to Core Data,
programmers relied on SQLite to store their application data; Core Data can be viewed as an
object-oriented wrapper around a SQLite database. It provides you with a convenient mecha-
nism to create, update, and delete entities in the database without having to write a single line
of SQL. In this lesson, you learn to use Core Data to implement simple object persistence in
your applications.

BASIC CONCEPTS

Core Data is based on the Model-View-Controller pattern and essentially fits in at the
model stage. It forces you to think of your applications data in terms of objects. Core Data
introduces quite a few new concepts and terminology. These are discussed briefly in this
section. Figure 26-1 provides an overview of the key classes introduced by Core Data.

Managed Obiject

A managed object is a representation of the object that you want to save to the data store.
This is conceptually similar to a record in a relational database table and typically contains
fields that correspond to properties in the object you want to save. The lifecycle of managed
objects is managed by Core Data; you should not hold strong references in your code to man-
aged objects. Managed objects are subclasses of NSManagedobject and not NSObject.

Managed Object Context

The managed object context is akin to a buffer between your application and the data store.
It contains all your managed objects before they are written to the data store and manages
their lifecycles. Inside this context you can add, delete, or modify managed objects. When you
load data from the underlying data store, managed objects that are created as a result will

live within the managed object context. When you need to read, insert, or delete objects, you

382 | LESSON 26 INTRODUCTION TO CORE DATA

will call methods on the managed object context. A managed object context is represented by an
instance of the NSManagedobjectContext class. Managed object contexts should only be accessed
from the thread in which they were created. An application can have multiple managed object con-
texts all of which can be connected to a single persistent store coordinator, and in effect are talking
to the same database.

Managed Object Context

Managed Object Managed Object
(Organization 1) (Organization 2)

A

Persistent Store Coordinator

I I

Managed Object Model

Persistent Store
(SQLite Database 1)

FIGURE 26-1

Persistent Store Coordinator

The persistent store coordinator is an instance of NSPersistentStoreCoordinator and represents
the connection to the data store. It contains low-level information, such as the name, location, and
type of the data store to be used, as well as handling the task of communicating with the store. Your
application will have one instance of the persistent store coordinator for each database that it needs
to interact with.

The persistent store coordinator is used by the managed object context, and in most cases, you will
not need to deal with it directly. Multiple managed object contexts can share the same instance of
the persistent store coordinator, and Core Data handles the synchronization of data across all these
contexts.

You may have more than one managed object context sharing the persistent store coordinator if you
want to access your managed objects from different threads. In such cases you will have one man-
aged object context per thread.

Basic Concepts | 383

Entity Description

An entity description is an instance of NSEntityDescription and essentially describes a table
within the database. In Core Data terms, database tables are called entities. It is rare for a program-
mer to create entity descriptions programmatically, but it can be done. The most common method to
create entity descriptions is to use the graphical Core Data editor included within XCode.

It is worth nothing that an entity description is similar to the schema for a database table. It does

not contain the actual data; it is used internally by Core Data to create tables in the underlying
database.

Managed Object Model

The managed object model is an instance of NSManagedobjectModel and is a collection of entity
descriptions. When Core Data is used in a project, the project contains a file that ends with the

extension .xcdatamodeld. This file is used by XCode to build a graphical editor for the managed
object model (see Figure 26-2).

ene » iy w... | W iPhone B withoutGoreData: Ready | Today at 18:46 = B & 1
BR QA6 =o B i< & withoutCoreData | 1 withoutCoreData » 7 Dy 'O @o 8 rame
withoutCoreData e
v B g tages, 05 8DKRS EE"IES ¥ Attributes
¥ [CoreData framework = v e A 18 A
Persan - =

¥ [withoutCoreData B address String f+

| FETCH REQUESTS B postCode String P

=+ AppDalagate.swift 3 ; -~

< FirstViewControfler. i CONFIGURATIONS Mm String ~

= SecondViewControlierswift @ Dsfautt T

Main.storyboard
- e ¥ Relationships
LaunchScreen.xib i
¥ [0 Supporting Files
¥ [withoutCoreDataTests
* [Products.
¥ Fetched Properties
= - ©. © £E-
Lo @ Outline Style Add Entity Add Attributs Editar Style

When your project is compiled into an executable, this file is compiled into a .mom file, which is the
managed object model in binary format. For most practical purposes, the .xcdatamodel file can be
considered to be the managed object model. However, it is important to keep in mind that this file
will be compiled to produce the managed object model.

384 | LESSON 26 INTRODUCTION TO CORE DATA

ADDING CORE DATA TO A PROJECT

When you create a new project based on the Master Detail or Single View Application
templates, you have the option to include Core Data in the project in the project options dialog box
(see Figure 26-3).

Choose options for your new project:

Product Name: ||

Organization Name: asm technology Itd

Organizati ifier; com ology
Bundle Identifier; com.asmtechnology. Productiame
Language: Swift a
Devices: iPhone E
Cancel Previous

FIGURE 26-3

However, for other application types, this checkbox does not exist. This section walks you through
what you need to do to add Core Data into a project manually.

To add Core Data to your project, you first need to add a reference to the framework. You can do
this from the Project Settings page in Xcode. Select the project node in the project navigator to
display the settings page. On the settings page, select the appropriate build target and then switch
to the Build Phases tab. Click the + button under the Link Binary With Libraries category. Select
CoreData.framework from the list of available frameworks (see Figure 26-4).

The next step is to create a managed object model for the project. To create an empty model file
(into which you will later add entities), right-click the project group in the project navigator and
select New File from the context menu. Select the Data Model template from the Core Data section
and create the new file (see Figure 26-5).

To open the model in the Xcode editor, simply click the file in the project navigator (the model file
has the .xcdatamodeld extension). The new model file is initially empty (see Figure 26-6), and as
such is not much use to you in this state.

Adding Core Data to a Project | 385

ane » B /A wahoutGoreData | @ iPhane B withcutCoreData: Ready | Tooay at 18:37 O m = |
BROAOGE®SGE|F < > Bwoncrn T S
withoutCorat, |[] P — Copabiltiss ko Buikd Settngs 2 Buid Fufus | Qulal el
|
2 | No Quick Help
» Targwt Dapandancios (0 itema)
* Gomplle Sources 3 itema) x
T Link Binary With Libraries |0 itams) "
Hame
Bl
3 @ B o o s
+ Gopy Bundis Resources (3 items) x
O0&e&n
Laiba| Lsbel - & varssiy sicec wecurt of
et et
Button - Inteecapts touch svents and
Button sends an acticn messzge o a farget
abiect when s toped.
Segmented Control - Displays.
E Muitiphe segrants, sach of which
funstion i & dischne butten,
+ OE® + - @
FIGURE 26-4
Choose a template for your new file:
i0s = L
Source - e
User Interface)
Mapping Model hSManagedObj
Core Data ect subclass
Resource
Other
Apple Watch
oS X
Source
User Interface
ORI Data Model
Resource A Core Data model file that allows you to use te design component of Xcode.
Other
Cancel | -

FIGURE 26-5

386 | LESSON 26 INTRODUCTION TO CORE DATA

[] ® » % w... ! @) Phone & withoutCoreData: Ready | Today at 16:46 = @)0 & O
BR QA a ¢ = 8 | L & withoutCoreData + () withoutCoreData + [B No Selection
withoutCareData | =
¥ B} \argets, i0s 50K B.3 skl ¥ Attributes
» i CoreData.framework FETCH REQUESTS %
¥ B wRSCUTcmCa: CONFIGURATIONS
= AppDelegate. swift
2 FirstViewController.swift
= SecondViewController.swift t
Main.storyboard
B Images.xcassets ¥ Relationships
LaunchScrean.xb b
(3 Supparting Files
» [withoutCoreDataTests
» [Products
t
T Fetched Properties
+
= o o.
- IOE® Qutline Style Add Entity Add Attribute Editor Styla

To persist objects into the underlying data store, you first need to define an entity in the data model
for each object that you want to persist. Defining entities is trivial with the Xcode editor: To add a

new entity called contactData, select Editor > Add Entity and name the new entity appropriately.
You will see the new entity listed under the Entities section of the Xcode editor (see Figure 26-7).

After you have defined an entity, you need to add attributes to it. Attributes represent the actual
data fields in the entities themselves. Assuming the ContactData entity represents customer contact
information, some of its attributes may be:

» Customer Name
» Phone Number
> Postcode

To add an attribute to the currently selected entity, select Editor = Add Attribute. This adds a new
row to the Attributes section of the Xcode model editor (see Figure 26-8).

Adding Core Data to a Project | 387

o9 » B Aow. @BPhone8 withoutCorData | Build withoutCoreData: Succeeded | Taoday at 18:48 = @ o Ogm
B R QM=o B BHi< & withoutCoreData ©) wit...ta + ¥ Da..eld g DataModel.xcdatamodel © (3 ContactData 0@ @
withoutCoreData | Entity
¥ a 2 targets, I05 SDK B3 ¥ Attributes = -
» {8 CoreData. framewark oy Name ContactData
¥ [withoutCoreData ETCH REQUESTS LA
[DataModel xcdatamodeld Abatract Entity
CONFIGURATIONS
+ AppDelegate.swift @ petauit Parent Entity No Parent Entity B8
- FirstViewCantralier.awift ” - e
4 SacondViewControtler.swift -
* Main.storyboand
[Images. xcassats ¥ Relationships
LaunchSereen.xib Relationsfip & I+
» [0 Supporting Files
» witheulCoreDataTests User Info
» | Products Key ~ Value
¥ Felched Properties o~
Fetched Property » red|cat Versioning
Hash Modifier
Flenaming ID
+ DO@EB
Label - A variably sized amount of
Label oo,
Button - Intercepts touch avents and
Button sends an sction message to a target
olbjact when It's tagped.
- Segmented Control - Displays
| ni multiple segments, sach of which
— | functions as a discrate button.
=- o © @m-
+ I OE|@® Outline Style Add Entity Add Attribute Editor Style | B @®
BR | < B withoutCoreData) *% w...a) (2 D... } §0D.. » B ContactData) [attribute | ¢ @ > O ®& @
Attribute
ENTITIES v Attributes
I3 ContactData

Attribute

FETCH REQUESTS

Type

Name attribute

Properties | Transient Optional
[0 swiows e
CONFIGURATIONS
@ Defaut Attribute Type Undefined B
@ = Advanced | Index in Spotlight
Store In External Record File
FIGURE 26-8

Type in an appropriate name for the attribute and specify the attribute type. Attribute names must
begin with a lowercase letter and cannot contain whitespace. The attribute type is similar to the
data type of a variable, and determines what type of data the attribute contains. Core Data provides

several data types that can be selected from a drop-down list (see Figure 26-9). The type for each
attribute of the Contactbata entity can be String.

388 |

LESSON 26 INTRODUCTION TO CORE DATA
¥ Attributes
Attributa ~ Type
attribute ¥ Undefined
Integer 16
Integer 32
Intager 64
+ = Decimal
Double
¥ Relationships Float
String
Relationship ~ Boolean Inverss
Date
Binary Data
Transformable
+

FIGURE 26-9

At this stage, you have created a new data model and added an entity to it. Now you need an
actual Swift class that maps to the entity defined in the model. To do this, select Editor &> Create
NSManagedObject Subclass. This presents a dialog box asking you where to save the £ile for the
new class. In this dialog box, ensure the language is set to Swift (see Figure 26-10).

> L

iy w... - il Phone 8

withoutCoreData | Build withoutCoreData: Succeeded | Today at 18:48

B R QAQE{

v k withoutCoreData
2 targats, |05 SDK 8.3
» [CoreData. framewerk
¥ [withoutCaoreData
" DataModel xedatamodeld
s AppDelegate. swift
FirstViawController.swift
= SecondViewControllar.swi
* Main.storyboard
{8 Images xcassets
LaunchScreen.xib

B [0 Supparting Files
¥ | withoutCoreDataTests
> Products

OE®

¢ EY = [ull= -
Favorites Nama

El Recents

E Al My Files

&7 iCloud Drive

7 Desktop

[ﬂ: Documents

#3% Applications

o Downloads

m abhishekmishra
Devices

1 AMBP

2] BooTCAMP

(T} Remate Disc

Language

* [Base.lproj

* [0 Images.xcassats

i withoutCoreData

~ withoutCoreData

Data Modified
Today 18:37

Today 18:37

Size

Group
Targets
New Folder Cancel
Po— - . -
Outline Style Add Entity Add Aftributn Editor Styla

b o
Kind
;='.3Ic
Fold
No Selection
0ODoemn

i Labal - A variably sized amount of
static text.

Button - Infercepts towsh events and
I sends an action message to a target
abject when it's tapped.

| Sagmented Control - Displays

Create | multipia segmants, sach of which
- = functiors a8 & discrete button.

FIGURE 26-10

Instantiating Core Data Objects | 389

The name of the class will be the same as the name of the entity. The contactbata class that is
created for you by Xcode is a subclass of NSManagedobject and maps to the entity with the same
name. Its interface is listed here:

import Foundation
import CoreData

class ContactData: NSManagedObject {

@NSManaged var customerName: String
@NSManaged var phoneNumber: String
@NSManaged var postCode: String

You need to ensure that the name of the class that corresponds to the entity in the data model is set
up correctly. To do this, select the Entity in the xcdatamodeld file and switch to the Data Model
Inspector by selecting View = Utilities = Show Data Model Inspector. Examine the value of the
(Hassproperqcitshoukibesetto <your project name>.ContactData.

It is worth mentioning that if you now decided to make changes to the entity in the .xcdatamodel
file, the managed object class will not automatically update. You will need to regenerate the man-
aged object class and this process will overwrite the contents of the previous managed object class
header and implementation files. If you need to add code to the Core Data—generated class files, it is
best to do so in a subclass of the class generated by Core Data.

INSTANTIATING CORE DATA OBJECTS

Before you can read or write model objects to the underlying data store, you will need to instantiate
the managed object model, the managed object context, and the persistent store coordinator.

The managed object model is represented by an instance of the NSManagedobjectModel class, and
you instantiate a single instance for the .xcdatamodeld file in your project using the following
snippet.

let modelURL = NSBundle.mainBundle () .URLForResource ("withCoreData",
withExtension: "momd") !

var managedObjectModel: NSManagedObjectModel =
NSManagedObjectModel (contentsOfURL: modelURL) !

Once you have an NSManagedobjectModel instance, you can create an instance of the
NSPersistentStoreCoordinator class, which represents the persistent store coordinator. Recall
that the persistent store coordinator handles the low-level connection with underlying data stores.
Individual databases are referred to as persistent stores.

390 | LESSON 26 INTRODUCTION TO CORE DATA

To create an NSPersistentStoreCoordinator instance, use the following snippet:

var coordinator: NSPersistentStoreCoordinator? =
NSPersistentStoreCoordinator (managedObjectModel:
self.managedObjectModel)

Once you have the store coordinator, you need to give it a data store to manage. You do this by call-
ingtheaddPersistentStoreWithType(storeType, configuration, URL, options)method

on the store coordinator object. For instance, the following code snippet sets up a SQLite database
as the data store:

let urls =
NSFileManager.defaultManager () .URLsForDirectory (.DocumentDirectory,
inDomains: .UserDomainMask)

var applicationDocumentsDirectory:NSURL = urls[urls.count-1] as! NSURL
let url = applicationDocumentsDirectory.URLByAppendingPathComponent ("data.sqglite")

do {
try coordinator.addPersistentStoreWithType (NSSQLiteStoreType,
configuration: nil, URL: url, options: nil)
} catch {
// Report any error.

Finally, with the store coordinator object in place, it is time to instantiate a managed object context.
Recall that a managed object context is like a buffer where you place your managed objects before
writing to (or reading from) the database. The managed object context is represented by an instance
of the NSManagedobjectContext class and can be created as follows:

var managedObjectContext = NSManagedObjectContext (
concurrencyType: .MainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator = coordinator

WRITING MANAGED OBJECTS

Instantiating a managed object is slightly different from the usual process. With managed objects,
you allow Core Data to instantiate them within a managed object context. Once the object has been
instantiated, you can use it as you would any other object. To instantiate a ContactData object, use
the following code:

let newContact =
NSEntityDescription.insertNewObjectForEntityForName ("ContactData",
inManagedObjectContext :managedObjectContext) as! ContactData

Now that you have instantiated a ContactData object, you can set up its attributes just as you
would for any object:

newContact.customerName = "John Smith";
newContact .phoneNumber = "+44 78901 78192";
newContact.postcode = "PB2 7YK";

Try lt | 391

To write managed objects to the data store, simply call the save method of the managed object
context. Doing so saves any new objects to the underlying data store (by using the persistent store
coordinator). The save method returns a Boolean value indicating success or failure.
do {
try managedObjectContext.save ()

} catch {
// handle error.
}

READING MANAGED OBJECTS

Reading objects from a data store with Core Data is quite straightforward. You simply create an
appropriate fetch request and ask the managed object context to execute the request. The managed
object context will then return an array of objects read from the data store.

A fetch request is an instance of the NSFetchRequest class, and is similar to a SELECT statement in
SQL. When creating a fetch request, you need to specify the entity that you want to fetch. The entity
has to be one that exists in the data model. To create a fetch request that retrieves all contactbata
entities from the data store, use the following code:

let fetchRequest = NSFetchRequest (entityName: "ContactData")
To retrieve an array of managed objects from the data store, you need to ask the managed object
context to execute the fetch request, as shown in the following snippet:

do {
if let fetchResults = try
appDelegate.manaedObjectContext ! .executeFetchRequest (fetchRequest)
as? [ContactData]
// fetchReults is now an array of ContactData objects.
}

} catch {
// handle errors here.
}

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
CoreDataTest that can serialize/de-serialize object data to an SQLite database using Core Data.

Lesson Requirements
> Launch Xcode.
> Create a new project based on the Single View Application template.
> Add an entity to the data model.
» Create an NSManagedObject subclass.
>

Create a simple user interface with a storyboard.

392 | LESSON 26 INTRODUCTION TO CORE DATA

> Initialize Core Data objects.
> Save managed objects to the database with Core Data.

> Read managed objects from the database with Core Data.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

> To show the Object library, select View = Utilities => Show Object Library.
» To show the assistant editor, select View = Assistant Editor © Show Assistant Editor.

> Ensure the Use Core Data option is selecting when creating the project.

Step-by-Step
> Create a Single View Application in Xcode called corepataTest.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: CoreDataTest
> Organization Name: your company
> Organization Identifier: com.yourcompany
> Language: Swift
> Devices: iPhone
> Use Core Data: Checked
4. Save the project onto your hard disk.
> Edit the data model file.

1. Select the coreDataTest . xcdatamodeld file in the project navigator to open it in the
Xcode editor.

2. Add an Entity to the data model to represent contact data instances.
Select Editor => Add Entity and name the new entity ContactData.

3. Add attributes to the contactData entity.

http://www.wrox.com/go

Trylt | 393

>

>

> Select Editor & Add Attribute to create a new attribute. Name it customer-
Name and set its type to String.

> Add two more String attributes, phoneNumber and postCode, to the entity.

Create an NSManagedoObject subclass to represent the ContactData entity.

1.

Select Editor &> Create NSManagedObject Subclass. You will be aksed to select the
entities for which you wish to create NSManagedobject subclasses. Ensure the check
box beside the ContactData entity is selected.

Accept the default file location, but ensure the language is set to Swift. Click Save to
create a new class called contactbata in your project.

Select the Entity in the CoreDataTest . xcdatamodeld file and switch to the Data
Model Inspector by selecting View = Utilities &> Show Data Model Inspector.

Ensure the value of the Class field is CoreDataTest .ContactData.

Create a simple user interface using a storyboard.

1.
2.

3.

Open the Main.storyboard file in Interface Builder.

From the Object library, drag and drop five Label objects, three Text Field objects, one
Button object, and one Table View object onto the scene.

Arrange these objects to resemble Figure 26-11.

D B
—
-— New contact ——

Name

Phone number

Post code

Add New Record To Databasa
-— Existing contacts -—
FIGURE 26-11

Create three outlets in the view controller class corresponding to the three Text Field
ObjeCtS in the scene. Name the outlets nameField, phoneNumberField, and postcode-
Field, respectively.

394 | LESSON 26

INTRODUCTION TO CORE DATA

8.

Create an action method called onadd in the view controller class and connect it to the
Touch Up Inside event of the Add New Record To Database button.

Create an outlet in the view controller class corresponding to the Table View object in
the scene. Name the outlet tableofContacts.

Select the table view in the scene. Use the Assistant Editor to set its content type to
Dynamic Prototypes and the number of prototype cells for the table view to 1.

Select the prototype cell within the table view. Use the Assistant Editor to set the table
view cell style to Basic and the Identifier to ContactDataTableViewCellIdentifier.

> Setup constraints in the default scene.

1.

Select the New Contact label.

» Select Editor = Size To Fit Contents. This will ensure the size of the label is
precisely what is needed to show all its contents.

\/

Select Editor &> Align = Horizontal Center in Container to center this label
horizontally in the scene.

Ensure the label is selected and bring up the Pin Constraints dialog box.
Ensure the Constrain to Margins option is unchecked.

Pin the distance from the top of the label to the view to 20.

Pin the width of the label.

> Pin the height of the label.

Y VYV VY

Select the Name label and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

> Left: 31

> Top: 37
> Width: 46
> Height: 21

Select the Phone number label and use the Pin Constraints dialog box to set up the fol-
lowing constraints while ensuring the Constrain to Margins option is unchecked.

> Left: 31
> Top: 18
> Width: 113
> Height: 21

Select the Postcode label and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

> Left: 31
> Top: 18

Trylt | 395

>

>

Width: 79
Height: 21

Select the Name text field and use the Pin Constraints dialog box to set up the follow-
ing constraints while ensuring the Constrain to Margins option is unchecked.

>

>

>

>

Left: 114
Top: 12
Right: 26
Height: 30

Select the Phone number text field and use the Pin Constraints dialog box to set up the
following constraints while ensuring the Constrain to Margins option is unchecked.

>

>

>

>

Left: 47
Top: 10
Right: 26
Height: 30

Select the Postcode text field and use the Pin Constraints dialog box to set up the fol-
lowing constraints while ensuring the Constrain to Margins option is unchecked.

>

>

>

>

Left: 81
Top: 8
Right: 26
Height: 30

Select the Add New Record To Database button and use the Pin Constraints dialog box
to set up the following constraints while ensuring the Constrain to Margins option is

unchecked.
> Top: 13
> Right: 26
> Width: 236
> Height: 37

Select the Existing Contacts label.

>

Select Editor = Size To Fit Contents. This will ensure the size of the label is
precisely what is needed to show all its contents.

Select Editor = Align = Horizontal Center in Container to center this label
horizontally in the scene.

Ensure the label is selected and bring up the Pin Constraints dialog box.

Ensure the Constrain to Margins option is unchecked.

396

LESSON 26 INTRODUCTION TO CORE DATA

>

>

>

Pin the distance from the top of the label to the view to 18.
Pin the width of the label.
Pin the height of the label.

10. Select the table view and use the Pin Constraints dialog box to set up the following
constraints while ensuring the Constrain to Margins option is unchecked.

>

>

>

>

Left: 31
Top: 13
Right: 26

Bottom: 15

11. Update the frames to match the constraints you have set.

>

>

Click on the View controller item in the dock above the storyboard scene.
This is the first of the three icons located directly above the selected story-
board scene.

Select Editor &> Resolve Auto Layout Issues & Update Frames.

> Create a managed object in the data store when the Add New Record To Database button is

tapped.

1. Import the corepata header files at the top of the ViewController.swift file by add-
ing this line:

import CoreData

2. Update the implementation of the onadd method to the following:

@IBAction func onAdd(sender: AnyObject) {

nameField.resignFirstResponder ()
phoneNumberField.resignFirstResponder ()
postCodeField.resignFirstResponder ()

let appDelegate = UIApplication.sharedApplication().delegate
as! AppDelegate

let newCustomerName:String! = nameField.text
let newCustomerPhoneNumber:String! = phoneNumberField.text
let newCustomerPostcode:String! = postCodeField.text

if newCustomerName.isEmpty &&

newCustomerPhoneNumber.isEmpty &&
newCustomerPostcode. isEmpty

{
}

let newltem =

return

Try lt | 397

NSEntityDescription.insertNewObjectForEntityForName (
"Contactbhata",

inManagedObjectContext: appDelegate.managedObjectContext)
as! ContactData

newltem.customerName = newCustomerName
newItem.phoneNumber = newCustomerPhoneNumber
newltem.postCode = newCustomerPostcode

var error:NSError? = nil
appDelegate.managedObjectContext!.save (&error)

fetchExistingContacts ()
tableOfContacts.reloadData ()

}
Read managed objects from the database and display them in a table view.

1. Ensure the viewController class implements the UITableViewDataSource and
UITableViewDelegate protocols by changing its declaration to the following:
class ViewController: UIViewController,

UlTableViewDataSource,
UITableViewDelegate

2. Add the following variable declaration to the ViewController.swift file:

var listOfContacts:Array<ContactData>? = nil

3. Create a new method in the viewController.swift file called fetchExisting
ContactData as follows:

func fetchExistingContacts ()

{

let fetchRequest = NSFetchRequest (entityName: "ContactData")

let appDelegate = UIApplication.sharedApplication() .delegate
as! AppDelegate

do {
self.listOfContacts = try
appDelegate.managedObjectContext .executeFetchRequest
(fetchRequest) as? [ContactDatal
} catch {
// handle errors here.
}

}

4. Add the following lines of code to the end of the viewbidLoad method. These lines
set up the datasource and delegate properties of the table view object and call the
fetchExistingContactData method.

fetchExistingContacts ()
tableOfContacts.dataSource = self
tableOfContacts.delegate = self

398 | LESSON 26 INTRODUCTION TO CORE DATA

5. Implement UITableViewDataSource and UITableViewDelegate methods in the
ViewController.swift file as follows:

func tablevView(tableView: UITableView,
numberOfRowsInSection section: Int)
-> Int

{
}

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath)
-> UlTablevViewCell

return listOfContacts!.count;

let cell = tableView.dequeueReusableCellWithIdentifier (
"ContactDataTableViewCellIdentifier",
forIndexPath: indexPath)

var someContactData:ContactData! =
listOfContacts! [indexPath.row]

cell.textLabel?.text = someContactData.customerName

return cell

}
> Test your app in the iOS Simulator.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project & Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 26
video online at www .wrox . com/go/swiftiosvid

http://www.wrox.com/go

27

Consuming RESTful JSON Web
Services

A web service is essentially a web application that runs on a web server and provides a list of
methods that allow users to access server-side resources. These resources can be web pages,
business data, images, or video files. You access the web service as you would any other web-
site using a URL.

Web services themselves can be written using one of several technologies including Node.js,
PHP, ASP.NET, and ColdFusion. Creating a web service is outside the scope of this book.

The examples in this lesson use a simple web service called Mathservice. Table 27-1 lists the
operations supported by the web service, the web service end point, and a brief description
of each.

TABLE 27-1: MathService Methods

METHOD NAME ENDPOINT URL SUPPORTED DESCRIPTION
HTTP
OPERATIONS

CircleArea www .asmtechnol - GET Input: radius

ogy.com/MathService/ Output: Returns

the area of a
circle with speci-

CircleArea/?radius=X

fied radius.
RectangleArea www . asmtechnology.com/ GET Input: length,
MathService/RectangleArea/? breadth

length=X&breadth=Y Output: Returns

the area of a
rectangle with
specified length
and breadth.

continues

http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnology.com

400 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

TABLE 27-1 (continued)

METHOD NAME ENDPOINT URL SUPPORTED DESCRIPTION
HTTP
OPERATIONS

SquareArea www .asmtechnol - GET Input: length

ogy.com/MathService/ Output: Returns

the area of a
square whose
sides are of
specified length.

SquareArea/?length=X

TriangleArea www.asmtechnol - GET Input: base,
ogy.com/MathService/ height

TriangleArea?base=X&height=Y Output: Returns

the area of a tri-
angle with speci-
fied base length
and height.

TYPES OF WEB SERVICES

There are two kinds of web services:
> RESTful
> SOAP

RESTful Web Services

REST is an acronym for Representational State Transfer. REST is an architecture style, primar-

ily used to build lightweight, scalable web services. Each server-side resource that is exposed by a
RESTful web service will have at least one URL. It is quite common for RESTful web services to
return responses in either XML or JSON formats with the latter gaining popularity in recent years.

A RESTful service URL resembles a directory-like structure and identifies a resource or collection
of resources as objects. A key differentiating point between web services that are RESTful and those
that aren’t is how resources are accessed.

When a resource is accessed through a RESTful web service, the actual operation that will be
performed on the server is determined by the HTTP verb specified when making the request. The
response from the server includes a status code that can be inspected to determine success or failure.
A list of HTTP status codes can be found at http://www.w3.org/Protocols/rfc2616/rfc2616-
secl0.html.

http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.asmtechnol-ogy.com/MathService
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

JSON and NSJSONSerialization | 401

The most common HTTP verbs are GET, POST, and DELETE. The same URL can be called with
different HTTP verbs to perform different operations. This is different from non-RESTful web
services where one would have a different URL for each operation that is to be performed on the
server.

For instance, if you had a database of employees on a server that you wished to expose publicly with
a RESTful web service, the URL to identify an employee (with unique identifier of 1790716) would
resemble the following:

http://www.example.com/Employee/1790716

If you were to send an HTTP GET request to this URL, the service would typically return some
information about that particular employee. If, on the other hand, you were to send an HTTP
DELETE request to the same URL, the service could potentially delete the employee record.

Needless to say, web service designers carefully decide which operations will be supported on a web
service.

SOAP Web Services

SOAP is an acronym for Simple Object Access Protocol. It is an XML-based message format, which
allows different applications to exchange objects with each other. SOAP web services often con-
tain a machine-readable description of the functions exposed by the web service written in WSDL
(Web Services Description Language). SOAP web services are generally used when communicating
between enterprise applications. SOAP requests and responses are larger than equivalent RESTful
versions and are therefore not suited to processing on mobile devices.

JSON AND NSJSONSERIALIZATION

JSON is an acronym for JavaScript Object Notation and provides constructs that allow you to con-
veniently serialize objects to UTF-8 text. It is used primarily to communicate between servers and
clients as an alternative to XML.

JSON is preferred over XML because JSON data takes fewer bytes to represent the same informa-
tion. For example, the following snippet shows how a collection of Organization objects would
be encoded in JSON and XML. As you can see, the JSON representation is more compact, which
translates to fewer bytes being sent over the network.

{"organizations": [
{«name»:"ACME Corportation", "address":"112, Fleming Drive, LE3 4F6, UK"},
{<<name>>:"Bright Ideas LLC", "address":"26, Syon Lane, London TW3 3P2 "},
{«name»:"Chromatic Inks Ltd", "address":"178, Lexuar Drive, Langley, SL6 3U0"}

1}

<organizationss>
<organizations>
<name>ACME Corportation</names

http://www.example.com/Employee/1790716

402

| LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

<address>112, Fleming Drive, LE3 4F6, UK</address>
</organizations>
<organization>
<name>Bright Ideas LLC</name>
<address>26, Syon Lane, London TW3 3P2</address>
</organization>
<organization>
<name>Chromatic Inks Ltd</name>
<address>178, Lexuar Drive, Langley, SL6 3UO</address>
</organizations>
</organizations>

NSJSONSerialization is a class that is part of the Foundation framework and can be used to con-
vert JSON objects into Foundation objects and vice versa. NSJSONSerialization requires that the
top level object is an array or dictionary and that all objects in the JSON are either strings, numbers,
arrays, or dictionaries. Table 27 -2 lists the mapping between Foundation types and JSON types

TABLE 27-2: Mapping Foundation to JSON Types

JSON TYPE FOUNDATION TYPE
Array NSArray
Dictionary NSDictionary
String NSString
Number NSNumber

Assuming you have an NSData instance that contains JSON objects, you can convert them to
Foundation objects using the JsoNObjectwithpata class method:

class func JSONObjectWithData(data: NSData, options opt: NSJSONReadingOptions)
throws -> AnyObject

The first parameter to this method is an NsData instance that contains JSON objects, encoded using
either UTF-8, or UTF-16. The second parameter is used to specify how Foundation objects are gen-
erated from JSON objects, and can be a combination of the following:

» MutableContainers: Creates NSMutableArray and NSMutableDictionary instead of
NSArray and NSDictionary.

> MutableLeaves: Specifies that leaf nodes that contain string data will convert to
NSMutableString instead of NSString.

> AllowFragments: Specifies that the parser should allow top-level objects that are not arrays
or dictionaries.

This method returns a non-optional result and will throw an error if it was unable to parse the
JSON input. The following snippet shows how you would use this method:

do {
let JSONObject = try NSJSONSerialization.JSONObjectWithData (data!,

NSURLSession and Application Transport Security | 403

options: .MutableContainers)

// use JSONObject

}

catch {
// handle exceptions.
!

NSURLSESSION AND APPLICATION TRANSPORT SECURITY

NSURLSession refers to a class from a set of related classes that allow you to download con-
tent via HTTP. It was introduced in iOS7 and supersedes the NSURLConnection APIL. The
new NSURLSession API is asynchronous by design and provides several improvements over
NSURLConnection including the following:

> Support for HTTP2.0 out of the box
> Support for per-session cache, cookies, and auth credentials

> Support for background downloads

NOTE NSURLConnection is deprecated on iOS 9 and is not available for
WatchOS. If you are developing a WaichOS application and need access to net-
working APIs then you must use NSURLSession.

With the NSURLSession AP, your app can create multiple sessions, with each session coordinating a
group of data transfer tasks. A session is analogous to a tab in a browser window, and a data trans-
fer task to a request to fetch a single resource such as an image. Within each session you could hit
the server multiple times for different resources. Each session has its own cache and HTTP security
credentials.

Some of the key classes in the NSURLSession API are:
> NSURLSession: Represents a session object

> NSURLSessionConfiguration: Represents a configuration object used while creating a ses-
sion object

> NSURLSessionDataTask: Represents a task for retrieving the contents of a URL as an
NSData object

> NSURLSessionDownloadTask: Represents a task for retrieving the contents of a URL as a
temporary file on the disk

NSURLSessionUploadTask: A task for uploading an NSData object to a file

NSURLSessionStreamTask: A task that lets you communicate using raw TCP/IP sockets.
This is useful if you want to use a protocol other than HTTP/HTTPS such as IRC.

404 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

The API also provides several protocols that define delegate methods you can implement in your
code for better control over session and task behavior:

> NSSessionDelegate: Contains delegate methods to handle session level events

> NSURLSessionTaskDelegate: Contains delegate methods to handle events common to all
task types

> NSURLSessionDataDelegate: Contains delegate methods to handle events specific to data
and upload tasks

> NSURLSessionDownloadDelegate: Contains delegate methods to handle events specific to
download tasks

> NSURLSessionStreamDelegate: Contains delegate methods to handle events specific to
stream tasks

Creating an NSURLSession

To create an NSURLSession instance, you must first create a session configuration; use the default-
SessionConfiguration () method of the NSURLSessionClass:

let configuration = NSURLSessionConfiguration.defaultSessionConfiguration()
Once you have a session configuration, you can fine-tune it by editing some of its attributes, includ-
ing the following:

> allowsCellularAccess: A value that indicates if the request should proceed over cellular
networks

» timeoutIntervalForRequests: A value that will cause a timeout if no data is transmitted
after this interval has elapsed

> HTTPAdditionalHeaders: Additional headers for outgoing HTTP requests

» HTTPMaximumConnectionsPerHost: Limits the maximum number of simultaneous connec-
tions to a server

NOTE NSURLSession also provides two more class methods to create sessions:

> ephemeralSessionConfiguration () returns a configuration with no per-
sistent store for cookies, caching, or user credentials. This could be ideal to
create a private browsing mode like feature in an app.

> backgroundSessionConfigurationWithIdentifier (identifier:)
returns a configuration that can be used to create a background session. A
background session is one that can upload and download data when the app
is in the suspended or inactive modes.

NSURLSession and Application Transport Security | 405

The following code snippet shows how to set a custom HTTP request header to support HTTP basic
authentication in your code:

let configuration = NSURLSessionConfiguration.defaultSessionConfiguration()
let userPasswordString = "username@yourcompany.com:password"
let userPasswordData = userPasswordString.dataUsingEncoding (NSUTF8StringEncoding)

let base64EncodedCredential =
userPasswordData! .base64EncodedStringWithOptions (
NSDataBase64EncodingOptions.Encodingé64CharacterLineLength)

let authString = "Basic \ (base64EncodedCredential)"
configuration.HTTPAdditionalHeaders = ["Authorization" : authString]

To learn more about how HTTP basic authentication works, refer to the section “Basic
Authentication Scheme” in the HTTP reference documentation at http://www.w3 .org/Protocols/
HTTP/1.0/spec.html#BasicAA.

Once you have a session configuration, you can create a session using the following:

let session: NSURLSession! = NSURLSession(configuration: configuration,
delegate: nil, delegateQueue: nil)

The delegate is optional, and is an object that implements the NSURLSession protocol. The final
parameter, delegateQueue, is a queue for scheduling the delegate calls and completion handlers. If
nil, the session creates a serial operation queue. It is important to note that your delegate methods
(or completion handler) will be called on this queue. If you intend to update the user interface within
these callbacks, then you must make sure that the code that updates the Ul is called on the main
queue.

One way to do this is by using NSOperationQueue.mainQueue () as the final parameter while creat-
ing the NSURLSesssion:

let session: NSURLSession! = NSURLSession (configuration: configuration,
delegate: nil,
delegateQueue: NSOperationQueue.mainQueue())

Creating a Data Task

If you wanted to call a method on a web service, chances are that you will end up using a data task.
To create a data task, you can use any of the following methods of the session object.

dataTaskWithRequest (urlRequest)

dataTaskWithRequest (urlRequest:completionHandler:)

mailto:username@yourcompany.com:password
http://www.w3.org/Protocols
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA

406 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

There are two versions of this method. Use the first one if you want to supply a delegate object;
the second one takes a block that is called when the request completes. The following code snippet
shows how you could create a data task with a completion handler:

let task : NSURLSessionDataTask! = session.dataTaskWithRequest (request,
completionHandler: {(data, response, error) in

b

The first parameter to both these methods is an NSURLRequest instance. An NSURLRequest instance
allows you to specify not only the URL but also additional information such as the request type
(GET/POST). NsURLRequest defaults to creating a GET request, but Apple provides a mutable ver-
sion called NSMutableURLRequest that allows you to set the content type. In general, it is common
practice to use NSMutableURLRequest in your code as you always have the option of changing the
request type when needed.

The following code snippet shows how you could create an NSMutableURLRequest from a URL and
set the request type to POST:

let serviceURL:String =
"http://www.asmtechnology.com/MathService/CircleArea/?radius=\ (radius)"

let url:NSURL! = NSURL(string: serviceURL)
let request: NSMutableURLRequest = NSMutableURLRequest (URL: url)
request .HTTPMethod = "POST"

NOTE To find out how to create, download, and upload tasks, refer to the
NSUR LSession programming guide at:
https://developer.apple.com/library/ios/documentation/Foundation/

Reference/NSURLSession class/#//apple ref/occ/instm/NSURLSession/
dataTaskWithURL:completionHandler

Once you have created an appropriate task, you need to call its resume () method to begin it:

task.resume ()

Application Transport Security

Application Transport Security (ATS) is a new feature in iOS 9 that helps prevent accidental disclo-
sure of data while making network requests by encouraging your application to make secure con-
nections to web services.

By default, ATS prevents calls to HTTP URLs. In fact, even if you provided an http:// prefix to your
URL, The NsurRLSession API will end up making an HTTPS call. This is fine if your server sup-
ports HTTPS, but if it doesn’t, then you will need to configure an exception for one or more URLs
in your application’s Info.plist file.

https://developer.apple.com/library/ios/documentation/Foundation
http://prefi
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSession_class/#//apple_ref/occ/instm/NSURLSession/dataTaskWithURL:completionHandler

NSURLSession and Application Transport Security | 407

To configure ATS, you need to add a new key to your Info.plist file called
NSAppTransportSecurity and set its type to be a Dictionary.

To disable ATS completely (not recommended), thereby allowing all http:// URL requests to pass
through, add a new Boolean value to this dictionary called NsSAllowsArbitraryLoads and set its
value to vEs (Figure 27-1).

o729 r»r HE A8 Running RESTClient on iPhone & = @ S0 0
Info.plist running +
B Qi © = B8 |E|I< 2 RESTClient RESTClient Info.plist) No Selection
v [RESTClient | Key Type Value
¥ | RESTClient ¥ Information Property List a {16 items)

en

SEXECUTABLE_NAME)
${PRODUCT_BUNDLE_IDENTIFIER)
6.0

$(PRODUCT_NAME)

Localization native development r..,
Executable file

Bundle identifier

InfoDictionary version

'

s AppDelegate.swift
B viewContraller.swift
Main.storyboard

W Assels xcassats Bundle name

LaunchScreen.storyboard Bundle OS Type code APPL
B info.plist Bundle versions string, short 10
v Products Bundle creator OS Type code 77
.-“._ RESTClient.app Bundle version 1
» Plug-in factery interfaces (0 itemns)
Application requires [Phone envir... YES a
Launch screen interface flle base... LaunchScreen
Main storyboard file base name

Main

¥ Required device capabllities
» Supported interface orientations & ©

TansportSecurity Dictionary T e
NSAllowsArbitraryLoads Baoaolean YES i

+ |@® OFE = = [| <7 RESTClient
FIGURE: 271

R T LTS

If, on the other hand, you want ATS to allow only specific insecure connections, you need to use a
different key called NSExceptionDomains (which is also a dictionary). Within this dictionary, you
can configure exceptions on a domain basis.

For each domain you want to configure, you need to provide a child dictionary within the
NSExceptionDomains dictionary. This domain-specific configuration dictionary can have any of the
following keys:

> NSIncludesSubdomains

> NSExceptionAllowsInsecureHTTPLoads
» NSExceptionRequiresForwardSecrecy
> NSExceptionMinimumTLSVersion

For instance, if you wanted to allow insecure http requests for all URLs in the asmtechnology.com
domain, your Info.plist file would resemble Figure 27-2.

http://URL

408 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

ere » g % g iPhone B Finished running RESTClient on iPhone 6 =@ S A e
Info.plist running +

BR Q& &©@ 2o B |#Hi¢ I RESTClient) | RESTClient) © Info,plist * No Selection

v & RESTGlient | Key Type Valus

v RESTClient
= AppDelegate.swift
= ViewControlierswift
Main.storyboard
5 Assets xcassets
LaunchScresn. storyboard

¥ 10 Products
o RESTCIient.app

w Information Proparty List
Localization native development region
Exacutable file
Bundie identifier
InfoDéctionary version
Bundle name
Bundle OS5 Type code
Bundle versions string, short
Bundle creator OS5 Type coda
Bundie version
¥ Plug-in factory interfaces
Application requires iPhone environment
Launch screen interface file base name
Main storyboard file base name

16 itemns)
en
SEXECUTABLE_NAME)
$PRODUCT_BUNDLE_IDENTIFIER)
6.0
$PRODUCT_NAME}
APPL
1.0
777
1

0 items)
YES
LaunchScreen
Main

¥ Required device capabilities 1 Item)

B AR AR AR AR AR AR AR A AR 4B Ak Ak Ak 4

13 interface ori Array
¥ NSAppTH ity 4 Dictionary
SExceptionDomains Dectionary
¥ asmtechnoiogy.com Dictionary
NSIncludesSubdomains Boolean YES 2
NSTemporaryExceptionA {TTPLoads € & Boolean YES .

& (O]

FIGURE 27-2

In the next session you will see how to put all of this together to call a web service.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called REsTClient, which uses a RESTful web service (described in Table 27-1) to calculate the area
of a circle.

Lesson Requirements
> Launch Xcode.
> Create a new iPhone project based on the Single View Application template.

> Add a urButton to the default scene and an appropriate action method to the view control-
ler class.

> Add a urTextField to the default scene and an appropriate outlet to the view controller
class.

> Add a scrolling UITextview to the default scene and an appropriate outlet to the view con-
troller class.

> Dismiss the text field when the Return button is pressed on the keyboard by implementing a
UITextFieldDelegate method.

Try lt | 409

Send a GET request to a RESTful web service when the uIButton is pressed.

> Parse and display the response in the UTTextView.

REFERENCE The code for this Try It is available at www .wrox . com/go/

swiftios.

Hints

> The math web service implements a web method called circlearea that requires a single
parameter called radius. The service endpoint is http: //www.asmtechnology.com/
MathService/CircleArea.

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

> To show the Object library, select View = Utilities = Show Object Library.

To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called RESTClient.
1. Launch Xcode and create a new application by selecting File &> New > Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: RESTClient
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include UI Tests: Unchecked
> Include Unit Tests: Unchecked

Y Y VYV VY Y Y

4. Save the project onto your hard disk.

» Add Ul elements to the default scene.

http://www.wrox.com/go
http://www.asmtechnology.com
http://www.asmtechnology.com/MathService/CircleArea

410

LESSON 27

CONSUMING RESTFUL JSON WEB SERVICES

Open the Main. storyboard file in the Interface Editor

From the Object library, drag and drop a button, text field, and text view objects onto
the scene and place to resemble Figure 27-3.

-

® B

Compute Area of Circle

Lorem ipsum doler sit er elit lamet, consectetaur cillium adipisicing pecu, sed do
eiusmod tempaor incididunt ut labere et dolore magna aligua. Ut enim ad minim
veniam, guis nostrud exercitation ullamca laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in veluptate velit esse cillum daolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mallit anim id est labarum. Nam liber te conscient to factor tum
poen legum cdiogque civiuda.

FIGURE 27-3

Select the Text field and use the Attribute inspector, to change the value of the
Placeholder attribute to Enter Radius.

Select the Button and use the Attribute inspector to change its background color to a
shade of gray and its caption to “Compute Area of Circle”

Select the Text view and use the Attribute inspector to change its background color to a
lighter shade of gray than the button.

With the Text view still selected, uncheck the Editable attribute (see Figure 27-4). This
will ensure that the user cannot change the contents of the text view.

Create layout constraints for each of the elements on the storyboard scene using the
information in Table 27-3. When creating layout constraints using the pin constraints
popup, ensure the Constrain to margins option is unchecked and Update Frames is set
to Items of New Constraints.

Try lt | 411

eve » B A\ RESTCle) g Phone &

B 8E a i@ @ (Bl

v [RESTClent ¥ [7] View Contralier Scene.
¥ 1 RESTCHant v

=

& RESTClen

i Conteolise
Tap Layout Guida
Bottom Layout 3
Wiew
F | Enter Aacun
B Compute Area...

Taxt View

@ First Respandar

[CET
Storyboard Entry Pt

* AapDeingmie.swift
+ ViewControter.switt
~ Mainmerybasd v
W Asaein. xcasnetn
LaunchScrean sioryboard
Infe plst
13 Products

RESTClient: Aeady | Today at 20:40

RESTCiant | [l Muinstorybeard | [l Main.si...rd (Bessy | [View Co...r Soars Winw Cantralar Virm Tat View

Compute Area of Circle

=1 a a
Lorem ipsum dolor sit er elit lamet, consectetaur cllbum adipsicing pecu, sed do
piusmod tampor incididunt ut labore et delore magna aliqua. Ut enim ad minim
veniam, guis nostrud exercitation ullamco laboris nisi ut aliquip ax ea commado
consequat. Duls sute irure dolor in reprehenderit in voluptate velit esse cillum dolore
e fugiat nulla pariatur. Exceptour sint occaecal cupidatat non proident, sunt in culpa
gui officia deserunt mollit anim id est laborum. Mam liber te conscient to factor tum
poen legum adiogue cliuda.

whny rAny

@ & OO

|00

O &

Tust View

@

Taxt Plain B
Lorsn s dolor sit e alt
lamat, coraactats eilium
acipisicing pecu. sed do
siusmod terpor incididunt ut
labcre @ coicrs magna
aliqua, Uit ervm ad minm
venam, quis nestrud
asercitation Wiames lsbors
nis 1 Bigup ax ea commadn
conaequat. Dus aute irurm
ciice in repennandant in
valuptate velit ase cifum
dholten u fuginl el paratn.
Excopiaur sint cccancai
cupicatat non proidant, sunt
in culps il cHicis desseunt
meillt anim i et laborum,
Nam liber fu conscent to
Factar bam poan lagum
cdoqua chiuda.

Celsr WEEN Dotauft

Fent Gystem 14.0

Bahwiins Editabla) Ssloctabin

Phone Numbers
Events
Captabaation Sanbarnces
Comeation Detoult
0O0@aa
Text Feeld - Displays sqitasie sext

and sands an action ma
torget nbiert wien Fieturn i ppec.

Taut

Text View - Dospiays mustipls ines of
eciinoin test and sands an nction
| message to o terget obisot when ..

BB o hed B @ o

FIGURE 27-4

TABLE 27-3: Layout Constraints

ELEMENT LEFT

Text Field 16
Button

Text View 16

TOP RIGHT BOTTOM WIDTH

20 16

56 16 176

16 20

HEIGHT
30
38

8. Use the assistant editor to create an outlet for the Text field in the view controller class.
Name the outlet radiusField.

9.

Set up the delegate property for the Text field.

> Ensure the Assistant Editor is visible and the ViewController.swift file is
loaded in it.

412 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

> Right-click the table view to bring up a context menu. Drag from the item
labeled “delegate” in the context menu to the item labeled “View Controller”
in the document outline.

10. Create an action method in the Viewcontroller class and associate it with the Did
End On Exit event of the text field.

> Right-click the UTextField object on the scene to display its context menu,
and drag from the circle beside the Did End On Exit item to an empty line in
the viewController.swift file.

» Name the new Action onDismissKeyboard.

11. Use the assistant editor to create an outlet for the Text view in the view controller class.
Name the outlet serverResponseView.

12. Create an action in the view controller class and connect it with the Touch Up Inside
event of the button.

> Ensure the Assistant editor is visible and the ViewController.swift file is
loaded in it.

> Right-click the button in the scene to display its context menu, and drag
from the circle beside the Touch Up Inside item to an empty line in the
ViewController.swift file.

> Name the new action onCalculatearea.
> Ensure the ViewController class implements the UITextFieldDelegate protocol.
Modify the declaration of the viewController class from:
class ViewController: UIViewController
to
class ViewController: UIViewController, UITextFieldDelegate
> Modify code in the view controller class.
1. Open the viewcontroller.swift file in the project explorer.
2. Add the following line to the implementation of the onDismissKeyboard method:
radiusField.resignFirstResponder ()

> Add a tap gesture recognizer and use it to dismiss the keyboard when the background area of
the view is tapped.

1. Add the following method to the viewController.swift file:

func handleBackgroundTap (sender: UITapGestureRecognizer) {
radiusField.resignFirstResponder ()
}

2. Add the following code to the viewbidLoad method of the view controller class, after
the super.viewDidLoad () line:

let tapRecognizer = UlITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

Trylt | 413

tapRecognizer.cancelsTouchesInView = false

self.view.addGestureRecognizer (tapRecognizer)
3. Add code to clear the initial contents of the text view when the view is loaded.

> Add the following line to the end of the viewbidLoad method:

serverResponseView.text = ""

» The viewDidLoad method in your ViewController.swift file should now
resemble the following;:

override func viewDidLoad() ({
super.viewDidLoad ()

let tapRecognizer = UITapGestureRecognizer (target:self ,
action: Selector ("handleBackgroundTap:"))

tapRecognizer.cancelsTouchesInView = false
self.view.addGestureRecognizer (tapRecognizer)

serverResponseView.text = ""

}

4. Replace the implementation of the oncalculatearea method with the following:

@IBAction func onCalculateArea (sender: AnyObject) {

let radius:String = radiusField.text!
if radius.isEmpty

{
}

let serviceURL:String =

"http://www.asmtechnology.com/MathService/CircleArea/?radius=\ (radius)"
let url:NSURL! = NSURL(string: serviceURL)
let request: NSMutableURLRequest = NSMutableURLRequest (URL: url)

return;

let configuration =
NSURLSessionConfiguration.defaultSessionConfiguration()
configuration.timeoutIntervalForRequest = 15.0

let session: NSURLSession! =
NSURLSession (configuration: configuration,
delegate: nil,
delegateQueue: NSOperationQueue.mainQueue())

let task : NSURLSessionDataTask! =
session.dataTaskWithRequest (request,
completionHandler: {(data, response, error) in

if data != nil

414 | LESSON 27 CONSUMING RESTFUL JSON WEB SERVICES

>

let decodedString = NSString(data: data!l,
encoding: NSUTF8StringEncoding)
self.serverResponseView.text = decodedString as! String

b

task.resume ()

}

Configure Application Transport Security to allow an insecure HTTP connection for the
asmtechnology.com domain.

1.

Expand the RESTClient group in the project navigator and click on the Info.plist
file to open it in the property list editor.

Add a new key to the Info.plist file called NSAppTransportSecurity and set its
type as Dictionary.

Expand the NSAppTransportSecurity key and add a new child key called
NSExceptionDomains, also of type Dictionary.

Expand the NSExceptionDomains key and add a child key called asmtechnology . com,
also of type Dictionary.

Expand the asmtechnology.com key and add two Boolean keys, both set to YES, called
NSIncludesSubdomains and NSExceptionAllowsInsecureHTTPLoads .

Test your app in the iOS Simulator.

1.
2.
3.

Click the Run button in the Xcode toolbar. Alternatively, you can select Project & Run.
Ensure your computer has an active Internet connection.

Enter a numeric value for the radius field and tap the Compute Area of Circle button.

REFERENCE To see some of the examples from this lesson, watch the Lesson 27
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvi

SECTION IV
Beyond the Basics

» LESSON 28: Social Media Integration

» LESSON 29: Where Am |? Introducing Core Location
» LESSON 30: Introduction to Map Kit

» LESSON 31: Using the Camera and Photo Library

» LESSON 32: Introduction to User Interface Testing

» LESSON 33: Introduction to Test Driven Development

28

Social Media Integration

Social media integration is not something that most apps can ignore. These days, social media
integration in apps is the norm rather than the exception. Fortunately for you, Apple has
integrated support for Facebook Twitter, Sina Webo, and Tecent Webo into iOS 9. Posting to
social media services has never been easier!

In this lesson, you learn to integrate the Social framework in your iOS apps and allow the
user to share a post on Facebook and Twitter from your apps. You can build more complex

clients that can access the entire Facebook/Twitter API, but this topic is beyond the scope of
this book.

The Social framework is not included in any of the standard iOS project templates that you
use when creating a new project. You will need to add a reference to this framework manually.
You can do this from the Project Settings page in Xcode. Select the project node in the project
navigator to display the settings page. On the settings page, select the build target and switch
to the Build Phases tab. Click the plus (+) button under the Link Binary With Libraries cat-
egory and select Social . framework from the list of available frameworks (see Figure 28-1).

418 | LESSON 28 SOCIAL MEDIA INTEGRATION

C A SocialTest | @l Phane & Finished running SaciafTest an iPhooe & = @< 000

Sociaeat xcodepm) faming

2 a M O 5O B Bl £ soclaMast

1 B Ganaral Capabiites Resource Togs Infa Build Settings Build Phases Buid Aules

et FROJECT ' =
s AppDsiogate.swe
PRI = SociTest
NewConiralier sw T + Target Dependencies [0 items)
Main storynosrd i
B Aschats, sCaBse A sosamest) 2 » Compils Bources {2 itema]
LaunchBamen storyooard

Infa. pilat ¥ Link Binary With Libraries [0 fems)
» 7 Products

@3

* Copy Bundie Resouroes (3 itoms)

FIGURE 28-1

THE SHARE SHEET

The Social framework provides a share sheet that you should use in your apps if all you want is a
simple “share” feature. The share sheet is an instance of the SLComposevViewController class and
provides a convenient user interface to allow the user to type a message, attach an image, and add
the current location (see Figure 28-2).

The keyboard is displayed automatically when the share sheet appears and disappears automatically
when the user presses the Send or Cancel buttons. Creating and displaying the share sheet config-
ured to one of the supported services is a simple matter of instantiating it and presenting it modally:

let facebookMessageComposer:SLComposeViewController =
SLComposeViewController (forServiceType: SLServiceTypeFacebook)

self.presentViewController (facebookMessageComposer,
animated: true, completion: nil)

When creating an SLComposeViewController instance, you must provide a single argument
that indicates what social media service you want to use. This argument can have one of four
possible values:

> SLServiceTypeTwitter

> SLServiceTypeFacebook

The Share Sheet | 419

> SLServiceTypeSinaWeibo

> SLServiceTypeTencentWeibo

Cancel Twitter

Hey guys, Check out my first
post using the i0S Social API! If
you like this post, be sure to visit
my websitel

Location

FIGURE 28-2

The options displayed in the share sheet will vary depending on the social media service that is con-
figured. Typically, you will want to do this in an action method that is triggered when your user taps
on a button in the user interface. Before you show the share sheet for a particular service, you must
check to see if the user has created an appropriate account on the system (see Figure 28-3).

For instance, if you detect that the user has not created a Twitter account on the system, you may
want to hide the Tweet button from your user interface entirely, or display an alert when the user
taps it.
TOChCthheavaﬂabﬂﬁyofaservke,usetheisAvailableForServiceType(serviceType:
String!) class method of the SLComposeViewController class as follows:

if SLComposeViewController.isAvailableForServiceType (SLServiceTypeFacebook)

{
1
else

{
}

// service is available

// service is not available, perhaps show an alert to the user?

You can set up the initial text displayed in the tweet sheet prior to displaying it by calling the
setInitialText () method on the SLComposeViewController instance:

func setInitialText (text: String!) -> Bool

420 | LESSON 28 SOCIAL MEDIA INTEGRATION

R R G 0646 —) wee Op UK 4G 0646 i)
Settings < Settings Twitter

D Twitter

n Facebook ;:t?:ﬁ;c

e Flickr

m Vimeo Username

Password
Developer
nin

E} 3D Artist

ET) 3D World Magazine: For 3D artists. . Create New Account

@ 7th Guest oSkl iy

@ Advanced Photoshop S TR e A

B AirSupremacy

S Amazon

E AnotherCase

E'I Apple Store

FIGURE 28-3

This method takes one string argument that contains the text you want to set and returns a
Boolean value that contains the result of the operation. Common reasons why the operation may not
be successful are:

> The length of the message is longer than the maximum character limit set by the service.
> You are trying to set the text in the share sheet after it has been displayed.

> The social media service does not allow you to pre-populate content in a share sheet because
of legal reasons.

You can attach an image to the share sheet by calling the addImage () method on the
SLComposeViewController instance:

func addImage (image: UIImage!) -> Bool

This method has one argument that is a UTImage object and returns a Boolean result. The image is
automatically resized and uploaded to the appropriate social media service by the framework. You
must examine the return value to determine if the operation was successful.

To add a URL to the share sheet, use the addurL () method:

func addURL (url: NSURL!) -> Bool

As with the setInitialText () and addImage () methods, the addURL () method returns a Boolean
value indicating success or failure. It is important to note that images and URLs take up part of the
character limit imposed by the social media service.

Try lt | 421

You can provide an optional block completion handler that will be executed when the operation has
completed. Assuming messageComposer is an instance of an SLComposeViewController config-
ured for Twitter, you can do this as follows:

messageComposer.completionHandler = (result:SLComposeViewControllerResult) in
// place your code here
}

Within the block, you can examine the value of the result parameter to get more information on
the result of the operation. The value of the result parameter depends on which button was pressed
by the user, and can be either of the following:

> Cancelled
> Done
You will need to dismiss the tweet sheet by calling the dismissModalviewControllerAnimated ()

method of the presenting view controller. If you do not provide a block completion handler, the
tweet sheet is dismissed automatically regardless of the result of the operation.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called socialTest that displays Facebook and Twitter share sheets with pre-populated contents.

Lesson Requirements
> Launch Xcode.
> Create a new iPhone project based on the Single View Application template.

> Add two UTButton instances to the default scene and appropriate action methods to the view
controller class.

Add the Social framework to the build target.

> Add code to display pre-populated share sheets.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

> To use a share sheet you must add a reference to the Social framework.

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

http://www.wrox.com/go

422 | LESSON 28 SOCIAL MEDIA INTEGRATION

> To show the Object library, select View > Utilities = Show Object Library.

» To show the assistant editor, select View = Assistant Editor © Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called shareTest.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: ShareTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include UI Tests: Unchecked

> Include Unit Tests: Unchecked

Y Y Y VY Y Y

4. Save the project onto your hard disk.
> Add image resources to your project.

1. Ensure the project navigator is visible. To show it, select View = Navigators = Show
Project Navigator.

2. Open the Assets.xcassets file by clicking on it in the project navigator.

w

Navigate to the ITmages folder in this chapter’s resources from the website.

4. Create a new Image set by selecting Editor © New Image Set, and name this new image
set Petal.

5. Dragthe petal 1x.jpg, Petal 2x.jpg, and Petal 3x.jpg images from this chap-
ter’s resources into the appropriate placeholders in the image set.

> Add UI elements to the default scene.
1. Open the Main.storyboard file in the Interface Editor.

2. From the Object library, drag and drop two buttons onto the scene and place to
resemble Figure 28-4.

3. Select the first button and use the Attribute inspector to change its caption to Share on
Facebook and the background color to a shade of gray.

Trylt | 423

4. Select the second button and use the Attribute inspector to change its caption to Share
on Twitter and the background color to a shade of gray.

D B

Share on Facebook

Share an Twitter

FIGURE 28-4

5. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 28-1. When creating layout constraints using the constraints editor
popover, ensure the Constrain to margins option is unchecked and Update Frames is set
to Items of New Constraints.

TABLE 28-1: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT
Facebook button 20 20 20 40
Twitter button 20 20 20 40

6. Create an action in the view controller class and connect it with the Touch Up Inside
event of the Share on Facebook button.

» Ensure the Assistant editor is visible and the ViewController.swift file is
loaded in it.

> Right-click the Share on Facebook button in the scene to display its context
menu, and drag from the circle beside the Touch Up Inside item to an empty
line in the ViewController.swift file.

» Name the new action onFacebookShare.

424 | LESSON 28 SOCIAL MEDIA INTEGRATION

7. Create an action in the view controller class and connect it with the Touch Up Inside
event of the Share on Twitter button.

> Ensure the Assistant editor is visible and the ViewController.swift file is
loaded in it.

> Right-click the Share on Twitter button in the scene to display its context
menu, and drag from the circle beside the Touch Up Inside item to an empty
line in the ViewController.swift file.

» Name the new action onTwitterShare.

> Import the Social framework into the project. The Social framework is not included in any of
the standard iOS project templates that you use when creating a new project. You will need
to add a reference to this framework manually. You can do so from the Project Settings page
in Xcode.

Ensure the following import statements are located at the top of the viewController
class:

import UIKit
import Social

> Add code to post a tweet.
1. Open the viewcontroller.swift file in the project explorer.
2. Update the empty implementation of the onTwittershare method to resemble the
following:
@IBAction func onTwitterShare (sender: AnyObject) {

if
SLComposeViewController.isAvailableForServiceType (SLServiceTypeTwitter)

let twitterMessageComposer:SLComposeViewController =
SLComposeViewController (forServiceType: SLServiceTypeTwitter)

twitterMessageComposer.setInitialText ("Test Twitter Post")
twitterMessageComposer.addURL (NSURL (string: "http://www.asmtechnology.com"))
twitterMessageComposer.addImage (UIImage (named: "Petal"))

self.presentViewController (twitterMessageComposer,
animated: true, completion: nil)

}

else

{
let twitterNotConfiguredAlert =
UIAlertController(title: "Twitter Not Configured",
message: "Please setup a twitter account.",
preferredStyle: UIAlertControllerStyle.Alert)

twitterNotConfiguredAlert.addAction (UIAlertAction(title: "OK",
style: UIAlertActionStyle.Default, handler: nil))

http://www.asmtechnology.com

Trylt | 425

>

1.
2.

}

self.presentViewController (twitterNotConfiguredAlert,
animated: true, completion: nil)

}

Add code to post to the Facebook timeline.

Open the viewController.swift file in the project explorer.

Update the empty implementation of the onFacebookshare method to resemble:

@IBAction func onFacebookShare (sender: AnyObject) {

if

}

let facebookMessageComposer:SLComposeViewController =

SLComposeViewController.isAvailableForServiceType (SLServiceTypeFacebook)

SLComposeViewController (forServiceType: SLServiceTypeFacebook)

facebookMessageComposer.addURL (NSURL (string:

"http://www.asmtechnology.com"))

facebookMessageComposer.addImage (UIImage (named: "Petal"))

self.presentViewController (facebookMessageComposer,
animated: true, completion: nil)

else

{

let facebookNotConfiguredAlert =

UIAlertController (title: "Facebook Not Configured",
message: "Please setup a facebook account.",
preferredStyle: UIAlertControllerStyle.Alert)

facebookNotConfiguredAlert.addAction (UIAlertAction(title:

style: UIAlertActionStyle.Default, handler: nil))

self.presentViewController (facebookNotConfiguredAlert,
animated: true, completion: nil)

}

Test your app in the iOS Simulator.

1.
2.
3.

Ensure your computer has an active Internet connection.

nOK" ,

Click the Run button in the Xcode toolbar. Alternatively, you can select Project = Run.

Enter a numeric value for the radius field and tap the Compute Area of Circle button.

REFERENCE To see some of the examples from this lesson, watch the Lesson 28

video online at www.wrox.com/go/swiftiosvid.

http://www.asmtechnology.com
http://www.wrox.com/go/swiftiosvi

29

Where Am 1? Introducing
Core Location

Core Location is a framework that allows applications to retrieve the location and heading of
the device they are running on. To do this, Core Location can use a combination of a compass
for heading, and either GPS, cellular radio, or WiFi technologies for location. Cellular radio
and WiFi-based location is less accurate than GPS.

Applications cannot specify which method will be used, but they can specify a desired level of
accuracy. Depending on the desired level of accuracy, Core Location tries to use the GPS hard-
ware, cellular radio, or WiFi in that order.

This framework is not included in any of the standard iOS application templates. To use this
framework in your code, you will need to add it manually to your project. You can do this
from the Project Settings page in Xcode. Select the project node in the project navigator to
display the settings page. On the settings page, switch to the Build Phases tab and click the +
button under the Link Binary With Libraries category. Select CoreLocation.framework from
the list of available frameworks (see Figure 29-1).

Core Location defines a manager class called cLLocationManager that you can use to interact
with the framework. It allows you to specify the desired frequency and accuracy of location
information. To receive location updates in an application, you need to create an instance of
the CLLocationManager class and provide a delegate object to receive location updates and
errors. This delegate object must implement the CLLocationManagerDelegate protocol.

The delegate object is often a view controller class but could also be any other class in your
application. Using location hardware can have a significant drain on the device’s batteries, and
hence applications need to turn on and turn off receiving location updates.

428 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

[] S C... | Phone & CLTest: Ready | Today at 19:53
BRQAA&CEC=B | B 2 Choosa framewarks and ibraries to add:
¥ & Clyest In] d Sattings Build Phasas Build Aules
¥ W et PROJECT — =
= AppDelegate.swift . £ CloudKit framewark -
= ViewControllerswift = ClTest i Contacts framework
Main.staryboand TARGETS 8 ContactsUl framewark
o Assats xcasssts A, CLTest & CoreAudio.framawork
LaunchScrean.storyboard & CoreAudioNit framework
Info.plist i CoreBiustooth.framework
» % Products 8 CoreData framewark
S CoreFoundation framework
£ CoreGraphics framewerk
8 Coratmage. framework
=
8 CoreMedia framework
8 CoreMIDI framewark
5 CoreMotion framework "

i CoreSpatiight. framewark
i CoreTalephony framework
8 CoraTaxt framawork

Add Other... cancel [CEENNN

e QE|+ — @

FIGURE 29-1

PERMISSIONS

From iOS 8 onward, Apple requires that applications ask the user for permission before attempting
to access location information. There are two types of permissions available:

> Always Authorization: For apps that need to access location information while in both the
foreground and background modes

> When In Use Authorization: For apps that need only access location information in the fore-
ground mode

You need to ask for either type of permission, but not both. The process of asking for permission
has two parts. The first part involves adding a key to the Info.plist file that contains some text
that will be presented to the user while asking for permission. This text should describe the reason
for application requiring access to location data.

Depending on the type of permission you wish to ask for, you need to add either of the following
keys to the Info.plist file (see Figure 29-2).

» NSLocationAlwaysUsageDescription

» NSLocationWhenInUseUsageDescription

Permissions | 429

a8 » B Ac.

|l BRan o=
| v B clmest
| » i CareLocaton framawark
¥ I CLTest
4 AppDolegate swift
4 ViewCantroller. awift
Main storyboard
I Assats xCasses
LaunchScean staryboard

» Praducts

FIGURE 29-2

W iPhane 6

o B2

ClTest: Ready | Today at 0815

BH | < B curest CLTest Info.plist | No Salection

Kay
w Information Propesty List

Localization nativa development ragion
Executable file
Bundle idantifier
InfaDictionary version
Bundle name
Bundle OF Type code
Burdle versions siring, shart
Bundla creator OF Type coda
Bundle version
Applioation requires IPhane anvircnment
Launch screan interface file base name
Main stcryboard file base name

» Raquired device capabliities

* Supparied interface orientations
NSLacatarWhaninUissUsageDesarption

.
[+]

I
®
1[

=

Vaue
15 itmms)
an
SEXECUTABLE_NAME)
SIPRODUCT BUNDLE IDENTIFIER]
a0
SPADDUCT_NAME)
APPL
1.0
kil

YES

(3 itemna)

The second part requires that you make a call to either the requestWhenInUseAuthorization ()
or requestAlwaysAuthorization () class methods of cLLocationManager and find out the user’s

decision in a delegate method:

func locationManager (manager: CLLocationManager,
didChangeAuthorizationStatus status: CLAuthorizationStatus)

The user’s decision is returned in the second parameter of this delegate method and can be one of

the following:

» Denied
» AuthorizedAlways
» AuthorizedWhenInUse

The following code assumes that you wish to request When-in-use authorization, and demonstrates

the basic setup required to receive location updates:

let locationManager =

locationManager.delegate =
locationManager.desiredAccuracy =

CLLocationManager ()
self

kCLLocationAccuracyBestForNavigation

locationManager.requestWhenInUseAuthorization ()

func locationManager (manager: CLLocationManager,
didChangeAuthorizationStatus status: CLAuthorizationStatus)

{

430 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

var shouldAllow = false

switch status {
case CLAuthorizationStatus.AuthorizedWhenInUse:
shouldAllow = true
case CLAuthorizationStatus.AuthorizedAlways:
shouldAllow = true
default:
shouldAllow = false

}

if shouldAllow == true {
manager.startUpdatingLocation()
}

If your application just cannot function without location services, add the
UIRequiredDeviceCapabilities key to the Info.plist file. This key is a dictionary and can con-
tain a list of strings each of which describe a single capability required by your application. The App
Store examines the information in this key when users try to download your app and will prevent
users from downloading your application to devices that don’t contain the listed features.

The values to include for location service hardware are:
> location-services: Your application requires location services in general.

> gps: Your application requires the accuracy offered only by GPS hardware.

ACCURACY

An application can set up the desiredAccuracy property of the CLLocationManager instance to
specify a desired accuracy. Core Location will try its best to achieve the desired accuracy. The more
accurate a reading required, the more battery power is needed.

Applications should, in general, try to use the least accuracy possible to satisfy their requirements.
The property can have the following values, listed in decreasing order of accuracy:

> kCLLocationAccuracyBestForNavigation
kCLLocationAccuracyBest
kCLLocationAccuracyNearestTenMeters
kCLLocationAccuracyHundredMeters

kCLLocationAccuracyKilometer

Y Y Y VY Y

kCLLocationAccuracyThreeKilometers

An application can also set up the distanceFilter property of the CLLocationManager instance
to specify the minimum distance in meters a device must move before an update is provided to the
application.

The default value of this property is kCLDistanceFilterNone, which specifies the application wants
to know of all movements.

Receiving Location Updates | 431

RECEIVING LOCATION UPDATES

To start receiving location updates, you must call the startUpdatingLocation () method on the
CLLocationManager instance.

locationManager.startUpdatingLocation ()

When your application does not want to receive location updates, it must call the stopuUpdating
Location method of the CLLocationManager instance

locationManager.stopUpdatingLocation ()

The CLLocationManagerDelegate protocol defines two methods that are used by an application to
handle a location update:

func locationManager (manager: CLLocationManager,
didUpdatelLocations locations: [AnyObject])

func locationManager (manager: CLLocationManager,
didFailWithError error: NSError)

Atypkalhnpknuﬁnaﬁon(ﬁthelocationManager(manager: CLLocationManager, didUpdate-
Locations locations: [Anyobject])\NoukinmenﬂﬂethefOHO“dng

func locationManager (manager: CLLocationManager,
didUpdateLocations locations: [AnyObject])

let locationArray = locations as NSArray

for newLocation in locationArray
// lat/lon values should only be considered if
// horizontalAccuracy is not negative.
if newLocation.horizontalAccuracy >= 0

let currentLatitude:CLLocationDegrees =
newLocation.coordinate.latitude;

let currentLongitude:CLLocationDegrees =
newLocation.coordinate.longitude;

// do something with currentLatitude and currentLongitude.

// altitude values should only be considered if
// verticalAccuracy is not negative.
if (newLocation.verticalAccuracy >= 0)

{

let currentAltitude:CLLocationDegrees = newLocation.altitude;

// do something with currentAltitude

432

| LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

The locationManager (manager: CLLocationManager, didUpdateLocations locations:
[AanyObject]) method’s arguments are the CLLocationManager instance, and an array of location
updates in chronological order. Each element in this array is an instance of CLLocation.

A CLLocation object encapsulates a location. It contains a coordinate property that is a structure
containing a latitude and longitude member, each expressed as CLLocationDegrees values.
CLLocationDegrees is an alias for a floating-point (decimal) value.

The location object also has the horizonalAccuracy property that signifies the radius of a
circle centered at the coordinate property. The device can be anywhere within this circle. A
larger horizontalAccuracy implies a larger circle, and thus a less accurate measurement. If the
horizontalAccuracy property is negative, the reading should be discarded as being inaccurate.

The cLLocation object also provides altitude information using two properties: altitude and
verticalAccuracy. A positive altitude value is a height above sea level, and a negative altitude
is below sea level. A positive verticalAccuracy implies that the altitude measurement is off that
amount; a negative value implies an invalid altitude measurement.

NOTE Although the location updates are served to your delegate in chronologi-
cal order, the horizontalAccuracy and verticalAccuracy values may vary
across the updates. In general, if you wait for more updates, the accuracy of the
readings will increase. When using the startUpdatingLocation () method, you
need to provide custom logic in your application to pick the reading with the
best accuracy and this can be a tradeoff between taking an earlier but somewhat
inaccurate location, or waiting until you get a sufficiently accurate reading.

Starting with i0S9, Core Location has a new method called requestLocation (), which can be
used to get a single location reading. When you call requestLocation (), behind the scenes Core
Location will collect a number of readings and provide you one that it feels is reasonably accurate.

requestLocation () is mutually exclusive with startUpdatingLocation () with the latter taking
precedence. Thus, if you call startUpdatingLocation () while a previous call to request
Location () hasn’t completed, the call to requestLocation () will automatically be cancelled.

You can measure the distance between two locations using the distanceFromLocation () method
of the cLLocation class. The distance in meters is expressed as a CLLocationDistance value,
which is also an alias for a floating-point value:

Let distanceTravelled = oldLocation.distanceFromLocation (newLocation)

To compute the distance of a location update from a fixed point, you can instantiate a CLLocation
object that represents the fixed point and use the distanceFromLocation () method as normal.
For example, if you want to find out the distance of a location update from the center of London
(lat = 51.5001524, lon = -0.1262362), you can use code similar to the following:

let londonLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

let distanceTravelled = londonLocation.distanceFromLocation (newLocation as!
CLLocation)

Handling Errors and Checking Hardware Availability | 433

HANDLING ERRORS AND CHECKING HARDWARE AVAILABILITY

If Core Location is unable to get a location fix, your delegate’s 1ocationManager (manager:
CLLocationManager, didFailWithError error: NSError) method will be called. The error
argument is of type NSError. Its code property can be examined to determine the reason for failure:

> kCLErrorDenied: The user has denied access to location data.
» kCLErrorLocationUnknown: Core Location has tried, but could not get a location fix.
> kCLErrorNetwork: There is no means for Core Location to get a location fix.
If the user has denied access to Core Location, then the CLLocationManager will not try to get a

location fix again, and in such a case, it is best to call the stopUpdatingLocation () method to the
instance.

Some location services require the presence of specific hardware on the device. In general, you must
check whether the desired service is available before attempting to use it. Table 29-1 lists some of the

methods provided by the cLLocationManager class to test service availability.

TABLE 29-1: CLLocationManager Service Availability Methods

METHOD

func locationServicesEnabled () ->
Bool

func isMonitoringAvailableForClass
(regionClass: AnyClass) -> Bool

isRangingAvailable () -> Bool

func headingAvailable() -> Bool

func significantLocationChange

MonitoringAvailable () -> Bool

func authorizationStatus() ->
CLAuthorizationStatus

DESCRIPTION

Returns True if location services are enabled
on the device. The user can disable location ser-
vices from device settings.

Returns True if region monitoring is supported
on the current device for the specific type of
region.

Returns True if ranging is supported on the
current device.

Returns True if the location manager is able to
generate heading-related events.

Returns True if significant location change moni-
toring is available on the current device.

Returns a value indicating whether an applica-
tion is authorized to use location services.

NOTE The iOS Simulator can simulate either a device at a fixed location or
a device that is moving along one of three preset routes. These features can be
accessed from the Debug & Location menu of the iOS Simulator.

434 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

GEOCODING AND REVERSE GEOCODING

Geocoding involves converting between a latitude/longitude coordinate pair and an address. Core
Location provides the cLGeocoder class that provides methods to perform both forward and reverse
geocoding. Forward-geocoding involves converting from an address to a latitude/longitude value.
Reverse-geocoding involves converting a latitude/longitude value into an address. The result of a
geocoding request is represented by a cL.Placemark object. A forward-geocoding request returns an
array of CLPlacemark objects because multiple results may be returned.

You should try to use one geocoding request per action and avoid making the same geocod-

ing request multiple times. To perform a forward-geocoding request from an address string,
youcancaﬂthegeocodeAddressString<addressString: String, completionHandler:
CLGeocodeCompletionHandler) method on a geocoder instance. This message requires you to
specify a String object that contains an address string and a block handler that is called when the
geocoding operation is complete. The following code snippet converts an address string into a
latitude/longitude coordinate pair:

let localGeocoder = CLGeocoder ()
let addressString = "170 Bilton Road, Perivale, UB6 7HL, United Kingdom"

localGeocoder.geocodeAddressString (addressString) { (placemarks: [CLPlacemark] ?,
error:NSError?) -> Void in

if placemarks != nil
let firstPlacemark = placemarks!.first
let latValue = firstPlacemark!.location.coordinate.latitude;
let lonValue = firstPlacemark!.location.coordinate.longitude;

You can send the geocoder a reverse-geocoding request by calling the reverseGeocodeLocation
(location: CLLocation, completionHandler: CLGeocodeCompletionHandler)method, as
shown in the following snippet:

let localGeocoder = CLGeocoder ()
let londonLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

localGeocoder.reverseGeocodeLocation (londonLocation)
(placemarks: [CLPlacemark]?,
error:NSError?) -> Void in

if placemarks != nil {
let firstPlacemark = placemarks!.first

let countryCode = firstPlacemark!.ISOcountryCode
let countryName = firstPlacemark!.country

let adminArea = firstPlacemark!.administrativeArea
let city = firstPlacemark!.locality

let postCode = firstPlacemark!.postalCode

let streetAddressl = firstPlacemark!.thoroughfare

Obtaining Compass Headings | 435

The message requires you to provide a CLLocation object that represents a latitude/longitude coor-
dinate pair and block handler that is called with the results of the reverse-geocoding operation. The
CLLocation instance in this example is created with a fixed set of coordinates (lat=51.5001524,
lon=—0.1262362) but could have just as well been obtained from a location update.

The actual geocoding operation is performed asynchronously. The results are supplied as an array of
CLPlacemark objects, but in this case, the array will contain just one element. If an error occurred,
the array is nil and the error variable contains more information on the error.

A cLprlacemark object contains several properties that encapsulate information on an address asso-
ciated with a specific coordinate. Some of the properties are:

> location: A CLLocation object that provides the coordinate pair associated with the
placemark

ISOcountryCode: An NSString object that contains the abbreviated country code
country: An NSString object that contains the name of country

postalCode: An NSString object that contains the postal code
administrativeArea: An NSString object that contains the state/province
locality: An NSString object that contains the city

thoroughfare: An NSString object that contains the street address

Y Y Y VY VY Y Y

subThoroughfare: An NSString object that contains additional street address information

If the coordinates lie over an inland water body, or an ocean, this information can be accessed
through the inlandwater and ocean properties, respectively, both of which are string objects.

OBTAINING COMPASS HEADINGS

You can determine if a compass is available on a device by calling the headingaAvailable () method
of the location manager. If a compass is available on the device, you can use the location manager to
receive heading updates. Heading updates work much like location updates. Once you have set up
the CLLocationManager instance, you can call the startUpdatingHeading () and stopUpdating-
Heading () methods to begin receiving heading updates.

The cLLocationManagerDelegate protocol defines two methods that are related to heading
updates:

func locationManager (manager: CLLocationManager,
didUpdateHeading newHeading: CLHeading)

func locationManagerShouldDisplayHeadingCalibration (manager: CLLocationManager)
-> Bool

Heading data is supplied as a CLHeading object to the locationManager (manager:
CLLocationManager, didUpdateHeading newHeading: CLHeading) delegate method. The
CLHeading class encapsulates the magnetic heading, the true heading, and an accuracy measure in
its magneticHeading, trueHeading, and headingAccuracy properties, respectively.

436 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

The earth’s geographic North Pole is different from the magnetic north pole. The geographic North
Pole is fixed at the North Pole, whereas the magnetic north pole is a few hundred miles away. Make
sure you know the difference between geographic north and magnetic north when you build any
application that uses the compass feature.

The geographic North Pole heading is contained in the trueHeading member of the cLHeading
instance. Data in this member is available only if you enable both heading updates and location
updates.

The locationManagerShouldDisplayHeadingCalibration (manager: CLLocationManager) is
called on the delegate object when the location manager wants to display a calibration prompt to the
user. If you find this prompt annoying, you can implement this method to return No. If you were to
do so, the compass would try to calibrate itself automatically but the results of the calibration pro-
cess might not be accurate.

NOTE The iOS Simulator cannot simulate compass headings. You need to test
applications that require this feature on an actual device.

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called cLTest that displays the current location and the distance traveled since the last location
reading was obtained.

Lesson Requirements
> Launch Xcode.
> Create a new iPhone project based on the Single View Application template.

> Add a few UILabel elements that will display the location readings. Create outlets for these
in the view controller class.

> Add a uzButton that will be used to stop/start receiving location updates. Create an appro-
priate outlet and action.

> Initialize Core Location when the button is pressed. Stop receiving location updates when the
button is pressed a second time.

> Implement CLLocationManagerDelegate methods.

REFERENCE The code for this Try It is available at www . wrox . com/go/

swiftios.

http://www.wrox.com/go

Trylt | 437

Hints

> You must add the NSLocationWhenInUseUsageDescription key to the Info.plist file in
the project. The value of this key should be a string that describes what your application will
do with the user’s location data.

> Before calling startUpdatingLocation () on the CLLocationManager instance, you must
check if the user has allowed your app to access location data.

> When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

You will need to add a reference to the Core Location framework to the project.
To show the Object library, select View = Utilities = Show Object Library.

> To show the assistant editor, select View = Assistant Editor = Show Assistant Editor.

Step-by-Step
> Create a Single View Application in Xcode called cLTest.
1. Launch Xcode and create a new application by selecting File ©> New > Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen use the following values:
> Product Name: CLTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include UI Tests: Unchecked
> Include Unit Tests: Unchecked

Y Y Y VY Y Y

4. Save the project onto your hard disk.
» Add a reference to the Core Location framework.

1. In Xcode, make sure the project navigator is visible. To show it, select View >
Navigators = Show Project Navigator.

2. Click the root (project) node of the project navigator to display project settings.
Select the Build Phases tab.

w

4. Expand the Link Binary With Libraries group in this tab.

438 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

5. Click the + button at the bottom of this group and select CoreLocation. framework
from the list of available frameworks.

6. Click the Add button.
» Add UI elements to the default scene.
1. Open the Main.storyboard file in the Interface Editor.

2. From the Object library, drag and drop six labels onto the scene and place to resemble

Figure 29-3.
® =B
Latitude latitudeValue
Longitude longitudeValue
Distance Traveled distanceValue
Start Location Updates

FIGURE 29-3

3. Double-click each label in turn and change its text to Latitude, Longitude, Distance
Traveled, latitudeValue, longitudeValue, and distanceValue respectively.

4. Create layout constraints for each of the elements on the storyboard scene using the
information in Table 29-2. When creating layout constraints using the pin constraints
dialog box, ensure the Constrain to margins option is unchecked and Update Frames is
set to Items of New Constraints.

TABLE 29-2: Layout Constraints

ELEMENT LEFT TOP WIDTH HEIGHT
Latitude label 39 8 63 21
Longitude label 39 26 77 21

Trylt | 439

ELEMENT LEFT TOP WIDTH HEIGHT
Distance Travelled label 39 26 141 21
latitudeValue label 99 8 99 21
longitudeValue label 85 26 114 21
distanceValue label 21 26 107 21
5. Using the assistant editor, create outlets for the latitudevalue, longitudevalue,
and distancevalue labels. Call these outlets 1atitudevalue, longitudevValue, and
distancevalue, respectively.
>

>

Add a UTButton instance to start/stop receiving location updates.

1.

Ensure the Object library is visible. You can show it by selecting View & Utilities =
Show Object Library.

Use the Object library to add a UIButton instance and place it below the labels.
Double-click the button and set its title to Start Location Updates.

Select the button and display the pin constraints dialog box. Ensure the Constrain to
margins options is unchecked and Update Frames is set to Items of New Constraints.
Create the following layout constraints:

> Left: 20

> Top: 20

> Right: 20
> Height: 40

Using the assistant editor, create an outlet called toggleButton in the
ViewController class and connect it to the button.

Using the assistant editor, create an action method in the view controller class
and connect it to the Touch Up Inside event of the button. Call the new method
onButtonPressed.

Add code to receive location updates to the View controller class.

Open the Viewcontroller.swift file in the project explorer.
Import the Core Location framework into the view controller.

Ensure the following import statements are located at the top of the ViewController
class:

import UIKit
import CoreLocation

Add the following variable declarations to the view controller class:

var locationManager:CLLocationManager? = nil

440 |

LESSON 29 WHERE AM 1?7 INTRODUCING CORE LOCATION

var lastLocation:CLLocation? = nil
var isReceivingLocationUpdates:Bool = false

5. Ensure the View controller class implements the CLLocationManager delegate protocol
by ensuring the class is declared as:

class ViewController: UIViewController, CLLocationManagerDelegate

6. Update the stub implementation of the viewdidLoad method to resemble the following:

override func viewDidLoad() ({
super.viewDidLoad ()

locationManager = CLLocationManager ()
locationManager!.delegate = self
locationManager! .desiredAccuracy = kCLLocationAccuracyBestForNavigation

lastLocation = CLLocation(latitude: 51.5001524, longitude: -0.1262362)

toggleButton.titlelLabel!.text = "Start location updates"

}

7. Update the empty implementation of the onBut tonPressed method to resemble the
following:

@IBAction func onButtonPressed(sender: AnyObject) {

if isReceivingLocationUpdates == false

{

if CLLocationManager.authorizationStatus() !=
CLAuthorizationStatus.AuthorizedWhenInUse

}

else

{

locationManager! .requestWhenInUseAuthorization ()

isReceivingLocationUpdates = true
toggleButton.titleLabel!.text = "Stop location updates"
locationManager!.startUpdatingLocation ()

}

else

{

isReceivingLocationUpdates = false
toggleButton.titlelLabel!.text = "Start location updates"
locationManager! .stopUpdatingLocation ()

}

8. InqﬂenwntthelocationManager(manager: CLLocationManager, didChange
AuthorizationStatus status: CLAuthorizationStatus) delegate method in the
view controller class:

Try lt | 441

func locationManager (manager: CLLocationManager,
didChangeAuthorizationStatus status: CLAuthorizationStatus)

var shouldAllow = false

switch status {
case CLAuthorizationStatus.AuthorizedWhenInUse:
shouldAllow = true
case CLAuthorizationStatus.AuthorizedAlways:
shouldAllow = true
default:
shouldAllow = false

}

if shouldAllow == true {
isReceivingLocationUpdates = true
toggleButton.titleLabel!.text = "Stop location updates"
manager.startUpdatingLocation ()

}

9. InqﬂenwntthelocationManager(manager: CLLocationManager, didUpdate
Locations locations: [CLLocation]) delegate method in the view controller class:

func locationManager (manager: CLLocationManager,
didUpdateLocations locations: [CLLocation])

let locationArray = locations as NSArray
for newLocation in locationArray
// lat/lon values should only be considered if
// horizontalAccuracy is not negative.
if newLocation.horizontalAccuracy >= 0
let currentLatitude:CLLocationDegrees =
newLocation.coordinate.latitude;

let currentLongitude:CLLocationDegrees =
newLocation.coordinate.longitude;

let distanceTravelled =
newLocation.distanceFromLocation (lastLocation!)

latitudeValue.text = "\ (currentLatitude)"
longitudeValue.text = "\ (currentLongitude)"
distanceValue.text = "\ (distanceTravelled)"

lastLocation = newLocation as? CLLocation

442 | LESSON 29 WHERE AM I? INTRODUCING CORE LOCATION

Test your app in the iOS Simulator.

1. Click the Run button in the Xcode toolbar. Alternatively you can select Project & Run.
2. Click the Start Location Updates button.

3. Use the iOS Simulator’s ability to simulate a device on the move by selecting Debug =
Location = City Bicycle Ride.

REFERENCE To see some of the examples from this lesson, watch the Lesson 29
video online at www .wrox . com/go/swiftiosvid.

http://www.wrox.com/go/swiftios

30

Introduction to Map Kit

In the previous lesson, you learned how to locate a device using Core Location. In this lesson,
you learn how to integrate a map within your application.

The Map Kit framework provides the MkMapview class for adding maps into your views. Map
Kit also provides additional classes for annotating the map. The Map Kit framework uses
Apple’s map service internally.

The Map Kit framework is often used in conjunction with the Core Location framework, neither
of which are included in any of the standard iOS application templates. To use these frameworks
in your code, you need to add them manually to your project. You can do this from the Project
Settings page in Xcode. Select the Project node in the project navigator to display the settings
page. On the settings page, switch to the Build Phases tab and click the + button under the Link
Binary With Libraries category. Select the Map Kit framework from the list of available frame-

works (see Figure 30-1). Repeat this step for the Core Location framework.

Launch&oreen storyboard
Indo.pilist
Products

[] - A MapTest | @ Fhane § MapTest: Ready | Today at 14:47 1 1
DR AL O &S E S MoET Chooas framewnrks and ibraries to sdd: D e
"
¥ [Mot |0 Geners ca Build Aulae 'Setity amd Trpe
w (ot apTast
% PROJECT T Narne MagTast
< ApaDetegute awil A
& 3 Locaticn
+ ViewContrallerswill & MapTest shar.1.2.8.5bd O
| apTest scodepro)
Main.starybioard TARGETH Sbz1.fhd) epra)
sbz tbd wll Fath /Usersiabhishekmishra!
Assuts xoassets S MopTest Deskiop/MapTest!

i Locattuthantication. Iramewerk
=

8 MedinAcoesaibility frumewark
88 MediaPlayer. framawark

B MediaToolbax framework

8 MessageUl framework

S Motal framewark

B MotalKit framawork

& MatalPariormanca Shadars. lrmawars Class Prafix

i MobileCamSaerices framework

B Model|0 framawork Taxt Settings

B Mustipeer Cannsctivity. framewark Indunt Usirg Spaces &

B NetwarkExtenzion framework Widths il 4
m

Add Other... cancel [CEENN oO0@no

No Matches

MapTest scodapra) @

©n Damand Rusaurce Tags

Froject Dooument
Fmject Format - Xcode 3.2-compatiie [}

Ovganization Aihishei Mishra

FIGURE: 30-1

444 | LESSON 30 INTRODUCTION TO MAP KIT

You can add a Map Kit view to an existing view controller or story-
board using the Object library. Simply drag an instance of a Map Kit
view and create an outlet for it in the view controller class.

The map view handles zooming and scrolling automatically. You can
use the Attribute inspector to choose from Map, Satellite, and Hybrid
modes (see Figure 30-2). You can also set up the map to use Core
Location to display the user’s location by checking the Shows

User Location property.

De®9no

| Map view

Type Standard B
Allows E Zooming Scrolling
FAotating 3D View
Shows [User Location
& Buildings
& Points of Interast
FIGURE: 30-2

You can also set up these properties programmatically by using the mapType property of the
MKMapView instance to specify the map mode. The mapType property can take one of five values:

> Standard
> Satellite

> Hybrid

> SatelliteFlyover
>

HybridFlyover

To enable/disable zooming and scrolling, use the zoomEnabled and scrollEnabled properties, respec-
tively. To have the map display the user’s location, set the showsUserLocation property to true.

You can set up the initial coordinate and zoom factor of the map by defining a map region and using the
setRegion (region: MKCoordinateRegion, animated: Bool) method of the MKMapView instance.

A region is represented by the MKCoordinateRegion structure and has members called center and
span. The center member is a CLLocationCoordinate2D structure and has the members latitude
and longitude. The span member is an MKCoordinateSpan structure and has the member’s
latitudeDelta and longitudeDelta, which specify a rectangular region around the center in

degrees of latitude and longitude.

To create a region and apply it, you use code similar to the following:

// setup the map's location and zoom factor

var mapRegion:MKCoordinateRegion = MKCoordinateRegion() ;
mapRegion.center.latitude = 51.5001524;
mapRegion.center.longitude = -0.1262362;
mapRegion.span.latitudeDelta = 0.2;
mapRegion.span.longitudeDelta = 0.2;

mapView.setRegion (mapRegion, animated: true)

The preceding code snippet assumes that mapview is an outlet connected to the Map View object

created with Interface Builder.

ADDING ANNOTATIONS

The MKkMapView class enables you to add custom annotations to a map. Because a map can poten-
tially display several annotations at the same time, the designers of Map kit decided to use separate

Adding Annotations | 445

objects to represent the data contained in an annotation and the view used to display it. The idea
was that view objects could be reused with different data objects.

The data portion of an annotation is encapsulated by an instance of a class that implements the
MKAnnotation protocol and contains information about the coordinates on the map and a descrip-
tion that is displayed in a callout.

The MKAnnotation protocol defines the coordinate, title, and subtitle properties. The coor-
dinate property is a CLLocationCoordinate2D structure, and the title and subtitle properties
are NSString objects. To conform to this protocol, your class must contain these properties. An
example of such a class, PlacemarkClass.swift, is shown here:

import Foundation
import MapKit

class PlacemarkClass: NSObject, MKAnnotation {

var coordinate:CLLocationCoordinate2D
var title:String?
var subtitle:String?

init (coordinate: CLLocationCoordinate2D, title: String, subtitle: String) ({
self.coordinate = coordinate
self.title = title
self.subtitle = subtitle

Note that the class has an initializer method that enables you to specify an initial coordinate, title,

and subtitle. To instantiate a PlacemarkClass object and add it as an annotation to the mapview

object, you can use the addannotation:animated: method, as demonstrated by the following code:
// drop a pin on parliament square

let parliamentLocation:CLLocationCoordinate2D =
CLLocationCoordinate2DMake (51.5001524, -0.1262362)

let parliamentAnnotation = PlacemarkClass (coordinate: parliamentLocation,
title: "Parliament Square",
subtitle: "Big Ben is here!™")

mapView.addAnnotation (parliamentAnnotation)

The view portion of an annotation is represented by a subclass of the MKannotationview class.
Apple provides a subclass called MkPinAnnotationview that you can use for standard pin/call-
out annotations. The MKMapView instance requests this view from a delegate object when it is
required. The delegate object must implement the MKMapviewDelegate protocol, which defines
the mapView (mapView: MKMapView, viewForAnnotation annotation: MKAnnotation) ->
MKAnnotationview? method.

Typically, the delegate object will be your view controller class. You can set up the delegate by using
either the Interface Builder (see Figure 30-3) or setting the delegate property of the MKMapVview
instance.

446 | LESSON 30 INTRODUCTION TO MAP KIT

* Storyboard Entry Poant

whAny hAny

B« B MapTest MapTest | [l Main.storybeard | [l Main.storyboard Base) | [View Controlier Scane View Controller View Map View | m P pE s
¥ [View Controlier Scene Mag View
¥ () View Contrasar Typa Standard 2
| Top Layout Guide Afows ¥ Zooming « Scroling
Battom Layout Guide + Rotating < 30 View
v [| View Shaws + User Location
|| Map View 7 Buildings
» [B Constraints + Points of Inferest
@ Firat Responder
B Ext

Made Scale To Fil
Samantic Unspecified
Tag a

Intaraction | Uisar Interaction Enabled
+ Multiple Touch

Trilollo

Agha 16
Background [—1 | Default
Tint NN | Default

FTrTY

Drawing ' Opague ' Hiddan
+ Clears Graphics Context
' Clip Subviews

' Autoresize Subviews

Stretching ajgs a
x Y
143 1
Width Haignt

~ View Controller - A cantraller that
MANAGes & viaw.

Storyboard - Provides a
placeholder for 8 view controller in an
etarmal sioryhoand.

EH B o }ML%E =]

FIGURE 30-3

A typical implementation of this delegate method follows:

func mapView (mapView: MKMapView,
viewForAnnotation annotation: MKAnnotation)

{

let newAnnotation:MKPinAnnotationView =
MKPinAnnotationView (annotation: annotation,
reuseldentifier: "annotationl")

newAnnotation.pinTintColor = UIColor.yellowColor ()
newAnnotation.animatesDrop = true
newAnnotation.canShowCallout = true
newAnnotation.setSelected (true, animated: true)

return newAnnotation

The annotation object for which a view is required is speci-

fied in the annotation parameter. Once you have allocated an
MKPinAnnotationView instance, you can set up its pin color using
the pintTintColor property. If you want the pin to display a callout
when tapped, set the canshowCallout property to YES. If you want
the pin drop animation, set animatesDrop to YES. The resulting pin
and callout box is shown in Figure 30-4.

-> MKAnnotationView?

SaS

Parliament SQuare

FIGURE 30-4

Try lt | 447

ACCESSORY VIEWS

An annotation callout can have up to three accessory views (see Figure 30-5):

- — — R [t
[\ o 5 i \?_ = / \?‘ & X Parliament Square T
T '
e wm armpivatt ey o g R e L N [A 5\
§ § §
Az K e { v ¥ o o |
|
Parfament Square Parfiament Square Parliament Square y
Big Ben = here! B sgaemshen : Sig Ben is herst !
F Fapeessd % | _fa e e B VA L
¢ ¢ ¢
LoNDON LonNDON . LonDON
A naze Anzze
azr Jnz L s
2an azn azia
Amml & sl) asal o
SR amberwe —— {f P A ¢ ambere Fa
’
Lowpon
e g0 aszn Atam)
Az
Bitss \ 7 =—a~—" k& i e e
2amr azr aziT o

> leftCalloutAccessoryView: This view is displayed to the left of the popup content. It dis-
plays alongside the title and subtitle.

> rightCalloutAccessoryView: This view is displayed to the right of the popup content. It
displays alongside the title and subrtitle.

> detailedCalloutAccessoryView: Added in iOS9, this property can be used to present a
custom UTView subclass in place of the subtitle of the annotation view. For instance, to use
an image of Big Ben in the callout box attached to an annotation, you can use the following
snippet:

let newAnnotation:MKPinAnnotationView =

MKPinAnnotationView (annotation: annotation,
reuseldentifier: "annotationl")

newAnnotation.pinTintColor = UIColor.yellowColor ()
newAnnotation.animatesDrop = true
newAnnotation.canShowCallout = true

let bigBenImageSmall = UIImage (named: "BigBen")
newAnnotation.detailCalloutAccessoryView =

UIImageView(image: bigBenImageSmall)

newAnnotation.setSelected (true, animated: true)

TRY IT

In this Try It, you create a simple iPhone application based on the Single View Application template
called MapTest that displays the current location and the location of Big Ben on a map. The user can
use a segmented control to change the map style to standard, satellite, or hybrid.

448 | LESSON 30 INTRODUCTION TO MAP KIT

NOTE Although this book does not have a lesson dedicated specifically to the
segmented control, it is often used with maps. You can follow the steps outlined
in this Try It to use a segmented control with a map. However, if you would like
more information on the segmented control, refer to the UISegmentedControl
class reference, available at:

http://developer.apple.com/library/ios/#documentation/uikit/ref-
erence/UISegmentedControl Class/Reference/UISegmentedControl.html

Lesson Requirements

>

>

>

Launch Xcode.
Create a new iPhone project based on the Single View Application template.

Add a map kit view to the default scene and create an outlet for it in the view controller
class.

Add a segmented control and add an action for it in the view controller class.
Add a reference to the Map Kit and Core Location frameworks.

Create a subclass of NSobject that implements the MKAnnotation protocol to use as the
annotation data class.

Initialize the map view in the view controller’s viewDidLoad method.
Implement the MKMapViewDelegate protocol in your view controller class.

Change the map style when the active segment in the segmented control is changed.

REFERENCE The code for this Try It is available at www .wrox .com/go/

swiftios.

Hints

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

You will need to add a reference to both the Map Kit and the Core Location frameworks to
the project.

To show the Object library, select View = Utilities &> Show Object Library.

To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://developer.apple.com/library/ios/#documentation/uikit/ref-erence/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://www.wrox.com/go

Try lt | 449

Step-by-Step
> Create a Single View Application in Xcode called MapTest.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen, use the following values:
> Product Name: MapTest
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include UI Tests: Unchecked
> Include Unit Tests: Unchecked

Y Y VY VY Y Y

4. Save the project onto your hard disk.
» Add a reference to the Core Location framework.

1. In Xcode, make sure the project navigator is visible. To show it, select View >
Navigators = Show Project Navigator.

Click the root (project) node of the project navigator to display project settings.
Select the Build Phases tab.
Expand the Link Binary With Libraries group in this tab.

o bk wbd

Click the + button at the bottom of this group and select CoreLocation. framework
from the list of available frameworks.

6. Click the Add button.
> Add a reference to the Map Kit framework.

1. In Xcode, make sure the project navigator is visible. To show it, select View >
Navigators = Show Project Navigator.

Click the root (project) node of the project navigator to display project settings.
Select the Build Phases tab.
Expand the Link Binary With Libraries group in this tab.

o bk wbd

Click the + button at the bottom of this group and select MapKit . framework from the
list of available frameworks.

6. Click the Add button.

450 | LESSON 30 INTRODUCTION TO MAP KIT

> Add a segmented control to the scene.

1. Ensure the Object library is visible. You can show it by selecting View > Utilities >
Show Object Library.

2. Use the Object library to add a Segmented Control instance.
3. Use the Attribute inspector to set the number of segments to 3.

4. Use the Attribute inspector to name the three segments Map, Satellite, and Hybrid,
respectively (see Figure 30-6).

ODemE ¥R S
Segmented Control

Style Plain I

State | | Momentary

Segment 0 - Map

Segment 1 - Satellite

Segme v Segment 2 - Hybrid ’
Title Hybrid

Image i

Behavior € Enabled Selected

Content Offset [+ i 0
X Y

Segman

FIGURE 30-6

5. Select the segment control and display the pin constraints popup window. Ensure the
Constrain to margins options is unchecked and Update Frames is set to Items of New
Constraints. Create the following layout constraints:

> Left: 20
> Top: 20
> Width: 275
> Height: 28

6. Using the assistant editor, create an outlet in the view controller class called mapMode -
SegmentControl and connect it to the segmented control in the default scene.

7. Using the assistant editor, create an action in the view controller class and connect
it to the Value Changed event of the UTSegmentedcontrol. Call the new method
onSegmentChanged.

> Ensure the top of the ViewController.swift file contains the following import statements:

import UIKit
import MapKit

> Add a Map Kit view to the default scene.

1. Ensure the Object library is visible. You can show it by selecting View = Utilities =
Show Object Library.

2. Use the Object library to add a Map Kit view to the default scene of the storyboard.

Try lt | 451

3. Using the Assistant editor, create an outlet called mapview and connect it to the map
view instance in the default scene.

4. With the Map Kit view selected, sqitch to the Attribute inspector and ensure the
“Shows User Location™ attribute is unchecked.

5. Select the Map Kit view and display the pin constraints dialog box. Ensure the
Constrain to margins option is unchecked and Update Frames is set to Items of New
Constraints. Create the following layout constraints:

> Left: 0

> Top: 20
> Right: 0
> Bottom: 0

> Create a new Swift class to represent annotation data.
1. Create a new Swift class by selecting File > New = File.
2. Select the Swift File template and click Next.
3. Name the new class PlacemarkClass.
i

Edit the class to resemble the following;:

import Foundation
import MapKit

class PlacemarkClass: NSObject, MKAnnotation {

var coordinate:CLLocationCoordinate2D
var title:String?
var subtitle:String?

init (coordinate: CLLocationCoordinate2D,
title: String, subtitle: String) ({
self.coordinate = coordinate
self.title = title
self.subtitle = subtitle

}

> Declare the viewController.sSwift class to conform to the MkMapViewDelegate protocol
by modifying its declaration as follows:
class ViewController: UIViewController, MKMapViewDelegate
>

Update the viewDidLoad method of the ViewController class to resemble the following:

override func viewDidLoad() ({
super.viewDidLoad ()

// setup the map's location and zoom factor

452 | LESSON 30 INTRODUCTION TO MAP KIT

var mapRegion:MKCoordinateRegion = MKCoordinateRegion() ;
mapRegion.center.latitude = 51.5001524;
mapRegion.center.longitude = -0.1262362;
mapRegion.span.latitudeDelta = 0.2;
mapRegion.span.longitudeDelta = 0.2;

mapView.setRegion (mapRegion, animated: true)

// drop a pin on parliament square
let parliamentLocation:CLLocationCoordinate2D =
CLLocationCoordinate2DMake (51.5001524, -0.1262362)
let parliamentAnnotation = PlacemarkClass (coordinate:
parliamentLocation, title: "Parliament Square", subtitle: "Big Ben is here!")
mapView.addAnnotation (parliamentAnnotation)
}

> hnpknnenttheMKMapViewDelegateIneduximapview(mapview: MKMapView, viewFor
Annotation annotation: MKAnnotation) -> MKAnnotationView? In your view
controller class as follows:

func mapView (mapView: MKMapView, viewForAnnotation annotation:
MKAnnotation) -> MKAnnotationView?

let newAnnotation:MKPinAnnotationView =
MKPinAnnotationView (annotation: annotation, reuseldentifier: "annotationl")

newAnnotation.pinTintColor = UIColor.yellowColor ()
newAnnotation.animatesDrop = true
newAnnotation.canShowCallout = true
newAnnotation.setSelected (true, animated: true)

return newAnnotation

}

> Add the following code to the onSegmentChanged (sender: AnyObject) method of the
view controller class:

if mapModeSegmentControl.selectedSegmentIndex ==

{
}

else if mapModeSegmentControl.selectedSegmentIndex == 1

{
}
else if mapModeSegmentControl.selectedSegmentIndex ==

{
}

mapView.mapType = MKMapType.Standard;

mapView.mapType = MKMapType.Satellite;

mapView.mapType = MKMapType.Hybrid;

Trylt | 453

Test your app in the iOS Simulator.

1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project =
Run menu item.

2.

Switch between the different segments on the segment control to change map types.

REFERENCE To see some of the examples from this lesson, watch the Lesson 30
video online at www .wrox.com/go/swiftiosvid.

http://www.wrox.com/go/sw

31

Using the Camera and Photo
Library

AlliOS 9 devices have at least one camera. When a user takes a picture with the camera, the image
is stored in the device’s photo library. This lesson shows you how to allow the user to pick an
image from the photo library or take a new picture with the camera and use it in your application.

The UIKit framework contains a class called UTImagePickerController designed specifi-
cally to allow you to access the camera and photo library from your applications. This class
presents its own user interface (see Figure 31-1) that allows a user to browse through the photo
library or control the camera. All you have to do is present this view controller in your appli-

cation and provide a delegate method whose methods are called when the user has finished
selecting an image.

Carrier ¥ 7:62 AM .} Carrier ¥ 7:53 AM —

Photos Cancel £ Photos Camera Roll Cancel

Moments

Camera Roll
10

FIGURE 31-1

456 | LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

The image picker controller can also be used to record videos and access these recorded videos
within your application.

SELECTING THE IMAGE SOURCE

The UTImagePickerController class can be used to access the contents of either the photo
library, saved photos album, or the camera. You can specify the source by providing a value for the
sourceType property. This value can be one of the following;:

> UIImagePickerControllerSourceType.PhotoLibrary
> UIImagePickerControllerSourceType.Camera

> UIImagePickerControllerSourceType.SavedPhotosAlbum

To check if a particular source type is available, use the isSourceTypeaAvailable (sourceType:
UIImagePickerControllerSourceType) -> Bool class method of the UIImagePickerController
class as follows:

let hasCamera:Bool = UIImagePickerController.isSourceTypeAvailable (
UIImagePickerControllerSourceType.Camera)

When the sourceType is set to use the camera, you can specify which camera is to be used if

your device has multiple cameras. By default, the image picker uses the rear camera. To find out

if front and rear cameras are available, use the isCamerabDeviceAvailable (cameraDevice:
UIImagePickerControllerCameraDevice) -> Bool class method, as shown in the following code
snippet:

let hasFrontCamera:Bool =
UIImagePickerController.isCameraDeviceAvailable (
UIImagePickerControllerCameraDevice.Front) ;

let hasRearCamera:Bool =
UIImagePickerController.isCameraDeviceAvailable (
UIImagePickerControllerCameraDevice.Rear) ;

Once you have determined that the camera you want to use is available, you can specify it using the
cameraDevice property of the image picker instance. For instance, to use the front camera, use the
following code:

imagePicker.cameraDevice = UIImagePickerControllerCameraDevice.Front;

PRESENTING THE IMAGE PICKER

To display the image picker as a modal sheet, use the presentViewController (viewControllerTo
Present: UIViewController, animated flag: Bool, completion: (() -> Void)?) method
on your active view controller object:

self.presentViewController (imagePicker, animated: true, completion: nil)

Presenting the Image Picker | 457

On an iPad, you can also display an image picker in a popover controller. The following code snippet
shows how this can be done programmatically from a method in your view controller class:

if UIDevice() .userInterfaceldiom == UlUserInterfaceIdiom.Pad

{

imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
self.presentViewController (imagePicker, animated: true, completion: nil)

// Get the popover presentation controller and configure it.
let presentationController:UIPopoverPresentationController =
imagePicker.popoverPresentationController!

presentationController.permittedArrowDirections =
UIPopoverArrowDirection.Left

presentationController.sourceView = self.view
presentationController.sourceRect = popoverPresetingButton.frame

The preceding code assumes that you have imagePicker as an instance of UTImagePickerController
and popoverPresentingButton as an outlet in your view controller class.

UIImagePickerController requires a delegate object that implements both the
UIImagePickerControllerDelegateandtHNavigationControllerDelegatepronxxﬂs.Thefor
mer defines two methods that are called when the user has selected an image or selected the Cancel
button in the image picker:

func imagePickerController (picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject])

func imagePickerControllerDidCancel (picker: UIImagePickerController)

The imagePickerControllerDidCancel (picker: UIImagePickerController) delegate method
has one parameter that contains a reference to the image picker controller. A typical implementation
of this delegate method dismisses the image picker controller if it was presented modally:

picker.dismissViewControllerAnimated (true, completion: nil)

The imagePickerController (picker: UIImagePickerController, didFinishPicking
MediaWithInfo info: [String : AnyObject])delegate method has two parameters, the first of
which is a reference to the image picker. The second parameter is an NSDictionary object that con-
tains a UIImage object corresponding to the selected image.

To access this image in this delegate method, you can use code similar to the following to retrieve
the value in the dictionary that corresponds to the UIImagePickerControllerOriginalImage key:

let image:UIImage = info[UIImagePickerControllerOriginallmage] as! UIImage

Often, you may want to save this UIImage instance to a file. To do that, you must first obtain an
NSData instance that contains the pixels in the UTImage instance in a specific file format. Once you
have this NSData instance, you can write it to a file by sending it the writeToFile:atomically:
message.

458 | LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

To obtain an NSData instance that contains the image as a PNG file, use the
UIImagePNGRepresentationfunctknlasfo”ow&:

let imageData:NSData = UIImagePNGRepresentation (image) !
To obtain an NSData instance that contains the image in JPEG format, use the
UIImageJPEGRepresentationfunctknlasfOHO“m:

let imageData:NSData = UIImageJPEGRepresentation(image, 1.0)!
The first parameter to this function is the UTImage instance; the second is a number between 0.0

and 1.0 that indicates the desired JPEG quality, with 0.0 being representing the lowest quality and
1.0 the highest quality.

The following implementation of the imagePickerController (picker: UITImagePickerController,
didFinishPickingMediaWithInfo info: [String : Anyobject])dekga&:nunhOdShO“wluﬁNto
save the selected image to a PNG file in the Documents directory:

func imagePickerController (picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject])
{

let image:UIlmage = info[UIImagePickerControllerOriginalImage] as!
UIImage

let imageData:NSData = UIImagePNGRepresentation (image)!
let documentsDirectory =
NSSearchPathForDirectoriesInDomains (.DocumentDirectory,
.UserDomainMask,
true) [0]
let outFile:String = documentsDirectory + "savedImage.png"

imageData.writeToFile (outFile, atomically: true)

picker.dismissViewControllerAnimated (true, completion: nil)

If you provide a delegate for the image picker, then you are responsible for dismissing the picker. To
do so, add the following line of code:

picker.dismissViewControllerAnimated (true, completion: nil)
to the end of both delegate methods:

> imagePickerControllerDidCancel (picker: UIImagePickerController)

> imagePickerController (picker: UIImagePickerController, didFinishPicking
MediaWithInfo info: [String : AnyObject])

Try lt | 459

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
ImagePicker that allows the user to select an image from the photo library, or take a picture using
the camera and display the image in an image view.

Lesson Requirements

>

>

>

Launch Xcode.
Create a new iPhone project based on the Single View Application template.

Add a UTImageview instance to the scene and an appropriate outlet in the view
controller file.

Add two UTButton instances to the scene and connect them to appropriate action methods in
the view controller class.

Allow the user to select an image from the photo library and display the selected image in the
image view.

Allow the user to take a picture using the camera and display the image in the image view.

Hide the camera button if the device does not have a camera.

REFERENCE The code for this Try It is available at www .wrox.com/go/

swiftios.

Hints

>

>

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To show the Object library, select View = Utilities = Show Object Library.

To show the assistant editor, select View = Assistant Editor & Show Assistant Editor.

Step-by-Step

>

Create a Single View Application in Xcode called ImagePicker.
1. Launch Xcode and create a new application by selecting File ©»> New > Project.

2. Select the Single View Application template from the list of iOS project templates.

http://www.wrox.com/go

460 | LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

>

3. In the project options screen use the following values:
> Product Name: ImagePicker

Organization Name: your company

Organization Identifier: com.yourcompany

Language: Swift

Devices: iPhone

Use Core Data: Unchecked

Include UI Tests: Unchecked

> Include Unit Tests: Unchecked

Y Y Y Y VY Y

4. Save the project onto your hard disk.

Add a UTImagevView instance to the default scene and connect it to an outlet in the view con-
troller class.

1. Open the storyboard file and use the Object library to drag and drop an image view
onto the scene.

2. Select the image view and display the pin constraints dialog box. Ensure the Constrain
to margins options is unchecked and Update Frames is set to Items of New Constraints.
Create the following layout constraints:

> Left: 0
> Right: 0
> Top: 20

> Bottom: 0

3. Use the assistant editor to create an outlet in the view controller class and connect it to
the image view. Name the outlet imageview.

4. Select the image view and use the attribute editor to set the view mode of the image
view to Aspect Fit.

Add two UTButton instances to the scene and connect their Touch Up Inside events to appro-
priate action methods in the view controller class.

1. Dragand drop two UTButton instances onto the default scene and position them one
below the other (see Figure 31-2).

2. Set the title of the first button to camera. Set its background color to a shade of gray.

3. Set the title of the second button to Photo Library. Set its background color to a
shade of gray.

4. Name the action method corresponding to the first button onCamera.

5. Name the action method corresponding to the second button onPhotoLibrary.

Try It | 461

e @ B

Image View

FIGURE 31-2

6. Create an outlet called cameraButton in the view controller class and connect it to the
button titled Camera in the scene.

7. Create layout constraints for the buttons on the storyboard scene using the information
in Table 31-1. When creating layout constraints using the pin constraints dialog box,
ensure the Constrain to margins option is unchecked and Update Frames is set to Items
of New Constraints.

TABLE 31-1: Layout Constraints

Camera button

Photo Library 20 20 20 51

> Ensure the view controller class conforms to the UINavigationControllerDelegate
and UIImagePickerControllerDelegate protocols. Modify the declaration of the
ViewController class to resemble the following.
class ViewController: UlIViewController,

UIImagePickerControllerDelegate,
UINavigationControllerDelegate

462 | LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

> Add the following code to the implementation of the onCamera () method in the
ViewController.swift file:

let imagePicker:UIImagePickerController = UIImagePickerController ()
imagePicker.sourceType = UIImagePickerControllerSourceType.Camera
imagePicker.delegate = self

if UlIDevice() .userInterfaceIdiom == UlIUserInterfaceIdiom.Pad
imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
self.presentViewController (imagePicker, animated: true, completion: nil)

let presentationController:UIPopoverPresentationController =
imagePicker.popoverPresentationController!
presentationController.permittedArrowDirections =
UIPopoverArrowDirection.Left
presentationController.sourceView = self.view
presentationController.sourceRect = cameraButton.frame

}

else

{
}

> Add the following code to the implementation of the onPhotoLibrary () method in the
ViewController.swift file:

self.presentViewController (imagePicker, animated: true, completion: nil)

let imagePicker:UIImagePickerController = UIImagePickerController ()
imagePicker.sourceType = UIImagePickerControllerSourceType.PhotoLibrary
imagePicker.delegate = self

if UlIDevice() .userInterfaceIdiom == UlUserInterfaceIdiom.Pad
imagePicker.modalPresentationStyle = UIModalPresentationStyle.Popover
self.presentViewController (imagePicker, animated: true, completion: nil)

let presentationController:UIPopoverPresentationController =
imagePicker.popoverPresentationController!
presentationController.permittedArrowDirections =
UIPopoverArrowDirection.Left
presentationController.sourceView = self.view
presentationController.sourceRect = cameraButton.frame

}

else
self.presentViewController (imagePicker,
animated: true,
completion: nil)

Trylt | 463

> Implement UITmagePickerControllerDelegate methods in your view controller class.

1. Add the following code in your vViewController.swift file to implement the image
PickerControllerDidCancel (picker: UIImagePickerController)dekgaw
method:

func imagePickerControllerDidCancel (picker: UIImagePickerController)

{
}

2. Add the following code in your ViewController.swift file to implement the
imagePickerController (picker: UIImagePickerController, didFinish
PickingMediaWithInfo info: [String : AnyObject]) dekgau:nwthod:

picker.dismissViewControllerAnimated (true, completion: nil)

func imagePickerController (picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject])
{

let image:UIImage = info[UIImagePickerControllerOriginalImage] as!
UIImage

imageView.image = image

picker.dismissViewControllerAnimated (true, completion: nil)

}

> Hide the camera button if the device does not have a camera. Add the following code to the
end of the viewDidLoad method of your view controller class:

override func viewDidLoad() ({
super.viewDidLoad ()

let hasCamera = UIImagePickerController.isSourceTypeAvailable (
UIImagePickerControllerSourceType.Camera)
if hasCamera == false

{
}

cameraButton.hidden = true;

}
> Test your application on an iPhone or iPod touch.

1. Connect your device to your Mac and select it from the Scheme/Target selector in the
Xcode toolbar.

2. Click the Run button in the Xcode toolbar. Alternatively you can select Project & Run.

464 | LESSON 31 USING THE CAMERA AND PHOTO LIBRARY

3. Tap the Photo Library button and select a photo from the contents of your device’s
photo library. Alternately, tap the Camera button to take a picture. After selecting the
image, your device screen will resemble Figure 31-3.

sseec 02-UK 4G

FIGURE 31-3

REFERENCE To see some of the examples from this lesson, watch the Lesson 31
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosvi

32

Introduction to User Interface
Testing

User Interface Testing (Ul Testing) is a new feature in Xcode 7 that allows you to write code
that can launch an instance of your application, interact with Ul elements of the application
programmatically, and validate the state and properties of these elements.

A related feature, called UI recording, has been introduced in Xcode 7. When UI recording is
enabled, you can launch the app and interact with it as you normally would. XCode records
your interaction with the app and builds a user interface test that can perform the same
sequence of interactions for you.

UI Testing is built upon XCTest, which is Xcode’s testing framework. XCTest is used by both
user interface tests as well as traditional unit tests. Unit tests are covered in Lesson 34.

ADDING SUPPORT FOR Ul TESTING TO YOUR PROJECT

Adding support for UI testing involves making a few changes to an Xcode project. For starters
a new build target must be added that will be used to run the user interface tests. A suitable
unit testing framework will also need to be linked with the project.

If you are creating a new project in Xcode, adding support for unit tests is a simple matter
of ensuring the Include Ul Tests check box is selected in the project options dialog box (see
Figure 32-1).

When you do this, you will notice a few changes:

> A new group has been added to the project explorer. This group will be used to contain
your unit test files.

> A new build target is added to the project settings. This new build target is called the
test target.

> The test target is preconfigured to test the host application.

466 | LESSON 32

INTRODUCTION TO USER INTERFACE TESTING

Choose options for your new project:

Product Name:
QOrganization Name;
Organization Identifier:
Bundle Identifier:

Language:

Devices:

SimpleButtonExample

asm technology Itd

com.wileybook

com.wileybook.SimpleButtonExample
Swift

Universal

o o]

| Use Core Data
—TTnclude Unit Te
Include Ul Tests

Cancel Previous Next
FIGURE 32-1
All of these points are visible in Figure 32-2.
eoe p W /A S @ iPhone6 SimpleButtonExample: Ready | Today at 06:11 =@ &=
B2 a s & = o B =B & simpleButtanExample
¥ [£) SimpleButtanExample (] General Resource Tags Infa Build Settings Build Phases Build Rules
¥ 7] SimpleButtonExample
- PROJECT)
4| AppDelegate swift ¥ Testing
4 ViewContraller.swift & simpleButtanExample Tanget Appii =
[Main.storyboard TARGETS
[Assets.xcassets ¢ EmMBleBUttonExample

[) LaunchScreen.storyboard
i Info.plist

v [LsimpleButionExampleUTTeats

.« SimpleButtonExampleUlTes)s.swift
atg.plist

» [Products 1

+® OH| +

B simpleButtonExampleUlTests

2

FIGURE 32-2

Adding support for Ul tests to an existing project is slightly more tricky. First you need to add a new
build target to your Xcode project by selecting File &> New > Target.

Adding Support for Ul Testing to Your Project | 467

In the target template dialog box, select iOS Ul Testing Bundle under the Test category
(see Figure 32-3).

Choose a template for your new target:

ios

Application \ o \ o

Framework & Library
Application Extension 108 k;:i:];?:ting
Apple Watch
Test
watchOS
Application
Framewaork & Library
0s X
Application
Framework & Library

Application Extension

Test
System Plug-in i0S Ul Testing Bundle
Other This target builds a user interface testing bundle that uses the XCTest framework.
Cancel Next
FIGURE 32-3

You will then be presented with the target options dialog box, which is similar in many respects to
the project options dialog box you encounter when creating a new project. Accept the default values
in this dialog box and click Finish (see Figure 32-4).

Choose optiens for your new target:

Product Name: | SimpleButtonExampleUITests

Organization Name: asm technology Itd

Organization Identifier: com.wileybook

Bundle Identifier: com.wileybook.SimpleButtonExampleUlTests
Language: Swift

Project: = |2 SimpleButtonExample

Do o

Target to be Tested: 7% SimpleButtonExample

Cancel Previous Finish

FIGURE 32-4

468 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

ANATOMY OF A TEST CASE

Previously in this lesson, you learned that Ul tests are stored under their own group in the project
explorer. The unit being tested is always a . swift class file, and all the tests related to that class are
grouped in a single test class. A test class is just a Swift class that inherits from xcTestCase and can
contain three types of methods:

> Setup method: This method appears as setUp () and is called before each test method is
executed in the test class.

> Teardown method: This method appears as tearbDown () and is called after each test method
is executed in the test class.

> Test methods: These methods all begin with the word test. Each method encapsulates a
single test.
The following code snippet shows what a typical UI test class looks like:

import XCTest
class SwiftTableViewSampleUITests: XCTestCase {

override func setUp()
super.setUp ()

continueAfterFailure = false
XCUIApplication() .launch()

}

override func tearDown() {
super.tearDown ()

func testExample ()

}
}

To execute all unit tests (in all test classes) in a project, use the Product =& Test menu item. Doing so
will launch the app on the iOS Simulator or iOS device and execute all methods that begin with the
word test in each test case sequentially.

NOTE If your project has both unit tests and user interface tests, then the user
interface tests will be executed only after all the unit tests finish regardless of any
unit test failures.

The result of the testing phase is visible in the Test Navigator, which can be accessed by selecting
View @ Navigators = Show Test Navigator (see Figure 32-5).

New Classes for Ul Testing | 469

ene p #A simpleButton) i iPhone 6 Finished running SimpleButton on iPhone & =@ SihE
SimpleButtonU Tests.swift Running =

BRI< -] [] Tests) |u NTests.swift) [3 ITests

2 // SimpleButtonUITests.swift

R Morests 7/ SimpleButtonUITests

testButtonintaraction()

// Created by Abhishek Mishra on 26/08/2015.

6 // Copyright © 2015 asm technology ltd. All rights reserved.
9 import XCTest

@11 class SimpleButtonUITests: XCTestCase {

13 override func setuUp() {
% super.setUp()

// Put setup code here. This method is called before the invocation of each test method in the class.
/7 In UI tests it is usually best to stop immediately when a failure occurs.
continueAfterfFailure = false

// UI tests must launch the application that they test. Doing this in setup will make sure it happens for each test method.
XCUIApplication().launch()

24 override func tearDown() {

2 #/ Put teardown code here. This method is called after the invocation of each test method in the class.
2 super.tearDown{)
}

func testButtonInteraction() {
XCUTApplication{).buttons["Tap here!"].tap()

a let alert = XCUIApplication().alerts.element
32 let alertTile:String = alert.label
33 XCTAssertEqual{alertTile, "what is your name?")
%
% ¥
3
+(® B¢ =2 o =

FIGURE 32-5

You will see a green tick box next to each test that has passed, and a red one next to each test that
has failed. Keep in mind that test code must be able to compile for the tests to begin executing. If
your project has compilation errors, you will need to fix these before the tests can run.

You can add additional test classes to your project by using the Add button (+) and the New UI Test
Class command in the Test Navigator (see Figure 32-6).

New Unit Test Target...
New Unit Test Class...

New Ul Test Target...
New Ul Test Class...

& aEE

FIGURE 32-6

NEW CLASSES FOR Ul TESTING

UI testing is part of the xcTest framework, which is Xcode’s standard testing framework. Ul testing
introduces four new classes, and two new protocols, which are discussed in this section.

XCUIApplication

An XcUIApplication instance is used to launch an instance of your application for testing.

Typically, you instantiate an XCUIApplication instance in your test class’s setup () method and
call the launch method:

470 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

override func setUp()
super.setUp ()
XCUIApplication() .launch()

}

You can also set specific arguments of environment variables by setting the 1auncharguments
and launchEnvironment properties. For example, the following snippet passes a launch argument
USE_DEBUG_SERVER to the UIApplication instance:

override func setUp()
super.setUp ()

let application = XCUIApplication ()
application.launchArguments = ["USE_DEBUG SERVER"]
application.launch()

The application can look out for this argument in application (application, didFinish
LaunchingWithOptions)and take appropriate action (such as load web service end points for a
staging server):
func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[NSObject: AnyObject]?)
-> Bool {

let launchArguments = Process.arguments

for var index = 1; index < launchArguments.count; index++ {
let argument = launchArguments[index] as String
if argument.compare ("USE DEBUG SERVER") ==
NSComparisonResult.OrderedSame {
// do something here to load endpoints for a debug server.

}

return true

The preceding snippet retrieves any launch arguments as an array of strings by calling Process
.arguments. The first element in this array is always the full path to the application, which is why it
examines elements from index 1 onward.

To terminate an app, you could call the terminate () method on and XcUIApplication instance.
This is not strictly necessary as xCTest will terminate the application instance automatically every
time a test finishes executing.

XCUIDevice

An instance of this class represents the device on which the test is running. There is always only one
instance of this device that can be accessed as follows:

let device = XCUIDevice.sharedDevice ()

New Classes for Ul Testing | 471

At the time of this writing, XCUIDevice has only one property called orientation that returns the
orientation of the device. Setting this property changes the orientation of the device.

The following setup method passes a launch argument and changes the device to landscape orienta-
tion before running a UI test.

override func setUp()
super.setUp ()

let application = XCUIApplication()
application.launchArguments = ["USE_DEBUG_SERVER"]
application.launch()

let device = XCUIDevice.sharedDevice ()
device.orientation = UIDeviceOrientation.LandscapeLeft

XCUIElementQuery

An instance of this class can be used to locate a Ul element in the application’s user interface. This
class, along with XCUTElement is the primary class used for Ul testing.

In most cases you will not instantiate an XCUTElementQuery explicitly; instead you will use one of
the properties defined by the XCUIElement TypeQueryProvider protocol on the XCUTApplication
instance to obtain an XCUIElementQuery instance.

XCUIApplication implements the XCUTElement TypeQueryProvider protocol; the protocol is
discussed later in this lesson.

XCUIElementQuery defines several instance methods, as shown in Table 32-1. Some of these meth-
ods return an XCUIElement, while others return another XCUTElementQuery instance. In the lat-
ter case, the returned XCUTElementQuery instance is usually used to obtain a smaller subset of
elements.

TABLE 32-1: XCUIElementQuery Methods

PROPERTY/METHOD NAME DESCRIPTION

var count: UInt { get } Resolves the query and returns the num-
ber of elements matched by the query

func elementBoundByIndex (index: UInt) -> Resolves the query and returns an ele-
XCUIElement ment at the specified index

func elementMatchingType (elementType: Resolves the query and returns an ele-
XCUIElementType, identifier: String?) -> ment that matches a specific type and
XCUIElement accessibility identifier

func childrenMatchingType (type: Returns a query that can be used to

XCUIElementType) -> XCUIElementQuery extract children of a specific type

472 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

Figure 32-7 shows the storyboard of an application that has a single view controller with three but-
tons on it.

Carrier ¥ 9:02 PM L

Yellow

FIGURE 32-7

The following code snippet will return the number of buttons in the view controller that is currently
visible on the screen (which in this case will be 3). The code snippet uses application.buttons to
create a query that returns all the visible buttons on the device’s screen. This query will be explained
when we discuss XCUIElementQueryProvided later in this lesson.

let application = XCUIApplication()
let query = application.buttons

print (query.count)

XCUIElement

An XCUIElement instance encapsulates the information required to locate a user interface ele-
ment in your application. It is almost always obtained by calling one of the methods on an
XCUIElementQuery instance.

The information within an XCUTElement is only evaluated when a method is called on the
XCUIElement. At the time of evaluation, if the xCUTElement does not resolve into an actual element
an error will be raised.

It is important to keep in mind that the XCUIElement instance does not let you access the underlying
user element directly. For instance, if you had an XxCUTElement that represents a text field instance

New Classes for Ul Testing | 473

on a view, you cannot dereference the XCUTElement to arrive at the underlying UTTextField object

and then attempt to manipulate the underlying object.

However, an xCUIElement does allow you to interact with the underlying element programmatically
as an end user would while using your app. To achieve this, XCUIElement provides a number of
properties and methods that you could call on a concrete instance, some of which are listed in

Table 32-2.

TABLE 32-2: XCUIElement Methods

PROPERTY/METHOD NAME DESCRIPTION

var exists: Bool { get } Returns true if the XCUIElement resolves into an
actual Ul element in the app

func tap() Sends a tap event to the underlying Ul element

func doubleTap () Sends a double tap event to the underlying Ul
element

func pressForDuration (duration: Sends a long press gesture event to the underlying Ul

NSTimeInterval) element

pressForDuration (duration: Sends a press and hold gesture to the underlying Ul

NSTimeInterval, thenDragToEle- element that then drags to another element

ment otherElement: XCUIElement)

func swipeUp () Sends a swipe up gesture to the underlying Ul
element

func swipeDown () Sends a swipe down gesture to the underlying Ul
element

func swipeLeft () Sends a swipe left gesture to the underlying Ul
element

func swipeRight () Sends a swipe left gesture to the underlying Ul
element

XCUIElement also conforms to the XCUIElementAttributes and XCUIElementTypeQueryProvider

protocols, both of which are defined later in the lesson.

Take a moment to look at Figure 32-7 again. In the previous section you learned that the following
snippet will result in an XCUIElementQuery that resolves to three objects:

let application = XCUIApplication()
let query = application.buttons

print (query.count)

474 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

That being the case, you could attempt to get an XCUTElement instance that represents the green
button using the elementBoundByIndex method:

let greenButton = query.elementBoundByIndex (1)

To verify you have indeed gotten the green button, simply inspect the value of the 1abel property on
the XCUIElement instance (greenButton):

print (greenButton.label)

In case you were wondering, the 1abel property is defined in the XCUIElementAttributes proto-
col, which is implemented by xCUIElement. As mentioned earlier, this protocol will be discussed
later in this lesson.

This type of code is sensitive to the layout of the user interface. A far better approach is to set up an
accessibility identifier for the buttons in the storyboard and use the accessibility identifier to retrieve
the green button regardless of how the storyboard scene was laid out.

To set up an accessibility identifier for your user interface elements, select the user interface element
in the storyboard and use the Identity Inspector (see Figure 32-8)

e 8 » B /A SimpleButton | @ iPhone & deButt Build : Today at 08:20 = & a0 O
SimptaBlutiorusiTests swilt running +
B R a.f = o 2 @M< & simpleBution | 0 Sim.utean | [l Main_card ! [l Main_ase) | [View.-ers Wiew..olor) || View | B Tap herat DRS00 e
v I Sttt Lockinherited - (Nothing) (7]
¥ 1 Simpeflution Mot ¢ 3 m - 3]
< AopDelogste.smift @z
= ViewContrailar switt T E
Main.storyboard -
Frepp—— | Acemsalbility
o fu &7
LaunchSereen storyboard accessiny) Enabled
Info it —d Tap hera! i Label
i SimplefutionliTests o o L Hint
= Produc identifint slartLauncharBution
Labe Traits B Butean Link
Image Salucied
Seatic Text
Saareh Fiokd
Fiays Sound
Kayboard Kay
Sumnary Element
Usar intaraction Enablag
Updates Frecuently
Starts Media Seasion
Agjustable
Allgwn Direes Intarsetion
Csuses Fage Tum
Haadar
0O0@e0
‘View Controlier - A controller that manages 3 viaw
Fravides
whew Contralier in an extamal storyboard.
/ Wavigation Contraller - & controler that manages
+ & = O Ay Ay O bl

Once an element has an accessibility identifier set up, you could use the following snippet to return
an XCUIElement instance that will resolve to the green button regardless of how the user interface is
laid out.

let application = XCUIApplication/()
let query = application.buttons
let greenButton = query.elementMatchingType (.Button, identifier: "greenButton")

New Classes for Ul Testing | 475

The last line of the preceding snippet retrieves an XCUIElement of a specific type with a specific
identifier. Alternately, you could have written the last line as:

let greenButton = query["greenButton"]

This alternate statement uses the subscript operator ([|) to retrieve an element by accessibility
identifier.

XCUIElementAttributes

The xCUIElementAttributes protocol defines several properties that return commonly used attri-
butes and is implemented by XCUTElement as one would expect. Table 32-3 lists some of the com-
monly used properties defined in XCUTElementAttributes.

TABLE 32-3: XCUIElementAttribute Properties

PROPERTY NAME DESCRIPTION

var identifier: String { get } Returns the accessibility identifier of the
element

var frame: CGRect { get } Returns the frame property of the element

var title: String { get } Returns the accessibility title of the
element

var label: String { get } Returns the caption of the element (if
applicable)

var elementType: XCUIElementType Returns an enumeration value that repre-

sents the type of the element

var enabled: Bool { get } Returns true if the element is enabled for
user interaction

func swipeDown () Sends a swipe down gesture to the under-
lying Ul element

func swipeLeft () Sends a swipe left gesture to the underly-
ing Ul element

func swipeRight () Sends a swipe right gesture to the under-
lying Ul element

The elementType property is an enumerated value that represents the type of element.
XCUIElementType is a very large enumeration and some of its members do not apply to iOS applica-
tions. Some of the more commonly used values are listed here:

» XCUIElementType.Alert
» XCUIElementType.Button

> XCUIElementType.NavigationBar

476

| LESSON 32

INTRODUCTION TO USER INTERFACE TESTING

XCUIElementType
XCUIElementType
XCUIElementType

XCUIElementType

XCUIElementType
XCUIElementType
XCUIElementType

XCUIElementType

Y Y Y Y Y Y VY VY VY VYYy

XCUIElementType

XCUIElementType.

XCUIElementType.

.TabBar
.ToolBar
.ActivityIndicator

.SegmentedControl

Picker

Image

.StaticText

.TextField

.DatePicker

.TextView

.WebView

XCUIElementTypeQueryProvider

XCTest also defines a new protocol XCUTElement TypeQueryProvider. This protocol defines several
properties that return preconfigured XCUIElementQuery instances. Both xcUIApplication and
XCUIElement implement this protocol.

Some of the properties defined in this protocol are listed in Table 32-4. Typically, you will use one of
these methods on the xCUIApplication instance to return an initial XCUIElementQuery, and you
will then use the methods defined in XxCUTIElementQuery to filter down to a specific element.

TABLE 32-4: XCUIElementTypeQueryProvider Methods

PROPERTY/METHOD NAME DESCRIPTION

var windows: XCUIElementQuery { Returns a query that provides access to all win-

get } dows that are currently visible in app. iOS applica-
tions have just a single window.
var alerts: XCUIElementQuery { get Returns a query that provides access to all alerts

1 that are currently visible in app. Usually there is
only one alert visible in an app at a time.

var buttons: XCUIElementQuery ({ Returns a query that provides access to all
get } buttons that are currently visible in app.
var navigationBars: Returns a query that provides access to all naviga-

XCUIElementQuery { get } tion bars that are currently visible in app.

tables: XCUIElementQuery { get } Returns a query that provides access to all table

views that are currently visible in app.

var collectionViews:
XCUIElementQuery { get }

Returns a query that provides access to all collec-
tion views that are currently visible in app.

Test Assertions | 477

PROPERTY/METHOD NAME

var staticTexts:
{ get }

XCUIElementQuery

var textFields: XCUIElementQuery {
get }

textViews: XCUIElementQuery { get

}

var maps: XCUIElementQuery { get }

var otherElements: XCUIElementQuery
{ get }

TEST ASSERTIONS

DESCRIPTION

Returns a query that provides access to all labels
that are currently visible in app.

Returns a query that provides access to all text
fields that are currently visible in app.

Returns a query that provides access to all text
views that are currently visible in app.

Returns a query that provides access to all map
views that are currently visible in app.

Returns a query that provides access to all view
controllers that are currently visible in app.

An assertion represents a failure of a unit test. Typically your UI test case will use one of the proper-
ties defined by the XCUTElement TypeQueryProvider protocol on the XCUTIApplication instance
to obtain an XCUIElementQuery instance. It will then resolve the XCUIElementQuery into an
XCUIElement and inspect some of the attributes of the underlying Ul element.

If the value of the underlying attribute being tested does not match the expected value, the test will
fail by firing an assertion. XCTest provides several macros to help you create assertions. Table 32-5
lists some of the more commonly used assertions.

TABLE 32-5: XCTest Assertion Macros

MACRO

XCTAssert (expression, String)

XCTAssertEqual (expressionl,

expression2, String)

XCTAssertNil (expression, String)

XCTAssertNotNil (expression,

String)
XCTAssertTrue (expression)
XCTAssertFalse (expression)

DESCRIPTION

Generates a failure if the expression evaluates to
false. An optional string message may be provided
to indicate failure.

Generates a failure when expressioni is not equal
to expression2. This test is for primitive data

types.

Generates a failure when the expression is not nil.

Generates a failure when the expression is nil.

Generates a failure when the expression evaluates
to false. Identical to XCTAssert ().

Generates a failure when the expression evaluates
to true.

478

| LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

The following code snippet lists a UI test case that will try to locate a button with a specific acces-
sibility identifier and assert if the button was not found:

func testGreenButtonExists() {
let application = XCUIApplication/()
let query = application.buttons
let greenButton = query.elementMatchingType (.Button, identifier: "greenButton")
XCTAssert (greenButton.exists)

It is worth noting that xcTAassert was used instead of xCTAssertNotNil. This is because green-
Button is an XCUIElement instance.

Recall that xCUIElement is not the actual user element on the screen; it just represents the infor-
mation needed by the testing framework to attempt to locate a user interface element. Only when
you try to access the underlying element (by calling exists () on the XxCUTIElement) will the testing
framework try to resolve the XCUTElement into an actual user interface element.

The following snippet builds on the previous test and asserts if the label on the button does not
match a specific value.

func testGreenButtonHasCorrectLabel () {
let application = XCUIApplication/()
let query = application.buttons
let greenButton = query.elementMatchingType (.Button,
identifier: "greenButton")
let buttonLabel = greenButton.label
XCTAssertEqual (buttonLabel, "Green",
"expected button label to be Green, but
found \ (buttonLabel) instead.")

}

Ul RECORDING

One of the coolest new features added to Xcode 7 is Ul recording. With Ul recording, you can
launch an instance of your application and interact with it as normal. While you interact with your
app, Xcode will record your taps, gestures, selections, and key strokes into a Ul test script.

UI recording is tightly coupled with UI testing. To begin Ul recording, simply place the text
cursor within a UT test case and tap the red record button at the bottom of the Xcode editor (see
Figure 32-9).

XCTAssertEqual(buttonLabel, "Gre

func testUIRecording(){
|

+[®

FIGURE 32-9

To stop recording simply tap the stop button, which replaces the record button during a recording
session. Ul recording provides a good starting point to build your Ul tests; you can then fine-tune
the code generated by Ul recording and add appropriate XCTAssert statements.

Waiting for Elements in a Ul Test | 479

WAITING FOR ELEMENTS IN A Ul TEST

Sometimes it is necessary to wait for an asynchronous operation to complete and verify the data
displayed on the screen when this asynchronous operation has completed. For instance, imagine a
button that attempts to retrieve the current time from a web service and displays the result in a label
on the screen.

You could easily simulate a tap on the button using a simple statement such as this:

XCUIApplication() .buttons ["serviceLauncherButton"] .tap ()

However, you could not immediately go and inspect the text of the label and expect it to have
changed because tapping the button has sent out a web service request to an external resource and
could take a few seconds to come back with the response.

You need to be able to wait for a few seconds for the text in the label to change. Fortunately, xcTest
has just the thing in the form of test expectations.

A test expectation is an instance of XCTestExpectation and represents an expected result. For
example, to set up an expectation that indicates a UTLabel with the caption “11 December, 2015”
exists, you could use the following snippet:

let label = XCUIApplication().staticTexts["Hello Alex"]

let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectationForPredicate (predicate, evaluatedWithObject: label, handler: nil

The preceding snippet starts out by retrieving an XCUIElement instance for a label with text Hello
Alex.

let label = XCUIApplication().staticTexts["Hello Alex"]

The label does not yet exist, but that is not a problem as an XCUIElement just represents the
information needed to locate an element and not an actual element. An attempt to locate the actual
element is only made when you call a method such as exists () on the XCUIElement instance.

Once an XCUTElement instance has been obtained, an expectation is set up using the expectation
ForPredicate () method of the xcTestcase class. (Recall that all UI test classes inherit from
XCTestCase)

let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)

self.expectationForPredicate (predicate, evaluatedWithObject: label, handler: nil

The expectation is expressed as a predicate that is evaluated on an object. The object in this case is
the label, and the predicate is set up to call the exists () method and ensure the result is 1.

The net result is that the expectation represents a situation where a label with the caption Hello
Alex exists.

Once an expectation has been set up, you need to call the waitForExpectationsWwithTimeout ()
method on an XCTestCase instance:

self.waitForExpectationsWithTimeout (5, handler: nil)

480 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

The waitForExpectationsWithTimeout () method waits a specified amount of time (in seconds)
and then evaluates all expectations that have been set up in the test method. If any of the expecta-
tions are not fulfilled, the test will fail.

If multiple expectations have been set up, they are evaluated in the order in which they are created.
Use of XxCTestExpectation is demonstrated in this lesson’s Try It.

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
SimpleButton that presents a simple user interface to the user with a button and a label.

When the button is tapped, the user is prompted to type in her name. The name is displayed in the
text field when the alert is dismissed. You will then write a few UI test cases to augment the applica-
tion and verify that things are working as expected.

Lesson Requirements

>

>

Launch Xcode.

Create a new iPhone project based on the Single View Application template with Ul testing
support.

Add a utButton instance to the scene and connect it to the appropriate action method in the
view controller class.

Add a UILabel instance to the scene and connect it to an outlet in the view controller.
Add code to display an alert when the button is tapped.

Write Ul test cases to verify the behavior of the application.

REFERENCE The code for this Try It is available at www . wrox.com/go/

swiftios.

Hints

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To include support for Ul tests in your project, ensure the Include UI Tests check box is
enabled in the project options dialog box.

To show the Test navigator, select View = Navigators &> Show Test Navigator.
To show the Object library, select View = Utilities & Show Object Library.

To show the assistant editor, select View = Assistant Editor &> Show Assistant Editor.

http://www.wrox.com/go

Try lt | 481

Step-by-Step
> Create a Single View Application in Xcode called simpleButton.

1. Launch Xcode and create a new application by selecting File &> New = Project
menu item.

2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen use the following values:
> Product Name: SimpleButton
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Unchecked
> Include UI Tests: Checked

Y Y VY VY Y Y

4. Save the project onto your hard disk.
> Add user interface elements to your storyboard’s scene.

1. Use the Object library to add a UTButton and a UILabel instance to the default scene.
Name and position them to resemble Figure 32-10.

W B

o o

a Tap here!

]

o o

Label

FIGURE 32-10

482 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

2. Create layout constraints for each of elements on the storyboard scene using the infor-
mation in Table 32-6. When creating layout constraints using the pin constraints dia-
log box, ensure the Constrain to margins option is unchecked and the Update Frames
combo box is set to None.

TABLE 32-6: Layout Constraints

ELEMENT LEFT TOP RIGHT HEIGHT
Button 20 20 20 50
Label 20 20 20 40

3. Select the view controller object and update frames by selecting Editor & Resolve Auto
Layout Issues &> Update Frames.

4. Use the assistant editor to create outlets for the label in the view controller class. Name
the outlet greetingLabel.

5. Use the assistant editor to create an action method in the view controller class called
onButtonTapped and connect it to the button on the scene.

6. Using the Identity Inspector to set the accessibility identifier of the button to alert-
LauncherButton and the accessibility identifier of the label to alertResultLabel.

> Present an alert when the button is tapped.
1. Replace the implementation of the onBut tonTapped method with the following:
@IBAction func onButtonTapped (sender: AnyObject) {

var inputTextField: UITextField?

let alert = UIAlertController(title: "What is your name?",
message: nil,
preferredStyle: UIAlertControllerStyle.Alert)

let alertAction = UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default,
handler: { action -> Void in
guard let textField = inputTextField else {
return
}

self.greetinglabel.text = "Hello \ (textField.text!)"
1
alert.addAction (alertAction)
alert.addTextFieldWithConfigurationHandler { (textField) -> Void in

inputTextField = textField;
inputTextField!.text = ""

Trylt | 483

}

self.presentViewController (alert, animated: true, completion: nil)

}

2. Replace the implementation of the viewDidLoad method with the following:

override func viewDidLoad() {
super.viewDidLoad ()
greetinglLabel.text = ""

}
Test your app in the iOS Simulator.

1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project =
Run menu item.

2. Tap the button, type in your name when asked, and observe the text in the label
changes.

Create a Ul test that will tap the button, type in some text in the alert view, and verify that
the text on the label updates correctly.

1. Locate the simpleButtonUITests.swift file in the Project Explorer and open it.
2. Delete the textExample () method at the bottom of the file.

3. Add a new method, testWhenButtonTapped AlertAppears, to the Ul test class:

func testWhenButtonTapped AlertAppears () {
XCUIApplication() .buttons["alertLauncherButton"] .tap()
let alert = XCUIApplication().alerts.element
XCTAssertNotNil (alert.exists)

}

This test aims to verify that an alert view is displayed when the button is tapped.

4. Add another method called testWhenButtonTapped
AlertAppearsWithCorrectTitle to the UI test class:
func testWhenButtonTapped AlertAppearsWithCorrectTitle () {
XCUIApplication() .buttons["alertLauncherButton"] .tap()
let alert = XCUIApplication().alerts.element

let alertTile:String = alert.label
XCTAssertEqual (alertTile, "What is your name?")

}

This test aims to verify that the alert view that is displayed when the button is tapped
has the correct title.

5. Add another method called testWhenAlertDismissed LabelUpdatesCorrectly to
the unit test class:

func testWhenAlertDismissed LabelUpdatesCorrectly () {

XCUIApplication () .buttons["alertLauncherButton"] .tap()
let alert = XCUIApplication().alerts.element

484 | LESSON 32 INTRODUCTION TO USER INTERFACE TESTING

alert.textFields.elementBoundByIndex (0) .typeText ("Alex")
alert.buttons.elementBoundByIndex (0) .tap ()

let label = XCUIApplication() .staticTexts["Hello Alex"]
let predicate = NSPredicate(format: "exists == 1",
argumentArray: nil)

self.expectationForPredicate (predicate,
evaluatedWithObject: label,
handler: nil)

self.waitForExpectationsWithTimeout (5, handler: nil)

}

This test enters the name Alex in the alert view and dismisses the alert view by
tapping OK on the alert view. It then verifies that the text on the label has been
updated to Hello Alex.

6. Run the unit tests using the Product > Test menu item once again and observe that the
product compiles and all tests pass.

REFERENCE To see some of the examples from this lesson, watch the Lesson 32
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

33

Introduction to Test Driven
Development

Test Driven Development (TDD) is an approach to software development that aims to reduce
the number of bugs in the final product. A developer who practices TDD techniques not only
writes actual code to carry out the app’s functionality but also test code that ensures his appli-
cations code does what it is supposed to do.

This test code is called a unit test, and it is common for an application to have several hun-
dred unit tests with each test testing a very small piece of the code base. The code that forms
these unit tests is not part of the code base that will ship to the end users of the application.
Typically these units tests are executed every time a developer attempts to create a build and if
any unit tests were to fail then a build would not be created. TDD makes it very cost effective
to catch regression bugs (bugs that were fixed at an earlier point in time but have been reintro-
duced due to subsequent development work).

It is not necessary for the same developer to write both the class as well as the test case. In
fact, it is quite common for a senior developer to specify the behavior of a class for a junior
developer by creating a bunch of unit tests. Given these tests, the junior developer can imple-
ment the class and knows his work is done when all the unit tests pass.

One of the key principles of TDD is that the tests are written first and development focuses on
writing the minimum amount of code needed to make all tests pass. Once all tests pass, the
feature in question is deemed to be complete. This process is iterative, with each iteration cre-
ating new tests and code to make these tests pass.

A company that practices TDD will discover that over time not only will the number of defects
decrease, but also defects are found earlier in the development process.

TDD requires an upfront investment in the time required to write the test code in addition to
the production code, and the time required to maintain test code as the application is devel-
oped further, but it could be argued that teams that do not practice TDD techniques could end
up spending a significant amount of time fixing bugs.

486 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

ADDING SUPPORT FOR UNIT TESTING TO YOUR PROJECT

Adding support for TDD involves making a few changes to an Xcode project. For starters, a new
build target must be added that will be used to run the unit tests. A suitable unit testing framework
will also need to be linked with the project.

If you are creating a new project in Xcode, adding support for unit tests is a simple matter of ensur-
ing the Include Unit Tests check box is checked in the project options dialog box (see Figure 33-1).

Choose options for your new project:

Product Name: | SwiftGalculator

Organization Name: Abhishek Mishra
‘Organization Identifier: com.asmtechnology

Bundle Identifier: com.asmtechnology.SwiftCalculator

Language: Swift
Devices: Universal
Use Core Data
Include Unit Tests
clude Ul Te
Cangel Previous m

FIGURE: 33-1

When you do this, you will notice a few changes:

> A new group has been added to the project explorer. This group will be used to contain your
unit test files.

> A new build target is added to the project settings. This new build target is called the test
target.

> The test target is pre-configured to test the host application.

All of these points are visible in Figure 33-2.

Adding support for unit tests to an existing project is slightly more tricky. First you need to add a
new build target to your Xcode project by selecting File &> New > Target.

Adding Support for Unit Testing to Your Project | 487

In the target template dialog box, select iOS Unit Testing Bundle under the Test category (see
Figure 33-3).

o0 e) v S..ator) § IPhone 6 SwiftCalculator: Ready | Today at 17:31 = ®© < e
B R QA © = o B #H(L [E switCalculater
B i O Ganeral Resource Tags Info Build Settings Build Phases Build Rules
¥ [SwiftCalculator |
L PROJECT
+| AppDelegate.swift B ¥ Testing
~ [y swiftCalculator
AV GontElie: suic Host Application | 7% SwitCalculator B
Main.storyboard TARGETS 3
= # Allow testing Host Application APls
[E5 Assets.xcassets - RGatetinte
[} LaunchScreen.storyboard [switCalculatorTests
Info.plist |
TCalculatorTests 2
+| SwiftCalculatorTests.swift
Info.plist
» [Producis 1
+ 8 OH||+ — 1®

FIGURE: 33-2

Choose a template for your new target:

ios

Application L o \\ 0
Framework & Library
Application Extension iOSBUJn.E:U"g
Apple Watch
Test
watchOS
Application
Framework & Library
0s X
Application
Framework & Library

Application Extension

Test
8ystem Plug-in i0S Unit Testing Bundle
Other This target builds a unit test bundle that uses the XCTest framework.
Cancel Next
FIGURE: 33-3

You will then be presented with the target options dialog box, which is similar in many respects to

the project options dialog box you encounter when creating a new project. Accept the default values
in this dialog box and click Finish (see Figure 33-4).

488

LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

Choose options for your new target:

Product Name: | HelleSwift2Tests

Organization Name: Abhishek Mishra
Organization Identifier: com.asmtechnology

Bundle Identifier: com.asmtechnology.HelloSwift2Tests

Language: = Swift
Project: | [B HelloSwift2 B
Target to be Tested: | 7% HelloSwift2
Cancel Previous m

FIGURE: 33-4

TDD TECHNIQUES

This section examines some of the common techniques practiced by developers who work in a TDD
environment.

Test First

This practice encourages developers to write the tests before the code that will be tested. The tests
define the acceptance criteria of the project. If you have a comprehensive suite of tests, the code is
considered ready as soon as all tests pass and no further changes to the code base are required.

In practice, a developer writes a single test, and then runs it to check if it fails. The developer then
proceeds to write the code to make this one test pass. This is an iterative process and over time a
comprehensive set of tests is created by the developer, which serves as both the acceptance criteria as
well as living documentation for the code base.

Red-Green-Refactor

This practice builds upon the previous principle. When a test is written for code that does not yet
exist, it is quite possible the test may not even compile, and if it does it will definitely fail. This stage
of development that involves writing a failing test that encapsulates the desired behavior of a system
is called the Red stage. The color red has to do with popular IDE’s like Xcode and Visual Studio
using red as the color to indicate failed tests in a summary view.

If the first stage toward implementing TDD is getting a failing test, then the next one is obviously
writing the code to make the test pass. This second stage is called the Green stage. Reaching this
second stage may mean creating a new class or method, or changing some existing code. At this

Anatomy of a Test Case | 489

stage, you should not focus on writing the most optimum code to fix the test; something that is good
enough will do fine.

The final stage involves optionally refactoring the code that was written in the second stage while
ensuring that you do not break any existing tests.

Don’t Write Code You Do Not Yet Need

This practice requires the developer to not write any code that is not needed at the moment. It is
tempting to add features to a class anticipating future uses of the class, but a good TDD practitioner
must resist this temptation. There may be a user story in the future that could use this code that you
want to write now; it is best to write it when you are addressing the specific user story, complete
with its own set of tests.

ANATOMY OF A TEST CASE

Previously in this lesson, you learned that unit tests are stored under their own group in the project

explorer. The unit being tested is always a .swift class file, and all the tests related to that class are
grouped in a single test class. A test class is just a Swift class that inherits from xcTestcase and can
contain five types of methods:

> Setup method: This method is called setup () and is called before each test method is exe-
cuted in the test class.

» Teardown method: This method is called tearbown () and is called after each test method is
executed in the test class.

> Test methods: These methods all begin with the word “test.” Each method encapsulates a
single test.

> Performance testing methods: These methods all begin with testPerformance. Performance
testing is outside the scope of this book.

> Other Swift methods: A test class is a Swift class and can contain any other methods just like
any other Swift class. These methods are usually written to support other test methods.

The following code snippet shows what a typical test class looks like:

import XCTest
@testable import SwiftCalculator

class SwiftCalculatorTests: XCTestCase {

override func setUp() {
super.setUp ()
// Put setup code here. This method is called
// before the invocation of each test method in the class.

}

override func tearDown() {
// Put teardown code here. This method is called

490 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

// after the invocation of each test method in the class.
super.tearDown ()

func testExample ()
// This is an example of a functional test case.
// Use XCTAssert and related functions to verify your
// tests produce the correct results.

To execute all unit tests (in all test classes) in a project, select Product = Test. Doing so will launch
the app on the iOS Simulator or iOS device and execute all methods that begin with the word “test”
in each test case sequentially.

It is important to note that only setUp (), teardown (), and methods that begin with test (or test-
Performance) will be executed automatically as part of the testing cycle.

The result of the testing phase is visible in the Test Navigator, which can be accessed by selecting
View = Navigators = Show Test Navigator (see Figure 33-5).

] ® » A Swil...lator) i iPhene 6 SwiftCalculator | Build SwiftCalculator: Succeeded | Today at 18:13 =@ 20 =) [

BHRE QM & = 3 [BI[L [Ey swiftGalculator) (7] SwiftCalculatorTests) . SwiftCalculatorTests.swift) [E SwiftCalculatorTests
¥ [SwiftCalculatorTests 1 test 17
/7 SwiftCalculatorTests.swift
v [SwiftCalculatorTests 7/ SwiftCalculatorTests
I3 testExampleg o "

// Created by Abhishek Mishra on 14/08/2015.
// Copyright © 2815 Abhishek Mishra. All rights reserved.

import XCTest
gtestable import SwiftCalculator

@ class SwiftCalculatorTests: X(TestCase {

override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation of each test method in the class.

override func tearDown{) {
// Put teardown code here. This method is called after the invocation of each test method in the class.
super. tearDown(}

© func testExamplel) {
/¢ This is an example of a functional test case.
/4 Use XCTAssert and related functions to verify your tests produce the correct results.

¥

+8 He
FIGURE 33-5
New Unit Test Target...
You will see a green tick box next to each test that has passed and a red one | New unit Test Class...
next to each test that has failed. Keep in mind that test code is also code and | few) Tt faoet..
must be able to compile for the tests to be executed. If your project has com- |F@——— s

pilation errors, you will need to fix these before the tests can run. FIGURE 33-6

Test Assertions | 491

You can add additional test classes to your project by using the Add button (+) and the new test class

command in the Test Navigator (see Figure 33-6).

TEST ASSERTIONS

Assertions are the bread and butter of unit tests. An assertion represents a failure of a unit test.
Typically, your unit test will call a method on an object and this method will change some values in
your application. The unit test will call the method with known inputs and expect a specific output.
If the output from the method being tested does not match the expected value, the test will fail by
firing an assertion. The standard unit testing framework in XCode is called XCTest and it provides
several macros to help you create assertions. Table 33-1 lists some of the more commonly used

macros.

TABLE 33-1: XCTEST ASSERTION MACROS

MACRO

XCTAssert (expression, String)

XCTAssertEqualObjects (expressionl,
expression2, String)

XCTAssertNotEqualObjects (express
ionl, expression2, String)

XCTAssertEqual (expressionl,
expression2, String)

XCTAssertNotEqual (expressionl,
expression2, String)

XCTAssertNil (expression, String)
XCTAssertNotNil (expression, String)

XCTAssertTrue (expression)

XCTAssertFalse (expression)

DESCRIPTION

Generates a failure if the expression evaluates
to false. An optional string message may be pro-
vided to indicate failure.

Generates a failure when expression1 is not equal
to expression2 (or one object is nil and the other
is not).

Generates a failure when expression1 is equal to
expression2.

Generates a failure when expression1 is not equal
to expression2. This test is for primitive data

types.

Generates a failure when expression1 is equal to
expression2. This test is for primitive data types.

Generates a failure when the expression is not nil.
Generates a failure when the expression is nil.

Generates a failure when the expression evaluates
to false. Identical to XCTAssert().

Generates a failure when the expression evaluates
to true.

492 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

The following code snippet lists a unit test that will fail using the xCTAssertEqual macro:

func testNumbersAreEqual () {
let numberl = 10
let number2 = 20
XCTAssertEqual (numberl, number2, "numberl and number2 should be equal")

Figure 33-7 shows the Test Navigator with the failed unit test.

ene p A Swit...lator) g iPhone 6 SwiftCalculator | Build SwiftCalculator: Succeeded | Today at 21:47 Q1 = O < O8a M

Bz and =o @ B [E) swiftCalculator) [SwiftCalculatorTests » . SwiftCalculatorTests swift) [2] SwiftCalculatorTests <9>
¥ [T SwiftCalculatorTests 1 fallin "
/4 SwiftCalculatorTests.swift
v [SwiftCalculatorTests // SwiftCalculatorTests
] "
T (R © /f Created by Abhishek Mishra on 14/08/2015.
[0 testExample(©| // Copyright o 2815 Abhishek Mishra. ALl rights reserved.
I

import XCTest
@testable import SwiftCalculator

% class SwiftCalculatorTests: XCTestCase {

override func setup() {

super. setUp()

// Put setup code here. This method is called before the invocation of each test method in the class.
}

override func tearDown() {
// Put teardown code here. This method is called after the invacation of each test method in the class.
super.tearDown()

@ Func testNumbersAreEquall) {
let numberl = 18
let number2 = 28
@ XCTAssertEquallnumberl, number2, "numberl and number2 should be equal)
@ XCTA falled: (") I8 not equal to r) - NumBer! @nd number2 should oe equal
3

© func testExample() {
// This is an example of a functional test case.
// Use XCTAssert and related functions to verify your tests produce the correct results.

+

+[@ me 5

FIGURE 33-7

This test fails because the test expects number1 and number2 to have the same value. Fixing it is a
simple matter of setting number 2 to 10:

func testNumbersAreEqual () {
let numberl = 10
let number2 = 10
XCTAssertEqual (numberl, number2, "numberl and number2 should be equal")

This particular test method does not test any production code. It is only presented to serve as an
example of how assertions work. In a real-world scenario, the items being compared will be member
variables in classes from your production code base.

A more practical example of TDD techniques is presented in this lesson’s Try It, where you build a
simple calculator app using TDD techniques.

Trylt | 493

TRY IT

In this Try It, you build an iPhone application based on the Single View Application template called
SwiftCalculator that allows the user to perform simple arithmetic operations on a pair of num-
bers and display the result. You will approach this application with a TDD mindset, writing unit
tests and incrementally adding functionality.

Lesson Requirements

>

>

\/

Y Y VY

Launch Xcode.

Create a new iPhone project based on the Single View Application template with unit test
support.

Add two UTLabel and two UITextField instances to the scene with appropriate outlets in
the view controller file.

Add four UTButton instances to the scene and connect them to appropriate action methods
in the view controller class.

Create a class ArithmeticCalculator that performs arithmetic operations on two numbers.
Write unit tests for the ArithmeticCalculator class.
Connect the ArithmeticCalculator class to the action methods of the UIButton instances.

Display results in an alert.

REFERENCE The code for this Try It is available at www .wrox.com/go/

swiftios.

Hints

When creating a new project, you can use your website’s domain name as the Company
Identifier in the Project Options dialog box.

To include support for unit tests in your project, ensure the Include Unit Tests check box is
enabled in the project options dialog box.

To show the Test navigator, select View = Navigators &> Show Test Navigator.
To show the Object library, select View = Utilities = Show Object Library.

To show the assistant editor, select View = Assistant Editor = Show Assistant Editor.

http://www.wrox.com/go

494 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

Step-by-Step
> Create a Single View Application in Xcode called swiftcalculator.
1. Launch Xcode and create a new application by selecting File &> New = Project.
2. Select the Single View Application template from the list of iOS project templates.
3. In the project options screen use the following values:
> Product Name: SwiftCalculator
Organization Name: your company
Organization Identifier: com.yourcompany
Language: Swift
Devices: iPhone
Use Core Data: Unchecked
Include Unit Tests: Checked
> Include UI Tests: Unchecked

Y Y Y VY Y Y

4. Save the project onto your hard disk.
> Add user interface elements to your storyboard’s scene.

1. Use the Object library to add two UTLabel instances, two UITextField instances, and
four UTButton instances to the default scene. Name and position them to resemble

Figure 33-8.
]
=]
Number 1
Number 2
Add
Subtract
Multiply
o o o
=} Divide o
o o o
FIGURE 33-8

2. Create layout constraints for each of the elements on the storyboard scene using the
information in Table 33-2. When creating layout constraints using the pin constraints

Trylt | 495

dialog box, ensure the Constrain to margins option is unchecked and the Update
Frames combo box is set to None.

TABLE 33-2: Layout Constraints

ELEMENT LEFT TOP RIGHT WIDTH HEIGHT
Number 1 (Label) 20 20 92 21
Number 1 (Text field) 28 20 20 30
Number 2 (Label) 20 20 92 21
Number 2 (Text field) 28 14 20 30
Add (Button) 20 22 20 37
Subtract (Button) 20 15 20 37
Multiply (Button) 20 15 20 37
Divide (Button) 20 15 20 37

3. Select the view controller object and update frames by selecting Editor = Resolve Auto
Layout Issues = Update Frames.

4. Use the assistant editor to create outlets for each of the text fields in the view controller
class. Name the outlets numberFieldl and numberField2.

5. Use the assistant editor to create action methods in the view controller class. Name the
action methods onaAdd, onSubtract, onDivide, and onMultiply and connect these
methods to the buttons on the scene.

» Create Unit Tests and develop the ArithmeticCalculator class from the unit tests.

1. Add a new test class to the swiftcalculatorTests group called Arithmetic
CalculatorTests by selecting File > New = File. Use the Unit Test Case template
under the iOS = Source category.

2. Delete the contents of the ArithmeticCalculatorTests.swift file and replace it with
the following;:

import XCTest
class ArithmeticCalculatorTests: XCTestCase {

override func setUp()
super.setUp ()

}

override func tearDown() {

super.tearDown ()

496 |

LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

func testInitializerDoesNotReturnNilInstance() {
XCTAssertNotNil (ArithmeticCalculator ())

}

The preceding code snippet adds a new test method called testInitializerDoes-
NotReturnNilInstance. This test will fail if an ArithmeticCalculator instance
could not be instantiated.

3. Run the unit tests by selecting Product = Test and observe that the product fails to
compile. The specific error you will get in this case is “Use of undeclared identifier
'ArithmeticCalculator'” in the test case class (see Figure 33-9).

[] [] > Vel 1S SwiftCalculator | Build SwiftCalculator: Failed | Today at 18:47 o1 =@l E O
B2 a M & = o 3 [B|L B swiftCalculator |] Sw...tor } . ArithmeticCaleulatorTests swift | [testinitializerDoesNotReturnNilinstancef) |{ @ >
v |'g| SwiftCalculator ! . .
// ArithmeticCalculatorTests.swift
¥ [SwiftGaleulator /f Swift€alculator
i ’
| AppDiejogete seit /f Created by Abhishek Mishra on 17/88/2015.
| ViewController.swift // Copyright © 2815 Abhishek Mishra. All rights reserved.
.| ArithmeticCalculatorTests. swift 4
. Main.storyboard import XCTest

W Assetz ccassats > class ArithmeticCalculatorTests: XCTestCase {

LaunchScreen.storyboard

override func setUp() {
Info.plist super.setUp()
¥ || SwiftCalculatorTests '

| SwiftCalculatorTests. swift

Info.plist override func tearDown{) {
b || Products super.tearDown()
+
< func testInitializerDoesNotReturnNilInstance() {
o XCTAssertNil(ArithmeticCaleulator(}) O Use of identifier
k

+[@

FIGURE 33-9

This failure to compile can be thought of as an indication that you need to write
some code to rectify the situation and can be used as the starting point for imple-
menting TDD methods in this project.

4. 1In order to make this first test pass, create a new class called Arithmeticcalculator
by selecting File = New > File. Use the Swift File template under the iOS = Source
category. In the file location dialog box, ensure that the new class will be available to
both the swiftCalculator and SwiftCalculatorTests targets by ensuring that the
corresponding checkboxes beside these items are checked (see Figure 33-10).

5. Replace the contents of ArithmeticCalculator.swift with the following empty class
definition:

import Foundation

class ArithmeticCalculator: NSObject {

}

Trylt | 497

Choose a template fo
i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other
watchOS
Source
User Interface
Core Data
Resource
Other
08X
Source
User Interface
Core Data

o

Save As: ArithmeticCalculator.swift v
Tags: p
Where: | [SwiftCalculator
Playground
Group | [SwiftCalculator
Targes” & \ SwiftCalculator C
SwiftCalculatorTests
C File

Swift File
An empty Swift file.

Cancel

Previous

FIGURE 33-10

6. Run the unit tests by selecting Product = Test once again and observe that the product
compiles and all tests pass.

7. The Arithmeticcalculator class will end up containing the following methods, each
of which accepts two Doubles as input and returns a Double as output:

> addNumbers ()

> subtractNumbrs ()

> divideNumbers ()

> multiplyNumbers ()

The divideNumbers () method returns an optional that will be ni1 if the denomi-
nator is zero. With this design in mind, you need to work out some of the test cases
that could be used to test the behavior of these methods. In order to keep this Try
It focused, you will develop unit tests for the following test cases (see Table 33-3).
These test cases are by no means exhaustive but should give you a starting point to
create some of your own test cases.

TABLE 33-3: Test Cases
METHOD
addNumbers
addNumbers
subtractNumbers

multiplyNumbers

N1 N2
10 20
10 0

20 10
20 10

EXPECTED RESULT
30

10

10

200

continues

498 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

TABLE 33-3 (continued)

METHOD N1 N2 EXPECTED RESULT
multiplyNumbers -20 -10 20
divideNumbers 20 10 2
divideNumbers -20 -10 2
divideNumbers 20 0 nil

8. Add the following unit tests to the ArithmeticControllerTests.swift file:

func testAddNumbers PositiveN1 PositiveN2 ReturnsValidResult() {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = 10
let n2:Double = 20
let result:Double = calculator.addNumbers (firstNumber: nl,
secondNumber: n2)
XCTAssertEqual (result, nl + n2)

}

func testAddNumbers PositiveN1 ZeroN2 ReturnsNumberl ()
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = 10
let n2:Double = 0
let result:Double = calculator.addNumbers (firstNumber: nl
secondNumber: n2)
XCTAssertEqual (result, nl)

}

func testSubtractNumbers PositiveNl SmallerPositiveN2 ReturnsValidResult ()
{
let calculator:ArithmeticCalculator = ArithmeticCalculator()
let nl:Double 20
let n2:Double = 10
let result:Double = calculator.subtractNumbers (firstNumber: nl,
secondNumber: n2)
XCTAssertEqual (result, nl - n2)

}

func testMultiplyNumbers PositiveNl PositiveN2 ReturnsValidResult () {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double 20
let n2:Double = 10
let result:Double = calculator.multiplyNumbers (firstNumber: nl,
secondNumber: n2)
XCTAssertEqual (result, nl * n2)

}

func
testMultiplyNumbers NegativeeNl NegativeN2 ReturnsValidPositiveResult() {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = 20

Try lt | 499

10.

let n2:Double = 10

let result:Double = calculator.multiplyNumbers (firstNumber: nl,
secondNumber: n2)

XCTAssert (result >= 0)

func testDivideNumbers PositiveNl PositiveN2 ReturnsValidResult () {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = 20
let n2:Double = 10
let result:Double? = calculator.divideNumbers (numerator: nl,
denominator: n2)
XCTAssertEqual (result!, nl / n2)

}

func testDivideNumbers NegativeNl NegativeN2 ReturnsValidPositiveResult() {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = -20
let n2:Double = -10
let result:Double? = calculator.divideNumbers (numerator: nl,
denominator: n2)
XCTAssert (result! >= 0)

}

func testDivideNumbers PositiveNl ZeroN2 ReturnsNil() {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let nl:Double = 20
let n2:Double = 0
let result:Double? = calculator.divideNumbers (numerator: nl,
denominator: n2)
XCTAssertNil (result)

}

Run the unit tests by selecting Product &> Test once again and observe that, once again,
the product does not compile. This is because you have not implemented the add
Numbers, subtractNumbers, divideNumbers, and multiplyNumbers methods.

In order to ensure these new unit tests also pass, update the code in the
ArithmeticCalculator.swift file to resemble the following:

import Foundation
class ArithmeticCalculator: NSObject {

func addNumbers (firstNumber numberl:Double,
secondNumber number2:Double) -> Double({

return numberl + number2

}

func subtractNumbers (firstNumber numberl:Double,
secondNumber number2:Double) -> Double({

500 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

return numberl - number?2

}

func divideNumbers (numerator numberl:Double,
denominator number2:Double) -> Double? {

if number2 == 0 {
return nil
}

return numberl / number2

}

func multiplyNumbers (firstNumber numberl:Double,
secondNumber number2:Double) -> Double{

return numberl * number2

}

11. Run the unit tests by selecting Product = Test once again and observe that the product
compiles and all tests pass.

> Integrate the ArithmeticCalculator class into the viewController class
1. Implement the onadd action method in the ViewController.swift file as follows:

@IBAction func onAdd(sender: AnyObject) {

numberFieldl.resignFirstResponder ()
numberField2.resignFirstResponder ()

let numberl:String? = numberFieldl.text
let number2:String? = numberField2.text

if let nl = numberl, n2 = number2 {
if nl.isEmpty || n2.isEmpty {
return
}
let firstNumber:Double? =

NSNumberFormatter () .numberFromString(nl) ?.doubleValue

let secondNumber:Double? =
NSNumberFormatter () .numberFromString (n2) ?.doubleValue

if let fN = firstNumber, sN = secondNumber {
let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let result:Double = calculator.addNumbers (firstNumber: £N,
secondNumber: sN)
let alert = UIAlertController(title: "',
message: "\ (fN) + \(sN) = \(result)",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",

Try It | 501

style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert, animated: true,
completion: nil)

}
}

2. Implement the onsubtract action method in the ViewController.swift file as
follows:

@IBAction func onSubtract (sender: AnyObject) {

numberFieldl.resignFirstResponder ()
numberField2.resignFirstResponder ()

let numberl:String? = numberFieldl.text
let number2:String? = numberField2.text

if let nl = numberl, n2 = number2 {
if nl.isEmpty || n2.isEmpty {
return
}
let firstNumber:Double? =

NSNumberFormatter () .numberFromString (nl)?.doubleValue

let secondNumber:Double? =
NSNumberFormatter () .numberFromString (n2)?.doubleValue

if let fN = firstNumber, sN = secondNumber {

let calculator:ArithmeticCalculator = ArithmeticCalculator ()

let result:Double = calculator.subtractNumbers (firstNumber: £N,
secondNumber: sN)

let alert = UIAlertController(title: "",
message: "\ (fN) - \(sN) = \(result)",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default, handler: nil))

self.presentViewController (alert, animated: true,
completion: nil)

}

}

3. Implement the onbivide action method in the ViewController.swift file as follows:

@IBAction func onDivide (sender: AnyObject) {

numberFieldl.resignFirstResponder ()

502 | LESSON 33 INTRODUCTION TO TEST DRIVEN DEVELOPMENT

numberField2.resignFirstResponder ()

let numberl:String? = numberFieldl.text
let number2:String? = numberField2.text

if let nl = numberl, n2 = number2 {

if nl.isEmpty || n2.isEmpty {
return
}

let firstNumber:Double? =
NSNumberFormatter () .numberFromString(nl) ?.doubleValue

let secondNumber:Double? =
NSNumberFormatter () .numberFromString(n2) ?.doubleValue

if let fN = firstNumber, sN = secondNumber {

let calculator:ArithmeticCalculator = ArithmeticCalculator ()
let result:Double! = calculator.divideNumbers (numerator: £N,
denominator: sN)

if result == nil {

let alert = UIAlertController(title: "Error",
message: "Division by Zero",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default, handler: nil))

self.presentViewController (alert, animated: true,
completion: nil)

}

else

{

let alert = UIAlertController(title: "",
message: "\ (fN) / \(sN) = \(result!)",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",
style: UIAlertActionStyle.Default, handler: nil))

self.presentViewController (alert, animated: true,
completion: nil)

}

}

4. TImplement the onMultiply action method in the ViewController.swift file as
follows:

@IBAction func onMultiply (sender: AnyObject)

numberFieldl.resignFirstResponder ()

Trylt | 503

numberField2.resignFirstResponder ()

let numberl:String? = numberFieldl.text
let number2:String? = numberField2.text

if let nl = numberl, n2 = number2 {

if nl.isEmpty || n2.isEmpty {
return
}

let firstNumber:Double? =
NSNumberFormatter () .numberFromString(nl)?.doubleValue

let secondNumber:Double? =
NSNumberFormatter () .numberFromString(n2)?.doubleValue

if let fN = firstNumber, sN = secondNumber {

let calculator:ArithmeticCalculator = ArithmeticCalculator ()

let result:Double = calculator.multiplyNumbers (firstNumber: f£N,
secondNumber: sN)

let alert = UIAlertController(title: "",
message: "\ (fN) * \(sN) = \(result)",
preferredStyle: UIAlertControllerStyle.Alert)

alert.addAction (UIAlertAction(title: "Ok",

style: UIAlertActionStyle.Default,
handler: nil))

self.presentViewController (alert, animated: true, completion: nil)

}

}

Test your app in the iOS Simulator. Click the Run button in the Xcode toolbar. Alternatively,
you can select Project &> Run.

REFERENCE To see some of the examples from this lesson, watch the Lesson 33
video online at www.wrox.com/go/swiftiosvid.

http://www.wrox.com/go/swiftiosv

SECTION V
Reference

» APPENDIX A: Testing Your App on a Device
» APPENDIX B: Beta Testing with TestFlight

» APPENDIX C: App Store Distribution

Testing Your App on a Device

The iOS Simulator is a handy tool for testing your application as you are developing it.
However, it is no substitute for testing on an actual device. Certain features, such as the accel-
erometer and camera, cannot be tested on the simulator at all.

Testing your application on your device is slightly different from giving it to a small number of
users for beta testing. When it is your own device, you can physically connect it to your Mac
and use Xcode to test/debug your app while it executes on the device. Distributing your app

to a few users for beta testing is achieved through TestFlight, a process covered in detail in
Appendix B.

Before you can test your app on a device, you need to prepare the device for testing and config-
ure a few options in Xcode. The process itself can seem quite complicated at first. This appen-
dix goes through the various steps required to test your apps on a device with Xcode.

OBTAINING AND REGISTERING UDIDS

Each iOS device has a unique 40-digit identifier, commonly referred to as the device UDID.
Before you can test your app on a device with Xcode, you will need to register the UDID of
that device with the iOS Provisioning Portal. You can obtain this UDID through the Xcode
Device Manager.

To obtain the UDID for a device, simply connect it to your Mac and access the Devices
Manager by selecting Window ©> Devices. Click the device in the list on the left-hand side and
note the value of the Identifier field (see Figure A-1).

508 | APPENDIXA TESTING YOUR APP ON A DEVICE

ede
Device Information
DEVICES
My Mac . Name Abhishek's iPhone | EEE
i, Model iPhone 6 Plus |
© Capacity 113.93 GB (111.31 GB avallable)
— Bal 88%
SIMULATORS oS 9.0 (13A344)
R Identifier 579725 12e9766{5620B5670b19c97e8526510323
IPad Alr \ 4 }
“ 9.0 (13A340) View Device Logs Take Screenshot —
FIGURE A-1

To register a device for development, simply click the Use for Development button in the

Devices Manager window. You will be asked to provide the Apple ID and password you used to
register as an iOS developer. If the device has already been set up for development, then the Use for
Development button will not be visible.

You can also register UDIDs manually. To do this, you must log in to your iOS developer account at
https://developer.apple.com/ios. Click the Member Center link on the top-right corner of the
page to navigate to the member center. Within the member center, click the Certificates, Identifiers
& Profiles link (see Figure A-2).

one < [in] & Apple Inc o h il & &
@ Developer Member Center
] Programs & Add-ons Your Account

Hi, Abhishek Mishra | Slgn out

SDKs Forums
Download the SDKs and the latest beta software 1 Find answers and discuss with other developers

and Apple e

- ertificates, ldentifiers & Profile
/ our certificates, identifiers, devices, and BuQ REprting

IF YOur apps Submit bugs or request enhancements to APIs and
developer tools
~— iTunes Connect
| your apps published on the App Store and Technical Support
viac App store est technical support with the devel

Copyriaht © 2015 Apple Inc Allights reserved, Tarms of s | Frvacy folicy

FIGURE A-2

https://developer.apple.com/ios

Obtaining and Registering UDIDs | 509

Next, click the Devices link in the iOS Apps category on the left-hand side of the page

(see Figure A-3).

ene < m

@ Developer

ii iOS Apps

ﬁ Certificates

Certificates, Identifiers & Profiles

Technalogies Resources Programs

- Mac Apps

a Certificates

Suppart Member Center

Abhishek Mishra =

[% 1
L - .
wd Safari Extensions

ﬂ' Certificates

i Identifiers i Identifiers Learn More
T 1 Safari Extensions Development Gui
| Devices . ﬂ.a xtension . o uide
Safarl Extensions Reference
ﬂ Provisioning Profiles E Provisioning Profiles
Learn More Learn More
* App Distribution Guide 1 App Distribution Guide
FIGURE A-3

The Devices screen shows you a list of devices registered to your account. You can register up to 100
devices of each type a year (note that deleting a device does not count toward this limit). There are

five device types:

> iPhone

> iPad

> iPod Touch
> Apple Watch
> Apple TV

To add a device to your account, click the Add button located above the list of devices and fill in
the UDID of the device along with a name with which you would like to refer to the device (see

Figure A-4). Click Continue to add the UDID to the device list. This list can be reset once a year,
when you renew your paid membership.

510 | APPENDIXA TESTING YOUR APP ON A DEVICE

AR

& Apple Inc v U @

F

Certificates, Identifiers & Profiles

Abhishek Mishra =

105 Apps

W Certificates
= Al
® Pending
© Development

“ Production

iOS Devices

| Name Identifier

Abby's iPhones 8b6cb8423a58ad28c54000fa36f16337d58cdelb

Abby's iPad mini retina 7 fGad492 3¢ 16089367/ 1af

Abbys iPad2 16GE e6aBd79313fdf29770396463aalea2 5d%

& Apple Inc. (v

oAl
® Pending
= Development

@ Production

B Identifiers
= App IDs
© Pass Type IDs
“ Website Push IDs
@ iCloud Containers
= App Groups

» Merchant iDs

[Devices
- Al
= Apple TV
= Apple Watch
» iPad
® iPhone

= iPod Touch

| Provisioning Profiles
" Al
= Development

« Distribution

- Registering a New Device or Multipl¢ Devices

Pre-Release Software Reminder

You may only share Apple pre-release software with employees,
who are regi d as Apple developers and have

software to develop and test applications on your behalf.

ntractors, and members of your
d ble need to know ar use Apple

Unauthorized distribution of Apple confid (including p | i is prohibited and
may result in the termination of your Apple Developer Progiram. It may also subject you to civil and criminal

liahility.

qame your device and enter its Unique Device Identifier (UDID).

Name:

Register Multiple Devices
Upload a file containing the devices you wis to register. Please note that a maximum of
100 devices can be included in your file and X may take a few minutes to process.

Download sample files

Choose File-.

FIGURE A-4

Creating an App ID (Bundle Identifier) | 511

CREATING AN APP ID (BUNDLE IDENTIFIER)

The next step involves creating and registering a unique identifier for your app; this is known as
the App ID (or Bundle ID). In addition to uniquely identifying your application, an App ID allows
your application to receive remote notifications, communicate with external accessories, or share
keychain data with other applications in a suite, and use iCloud services.

An App ID consists of an organization identifier and an application identifier (see Figure A-5). When
you create a new project in Xcode, you are asked to provide an organization identifier, and the

App ID is generated for you by appending the name of the project to the organization identifier. To
distribute the application through the App Store, the identifier used to create the Xcode project must
be registered with your iOS developer account. You can always change the Bundle Identifier for an
existing application by editing the Bundle Identifier key in the project’s info.plist file.

® & > TestOnDevice | Convert TestOnDevice: Succeeded | Today at 14:43 1 = @ & »
B 2 a & © = o B8 |8B|<L & TestOnDevice TestOnDevice Info.plist } No Selection
v [& TestOnDevice Key Type Value
v TestOnDevice ¥ Information Property List Dictionary (14 items)
s AppDelegate.swift Localization native development re... & en :
« ViewController.swift Executable file x ! S(EXECUTABLE_NAME)
Mainstorytoard Bundle ‘0@ St ~ S(PRODUCT_BUNDLE IDENTIFIER) |
B Asacisicessats InfaDictionary version 4 String 6.0
Bundle name * String S(PRODUCT_NAME)
LaunchScreen.storyboard =
info.plist Bundle 05 Tyne cm_!a & String APPL
Bundle versions string, short + String 1.0
» [Products Bundle creator 05 Type code 4 String nn
Bundle version & 1
Application requires iPhone enviro... 4 YES <
Launch screen interface file base.. 2 LaunchScreen
Main staryboard file base name A Main
¥ Required device capabilities -]
» Supported interface orientations 4 tems)
® OR
FIGURE A-5

To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios. Click the Member Center link in the top-right corner of the page to navigate to
the member center. Within the member center, click the Certificates, Identifiers & Profiles link, and
then in the Identifiers section under the iOS Apps category click on the link to App IDs.

To create a new App ID, click the New App ID button on the top-right side (see Figure A-6).

Provide a descriptive name for the new App ID in the Name field and select Team ID in the App

ID prefix drop-down. Select the Explicit App ID radio button under the App ID suffix section and
provide a unique identifier in the Bundle ID field that ends in the name of the Xcode project you are
going to create (or have created).

Typically, you create this identifier by combining the reverse-domain name of your website and the
name of your Xcode project. For example, if your company identifier is com.acmecorp and your
Xcode project is called cloudkitphotos, then the bundle identifier specified should resemble com
.acmecorp.cloudkitphotos. Your browser window should resemble Figure A-7.

https://developer
https://developer.apple.com/ios

512 | APPENDIXA TESTING YOUR APP ON A DEVICE

oe® < (in}

& Apple Inc. & (4]

[3 Developer

& Certificates
o Al
@ Pending

= Development

Technologies Resources Programs Support Member Center h Developer
Certificates, Identifiers & Profiles Abhishek Mishra =
10 Apps i0S App IDs

Name = D

ARTanks uk.co.asmtechnology.artanks

@ Development

» Production

B Identifiers
~ App IDs
© Pass Type |Ds
= Website Push IDs
@ iCloud Containers
“ App Groups

= Merchant IDs

[Devices
= Al
= Apple TV
= Apple Watch
= iPad
= iPhone

» iPod Touch

|| Provisioning Profiles
= Al
= Development

« Distribution

a Registering an App ID

The App ID string contains two parts separated by a period (.})—an App ID Prefix that is defined
as your Team |D by default and an App ID Suffix that is defined as a Bundle ID search string.
Each part of an App 1D has different and important uses for your app. Learn More

App ID Description

Name: A new app id
You cannot use special characters such as @, &, *, ", "

App ID Prefix

Value: RS3MVEMVHS (Team D) [

App ID Suffix

© Explicit App ID

If you plan to incorporate app services such as Game Center, In-App Purchase, Data
Pratection, and iCloud, or want a provisioning profile unigue to a single app, you must
register an explicit App ID for your app.

To create an explicit App 1D, enter a unigue string in the Bundle 1D field. This string
should match the Bundle 1D of your app.

Bundle ID: com acmecarp.cloudkitphotas]

We recommend using a reverse-domain name style string fi.e.,
com.domainname.appnamel. It cannot contaln an asterisk (*)

AlienFire uk.co.asmtechnology.alienfire

@ Production
BritishGas Mobile Energy clients_britishgas.me

0 identifiers CloudkitPhotos AppiD conwilavhonk clondiired

© App IDs

DIYOfficeLunch uk.co.asmtechnology.divofficelunch
FIGURE A-6
aee < > @ = & Apple Inc. v}] [=] i
s B R
A —
= Pending

FIGURE A-7

Creating a Development Certificate | 513

If you do not mind your apps sharing data between them, you can use an asterisk instead of the
application name, thus creating a string of the form com.domainname. *.

Such an App ID is called a wildcard App 1D and can be used repeatedly across multiple applications.
If you want to create a wildcard App ID, simply select the relevant radio button on the page (see
Figure A-8).

e, - e 8 Annksiing =
Provisioning Profiles App ID Suffix
All
Development Explicit App ID
Distribution If you plan to incorporate app services such as Game Center, In-App Purchase, Data

Protection, and iCloud, or want a provisioning profile unigue to a single app, you must
register an explicit App 1D for your app.

To create an explicit App ID, enter a unique string in the Bundle ID field. This string
should match the Bundle ID of your app.

© wildcard App ID
This allows you to use a single App ID to match multiple apps. To create a wildcard App
ID, enter an asterisk (*) as the last digit in the Bundle |D field.

Bundle ID: com.acmesamn’]

Example: com.domainname.

FIGURE A-8

The downside of wildcard App IDs is that certain features such as Remote Push Notifications and
iCloud support are not available.

Click the Continue button to proceed. You will be presented with a summary of the App ID infor-
mation. Click on Submit to finish creating the App ID.

CREATING A DEVELOPMENT CERTIFICATE

The next step is to create and install a development certificate. Creating a development certifi-
cate involves creating an appropriate certificate request and submitting this request to the iOS
Provisioning Portal. Once the certificate is ready, you will be able to download and install it on
your Mac.

To create a certificate request, launch the Keychain Access utility from the Applications folder
on your Mac. When the Keychain Access utility is running, choose Keychain Access = Certificate
Assistant = Request a Certificate from a Certificate Authority.

514 | APPENDIX A TESTING YOUR APP ON A DEVICE

In the Certificate Assistant dialog box (see Figure A-9), specify the e-mail address and account name
used to access the iOS Developer Program, and ensure the Saved to Disk radio button is selected.
Click the Continue button to save the certificate request as a file on your Mac.

® Cartificate Assistant
Certificate Information

Enter infarmation for the certificate you are requesting. Click

Cantinue to request a certificate from the CA,

User Email Address: apples@fruits.com ﬂ
Common Name: Abhishek Mishra

CA Emall Address:

maved to the CA
D saved to disk

Reguest is:

Continuea

FIGURE A-9

To create a development certificate from your certificate request file, log in to your iOS developer
account at https://developer.apple.com/ios. Click the Member Center link on the top-
right corner of the page to navigate to the member center. Within the member center, click the
Certificates, Identifiers & Profiles link, and then under the iOS Apps category, look under

the Certificates category and click on All.

To create a new development certificate, click the Add button (+) on the top-right side (see
Figure A-10).

Certificates, Identifiers & Profiles Abhishek Mishra ~
i0S Apps - i0S Certificates + | Q
¥ Certificates 9 Certificates Total
Al Name Type Expires
Pending Abhishek Mishra i0S Development Jan 21, 2016
|]
DevRionment uk.co.asmtechnology.Gallery3D APNs Development i0S Dec 14, 2015
Production
uk.co.asmtechnology.Gallery3D APNs Production i05 Dec 14, 2015

FIGURE A-10

You will now be asked to choose the type of certificate you want to create. Select iOS App
Development from the list of options (see Figure A-11), scroll down to the bottom of the page, and
click Continue.

https://developer.apple.com/ios

Creating a Development Certificate | 515

ece < PRI ¢ > 1.0

= - = |+
i0S Apps - Add iOS Certificate qQ
¥ Certificates Select Type Request Geperate . Download
All
Pending Bl

What type of certificate do you need?

Development

Production

o Identifiers
App IDs Development
Pass Type 10
© i0S App Development

Waksite: Push. Dy Sign development versions of your i05 app.

iCloud Containers

Apple Push Notification service 55L (Sandbox)

App Groups
Establish connectivity between your notification server and the Apple Push Notification service
Merchant 1Ds sandbox environment, A separate certificate is required for each app you develop.
_| Devices
All
Apple TV Production
Apple Watch
App Store and Ad Hoc
P
ac Sign your i05 app for submission to the App Store or for Ad Hoc distribution.
iPhone
\Pod Touch Apple Push Notification service S5L (Production)
Establish connectivity between your notification server and the Apple Push Notification service
Provisioning Profiles production environment. A separate certificate is required for each app you distribute.
All Pass Type ID Certificate
Development Sign and send updates to passes in Wallet.
FIGURE A-11

The next screen contains some general information on what a certificate request file is and how to
create one (see Figure A-12). Because you have already created one, scroll to the bottom of the page
and click Continue.

In the next screen, use the Choose File button to select the certificate request file that you saved on
your Mac and then click the Generate button to create the development certificate (see Figure A-13).

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certificate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to first
approve the certificate request. When your certificate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certificate and save it to your Mac; by default, the certificate should be saved to your
Downloads folder.

If you haven’t done so already, download the Worldwide Developer Relations Certificate from the
Apple PKI authority page (see Figure A-14). This page is located at https: //www.apple.com/
certificateauthority/.

https://www.apple.com
https://www.apple.com/certificateauthority/

516 | APPENDIXA TESTING YOUR APP ON A DEVICE

[

Certificates
oAl
 Pending

" Development

» Production

Identifiers

» App IDs

» Pass Type IDs

© Website Push 1D
® ICloud Containers
© App Groups

» Merchant IDs

| About Creating a Certificate Signing Request (CSR)

To manually generate a Certificate, you need a Certificate Signing Request (C5R) file from your
Mac. To create a CSR file, follow the instructions below to create one using Keychain Access.

Create a CSR file.
In the Applications folder on your Mac, open the Utilities folder and launch Keychain Access.

Within the Keychain Access drop down menu, select Keychain Access > Certificate Assistant >
Request a Certificate from a Certificate Authority,

[Devices # In the Certificate Information window, enter the following information:
- In the User Email Address field, enter your email address.
Al = In the Common Name field, create a name for your private key (e.g., John Doe Dev Key).
© Apple TV - The CA Email Address field should be left empty.
- In the "Request is" group, select the “Saved to disk” option.
» Apple Watch 5 i i S .
Click Continue within Keychain Access to complete the CSR generating process,
& iPad
" iPhone
@ |Pod Touch
.| Provisioning Profiles
w Al
' Development
= Distribution ! Lancel Back
FIGURE A-12
' Certificates Select Type Request
- Al
@ Pending)
Generate your certificate.
o Development
® Production
| Identifiers
= AppIDs ‘When your CSR file is created, a public and private key pair is automatically generated. Your
private key Is stored on your computer. On a Mac, It is stored In the login Keychain by default
8-Fesr Type 10 and can be viewed in the Keychain Access app under the "Keys” category. Your requested
= Website Push IDs certificate is the public half of your key pair.
@ iCloud Containers
o App Groups Upload CSR fite:
= Merchant IDs ectcertSigningRequest file saved on your Mac.
[l Devices
- Choose File.. |
= Apple TV
o Apple Watch
o iPad
iPhone
iPod Touch
| Provisioning Profiles
u Al
© Development -
© Distribution G fack

FIGURE A-13

Creating a Development Certificate | 517

This certificate is also available to download at the bottom of the Create Certificate page, where you
select the type of certificate to generate (Figure A-15).

FIGURE A-14

e < M & Apple Inc @ (+] th 7 .

Provisioning Profiles production environment. A separate certificate is required for each app you distribute,

Al Pass Type ID Certificate
Development Sign and send updates to passes in Wallet.
Distribution

Website Push ID Certificate
Sign and send updates for Websites.

WatchKit Services Certificate
Establish connectivity between your server and the WatchKit service. A separate certificate is
requried for each WatchKit app you distribute,

VolP Services Certificate
Establish connectivity between your server and the VolP service. A separate certificate is
requried for each VolP app you distribute.

Apple Pay Certificate
Decrypt app transaction data sent by Apple to a merchant/developer.

To use your certificates, you must have the intermediate signing certificate in your syste
keychain. This is automatically installed by Xcode. However, if you need to reinstall the
intermediate signing certificate click the link below:

tddwide Developer Relations Certificate Authority

Cancel

Copyright © 2015 Apple Inc. All rights reserved. Terms of Use Privacy Policy

FIGURE A-15

518 | APPENDIXA TESTING YOUR APP ON A DEVICE

CREATING A PROVISIONING PROFILE

After having registered your device UDID, App ID, and creating a development certificate, you

will need to create a development provisioning profile. A provisioning profile groups an App ID, a
certificate, and device UDIDs into a single entity. The certificate in question would be the develop-
ment certificate you just generated in the previous section, and the device-specific information would
be a list of UDIDs on which you want to debug your application.

To create a development provisioning profile, log in to your iOS developer account at https://
developer.apple.com/ios. Click the Member Center link on the top-right corner of the page
to navigate to the member center. Within the member center, click the Certificates, Identifiers &
Profiles link, and then under the iOS Apps category, find Provisioning Profiles and click All.

Click the New Profile button on the top-right side (see Figure A-16).

Certificates, ldentifiers & Profiles

PrRT——
W05 Apps - ¥0S Provisioning Profiles @ v 0

FIGURE A-16

You will be asked to choose between a development or a distribution provisioning profile. A distri-
bution provisioning profile is used to submit applications to iTunes Connect. For the moment, select
the iOS App Development option and click Continue (see Figure A-17).

As mentioned earlier in this section, a development provisioning profile connects three pieces of
information:

> Asingle App ID
> One or more public keys
> Alist of test device IDs

The next step requires you to select an App ID that will be associated with this provisioning profile.
Select an App ID from the list of available identifiers (see Figure A-18) and click Continue.

https://developer.apple.com/ios
https://developer.apple.com/ios

Creating a Provisioning Profile | 519

Select one or more development certificates that will be included in the profile. You must make sure
to sign the app in Xcode using one of the certificates you select here. Select a suitable certificate and
click Continue (see Figure A-19).

oene < im] & Apple Inc ¢ th 7 B
‘ DEVEIOPEI' Technologies Resources Programs Support Membear Center Q
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps = Add iOS Provisioning Profile =3 =
; Select Ty C > . Download
All
Pending @‘ L .
Devlopment o What type of provisioning profile do you need?
Production
1 Identifiers
App IDs Development

Pass Type IDs
© 05 App Development

Website Push (Ds Create a provisioning profile to install development apps on test devices.

iCloud Containers

App Groups
Merchant IDs Z 2 -

Distribution

[l Devices
AII App Store
Create a distribution provisioning profile to submit your app to the App Store.
Apple TV
Apple Watch Ad Hoc
A Create a distribution provisioning profile to install your app on a limited number of registered

s devices.
iPhone
iPod Touch

| Provisioning Profiles
All

Development

oisrbution cnce

FIGURE A-17

520 | APPENDIXA TESTING YOUR APP ON A DEVICE

o0 e < | & Apple Inc (1] i) +
‘ Developer Technologies Resources Programs Support Member Center €1, Search Developer
Certificates, Identifiers & Profiles Abhishek Mishra *
i0S Apps = Add i0S Provisioning Profile 7] [a
All }
1
Pending @'
et o Select App ID.
Production
B Identifiers
App IDs If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,

or want a Bundle ID unigue to a single app, use an explicit App ID. If you want to create one
provisioning profile for multiple apps or don't need a specific Bundle ID, select a wildcard
Website Push IDs App ID. Wildcard App IDs use an asterisk (*} as the |ast digit in the Bundle ID field. Please
note that iOS App IDs and Mac App IDs cannot be used interchangeably.

Pass Type IDs

iCloud Containers
App Groups

Merchant I0s App ID: | CloudKitPhotos ApplD (RE3MY2MVHS.com.wileybook.cloudkitphotos) B

[l Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

| 1 Provisioning Profiles
All

Development

Distribution Cancel Back m

FIGURE A-18

Next, you must select one or more devices that will be included in this provisioning profile. The
corresponding identifiers for these devices must be registered with your development account. Your
app will only be testable on these devices (see Figure A-20).

Creating a Provisioning Profile | 521

iCloud Containers
App Groups

Merchant IDs

[l Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

| 1 Provisioning Profiles
All
Development

Distribution

o0 e < im] & Apple Inc & th o) +
‘ DevelOper Technologies Resources Programs Support Member Center Q) Search Developer
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps Add i0S Provisioning Profile #|[a
All .
1
Pending @' .
Select certificates.
Development PROV
Production
B Identifiers
App IDs Select the certificates you wish to include in this provisioning profile. To use this profile to
install an app, the certificate the app was signed with must be included.
Pass Type IDs
Website Push IDs @ Select All 1 of 1 itemis) selected

& Abhishek Mishra (i05 Development)

FIGURE A-19

The final step involves providing a suitable name for the profile and clicking the Generate button.
When the profile is created, you will be provided an option to download it onto your computer. (see

Figure A-21).

522 | APPENDIXA TESTING YOUR APP ON A DEVICE

eone < il & Apple Inc & i (ul
L I+
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps T Add i0S Provisioning Profile =|[a

+ Certificates Select Type Configure qu_gra_}e_ / _D__l:gwaq__ad

Al -

!
Pending @‘ .
Select devices.

Development ROV

Production
1B, Identifiers

App IDs Select the devices you wish to include in this provisioning profile. To install an app signed with

this profile on a device, the device must be included.
Pass Type |Ds
Website Push IDs @ Select All 11 of 11 itemis) selected

iCloud Containers
Abby's iPad mini retina
App Groups

<]

Merchant IDs Abby's iPhones

Abbys iPad2 16GE

[l Devices
0 E Abbys iPhone 6 Plus
Apple TV B Abhishek's iPhone
Apple Watch Kent Humphries's iPhone
Pad
t B Sameer's iPhone 45
iPhone
@ Sameer's iPhone 6+
iPod Touch
Sonam's (Pad Mini retina
1 Provisioning Profiles
@ Sonam's iPhone 45
All
Development
Distribution
FIGURE A-20

If you were to now click the All link under the Provisioning section of the left-hand side menu, you
should see an entry for the new profile in the list of available profiles. You can also download a
provisioning profile from this list.

Once the profile has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Configuring Your Project | 523

e0e < m # Appie Inc)] =
‘ Developer Technologies Resources Programs Support Member Center Q se
Certificates, Identifiers & Profiles Abhishek Mishra =
i05 Apps = Add iOS Provisioning Profile 73 -1
¥ Certificates Select Type Configure Generate D_n_wni_gad
All
Pending @
Name this profile and generate.
Developmeant PROV
Production
o identifiers
App 1Ds The name you provide will be used to identify the profile in the portal.
Pass Type IDs

Profile Name: CloudkitPhotos Dev Profile|

Website Push IDs
Type: i0S Development
iCloud Containers

App ID: CloudKitPhotos ApplD

App Groups
(R53IMVZMVHS.com.wileybook.cloudkitphotos)

Merchant 1Ds
Certificates: 1 Included

L Devices .
Devices: 11 Included

All

Apple TV

Apple Watch

iPad

iPhone

iPod Touch

Provisioning Profiles
All

Development

Distribution Cancel Back m

FIGURE A-21

CONFIGURING YOUR PROJECT

The final step in the process involves setting up your Xcode project and preparing an appropriate
build. Before you begin, make sure you have installed both your development certificate and devel-
opment provisioning profile.

524 | APPENDIXA TESTING YOUR APP ON A DEVICE

Open the project that you want to test on a device. If the project’s App ID is different from what has
been registered with the iOS Provisioning Portal, edit the value of the Bundle identifier key in the
project’s info.plist file to match.

Save the info.plist file if you have edited it, and then connect one of the provisioned iOS devices
to your Mac and ensure that the Scheme/Target selector in the Xcode toolbar is set to build for an
iOS device (see Figure A-22).

o-e » =

i Te.d : Abhishek's IPhone nDevice | Convert TestOnDevice: Succeeded | Today at 14:43
]

B R a4 & © E o t tOnDevice
- | W iPad 2 '
¥ & TestOnDevice | B8 iPad Alr capabilities Resource Tags Info Build Settings Build Phases Build Rules
¥ [TestOnDevice I
iPad Air 2
s AppDelegate swift w ¥ Identity
8 Pad Retina '
ViewController.swift
8 iPhone 4s
Main.storyboard &8 iPhone 5 Bundle identifier com logy.TestOnDevice
iPhone
5 Assets. 1t
- i 8 iPhone 55 i Version 1.0
LaunchScreen.storyboard o8 IPhana &
one .
Info.plist I Build 1
e L 8 Phone 6 Plus
FIGURE A-22

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

Scroll down to the Code Signing section and locate the node labeled Provisioning Profile. You
may need to expand this node to see the values for individual build configurations (such as debug,
release). Select the provisioning profile you created earlier from the list of profiles for the debug

configuration (see Figure A-23).

B a A B B B & TestOnDavice
v & TestOnDevic [} Ganeral Capabilities Resource Tags Infa Build Settings Build Phases Build Rules
¥ [TestOnDevice e _ = =
« AppDelogato.swift & : sasic [Levels |+ Q-
= ViewCantrolier.swift B TeetOnDevioe
 Code Signing
Main.storyboard TARGETS e o
W Assets.xcassets A TestOnDevica p— '
Code Signing Entitlements
LaunchScreen.storyhoard i algpiog ik Tpo
ot PR Debug Automatic &
» I Products Any 05 SDK 3 iPhane Developer
Release Nean't Coadde Sinn ~
Any i0S SDK 5 Automatic
Code Signing Resouree Rules Path 105 Team BT e
Dther Codie Signing Frags ClougKitPhotos Dey Profile
¥ Provisioning Profile 05 Team Provisioning Profile: com.wilaybook. swiftcloudtast
Debug € ¢ Swilt iCioud Test Dev Profils
Relaase Generic Cllent Projact TestFilght
Ecokids Develapment
Generic Client Project Dev
¥ Doploymant Gallery3D Development profile
Setting GallerydD PhotoOITheDay widget
Additianal Strip Fiags Davelopmant Provisioning Profile
Alternate Install Group GO
Tring Devalopment Prafile
JMerTALS FinE Cime. WS2014RresentationProfile
Atternate Install Permissions Tringinta davelopmant profibe
Anternate Permissions Files wildcard Dev profile
Depioyment Location ElectionDayDev
Deployment Postprocessing
; Other...
Instadl Group
Install Owner abhishekmishra
Instatl Permissions usiwgo-w,a s
Instadlation Build Products Locatian ftmp|TestOnDevice.dst
Instadlation Directory JApplications
03 X Deployment Target]
) DEl+ — (@ Resaurces Targeted Device Family
FRR PO

FIGURE A-23

Configuring Your Project | 525

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Debug,
and then expand the Debug node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the development certificate you created and installed earlier (see Figure A-24).

g8 2 TestOnDevice
D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT Basic Levels + a-
& TestOnDevice
TARGETS ¥ Cods Skivog
Setting o TestOnDevice
,b(TestOnDevice
Code Signing Entitlements A =
¥ Code Signing Identity Hiomabe
Debug wif § Te
Any 105 SDK + [Phone Developer: Abhishek Mishra (EPEBFEH2ZMD)
Release
Any 10S SOK & DAIGE

Code Signing Resource Rules Path
Other Code Signing Flags
¥ Provisioning Profile
Debug
Release

<Multiple values> &

Swift iCloud Test Dev Profile &
Automatic

FIGURE A-24

Your Xcode project is now ready to be tested on an iOS device. Simply click the Run button on the
Xcode toolbar to begin.

Beta Testing with TestFlight

As an i0S application developer, there will be times when you need to try out your app on
multiple test devices before submitting it to Apple for the App Store approval process.

If the number of test devices are few and you are the only person doing all the testing, then
you can always set up the devices for development and use Xcode to debug applications on the
devices.

However, in most cases, you will have a team of beta testers and product owners, each with
their own devices. Connecting each team member’s device to your Mac one by one and
deploying debug builds with Xcode is simply not feasible anymore. Add to this the fact that
you will need to repeat the entire deployment process every time a bug is fixed and your app
needs retesting.

TestFlight is a service provided by Apple that acts as a central build deployment solution where
you upload the new build, and all interested parties are sent notifications to download the new
build onto their devices. TestFlight is available to apps that target iOS8 or later.

PREPARING A DISTRIBUTION BUILD FOR TESTFLIGHT

To distribute your app to testers, you will first need to prepare a suitable build and upload it to
iTunes Connect using Xcode. In order to prepare the build, you will need the following:

> An App ID that is registered with your iOS developer account
> A distribution certificate installed on your Mac

> A distribution provisioning profile installed on your Mac

> An iTunes Connect record for the application
>

An appropriately configured Xcode project

528 | APPENDIXB BETA TESTING WITH TESTFLIGHT

Creating an App ID

An App ID is a unique identifier that is used internally by Apple to identify your app in the App
store. The process of creating an App ID (also known as a Bundle ID) is covered in Appendix A.

Creating a Distribution Certificate

Creating a distribution certificate is similar to creating a development certificate and involves creat-
ing an appropriate certificate request and submitting this request to the iOS Provisioning Portal.
Once the certificate is ready, you will be able to download and install it on your Mac.

To create a certificate request, launch the Keychain Access utility from the Applications folder
on your Mac. When the Keychain Access utility is running, choose Keychain Access = Certificate
Assistant = Request a Certificate from a Certificate Authority.

In the Certificate Assistant dialog box (see Figure B-1), specify the e-mail address and account name
used to access the iOS Developer Program, and ensure the Saved to Disk radio button is selected.
Click the Continue button to save the certificate request as a file on your Mac.

L] Certificate Assistant
Certificate Information

Enter information for the certificate you are requesting. Click
Continue to request a certificate from the CA.

User Email Address: | apples@trults.com [~}

Comman Name: | Abhishek Mishra

CA Email Address:

aled to the CA
D saved to disk

Request ig

Continue

FIGURE B-1

To create a distribution certificate from your certificate request file, log in to your iOS developer
account at https://developer.apple.com/ios, navigate to the Certificates link under the
Member Center = Certificates, Identifiers & Profiles = iOS Apps category, and click the New
Certificate button on the top-right side (see Figure B-2).

You will now be asked to choose the type of certificate you want to create. Select App Store and Ad
Hoc from the list of options in the Production category (see Figure B-3).

https://developer.apple.com/ios

Preparing a Distribution Build for TestFlight | 529

Certificates, Identifiers & Profiles Abhishek Mishra

i0S Certificates @ Q

i0S Apps -
¥ Certificates 9 Certificates Total
All | Name Type Expires
Pending Abhishek Mishra 105 Development Jan 21, 2016
Beveloprient uk.co.asmiechnology.Gallery3D APNs Development 105 Dec 14, 2015
Praduction
uk.co.asmtechnology.Gallery3D APNs Production i05 Dec 14, 2015
FIGURE B-2
i0S Apps = Add i0S Certificate
@ Certificates Reguest Generate Download
All
Pending
i 7
Blioamet What type of certificate do you need?
Production
. Identifiers
App 1Ds Development
Pass Type IDs
i0S App Development
Mebdi Pugt:0ls Sign development versions of your iOS app.
iCloud Containers
ARREfouns Apple Push Notification service SSL (Sandb,
Establish connectivity between your notificgfion server and the Apple Push Notification service
Merchan K sandbox environment, A separate certifigdte is required for each app you develop.
.| Devices
All
Apple TV Production
Apple Watch
& App Store and Ad Hoc
P Sign your 105 app for submission to the App Store or for Ad Hoc distribution.
Phane
\Pod Touch Apple Push Notification service 55L (Production)
Establish connectivity between your notification server and the Apple Push Notification service
. Provisioning Profiles production environment. A separate certificate is required for each app you distribute.
Al Pass Type ID Certificate
Development Slan and send updates to passes in Wallet.
Distribution
Website Push ID Certificate
FIGURE B-3

Scroll down to the bottom of the page and use the link provided to download the Intermediate
Certificate (see Figure B-4) and click Continue. The intermediate certificate is used to validate your

530 | APPENDIXB BETATESTING WITH TESTFLIGHT

distribution certificate and must be present in your Mac’s keychain in addition to the distribution
certificate.

ece < i8] B Appls Inc. & th a 0 Iy

Apple Pay Certificate
Decrypt app transaction data sent by Apple to a merchant/developer.

Intermediate Certificates
To use your certificates, you must have the intermediate signing certificate in your syste

keychain. This is automatically installed by Xcode. However, if you need to reinstall the
intermediate signing certificate click the link below:

Ngridwide Developer Relations Certificate Authority

Cogyrlght © 2015 Appse inc. Al rights resseved, Tirms of Use Privacy Palicy

FIGURE B-4

The next screen contains some general information on what a certificate request file is and how
to create one. Because you have already created one, scroll to the bottom of the page and click
Continue.

In the next screen, use the Choose File button to select the certificate request file that you saved on
your Mac and then click the Generate button to create the distribution certificate (see Figure B-5).

& ® < T & Apple Inc i o (4] I‘q
i0S Apps = Add iOS Certificate Q
¥ Certificates Select Type Request Generate Dpn_nr_l_l_lq_qg_
All
Pending Pt | .
. Generate your certificate.
Development -
Production

o Identifiers

App IDs When your CSR file is created, a public and private key pair is automatically generated. Your
private key is stored on your computer, On a Mac, itis stored in the login Keychain by default
and can be viewed in the Keychain Access app under the "Keys" category. Your requested
Website Push 1Ds certificate is the public half of your key pair.

Pass Type IDs

iCloud Containers

App Groups Upload CSR file.

Merchant IDs Select .certSigningRequest file saved on your Mac.
_ Devices

All

Choose File.. TG lequest
Apple TV

Apple Watch

iPad

iPhone

iPod Touch

FIGURE B-5

Preparing a Distribution Build for TestFlight | 531

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certificate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to first
approve the certificate request. When your certificate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certificate and save it to your Mac. By default, the certificate should be saved to your
Downloads folder.

Creating a Distribution Provisioning Profile

To create a distribution provisioning profile, log in to your iOS developer account at https://
developer.apple.com/ios, navigate to the Provisioning Profiles link under the Member Center
> Certificates, Identifiers & Profiles & iOS Apps category, and click the New Profile button on the
top-right side (see Figure B-6).

Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps - iOS Provisioning Profiles @ 7zl
FIGURE B-6

You will now be asked to choose the type of profile you want to create. Select App Store from the
list of options under the Distribution category (see Figure B-7) and click Continue.

ece < 1] & Apple In o M 0

I8k

Al
Pending .

ﬁ R 5
i W What type of provisioning profile do you need?
Production

i identifiers
App |05 Development
Pass Type IDs.
105 App Development

Website Fush 105

Create a provisioning profile to install development apps on test devices.
iClaud Containers

twO5s App Development

App Groups A)
Create a provisioning profile to install development apps on tvO5 test devices.,
Merchant IDs
U Davices
M Distribution
Apple TV
Apple Watch © App Store
Creare a distribution provisioning profile to submit your app to the App Store.
wad
iPhone 05 App Store
Wod Tauch Create a distribution provisioning profile to submit your tvOS app to the App Store.

Ad Hoc
Create a distribution provisioning profile to install your app on a limited number of registerad
devices

Provisioning Profiles

Al

Development

Distribustion w05 Ad Hoc
Creare a distribution provisioning profile to install your app on a limited number of registered
w05 devices.

Sl m

FIGURE B-7

https://developer.apple.com/ios
https://developer.apple.com/ios

532 | APPENDIXB BETATESTING WITH TESTFLIGHT

The next step requires you to select an App ID that will be associated with this provisioning profile.
Select an App ID from the list of available identifiers (see Figure B-8) and click Continue.

e e < il & Apple Inc & th (u) o m
© +
‘ DEVE'OpEI' Technologies Resources Programs Suppart Member Center Q Snarch D
Certificates, Identifiers & Profiles Abhishek Mishra =
i0S Apps Add i0S Provisioning Profile = | Q
All .
Pending g
Select App ID.
Development ROV
Production
i Identifiers
App |Ds If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,
e or want a Bundle ID unique to a single app, use an explicit App ID. If you want to create one
a8 Hype s provisioning profile for multiple apps or don't need a specific Bundle ID, select a wildcard
Website Push IDs App ID. Wildcard App IDs use an asterisk (*) as the last digit in the Bundle |D field. Please
o Containk note that i05 App IDs and Mac App 1Ds cannot be used interchangeably.
App Groups
Merchant IDs App ID: | Test A com testape) B
L. Devices
All
Apple TV
Apple Warch
s Cancel Back m
iPad
iPhone
iPod Touch
FIGURE B-8

On the next screen, select the distribution certificate that you created in a previous step and click
Continue (see Figure B-9). You must make sure to sign the app in Xcode using the same certificate
you select here.

The final step involves providing a suitable name for the profile and clicking the Generate button.
When the profile is created, you will be provided with an option to download it onto your computer
(see Figure B-10).

Preparing a Distribution Build for TestFlight | 533

© Development

Production

m dentifiers
» App IDs
» Pass Type IDs
= Wabsite Push IDs.
iCloud Contalners
= App Groups
Merchant IDs

[l Devices
= All
® Apple TV
= Apple Watch

© iPad

= iPhone

3 0
 Provsianing Profies - Apple Daveiopar

‘ Dmloper Tachnologies Resources Programs Support Member Center O Sanrch Bavelopar

Certificates, Identifiers & Profiles Abbishek Mishra =
108 Apps Add i05 Provisioning Profile [=rila)

o Certificates Select Type Configure

o AN
» Pending

@l Select certificates.
..

Select the certificates you wish to include in this provisioning profile. To use this profile to
install an app, the certificate the app was signed with must be included.

© Abhishek Mishra (05 Distribution)

Sep 25, 2016

ORI -

FIGURE B-9

aae < o

= Developmant

® Production

Bl identifiers
= App IDs
» Pass Type IDs
© Website Push IDs
@ iCloud Containers
= App Groups
» Merchant IDs

[l Devices
= Al
= Apple TV
= Apple Watch
o iPad
¥ iPhone
» IPod Touch

| Provisioning Profiles

& Applo inc & jugl B8)
| Adg- 108 Provsioning Profies - Apsio Davslopar

‘ Developer Technologles Resources Programs. Support Member Center 0 Sanrch Davelopar
Certificates, Identifiers & Profiles Abhishek Mishra =
105 Apps Add i0S Provisioning Profile
W Certificates Select Type Configure Gonerate Download
= Al
= Pending

@. Your provisioning profile is ready.

LY |

Download and Install
Download and double click the following file to install your Pravisioning Profile.

) Name: Test App Distribution Profile
Type: i05 Distribution
App ID: RS com testapp

PROV Expires: Sep 25, 2016

Documentation
For more infarmation on using and managing your Pravisioning Profile read:

App Distribution Guide

FIGURE B-10

534 | APPENDIXB BETATESTING WITH TESTFLIGHT

Once the profile has been downloaded, simply locate it in the Downloads folder on your Mac and
double-click it to install it in Xcode.

Creating an iTunes Connect Record

To create an iTunes Connect record, log in to the iTunes Connect portal at https://itunesconnect
.apple.com/ with your iOS developer account credentials. Once you have logged in to the portal,
click the My Apps link (see Figure B-11).

ene < m # lunescannect apple.com (] o | O |

iTunes Connect

N

TestFlight for i05 9 Beta Bullds

Updates to App Analytics
In b 3 data that matters
1o

More «

App Analytics Sales and Trends Payments and
Financial Reports

FIGURE B-11

On this screen, you will see all your iOS and MacOS applications. You can either add a new applica-
tion or manage one of the existing ones. To create a new application profile, click the Add New App
button in the top-left corner of the window (see Figure B-12).

https://itunesconnect
https://itunesconnect.apple.com/

Preparing a Distribution Build for TestFlight | 535

eae < m @ Appla Inc.

iTunes Connect Iy Apps

New Mac App

Mewy Apgy Bundle

FIGURE B-12

When you select the New App option, a popup window appears. You’ll need to enter some basic
information on your new app, including the name, Bundle ID, and version number (see Figure B-13).

New App

Platforms 7

108 tvOS

[Nams 2

Primary Language 7
Choose ¥

Bundle D 7
Choose -

Ragister a new bundle ID on the Davelope

SKU 7

Cancel

FIGURE B-13

The Bundle ID (also known as an App ID) must be registered with your iOS developer account. If
you haven’t created an App ID, you will need to do so now, before you can proceed with the next
steps. Once you have filled in the fields in the popup window, click Create to go to the Application

Information screen (see Figure B-14).

536 | APPENDIXB BETATESTING WITH TESTFLIGHT

& Apple Inc.

ane < 0

iTunes Connect Wy Apps - Swift I0S Book Test App

Fealures TestFlight Activity

App Store

App Information

Pricing and Availability
Localzanle Informanon
Mame 7

1.0 Prapare for Submiss... Swilt 05 B Test App

') VERSION OR PLATFORM
General Information
Bundle ID 7 Register & new bundla ID.
Test App - com.asmischnology.testapp ¥

Your Bundbe 1D com_asmtachnak tapp

SKU 7
SwittiDSBookTestApp

Apple 10 7
1044036104

Privacy Policy URL

Primary Language 7
English (L.S.)

Category

Primary

Secondary (opticnal)

License Agreement Edit

‘s Standard Licenss Agresment

Rating 7
Mo Rating

FIGURE B-14

At the top of the page is a tabbed menu bar (see Figure B-15) with four tabs: App Store, Features,

TestFlight, and Activity.

iTunes Connect My Apps ~ Swift i0S Book Test App

Features TestFlight Activity

App Store

FIGURE B-15

The App Store tab is selected by default, and the new application’s status is displayed on the left side
of the screen. A new application profile starts out in the Prepare For Submission state. You then fill
in all the relevant information to complete the application profile and click on the Save button to
save this information (see Figure B-16).

iTunes Connect My Apps ~ Swift I0S Book Test App

App Store Features TestFlight Acthity

App Information

Pricing and Availability

FIGURE B-16

Preparing a Distribution Build for TestFlight | 537

Creating an iTunes Connect record for an application requires that you fill in several screens of
information, select pricing and distribution information, configure app rating, and upload screen-
shots. If your aim is to just distribute the app to beta testers (and not release to the app store just
yet), you can get away with filling in very little information at this stage.

If your testers are all internal testers, then you do not need to add any metadata beyond creating a
barebones application record, which you have just done by following the steps in this section so far.

If your test team involves external testers, then you only need to supply a small subset of informa-
tion to begin testing with TestFlight. You will, however, need to create a complete application record
before you can submit the app to the App Store. Submitting applications to the App Store is covered in
Appendix C.

The subset of information you need to provide in order to begin using TestFlight with external tes-
ters is located on the App Store tab.

The screen accessed via the App Store tab has a menu on the left side that provides the following
options:

> App Information
> Pricing and Availability

> Versions

App Information

On this screen, you need to specify basic information on the app, including an application name, a
SKU code, and an application Bundle ID. The Bundle ID you specify on this screen must match the
one have used in your Xcode project’s info.plist file.

The SKU code is not used by Apple, but is used to identify the application on the monthly financial
report provided by Apple.

Toward the bottom-right corner of the screen, you will find options to select a Primary and
Secondary Category under which your app will be listed in the App Store (see Figure B-17).

Pricing and Availability

You do not need to fill out this section for beta testing with TestFlight.

Versions

This section enables you to provide screenshots and videos, and to configure application metadata
for each version of your app. A node in the left-hand side menu represents each version (see
Figure B-18).

538 | APPENDIXB BETATESTING WITH TESTFLIGHT

iTunes Connect Iy Apps ~ Swift iDS Book Test App

App Store Featuras TestFlight Activity

App Information

ormation is used for all platforms of this app. Any cf g will be relea

Pricing and Availability

Privacy Policy URL 7

1.0 Prepare for Submiss.. Swift I0S Boak

(3} VERSION OR PLATFORM
General Information

Bundle ID 7 Ragister a new bun Primary Language 7

Tesl App - com.asmitechnology. lestapg o English (U.5)

Your Bundle ID com.asmitechnology testanp

SKU 7

SwiftiSBookTestApp

Apple ID 7

1044036104
Rating 7
Mo Rating

Abhishek Mishra ~
Abihishek Mishra

your naxt app

L Rl | L)

Apple's Standard License Agreament

FIGURE B-17

iTunes Connect My Apps ~ Swift i0S Book Test App

App Store Featuras TestFlight Actiity
iOS App 1.0
Aop Information Prepare for Submission

Pricing and Avaitability

\ersion Information

fipp Video Preview and Screenshots

[e A

3.5-inch Pad

(¥) VERSION OR PLATFORM

Abhishek Mishra ~ 5
Abhishei Mshra :

Submit for Raview

English (1.8 ~ #

FIGURE B-18

The options in this screen are grouped into several subsections:
> Version Information
> Apple Watch
> Build

Preparing a Distribution Build for TestFlight | 539

General App Information
Game Center

App Review Information

Y Y VY Y

Version Release

Version Information

The Version Information section is shown in Figure B-19. Here you need to specify the following
information:

> Screenshots: You do not need to provide screenshots for beta testing with TestFlight.

> Description: This is the description, as you want it to appear on the App Store. It can be no
more than 4,000 characters.

> Keywords: One or more keywords that describe the app you are adding. When users search
the App Store, the terms they enter are matched with these keywords.

Support URL: A URL that links to the application’s support site.
> Marketing URL: An optional URL that links to the application’s website.

App Store Features TestFlight Antivity

i0S App 1.0

ricing and Avalability

ersion Information

App Video Preview and Screanshots

® 1.0 Prepare for Subimisal... 4.7-nch

VERSION OR PLATFORM

FIGURE B-19

540 | APPENDIXB BETATESTING WITH TESTFLIGHT

Apple Watch

The Apple Watch section contains options that allow you to upload screenshots and an icon for
your Apple Watch app (see Figure B-20). Creating Apple Watch apps is beyond the scope of this
book. If you are interested, you should read the Apple Watch Programming Guide at https://
developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/

WatchKitProgrammingGuide/.

Apple Watch

Scraenshols and lcon are only required for apps supporting Apple Watch,

Apple Watch lcon Screenshots

FIGURE B-20

Build

The Build section contains the application binary that has been uploaded for the current applica-
tion version. If no binary has been uploaded, this section is empty (see Figure B-21). The process of
uploading an application binary to iTunes Connect with Xcode is covered later in this appendix.

Build

When no binary has been uploaded

Buitd

Updoad Date

After a binary has been uploaded

FIGURE B-21

General App Information

The general app information section resembles Figure B-22. Here you need to specify the following
information:

> App Icon: The icon that will be used on the App store. This icon must be 1024 x 1024 in the
JPEG or PNG format and must not have rounded corners.

https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/

Preparing a Distribution Build for TestFlight | 541

> Version: This must match the value set in the Xcode project.

> Copyright: The name of the person or entity that owns the copyright to the app.

General App Information

App lcan Copyright

Trade Ri Contact

Trade Representative Contact Information on the Korean App

Abhishek Mishra

Version
1.0
Rating Edit
Mo Rating GREENFORD
United Kingdom
Routing App Coverage File
FIGURE B-22

Game Center

The Game Center section is disabled by default and should be enabled for applications that support
Game Center. When enabled, you will have options to configure leader boards, achievements, and
multiplayer compatibility. A detailed discussion of Game Center is beyond the scope of this book. If
you are interested, you should read the Game Center Programming Guide at https://developer
.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit Guide/

Introduction/Introduction.html.

App Review

The App Review section allows you to provide special testing instructions to Apple engineers when
they review your app, as well as contact information for a person in your company who will be con-
tacted if there are problems with your app.

Configuring Your Xcode Project

The next step in the process involves setting up your Xcode project and submitting a build to iTunes
Connect. Before you begin, make sure you have installed both your distribution certificate and dis-
tribution provisioning profile.

Open the project that you want to submit in Xcode. If the project’s App ID is different from what
has been registered with the iOS Provisioning Portal, edit the value of the Bundle identifier key in
the project’s info.plist file to match.

https://developer
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html

542 | APPENDIXB BETATESTING WITH TESTFLIGHT

Save the info.plist file.Disconnect any connected devices, and ensure that the Scheme/Target
selector in the Xcode toolbar is set to build for a generic iOS device (see Figure B-23).

o020 > ' m mranh: Ready | Today at 18:15 = @ <000
B a A= & PropertyGraph Lo
| W Pad 2 |
¥ [PropertyGraph & Pad Air Capabillties Resource Tags Infe Build Settings Bulld Phases Quiok Hela
v PropertyGraph
AppDelegate swift W el hird ¥ Identity Mo Quick Hel
— - 3 7 0 LQuic elp
Pad Rat
4 ViewController.swift - I sk gciaph
5 W8 iPhona 45 _— =
Main_storybosrd s Bundle dentifier cam.asmtechnalogy.propertygraph o0 e O
A % riyGraph
N Assels xcassets . {Phone 55 version 1.0
LaunchScreen.storybg Phone
i
Infes.plist 98 Elpne Build 1
¥ Phone 6 Plus
* 7 Products 88 Phone 8 8
i & 65 Team Hone J
8 [Phons s Plus No Matches
- provisioning profiles found
ofiles wit idl signing icke|
nrlvate netehing the bl
alogy.pn * wers four
Fix Issue
In? + — = _:_) Fiter
=

FIGURE B-23

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

Scroll down to the Code Signing section and locate the node labeled Provisioning Profile. You
may need to expand this node to see the values for individual build configurations (such as Debug,
Release). Select the provisioning profile you created earlier from the list of profiles for the release
configuration (see Figure B-24).

¥ |5 PropertyGragh
¥ [PropartyGraph
= AppDelegate.swilt
= ViewCantrollerswift
Main_storyboard
W Assets xeassets
LaunchScreen.storyboard
Info.plist
L2 Products

BRE aA4fA @ =o>p

= | B & PropertyGraph
U General Capabilities Resource Tags nfo Build Settings Bulld Phases Build Rules
PROJECT sasic [N -
& ProportyGragh Dobug Mo &
TARGETS Release Yes &
A PropertyGragh
¥ Code Signing
Satting ¥ PropertyGrap
Code Signing Entitiemants.
¥ Code Signing identity eMultiple valuess &
Denug z
Ay |05 SDK & IPhone Developer &
Release <
Any 105 5DK & IPhone Develaper &
Code Signing Resaurce Rules Path R
GG Flags
» Provisioning Profile ¥ Proporty Graph App Stors Distribation Profile
105 Team Proflle:
¥ Deploywmit I0STeam ing Profile: com.wieybook
Settlrg Swift iCloud Tast Dov Profile
Adcitional Strip Flags Generic Client Project TestFlight
Alternata Install Group EEDRIR QDY)
Alternate Install Owner SN Lt PR T o
Alternata install Permisslons S0 Duvopie F"dl.l-
Galery3D PhotoOfTheDay widget
Alternate Parmissians Flles Devalopment Provisioning Profila
Daployment Lecation SuperGaliDev
Daploymaent Postprocessing Tring Davelopmant Profia
Install Group WS2014PresentationPrafile
Irestall Crwnar Tringinio devalopmant profile
Irstall Parmissions Ao Do protie
Installation Build Pradiszts Locatian Other..
Installation Directory P
0 X Deplayment Targat 3
Resturces Targeted Device Family
O+ — [@® Ski.u Install : MNo 3
Strip Detug Symbols During Copy Mo

FIGURE B-24

Preparing a Distribution Build for TestFlight | 543

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Release,
and then expand the Release node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the distribution certificate you created and installed earlier (see Figure B-25).

¥ Code Signing

Satting
Code Signing Entitlements
¥ Code Signing Identity
Debug
Any iOS SDK &

Any i05 SDK

Other Code Signing Frags:
Provisiening Profile

W T—
Automatic

iPhone Distribution: Abhishek Mishra (RE3MY2ZMVHS)

ode Signing Resource Rules Path

+ iPhone Distribution: Abhishek Mishra (EPEBFEH2MD)

Property Graph App Store Distribution Profile o

FIGURE B-25

Select the Edit Scheme menu from the Scheme/Target multi-selector in the Xcode toolbar (see

Figure B-26).

ere » IR » P Ready | Today at 18:34 1 =Eo 200D
|
B 2 o A oSS & PropertyGraph
MNew Scheme... ;
v (& PropertyGragh Manage Schemes... General Capabilities Rescurce Tags info Build Settings Build Phases Build Rules
¥ [PropertyGraph r
i o - E
g alaats it = sasic ([N EEEDEEE Leves o
; PrapertyGragh
= ViawContraller swift = Property! Debug Yos 3
Main.steryboard TARGETS Relpase Ho S
I Assets.xcassets . PropertyGragh Generate Profiing Code No &
S s g Procomgiled Header Uises Files Fram Build Directary — Yes 2
: Require Only Apg-Extension-Safe API Mo
nfo.plist
g Scan All Saurce Files far Includes
> roducts * Validate Bullt Praduct %

FIGURE B-26

In the Edit Scheme dialog box, select Archive from the left menu to bring up archive-specific
options. Ensure the Reveal Archive in Organizer option is checked and the Build Configuration is
set to Release (see Figure B-27). Click OK to dismiss this dialog.

i PropertyGraph ; [} i0S Device

Build

») 1 target
Run

> ’ Debug
Test

» , Dabug

> Profile

Relesse

% a i_lns]ru

Archive
vy Release

¥ Archive

Post-actions

Duplicate Schame

Manage Schemes...

g-Configuration Release
Archive Name

Options @ Reveal Archive in Organizer

Shared

FIGURE B-27

544 | APPENDIXB BETA TESTING WITH TESTFLIGHT

Uploading a Build to iTunes Connect

If you have followed all the steps so far, you are ready to prepare an archive that can be distributed
to your clients/beta testers. To prepare an archive, simply select Product = Archive in Xcode. This
builds your project for App Store distribution. During the build process, Xcode may ask you to
allow access to your distribution certificate.

If it does, click the Allow button. When the archive is successfully built, the Organizer opens auto-
matically, revealing the archive.

To submit the archive to the iTunes Connect portal, ensure the relevant archive is selected, and click
the Upload to App Store button. The Organizer will ask you for your iTunes Connect login creden-
tials, and upload the archive to iTunes Connect (see Figure B-28).

°ce e I
05 Apps Name Creation Date ~ Version Archive Infarmation
% Gallery3D . PropertyGraph 23 Sep 2015, 18:48 1001
] X PropertyGraph
23 Sep 2015, 18:48
Validate.. Export..
Details
Version 1.0 (1)
fier com.asmtechnology.proper...
Type i0S App Archive
Download dSYMs..,
Description
e -
FIGURE B-28

INTERNAL AND EXTERNAL TESTERS

With TestFlight you can distribute prerelease builds of your app to your beta test team. TestFlight
requires that members in your beta test team be part of one of two groups:

> Internal testers: These are individuals who are part of your iTunes Connect team with the
Admin, Legal, or Technical role. You can invite up to 25 internal testers per app.

> External testers: These are individuals who are not part of your iTunes Connect team.
They do not need to be in your organization. In fact, you can invite any user with an e-mail
address to be an external tester. The maximum number of external testers per app is 1,000.

Another key difference between internal and external testers is that in order to distribute a build to
an external tester, Apple must first approve the build. This is not a requirement when the build is
being distributed to internal testers.

Internal and External Testers | 545

Registering Internal Testers

Before you can invite internal testers to test your app, you must make sure they have been added to
your iTunes Connect team with the Admin, Legal, or Technical role.

To add a user to your iTunes Connect team, log in to the iTunes Connect portal at https://
itunesconnect.apple.com/ with your iOS developer account credentials. Once you have logged in
to the portal, click the Users and Roles link (see Figure B-29).

TestFlight for iOS 9 Beta Build:

Yt T " Ir intamal

Updates to App Analytics

App Analytics Sales and Trends Payments and
Financial Reports

FIGURE B-29

On this screen, you will see all your team members listed along with their roles. Click on the (+) link
on the page to add a new user (see Figure B-30).

You are presented with a screen where you need to type the name and e-mail address of the new
user (see Figure B-31). An invitation to join your team will be sent to this e-mail address. Fill in the
fields and click Next.

https://itunesconnect.apple.com
https://itunesconnect.apple.com

546 | APPENDIXB BETATESTING WITH TESTFLIGHT

iTunes Connect |sers and Roles -

iTunes Connact Lisers TestFlight Bata Tester: Sandbax Testers

Apple ID MNama ~ Fale
sbhishek@hotrmad.corr Abhishek Mishra (& Admin, Lagal
i Al
FIGURE B-30
iTunes Connect sers and Foles - I

Add iTunes Connect User

Next

User Information

First Name

Arthur

Last Name
Mezra
Email [This wall ba the user's Appée I0)

amshra@mytring.com

FIGURE B-31

On the screen that follows, you will need to assign a role to the new user. You can choose from
Admin, Technical, Finance, Sales, or Marketing (see Figure B-32). Select the role for the new team
member and click Next.

The next screen lets you to set up e-mail notifications that will be sent to the new user account
(see Figure B-33). You can decide whether the new user account should receive notifications
pertaining to:

> App Status

> Legal Agreements

> Financial (Sales) Reports
>

Payments

Internal and External Testers | 547

Once you have set up the options on this screen, click Save to add the new user to your team.

ITunes Connect Lsers and Roles ~ At:nn.n«mr: &
¢ [Munes Connect Lisars
Add iTunes Connect User
|£| Cancel No_;u
Select Roles
7 Admin ~ Technical Finance 7 Sales ~| Marksting
Users and FAales 7 Fesd Ciriy Hesd Cinly Read Only

In-App Purchasa Testers

My Apps

Sales and Trands

App Analytics

Agreements, Tax, and Banking

Agreaments Raad Only RAeed Only
Paymenis and Financial Aeporis

Marksting

Resources and Help

FIGURE B-32

ITunes Connect Lsers and Roles ~

€ [Munee Connect Lisars

Add iTunes Connect User

| Back |

Natifications Territories

App Status Reports

e rit:
Aranmants Al Territories v

Mo Temitories
Financial Reports

Paymenis

Capyright © 2015 Apple Inc, Al rights meened. Terrnz af Garvice

FIGURE B-33

548 | APPENDIXB BETATESTING WITH TESTFLIGHT

Once a user has been added to your iTunes Connect team, adding that user as a beta tester for an
app is fairly straightforward. A user in your team can beta test up to 10 of your apps simultaneously.

Access your application record on iTunes Connect and navigate to the TestFlight tab (see
Figure B-34).

iTunes Connect Vly Apps §8 swift i0S Book Test App

App Store Features Activity

Internal Testing

External Testing
i0S Select \Version to Test

08

Internal Testers (0) ®

Add at least 1 internal tester,

FIGURE B-34

Use the Select Version to Test link on the page to select the app version that you want to distribute
via TestFlight (see Figure B-35). If you have only just uploaded a build with Xcode, keep in mind
that you may need to wait up to 30 minutes before the build has been processed by Apple’s servers
and is available for you to select.

Internal Testing +

i0s Select an i0S version to test.

0ns Intermnal testers Nave access (o the latest build for the seactad
\ Il also have accass to any new builds that you submit

your erganization using the TestFlight app. No B

External Testing

Internal Te Version Latest Build

FIGURE B-35

Internal and External Testers | 549

Use the Add button (+) to add up to 25 internal testers. When you click the Add button, you will

be presented with a list of iTunes Connect team members see (see Figure B-36). If a team member’s
e-mail address is not present in the list, then it is likely that he has not confirmed his membership in
your team. When you add an individual to your team, a message with a confirmation link is sent out
to the new member’s e-mail address.

Add and notify new internal testers.
Up to 25 (Tunes Connact users with the Admin, Technical, or Legal role can ba added as internal
Ernall Mame Intemal Tester
ushra_abhishek@hotmail.com Abhishek Mishra
ra@nylring.com Arthwur Mezra
1y
FIGURE B-36

When you invite one or more team members to beta test your build, the Start Testing button at the
top-right corner of the page will be enabled (see Figure B-37). Click this button to start the beta test
process.

App Stora Featuras TestFlight Activity

Internal Testing Start Tastin

FIGURE B-37

Once you start the beta test process, each tester will receive an e-mail with instructions on how to
download and install the beta version of your app on his or her test device (Figure B-38). For the
beta test process to work correctly, the tester should access this e-mail message on the test device, as
the email contains links that will install an app on his or her device).

Registering External Testers

To register external testers, access your application record on iTunes Connect and navigate to the
TestFlight tab. Within the TestFlight tab, navigate to the External Testing section (see Figure B-39).

550 | APPENDIXB BETATESTING WITH TESTFLIGHT

iTunes Store Today 19:15

To: Abhishek Mishra
TestFlight: You're invited to test Swift iOS Book Test App

Swift iIOS Book Test App
Abhishek Mishra invited you to test Swift iOS Book Test App for iOS.

To test this app, you must have TestFlight installed on iPhone or iPod touch using iOS
9.0 or later.

Start Testing ©@

In order to use Swift IOS Book Test App, you agree that crash data as well as statistics about how you use Swift iOS
Book Test App will be provided to Abhishek Mishra and linked to your email address. Abhishek Mishra may contact
you regarding this information. You should review the Terms and Conditions of the TestFlight program, as well as the
terms, policies, and practices of Abhishek Mishra. Beta apps may crash or result in data loss.

iTunes Connect

iTunes Connect is a service provided by Apple. Terms of Service | Privacy Policy | Unsubscribe
Copyright © 2014 Apple Inc. 1 Infinite Loop, Cupertino, CA 95014, United States. All rights reserved.

FIGURE B-38

The process of registering external testers is very similar to that of registering internal testers. You
need to click the Select Version to Test link on the page to select the app version that you want to
distribute via TestFlight. After you select the version, you may be prompted to fill in some applica-
tion meta data if you have not done so when you created the application record (see Figure B-40).

Internal and External Testers | 551

iTunes Connect Vly Apps - 88 swit i0S Book Test App Ahaichaanm > | @

App Store Features TestFlight Acthvity

/ External Testing -

Intern . Te 5 with anyone using the TestFlight app. Builds may need approval from
Be W,

i0S Add Build to Test

External Testers (0) @

Add at least 1 external tester.

Copyright © 2015 Apple Inc. All rights reserved. Terms of Sendoe Privacy Polioy Contact Us

FIGURE B-39

iTunes Connect Iy Apps - §8 svitt i0S Book Test App "‘";'Jf“l"ﬂe‘fk’ﬂf“::i * | HE)
Submit i0S Build 1.0 (1) =3
TestFlight Beta Information English w
What to Test 7 App Description 7

Feedback Email 7 Marketing URL 7

Privacy Policy URL 7

Beta App Review Information

Contact Information 7 Notes 7

FIGURE B-40

552

| APPENDIXB BETA TESTING WITH TESTFLIGHT

External testers need not be members of your iTunes Connect team. You can invite up to 1,000
external testers for your app. When you click the Start Testing button, the build will need to go
through Apple’s App Store review process. This process can take up to a week, and once the build
has passed the review process, your testers will get an e-mail notifying them that a build is ready to
download. Your testers will need to access this e-mail message on their test device and follow the
instructions contained in the message to begin testing.

App Store Distribution

In most cases, after your app is ready and tested, you will want to list it in the App Store.
Regardless of your pricing strategy (free or paid) every application that is submitted to Apple
for distribution via the App Store is subject to an approval process. The approval process
usually takes about a week. Updated versions of an existing application also need to go
through an approval process.

To distribute your application via the App Store, you will need a standard, paid, iOS developer
account. If you have an enterprise iOS developer account, you cannot distribute your applica-
tions through the App Store. Submitting an application to Apple for inclusion in the App Store
is a two-stage process. First, you need to create an application profile on the iTunes Connect
portal, and then you need to upload your application binary to iTunes Connect using Xcode.

CREATING AN APPLICATION PROFILE

To start the App Store submission process, log in to the iTunes Connect portal at https://
itunesconnect.apple.com/ with your iOS developer account credentials. Once you have
logged in to the portal, click the My Apps link (see Figure C-1).

https://itunesconnect.apple.com
https://itunesconnect.apple.com

554 | APPENDIX C APP STORE DISTRIBUTION

iTunes Connect

TestFlight for {05 9 Beta Builds

the data thal m

Moro -

My Apps App Analytic: Sales and Trends
Financial Reports

IAd

FIGURE C-1

On this screen you will see all your iOS and Mac OS applications. You can either add a new applica-
tion or manage one of the existing ones. To create a new application profile, click the Add New App
button in the top-left corner of the window (see Figure C-2).

sse ¢ | m & fopa . ¢ NENY
Abhishek Mishra ~ -
iTunes Connect [\Vly Apps - Abhishek Mishra ?

| ses Q Search Al Typos ~ Al Stallses ~ A

Mew Mac App

Mew App Bundle

FIGURE C-2

Creating an Application Profile | 555

Selecting the New App option will display a popup window where you need to enter some basic
information on your new app, including the Name, Bundle ID, and version number (see Figure C-3).

New App

Platforms

i0s w0s
Name

Primary Language

Choose

Bundle ID
Choose

FIGURE C-3

The Bundle ID (also known as an App ID) must be registered with your iOS developer account. If
you haven’t created an App ID, you will need to do so now, before you can proceed with the next
steps. Creating an App ID has been discussed in Appendix A. To get started, log in to your iOS
developer account at https://developer.apple.com/ios and navigate to the Identifiers section of
the website.

Once you have filled in the fields in the popup window, click Create to go to the Application
Information screen (see Figure C-4).

At the top of the page is a tabbed menu bar (see Figure C-5) with four tabs labeled App Store,
Features, TestFlight, and Activity.

The App Store tab is selected by default, and the new application’s status is displayed in the left-
hand side of the screen. A new application profile starts out in the Prepare For Submission state. You
then fill in all the relevant information to complete the application profile and click the Save button
to save this information (see Figure C-6).

Once you have saved the application profile, you will need to upload a build from Xcode. The pro-
cess of uploading a build is covered later in this appendix. First let’s examine each of the tabs on the
application profile screen.

https://developer.apple.com/ios

556 | APPENDIXC APP STORE DISTRIBUTION

ere < i} & Apple Ine, & ull B) ﬁ
iTunes Connect [Vly Apps - Swift I0S Book Test App Ahihesiin) &

App Store Features TestFight Activity

App Information

This informiation is used for all platforms of this app. Any changes will be el
varsion
Pricing and Availability
LocalZzable intormaton L gty)
Name 7 Privacy Policy UAL 7
1.0 Prepare for Submiss... Swift i0S Book Test App hitp/axample.com (optional)

) VERSION OR PLATFORM

e
General Information
BundlelD 7 Register & new bundks ID Primary Language 7
Test App - com.asmiechnology.testapp bt English (U8,
Your Bundle 1D com asmiechnology testapn Categary 7
Prim v
sKU 7 it
Swilti0SBookTestApp Secondary (optional) -
Apple D 7 -
1044036104 License Agreement Edit
Apple's Standard Licanse Agreement
Rating *
Mo Rating
FIGURE C-4
” Juaicd Abhishek M -
iTunes Connect Iy Apps ~ Swift I0S Book Test App Abhiahok Matva ?
App Store Featuras TestFlight Acthvity
FIGURE C-5
i i Abhishak M - ~
iTunes Connect [\ly Apps - Swift iOS Book Test App ks i ?
App Store Featuras TestFight Activity
FE SN CrALN App Information —
This informiation | 2d for all ptatforms of this app. Any changas will be released wit S
app varsion,
Pricing and Avallability

FIGURE C-6

Creating an Application Profile | 557

App Store Tab

This screen has a menu on the left-hand side that provides the following options:

> App Information

> Pricing and Availability

> Versions

App Information

On this screen you need to specify basic information on the app, including an application name, a
SKU code, and an application Bundle ID. The Bundle ID you specify on this screen must match the
one have used in your Xcode project’s info.plist file.

The SKU code is not used by Apple, but is used to identify the application on the monthly financial
report provided by Apple.

Toward the bottom-right corner of the screen, you will find options to select a Primary and
Secondary Category under which your app will be listed in the App Store (see Figure C-7).

App Store Feaiures

App Information
e
Pricing and Avadabiiity

1.0 Prapare for Submiss, .

+) VERSION DR PLATFOAM

iTunes Connect My Apps

TestFlight Activity

Swift iI0S Book Test App

App Information

CaliZzapie inrormancn
Name 7 Privacy Policy URL 7

Swift i05 Book

General Information

Bundle ID 7 Ragis Primary Language

Test App - com.asmitechnology.testapp English (U5}
¥our Bundle ID com.asmiechnalogy iestanp

SKU Primary
SwifiCSBookTestApp Secondary {optional)
Apple 1D

1044036104 Licensa Agreement ton

Apple's Standard Licenze Agreement

Rating 7
Mo Rating

FIGURE C-7

558 | APPENDIXC APP STORE DISTRIBUTION

Pricing and Availability

This screen contains options that let you specify the price of the app as well as the territories where
your app will be available for purchase (see Figure C-8).

iTunes Connect Iy Apps ~ Swift i0S Book Test App

App Store Features TestFight Activity

Pricing and Availability

Aop Information

Pricing and Availability

Price Schedule Al Prices Ir7e
Prica # Start Date End Date
1.0 Prepare for Submiss..
GBP 1.48 > | Other Currencies Saptember 27, 2015 Mo End Data
VERSION OR PLATFORM
Availability

Avaiable in all territories Edi

Volume Purchase Program

® Available with a volume discount for educational institutions
Avaidable with no discount

Avallable onty on the VPP Business Store

» Bitcode Auto-Recompilation

FIGURE C-8

If you would like to provide a discount to business buyers, or educational institutions when they buy
multiple copies of your app, you can select one of the options under the Volume Purchase Program
section of the page (see Figure C-9).

Volurme Purchase Program

® Available with a volume discount for educational institutions
Available with no discount

Available onty on the VPP Business Store

FIGURE C-9

Click the Save button to save the changes you have made to this page before moving on to the
next section.

Creating an Application Profile | 559

Versions

This section allows you to provide screenshots and videos, and to configure application metadata for
each version of your app. A node in the menu on the left-hand side represents each version
(see Figure C-10).

Prcing

iTunes Connect Iy Apps Swift i0S Book Test App

App Store Features TestFlight Activity

App Information

and Availability

+) VERSION OR PLATFORM

i0S App 1.0

Version Information English (U.5.)

Ppp Video Proview and Screenshots

FIGURE C-10

The options in this screen are grouped into several subsections:

>

Y Y VY Y Y Y

Version Information
Apple Watch

Build

General App Information
Game Center

App Review Information

Version Release

Version Information

The version information section resembles Figure C-11. Here you need to specify the following
information:

>

Screenshots: You can provide up to five screenshots and a video preview for different devices.
If you are submitting a universal application, you will need to provide both iPhone and iPad
screenshots.

Description: This is the description, as you want it to appear on the App Store. It can be no
more than 4,000 characters.

Keywords: One or more keywords that describe the app you are adding. When users search
the App Store, the terms they enter are matched with these keywords.

560 | APPENDIXC APP STORE DISTRIBUTION

> Support URL: A URL that links to the application’s support site.
> Marketing URL: An optional URL that links to the application’s website.

App Store Features TeatFlight Activity

i0S App 1.0
App Information Prepare f

Pricing and Avaliability

Version Information

App Video Preview and Screanshots

® 1.0 Prepare for Submissl... 5.54nch d-inch snch

+] VERSION OR PLATFORM

FIGURE C-11

Apple Watch

The Apple Watch section contains options that allow you to upload screenshots and an icon for
your Apple Watch app (see Figure C-12). Creating Apple Watch apps is a topic beyond the scope
of this book; if you are interested, you should read the Apple Watch Programming Guide located
at https://developer.apple.com/library/prerelease/ios/documentation/General/
Conceptual/WatchKitProgrammingGuide/.

- Apple Watch

Screanshots and icon are only required for apps supporting Apple Watch

Apple Watch lcon 7 Screenshots 7

FIGURE C-12

https://developer.apple.com/library/prerelease/ios/documentation/General
https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/

Creating an Application Profile | 561

Build

The Build section will contain the application binary that has been uploaded for the current applica-
tion version. If no binary has been uploaded, this section will be empty (see Figure C-13). The process
of uploading an application binary to iTunes Connect with Xcode is covered later in this appendix.

Build

When no binary has been uploaded

After a binary has been uploaded

FIGURE C-13

General App Information

The general app information section resembles Figure C-14. Here you need to specify the following

information:

> App Icon: The icon that will be used on the App store. This icon must be 1024 x 1024 in the
JPEG or PNG format and must not have rounded corners.

> Version: This must match the value set in the Xcode project.

> Copyright: The name of the person or entity that owns the copyright to the app.

General App Information

App lcon

Version

1.0

Rating Edit
Mo Rating

Copyright
Trade A Contact
Display Trade Representativ act Information on the Korean App

Stare.

Abhishek Mishra

GREENFORD

RAouting App Coverage File

United Kingdarm

FIGURE C-14

562 | APPENDIX C APP STORE DISTRIBUTION

Tapping on the Edit button next to the Rating link will bring up a popup window that consists of

a series of questions, the answers to which determine a rating category for your application (see
Figure C-15). The rating determines the parental controls that will apply to your application. As you
change the answers to these questions, the age limit will change.

Edit Rating

Foi ontent

Apple Contant Descrigtion Mone InfraquentMild Fraquent/Intense

n or Fantasy Violence

o or Sadistic Realistic

Profanity or Crude Humor

e Themes

Alcohol, Tobacco, or On

Simulated

Gambling

Saxual ant or Mudty

c Saxual Content and Nudity

Unrestricted Web Access

Gambéng and Contests

FIGURE C-15

Game Center

The Game Center section is disabled by default, and should be enabled for applications that support
Game Center. When enabled, you will have options to configure leader boards, achievements, and
multiplayer compatibility. Game Center is a topic beyond the scope of this book, but if you are inter-
ested, you should read the Game Center Programming Guide located at https://developer
.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit Guide/
Introduction/Introduction.html.

App Review

The App Review section allows you to provide special testing instructions to Apple engineers when
they review your app, as well as contact information for a person in your company who will be con-
tacted if there are problems with your app.

https://developer
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html

Preparing and Uploading the Application Binary | 563

Features Tab

The features tab provides options to configure In-App purchases and Game Center for an app.
In-App Purchases and Game Center are not covered in this book. If your app does not utilize either
of these technologies, you can ignore the contents of this tab.

TestFlight Tab

This tab provides options to distribute prerelease builds of your app to internal and external testers
using TestFlight. This is covered in Appendix B.

Activity Tab

This tab provides options to examine beta test activity. This is covered in Appendix B.

PREPARING AND UPLOADING THE APPLICATION BINARY

Once you have created and saved the application profile, the next step involves using Xcode to
upload the binary to iTunes Connect. Before you can do this, you may need to do certain housekeep-
ing tasks; these are especially relevant when you are submitting your first application.

Creating a Distribution Certificate

The process of creating a distribution certificate is very similar to that of creating a development
certificate. Creating a development certificate is covered in Appendix A.

To create a distribution certificate, create a Certificate Signing Request (. csr file) using the Keychain
Access utility on your Mac, and save this file onto your computer. You can use the same .csr file
that you used to create a development certificate.

Log in to your iOS developer account at https://developer.apple.com/ios and navigate to the
Certificates section of the developer portal. Click the New Certificate button on the top-right side of
the screen and choose App Store and Ad Hoc under the Production category (see Figure C-16).

Scroll down to the bottom of the page and download the Worldwide Developer Relations
Intermediate Certificate using the link provided if you haven’t done so already. To proceed with
creating the distribution certificate, click Continue.

On the next screen, upload the certificate request file that you saved on your Mac and then click the
Generate button to create the distribution certificate.

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certificate is issued automatically and available to download in a few minutes. You may need
to refresh your browser window. If you are part of a team, your team manager will need to first
approve the certificate request. When your certificate is ready to download, you will see its status
listed as Issued, and a Download link will be available.

Download the certificate and save it to your Mac. By default, the certificate should be saved to your
Downloads folder.

https://developer.apple.com/ios

564 |

APPENDIX C APP STORE DISTRIBUTION

i0S Apps

¥ Certificates
Al
Pending
Development

Production

. Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

. Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

Provisioning Profiles
All
Development

Distribution

Select Type Request Generate Download

Add i0S Certificate

What type of certificate do you need?

Development

i0S App Development
Sign development versions of your iOS app.

Apple Push Notification service SSL (Sandb,

Establish connectivity between your notificgfion server and the Apple Push Notification service
sandbox environment. A separate certifiglte is required for each app you develop.

Production

& App Store and Ad Hoc
Sign your 105 app for submission to the App Store or for Ad Hoc distribution.

Apple Push Notification service 55L (Production)
Establish connectivity between your notification server and the Apple Push Notification service
production environment. A separate certificate is required for each app you distribute.

Pass Type ID Certificate
Slan and send updates to passes in Wallet.

Website Push ID Certificate

FIGURE C-16

Creating a Distribution Provisioning Profile

The process of creating a distribution provisioning profile is similar to that of creating a devel-
opment provisioning profile. Creating a development provisioning profile has been covered in
Appendix A.

Before you create a distribution provisioning profile, you must ensure that you have created a distri-
bution certificate and have registered an App ID with your developer account.

The main differences between a distribution provisioning profile and a development provisioning
profile are that a distribution profile does not have a list of devices included in it and requires a

distribution certificate.

To create a distribution provisioning profile, log in to your iOS developer account at https://
developer.apple.com/ios. Navigate to the Provisioning Profiles section and click the New Profile
button on the top-right side of the screen.

When you are asked to choose the profile type, choose App Store from the list of available options
and click Continue (see Figure C-17).

https://developer.apple.com/ios
https://developer.apple.com/ios

Preparing and Uploading the Application Binary | 565

i0S Apps . Add i05 Provisioning Profile / Q
¥ Certificates Config: Gi t Dy

All

Pending g
What type of provisioning profile do y

Development PROV

Production

12 Identifiers
App IDs Development
Pass Type 1Ds
i0S App Development

Wetstie Pash IDe Create a provisioning profile to install

velopment apps on test devices.
ICloud Containers

tvO5 App Development
Create a provisioning profile t

App Groups
nstall development apps on tvOS test devices,
Merchant IDs

[l Devices
A Distribution
Apple TV
Apple Watch © App Store
e Create a distribution provisioning profile to submit your app to the App Store.
iPa
iPhone tvOS App Store
\Pod Touch Create a distribution provisioning profile to submit your tvOS app to the App Store,
Provisioning Profiles Ad Hoc
Create a disteihution aravisianinn neafile to install unir ann on a limited her of renistarecd

FIGURE C-17

In the next screen, select the App ID that corresponds to the app that you want to submit to iTunes
Connect and click Continue. Finally, select the distribution certificate and generate the provisioning
profile. Download the provisioning profile and double-click the downloaded file to install the distri-
bution profile in Xcode.

Configuring the Xcode Project

The next step in the process involves setting up your Xcode project and submitting a build to iTunes
Connect. Before you begin, make sure you have installed both your distribution certificate and
distribution provisioning profile.

Open the project that you want to submit in Xcode. If the project’s App ID is different from what
has been registered with the iOS Provisioning Portal, edit the value of the Bundle identifier key in
the project’s info.plist file to match.

Save the info.plist file, disconnect any connected devices, and ensure that the Scheme/Target
selector in the Xcode toolbar is set to build for a generic iOS Device (see Figure C-18).

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab.

566 | APPENDIXC APP STORE DISTRIBUTION

°ie > 5 EECTTER - vy | Tenee =0 clooO
B2 QA © = £ PropertyGraph o]
- ¥ W Pad 2 L :
¥ L PropertyGraph % 1Pad Air Capabilities Resource Tags Infe Bulld Settings Build Phases Ruiiok Halp
¥ " PropertyGraph I
AppDelogate switt W8 Pact A 2 * identity I tio
2 P gate.swi i
W iPad Retina rtyGraph No Quick Help
2 ViewContralier.swift
W Phone 4s
Main.staryboard F Bundle Identifier com.asmtechnalogy.propertygraph D O0®a
I Assets.xcassets nyGraph
8 IPhone 55 Version 1.0
LaunchScrean.storybg
. 8 iPhone 6 Build 1
Info.plist
W iPhone B Plus
» 1 Products e B
Kl Team MNone
88 Phone 65 Plus No Matches
T Mo matching provisioning profiles found
Mo provisioning profiles with a valid signing ide
certificate and private key pair) matching the bj
- mtechnalogy.propertygraph” were four
Fix lssue
+ |® OH| + - [© BB | @ Fitter
- tmtn

FIGURE C-18

Scroll down to the Code Signing section and locate the node that’s labeled Provisioning Profile. You
may need to expand this node to see the values for individual build configurations (such as Debug
or Release). Select the provisioning profile you created earlier from the list of profiles for the release
configuration (see Figure C-19).

BR Qi O BEc B B & PropertyGraph
¥ [& PropertyGraph [} Ganeral Capabilities Resource Tags info Bulld Settings Build Phases Build Rules
v
m“;:::rl;.swm PROJECT gasic [IEEEESR leves a-
S tortclmilit 5 PropertyGraph Debig Mo %
- R TARGETS Release Yos &
W Assets xcassets A PropartyGraph
LaunchScrean.storyboard ¥ Gede Sining e s
Intoplist Seong ¢ Propetyerah
b Products Code Signing Entitlements
¥ Code Signing Identity <Multiple values> &
Debug]
Ay 105 SDK & iPhone Developer &
Release b
Any 05 SDK 2 {Phane Developer &
Code Signing Resource Rules Path
Cih e ST Flags

» Provisioning

Profile ¥ Propesty Graph App Store Distribution Profile
iO5Team fisioning Profile: com,

¥ Deployment

IG5 Team isioning Profile: com.wi

Setting

Additional Strip Flags
Altarnate nstall Group
Alternate Install Cwner
Alternate Install Permissions
Altarnate Permissions Filas
Deployment Location
Deployment Postprocessing
Install Group

Irstall Qwner

Install Permissions

Installation Build Products Location

Swift iCloud Test Dev Profile
Generle Client Project TestFlight
EcoKids Development

Generic Client Praject Dev
Gallery3D Development profile
Gallery3D PhotoQfTheDay widget
Devalopment Provisioning Profile
SuparGolfDev

Tring Development Profile
W52014PresentationProfile
Tringlnfe development profile
wildcard Dev profile

Other...
Installtion Directory TApECEnE
05 ¥ Deployment Target b
Resaurces Targeted Device Family
= oFl+ — Skip Install Mo &
= = Strip Debug Symbols During Cooy Mo 2

FIGURE C-19

Now look for a node called Code Signing Identity. Expand this node to reveal a node called Release,
and then expand the Release node to reveal a node called Any iOS SDK. Ensure the value of this
node is set to be the distribution certificate you created and installed earlier (see Figure C-20).

Preparing and Uploading the Application Binary | 567

¥ Code Signing
Setting
Code Signing Entitlements
¥ Code Signing Identity
Debug
Any I0S SDK &

I, TR

Automatic

iPhone Distribution: Abhishek Mishra (RE3MVZMVHS)

Any iOS SDK
:ode Signing Rescurce Rules Path

¥ iPhone Distribution: Abhishek Mishra (EPEBFEHZMD)

Other Code Signing Frags
Provisioning Profile

Property Graph App Store Distribution Profile 2

FIGURE C-20

Select the Edit Scheme menu from the Scheme/Target multi-selector in the Xcode toolbar (see

Figure C-21).

ere » B v ¢\ PropertyGraph » PropartyGrapgh: Ready | Taday at 18:34 1 =@ & 0
i E
B R a4 CEEETISEEEEEE & roeertyGrah
¥ [& PrapertyGraph Manage Schemes... General Capabilities Resaurce Tags Info Build Settings Build Phases Build Rules
¥ i ProgartyGragh St
: PROJECT easic [Levels + Q-
= AppDelegate.swift -
= ViewController.swift M PropertyGraph Debug Yas &
Main.storyboard TARGETE: Raloase Mo &
150 Assets scassets A PropartyGraph Generate Profiling Code No &
LaunchSereen staryboard Precomplled Header Uses Flles From Bulld Directory Yes 2
R ire Onl: - ion-Safe APY No
i plist equire Only App-Extension-Safe o
- s Scan All Source Files for Inciudes No &
: ¥ Validate Buitt Product - §

In the Edit Scheme dialog box, select Archive from the left menu to bring up archive-specific
options. Ensure the Reveal Archive in Organizer option is selected and Build Configuration is set to
Release (see Figure C-22). Click OK to dismiss this dialog box.

&\ PropertyGraph . 05 Device

Build
> target

"Run

Debug
Test
P ’ Debug

Profile

Release

a1

. B .l.n;r:e

- p Archive

Releasa

+ Archive

Post-actions

g¢Configuration Release

Archive Name

Options Reveal Archive in Organizer

Duplicate Scheme

Manage Schemes...

Shared

FIGURE C-22

568 | APPENDIXC APP STORE DISTRIBUTION

At this point you are ready to prepare an archive that can be distributed to your clients/beta-testers. To
prepare an archive, simply select Product & Archive in Xcode. This builds your project for App Store dis-
tribution. During the build process, Xcode may ask you to allow access to your distribution certificate.

If it does, click the Allow button. When the archive is successfully built, the Organizer opens auto-

matically, revealing the archive.

To submit the archive to the iTunes Connect portal, ensure the relevant archive is selected, and click
the Upload to App Store button. The Organizer will ask you for your iTunes Connect login creden-

tials, and upload the archive to iTunes Connect (see Figure C-23).

oce
102 Apps Nams Creation Date ~ Version Archive Information
= GalleryaD = PropertyGraph 23 Sep 2015, 18:48 1041 ;
- + PropertyGraph
B 23 Sop 2015, 18:48
Upload 1o App Store... 4
Validate.., Expaort...
Details
varsion 1.0 (1)
dentifier com.asmtechnology.proper_,
Type 105 App Archive
Downlead d5YMs.
Description
£ o)
FIGURE C-23

SUBMITTING THE APP FOR REVIEW

Once the application binary has been uploaded to iTunes Connect, you will need to log in to iTunes
Connect once again, and click the Submit for Review button in your application record page to sub-

mit the app for review (see Figure C-24).

iTunes Connect I\ly Apps -

- Property Graph

0 Prepare fo

Varsians Prerelease Pricing 1-Apn Purchases same Cerler

Version Information

App Video Preview and Screenshots

FIGURE C-24

INDEX

! (exclamation mark), for implicitly unwrapped
optional, 42

/ and /, for multi-line comments, 39

/I (forward slashes), for comments, 39

: (colon), for superclass and subclass
relationship, 74-75

? (question mark), appending to data type, 41

[] (subscript operator), for index numbers, 181

{ } (curly braces), for closure expression, 59

+ operator, for concatenating strings, 39-40

+= operator, to append string to another, 40

-> (return arrow), 53-55, 64

1x version of image, 169

2x version of image, 169

3x version of image, 169

accelerometer, iOS Simulator lack of support
for, 33
acceptance criteria, of project, 488
accessibility identifier, for buttons, 474
accessory views, for annotation callout, 447
accountStatusWithCompletionHandler
method, of CKContainer object, 351
action methods, 145
associating with bar button item, 238
in view controller class, 114, 135-136
action sheets, 159-160
actions, creating, 110
in ViewController.swift file, 163

Activate Console menu item, 60
active build scheme, running/stopping,
30
active user interface element, 145
Adaptive layout feature of 0S8, 90
adaptive layout problem, 102
Add Contract button type, 98
Add New Record To Database button,
managed object in data store from,
396-397
addAction method, 156-157
addAnnotation:animated: method, 445
addFromCKRecord method, 366-367
addImage method, 420
AddPhotoViewController class
action methods in, 365
creating outlets in, 365
AddPhotoViewController.swift file,
362-363, 365, 374-375
code to dismiss, 377
onDismissKeyboard method, 375
UIImagePickerDelegate methods, 377
viewDidLoad method, 375-376
addTextFieldWithConfigurationHandler
method, of UTAlertController class,
157-158
addURL method, 420
ad-hoc distribution, 5
administrativeArea property, of
CLPlacemark object, 435
alert views, 155-159
vs. action sheets, 159
cancel button in, 156

569

alerts:XCUIElementQuery method — ArithmeticCalculator class

displaying, 157
verifying display, 483
alerts:XCUIElementQuery method, 476
Align button, on storyboard, 104
Align constraints popup window, 14, 15-16
alignment constraint editor, 100-101, 175
for button, 131, 133
AllowFragments parameter, 402
allowsCellularAccess attribute, of
NSURLSession, 404
altitude property, of CLLocation object, 432
Always Authorization permission type, 428
Anchor attribute, of popover, 258
animation, 170-172
animationDuration property, of image view,
172
animationImages property, of image view,
170-172
annotations
accessory views for callout, 447
adding to map, 444-446
Swift class to represent data, 451
app. . See applications
app icons, in asset catalog, 168
App ID (Bundle ID), 555, 557
associating with provisioning profile, 518, 520
creating, 511-513
creating iCloud-enabled, 297-302
for provisioning profile, 532
registering, 535
registering with iOS Provisioning Portal, 316,
354
wildcard, 513
App Store distribution, 553-568
append () method, 181
appending strings, 40
AppIcon, 88
Apple
app review criteria, 9
approval of build for external testers, 544
TestFlight service, 9
Apple iOS SDK, 4, 6

570

Apple servers, uploading data to, 296
Apple Watch, 540, 560
Apple Watch Programming Guide, 560
application binary, 8
distribution certificate creation, 563-564
distribution provisioning profile for, 564-565
preparing and uploading, 563-568
submitting for review, 568
application data, Documents directory for, 296
application identifier, in App ID, 511
Application Information screen, 535-541,
555-556, 557
App Review section, 541
Apple Watch, 540
Build section, 540
Code Signing section, 542, 566
Game Center section, 541
General App Information, 540-541
pricing and availability, 537
versions, 537-539
application method, 470
application profile, 553
creating, 534-535
application sandbox, 296
application settings, 285-294
Application Transport Security (ATS), 406-408
configuring to allow insecure HTTP
connection, 414
disabling, 407
applications
development process, 69
installing and uninstalling, 32
running on iOS Simulator, 115
terminating with runtime error, 41
approval process for application, 553
ARC (Automatic Reference Counting), 73
archive
for clients/beta testers, 544
options, 567
preparing, 568
argument label, 54
ArithmeticCalculator class, methods, 497

ArithmeticCalculator.swift file — build

ArithmeticCalculator.swift file, 496
updating code, 499-500
ArithmeticCalculatorTests.swift file,
495-496
Array variable, adding to ViewController
class, 130
arrays
for data from picker view, 180
declaring, 213
for-in loop to iterate across, 47
Preference Items, 287-288
for property list, 279
of strings, declaring, 242
in Swift, 180-181
of UTImage objects, 170-172
variadic parameters and, 55
in view controller class, 188
Aspect Fill, for View Mode attribute, 175
assertions, unit test failure, 477-478
asset bundle, for application icon, 88
asset catalog, of project, 167
Asset field type, in CloudKit, 329
Assets.xcassets file, 88, 125, 167-168, 186,
223
creating new image set, 173
assistant editor, 26, 28, 106, 188
displaying, 108, 110, 132
asynchronous operation, waiting for completion,
479
ATS (Application Transport Security), 406—408
configuring to allow insecure HTTP
connection, 414
disabling, 407
attribute editor
Initial View Controller option, 195
for label font size, 133
Attribute Inspector, 16, 92
for button background color change, 127
for button properties, 97
for collection views, 224
Content property for table view, 205, 206
displaying, 14

for Image attribute of image view, 175

for map view, 444

for Scale Factors property, 240

for segue, 120, 121

for tab bar item content, 232-233

for table view, 213

for text attribute of label, 149, 173

for text field, 143
attributes, for entity in data model, 386
authentication, setting custom HTTP request

header to support, 405

authorizationStatus method, 433
availability, information for App Store, 537

background color
action sheet to change, 161-165
changing, 14
for button, 135, 410
background image
adding, 131
for button, 98
for default scene of storyboard, 126
background of screen, tapping to dismiss
keypad, 146
background process, for synchronization,
296-297
backgroundSessionConfiguration
WithIdentifier method, 404
base class, 74
beta testing, 507. See also TestFlight service
(Apple)
adding user, 548
.bmp file format, 167
body of loop, 45, 47, 48
boilerplate code, adding, 21
Bool data type, 38
break statement, 49
defer statement and, 66
breakpoint navigator, 26

build, 8

571

build target — CLLocationManager instance

uploading to iTunes Connect, 544
build target, 465
Bundle ID (App ID), 21, 340, 555, 557
creating, 511-513
for provisioning profile, 532
registering, 535
buttons
adding to navigation bar, 196-197
adding to scene, 135
adding to storyboard, 112, 126-128, 199
in alert view, 156-157
alignment constraint editor for, 131, 133
background color, 410
connecting to Touch Up Inside event, 114
constraints for sizing, 127, 128
images for, 98
standard types, 98
buttons:XCUIElementQuery method, 476
Bytes field type, in CloudKit, 329

Caches directory, 296
Calculator class, building, 81-83
calculator function, 61
camera, 455-464
hiding button for device without, 463
iOS Simulator lack of support for, 33
specifying, 456
Cancel button, 377
in alert view, 156
canShowCallout property, in
MKPinAnnotationView class, 446
case clause, 44-45
case keyword, for enumerations, 77
catch-all clause, 65
catching errors, 64—66
categories, for application in App Store, 557
cell styles, for table row, 206-207
cellForRowAtIndexPath method, 210, 214,
242-243, 283
cells, in collection views, 219-220

572

cellular radio, 427
center member of region, 444
centering labels, 92
constraints for, 100
Certificate Assistant dialog box, 514, 528
certificate request, 513
creating for distribution certificate, 528-531
information on, 515, 516
team manager approval of, 515, 531
Certificate Signing Request, 563
Character data type, 38
childrenMatchingType method, 471
CircleArea method, 399, 409
Ckasset class, in CloudKit, 329
CKContainer objects, 327
CKDatabase instance
fetchRecordwWithID method of, 352
saveRecord method of, 351-352
CKRecord objects, 329
CKRecordID instance, creating, 351
CKReference class, in CloudKit, 329
CKReference data type, 333
class keyword, 70
classes
computed properties, 76—77
conforming to multiple protocols, 78
creating with Swift, 70
inheritance, 74-76
methods, 71-73
properties, 70-71
saving file for new, 388
for user interface testing, 469-470
cleanup code, for error, 66
CLGeocoder class, 434
client-side data model, Core Data for, 365-367
CLLocation class, in CloudKit, 329
CLLocation object, 432
CLLocationDegrees value, 432
CLLocationManager class, 428
desiredAccuracy property of instance, 430
service availability methods, 433

CLLocationManager instance

ClLLocationManagerDelegate protocol — ContactData class

distanceFilter property of, 430
retrieving location updates, 431
CLLocationManagerDelegate protocol,
428, 440
methods for location update, 431
methods relating to heading updates, 435
close button, and modal view, 262
closures, 57-61
closure expressions, 59
types, 58-59
CloudKit, 327-379
checking for service availability, 351
code to fetch initial data from, 368-373
common operations, 350-352
creating records programmatically, 351-352
development and production environments,
330
preparing to use, 338-350
CloudKit dashboard, 330, 331-338
for adding new record, 335
building server-side data model with, 367
creating record type, 331-333
generation of unique record identifiers, 351
CloudKitPhotos application, 352-379
DetailViewController.swift file, 360
user interface elements, 354-365
CloudLoaderDelegate method,
implementing, 371-372
CloudLoaderDelegate protocol, 368
CLPlacemark objects, 434, 435
Cocoa Touch class, 265
Cocoa Touch layer, 96
Code Signing Identity node, 543
Debug node, Any iOS SDK node, 525
Release, Any iOS SDK, 566
Code Signing section, 542, 566
coding, 8
collection views, 217-227
appearance setup, 224
cell setup, 225
cells, 219-220
delegate and data source, 220-222

Interface Builder for creating, 218-219
user selection of item, 221
collectionView method, 221, 226-227
collectionViews:XCUIElementQuery
method, 476
colon (:), for superclass and subclass
relationship, 74-75
color, background
action sheet to change, 161-165
changing, 14
for button, 135, 410
comments, 39
Company Identifier, domain name as, 239
comparing dates, 182-183
compass, 427
compass headings, 435-436
compilation, 8
compile-time errors, 490
issue navigator to list, 24-25
components, returning number in picker view,
179
computed properties, 76-77
concatenating strings, 39-40
Connect button, to create outlet, 109
ConnectionDelegate protocol, 80
constants, creating and naming, 37-38
constraints, 95, 99-106
for centering labels, 100, 112
in default scene for CoreDataTest
application, 394-395
popover layout, 266
for scroll view, 250, 252-253
specifying programmatically, 248
for toolbar, 235, 236, 264
updating frames to match, 127
constraints editor, 132
for collection view cell, 225
for collection views, 224
displaying, 126
for image view, 131
for table view, 212, 281
ContactData class, 389

573

ContactData entity — date and time

ContactData entity, NSManagedObject class

to represent, 393
containers for iCloud data, 327
adding records, 334-336

content area of scroll view, height and width,

246
contentOffset property, and scrolling
behavior, 246, 247
contentsForType () method, 310
contentSize property, 246
continue statement, 49-50
control flow statements, 42—49
if statement, 42-43
if-else statement, 43-44
loops, 45-49
breaking out of, 49-50
for-in loop, 46-47
for loop, 45-46
repeat-while loop, 48-49
while loop, 47-48
switch-case statement, 44—45
control transfer statements, 49-50
coordinate property
of CLLocation object, 432
in MKAnnotation protocol, 445
copyright, 541, 561
Core Data, 381-398
adding to project, 384-389
basics, 381-383
for client-side data model, 365-367
vs. CloudKit, 327
instantiating objects, 389-390
persisting objects into database, 21
to serialize/de-serialize object to SQLite
database, 391-398
Core Location, 427-442
accuracy, 430
adding reference to, 437-438, 449
compass headings, 435-436
error handling, 433
permissions, 428-430
receiving updates, 431-432

574

CoreDataTest application, 391-398
constraints in default scene, 394-395
data model file for, 392

CoreGraphics framework, 96

count method, 181

country property, of CLPlacemark object, 435

createDocument method, 323-324

.csr file, 563

curly braces ({ }), for closure expression, 59
current date and time, 182

custom button type, 98

custom pickers, 184-185

custom segues, 120

CustomPickerTest application, 186-192

dashboard. . See CloudKit dashboard
data classes, 310
Data Formatting Guide, 184
data in iCloud, 327
data model file, for CoreDataTest
application, 392
data source methods
for collection views, 225-227
implementing in view controller, 213
data source object
for dynamic table views, 209
for picker, 177
setup, 178
data source property, for table view, 212
data types, 38-39
appending ? to, 41
default, for property list items, 279
retrieving preference values of different,
289-290
database
persistent store coordinator for, 382
persisting objects into, 21
reading managed objects from, 397-398
database tables, as entities, 383
date and time, current, 182

date picker — distanceFromLocation method

date picker, 177
date property, of date picker, 182
dates, in Swift, 182-184
Date/Time field type, in CloudKit, 329
debug navigator, 26
debugger area in workspace window, 30
declaration
of constant or variable, 38
of functions, 53
default case, in switch statement, 44-45
default container, 327
default image, for image view, 170
default scene
adding UTLabel object, 149, 187
adding UITableView instance, 212
embedding as root view controller, 200
Default state, for UTButton object, 98
default values for member variables, initializer
for, 73
default zone, 335
defaultContainer class method, of
CKContainer class, 328
DefaultValue key, in Preference Items
property, 288
defer statement, 66
deinit keyword, 73
deinitializer, 73
delegate methods
for collection views, 225-227
implementing in view controller, 213
delegate object
for dynamic table views, 209
for picker, 177
setup, 178
for receiving location updates, 428
delegate property, for table view, 212
DELETE (HTTP verb), 401
DeleteSelf, for field, 336
deleting
fields in CloudKit records, 333
files and groups, 23
item from Root .plist file, 291

record type, 333
records in CloudKit, 336
deploying to production, 337-338
desiredAccuracy property, of
CLLocationManager instance, 430
destructive button on action sheets, 159
creating, 160
Detail Disclosure button type, 98
detail view controller scene, 359
DetailViewController.swift file, code to
display information on Photo instance, 374
development certificates
creating, 513-517
including in provisioning profile, 519, 521
for profile, 305-306
development environment, 330
development provisioning profile, 304
creating, 316, 354, 518
vs. distribution provisioning profile, 564
information on, 345
development schema, resetting, 337
Device Manager window, to register device for
development, 508
device-independent units, for screen size, 86
devices. . See iOS devices
dictionary
adding to view controller class, 189
of key-value pairs for preferences, 289
in Preference Items property, 288
for property list, 279
Dictionary object, 186
Did End On Exit event, 412
of text field, 145
directory, for application on device file
system, 296
Disabled state, for UIButton object, 98
dismissing popovers, 257-258
dismissViewControllerAnimated method, 262
distanceFilter property, of
CLLocationManager instance, 430
distanceFromLocation method, of
CLLocation object, 432

575

distribution build — Explicit App ID

distribution build
creating distribution certificate, 528-531
preparing for TestFlight, 527-544
distribution certificate, creating, 528-531,
563-564
distribution provisioning profile, 304, 518
for application binary, 564-565
creating, 531-534
DivisionByZero, error handling, 67-68
do . . . catch statement, 64—65
dock, 117, 118
document outline, 119
documents
opening existing, 312
saving to iCloud, 312-313
searching iCloud for, 313-315
Documents directory, for application, 296
domain names
as Company Identifier, 239
uniqueness of, 21
Double data type, 38
in CloudKit, 329
doubleTap method, 473
downloading
development certificate, 515
distribution certificate, 531
provisioning profile, 349-350, 522
Xcode, 6,7
downloadPhotosFromCloud method,
implementing, 371
dragging, recognizing, 270
dynamic table views, 207-211

earlierDate method, 182-183

Edit Scheme dialog box, 543, 567

editor area in playground screen, 36

editor area in workspace window, 26-28
opening files in, 33-34

elementBoundByIndex method, 471, 474

576

ElementCollectionViewCell class, 221, 225
elementMatchingType method, 471
elementType property, of XCUIElement
Attributes protocol, 475
else clause, for if statement, 43—44
e-mail notification, to new user account, 546,
549
empty string, initializing, 39
enabled property, of XCUIElement
Attributes protocol, 475
encapsulation, 76
encodeWithCoder method, 279
Enterprise iOS Developer Program, 5
entities
defining in data model, 386
description, 383
entitlements
enabling for application target, 354
enabling in Xcode project, 308-309, 350
iCloud-specific, 317
enum keyword, 77
enumerations, 77
creating to represent errors, 67
to represent errors, 63
environment variables, setting arguments of,
470
ephemeralSessionConfiguration
method, 404
error handling, 63-68
defer statement, 66
suppressing, 65
throwing and catching, 64-66
Errortype protocol, 63
exception
from failure to load document, 310
in web services connection constraints, 407
exclamation mark (!), for implicitly unwrapped
optional, 42
expectationForPredicate method, of
XCTestCase class, 479
Explicit App ID, 340

external testers — .gif file format

external testers
information for, 537
registering, 549-552

Facebook. See also social media integration
actions for sharing on, 423
code to post to timeline, 425
displaying share sheets, 421-425
fetch request, 391
fetchExistingContactData method, 397
fetchListOfPhotos method, implementing,
370-371
fetchRecordWithID method, of CKDatabase
instance, 352
fields
adding to record type, 332
in CloudKit records, 329
file coordinator object, 310
file formats, Ullmage supported, 167
file options dialog box, 122
10S Resource section, Property List, 277-278
file presenter object, 310
files
creating empty, on iCloud, 324
deleting, 23
opening in editor area, 33-34
final keyword, 76
find navigator, 24
first responder, 145
Fixed Space style, for toolbar buttons, 237
flat app structure, 230
tab bar controller for, 229
Flexible Space style, for toolbar buttons, 237-
238
Float data type, 38
font property, of UILabel class, 99
font size, for labels, 133
footer, in table views, 203
for loop, 45-46

forced try expression, 65
foreground image, for button, 98
for-in loop, 46—-47
form sheet presentation style, 260
format strings, for dates, 183-184
forward slashes (//), for comments, 39
forward-geocoding, 434
Foundation framework, 96

mapping objects to JSON types, 402
frame property, of XCUIElementAttributes

protocol, 475

frames, updating, 128
framework, 95

layers in, 96
freeing resources, deinit method for, 73
FruitDetailViewController class, outlets

in, 134

FruitList template, 124-139

image resources, 125-126
FruitList.swift file, 129-130
full screen presentation style, 260
func keyword, 53, 58
function types, 57
functions, 53-56

declaration, 53

parameters and return values, 53-55

Game Center Programming Guide, 541, 562
geocodeAddressString method, 434
geocoding, 434-435
geographic North Pole, 436
gesture recognizers, 270-271
adding to view controller class, 146
tap, 175
gestures, XCUIElement methods for,
473
GET (HTTP verb), 401
getter, 76
.gif file format, 167

577

Git repository — image resources

Git repository, 21
global closures, 58
GPS, 427
Green stage, 488
group
creating, 23
deleting, 23
for unit test files, 465, 486
grouped table view, 203, 211-215

hard disk space, for app development, 3

header, in table views, 203

heading updates, 435

headingAvailable method, 433, 435

height of picker rows, 185

HelloSwift project, opening, 33

hierarchical app structure, for navigation
controllers, 229, 230

hierarchical settings pages, in Settings
application, 287

Highlighted state, for UTButton object, 98

Home screen icon, 9-10

horizonalAccuracy property, of location
object, 432

HTTP connection, configuring ATS to allow
insecure connection, 414

HTTP request header, setting custom to support
authentication, 405

HTTP status codes, 400

HTTPAdditionalHeaders attribute, of
NSURLSession, 404

HTTPMaximumConnectionsPerHost attribute,
of NSURLSession, 404

iCloud account, 328

iCloud architecture, 296-297

iCloud storage, 295-325
basics, 295-297

578

checking for service availability, 309-310
creating empty file on, 324
creating new document, 311-312
opening existing document, 312
preparation to use APIs, 297-309
saving documents, 312-313
searching for documents, 313-315
using document storage, 310-315
viewDidLoad method for implementing, 320
iCloud Storage APIs, 296, 297-309
creating iCloud-enabled App ID, 297-302
iCloud-enabled App ID, 345
creating, 338-343
creating provisioning profile, 302-308
iCloud-specific entitlements, 308-309, 317
icon
for App store, 540
Home screen, 9-10
size for application, 87-88
icon file, for settings application, 286-287
IDE (integrated development environment). . See
Xcode
identifier, for default container, 327-328
identifier attribute, of collection view
cell, 225
Identifier key, in Preference Items
property, 288
identifier property, of XCUIElement
Attributes protocol, 475
Identity inspector, 201
for accessibility identifier, 474
if statement, 42-43
optional binding in, 41-42
Image attribute, setting for image view, 174-175
image picker
displaying, 456-458
displaying in popover controller, 457
image resources
adding to project, 173, 186, 223, 263
for FruitList template, 125-126
for share sheet, 422
for tabbed application, 240

image sets — iOS developer account

image sets
in asset catalog, 168
creating, 186
image source, selecting, 456
image view
animationDuration property of, 172
animationImages property, 170-172
default image for, 170
selecting from Object library, 131
startAnimating method of, 172
ImageInformationViewController
class, 265
ImageInformationViewController.swift
file, 267-268
ImagePicker application, 459-464
layout constraints for, 461
imagePickerController method, 457, 458
imagePickerControllerDidCancel method,
457,463
images
adding to view, 167-176
attaching to share sheet, 420
for button, 98
immutable array, 180
immutable strings, 39
implicitly unwrapped optional, ! (exclamation
mark) for, 42
import statement, 439
in keyword, 59
increment expression, in for loop, 45-46
index, CloudKit creation, 338
index numbers
for array, 180
for values in tuple, 40
individual membership, for registered Apple
Developer, 4-5
Info Dark button type, 98
Info Light button type, 98
info.plist file, 89-90
Bundle identifier key, 511, 524, 541-543,
557, 565

for configuring ATS, 407
NSLocationWhenInUseUsageDescription
key, 437
for permission, 428-429
UIRequiredDeviceCapabilities key, 430
inheritance, 74-76
init initializer, 311
init? method, 279
initial expression, in for loop, 45-46
initializing, 73
empty string, 39
inspector area in workspace window, 28
installing
applications, 32
Xcode, 6,7
instance variable, in view controller class,
108
instantiating
Core Data objects, 389-390
objects, 74
Instruments tool, 6
Int data type, 38
Int field type, in CloudKit, 329
InteractionSample template, 110-115
Interface Builder, 6, 12-13, 110
creating table view with, 205-211
Interface editor
adding gesture recognizer to, 270
for delegate and data source object setup, 178
interfaces, 78. . See also protocols
intermediate certificate, 529-530
internal testers, registering, 545-549
iOS, 3
iOS 8
Adaptive layout feature, 90
devices not supporting, 4
10S Dev Center, S5
iOS developer account, 4-5, 555
for application distribution through App
Store, 553
Certificates section, 563

579

iOS developer essentials — iTunes Connect

for creating App ID, 511
for creating development certificate, 514
for creating distribution certificate, 528

for creating distribution provisioning profile,

531-534
devices registered to, 509-510
Member Center, 508-509

Certificates, Identifiers & Profiles, 338—

339
i0S developer essentials
Mac, 3
testing device, 4
iOS devices
device UDID, 507-510
differences, 86-90
inclusion in provisioning profile, 347-348,
520, 522
location hardware, and battery drain, 428
orientations for, 89-90
supporting multiple types, 85-93
iOS Provisioning Portal
certificate request submission, 513
registering App ID with, 316, 354
registering UDID with, 507-510
iOS SDK (Software Development Kit), 4, 6
iOS Simulator, 4, 6, 19, 31-33
and device at fixed location, 433
executing all unit tests in, 468
limitations, 33
rotating, 32
running app on, 115
testing app in, 17
iOS template category, 21
iPad, 85
action sheet on, 159, 160
displaying image picker in popover
controller, 457
Home screen icon sizes for, 10
icon sizes, 87-88
Mac for app development, 3
orientation support for applications, 89
physical vs. logial size, 87

580

user interface, vs. iPhone version, 90
iPad Simulator, running app on, 93
iPhone, 3, 85

action sheets on, 159-160

Home screen icon sizes for, 10

icon sizes, 87-88

image for, 169

Mac for app development, 3

orientation support for applications, 89

physical vs. logial size, 87

tab bar controller, limits on tab

display, 230
iPhone 5S simulator, 31
iPhone Simulator, running app on, 92
iPod Touch, as testing device, 4
Is Initial View Controller option, 355-356
is-a relationship, 74
isAvailableForServiceType method, 419
isCameraDeviceAvailable method, 456
isEqualToDate method, 182-183
isMonitoringAvailableForClass
method, 433
ISOcountryCode property, of CLPlacemark
object, 435
isRangingAvailable method, 433
isSourceTypeAvailable method, of
UIImagePickerController class, 456
Issue Navigator, 24-25, 102-103
items, in collection view, 218
iTunes App Store, 9

submitting applications to, 537
iTunes Connect

adding user to team, 545-546

App Store tab, 557-562

App information, 557

App Review section, 562

Apple Watch, 560

Build, 561

Game Center section, 562

general app information, 561-562
pricing and availability, 558
rating link, 562

iTunes store — let keyword

versions, 559-560
creating application profile, 553-556
creating record for application, 534-541
Features tab, 563
My Apps link, 553-554
New App option, popup window for, 555
submitting applications to, 304
submitting archive to, 568
TestFlight tab, 563
uploading beta test build to, 527
uploading build to, 544

iTunes store, unique identifier for application,
21

JavaScript Object Notation (JSON), 401
JPEG file, 167
obtaining NSData instance for image in, 458
saving image to, 366
JSON (JavaScript Object Notation), 401
mapping Foundation objects to, 402
JSONObjectWithData method, 402
jump bars in workspace editor area, 26

keyboardDidHide method, 254
keyboardDidShow method, 254

implementing, 255-256
keyboards

associating with text field, 143-144

displaying and dismissing, 145-146

for editable text views, 146

for share sheet, 418

tap gesture recognizer to dismiss, 153-154,

412-414

view controller class notification of, 254
Keychain Access utility, 513, 528, 563
key-value pairs

in CloudKit records, 329

data storage, 295

keywords, in Application Information screen,
539, 559

label property, of XCUIElementAttributes
protocol, 475

labels, 14

adding to storyboard, 92, 128-129, 133

centering, 92

constraints for, 100, 112

font size for, 133

resizing, 92

on storyboard, orange outline for, 102

updating text after button press, 114
laterDate method, 182-183
latitude member, of CLLocation object, 432
latitude/longitude, conversion to address, 434
launch file, 10

setting up, 16
launch image

for app, 10-11

in asset catalog, 168
launchArguments property, 470
launchEnvironment property, 470
LaunchScreen.storyboard document, 10
layout

for collection views, 217

constraints, 14

preview of, 106-107
layout constraints

for CloudKitPhotos application, 364

for CLTest application, 438-439

for iCloud document, 318

for ImagePicker, 461

for RESTClient application, 411

for share sheet, 423

for SimpleButton application, 482

on storyboard scene, 361

for swiftCalculator, 494-495
leading attribute, of views, 102
let keyword, 37, 180, 186

581

library area in workspace window — MKPinAnnotationView class

library area in workspace window, 28-29
List field type, in CloudKit, 329
loadDocument method, 320
loadFromContents method, 310, 318

loadImageFromFileInDocumentsDirectory

method, 374
locality property, of CLPlacemark object,
435
location
retrieval. . See Core Location
simulating test location, 32
of storage for saving playground, 36
Location field type, in CloudKit, 329
location hardware, and battery drain, 428
location property, of CLPlacemark object,
435
location updates
adding code to receive, 439-441
UIButton instance to start/stop, 439
locationManager method, implementing,
431-432, 440-441
locationManagerShouldDisplay
HeadingCalibration method, 435, 436
locationServicesEnabled method, 433
LoginSample project, 147-154
longitude member, of CLLocation object,
432
loop condition, in while loop, 47

Mac, 3
MacOS X, 3
macros
to create assertions, 477
for XCTest assertions, 491
magnetic North Pole, 436
Main.storyboard file, 92, 117-118
managed object context, 381-382
instantiating, 390
managed object model, 383

582

creating, 384
instantiating, 389
managed objects, 381
reading, 391
reading from database, 397-398
writing, 390-391
mandatory methods, implementing in
conforming class, 189
Map Kit, 443-453
accessory views, 447
adding annotations to, 444-446
adding reference to, 449
adding view, 450-451
Maps application, toolbar, 235
maps : XCUIElementQuery method, 477
MapTest application, 447-453

mapType property, of MKMapView instance, 444

mapView method, 446, 452
Marketing URL, in Application Information
screen, 539, 560

MathService web service, 399-400
member variables, in protocol, 78
memory (RAM)

for app development, 3

for images, 167
MessageListener protocol, 78-79
method names, in protocol, 79
methods, 71-73

overriding, 75

variables passed as parameters to, 38
microphone, i0S Simulator lack of support

for, 33

minmax function, 55-56, 60-61
MKAnnotation protocol, 445
MKAnnotationvView class, 445
MKCoordinateRegion structure, 444
MKMapView class, 443

mapType property of, 444

setRegion method of, 444
MKMapViewDelegate protocol, 445, 451
MKPinAnnotationView class, 445

modal segues — NSObject subclass

canShowCallout property in, 446
pinTintColor property, 446
modal segues, 120
modal views, 257, 260-262
alert views as, 155
mode, of date picker, 181
Model-View-Controller pattern, and
Core Data, 381
.mom file extension, 383
multi-line comments, 39
multi-touch gestures, simulating, 32
mutable array, adding element, 181
mutable strings, 39
MutableContainers parameter, 402
MutableLeaves parameter, 402

names
of App ID, 340
of constants, 38
of new class, 389
of provisioning profile, 348, 521, 523
of record type, 332
of variables, 38
nameToImageMapping dictionary, 191
navigation bar, 196
navigation controllers, 193-201
adding to storyboard, 193-195
embedding default scene as root view
controller, 200
embedding Table View Controller scene in,
356
hierarchical app structure for, 229, 230
interface, 196-197
navigationBars:XCUIElementQuery
method, 476
Navigator area in Xcode workspace, 22-26
nested closures, 58
NetworkManager class, 78-79
NetworkTimeout, as NetworkError
enumeration, 63

nil, 41,71
non-retina device, image for, 169
North Pole, geographic, vs. magnetic, 436
NSAllowsArbitraryLoads dictionoary, 407
NSAppTransportSecurity key, 414
NSArray class, in CloudKit, 329
NSCoding protocol, 279
NSData class, 457-458
in CloudKit, 329
NSDate class, 182
in CloudKit, 329
NSDate Class Reference, 183
NSDateFormatter class, 183
NSEntityDescription class, 383
NSError, 433
NSExceptionDomains, 407
NSFetchRequest class, 391
NSFileManager class, URLForUbiquity
ContainerIdentifier () method
of, 309
NSFilePresenter protocol, 310
NSJSONSerialization class, 402
NSLayoutConstraint Class Reference, 95
NSLayoutConstraint instance, 95
NSLocationWhenInUseUsageDescription
key, 437
NSManagedObiject class, 366, 381, 389
to represent ContactData entity, 393
NSManagedObjectContext class, 382
NSManagedObjectModel class, 383, 389
NSMetadataQuery class, 315
startQuery method of, 314
NSMetadataQuery Class Reference, 315
NSMetadataQuery object, statements to
instantiate, 321
NSMetadataQueryDidFinishGathering
Notification message, 314
NSMutableString class (Objective-C), 39
NSMutableURLRequest, creating from
URL, 406
NSNumber class, in CloudKit, 329
NSObject subclass, creating, 129

583

NSPersistentStoreCoordinator class — onFacebookShare method

NSPersistentStoreCoordinator class, 382
creating instance, 390
NSPredicate class, 313-314
NSSessionDelegate protocol, 404
NSString class, 39
in CloudKit, 329
NSUDID class, UDIDString method of, 351
NSURL instance, retrieving, 314
NSURLConnection API, 403
NSURLRequest instance, 406
NSURLSession API, 403-404
protocols in, 404
NSURLSession class
creating instance, 404-405
data task creation, 405-406
NSURLSession programming guide, 406
NSURLSessionConfiguration class, 403
NSURLSessionDataDelegate protocol, 404
NSURLSessionDataTask class, 403
NSURLSessionDownloadDelegate
protocol, 404
NSURLSessionDownloadTask class, 403
NSURLSessionStreamDelegate protocol, 404
NSURLSessionStreamTask class, 403
NSURLSessionTaskDelegate protocol, 404
NSURLSessionUploadTask class, 403
NSUserDefaults object, 289, 290
numberOfComponentsInPickerView
method, 190
numberOfLines property, of UILabel class, 99
numberOfRowsInSection data source method,
210, 213-214, 242, 283
numberOfSectionsInCollectionView data
source method, 221, 226-227
numberOfSectionsInTableView data source
method, 210, 213, 283
implementing, 242

Object library, 14-15
Bar Button Item, 235, 236, 357-358

584

Collection View object, 224
Date Picker component, 181
displaying, 110, 131
Image view, 264
Label object, 201
Map Kit view, 444, 450-451
Navigation Controller, 193
Picker View component, 177-178, 187
Scroll View, 245, 250
Segmented Control instance, 450
selecting label from, 133
Tab Bar Item, 234
Table View object, 281
Text Field object, 143, 144
Text View element, 146
Toolbar, 235, 264
View Controller object, 200-201, 233
Objective-C, 8, 35
custom getters and setters, 76
NSMutableString class, 39
NSString class, 39
object-oriented programming (OOP), 69-83
objects. See also managed objects
instantiating, 74
persisting into database, 21
observers, removing all, 255
onadd method
implementing, 396-397
in ViewController.swift file, 500-501
onButtonPressed method, implementing, 440
onButtonTapped method, implementing,
482-483
onCalculateArea method, implementing,
413-414
onCamera method, in ViewController.
swift file, 462
onDismissKeyboard method, 375
onDivide method, 501-502
one-to-many relationship, between record types
in CloudKit, 333
one-to-one relationship, 333
onFacebookShare method, 425

onMultiply method - Placeholder attribute

onMultiply method, 502-503
onPhotoLibrary method, in
ViewController.swift file, 462
onPresentActionSheet method, 164-165
onSaveDocument method, 323
OnSaveRecord method, implementing, 377-
379
onSegment Changed method, of view controller
class, 452
onSelectPicture method, 376
onSubtract method, in ViewController.
swift file, 501
OnTapGestureDetected method, 273
onTwitterShare method, 424-425
OOP (object-oriented programming), 69-83
openWithCompletionHandler method, 312
optional attribute, for method or property, 80
optional binding, 41
optionals, 41-42
return values as tuple, 54
orange outline, for label on storyboard, 102
organization identifier, in App ID, 511
orientation property, of XCUIDevice, 471
otherElements:XCUIElementQuery
method, 477
outlets, 108-109
Connect button to create, 109
creating and connecting to image view, 132
creating in AddPhotoViewController
class, 365
creating in ViewController class, 152
in DetailViewController class, 362
for iCloud Service, 319
mapModeSegmentControl, 450
for popover text fields, 266-267
for Scroll View object, 245
for table view, 240
for text fields on scroll view, 253
in view controller class, 112, 145
override keyword, 75

parameters
closure used as, 59
of functions, 53-55
variables passed as, 38
parental controls, 562
Passthrough attribute, of popover, 258
password
constraints for label, 149
user interface to collect, 147-154
performance testing methods, 489
period characters (. . .), 55
permissions, to access location information,
428-430
persistent store coordinator, 382
persistent stores, 389
photo library, 455-464
Photo record type, 367
photo sharing, CloudKitPhotos application
for, 352-379
picker view, 177
returning number of components, 179
pickers, 177-192
custom, 184-185
pickerview method, 179, 185, 190, 191
pickerView:didSelectRow: inComponent :
delegate method, 192
Pin button
for constraints, 112
for displaying constraints editor popup, 126
on storyboard, 104
pin constraints dialog box, 187
adding constraints with, 149
for cLTest application, 438—439
for image view, 460
pinch, simulating, 32
pinTintColor property, in
MKPinAnnotationView class, 446
pixels, 86
Placeholder attribute, of text field, 150, 410

585

placeholders — properties

placeholders
in message variable, 40
in text fields, 143, 375
PlacemarkClass.swift file, 445
plain table view, 203, 204
playgrounds, Xcode, 35-37
plist file, code to create, 282
PNG files (Portable Network Graphics), 167
for button image, 98
dimensions for icons, 10
saving selected image to, 458
popover controller, displaying image picker in,
457
popoverPResentingButton class, 457
popovers, 257-259
for action sheets, 160
PopoverTest application, 262-268
POST (HTTP verb), 401
creating NSMutableURLRequest from URL,
406
postalCode property, of CLPlacemark
object, 435
predicate property, 314
predicates, 313-314
to return all records in record type, 370
Preference Items array, 287-288
reading with code, 289-290
preferences, default values in settings bundle,
290
Preferences and Settings Programming
Guide, 287
prepareForSegue method, 210, 221, 265
overriding, 122, 372-373
Present As Popover, for view
presentation, 120
Present Modally, for view presentation, 120
Present Modally segue, 260
presentation sheets, 260
presentViewController method, 456-457
of UIViewController, 157
pressForDuration method, 473

586

preview, of layout, 106-107
pricing, information for App Store, 537
Priority property, and constraints, 102
private database, in container, 328
private keyword, 58
private method variables, 76
privateCloudDatabase method, of
CKContainer class, 328
processor speed, for app development, 3
production environment, 330
deploying to, 337-338
project navigator, 22-26, 173
displaying, 14
root project node in, 524
Project Options dialog box, 12-13, 21
domain name as Company Identifier, 239
for FruitList template, 125
Include Unit Tests check box, 486
option to include Core Data, 384
Organization Identifier field, 308, 350
Product Name field, 308, 350
Universal device type, 85-86
Project Settings page
to add Core Data to project, 384-385
Build tab, Link Binary With Libraries
Corelocation framework, 427, 428
Map Kit framework, 443
Social.framework, 417-418
projects, 20
acceptance criteria of, 488
adding Core Data to, 384-389
adding image resources to, 173
adding support for Ul testing, 465-467
asset catalog of, 167
build targets for, 30-31
configuring, 523-525, 541-543, 565-568
creating, 11
executing all unit tests in, 490
properties
of classes, 70-71
computed, 76-77

property list editor — removeAtIndex method

of project, 524
protocols and, 78
of UILabel class, 99
property list editor, 277
property lists, 277-284
adding new entry to, 278
creating, 277-279
reading, 279-280
PropertyListTest application, 280-284
protocol keyword, 78
protocols, 77-80
in NSURLSession API, 404
prototype cell, 207-208
setup, 241, 357
provisioning profile
App ID associated with, 305
creating, 344-350, 518-523
creating for iCloud-enabled App ID, 302-308
device inclusion in, 347-348
downloading, 349-350, 522
names for, 348
public database, in container, 328
publicCloudDatabase method, of
CKContainer class, 328
Push, for view presentation, 120

queries
of iCloud, 313-315
for retrieving records, 352
XCUIElementTypeQueryProvider methods
for, 476
queryDidFinish method, 321-323
question mark (?), appending to data type, 41

RAM
for app development, 3

for images, 167
rating link, 562

reading property lists, 279-280
read-only text view, 146
recordDownloadBlock block, 368-369
recording, 478
records in CloudKit, 327, 329
adding to container, 334-336
creating programmatically, 351-352
creating relationships between types, 333-334
creating type with dashboard, 331-333
modifying and deleting, 336
resetting schema and, 337
retrieving, 352
types, 328-329
RectangleArea method, of MathService web
service, 399
red-green-refactor, 488-489
reference, to default iCloud container, 328
reference type, 39
in CloudKit, 329
refreshDocument Preview method,
318, 324
regions, 444
registerDefaults method, of
NSUserDefaults object, 290
registered Apple Developer, membership
options, 4-5
registering
external testers, 549-552
internal testers, 545-549
UDIDs, 507-510
regression bugs, 485
regression testing, 9
Relation propery, and constraints, 102
Relationship Segue, 193
for tab bar, 234
relationships
between containers, databases, and records,
329
creating between record types, 333-334
relationships between classes, 74
relationships between records, in CloudKit, 327
removeAt Index method, 181

587

repeat-while loop — scenes

repeat-while loop, 48-49
Replace, for view presentation, 120
report navigator, 26
requestAlwaysAuthorization method, 429
requestLocation method, 432
requestWhenInUseAuthorization
method, 429
research materials
Apple Watch Programming Guide, 540, 560
Data Formatting Guide, 184
Game Center Programming Guide, 541
HTTP documentation, 405
iCloud Design Guide, Designing for Key-Value
Data, 293
NSLayoutConstraint Class Reference, 95
NSMetadataQuery Class Reference, 315
NSURLSession programming guide, 406
Preferences and Settings Programming
Guide, 287
UIDocument Class reference, 313
UlSegmentedControl class reference, 448
Working with Auto Layout Guide, 248
resignFirstResponder method, of text field
object, 145-146
resizing labels, 92
Resolve Auto Layout Issues button, on
storyboard, 104
resource files, 8
ResourceNotFound, as NetworkError
enumeration, 63
resources, 16—17
access with RESTful web service, 400
deinit method to free, 73
RESTClient application, 408-414
layout constraints for, 411
RESTful JSON web services, 399-414
RESTful web services, 400-401
results area, in playground screen, 36
resume method, of task, 406
Retina display, 86
return arrow (->), 53-55, 64

588

return statement, defer statement and, 66
return values, of functions, 53-55
reusable rows, 185
reverse-domain name of website, for App ID,
299-300
reverseGeocodeLocation method, 434-435
reverse-geocoding, 434
role, for iTunes Connect user, 546
root node, for property list file, 277
root view controller, 196
embedding default scene as, 200
Root .plist file, 287
editing, 291
rotating simulator, 32
rotation, recognizing, 270
row in table view, 203
rows in picker, height of, 185
running app, on iOS Simulator, 115
runtime error
from catch clause, 64
terminating app with, 41

save method, for objects to data store, 391
saveImageToDocumentsDirectory
method, 366
saveRecord method, of CKDatabase instance,
351-352
saveToURL method, 311
saving
documents to iCloud, 312-313
file for new class, 388
image to JPEG file, 366
Scale Factors property, 240
scenes. See also default scene
adding buttons, 135
adding objects, 361
adding UTButton instances to, 150-151
adding UITableView instance, 281
adding user interface elements to, 131-139

schema - SimpleButtonUITests.swift file

in default storyboard file, 121
objects within, 120
on storyboard, 117
creating, 130-131
transition between, 120
schema, 329
CloudKit generation of, 330
deploying, 337
Scheme/Target multi-selector, 30
screens
size of, 86-87
storyboard for overview, 117
screenshots, in Application Information screen,
539, 559, 560
scrolling views, 245-256
adding user interface elements to, 251
map view, 444
and text fields, 248-249
UlScrollView class, 245-248
vertical, in table view, 203
search, for documents on iCloud, 313-315
search filter for iCloud documents, 313
searchScopes property, 313
sections in table views, 203, 204
returning number of, 210
secure connections, for web services, 406
segmented control, 448
adding to Map Kit scene, 450
segregating data, by zones, 335
segue, 120
creating, 122,201, 221
in storyboard, 136-138
identifier property of, 360
popover presentation, configuring, 258
Present Modally, 260
Select Version to Test link
for external testers, 550
for internal testers, 548
Selected state, for UIButton object, 98
selector bar, for library area, 29
ServerError, as NetworkError
enumeration, 63

server-side data model, building with CloudKit
Dashboard, 367
server-side resources, users access to, 399
service availability
of Core Location, methods to test, 433
of iCloud, 351
checking for, 309-310
sessions
methods to create, 404
multiple, with NSURLSession API, 403
setInitialText method, 419-420
setLocalizedDateFormatFromTemplate
method, 183
setRegion method, of MKMapView instance,
444
setter, 76
Settings application, reading and displaying
user preference values, 293
settings bundle
adding to application, 285-289
default values for preferences in, 290
dictionary of key-value pairs for preferences,
289
element types in, 288-289
Settings.bundle file, 285, 290, 291
SettingsTest application, 290-294
setUp method, 489
in test class, 468
shake gestures, simulating, 32
Share on Facebook button, creating action
for, 423
Share on Twitter button, creating action for,
424
share sheet, 418-421
adding URL to, 420
attaching image to, 420
Show detail segue, 359-360
significantLocationChange
MonitoringAvailable method, 433
Simple Object Access Protocol (SOAP), 401
SimpleButton application, 480-484
SimpleButtonUITests.swift file, 483

589

Sina Webo - strings

Sina Webo. . See social media integration
Single View Application
creating, 11-12
InteractionSample template, 110-115
template, 23
universal project using template, 91-93
size
of button, constraints for, 135
of screens, 86—-87
Size inspector, 102
for bar button item, 237
Size To Fit Content menu item, 14, 92
for labels, 149
SKU code, 537, 557
SLComposeViewController class, 418
isAvailableForServiceType method, 419
setInitialText method, 419-420
SOAP web services, 401
Social framework, 417
importing into project, 424
share sheet, 418-421
social media integration, 417-425
availability, 419
character limit for, 420
share sheet, 418-421
SocialTest application, 421-425
source editor, 26
displaying, 110
sourceType property, for image source, 456
spacing between cells, Size Inspector for editing,
219-220
span member of region, 444
specification, writing for app, 8
splitting tuple, into separate variables, 41
SQLite database
code to setup, 390
Core Data to serialize/de-serialize object data
to, 391-398
square canvas, 99-100
SquareArea method, of MathService web
service, 400

590

Stack button, in storyboard, 103
startAnimating method, of image view, 172
startQuery method, of NSMetadataQuery
class, 314
startUpdatingHeading method, 435
startUpdatingLocation method, 431, 432
permission and, 437
states, of UTButton object, 98
Static Cells, for table view Content property,
206
static keyword, 366
static table views, 206-207
staticTexts:XCUIElementQuery
method, 477
status window, 31
stopUpdatingHeading method, 435
stopUpdatingLocation method, 433
of CLLocationManager instance, 431
storage location, for saving playground, 36
storyboard, 117-139
adding buttons, 112, 199
adding navigation controller, 193-195
adding view controller for photo to iCloud,
362
auto layout-specific buttons, 103
background image for default scene, 126
creating new scene, 130-131
creating segue, 136-138
labels
adding, 92, 112, 128-129, 133
orange outline for, 102
scene in default file, 121
viewing entire, 120
zoom for, 355
String class, 145
String data type, 38
in CloudKit, 329
strings, 39-40
appending, 40
concatenating, 39-40
initializing empty, 39

structured programming - taps

structured programming, 69
styles, for toolbar buttons, 235, 237-238
subclassing, 74
subscript operator (|]), for index numbers, 181
subThoroughfare property, of CLPlacemark
object, 435
summary view, failed tests in TDD, 488
superclass, 74
overriding method, 75
Support URL, in Application Information
screen, 539, 560
suppressing error handling, 65
Swift (programming language), 3, 35-51. See
also object-oriented programming (OOP)
arrays in, 180-181
class creation in, 70
dates in, 182-184
opening code, 108
SwiftCalculator, 492-503
onAdd method, 500-501
onDivide method, 501-502
onMultiply method, 502-503
onSubtract method, 501
test cases, 497-499
SwiftCloudTest application, 315-325
SwiftCloudTestDocument class,
310-312
SwiftCloudTestDocument.swift file,
317-318
swipeDown method, 473
of XCUIElementAttributes protocol, 475
swipeLeft method, 473
of XCUIElementAttributes protocol, 475
swipeRight method, 473
of XCUIElementAttributes protocol, 475
swipes
recognizing, 270
simulating, 32
swipeUp method, 473
switch-case statement, 44—45
switching devices, in iOS Simulator, 31

symbol navigator, 24
synchronization
background process for, 296-297
of data. . See iCloud storage
synchronize method, of NSUserDefaults
object, 290
System button type, 98

tab bar controller, 229
adding new tab to, 233
creating, 231-234
Tabbed Application template, 231
Table View Controller, 205
embedding scene in navigation controller, 356
linking scene to ViewController class, 359
scene to replacing default scene, 355
on storyboard, 354-365
table views, 203-215
appearance, 203-204, 241, 357
Content property for, 206
creating with interface builder, 205-211
displaying managed objects from database in,
397-398
dynamic, 207-211
sections in, 203, 204
static, 206-207
tables:XCUIElementQuery method, 476
tableview method, implementing, 373
TableViewTest project, 211-215
tabs
adding user interface elements to, 240, 241
view controllers for content, 230
tap gesture recognizer, 153-154, 175
adding to dismiss keyboard, 412-414
adding to view, 271
tap method, 473
taps
recognizing, 270
simulating, 32

591

target options dialog box - toolbar

target options dialog box, 467, 487-488
target template dialog box, 467, 487
tasks, creating, downloading and uploading,
406
TDD. . See Test Driven Development (TDD)
team manager, approval of certificate request,
515, 531, 563
tearDown method, 489
in test class, 468
Tecent Webo. . See social media integration
template
for new project, 20-21
Single View Application, universal project
using, 91-93
universal Xcode, 90
template cell, 207-208. . See also prototype cell
terminate method, 470
terminating app, with runtime error, 41
termination expression, in for loop, 45-46
test class, 468
code snippet of typical, 489-490
test condition, for if statement, 42
Test Driven Development (TDD), 485-503
adding support for unit testing, 486—488
techniques, 488—489
test assertions, 477-478, 491-492
test case
anatomy, 468-469, 489-491
for swiftCalculator, 497-499
test expectation, 479
test methods, in test class, 468
Test Navigator, 25, 468-469, 490
with failed unit test, 492
test target, 486
TestFlight service (Apple), 9, 527-552
internal and external testers, 544552
preparing distribution build for, 527-544
testing. See also user interface testing
in app development, 8-9
app on device, 507-525
device for, 4

592

in i0OS Simulator, 17
testWhenAlertDismissed LabelUpdats
Correctly method, 483-484
testWhenButtonTapped AlertAppears
method, 483
testWhenButtonTapped
AlertAppearsWithCorrectTitle
method, 483
text
accessing displayed text from code, 145
on label, updating after button press, 114
Text Field object, adding preference, 292
text fields, 143-146
Placeholder attribute of, 150, 410
placeholders in, 375
scroll views and, 248-249
text property, of UILabel class, 99
text views, 143, 146-147
textAlignment property, of UILabel class, 99
textColor property, of UILabel class, 99
textFieldDidBeginEditing method, 256
textFields:XCUIElementQuery method,
477
textViews:XCUIElementQuery method, 477
thoroughfare property, of CLPlacemark
object, 435
throwing errors, 64—66
throws keyword, 64
.tif file format, 167
timeoutIntervalForRequests attribute, of
NSURLSession, 404
title, in navigation bar, 196
Title key, in Preference Items property,
288
title property, of XCUIElementAttributes
protocol, 475
titleForHeaderInSection data source
method, 214, 242
tmp directory, for application, 296
toolbar, 235-238
in workspace window, 30

touch and hold — UlDatePicker class

touch and hold, recognizing, 270

touch events, 269-270

of UIButton class, 97

Touch Up Inside event
action connected with, 153, 163
connecting to method, 110

touchesBegan method, 269-270

touchesCancelled method, 270

touchesEnded method, 269-270

touchesMoved method, 269-270

trailing attribute, of views, 102

transition, between scenes, 120

TriangleArea method, of MathService web

service, 400

try!, 65

Try It
ActionSheetSample, 161-165
CloudKitPhotos application, 352-379
CLTest application, 436-442
CollectionViewTest project, 222-227
CoreDataTest application, 391-398
FruitList template, 124-139
function for arithmetic operation, 60-61
function throwing exception, 66—68
GestureTest, 271-274
“Hello Swift” iPhone application, 11-17
ImagePicker application, 459-464
LoginSample project, 147-154
MapTest application, 447-453
NavigationControllerTest template, 197
opening file in editor area, 33-34
optionals, 50-51
playground for function, 55-56
PopoverTest application, 262-268
PropertyListTest application, 280-284
RESTClient application, 408-414
ScrollingForms application, 249-256
SettingsTest application, 290-294
SimpleButton application, 480-484
SocialTest application, 421-425

SwiftCalculator, 492-503
SwiftCloudTest application, 315-325
Tabbed Application template, 238-243
TableViewTest project, 211-215
three-component custom picker view,
185-192

TreasureHunt project, 172-176

try keyword, 64

tuples, 40-41
to return multiple values from function, 54

tweet, code to post, 424

tweet sheet, dismissing, 421

Twitter. See also social media integration
actions for sharing on, 423
displaying share sheets, 421-425
messageComposer instance for, 421

Type key, in Preference Items property, 288

UDIDs, obtaining and registering, 507-510
UDIDString method, of NSUDID class, 351
Ul recording, 465, 478
UIAlertController class, 156
addTextFieldWithConfigurationHandler
method of, 157-158
UIApplication class, 96
UIBarButtonItem class, for toolbar option,
235
UIButton class, 97-98
adding instances to scene, 150-151, 162
object states, 98
UICollectionView class, 218
adding instances to scene, 224
UICollectionViewCell class, 219, 220,
224-225
UlCollectionViewDataSource protocol,
220-222
UICollectionViewDelegate protocol,
220-222
UIDatePicker class, 181

593

UlDocument class — unit tests

UIDocument class, 310, 313
creating, 317
UIEventTypeTouches object, 269
UIGestureRecognizer class, 270
UIImage class, 167-170
loading image set into object, 169
UIImagePickerController class, 455,
456,457
isSourceTypeAvailable method of, 456
UITlmagePickerControllerDelegate
method, 463
UIImagePickerControllerDelegate
protocol, 461
UIImagePickerDelegate methods, 377
UIImagePNGRepresentation function, 458
UIImageView object, 170-172
adding to default scene, 174, 460
UIKeyboardDidShowNotification event,
254
UIKit framework, 95-99
UILabel class, 98-99, 143
adding instances to scene, 149, 173, 187, 293
UILongPressGestureRecognizer class, 270
UINavigationController class, 193, 197
UINavigationControllerDelegate
protocol, 461
UIPanGestureRecognizer class, 270
UIPickerView class, 177
UIPickerView instance, 187
UIPickerViewDataSource protocol, 179, 189
UIPickerViewDelegate protocol, 184, 189
methods, 179-180
UIPinchGestureRecognizer class, 270
UIPPickerViewDelegate protocol, 177
UIRequiredDeviceCapabilities key, in
Info.plist file, 430
UIRotationGestureRecognizer class, 270
UIScrollvView class, 245-248
UlSegmentedControl class reference, 448
UlStackView, 103
UIStoryboardSegue object, 123-124
UISwipeGestureRecognizer class, 270

594

UlTableView, 240
UITableViewcCell class, 203
create outlets/actions in, 208
UlITableViewController, 355
UITableViewDataSource method, of
ViewController.swift file, 398
UITableViewDataSource methods,
implementing, 373-374, 397
UITableViewDataSource protocol, 209-210
UITableViewDelegate method,
implementing, 397
UITableViewDelegate protocol, 209-210
UITapGestureRecognizer Class, 270
UITapGestureRecognizer object, 146
UITextField class, 143
adding instances to scene, 149-150
context menu, New Referencing Outlet, 152
reference to, in alert controller, 158
UlTextFieldDelegate protocol, 253
implementing, 412
textFieldDidBeginEditing method, 256
UITextView class, 143
UITTableViewDelegate method, of
ViewController.swift file, 398
UIView class, 96
scroll view dimensions, 246
UIViewController class, 96, 234
adding new subclass, 130
associating with new scene, 122
creating, 121
DetailViewController subclass, 200
presentViewController method of, 157
UIWindow class, 96
uninstalling applications, 32
unique identifiers
to access cell programmatically, 220
for records, 351
unit tests, 485
adding support for, 486-488
executing all in project, 490
failure of, 491
for swiftCalculator, 495-500

universal application — ViewController class

universal application, 85
universal project in Xcode, creating, 91-92
universal Xcode template, 90
unwrapping optional, 41
uploading build, to iTunes Connect, 544
uploading data, to Apple servers, 296
URLForUbiquityContainerIdentifier ()
method, of NSFileManager class, 309
“Use of undeclared identifier” error, 496
user input, 143-154
user interface elements, 108. See also gesture
recognizers

actions, 110

active, 145

adding to scene, 131-139

adding to scroll view, 246-248, 251

adding to tab, 240, 241

for CLTest application, 438

for CoreDataTest application, 393-394

encapsulation of information to locate,

472-475

Interface Builder to create, 318

for share sheet, 422-424

for SimpleButton application, 481

for swiftCalculator, 494

table view for list of items, 203

touch events, 269-270

updating with NSOperationQueue, 405
user interface testing, 465-484

adding support to project, 465-467

new classes for, 469-470

waiting for elements in, 479-480
username

constraints for label, 149

user interface to collect, 147-154
utilities area in workspace window, 28-29

value type, 38
var keyword, 38, 180
variables

declarations in ViewController.swift file,
253-254
default values, 73
defining, 38
naming, 38
and properties, 71
splitting tuple into separate, 41
variadic parameter, 54-55
version control, 21
version editor, 27-28
versions, information for App Store, 537-539,
559-560
vertical scrolling, in table view, 203
verticalAccuracy property, of CLLocation
object, 432
video, 17
view controller
adding and removing on navigation stack, 197
for photo to iCloud, 362
title property, 196
view controller class
action method in, 114, 135-136, 152
adding Array variable to, 130
adding dictionary to, 189
adding gesture recognizer to, 146
code for, 265
dropping object into storyboard, 121
instance variable in, 108
nonconforming protocols, 189
notification of keyboard, 254
onSegment Changed method of, 452
outlets in, 112
prepareForSegue: sender method, 138
viewDidLoad method, 175, 246
view controllers
for tab content, 230
for tabs on tab bar, 231-232
View Mode attribute, 174
Aspect Fill for, 175
ViewController class, 284
action method associated with Did End On
Exit event, 412

595

ViewController class — workspace window in Xcode IDE

ViewController class, linking Table View
Controller scene to, 359
ViewController.swift file, 213
code to fetch initial data from CloudKit,
368-373
connecting action with Touch Up Inside
event, 153
imagePickerController method, 463
imagePickerControllerDidCancel
method, 463
implementing UITableViewDataSource
methods, 373-374
method for tap gesture, 175-176
onAdd method in, 500-501
onCamera method in, 462
onDivide method, 501-502
onMultiply method, 502-503
onPhotoLibrary method in, 462
onSubtract method in, 501
overriding prepareforSegue method,
372-373
UITableViewDataSource method, 398
UITTableViewDelegate method, 398
variable declaration in, 397
viewDidDisappear method, overriding,
254-255

viewDidLoad method, 160, 265, 370, 374, 413

of AddPhotoViewController.swift file,
375-376

implementing, 293-294

implementing for iCloud service, 320

for map, 451-452

overriding, 370

for plist file, 283

for SimpleButton application, 483

stub implementation of, 440

of view controller class, 175, 246
views. See also scrolling views

adding images to, 167-176

adding tap gesture recognizer, 271

adding UTButton to, 97

managing hierarchy of, 197

596

X and Y attributes of, 102
Volume Purchase Program, 558

waitForExpectationsWithTimeout
method, 479-480
warnings, issue navigator to list, 24-25
WatchOS application, 403
web services
Application Transport Security (ATS),
406-408
data task creation, 405-406
RESTful, 400-401
RESTful JSON web services, 399-414
Web Services Description Language
(WSDL), 401
welcome screen, for Xcode, 19-20
When In Use Authorization permission
type, 428
while loop, 47-48
optional binding in, 41-42
width, of picker component, 184
WiFi-based location, 427
wildcard App ID, 513
windows : XCUIElementQuery method, 476
wireframes, 8
Working with Auto Layout Guide, 248
workspace file, 23
workspace window in Xcode IDE, 22-31
breakpoint navigator, 26
debug navigator, 26
debugger area, 30
editor area, 26-28
find navigator, 24
issue navigator, 24-25
Navigator area, 22-26
project navigator, 23-24
report navigator, 26
symbol navigator, 24
test navigator, 25
toolbar, 30

Worldwide Developer Relations Certificate — zoom

utilities area, 28-29

Worldwide Developer Relations Certificate,
downloading, 515, 517

Worldwide Developer Relations Intermediate
Certificate, 563

writeToFile:atomically message, 457

WSDL (Web Services Description Language),
401

.xcdatamodeld file, 383, 389
XCIUElementAttributes protocol, 474
Xcode, 4, 6, 19

creating project in, 20-21

downloading and installing, 6, 7

enabling appropriate entitlements in, 308-309

enabling entitlements in, 350

testing framework, 465

welcome screen, 19-20
Xcode editor, opening model in, 384, 386
Xcode IDE, 8, 22-31
Xcode playgrounds, 35-37

parts, 36-37
.xcodeproj file extension, 20
XCTAssert macro, 477, 491
XCTAssertEqual macro, 477, 491
XCTAssertEqualObjects macro, 491

XCTAssertFalse macro, 477, 491

XCTAssertNil macro, 477, 491

XCTAssertNotEqual macro, 491

XCTAssertNotEqualObjects macro, 491

XCTAssertNotNil macro, 477,491

XCTAssertTrue macro, 477,491

XCTest, 4635, 491

XCTestCase class, 489

expectationForPredicate method of, 479

XCTestExpectation, 479

XCUIApplication class, 469-470, 471

XCUIDevice class, 470-471

XCUIElement instance, 472-475, 478

XCUIElementAttributes protocol, 473,
475-476

XCUIElementQuery class, 471-472, 473

XCUIElementTypeQueryProvider protocol,
471,473, 476-477

.xcworkspace file extension, 23

XIB file, 10

XML, vs. JSON, 401-402

zones in database, 335
zoom

for map view, 444

for storyboard, 120, 355

597

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright
	Contents���������������
	Introduction
	Section I Hello iOS!
	Lesson 1 Hello iOS!
	iOS Developer Essentials�������������������������������
	A Suitable Mac���������������������
	A Device for Testing���������������������������
	An iOS Developer Account�������������������������������
	The Official iOS SDK���������������������������
	The Typical App Development Process��
	Wireframes and Design����������������������������
	Coding�������������
	Testing��������������
	Home Screen Icon�����������������������
	Application Launch Image�������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 2 A Tour of Xcode and the IOS Simulator���
	The Welcome Screen�������������������������
	Creating a New Project�����������������������������
	An Overview of the Xcode IDE�����������������������������������
	The Navigator Area�������������������������
	The Editor Area����������������������
	The Utilities Area�������������������������
	The Debugger Area������������������������
	The Toolbar������������������

	Features of the iOS Simulator������������������������������������
	Installing and Uninstalling Applications���
	Limitations of the iOS Simulator���������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 3 Introducing Swift���������������������������������
	Introducing Xcode Playgrounds������������������������������������
	Constants and Variables������������������������������
	Data Types�����������������
	Comments���������������
	Strings��������������
	Tuples�������������
	Optionals����������������
	Control Flow Statements������������������������������
	if-else��������������
	switch-case������������������
	Loops������������

	Control Transfer Statements����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 4 Functions�������������������������
	Declaring Functions��������������������������
	Parameters and Return Values�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 5 Closures������������������������
	Function Types���������������������
	Closure Types��������������������
	Global Closures����������������������
	Nested Closures����������������������
	Closure Expressions��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 6 Error Handling������������������������������
	The ErrorType Protocol�����������������������������
	Throwing and Catching Errors�����������������������������������
	Suppressing Error Handling���������������������������������
	The defer Statement��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step by Step�������������������

	Lesson 7 Object-Oriented Programming with Swift��
	Creating Classes with Swift����������������������������������
	Properties�����������������
	Methods��������������
	Instantiating Objects����������������������������
	Inheritance������������������
	Computed Properties��������������������������
	Enumerations�������������������
	Protocols����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 8 Supporting Multiple Device Types��
	Device Differences�������������������������
	Screen Size������������������
	Icon Size����������������
	Device Orientation�������������������������

	The Universal XCode Template�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 9 Introduction to UIKit and Adaptive Layout���
	Introducing the UIKit Framework��������������������������������������
	The UIButton Class�������������������������
	The UILabel Class������������������������

	Basic Constraints������������������������
	Previewing Your Layout�����������������������������
	Creating Outlets�����������������������
	Creating Actions�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 10 Introduction to Storyboards��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section II More iOS Development
	Lesson 11 Handling User Input������������������������������������
	Text Fields������������������
	Text Views�����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 12 Alert Views and Action Sheets��
	Alert Views������������������
	Action Sheets��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 13 Adding Images to Your View���
	The UIImage Class������������������������
	The UIImageView Class����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 14 Pickers������������������������
	Date Pickers�������������������
	Custom Pickers���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 15 Navigation Controllers���������������������������������������
	Adding a Navigation Controller to a Storyboard���
	The Navigation Controller Interface��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 16 Table Views����������������������������
	Table View Appearance����������������������������
	Creating a Table View with Interface Builder���
	Static Table Views�������������������������
	Dynamic Table Views��������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 17 Collection Views���������������������������������
	Creating a Collection View with Interface Builder��
	Collection View Cells����������������������������
	Collection View Delegate and Data Source���
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 18 Tab Bars and Toolbars��������������������������������������
	Creating a Tab Bar Controller������������������������������������
	Toolbars���������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 19 Creating Views That Scroll���
	The UIScrollView Class�����������������������������
	Scroll Views and Text Fields�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 20 Popovers and Modal Views���
	Popovers���������������
	Modal Views������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 21 Touches and Gestures�������������������������������������
	Touch Events�������������������
	Gesture Recognizers��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section III Storing Data and Network Programming���
	Lesson 22 Property Lists�������������������������������
	Creating Property Lists������������������������������
	Reading Property Lists�����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 23 Application Settings�������������������������������������
	Adding a Settings Bundle�������������������������������
	Reading Preferences with Code������������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 24 Introduction to ICloud Storage���
	Basic Concepts���������������������
	Preparing to Use the iCloud Storage APIs���
	Creating an iCloud-Enabled App ID��
	Creating an Appropriate Provisioning Profile���
	Enabling Appropriate Entitlements in Your Xcode Project��

	Checking for Service Availability��
	Using iCloud Document Storage������������������������������������
	Creating a New iCloud Document�������������������������������������
	Opening an Existing Document�����������������������������������
	Saving a Document������������������������
	Searching for Documents on iCloud��

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 25 Introduction to CloudKit���
	Containers, Databases, and Records���
	Development and Production Environments��
	The CloudKit Dashboard�����������������������������
	Creating a Record Type�����������������������������
	Deleting a Record Type�����������������������������
	Creating Relationships Between Record Types��
	Adding Records���������������������
	Modifying and Deleting Records�������������������������������������
	Resetting the Development Schema���������������������������������������
	Deploying to Production������������������������������

	Preparing to Use CloudKit��������������������������������
	Create an iCloud-Enabled App ID��������������������������������������
	Create an Appropriate Provisioning Profile���
	Enable Appropriate Entitlements in Your Xcode Project��

	Common Operations������������������������
	Checking for Service Availability��
	Creating Records Programmatically��
	Retrieving Records�������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 26 Introduction to Core Data��
	Basic Concepts���������������������
	Managed Object���������������������
	Managed Object Context�����������������������������
	Persistent Store Coordinator�����������������������������������
	Entity Description�������������������������
	Managed Object Model���������������������������

	Adding Core Data to a Project������������������������������������
	Instantiating Core Data Objects��������������������������������������
	Writing Managed Objects������������������������������
	Reading Managed Objects������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 27 Consuming RESTFUL JSON Web Services��
	Types of Web Services����������������������������
	RESTful Web Services���������������������������
	SOAP Web Services������������������������

	JSON and NSJSONSerialization�����������������������������������
	NSURLSession and Application Transport Security��
	Creating an NSURLSession�������������������������������
	Creating a Data Task���������������������������
	Application Transport Security�������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section IV Beyond the Basics�����������������������������������
	Lesson 28 Social Media Integration���
	The Share Sheet����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 29 Where AM I? Introducing Core Location��
	Permissions������������������
	Accuracy���������������
	Receiving Location Updates���������������������������������
	Handling Errors and Checking Hardware Availability���
	Geocoding and Reverse Geocoding��������������������������������������
	Obtaining Compass Headings���������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 30 Introduction to Map Kit��
	Adding Annotations�������������������������
	Accessory Views����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 31 Using the Camera and Photo Library���
	Selecting the Image Source���������������������������������
	Presenting the Image Picker����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 32 Introduction to User Interface Testing���
	Adding Support for UI Testing to Your Project��
	Anatomy of a Test Case�����������������������������
	New Classes for UI Testing���������������������������������
	XCUIApplication����������������������
	XCUIDevice�����������������
	XCUIElementQuery�����������������������
	XCUIElement������������������
	XCUIElementAttributes����������������������������
	XCUIElementTypeQueryProvider�����������������������������������

	Test Assertions����������������������
	UI Recording�������������������
	Waiting for Elements in a UI Test��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 33 Introduction to Test Driven Development��
	Adding Support for Unit Testing to Your Project��
	TDD Techniques���������������������
	Test First�����������������
	Red-Green-Refactor�������������������������
	Don’t Write Code You Do Not Yet Need���

	Anatomy of a Test Case�����������������������������
	Test Assertions����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Section V: Reference���������������������������
	Appendix A Testing Your App on a Device��
	Appendix B Beta Testing with TestFlight��
	Appendix C App Store Distribution��

	Index
	EULA

