
www.allitebooks.com

http://www.allitebooks.org

TYPO3	Extbase

Table	of	Contents

Preface

1.	Patrick’s	Background

2.	Michael’s	Background

3.	Acknowledgement

www.allitebooks.com

http://www.allitebooks.org

1.	The	Modern	Way	of	Extension	Development

1.1.	A	New	TYPO3	Arises

1.2.	The	Berlin-Manifesto

1.3.	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)

1.4.	Like	Phoenix	from	the	Ashes

1.5.	The	TYPO3	Dilemma

1.6.	The	New	TYPO3	Universe

1.7.	The	History	of	Extbase	&	Fluid

1.7.1.	Backports:	Extbase	&	Fluid

1.7.2.	Programming	on	an	Advanced	Level

www.allitebooks.com

http://www.allitebooks.org

2.	The	Basics	of	Object-Orientated	Programming

2.1.	Classes	and	Objects

2.2.	Methods

2.2.1.	The	Arrow	Operator

2.2.2.	The	Constructor

2.2.3.	Access	by	Using	$this

2.2.4.	Filling	Methods	with	Content
2.3.	Inheritance	of	Classes

2.3.1.	Access	by	Using	parent

2.3.2.	Verifying	Class	Derivation
2.4.	Abstract	Classes2.5.	Interfaces2.6.	Visibility:	Public	and	Protected

2.6.1.	Getter	and	Setter
2.7.	Type	Hints2.8.	Static	Calls2.9.	Namespaces2.10.	Important	Design	Patterns

2.10.1.	Singleton

2.10.2.	Prototype

2.10.3.	Dependency	Injection
2.11.	Annotations

www.allitebooks.com

http://www.allitebooks.org

3.	Domain	Driven	Design

3.1.	Infrastructure	Ignorance

3.2.	The	Domain	Model

3.2.1.	Ubiquitous	Language

3.2.2.	Building	Blocks	of	DDD
3.3.	Structuring	DDD

3.3.1.	Bounded	Context

3.3.2.	Context	Map

3.3.3.	Core	Domain

3.3.4.	Shared	Kernel

www.allitebooks.com

http://www.allitebooks.org

4.	Overview	of	Extbase

4.1.	Installation	of	Extbase	&	Fluid

4.1.1.	Preserve	PHP	Doc	Comments
4.2.	Installation	of	Extension	efempty4.3.	Tour	Through	Extension	efempty

4.3.1.	Files	ext_emconf.php	and	ext_icon.gif

4.3.2.	File	ext_tables.php

4.3.3.	ext_localconf.php

4.3.4.	Controller:	Pluswerk\Efempty\Controller\StartController

4.3.5.	Domain:	Pluswerk\Efempty\Domain\Model\Start

4.3.6.	Output	Via	View

4.3.7.	The	Show-Action	Call

www.allitebooks.com

http://www.allitebooks.org

5.	Domain	Model	Creation	(Modelling)

5.1.	Domain	Model	Used	in	this	Book

5.2.	Basic	Concept

5.2.1.	The	Glossary

5.2.2.	Creating	the	Domain	Model
5.3.	Modelling	in	Extbase	-	The	Extension	Builder

5.3.1.	Extension	Properties

5.3.2.	Domain	Model

5.3.3.	Domain	Model	Properties

5.3.4.	Domain	Model	Relations

5.3.5.	Relation	Between	Blog	and	Post

5.3.6.	Relation	Between	“Post”	and	“Comment”

5.3.7.	Relations	Between	“Post”	and	“Author”/“Tag”
5.4.	Installation	of	the	Extension5.5.	Analysing	Files	Created	by	Extension
Builder5.6.	Further	Functions	of	the	Extension	Builder

5.6.1.	Create	a	Backup

5.6.2.	Modifying	the	Model

5.6.3.	Class	Builder

www.allitebooks.com

http://www.allitebooks.org

6.	Preparation

6.1.	Frontend	Frameworks

6.2.	Load	Static	TypoScript

6.3.	Load	CSS	File

6.4.	IDE	Settings

6.4.1.	Add	Core	Files	to	the	Include	Path

6.4.2.	Include	Fluid’s	Schema	File

6.4.3.	Tips	About	Resolving	Class	Names

6.4.4.	TYPO3	Extension	phpstorm

www.allitebooks.com

http://www.allitebooks.org

7.	The	CRUD	Process

7.1.	Creating	an	Object

7.1.1.	Implementing	listAction

7.1.2.	Creating	the	Template	of	listAction

7.1.3.	Side	Note:	Template	Rendering

7.1.4.	Create	Static	Blogs

7.1.5.	Persisting	the	Blogs

7.1.6.	Side	Note:	Persistence

7.1.7.	The	Persistence	Manager:	Manual	Persistence

7.1.8.	Create	Your	Own	Action

7.1.9.	Form	to	Create	an	Object
7.2.	Display	a	Blog	(Read)7.3.	Update	an	Object7.4.	Deletion	of	an	Object

www.allitebooks.com

http://www.allitebooks.org

8.	Fluid	Templating:	Templates,	Layouts	and	Partials

8.1.	Creating	and	Referencing	Layouts

8.2.	Partials

8.2.1.	Simple	Partials

8.2.2.	Complex	Partials

www.allitebooks.com

http://www.allitebooks.org

9.	Query	Manager	and	Repositories

9.1.	Structure	of	a	Repository	Class

9.2.	Repository	Functions	for	Write	Operations

9.3.	Repository	Functions	for	Read	Operations

9.4.	Default	Structure	of	a	Query

9.4.1.	Side	Note:	Debugging
9.5.	Adjusting	Queries

9.5.1.	Determine	Result	Set

9.5.2.	Limiting	Result	Set

9.5.3.	Logical	Conjunction

9.5.4.	Native	SQL

9.5.5.	Query	Settings
9.6.	Example:	Search	for	Keyword	in	Title9.7.	Dynamic	Search	in	Repository9.8.
Side	Note:	Request	Object

10.	TypoScript	and	FlexForm	Configuration

10.1.	TypoScript

10.1.1.	Setup	Scope

10.1.2.	Sub-keys

10.1.3.	Option:	view

10.1.4.	Option:	persistence

10.1.5.	Option:	objects

10.1.6.	Option:	features

10.1.7.	Option:	mvc

10.1.8.	Option:	legacy

10.1.9.	Option:	settings

10.1.10.	Option:	_LOCAL_LANG

10.1.11.	Option:	_CSS_DEFAULT_STYLE
10.2.	FlexForms

10.2.1.	FlexForm	Configuration

10.2.2.	Switchable	Controller	Actions	(SCA)
10.3.	TypoScript	for	the	Next	Sections	of	this	Book10.4.	TypoScript	for	Backend
Modules

11.	Validation	and	Error	Handling

11.1.	Error	Handling

11.2.	Validation	Overview

11.3.	Property	Validation

11.3.1.	Built-in	Validators

11.3.2.	Multiple	Validators

11.3.3.	Custom	Validators
11.4.	Object	Validation11.5.	Action	Validation11.6.	Error	Display	in	the	Form	Field

11.6.1.	Option	1:	In-house	Means

11.6.2.	Option	2:	ViewHelper

12.	Relations

12.1.	Relation	in	Domain	Model

12.2.	The	Table	Configuration	Array	(TCA)

12.3.	The	CRUD	Process	of	Posts

12.3.1.	Preparation

12.3.2.	Create	Posts

12.3.3.	Read	Posts

12.3.4.	Update	Posts

12.3.5.	Delete	Posts
12.4.	m:n	Relations	Using	the	Example	of	Tags

12.4.1.	Creation	of	Tags	in	the	Backend

12.4.2.	Repository	for	Tags

12.4.3.	Post-Controller	Adjustments

12.4.4.	Templates	and	Partials	Adjustments

12.4.5.	Show	Tags	in	List
12.5.	The	1:1	Relation	Using	the	Example	of	Authors

12.5.1.	Creation	of	Frontend	Users	and	Groups

12.5.2.	Link	Domain	Object	author	to	fe_users	Table

12.5.3.	Defining	the	Author	When	Creating	and	Editing	a	Post

12.5.4.	Logged-in	User	as	the	Author
12.6.	Comments	&	AJAX

12.6.1.	Registering	the	AJAX	Action

12.6.2.	Display	of	Comments

12.6.3.	JavaScript	Handler

12.6.4.	AJAX	Action	in	Post	controller

12.6.5.	Define	AJAX	Page	Type	in	TypoScript

13.	Creating	Your	Own	ViewHelpers

13.1.	Namespace	Declaration

13.2.	Text	ViewHelper

13.2.1.	Parameter	Via	Attribute

13.2.2.	Parameter	Via	Content
13.3.	Tag	ViewHelper13.4.	If	ViewHelper13.5.	Widget	ViewHelper

13.5.1.	Use	of	Widget	ViewHelpers

13.5.2.	Creation	of	Widget	ViewHelpers

13.5.3.	The	Controller

13.5.4.	The	View

13.5.5.	The	A	to	Z	Widget

14.	Multi-Language

14.1.	Language	Configuration

14.2.	Language	Labels

14.3.	Language	Labels	with	Placeholders

14.4.	Overwrite	Language	Labels	by	TypoScript

14.5.	Language	Labels	in	PHP

14.6.	Multi-Language	for	Domain	Objects

15.	Backend	Modules

15.1.	Registering	the	Module

15.2.	Language	File	for	Labels

15.3.	TypoScript

15.4.	Comment	Repository

15.5.	Comment	Controller

15.6.	List	View

15.6.1.	Structure

15.6.2.	Content	of	the	List	Template

15.6.3.	CSH	Buttons

15.6.4.	Action	Menu

15.6.5.	Shortcut	Button

15.6.6.	Icon	Button

16.	The	Property	Mapper

16.1.	Examples

16.2.	Property	Mapper	Configuration

16.3.	Property	Mapper	Configuration	in	MVC	Stack

16.4.	Security	Aspects

16.5.	API	Reference

16.5.1.	Automatic	Resolution	of	TypeConverter

17.	Best	Practices

17.1.	Flash	Messages

17.2.	Load	Plugin	Via	TypoScript

17.3.	RSS-Feed

17.4.	UriBuilder

17.5.	File	Upload

17.5.1.	Adding	an	Upload	Field

17.5.2.	Blog	Controller	Adjustments

17.5.3.	Blog	Model	Adjustments

17.5.4.	TCA	Adjustments
17.6.	StdWrap	in	Settings17.7.	Signal	Slot	Dispatcher

17.7.1.	Built-in	Signals

17.7.2.	Example	Usage	of	Built-in	Signals

17.7.3.	Create	Your	Own	Signals
17.8.	File	Abstraction	Layer	(FAL)17.9.	Category	API17.10.	Extbase	Models17.11.
Scheduler	Tasks17.12.	JSON	ViewI.	Appendix

A.	Reference

A.1.	ext_emconf.php

A.2.	Flexform	Field	Types

A.2.1.	Text	Field

A.2.2.	Date	Field

A.2.3.	Checkbox

A.2.4.	Textarea

www.allitebooks.com

http://www.allitebooks.org

A.2.5.	Textarea	with	RTE

A.2.6.	Radio	Buttons

A.2.7.	Selectbox

A.2.8.	Selectbox	(Multi-Select)

A.2.9.	Page	Browser
Index

Patrick	Lobacher

Michael	Schams

TYPO3	Extbase

Modern	Extension	Development	for
TYPO3	CMS	with	Extbase	&	Fluid

Open	Source	Press
The	information	in	this	book	ist	distributed	on	As	is	basis,	without	warranty.	While	every	precaution	has	been	taken	in
the	preparation	of	this	work,	neither	the	authors	nor	the	editors	nor	Open	Source	Press	GmbH	shall	have	any	liability	to
any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or	indirectly	by	the
information	contained	in	it.

Open	Source	Press	and	the	Open	Source	Press	logo	are	registered	trade	marks	of	Open	Source	Press	GmbH.	Other
product	or	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.	Rather	than	use	a
trademark	symbol	with	every	occurence	of	a	trademarked	name,	we	are	using	the	names	only	in	an	editorial	fashion	and
to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

Bibliographic	information	published	by	the	Deutsche	Nationalbibliothek

The	Deutsche	Nationalbibliothek	lists	this	publication	in	the	Deutsche
Nationalbibliografie;	detailed	bibliographic	data	are	available	in	the	Internet	at
http://dnb.dnb.de.

Copyright	©	2015	Open	Source	Press	GmbH
Editors:	Gemma	Creegan,	Andrew	Walters
Typesetting:	textovia	web	application	(textovia.com)
Graphic	Designer:	Lena	Levitina
ISBN:	9783955391546	(E-Book	Mobi)	http://www.opensourcepress.de

http://textovia.com
http://www.opensourcepress.de

Preface

Do	feel	free	to	be	excited	because	first	and	foremost,	Extbase	and	Fluid	are	one	thing:	fun!

If	you	are	experienced	with	software	development,	you	will	soon	realise	that	a	lot	of
features	in	Extbase	and	Fluid	are	simply	intuitive	or	can	be	learnt	quickly.	After	working
through	this	book,	you	will	be	able	to	develop	large	projects	with	Extbase	and	Fluid	and	in
fact,	it	will	be	a	piece	of	cake.

Before	we	start,	it	is	a	good	idea	to	bookmark	the	offical	Internet	address	of	this	book:
http://www.extbase-book.org.

You	can	not	only	access	some	of	the	files	listed	in	this	book,	but	we	try	to	keep	this	site
up-to-date	when	a	breaking	change	happens	in	TYPO3,	which	affects	the	workflow
described	and	was	unpredictable	at	the	publishing	date.

http://www.extbase-book.org

1.	Patrick’s	Background

It	was	partly	my	fault,	when	TYPO3	version	4.3	was	released	in	2009	and	featured
Extbase	and	Fluid	back	then.	Oliver	Hader – Release	Manager	of	this	TYPO3	version – 
approached	us	during	the	T3CON09	in	Frankfurt/Germany	and	asked	about	our	opinion,	if
the	next	version	of	TYPO3	CMS	should	include	either	Extbase	and	Fluid	or	another
feature	(which	I	do	not	remember	any	more).	My	answer	was	immediate:	the	TYPO3
community	needs	Extbase	and	Fluid	–	as	soon	as	possible!

Back	then,	we	experimented	with	the	pre-alpha-version	of	Extbase	and	Fluid	in	our
agency	and	were	totally	convinced	of	this	powerful	technology.	No	doubt,	this	version	still
included	numerous	bugs	and	shortcomings	but	it	became	obvious	that	this	could	be	the
way	forward	for	the	TYPO3	project.

As	a	matter	of	fact,	TYPO3	version	4.3	was	released	in	December	2009	and	was	shipped
with	Extbase	and	Fluid.

As	early	as	June	2009,	I	made	the	decision	to	write	about	this	topic	and	devoted	the	third
part	of	my	book	“TYPO3	Extensions	–	Professional	Frontend-	and	Backend
Development”	(published	by	Hanser	Verlag)	Extbase	and	Fluid	without	further	ado.	I
gathered	all	relevant	information	that	were	important	at	the	time.	Therefore	the	book,
published	in	May	2010,	contributed	to	the	growing	popularity	of	the	technology.

A	second	book,	written	by	the	“fathers”	of	Extbase	and	Fluid – Jochen	Rau	and	Sebastian
Kurfürst – was	published	in	July	2010	and	I	am	still	proud	of	the	fact,	that	they	allowed
me	to	contribute	the	OOP	(Object	Orientated	Programming)	introduction	chapter	for	this.

Since	then,	no	further	books	have	been	published	although	the	demand	for	new	and
detailed	information	about	Extbase	and	Fluid	is	still	high.	Especially	after	the	release	of
TYPO3	CMS	version	6.2	because	Extbase	and	Fluid	will	be	used	and	maintained	for	at
least	another	three	years:	version	6.2	is	a	“long-term-support”	release	(LTS).

With	the	release	of	the	LTS	version	of	TYPO3	CMS	7	(scheduled	for	late	2015),	this	time
period	will	even	be	extended.

Therefore	I	made	the	decision	to	write	another	book	about	this	topic.

My	former	agency – the	typovision	GmbH	in	Munich – has	used	Extbase	and	Fluid	since
2009	for	all	its	projects	since	then.	There	was	not	a	single	time	when	we	regretted	this
decision	although	we	Extbase	and	Fluid	do	have	their	issues	at	times.	As	everyone	knows,
no	technology	is	flawless	and	we	are	glad	that	we	parted	with	the	classical	method	of
extension	development	long	ago.

Over	the	last	three	years,	I	conducted	about	100	seminars	about	this	topic	and	published
approximately	10	articles	and	two	books	(including	this	one).	In	addition,	I	tried	to	inspire
everyone	who	was	interested	in	Extbase	and	Fluid	at	numerous	events.	As	a	consequence,
I	was	nicknamed	“Extbase	Evangelist”	for	quite	a	long	time	and	I	still	show	my
enthusiasm	for	this	technology	today.	My	single	purpose	is	to	spread	the	Extbase	virus
because	this	is	definitely	the	future	of	extension	development	in	TYPO3	and	therefore	the
success	of	this	extraordinary	enterprise	content	management	system	which	is	rightly	one
of	the	market	leaders	of	its	kind	today.

2.	Michael’s	Background

I	have	been	working	with	TYPO3	CMS	since	2004.	My	first	encounter	with	this	CMS	was
version	3.6	but	while	I	was	curious	about	using	it,	I	did	not	like	it	very	much	to	be	honest.
Using	TYPO3	then	does	not	compare	with	what	you	get	today.

TYPO3	has	became	much	easier	to	handle,	to	configure	and	to	understand	over	time.
Everyone	active	in	the	TYPO3	community	(editors,	integrators,	administrators	as	well	as
developers)	helped	transform	a	stubborn	beast	into	a	real	enterprise	content	management
system,	without	loosing	all	its	powerful	features.	In	addition,	TYPO3’s	flexibility	is
awesome:	compared	with	other	PHP-based	content	management	systems,	extension
developers	can	do	whatever	their	heart’s	content – in	a	professional	way	and	without	the
need	to	“hack”	the	core	of	the	system.

However	there	are	two	major	drawbacks	from	my	perspective.	The	first	is	that	the	TYPO3
community	is	mainly	located	in	Europe,	especially	Germany – which	is	a	distance	of
approximately	16,000	km	from	where	I	currently	live:	Melbourne	(Australia).	The
problem	is	not	only	to	build	a	community	in	Australia	but	also	the	fact	that	a	lot	of
resources	are	only	in	German	and	this	does	not	only	affect	Australia	but	every	non-
German-speaking	TYPO3	enthusiast	worldwide	(including	Europe).

The	second	“issue”	with	TYPO3	is – and	this	is	not	only	TYPO3-specific	(in	fact,	we	see
this	in	many	open	source	content	management	systems) – the	code	base	of	extensions
often	lacks	quality,	security	and	consistency.

The	clarity	of	Extbase,	the	modern	standards	and	programming	principles,	the	way
developers	must	base	their	code	on	Extbase	standards	and	the	fact,	that	developers	should
think	about	and	plan	their	approach	before	one	line	of	code	is	even	written.	All	these
factors	directly	address	the	issues	we	have	seen	over	the	last	few	years	but	the	best	is	that
writing	TYPO3	extensions	in	Extbase	also	saves	a	lot	of	time.

Mainly	these	two	points	encouraged	me	to	work	on	the	English	edition	of	the	Extbase
book	when	Patrick	asked	me	if	I	would	be	interested.	Hopefully	our	work	will	support	the
non-German	TYPO3	community	to	develop	interesting	TYPO3	extensions	and	to	publish
them	proudly	in	the	official	TYPO3	Extension	Repository	(TER).

3.	Acknowledgement

We	would	like	to	thank	all	readers:	it	is	our	pleasure	to	transfer	our	knowledge	and
experience	in	a	book	because	we	sourced	most	of	our	expertise	from	high	quality	books	as
well.

Many,	many	thanks	to:	Anja	Leichsenring,	Nicole	Cordes,	Matthias	Schröder,	Stefan
Frömken	and	Stefan	Völker.

We	would	also	like	to	thank	our	two	English	language	reviewers,	who	did	a	fantastic	job.
Without	their	help,	this	book	would	not	be	possible:	Gemma	Creegan	and	Andrew
Walters.

But	now,	let’s	focus	on	the	book	and	start	learning	Extbase	and	Fluid!

Patrick	Lobacher	and	Michael	Schams

April	2015

www.allitebooks.com

http://www.allitebooks.org

Chapter	1.	The	Modern	Way	of	Extension
Development

In	2006,	during	the	first	TYPO3	Developer	Days	(T3DD06),	a	decision	was	made	to	re-
develop	the	content	management	framework	TYPO3	from	scratch.[1]	This	was	based	on
the	consensus	that	the	existing	system	would	not	be	able	to	meet	future	requirements.

1.1.	A	New	TYPO3	Arises

As	version	4.0	was	already	released,	a	version	number	for	the	new	CMS	was	determined
quickly:	TYPO3	5.0	code	name	“Phoenix” – in	the	style	of	the	mythical	bird,	which
obtains	new	life	by	rising	from	the	ashes	of	its	predecessor.	A	TYPO3	5.0	Development
Team	with	Robert	Lemke	as	the	chairman	was	set	up	for	the	re-development.

The	development	team	even	considered	a	completely	new	system	(e. g.	including	a	change
from	Java	to	Ruby)	but	such	significant	changes	were	rejected	in	a	brainstorming	session
unanimously	by	the	attendees.	An	extensive	re-factoring	of	the	existing	code	was	also
refused	so	that	the	way	forward	became	clear:	the	aim	was	to	develop	a	totally	new	CMS
based	on	PHP	but	maintaining	important	features	such	as	TypoScript	and	the	page	tree.

The	new	system	would	also	have	to	be	capable	of	meeting	new	challenges	and	supporting
new	technologies	such	as	SOAP,	REST,	WCAG,	LDAP,	XHTML,	etc.

The	following	goals	(development	principles)	were	put	forward:

Iterative	development	rather	than	“big	jumps”
Small	steps	and	frequent	releases
“Clean	code”	for	fundamental	changes
“Unclean	code”	for	working	prototypes	in	order	to	reach	a	result	quickly
100%	innovating	and	0%	backwards	compatibility
Extract	the	“soul”	of	TYPO3	in	order	to	keep	it	in	the	new	product
Code	name	“Phoenix”
Architecture	based	on	PHP	5.0

In	addition,	the	decision	was	made	for	the	first	time	that	the	development	of	the	new	CMS
would	be	funded	by	the	TYPO3	Association.[2]	The	core	developers	(Robert	Lemke	at	day
one,	later	Karsten	Dambekalns	as	well)	were	employed	by	the	Association	full-time.	This
approach – not	typical	for	an	open	source	project – was	justified	by	the	fact	that	the	new
product	should	be	released	to	market	as	soon	as	possible.

At	the	end	of	2013,	the	development	of	TYPO3	Phoenix	(aka	“TYPO3	Flow”	or	“TYPO3
Neos”)	consumed	nearly	1	million	Euro[3].

Shortly	after	the	development	started,	there	was	confusion	among	the	community	and	with
clients,	who	considered	using	the	system	in	the	future	and	were	not	sure	if	it	was	worth
learning	TYPO3	version	4.x	or	waiting	for	TYPO3	version	5.x.	There	was	also	the
question	of	whether	or	not	someone	would	invest	in	a	large	TYPO3	version	4.x	project,
given	the	fact	that	a	new	major	version	will	possibly	become	available	soon.

1.2.	The	Berlin-Manifesto

To	address	these	reasonable	doubts,	the	so-called	“Berlin-Manifesto”[4]	has	been
published	in	October	2008.	High-ranking	representatives	of	the	TYPO3	community
gathered	to	work	out	a	roadmap	for	TYPO3,	both	the	TYPO3	version	4.x	and	the	TYPO3
version	5.x.	In	the	manifesto	they	stated:

TYPO3	version	4.x	continues	to	be	actively	developed
TYPO3	version	4.x	development	will	continue	after	the	release	of	TYPO3	version
5.x
Future	releases	of	TYPO3	version	4.x	will	see	its	features	converge	with	those	in
TYPO3	version	5.x
TYPO3	version	5.x	will	be	the	successor	to	TYPO3	version	4.x
Migration	of	content	from	TYPO3	version	4.x	to	TYPO3	version	5.x	will	be	possible
TYPO3	version	5.x	will	introduce	many	new	concepts	and	ideas	and	there	will	be
support	and	adequate	resources	to	ensure	a	smooth	transition

The	signees	of	this	statement	were:	Patrick	Broens,	Karsten	Dambekalns,	Dmitry
Dulepov,	Andreas	Förthner,	Oliver	Hader,	Martin	Herr,	Christian	Jul	Jensen,	Thorsten
Kahler,	Steffen	Kamper,	Christian	Kuhn,	Sebastian	Kurfürst,	Martin	Kutschker,	Robert
Lemke,	Tobias	Liebig,	Benjamin	Mack,	Peter	Niederlag,	Jochen	Rau,	Ingo	Renner,
Ingmar	Schlecht,	Jeff	Segars,	Michael	Stucki	and	Bastian	Waidelich.

Figure	1.1.	Signees	of	the	Berlin-Manifesto	in	October	2006

After	this	pledge,	the	sceptics	were	quietened	however	it	also	became	apparent	that	the
new	system	would	not	be	available	for	another	1	to	2	years.	Unfortunately,	the	TYPO3
version	5.x	Development	Team	did	not	have	the	courage	or	the	vision	to	create	a	reliable
roadmap,	possibly	due	to	concerns	about	what	could	happen	if	the	goals	were	not	met.

1.3.	The	Hour	of	Birth	of	TYPO3	Flow
(FLOW3)

It	soon	became	obvious	that	the	new	CMS	required	new	components	which	were	also
useful	outside	of	a	CMS:	MVC,	templating,	session	handling,	etc.	This	led	to	the
conclusion	that	a	framework	should	be	developed	first	and	based	on	that,	the	new	CMS
can	grow.

Figure	1.2.	The	TYPO3	Flow	website

This	marked	the	birth	of	FLOW3,	which	saw	the	light	of	day	in	June	2009	and	today
(early	2015)	version	2.3	is	available.	It	took	more	than	two	years	to	reach	a	final	version
and	if	you	review	the	feature	list	carefully,	you	will	realise	that	no	version	of	FLOW3
prior	1.2.x	or	even	2.0.x	deserve	to	be	classified	as	“final”.

As	part	of	a	re-branding	process	of	all	products	in	the	TYPO3	universe,	FLOW3	was
renamed	TYPO3	Flow	in	October	2012.

Today,	TYPO3	Flow	unites	a	number	of	contemporary	software	design	principles	in	its
entirety	as	a	framework – strictly	following	the	paradigm	“convention	over	configuration”.
These	principles	are	for	example:

Domain	Driven	Design	(DDD)
Model	View	Controller	(MVC)
Aspect	Oriented	Programming	(AOP)
Dependency	Injection	(DI)

This	speeds	up	the	development	process	significantly	because	a	lot	of	useful	assumptions
have	already	been	made	for	the	developer.	This	means	they	can	focus	on	their	specific
challenge	and	concentrate	on	finding	its	solution.

In	general	terms,	TYPO3	Flow	can	be	understood	as	an	application	framework	or	actually
“TYPO3	Flow	Enterprise	PHP	Framework”	as	the	TYPO3	Flow	Team	calls	it.	Therefore,
it	can	be	used	independently	of	TYPO3	CMS	for	any	web	application.	It	is	possible	to	use
TYPO3	Flow	to	develop	a	webservice,	a	CRM,	an	online	shop	or	a	simple	website – the
latter	with	a	self-written	content	management	of	course.

Among	competitors	such	as	Symfony,	Zend	Framework,	Cake	and	many	others,	TYPO3
Flow	counts	as	amongst	the	most	modern,	advanced	and	technically	mature	PHP
frameworks	on	the	market.	Its	inventors	pick	the	features,	technologies	and
methodologies,	which	they	integrate	with	great	care	and	implement	only	the	best.

1.4.	Like	Phoenix	from	the	Ashes

The	decision	to	initially	focus	on	TYPO3	Flow	seemed	reasonable	but	there	was	again
growing	uncertainty	over	when	the	eagerly	awaited	TYPO3	version	5.x	would	be
published.

The	first	Phoenix	release	was	eventually	published	as	“Phoenix	Sprint	Release	1”	in	June
2010 – and	from	then	on,	further	spring	releases	up	to	number	8.	These	were	far	away
from	being	an	alpha,	beta	or	even	a	final	version	and	this	did	not	go	unnoticed	by	the
TYPO3	community,	who	expected	a	much	better	result	after	more	than	five	years.

Yielding	under	growing	pressure,	the	TYPO3	version	5.x	Team	announced	that	the
website	for	the	TYPO3	Conference	2011[5]	(T3CON11	held	in	Frankfurt/Germany)	would
be	the	first	site	built	with	TYPO3	version	5.0 – accompanied	by	a	huge	marketing	stunt.

Figure	1.3.	The	first	website	built	with	TYPO3	5.0

Only	insiders	realised	that	the	website	did	not	feature	any	“backend	capabilities”	(in	fact	a
XML	file	was	used	to	build	the	site	rather	than	real	content	management	functions).
However	members	of	the	community	and	especially	clients	drew	hope	from	these	visible
results.	They	assumed,	that	version	5.0	was	close	to	being	published,	given	the	fact	that	it
was	already	possible	to	build	a	website	such	as	the	one	for	the	TYPO3	Conference.

The	bottom	line	was,	that	a	system	existed,	which	showcased	itself	as	almost	complete	but
its	real	status	can	only	be	classified	as	a	pre-alpha	status.	At	the	same	time,	the	version
number	of	the	4.x	branch	grew	steadily	and	in	October	2011	version	4.6	was	released.

Assuming	that	the	release	cycle	continues	at	this	pace,	TYPO3	version	5.x	must	be
delivered	in	about	1.5	years	in	order	to	ensure	the	version	number	of	4.x	does	not	come
too	close	to	5.x.

However	experience	shows	that	6	years	of	development	time	is	insufficient	to	finish	a
stable	system	ready	for	production	use.	How	could	it	even	be	possible	to	deliver	a	system
in	1.5	years	from	now,	that	is	the	successor	of	TYPO3	version	4.x	according	to	the	Berlin-
Manifesto?

1.5.	The	TYPO3	Dilemma

The	TYPO3	Core	Team	acted	quickly	and	decided	in	the	last	quarter	of	2011,	not	to
follow	its	original	plans.	They	escaped	the	dilemma	by	terminating	the	plan	of	TYPO3
version	5.x	and	officially	announced	the	decision	during	the	T3BOARD12 – somewhat
inappropriately.[6]

A	version	5.x	will	never	exist.
The	next	TYPO3	version	4.x	will	not	be	named	TYPO3	4.8	(as	the	successor	of
TYPO3	4.7),	but	will	be	TYPO3	version	6.0	(published	in	October	2012).
The	current	TYPO3	version	5	will	be	renamed	to	TYPO3	Phoenix	1.0	temporarily
and	will	receive	a	new	name	over	the	year	2012	(“TYPO3	Neos”).
TYPO3	Phoenix	is	not	the	successor	of	TYPO3	4.x	any	more	but	a	discrete	product,
with	some	similarities	of	TYPO3	4.x.
TYPO3	4.x	may	(and	will)	allow	for	breaking	changes.

This	announcement	resulted	in	a	storm	of	protest,	never	seen	before	on	this	scale.[7]	This
was	hardly	surprising	due	to	the	fact	that	many	people	were	short	changed	and	could	not
follow	the	rationale.	Additionally,	comments	from	the	public	highlighted	the
disappointment,	that	even	after	6	years	of	development	time	and	a	lot	of	money	already
spent	on	this	project,	there	were	no	actual	results.

However	on	a	positive	note,	it	was	now	possible	to	break	free	from	the	chains	of	the	past
and	put	all	the	energy	into	the	new	version,	for	example	in	breaking	changes	such	as	the
File	Abstraction	Layer	(FAL).	This	resulted	in	new	motivation	and	drive	and	as	an
outcome	TYPO3	version	6.0	became	the	best	release	of	the	TYPO3	history	so	far.

1.6.	The	New	TYPO3	Universe

Therefore,	the	TYPO3	universe	consists	of	three	independent	products:

TYPO3	CMS	x.y – current	stable	version	6.2	LTS	(support	guaranteed	until	2017),
4.5	LTS	(support	reached	its	end-of-life	in	March	2015)[8]
TYPO3	Flow	2.3
TYPO3	Neos	1.3

Neos	and	TYPO3	CMS	are	in	fact	completely	different	content	management	systems,
addressing	different	target	audiences.	They	both	belong	to	the	same	sort	of	CMS	products
and	share	their	developers’	wish	to	have	a	migration	tool	at	one	point	in	the	future.

A	concrete	migration	concept	does	not	exist	yet.	However	system	extensions	Extbase	&
Fluid	have	been	integrated	in	TYPO3	4.x/6.x	in	2009.	This	allows	developers	to	build
extensions,	which	are	technically	very	similar	to	TYPO3	Flow	packages.	This	aims	to
minimise	the	migration	efforts.

This	also	means,	that	TYPO3	CMS	will	last	for	quite	a	long	time	and	this	is	where	this
book	comes	into	play:	by	using	Extbase	&	Fluid,	extensions	will	be	developed,	which	may
work	in	TYPO3	CMS	exclusively – or	may	be	ported	to	TYPO3	Neos	at	one	point.

For	a	long	time,	developers	pushed	for	a	strict	upward	compatibility	between	Extbase	and
TYPO3	Flow	but	in	March	2012	they	realised	that	it	was	impossible	to	allow	breaking
changes	in	TYPO3	4.x/6.x	and	also	aim	for	being	in	sync	with	TYPO3	Flow.	It	can	be
assumed,	that	every	Extbase	&	Fluid	code	developed	for	TYPO3	up	to	version	4.7	can
also	be	made	executable	in	TYPO3	Flow	and	Phoenix	with	little	effort.	After	then,	it
might	be	more	complicated	because	of	the	risk	that	both	concepts	diverge.	Although,	the
Extbase	Team	tried	hard	to	keep	the	sync	and	at	the	ACME	2012	(Active	Contributor
Meeting)	a	decision	was	made,	that	Extbase	and	TYPO3	Flow	should	converge	again.

www.allitebooks.com

http://www.allitebooks.org

1.7.	The	History	of	Extbase	&	Fluid

The	architecture	change	to	TYPO3	Flow	(and	subsequently	TYPO3	Neos)	had	a
significant	consequence	though,	it	is	irrelevant	for	a	core	system	if	the	entire	source	code
changes	but	this	is	not	the	case	for	extensions.

Currently,	more	than	6000	extensions	are	available	for	TYPO3	CMS	4.x/6.x	and	none	of
them	are	usable	in	TYPO3	Neos.	Ultimately,	they	all	need	to	be	rewritten	from	scratch – 
or	at	least	the	most	important	ones.

However	this	is	not	required	immediately	and	the	Berlin-Manifesto	explicitly	states	that
the	development	of	TYPO3	4.x/6.x	will	continue	but	the	experience	shows	that	clients
often	prefer	the	latest	technology	for	new	projects	so	that	they	are	future	proof.	After	all,
the	development	often	consumes	a	lot	of	time	and	money	and	nobody	wants	to	be	forced
to	spend	the	budget	again	after	a	technology	change.

It	would	be	great	if	it	would	be	possible	to	develop	extensions	today,	using	the	latest
methodologies	and	paradigm	of	TYPO3	Neos	and	to	migrate	them	with	a	minimum
investment	of	time	and	effort	as	soon	as	TYPO3	Neos	becomes	widely	adopted.

1.7.1.	Backports:	Extbase	&	Fluid

Jochen	Rau,	who	developed	the	Extbase	extension	(which	is	part	of	the	TYPO3	system
core	since	version	4.3),	achieved	exactly	this.	Extbase	is	a	backport	of	the	features	in
TYPO3	Flow,	which	are	required	to	run	extensions	in	TYPO3	as	well	as	in	TYPO3	Neos
(or	with	TYPO3	Flow)	with	minimal	changes	required.

It	is	understandable	that	not	all	new	concepts	can	be	adopted – simply	because	these	are
completely	different	architectures	but	the	most	important	have	been	implemented:	first
and	foremost	the	MVC	framework,	which	has	been	ported	almost	in	its	entirety.	Also,
basic	methods	of	the	Domain	Driven	Design	(DDD)	have	been	transferred	and	a	new
templating	engine,	too:	Fluid.

And	that	is	not	all – you	will	see,	there	are	many	new	and	exciting	things	to	discover	in
TYPO3	even	today.	The	best	is,	the	knowledge	you	will	gain	from	this	can	also	be	applied
for	projects	under	TYPO3	Neos.

1.7.2.	Programming	on	an	Advanced	Level

We	will	cover	all	these	new	concepts	and	methodologies	in	the	following	chapters	in
detail,	but	it	should	be	pointed	out,	that	the	learning	efforts	required	are	not	unremarkable,
in	particular	the	PHP	knowledge	of	a	software	developer.

In	TYPO3	it	was	relatively	easy	to	develop	extensions	by	using	dirty,	procedural	code	(by
the	use	of	pi_base	for	example).	This	is	no	longer	possible	with	Extbase.	Everything	(and
really	everything)	is	based	on	objects	now,	which	requires	advanced	knowledge	and
understanding	of	object-orientated	development	in	PHP.

This	is	the	perfect	time,	to	deal	with	this	subject	and	we	can	highly	recommend	the	books
“PHP	This!	A	Beginners	Guide	to	Learning	Object	Oriented	PHP”	by	Michelle	Gosney[9]

and	“Learning	PHP	Design	Patterns”	by	William	Sanders.[10]

To	ensure,	we	are	on	the	same	knowledge	level,	the	next	chapter	summarises	all	concepts
and	methodologies	required	for	programming	in	Extbase.	If	you	already	have	adequate
experience	in	object-orientated	programming,	you	can	skip	this	chapter	confidently.

[1]	http://www.slideshare.net/robertlemke/t3dd06-typo3-50-brainstorming-results

[2]	http://association.typo3.org

[3]	cf.	“Financial	Statements”	of	the	TYPO3	Association,	e. g.
http://association.typo3.org/fileadmin/documents/financial_statements/Typo3_Abschluss_2008_Rev_D.pdf	and	the
following	years.

[4]	http://typo3.org/roadmap/berlin-manifesto/

[5]	http://association.typo3.org/home/news/news-detail/news/first_typo3_50_website_launched////ref/assoc/

[6]	http://buzz.typo3.org/people/xavier-perseguers/article/typo3-60-at-the-corner-how-is-it-possible/

[7]	http://lists.typo3.org/pipermail/typo3-english/2012-March/thread.html#79513

[8]	TYPO3	version	4.7,	6.0	and	6.1	have	been	discontinued	already.

[9]	http://www.phpthis.com

[10]	http://www.oreilly.de/catalog/9781449344917/

http://www.slideshare.net/robertlemke/t3dd06-typo3-50-brainstorming-results
http://association.typo3.org
http://association.typo3.org/fileadmin/documents/financial_statements/Typo3_Abschluss_2008_Rev_D.pdf
http://typo3.org/roadmap/berlin-manifesto/
http://association.typo3.org/home/news/news-detail/news/first_typo3_50_website_launched////ref/assoc/
http://buzz.typo3.org/people/xavier-perseguers/article/typo3-60-at-the-corner-how-is-it-possible/
http://lists.typo3.org/pipermail/typo3-english/2012-March/thread.html#79513
http://www.phpthis.com
http://www.oreilly.de/catalog/9781449344917/

Chapter	2.	The	Basics	of	Object-Orientated
Programming

As	the	name	indicates,	objects	are	the	focus	of	object-orientated	programming.	This
concept	is	easier	to	grasp	if	you	put	computer	programming	aside	and	think	about	objects
in	our	daily	lives.

We	are	surrounded	by	objects	in	everyday	life;	cars,	smartphones,	computers,	cocktails,
food,	factories,	televisions,	etc.	All	these	objects	feature	specific	attributes	such	as	colours,
smell,	look,	alcoholic	strength	or	distance	driven.	In	addition,	all	objects	have	some
functions;	a	computer	can	be	switched	on,	a	car	can	be	driven	and	a	smartphone	allows	us
to	send	text	messages	as	well	as	using	the	Internet.	These	properties	and	functions	are
closely	connected	with	the	objects	and	can	be	considered	as	one	unit.

OOP	in	Extbase	&	Fluid
Extbase	&	Fluid	does	not	make	use	of	all	features	of	PHP’s	object-orientated
programming.	For	example,	there	are	no	final	classes	nor	the	private	visibility.
Therefore,	this	chapter	does	not	cover	elements,	which	are	not	used	by
Extbase	&	Fluid.

2.1.	Classes	and	Objects

If	you	compare	two	cars	for	example,	it	is	obvious	that	they	have	a	lot	in	common – they
both	have	wheels,	an	engine	and	a	steering	wheel.	Therefore	it	is	possible	to	introduce	an
abstraction	layer	and	call	the	abstract	car	a	class.

This	is	a	sort	of	construction	plan	(or	blue-print)	for	a	concrete	car	object.	A	class	also
shows	properties	and	functions	but	these	are	not	concrete.	A	class	“car”	features	an
“engine”	but	the	concrete	type	(e. g.	“N54B30”)	will	not	be	implemented	until	the	object
has	been	derived	later.	This	design	is	called	instantiation	or	derivation – an	object	is	an
instance	of	a	class.

In	the	following,	we	will	develop	a	program	that	manages	cars.	Firstly,	we	have	a	class
“Car”,	which	has	the	attributes	“producer”,	“colour”	and	“mileage”.	In	the	OOP	universe,
these	attributes	are	called	properties.

The	PHP	code	for	this	example	looks	like	the	following:

class	Car	{

			public	$producer;

			public	$colour;

			public	$milage;

}

The	keyword	class	starts	the	class,	followed	by	a	pair	of	curly	brackets.	Also	note	the
syntax:	the	opening	bracket	and	the	class	name	is	separated	by	a	space,	whereas	the
closing	bracket	stands	in	its	own	line	at	the	beginning.

TYPO3	Coding	Guidelines
Many	coding	syntax	in	TYPO3	are	defined	and	specified	in	the	official
TYPO3	Coding	Guidelines.[11]

The	properties	are	listed	line-by-line	inside	the	class.	Every	property	has	the	keyword
public	prefixed	(we	will	explain	this	a	little	bit	later),	followed	by	the	$	character	and	the
name.	This	list	is	also	called	class	declaration.

Syntax
In	Extbase,	class	names	always	start	with	an	upper	case	letter,	followed	by
lower	case	letters	as	long	as	a	new	unit	of	meaning	starts,	then	an	uppercase
letter – for	example:	ThisIsAClassName.	This	notation	is	called

UpperCamelCase.	Properties	(and	later	on	methods)	start	with	a	lower	case
letter,	e. g.	thisIsAPropertyName.	This	notation	is	called	lowerCamelCase.

2.2.	Methods

Now	we	would	like	to	provide	our	car	with	some	“functions” – these	are	called	methods	in
object-orientated	programming.	We	will	implement	a	few	methods	so	we	can	start	and
stop	the	engine	as	well	as	driving	the	car.

class	Car	{

			public	$producer;

			public	$colour;

			public	$milage;

			public	function	startMotor()	{

			}

			public	function	drive($kilometer)	{

			}

			public	function	stopMotor()	{

			}

}

A	method	always	consists	of	two	parts:

Method	signatur
It	starts	with	the	keyword	public,	then	function	and	after	that	the	name	in
lowerCamelCase	notation	followed	by	a	pair	of	round	brackets.	Inside	these	brackets,
you	can	possibly	find	parameters	(if	applicable)	which	are	passed	to	the	method.

Method	body
The	body	of	a	method	is	either	a	block	wrapped	between	opening	and	closing
brackets,	or	just	a	semicolon	(this	is	the	case	with	abstract	methods).	All	functionality
of	a	method	can	be	found	in	the	body.

As	a	result,	our	class	as	a	construction	plan	for	a	concrete	object	is	complete	and	can	be
used	to	build	arbitrary	objects,	which	feature	the	defined	properties	and	methods.

$audi	=	new	Car();

$bmw	=	new	Car();

The	derivation	or	instantiation	happens	by	the	operator	new.	We	have	built	an	Audi	and	a
BMW	and	can	work	with	them	directly.

The	PHP	function	print_r()	allows	us	to	output	the	object	at	any	time.

print_r($audi);

//	Output:

Car	Object	([producer]	=>	[colour]	=>	[milage]	=>)

The	PHP	function	var_dump()	even	prints	more	details	about	the	object:

var_dump($audi);

//	Output:

object(Car)#1	(3)	{

		["producer"]=>

		NULL

		["colour"]=>

		NULL

		["milage"]=>

		NULL

}

2.2.1.	The	Arrow	Operator

In	order	to	access	the	properties	and	methods	of	a	class,	we	use	the	arrow	operator,	which
consists	of	a	dash	and	a	greater-than	sign:	->	We	have	read	and	write	access	by	using	this
operator.

...

$audi->producer	=	'Audi';

$audi->startMotor();

echo	'The	manufacturer	of	the	car	is:	'	.	$audi->producer;

www.allitebooks.com

http://www.allitebooks.org

2.2.2.	The	Constructor

When	a	factory	builds	a	vehicle,	the	car	already	features	a	manufacturer,	a	colour	and	a
mileage	(which	will	start	at	0).	Therefore	it	would	make	sense	to	set	these	properties	as
soon	as	the	class	gets	instantiated.

To	do	so,	we	use	a	constructor – a	specific	function,	which	will	be	called	automatically	as
soon	as	the	object	is	being	derived	from	the	class.

The	name	of	a	constructor	is	always	__construct	(with	two	underscores)	and	there	can
only	be	one	constructor	per	class.

class	Car	{

...

			public	function	__construct($producer,	$colour,	$milage	=	0)	{

						$this->producer	=	$producer;

						$this->colour	=	$colour;

						$this->milage	=	$milage;

			}

...

}

Constructors	always	appear	as	the	first	method	of	a	class	for	clarity	reasons,	even	if	in
theory	the	position	is	arbitrary.

In	order	to	instantiate	an	object,	we	could	use	for	example:

$bmw	=	new	Car('BMW',	'red');

$audi	=	new	Car('Audi',	'black',	200);

The	two	(respectively	three)	parameters	are	passed	to	the	constructor	method
automatically.	The	constructor	excepts	three	parameters,	the	last	one	is	optional	(a	default
value	has	been	set	in	the	method	signature).	Without	the	third	parameter,	this	default	value
(in	this	case	0	kilometres)	is	used.	All	other	parameters	must	exist	when	the	object	is
created,	otherwise	an	error	message	Missing	argument	occurs.

2.2.3.	Access	by	Using	$this

Parameters	passed	to	the	constructor	are	used	to	set	the	properties	of	the	class.	However
there	is	a	dilemma	here,	the	name	of	the	object	is	unknown	at	this	point	in	time	and
therefore	we	are	not	able	to	use	it.	The	operator	$this	addresses	this	issue – it	always
refers	to	the	current	instance.

2.2.4.	Filling	Methods	with	Content

At	this	point,	a	factory	is	able	to	produce	cars,	which	should	be	tested	before	delivery.	We
will	add	some	functionality	to	the	methods,	which	should	achieve	the	following:

1.	 start	the	engine
2.	 drive	10	kilometres
3.	 stop	the	engine

In	order	to	ensure	this	works	reliably,	a	new	property	$isEngineStarted	is	needed	to
distinguish	between	various	states	of	the	engine.

class	Car	{

			public	$producer;

			public	$colour;

			public	$milage;

			public	$isMotorStarted	=	FALSE;

			public	function	__construct($producer,	$colour,	$milage	=	0){

						$this->producer	=	$producer;

						$this->colour	=	$colour;

						$this->milage	=	$milage;

			}

			public	function	startMotor()	{

						if	($this->isMotorStarted	===	FALSE)	{

									$this->isMotorStarted	=	TRUE;

						}

			}

			public	function	drive($kilometer)	{

						if	($this->isMotorStarted	===	TRUE)	{

									$this->milage	=	$this->milage	+	$kilometer;

						}

			}

			public	function	stopMotor()	{

						if	($this->isMotorStarted	===	TRUE)	{

									$this->isMotorStarted	=	FALSE;

						}

			}

}

$bmw	=	new	Car('BMW','red');

$bmw->startMotor();

$bmw->drive(10);

$bmw->stopMotor();

var_dump($bmw);

The	result	looks	like	the	following:

object(Car)#1	(4)	{

		["producer"]=>

		string(3)	"BMW"

		["colour"]=>

		string(3)	"red"

		["milage"]=>

		int(10)

		["isMotorStarted"]=>

		bool(false)

}

2.3.	Inheritance	of	Classes

The	functionality	of	the	class	we	just	created	is	quite	presentable	already.	But	what	if	we
want	to	manage	a	different	type	of	car	with	it?	A	Cabriolet	for	example	has	different
(respectively	additional)	attributes,	a	convertible	top	for	instance,	which	can	be	open	or
closed.

There	would	be	no	reason	to	create	a	completely	new	class	for	this	but	we	could	re-use	the
existing	class	as	a	basis	and	expand	on	it.

This	can	be	achieved	by	using	the	keyword	extends.	With	this	keyword,	the	new	class
inherits	all	properties	and	methods	of	the	parent	class	and	can	be	modified	and/or
extended.	This	is	called	inheritance	or	expansion.

Firstly,	all	properties	and	methods	are	available	in	the	inherited	class	unaltered	and	can	be
overwritten	(by	implementing	a	function	of	the	parent	class	again)	or	extended.

class	Cabriolet	extends	Car	{

			public	$convertibleTopOpen	=	FALSE;

			public	function	openConvertibleTop()	{

						if	($this->convertibleTopOpen	==	FALSE)	{

									$this->convertibleTopOpen	=	TRUE;

						}

			}

			public	function	closeConvertibleTop()	{

						if	($this->convertibleTopOpen	==	TRUE)	{

									$this->convertibleTopOpen	=	FALSE;

						}

			}

}

$bmw	=	new	Cabriolet('BMW',	'red');

$bmw->openConvertibleTop();

print_r($bmw);

The	result:

Cabriolet	Object

(

				[convertibleTopOpen]	=>	1

				[producer]	=>	BMW

				[colour]	=>	red

				[milage]	=>	0

				[motorStarted]	=>

)

2.3.1.	Access	by	Using	parent

The	following	code	ensures,	the	convertible	top	closes,	before	the	engine	is	stopped	(if	the
top	is	currently	open):

class	Cabriolet	extends	Car	{

...

			public	function	stopMotor()	{

						if	($this->convertibleTopOpen	==	TRUE)	{

									$this->convertibleTopOpen	=	FALSE;

						}

						if	($this->motorStarted	==	TRUE)	{

									$this->motorStarted	=	FALSE;

						}

			}

			...

}

$bmw	=	new	Cabriolet('BMW',	'red');

$bmw->startMotor();

$bmw->openConvertibleTop();

$bmw->stopMotor();

This	works	as	expected	but	the	approach	has	a	downside:	the	method	stopMotor()	has
been	implemented	twice.	First	for	the	class	Car	and	second	for	the	class	Cabriolet.	If
something	changes	in	class	Car,	we	have	to	adjust	this	change	in	the	second	class	too.

In	an	ideal	world	we	would	be	able	to	access	the	method	of	the	parent	class	directly	and
this	is	possible	by	using	the	keyword	parent.	The	function	call	is	static	(no	new	object	of
the	parent	class	is	being	created),	thus	we	can	not	use	the	arrow	operator.	Static	calls	are
executed	by	the	double	colon	operator	::	(also	called	Scope	Resolution	Operator).

class	Cabriolet	extends	Car	{

...

			public	function	stopMotor()	{

						if	($this->convertibleTopOpen	==	TRUE)	{

									$this->convertibleTopOpen	=	FALSE;

						}

						parent::stopMotor();

			}

...

}

2.3.2.	Verifying	Class	Derivation

It	can	be	useful	to	determine	from	which	parent	class	an	existing	class	has	been	derived.
This	is	done	by	the	instanceof	operator:

$bmw	=	new	Cabriolet('BMW',	'red');

if	($bmw	instanceof	Car)	{

				echo	"The	car	is	of	type	Car";

}

if	($bmw	instanceof	Cabriolet)	{

				echo	"The	car	is	of	type	Cabriolet";

}

//	Output

The	car	is	of	type	Car

The	car	is	of	type	Cabriolet

2.4.	Abstract	Classes

Usually	every	class	contains	the	entire	code	which	is	required	for	later	use.	However
sometimes	the	code	a	class	will	contain	is	unknown	at	the	time	the	class	is	implemented.

For	example,	a	route	guidance	system	is	not	mounted	into	the	car	while	the	vehicle	is	still
in	the	factory.	The	customer	chooses	the	device	at	the	car	dealer	and	then	has	it	installed.

Assuming	that	every	car	will	have	a	navigation	device,	the	concrete	implementation	will
be	postponed	to	“later”.	However	we	want	to	ensure	that	the	methods	are	always
consistent,	e. g.	to	be	able	to	turn	on	or	turn	off	the	device,	independent	of	its	concrete
characteristics.

For	these	cases,	we	use	abstract	classes:

class	Car	{

...

			abstract	public	function	startNavigationDevice();

			abstract	public	function	stopNavigationDevice();

...

}

A	class	is	abstract,	if	at	least	one	of	its	methods	is	abstract.	When	this	is	the	case,	the
keyword	abstract	should	be	placed	in	front	of	the	class	name.	The	methods	are	abstract
because	all	their	implementations	are	missing – they	do	not	feature	any	method	bodies.

At	this	point,	the	class	can	not	be	used	any	more.	As	soon	as	you	try	to	create	an	instance
of	a	Cabriolet,	you	get	an	error	message	about	the	class	Car	immediately:

Fatal	error:		Class	Car	contains	1	abstract	method	and	must	therefore	be	declared	abstract	or	implement	the	remaining	methods

If	you	enter	the	keyword	abstract	in	front	of	the	class	Car,	you	get	another	error – this
time	in	relation	to	the	class	Cabriolet:

Fatal	error:		Class	Cabriolet	contains	1	abstract	method	and	must	therefore	be	declared	abstract	or	implement	the	remaining	methods

Our	only	option	left	is	to	concretise	the	abstract	methods	by	adding	a	method	body,	even	if
it	remains	empty.	We	will	do	this	in	class	Cabriolet	as	follows:

class	Cabriolet	{

...

			public	function	startNavigationDevice()	{

			}

			public	function	stopNavigationDevice()	{

			}

...

}

The	purpose	of	abstract	classes	is	their	implementation	is	postponed	but	we	already	know
their	method	names	and	method	signatures	when	we	create	the	class	and	we	can	work	with
them.

2.5.	Interfaces

The	methods	which	a	class	must	consist	of	can	be	defined	by	an	Interface.	In	this
connection	only	method	signatures	are	implemented	and	method	bodies	and	especially
properties	are	not	part	of	the	Interface	definition.	Therefore,	an	Interface	of	a	class	is
similar	to	a	class,	which	only	consists	of	abstract	methods.	We	can	not	use	properties	but
constants.

We	sill	store	the	guidance	device	in	such	an	Interface	to	separate	the	code	and	also	to	use
the	Interface	in	other	car	types	later,	without	writing	redundant	code.	Despite	the	fact	that
methods	of	an	Interface	are	abstract,	the	keyword	abstract	must	not	be	used.

interface	NavigationDevice	{

			public	function	startNavigationDevice();

			public	function	stopNavigationDevice();

}

An	Interface	always	starts	with	the	keyword	interface.	The	terminology
“implementation	of	an	Interface”	is	used,	rather	than	“derivation	of	an	Interface”	as
explained	before.	The	obligation	to	concretise	every	method	later	remains.	In	addition,
multiple	Interfaces	can	be	applied	at	the	same	time	(Interface	names	separated	by
commas).

class	Car	implements	NavigationDevice	{

			...

}

class	Car2	implements	NavigationDevice,	\TYPO3\CMS\Core\SingletonInterface	{

			...

}

The	bottom	line	is	we	can	implement	multiple	classes	at	once	but	we	can	only	derive
(extend)	from	one	class.

www.allitebooks.com

http://www.allitebooks.org

2.6.	Visibility:	Public	and	Protected

We	can	define,	how	to	access	methods	and	properties	from	the	“outside”.	This	means	both
the	main	program	and	another	class,	instance	or	object.

All	methods	and	properties	have	been	declared	as	public	so	far.	This	allows	access	to	the
method	or	property	by	another	class	as	well	as	by	the	main	program.

If	the	keyword	protected	is	used	instead	of	public,	only	the	class	to	which	the	method	or
property	belongs	and	its	derived	methods	and	properties	can	access	it.

The	main	program	does	not	have	this	access	though.	This	circumstance	is	called
encapsulation	of	data.

class	Car	{

			...

			protected	$colour;

			...

}

If	you	try	to	access	the	property	$colour	from	the	outside,	an	error	occurs:

...

$bmw	=	new	Cabriolet('BMW',	'blue');

$bmw->colour	=	'red';

//	Result:

Fatal	error:		Cannot	access	protected	property	Cabriolet::$colour

It’s	not	possible	to	access	the	colour	from	the	outside,	which	makes	sense	because	the
colour	of	a	car	can	not	be	changed	easily.	However	you	can	drive	to	a	garage	and	get	your
car	painted	a	different	colour	so	there	must	be	a	way	to	access	it	somehow.

Visibilities	in	Extbase	&	Fluid
All	properties	in	Extbase	&	Fluid	are	protected	and	all	methods	are	public
(except	really	internal	methods).

2.6.1.	Getter	and	Setter

We	just	learnt	that	visibilities	aim	to	control	the	access	to	the	code.	In	order	to	allow
access	to	protected	properties,	we	have	to	develop	specific	methods,	which	will	allow
this.	These	methods	are	called	getter	(get,	because	they	allow	read	access)	and	setter	(set,
because	they	allow	write	access).	As	per	convention,	the	names	of	these	methods	start
with	get,	respectively	set	and	the	property	names	are	stated	in	UpperCamelCase.

class	Car	{

			...

			protected	$colour;

			...

			public	function	getColour()	{

						return	$this->colour;

			}

			public	function	setColour($colour)	{

						$this->colour	=	$colour;

			}

			...

}

$bmw	=	new	Cabriolet('BMW',	'blue');

$bmw->setColour('red');

2.7.	Type	Hints

The	source	code	can	be	reduced	even	further	by	using	Type	Hints.	As	an	example,	the
software	should	provide	a	method	rent()	to	allow	hiring	the	car.	The	method	should
ensure,	that	the	vehicle	is	really	a	car.

public	function	rent($vehicle)	{

			if	($vehicle	instanceof	Car)	{

						//	We	made	sure,	the	car	can	be	hired	now

			}

}

It’s	possible	to	cut	this	short	by	using	a	type	hint.	The	type	of	the	parameter	is	defined	by
adding	it	in	front	of	the	variable,	separated	by	a	space.	This	can	be	used	with	class	names
as	well	as	interfaces.

public	function	rent(Car	$vehicle)	{

			...

}

Datatypes	array	and	class	names	are	valid	type	hints	but	standard	types	such	as	integer,
string	or	boolean	are	not.

There	is	another	difference	between	both	methods,	the	latter	shows	an	error	message	if	the
call	of	the	method	violates	the	type	hint:

Catchable	fatal	error:	Argument	1	passed	to	Book\Extbase\Code\Cabriolet::rent()	must	be	an	instance	of	Book\Extbase\Code\Car,	...

2.8.	Static	Calls

All	examples	instantiated	objects	from	classes	so	far.	This	is	reasonable	because	we	do	not
know	how	the	object	will	behave	exactly.

If	the	object’s	behaviour	is	the	same	every	time,	it	would	be	unwise	to	instantiate	an	object
each	time.	It	would	be	convenient	to	have	a	static	access	to	the	class.

Consider	a	price	list	as	an	example,	we	can	expect	the	same	result	for	every	input
parameter,	this	is	classic	example	of	a	static	call:

class	PriceList	{

			const	DATE	=	'2013';

			static	public	function	getPrice(Car	$car)	{

						if	($car->producer	==	'BMW')	{

									return	'100	EUR';

						}

						if	($car->producer	==	'Audi')	{

									return	'95	EUR';

						}

			}

}

$bmw	=	new	Cabriolet('BMW',	'red');

echo	'Price	list	of:	'	.	PriceList::DATE	.	'
';

echo	'The	car	costs:	'	.	PriceList::getPrice($bmw)	.	'	per	day!';

//	Result

Price	list	of:	2013

The	car	costs:	100	EUR	per	day!

We	are	required	to	add	the	keyword	static	to	all	functions.

2.9.	Namespaces

Extbase	uses	namespaces	since	version	TYPO3	CMS	6.0 – just	as	the	CMS	itself.

Namespaces	are	useful	when	there	is	the	risk	that	two	classes	could	have	the	same	name.
In	order	to	tackle	this	risk,	long	and	complicated	class	names	were	used	in	Extbase	prior
version	4.7,	e. g.	Tx_Extbase_Validation_Validator_AbstractValidator.	At	the	time,
the	class	name	indicated	where	to	find	the	file	of	the	class	in	the	system	(we	will	come
back	to	this	later).

A	namespace	is	set	by	the	keyword	namespace.

namespace	Book\Extbase\Code;

$bmw	=	new	Car('BMW',	'red');

print_r($bmw);

//	Results	in	the	following	output:

Book\Extbase\Code\Car	Object

(

				[producer]	=>	BMW

				[colour]	=>	red

				[milage]	=>	0

				[motorStarted]	=>

)

Whenever	a	class	is	used,	the	namespace	will	be	“added”	automatically,	which	results	in	a
fully	qualified	class	name	(FQCN).

PHP	relinquishes	this	addition,	when	the	class	name	starts	with	a	backslash	\	(this	labels
the	class	name	as	“absolute”).	In	this	case,	PHP	assumes	that	the	class	name	is	already
fully	qualified.

In	order	to	cut	another	(fully	qualified)	name	short,	we	can	use	the	keyword	use	as
follows:

namespace	Book\Extbase\Code;

use	Vehicle\Motor\FourWheels;

class	Car	extends	FourWheels	{

			...

}

In	this	case,	the	fully	qualified	name	Vehicle\Motor\FourWheel	will	be	used	instead	of
the	namespace.	Therefore,	use	acts	as	a	kind	of	alias.	The	last	element	of	the	namespace

referenced	by	use	is	used	as	the	name	(here:	FourWheel),	unless	a	different	name	has	been
specified	by	using	the	keyword	as:

namespace	Book\Extbase\Code;

use	Vehicle\Motor\FourWheels	as	FW;

class	Car	extends	FW	{

			...

}

2.10.	Important	Design	Patterns

In	software	development,	you	will	face	design	challenges	sooner	or	later.	Solutions	for
specific	challenges	are	often	very	similar	and	design	patterns	have	been	established	in
order	to	tackle	some	of	these.

More	than	80	different	design	patterns	have	proven	themselves	but	only	a	fraction	of	those
are	used	in	modern	software	design	today.

The	following	three	design	patterns	are	often	used	in	Extbase	&	Fluid,	which	we	will
explain	in	the	following	sections	in	more	detail:

Singleton
Prototype
Dependency	Injection

2.10.1.	Singleton

If	we	use	the	car	manufacturer	example	discussed	earlier	and	add	an	employee	who	counts
the	completed	vehicles	at	the	end	of	the	production	line	(in	terms	of	software
development,	this	employee	is	an	“object”).	One	employee	(or	object)	would	be	required
for	each	conveyor	and	assuming,	the	number	of	those	objects	is	known,	we	can	ask	each
one	of	them	for	the	number	of	vehicles	counted	and	sum	these	figures	up	in	order	to	get
the	total	number	of	completed	vehicles.

However	it	would	be	much	easier,	if – when	such	as	an	object	is	created – a	check	would
be	executed,	if	an	object	of	this	class	already	exists	and	if	it	does,	this	would	be	used
instead	of	creating	a	new	one.	Otherwise,	a	new	object	is	being	created.	This	ensures,	that
only	one	instance	of	an	object	exists	at	runtime.

This	would	result	in	more	work	for	the	employee	because	they	have	to	hop	from	one
conveyor	to	the	next – but	we	only	need	to	ask	them	for	the	total	number	of	completed
vehicles	at	the	end	of	the	day.

In	Extbase	a	class	of	type	Singleton	has	to	implement	the	interface
\TYPO3\CMS\Core\SingletonInterface	as	follows:

class	Object	implements	\TYPO3\CMS\Core\SingletonInterface	{

}

The	interface	remains	empty:

namespace	TYPO3\CMS\Core;

interface	SingletonInterface	{

}

In	order	to	get	an	instance	of	class	object,	a	specific	function	such	as	makeInstance()
must	be	used	rather	than	new:

$obj	=	\TYPO3\CMS\Core\Utility\GeneralUtility::makeInstance('Object');

This	method	checks	whether	the	object	matches	the	design	pattern	Singleton.	In	this	case,
the	method	uses	a	kind	of	register	to	determine,	if	an	instance	of	the	class	already	exists
and	return	this.	If	no	instance	exists	yet,	a	new	class	is	instantiated	(by	using
instantiateClass())	and	the	instance	returned.

The	method	makeInstance()	is	defined	as	follows:

static	public	function	makeInstance($className)	{

						if	(!is_string($className)	||	empty($className))	{

									throw	new	\InvalidArgumentException('$className	must	be	a	non	empty	string.',	1288965219);

						}

						$finalClassName	=	self::getClassName($className);

						//	Return	singleton	instance	if	it	is	already	registered

						if	(isset(self::$singletonInstances[$finalClassName]))	{

									return	self::$singletonInstances[$finalClassName];

						}

						//	Return	instance	if	it	has	been	injected	by	addInstance()

						if	(

									isset(self::$nonSingletonInstances[$finalClassName])

									&&	!empty(self::$nonSingletonInstances[$finalClassName])

)	{

									return	array_shift(self::$nonSingletonInstances[$finalClassName]);

						}

						//	Create	new	instance	and	call	constructor	with	parameters

						$instance	=	static::instantiateClass($finalClassName,	func_get_args());

						//	Create	alias	if	not	present

						$alias	=	\TYPO3\CMS\Core\Core\ClassLoader::getAliasForClassName($finalClassName);

						if	($finalClassName	!==	$alias	&&	!class_exists($alias,	FALSE))	{

									class_alias($finalClassName,	$alias);

						}

						//	Register	new	singleton	instance

						if	($instance	instanceof	\TYPO3\CMS\Core\SingletonInterface)	{

									self::$singletonInstances[$finalClassName]	=	$instance;

						}

						return	$instance;

			}

			protected	static	function	instantiateClass($className,	$arguments)	{

						switch	(count($arguments))	{

									case	1:

												$instance	=	new	$className();

												break;

						...

Extbase	uses	a	special	method	instead	of	makeInstance()	because	Dependency	Injection
(see	below)	is	used	in	addition	to	the	Singleton	concept.

2.10.2.	Prototype

Prototype	is	the	counterpart	of	Singleton	to	a	certain	extent	and	ensures,	that	a	new
instance	is	always	created,	whenever	a	new	object	is	requested.	Extbase	treats	a	class	as	a
prototype	by	default,	if	it	has	not	been	“marked”	as	a	SingletonInterface.

www.allitebooks.com

http://www.allitebooks.org

2.10.3.	Dependency	Injection

Dependency	Injection	(DI)	is	a	software	design	pattern	which	aims	to	simplify	the
resolution	of	dependencies	of	an	object.	It	uses	inversion	of	control	in	order	to	free	an
object	from	unnecessary	connections,	which	are	only	required	to	resolve	its	dependencies
but	not	for	its	main	purpose.	The	responsibility	of	resolving	the	dependencies	are
transferred	from	the	object	to	the	framework	(here:	Extbase).

A	typical	example	in	Extbase	would	be	a	repository	in	a	controller,	which	is	often
required.	If	you	would	instantiate	the	repository	manually	every	time	and	change	its
implementation	at	one	point	in	the	future,	you	would	have	to	review	your	entire	code	and
update	it.

Dependency	Injection	uses	the	opposite	approach	by	telling	the	framework,	which	class
you	need	and	the	framework	searches	for	an	appropriate	implementation	and	“returns”
this.	The	benefit	is	that	you	could	for	example	return	a	different	implementation	globally
by	simply	updating	the	configuration	rather	than	each	line	of	code,	which	refers	to	the
implementation.

There	are	two	types	of	DI	in	Extbase:	Constructor	DI	and	Setter	DI.	With	the	latter,	you
can	choose	between	using	the	annotation	@inject	(see	Section	2.11)	and	using	your	own
injection	method	(which	must	start	with	inject).

The	first	option	is	recommended	and	looks	like	this:

/**

	*	blogRepository

	*

	*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

	*	@inject

	*/

protected	$blogRepository;

The	“inject	method”	could	look	like	the	following	example:

/**

	*	blogRepository

	*

	*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

	*/

protected	$blogRepository;

public	function	injectBlogRepository(\Lobacher\Simpleblog\Domain\Repository\BlogRepository	$blogRepository)	{

				$this->blogRepository	=	$blogRepository;

}

The	“Constructor	Dependency	Injection”	could	look	like:

/**

	*	blogRepository

	*

	*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

	*/

protected	$blogRepository;

public	function	__construct(\Lobacher\Simpleblog\Domain\Repository\BlogRepository	$blogRepository)	{

			$this->blogRepository	=	$blogRepository;

}

The	last	example	is	somewhat	tricky	because	you	would	usually	get	an	error	message	due
to	the	fact,	that	no	parameters	are	passed	to	the	Constructor	when	the	object	is	being
created.	However	Extbase	takes	care	of	generating	the	correct	parameter	and	passes	it	to
the	object	automatically	based	on	the	annotation	and	the	type	hint	given.

2.11.	Annotations

Annotations	are	meta	information,	which	are	used	for	methods,	properties	and	classes.
They	have	their	own	syntax	and	are	parsed	by	a	special	Reflection-API.	At	this	juncture,
the	code	(in	particular	the	annotations)	are	analysed	and	new,	executable	code	is
generated,	which	reacts	on	the	logic	stated	in	the	annotations.	This	implements	additional
functionality	to	the	code.

Annotations	are	part	of	the	comments,	which	always	start	with	/**.	The	annotation	itself
starts	with	the	@-character:

/**

	*	blogRepository

	*

	*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

	*	@inject

	*/

protected	$blogRepository;

In	this	example,	a	Blog	repository	is	determined	and	assigned	to	variable
$blogRepository	by	using	Dependency	Injection.	In	order	to	achieve	this,	the	code	will
be	reflected	(parsed	and	analysed),	written	to	a	new	location	(e. g.	cache)	as	required	and
then	executed.

Thus	annotations	are	essential	for	the	sequence	of	the	program	and	must	not	be	left	out	or
removed	by	PHP	or	any	other	software	or	library	such	as	an	PHP	accelerator.	See	chapter
Chapter	4	for	further	details.

[11]	http://docs.typo3.org/TYPO3/CodingGuidelinesReference/

http://docs.typo3.org/TYPO3/CodingGuidelinesReference/

Chapter	3.	Domain	Driven	Design

The	design	and	development	of	software	is	always	a	creative	process,	where	you	are
looking	for	smart	solutions	to	tackle	challenges.

The	first	action	in	this	process	should	be	a	clear	definition	of	the	requirements.	If	this	is
incomplete	or	incorrect,	misunderstandings	occur,	which	inevitably	result	in	a	situation
where	the	software	does	not	meet	all	of	the	client’s	expectations.

Therefore,	it	is	essential	to	work	closely	with	your	client	and	fully	understand	their
“problems”.	In	the	domain	driven	design	concept,	the	subject	area	(the	sphere	of	your
client’s	business	activities)	is	called	domain.

The	domain	stands	in	the	centre	of	the	software	design.	The	term	Domain	Driven	Design
was	coined	by	Eric	Evans	in	his	book	“Domain	Driven	Design:	Tackling	Complexity	in
the	Heart	of	Software”,	which	is	already	10	years	old.

A	different	understanding	of	domain-specific	concepts	seems	to	be	the	main	reason	for
discordances	between	user	(clients)	and	application	developer	(service	provider).

DDD	(Domain	Driven	Design)	is	based	on	two	important	assumptions:

The	software	design’s	main	focus	should	be	on	the	core	domain	and	domain	logic.
Complex	designs	should	be	based	on	a	model	of	the	domain.

This	ensures	that	implicit	relations	(which	often	cause	communication	problems)	become
explicit.

3.1.	Infrastructure	Ignorance

DDD	concentrates	on	the	client’s	domain,	whereby	other	aspects	can	take	a	back	seat	or
can	be	ignored,	for	example	the	infrastructure.

Figure	3.1.	The	concept	of	Domain	Driven	Design

In	this	context,	the	“infrastructure”	could	be	templating,	input,	output,	persistence,
cookies,	AJAX	and	so	on,	which	has	no	direct	relationship	to	the	problem.	We	will	have	to
solve	these	issues	too	but	not	as	part	of	DDD.	The	framework	Extbase	(which	is	based	on
DDD)	will	take	care	of	many	of	these	tasks	for	us	later.	We	just	have	to	implement	the
remaining	components.

This	is	why	Extbase	does	not	provide	a	native	solution	for	an	image	upload	functionality,
AJAX	handler,	etc.	These	are	elements,	which	have	to	be	implemented	in	the	code	using
PHP.	On	the	other	hand,	Extbase	enables	us	to	implement	the	model	considerably	quicker
and	in	a	better	quality.

Figure	3.2	visualises,	where	exactly	the	DDD	sits	in	a	program	flow.

Figure	3.2.	Domain	Driven	Design	in	a	vertical	architecture

3.2.	The	Domain	Model

A	central	requirement	of	DDD	dictates	that	the	design	of	the	software	is	to	be	made
through	a	model.	A	model	is	basically	a	description	of	the	reality,	simplified	and	focussed
on	specific	purposes.	This	means	that	the	model	represents	a	plan	of	objects	(and
properties)	included	and	their	relations	to	each	other.	There	are	no	strict	rules	for	a	model
development	but	the	following	guidelines	should	be	taken	into	account:

Modelling	is	the	most	important	process	of	the	entire	development	and	requires	a
great	deal	of	thought.
The	modelling	process	should	be	a	collaboration	between	the	developer,	the	domain
expert	(the	client)	and	the	service	provider	(e. g.	project	leader	or	consultant).
“Proxy-experts”	should	not	take	part	in	the	modelling	process	but	actual	domain
experts	should.	A	proxy-expert	could	be	a	marketing	manager	who	does	not	know	the
products	in	detail	for	which	the	software	is	built	but	gained	their	knowledge	from	a
domain	expert.
Modelling	is	an	agile	and	interactive	process.	This	means	that	the	process	does	not
end	at	one	point	necessarily	but	can	be	picked	up	and	continued	during	the	project’s
lifetime.	Due	to	the	fact	that	the	client	is	an	important	part	of	this	process,	they	must
contribute	the	time	required.
The	modelling	process	should	be	conducted	in	a	way	where	no	technical	or
intellectual	obstacles	arise.	Therefore	no	electronic	devices	and	modelling	languages
should	be	used	at	all.	A	paper	and	a	pencil	are	the	perfect	tools.
The	result	of	the	modelling	process	is	a	model,	that	every	stakeholder	understands
straight	away.
The	model	shows	all	objects,	their	properties	and	methods	as	well	as	the	relations
between	these	objects.

3.2.1.	Ubiquitous	Language

A	ubiquitous	language	(UL)	is	a	central	element	to	ensure	that	everyone	speaks	the	same
language	during	the	modelling	process.	Assumed	simple	or	clear	terms	are	quite	often
misunderstood	by	team	members.	Thus	it	is	mandatory	that	everyone	speaks	the	same
language.	The	focus	is	on	objects,	properties,	methods	and	relations	used	in	the	domain.
Later	we	will	learn	that	every	directory,	file	and	class	name	follows	this	principle.

UL	leads	to	the	model,	which	leads	to	the	implementation.	In	case	of	a	change	or
adjustment	in	one	of	these	phases,	the	other	two	must	be	amended	accordingly.

As	a	basic	principle,	the	process	must	use	the	language	of	the	domain	and	as	a	result	of
that,	creates	the	basis	of	the	UL.	A	system	for	pharmacists	should	likely	use	Latin.	A
software	for	a	Bavarian	farmer	could	even	be	in	Bavarian	German,	preconditioned,	all
stakeholders	understand	the	language.

In	the	past,	it	was	generally	agreed	that	code	must	be	written	in	English.	With	DDD,	code
must	be	readable	by	the	client	as	well	as	the	service	provider,	which	means	that	the
language	of	the	domain	is	the	decisive	language.	In	addition,	the	code	is	developed	to
tackle	the	problem	of	the	client,	not	the	problem	of	a	developer	who	does	not	know	the
domain’s	language.

Pragmatic	Approach
Some	developers	rightly	fear	to	write	their	code	in	Bavarian	German.	For
example,	the	argument	that	PHP	possibly	has	issues	with	Arabic	script	is	also
valid.	A	pragmatic	and	proven	compromise	would	be	that	the	communication
with	the	domain	expert	uses	the	main	language	but	developers	use	English
when	communicating	with	each	other.

Figure	3.2	shows	a	possible,	simplified	outcome	of	this	step:	a	glossary.

Table	3.1.	Ubiquitous	Language	Glossary

Term German Description Important	for	model

Order Bestellung sum	of	positions yes

Row Posten unit	(consists	of	product,	amount	and	price) yes

Warehouse Lager location	where	products	are	stored	(limited	capacity) no

Product Produkt physical	or	virtual	article yes

Invoice Rechnung detailed	list	of	ordered	products yes

Columns	term	and	translation	are	a	typical	compromise,	if	the	domain	language	is
English,	but	stakeholder	have	agreed	on	using	German	as	the	modelling	language	(e. g.
because	the	organisation	is	mainly	located	in	Germany).

www.allitebooks.com

http://www.allitebooks.org

3.2.2.	Building	Blocks	of	DDD

At	this	point,	we	have	the	vocabulary	to	develop	the	model	but	the	building	blocks	are	still
missing.	Not	too	many	of	these	building	blocks	exist,	relevant	for	Extbase.

Figure	3.3.	Building	blocks	of	DDD

Entity
An	Entity	is	a	domain	object	with	a	global	and	consistent	identity.	This	could	be	an
unambiguous	assignment	of	a	person	for	example.	In	order	to	get	the	assignment,	a	unique
ID	or	a	combination	of	multiple	fields	is	required.	With	the	key,	the	object	can	be
addressed	clearly	without	ambiguity.

This	is	comparable	with	databases	where	a	data	set	is	determined	by	its	UID,	UUID	or	a
combination	of	keys.	A	marriage	for	example,	changes	“properties”	(e. g.	last	name	or
address)	but	the	person	remains	the	same.	The	passport	number	or	the	fingerprint
determine	the	identity.

In	order	to	change	an	Entity,	the	system	has	to	find	it	first,	then	update	it	and	then	store	it
again.

Value	Object
In	contrast	to	an	Entity,	this	domain	object	does	not	feature	a	global	identity	but	is	defined
by	the	sum	of	the	properties.

Entities	are	addressed	by	WHERE	uid=xy	for	example,	whereas	Value	Objects	queried	by
using	WHERE	name="red"	AND	hex="#C00".	In	this	case,	Extbase	reads	the	UID	of	the	first
data	set	found	and	internally	uses	this	for	further	operations.

Changing	properties	means	changing	the	object	so	that	the	object	would	not	be	the	same
any	more.	A	colour	could	be	a	Value	Object	for	example.	If	it	had	the	name	red	and	the
colour	code	#c00,	you	could	not	simply	change	the	name	to	blue	without	meaning	a	new
or	different	colour.	Therefore	Value	Objects	are	immutable	(not	changeable).

When	a	Value	Object	is	to	be	changed,	it	will	be	discarded	and	a	new	one	with	the	new
properties	is	created.	In	this	case,	a	relation,	which	possibly	exists,	is	discarded,	too.

In	general,	a	Value	Object	should	not	have	too	many	properties.	From	a	technical	point	of
view,	an	index	should	be	stored	across	columns	and	this	index	can	hold	1024	bytes
maximum,	which	would	already	exceed	4	fields	of	type	varchar(255).

Service

While	Entities	and	Value	Objects	are	fundamental	components	of	DDD,	objects	are
required	to	communicate	with	each	other.	This	falls	in	the	responsibility	of	Services	(e. g.
as	service	classes),	which	process	Entities	and	Value	Objects	as	their	input	and/or	output.
Typical	examples	are	the	distance	between	two	address	objects	or	a	money	transfer
between	two	account	objects.

Factory
Factories	allow	the	creation	of	domain	objects	in	decentralised	specific	factory	objects.
This	is	useful	if	either	the	creation	is	complex	(and	requires	associations	for	example,
which	are	not	required	by	the	domain	object)	or	the	specific	creation	of	the	domain	object
needs	to	be	replaced	at	run	time.

Regarding	our	car	object,	a	Factory	could	instantiate	four	wheel	objects,	link	them	with	a
car	object	and	return	them	later.

Repository
Due	to	the	fact	that	technical	details	about	the	persistence	(storage	of	data	for	a	long
period	of	time)	must	not	occur	in	the	UL	and	additionally,	DDD	eludes	everything	about
the	infrastructure,	databases	or	any	similar	storage	mechanisms	do	not	exist	in	DDD.

Therefore,	so-called	Repositories	have	been	introduced.	A	Repository	is	a	kind	of	black
box	that	makes	objects	persistent	and	allows	them	to	search	for	objects.

A	Repository	is	always	assigned	to	an	object,	which	means,	a	car	Repository	finds	cars,	a
steering	wheel	Repository	finds	steering	wheels – although,	both	are	stored	in	the	same
database	from	a	technical	perspective.

Basically,	a	steering	wheel	could	be	found	via	the	car	Repository	(and	vice	versa)	but	only
if	a	relationship	between	both	exists.	Furthermore,	the	object	that	is	assigned	to	the
Repository	has	to	be	used.

You	could	say	that	your	own	Repository	always	allows	an	independent	access	to	the
corresponding	object.	If	a	different	Repository	is	used,	a	relation	to	the	object,	which	you
are	looking	for,	must	exist	in	order	to	find	it.

Aggregate
An	Aggregate	acts	as	an	access	control	point.	Imagine	a	nightclub,	where	all	the	objects
inside	such	as	the	dance	floor,	spirituous	beverages	or	spotlights	are	protected	from	the
outside.	In	theory,	it	would	be	possible	to	“access”	the	beverages	(object)	but	the	physical
wall	of	the	property	aggregates	the	access.	Only	one	spot	allows	us	to	penetrate	this
barrier,	the	entrance,	which	is	guarded	by	a	bouncer,	who	can	grant	access	or	not.	In	this
case,	the	bouncer	is	called	Aggregate	Root.

From	a	technical	point	of	view,	this	means	for	Extbase	that	all	objects,	which	are	also
Aggregate	Roots,	there	must	be	a	Repository	and	a	Controller	(including	appropriate
Actions).

Relation
A	Relation	builds	a	connection	between	two	objects.	The	following	four	types	of	Relations
exist	in	Extbase:

1:1
The	1:1	relation	indicates,	that	for	one	object,	exactly	one	other	object	exists.	For
example,	a	website	owner	should	only	operate	one	Blog	by	definition	and	every	Blog
should	have	one	operator	only.

1:n
The	1:n	relation	indicates,	that	for	one	object,	an	arbitrary	number	of	other	objects
exists.	A	Blog	could	have	a	number	of	entries	but	an	entry	belongs	to	one	Blog	only.

n:1

The	n:1	relation	indicates,	that	an	arbitrary	number	of	objects	exists	for	exactly	one
object.	A	Blog	post	for	example	has	one	author	only	but	an	author	could	have	written
an	arbitrary	number	of	posts.

m:n
The	m:n	relation	indicates,	that	an	arbitrary	number	of	objects	can	have	a	relation	to
an	arbitrary	number	of	other	objects.	A	Blog	post	could	have	an	arbitrary	number	of
tags	but	tags	can	also	be	assigned	to	an	arbitrary	number	of	posts.

MVC
Domain-Driven	Design	requires	a	Layered	Architecture,	which	is	implemented	in	Extbase
by	a	MVC	framework.	MVC	stands	for:

Model
Business	logic	and	business	data.	Strictly	speaking,	this	layer	should	be	called
domain.

View
In	Extbase,	the	view	(visual	appearance	or	template	layer)	is	implemented	by	using
templates	and	the	underlying	templating	engine	Fluid.	Although	other	views	such	as
Smarty,	plain	text,	XML,	JSON,	etc.	can	be	used.

Controller
Every	request	executes	the	controller	first	of	all.	Extbase	uses	a	slim	controller
concept.	This	means	that	this	component	should	only	contain	logic	to	process	the
request	and	control	the	application – no	business	logic	(model)	and	no	view	logic
(view)	if	practical.	The	controller	is	diverted	into	actions,	which	take	care	of	the
controlling	tasks.

But	what	does	a	typical	request	in	Extbase	look	like?

Figure	3.4.	MVC	in	Extbase

1.	 First,	the	user	triggers	a	request,	which	arrives	at	the	Extbase	system.	In	this	case,	the
user	accesses	a	list	of	all	posts	of	a	Blog.	Thus	the	request	hits	the	list	Action	of	the
Post	Controller.

2.	 Now	the	Action	queries	the	domain	and	accesses	the	appropriate	Post	Repository.
3.	 The	Repository	passes	the	data	to	the	domain	model	and	executes	any	business	logics

if	applicable.
4.	 The	data	(technically	speaking	the	QueryResult	object	only,	which	is	a	huge	SQL

object)	is	returned	to	the	Repository.
5.	 The	Repository	passes	the	data	on	to	the	list	Action.
6.	 …and	further	to	the	View,	which	takes	care	of	the	display.
7.	 Finally,	the	complete	rendered	HTML	is	transferred	to	the	user.

3.3.	Structuring	DDD

How	can	the	model	be	kept	“clean”	respectively	and	how	should	it	be	structured	properly?
This	is	particularly	important	when	different	developers	are	working	on	the	domain	and/or
the	domain	model	become	significantly	large.

The	following	concepts	exist:

Bounded	Context
Context	Maps
Core	Domain
Shared	Kernel

3.3.1.	Bounded	Context

The	Bounded	Context	(BC)	describes	the	boundaries	of	the	domain	in	relation	to:

implementation	details
intended	purpose
team	classification

A	Context	is	initially	a	specific	area	of	accountability.	Assuming	this	is	strictly	separated
from	other	areas,	you	get	a	Bounded	Context,	a	defined	environment	of	a	domain.

Let’s	use	an	e-commerce	shop	to	illustrate	the	principle:	a	product	in	a	shopping	cart	has	a
specific	context.	Certain	attributes	are	important,	such	as	the	image,	headline,	short
description.	When	you	access	the	product	in	the	detail	view,	further	properties	appear:	a
video,	3D	images,	reviews,	etc.	As	soon	as	the	shipping	is	calculated,	other	attributes
become	relevant,	e. g.	size,	weight,	shipping	location.	The	context	changes	depending	on
the	task.

Almost	every	non-trivial	domain	or	application	uses	multiple	models.	The	more	important
it	becomes	to	draw	boundaries	where	each	single	model	has	its	own	structure	and	purpose.
It	should	be	clear	at	all	times,	which	problem	you	want	to	solve,	where	the	boundaries	are
and	how	the	components	communicate	with	each	other.	Eric	Evans	stated:

	 A	“Bounded	Context”	delimits	the	applicability	of	a	particular	model	so	that	team	members	have	a	clear	and	shared
understanding	of	what	has	to	be	consistent	and	how	it	relates	to	other	contexts.	Within	that	context,	work	to	keep
the	model	logically	unified,	but	do	not	worry	about	applicability	outside	those	bounds.	In	other	contexts,	other
models	apply,	with	differences	in	terminology,	concepts	and	rules,	and	different	dialects	of	the	“Ubiquitous
Language”.	By	drawing	an	explicit	boundary,	you	can	keep	the	model	pure,	and	therefore	potent,	where	it	is
applicable.	At	the	same	time	you	avoid	confusion	when	shifting	your	attention	to	other	“Contexts”.	Integration
across	the	boundaries	necessarily	will	involve	some	translation,	which	you	can	analyze	explicitly.

	

	 —	Eric	Evans	Domain	Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software

Every	BC	includes	at	least	one	domain	model	with	a	number	properties.	We	will	see	an
example	of	a	Bounded	Context	in	Chapter	17.

3.3.2.	Context	Map

Context	Maps	describe	the	boundaries	and	interfaces	of	the	Bounded	Context	as	a	general
plan – from	a	bird’s	eye	view	to	some	extent.

This	prevents	crossing	the	frontiers	of	the	Bounded	Context.

Context	Maps	clarifies	the	models	that	are	used	at	which	place	in	the	system.	In	addition
to	that,	Context	Maps	provide	an	overview	of	all	models,	their	boundaries	and	interfaces.
As	a	consequence,	contexts	do	not	grow	into	other	context	areas	and	the	communication
between	contexts	happen	through	well-defined	interfaces.

3.3.3.	Core	Domain

Every	system	is	divided	into	three	areas:

Core	Domain
This	is	the	most	valuable	part	of	the	domain	model – the	part	that	is	of	most	benefit
and	business	value.	Other	parts	of	the	domain	model	aim	to	support	the	core	domain
and	expand	it	with	less	important	functionality.	During	the	modelling,	great	attention
should	be	paid	to	the	code	domain	and	the	best	developers	should	be	aware	of	this.

Generic	Subdomains
These	implement	generic	functionality	such	as	the	handling	of	time	zones.

Supporting	Domains
Support	domains	belong	to	the	circumference	of	the	use	case	and	support	the	core
domain.	Without	this	functionality,	the	main	business	is	still	possible.

For	an	insurance	company,	this	could	be	mapped	as	follows:

Core	Domain
insurance

Supporting	Domain
client’s	portfolio

Generic	Domain
time	sheet	of	the	insurance	agent

3.3.4.	Shared	Kernel

The	Shared	Kernel	is	a	part	of	the	core	domain,	which	is	used	by	various	components
across	the	system.	This	is	useful,	if	components	are	only	loosely	connected	with	each
other	and	the	project	is	too	large	to	be	handled	by	one	team.	The	shared	Kernel	is
developed	by	all	project	teams	who	intend	to	use	it.	This	requires	appropriate	coordination
and	integration	efforts.	Therefore	a	Shared	Kernel	can	be	understood	as	the	intersecting	set
of	all	Bounded	Contexts.

www.allitebooks.com

http://www.allitebooks.org

Chapter	4.	Overview	of	Extbase

We	will	start	with	a	tour	through	the	simple	extension	efempty,	in	order	to	gain	an
overview	of	the	Extbase	and	Fluid	processes	happening	in	the	background.

4.1.	Installation	of	Extbase	&	Fluid

Since	TYPO3	CMS	version	6.0,	the	extensions	Extbase	and	Fluid	are	an	inherent	part	of
TYPO3	as	system	extensions,	which	can	not	be	uninstalled.	This	is	hardly	surprising
because	more	and	more	system	extensions	are	based	on	Extbase	and	Fluid.

However	you	should	always	ensure	that	these	packages	are	installed	correctly.

Firstly,	go	to	the	Extension	Manager	and	check	that	both	extensions	are	installed	in	their
latest	version.	If	TYPO3	CMS	6.2	LTS	is	used,	Extbase	and	Fluid	show	the	version
number	6.2.0	as	well.	In	TYPO3	7.0.0,	Extbase	and	Fluid	show	version	7.0.0	accordingly,
etc.

Figure	4.1.	Extbase	and	Fluid	in	TYPO3’s	Extension	Manager

Secondly,	check	if	annotations	remain	and	have	not	been	removed	from	the	source	code
(e. g.	because	they	are	treated	as	comments).	Go	to	module	SYSTEM	→	Reports	and	select
Status	Report	from	the	dropdown	box	at	the	top.	There	should	be	two	green	checks	and	no
warnings/errors	in	section	extbase	(if	you	see	DBAL	Extension	only	and	no	other	checks,
that	should	be	fine).

Figure	4.2.	Extbase	Reports

4.1.1.	Preserve	PHP	Doc	Comments

If	TYPO3	reports	an	issue	with	PHP	Doc	Comments	(red	error	message),	you	will	have	to
fix	this	problem	before	continuing.

For	a	production	system	it	is	often	recommended	to	use	a	PHP	Opcode	Cache	such	as
eAccelerator.[12]	These	add-ons	cache	PHP	scripts	in	their	compiled	state	and	significantly
increase	their	performance.	By	default,	eAccelerator	does	not	store	comments	in	PHP
scripts	to	the	cached	files.

As	explained	before,	Extbase	requires	these	comments	for	important	control	information
and	therefore	comments	must	be	preserved	by	eAccelerator.	This	can	be	done	by	using	the
configuration	option	--witheaccelerator-doc-comment-inclusion.

Below	is	the	complete	installation	of	eAccelerator:

Download	the	source	code	of	eAccelerator,	extract	the	archive	and	change	to	the
directory.
Execute	the	command	phpize	to	tune	eAccelerator’s	source	code	to	your	specific
PHP	version.
Prepare	compiling	the	code	and	tell	eAccelerator	to	preserve	comments	by	using	the
following	command	and	paremeter:	./configure	--witheaccelerator-doc-
comment-inclusion.
Now	you	can	compile	eAccelerator	by	executing	the	command	make
Finally,	install	eAccelerator	by	executing	the	command	make	install,	which
requires	root	privileges.

You	may	need	to	adjust	the	configuration	of	PHP	to	load	eAccelerator.

4.2.	Installation	of	Extension	efempty

The	extension	efempty	has	been	developed	for	didactic	purposes	and	contains	a	minimal
extension	which	enables	developers	to	become	acquainted	with	Extbase	and	Fluid.	The
extension	can	also	be	used	as	a	foundation	for	your	own,	more	complex	developments	by
simply	adjusting	the	PHP	files.

Go	to	the	Extension	Manager	and	install	the	extension	efempty.	Make	sure	you	are	using
the	latest	version	from	the	TER	list	and	at	least	version	1.1.1.	Earlier	versions	are	not
optimised	for	TYPO3	CMS	6.0	or	higher	and	could	cause	problems.

Figure	4.3.	Extension	efempty	in	TYPO3’s	Extension	Manager

In	the	next	step,	we	will	place	the	extension	on	a	page.	Go	to	WEB	→	Page	and	add	a
content	element	of	type	“General	Plugin”	(tab	Plugins)	to	columns	Normal.	Select	the
plugin	Empty	Extbase/Fluid	Container	from	the	dropdown	box	in	tab	Plug-In.

Figure	4.4.	Select	the	plugin

Assuming	that	you	are	using	a	pre-configured	system,	you	can	already	see	the	content	in
the	frontend.	Otherwise	you	will	have	to	create	a	TypoScript	template.	Go	to	module
Template,	select	Info/Modify	from	the	dropdown	box	at	the	top	and	click	the	button	to	create	a
template	for	a	new	site.	Following	the	link	to	edit	the	whole	template	record	and	enter	the
following	code	into	the	Setup	field:

page	=	PAGE

page.10	<	styles.content.get

Now	switch	to	tab	Includes	and	choose	CSS	Styled	Content	(css_styled_content)	from	Available
Items	(right)	under	the	Include	static	(from	extensions)	section.	The	item	appears	in	the	left	field.

Finally,	save	the	template	record	by	using	the	Save	and	close	document	icon	at	the	top	(disk
with	X).	When	accessing	the	frontend,	you	should	see	a	page	similar	to	Figure	4.5.

Figure	4.5.	Output	of	efempty

4.3.	Tour	Through	Extension	efempty

The	following	sections	describe	in	detail	what	happens	in	the	background	when	Extbase,
Fluid	and	also	TYPO3	CMS	generates	this	output.

4.3.1.	Files	ext_emconf.php	and	ext_icon.gif

The	file	ext_emconf.php	contains	the	configuration	of	the	extension.	You	will	find	a
complete	reference	of	all	configuration	options	in	the	appendix.

<?php

/***

	*	Extension	Manager/Repository	config	file	for	ext	"efempty".

	*

	*	Auto	generated	18-01-2015	09:01

	*

	*	Manual	updates:

	*	Only	the	data	in	the	array	-	everything	else	is	removed	by	next

	*	writing.	"version"	and	"dependencies"	must	not	be	touched!

	***/

$EM_CONF[$_EXTKEY]	=	array	(

								'title'	=>	'An	empty	container	to	play	with	Extbase	and	Fluid',

								'description'	=>	'This	extension	just	contains	a	Controller	(Start)	an	Action	(index)	and	a	view	(index.html).	Nothing	more.	So	you	can	use	this	as	a	base	foundation	for	your	own	experiments	with	Extbase	and	Fluid',

								'category'	=>	'plugin',

								'shy'	=>	0,

								'version'	=>	'1.2.0',

								'dependencies'	=>	'',

								'conflicts'	=>	'',

								'priority'	=>	'',

								'loadOrder'	=>	'',

								'module'	=>	'',

								'state'	=>	'stable',

								'uploadfolder'	=>	0,

								'createDirs'	=>	'',

								'modify_tables'	=>	'',

								'clearcacheonload'	=>	0,

								'lockType'	=>	'',

								'author'	=>	'Patrick	Lobacher',

								'author_email'	=>	'patrick@lobacher.de',

								'author_company'	=>	'LOBACHER.',

								'CGLcompliance'	=>	NULL,

								'CGLcompliance_note'	=>	NULL,

								'constraints'	=>

								array	(

																'depends'	=>

																array	(

																								'php'	=>	'5.3.7-0.0.0',

																								'typo3'	=>	'6.0.0-7.9.99',

),

																'conflicts'	=>

																array	(

),

																'suggests'	=>

																array	(

),

),

);

?>

Some	of	the	information	from	this	file	(e. g.	title,	description,	version,	etc.)	is	visible
in	the	TER	(when	you	are	searching	for	this	extension)	as	well	as	in	TYPO3’s	Extension
Manager.	This	also	includes	the	logo	(file:	ext_icon.gif).

When	clicking	on	Install,	a	directory	efempty	is	created	under	typo3conf/ext/	and	the
extension	files	are	copied	into	this.	Afterwards	the	extension	key	efempty	is	written	to	the
file	typo3conf/PackageState.php	(key:	packages).

<?php

return	array	(

		'packages'	=>

		array	(

				...

				'efempty'	=>

				array	(

						'state'	=>	'active',

						'packagePath'	=>	'typo3conf/ext/efempty/',

						'classesPath'	=>	'Classes/',

),

				...

),

		'version'	=>	4,

)

	?>

At	this	point,	the	extension	has	been	successfully	installed	and	is	ready	to	use	as	a	content
element	on	a	page.

4.3.2.	File	ext_tables.php

In	order	to	allow	the	extension	to	be	added	to	a	page,	file	ext_tables.php	is	analysed:

<?php

if	(!defined('TYPO3_MODE'))	{

				die	('Access	denied.');

}

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::registerPlugin(

				'Lobacher.'	.	$_EXTKEY,

				'Showcase',

				'Empty	Extbase/Fluid	Container'

);

?>

Initially,	a	check	is	conducted	to	see	if	the	file	is	executed	directly.	In	this	case,	the	script
is	terminated	immediately.

Then,	the	first	Extbase-API-function	is	called.	Class
\TYPO3\CMS\Extbase\Utility\ExtensionUtility	also	describes	the	location	in	the	file
system:

The	first	two	elements	represent	the	vendor	name.	The	TYPO3	project	is	allowed	to
use	two	elements	(\TYPO3\CMS) – extension	developers	may	only	use	one	element.
The	third	element	represents	the	extension	name – in	this	instance:	Extbase.	TYPO3
searches	for	the	extension	key	in	directory	typo3conf/ext/	first,	then	in	typo3/ext/
and	finally	in	typo3/sysext/,	where	it	discovers	the	system	extension	Extbase.
At	that	point	a	folder	structure	under	extbase	exists.	Due	to	the	fact	that	in	Extbase
all	classes	are	stored	inside	the	directory	Classes,	this	can	be	left	out.	The	directory
Utility	is	consequentially	accessible	as	typo3/sysext/extbase/Classes/Utility.
If	further	paths	would	be	stated,	they	would	appear	as	additional	elements.	An
exception	is	the	last	element:	ExtensionUtility.	This	element	defines	the	class	file
with	.php	appended	(ExtensionUtility.php).
This	file	contains	a	PHP	class	called	ExtensionUtility.

The	static	function	registerPlugin	is	called	in	this	class	with	the	following	parameters:

'Pluswerk.'	.$_EXTKEY

The	vendor	name	gets	appended	by	the	extension	key	efempty,	which	in	theory
would	manage	multiple	extension	keys	in	one	instance	(however	this	is	not	possible
at	this	point	in	time	due	to	the	restrictions	of	TYPO3	CMS).

Showcase

Euphonic	names	such	as	pi1,	pi2	or	pi3	have	been	used	in	pre-Extbase	extensions.
Now,	arbitrary	names	can	be	used.	This	name	acts	as	a	plugin	key,	which	we	will	use
later	on.

Empty	Extbase/Fluid	Container

This	description	is	shown	in	the	list	of	available	plugins	when	an	extension	is	added

as	a	content	element.	It	is	also	possible	to	link	to	a	language	file	(XLIFF)	in	order	to
achieve	multi-language	support.

The	appropriate	section	in	file
typo3\sysext\extbase\Classes\Utility\ExtensionUtility.php	as	follows:

<?php

namespace	TYPO3\CMS\Extbase\Utility;

class	ExtensionUtility	{

			/**

				*	Register	an	Extbase	PlugIn	into	backend's	list	of	plugins

				*	FOR	USE	IN	ext_tables.php	FILES

				*

				*	@param	string	$extensionName	The	extension	name	(in	UpperCamelCase)	or	the	extension	key	(in	lower_underscore)

				*	@param	string	$pluginName	must	be	a	unique	id	for	your	plugin	in	UpperCamelCase	(the	string	length	of	the	extension	key	added	to	the	length	of	the	plugin	name	should	be	less	than	32!)

				*	@param	string	$pluginTitle	is	a	speaking	title	of	the	plugin	that	will	be	displayed	in	the	drop	down	menu	in	the	backend

				*	@param	string	$pluginIconPathAndFilename	is	a	path	to	an	icon	file	(relative	to	TYPO3_mainDir),	that	will	be	displayed	in	the	drop	down	menu	in	the	backend	(optional)

				*	@throws	\InvalidArgumentException

				*	@return	void

				*/

			static	public	function	registerPlugin(

									$extensionName,

									$pluginName,

									$pluginTitle,

									$pluginIconPathAndFilename	=	NULL

)	{

						...

This	method	allows	for	a	fourth	parameter.	This	is	the	icon	of	the	plugin.	Without	this
parameter,	the	plugin	uses	the	icon	on	the	extension	ext_icon.gif.

Multiple	plugins	in	one	extension
A	plugin	is	ultimately	a	unit	of	functions	that	belong	together.	In	an	online
shop,	this	could	be	a	shopping	cart,	a	product	view	and	a	product	list.	This	can
be	achieved	by	developing	three	plugins	as	one	extension.	Simply	add
multiple	register	Plugin	statements	one	after	another	but	ensure	that	the	plugin
key	is	unique	across	them.

4.3.3.	ext_localconf.php

While	the	file	ext_tables.php	is	responsible	for	integrating	the	plugin	as	a	content
element	in	the	backend,	the	file	ext_localconf.php	ensures	that	the	plugin	can	be
accessed	in	the	frontend.

<?php

if	(!defined('TYPO3_MODE'))	{

				die	('Access	denied.');

}

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::configurePlugin(

				'Pluswerk.'	.	$_EXTKEY,

				'Showcase',

								array(

																'Start'	=>	'index,show',

),

								array(

																'Start'	=>	'index,show',

)

);

?>

As	before,	a	static	function	in	class	ExtensionUtility	is	called – this	time	the	method
configurePlugin,	which	configures	the	plugin:

'Pluswerk.'	.	$_EXTKEY

The	vendor	name	gets	appended	by	the	extension	key	as	before.
'Showcase'

This	is	the	plugin	name,	which	must	match	the	name	stated	in	file	ext_tables.php.
First	Array

This	array	stores	line-by-line	the	controllers	(here:	Start)	as	associative	keys	and
available	actions	as	comma-separated	values	(here:	index	and	show).	Only	these
combinations	are	valid.	In	the	case	that	an	action	is	called,	which	is	not	listed	in	this
array,	it	falls	back	to	the	default	controller	action.	In	our	example	the	first	controller
(Start)	and	the	first	action	in	the	list	(index).	The	same	happens	if	no	controller-
action-combination	has	been	used	in	the	request	(this	was	the	case	when	we	accessed
the	frontend	above).

Second	Array
Another	array	with	the	same	structure	can	be	stated	as	a	second	array.	The
combinations	included	here	are	not	cached	when	the	content	gets	rendered.
Therefore,	this	array	is	always	a	subset	of	the	first	one.	During	development,	it	is
recommended	to	keep	both	arrays	the	same	in	order	to	prevent	caching	problems.

The	appropriate	section	in	file
typo3\sysext\extbase\Classes\Utility\ExtensionUtility.php	as	follows:

<?php

namespace	TYPO3\CMS\Extbase\Utility;

class	ExtensionUtility	{

			/**

					*	Add	auto-generated	TypoScript	to	configure	the	Extbase	Dispatcher.

									*

									*	When	adding	a	frontend	plugin	you	will	have	to	add	both	an	entry	to	the	TCA	definition

									*	of	tt_content	table	AND	to	the	TypoScript	template	which	must	initiate	the	rendering.

									*	Since	the	static	template	with	uid	43	is	the	"content.default"	and	practically	always

									*	used	for	rendering	the	content	elements	it's	very	useful	to	have	this	function	automatically

									*	adding	the	necessary	TypoScript	for	calling	the	appropriate	controller	and	action	of	your	plugin.

									*	It	will	also	work	for	the	extension	"css_styled_content"

									*	FOR	USE	IN	ext_localconf.php	FILES

									*	Usage:	2

									*

									*	@param	string	$extensionName	The	extension	name	(in	UpperCamelCase)	or	the	extension	key	(in	lower_underscore)

									*	@param	string	$pluginName	must	be	a	unique	id	for	your	plugin	in	UpperCamelCase	(the	string	length	of	the	extension	key	added	to	the	length	of	the	plugin	name	should	be	less	than	32!)

									*	@param	array	$controllerActions	is	an	array	of	allowed	combinations	of	controller	and	action	stored	in	an	array	(controller	name	as	key	and	a	comma	separated	list	of	action	names	as	value,	the	first	controller	and	its	first	action	is	chosen	as	default)

									*	@param	array	$nonCacheableControllerActions	is	an	optional	array	of	controller	name	and		action	names	which	should	not	be	cached	(array	as	defined	in	$controllerActions)

									*	@param	string	$pluginType	either	\TYPO3\CMS\Extbase\Utility\ExtensionUtility::TYPE_PLUGIN	(default)	or	\TYPO3\CMS\Extbase\Utility\ExtensionUtility::TYPE_CONTENT_ELEMENT

									*	@throws	\InvalidArgumentException

									*	@return	void

									*/

								static	public	function	configurePlugin(

														$extensionName,

														$pluginName,

														array	$controllerActions,

														array	$nonCacheableControllerActions	=	array(),

														$pluginType	=	self::PLUGIN_TYPE_PLUGIN

)	{

											...

The	fifth	parameter	allows	us	to	define	if	the	extension	should	be	included	as	a	plugin
(PLUGIN_TYPE_PLUGIN – this	is	the	default)	or	as	a	content	element
(PLUGIN_TYPE_CONTENT_ELEMENT).

Interna
Method	configurPlugin()	initiates	the	following	actions.

Firstly,	a	configuration	is	added	to	the	array	$GLOBALS['TYPO3_CONF_VARS'].	For	every
controller,	an	entry	is	being	made	(one	for	“normal”	actions	and	one	for	non-cachable
actions):

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['extbase']['extensions']	['Efempty']['plugins'][Showcase]['controllers']['Start']	=	array('actions'	=>	array('0'	=>	'index',	'1'	=>	'show'));

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['extbase']['extensions']	['Efempty']['plugins'][Showcase]['controllers']['Start']	['nonCacheableActions']	=	array('actions'	=>	array('0'	=>	'index',	'1'	=>	'show')););

Afterwards	some	default	TypoScript	is	written	to	the	standard	configuration:

plugin.tx_efempty	{

								settings	{

								}

								persistence	{

																storagePid	=

																classes	{

																}

								}

								view	{

																templateRootPaths	{

																								#example:	fooKey	=	EXT:bar/foo

																}

																layoutRootPaths	{

																								#example:	fooKey	=	EXT:bar/foo

																}

																partialRootPaths	{

																								#example:	fooKey	=	EXT:bar/foo

																}

																	#	with	defaultPid	you	can	specify	the	default	page	uid	of	this	plugin.	If	you	set	this	to	the	string	"auto"	the	target	page	will	be	determined	automatically.	Defaults	to	an	empty	string	that	expects	the	target	page	to	be	the	current	page.

																defaultPid	=

								}

}

In	TYPO3	CMS	versions	prior	6.2,	the	keys	were	named	templateRootPath,
layoutRootPath,	partialRootPath	(without	the	trailing	s).	They	still	work	but	are
classified	as	“deprecated”.

In	fact,	all	the	values	are	empty	because	Extbase	assumes	that	the	keys	exist.	Custom
TypoScript	fills	these	values	in	later.	At	last,	the	rendering	definition	is	created	(for	the
type	PLUGIN_TYPE_PLUGIN)	and	written	into	the	TypoScript	setup.

tt_content.list.20.efempty_showcase	=	USER

tt_content.list.20.efempty_showcase	{

			userFunc	=	TYPO3\CMS\Extbase\Core\Bootstrap->run

			extensionName	=	Efempty

			pluginName	=	Showcase

			vendorName	=	Pluswerk

}

Here	we	can	see	clearly,	how	the	execute	by	Extbase	happens:

first,	a	USER	object	is	created
the	method	run()	of	class	\TYPO3\CMS\Extbase\Core\Bootstrap	is	called
three	parameters	are	passed	to	this	method:	the	name	of	the	extension,	the	name	of
the	plugin	and	the	name	of	the	vendor

At	this	point,	Extbase	is	responsible	for	the	execution	of	the	process	rather	than	the
TYPO3	CMS	framework.

Assuming	the	type	would	be	PLUGIN_TYPE_CONTENT_ELEMENT	instead,	the	TypoScript
would	look	like:

tt_content.efempty_showcase	=	COA

tt_content.efempty_showcase	{

								10	=	<	lib.stdheader

								20	=	USER

								20	{

																userFunc	=	TYPO3\CMS\Extbase\Core\Bootstrap->run

																extensionName	=	Efempty

																pluginName	=	Showcase

																vendorName	=	Pluswerk

								}

}

4.3.4.	Controller:
Pluswerk\Efempty\Controller\StartController

As	described	earlier,	the	first	step	is	to	determine	the	controller.	We	have	not	passed	any
parameters	in	the	request	(e. g.	$_GET	or	$_POST),	which	lets	Extbase	use	the	configuration
from	file	ext_localconf.php.

The	default	controller	is	defined	as	Start	and	Extbase	searches	for	the	file
StartController.php	in	directory	typo3conf/ext/efempty/Classes/Controller	and
includes	this	automatically.

<?php

namespace	Pluswerk\Efempty\Controller;

class	StartController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

								/**

									*	Initializes	the	current	action

									*

									*	@return	void

									*/

								public	function	initializeAction()	{

								}

								/**

									*	Index	action	for	this	controller.

									*

									*	@return	string	The	rendered	view

									*/

								public	function	indexAction()	{

																//	plain	assign

																$this->view->assign('helloworld1',	'Hello	World	1!');

																//	normal	array	assign

																$array	=	array('Hello','World','2!');

																$this->view->assign('helloworld2',	$array);

																//	associative	array	assign

																$array	=	array('first'	=>	'Hello',	'middle'	=>	'World',	'last'	=>	'3!');

																$this->view->assign('helloworld3',	$array);

																//	object	assign

																$start	=	new	\Pluswerk\Efempty\Domain\Model\Start();

																$start->setTitle("Hello	World	4!");

																$this->view->assign('helloworld4',	$start);

																//	more	object	assign

								$obj	=	array();

								for	($i=1;	$i<=3;	$i++)	{

												$start	=	$this->objectManager->get('\\Pluswerk\\Efempty\\Domain\\Model\\Start');

												$start->setTitle('Hello	World	5!	-	Nr.	'.$i);

												$obj[]	=	$start;

								}

																$this->view->assign('helloworld5',	$obj);

								}

				/**

					*	Index	action	for	this	controller.

					*

					*	@return	string	The	rendered	view

					*/

				public	function	showAction()	{

				}

}

?>

The	class	extends	from	class	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController,
which	executes	a	number	of	actions	in	the	background	and	provides	many	functions.

Three	methods	(all	with	the	suffix	Action)	build	the	Action	methods	of	the	controller.

The	first	method	initializeAction	is	always	called	before	any	other	action.	This	method
is	a	perfect	fit	for	configuration	tasks	or	generic	logging	for	example.	In	addition,	a
method	called	initializeIndexAction	exists,	which	is	called	directly	after
initializeAction	and	before	indexAction.	We	do	not	need	any	initialisation	here	so	the
method	body	remains	empty.

The	Bootstrap	successfully	identified	the	controller	and	searches	for	the	action	now.	As
before:	without	any	$_GET	or	$_POST	parameters	in	the	request	Extbase	uses	the
configuration	from	file	ext_localconf.php.	The	default	action	is	stated	in	the	first	row	of
the	array,	the	first	keyword	of	the	string:	index.	This	means,	Extbase	calls	method
indexAction.

View	Allocation
The	abstract	ActionController,	which	our	StartController	has	been	derived	from,	provides
the	View,	which	is	declared	by	the	proprty	$this->view.	Just	a	few	methods	can	be
applied	to	this	and	assign('key',	'value')	is	one	of	them,	where	value	is	assigned	to
key.

Investigating	the	five	directives	concludes	that:

1.	 The	string	Hello	World	1	is	assigned	to	the	key	helloworld1.
2.	 A	numeric	array	with	three	elements	Hello,	World	and	2!	is	assigned	to	the	key

helloworld2.
3.	 An	associative	array	with	three	key-value-pairs	first->Hello,	middle->World	and

last->3!	is	assigned	to	the	key	helloworld3.
4.	 An	instance	of	the	domain	object	\Pluswerk\Efempty\Domain\Model\Start	is

assigned	to	the	key	helloworld4,	where	the	attribute	title	is	set	to	Hello	World	4!.
5.	 Three	instances	of	the	domain	object	\Pluswerk\Efempty\Domain\Model\Start	are

assigned	to	the	key	helloworld5	as	arrays.

We	will	return	to	this	later.	For	now,	we	will	focus	on	the	domain	object	first.

4.3.5.	Domain:	Pluswerk\Efempty\Domain\Model\Start

At	the	fourth	and	fifth	example	of	the	controller,	an	instance	of	the	domain	object	Start
has	been	instantiated.	In	order	to	understand	this	more	clearly,	let	us	have	a	look	at	the
domain	object	class	file:

<?php

namespace	Pluswerk\Efempty\Domain\Model;

class	Start	extends	\TYPO3\CMS\Extbase\DomainObject\AbstractEntity	{

								/**

									*	Some	title.

									*

									*	@var	string

									*/

								protected	$title	=	'';

								/**

									*	An	empty	constructor	-	fill	it	as	you	like

									*

									*/

								public	function	__construct()	{

								}

								/**

									*	Sets	the	title

									*

									*	@param	string	$title

									*	@return	void

									*/

								public	function	setTitle($title)	{

																$this->title	=	$title;

								}

								/**

									*	Gets	the	title

									*

									*	@return	string	The	title	of	the	album

									*/

								public	function	getTitle()	{

																return	$this->title;

								}

}

?>

We	realise	that	this	domain	object	is	an	Entity	because	it	is	derived	from
\TYPO3\CMS\Extbase\DomainObject\AbstractEntity.	The	only	property	title	is
defined	near	the	top	and	a	“Setter”	and	“Getter”	has	been	implemented.

4.3.6.	Output	Via	View

Let	us	go	back	to	the	controller.	The	method	ends	after	the	fifth	directive.	However	some
content	is	shown.	This	is	produced	by	an	invisible	code	at	the	end	of	the	Action:

class	StartController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

								public	function	indexAction()	{

																...

																$this->view->assign('helloworld5',	$obj);

																//	Der	Code	ist	normalerweise	nicht	sichtbar

																return	$this->view->render();

								}

}

As	long	as	an	Action	does	not	have	a	return	value,	the	method	$this->view->render()	is
executed	implicitly	so	that	the	current	Fluid	View	(respectively	the	template)	is	searched
and	rendered.	The	output	is	returned	as	HTML	and	TYPO3	displays	it.

In	Extbase,	the	template	file	has	its	own,	specific	location:	a	folder	with	the	same	name	as
the	controller	is	searched	in	the	directory	Resources/Private/Templates.	Inside	this
folder,	a	file	is	read,	which	it’s	name	describes	the	Action	in	UpperCamelCase	and	ends
with	the	suffix	.html,	which	in	our	case	results	in:
typo3conf/ext/efempty/Resources/Private/Templates/Start/Index.html.

Notation	of	template	files
Names	of	template	files	always	have	to	be	in	UpperCamelCase,	even	if	the
Action	method	is	spelled	lowerCamelCase.	Up	to	TYPO3	CMS	version	4.5,
templates	could	also	be	named	in	lowerCamelCase,	which	is	not	possible
anymore.

Chapter	8	contains	an	overview	of	templates,	partials	and	layouts.

<f:layout	name="defaultLayout"	/>

<f:section	name="content">

<p>{helloworld1}</p>

<p>{helloworld2.0}	{helloworld2.1}	{helloworld2.2}</p>

<p>{helloworld3.first}	{helloworld3.middle}	{helloworld3.last}</p>

<p>{helloworld4.title}</p>

<f:for	each="{helloworld5}"	as="helloworld">

								{helloworld.title}

</f:for>

<f:link.action	action="show">Example	link	to	action	"show"</f:link.action>

</f:section>

All	tags	starting	with	<f:	are	so	called	Fluid-ViewHelper.	These	support	the	View	with
functionality	and	logic.

<f:layout	name="defaultLayout"	/>	loads	a	layout	file	with	the	name
DefaultLayout.html,	which	is	expected	in	the	directory	Resources/Private/Layouts/.

<h1>Welcome	to	the	efempty	extension!</h1>

<hr	/>

<f:render	section="content"	/>

<hr	/>

<p>©	Some	copyright	here</p>

A	number	of	outputs	happen	here	and	wrapped	in	the	middle	a	ViewHelper	<f:render
section="content"	/>	renders	a	section	named	content	in	the	template.	A
corresponding	section	exists	in	the	template	file,	which	can	be	found	between	<f:section
name="content">	and	</f:section>.

After	that,	four	paragraphs	<p>...</p>	are	rendered,	which	represent	the	directives	in	the
controller:

1.	 A	simple	string	can	be	output	by	using	{helloworld1}.	Curly	brackets	tell	Fluid	to
display	the	value	previously	assigned	to	the	key.

2.	 In	order	to	access	values	of	a	numeric	array,	the	key	plus	a	dot	plus	the	appropriate
index	can	be	used:	{helloworld2.0}	shows	the	first	element	of	the	array.

3.	 Similar	works	for	associative	arrays,	where	the	array	key	is	used	instead	of	the	index:
{helloworld3.first}	shows	the	element	with	the	key	first	of	the	array.

4.	 For	objects,	the	object	property	is	used	after	the	dot.	In	this	case,	Fluid	not	only
returns	the	property	but	calls	the	method	getTitle()	of	the	domain	model	in	the
background.

In	the	fifth	example	an	array	of	objects	has	been	assigned.	These	are	read	by	the	<f:for>
ViewHelper,	which	iterates	through	the	array	({helloworld5})	and	describes	each	object
as	helloworld.	Inside	the	loop,	the	object	can	be	accessed	via	{helloworld}.

4.3.7.	The	Show-Action	Call

At	the	end	of	the	template	file	an	additional	Fluid-ViewHelper-Link	is	placed,	which
refers	to	the	ShowAction:

<f:link.action	action="show">Example	link	to	action	"show"</f:link.action>

Shown	at	the	frontend	as	follows:

<a	href="index.php?id=1&

				tx_efempty_showcase[action]=show&

				tx_efempty_showcase[controller]=Start&

				cHash=61470f084417e294090bec4f74c42e7d">Example	link	to	action	"show"

Here	we	see	that	two	$_GET	parameters	exist,	which	pass	control	instructions	to	Extbase.
The	request	also	contains	a	name	space	tx_efempty_showcase,	which	tells	Extbase	that
the	parameters	are	meant	for	the	extension	efempty	and	the	plugin	Showcase.
Additionally,	the	controller	is	explicitly	set	to	Start	and	the	Action	to	show.

Therefore	Extbase	calls	the	showAction()	of	controller	StartController.	The	Action
itself	is	empty,	which	means	the	template
Resources/Private/Templates/Start/Show.html	is	loaded:

<f:layout	name="defaultLayout"	/>

<f:section	name="content">

This	is	the	content	of	the	show	action	template.

<hr	/>

<f:translate	key="this.is.a.key">Translated	content</f:translate>

<hr	/>

<f:link.action	action="index">Back</f:link.action>

</f:section>

Besides	that	“back”	link	at	the	end	of	the	file,	the	only	new	element	is	the	<f:translate>
ViewHelper,	whose	argument	key	will	be	searched	for	in	the	file
Resources/Private/Language/locallang.xlf	and	displayed.	The	purpose	of	this	is
multi-language	support.	Assuming	TYPO3	CMS	has	been	configured	to	use	German	(by
stating	config.language	=	de	in	the	TypoScript	setup),	the	appropriate	value	of	key	in
file	Resources/Private/Language/de.locallang.xlf	is	shown.

<?xml	version="1.0"	encoding="utf-8"	standalone="yes"	?>

<xliff	version="1.0">

								<file	source-language="en"	datatype="plaintext"	original="messages"	date="2013-08-22T11:22:55Z"	product-name="efemtpy">

																<header/>

																<body>

																								<trans-unit	id="this.is.a.key">

																																<source>Example	Output	from	language	file</source>

																								</trans-unit>

																</body>

								</file>

</xliff>

At	this	point	we	have	reached	the	end	of	the	first	stage	of	our	Extbase	tour.	The	next
chapters	cover	all	areas	in	detail	by	using	a	continuous	example.

[12]	http://eaccelerator.net

http://eaccelerator.net

Chapter	5.	Domain	Model	Creation
(Modelling)

As	described	in	Chapter	3	in	more	detail,	the	first	step	for	building	an	extension	is	the
modelling	of	the	domain	model.

There	are	two	parts	involved	in	this	process,	one	is	the	consultation	with	the	client	in	order
to	achieve	a	vocabulary	and	a	simple	model	(possibly	handwritten	only).	The	other	is	the
modelling	in	Extbase.

5.1.	Domain	Model	Used	in	this	Book

For	the	remainder	of	this	book	we	will	use	the	Blog-example,	which	is	well-suited	to
didactic	purposes	and	this	has	been	proven	in	hundreds	of	training	sessions.	The	domain
aspect	of	a	Blog	is	comprehensible	and	the	developer	can	focus	on	the	code	rather	than
learning	and	understanding	the	domain.

5.2.	Basic	Concept

The	vision	of	our	extension	should	be,	that	we	re-implement	the	functionality	of	the
blogger.com	site.	The	following	functions	are	desirable:

Creation	of	an	unlimited	number	of	Blogs.
Then	you	can	create	as	many	posts	as	you	want.
An	author	and	various	tags	can	be	assigned	to	one	post.
An	arbitrary	number	of	comments	can	be	submitted	for	each	post.
Later,	an	RSS	feedback	of	recent	posts	should	exist.
Comments	can	also	be	deleted	in	the	backend.
An	additional	plugin	should	always	list	the	last	five	posts.
Through	a	tag-cloud	all	posts	should	be	displayed	which	contain	this	tag.

5.2.1.	The	Glossary

First,	we	create	the	glossary	to	ensure	that	every	stakeholder	of	the	project	has	the	same
understanding	of	the	terminology	used.	We	will	use	the	English	language	for	domain
objects	because	objects	in	a	Blog	domain	tend	to	use	English	too	(post,	comment,	tag).

Blog

Weblog

Relevant	for	model:	yes

Post

Article	written	by	an	author	for	a	specific	Blog	at	a	specific	date/time.

Relevant	for	model:	yes

Comment

Short	reply	of	a	post.

Relevant	for	model:	yes

Tag

Descriptive	word	(e. g.	topic).	A	post	may	have	an	unlimited	number	of	tags.

Relevant	for	model:	yes

Author

TYPO3	frontend	user.

Relevant	for	model:	yes

5.2.2.	Creating	the	Domain	Model

Now	we	can	create	the	domain	model,	this	could	be	handwritten	but	for	our	purposes	we
will	use	a	software[13]	for	better	illustration.	Due	to	possible	technical	barriers	(a	software
tool	possibly	adds	another	level	of	complexity),	we	recommend	to	not	use	electronic	tools
when	drawing	the	domain	model	together	with	the	client.

Figure	5.1	shows	the	following:

Five	domain	objects	exist	(Blog,	Post,	Comment,	Author	and	Tag).
Domain	object	Blog	has	the	properties	title,	description	and	image.
Domain	object	Post	has	the	properties	title,	content	and	postdate.
Domain	object	Comment	has	the	properties	comment	and	commentdate.
Domain	object	Author	has	the	properties	fullname	and	email.
Domain	object	Tag	has	the	property	tagvalue.
Domain	objects	Blog,	Post,	Comment	and	Author	are	of	type	Entity	(recognisable	by
the	letter	E	at	the	top,	right-hand-side).
Domain	object	Tag	is	of	type	Value	Object	(recognisable	by	the	letter	V	at	the	top,
right-hand-side).

There	are	two	Aggregates – one	in	the	light	green	area	in	Blog	as	Aggregate	Root
(recognisable	by	the	letters	AR	at	the	bottom,	right-hand-side)	and	another	one	in	the	light
blue	area	in	Post	as	Aggregate	Root.

Figure	5.1.	Domain	Model	of	the	Blog	Example

There	is	also	a	1:n	relation	between	Blog	and	Post	named	posts,	which	means	a
Blog	can	contain	an	arbitrary	number	of	posts	but	a	post	can	only	belong	to	one	Blog.
Another	1:n	relation	exists	between	Post	and	Comment	named	comments,	which
means	a	post	can	contain	an	arbitrary	number	of	comments	but	a	comment	only
belongs	to	one	post.
A	1:1	relation	between	Post	and	Author	named	author	indicates,	that	a	post	can	be
published	by	only	one	author	and	an	author	can	only	publish	one	post	(we	will
change	this	to	a	n:1	relation	as	we	go	along).
A	n:m	relation	between	Post	and	Tag	named	tags	means	that	a	post	can	contain	an
arbitrary	number	of	tags	and	a	tag	can	be	assigned	to	an	arbitrary	number	of	posts.

5.3.	Modelling	in	Extbase	-	The	Extension
Builder

Our	aim	is	to	have	the	model	in	Extbase	of	course.	A	TYPO3	extension	named	Extension
Builder	supports	us	in	this	transformation	process	so	install	this	extension	via	the
Extension	Manager	in	TYPO3	and	reload	the	backend	as	a	precaution.

Do	not	over-rely	on	the	Extension	Builder!
The	Extension	Builder	is	(currently)	a	project	maintained	by	just	one	or	two
developers	(who	do	a	fantastic	job	by	the	way),	which	is	convenient	and	using
it	saves	a	lot	of	time.	However	sometimes	the	code	generated	includes	some
minor	issues	because	there	is	a	lack	of	quality	assurance	and	management	due
to	insufficient	man	power.	These	issues	can	be	located	and	fixed	easily,	if	you
know	what	code	is	being	generated	and	exactly	what	the	code	should	do.
Therefore,	you	should	not	overly-rely	on	the	Extension	Builder	but	try	to
understand	the	basic	concept.	In	general,	you	should	be	able	to	write	your
code	even	without	the	Extension	Builder	or	at	least	understand	its	entirety.

Figure	5.2.	Installation	of	the	Extension	Builder

Following	the	installation,	start	the	Extension	Builder	by	clicking	on	its	link	in	module
ADMIN	TOOLS.

Figure	5.3.	Module	Extension	Builder

Select	Domain	Modelling	from	the	dropdown	box	at	the	top.

Development	snapshot	of	Extension	Builder

If	you	experience	problems	with	the	version	of	Extension	Builder	from
TER	or	you	would	like	to	use	the	latest	development	version,	you	can	also
download	the	package	from	the	source	code	repository.[14]

You	can	check-out	the	sources	by	using	a	Git	client	or	download	a	snapshot
from	the	website.	Afterwards	extract	the	archive,	rename	the	directory	to
extension_builder	and	copy	it	to	typo3conf/ext/.	Now	you	should	be
able	to	install	the	extension	as	usual.

5.3.1.	Extension	Properties

Enter	some	details	of	your	extension	into	the	fields	under	Extension	properties	in	the	left
column.	This	data	is	stored	in	file	ext_emconf.php	later.	In	order	to	ensure	that	the
examples	in	the	following	sections	of	this	book	will	work,	its	essential	that	you	enter
exactly	the	same	values	into	the	fields:

Figure	5.4.	Extension	properties,	part	1

Name
This	is	the	name	of	the	extension – enter	Simple	Blog	Extension	here.

Vendor	name
This	value	is	used	as	the	first	part	of	the	package	identifier	(which	consists	of	vendor
name	and	extension	key	in	lower	case	and	without	spaces) – enter	Lobacher	here,
with	the	first	letter	in	upper	case.

Key
This	is	the	extension	key,	which	must	be	in	lower	case	and	without	spaces – enter
simpleblog	here.

Description	(Descr.)
This	field	expects	the	description	of	the	extension	as	shown	in	the	Extension
Manager	and	in	the	TER	(TYPO3	Extension	Repository).

Now	click	on	More	options.

Figure	5.5.	Extension	properties,	part	2

Category
This	configures	the	category – select	Frontend	plugins	from	the	list.

OR	custom
It	is	also	possible	to	define	a	custom	category	but	in	our	case	we	will	leave	this	field
empty.

Version
This	option	allows	us	to	enter	a	version	number	in	the	format
major.minor.patchlevel – we	will	start	with	0.0.1.

State
This	is	the	current	status	of	the	extension.	We	just	started	with	the	development	so
select	Alpha.

Disable	versioning
Activating	this	checkbox	would	skip	the	creation	of	versioning	related	columns	in	the
database	(these	are:	t3ver_oid,	t3ver_id,	t3ver_wsid,	t3ver_label,	t3ver_state,
t3ver_stage,	t3ver_count,	t3ver_tstamp,	t3ver_move_id	and	t3_origuid).	We
leave	this	checkbox	disabled	(unticked).

Disable	localization
Activating	this	checkbox	would	skip	the	creation	of	localisation	related	columns	in
the	database.

Source	language	for	xliff	files
The	source	language	for	xliff	files	is	the	language	in	which	the	source	of	a	label	is
defined,	which	can	be	translated	into	other	languages.	Our	selection	is	“en”	for
English.

Target	version
Select	the	TYPO3	version	the	extension	requires,	for	example	TYPO3	v	7.0.	If	your
extension	requires	a	version	that	is	not	listed	here,	you	can	adjust	this	value	manually
in	file	ext_emconf.php	later,	once	you	save	your	configuration.

Depends	on
This	textarea	allows	you	to	define	if	the	extension	depends	on	other	extensions.
These	dependencies	can	be	entered	here,	one	per	line	(extension	keys,	followed	by	a
double	arrow	and	the	lowest	version	number).

You	should	at	least	define	the	TYPO3	dependency	because	this	is	mandatory	information
for	publishing	your	extension	to	the	official	TER.

Our	next	step	is	to	click	on	Add	under	section	Persons.

Figure	5.6.	Extension	properties,	part	3

These	fields	should	be	self-explanatory,	except	the	dropdown	box	Role.	According	to	the
DDD	principles,	two	options	are	available:	Developer	and	Product	Manager	(client).
Both	can	participate	in	the	modelling	process	to	create	the	domain	model.

Afterwards,	click	on	Add	under	section	Frontend	plugins.

Figure	5.7.	Extension	properties,	part	4

The	purpose	of	this	section	is	the	configuration	of	the	plugins	of	the	extension.	In
principle,	unlimited	plugins	may	exist	in	an	extension.	This	means	that	you	can	add	as
many	plugins	as	you	need.

Name
The	value	entered	here	will	appear	when	a	user	adds	the	plugin	as	a	content	element
to	a	page	(list	of	items	in	the	dropdown	box).	It	is	highly	recommended	to	choose	a
meaningful	name,	which	allows	a	user	to	determine	what	the	functionality	of	the
plugin	is.	We	will	use	Simpleblog	-	Bloglisting.

Key

This	input	field	excepts	the	unique	name	of	the	model,	used	as	an	identifier.	It	must
not	be	re-used	anywhere	in	the	extension.	Enter	Bloglisting	here.

Open	the	Advanced	options	by	clicking	the	link.
Controller	action	combinations

Here	you	can	configure,	which	controller	action	combinations	the	plugin	should	have
(one	controller	per	line,	double	arrow	and	the	actions,	comma	separated).	We	are	not
sure	which	combinations	will	be	required	later	so	enter	Blog	=>	list	in	the	interim.

Non	cacheable	actions
This	textarea	requires	exactly	the	same	notation	as	above.	The	difference	is	that	the
controller	action	combinations	entered	here	will	not	have	been	cached.	Enter	Blog	=>
list	again.

Switchable	actions
It	is	possible	to	make	specific	controller	action	combinations	“switchable”	so	that
some	combinations	are	only	legitimate	under	certain	conditions.	We	will	return	to
this	later	and	leave	this	field	empty	for	the	time	being.

To	avoid	loosing	the	data	just	entered,	we	should	save	it	now	by	clicking	the	Save	button,
centred	at	the	bottom.	Following	the	Back	button	of	your	browser	or	accessing	any	other
module	in	TYPO3	or	even	if	the	backend	session	expires,	then	all	this	information	will	be
gone.	Therefore	it	is	advised	to	store	the	data	from	time	to	time.	Ignore	possible
warning/error	messages	by	clicking	OK.

5.3.2.	Domain	Model

At	this	point,	the	actual	modelling	begins.	To	gain	some	more	space,	we	will	hide	the
extension	properties	with	the	<	icon.

To	create	a	domain	model,	move	your	mouse	over	the	New	Model	Object	area,	click	and	drag
it	into	the	grid	area,	where	you	can	release	the	mouse	button	again	(drag	and	drop).

Figure	5.8.	Drag	and	drop	to	create	a	new	domain	model

By	clicking	on	(click	to	edit),	you	can	assign	a	name	to	the	domain	object.	The	name	must	be
noted	in	UpperCamelCase.	Enter	Blog	and	continue	with	Ok.

Create	four	further	domain	objects	by	repeating	this	step	(drag	and	drop	from	the	“New
Model	Object”	area)	and	assign	the	name	of	each	object	before	continuing	with	the	next
one.	Name	names	are:	Post,	Comment,	Author	and	Tag.

Figure	5.9.	Five	domain	objects	created

The	order	of	creating	the	objects	matters
Keep	in	mind,	that	the	order	of	how	the	objects	are	being	created	is	important.
The	Extension	Builder	generates	the	code	based	on	the	order	of	the	modelling.
This	might	mean	that	something	Post-related	appears	before	Blog-related	or
similar.	Technically	speaking,	this	has	no	impact	on	the	functionality	but	will
possibly	confuse	developers,	in	particular	beginners.	After	you	are	more
confident	with	Extbase,	this	does	not	matter	any	more.

5.3.3.	Domain	Model	Properties

In	this	step	we	enter	all	properties	at	the	appropriate	objects – in	accordance	with	the
domain	model.

Properties	of	the	Domaim	Object	“Blog”
Click	Domain	object	settings	and	define	the	properties	as	follows:

Object	type
This	allows	us	to	configure	the	object	as	an	Entity	or	Value	Object.	In	accordance
with	the	Domain	Model,	we	choose	Entity.

Is	aggregate	root
Due	to	the	fact	that	the	object	is	also	an	Aggregate	Root,	this	checkbox	needs	to	be
ticked.

Enable	sorting
If	the	data	records	should	be	manually	sortable	in	the	backend	later,	this	can	be
activated	here.	This	is	not	required	in	our	case	so	we	will	leave	the	checkbox
deactivated.

Add	deleted	field
Adds	a	field	deleted	in	the	database	to	indicate	that	the	record	was	deleted.	This
checkbox	needs	to	be	ticked.

Add	hidden	field
Adds	a	field	hidden	in	the	database	to	indicate	that	the	record	is	hidden.	This
checkbox	needs	to	be	ticked.

Enable	categorization?
If	categories	should	be	added	to	the	record	later,	this	can	be	activated	here.	This	is	not
required	in	our	case	so	we	will	leave	the	checkbox	deactivated.

Description
This	input	field	can	be	used	to	store	a	short	description,	which	is	also	visible	in	the
backend’s	list	view	as	the	column	label.	Therefore	there	are	two	options:	you	could
either	choose	Blogs	(in	this	case	the	column	labels	match	the	records)	or	you	choose
something	more	meaningful	to	describe	the	domain	object – and	possibly	amend	the
labels	manually	later.

Map	to	existing	table
It	is	possible	to	map	a	domain	object	to	an	existing	database	table	as	a	basic	principle.
To	achieve	this,	the	table	name	must	be	entered	here.	Although	we	will	use	the
functionality	behind	this	feature	at	the	domain	object	Author	(by	mapping	the	object
to	the	table	fe_users),	we	will	leave	this	field	empty	for	all	objects.

Extend	existing	model	class
If	this	model	class	should	be	deviated	from	another	model	class,	this	could	be
configured	in	this	field.	We	will	leave	this	empty.

Figure	5.10.	Domain	object	settings	of	domain	object	“Blog”

Continue	with	the	Default	Actions:	This	section	allows	us	to	select	Default	Actions,	which	are
code	fragments	provided	by	the	Extension	Builder	(or	custom	actions).	However	we	want
to	work	out	which	where	these	Actions	exist	and	when	they	are	triggered	so	we	can	leave
this	configuration	empty	for	all	domain	objects.

Figure	5.11.	Default	actions	remain	empty

Next,	the	properties	are	created.	Click	on	the	link	Properties	and	then	Add.

Enter	the	following	details	for	the	property	title:

Property	name

The	name	of	the	property	in	lowerCamelCase	(without	any	special	characters	and
without	underscore).	Enter	title	here.

Property	type
Select	the	type	of	the	property	from	the	dropdown	box.	This	affects	the	display	in	the
backend	(by	the	underlying	Table	Configuration	Array – TCA).	An	overview	of
available	types	can	be	found	in	the	appendix.	For	our	property,	we	choose	String.

Description
Enter	a	short	description	of	the	property	into	this	input	field.

Is	required
Two	things	happen	from	a	technical	perspective	if	you	activate	this	checkbox.	The
TCA	is	being	configured	to	store	this	information	only,	if	the	value	is	not	empty.
Secondly,	a	NotEmpty-Validator	is	added	to	the	annotation	of	the	property.	We	will
come	back	to	both	of	these	actions	in	detail	later.	At	this	time,	we	activate	the
checkbox.

Is	excluded	field
In	TYPO3	CMS	it	is	possible	to	configure	user	groups	and	deny	access	to	specific
fields	for	them.	These	fields	will	not	be	visible	to	corresponding	users	in	the	backend.
In	order	to	enable	the	feature	to	hide	field,	it	has	to	be	defined	as	an	ExcludeField	in
the	TCA.	If	you	enable	this	checkbox	it	will	be	possible	to	hide	the	field	later.
However	this	makes	no	sense	for	required	fields	so	we	can	leave	this	checkbox
disabled.

Keep	in	mind	that	all	fields	can	be	manually	amended	later,	no	matter	what	we	have
chosen	here	at	this	point	in	time.

The	remaining	properties	description	and	image	should	be	configured	as	shown	in
Figure	5.12.

Figure	5.12.	Properties	of	the	domain	object	“Blog”

Properties	of	the	Domain	Object	“Post”
Complete	the	form	of	the	object	Post	as	shown	in	Figure	5.13.

Figure	5.13.	Properties	of	the	domain	object	“Post”

Properties	of	the	Domain	Object	“Comment”
The	same	for	the	object	Comment	but	note	that	this	object	is	not	an	Aggregate	Root.

Figure	5.14.	Properties	of	the	Domain	Object	“Comment”]

Field	commentdate	should	not	be	defined	as	required	because	we	will	populate	its	values
programmatically.

Properties	of	the	Domain	Object	“Author”
Continue	with	the	object	Author.	This	object	is	not	an	Aggregate	Root	either.

Figure	5.15.	Properties	of	the	Domain	Object	“Author”

Properties	of	the	domain	object	“Tag”
Finally,	the	object	Tag.	The	important	fact	with	this	object	is,	that	the	object	type	is	Value
Object.

Figure	5.16.	Properties	of	the	domain	object	“Tag”

You	should	save	the	domain	model	now.

5.3.4.	Domain	Model	Relations

Now	it	is	time	to	model	the	relations	between	domain	objects.

5.3.5.	Relation	Between	Blog	and	Post

Close	all	forms	of	all	objects	and	position	object	“Blog`	at	the	left	hand	side	and	object
Post	at	the	right	hand	side	in	juxtaposition	with	each	other.	Open	the	Relations”	properties
by	clicking	Add	at	the	bottom	(below	Relations)	and	also	open	advances	properties	(link
More).

Name
Enter	the	name	of	the	relation – in	lowerCamelCase	again.	This	is	ultimately	a
property	of	the	object.	Since	the	relation	(by	1:n)	may	contain	unlimited	posts,	we
will	name	the	property	posts.

Type
The	type	of	the	relation	(1:1,	1:n,	n:1	or	m:n)	is	to	be	defined	here.	We	choose	1:n.

Description
This	fields	hold	a	short	description.

Is	exclude	field
The	same	functionality	as	the	field	with	the	name	under	domain	model	properties
applies	here.	We	will	leave	this	field	empty.

Lazy	Loading
Usually	objects	are	loaded	by	Extbase	including	their	child	objects.	This	means	for	a
Blog	with	1000	posts,	that	all	posts	are	read	immediately.	In	most	cases,	this	is	not
desirable.	By	activating	the	Lazy	Loading	option,	reading	the	data	is	postponed	to
the	time,	when	the	property	posts	is	really	required	by	Extbase.	Activate	this	option.

Relation	to	external	class
At	this	point	you	can	define	a	(fully	qualified)	class	name,	if	the	relation	should	be
connected	to	an	external	model	class.	In	our	case,	we	leave	this	field	empty.

Now,	move	the	mouse	over	the	grey	circle,	left	of	the	relation	name,	click,	drag	and	drop
the	blue	“snail”	(relation	wire)	to	the	grey	circle	of	the	domain	model	Post	and	release	the
mouse	button.	The	relation	has	been	created.

Figure	5.17.	Relation	“posts”	between	Blog	and	Post

5.3.6.	Relation	Between	“Post”	and	“Comment”

By	using	the	same	method,	create	the	relation	between	Post	and	Comment	and	name	it
comments.

Figure	5.18.	Relation	“comments”	between	“Posts”	und	“Comments”

5.3.7.	Relations	Between	“Post”	and	“Author”/“Tag”

The	domain	object	Post	has	two	additional	relations	with	objects	Author	and	Tag – all
values	can	be	determined	from	the	model.

Figure	5.19.	Overview	of	all	relations

Now	is	the	perfect	time	to	save	your	work.

5.4.	Installation	of	the	Extension

When	you	save	the	work	in	the	Extension	Builder,	the	extension	is	created	but	not
installed.	Open	the	TYPO3’s	Extension	Manager	and	install	the	extension.

Figure	5.20.	Installation	of	extension	“simpleblog”

Afterwards,	add	the	plugin	to	a	page	of	your	choice.	To	achieve	this,	select	new	content
element	and	switch	to	tab	Plugins.	Select	Simpleblog – Bloglisting	from	the	list	of	available
plugins	under	General	Plugin.

If	you	use	a	pre-configured	system,	you	will	already	see	an	output	(in	this	case	an	error
message).	In	the	case	you	are	using	an	empty	system,	you	have	to	create	a	TypoScript
template.

This	can	be	done	by	opening	module	Template	in	the	backend,	selecting	the	function
Info/Modify	and	clicking	the	button	Create	template	for	a	new	site.	Edit	the	TypoScript	template
(e. g.	follow	link	Edit	the	whole	template	record)	and	enter	the	following	code	in	the	setup:

page	=	PAGE

page.10	<	styles.content.get

Now	switch	to	tab	Includes	and	choose	CSS	Styled	Content	(css_styled_content)	from	Available
Items	(right)	under	the	Include	static	(from	extensions)	section.	The	item	appears	in	the	left	field.
Finally,	save	the	template	record	by	using	the	Save	and	close	document	icon	at	the	top	(disk
with	“X”).

In	the	next	chapter	we	will	analyse	all	files	created	and	extend	the	extension	by	the
functionality	required.

5.5.	Analysing	Files	Created	by	Extension
Builder

The	Extension	Builder	generates	a	number	of	files,	which	we	will	review	in	this	chapter.

Classes

All	class	files	of	an	extension	must	be	stored	in	this	folder	and	all	files	in	this	folder
must	be	class	files.

Classes/Controller

All	controllers	of	the	extension.
Classes/Controller/BlogController.php

Controller	of	domain	object	Blog.
Classes/Controller/PostController.php

Controller	of	domain	object	Post.
Domain

All	domain	related	files	are	stored	in	this	folder.
Domain/Model

Domain	object	classes.
Domain/Model/Author.php

Domain	class	of	objecr	Author
Domain/Model/Blog.php

Domain	class	of	object	Blog
Domain/Model/Comment.php

Domain	class	of	object	Comment
Domain/Model/Post.php

Domain	class	of	object	Post
Domain/Model/Tag.php

Domain	class	of	object	Tag
Domain/Repository

All	Repository	classes	are	stored	in	this	folder.
Domain/Repository/BlogRepository.php

Repository	class	of	domain	object	Blog
Domain/Repository/PostRepository.php

Repository	class	of	domain	object	Post
Configuration

All	configuration	files	are	stored	in	this	folder.
Configuration/ExtensionBuilder

Configuration	files	of	the	Extension	Builder	are	stored	in	this	folder.
Configuration/ExtensionBuilder/settings.yaml

Settings	of	the	Extension	Builder,	which	allows	for	the	configuration	of	how	files	are
created.

Configuration/TCA

All	TCA	files	are	stored	in	this	folder.
Configuration/TCA/Author.php

TCA	configuration	of	domain	object	Author

Configuration/TCA/Blog.php

TCA	configuration	of	domain	object	Blog
Configuration/TCA/Comment.php

TCA	configuration	of	domain	object	Comment
Configuration/TCA/Post.php

TCA	configuration	of	domain	object	Post
Configuration/TCA/Tag.php

TCA	configuration	of	domain	object	Tag
Configuration/TypoScript

Static	TypoScript	of	the	extension	is	stored	in	this	folder.
Configuration/TypoScript/constants.txt

TypoScript	constants.
Configuration/TypoScript/setup.txt

TypoScript	setup.
Documentation.tmpl

A	template	of	the	manual	as	a	set	of	reStructured	Text	files	(ReST).
Documentation.tmpl/Index.rst

Raw	example	main	file	of	the	manual	which	includes	other	rst	files	from	this	folder
and	from	sub-folders.

Resources

Resource	files – both	private	as	well	as	public	are	stored	in	this	folder.
Resources/Private

Private	resource	files:	these	are	files,	which	need	post-processing,	such	as	language
files,	templates,	etc.

Resources/Private/Language

Language	files	are	stored	in	this	folder.
Resources/Private/Language/locallang.xlf

Main	language	file	for	the	frontend.	This	files	contains	all	labels,	which	have	been
entered	in	the	Modeller.

Resources/Private/Language/locallang_csh_tx_simpleblog_domain_model_author.xlf

Language	file	for	the	context	sensitive	help	(CSH)	in	the	backend	of	object	Author
Resources/Private/Language/locallang_csh_tx_simpleblog_domain_model_blog.xlf

Language	file	for	the	context	sensitive	help	(CSH)	in	the	backend	of	object	Blog
Resources/Private/Language/locallang_csh_tx_simpleblog_domain_model_

comment.xlf

Language	file	for	the	context	sensitive	help	(CSH)	in	the	backend	of	object	Comment
Resources/Private/Language/locallang_csh_tx_simpleblog_domain_model_

post.xlf

Language	file	for	the	context	sensitive	help	(CSH)	in	the	backend	of	object	Post
Resources/Private/Language/locallang_csh_tx_simpleblog_domain_model_

tag.xlf

Language	file	for	the	context	sensitive	help	(CSH)	in	the	backend	of	object	Tag
Resources/Private/Language/locallang_db.xlf

Language	file	for	all	database-related	labels	in	the	backend.
Resources/Public

Public	resource	files:	these	are	files,	which	can	be	loaded/shown	in	the	frontend	or
backend	directly	and	without	further	processing.	For	example	CSS	files,	JavaScript
files,	icons,	etc.

Resources/Public/Icons

All	icons	used.

Resources/Public/Icons/relation.gif

Icon	of	a	relation	(used	in	the	backend).
Resources/Public/Icons/tx_simpleblog_domain_model_author.gif

Icon	of	object	Author	(used	in	the	backend).
Resources/Public/Icons/tx_simpleblog_domain_model_blog.gif

Icon	of	object	Blog	(used	in	the	backend).
Resources/Public/Icons/tx_simpleblog_domain_model_comment.gif

Icon	of	object	Comment	(used	in	the	backend).
Resources/Public/Icons/tx_simpleblog_domain_model_post.gif

Icon	of	object	Post	(used	in	the	backend).
Resources/Public/Icons/tx_simpleblog_domain_model_tag.gif

Icon	of	object	Tag	(used	in	the	backend).
Tests

Files	for	automated	tests	are	stored	in	this	folder.
Tests/Unit

Unit	tests.
Tests/Unit/Controller

Unit	test	files	of	the	controller	are	stored	in	this	folder.
Tests/Unit/Controller/BlogController.php

Unit	test	file	of	the	controller	Blog.
Tests/Unit/Controller/PostController.php

Unit	test	file	of	the	controller	Post.
Tests/Unit/Domain

Unit	test	files	of	the	domain	are	stored	in	this	folder.
Tests/Unit/Domain/Model

Unit	test	files	of	the	model	are	stored	in	this	folder.
Tests/Unit/Domain/Model/AuthorTest.php

Unit	test	files	of	the	model	of	object	Author
Tests/Unit/Domain/Model/BlogTest.php

Unit	test	files	of	the	model	of	object	Blog
Tests/Unit/Domain/Model/CommentTest.php

Unit	test	files	of	the	model	of	object	Comment
Tests/Unit/Domain/Model/PostTest.php

Unit	test	files	of	the	model	of	object	Post
Tests/Unit/Domain/Model/TagTest.php

Unit	test	files	of	the	model	of	object	Tag
ext_emconf.php

Extension	configuration	file.
ext_icon.gif

Icon	of	the	extension,	which	will	be	shown	in	TER	and	TYPO3’s	Extension	Manager.
ext_localconf.php

Configuration	file	for	the	frontend.
ext_tables.php

Configuration	file	for	the	backend.
ext_tables.sql

SQL	file	to	create	database	tables	required.
ExtensionBuilder.json

This	configuration	file	contains	all	information	entered	in	the	Extension	Builder,	even
the	positions	of	the	domain	objects	in	the	Modeller.	Such	a	file	is	required	to	re-open
the	extension	in	the	Modeller	at	a	later	time.

5.6.	Further	Functions	of	the	Extension
Builder

We	learnt	in	Chapter	3	that	changes	of	the	domain	model	may	occur	during	the	project.
DDD	requires	the	option	to	adjust	the	implementation	accordingly.

The	Extension	Builder	supports	this	without	problems.

5.6.1.	Create	a	Backup

Go	to	the	Extension	Manager,	select	Manage	Extensions	and	locate	the	extension
extension_builder.	Move	your	mouse	over	the	Actions	area	and	click	on	the	appearing
gear-wheel	to	configure	the	extension.

Figure	5.21.	Extension	settings	in	Extension	Manager

Activate	all	checkboxes	which	are	shown	on	the	settings	page	and	save	your	new
configuration	by	clicking	on	the	disk	icon	at	the	top.

Figure	5.22.	Extension	Builder	configuration

Backups	are	stored	in	the	directory	uploads/tx_extensionbuilder/backups	by	default
but	this	can	be	adjusted	as	required.

5.6.2.	Modifying	the	Model

In	contrast	to	the	Kickstarter	(TYPO3	extension	that	enables	developers	to	create	piBase
extensions)	the	Extension	Builder	is	capable	of	modifying	the	domain	model	at	any	time
later – even	if	custom	code	has	been	written.	This	is	an	essential	feature,	because	the	DDD
principle	dictates	that	the	code	must	be	changeable	if	the	model	has	been	changed.

The	central	point	of	this	feature	is	the	YAML	file
typo3conf/ext/simpleblog/Configuration/ExtensionBuilder/settings.yaml.[15]

The	content	of	this	looks	like	the	following	by	default:

#

#	Extension	Builder	settings	for	extension	simpleblog

#	generated	2015-01-18T11:32:00Z

#

#	See	http://www.yaml.org/spec/1.2/spec.html

#

###########				Overwrite	settings		###########

#

#	These	settings	only	apply,	if	the	roundtrip	feature	of	the	extension	builder

#	is	enabled	in	the	extension	manager

#

#	Usage:

#	nesting	reflects	the	file	structure

#	a	setting	applies	to	a	file	or	recursive	to	all	files	and	subfolders

#

#	merge:

#			means	for	classes:	All	properties	,methods	and	method	bodies

#			of	the	existing	class	will	be	modified	according	to	the	new	settings

#			but	not	overwritten

#

#			for	locallang	xlf	files:	Existing	keys	and	labels	are	always

#			preserved	(renaming	a	property	or	DomainObject	will	result	in	new	keys	and	new	labels)

#

#			for	other	files:	You	will	find	a	Split	token	at	the	end	of	the	file

#			After	this	token	you	can	write	whatever	you	want	and	it	will	be	appended

#			everytime	the	code	is	generated

#

#	keep:

#			files	are	never	overwritten

#			These	settings	may	break	the	functionality	of	the	extension	builder!

#			Handle	with	care!

#

#

############		extension	settings		##############

overwriteSettings:

		Classes:

				Controller:	merge

				Domain:

						Model:	merge

						Repository:	merge

		Configuration:

				#TCA:	merge

				#TypoScript:	keep

		Resources:

				Private:

						#Language:	merge

						#Templates:	keep

		ext_icon.gif:	keep

#		ext_localconf.php:	merge

#		ext_tables.php:	merge

#		ext_tables.sql:	merge

##	use	static	date	attribute	in	xliff	files	##

#staticDateInXliffFiles:	2015-01-18T11:32:00Z

##	list	of	error	codes	for	warnings	that	should	be	ignored	##

#ignoreWarnings:

		#503

#########	settings	for	classBuilder	#############################

#

#	here	you	may	define	default	parent	classes	for	your	classes

#	these	settings	only	apply	for	new	generated	classes

#	you	may	also	just	change	the	parent	class	in	the	generated	class	file.

#	It	will	be	kept	on	next	code	generation,	if	the	overwrite	settings

#	are	configured	to	merge	it

#

###

classBuilder:

		Controller:

				parentClass:	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController

		Model:

				AbstractEntity:

						parentClass:	\TYPO3\CMS\Extbase\DomainObject\AbstractEntity

				AbstractValueObject:

						parentClass:	\TYPO3\CMS\Extbase\DomainObject\AbstractValueObject

		Repository:

				parentClass:	\TYPO3\CMS\Extbase\Persistence\Repository

		setDefaultValuesForClassProperties:	true

merge

For	classes,	this	means	that	all	properties,	methods	and	method	bodies	of	the	existing
class	will	be	modified	according	to	the	new	settings	but	not	overwritten.	For
language	files,	this	means	that	existing	keys	and	labels	are	always	preserved
(renaming	a	property	or	domain	object	will	result	in	new	keys	and	new	labels).	For
other	files,	you	will	find	a	“split	token”	at	the	end	of	the	file.	Everything	below	that
token	remains	unchanged:	##	EXTENSION	BUILDER	DEFAULTS	END	TOKEN	-
Everything	BEFORE	this	line	is	overwritten	with	the	defaults	of	the

extension	builder.	The	first	part	(letters	in	upper	case)	is	sufficient.	The	end	token
is	important	especially	when	working	with	TCA	files.

keep

If	this	keyword	is	used,	the	file	will	not	be	changed	at	all,	even	if	the	model	has	been
changed.

override

This	is	the	default	setting,	which	means	that	the	file	will	be	re-written	completely.	As
a	consequence,	for	files	not	listed	in	any	of	these	sections,	override	will	be	used.

5.6.3.	Class	Builder

By	using	the	keyword	classBuilder:,	you	may	define	the	default	parent	classes	for	your
classes.	This	is	useful,	if	you	want	to	implement	your	own	classes	at	this	point.

[13]	http://cacoo.com

[14]	https://forge.typo3.org/projects/extension-extension_builder/repository

[15]	YAML	(YAML	Ain’t	Markup	Language)	specification:	http://www.yaml.org/spec/1.2/spec.html

http://cacoo.com
https://forge.typo3.org/projects/extension-extension_builder/repository
http://www.yaml.org/spec/1.2/spec.html

Chapter	6.	Preparation

Usually,	extensions	are	embedded	in	TYPO3	CMS’	visual	layout.	In	an	“empty”	TYPO3
instance,	a	frontend	framework	can	be	useful.

6.1.	Frontend	Frameworks

Out	of	a	number	of	frameworks	available	today,	two	seem	to	have	become	universally
accepted	and	established.	Both	frameworks	also	offer	Responsive	Web	Design.

Zurb	Foundation	(http://foundation.zurb.com)
Twitter	Bootstrap	(http://getbootstrap.com)

We	will	use	Twitter	Bootstrap	for	our	examples,	which	was	released	in	March	2015	as
version	3.3.4.	This	book	is	current	for	at	least	two	years[16]	because	TYPO3	CMS	6.2	LTS
will	be	supported	by	the	TYPO3	Team	until	2017	and	the	API	will	not	change.	This
means,	Bootstrap	may	experience	further	developments	during	this	time	but	the	basic
implementation	should	remain	the	same.

First,	download	the	Twitter	Bootstrap	package	from	the	project	website	by	following	the
link	to	the	downloads.	Then,	extract	the	files	into	a	directory.

In	the	next	step,	create	a	new	folder	Boostrap	under	Resources/Public/	in	the
simpleblog	extension	and	copy	the	directories	css,	fonts	and	js	from	the	dist	folder
into	the	new	Bootstrap	folder.

http://foundation.zurb.com
http://getbootstrap.com

Figure	6.1.	Directory/file	structure	of	the	Twitter	Bootstrap	package

Now	open	the	file	Configuration/TypoScript/setup.txt	and	add	the	following
TypoScript	code	at	the	end	of	the	file:

page	{

			includeCSS	{

						bootstrap	=	EXT:simpleblog/Resources/Public/Bootstrap/css/bootstrap.min.css

						simpleblog	=	EXT:simpleblog/Resources/Public/Css/simpleblog.css

			}

			includeJSlibs	{

						jquery	=	//code.jquery.com/jquery.js

						jquery.external	=	1

						bootstrap	=	EXT:simpleblog/Resources/Public/Bootstrap/js/bootstrap.min.js

			}

}

This	results	in	the	inclusion	of	several	files	into	the	header	of	the	website’s	HTML:
Bootstrap’s	CSS	file	as	well	as	a	custom	CSS	file,	then	jQuery	(using	a	CDN[17]	as	the
source)	and	Bootstrap’s	JavaScript	library.

If	you	work	locally	and	without	an	Internet	connection,	you	can	download	jQuery,	store	it
in	the	js	folder	and	include	it	by	amending	the	TypoScript	code	slightly:

						jquery	=	EXT:simpleblog/Resources/Public/Bootstrap/js/jquery.js

Bootstrap’s	JavaScript	folder	is	named	js	and	we	leave	it	as	it	stands.	Although	Js
(UpperCamelCase)	would	be	more	consistent.

6.2.	Load	Static	TypoScript

In	order	to	let	TYPO3	load	the	TypoScript,	we	have	to	include	it	first:

Access	module	Template	in	TYPO3’s	backend	and	go	to	the	root	template	of	the	website.
Select	Info/Modify	from	the	dropdown	box	at	the	top	(function	menu)	and	follow	the	link	Edit
the	whole	template	record.	Now	switch	to	tab	Includes	and	choose	Simpleblog	Extension	(simpleblog)
from	Available	Items	(right)	under	the	Include	static	(from	extensions)	section.	The	item	appears	in
the	left	field.	Finally,	save	the	template	record.

Figure	6.2.	Load	static	template	of	extension	simpleblog

6.3.	Load	CSS	File

Create	a	new	directory	Resources/Public/Css/	and	add	a	file	simpleblog.css	with	the
content	below:

body	{

								padding:	10px;

}

6.4.	IDE	Settings

Extbase	&	Fluid	software	development	requires	a	powerful	IDE	(“Integrated	Development
Environment”).	A	wide	range	of	available	IDEs	exists – for	example	the	following	projects
have	no	charge:

NetBeans	IDE[18]

PDT/Eclipse[19]

Commercial,	non-free	IDEs	are	for	example:

Komodo	IDE[20]

PhpED[21]

PhpStorm[22]

Zend	Studio[23]

PhpStorm	is	highly	recommended	due	to	its	wide	acceptance	in	the	community,	the
affordable	price	(99	EUR	for	individual	developers	and	199	EUR	for	companies	and
organisations – as	of	March	2015),	the	immense	functionality,	the	intuitive	user	interface
and	the	great	performance	and	many	agencies	work	with	PhpStorm	too.

For	those	not	wanting	to	invest	money	in	an	IDE,	they	should	consider	NetBeans	IDE.

Before	you	start	developing	your	software,	there	needs	to	be	some	configuration	of	the
IDE.

6.4.1.	Add	Core	Files	to	the	Include	Path

Open	the	preferences	of	PhpStorm	and	locate	the	Project	Settings	(ext)	in	section	Directories.
Add	folder	typo3/sysext/	to	the	list	of	directories.

Figure	6.3.	Add	TYPO3	core	files	to	the	include	path

Why	is	it	important	to	add	this	directory?

When	you	are	working	on	the	source	code	of	the	BlogController	file	for	example,	you	can
press	the	key	cmd	(Mac)	or	Ctrl	and	move	your	mouse	pointer	over	a	class	name	(e. g.
ActionController).	PhpStorm	immediately	shows	where	the	source	of	the	definition	is
(class	ActionController	extends	AbstractController).	A	click	on	this	opens	the
original	file	and	as	a	result	of	this	feature,	you	can	navigate	through	the	code	quickly.

Figure	6.4.	Show	source	code	class	definition

6.4.2.	Include	Fluid’s	Schema	File

While	the	IDE	is	able	to	resolve	class	and	interface	names	automatically,	this	does	not
work	for	Fluid.	Fluid	is	a	propriety	technique	and	we	have	to	teach	the	IDE	the
appropriate	syntax	highlighting	and	auto-completion	functionality	first.

Luckily,	a	XSD	schema	file	is	available,	which	we	can	simply	include	in	PhpStorm	(or
any	other	IDE	software	that	supports	this).

First,	download	the	XSD	file	for	the	TYPO3/Extbase	version	you	are	using.[24]

Now	open	Schemas	and	DTDs	in	PhpStorm’s	Preferences	and	click	the	plus	symbol	under
External	Schemas	and	DTDs.

Figure	6.5.	Add	a	schema	file

After	that,	open	the	tab	Explorer	and	locate	the	file	on	your	local	computer	that	you
downloaded	before.	In	addition,	enter	the	following	value	in	the	URL	field:
http://typo3.org/ns/TYPO3/Fluid/ViewHelpers.

Figure	6.6.	Enter	URI	and	select	the	schema	file

Finally,	save	your	configuration	changes	by	clicking	on	OK.	That	is	all	it	takes	for	the
schema	file	to	be	used.	Add	the	following	lines	to	a	HTML	file	and	PhpStorm	responds
with	an	auto-suggestion:

<html	xmlns:f="http://typo3.org/ns/TYPO3/Fluid/ViewHelpers">

...

</html>

Figure	6.7.	Auto-suggestion	in	the	IDE

To	prevent	the	display	of	the	<html>-tag	in	the	content,	you	should	place	this	outside	of
<section>:

<html	xmlns:f="http://typo3.org/ns/fluid/ViewHelpers">

<f:layout	name="defaultLayout"	/>

<f:section	name="content">

...

</f:section>

</html>

6.4.3.	Tips	About	Resolving	Class	Names

By	including	classes	the	“normal	way”,	PhpStorms	resolves	their	names	without
problems.	However	if	you	try	using	the	ObjectManager	for	example,	this	will	not	work.

$validatorResolver	=	$this->objectManager->get('Tx_Extbase_Validation_ValidatorResolver');

The	methods	and	properties	of	the	ValidatorResolver	are	completely	invisible	to
PhpStorm.	This	can	be	solved	by	adding	the	@var-annotation,	which	builds	the	reference
to	the	class.	After	that,	PhpStorm	is	able	to	resolve	the	data	correctly:

/**	@var	\TYPO3\CMS\Extbase\Validation\ValidatorResolver	$validatorResolver	*/

$validatorResolver	=	$this->objectManager->get('Tx_Extbase_Validation_ValidatorResolver');

6.4.4.	TYPO3	Extension	phpstorm

PhpStorm	supports	a	meta	data	file	.php-storm.meta.php	since	version	6.0.1,	which
supports	the	IDE	in	resolving	factory	methods.

Ingo	Renner	developed	the	TYPO3	extension	PhpStorm	Meta	Data	(extension	key:
phpstorm),	which	is	available	in	the	TER[25]	and	at	GitHub.[26]	This	extension	generates
exactly	this	meta	data	file.	The	following	factory	methods	are	supported:

TYPO3\CMS\Core\Utility\GeneralUtility::makeInstance

TYPO3\CMS\Extbase\Object\ObjectManager::create

TYPO3\CMS\Extbase\Object\ObjectManager::get

In	order	to	activate	this	feature,	follow	the	steps	below:

Create	a	new	backend	user	named	_cli_phpstorm	(use	a	password	of	your	choice)

Execute	the	following	command	on	the	command	line:

typo3/cli_dispatch.phpsh	phpstorm_metadata

A	new	file	with	the	name	.phpstorm.meta.php	has	been	created	and	shows	the	following
content	(or	similar):

<?php

namespace	PHPSTORM_META	{

			/**	@noinspection	PhpUnusedLocalVariableInspection	*/

			/**	@noinspection	PhpIllegalArrayKeyTypeInspection	*/

			$STATIC_METHOD_TYPES	=	[

						\t3lib_div::makeInstance('')	=>	[

									'Buch\\Extbase\\Code\\Car'	instanceof	\Buch\Extbase\Code\Car,

									'localPageTree'	instanceof	\localPageTree,

									'idna_convert'	instanceof	\idna_convert,

									'HTTP_Request2_Adapter_Curl'	instanceof	\HTTP_Request2_Adapter_Curl,

The	following	parameters	can	be	passed	to	the	script:

--disableClassAliases

Namespaces	have	been	introduced	with	TYPO3	version	6.0.	To	ensure	backward
compatibility,	Class	Alias	Maps	ensure	that	old	names	can	still	be	used	and	are
mapped	to	the	appropriate	new	names.	This	can	be	disabled	by	using	this	parameter.

-s	/	--silent
Using	this	parameter,	only	errors	and	important	warnings	are	shown.

-ss

No	output	is	shown	at	all.

But	now	we	are	really	ready	to	start	exploring	Extbase	and	Fluid!

[16]	Likely	much	longer,	because	we	also	took	TYPO3	CMS	7.x	into	account,	but	the	LTS	version	of	this	release	is
scheduled	after	this	book	has	been	published.

[17]	CDN:	Content	Delivery	Network

[18]	https://netbeans.org/

[19]	http://projects.eclipse.org/projects/tools.pdt

[20]	http://www.activestate.com/komodo-ide/downloads

[21]	http://www.nusphere.com/download.php.ide.htm#phped

[22]	http://www.jetbrains.com/phpstorm/

[23]	http://www.zend.com/de/products/studio/

[24]	http://www.extbase-book.org/resources.html

[25]	http://typo3.org/extensions/repository/view/phpstorm

[26]	https://github.com/irnnr/typo3-ext-phpstorm

https://netbeans.org/
http://projects.eclipse.org/projects/tools.pdt
http://www.activestate.com/komodo-ide/downloads
http://www.nusphere.com/download.php.ide.htm#phped
http://www.jetbrains.com/phpstorm/
http://www.zend.com/de/products/studio/
http://www.extbase-book.org/resources.html
http://typo3.org/extensions/repository/view/phpstorm
https://github.com/irnnr/typo3-ext-phpstorm

Chapter	7.	The	CRUD	Process

The	“CRUD	process”	is	important	when	it	comes	to	an	object	life	cycle,	this	process
controls	the	four	steps	of	an	object	which	are:

Create
Read
Update
Delete

Below	we	take	a	closer	look	at	these	steps	by	using	the	example	of	a	Blog	object:

7.1.	Creating	an	Object

If	we	access	the	extension	in	the	frontend	as	it	stands	now,	a	meaningful	error	message
occurs	(Figure	7.1).

Figure	7.1.	Error	message:	no	template	found

The	appropriate	template	is	missing,	we	will	create	this	in	the	next	step.

But	let’s	have	a	look	at	the	generated	code	first.

7.1.1.	Implementing	listAction

Open	file	typo3conf/ext/simpleblog/Classes/Controller/BlogController.php:

<?php

namespace	Lobacher\Simpleblog\Controller;

class	BlogController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

								/**

									*	blogRepository

									*

									*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

									*	@inject

									*/

								protected	$blogRepository;

								/**

									*	action

									*

									*	@return	void

									*/

								public	function	listAction()	{

								}

}

?>

Here	we	can	see,	that	the	Blog-Repository	is	loaded	by	using	Dependency	Injection – we
will	return	to	this	later.

Two	things	are	important	here,	first,	the	fact	that	the	controller	class	has	been	deviated
from	a	generic	controller	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	(it	is
worth	reviewing	this	class	to	understand	what	has	been	prepared	in	the	controller,	which	is
not	visible	directly).	Second,	the	method	listAction().

The	annotation	@return	specifies	the	data	type	of	the	return	value.	As	we	do	not	want	to
return	anything,	we	choose	the	type	void.

The	error	message	above	shows	exactly,	what	we	have	to	do	to	fix	the	issue:	the
appropriate	template	is	missing,	so	we	will	create	this	in	the	next	step.

7.1.2.	Creating	the	Template	of	listAction

Create	a	new	directory	Templates	under
typo3conf/ext/simpleblog/Resources/Private/	and	inside	this,	a	directory	called
Blog.

One	of	Extbase’s	strict	conventions	is	that	sub-directories	of	Templates	are	always	named
as	the	domain	object.	Another	convention	says	that	files	inside	this	directory	are	named	as
the	actions	in	UpperCamelCase	and	their	file	extension	is	.html	(by	default).

Therefore,	we	create	a	new	file	List.html	in	directory	Blog.

Figure	7.2.	Directory	structure	after	creating	file	List.html

We	add	the	following	simple	line	as	the	content	of	file	List.html:

<h1>Blog-List</h1>

If	we	access	the	frontend	again,	we	can	see	by	the	output	of	the	template	that	the	request
processed	successfully.

7.1.3.	Side	Note:	Template	Rendering

Template	rendering	happens	at	the	end	of	the	action	automatically	by	executing	the
following	function:

return	$this->view->render();

Only	if	you	explicitly	return	FALSE,	the	View	is	not	being	called	and	as	a	consequence,
no	output	is	returned.	If	you	return	a	string,	the	string	is	shown	as	the	output.	In	order	to
return	an	object,	method	__toString()	can	be	called	in	the	object	and	the	string	is
returned.

Render	a	view	without	output

In	order	to	render	a	view	(e. g.	to	render	an	email	template,	which	can	be
used	as	the	mail	body	by	the	mail()	function),	you	can	call	the	render
method:

$mailBody	=	$this->view->render()

At	the	end	of	the	action	you	could	then	either	return	FALSE	or	redirect	to
another	action.

7.1.4.	Create	Static	Blogs

In	the	first	step,	we	use	a	loop	to	create	three	Blogs	in	the	listAction	and	we	set	the	title
to	“This	is	the	1.	Blog”	(etc.)	by	using	the	getter.	Then,	we	assign	the	created	Blog	to	the
array	variable	blogs	and	the	variable	to	the	view	by	using	method	assign().

public	function	listAction()	{

								$blogs	=	array();

								for	($i=1;	$i<=3;	$i++)	{

																$blog	=	$this->objectManager->get('\\Lobacher\\Simpleblog\\Domain\\Model\\Blog');

																$blog->setTitle('This	is	Blog	number	'	.	$i	.	'!');

																$blogs[]	=	$blog;

								}

								$this->view->assign('blogs',	$blogs);

}

The	view	receives	the	array	and	outputs	it.	To	do	this,	open	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html	and	add
the	following	code:

<h1>Blog	List</h1>

<ul	class="list-group">

				<f:for	each="{blogs}"	as="blog">

								<li	class="list-group-item">{blog.title}

				</f:for>

We	wrapped	the	unordered	list	with	...	for	the	output.	Inside,	we	use	a	Fluid-
ViewHelper	which	implements	a	loop.	each="{blogs}"	defines	which	elements	the	loop
iterates.	By	stating	{blogs}	we	indicate	that	we	want	to	use	the	array	which	we	have
assigned	in	the	controller.	The	name	used	by	method	assign()	in	the	controller	is	the
same	as	the	name	used	in	curly	brackets	in	the	view.

Parameter	as="blog"	specifies	that	a	single	element	inside	the	loop	is	named	blog.
Accessing	this	can	be	done	by	using	{blog}	(but	only	inside	the	loop).	The	...
code	makes	use	of	that:	in	order	to	output	the	title	of	the	Blog,	we	are	using
{blog.title},	which	calls	the	getter	to	retrieve	the	property	title	of	the	object	blog.

As	a	result,	the	three	Blogs	are	shown	as	an	unordered	list.

7.1.5.	Persisting	the	Blogs

If	we	access	the	extension	in	the	frontend,	we	see	the	list	of	Blogs.	This	list	remains	the
same	every	time	we	access	it	because	the	same	Blogs	are	created	over	and	over	again.
Secondly,	we	have	not	made	the	Blogs	persistive	yet – this	will	be	our	next	step.

According	to	DDD	we	have	to	use	a	repository	for	that.	A	closer	look	at	the	Blog
controller	reveals	that	a	repository	has	already	been	prepared:

								/**

									*	blogRepository

									*

									*	@var	\Lobacher\Simpleblog\Domain\Repository\BlogRepository

									*	@inject

									*/

								protected	$blogRepository;

These	few	lines	are	sufficient	to	fetch	the	class
\Lobacher\Simpleblog\Domain\Repository\BlogRepository	(or	a	different
implementation,	which	could	be	configured	by	using	TypoScript)	via	Dependency
Injection	(the	combination	of	the	annotations	@inject	and	@var	take	care	of	that)	and
assign	it	to	the	property	$blogRepository.

A	repository	has	a	number	of	methods – the	most	interesting	is	add()	at	this	point	in	time
because	we	want	to	add	something	to	the	repository.	Let’s	update	our	code	so	that	every
Blog	we	create	is	added	to	the	repository	and	at	the	end	of	the	action	we	access	the
repository	to	retrieve	the	stored	Blogs	and	pass	them	to	the	view.	The	method	findAll()
does	exactly	that:

								public	function	listAction()	{

																$blogs	=	array();

																for	($i=1;	$i<=3;	$i++)	{

																								$blog	=	$this->objectManager->get('\\Lobacher\\Simpleblog\\Domain\\Model\\Blog');

																								$blog->setTitle('This	is	Blog	number	'	.	$i	.	'!');

																								$this->blogRepository->add($blog);

																}

																$this->view->assign('blogs',$this->blogRepository->findAll());

								}

If	we	access	the	extension	in	the	frontend	again	(after	clearing	the	cache	to	play	it	safe),
nothing	is	shown	but	if	we	look	at	the	backend,	something	interesting	has	happened:	go	to
the	page	UID	0	(the	page	with	the	TYPO3	icon	pre-pended)	and	open	the	List	module.
Here	you	will	see	that	all	Blogs	are	stored	successfully.

Figure	7.3.	Blogs	listed	in	the	backend	on	page	UID	0

Accessing	the	extension	a	second	time	shows	three	Blogs	in	the	frontend	compared	to	six
list	entries	in	the	backend.	This	mystery	needs	to	be	unravelled!

7.1.6.	Side	Note:	Persistence

In	“normal	life”	the	life	cycle	of	an	object	is	quite	simple,	it’s	created,	it’s	active	and	then
disappears	again.	The	same	applies	to	humans	as	well	as	refrigerators.

Figure	7.4.	Life	cycle	of	objects

We	will	take	a	look	at	this	cycle	in	Extbase:

As	before,	firstly	the	object	is	created	and	in	an	active	state	(this	is	also	called	transitive).

When	an	object	is	added	to	a	repository,	it	is	saved	to	the	memory	first.	Only	transitive
objects	(objects	that	exist	in	the	memory)	can	be	deleted.	If	an	object	has	been	persisted
already,	it	must	be	transferred	from	the	database	to	a	transitive	state	first.	Only	then	can	it
be	deleted	from	the	memory	and	added	to	a	list	of	objects	for	deletion.	Later,	when	the
objects	are	being	made	persistent,	this	same	list	is	processed	and	the	objects	removed	from
the	database.

In	general,	Extbase	persists	at	the	end	of	an	action,	which	means	the	following	steps
happen	as	a	kind	of	“cashing-up”:

If	an	object	should	be	created	(for	example	because	the	add()	method	has	been
applied	to	the	repository),	this	is	noted	in	a	list	first.
If	one	of	these	objects	changed,	this	is	also	noted	in	this	list.
If	an	object	has	been	removed	from	the	repository,	Extbase	checks	first,	if	it	has	been
earmarked	to	be	created	or	altered – in	this	case,	these	steps	became	irrelevant.

This	technique	is	highly	efficient	because	only	those	objects	that	are	created,	updated	or
deleted	are	really	used.	As	a	side	effect,	access	to	the	data	storage	is	minimised.

However	a	drawback	of	this	approach	is	that	you	are	unable	to	tell	which	operations	have
been	executed	at	the	end.	Things	like	mysql_insert_id	do	not	exist	any	more.	Also	this
system	only	performs	at	its	best,	if	it	is	used	rarely.	As	a	result	of	this,	persistence	is	only
used	at	the	end	of	an	action	in	Extbase.

In	our	example	Extbase	executes	the	steps	described	below,	when	adding	an	object	to	the
repository	or	removing	an	object	from	it:

Read	access	to	the	repository	(e. g.	findAll())	always	happens	at	this	position	in	the
code,	where	the	methods	appear.
Write	access	to	the	repository	(e. g.	add())	always	happens	at	the	end	of	the	action.

Hence	the	reason,	there	are	always	three	objects	more	in	the	database	than	can	be	visible
at	the	frontend.	To	avoid	this,	we	have	to	manually	interfere	and	force	to	persist.

Implicit	Persistence
The	implicit	persistence	at	the	end	of	every	action	has	been	removed	in
TYPO3	CMS	6.2	LTS.	Persistence	only	happens	after	an	appropriate	call	to
the	repository,	e. g.	add()	or	update().

7.1.7.	The	Persistence	Manager:	Manual	Persistence

Extbase	features	a	Persistence	Manager	in	file
typo3/sysext/extbase/Classes/Persistence/Generic/PersistenceManager.php.
Please	open	this	file	in	your	editor	and	investigate	it.

Public	API
All	methods	of	the	public	API	can	be	used	in	your	Extbase	code.	To	identify
these	methods,	look	out	for	the	annotation	@api.	They	exist	in	classes	in	there,
before	methods.	If	you	come	across	a	method	which	does	not	have	an	@api
annotation,	you	should	not	use	this	in	your	code	because	the	API	may	change
without	warning	at	any	time.

<?php

namespace	TYPO3\CMS\Extbase\Persistence\Generic;

...

/**

	*	The	Extbase	Persistence	Manager

	*

	*	@api

	*/

class	PersistenceManager	implements	\TYPO3\CMS\Extbase\Persistence\PersistenceManagerInterface,	\TYPO3\CMS\Core\SingletonInterface	{

			...

								/**

									*	Commits	new	objects	and	changes	to	objects	in	the	current	persistence

									*	session	into	the	backend

									*

									*	@return	void

									*	@api

									*/

								public	function	persistAll()	{

								...

Here	you	can	see	the	method	persistAll(),	which	takes	care	of	the	manual	persistiveness
when	called.	In	order	to	trigger	this	method,	we	have	to	do	two	things:

1.	 Load	the	class	via	Dependency	Injection
2.	 Call	the	method	prior	end	of	action

Let’s	go	back	to	the	BlogController:

								...

								protected	$blogRepository;

								/**

									*	Persistence	Manager

									*

									*	@var	\TYPO3\CMS\Extbase\Persistence\Generic\PersistenceManager

									*	@inject

									*/

								protected	$persistenceManager;

								/**

									*	list	action

									*

									*	@return	void

									*/

								public	function	listAction()	{

																$blogs	=	array();

																for	($i=1;	$i<=3;	$i++)	{

																								$blog	=	$this->objectManager->get('\\Lobacher\\Simpleblog\\Domain\\Model\\Blog');

																								$blog->setTitle('This	is	Blog	number	'	.	$i	.	'!');

																								$this->blogRepository->add($blog);

																}

																$this->persistenceManager->persistAll();

																$this->view->assign('blogs',$this->blogRepository->findAll());

								}

								...

Now	the	number	of	Blogs	shown	in	the	frontend	matches	the	number	of	records	in	the
repository.

7.1.8.	Create	Your	Own	Action

At	the	moment,	the	action	listAction	carries	out	two	tasks:	it	creates	the	objects	and
generates	the	list	of	Blogs.	Strictly	speaking,	this	is	not	in	accordance	with	Extbase’s
concept	of	a	Slim	Controller:	multiple	tasks	should	be	implemented	in	different	actions.
This	presumes	the	following:

1.	 We	have	to	register	an	additional	action	in	file	ext_localconf.php	and	choose	to	use
add	as	its	name.

2.	 In	the	controller	class,	a	new	method	addAction	is	required,	where	we	implement	the
code	to	generate	Blogs.

3.	 The	remaining	code	in	the	original	method	listAction()	contains	the	logic	of
querying	the	repository	only	and	passing	the	data	over	to	the	view.

4.	 Finally,	we	slightly	extend	the	code	in	addAction()	and	add	a	redirect	to
listAction(),	so	that	we	end	up	at	the	list	view	after	creating	Blogs.

Let’s	start	with	file	ext_localconf.php:

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::configurePlugin(

								'Lobacher.'	.	$_EXTKEY,

								'Bloglisting',

								array(

																'Blog'	=>	'list,	add',

),

								//	non-cacheable	actions

								array(

																'Blog'	=>	'list,	add',

)

);

Followed	by	the	new	addAction()	in	BlogController:

			/**

				*	add	action

				*

				*	@return	void

				*/

			public	function	addAction()	{

						for	($i=1;	$i<=3;	$i++)	{

									$blog	=	$this->objectManager->get('\\Lobacher\\Simpleblog\\Domain\\Model\\Blog');

									$blog->setTitle('This	is	Blog	number	'	.	$i	.	'!');

									$this->blogRepository->add($blog);

						}

						$this->redirect('list');

			}

The	manual	persistence	via	$this->persistenceManager->persistAll();	can	be	left	out
because	the	data	is	made	persistent	automatically	at	the	end	of	the	action.

Method	$this->redirect();	triggers	a	new	request	to	action	list.	This	is	a	HTTP
request,	which	means,	the	page	is	completely	reloaded	and	therefore	the	URL	changes	as
well.

Redirect
The	method	$this->redirect()	features	a	lot	of	parameters,	which	will	be
used	frequently	in	this	book:

/**

	*	Redirects	the	request	to	another	action	and	/	or	controller.

	*

	*	Redirect	will	be	sent	to	the	client	which	then	performs	another	request	to	the	new	URI.

	*

	*	NOTE:	This	method	only	supports	web	requests	and	will	thrown	an	exception

	*	if	used	with	other	request	types.

	*

	*	@param	string	$actionName	Name	of	the	action	to	forward	to

	*	@param	string	$controllerName	Unqualified	object	name	of	the	controller	to	forward	to.	If	not	specified,	the	current	controller	is	used.

	*	@param	string	$extensionName	Name	of	the	extension	containing	the	controller	to	forward	to.	If	not	specified,	the	current	extension	is	assumed.

	*	@param	array	$arguments	Arguments	to	pass	to	the	target	action

	*	@param	integer	$pageUid	Target	page	uid.	If	NULL,	the	current	page	uid	is	used

	*	@param	integer	$delay	(optional)	The	delay	in	seconds.	Default	is	no	delay.

	*	@param	integer	$statusCode	(optional)	The	HTTP	status	code	for	the	redirect.	Default	is	"303	See	Other

	*	@return	void

	*	@api

	*/

protected	function	redirect($actionName,	$controllerName	=	NULL,	$extensionName	=	NULL,	array	$arguments	=	NULL,	$pageUid	=	NULL,	$delay	=	0,	$statusCode	=	303)	{

The	first	parameter	is	the	action,	the	second	the	controller,	the	third	the
extension	and	so	forth.	If	parameters	are	not	stated	in	the	method	call,	their
default	values	are	used,	e. g.	the	current	controller	name.

Finally,	we	purge	the	code	in	listAction()	of	the	BlogController	so	that	it	only
retrieves/displays	Blogs	but	does	not	create	any:

			/**

				*	list	action

				*

				*	@return	void

				*/

			public	function	listAction()	{

						$this->view->assign('blogs',$this->blogRepository->findAll());

			}

In	order	to	enable	users	to	create	new	Blogs,	we	have	to	add	a	link	to	the	view	List.html,
ideally	at	the	very	end	of	the	file:

...

<f:link.action	action="add"	class="btn	btn-primary">Add	Blogs</f:link.action>

This	line	generates	an		tag,	which	already	points	to	the	right	action.
Checking	the	URL	of	this	tag	more	closely	reveals	how	it	works:

http://www.example.com/index.php?id=1&

			tx_simpleblog_bloglisting[action]=add&

			tx_simpleblog_bloglisting[controller]=Blog&

			cHash=3d6a8fa3884f23198e0cb9a1604abccb

As	above,	two	parameters	show	a	name	space,	which	contains	the	extension	key	as	well	as
the	plugin	name.	Both	parameters	include	information	about	the	action	and	the	controller,
which	tell	Extbase	to	access	the	action	addAction()	in	BlogController.

In	addition,	a	parameters	cHash	(also	known	as	“Cache	Hash”)	exists.	Its	value	is	an	MD5
hash,	which	has	been	calculated	based	on	the	parameters	and	TYPO3’s	encryption	key.
Only	if	the	cHash	and	the	parameters	match,	can	the	page	be	shown	and	written	to	the
cache.	This	only	applies	to	parameters	generated	by	extensions.[27]

7.1.9.	Form	to	Create	an	Object

Certainly	the	creation	of	objects	via	new()	and	$this->objectManager->get('...');	is
reasonable	and	useful.	However	a	form	which	allows	us	to	create	Blogs	would	be	more
efficient.

In	this	case,	we	have	to	reconsider	something	from	a	conceptional	perspective:	in	theory	it
would	be	possible	to	put	the	form	as	well	as	the	creation	of	Blogs	in	one	action	but	this
would	have	drawbacks.	Firstly,	we	would	have	too	much	logic	in	the	controller,	this	only
checks	the	status	(shows	empty	form,	accepts	form	data,	validates	form,	etc.).	Secondly,	as
pointed	out	before,	Extbase	follows	the	Slim	Controller	principle.

Therefore,	we	will	implement	the	creation	of	an	object	via	a	form	as	a	two-step	action.

First,	let’s	add	the	addForm	action	prior	to	the	add	action	in	file	ext_localconf.php:

...

			array(

						'Blog'	=>	'list,	addForm,	add',

),

			//	non-cacheable	actions

			array(

						'Blog'	=>	'list,	addForm,	add',

)

...

Now	a	method	addFormAction()	is	required	in	the	controller:

			/**

				*	addForm	action	-	displays	a	form	for	adding	a	blog

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	addFormAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog	=	NULL)	{

						$this->view->assign('blog',$blog);

			}

This	will	result	in	the	below	factors:

The	method	has	an	input	parameter	$blog.
This	parameter	must	be	of	type	\Lobacher\Simpleblog\Domain\Model\Blog
because	this	has	been	specified	as	a	type	hint.
An	annotation	@param	indicates	that	$blog	is	of	type
\Lobacher\Simpleblog\Domain\Model\Blog.
The	object	is	passed	to	the	view	in	this	method.

This	combination	of	the	type	hint,	the	annotation	and	the	existence	of	a	key	with	the	same
name	in	the	request	ensures	that	an	object	of	the	type	of	the	domain	object	Blog	can	be
reconstituted	and	assigned	to	variable	$blog.

With	the	first	request,	nothing	is	restored	but	a	new	object	is	being	built.	For	this	purpose,
a	new	instance	of	the	domain	class	is	generated	and	the	value	NULL	assigned	to	the	object.
This	is	required	as	we	do	not	have	an	object	at	the	first	call	request.	At	the	same	time,	we
want	to	pass	the	object	to	the	view	and	this	is	why	the	initialisation	must	happen.

Let’s	attend	to	the	view.

Side	Note:	Fluid
Before	we	build	up	the	form,	some	general	notes	about	Fluid:	Fluid	is	a	template	engine,
which	replaces	the	traditional	marker/sub-part	approach.	This	has	been	used	in	the	piBase
extension	development,	which	came	along	as	the	following:

//	Determine	the	template

$this->templateCode	=	$this->cObj->fileResource($conf['templateFile']);

//	Read	sub-part

$template['total']	=	$this->cObj->getSubpart($this->templateCode,'###TEMPLATE###');

//	Fill	markers

$markerArray['###MARKER1###']	=	'content	for	marker	1';

$markerArray['###MARKER2###']	=	'content	for	marker	2';

//	Set	markers	in	template

$content	=	$this->cObj->substituteMarkerArrayCached($template['total'],

$markerArray);

There	are	obvious	downsides:

Layout	and	code	are	mixed	as	designers	and	developers	can	not	work	independently
from	each	other.
Not	extendable	(e. g.	adding	new	markers).
Unnecessary	and	complicated	API	functions.
Control	structures	in	templates	are	not	possible.
Only	strings	and	arrays	are	supported – objects	are	not.

In	order	to	address	these	issues,	the	Fluid	development	started	with	the	following
properties:

simple	and	nifty	template	engine
supporting	the	template	author	(e. g.	auto-completion	in	IDE,	etc.)
easy	to	extend
intuitive	usage
various	output	formats	possible
completely	object-orientated

Additionally,	one	of	the	main	requirements	of	Fluid	is	to	have	all	logic,	which	has
something	to	do	with	the	view,	exactly	located	there – clearly	encapsulated	so	that	no	PHP

code	appears	in	HTML	(which	is	the	case	in	other	template	engines	such	as	Smarty).

Three	basic	Fluid	concepts	exist:

Object	Accessors
ViewHelper
Arrays

Figure	7.5.	Basic	Fluid	concepts

We	already	discussed	the	Object	Accessor:	this	is	the	option	to	access	values	via	curly
brackets	{}.	As	soon	as	a	value	$value	is	assigned	to	an	identifier	$identifier	in	the
controller,	we	are	able	to	access	the	value	by	using	{value}.

The	value	can	be	a	string,	an	array	(numeric	or	associative),	an	object	or	a	combination	of
all	of	these.	The	dot	is	used	to	access	a	value	in	a	sub-level,	for	example	a	numeric	array
{identifier.0},	an	associative	array	{identifier.key}	or	an	object
{identifier.property}.

In	the	case	that	an	access	to	an	object	is	made,	we	automatically	gain	access	to	all	object
properties.	These	properties	are	determined	directly	(if	they	are	public)	or	via	the	getter
methods	(if	they	are	protected) – for	example	getTitle()	of	the	Blog	object	to	provide
{blog.title}).

In	addition,	this	can	also	be	used	to	access	objects	which	are	stored	as	properties:
{blogs.0.posts.1.author.lastName}.

ViewHelper	are	PHP	classes	eventually,	which	implement	more	complex	functionality.
They	can	be	accessed	with	tags	in	templates:

<h1>{blogTitle}</h1>

<f:if	condition="{blog.posts}">

			<f:then>

						

									<f:for	each="{blog.posts}"	as="post">

												{post.title}

									</f:for>

						

			</f:then>

			<f:else>

						<p>There	are	no	posts!<p>

			</f:else>

</f:if>

This	example	uses	the	IfViewHelper.	It	first	checks	in	attribute	condition,	if	object
{blog.post}	has	any	content.	If	this	is	the	case	(ThenViewHelper),	an	...	tag
is	written.	Inside	this	tag,	the	ForViewHelper	iterates	all	elements	(due	to	the	fact	that	a
number	of	Blog	posts	may	exist)	and	wraps	every	title	of	a	post	in	...	tags.	If
object	{blog.post}	is	empty,	the	ElseViewHelper	part	becomes	relevant	and	the	message
appears	that	no	posts	exist.

ViewHelper	always	have	the	same	structure:

Syntax:

<f:ViewHelperName	arguments>CONTENT</f:ViewHelperName>

or

<f:ViewHelperName	arguments	/>

The	f:	specifies	the	Fluid-specific	name	space

{namespace	f	=	TYPO3\CMS\Fluid\ViewHelpers}

This	declaration	is	placed	in	every	template	and	therefore	the	default	name	space	of
Fluid.

All	ViewHelper	are	based	on	classes.

The	file	names	of	these	classes	are:

ViewHelperName	+	ViewHelper.php

For	example:	IfViewHelper.php	of	ViewHelper	<f:if	condition>...</f:if>

The	directory	of	all	Fluid-specific	ViewHelpers	is:
typo3/sysext/fluid/Classes/ViewHelpers/.
A	dot	in	ViewHelper	denotes	sub-directories,	for	example:	<f:format.nl2br>...
</f:format.nl2br>	would	result	in	a	file
typo3/sysext/fluid/Classes/ViewHelpers/Format/Nl2brViewHelper.php.

Multiple	dots	are	also	possible,	which	would	result	in	a	deeper	directory	structure.

At	the	time	of	this	writing,	82	ViewHelpers	are	shipped	with	Fluid:

Formatting	(format.xxx)
Translation	(translate)
Form	creation	(form	and	form.xxx)
Link	creation	(link.xxx	and	uri.xxx)
Backend	(be.xxx.yyy)
TypoScript	(cObject)
Control	structures	(if,	then,	else,	for,	switch,	groupedFor,	cycle,…)
Layout	and	Partials	(render,	section)
Debugging	(debug)
Image	processing	(image)
Miscellaneous	(base,	count,…)

There	are	also	many	ViewHelpers	developed	by	the	community	available.	For	example:

GoogleMaps	(shows	information	at	Google	Maps)
File	Extension	(based	on	the	extension	of	the	file	name,	the	appropriate	icon	is
shown,	e. g.	PDF	or	DOCX)
Smartphone	Link	(generates	a	link	in	a	format	that	mobile	phones	dial	the	phone
number	on	tap)
Include	(includes	CSS	or	JavaScript	files)

Unfortunately,	at	this	point	in	time	there	is	no	official	ViewHelper	repository	which	would
allow	developers	to	search	for	or	browse	through	ViewHelpers.[28]	It	is	recommended,	to
collect	and	archive	ViewHelpers	which	you	have	found	or	written	in	order	to	have	them	at
hand	in	the	future.

The	TYPO3	extension	vhs	features	a	comprehensive	library	of	ViewHelper,	which	is
worth	reviewing	before	writing	your	own.[29]

The	last	Fluid	concept	is	named	arrays:	it	is	possible	to	pass	data	structures	in	JSON	array
format	in	Fluid.	The	example	below	shows	this	in	attribute	arguments:

<f:link.action	controller="Post"

action="show"	arguments="{post:	currentPost,

blog:	blog}">Show	current	post</f:link.action>

The	following	constructs	are	supported:

{	key1:	'Hello',

		key2:	"World",

		key3:	20,

		key4:	blog,

		key5:	blog.title,

		key6:	'{firstname}	{post.lastname}'

}

Inside	curly	brackets,	key	and	value	pairs	are	stated:

key1

value	is	a	string	in	single	quotes.
key2

value	is	a	string	in	double	quotes.
key3

value	is	a	number
key4

value	is	an	object
key5

value	is	a	property	of	an	object	(could	be	a	property	or	an	object)
key6

value	is	a	string,	where	variables	are	replaced	accordingly	(identifier	or	properties)

A	ViewHelper	can	also	be	used	as	a	value.	However	this	is	only	possible	by	using	inline
syntax,	which	we	will	describe	in	more	detail	later.	This	notation	requires	quotes.

Form	Syntax
We	just	learnt	the	basics	of	Fluid	and	can	now	start	building	our	form.	Create	a	new	file
AddForm.html	in	directory
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog	and	add	the	following
content:

<h1>Create	a	new	Blog</h1>

<f:form	action="add"	object="{blog}"	name="blog"	additionalAttributes="{role:'form'}">

				<div	class="form-group">

								<label>Blog	Title</label>

								<f:form.textfield	property="title"	class="form-control"	/>

				</div>

				<div	class="form-group">

								<label>Blog	Description</label>

								<f:form.textarea	property="description"	class="form-control"	/>

				</div>

				<f:form.submit	value="Create	Blog!"	class="btn	btn-primary"	/>

</f:form>

We	are	using	the	ViewHelper	<f:form>	which	generate	the	form.	The	value	add	at
attribute	action	makes	sure,	addAction	of	our	Blog	controller	is	called	after	submitting
the	form.	object="{blog}"	tells	Extbase	that	the	form	belongs	to	object	blog	(which	we
assigned	by	stating	$this->view->assign()).	This	also	makes	it	easier	to	map	the	fields
later.	By	using	name="blog"	we	ensure,	that	the	form	uses	exactly	this	name	(which	will
use	a	name	space	later)	and	Extbase	picks	it	up	correctly.	The	last	attribute

additionalAttributes	adds	some	specific	attributes	to	the	HTML	form	tag.	In	this	case,
{role:'form'}	generates	an	attribute	role="form",	which	instructs	Twitter	Bootstrap
how	to	style	the	form.

Let’s	have	a	closer	look	at	every	single	field:

Title
We	are	using	the	<f:form.textfield>	ViewHelper	to	render	an	input	field.	The
important	point	is,	that	the	attribute	property="title"	maps	the	property	title	of	the
domain	object	blog,	which	has	been	defined	in	the	<f:form>	ViewHelper	further	up.
Everything	else	is	handled	by	Extbase.	The	class	is	used	for	the	visual	appearance	via
Bootstrap.

Description
This	is	similar	as	above,	but	a	text	area	is	required	and	therefore	we	are	using	the
<f:form.textarea>	ViewHelper	instead.

Submit	Button
In	order	to	style	the	submit	button	properly,	we	are	using	a	few	Bootstrap	classes,
namely	btn	(to	convert	the	<input>	field	into	a	button)	and	btn-primary	to	colour	it
blue.

Generated	HTML	Form
Based	on	the	ViewHelpers,	Extbase	generates	a	HTML	markup,	where	we	can	find	several
interesting	things:

<form	role="form"	name="blog"	action="index.php?id=1&	tx_simpleblog_bloglisting%5Baction%5D=add&	tx_simpleblog_bloglisting%5Bcontroller%5D=Blog&	cHash=3d6a8fa3884f23198e0cb9a1604abccb"	method="post">

<div>

<input	type="hidden"	name="tx_simpleblog_bloglisting[__referrer][@extension]"	value="Simpleblog"	/>

<input	type="hidden"	name="tx_simpleblog_bloglisting[__referrer][@controller]"	value="Blog"	/>

<input	type="hidden"	name="tx_simpleblog_bloglisting[__referrer][@action]"	value="addForm"	/>

<input	type="hidden"	name="tx_simpleblog_bloglisting[__referrer][arguments]"	value="YToyOntzOjY6ImFjdGlvbiI7czo3OiJhZGRGb3JtIjtzOjEwOiJjb25	0cm9sbGVyIjtzOjQ6IkJsb2ciO30=e88aedd40a70dd32a1cc0e07e707391b58acfe88"	/>

<input	type="hidden"	name="tx_simpleblog_bloglisting[__trustedProperties]"	value="a:1:{s:4:"blog";a:2:{s:5:"title";i:1;	s:11:"description";i:1;}}aa8c3878065abb5337d5ed2d5f730f5339d921e2"	/>

</div>

<div	class="form-group">

			<label>Blog	Title</label>

			<input	class="form-control"	type="text"	name="tx_simpleblog_bloglisting[blog][title]"	/>

</div>

<div	class="form-group">

			<label>Blog	Description</label>

			<textarea	class="form-control"	name="tx_simpleblog_bloglisting[blog][description]"></textarea>

</div>

<input	class="btn	btn-primary"	type="submit"	name=""	value="Create	Blog!"	/>

</form>

Particularly	interesting	are	the	hidden	fields	at	the	beginning	of	the	form.	Due	to	the	fact
that	the	HTTP	protocol	is	connectionless,	the	exact	source	of	a	POST	request	is	unknown

to	the	instance,	that	receives	the	request	(the	optional	referrer	string	sent	by	the	user’s
browser	disregarded).

The	hidden	fields	contain	information	about	the	extension,	the	controller	and	the	action	in
order	to	clearly	determine	the	origin.	This	is	important,	in	particularly,	if	addAction()
should	validate	the	receiving	object	and – e. g.	due	to	a	failed	validation – reject	it.	In	this
case,	we	need	to	come	back	to	the	origin,	the	addFormAction().

The	next	two	fields	act	as	a	protection	against	CSRF	(Cross-Site	Request	Forgery).	An
attacker	could	manipulate	the	form	and	submit	it	with	adulterated	data	from	his	server.
This	would	be	problematic,	if	there	was	a	user	object,	which	allowed	users	to	edit	their
details.	An	admin	flag	must	not	be	edited	by	the	user	itself	of	course	but	by	an
administrator	user	only.	An	attacker	could	simply	add	a	checkbox	Admin,	tick	it	and	submit
the	form.	A	CSRF	protection	detects	this	attempt,	rejects	the	request	and	outputs	an	error
message.

It’s	also	interesting	to	note	that	the	attribute	property	in	the	ViewHelper	has	been
converted	into	the	attribute	name	and	expanded	with	a	name	space,	e. g.
name="tx_simpleblog_bloglisting[blog][description]".	As	a	result,	the	Property
Mapper	recognises	which	properties	belong	to	which	objects.

Form	Processing
Now	we	adjust	the	BlogController	because	addAction()	should	not	create	the	objects
itself	by	using	new()	any	more	but	instead	use	the	object	from	addFormAction().

			/**

				*	add	action	-	adds	a	blog	to	the	repository

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	addAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->blogRepository->add($blog);

						$this->redirect('list');

			}

We	have	created	an	object	in	addFormAction()	in	the	form	and	passed	it	to	addAction()
through	a	POST	request.	As	soon	as	addAction()	is	executed,	Extbase	detects	that
parameter	$blog	is	the	same	as	the	attribute	name="blog"	in	the	form	(by	analysing	the
annotation	as	well	as	the	method	parameter).	This	way,	Extbase	reconstitutes	the	object
$blog	and	assigns	the	properties	passed	in	the	request	to	it.	The	object	is	added	to	the
BlogRepository	and	after	that,	the	action	redirects	to	the	list	view.

We	also	have	to	update	the	link	at	the	end	of	the	template	List.html	because	it	should	no
longer	point	to	addAction()	but	to	addFormAction().

<f:link.action	action="addForm"	class="btn	btn-primary">Create	Blog</f:link.action>

Now	we	are	able	to	create	objects	in	a	form	and	store	them	in	a	repository.

Pay	attention	to	the	cache
To	avoid	error	messages,	you	have	to	clear	the	cache	during	development	from
time	to	time.	For	example,	after	updating	ext_localconf.php,	the
configuration	cache	must	be	emptied.	Extbase	also	stores	code	(e. g.	actions)
to	the	caching	framework	cf_extbase_objects,	even	if	“do	not	cache”	has
been	set	in	ext_localconf.php.	Thus	the	reflection	possibly	accesses
outdated	class	information.	The	only	solution	is	to	clear	all	caches	in	the
backend.

Figure	7.6.	List	of	Blogs

Figure	7.7.	Form	to	create	a	Blog

7.2.	Display	a	Blog	(Read)

We	have	now	reached	the	read	state	in	the	CRUD	process – the	retrieval	of	an	object.	First,
we	have	to	extend	the	action	list	in	file	ext_localconf.php,	as	before.	The	new	action	is
named	show:

...

			array(

						'Blog'	=>	'list,	addForm,	add,	show',

),

			//	non-cacheable	actions

			array(

						'Blog'	=>	'list,	addForm,	add,	show',

)

...

In	the	next	step	we	update	the	template	List.html	and	place	a	button	after	each	Blog	title
to	allow	users	to	access	the	single	view	of	an	object:

<ul	class="list-group">

			<f:for	each="{blogs}"	as="blog">

						<li	class="list-group-item">{blog.title}	<f:link.action	action="show"	arguments="{blog:blog}"	class="btn	btn-primary	btn-xs	pull-right">SHOW</f:link.action>

			</f:for>

We	added	the	<f:link.action>	ViewHelper,	which	points	to	the	action	show.	The	action
needs	to	know	which	object	we	would	like	to	access,	so	this	information	has	to	be	passed
somehow.	This	is	done	by	the	attribute	arguments,	which	allows	us	to	pass	arbitrary	data
in	an	array	syntax	to	the	link	target.	The	value	{blog:blog}	makes	sure	that	the	Blog	blog
(this	is	the	right	part)	is	passed	via	a	GET	request	to	the	action	under	the	name	blog	(this
is	the	left	part).

The	classes	create	buttons,	which	are	Bootstrap	conform:	btn	btn-primary	btn-xs
results	in	a	small,	blue	button	and	pull-right	positions	it	far	right.

The	link	could	look	like	the	following:

http://www.example.com/index.php?id=1&

			tx_simpleblog_bloglisting[blog]=25&

			tx_simpleblog_bloglisting[action]=add&

			tx_simpleblog_bloglisting[controller]=Blog&

			cHash=3d6a8fa3884f23198e0cb9a1604abccb

Through	the	parameter	tx_simpleblog_bloglisting[blog]=25,	Extbase	knows	that	the
Blog	with	the	UID	25	is	accessed.	Actually	the	identification	of	the	Blog	is	completely	in

Extbase’s	control.	At	the	moment,	UID	is	used.	However	you	can	always	decide	to	use
UUID	(Universally	Unique	Identifier)	instead,	like	in	TYPO3	Flow.

The	link	above	points	to	the	action	show	so	we	have	to	implement	the	showAction()	in
BlogController	in	the	next	step:

			/**

				*	show	action	-	displays	a	single	blog

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	showAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->view->assign('blog',$blog);

			}

The	action	is	clear,	by	stating	the	name	blog	in	the	GET	parameter	of	the	link,	Extbase
recognises	this	by	taking	the	combination	of	annotation	and	type	hint	into	account.
Extbase	then	retrieves	the	Blog	with	the	appropriate	identifier	from	the	repository	(the
value	of	the	UID	has	been	transmitted	in	the	request)	and	assigns	the	object	to	the	view	by
$this->view->assign().

Finally,	we	have	to	implement	the	view	and	to	do	so,	create	a	new	file	Show.html	in
directory	typo3conf/ext/simpleblog/Resources/Private/Templates/Blog	with	the
following	content:

<h1>Show	Blog</h1>

<dl	class="dl-horizontal">

				<dt>Blog	Title:</dt>

				<dd>{blog.title}</dd>

				<dt>Blog	Description:</dt>

				<dd>{blog.description}</dd>

</dl>

<f:link.action	action="list"	class="btn	btn-primary">Back	to	Blog	listing</f:link.action>

The	output	of	the	Blog	happens	by	accessing	the	properties	of	object	{blog},	which	has
been	assigned	in	showAction()	by	$this->view->assign().

The	link	to	the	listAction()	at	the	end	lets	us	jump	back	to	the	list	view.

Extbase	automatically	retrieved	the	right	Blog	from	the	repository	for	us,	without	the	need
to	implement	any	internal	details,	which	are	required	for	accessing	the	object.

The	cHash	parameter	at	the	end	of	the	GET	link	prevents	the	manipulation	of	the	link.	If
you	omit	this	parameter	and	change	tx_simpleblog_bloglisting[blog]	to	a	value	that
does	not	exist,	Extbase	returns	an	error	message:

Figure	7.8.	Manipulated	URL	results	in	an	error	message

Changing	the	parameter	to	a	value	that	exists,	results	in	the	display	of	the	appropriate
Blog.

We	completed	the	read	step	of	the	CRUD	process	now	and	can	move	on	to	the	next	step.
Do	not	forget	to	clear	all	caches,	before	reproducing	the	steps	described	above.

Figure	7.9.	Display	of	the	Blog

7.3.	Update	an	Object

The	update	of	an	object	in	the	CRUD	process	is	very	similar	to	the	creation	of	an	object
discussed	earlier.	We	need	a	two-step	action	and	a	form	again,	which	shows	the	object
which	we	would	like	to	update.

Let’s	start	with	the	file	ext_localconf.php,	where	we	add	the	actions	updateForm	and
update	to.

...

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update',

),

			//	non-cacheable	actions

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update',

)

...

Then,	continue	with	the	BlogController:

			/**

				*	updateForm	action	-	displays	a	form	for	editing	a	blog

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	updateFormAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->view->assign('blog',$blog);

			}

			/**

				*	update	action	-	updates	a	blog	in	the	repository

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	updateAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->blogRepository->update($blog);

						$this->redirect('list');

			}

As	before,	the	updateFormAction()	“accepts”	the	object	via	the	annotation	and	the	type
hint	and	passes	it	on	to	the	view.

As	soon	as	the	view	(which	we	will	amend	later)	sends	the	updated	object	back	to	the
updateAction(),	merely	method	update()	is	executed	on	the	repository.	Extbase	takes
care	of	finding	the	object,	which	should	be	updated,	as	well	as	of	the	update	and	the
persistence.	After	that,	the	user	will	be	redirected	back	to	the	list	of	Blogs.

Let’s	have	a	look	at	the	view,	for	which	we	create	a	file	UpdateForm.html	in	directory
typo3conf/ext/simpleblog/Resources/Private/Templates	with	the	following	content:

<h1>Edit	Blog</h1>

<f:form	action="update"	object="{blog}"	name="blog"	additionalAttributes="{role:'form'}">

			<div	class="form-group">

						<label>Blog	Title</label>

						<f:form.textfield	property="title"	class="form-control"	/>

			</div>

			<div	class="form-group">

						<label>Blog	Description</label>

						<f:form.textarea	property="description"	class="form-control"	/>

			</div>

			<f:form.submit	value="Update	Blog!"	class="btn	btn-primary"	/>

</f:form>

Strictly	speaking,	this	code	is	almost	identical	with	the	code	for	creating	an	object,	except
two	labels	and	the	actions	are	different.	Before	you	come	up	with	the	idea	to	optimise	this
by	using	one	form	only	and	differentiate	between	those	two	programmatically,	wait	until
we	explained	“Partials” – these	are	much	more	suited	for	this	kind	of	approach.

In	order	to	be	able	to	access	the	update	form,	we	have	to	add	a	button	to	the	list	template
(List.html):

...

<f:link.action	action="updateForm"	arguments="{blog:blog}"	class="btn	btn-primary	btn-xs	pull-right">EDIT</f:link.action>

<f:link.action	action="show"	arguments="{blog:blog}"	class="btn	btn-primary	btn-xs	pull-right	margin-right">SHOW</f:link.action>

...

You	already	know	the	lower	of	the	two	links	(only	an	additional	class	margin-right	has
been	added).	The	upper	one	leads	to	the	updateFormAction()	and	attribute	arguments
transfers	the	current	Blog	into	it.

For	an	improved	visual	look	(the	buttons	should	not	stick	together	too	closely),	we	add	the
following	CSS	code	to	file
typo3conf/ext/simpleblog/Resources/Public/Css/simpleblog.css:

.margin-right	{

				margin-right:	5px;

}

Do	not	forget	to	delete	the	cache	(clear	all	caches)	before	you	test	the	new	function.

If	you	click	the	EDIT	button	now,	you	will	get	the	form	with	the	object	data	filled.	This
means,	Extbase	accessed	the	repository	in	the	background,	retrieved	the	object	and
populated	the	form	fields	appropriately.

Figure	7.10.	List	of	Blogs	with	edit	button

7.4.	Deletion	of	an	Object

Deleting	an	object	is	simple.	As	before,	we	first	add	the	action	delete	in	file
ext_localconf.php.

...

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update,	delete',

),

			//	non-cacheable	actions

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update,	delete',

)

...

Then,	the	method	deleteAction()	in	BlogController	is	required:

			/**

				*	delete	action	-	deletes	a	blog	in	the	repository

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	deleteAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->blogRepository->remove($blog);

						$this->redirect('list');

			}

The	only	new	thing	is,	that	the	method	to	delete	an	object	from	the	repository	is	called
remove().

In	theory,	we	do	not	need	a	View	at	all,	because	we	could	simply	delete	the	Blog	directly.
However	a	confirmation	would	be	useful	so	we	will	implement	a	View,	which	allows	us	to
do	so.

Please	try	to	develop	the	action	and	the	template	yourself,	so	that	the	user	has	to	confirm
the	deletion	of	the	Blog.	After	that,	compare	your	solution	with	the	example	code	below.

First,	we	have	to	extend	the	list	of	available	actions	in	file	ext_localconf.php	by
deleteConfirm	(or	a	similar	name):

...

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update,	deleteConfirm,	delete',

),

			//	non-cacheable	actions

			array(

						'Blog'	=>	'list,	addForm,	add,	show,	updateForm,	update,	deleteConfirm,	delete',

)

...

This	is	followed	by	the	action	deleteConfirmAction()	in	BlogController:

			/**

				*	deleteConfirm	action	-	displays	a	form	for	confirming	the	deletion	of	a	blog

				*

				*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

				*/

			public	function	deleteConfirmAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

						$this->view->assign('blog',$blog);

			}

And	finally	a	template	DeleteConfirm.html	in	directory
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog:

<h1>Delete	Blog?</h1>

Are	you	sure	you	want	to	delete	the	Blog	{blog.title}?

<f:link.action	action="list"	class="btn	btn-danger">Cancel!</f:link.action>

<f:link.action	action="delete"	class="btn	btn-success"	arguments="{blog:blog}">Yes!</f:link.action>

If	the	user	chooses	not	to	delete	the	Blog,	we	simply	redirect	him	back	to	the
listAction().	If	the	user	confirms	the	deletion	of	the	Blog,	we	append	the	Blog	object	to
the	link	by	using	arguments.	This	way,	deleteAction()	knows	which	Blog	should	be
removed	from	the	repository.

Likewise,	we	must	not	forget	to	add	the	link	to	the	Blog	list,	which	allows	us	to	redirect	to
the	deleteConfirmAction():

...

<f:link.action	action="deleteConfirm"	arguments="{blog:blog}"	class="btn	btn-primary	btn-xs	pull-right">DEL</f:link.action>

<f:link.action	action="updateForm"	arguments="{blog:blog}"	class="btn	btn-primary	btn-xs	pull-right	margin-right">EDIT</f:link.action>

...

In	addition,	CSS	class	margin-right	at	the	edit	link	adds	a	space	between	the	two	buttons.

Last	but	not	least,	do	not	forget	to	clear	all	caches	before	testing	your	work!

Figure	7.11.	Confirmation	of	a	Blog	deletion

[27]	Further	details	at	http://typo3.org/documentation/article/the-mysteries-of-chash-1.

[28]	Forge	(http://forge.typo3.org/search?q=viewhelper&scope=all&all_words=1&issues=1&submit=Submit)	or	Git
(http://git.typo3.org)	may	reveal	some	existing	solutions.

[29]	https://fluidtypo3.org/viewhelpers/vhs/master.html;	also	available	in	the	TER	at
http://typo3.org/extensions/repository/view/vhs

http://typo3.org/documentation/article/the-mysteries-of-chash-1
http://forge.typo3.org/search?q=viewhelper&scope=all&all_words=1&issues=1&submit=Submit
http://git.typo3.org
https://fluidtypo3.org/viewhelpers/vhs/master.html
http://typo3.org/extensions/repository/view/vhs

Chapter	8.	Fluid	Templating:	Templates,
Layouts	and	Partials

Fluid	provides	a	flexible	concept	in	order	to	meet	all	possible	layout	requirements.

The	following	three	elements	are	available	to	achieve	this:

Templates
Templates	are	HTML	files,	which	are	loaded	automatically	by	the	framework.	For
example:	the	file	.../Resources/Private/Templates/Blog/List.html	is	loaded	by
the	Controller	Blog	in	the	action	list.	Inside	templates	there	may	be	sections,	which
are	rendered	by	the	ViewHelper	<f:section>	in	templates	and	<f:render>	in
layouts.

Layouts
Layouts	are	used	for	global	styling,	e. g.	if	you	want	to	maintain	a	logo	or	functional
menu	across	the	entire	site.	ViewHelper	<f:layout>	is	responsible	for	including
layouts	in	templates.

Partials
Partials	are	small	template	units,	which	are	perfect	to	fulfil	recurring	tasks,	e. g.	the
output	of	information	sets	to	multiple	parts	of	your	layout.	Like	layouts,	partials	can
also	be	configured	and	the	ViewHelper	<f:render>	handles	this.

The	process	of	a	template	rendering	works	as	follows:

1.	 As	per	convention,	the	template	name	is	determined:
Resources/Private/Templates/[Controller]/[ActionName].html.	If	the	template
file	does	not	contain	any	LayoutViewHelper	<f:layout>,	the	rendering	of	the
template	is	complete.	Where	a	LayoutViewHelper	<f:layout>	exists,	the	appropriate
layout	is	loaded	and	rendered.	The	layout	must	contain	at	least	a	RenderViewHelper
<f:render	section="...">.

Figure	8.1.	Template	processing	in	Fluid

2.	 This	section	is	now	determined	in	the	Template	through	the	existence	of	the	line
<f:section	name="...">.

3.	 Inside	this	section	(or	at	an	arbitrary	position	in	the	Layout),	layouts	(partials)
referenced	by	<f:render	partial="...">	can	be	included.

8.1.	Creating	and	Referencing	Layouts

Assuming,	we	would	like	to	define	a	layout	for	our	application,	we	have	to	create	a	folder
typo3conf/ext/simpleblog/Resources/Private/Layouts	and	a	file	Default.html
inside	this	folder.	This	file	contains	the	following	code:

<div	class="layout1">

<f:render	section="content"	/>

</div>

©	2015	by	LOBACHER.

This	example	shows	a	typical	layout.	Our	intention	is	to	draw	a	box	around	the	main
application	(CSS	class	layout1)	and	output	a	copyright	notice.

The	ViewHelper	<f:render	section="content"	/>	reads	the	template	and	searches	for	a
section	named	content	(note:	we	have	to	update	all	templates	if	we	want	to	use	this
Layout	in	every	template).

Please	see	template	List.html	below	(and	add	the	lines	to	all	templates):

<f:layout	name="default"	/>

<f:section	name="content">

<h1>Blog	List</h1>

...

<f:link.action	action="addForm"	class="btn	btn-primary">Create	Blog</f:link.action>

</f:section>

Finally,	we	should	add	a	directive	to	the	CSS	file	simpleblog.css:

.layout1	{

				background-color:	#eee;

				padding:10px;

				margin:5px;

				border:	1px	solid	grey;

				-webkit-border-radius:	5px;

				-moz-border-radius:	5px;

				border-radius:	5px;

}

Figure	8.2.	Output	of	the	layout

It	is	possible	to	define	multiple	sections	in	a	template.	For	example,	you	could	have
several	layouts,	which	include	different	sections	in	the	same	template.

In	theory,	you	could	also	include	sections	recursively,	see	the	example	below.

<f:section	name="mySection">

	

			<f:for	each="{myMenu}"	as="menuItem">

					

							{menuItem.text}

							<f:if	condition="{menuItem.subItems}">

									<f:render	section="mySection"	arguments="{myMenu:	menuItem.subItems}"	/>

							</f:if>

					

			</f:for>

	

</f:section>

<f:render	section="mySection"	arguments="{myMenu:	menu}"	/>

This	would	result	in	the	following	output,	depending	on	the	content	of	{myMenu}:

		menu1

				

						menu1a

						menu1b

				

		

[...]

8.2.	Partials

Partials	are	“small(er)”	template	sections,	which	can	be	re-used.	This	allows	you	to
include	content	from	one	source	rendered	by	a	ViewHelper	in	multiple	places.

8.2.1.	Simple	Partials

We	are	so	happy	with	our	Blog,	we	definitely	need	a	Twitter	button	to	allow	users	to
promote	it	in	their	timeline.

To	build	our	Twitter	button,	we	have	to	create	a	directory	Partials	inside
typo3conf/ext/simpleblog/Resources/Private/.	The	partial	with	the	name
TwitterShare.html	should	show	the	following	content:

Tweet

<script>!function(d,s,id){var	js,fjs=d.getElementsByTagName(s)[0];	if(!d.getElementById(id)){	js=d.createElement(s);	js.id=id;	js.src="https://platform.twitter.com/widgets.js";	fjs.parentNode.insertBefore(js,fjs);	}}(document,"script","twitter-wjs");	</script>

The	code	above	is	based	on	the	example	at	https://dev.twitter.com/docs/tweet-button,
“Ways	to	add	the	Tweet	Button	to	your	website”,	but	to	avoid	using	old	code,	please	check
the	documentation	for	an	up-to-date	implementation	of	the	button.

The	last	step	is	to	add	the	partial	to	the	page,	which	can	be	done	either	by	including	it	in
the	template	or	by	including	it	at	the	end	of	the	layout	(easier).

...

©	2015	by	LOBACHER.

<f:render	partial="TwitterShare"	/>

Using	sub-directories	for	partials	and	layouts	and	file
extensions
Partials	as	well	as	layouts	can	be	stored	in	sub-directories.	For	example,
<f:render	partial="Social/TwitterShare"	/>	would	search	for	a	file
TwitterShare.html	in	path	.../Resources/Private/Partials/Social.

You	might	wonder	why	we	omitted	the	suffix	.html:	the	reason	for	this	is	that
we	would	like	to	keep	the	format	“flexible”.	During	template-rendering,	the
system	uses	*.html	by	default,	however,	you	can	configure	this	globally	and
change	the	suffix	to	another	format,	such	as	*.xml	for	example.	If	we	then
want	to	address	TwitterShare.html,	we	would	have	to	append	.html	to	the
name.

https://dev.twitter.com/docs/tweet-button

8.2.2.	Complex	Partials

Let’s	take	full	advantage	of	the	partial	mechanism	to	make	both	forms	(create	and	update
an	object)	more	consistent.	Our	two	labels	currently	require	two	forms,	so	it	seems	ideal	to
maintain	just	one	form	and	to	keep	the	varying	components	outside,	included	as	partials.

Let’s	get	started	and	create	a	new	folder	Blog	in
typo3conf/ext/simpleblog/Resources/Private/Partials	in	order	to	separate	all
partials,	which	belong	to	one	object.	After	that,	we	will	create	a	file	Form.html	inside	the
Blog	directory	and	copy	a	specific	part	of	the	template
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/AddForm.html:

<h1>Create	New	Blog</h1>

<f:form	action="add"	object="{blog}"	name="blog"	additionalAttributes="{role:'form'}">

			<div	class="form-group">

						<label>Blog	Title</label>

						<f:form.textfield	property="title"	class="form-control"	/>

			</div>

			<div	class="form-group">

						<label>Blog	Description</label>

						<f:form.textarea	property="description"	class="form-control"	/>

			</div>

<f:form.submit	value="Create	Blog!"	class="btn	btn-primary"	/>

</f:form>

This	part	needs	to	be	removed	from	the	template	AddForm.html	and	replaced	by	the
following	line:

...

<f:render	partial="Blog/Form"	/>

...

While	this	is	now	working,	in	order	to	be	able	to	access	the	partial	via	action	Update,	we
have	to	dynamically	call	the	areas	below	using	the	“Object	Accessors”	in	the	format	{...}
inside	the	partial	Form.html:

<h1>{headline}</h1>

<f:form	action="{action}"	object="{blog}"	name="blog"	additionalAttributes="{role:'form'}">

...

<f:form.submit	value="{submitmessage}"	class="btn	btn-primary"	/>

</f:form>

As	a	result,	we	have	the	three	Object	Accessors:	{headline},	{action}	and
{submitmessage},	which	need	to	be	filled	when	the	partial	is	executed.	Change	the	line	in
template	AddForm.html	as	follows:

<f:render	partial="Blog/Form"	arguments="{headline:'Create	New	Blog',action:'add',submitmessage:'Create	Blog!',blog:blog}"	/>

The	transfer	of	the	values	listed	above	is	carried	out	by	the	attribute	argument	of	the	array
syntax.	The	Blog	is	not	being	transferred	into	the	partial	and	is	currently	only	available	in
the	template.	We	can	address	this,	by	adding	blog:blog	to	the	partial.

Passing	arguments	to	partials
No	values	are	transferred	into	the	partial	by	default	except	settings.	To	make
any	individual	value	available	to	a	partial,	you	have	to	make	use	of	the
attribute	arguments.	Alternatively,	the	keyword	{_all}	transfers	all	values
into	the	partial.

The	same	needs	to	be	done	for	the	template	UpdateForm.html.

Exercise

Try	to	implement	the	same	logic	in	the	template	UpdateForm.html	and
compare	your	solution	with	the	example	below.

File	UpdateForm.html	requires	the	following	code	instead	of	the	form:

<f:render	partial="Blog/Form"	arguments="{headline:'Edit	Blog',action:'update',submitmessage:'Update	Blog!',blog:blog}"	/>

Chapter	9.	Query	Manager	and
Repositories

We	will	now	investigate	the	Repository	and	Query	Manager	in	more	detail.

As	per	convention,	we	will	find	repositories	in	the	directory	Classes/Domain/Repository
with	their	names	based	on	the	domain	objects	for	which	they	are	responsible.	So	in	our
case,	directories	BlogRepository	and	PostRepository	already	exist.

9.1.	Structure	of	a	Repository	Class

By	default,	the	structure	of	a	repository	class	is	fairly	simple:

<?php

namespace	Lobacher\Simpleblog\Domain\Repository;

...

class	BlogRepository	extends	\TYPO3\CMS\Extbase\Persistence\Repository	{

}

?>

This	is	because	many	functions	are	already	implemented	in	class
\TYPO3\CMS\Extbase\Persistence\Repository,	from	which	the	class	BlogRepository
has	been	derived.

9.2.	Repository	Functions	for	Write
Operations

For	example,	the	following	functions	exist	for	write	operations,	which	we	have	used	in	the
CRUD	process:

add($object)

Adds	an	object	to	the	repository.
remove($object)

Removes	an	object	from	the	repository.
removeAll()

Removes	all	objects	from	a	repository.
update($modifiedObject)

Updates	an	object	in	the	repository.

9.3.	Repository	Functions	for	Read
Operations

Additionally,	a	number	of	functions	for	read	operations	exist,	despite	the	fact	that	we	have
used	only	findAll()	so	far:

findAll()

Returns	all	objects	of	a	repository.
countAll()

Returns	the	number	of	all	objects	currently	stored	in	the	repository.
findByUid($uid)

Finds	an	object	based	on	a	UID.	This	is	useful	when	only	the	UID	is	known	(e. g.
when	using	TYPO3’s	APIs).

Furthermore,	there	are	magic	functions,	so-called	because	they	do	not	exist	in	the	Extbase
code.	When	using	magic	function	calls,	Extbase	checks	to	ensure	they	follow	a	specific
structure	and	executes	them.	These	functions	are	used	to	construct	methods,	which	can	be
applied	to	properties	of	domain	objects.	For	example,	findByName($value)	would	be	a
method,	which	checks	for	matches	of	property	name	and	$value.	All	objects	matching	this
check	are	returned.

The	Extbase	code	(typo3/sysext/extbase/Classes/Persistence/Repository.php)
looks	like	this:

			/**

				*	Dispatches	magic	methods	(findBy[Property]())

				*

				*	@param	string	$methodName	The	name	of	the	magic	method

				*	@param	string	$arguments	The	arguments	of	the	magic	method

				*	@throws	\TYPO3\CMS\Extbase\Persistence\Generic\Exception\UnsupportedMethodException

				*	@return	mixed

				*	@api

				*/

			public	function	__call($methodName,	$arguments)	{

						if	(substr($methodName,	0,	6)	===	'findBy'	&&	strlen($methodName)	>	7)	{

									$propertyName	=	lcfirst(substr($methodName,	6));

									$query	=	$this->createQuery();

									$result	=	$query->matching($query->equals($propertyName,	$arguments[0]))->execute();

									return	$result;

						}	elseif	(substr($methodName,	0,	9)	===	'findOneBy'	&&	strlen($methodName)	>	10)	{

									$propertyName	=	lcfirst(substr($methodName,	9));

									$query	=	$this->createQuery();

									$result	=	$query->matching($query->equals($propertyName,	$arguments[0]))->setLimit(1)->execute();

									if	($result	instanceof	\TYPO3\CMS\Extbase\Persistence\QueryResultInterface)	{

												return	$result->getFirst();

									}	elseif	(is_array($result))	{

												return	isset($result[0])	?	$result[0]	:	NULL;

									}

						}	elseif	(substr($methodName,	0,	7)	===	'countBy'	&&	strlen($methodName)	>	8)	{

									$propertyName	=	lcfirst(substr($methodName,	7));

									$query	=	$this->createQuery();

									$result	=	$query->matching($query->equals($propertyName,	$arguments[0]))->execute()->count();

									return	$result;

						}

						throw	new	\TYPO3\CMS\Extbase\Persistence\Generic\Exception\UnsupportedMethodException('The	method	"'	.	$methodName	.	'"	is	not	supported	by	the	repository.',	1233180480);

			}

The	following	three	methods	use	Property	as	a	placeholder	for	an	arbitrary	property	name
in	the	domain	model:

findByProperty($value)

inds	all	objects,	where	property	is	equal	to	$value.
findOneByProperty($value)

Returns	the	first	object	found,	where	property	is	equal	to	$value.
countByProperty($value)

Returns	the	number	of	objects,	where	property	is	equal	to	$value.

9.4.	Default	Structure	of	a	Query

It	is	not	only	possible	to	access	the	repository	by	using	existing	methods	(or	magic
methods),	but	it	is	also	possible	to	create	your	own	methods.	The	name	that	you	choose	is
arbitrary – but	it	must	not	start	with	findBy	or	findOneBy.

As	an	example,	we	would	like	to	write	a	repository	method	which	enables	us	to	find	a
Blog	that	contains	a	specific	keyword	in	its	title.

We	could	use	the	method	findByTitle()	in	the	list	action	of	the	BlogController:

public	function	listAction()	{

			$this->view->assign('blogs',$this->blogRepository->findByTitle('Blog'));

}

This	should	find	all	Blogs	which	contain	the	word	Blog	in	their	title.	In	fact,	this	is	not	the
case;	only	Blogs	where	the	title	is	exactly	Blog	are	returned.	We	have	to	find	a	different
solution	by	developing	our	own	method.

Let	us	re-write	our	method	call	in	BlogController	first:

public	function	listAction()	{

			$this->view->assign('blogs',$this->blogRepository->findSearchWord('Blog'));

}

Then	we	create	a	new	method	findSearchWord()	in	the	BlogRepository
(typo3conf/ext/simpleblog/Classes/Domain/Repository/BlogRepository.php):

public	function	findSearchWord($search)	{

			$query	=	$this->createQuery();

			$result	=	$query->execute();

			return	$result;

}

The	content	of	this	method	replicates	the	default	behaviour	of	findAll()	in	that	it	returns
all	objects.

Generally	speaking,	the	Query	Manager	is	triggered	by	$this->createQuery();	first.	The
second	line	executes	the	query.	However	this	is	not	100%	true.	In	fact	nothing	is	executed
at	all,	but	a	construction	plan	for	the	query	is	returned.	Function	execute()	allows	us	to
pass	the	value	TRUE	as	a	parameter,	which	replaces	the	query	setting	setReturnRawQuery
(which	has	been	deprecated	since	TYPO3	CMS	6.2	LTS).

At	this	point,	there	are	further	methods	to	determine	the	result	directly	if	desired:

getFirst()

Determines	the	first	element	of	the	query	set.	We	could	output	this	via	var_dump(),
but	this	would	result	in	a	very	large	object.	Try	the	following:	echo	'<pre>'	.
print_r($query->getFirst(),1)	.	'</pre>';	die();.	We	will	introduce	better
debugging	options	in	the	next	section.	In	order	to	retrieve	the	first	object	from	the
repository	only	and	output	it,	the	following	could	be	used:	return	$query-
>execute()->getFirst().

count()

This	method	allows	you	to	count	the	number	of	objects	in	a	QueryResult.
toArray()

This	returns	an	array	with	the	objects	of	a	result	set.

9.4.1.	Side	Note:	Debugging

If	Extbase	is	not	working	as	expected,	it	is	helpful	to	have	more	sophisticated	debugging
tools	on	hand.	To	achieve	this,	a	powerful	debugger	has	been	integrated	into	Extbase,
which	originates	from	TYPO3	Flow.

			public	function	findSearchWord($search)	{

						$query	=	$this->createQuery();

						$result	=	$query->execute();

						\TYPO3\CMS\Extbase\Utility\DebuggerUtility::var_dump($result);

						die();

				}

The	output	looks	very	convenient,	but	cheats	a	little	bit;	the	query	is	of	type
TYPO3\CMS\Extbase\Persistence\Generic\QueryResult,	which	usually	does	not
contain	the	result	(the	data	itself).	The	debugger	triggers	the	function	so	that	the	query	is
applied	to	the	repository	and	is	therefore	able	to	show	the	relevant	data.

Figure	9.1.	Example	output	of	the	debugger

In	most	cases,	you	also	want	to	know	how	Extbase	came	to	a	specific	result,	e. g.	when
accessing	the	database	you	would	like	to	see	the	SQL	command(s)	executed.	This	is	not
possible	with	Extbase	by	default,	however	you	can	trick	Extbase	into	revealing	this
information.

In	the	file	TYPO3\CMS\Extbase\Persistence\Generic\Storage\Typo3DbBackend.php
you	will	find	the	so-called	storage	backend	of	TYPO3 – the	place	where	all	SQL	queries
are	passed	to	the	database.

In	the	method	getRowsFromDatabase()	at	approximately	line	362,	you	can	add	a	debug
statement:

			...

			$this->checkSqlErrors();

			debug($this->databaseHandle->debug_lastBuiltQuery,'SQL');

			return	$rows;

			...

By	adding	the	debug	statement,	the	debug	output	shows	a	few	SQL	queries:

Figure	9.2.	Output	SQL	queries

The	first	query	determines	the	existing	Blogs	and	the	subsequent	queries	check	if	there	are
any	file	references.

9.5.	Adjusting	Queries

In	general,	any	further	selection	of	data	and/or	objects	required	is	handled	by	the	method
matching().	This	method	allows	us	to	initiate	a	limitation	of	records	returned	based	on
constraints.

The	code	in	Extbase
The	file	responsible	for	the	query	handling	in	Extbase	is
TYPO3\CMS\Extbase\Persistence\Generic\Query.php.

9.5.1.	Determine	Result	Set

matching()	supports	the	following	methods,	which	concretise	the	result	set:

equals($propertyName,	$operand,	$caseSensitive	=	TRUE)

Returns	the	records,	whose	property	$propertyName	matches	operand	$operand.
like($propertyName,	$operand,	$caseSensitive	=	TRUE)

Returns	the	records,	where	operand	$operand	occurs	in	the	property	$propertyName.
To	achieve	a	real	“LIKE”,	we	have	to	use	placeholders	such	as	% – for	example:	'%'
.	$search	.	'%'.

contains($propertyName,	$operand)

Returns	a	“contains”	criterion	which	matches	if	the	multi-valued	property	contains
the	given	operand,	where	$propertyName	is	the	name	of	the	property	to	compare
against	and	$operand	is	the	value	with	which	to	compare.

in($propertyName,	$operand)

Returns	the	records	where	the	property’s	value	is	contained	in	the	multi-valued
operand	$operand	and	$propertyName	is	the	name	of	the	property	to	compare
against.

lessThan($propertyName,	$operand)

Returns	records	where	the	value	of	$propertyName	is	less	than	operand	$operand.
lessThanOrEqual($propertyName,	$operand)

Returns	records	where	the	value	of	$propertyName	is	less	than	or	equal	operand
$operand.

greaterThan($propertyName,	$operand)

Returns	records	where	the	value	of	$propertyName	is	greater	than	operand	$operand.
greaterThanOrEqual($propertyName,	$operand)

Returns	records	where	the	value	of	$propertyName	is	greater	than	or	equal	operand
$operand.

9.5.2.	Limiting	Result	Set

The	result	set	can	be	even	limited	further	by	using	the	following	methods:

setOrderings(array	$orderings)

This	method	allows	us	to	define	the	sort	order	of	the	results.	Parameter	$orderings	is
an	array,	which	means	Extbase	sorts	the	result	based	on	the	first	item,	then	second,
etc.	An	item	consists	of	a	key	(property)	and	the	sort	direction;	either:
\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING	(value:
ASC);	or,	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_DESCENDING
(value:	DESC).	Alternatively,	you	could	set	the	protected	property	$defaultOrderings
if	you	want	to	sort	by	a	specific	property	in	all	methods.

setLimit($limit)

In	order	to	limit	the	return	of	a	large	number	of	records	this	method	can	be	used.
Parameter	$limit	must	be	an	integer	(an	automatic	conversion	does	not	happen).
Method	unsetLimit()	annuls	the	limit.

setOffset($offset)

Sets	the	start	offset	to	$offset,	which	means	the	result	set	skips	the	first	records	and
starts	at	the	given	position,	e. g.	the	fifth	element.

9.5.3.	Logical	Conjunction

Additionally,	we	can	construct	logical	conjunctions:

logicalAnd($constraint1)

Performs	a	logical	conjunction	of	the	given	constraints.	The	method	takes	one	or
more	constraints	and	concatenates	them	with	a	boolean	AND.

logicalOr($constraint1)

Same	as	above,	but	with	a	logical	OR.
logicalNot($constraint1)

Same	as	above,	but	with	a	logical	NOT.

9.5.4.	Native	SQL

The	Query	Manager	enables	you	to	construct	complex	queries,	practically	without	limits.
However	sooner	or	later	you	might	reach	a	point	where	you	want	to	execute	native	SQL
and	even	this	is	possible:

statement($statement,	array	$parameters	=	array())

This	method	allows	you	to	create	native	SQL	statements.	The	query	$statement	may
contain	placeholders	(?),	which	can	be	populated	with	values	in	array	$parameters.
statement	also	returns	objects,	as	long	as	the	result	set	contains	the	same	fields	as
the	properties	in	the	domain	model.	Where	this	is	not	the	case,	the	result	set	returned
is	merely	an	array.

9.5.5.	Query	Settings

Furthermore,	some	specific	query	settings	exist	which	can	be	stated	as	follows:

$query->getQuerySettings()->setRespectStoragePage(FALSE);

Extbase	currently	supports	the	following	settings:

setRespectStoragePage($respectStoragePage)

Data	sets	are	retrieved	from	a	specific	storage	page	by	default	but	this	behaviour	can
be	annulled	by	this	setting,	thereby	forcing	Extbase	to	searche	for	the	data	across	the
entire	page	tree.

setStoragePageIds(array	$storagePageIds)

Parameter	$storagePageIds	may	contain	a	list	of	all	UIDs	of	pages,	from	which	data
sets	should	be	read.	This	is	also	possible	via	TypoScript.

setRespectSysLanguage($respectSysLanguage)

Typically,	only	data	sets	in	the	language	of	the	currently	configured	language	in
TYPO3	are	taken	into	account	(where	a	language	overlay	exists).	Setting	parameter
$respectSysLanguage	to	FALSE	in	this	method	enables	you	to	retrieve	all	languages
of	a	data	set.

setLanguageOverlayMode($languageOverlayMode)

This	method	sets	the	language	overlay	mode.	Possible	values	of	parameter
$languageOverlayMode	are	TRUE,	FALSE	or	hideNonTranslated	are	accepted.

setLanguageMode($languageOverlayMode)

This	method	sets	the	language	mode.	Possible	values	of	parameter	$languageMode
are	NULL,	content_fallback,	strict	or	ignore	are	accepted.

setLanguageUid($languageUid)

To	set	the	language	ID	manually,	this	method	can	be	used.
setIgnoreEnableFields($ignoreEnableFields)

The	determination	of	data	sets	follows	the	Enable	Fields	constraints,	which	means
hidden	records – as	well	as	records	with	a	start	and	end	date	not	equal	to	the	current
timestamp – are	not	retrieved.	You	can	override	this	by	using	the
setIgnoreEnableFields	option.

setEnableFieldsToBeIgnored($enableFieldsToBeIgnored)

This	method	instructs	Extbase	to	ignore	certain	Enable	Fields	(which	are	defined	in
$GLOBALS['TCA'][$table]['ctrl']['enablecolumns']).

setIncludeDeleted($includeDeleted)

To	also	return	deleted	records,	set	this	option	to	TRUE.
setReturnRawQueryResult($returnRawQueryResult)

This	value	is	set	to	FALSE	by	default,	which	results	in	result	set	being	mapped	to	an
object.	Where	this	is	not	desirable,	set	the	parameter	$returnRawQueryResult	to
TRUE.	This	could	be	useful	when	using	statement().	If	the	value	is	TRUE,	you	get	an
array	containing	the	data	from	the	database.	It	should	be	noted	that	this	setting	is
deprecated	since	TYPO3	CMS	6.2	LTS	and	function	execute(TRUE)	should	be	used
instead.

9.6.	Example:	Search	for	Keyword	in	Title

So	now	our	initial	task	of	finding	a	keyword	in	the	title	(independent	from	its	position	in
the	text)	is	able	to	be	implemented	with	ease.	First,	we	add	the	following	method	to	the
class	typo3conf/ext/simpleblog/Classes/Domain/Repository/BlogRepository.php:

			public	function	findSearchWord($search)	{

						$query	=	$this->createQuery();

						$query->matching(

									$query->like('title','%'.$search.'%')

);

						return	$query->execute();

				}

For	demonstration	purposes	however	what	if	we	wanted	to	implement	the	following:

that	the	keyword	should	occur	in	the	title	and	the	description	should	be	empty;	or,
that	the	title	should	read	TYPO3	exactly	and	the	description	should	be	is	fantastic;	or,
that	the	title	should	at	least	match	one	of	the	words	Huey,	Dewey,	or	Louie	(the	list
must	be	variable,	because	its	source	could	be	an	external	source).

			public	function	findSearchWord($search,	$words	=	array('Huey',	'Dewey',	'Louie'))	{

						$query	=	$this->createQuery();

						$query->matching(

									$query->logicalOr(

												$query->logicalAnd(

															$query->like('title',	'%'.$search.'%'),

															$query->equals('description',	'')

),

												$query->logicalAnd(

															$query->equals('title',	'TYPO3'),

															$query->like('description',	'%is	fantastic%')

),

												$query->in('title',	$words)

)

);

						return	$query->execute();

			}

In	addition,	the	result	set	should	be	limited	to	five	records	maximum	and	sorted
alphabetically	by	title	in	ascending	order:

			...

);

			$query->setOrderings(array('title'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_DESCENDING));

			$query->setLimit(5);

			return	$query->execute();

The	example	above	shows	the	limit	hard-coded,	which	is	definitely	not	worthwhile.	It
would	be	much	better	if	the	value	could	be	set	in	TypoScript	or	in	FlexForms,	which	we
will	explain	in	the	next	chapter.

9.7.	Dynamic	Search	in	Repository

We	are	already	in	the	position	to	dynamically	use	the	search	functionality	on	our	Blog
listing	page.	The	following	new	method	in	the	Blog	repository	takes	care	of	that:

			public	function	findSearchForm($search)	{

						$query	=	$this->createQuery();

						$query->matching(

									$query->like('title','%'.$search.'%')

);

						$query->setOrderings(array('title'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING));

						$query->setLimit(5);

						return	$query->execute();

			}

Now,	a	small	search	form	in	the	list	view	of	the	Blog	is	required	(List.html):

...

<h1>Blog	List</h1>

				<f:form	action="list"	additionalAttributes="{role:'form'}">

								<div	class="form-inline">

												<div	class="form-group">

															<f:form.textfield	name="search"	value="{search}"	class="form-control"	/>

															<f:form.submit	value="Search!"	class="btn-xs	btn-primary"	/>

												</div>

								</div>

				</f:form>

<ul	class="list-group">

...

Attribute	value="{search}"	is	a	speciality;	its	purpose	is	to	show	the	keyword	as	a	pre-
filled	value	again	after	submitting	the	form.

Finally,	the	Blog	controller	needs	to	be	adjusted	slightly:

			/**

				*	@param	string	$search

				*/

			public	function	listAction($search	=	'')	{

						$this->view->assign('blogs',	$this->blogRepository->findSearchForm($search));

						$this->view->assign('search',	$search);

			}

We	accept	the	POST	request	search	as	variable	$search	(don’t	forget	the	annotation!).	On
first	execution	this	variable	will	be	empty.

Then	we	pass	the	keyword	to	the	repository	method	findSearchForm()	and	additionally
to	the	template	in	order	to	show	the	search	term	in	the	form.

Converting	special	characters
Extbase	(respectively	Fluid)	takes	care	of	converting	special	characters	to
HTML	entities	by	applying	the	PHP	function	htmlspecialchars().	In	order
to	get	raw	data,	the	ViewHelper	<f:format.raw>	can	be	used.

9.8.	Side	Note:	Request	Object

The	solution	so	far	seems	to	be	elegant	and	practical	but	becomes	problematic	when	we
want	to	process	multiple	values.	In	this	case,	it	would	be	more	pragmatic	to	access	the
argument	inside	the	method	rather	than	in	the	method	signature:

			public	function	listAction()	{

						if	($this->request->hasArgument('search')){

									$search	=	$this->request->getArgument('search');

						}

						$this->view->assign('blogs',	$this->blogRepository->findSearchForm($search));

						...

The	request	($this->request)	features	some	more	useful	methods,	which	can	be	found	in
file	TYPO3\CMS\Extbase\Mvc\Request.php:

setDispatched($flag)

Sets	the	request	status	to	dispatched.
isDispatched()

Checks	if	the	request	has	already	been	dispatched.
setControllerObjectName($controllerObjectName)

Sets	the	controller	object	name	(must	be	fully-qualified).
getControllerObjectName()

Returns	the	object	name	of	the	currently	active	controller.
setPluginName($pluginName	=	NULL)

Sets	the	plugin	name.
getPluginName()

Returns	the	plugin	name.
setControllerExtensionName($controllerExtensionName)

Sets	the	extension	name.
getControllerExtensionName()

Returns	the	extension	name.
getControllerExtensionKey()

Returns	the	extension	key	of	the	extension.
setControllerActionName($actionName)

Sets	the	name	of	the	action.
getControllerActionName()

Returns	the	name	of	the	action.
setArgument($argumentName,	$value)

Sets	argument	with	the	name	$argumentName	to	value	$value.
getArgument($argumentName)

Returns	argument	with	the	name	$argumentName.
hasArgument($argumentName)

Checks	if	an	argument	with	the	name	$argumentName	exists.
setArguments(array	$arguments)

Sets	the	entire	arguments	array.
getArguments()

Returns	all	arguments.
setFormat($format)

Sets	the	format,	e. g.	html,	xml,	png,	json.	The	default	is	html.
getFormat()

Returns	the	format.

If	you	are	not	working	inside	the	controller,	the	request	details	must	be	determined	via
$this->getControllerContext()->getRequest()	first.

Chapter	10.	TypoScript	and	FlexForm
Configuration

To	configure	extensions	and	plugins	in	TYPO3	CMS,	TypoScript	as	well	as	FlexForms
can	be	used.

The	main	difference	between	these	two	methods	is	scope – whereas	the	the	granularity	of
TypoScript	is	limited	to	a	page,	a	FlexForm	can	hold	multiple	configurations	per	page.
This	becomes	important	when	an	extension	is	used	multiple	times	on	a	page	with	different
configurations.

10.1.	TypoScript

The	configuration	via	TypoScript	is	usually	carried	out	in	file	setup.txt	in	the	directory
Configuration/TypoScript/	of	the	extension.

In	order	to	use	this	file	it	needs	to	be	included	in	the	TypoScript	template	of	the	website
(Include	from	static).

10.1.1.	Setup	Scope

First	and	foremost,	there	are	three	main	keys:

plugin.tx_[lowercasedextensionname]	{

}

module.tx_[lowercasedextensionname]	{

}

config.extbase	{

}

Where	[lowercasedextensionname]	must	be	replaced	with	the	name	of	the	extension	in
lowercase	characters	only,	without	any	underscores – for	example:	simpleblog.

The	meanings	of	the	main	keys	as	follows:

plugin.tx_[lowercasedextensionname]

This	configures	a	specific	extension	in	the	frontend	(no	separate	configuration	exists
for	the	plugin).

module.tx_[lowercasedextensionname]

This	configures	a	specific	extension	in	the	backend.
config.extbase

This	configures	Extbase	and	therefore	all	extensions	(frontend	and	backend).

10.1.2.	Sub-keys

Inside	these	main	keys,	several	sub-keys	exist – we	will	use	simpleblog	as	the	extension
name:

plugin.tx_simpleblog	{

			view	{

			}

			persistence	{

			}

			objects	{

			}

			features	{

			}

			mvc	{

			}

			legacy	{

			}

			settings	{

			}

			_LOCAL_LANG	{

			}

			_CSS_DEFAULT_STYLE	{

			}

}

The	meanings	of	the	sub-keys	as	follows:

view

This	configures	paths	to	templates,	layouts	and	partials.
persistence

This	powerful	key	has	wide-ranging	control,	for	example	IDs	for	reading	and	writing
objects,	dependency	injection,	single	table	inheritance,	mapping	and	much	more.

objects

Replaces	classes	by	stating	the	original	and	the	new	class.	Extbase	will	redirect	calls
to	the	new	class	from	then	on.	This	key	only	exists	inside	of	config.tx_extbase	and
plugin.tx_[lowercasedextensionname].

features

Some	specific	Extbase	features	can	be	enabled	or	disabled,	such	as	setting	the
configuration	to	use	the	new	Property	Mapper	(see	Chapter	16)	for	example.	This	key
only	exists	inside	of	config.tx_extbase.

mvc

The	request	handler	can	be	configured	here.	This	key	only	exists	inside	of

config.tx_extbase.
legacy

This	allows	the	configuration	of	outdated	settings.	This	key	only	exists	inside	of
config.tx_extbase.

settings

This	key	forms	the	user	space,	which	can	be	used	for	arbitrary	custom	configuration.
_LOCAL_LANG

Overwrites	selective	language	labels	of	the	extension.
_DEFAULT_CSS_STYLE

Applies	default	CSS.

10.1.3.	Option:	view

Let’s	have	a	closer	look	at	the	first	sub-key	view:

...

view	{

			templateRootPaths	=	EXT:simpleblog/Resources/Private/Templates/

			partialRootPaths	=	{$plugin.tx_simpleblog.view.partialRootPath}

			layoutRootPaths	=	fileadmin/Layouts/

}

...

These	sub-keys	are	self-explanatory	and	define	the	paths	to	directories	for	templates,
partials	and	layouts.	The	interesting	point	is	the	way	how	they	have	been	defined:

Path	of	the	extension
By	using	EXT:,	followed	by	an	extension	key	and	a	path,	the	directory	in	the
extension’s	directory	is	used.

Constants
Constants	can	be	defined	in	the	file	Configuration/TypoScript/constants.txt	or
in	the	constants	field	of	every	TypoScript	template.	There	you	can	specify	paths	(as
arrays	only)	and	access	those	values	in	the	setup.	As	an	example,	you	could	add	a
constant	path.template	and	access	its	value	by	using	{$path.template}	in	the
setup.

Direct	path
The	third	example	shows	how	a	direct	path	can	be	named	relatively	from	the
DocumentRoot	directory	of	the	TYPO3	instance.

In	TYPO3	CMS	versions	prior	6.2	LTS,	these	keys	were	named	templateRootPath,
layoutRootPath	and	partialRootPath	(without	trailing	“s”).	These	keys	are	still	working
but	are	deprecated	and	will	be	removed	in	the	future.

If	you	want	to	expand	Fluid	templates	in	Extbase,	you	usually	have	to	copy	all	template
files	to	a	new	directory,	re-configure	the	paths	(as	explained	above)	and	then	edit	the
copied	files.	In	cases	where	only	one	template	file	should	be	amended,	this	would	create
an	unwanted	redundancy.

In	order	to	solve	this	issue,	so-called	“fallback	paths”	have	been	introduced	in	TYPO3
CMS	6.2	LTS:	Fluid	searches	for	the	template	file	in	the	directory	with	the	highest	index,
and – assuming	the	template	file	could	not	be	found – takes	the	next	folder,	down	to	the
lowest	index.

These	fallback	logic	works	for	templates,	layouts	as	well	as	for	partials:
templateRootPaths,	partialRootPaths,	layoutRootPaths.

An	example	of	a	typical	fallback	usage	is	as	follows:

plugin.tx_simpleblog	{

			view	{

						templateRootPath	=	EXT:simpleblog/Resources/Private/Templates/

			}

}

plugin.tx_simpleblog	{

			view	{

						templateRootPath	>

						templateRootPaths	{

									10	=	fileadmin/simpleblog/templates

									20	=	fileadmin/special/simpleblog/templates

						}

			}

}

formatToPageTypeMapping

This	option	holds	a	mapping	that	allows	for	the	determination	of	the	page	type	when
the	format	changed.

plugin.tx_simpleblog	{

			view.formatToPageTypeMapping	{

						txt	=	99

						pdf	=	123

			}

}

Now	it	is	possible	to	name	the	format	in	Fluid	and	Extbase	takes	care	of	the	correct
PageType:

<f:link.action	arguments="{blog:	blog}"	format="txt">[plaintext]</f:link.action>

10.1.4.	Option:	persistence

This	sub-key	compiles	all	configurations	which	have	something	to	do	with	the	persistence
layer,	typically	the	storage	and	classes.

...

persistence	{

			storagePid	=	17

			classes	{

						Lobacher\Simpleblog\Domain\Model\Author	{

									newRecordStoragePid	=	27

									mapping	{

												tableName	=	fe_users

												columns	{

															name.mapOnProperty	=	fullname

												}

									}

						}

			}

}

...

storagePid	(stdWrap)
A	comma-separated	list	of	pages,	which	are	available	to	Extbase	for	writing	and
reading.	The	first	number	represents	the	page	UID	for	read	and	write	operations
(assuming	it	is	not	otherwise	configured).	All	other	pages	are	read-only.	If	this	option
is	omitted,	the	storagePid	is	automatically	0	and	therefore	records	are	written	to,	and
read	from,	the	root	page	of	the	website.

persistence	{

			storagePid.cObject	=	CONTENT

			storagePid.cObject	{

			select	{

						pidInList	=	1,2

						recursive	=	10

						selectFields	=	*

			}

			table	=	pages

			renderObj	=	TEXT

			renderObj	{

						field	=	uid

						required	=	1

						wrap	=	,|

			}

			stdWrap.substring	=	1

			}

}

This	example	shows	how	the	property	recursive	can	be	simulated	in	TYPO3	CMS	prior
to	6.2	LTS.

recursive

The	property	recursive	is	available	in	TYPO3	since	version	6.2	LTS.	It	specifies	the
maximum	number	of	levels	that	should	be	taken	into	account.	For	example,	if	you
would	have	a	folder	and	under	this	folder	a	set	of	folders,	the	UID	of	the	parent
folder	can	be	set	in	storagePid	and	with	recursive	=	1	all	sub-folders	in	the	first
level	would	be	taken	into	account.

enableAutomaticCacheClearing	(boolean)
Value	1	clears	the	cache	of	the	current	page	whenever	a	record	has	been	written	or
updated.	This	option	is	enabled	by	default,	but	is	sometimes	not	required,	e. g.	if	a
record	is	shown	on	a	different	page	to	that	where	it	is	stored.	In	this	case,	the
configuration	TCEMAIN.clearCacheCmd	=	UID	(where	UID	is	the	page	where	the
records	are	displayed)	can	be	used.

updateReferenceIndex	(boolean)
If	this	option	is	enabled	(value	1)	the	reference	index	will	be	updated	during	a
frontend	process.	This	update	is	a	complex	task	and	has	an	impact	on	performance
and	is	therefore	disabled	by	default.

Option:	persistence.classes
With	this	key	it	is	possible	to	configure	classes	with	their	fully-qualified	class	name	(e. g.
Lobacher\Simpleblog\Domain\Model\Author)	as	sub-keys.	Under	these	sub-keys,	further
sub-keys	can	be	defined:

newRecordStoragePid

Defines	a	specific	storage	place	for	this	class	only	(UID	of	the	page	or	folder).
mapping

Configures	the	mapping	of	classes	and	tables	inside	Extbase	with	further	sub-keys
(see	the	following	configuration	options).

mapping.tableName

In	order	to	use	a	different	table	than	the	default	for	the	class,	it	can	be	specified	here
(e. g.	table	fe_users	instead	of	tx_simpleblog_domain_model_author).

mapping.recordType

If	a	table	is	used	as	storage	in	multiple	classes	(the	so-called	Single	Table
Inheritance),	this	option	is	used	to	map	the	record	set	to	the	correct	class.	This	is	a
unique	identifier	of	a	table	and	it	is	recommended	to	use	the	name	of	the	class.	In
addition	to	this	configuration,	an	appropriate	TCA	entry	('type'	=>	'record_type')
must	exist.

mapping.subclasses

Subclasses	are	used	inside	a	Single	Table	Inheritance	(STI).	For	instance,	subclasses
Car	and	Motorbike	could	be	derived	from	the	superclass	Vehicle.	In	this	case,
subclasses	Car	and	Motorbike	would	be	defined	in	class	Vehicle	by	using	this	key.
Inside	the	subclass	configuration,	recordType	and	tableName	(of	the	superclass)	are
configured.

mapping.columns

This	maps	single	columns.	The	name	of	the	mapped	column	stands	on	the	left	side,
followed	by	.mapOnProperty	=,	and	the	name	of	the	column	in	the	domain	model	on
the	right	side,	for	example:	last_name.mapOnProperty	=	familyName.	If	the	only
difference	between	the	left	and	the	right	side	is,	that	underscores	are	used	on	the	left

but	not	on	the	right,	and	the	first	letter	is	in	upper	case,	the	mapping	is	not	required,
for	example:	last_name.mapOnProperty	=	lastName.

10.1.5.	Option:	objects

The	purpose	of	this	key	is	to	overwrite	classes.	First,	the	name	of	the	class	which	should
be	overwritten	is	stated,	followed	by	the	key/value	pair	className	and	the	name	of	the
replacement	class.

#	As	soon	as	a	backendInterface	is	required,	Typo3DbBackend	is	loaded

config.tx_extbase	{

			objects	{

						TYPO3\CMS\Extbase\Persistence\Generic\Storage\BackendInterface	{

									className	=	TYPO3\CMS\Extbase\Persistence\Storage\Typo3DbBackend

			}

}

#	In	order	to	load	your	own	Persistence	Backend,	the	configuration

#	can	be	overwritten

config.tx_extbase	{

				objects	{

								TYPO3\CMS\Extbase\Persistence\Generic\Storage\BackendInterface	{

												className	=	Vendor\ExtensionName\Persistence\Backend

								}

				}

}

This	allows	you	to	add	a	standard	namespace	to	all	Fluid	templates.	Enter	the	following	in
your	TypoScript	setup:

config.tx_extbase	{

			objects	{

						TYPO3\CMS\Fluid\Core\Parser\TemplateParser	{

									className	=	Lobacher\Simpleblog\View\TemplateParser

						}

			}

}

And	the	following	to	the	file	Lobacher\Simpleblog\View\TemplateParser.php:

<?php

namespace	Lobacher\Simpleblog\View;

class	TemplateParser	extends	TYPO3\CMS\Fluid\Core\Parser\TemplateParser	{

			protected	$namespacesBase	=	array();

			public	function	initializeObject()	{

						$this->namespacesBase	=	$this->namespaces	+=	array(

									'simpleblog'	=>	'Lobacher\Simpleblog\ViewHelpers'

);

			}

			protected	function	reset()	{

						$this->namespaces	=	$this->namespacesBase;

			}

}

?>

This	makes	the	need	of	using	the	namespace	statement	in	all	templates	obsolete,	e. g.
{namespace	simpleblog	=	Lobacher\Simpleblog\ViewHelpers}.	ViewHelpers	can	be
addressed	directly	now	(<simpleblog:viewHelper>)	without	declaring	it	as	a	namespace
in	the	template.

10.1.6.	Option:	features

The	features	option	enables	developers	and	integrators	to	turn	Extbase	features	on	and
off.	At	this	point	in	time	the	following	configurations	are	available:

rewrittenPropertyMapper

Since	TYPO3	CMS	version	6.1,	Extbase	uses	the	new	Property	Mapper[30]	(which
has	been	ported	from	TYPO3	Flow)	by	default.	It	has	been	available	since	version
4.7	but	not	activated	(value:	1)	by	default	until	version	6.1.

skipDefaultArguments

If	this	value	is	set	to	1	(default	is	0),	the	default	controller	and/or	the	default	action	is
not	taken	into	account	when	URLs	are	generated	by	the	URI	builder.

ignoreAllEnableFieldsInBe

If	this	value	is	set	to	1	(default	is	0),	all	Enable	Fields	(such	as	hidden,	deleted,	etc.)	are
ignored	in	the	backend	context.

10.1.7.	Option:	mvc

You	can	configure	the	three	Extbase	request	handlers	(frontend,	backend	and	CLI)	with
this	option	and	therefore	overwrite	the	default	settings	where	required.	The	default	is:

config.tx_extbase	{

			mvc	{

						requestHandlers	{

									TYPO3\CMS\Extbase\Mvc\Web\FrontendRequestHandler	=	TYPO3\CMS\Extbase\Mvc\Web\FrontendRequestHandler

									TYPO3\CMS\Extbase\Mvc\Web\BackendRequestHandler	=	TYPO3\CMS\Extbase\Mvc\Web\BackendRequestHandler

									TYPO3\CMS\Extbase\Mvc\Cli\RequestHandler	=	TYPO3\CMS\Extbase\Mvc\Cli\RequestHandler

						}

			}

}

10.1.8.	Option:	legacy

Out-dated	and	obsolete	options	can	be	configured	with	this	option.	Currently	only	the
following	key	exists:

enableLegacyFlashMessageHandling

In	older	versions	FlashMessages	can	only	be	stored	in	a	container.	Since	version	6.1,
TYPO3	CMS	also	allows	for	the	addition	of	FlashMessages	to	a	queue	in	a	plugin.	In
order	to	activate	this	the	old	FlashMessageHandling	must	be	disabled:

config.tx_extbase.legacy.enableLegacyFlashMessageHandling	=	0

The	default	value	is	1.

10.1.9.	Option:	settings

The	key	settings	allows	developers	to	define	arbitrary	key/value	pairs	which	can	be
accessed	in	the	controller	as	well	as	in	templates.

plugin.tx_simpleblog	{

			settings	{

						blog	{

									max	=	5

						}

			}

}

To	access	the	value	in	the	controller	the	variable	$this->settings['blog']['max']	can
be	used.	In	order	to	access	the	value	in	a	template	{settings.blog.max}	is	used.

10.1.10.	Option:	_LOCAL_LANG

Language	labels	of	extensions	can	be	overwritten	by	using	this	option.	The	key	default
stands	for	the	default	language	otherwise	the	two-letter	language	code	(ISO	code)	is	used.

plugin.tx_simpleblog	{

			_LOCAL_LANG	{

						default	{

									linkLabel	=	English	link

						}

						de	{

									linkLabel	=	Deutscher	Link

						}

			}

}

10.1.11.	Option:	_CSS_DEFAULT_STYLE

In	order	to	set	custom	CSS	styles	the	_CSS_DEFAULT_STYLE	option	can	be	used.	For
example,	it	is	possible	to	colour	an	input	field	red	if	the	data	entered	is	invalid:

plugin.tx_simpleblog._CSS_DEFAULT_STYLE	(

			.f3-form-error	{

						background-color:#FF9F9F;

						border:	1px	#FF0000	solid;

			}

)

10.2.	FlexForms

By	using	TypoScript	a	specific	configuration	can	be	applied	on	a	page-by-page	basis.
However	if	you	require	multiple	configurations – for	example	because	more	than	one
extension	has	been	placed	on	a	page – the	TypoScript	approach	reaches	its	limits	quickly.

A	better	solution	is	to	store	the	configuration	in	the	content	element	(the	plugin	record
itself),	e. g.	in	a	new	column	of	the	database	table	which	is	responsible	for	the	content
element.	To	avoid	creating	multiple	columns	for	every	plugin,	which	are	not	used	by	any
other	plugins,	the	TYPO3	project	has	agreed	on	a	specific	field:	pi_flexform	in	the
database	table	tt_content.	A	specific	XML	structure	(the	so-called	“FlexForm”)	is	stored
in	this	field,	which	in	turn	provides	additional	form	fields	in	the	backend.

The	basis	of	the	FlexForm	is	a	XML	file	with	an	unusual	syntax.	In	order	to	use	this	file	a
few	commands	must	be	added	to	the	file	ext_tables.php	as	shown	below:

$pluginSignature	=	'simpleblog_bloglisting';

$TCA['tt_content']['types']['list']['subtypes_addlist'][$pluginSignature]	=	'pi_flexform';

\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::addPiFlexFormValue($pluginSignature,	'FILE:EXT:simpleblog/Configuration/FlexForms/flexform_bloglisting.xml');

These	instructions	load	the	file	flexform_bloglisting.xml	in	the	directory
typo3conf/ext/simpleblog/Configuration/FlexForms	which	we	have	to	create	first:

cd	[DocumentRoot]

mkdir	typo3conf/ext/simpleblog/Configuration/FlexForms

cd	typo3conf/ext/simpleblog/Configuration/FlexForms

Now	create	the	file	flexform_bloglisting.xml	with	the	following	content:

<T3DataStructure>

			<sheets>

						<sDEF>

									<ROOT>

												<TCEforms>

															<sheetTitle>Blog	Config</sheetTitle>

												</TCEforms>

												<type>array</type>

												<el>

												</el>

									</ROOT>

						</sDEF>

			</sheets>

</T3DataStructure>

This	is	the	foundation	for	further	settings,	which	are	placed	between	the	<el>	and	</el>
tags.	Please	note	that	we	can	show	only	a	simple	example	in	this	book,	because	FlexForms
are	very	powerful	and	complex	and	you	could	write	a	whole	other	book	about	this	topic.
Additional	documentation	is	of	course	available.[31]	You	find	further	field	types	in
Section	A.2.

10.2.1.	FlexForm	Configuration

This	chapter	describes	how	to	implement	a	configuration	option	by	using	a	FlexForm,
which	allows	editors	to	define	the	number	of	Blogs	shown	in	the	list	view.

The	following	code	inside	the	<el>	and	</el>	tags	take	care	of	that:

															<settings.blog.max>

																		<TCEforms>

																					<label>Max	Number	of	Blogs</label>

																					<config>

																								<type>input</type>

																								<size>2</size>

																								<eval>int</eval>

																								<default>10</default>

																					</config>

																		</TCEforms>

															</settings.blog.max>

It	is	important,	that	every	element	is	wrapped	by	a	tag	with	the	name	starting	with
settings	and	a	dot.	This	tells	Extbase	that	the	configuration	should	be	read	automatically.
The	other	fields	define	a	TCEforms-field	of	type	input	with	a	length	of	2	characters	and	a
pre-filled	default	value	of	10.

After	clearing	the	cache	in	the	TYPO3	backend,	the	panel	Plug-In	of	the	content	element
shows	the	new	configuration	option:

Figure	10.1.	Content	element	configuration	via	FlexForm

Accessing	the	value	works	the	same	as	for	the	TypoScript	configuration	described	earlier;
use	$this->settings['blog']['max']	in	the	controller	and	{settings.blog.max}	in	the
Fluid	view.

Bug	in	the	configuration	determination
If	the	same	configuration	variable	is	used	in	the	FlexForm	and	in	TypoScript
the	value	from	the	FlexForm	has	a	higher	priority	and	is	used.	This	is
intentional.	However	if	you	delete	the	value	from	the	FlexForm,	you	would
expect	the	value	from	TypoScript	is	then	used.	This	is	not	the	case	due	to	a
bug[32]	in	Extbase.	In	this	case,	Extbase	sets	the	value	to	0	and	always	uses
this	FlexForm	value.

A	possible	work-around	is	a	Helper	function,	which	can	be	seen	in	action	in
method	injectConfigurationManager	in	the	“News”	extension	by	Georg
Ringer.[33]

10.2.2.	Switchable	Controller	Actions	(SCA)

Switchable	Controller	Actions	(SCA)	let	you	restrict	access	to	specific	controller/action
combinations	per	plugin	(in	the	FlexForm	configuration).	This	means	the	plugin	can	be
configured	in	a	way	to	restrict	the	execution	of	only	those	controllers	and	actions	which
have	been	specified	in	the	FlexForm.

															<switchableControllerActions>

																		<TCEforms>

																					<label>Type</label>

																					<config>

																								<type>select</type>

																								<items	type="array">

																											<numIndex	index="0"	type="array">

																														<numIndex	index="0">read	only</numIndex>

																														<numIndex	index="1">Blog->list;Blog->show</numIndex>

																											</numIndex>

																											<numIndex	index="1"	type="array">

																														<numIndex	index="0">writable</numIndex>

																														<numIndex	index="1">Blog->list;Blog->show;Blog->deleteConfirm;Blog->delete</numIndex>

																											</numIndex>

																								</items>

																					</config>

																		</TCEforms>

															</switchableControllerActions>

By	placing	this	code	between	the	<el>	and	</el>	tags	a	dropdown	box	appears	in	the
backend.	Selecting	option	1	(“read	only”)	means	the	plugin	can	only	execute	the
combination	Blog->list	and	Blog->show.	Option	2	(“writable”)	also	enables	Blog-
>deleteConfirm	and	Blog->delete.	Additionally,	further	actions	such	as	update	can	be
added.

SCA	becomes	active	as	soon	as	the	plugin	configuration	is	accessed	in	the	backend,	an
option	has	been	selected	and	the	new	configuration	saved.	These	steps	store	the	FlexForm
configuration	to	the	database.

Figure	10.2.	Configuration	of	Switchable	Controller	Actions

For	the	steps	described	in	the	following	sections	of	this	book	it	is	required	to	remove	the
FlexForm	again.

Persevering	FlexForms
Due	to	the	way	in	which	FlexForms	are	managed	internally	it	might	be
difficulty	to	get	rid	of	them.	Basically	there	are	two	options:

delete	the	plugin,	delete	the	three	code	lines	from	the	file
ext_tables.php,	clear	the	cache	and	re-implemented	the	plugin;	or,
empty	the	field	pi_flexform	of	the	content	element	in	the	database
directly	and	remove	the	lines	from	file	ext_tables.php.

10.3.	TypoScript	for	the	Next	Sections	of
this	Book

Create	the	following	five	folders	in	the	TYPO3	backend	(see	Figure	10.3)	in	preparation
for	the	next	steps.	You	will	most	likely	get	different	UIDs	than	the	values	shown	here.
Note	your	values	and	use	them	in	the	TypoScript	below.

Figure	10.3.	Folders	used	for	Blog	data

Then	let	us	edit	the	TypoScript	in	the	file
typo3conf/ext/simpleblog/Configuration/TypoScript/setup.txt:

plugin.tx_simpleblog	{

			view	{

						templateRootPath	=	{$plugin.tx_simpleblog.view.templateRootPath}

						partialRootPath	=	{$plugin.tx_simpleblog.view.partialRootPath}

						layoutRootPath	=	{$plugin.tx_simpleblog.view.layoutRootPath}

			}

			persistence	{

						storagePid	=	7,8

						recursive	=	1

						classes	{

									Lobacher\Simpleblog\Domain\Model\Blog	{

												newRecordStoragePid	=	8

									}

									Lobacher\Simpleblog\Domain\Model\Post	{

												newRecordStoragePid	=	9

									}

									Lobacher\Simpleblog\Domain\Model\Comment	{

												newRecordStoragePid	=	10

									}

									Lobacher\Simpleblog\Domain\Model\Tag	{

												newRecordStoragePid	=	11

									}

						}

			}

			settings	{

						blog	{

									max	=	5

						}

			}

}

We	have	implemented	our	custom	configuration	by	using	the	keyword	settings.	In	order
limit	the	listing	to	only	five	Blog	records,	we	have	to	retrieve	this	information	in	the
listAction()	in	file
typo3conf/ext/simpleblog/Classes/Controller/BlogController.php.	The	value	can
be	accessed	by	reading	$this->settings[].	The	limit	is	then	passed	to	the	repository
function,	which	reads	the	Blogs	from	the	database.

public	function	listAction()	{

			if	($this->request->hasArgument('search')){

						$search	=	$this->request->getArgument('search');

			}

			$limit	=	($this->settings['blog']['max'])	?:	NULL;

			$this->view->assign('blogs',	$this->blogRepository->findSearchForm($search,$limit));

			$this->view->assign('search',	$search);

}

We	now	open	the	file
typo3conf/ext/simpleblog/Classes/Domain/Repository/BlogRepository.php	and
edit	the	repository	function	findSearchForm	as	follows:

/**

	*	@param	string	$search

	*	@param	int	$limit

	*	@return	array|\TYPO3\CMS\Extbase\Persistence\QueryResultInterface

	*/

public	function	findSearchForm($search,$limit)	{

			$query	=	$this->createQuery();

			$query->matching(

						$query->like('title','%'.$search.'%')

);

			$query->setOrderings(array('title'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING));

			$limit	=	(int)$limit;

			if	($limit	>	0)	{

						$query->setLimit($limit);

			}

			return	$query->execute();

}

Firstly,	$limit	has	to	be	added	as	a	method	parameter.	Unfortunately	the	@param
annotation	is	insufficient	to	convert	$limit	into	an	integer	in	this	case.	As	a	consequence,
we	have	to	cast	the	value	by	using	(int).

If	$limit	is	greater	than	0	we	set	the	limit	for	the	query.

We	can	also	access	the	value	in	the	frontend	by	using	{settings.blog.max}.	Open	the
file	typo3conf/ext/simpleblog/Resources/Templates/Blog/List.html	and	add	the
following	below	the		list:

...

<p	class="text-muted">Max	{settings.blog.max}	Blogs	will	be	shown.</p>

<f:link.action	action="addForm"	class="btn	btn-primary">Create	Blog</f:link.action>

...

Figure	10.4.	Output	of	the	limit	as	configured

Accessing	settings	in	other	areas

Accessing	TypoScript	and	FlexForm	settings	is	only	possible	in	the
controller	and	in	the	view.	This	is	by	design	as	logically	this	is	where	these
functions	belong.

However	under	certain	circumstances	it	might	be	useful	to	access	settings
in	the	model	or	repository.	This	is	also	possible	but	requires	some	extra
effort:

$objectManager	=	\TYPO3\CMS\Core\Utility\GeneralUtility::makeInstance('TYPO3\\CMS\\Extbase\\Object\\ObjectManager');

$configurationManager	=	$objectManager->get('TYPO3\\CMS\\Extbase\\Configuration\\ConfigurationManagerInterface');

$settings	=	$configurationManager->getConfiguration(\TYPO3\CMS\Extbase\Configuration\ConfigurationManagerInterface	::CONFIGURATION_TYPE_SETTINGS);

Variable	$settings	now	contains	the	TypoScript/FlexForm	data.

10.4.	TypoScript	for	Backend	Modules

It	is	also	possible	in	Extbase	to	use	TypoScript	for	backend	modules.	The	problem
however,	is	that	no	pages	exist	in	which	the	TypoScript	code	can	be	stored	(the	backend
does	not	require	pages	as	such).

We	can	get	around	this	by	using	the	static	TypoScript	for	our	configuration.	As	before,	the
file	typo3conf/ext/simpleblog/Configuration/TypoScript/setup.txt	can	be	used	for
this	purpose.	The	key	module.tx_simpleblog	has	been	designed	to	achieve	this.	Should
this	key	already	hold	some	settings	you	should	copy	them	before	proceeding.

...

module.tx_simpleblog	<	plugin.tx_simpleblog…

[30]	http://forge.typo3.org/projects/typo3v4-mvc/wiki/PropertyMapper_rework

[31]	http://wiki.typo3.org/Extension_Development,_using_Flexforms	and
http://docs.typo3.org/typo3cms/CoreApiReference/DataFormats/T3datastructure/Index.html

[32]	http://forge.typo3.org/issues/51935

[33]
https://git.typo3.org/TYPO3v4/Extensions/news.git/blob/dc0a5ad9a3ff77dffd1a5cbabdf587a28d244115:/Classes/Controller/NewsController.php

http://forge.typo3.org/projects/typo3v4-mvc/wiki/PropertyMapper_rework
http://wiki.typo3.org/Extension_Development,_using_Flexforms
http://docs.typo3.org/typo3cms/CoreApiReference/DataFormats/T3datastructure/Index.html
http://forge.typo3.org/issues/51935
https://git.typo3.org/TYPO3v4/Extensions/news.git/blob/dc0a5ad9a3ff77dffd1a5cbabdf587a28d244115:/Classes/Controller/NewsController.php

Chapter	11.	Validation	and	Error	Handling

In	order	to	process	data – which	the	system	expects	in	a	correct	format – the	data	must	be
checked	and	validated.	Extbase	provides	a	comprehensive	validation	framework	for	this
task.

11.1.	Error	Handling

Before	we	take	a	look	at	the	data	validation	in	detail,	we	should	explore	error	handling,
which	takes	care	of	detecting	invalid	objects	and	lets	us	treat	them	as	errors.

If	you	go	to	the	Blog	list,	click	Create	Blog!	and	leave	the	Blog	title	empty.	You	will	notice
that	the	Blog	title	input	field	is	coloured	red.	The	HTML	source	code	shows	the	CSS	class
f3.form-error,	which	has	been	added	by	Extbase.	The	previously-included	TypoScript
introduces	this	specific	style	by	the	section	_CSS_DEFAULT_STYLE.

<input	class="form-control	f3-form-error"	type="text"	name="tx_simpleblog_bloglisting[blog][title]"	value=""	/>

Figure	11.1.	Highlighting	of	an	invalid	field

For	the	purpose	of	this	example	however,	we	would	like	to	achieve	not	only	an	additional
style	but	also	an	error	message.	This	requires	a	little	bit	more	work.	As	soon	as	a
validation	error	occurs,	some	specific	error	objects	are	created	which	can	be	displayed	via
Fluid.	The	following	section	shows	how	to	implement	a	partial	that	outputs	all	errors.	You
can	customise	this	partial	to	meet	your	specific	requirements	later.

First,	create	a	new	file	Error.html	with	the	following	content	in	folder
typo3conf/ext/simpleblog/Resources/Partials/:

<f:form.validationResults	for="{object}">

				<f:for	each="{validationResults.flattenedErrors}"	as="errors"	key="propertyPath">

								{propertyPath}

								

												<f:for	each="{errors}"	as="error">

																

																				{error}	|	{error.code}	|

																				Arguments:	<f:for	each="{error.arguments}"	as="argument">{argument},</f:for>

																

												</f:for>

								

				</f:for>

</f:form.validationResults>

The	ViewHelper	f:form.validationResults	is	responsible	for	processing	the	error
object.	The	option	for	specifies	the	object	for	which	the	output	should	appear.	We	should
keep	this	flexible	and	use	the	value	{object}.	This	means	we	have	to	pass	some
information	to	the	partial	when	we	include	it.

We	can	cycle	through	all	errors	flagged	by	applying	the	for-ViewHelper.	The
propertyPath	is	the	path	to	the	property	of	the	domain	object	which	was	invalid	and
threw	the	error.	Every	invalid	property	could	have	multiple	errors	of	course	and	those	are
addressed	by	the	next	iteration.

The	error	itself	is	stored	in	error	while	the	error	code	is	stored	in	error.code	and
possible	arguments	stored	in	error.arguments.

Finally,	we	need	to	include	the	error	partial	in	the	form	partial	in	file
typo3conf/ext/simpleblog/Resources/Partials/Blog/Form.html:

<h1>{headline}</h1>

<div	class="alert	alert-danger"><f:render	partial="Error"	arguments="{object:'blog'}"	/></div>

...

Figure	11.2.	Output	an	error

We	will	leave	the	error	handling	as	it	stands	now	for	the	time	being.	Later,	we	will	make
the	error	message	multi-lingual	and	output	it	at	the	right	spot.	Let’s	have	a	look	at	the
validation	functionality	first.

11.2.	Validation	Overview

Generally	speaking	in	domain-driven	design,	validation	is	part	of	the	model	because	it
reflects	a	part	of	the	business	logic.	There	are	three	occurrences	where	validation	plays	an
important	role:

Property	Validation
Validates	a	property	of	a	model.

Object	Validation
Validates	an	entire	object	at	a	time.

Action	Validation
Validates	the	input	parameter	of	an	action	as	soon	as	the	action	is	executed.

When	does	a	validation	happen?
It	is	also	important	at	which	position	a	validation	occurs	inside	an	Extbase
process – namely	always	when	the	action	is	entered.	Whereas	TYPO3	Flow
also	validates	when	entering	the	repository,	Extbase	has	this	single	window	for
a	validation.	In	order	to	prevent	a	validation	from	occuring,	the	following
annotation	can	be	set	at	the	action:

/**

	*	@ignorevalidation	$blog

	*/

public	function	addAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

...

At	the	time	of	the	old	Property	Mapper,	this	annotation	was	called
@dontvalidate.

As	a	matter	of	principle,	the	action	errorAction()	is	called	when	an	error
occurs.	This	action	exists	in	the	action	controller
TYPO3\CMS\Extbase\Mvc\Controller\ActionController.php	but	can	be
overwritten	with	your	own	method	errorAction().

11.3.	Property	Validation

As	the	name	indicates,	the	property	validation	is	executed	directly	at	the	properties	of	the
domain	model.

Open	file	typo3conf/ext/simpleblog/Classes/Domain/Model/Blog.php	and	have	a
look	at	property	$title:

/**

	*	This	is	the	title	of	the	blog

	*	@var	\string

	*	@validate	NotEmpty

	*/

	protected	$title;

Due	to	the	fact	that	we	marked	this	property	as	required	earlier	the	Extension	Builder
takes	care	of	two	things:	it	adds	the	annotation	@validate	NotEmpty	and	extends	the
Table	Configuration	Array	(TCA)	by	adding	the	section	'eval'	=>	'trim,required'.
The	latter	we	will	cover	later,	but	let’s	have	a	closer	look	at	the	annotation	which	starts
with	@validate	followed	by	so-called	validators.

11.3.1.	Built-in	Validators

Currently,	Extbase	supports	13	built-in	validators,	which	can	be	used	as	annotations:

Alphanumeric

Checks	if	the	value	consists	of	characters	a-z,	A-Z,	0-9	only.
Boolean(is=TRUE|FALSE)

Checks	if	the	value	is	either	TRUE	or	FALSE,	thus	Boolean(is=TRUE)	or
Boolean(is=FALSE).

Conjunction	/	Disjunction
Checks	if	all	given	validators	are	TRUE	(Conjunction)	or	at	least	one	validator
(Disjunction),	for	example:	Conjunction(0=NoEmpty,1=Boolean(is=TRUE),2=...)

DateTime

Checks	if	the	value	is	a	valid	DateTime	object.
EmailAddress

Checks	if	the	value	is	a	valid	email	address.
Float

Checks	if	the	value	is	a	valid	floating	point	number.
Integer

Checks	if	the	value	is	a	valid	integer	number.
NotEmpty

Checks	if	the	value	is	not	empty	(NULL	or	an	empty	string).
NumberRange(startRange,endRange)

Checks	if	the	value	is	between	startRange	and	endRange.
Number

Checks	if	the	value	is	a	valid	number.
RegularExpression(regularExpression)

Checks	if	the	value	matches	the	given	regular	expression.
StringLength(minimum,maximum)

Checks	if	the	value	is	a	string	and	its	length	is	between	minimum	and	maximum.
String

Checks	if	the	value	is	a	string.
Text

Checks	if	the	value	is	a	valid	text	and,	therefore,	does	not	contain	any	XML	tags.

11.3.2.	Multiple	Validators

Validators	can	be	combined	by	comma-separating	them	or	by	writing	each	validator	in	one
line:

/**

	*	This	is	the	title	of	the	blog

	*	@var	\string

	*	@validate	NotEmpty,	StringLength(minimum=5,maximum=10),	Text

	*/

	protected	$title;

or:

	/**

	*	This	is	the	title	of	the	blog

	*	@var	\string

	*	@validate	NotEmpty

	*	@validate	StringLength(minimum=5,maximum=10)

	*	@validate	Text

	*/

	protected	$title;

Assuming	all	validators	result	in	TRUE,	the	property	is	considered	as	validated	and
therefore	“valid”.	If	only	one	validator	fails	and	returns	FALSE,	the	property	is	“invalid”.	It
is	important	to	note	that	all	validators	are	checked,	even	if	the	first	one	already	returns
FALSE.

11.3.3.	Custom	Validators

Despite	the	great	selection	of	13	existing	validators,	custom	validators	are	sometimes
required.	They	can	be	implemented	quickly	and	added	to	the	existing	annotations	easily.

The	following	section	describes	how	to	develop	a	validator	which	counts	the	number	of
words	of	a	property.	At	a	configurable	threshold,	an	error	message	is	shown.	This	prevents
the	length	of	the	Blog	title	becoming	too	long.

The	new	validator	is	used	in	the	model	class
typo3conf/ext/simpleblog/Classes/Domain/Model/Blog.php:

/**

	*	This	is	the	title	of	the	blog

	*	@var	\string

	*	@validate	NotEmpty,	\Lobacher\Simpleblog\Validation\Validator\WordValidator(max=3)

	*/

	protected	$title;

Alternatively,	an	abbreviated	form	can	be	used	by	writing	vendor,	extension	and	validator
name	in	the	form	Vendorname.Extensionname:Validatorname:

/**

	*	This	is	the	title	of	the	blog

	*	@var	\string

	*	@validate	NotEmpty,	Lobacher.Simpleblog:Word(max=3)

	*/

	protected	$title;

An	important	requirement	is	that	the	file	[Validatorname]Validator.php	(e. g.
NotEmptyValidator.php)	is	stored	in	the	folder
typo3conf/ext/simpleblog/Classes/Validation/Validator/.	Therefore	we	create	a
new	directory	Validation	inside	Classes	and	a	subdirectory	Validator.

Figure	11.3.	Directory	structure	for	custom	validators

A	new	file	with	the	following	content	is	stored	in	this	directory:

<?php

namespace	Lobacher\Simpleblog\Validation\Validator;

class	WordValidator	extends	\TYPO3\CMS\Extbase\Validation\Validator\AbstractValidator	{

			protected	$supportedOptions	=	array(

								'max'	=>	array(PHP_INT_MAX,	'The	maximum	word	count	to	accept',	'integer'),

);

			public	function	isValid($property)	{

								$max	=	$this->options['max'];

								if	(str_word_count($property,	0)	<=	$max)	{

									return	TRUE;

						}	else	{

									$this->addError('Reduce	the	amount	of	words	-	max	'.$max.'	are	allowed!',	1383400016);

									return	FALSE;

						}

			}

}

?>

The	validator	class	must	be	derived	from	the	abstract	validator
\TYPO3\CMS\Extbase\Validation\Validator\AbstractValidator.	The	only	function
we	have	to	implement	is	isValid().	If	this	method	returns	TRUE,	the	property	is	valid,	if	it
returns	FALSE,	the	property	is	invalid.	The	property	itself	is	passed	as	a	method	parameter
and	is	available	inside	the	function.

Additionally	you	have	to	add	a	protected	member	$supportedOptions	that	defines	the
allowed	parameters	of	the	validator	(max	in	our	example).

This	member	has	to	be	an	associative	array,	with	the	option	names	as	keys,	and	the	option
configuration	as	values.	The	option	configurations	are	numerically	indexed	arrays,	where
the	array	entries	have	the	following	meanings:

Index	0
default	value	for	the	option	(mixed)

Index	1
description	of	the	option	(string)

Index	2
type	of	the	option	(string,	values	are	“string”,	“integer”	etc.)

Index	3
whether	the	option	is	required	(boolean,	optional).

An	example	from	the	NumberRangeValidator,	not	using	the	fourth	option:

protected	$supportedOptions	=	array(

				'minimum'	=>	array(0,	'The	minimum	value	to	accept',	'integer'),

				'maximum'	=>	array(PHP_INT_MAX,	'The	maximum	value	to	accept',	'integer'),

				'startRange'	=>	array(0,	'The	minimum	value	to	accept',	'integer'),

				'endRange'	=>	array(PHP_INT_MAX,	'The	maximum	value	to	accept',	'integer')

);

Return	value	of	isValid()
It	is	important	to	understand	that	the	behaviour	of	the	isValid()	function	has
been	modified	so	that	the	return	value	does	not	indicate	if	the	validation	was
successful	or	not.	The	relevant	part	is	in	fact	the	addError()	call.	If	you	return
FALSE	only,	without	adding	the	error,	the	validator	is	deemed	as	valid.

All	of	the	options	which	have	been	stated	in	the	annotation	can	be	accessed	via	$this-
>options.	We	use	the	threshold	max	to	define	the	maximum	number	of	words	allowed.

In	the	FALSE	case	an	error	should	be	shown.	This	is	achieved	by	the	addError()	call.	The
first	parameter	is	the	error	message	(we	will	extract	the	text	and	store	it	in	a	language	file
later).	The	second	parameter	is	a	unique	error	number	(it	is	recommended	to	use	the

current	timestamp,	because	this	eliminates	any	ambiguity	created	by	country-specific	date
formats).

Figure	11.4.	Error	message	generated	by	custom	validator

11.4.	Object	Validation

Where	the	property	validator	allowed	us	to	validate	individual	properties	one	at	a	time,
occasionally	it	is	required	that	we	validate	an	object	as	a	whole,	typically	in	order	to
validate	two	or	more	properties	if	they	are	somehow	connected.	This	could	be	a	password
and	its	verification	field	(repeat	password)	or	a	checkbox	“call	me	back”	and	the	check	to
ensure	the	second	field	contains	a	valid	phone	number.	This	is	the	purpose	of	object
validation.

For	demonstration	purposes	we	will	implement	a	method	that	checks	if	someone	entered
“Joomla”	as	the	Blog	title	and	“is	great”	as	the	description – so	we	can	prevent	this	from
happening.	Joomla	developers	can	feel	free	to	use	“Drupal”,	“Wordpress”	or	“42”	instead.

The	object	validator	must	be	named	exactly	the	same	as	the	object	(in	our	example:
BlogValidator)	and	stored	in	the	directory	Lobacher\Simpleblog\Domain\Validator
named	BlogValidator.php:

<?php

namespace	Lobacher\Simpleblog\Domain\Validator;

class	BlogValidator	extends	\TYPO3\CMS\Extbase\Validation\Validator\AbstractValidator	{

			/**

				*	Validates	the	given	value

				*

				*	@param	mixed	$object

				*	@return	bool

				*/

			protected	function	isValid($object)	{

								if	(preg_match('/Joomla/i',$object->getTitle())	&&

																preg_match('/is	great/i',$object->getDescription()))	{

												$this->result->forProperty('title')

																->addError(

																				new	\TYPO3\CMS\Extbase\Error\Error(

																								'Title	should	not	contain	"Joomla"!',	1389545446));

												$this->result->forProperty('description')

																->addError(

																				new	\TYPO3\CMS\Extbase\Error\Error(

																								'Description	should	not	contain	"is	great"!',	1389545440));

												return	FALSE;

								}	else	{

												return	TRUE;

								}

				}

}

?>

Similarly	to	the	property	validator	there	is	also	a	method	isValid(),	which	must	return
TRUE	or	FALSE.

The	difference	though	is	that	the	method	parameter	includes	the	whole	object	(the	Blog)
and	therefore	we	have	to	use	the	getters	to	access	the	properties.	Additionally,	the	error
statement	is	a	little	bit	more	complicated	because	it	is	necessary	to	define	which	property
threw	validation	errors	($this->result->forProperty(...))	as	well	as	“attaching”	one
or	more	error	objects	to	them	which	is	performed	by	->addError(...).

Figure	11.5.	Error	message	generated	by	object	validator

Bug	in	Validator	Resolver
Beginning	with	TYPO3	CMS	6.2.0	there	is	a	bug	in	the	Validator	Resolver
which	is	propably	not	solved	till	today.	The	bug	results	in	displaying	the	error
messages	twice	with	the	method	above.

So	you	could	either	patch	your	installation	with	the	file	found	here:
https://forge.typo3.org/projects/typo3cms-

core/repository/revisions/ae317f2ae12c7e3743b5b5810c89c7223c9a902c

or	you	can	comment	out	the	following	lines	in	the	file
typo3/sysext/extbase/Classes/Validation/ValidatorResolver.php

(aprox.	line	156:

												//	@todo:	remove	check	for	old	underscore	model	name	syntax	once	it's	possible

																								if	(strpbrk($methodParameter['type'],	'_\\')	===	FALSE)	{

																																$typeValidator	=	$this->createValidator($methodParameter['type']);

//																						}	elseif	(preg_match('/[_]Model[_]/',	$methodParameter['type'])	!==	FALSE)	{

//																										$possibleValidatorClassName	=	str_replace(array('\\Model\\',	'_Model_'),	array('\\Validator\\',	'_Validator_'),	$methodParameter['type'])	.	'Validator';

//																														$typeValidator	=	$this->createValidator($possibleValidatorClassName);

																								}	else	{

																																$typeValidator	=	NULL;

A	different	directory	for	object	validators
According	to	new	conventions,	all	validators	should	be	stored	in	the	directory
Classes/Validation/Validator/.	However	it	seems	that	Extbase	has	a	bug,
because	the	object	validator	requires	a	validator	in	the	directory
Classes/Domain/Validator.

Method
TYPO3\CMS\Core\Utility::translateModelNameToValidatorName()	seems
to	be	responsible	for	this	because	it	replaces	Domain/Model	with
Domain/Validator	and	not	with	Validation/Validator	as	required.

11.5.	Action	Validation

The	property	validator	is	responsible	for	the	property	itself,	the	object	validator	takes	care
of	the	object	and	the	action	validator	is	triggered	as	soon	as	the	action	of	a	controller	is
executed.

Sometimes	it	is	not	necessary	to	do	the	same	validation	at	every	action.	For	example,
when	a	new	user	is	created	you	typically	validate	his/her	email	address,	but	if	this	address
cannot	be	changed	when	you	edit	the	user	record	later,	you	do	not	want	or	need	to	validate
the	address	again.

In	order	to	tackle	this,	an	annotation	can	be	set	which	specifies	the	validation:

/**

	*	add	action	-	adds	a	blog	to	the	repository

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@validate	$blog	\Lobacher\Simpleblog\Validation\Validator\SpecialValidator

	*/

	public	function	addAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

	...

As	an	exercise,	the	following	example	checks	if	the	title	entered	matches	an	existing
Facebook	user.	We	will	use	a	so-called	service	class	to	perform	the	check.

First,	let’s	create	a	new	file	FacebookValidator.php,	stored	in	the	directory
typo3conf/ext/simpleblog/Classes/Validation/Validator:

<?php

namespace	Lobacher\Simpleblog\Validation\Validator;

class	FacebookValidator	extends	\TYPO3\CMS\Extbase\Validation\Validator\AbstractValidator	{

			/**

				*	API	Service

				*

				*	@var	\Lobacher\Simpleblog\Service\ExternalApiService

				*	@inject

				*/

			protected	$apiService;

			/**

				*	Object	Manager

				*

				*	@var	\TYPO3\CMS\Extbase\Object\ObjectManagerInterface

				*	@inject

				*/

			protected	$objectManager;

			/**

				*	Validates	the	given	value

				*

				*	@param	mixed	$value

				*	@return	bool

				*/

			protected	function	isValid($value)	{

						$apiValidationResult	=	$this->apiService->validateData($value);

						$success	=	TRUE;

						if	($apiValidationResult['title'])	{

									$error	=	$this->objectManager->get('TYPO3\\CMS\\Extbase\\Validation\\Error',

												$apiValidationResult['title'],	1389545453);

									$this->result->forProperty('title')->addError($error);

									$success	=	FALSE;

						}

						return	$success;

			}

}

?>

By	using	dependency	injection	we	can	fetch	our	service	class	(which	we	will	create	in	a
minute)	and	the	so-called	object	manager.	This	allows	us	to	load	the	error	class	in	the
method	isValid().	Then	we	pass	the	object	to	the	method	validateData()	of	the	API
service	class	inside	the	method	isValid()	in	order	to	check	the	validity.	In	theory	other
systems	such	as	an	Enterprise	Resource	Planning	(ERP)	system	could	be	included	at	this
point.

In	the	case	of	an	error	an	error	object	is	created	and	a	FALSE	response	is	returned.	Let’s
turn	towards	the	service	class,	which	we	store	as	a	new	file	ExternalApiService.php	in
the	directory	typo3conf/ext/simpleblog/Classes/Service/:

<?php

namespace	Lobacher\Simpleblog\Service;

class	ExternalApiService	implements	\TYPO3\CMS\Core\SingletonInterface	{

				/**

					*	@param	\Lobacher\Simpleblog\Domain\Model\blog	$blog

					*	@return	array

					*/

				public	function	validateData(\Lobacher\Simpleblog\Domain\Model\blog	$blog)	{

								$errors	=	array();

								$fb	=	file_get_contents('http://graph.facebook.com/'	.	preg_replace('/\s+/',	'',	$blog->getTitle()),false,

												stream_context_create(

																array(

																				'http'	=>	array(

																								'ignore_errors'	=>	true

)

)

));

								$fb	=	json_decode($fb,	true);

								if	(!$fb['error'])	{

												$errors['title']	=	'Titel	exists	as	an	user	at	Facebook	(ID	=	'.$fb['id'].'	/	URL	=	'.$fb['link'].')!';

								}

								return	$errors;

				}

}

?>

The	method	parameter	specifies	that	we	explicitly	expect	a	Blog.	Alternatively	we	could
also	build	this	in	a	more	generic	way	and	merely	request	an	entity	object.

The	validation	method	executes	an	HTTP	request	from	Facebook’s	Graph	API.	If	the	API
returns	something	we	can	assume	that	the	name	exists.	If	NULL	is	returned	from	the
external	API	there	is	no	Facebook	username	that	matches	the	Blog	title	entered	and	our
validation	returns	TRUE.

Finally,	we	have	to	attach	the	validation	to	an	action	in	the	controller
typo3conf/ext/simpleblog/Classes/Controller/BlogController.php.	The	action
addAction()	seems	to	be	a	good	choice	because	it	ensures	that	the	validation	only	occurs
when	a	new	object	is	created.

/**

	*	add	action	-	adds	a	blog	to	the	repository

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@validate	$blog	Lobacher.Simpleblog:Facebook

	*/

public	function	addAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

...

Figure	11.6.	Error	message,	if	user	exists	at	Facebook

11.6.	Error	Display	in	the	Form	Field

We	have	already	seen	how	to	show	an	error	message	at	the	top	of	the	form.	However	for
usability	purposes,	it	might	be	much	nicer	to	display	the	message	near	the	invalid	field.

11.6.1.	Option	1:	In-house	Means

Generally	speaking	the	error	message	can	be	positioned	at	the	element	and	if	you	look
closely	you	can	see	an	array	that	can	be	addressed	directly:

<f:form.validationResults	for="blog">

			<f:if	condition="{validationResults.flattenedErrors.title}">Error	in	Title!</f:if>

</f:form.validationResults>

The	if-condition	checks	if	a	key	title	exists	in	the	array	flattenedErrors,	which	in	turn	is
part	of	validationResults.

Our	aim	is	to	highlight	the	appropriate	label	of	the	form	in	the	colour	red	if	an	error	has
occurred:

<label	class="text-danger">Blog	Title</label>

The	problem	though,	is	that	we	cannot	include	the	<f:form.validationResults>
ViewHelper	in	the	<label>	tag	as	this	would	cause	a	syntax	error.	The	solution	is	to	use	an
alternative	notation	of	the	ViewHelper:	the	inline	syntax.

Almost	every	ViewHelper	can	be	used	in	inline	syntax.	Instead	of	angle	brackets,	curly
brackets	are	used	as	the	starting	delimiter	followed,	as	usual,	by	the	ViewHelper	name.
Parentheses	are	used	instead	of	spaces	and	contain	all	of	the	options	(comma-separated)
with	a	colon	between	the	option	name	and	value.

The	values	have	the	following	meanings:

''String''

Equates	to	a	string.
"String"

Equates	to	a	string,	too.
Object

This	is	obviously	an	object.
Object.Property

Addresses	a	property	of	an	object.
'This	is	an	{object	value}'

Outputs	a	string	which	contains	a	value	of	an	object.

Let’s	try	to	write	the	ViewHelper	as	inline	syntax:

<f:if	condition="{validationResults.flattenedErrors.title}">	class="text-danger"</f:if>

//	Inline	Syntax

{f:if(condition:validationResults.flattenedErrors.title,then:'	class="text-danger"')}

Once	the	inline-ViewHelper	has	been	added	to	the	label,	the	label	will	contain	the	CSS
class	text-danger	if	an	error	occurs.	It	is	important	to	wrap	the	<label>	tag	with

<form.validationResults>	ViewHelper	or	the	error	will	not	be	imported	and	therefore
not	available.

<f:form.validationResults	for="blog">

			<label{f:if(condition:validationResults.flattenedErrors.title,then:'	class="text-danger"')}>Blog	Title</label>

</f:form.validationResults>

11.6.2.	Option	2:	ViewHelper

Another,	more	convenient	option,	to	highlight	the	label	is	to	write	your	own	ViewHelper.
We	will	cover	this	in	more	detail	in	Chapter	13	but	the	following	provides	a	quick	glance
at	what	is	possible.

Firstly,	create	a	new	folder	ViewHelpers	under	Classes	and	store	a	new	file
HasErrorViewHelper.php	with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers;

class	HasErrorViewHelper	extends	\TYPO3\CMS\Fluid\ViewHelpers\Form\AbstractFormFieldViewHelper	{

			public	function	initializeArguments()	{

						$this->registerArgument('property',	'string',	'Name	of	object	property.',	TRUE);

			}

			/**

				*	@param	string	$then

				*	@param	string	$else

				*	@return	string

				*/

			public	function	render($then	=	'',	$else	=	'')	{

						$originalRequestMappingResults	=	$this->controllerContext->getRequest()->getOriginalRequestMappingResults();

						$formObjectName	=	$this->viewHelperVariableContainer->get('TYPO3\\CMS\\Fluid\\ViewHelpers\\FormViewHelper',		'formObjectName');

						$errors	=	$originalRequestMappingResults->forProperty($formObjectName)->forProperty($this->arguments['property']);

						if	($errors->hasErrors()	==	1)	{

									return	$then;

						}	else	{

									return	$else;

						}

			}

}

?>

Returning	to	the	template
typo3conf/ext/simpleblog/Resources/Partials/Blog/Form.html,	we	have	to	ensure
we	are	able	to	use	our	own	ViewHelpers	by	adding	a	name	space	declaration	at	the	top	of
the	file:

{namespace	tv	=	Lobacher\Simpleblog\ViewHelpers}

<h1>{headline}</h1>

...

Now,	we	can	use	the	ViewHelper	directly	at	the	label:

<label{tv:hasError(property:'title',then:'	class="text-danger"')}>Blog	Title</label>

The	benefits	are	obvious:

no	wrapper	ViewHelper	is	required;
no	complicated	array	is	required,	but	properties	can	still	be	accessed	as	options;	and,
the	ViewHelper	is	significantly	more	compact.

Please	note	that	the	ViewHelper	is	addressed	by	using	the	name	space	declared	above,
which	is	<tv:hasError>	and	not	<f:hasError>.

Chapter	12.	Relations

In	the	previous	chapters	we	focussed	on	Blogs,	now	we	will	explore	Posts.	Initially,	we
defined	a	1:n	relation	in	the	Extension	Builder,	which	means,	a	Blog	has	no	or	an	arbitrary
number	of	Posts.	This	chapter	will	answer	the	question,	how	relations	are	built.

12.1.	Relation	in	Domain	Model

First	of	all,	it	is	worth	having	a	look	at	the	domain	model,	e. g.	file
typo3conf/ext/simpleblog/Classes/Domain/Model/Blog.php:

class	Blog	extends	\TYPO3\CMS\Extbase\DomainObject\AbstractEntity	{

...

				/**

					*	The	posts	of	a	Blog

					*

					*	@var	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\Lobacher\Simpleblog\Domain\Model\Post>

					*	@lazy

					*/

				protected	$posts;

				/**

					*	__construct

					*

					*	@return	Blog

					*/

				public	function	__construct()	{

								//Do	not	remove	the	next	line:	It	would	break	the	functionality

								$this->initStorageObjects();

				}

				/**

					*	Initializes	all	ObjectStorage	properties.

					*

					*	@return	void

					*/

				protected	function	initStorageObjects()	{

								/**

									*	Do	not	modify	this	method!

									*	It	will	be	rewritten	on	each	save	in	the	extension	builder

									*	You	may	modify	the	constructor	of	this	class	instead

									*/

								$this->posts	=	new	\TYPO3\CMS\Extbase\Persistence\ObjectStorage();

				}

				/**

					*	Adds	a	Post

					*

					*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

					*	@return	void

					*/

				public	function	addPost(\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

								$this->posts->attach($post);

				}

				/**

					*	Removes	a	Post

					*

					*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$postToRemove	The	Post	to	be	removed

					*	@return	void

					*/

				public	function	removePost(\Lobacher\Simpleblog\Domain\Model\Post	$postToRemove)	{

								$this->posts->detach($postToRemove);

				}

				/**

					*	Returns	the	posts

					*

					*	@return	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\Lobacher\Simpleblog\Domain\Model\Post>	$posts

					*/

				public	function	getPosts()	{

								return	$this->posts;

				}

				/**

					*	Sets	the	posts

					*

					*	@param	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\Lobacher\Simpleblog\Domain\Model\Post>	$posts

					*	@return	void

					*/

				public	function	setPosts(\TYPO3\CMS\Extbase\Persistence\ObjectStorage	$posts)	{

								$this->posts	=	$posts;

				}

				...

}

Firstly,	it’s	obvious	that	the	type	of	the	relation	(1:n)	is	not	marked	as	such.	This	is
contrary	to	TYPO3	Flow,	which	uses	an	annotation	of	type
ORM\OneToMany(mappedBy="blog").	The	type	of	relation	is	stored	in	the	Table
Configuration	Array	(TCA),	which	we	will	analyse	later.

However	we	can	see	immediately	that	every	relation	is	marked	as	an	“Object	Storage”	of
\TYPO3\CMS\Extbase\Persistence\ObjectStorage<FQCN>	by	using	an	annotation.	The
object	storage	equates	the	“SplObjectStorage”[34]	to	a	large	extent	and	is	used	to	store
objects.	The	constructor	initialises	the	object	storage.

In	order	to	add	an	object	to	the	object	storage	or	to	remove	one	from	it,	commands	attach
and	detach	exist,	which	are	encapsulated	by	addPost	and	removePost.	The	setter	and
getter	work	adequately.

12.2.	The	Table	Configuration	Array	(TCA)

A	complete	explanation	of	the	TCA	could	fill	an	entire	book	of	itself	so	we	will	only	cover
the	parts,	which	are	relevant	for	Extbase.	A	comprehensive	introduction	of	the	TCA,
which	is	worth	a	read,	can	be	found	in	the	TYPO3	Core	Documentation.[35]

The	Table	Configuration	Array	(also	known	as	$TCA	or	TCA)	is	a	global	array	inside
TYPO3,	which	extends	the	database	table	definition	far	in	excess	of	the	possibilities	of
SQL	and	also	adds	metadata.	The	most	important	aim	of	the	TCA	is	the	provision	of	table
definitions,	which	can	be	edited	in	the	backend	of	TYPO3.

Database	tables	without	a	record	in	TCA	are	invisible	in	a	manner	of	speaking.	The	TCA
definition	is	(among	other	things)	responsible	for	the	following	areas:

relations	between	tables
configuration,	which	fields	should	be	displayed	in	the	backend	and	their	layout
how	the	fields	should	be	validated

The	array	can	be	extended	and	manipulated	without	any	limitations	by	custom	extensions.
This	means,	extensions	can	add	their	own	fields	to	existing	tables,	manipulate	the
configuration	of	existing	fields	or	introduce	new	fields	and	tables.

Per	convention,	the	TCA	of	extensions	resides	in	directory	Configuration/TCA/ – for
example	EXT:sys_note/Configuration/TCA/sys_note.php	or
typo3conf/ext/simpleblog/Configuration/TCA/Blog.php.

Let’s	have	a	look	at	the	folder	with	the	same	name	of	our	extension:

Figure	12.1.	TCA	directory	structure

Location	of	TCA	definitions
The	official	specification	requires	developers	to	store	the	TCA	in	a	folder
called	Configuration/TCA/.	A	good	example	is	the	system	extension
frontend:	all	TCA	files	are	named	as	the	appropriate	database	table,	e. g.
backend_layout.php	and	they	simply	return	the	array	of	the	TCA:

<?php

return	array(

				'ctrl'	=>	array(

								...

),

				'interface'	=>	array(

							...

),

				'columns'	=>	array(

								'title'	=>	array(

												...

),

								...

),

				'types'	=>	array(

								...

)

);

First	of	all,	let’s	open	file	ext_tables.php	because	the	TCA	will	be	included	by	a	specific
call	in	this	file.

$TCA['tx_simpleblog_domain_model_blog']	=	array(

				'ctrl'	=>	array(

								'title'	=>	'LLL:EXT:simpleblog/Resources/Private/Language/locallang_db.xlf:	tx_simpleblog_domain_model_blog',

								'label'	=>	'title',

								'tstamp'	=>	'tstamp',

								'crdate'	=>	'crdate',

								'cruser_id'	=>	'cruser_id',

								'dividers2tabs'	=>	TRUE,

								'versioningWS'	=>	2,

								'versioning_followPages'	=>	TRUE,

								'origUid'	=>	't3_origuid',

								'languageField'	=>	'sys_language_uid',

								'transOrigPointerField'	=>	'l10n_parent',

								'transOrigDiffSourceField'	=>	'l10n_diffsource',

								'delete'	=>	'deleted',

								'enablecolumns'	=>	array(

												'disabled'	=>	'hidden',

												'starttime'	=>	'starttime',

												'endtime'	=>	'endtime',

),

								'searchFields'	=>	'title,description,image,posts,',

								'dynamicConfigFile'	=>	\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::extPath($_EXTKEY)	.	'Configuration/TCA/Blog.php',

								'iconfile'	=>	\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::extRelPath($_EXTKEY)	.	'Resources/Public/Icons/tx_simpleblog_domain_model_blog.gif'

),

);

This	code	snippet	(which	exists	for	every	domain	object)	creates	the	skeletal	structure	of
the	TCA – the	“control	section”	(based	on	the	key	ctrl).	The	sub	key	dynamicConfigFile
includes	file	typo3conf/ext/simpleblog/Resources/Configuration/TCA/Blog.php	so
please	open	this	file	too.

$TCA['tx_simpleblog_domain_model_blog']	=	array(

				...

				'columns'	=>	array(

								...

								'title'	=>	array(

												'exclude'	=>	0,

												'label'	=>	'LLL:EXT:simpleblog/Resources/Private/Language/locallang_db.xlf:	tx_simpleblog_domain_model_blog.title',

												'config'	=>	array(

																'type'	=>	'input',

																'size'	=>	30,

																'eval'	=>	'trim,required'

),

),

								...

								'posts'	=>	array(

												'exclude'	=>	0,

												'label'	=>	'LLL:EXT:simpleblog/Resources/Private/Language/locallang_db.xlf:	tx_simpleblog_domain_model_blog.posts',

												'config'	=>	array(

																'type'	=>	'inline',

																'foreign_table'	=>	'tx_simpleblog_domain_model_post',

																'foreign_field'	=>	'blog',

																'maxitems'						=>	9999,

																'appearance'	=>	array(

																				'collapseAll'	=>	0,

																				'levelLinksPosition'	=>	'top',

																				'showSynchronizationLink'	=>	1,

																				'showPossibleLocalizationRecords'	=>	1,

																				'showAllLocalizationLink'	=>	1

),

),

),

),

);

The	(shortened)	code	representation	above	shows	that	for	every	database	table	field	a
configuration	exists – including	internal	fields,	which	are	required	by	TYPO3.

At	one	point,	field	properties	of	the	domain	object	follow,	such	as	title.	It	is	clearly
visible	that	the	field	shows	a	configuration	section	labelled	config.	One	of	the	elements	in
this	section	is	the	key	eval,	which	forces	a	validation,	if	the	field	contains	some	data
(required).	This	is	the	second	validation	in	TYPO3,	besides	the	@validate	NotEmpty
annotation,	as	mentioned	earlier.	It	ensures	that	a	value	really	exists.

Low-level	database	access
It	is	extremely	important	that	both	components – the	validation	annotation	as
well	as	the	TCA – are	in	sync.	If,	for	example,	the	NotEmpty	annotation	is
removed	but	required	in	TCA	remains,	Extbase	can	store	a	domain	object
with	an	empty	value	but	not	the	backend	because	the	latter	accesses	the	TCA.

The	second	half	of	the	TCA	shown	above	implements	the	relation.	The	type	of	the	relation
has	been	specified	as	'type'	=>	'inline',	which	is	a	special	type	of	relation.	It
assumes,	that	objects	connected	via	this	relation,	are	always	“subordinated”	to	a	parent
object	and	that	their	existence	would	be	pointless,	without	a	parent	object.	The	deletion	of
the	parent	object	could	also	result	in	the	deletion	of	all	child	objects.	This	is	a	valid
assumption	in	our	case	because	a	Post	without	a	Blog	does	not	make	any	sense.

If	you	want	to	prevent	this	from	happening,	simply	change	the	type	to	select.	In	this	case,
there	will	be	a	second	object	“connected”	to	the	first	one	but	without	a	parent/child
relationship.

At	the	same	time,	type	inline	also	makes	sure,	that	child	objects	can	be	created	inside	of
parent	objects,	without	the	need	to	reload	the	backend.	This	behaviour	is	called	Inline
Relational	Record	Editing	(IRRE).

The	two	following	configurations	foreign_table	and	foreign_field	configure	the
relation	even	further.	The	table,	to	which	a	relation	exists,	is	stated	in	foreign_table	and
the	field,	which	contains	the	identifier	of	the	source	table,	is	stated	in	foreign_field.

Technically	speaking,	with	a	1:n	relation	between	Blog	and	Post,	Extbase	stores	the	UID
of	the	Blog	in	field	blog	of	table	tx_simpleblog_domain_model_post	and	the	number	of
Posts	as	posts	in	table	tx_simpleblog_domain_model_blog.

12.3.	The	CRUD	Process	of	Posts

This	section	explains	how	to	implement	the	Posts	by	using	a	similar	CRUD	process	as	we
did	for	the	Blogs	before.	Let’s	start	with	the	single	view	of	Post.

12.3.1.	Preparation

In	order	to	create	Posts,	we	need	some	actions.	Therefore,	edit	file
typo3conf/ext/simpleblog/ext_localconf.php:

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::configurePlugin(

				'Lobacher.'	.	$_EXTKEY,

				'Bloglisting',

				array(

								'Blog'	=>	'list,addForm,add,show,updateForm,update,deleteConfirm,delete',

								'Post'	=>	'addForm,add,show,updateForm,update,deleteConfirm,delete',

),

				//	non-cacheable	actions

				array(

								'Blog'	=>	'list,addForm,add,show,updateForm,update,deleteConfirm,delete',

								'Post'	=>	'addForm,add,show,updateForm,update,deleteConfirm,delete',

)

);

As	we	can	see,	all	actions	have	been	added,	which	are	required	for	the	whole	CRUD
process.	Only	the	list	action	of	the	Post	controller	has	been	left	out,	which	would	list	the
Posts	in	the	single	view	of	a	Blog.

Open	the	template	of	the	show	action
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/Show.html:

...

				<dd>{blog.description}</dd>

</dl>

<f:if	condition="{blog.posts}">

				<ul	class="list-group">

								<f:for	each="{blog.posts}"	as="post">

												<li	class="list-group-item">{post.title}

																<f:link.action	action="deleteConfirm"	controller="Post"	arguments="{blog:blog,post:post}"	class="btn	btn-primary	btn-xs	pull-right">DEL</f:link.action>

																<f:link.action	action="updateForm"	controller="Post"	arguments="{blog:blog,post:post}"	class="btn	btn-primary	btn-xs	pull-right	margin-right">EDIT</f:link.action>

																<f:link.action	action="show"	controller="Post"	arguments="{blog:blog,post:post}"	class="btn	btn-primary	btn-xs	pull-right	margin-right">SHOW</f:link.action>

												

								</f:for>

				

</f:if>

<f:link.action	action="addForm"	controller="Post"	arguments="{blog:blog}"	class="btn	btn-primary">Create	Post</f:link.action>

<f:link.action	action="list"	class="btn	btn-primary">Back	to	Blog	List</f:link.action>

...

If	we	use	a	<f:if>	ViewHelper,	we	can	check	to	see	if	the	current	Blog	contains	any
Posts.	The	property	blog.posts	exists	for	exactly	this	reason.	If	there	are	posts	then	they
get	listed	in	a	<for	each…>	loop.	It	is	important	that	we	know	to	which	Blog	a	Post

belongs,	so	the	option	arguments	contains	the	current	Post,	which	can	be	addressed	by
post.	We	also	need	to	name	a	controller	in	the	link	to	the	Post	because	we	are	still	in	the
Blog	controller	context.

The	same	applies	to	the	link	to	create	new	Posts	but	the	option	arguments	does	not	require
the	post:post	value.

12.3.2.	Create	Posts

To	create	new	Posts,	we	need	an	action	addFormAction,	which	will	render	the	form.

Therefore,	we	need	the	following	code	inside	the	file
typo3conf/ext/simpleblog/Classes/Controller/PostController.php:

<?php

namespace	Lobacher\Simpleblog\Controller;

class	PostController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

								/**

									*	postRepository

									*

									*	@var	\Lobacher\Simpleblog\Domain\Repository\PostRepository

									*	@inject

									*/

								protected	$postRepository	=	NULL;

				/**

					*	Persistence	Manager

					*

					*	@var	\TYPO3\CMS\Extbase\Persistence\Generic\PersistenceManager

					*	@inject

					*/

				protected	$persistenceManager;

				/**

					*	addForm	action	-	displays	a	form	for	adding	a	post

					*

					*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

					*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

					*/

				public	function	addFormAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post	=	NULL)	{

								$this->view->assign('blog',$blog);

								$this->view->assign('post',$post);

				}

}

In	comparison	to	the	method	in	the	Blog	controller	with	the	same	name,	one	important
thing	has	changed:	we	have	to	pass-through	the	Blog	object.	This	is	why	it	appears	as	an
annotation,	as	a	parameter	in	the	method	signature	and	in	the	assignment	at	the	view.

It	is	important	that	optional	parameters	are	defined	after	mandatory	elements	in	the
method	signature	so	that	$blog	comes	first	and	$post	as	the	second	parameter	after	that.

This	method	is	ready	to	render	the	AddForm.html	template	of	the	Post	object	now.	Create	a
new	directory	Post	inside	typo3conf/ext/simpleblog/Resources/Private/Templates

and	a	new	file	AddForm.html	with	the	following	content:

<f:layout	name="default"	/>

<f:section	name="content">

<f:render	partial="Post/Form"	arguments="{headline:'Create	new	post',action:'add',submitmessage:'Create	Post!',blog:blog,post:post}"	/>

</f:section>

As	you	can	see,	the	code	has	been	rewritten	so	that	a	Post	can	be	created.

As	we	will	re-use	the	layout,	we	can	turn	to	the	partial	straight	away.	Create	a	new	folder
typo3conf/ext/simpleblog/Resources/Private/Partials/Post	and	a	file	Form.html
inside,	with	the	following	content:

<h1>{headline}</h1>

<f:form	action="{action}"	object="{post}"	name="post"	arguments="{blog:blog}"	additionalAttributes="{role:'form'}">

				<div	class="form-group">

								<label>Post	Title</label>

								<f:form.textfield	property="title"	class="form-control"	/>

				</div>

				<div	class="form-group">

								<label>Post	Content</label>

								<f:form.textarea	property="content"	class="form-control"	/>

				</div>

				<f:form.submit	value="{submitmessage}"	class="btn	btn-primary"	/>

</f:form>

This	time,	no	major	changes	happened	(compared	to	the	Blog	creation),	except	the	fact
that	we	pass	through	the	Blog	in	the	ViewHelper	form	by	using	the	option	arguments.

To	catch	the	form	data	after	a	submit,	we	also	need	an	addAction	in	the	Post	controller:

/**

	*	add	action	-	adds	a	post	to	the	repository

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	addAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$post->setPostdate(new	\DateTime());

				//$this->postRepository->add($post);

				$blog->addPost($post);

				$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\BlogRepository')->update($blog);

				$this->redirect('show','Blog',NULL,array('blog'=>$blog));

}

First,	we	accept	the	Blog,	which	has	been	passed-through,	as	well	as	the	new	Post,	in	the
method	signature.	We	can	set	the	current	time	stamp	postdate	at	the	beginning	of	the
method	or	in	the	constructor	of	the	domain	object.

If	could	expect	that	everything	can	be	done	by	writing	$this->postRepository-
>add($post).	This	way,	the	Post	can	be	stored	in	the	repository	but	does	not	have	a
connection	to	the	current	Blog.	Therefore	we	commented	out	this	line	of	code	again.

It	is	necessary	to	assign	the	Post	to	a	Blog.	This	happens	by	adding	$blog-
>addPost($post);.	This	was	a	requirement	in	versions	of	TYPO3	CMS	prior	to	6.1.
However	since	then,	you	have	to	update	the	object	explicitly,	with	received	child	objects
(or	remove	child	objects).

In	theory,	we	can	fetch	the	Blog	repository	by	using	Dependency	Injection	but	this	would
do	this	for	all	actions.	Instead,	we	should	get	the	repository	only	at	this	single	point,	which
can	be	achieved	with	the	“Object	Manager”	(it	is	loaded	in	the	controller	by	default).	The
main	purpose	of	the	Object	Manager	is	to	load	or	create	an	object.

Method	get()	loads	the	Blog	repository	and	the	update	is	done	by	executing	the	update()
method.

Finally,	we	need	to	redirect	the	user	back	to	the	action	show	of	the	Blog	controller	and	pass
the	appropriate	Blog	as	a	parameter	(this	is	the	fourth	parameter).	The	third	parameter
names	the	extension	but	due	to	the	fact	that	we	do	not	leave	it,	we	set	this	to	NULL.

Figure	12.2.	List	of	Posts	of	a	Blog

Exercise

As	an	exercise,	try	to	implement	the	remaining	steps	of	the	CRUD	process
yourself	and	compare	the	results	at	the	end	(or	after	each	step)	with	the
following	sections.	Based	on	the	knowledge	you	gained	so	far,	this	should
be	straightforward.

12.3.3.	Read	Posts

The	implementation	of	the	single	view	of	a	post	is	very	similar	to	the	Blog.	The
appropriate	action	in	file	ext_localconf.php	already	exists	so	we	do	not	need	to	worry
about	this.

Let’s	look	at	the	Post	controller
typo3conf/ext/simpleblog/Classes/Controller/PostController.php	and	add	the
following	action:

/**

	*	show	action	-	displays	a	single	post

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	showAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$this->view->assign('blog',$blog);

				$this->view->assign('post',$post);

}

As	before,	we	have	to	pass	through	the	Blog	because	we	would	like	to	redirect	to	the
action	show	of	the	Blog	controller	later.

Create	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/Show.html	with	the
following	content:

<f:layout	name="default"	/>

<f:section	name="content">

<h1>View	Post	(Blog:	{blog.title})</h1>

<dl	class="dl-horizontal">

				<dt>Post	Title:</dt>

				<dd>{post.title}</dd>

				<dt>Post	Content:</dt>

				<dd>{post.content}</dd>

</dl>

<f:link.action	action="show"	controller="Blog"	arguments="{blog:blog}"	class="btn	btn-primary">Back	to	Blog	List</f:link.action>

</f:section>

Figure	12.3.	Single	view	of	a	Post

12.3.4.	Update	Posts

Editing	(updating)	a	post	works	the	same	way	as	the	Blog.	Open	the	Post	controller:

/**

	*	updateForm	action	-	displays	a	form	for	editing	a	post

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	updateFormAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$this->view->assign('blog',$blog);

				$this->view->assign('post',$post);

}

/**

	*	update	action	-	updates	a	post	in	the	repository

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	updateAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$this->postRepository->update($post);

				$this->redirect('show','Blog',NULL,array('blog'=>$blog));

}

We	added	both	actions	required	at	the	same	time.	An	interesting	element	is	the	line	$this-
>postRepository->update($post);,	which	finds	the	record	in	the	database	automatically
and	updates	it.

We	also	need	a	template	UpdateForm.html	in	directory
typo3conf/ext/simpleblog/Resources/Private/Templates/Post:

<f:layout	name="default"	/>

<f:section	name="content">

<f:render	partial="Post/Form"	arguments="{headline:'Update	Post',action:'update',submitmessage:'Update	Post!',blog:blog,post:post}"	/>

</f:section>

12.3.5.	Delete	Posts

We	can	delete	a	post	by	using	a	two-step-process,	including	a	confirmation	page.	Let’s
start	with	the	Post	controller	again:

/**

	*	deleteConfirm	action	-	displays	a	form	for	confirming	the	deletion	of	a	post

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	deleteConfirmAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$this->view->assign('blog',$blog);

				$this->view->assign('post',$post);

}

/**

	*	delete	action	-	deletes	a	post	in	the	repository

	*

	*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

	*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

	*/

public	function	deleteAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

				$blog->removePost($post);

				$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\BlogRepository')->update($blog);

				$this->postRepository->remove($post);

				$this->redirect('show','Blog',NULL,array('blog'=>$blog));

}

The	deleteAction	not	only	deletes	the	Post	from	the	appropriate	repository	but	also
removes	the	relationship	between	Blog	and	Post.	This	is	not	required	necessarily	(Extbase
takes	care	of	this	automatically)	but	proves	a	clean	and	professional	style	of	software
development.

Finally,	we	need	a	template	for	the	confirmation	page,	which	we	can	create	under	the
name	DeleteConfirm.html	in	directory
typo3conf/ext/simpleblog/Resources/Private/Templates/Post	with	the	following
content:

<f:layout	name="default"	/>

<f:section	name="content">

<h1>Delete	Post?</h1>

Are	you	sure	you	want	to	delete	the	Post	entitled	{post.title}	(belongs	to	Blog	"{blog.title}")?

</br	>

<f:link.action	action="show"	controller="Blog"	arguments="{blog:blog}"	class="btn	btn-danger">Cancel</f:link.action>

<f:link.action	action="delete"	class="btn	btn-success"	arguments="{blog:blog,post:post}">Yes!</f:link.action>

</f:section>

Figure	12.4.	Deletion	of	a	Post

12.4.	m:n	Relations	Using	the	Example	of
Tags

Relations	of	type	m:n	are	implemented	by	using	an	intermediate	table	(in	our	case:
tx_simpleblog_post_tag_mm)	and	managed	automatically.	Strictly	speaking,	the
programming	is	nothing	new,	compared	with	the	programming	of	the	Posts	by	applying
the	CRUD	rules.	Extbase	takes	care	of	everything	required	to	resolve	these	types	of
relationships.

However	we	will	build	a	special	feature	into	the	code	by	abandoning	the	option	to	store
the	data	into	the	repository	and	set	the	property	of	the	relation	directly.

12.4.1.	Creation	of	Tags	in	the	Backend

As	the	first	step,	in	the	backend,	we	create	the	following	five	tags	in	the	folder	Tags,
which	we	have	created	before	(under	BlogData):

Golden	Retriever

Extbase

TYPO3	CMS

Rocky

Fluid

The	most	suitable	way	to	do	this,	is	by	using	the	module	List	and	then	by	clicking	the	green
plus	symbol	at	the	top	of	the	page.	Choose	Tag	in	section	Simple	Blog	Extension.

Figure	12.5.	Creation	of	the	five	Tags

12.4.2.	Repository	for	Tags

Tags	should	be	listed	when	creating	a	new	Post	so	that	the	user	can	select	them	straight
away.	First	we	have	to	retrieve	them,	which	means	that	we	should	use	a	repository	for	this.
Unfortunately,	this	repository	does	not	exist	yet	so	let’s	take	care	of	that	by	creating	a	new
file	typo3conf/ext/simpleblog/Classes/Domain/Repository/TagRepository.php	with
the	following	content:

<?php

namespace	Lobacher\Simpleblog\Domain\Repository;

class	TagRepository	extends	\TYPO3\CMS\Extbase\Persistence\Repository	{

}

?>

As	you	can	see,	the	class	is	empty.	This	is	not	a	problem	because	all	functions	required
exist	in	the	abstract	class	and	secondly,	we	do	not	need	any	further	functions	at	this	point
in	time.

12.4.3.	Post-Controller	Adjustments

In	order	to	show	the	Tags	in	the	form	where	users	can	create	new	Posts,	we	have	to
retrieve	them	in	the	action	method	of	the	Post-Controller.	Extend	file
typo3conf/ext/simpleblog/Classes/Domain/Controller/PostController.php	as
follows:

...

				public	function	addFormAction(

												\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

												\Lobacher\Simpleblog\Domain\Model\Post	$post	=	NULL)	{

								$this->view->assign('blog',$blog);

								$this->view->assign('post',$post);

								$this->view->assign('tags',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\TagRepository')->findAll());

				}

...

By	using	the	Object-Manager,	we	can	access	the	Tag	repository	and	fetch	all	Tags	with	the
findAll	call.	After	that,	we	assign	the	Tags	to	the	view	by	using	the	assign	function.

We	have	decided	to	use	this	approach	(rather	than	the	@inject	annotation	in	the	class
header)	because	we	only	need	to	access	the	Tag	repository	at	this	specific	point	in	our
extension	(and	later	for	a	second	time).	If	we	had	to	access	the	repository	in	nearly	all
actions,	the	annotation	approach	would	be	the	preferred	option.

In	order	to	allow	users	to	edit	Tags	later	on,	this	change	must	be	implemented	in	method
updateFormAction()	of	the	Post	controller	as	well.	So,	we	have	to	extend	file
typo3conf/ext/simpleblog/Classes/Domain/Controller/PostController.php,	too:

...

				public	function	updateFormAction(

												\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

												\Lobacher\Simpleblog\Domain\Model\Post	$post	=	NULL)	{

								$this->view->assign('blog',$blog);

								$this->view->assign('post',$post);

								$this->view->assign('tags',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\TagRepository')->findAll());

				}

...

12.4.4.	Templates	and	Partials	Adjustments

Let’s	continue	with	the	appropriate	template
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/AddForm.html,
where	we	pass	the	Tags	to	the	partial:

...

<f:render	partial="Post/Form"	arguments="{headline:'Create	new	Post',action:'add',submitmessage:'Create	Post!',blog:blog,post:post,tags:tags}"	/>

...

As	well	as	in	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/UpdateForm.html,
where	we	pass	the	Tags	to	the	partial,	too:

...

<f:render	partial="Post/Form"	arguments="{headline:'Create	new	Post',action:'add',submitmessage:'Create	Post!',blog:blog,post:post,tags:tags}"	/>

...

Adding	tags:tags	here	is	sufficient	to	access	the	Tags	in	the	partial
typo3conf/ext/simpleblog/Resources/Private/Partials/Post/Form.html:

...

				<div	class="form-group">

								<label>Post	Tags</label>

								<f:form.select	options="{tags}"	optionLabelField="tagvalue"	property="tags"	size="5"	multiple="1"	class="form-control"	/>

				</div>

				<f:form.submit	value="{submitmessage}"	class="btn	btn-primary"	/>

...

Finally,	the	list	of	tags	is	shown.

Figure	12.6.	List	Tags	in	Post	form

The	only	minor	issue	is	that	the	list	is	not	sorted.	We	can	easily	correct	this	by	adding	the
following	line	to	the	Tag	repository:

...

class	TagRepository	extends	\TYPO3\CMS\Extbase\Persistence\Repository	{

				protected	$defaultOrderings	=	array('tagvalue'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING);

}

...

Property	defaultOrderings	is	a	shortcut	to	avoid	writing	your	own	repository	method,
which	would	only	sort	the	data.	Additionally,	the	property	is	valid	for	all	query	methods,
until	it	is	explicitly	overwritten	by	$query->setOrderings().

Finally,	we	have	to	adjust	method	addAction	in	Post	controller	in	order	to	store	the	tags.

But	is	this	really	required?	If	we	look	at	the	partial	more	closely,	we	can	see	that	the	Tags
are	merely	properties	of	the	objects – the	same	as	title	or	content.	We	do	not	need	to
make	them	persistent	because	this	happens	with	the	object	automatically.	This	is	exactly
what	Extbase	does	with	a	property,	which	contains	a	relation.

This	means,	we	are	already	finished.	You	can	verify	this	by	accessing	the	data	set	in	the
backend:	all	selected	Tags	should	be	visible.

Figure	12.7.	Backend	view	of	the	Post	data	set

12.4.5.	Show	Tags	in	List

In	order	to	show	the	tags,	we	only	need	to	read	the	property	post.tags.	This	happens	in
file	typo3conf/ext/simpleblog/Resource/Private/Templates/Blog/Show.html.

...

												<li	class="list-group-item">{post.title}

																<f:for	each="{post.tags}"	as="tag">

																				{tag.tagvalue}

																</f:for>

																<f:link.action	action="deleteConfirm"	controller="Post"	arguments="{blog:blog,post:post}"	class="btn	btn-primary	btn-xs	pull-right">DEL</f:link.action>

...

Figure	12.8.	Tags	are	shown	at	the	Post	List

Attribute	iteration	in	for-ViewHelper

If	we	would	output	each	Tag	as	text	and	all	Tags	separated	by	a	delimiter
symbol	(e. g.	comma	or	slash),	this	would	result	in	a	trailing	symbol	at	the
end	of	the	list.	The	attribute	iteration	of	the	<f:for>	ViewHelper
addresses	this	problem.	This	allows	us	to	check	which	position	of	the
iteration	we	are	currently	in.	The	following	sub-properties	exist:	isFirst
(the	first	element	of	the	iteration),	isLast	(the	last	element	of	the	iteration),
isEven	(number	of	current	cycle	is	even),	isOdd	(number	of	current	cycle	is
odd),	cycle	(current	number	of	the	cycle)	and	index	(current	index	of	the
cycle,	which	is	cycle	minus	1).

<f:for	each="{post.tags}"	as="tag"	iteration="count">

				{tag.tagvalue}{f:if(condition:count.isLast,then:'',else:',')}

</f:for>

We	also	have	to	add	the	list	of	tags	to	the	template	Show.html	of	course.	Now	we	can	edit
the	file	typo3conf/ext/simpleblog/Resource/Private/Templates/Post/Show.html:

...

				<dd>{post.content}</dd>

				<dt>Post-Tags</dt>

				<dd><f:for	each="{post.tags}"	as="tag">

								{tag.tagvalue}

				</f:for></dd>

</dl>

...

12.5.	The	1:1	Relation	Using	the	Example	of
Authors

The	next	task	will	be	to	define	an	author	of	our	Posts.	This	requires	us	to	allow	the
selection	of	an	another	user?	as	the	first	step	and	to	use	the	currently	logged-in	frontend
user	as	the	second	step.

12.5.1.	Creation	of	Frontend	Users	and	Groups

The	preliminary	work	required	is	to	configure	the	system	so	that	different?	user	accounts
exist.	Due	to	the	fact	that	a	frontend	user	must	be	assigned	to	at	least	a	frontend	usergroup,
let’s	start	with	the	group.

Create	a	new	folder	in	the	page	tree	where	users	and	groups	will	be	stored	and	name	it	FE
Users.	In	this	folder,	create	a	new	usergroup	Blog.

Figure	12.9.	Create	new	frontend	usergroup

After	that,	two	frontend	users	are	to	be	added.	Use	the	following	data:

username:	rockylobacher,	password:	secretpassword,	usergroup:	Blog,	Name:
Rocky	Lobacher,	email:	rocky@lobacher.de
username:	patricklobacher,	password:	secretpassword,	usergroup:	Blog,	Name:
Patrick	Lobacher,	email:	patrick@lobacher.de

Figure	12.10.	Create	frontend	users

12.5.2.	Link	Domain	Object	author	to	fe_users	Table

In	principle	we	would	like	to	have	one	of	the	frontend	users	as	the	author	of	a	Post.	This
means,	we	have	to	link	the	domain	model	Author	to	the	database	table	fe_users.

In	order	to	do	this,	we	have	to	adjust	the	TypoScript	setup
typo3conf/ext/simpleblog/Configuration/TypoScript/Setup.txt:

plugin.tx_simpleblog	{

				...

				persistence	{

								storagePid	=	7,8,6

								...

								classes	{

												...

												Lobacher\Simpleblog\Domain\Model\Author	{

																mapping	{

																				tableName	=	fe_users

																				columns	{

																								name.mapOnProperty	=	fullname

																				}

																}

												}

								}

				}

}

...

}

This	adds	the	folder	of	the	FE	users	(this	is	UID	6	in	the	case	of	the	author	of	this	book)	as
an	additional	value	to	the	storagePid.	In	addition,	a	mapping	has	been	introduced
because	the	table	can	not	be	tx_simpleblog_domain_model_author	but	the	default	table
fe_users.	Finally,	column	name	of	table	fe_users	is	mapped	to	the	property	fullname	of
the	domain	object.

Next,	the	TCA	of	the	Post	has	to	be	updated.	Edit	the	file
typo3conf/ext/simpleblog/Configuration/TCA/Post.php:

								...

								'author'	=>	array(

												'exclude'	=>	0,

												'label'	=>	'LLL:EXT:simpleblog/Resources/Private/Language/locallang_db.xlf:	tx_simpleblog_domain_model_post.author',

												'config'	=>	array(

																'type'	=>	'select',

																'foreign_table'	=>	'fe_users',

																'minitems'	=>	0,

																'maxitems'	=>	1,

),

),

								...

We	change	the	type	from	inline	(this	allows	us	to	create	IRRE	data	sets)	to	select	(an
author	is	not	a	child-object	of	a	Post)	and	enter	the	name	of	the	table	we	would	like	to
retrieve	data	from	under	foreign_table.

If	we	go	to	the	backend	and	edit	a	Post,	we	can	already	see	that	there	is	a	select	box	with
frontend	users.	Unfortunately	with	usernames	rather	than	full	names	so	we	have	to	update
the	TCA	of	the	fe_users	table,	too.	Add	the	following	line	to	file
typo3conf/ext/simpleblog/ext_tables.php:

$TCA['fe_users']['ctrl']['label']	=	'name';

12.5.3.	Defining	the	Author	When	Creating	and	Editing	a
Post

We	proceed	in	an	analogical	sense	to	the	Tag	in	the	previous	section.	First,	we	need	an
author	repository,	which	we	create	as
typo3conf/ext/simpleblog/Classes/Domain/Repository/AuthorRepository.php	and
with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\Domain\Repository;

class	AuthorRepository	extends	\TYPO3\CMS\Extbase\Persistence\Repository	{

				protected	$defaultOrderings	=	array('fullname'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING);

}

?>

Then,	the	Post	controller
typo3conf/ext/simpleblog/Classes/Domain/Controller/PostController.php:

				public	function	addFormAction(

												\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

												\Lobacher\Simpleblog\Domain\Model\Post	$post	=	NULL)	{

								...

								$this->view->assign('tags',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\TagRepository')->findAll());

								$this->view->assign('authors',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\AuthorRepository')->findAll());

				}

				public	function	updateFormAction(

								\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

								\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

								...

								$this->view->assign('tags',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\TagRepository')->findAll());

								$this->view->assign('authors',	$this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\AuthorRepository')->findAll());

}

...

Similar	to	the	process	before,	we	simply	access	the	author	repository	and	pass	all	objects
to	the	view.

Now,	template	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/AddForm.html:

...

<f:render	partial="Post/Form"	arguments="{headline:'Create	new	Post',action:'add',submitmessage:'Create	Post!',blog:blog,post:post,tags:tags,authors:authors}"	/>

...

And	template	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/UpdateForm.html:

...

<f:render	partial="Post/Form"	arguments="{headline:'Update	Post',action:'update',submitmessage:'Update	Post',blog:blog,post:post,tags:tags,authors:authors}"	/>

...

We	only	added	authors:authors	here.

Then,	partial
typo3conf/ext/simpleblog/Resources/Private/Partials/Post/Form.html	should	be
slightly	adjusted:

				...

				<div	class="form-group">

								<label>Post-Author</label>

									<f:form.select	options="{authors}"	optionLabelField="fullname"	prependOptionLabel="Select	Author"	prependOptionValue="0"	property="author"	class="form-control"	/>

				</div>

				...

And	finally	the	name	of	the	author	in	template
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/Show.html:

...

				<dd>{post.content}</dd>

				<dt>Post	Author:</dt>

				<dd>{post.author.fullname}	(Email:	{post.author.email})</dd>

</dl>

...

12.5.4.	Logged-in	User	as	the	Author

Instead	of	selecting	the	author	manually,	it	is	better	to	use	the	currently	logged-in	frontend
user	automatically.	This	requires	a	login	form.

Create	a	new	page	in	the	backend	and	name	it	FE	Login	(in	our	example,	the	page	UID	is
12).

Figure	12.11.	Configuration	of	the	login	form	1

Then,	add	a	new	content	element	to	this	page	and	choose	Login	Form	(tab	Form	elements).	You
can	find	some	options	under	tab	Plugin.	One	of	them	is	the	box	User	Storage	Page,	where	we
select	the	folder	with	the	user	accounts	(in	our	example	UID	6),	which	we	created	before.
After	that,	we	change	to	tab	Redirects	and	choose	Defined	by	Referrer	under	Selected	Items.

Figure	12.12.	Configuration	of	the	login	form	2

Finally,	we	enable	the	checkbox	Use	First	Supported	Mode	from	Selection	and	save	our	changes
of	the	new	content	element.

At	this	point,	we	are	able	to	login	as	one	of	the	frontend	users.

A	typical	requirement	is	to	check,	if	a	frontend	user	is	currently	logged-in	and	if	not,	to
redirect	the	website	visitor	to	the	login	form	as	soon	as	he/she	tries	to	access	the	Post
controller.	The	initializeAction()	of	the	post	controller	is	perfectly	suited	for	this	job
so	let’s	edit	file
typo3conf/ext/simpleblog/Classes/Domain/Controller/PostController.php	as
follows:

				...

				public	function	initializeAction()	{

								$action	=	$this->request->getControllerActionName();

								//	check,	if	a	different	action	than	"show"	was	executed

								if	($action	!=	'show')	{

												//	redirect	to	the	login	page	(UID=12),	if	user	is	not	logged-in

												if	(!$GLOBALS['TSFE']->fe_user->user['uid'])	{

																$this->redirect(NULL,	NULL,	NULL,	NULL,	12);

												}

								}

				}

				...

The	initializeAction	is	executed	before	every	other	action	so	we	can	use	that	method	to
check	the	status	of	the	current	visitor/user.	Only	the	action	show	does	not	need	this	kind	of
check	because	users	not	logged	in	should	be	able	to	read	Posts	of	course.

The	array	$GLOBALS['TSFE']->fe_user->user['uid']	contains	a	value,	if	a	frontend
user	is	currently	logged-in,	otherwise	it	is	not	set.	By	checking	this	and – in	case	it	is	not
set – redirecting	the	user	to	the	login	form,	we	can	achieve	what	we	are	after.

In	our	example,	the	UID	is	12	(make	sure	to	set	the	correct	UID	of	the	page	with	the	login
form	you	created)	but	we	recommend	not	to	hard-code	the	value	in	the	source	code.	It
would	be	much	better	to	enable	integrators	to	configure	the	page	UID	in	TypoScript	(e. g.
plugin.tx_simpleblog.settings.loginpage	=	12)	nand	to	set	this	configuration	value
dynamically	in	your	code	(e. g.	$this->redirect(NULL,	NULL,	NULL,	NULL,	$this-
>settings['loginpage']);.

Let’s	remove	the	author	selection	from	the	partial
typo3conf/ext/simpleblog/Resources/Private/Partials/Post/Form.html	again,	as
well	as	the	transfer	of	the	authors	in	templates
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/AddForm.html	and
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/UpdateForm.html.

Then,	we	should	also	remove	the	retrieval	of	the	authors	from	the	addFormAction()	and
updateFormAction()	in	the	Post	controller
typo3conf/ext/simpleblog/Classes/Domain/Controller/PostController.php.
However	we	have	to	adjust	addAction()	as	follows:

...

				public	function	addAction(

												\Lobacher\Simpleblog\Domain\Model\Blog	$blog,

												\Lobacher\Simpleblog\Domain\Model\Post	$post)	{

								$post->setPostdate(new	\DateTime());

								$post->setAuthor($this->objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\AuthorRepository')->findOneByUid($GLOBALS['TSFE']->fe_user->user['uid']));

								$blog->addPost($post);

...

As	you	can	see,	we	get	the	UID	of	the	current	user	by	$GLOBALS['TSFE']->fe_user-
>user['uid']	and	retrieve	the	author	object	by	executing	method	findOneByUid()	of	the
author	repository.	This	is	set	via	the	setter	setAuthor()	of	the	Post	object	and	the	author	is
assigned	correctly.

12.6.	Comments	&	AJAX

We	have	implemented	all	domain	objects	now,	which	means,	the	remaining	element	is	the
comments.	In	theory,	the	functionality	to	show	and	process	comments	could	be	developed
by	using	the	CRUD	process	again	(with	a	custom	controller	for	example)	but	from	a
usability	perspective,	there	is	a	more	efficient	method.

It	would	be	better	to	let	users	add	a	comment	directly	at	the	single	view	of	a	Post.	Also,
with	the	use	of	AJAX,	we	could	store	the	new	comment	when	a	user	clicks	the	Submit
button	and	update	the	list	of	comments	straight	away.

The	example	in	this	section	also	shows	how	to	deal	with	AJAX	inside	Extbase.

Generally	speaking,	our	requirement	should	be	to	implement	an	AJAX	action,	which	will
store	the	new	comment	and	return	the	list	of	existing	comments.	This	should	happen
entirely	in	the	background	and	the	data	returned	should	not	be	HTML	but	JSON.

12.6.1.	Registering	the	AJAX	Action

As	before,	the	action	has	to	be	registered	in	file	ext_localconf.php.	Add	the	name	of
action	ajax	to	the	post	object:

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::configurePlugin(

				...

				array(

								...

								'Post'	=>	'addForm,add,show,updateForm,update,deleteConfirm,delete,ajax',

),

				array(

								...

								'Post'	=>	'addForm,add,show,updateForm,update,deleteConfirm,delete,ajax',

)

);

12.6.2.	Display	of	Comments

Next	we	have	to	expand	the	show	template	of	the	Post	controller	to	display	the	comments.
Edit	file	typo3conf/ext/simpleblog/Resources/Private/Templates/Post/Show.html
accordingly:

...

<dd>{post.author.fullname}	(Email:	{post.author.email})</dd>

</dl>

<h3>Comments</h3>

<f:form	action="ajax"	name="comment"	object="{comment}"	arguments="{post:post}">

				<f:form.textarea	property="comment"	id="commentfield"	/>

				<f:form.submit	value="Submit	comment"	class="btn	btn-primary	btn-xs"	id="commentsubmit"	/>

</f:form>

<ul	class="list-group"	id="comments">

<f:for	each="{post.comments}"	as="comment"	reverse="TRUE">

				<li	class="list-group-item">{comment.comment}	(<f:format.date	format="Y-m-d	H:i:s">{comment.commentdate}</f:format.date>)

</f:for>

//	JavaScript	function

<f:link.action	action="show"	controller="Blog"	arguments="{blog:blog}"	class="btn	btn-primary">Back	to	Blog	list</f:link.action>

</f:section>

The	code	above	shows	a	form,	which	is	responsible	for	the	object	comment.	It	contains
only	one	field,	which	has	the	same	name:	comment.	This	field	will	store	the	comment.

Below	the	form,	the	comments	are	listed	inside	the	<f:for>	ViewHelper	by	iterating	the
property	{post.comments}.	The	attribute	reverse	ensures,	that	the	first	entry	appears	at
the	top	of	the	list,	this	means	that	the	latest	comment	is	shown	first.

12.6.3.	JavaScript	Handler

Now	let’s	add	the	JavaScript	function	to	the	same	template	file	Show.html,	at	the	position
//	JavaScript	function:

<script	type="text/javascript">

				$(document).ready(function(){

								$('#commentsubmit').click(function(){

												var	ajaxURL	=	'<f:uri.action	action="ajax"	controller="Post"	pageType="99"	arguments="{post:post}"	noCacheHash="1"	/>';

												var	form	=	$('form');

												$.post(ajaxURL,	form.serialize(),	function(response)	{

																console.log(response);

																var	items	=	[];

																$.each(response,	function(key,	val)	{

																				items.push('<li	class="list-group-item">'	+	val.comment	+	'	('	+	val.commentdate.date	+	')'	+	'');

																});

																$('#comments').html(items.reverse().join(''));

																$('#commentfield').val('');

												});

												return	false;

								});

				});

</script>

This	JavaScript	works	as	follows:

As	soon	as	the	DOM	is	completely	loaded	($(document).ready(function()),	a
click-handler	is	applied	to	the	submit	button	with	the	ID	#commentsubmit.
If	a	user	clicks	this	button,	an	AJAX	function	$.post	is	executed.	The	first	parameter
of	this	function	is	the	URL	to	request,	the	second	contains	the	serialised	form	data
and	the	third	is	a	callback	function,	which	will	be	executed	automatically,	as	soon	as
the	AJAX	function	returns	any	data.
The	URL	is	built	by	the	<f:uri.action>	ViewHelper	and	contains	the	action	ajax,
as	well	as	the	current	Post:	arguments="{post:post}".	In	addition,	attribute
pageType="99"	sets	a	new	page	type,	which	will	deliver	the	JSON	response.
Once	the	request	is	successful	and	the	callback	function	is	executed,	the	response	is
logged	in	the	console	(can	be	reviewed	with	the	usually	build-in	developer	tools	of
your	browser).
After	that,	the	JSON	data	is	being	parsed	and	each	entry	is	wrapped	in	...
tags.
Function	reverse	inverts	the	order	of	the	array	so	that	the	newest	comment	appears
at	the	top	of	the	list	again	and	the	content	of	<ul	id="comments">...	is
replaced	by	the	data.
Finally,	the	form’s	input	field	is	emptied.

console.log	and	IE
In	Microsoft’s	Internet	Explorer,	the	object	console	is	not	available	until	the
developer	tools	have	been	enabled	(F12).	Otherwise,	issues	may	occur.[36]

12.6.4.	AJAX	Action	in	Post	controller

Before	turning	to	the	AJAX	action,	we	have	to	correct	a	minor	issue	in
initializeAction().	Edit	file
typo3conf/ext/simpleblog/Classes/Controller/PostController.php	as	follows:

	public	function	initializeAction()	{

								$action	=	$this->request->getControllerActionName();

								if	($action	!=	'show'	&&	$action	!=	'ajax')	{

								...

We	add	the	action	ajax	to	the	list	of	actions,	which	can	be	accessed	without
authentication.	You	could	also	extend	this	example	and	require	users	to	login	before	they
can	submit	comments.

Then,	create	the	new	action	ajaxAction()	as	shown	below.	We	have	chosen	the	name
ajaxAction	for	didactic	reasons.	In	production,	it	might	be	wiser	to	choose	a	name	that
describes	the	purpose	better,	e. g.	addCommentViaAjaxAction().

				/**

					*	@param	\Lobacher\Simpleblog\Domain\Model\Post	$post

					*	@param	\Lobacher\Simpleblog\Domain\Model\Comment	$comment

					*	@return	bool|string

					*/

				public	function	ajaxAction(

								\Lobacher\Simpleblog\Domain\Model\Post	$post,

								\Lobacher\Simpleblog\Domain\Model\Comment	$comment	=	NULL)	{

								//	if	comment	is	empty,	do	not	make	it	persistent

								if	($comment->getComment()=="")	return	FALSE;

								//	set	datetime	of	comment	and	add	comment	to	Post

								$comment->setCommentdate(new	\DateTime());

								$post->addComment($comment);

								$this->postRepository->update($post);

								$this->objectManager->get('TYPO3\\CMS\\Extbase\\Persistence\\Generic\\PersistenceManager')->persistAll();

								$comments	=	$post->getComments();

								foreach	($comments	as	$comment){

												$json[$comment->getUid()]	=	array(

																				'comment'=>$comment->getComment(),

																				'commentdate'	=>	$comment->getCommentdate()

);

								}

								return	json_encode($json);

				}

Firstly,	the	method	has	two	input	parameters:	the	Post	$post	has	been	passed	as	an
argument	array	and	the	comment	$comment	reflects	the	content	of	the	form – both	set	in
the	show	action	of	the	Post	controller.	In	the	case	that	the	comment	is	empty,	we	added	=

NULL.	The	first	thing	we	do	in	the	method	body	is	to	check	if	the	comment	is	empty	and	if
so,	return	FALSE	and	end	the	action	straight	away.

If	the	comment	is	valid,	we	set	the	time	stamp	of	the	comment	and	add	it	to	the	Post,
which	requires	to	update	its	repository.	After	that,	we	make	the	record	persistent	by
executing	method	persistAll()	of	the	persistence	manager.

Finally,	we	iterate	all	comments	of	the	Post	(which	also	includes	the	new	comment	now)
and	build	an	array.	This	array	contains	the	UIDs	as	its	keys	and	sub-arrays	with	comments
and	their	creation	time	stamps.	In	the	end	the	array	is	converted	into	a	JSON	format	and
returned.

12.6.5.	Define	AJAX	Page	Type	in	TypoScript

Unfortunately,	as	the	output	stands	now,	it	contains	all	data	from	the	TYPO3	framework,
which	is	not	usable	at	this	point.	We	defined	a	specific	page	type	in	the	JavaScript	code
already	but	we	have	not	configured	it	yet.	So,	edit	file
typo3conf/ext/simpleblog/Configuration/TypoScript/setup.txt	and	add	the
following	to	it	at	the	end:

ajax	=	PAGE

ajax	{

				typeNum	=	99

				config	{

								disableAllHeaderCode	=	1

								additionalHeaders	=	Content-type:application/json

								xhtml_cleaning	=	0

								admPanel	=	0

								debug	=	0

				}

				10	<	tt_content.list.20.simpleblog_bloglisting

}

The	option	typeNum	=	99	defines	the	appropriate	page	type.	Make	sure,	this	number	is	not
used	yet,	or	choose	a	different	number,	possibly	with	a	much	higher	value.	If	you	do	so,	do
not	forget	to	adjust	the	number	in	the	JavaScript	function,	too.

All	headers	are	removed	by	the	configuration	disableAllHeaderCode	and	a	proper	JSON
content	type	is	set	by	additionalHeaders.	The	remaining	settings	are	default	settings	and
therefore	we	can	copy	them	by	using	10	<
tt_content.list.20.simpleblog_bloglisting.

In	the	chapter	“Best	Practices”	we	will	learn	how	to	create	this	from	scratch	by	using
Bootstrap	functions,	the	controller,	an	action	and	a	few	additional	parameters.

At	this	point,	our	AJAX	comment	function	is	ready	to	use.	To	test	it,	access	a	Post	and
enter	a	comment.	On	submit,	the	list	of	comments	gets	updated	and	it	includes	the	new
entry.

Figure	12.13.	Add	Comments	Via	AJAX

Commenting	for	logged-in	users	only

As	an	exercise,	you	could	re-build	the	commenting	function	so	that	only
authenticated	users	may	post	comments.	The	mechanism	is	similar	to	the
one	we	used	for	the	authors	but	with	the	difference,	that	a	user	registration
is	also	needed	because	we	do	not	know	the	authors	comments	in	advance.
The	extension	femanager[37]	could	be	used	for	this	purpose.	Another	option
is	to	ask	visitors	for	their	name	and	email	address	when	they	enter	a
comment.	In	this	case,	the	domain	model	and	form	needs	to	be	adjusted
accordingly.	If	you	want	to	restrict	comments	to	logged-in	users,	a
ViewHelper	can	be	useful,	which	shows	the	form	only,	if	the	user	is
authenticated.	If	not,	a	link	to	a	login	form	is	shown	instead:

<f:security.ifAuthenticated>

				<f:then>

								User	is	logged	in!

				</f:then>

				<f:else>

								User	is	*not*	logged	in!

				</f:else>

</f:security.ifAuthenticated>

However	this	is	“security	by	obscurity”	because	the	action	is	executable
anyway.	An	additional	check	in	the	action	should	be	taken	for	granted.

You	might	wonder	why	we	reload	all	the	comments	and	not	just	the	one	we	submitted?
The	reason	for	this	is	that	the	form	can	be	accessed	and	another	comment	submitted	by

someone	else	at	the	same	time.	If	we	only	retrieved	and	displayed	our	own	entry,	we
would	not	see	other	comments	until	the	page	is	reloaded.

[34]	http://php.net/manual/en/class.splobjectstorage.php

[35]	http://docs.typo3.org/typo3cms/TCAReference/

[36]	Further	details	and	workarounds	are	available	at:	http://stackoverflow.com/questions/690251/what-happened-to-
console-log-in-ie8

[37]	http://typo3.org/extensions/repository/view/femanager

http://php.net/manual/en/class.splobjectstorage.php
http://docs.typo3.org/typo3cms/TCAReference/
http://stackoverflow.com/questions/690251/what-happened-to-console-log-in-ie8
http://typo3.org/extensions/repository/view/femanager

Chapter	13.	Creating	Your	Own
ViewHelpers

ViewHelpers	are	PHP	classes,	which	support	the	view	logic	and	are	used	in	Fluid.	They
usually	come	into	play	when	Fluid’s	standard	set	of	functions	are	not	sufficient	for	a
specific	task.

Currently,	Fluid	is	shipped	with	approximately	100	ViewHelpers	(they	are	stored	in
directory	typo3/sysext/fluid/Classes/ViewHelpers/)	but	you	can	also	create	your
own.

There	are	usually	four	types	of	ViewHelpers:

Text-ViewHelper
Generate	any	kind	of	texts,	e. g.	markup.

Tag-ViewHelper
Render	a	HTML	tag	and	outputs	this.

If-ViewHelper
Make	decisions,	based	on	conditions	and	branch	into	either	“in-this-case”	(then)	or
“is-not-the-case”	(else).

Widget-ViewHelper
Have	their	own	controller	and	their	own	view	and	are	used	predominately	when	an
additional	control	structure	is	required.

13.1.	Namespace	Declaration

In	order	to	use	a	ViewHelper	(except	all	built-in	ViewHelpers),	a	namespace	declaration
needs	to	be	added	to	every	template	(layout,	partial).	This	declaration	contains	the
acronym	of	the	namespace	(e. g.	f	for	build-in	ViewHelpers)	and	the	directory,	where	the
PHP	class	is	stored.

The	namespace	declaration	is	stated	as	follows:

{namespace	abbreviation	=	file	system	path}

For	example:

{namespace	pl	=	Lobacher\Simpleblog\ViewHelpers}

The	number	of	declarations	is	not	limited	but	acronyms	must	be	unique.

TYPO3	resolves	the	path	as	follows:

First,	TYPO3	checks,	if	a	directory	simpleblog	exists	under	typo3conf/ext/
If	it	does	not	exist,	directory	typo3/sysext/	is	checked
Then,	directory	Classes/ViewHelpers/	is	used	as	a	reference
If	a	ViewHelper	with	the	appropriate	name	is	used,	Extbase	searches	for	a	file
[ViewHelperName]ViewHelper.php	in	this	directory
If	the	ViewHelper	contains	a	dot	(e. g.	format.html),	the	last	element	always	builds
the	name	of	the	ViewHelper	(in	this	case	HtmlViewHelper.php)	and	all	elements
before	(an	arbitrary	number	of	elements)	are	sub-directories.

13.2.	Text	ViewHelper

Text	ViewHelpers	return	any	kind	of	text,	which	could	be	markup	texts	such	as	HTML	or
XML	too.	This	type	is	always	derived	from	the	abstract	class
\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractViewHelper.

For	our	Blog,	we	will	implement	a	ViewHelper,	which	retrieves	a	value	from	the	TSFE
(TypoScript	Frontend).	This	can	be	used	to	output	the	page	title	or	the	last	name	of	the
currently	logged-in	user	for	example.

Create	a	new	file
typo3conf/ext/simpleblog/Classes/ViewHelpers/TsfeViewHelper.php	with	the
following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers;

class	TsfeViewHelper	extends	\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractViewHelper	{

				/**

					*	@param	$key	string

					*	@return	string

					*/

				public	function	render($key)	{

								if	($key	===	NULL)	{

												return	'';

								}	else	{

												return	$this->getTsfeValue('TSFE|'.$key);

								}

				}

				public	function	getTsfeValue($keyString)	{

								$keys	=	explode('|',	$keyString);

								$numberOfLevels	=	count($keys);

								$rootKey	=	trim($keys[0]);

								$value	=	$GLOBALS[$rootKey];

								for	($i	=	1;	$i	<	$numberOfLevels	&&	isset($value);	$i++)	{

												$currentKey	=	trim($keys[$i]);

												if	(is_object($value))	{

																$value	=	$value->{$currentKey};

												}	elseif	(is_array($value))	{

																$value	=	$value[$currentKey];

												}	else	{

																$value	=	'';

																break;

												}

								}

								if	(!is_scalar($value))	{

												$value	=	'';

								}

								return	$value;

				}

}

Every	ViewHelper	must	feature	a	method	render(),	that	returns	the	content.	As	the	input
parameters,	either	specific	arguments	(in	our	example:	$key)	or	the	content	between	the
opening	and	closing	tag	can	be	used.

13.2.1.	Parameter	Via	Attribute

We	will	use	the	method	via	an	argument	and	place	the	ViewHelper	into	the	template
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html	as	shown
below.

{namespace	pl	=	Lobacher\Simpleblog\ViewHelpers}

<f:layout	name="default"	/>

...

<h1>Blog	List</h1>

<h3><pl:tsfe	key="page|subtitle"	/></h3>

...

Via	parameter	$key	in	method	render(),	we	can	access	the	values	of	the	attribute
key="page|subtitle"	of	the	ViewHelper	and	process	them.	It	is	important	that	attribute
name	and	method	parameter	have	the	same	names.

This	works	perfectly	fine	and	is	intuitive,	as	long	as	you	do	not	have	too	many	attributes.
If	the	number	grows,	you	should	consider	using	the	dedicated	method
registerArgument(),	which	is	available	in	method	initializeArguments():

...

class	TsfeViewHelper	extends	\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractViewHelper	{

				public	function	initializeArguments()	{

								$this->registerArgument('key',	'string',

												'This	is	the	TSFE	key	e.g.	page|title',	TRUE);

				}

				/**

					*	@return	string

					*/

				public	function	render()	{

								if	($this->arguments['key']	===	NULL)	{

												return	'';

								}	else	{

												return	$this->getTsfeValue('TSFE|'.$this->arguments['key']);

								}

				}

				...

Method	registerArgument	is	defined	as	follows:

protected	function	registerArgument($name,	$type,	$description,	$required	=	FALSE,	$defaultValue	=	NULL)	{

$name

Contains	the	name	of	the	argument,	which	is	to	be	registered.
$type

Contains	the	type	(e. g.	string,	boolen,	etc.).
$description

Allows	us	to	store	a	description.

$required

FALSE	(this	is	the	default),	which	means	the	agument	is	optional.	If	you	want	to	make
it	mandatory,	set	this	parameter	to	TRUE.

$defaultValue

Sets	a	default	value,	which	will	be	used,	if	the	argument	is	empty	or	does	not	exist.

13.2.2.	Parameter	Via	Content

There	is	an	additional	method	of	how	to	access	the	input	for	a	ViewHelper.	Everything
between	the	opening	and	closing	ViewHelper	tag	can	be	used	as	the	input	data.

The	Method	$this->renderChildren()	takes	care	of	this	by	rendering	the	data,	even	if
they	contain	further	ViewHelpers.

				public	function	initializeArguments()	{

								$this->registerArgument('key',	'string',

												'This	is	the	TSFE	key	e.g.	page|title',	FALSE);

				}

				/**

					*	@return	string

					*/

				public	function	render()	{

								$key	=	($this->arguments['key'])	?	$this->arguments['key']	:	$this->renderChildren();

								if	($key	===	NULL)	{

												return	'';

								}	else	{

												return	$this->getTsfeValue('TSFE|'.$key);

								}

				}

The	parameter	required	must	be	set	to	FALSE	at	the	registration.	Then,	inside	method
render()	it	is	checked,	if	an	argument	key	has	been	passed.	If	not,	the	data	between	the
tags	is	read	by	the	function	call	$this->renderChildren().

The	implementation	of	the	ViewHelper	in	the	view	looks	like	this:

<h3><pl:tsfe>page|title</pl:tsfe></h3>

The	content	page|title	could	also	come	from	another	ViewHelper	now.

13.3.	Tag	ViewHelper

The	Tag	ViewHelper	outputs	XML	and	therefore	extends	the	text	ViewHelper	described
before.

It	derives	from	the	abstract	class
\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractTagBasedViewHelper.

In	order	to	demonstrate	this	ViewHelper,	we	will	show	a	“Gravatar” – a	specific	image
based	on	an	email	address.[38]

Create	a	new	file
typo3conf/ext/simpeblog/Classes/ViewHelpers/GravatarViewHelper.php	with	the
following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers;

class	GravatarViewHelper	extends	\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractTagBasedViewHelper	{

				protected	$tagName	=	'img';

				public	function	initializeArguments()	{

								$this->registerArgument('email',	'string',

												'Email	for	lookup	at	gravatar	database',	FALSE);

								$this->registerArgument('size',	'integer',

												'Size	of	gravatar	picture',	FALSE,	100);

				}

				/**

					*	@return	string	the	HTML	-Tag	of	the	gravatar

					*/

				public	function	render()	{

								$email	=	($this->arguments['email']	!==	NULL)	?	$this->arguments['email']	:	$this->renderChildren();

								$gravatarUri	=	'http://www.gravatar.com/avatar/'	.	md5($email)	.	'?s='	.	urlencode($this->arguments['size']);

								$this->tag->addAttribute('src',	$gravatarUri);

								return	$this->tag->render();

				}

}

The	protected	variable	$tagName	specifies	the	HTML	tag,	which	will	be	used	later,	when
the	output	is	rendered	in	$this->tag->render().	Without	this	variable,	the	ViewHelper
would	return	a	<div>-tag.

After	that,	two	arguments	are	registered:	email	(the	email	address)	and	size	(the	size	of
the	Gravatar	in	pixels,	default	value	is	100px).

Inside	the	obligatorily	method	render(),	argument	email	is	read.	If	this	argument	does	not
exist,	the	ViewHelper	tries	to	find	an	email	address	by	$this->renderChildren().

Next,	the	URL	is	built	by	appending	the	MD5	hash	of	the	email	address	to	the	URL	of	the
Gravatar	service.	Parameter	?s=	defines	the	size	of	the	image.

Finally,	the	URL	is	added	as	the	src	attribute	by	the	$this->tag->addAttribute()	call
and	the	tag	is	rendered	and	returned.

The	ViewHelper	is	now	ready	to	be	used	in	template
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/Show.html	to	display
the	Gravatar	as	an	image:

{namespace	pl	=	Lobacher\Simpleblog\ViewHelpers}

<f:layout	name="default"	/>

...

				<dt>Post	Author:</dt>

				<dd>{post.author.fullname}	(email:	{post.author.email})

				

				<pl:gravatar>{post.author.email}</pl:gravatar></dd>

</dl>

Figure	13.1.	Custom	ViewHelper	shows	Gravatar

To	register	attributes	such	as	class,	dir,	id,	lang,	style,	title,	accesskey,	tabindex	or
onclick	method	$this->registerUniversalTagAttributes();	provides	a	nice	shortcut.

Calling	this	function	method	initializeArguments()	registers	the	attributes	listed	above.

13.4.	If	ViewHelper

As	pointed	out	before,	the	If	ViewHelper	checks	a	condition	and	branches	into	either	“in-
this-case”	(then)	or	“is-not-the-case”	(else).

ViewHelpers	of	this	type	always	derive	from	abstract	class
\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractConditionViewHelper.

The	example	ViewHelper	in	this	section	checks,	if	we	are	in	the	frontend	context.	If	this	is
the	case,	the	Then-ViewHelper	is	executed,	otherwise	the	Else-ViewHelper.	This
ViewHelper	will	become	very	important	when	we	develop	a	backend	module,	which	uses
the	same	Fluid	code	as	our	frontend	extension.	Some	specific	functions	should	only	be
visible	in	the	frontend,	others	only	in	the	backend.

For	our	new	ViewHelper,	a	new	file
typo3conf/ext/simpeblog/Classes/ViewHelpers/IsFrontendViewHelper.php	is
required:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers;

class	IsFrontendViewHelper	extends	\TYPO3\CMS\Fluid\Core\ViewHelper\AbstractConditionViewHelper	{

				public	function	render()	{

								if	(TYPO3_MODE	===	'FE')	{

												return	$this->renderThenChild();

								}

								return	$this->renderElseChild();

				}

}

We	can	insert	the	new	ViewHelper	into	a	view	as	the	following	example	shows:

{namespace	pl	=	Lobacher\Simpleblog\ViewHelpers}

...

<pl:isFrontend>

				<f:then>

								Frontend!

				</f:then>

				<f:else>

								Backend!

				</f:else>

</pl:isFrontend>

...

13.5.	Widget	ViewHelper

Widgets	are	ViewHelper,	which	feature	their	own	controller	and	view.	They	are	usually
used	where	additional	and	specific	control	of	the	view	is	required,	for	example	to
implement	a	page	browser,	a	sorting	function,	an	auto-completion	or	similar.

Let’s	have	a	look	at	a	typical	sorting	functionality	of	a	Blog	listing:

The	view	shows	a	list	of	Blogs.
A	link	with	a	specific	parameter	allows	users	to	change	the	sort	order.
Blog	controller	accepts	this	parameter	in	the	list	action	and	passes	it	on	to	the
repository.
The	repository	changes	the	sort	order	accordingly	and	returns	the	updated	list	of
Blogs	back	to	the	controller.
The	new	list	gets	passed	to	the	view,	where	it	is	displayed.

Figure	13.2.	ViewHelper	with	sorting	feature

This	does	not	seem	too	complex	but	does	have	a	significant	drawback:	the	controller	is
integrated	in	the	view	logic.	However	Extbase	strictly	separates	the	domain	logic	from	the
view	logic,	which	means,	the	controller	should	not	participate	in	this	process	at	all.

For	this	reason	Widgets	have	been	introduced	in	TYPO3	version	4.5	LTS	(Extbase	version
1.3)	and	the	concept	of	repositories	revised.	Previously,	repositories	returned	data	sets
directly.	This	has	been	changed	in	the	way	that	repositories	merely	return	an	interface
(more	precisely:	\TYPO3\CMS\Extbase\Persistence\QueryInterface)	now,	which	allow
Widgets	to	manipulate	it	in	the	view.	Not	before	the	view	outputs	the	data,	Extbase

accesses	the	repository.	Widgets	always	remain	ViewHelpers	in	this	case – if	only	special
ones.

In	order	to	influence/control	the	data,	a	controller,	actions	and	a	view	are	required	and	this
is	in	the	context	of	the	view.	Therefore	this	is	called	subrequest.

The	following	sections	explain	how	such	a	sorting	Widget	could	be	developed.	The
requirements	are	to	implement	a	link	at	the	Blog	Posts	page,	which	changes	the	sorting
(by	title)	if	clicked,	ascending	and	vice	versa.

13.5.1.	Use	of	Widget	ViewHelpers

Let’s	begin	with	the	list	view	of	Blogs:
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html

{namespace	pl	=	Lobacher\Simpleblog\ViewHelpers}

...

<ul	class="list-group">

				<pl:widget.sort	objects="{blogs}"	as="sortedBlogs"	property="title">

				<f:for	each="{sortedBlogs}"	as="blog">

								<li	class="list-group-item">{blog.title}

												...

								

				</f:for>

				</pl:widget.sort>

...

As	you	can	see,	we	have	added	a	Widget	(more	precisely:	a	ViewHelper)	named
widget.sort.	The	attribute	objects	passes	all	Blogs	to	the	Widget.	The	(re-ordered)	list
gets	returned	as	sortedBlogs	and	the	property	of	the	object,	by	which	the	sorting	should
happen,	is	defined	as	a	title.

13.5.2.	Creation	of	Widget	ViewHelpers

Continue	with	the	ViewHelper	itself:	first,	create	a	new	directory
typo3conf/ext/simpleblog/Classes/ViewHelpers/Widget	and	inside	this,	a	new	file
SortViewHelper.php	with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers\Widget;

class	SortViewHelper	extends	\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetViewHelper	{

				/**

					*	@var	\Lobacher\Simpleblog\ViewHelpers\Widget\Controller\SortController

					*	@inject

					*/

				protected	$controller;

				/**

					*	@param	\TYPO3\CMS\Extbase\Persistence\QueryResultInterface	$objects

					*	@param	string	$as

					*	@param	string	$property

					*	@return	string

					*/

				public	function	render(\TYPO3\CMS\Extbase\Persistence\QueryResultInterface	$objects,	$as,	$property)	{

								return	$this->initiateSubRequest();

				}

}

Widget	ViewHelpers	always	derive	from	abstract	class
\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetViewHelper.

After	that,	we	fetch	the	appropriate	controller	by	using	Dependency	Injection	so	it
becomes	available	in	our	class.

Same	as	before,	a	method	render()	exists,	which	receives	the	objects	via	attribute
objects,	the	name	of	the	result	set	via	attribute	as	and	the	object	properties	via	attribute
property.

Finally,	method	call	$this->initiateSubRequest()	triggers	the	subrequest,	which	takes
care	of	executing	the	action	indexAction()	of	the	controller,	which	has	been	fetched	by
DI.

13.5.3.	The	Controller

To	implement	the	controller,	we	start	with	creating	a	new	directory
typo3conf/ext/simpleblog/ViewHelpers/Widget/Controller	and	inside	that,	a	new
file	SortController.php	with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers\Widget\Controller;

class	SortController	extends	\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetController	{

				/**

					*	@var	\TYPO3\CMS\Extbase\Persistence\QueryResultInterface

					*/

				protected	$objects;

				public	function	initializeAction()	{

								$this->objects	=	$this->widgetConfiguration['objects'];

				}

				/**

					*	@param	string	$order

					*/

				public	function	indexAction($order	=	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_DESCENDING)	{

								$order	=	($order	==	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING)	?	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_DESCENDING	:	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_ASCENDING;

								$query	=	$this->objects->getQuery();

								$query->setOrderings(array($this->widgetConfiguration['property']	=>	$order));

								$modifiedObjects	=	$query->execute();

								$this->view->assign('contentArguments',	array(

												$this->widgetConfiguration['as']	=>	$modifiedObjects

));

								$this->view->assign('order',	$order);

				}

}

The	controller	of	the	Widget	always	derive	from	abstract	class
\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetController.

In	method	initializeAction(),	we	access	the	objects,	which	have	been	passed	through
the	attribute	objects	by	using	$this->widgetConfiguration['...'].

The	only	method	parameter	of	the	index	action	is	$order,	which	is	passed	as	an	action
link	(we	will	see	this	in	more	detail	in	a	minute).	Directly	after	that,	we	check	what	the
current	setting	of	$order	is.	In	the	case	it	is	ASC	(ascending),	we	set	it	to	DESC
(descending)	and	vice	versa.	For	the	sorting,	official	constants	are	used	(ORDER_ASCENDING
or	ORDER_DESCENDING).

Due	to	the	fact	that	the	Query-Interface	is	available	as	$objects,	we	can	access	it	directly.
The	query	is	fetched	via	getQuery()	and	by	calling	setOrdering(),	the	sort	order	is
applied.	$this->widgetConfiguration['property']	helps	us	to	determine	by	which
property	the	data	should	be	sorted	and	method	execute()	triggers	the	query.

The	re-sorted	objects	are	passed	as	contentArguments	to	the	view,	as	well	as	the	current
(new)	sort	order	as	order.

13.5.4.	The	View

The	view	exists	at	the	location,	where	all	other	templates	can	be	found	but	in	a	sub-
directory	ViewHelpers/Widget/Sort.	Let’s	create	the	following	directories:

typo3conf/ext/simpleblog/Resources/Private/Templates/ViewHelpers

typo3conf/ext/simpleblog/Resources/Private/Templates/ViewHelpers/Widget

typo3conf/ext/simpleblog/Resources/Private/Templates/ViewHelpers/Widget/Sort

Inside	the	last	directory,	we	create	a	new	file	Index.html	with	the	following	content:

<f:widget.link	arguments="{order:order}"	class="btn	btn-primary	btn-sm	active">Change	sort	order</f:widget.link>

<f:renderChildren	arguments="{contentArguments}"	/>

The	view	contains	some	specific	ViewHelpers,	which	are	often	useful	and	help	us	even
further:

<f:widget.link>

This	ViewHelper	creates	a	specific	Widget	action	link	and	has	parameters	action	(the
action,	default	is	index),	arguments	(allows	passing	arguments),	section
(manipulates	the	URL	if	required)	and	format	(specifies	the	format,	default	is	.html).
Another	parameter	ajax	specifies,	if	the	Link	leads	to	an	AJAX	Widget	or	not
(default	is	FALSE).

<f:widget.uri>

This	Widget	is	identical	to	widget.link	but	returns	the	URL	instead	of	the	HTML
tag.

<f:renderChildren>

makes	sure	that	the	child	node	(the	content	of	the	ViewHelper)	is	being	rendered.

13.5.5.	The	A	to	Z	Widget

Now	you	should	try	to	implement	your	own	Widget:	a	navigation	bar	that	shows	letters	A
to	Z	and	if	a	user	clicks	one	of	the	letters,	only	Blogs	should	come	up	where	their	title
starts	with	this	letter.	Let’s	choose	widget.AtoZNav	as	the	name	of	the	Widget.	It’s	best
not	to	continue	reading	this	chapter,	until	you	have	successfully	finished	this	task	or	you
really	struggle	to	implement	this	feature.

Start	with	the	view:	update	the	list	view	of	the	Blog	by	editing	the	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html:

<ul	class="list-group">

				<pl:widget.AtoZNav	objects="{blogs}"	as="filteredBlogs"	property="title">

								<pl:widget.sort	objects="{filteredBlogs}"	as="sortedBlogs"	property="title">

												<f:for	each="{sortedBlogs}"	as="blog">

																...

												</f:for>

								</pl:widget.sort>

				</pl:widget.atoZNav>

Continue	with	the	file
typo3conf/ext/simpleblog/Classes/ViewHelpers/Widget/AtoZNavViewHelper.php

and	add	the	following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers\Widget;

class	AtoZNavViewHelper	extends	\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetViewHelper	{

				/**

					*	@var	\Lobacher\Simpleblog\ViewHelpers\Widget\Controller\AtoZNavController

					*	@inject

					*/

				protected	$controller;

				/**

					*	@param	\TYPO3\CMS\Extbase\Persistence\QueryResultInterface	$objects

					*	@param	string	$as

					*	@param	string	$property

					*	@return	string

					*/

				public	function	render(\TYPO3\CMS\Extbase\Persistence\QueryResultInterface	$objects,	$as,	$property)	{

								return	$this->initiateSubRequest();

				}

}

Followed	by	implementing	the	controller
typo3conf/ext/simpleblog/Classes/ViewHelpers/Widget/Controller/AtoZNavController.php

with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\ViewHelpers\Widget\Controller;

class	AtoZNavController	extends	\TYPO3\CMS\Fluid\Core\Widget\AbstractWidgetController	{

				/**

					*	@var	\TYPO3\CMS\Extbase\Persistence\QueryResultInterface

					*/

				protected	$objects;

				public	function	initializeAction()	{

								$this->objects	=	$this->widgetConfiguration['objects'];

				}

				/**

					*	@param	string	$order

					*/

				public	function	indexAction($char	=	'%')	{

								$query	=	$this->objects->getQuery();

								//	get	selected	objects	only	(title	starting	with	specific	letter)

								$query->matching($query->like($this->widgetConfiguration['property'],$char.'%'));

								$modifiedObjects	=	$query->execute();

								$this->view->assign('contentArguments',	array(

												$this->widgetConfiguration['as']	=>	$modifiedObjects

));

								//	create	an	array	with	all	letters	from	A	to	Z

								foreach	(range('A',	'Z')	as	$letter)	{

												$letters[]	=	$letter;

								}

								$this->view->assign('letters',	$letters);

								$this->view->assign('char',	$char);

				}

}

Now	create	the	View	as	file
typo3conf/ext/simpleblog/Resources/Private/Templates/ViewHelpers/Widget/AtoZNav/Index.html

and	the	following	content:

<ul	class="pagination">

				<li{f:if(condition:'{char}=="%"',then:'	class="active"')}><f:widget.link	arguments="{char:'%'}">[ALL]</f:widget.link>

				<f:for	each="{letters}"	as="letter">

								<li{f:if(condition:'{char}=={letter}',then:'	class="active"')}>

												<f:widget.link	arguments="{char:letter}"	class="active">{letter}</f:widget.link>

								

				</f:for>

<f:renderChildren	arguments="{contentArguments}"	/>

Figure	13.3.	A	to	Z	list

[38]	This	requires	a	(free	of	charge)	registration	at	http://www.gravatar.com	and	an	image	uploaded	to	your	email
address.	If	you	use	your	email	address	for	other	services,	which	also	support	Gravatars	(e. g.	WordPress	Blogs),	the
address	is	passed	MD5	encoded	to	gravatar.com,	which	returns	the	uploaded	image,	or	(if	no	image	can	be	found)	a
dummy	image.

http://www.gravatar.com

Chapter	14.	Multi-Language

For	didactic	reasons,	we	have	overlooked	the	language	so	far.	We	will	address	this	now
and	introduce	multi-language	features	in	all	areas	of	our	project.

14.1.	Language	Configuration

There	are	a	substantial	number	of	configuration	options	in	TYPO3,	which	are	all	well
documented	and	can	be	found	in	the	“Frontend	Localization	Guide”[39]

A	frontend	language	is	basically	created	in	the	List	module	on	page	UID	0	(data	type:
Website	language),	except	the	default	language.	The	latter	has	UID	0	and	it	is	not	required	to
create	it	explicitly.	Each	further	language	features	the	UID	of	the	data	set.

After	that,	the	language	handling	must	be	configured	in	TypoScript.	Therefore,	add	the
following	code	to	the	setup	of	your	TypoScript	template:

config.linkVars	=	L

config.uniqueLinkVars	=	1

config	{

			sys_language_uid	=	0

			language	=	default

			locale_all	=	en_GB

			htmlTag_langKey	=	en

}

[globalVar	=	GP:L	=	1]

config	{

			sys_language_uid	=	1

			language	=	de

			locale_all	=	de_DE.utf8

			htmlTag_langKey	=	de

}

[global]

This	has	the	following	impact:

linkVars	ensures,	that	the	language	parameter	L	is	added	to	all	internally	generated
links.
The	default	language	is	configured	to	be	English.
If	a	request	with	the	language	parameter	1	hits	the	TYPO3	instance	(e. g.	by	&L=1	in
the	URL),	the	TypoScript	condition	[globalVar	=	GP:L	=	1]	re-configures	the
language	handling	to	be	German	(de).

14.2.	Language	Labels

In	order	to	make	labels	multi-lingual,	a	localisation	file	is	required.	This	is	a	XML	file,
which	follows	a	specific	syntax.	In	TYPO3	version	4.6	and	before,	a	propriety	format	was
used	(usually	locallang.php	and	later	locallang.xml).	Today,	the	modern	XLIFF	format
(XML	Localization	Interchange	Format)	comes	into	play.

Extbase	expects	this	file	under
typo3conf/ext/simpleblog/Resources/Private/Language/locallang.xlf.

<?xml	version="1.0"	encoding="utf-8"	standalone="yes"	?>

<xliff	version="1.0">

				<file	source-language="en"	datatype="plaintext"	original="messages"	date="2013-08-24T08:48:12Z"	product-name="simpleblog">

								<header/>

								<body>

...

												<trans-unit	id="headline.blog">

																<source>Blog	List</source>

												</trans-unit>

...

								</body>

				</file>

</xliff>

Add	a	section	<trans-unit>	with	ID	headline.blog	to	the	code	shown	above	(see
example).

In	order	to	create	a	translation,	create	a	copy	and	rename	the	file	to	de.locallang.xlf.	As
you	can	see,	the	two-characters	ISO	code	is	put	in	front.

The	content	of	the	file	should	be	amended	as	follows:

<?xml	version="1.0"	encoding="utf-8"	standalone="yes"	?>

<xliff	version="1.0">

				<file	source-language="en"	target-language="de"	datatype="plaintext"	original="messages"	date="2013-08-24T08:48:12Z"	product-name="simpleblog">

								<header/>

								<body>

...

												<trans-unit	id="headline.blog">

																<source>Blog-List</source>

																<target	state="translated">Blog-Liste</target>

												</trans-unit>

...

								</body>

				</file>

</xliff>

The	core	API	documentation[40]	describes	the	format	of	XLIFF	files	in	detail	and	which
other	features	XLIFF	offers.

At	this	point,	we	can	use	the	label	in	the	list	view	of	the	Blog	(file:
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html)	instead
of	<h1>Blog	List</h1>.

...

<h1><f:translate	id="headline.blog"	/></h1>

...

In	order	to	achieve	a	translation	of	the	button	Search,	the	approach	is	a	little	bit	different.
However	the	syntax	of	the	language	labels	remains	identical.	Let’s	start	with	file
locallang.xlf:

...

												<trans-unit	id="button.search">

																<source>Search!</source>

												</trans-unit>

...

Then,	file	de.locallang.xlf:

...

												<trans-unit	id="button.search">

																<source>Search!</source>

																<target	state="translated">Suchen!</target>

												</trans-unit>

...

The	usage	of	the	label	happens	in	the	list	template	of	the	Blog	as	well	but	if	we	look	at	the
button	more	closely,	we	realise	that	we	can	not	add	the	translate	ViewHelper.

...

<f:form.submit	value="<f:translate	id="button.search"	/>"	class="btn-xs	btn-primary"	/>

...

The	above	would	result	in	a	syntax	error	so	we	have	to	use	the	inline	syntax:

...

<f:form.submit	value="{f:translate(id:'button.search')}"	class="btn-xs	btn-primary"	/>

...

14.3.	Language	Labels	with	Placeholders

Looking	at	the	Post	reveals	that	it	shows	a	more	complicated	headline.	It	consists	not	only
of	the	label	but	also	the	name	of	the	Blog,	which	means,	we	have	to	use	placeholders	in
this	case.

Let’s	open	the	show	template	of	the	Post	(file:
typo3conf/ext/simpleblog/Resources/Private/Templates/Post/Show.html)	and
update	the	following	line:

<h1>Show	Post	(Blog:	{blog.title})</h1>

The	placeholder	shown	below	replaces	the	hard-coded	text:

<h1><f:translate	key="headline.post"	arguments="{1:blog.title,2:blog.uid}"	/></h1>

By	using	the	arguments	array,	we	can	pass	arbitrary	data	to	the	language	file.

Here,	the	data	gets	parsed	with	a	similar	logic	than	the	PHP	command	sprintf[41].	Let’s
get	started – first,	file	locallang.xlf:

...

												<trans-unit	id="headline.post">

																<source>View	post	(Blog:	%1$s	/	UID:	%2$s)</source>

												</trans-unit>

...

Then,	file	de.locallang.xlf:

...

												<trans-unit	id="headline.post">

																<source>View	post	(Blog:	%1$s	/	UID:	%2$s)</source>

																<target	state="translated">Post	ansehen	(UID:	%2$s	/	Blog:	%1$s)</target>

												</trans-unit>

...

Each	placeholder	starts	with	a	%	character,	followed	by	a	number	which	represents	the
position	in	the	arguments	array	(the	first	position	equates	to	1,	the	second	to	2,
independently	from	the	key,	which	is	ignored).	Then,	the	$	character	and	the	sprintf-
code	for	the	formatting,	e. g.	s	for	a	string	or	d	for	a	decimal	number.

14.4.	Overwrite	Language	Labels	by
TypoScript

The	key	_LOCAL_LANG.[ISO]	allows	TYPO3	integrators	to	overwrite	every	language	label
via	TypoScript.	In	this	connection,	[ISO]	reflects	the	two-characters	language	label.

To	overwrite	the	headline	of	the	Blog	list	in	German,	the	following	TypoScript	can	be
used:

plugin.tx_simpleblog	{

			_LOCAL_LANG	{

						de	{

									headline.blog	=	Liste	aller	Blogs

						}

			}

}

14.5.	Language	Labels	in	PHP

It	is	also	possible	to	translate	language	labels	in	PHP.	Function	translate()	serves
exactly	this	purpose:

\TYPO3\CMS\Extbase\Utility\LocalizationUtility::translate($key,	$extension,	array	$arguments)

The	parameters	have	the	following	meaning:

$key

Corresponds	to	the	key	in	the	language	file,	e. g.	headline.blog.
$extension

The	extension,	of	which	file	locallang.xlf	should	be	used.	In	the	case	this	should
be	the	file	of	your	own	extension,	use	value	NULL	as	this	parameter.

$arguments

Optional	arguments	to	pass	to	the	language	file	as	an	array.	If	the	language	label	does
not	require	any	arguments,	leave	the	parameters	empty	or	set	it	to	NULL.

For	example:

\TYPO3\CMS\Extbase\Utility\LocalizationUtility::translate('headline.blog',	NULL,	NULL)

14.6.	Multi-Language	for	Domain	Objects

Extbase	handles	the	multi-language	capability	with	flexibility	and	transparency,	if	you
take	care	of	the	correct	fields	in	the	database	and	their	configuration	in	the	TCA.

The	database	must	contain	the	following	fields	for	every	multi-language	domain	object:

...

				sys_language_uid	int(11)	DEFAULT	'0'	NOT	NULL,

				l10n_parent	int(11)	DEFAULT	'0'	NOT	NULL,

				l10n_diffsource	mediumblob,

...

The	TCA	requires	the	following	definitions	(in	our	example	the	Blog	object):

$TCA['tx_simpleblog_domain_model_blog']	=	array(

				'ctrl'	=>	array(

							...

							'languageField'	=>	'sys_language_uid',

							'transOrigPointerField'	=>	'l10n_parent',

							'transOrigDiffSourceField'	=>	'l10n_diffsource',

...

Also	in	the	TCA,	the	fields	must	be	configured	properly:

$TCA['tx_simpleblog_domain_model_blog']	=	array(

				'ctrl'	=>	$TCA['tx_simpleblog_domain_model_blog']['ctrl'],

				...

				'columns'	=>	array(

								'sys_language_uid'	=>	array(

												'exclude'	=>	1,

												'label'	=>	'LLL:EXT:lang/locallang_general.xlf:LGL.language',

												'config'	=>	array(

																'type'	=>	'select',

																'foreign_table'	=>	'sys_language',

																'foreign_table_where'	=>	'ORDER	BY	sys_language.title',

																'items'	=>	array(

																				array('LLL:EXT:lang/locallang_general.xlf:LGL.allLanguages',	-1),

																				array('LLL:EXT:lang/locallang_general.xlf:LGL.default_value',	0)

),

),

),

								'l10n_parent'	=>	array(

												'displayCond'	=>	'FIELD:sys_language_uid:>:0',

												'exclude'	=>	1,

												'label'	=>	'LLL:EXT:lang/locallang_general.xlf:LGL.l18n_parent',

												'config'	=>	array(

																'type'	=>	'select',

																'items'	=>	array(

																				array('',	0),

),

																'foreign_table'	=>	'tx_simpleblog_domain_model_blog',

																'foreign_table_where'	=>	'AND	tx_simpleblog_domain_model_blog.pid=###CURRENT_PID###	AND	tx_simpleblog_domain_model_blog.sys_language_uid	IN	(-1,0)',

),

),

								'l10n_diffsource'	=>	array(

												'config'	=>	array(

																'type'	=>	'passthrough',

),

),

...

It	is	important,	that	the	language	is	set	in	the	repository	accordingly	(for	example	UID	1).
However	you	should	not	hard-code	the	UID	of	course	but	use	$GLOBALS['TSFE']-
>sys_language_uid:

...

$query	=	$this->createQuery();

...

$query->getQuerySettings()->setSysLanguageUid(1);

...

return	$query->execute();

Provided	that	translated	records	exist	in	the	database,	those	are	returned	now.	The	example
evaluates	sys_language_uid	=	1,	which	means	records	of	the	first	created	language.	In
the	case,	that	no	translations	exist,	the	original	(default)	records	are	returned.

Manual	configurations	are	also	possible.	The	example	below	could	be	implemented	in	the
controller:	a	Blog	is	created,	title	set,	language	set	to	UID	1	and	the	Blog	persisted	at	the
end.

$new	=	$this->objectManager->create('Lobacher\\Simpleblog\\Domain\\Model\\Blog');

$new->setTitle('Blog-Titel');

$new->setSysLanguageUid(1);

$new->_setProperty('_languageUid',	1);

$new->setL10nParent(123);

$this->blogRepository->add($new);

$this->objectManager->get('TYPO3\\CMS\\Extbase\\Persistence\\Generic\\PersistenceManager')->persistAll();

Needless	to	say,	that	the	setter	for	sys_language_uid	and	l10n_parent	must	exist	in	the
model.

/**

	*	Set	sys	language

	*

	*	@param	int	$sysLanguageUid

	*	@return	void

*/

public	function	setSysLanguageUid($sysLanguageUid)	{

				$this->_languageUid	=	$sysLanguageUid;

}

/**

	*	Set	l10n	parent

	*

	*	@param	int	$l10nParent

	*	@return	void

*/

public	function	setL10nParent($l10nParent)	{

				$this->l10nParent	=	$l10nParent;

}

[39]	
doc_guide_l10n	and	doc_l10guide	at	http://docs.typo3.org/typo3cms/FrontendLocalizationGuide/

[40]	http://docs.typo3.org/typo3cms/CoreApiReference/Internationalization/Index.html

[41]	http://php.net/sprintf

http://docs.typo3.org/typo3cms/FrontendLocalizationGuide/
http://docs.typo3.org/typo3cms/CoreApiReference/Internationalization/Index.html
http://php.net/sprintf

Chapter	15.	Backend	Modules

The	backend	and	frontend	modules	of	Extbase	are	practically	identical.	This	allows
developers	to	use	the	same	code	for	the	frontend	as	well	as	for	the	backend.	As	we	know,
this	was	not	possible	under	pi_base	extensions.

In	order	to	demonstrate	this	capability,	we	will	create	a	backend	module,	which	enables
backend	users	to	delete	Blog	comments.	In	addition,	entries	which	were	deleted	should
also	be	listed.

15.1.	Registering	the	Module

In	order	to	register	the	module,	edit	file	ext_tables.php	and	call	method
registerModule(),	which	features	the	following	API:

/**

					*	Registers	an	Extbase	module	(main	or	sub)	to	the	backend	interface.

					*	FOR	USE	IN	ext_tables.php	FILES

					*

					*	@param	string	$extensionName	The	extension	name	(in	UpperCamelCase)	or	the	extension	key	(in	lower_underscore)

					*	@param	string	$mainModuleName	The	main	module	key.	So	$main	would	be	an	index	in	the	$TBE_MODULES	array	and	$sub	could	be	an	element	in	the	lists	there.	If	$subModuleName	is	not	set	a	blank	$extensionName	module	is	created

					*	@param	string	$subModuleName	The	submodule	key.

					*	@param	string	$position	This	can	be	used	to	set	the	position	of	the	$sub	module	within	the	list	of	existing	submodules	for	the	main	module.	$position	has	this	syntax:	[cmd]:[submodule-key].	cmd	can	be	"after",	"before"	or	"top"	(or	blank	which	is	default).	If	"after"/"before"	then	submodule	will	be	inserted	after/before	the	existing	submodule	with	[submodule-key]	if	found.	If	not	found,	the	bottom	of	list.	If	"top"	the	module	is	inserted	in	the	top	of	the	submodule	list.

					*	@param	array	$controllerActions	is	an	array	of	allowed	combinations	of	controller	and	action	stored	in	an	array	(controller	name	as	key	and	a	comma	separated	list	of	action	names	as	value,	the	first	controller	and	its	first	action	is	chosen	as	default)

					*	@param	array	$moduleConfiguration	The	configuration	options	of	the	module	(icon,	locallang.xlf	file)

					*	@throws	\InvalidArgumentException

					*	@return	void

					*/

				static	public	function	registerModule(

								$extensionName,

								$mainModuleName	=	'',

								$subModuleName	=	'',

								$position	=	'',

								array	$controllerActions,

								array	$moduleConfiguration	=	array()

)	{

In	our	case,	we	should	consider	the	following:

$extensionName

Vendor	namespace	including	extension	name.
$mainModuleName

Our	module	should	appear	under	the	main	module	system,	which	is	the	section
where	BackendUser,	Install,	Log	etc.	are	listed.

$subModuleName

Name	of	our	sub	module – let’s	use	SimpleblogAdmin.
$position

The	position	of	the	menu	entry	in	the	section.	The	syntax	is	[cmd]:[submodule-key],
where	[cmd]	can	be	one	of	the	key	words	after,	before	or	top.	In	order	to	position
our	module	at	the	top	of	the	section	system,	we	choose	top.

array	$controllerActions

Lists	the	controller/action	combinations,	which	can	be	executed	by	the	module.	The
following	three	are	required	for	our	module:	list	(to	list	the	comments),	delete	(to
delete	a	comment)	and	test	(for	the	reader	to	test).

array	$moduleConfiguration

These	are	additional	module	configurations:	access	(to	limit	the	access	to	the	module
admin),	icon	(path	to	the	icon	of	the	module)	and	labels	(refers	to	a	language	file	to

show	labels).

Which	leads	to	this	method	call:

if	(TYPO3_MODE	===	'BE')	{

				\TYPO3\CMS\Extbase\Utility\ExtensionUtility::registerModule(

								'Lobacher.'	.	$_EXTKEY,

								'system',

								'SimpleblogAdmin',

								'top',

								array(

												'Comment'	=>	'list,delete,test'

),

								array(

												'access'				=>	'admin',

												'icon'						=>	'EXT:'	.	$_EXTKEY	.	'/ext_icon.gif',

												'labels'				=>	'LLL:EXT:'	.	$_EXTKEY	.	'/Resources/Private/Language/locallang_mod.xlf'

)

);

}

15.2.	Language	File	for	Labels

In	the	next	step,	we	will	create	a	language	file,	which	has	been	specified	by	the	option
labels	before.	This	file	should	sit	under
typo3conf/ext/simpleblog/Resources/Private/Language/locallang_mod.xlf	and
contain	the	following:

<?xml	version="1.0"	encoding="UTF-8"?>

<xliff	version="1.0">

				<file	source-language="en"	datatype="plaintext"	original="messages"	date="2013-12-28T14:41:22Z"	product-name="simpleblog">

								<header/>

								<body>

												<trans-unit	id="mlang_labels_tablabel"	xml:space="preserve">

																<source>SB:	Comment	Admin</source>

												</trans-unit>

												<trans-unit	id="mlang_labels_tabdescr"	xml:space="preserve">

																<source>SB:	Comment	Admin</source>

												</trans-unit>

												<trans-unit	id="mlang_tabs_tab"	xml:space="preserve">

																<source>SB:	Comment	Admin</source>

												</trans-unit>

								</body>

				</file>

</xliff>

15.3.	TypoScript

Previously	when	pi_base	was	used,	it	was	not	possible	to	use	TypoScript	in	the	backend
of	TYPO3	CMS.	This	has	changed	with	Extbase,	modules	may	(and	sometimes	must)	be
configured	by	TypoScript.

For	this	purpose,	the	key	module.tx_[extensionkey]	exists	([extensionkey]	is	the
extension	key	without	underscore)	so	in	our	case:	module.tx_simpleblog.	Since	it	often
makes	sense	to	re-use	plugin	configurations	as	the	basis	for	a	new	configuration,	we	can
just	copy	an	existing	one.

Add	the	following	to	the	file
typo3conf/ext/simpleblog/Configuration/TypoScript/setup.txt:

module.tx_simpleblog	<	plugin.tx_simpleblog

15.4.	Comment	Repository

All	comments,	independently	from	being	Blogs	or	Posts,	are	required	for	our	backend
module.	Therefore	we	need	a	comment	repository,	which	we	create	as	file
typo3conf/ext/simpleblog/Classes/Domain/Repository/CommentRespository.php

with	the	following	content:

<?php

namespace	Lobacher\Simpleblog\Domain\Repository;

class	CommentRepository	extends	\TYPO3\CMS\Extbase\Persistence\Repository	{

				protected	$defaultOrderings	=	array('commentdate'	=>	\TYPO3\CMS\Extbase\Persistence\QueryInterface::ORDER_DESCENDING);

}

?>

As	you	can	see,	we	have	chosen	the	standard	sorting	by	date,	with	the	newest	entry	at	the
top.

15.5.	Comment	Controller

Next,	we	create	the	controller	as	file
typo3conf/ext/simpleblog/Classes/Controller/CommentController.php	with	the
following	content:

<?php

namespace	Lobacher\Simpleblog\Controller;

class	CommentController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

				/**

					*	commentRepository

					*

					*	@var	\Lobacher\Simpleblog\Domain\Repository\CommentRepository

					*	@inject

					*/

				protected	$commentRepository;

				public	function	initializeAction(){

								$querySettings	=	$this->objectManager->get('TYPO3\\CMS\\Extbase\\Persistence\\Generic\\Typo3QuerySettings');

								$querySettings->setRespectStoragePage(FALSE);

								$querySettings->setIgnoreEnableFields(TRUE);

								$querySettings->setEnableFieldsToBeIgnored(array('disabled'));

								$querySettings->setIncludeDeleted(TRUE);

								$this->commentRepository->setDefaultQuerySettings($querySettings);

				}

				public	function	listAction()	{

								$this->view->assign('commentsLive',	$this->commentRepository->findByDeleted(0));

								$this->view->assign('commentsDeleted',	$this->commentRepository->findByDeleted(1));

				}

				/**

					*	@param	\Lobacher\Simpleblog\Domain\Model\Comment	$comment

					*/

				public	function	deleteAction(\Lobacher\Simpleblog\Domain\Model\Comment	$comment)	{

								$this->commentRepository->remove($comment);

								$this->redirect('list');

				}

				public	function	testAction()	{

							return	'Output	of	testAction';

				}

}

?>

In	order	to	apply	the	default	query	settings	to	the	repository,	we	use	the
initializeAction(),	which	ensures	we	retrieve	all	comments	on	all	pages,	independently
from	their	storagePid	(setRespectStoragePage(FALSE))	and	including	those	comments,
which	have	already	been	deleted	(setRespectEnableFields(FALSE)).	By	calling	$this-
>commentRepository->setDefaultQuerySettings($querySettings),	these	settings	are
applied	to	the	comment	repository	and	set	as	defaults.	An	alternative	solution	would	be	to
directly	configure	these	settings	in	the	repository.

The	action	listAction()	accesses	the	comment	repository	twice:	first,	to	retrieve	all
records,	which	have	the	property	deleted	set	to	0	(these	are	the	entries	not	deleted)	and
second,	to	retrieve	all	records	with	the	value	set	to	1	(these	are	the	deleted	entries).	Both
are	passed	to	the	view.	An	appropriate	getter	is	not	required	for	the	property	deleted
because	a	findBy[Property]()	call	accesses	the	data	storage	directly.

Originated	at	the	list	view,	a	comment	object	can	be	passed	to	the	deleteAction(),	where
the	comment	is	deleted	from	the	repository	and	a	redirect	to	the	list	action	initiated.

The	remaining	testAction()	simply	acts	as	a	dummy	method,	which	can	be	used	to
investigate	the	subject	further	and	extend	your	knowledge.

15.6.	List	View

The	list	view	differs	from	all	previously	discussed	views	in	regard	to	the	markup	but	this
is	not	a	must	necessarily.	We	only	want	to	integrate	the	view	into	the	TYPO3	backend
smoothly	with	a	focus	on	the	visual	appearance.

This	begins	with	the	<f:be.container>	ViewHelper,	which	features	the	following	API:

/**

	*	Render	start	page	with	\TYPO3\CMS\Backend\Template\DocumentTemplate	and	pageTitle

	*

	*	@param	string		$pageTitle	title	tag	of	the	module.	Not	required	by	default,	as	BE	modules	are	shown	in	a	frame

	*	@param	boolean	$enableJumpToUrl	If	TRUE,	includes	"jumpTpUrl"	javascript	function	required	by	ActionMenu.	Defaults	to	TRUE

	*	@param	boolean	$enableClickMenu	If	TRUE,	loads	clickmenu.js	required	by	BE	context	menus.	Defaults	to	TRUE

	*	@param	boolean	$loadPrototype	specifies	whether	to	load	prototype	library.	Defaults	to	TRUE

	*	@param	boolean	$loadScriptaculous	specifies	whether	to	load	scriptaculous	libraries.	Defaults	to	FALSE

	*	@param	string		$scriptaculousModule	additionales	modules	for	scriptaculous

	*	@param	boolean	$loadExtJs	specifies	whether	to	load	ExtJS	library.	Defaults	to	FALSE

	*	@param	boolean	$loadExtJsTheme	whether	to	load	ExtJS	"grey"	theme.	Defaults	to	FALSE

	*	@param	string		$extJsAdapter	load	alternative	adapter	(ext-base	is	default	adapter)

	*	@param	boolean	$enableExtJsDebug	if	TRUE,	debug	version	of	ExtJS	is	loaded.	Use	this	for	development	only

	*	@param	string	$addCssFile	Custom	CSS	file	to	be	loaded	(deprecated,	use	$includeCssFiles)

	*	@param	string	$addJsFile	Custom	JavaScript	file	to	be	loaded	(deprecated,	use	$includeJsFiles)

	*	@param	boolean	$loadJQuery	whether	to	load	jQuery	library.	Defaults	to	FALSE

	*	@param	array	$includeCssFiles	List	of	custom	CSS	file	to	be	loaded

	*	@param	array	$includeJsFiles	List	of	custom	JavaScript	file	to	be	loaded

	*	@param	array	$addJsInlineLabels	Custom	labels	to	add	to	JavaScript	inline	labels

	*/

Even	if	no	further	options	are	defined,	the	ViewHelper	takes	care	of	some	default	values,
for	example	some	JavaScript	code	is	inserted	automatically,	which	is	required	for	a	Jump
Menu	(a	menu	at	the	top	of	the	screen,	which	loads	the	new	content	on	function	selection).

In	addition,	some	specific	CSS	classes	are	included,	which	ensure	the	proper	layout	and
styles	are	available	for	the	grey	and	black	areas	at	the	top,	e. g.	typo3-fullDoc,	typo3-
docheader	and	typo3-docheader-functions.

15.6.1.	Structure

The	structure	of	a	backend	markup	looks	as	follows:

<f:be.container>

				<div	class="typo3-fullDoc">

								<div	id="typo3-docheader">

												<div	class="typo3-docheader-functions">

																<div	class="left">

																				<f:be.buttons.csh	/>

																				<f:render	section="button-toolbar"	optional="true"	/>

																</div>

																<div	class="right">

																</div>

												</div>

												<div	class="typo3-docheader-buttons">

																<div	class="left">

																</div>

																<div	class="right">

																				<f:be.buttons.shortcut	/>

																</div>

												</div>

								</div>

								<div	id="typo3-docbody">

												<div	id="typo3-inner-docbody">

																<f:flashMessages	renderMode="div"	/>

																<f:render	section="content"	/>

												</div>

								</div>

				</div>

</f:be.container>

15.6.2.	Content	of	the	List	Template

Based	on	this	basic	structure,	we	can	easily	build	the	list	action	template	(file:
typo3conf/ext/simpleblog/Resources/Private/Templates/Comment/List.html)	with
the	following	content:

<f:be.container>

				<div	class="typo3-fullDoc">

								<div	id="typo3-docheader">

												<div	class="typo3-docheader-functions">

																<div	class="left">

																				<f:be.buttons.csh	field="delete"	/>

																				<div	style="margin:-28px	28px;">

																				<f:be.menus.actionMenu>

																								<f:be.menus.actionMenuItem	label="Comment	Admin"	controller="Comment"	action="list"	/>

																								<f:be.menus.actionMenuItem	label="Test"	controller="Comment"	action="test"	/>

																				</f:be.menus.actionMenu>

																				</div>

																</div>

																<div	class="right">

																</div>

												</div>

												<div	class="typo3-docheader-buttons">

																<div	class="left">

																				<!--	Left	Page	-->

																</div>

																<div	class="right">

																				<f:be.buttons.shortcut	/>

																</div>

												</div>

								</div>

								<div	id="typo3-docbody">

												<div	id="typo3-inner-docbody">

																<h1>Comment	Admin</h1>

																<h2>Comments	(not	deleted)</h2>

																

																				<f:for	each="{commentsLive}"	as="comment">

																								

																												<f:link.action	controller="Comment"	action="delete"	arguments="{comment:comment}"><f:be.buttons.icon	icon="actions-edit-delete"	title="Delete	Comment"	/></f:link.action>

																												<f:format.date	format="Y-m-d	H:i:s">{comment.commentdate}</f:format.date>

																												{comment.comment}

																								

																				</f:for>

																

																<h2>Comments	(deleted)</h2>

																

																				<f:for	each="{commentsDeleted}"	as="comment">

																								

																												<f:be.buttons.icon	icon="apps-pagetree-drag-place-denied"	title="Comment	deleted"	/>

																												<f:format.date	format="Y-m-d	H:i:s">{comment.commentdate}</f:format.date>

																												{comment.comment}

																								

																				</f:for>

																

												</div>

								</div>

				</div>

</f:be.container>

Figure	15.1.	Comment	backend	module	in	action

This	template	creates	two	lists:	the	first	one	shows	all	comments,	which	have	not	been
deleted	yet.	An	icon	with	a	link	enables	backend	users	(administrators)	to	delete	the	entry.
In	addition,	the	creation	date	and	the	text	is	shown.	A	click	on	the	icon	triggers	a	request
to	the	deleteAction	of	the	controller	and	deletes	the	comment	without	confirmation.	The
second	list	shows	the	already	deleted	comments.

The	next	sections	explain	the	used	ViewHelpers	in	more	detail.

15.6.3.	CSH	Buttons

Context	Sensitive	Help	(CSH)	allows	users	to	identify	and	understand	certain	functionality
of	the	graphical	user	interface	(GUI)	quickly.	In	order	to	fit	our	module	with	this	feature,
we	need	to	implement	the	<f:be.button.csh	field="delete"	/>	ViewHelper.	The
option	field	reflects	a	key,	which	can	be	found	in	a	language	file.	This	file	must	be
registered	in	ext_tables.php:

\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::addLLrefForTCAdescr(

				'_MOD_system_SimpleblogSimpleblogadmin',

				'EXT:'	.	$_EXTKEY	.	'/Resources/Private/Language/locallang_csh.xlf'

);

Then,	create	an	XLF	file
typo3conf/ext/simpleblog/Resources/Private/Language/locallang_csh.xlf	with
the	following	content:

<?xml	version="1.0"	encoding="utf-8"	standalone="yes"	?>

<xliff	version="1.0">

				<file	source-language="en"	datatype="plaintext"	original="messages"	date="2013-12-29T12:50:12Z"	product-name="simpleblog">

								<header/>

								<body>

												<trans-unit	id="delete.alttitle"	xml:space="preserve">

														<source>Delete	comments</source>

												</trans-unit>

												<trans-unit	id="delete.description"	xml:space="preserve">

														<source>With	this	module	you	can	delete	comments.</source>

												</trans-unit>

												<trans-unit	id="delete.details"	xml:space="preserve">

														<source>Each	blog	contains	posts	and	every	post	contains	0	or	more	comments.	If	the	comment	is	not	useful	or	contains	spam,	it	could	be	deleted	with	this	module.</source>

												</trans-unit>

								</body>

				</file>

</xliff>

Each	key	(in	our	case:	delete)	requires	three	sub-keys:	alttitle	(title	at	roll	over	state),
description	(description	at	roll	over	state)	and	details	(text,	which	appears	when	a	user
clicks	the	button).

Figure	15.2.	Display	of	context	sensitive	help

15.6.4.	Action	Menu

The	Action	Menu	is	a	dropdown	box	near	the	CSH	icon.	This	menu	allows	backend	users
to	switch	to	specific	functions	of	the	module.	An	outer	<f:be.menus.actionMenu>
ViewHelper	wraps	an	arbitrary	number	of	<f:be.menus.actionMenuItem>	ViewHelpers.
The	latter	are	fitted	with	a	label	as	well	as	a	controller	and	an	action,	which	are	called
when	the	user	selects	the	appropriate	menu	item	from	the	list.

<f:be.menus.actionMenu>

				<f:be.menus.actionMenuItem	label="Comment	Admin"	controller="Comment"	action="list"	/>

				<f:be.menus.actionMenuItem	label="Test"	controller="Comment"	action="test"	/>

</f:be.menus.actionMenu>

15.6.5.	Shortcut	Button

The	well-known	shortcut	button	in	TYPO3	can	easily	be	implemented	by	using	the
<f:be.buttons.shortcut	/>	ViewHelper.

15.6.6.	Icon	Button

The	ViewHelper	<f:be.buttons.icon>	can	be	used	to	get	the	icons	of	the	trash	bin
(function	“delete”)	and	the	stop	sign.

<f:be.buttons.icon	icon="actions-edit-delete"	title="Delete	comment"	/>

<f:be.buttons.icon	icon="apps-pagetree-drag-place-denied"	title="Comment	deleted"	/>

More	than	310	abbreviations	are	available	for	the	attribute	icon,	which	are	all	listed	in	file
typo3/systext/core/ext_tables.php.

An	overview	of	all	icons	available	can	be	generated	by	the	extension	spiteIconOverview.
[42]	Unfortunately,	it	depends	on	extdeveval,	which	is	currently	not	available	for	TYPO3
CMS	version	6.2	LTS	and	above.	For	this	reason,	we	have	created	a	PDF	document	that
shows	all	icons	and	their	names.[43]

[42]	http://typo3.org/extensions/repository/view/spriteiconoverview

[43]	http://www.extbase-book.org/resources.html

http://typo3.org/extensions/repository/view/spriteiconoverview
http://www.extbase-book.org/resources.html

Chapter	16.	The	Property	Mapper

The	Property	Mapper	predominantly	converts	simple	data	types	(e. g.	arrays,	strings	or
numbers)	into	objects.	This	is	particularly	important	in	the	MVC	context,	when	a	HTTP
request	arrives,	which	only	contains	simple	types	and	no	objects.

However	due	to	the	fact	that	Extbase	has	been	designed	to	transport	everything	via
objects,	incoming	data	should	be	transformed	into	their	object	representation.	This	is	the
main	purpose	of	the	Property	Mapper.

The	API	of	the	Property	Mappers	is	quite	simple:	in	its	core,	it	consists	of	a	method
convert($source,	$targetType),	which	accepts	the	input	data	as	the	first	argument	and
the	type,	in	which	the	data	should	be	converted,	as	the	second	argument.

16.1.	Examples

Let’s	have	a	look	at	an	example,	which	converts	a	simple	type	(a	string)	into	a	floating
point	value:

//	$propertyMapper	is	an	instance	of	class

//	TYPO3\CMS\Extbase\Property\PropertyMapper

$result	=	$propertyMapper->convert('42.5',	'float');

//	$result	==	(float)42.5

A	more	complex	example	is	the	following:

class	Lobacher\Simpleblog\Domain\Model\Post	extends	\TYPO3\CMS\Extbase\DomainObject\AbstractEntity	{

				/**

					*	@var	\string

					*/

				protected	$title;

				/**

					*	@var	\DateTime

					*/

				protected	$postdate;

				/**

					*	@var	\Lobacher\Simpleblog\Domain\Model\Author

					*/

				protected	$author;

				...

}

This	is	an	extract	of	the	domain	model	of	a	post,	which	contains	a	title	and	a	timestamp	as
properties.

We	can	convert	this	data	into	an	object	now:	add	the	code	below	to	an	action	of	the	Blog
controller:

$inputArray	=	array(

				'title'	=>	'Rocky	wants	to	go	for	a	stroll!',

				'postdate'	=>	'2013-12-28T07:56:00+00:00'

);

$propertyMapper	=	$this->objectManager->get('TYPO3\\CMS\\Extbase\\Property\\PropertyMapper');

$post	=	$propertyMapper->convert(

				$inputArray,

				'Lobacher\Simpleblog\Domain\Model\Post');

\TYPO3\CMS\Extbase\Utility\DebuggerUtility::var_dump($post);

The	result	is	an	object	of	class	Lobacher\Simpleblog\Domain\Model\Post,	which	has	set
both	properties	title	and	postdate	correctly.

Figure	16.1.	Post	object

You	may	ask,	how	does	the	Property	Mapper	know	how	to	convert	objects	of	type
DateTime	or	Post?	In	fact,	it	does	not	know	this	itself	but	uses	specific	TypeConverters.
Currently,	about	18	different	TypeConverters	exist	in	directory
TYPO3\CMS\Extbase\Property\TypeConverter.	Our	example	above	used	three	of	them:

First,	in	order	to	convert	“Rocky	wants	to	go	for	a	stroll!”	into	a	string	(required	by
annotation	@var	\string	in	the	domain	model),	StringConverter:	it	converts	the
value	into	a	string.	Due	to	the	fact	that	the	output	is	already	a	string,	it	will	simply	be
passed	on.
DateTimeConverter,	which	generates	a	valid	object	of	type	DateTime	from	the	value
2013-12-28T07:56:00+00:00.
Finally,	an	object	of	type	Post	has	to	be	created.	The	PersistentObjectConverter
takes	care	of	that	by	creating	a	clean,	new	object	of	type
Lobacher\Simpleblog\Domain\Model\Post	and	setting	the	properties	$title	and
$postdate	via	the	setter	of	the	object.

The	example	shows	that	the	property	mapping	is	a	recursive	process,	where	the	Property
Mapper	coordinates	the	procedure.	The	PersistentObjectConverter	has	some	more
features,	e. g.	it	can	retrieve	objects	from	the	persistence	layer,	if	an	object	identity	has
been	stated:

Both	input	values	(directly	set	with	its	UID	or	by	using	the	key	__identity)	in	the
subsequent	code	result	in	retrieving	the	Post	with	UID	2	from	the	persistence	layer
(usually	the	database)	and	reconstructing	it	so	that	an	object	$post	is	available	at	the	end.

$input	=	'2';

//	or

$input	=	array(

		'__identity'	=>	'2'

);

$post	=	$propertyMapper->convert(

				$input,

				'Lobacher\Simpleblog\Domain\Model\Post'

);

If	further	properties	are	defined	in	the	array	(besides	__identity),	they	are	modified	in
the	object.	However	these	modifications	are	not	stored	at	the	end	of	the	request	but	have	to
be	made	persistent	by	calling	method	update()	of	the	repository.

$input	=	array(

		'__identity'	=>	'2',

		'title'	=>	'This	is	a	new	title!',

		'author'	=>	'3'

);

$post	=	$propertyMapper->convert(

				$input,

				'Lobacher\Simpleblog\Domain\Model\Post'

);

The	following	actions	are	executed:

The	post	with	UID	2	is	being	retrieved	from	the	database.
The	property	$title	is	set.
An	object	of	type	\Lobacher\Simpleblog\Domain\Model\Author	is	reconstructed.
For	that,	the	data	of	the	author	with	UID	3	is	being	retrieved	from	the	database.
This	object	is	being	set	as	the	property	$author	of	the	post	object.

16.2.	Property	Mapper	Configuration

It	is	also	possible	to	configure	the	conversion	process	by	passing	a	third	parameter
PropertyMappingConfiguration	to	the	PropertyMapper::convert()	method.	If	no
PropertyMappingConfiguration	is	specified,	the
PropertyMappingConfigurationBuilder	creates	a	default	configuration.

The	PropertyMappingConfigurationBuilder	should	be	used	to	generate	a	new
PropertyMappingConfiguration:

$propertyMappingConfigurationBuilder	=	$this->objectManager->get('TYPO3\\CMS\\Extbase\\Property\\PropertyMappingConfigurationBuilder');

$propertyMappingConfiguration	=	$propertyMappingConfigurationBuilder->build();

\TYPO3\CMS\Extbase\Utility\DebuggerUtility::var_dump($propertyMappingConfiguration);

//	You	can	modify	$propertyMappingConfiguration	now…

//	and	pass	the	configuration	to	convert()

$propertyMapper->convert(

				$source,

				$targetType,

				$propertyMappingConfiguration

);

Available	options	are:

setMapping($sourcePropertyName,	$targetPropertyName)

Can	be	used	to	rename	properties.	Assuming,	the	input	array	contains	a	property
lastName	but	the	associated	property	of	the	domain	object	is	$givenName,	the
following	method	call	conducts	a	renaming:

$propertyMappingConfiguration->setMapping('lastName',	'givenName');

setTypeConverter($typeConverter)

This	overwrites	the	automatic	resolution	of	the	Type	Converter	to	apply	and	forces
Extbase	to	use	a	specific	one.

setTypeConverterOption($typeConverterClassName,	$optionKey,	$optionValue)

This	sets	further	options	for	the	TypeConverter.	For	example,	the
DateTimeConverter	can	be	configured	to	use	a	specific	date	format:

setTypeConverterOption('TYPO3\CMS\Extbase\Property\TypeConverter\DateTimeConverter',	\TYPO3\CMS\Extbase\Property\TypeConverter\DateTimeConverter::CONFIGURATION_DATE_FORMAT,	'Y-m-d');

setTypeConverterOptions($typeConverterClassName,	array	$options)

This	sets	multiple	options	at	the	same	time.
allowProperties($propertyName1,	$propertyName2,	...)

This	specifies,	which	properties	are	allowed	on	the	current	level.	The	usage	of	the
wildcard	*	(all	properties)	is	also	valid.

allowAllProperties()

This	equals	allowProperties('*')	and	allows	the	conversation	of	all	properties.
allowAllPropertiesExcept($propertyName1,	$propertyName2)

This	creates	a	blacklist	of	properties,	which	must	not	be	converted.	All	properties	not
included	in	this	list	can	be	converted.

The	configuration	options	are	applied	on	the	current	level	only – without	further	settings
on	the	top	level.	In	the	case	they	should	be	extended	to	sub	levels,
forProperty($propertyPath)	can	be	stated.

$propertyMappingConfiguration->setMapping('longTitle',	'title');

$propertyMappingConfiguration

				->forProperty('postdate')

				->setTypeConverterOption(

								'\TYPO3\CMS\Extbase\Property\TypeConverter\DateTimeConverter',

								\TYPO3\CMS\Extbase\Property\TypeConverter\DateTimeConverter::	CONFIGURATION_DATE_FORMAT,

								'Y-m-d'

);

The	dot-syntax	allows	forProperty()	to	support	more	than	one	nesting	level,	e. g.
post.author.name.

The	Property	Mapper	uses	indices	as	property	names	for	properties,	which	contain
multiple	values	(e. g.	arrays).	To	achieve	a	matching	of	all	indices,	the	wildcard	*	can	be
used:

$propertyMappingConfiguration

				->forProperty('comments.*')

				->setTypeConverterOption(

								'\TYPO3\CMS\Extbase\Property\TypeConverter\PersistentObjectConverter',

								\TYPO3\CMS\Extbase\Property\TypeConverter\PersistentObjectConverter::	CONFIGURATION_CREATION_ALLOWED,

								TRUE

);

16.3.	Property	Mapper	Configuration	in
MVC	Stack

The	main	field	of	application	of	the	Property	Mapper	Configuration	is	surely	the	MVC
stack,	where	incoming	arguments	are	converted	into	objects.	If	Fluid	forms	are	used,	an
explicit	configuration	is	not	required	in	most	cases,	only	if	a	web	service	or	AJAX	client	is
being	developed.

Usually,	the	access	happens	via	the	object
TYPO3\CMS\Extbase\Mvc\Controller\Argument,	which	is	available	in	the	controller	as
$this->arguments.	Actions	initializeAction()	or	initialize[ActionName]Action()
are	the	relevant	methods.

The	following	example	reconstructs	a	comment	object	from	the	argument	comment	and
uses	it	as	an	object	in	the	update()	action:

public	function	initializeUpdateAction()	{

				$commentConfiguration	=	$this->arguments['comment']->getPropertyMappingConfiguration();

				$commentConfiguration->allowAllProperties();

				$commentConfiguration

								->setTypeConverterOption(

												'\TYPO3\CMS\Extbase\Property\TypeConverter\PersistentObjectConverter',

												\TYPO3\CMS\Extbase\Property\TypeConverter\PersistentObjectConverter::	CONFIGURATION_CREATION_ALLOWED,

												TRUE

);

}

/**

	*	@param	\Lobacher\Simpleblog\Domain\Model\Comment	$comment

	*/

public	function	updateAction(\Lobacher\Simpleblog\Domain\Model\Comment	$comment)	{

								//	object	$comment	can	be	used	now

								...

}

IDE	conform	syntax
Some	IDE	have	issues	with	the	following	syntax:

$commentConfiguration	=	$this->arguments['comment']->getPropertyMappingConfiguration();

This	is	because	they	can	not	resolve	the	method	after	an	array	access	(type
hinting).	In	this	case,	the	following	alternative	syntax	can	be	used:

$commentConfiguration	=	$this->arguments->getArgument('comment')->getPropertyMappingConfiguration();

16.4.	Security	Aspects

Let’s	assume,	a	user	should	be	able	to	create	a	new	account	via	a	REST	API	and	also	set	a
role	(out	of	a	list	of	available	roles).

array(

		'username'	=>	'newusername',

		'role'	=>	'2'

);

An	attacker	could	manipulate	the	array	as	follows:

array(

		'username'	=>	'newusername',

		'role'	=>	array(

				'name'	=>	'superuser',

				'admin'	=>	1

)

);

Due	to	the	fact	that	the	Property	Mapper	works	recursively,	a	new	role	object	would	be
created	and	its	admin	flag	set.

For	this	reason,	the	recursive	behaviour	must	be	configured	at	two	spots:

Allowed	properties	must	be	specified	by	allowProperties(),
allowAllProperties()	or	allowAllPropertiesExcept(),	and:
The	PersistentObjectConverter	must	be	configured	with	options
CONFIGURATION_MODIFICATION_ALLOWED	and	CONFIGURATION_CREATION_ALLOWED.
Only	this	configuration	enables	the	creation	or	modification	of	objects.	By	default,
the	PersistentObjectConverter	can	retrieve	objects	from	the	database	but	can	not
create	new	or	modifies	existing	ones.

16.5.	API	Reference

The	Property	Mapper	goes	through	the	following	steps	to	convert	simple	data	types	into
objects:

It	determines	the	TypeConverter	in	order	to	convert	the	source	into	the	target.
It	determines	the	child	properties	of	the	source	(if	exists)	by	calling	method
getSourceChildPropertiesToBeConverted().

Then,	for	each	child	property:

it	determines	the	data	type	of	each	child	property	by	calling	method
getTypeOfChildProperty(),
recursive	call	of	the	Property	Mapper	in	order	to	reconstruct	all	child	objects.

It	calls	the	TypeConverter	again,	by	passing	all	reconstructed	objects	so	far	to	method
convertFrom().

The	result	is	the	final	object	tree.

16.5.1.	Automatic	Resolution	of	TypeConverter

All	TypeConverters,	which	implement	the	interface
\TYPO3\CMS\Extbase\Property\TypeConverterInterface,	are	found	automatically
during	the	resolving	process.	Each	TypeConverter	features	four	API	methods,	which
impact	this	process:

getSupportedSourceTypes()

Returns	an	array	of	source	types,	which	the	TypeConverter	can	handle.
getSupportedTargetType()

Returns	the	target	type	this	TypeConverter	converts	to.	This	can	be	a	simple	type	(e. 
g.	float)	or	a	FQCN	(e. g.	'TYPO3\\CMS\\Extbase\\Domain\\Model\\File').

getPriority()

If	two	TypeConverters	have	the	same	source	and	target	type,	the	priority	specifies,
which	one	has	precedence.	TypeConverters	with	a	high	priority	are	chosen	before
low	priority	and	all	default	TypeConverter	have	a	priority	of	100	or	less.

canConvertFrom($source,	$targetType)

With	this	method	the	TypeConverter	can	do	some	additional	runtime	checks	to	see
whether	it	can	handle	the	given	source	data	and	the	given	target	type.

Chapter	17.	Best	Practices

This	chapter	explains	some	typical	challenges	and	their	practical	solutions.	In	no	particular
order	of	importance,	we’ll	take	a	closer	look	at	Flash	Messages,	AJAX,	image	uploads,
RSS	feeds	and	a	range	of	other	possible	problem	areas.

17.1.	Flash	Messages

Extbase	implements	a	number	of	actions	as	an	HTTP	request	“travels”	through	and	many
things	may	happen	along	this	journey.	It’s	useful	to	be	informed	on	what	exactly	takes
place	during	this	journey.	The	issue,	however,	is	that	there	is	no	specific	point	where
Extbase	stops	in	order	to	output	an	update,	so	the	only	solution	is	to	gather	the	details	and
display	them	at	the	journey’s	end	(the	last	action).

This	is	the	purpose	of	so-called	Flash	Messages.	They	are	stored	in	a	container
(respectively	in	a	queue	since	TYPO3	CMS	6.1)	until	they	are	retrieved.	To	display	these
messages	a	ViewHelper	can	be	used	which	also	empties	the	container/queue	and	allows
new	Flash	Messages	to	be	added	again.

System-wide	Flash	Messages	do	not	require	any	configuration	but	in	order	to	get
messages	on	a	plugin-only	basis,	the	following	TypoScript	must	be	set:

config.tx_extbase.legacy.enableLegacyFlashMessageHandling	=	0

At	this	point,	a	new	message	can	be	added,	e. g.	when	a	new	Blog	has	been	entered	and
stored	in	file	typo3conf/ext/simpleblog/Classes/Controller/BlogController.php:

...

				public	function	addAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

								$this->addFlashMessage(

																'Blog	successfully	created!',

																'Status',

																\TYPO3\CMS\Core\Messaging\AbstractMessage::OK,TRUE

)

);

								$this->blogRepository->add($blog);

								$this->redirect('list');

				}

...

The	API	behind	this	method	call	reads	as	follows:

addFlashMessage(

				$messageBody,

				$messageTitle	=	'',

				$severity	=	\TYPO3\CMS\Core\Messaging\AbstractMessage::OK,

				$storeInSession	=	TRUE

);

Possible	levels	of	severity	are:

NOTICE

INFO

OK

WARNING

ERROR

They	are	called	from	the	class	\TYPO3\CMS\Core\Messaging\AbstractMessage	for
example:	\TYPO3\CMS\Core\Messaging\AbstractMessage::OK.

In	order	to	display	Flash	Messages	you	can	use	your	own	ViewHelper.	We	insert	it	in	the
list	action	of	the	Blog	in	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/List.html:

...

<f:section	name="content">

...

<f:flashMessages	renderMode="div"	class="alert	alert-success"	/>

...

Figure	17.1.	Output	of	a	Flash	Message

With	just	a	few	lines	of	jQuery	code	you	could	also	set	the	message	to	disappear	again
after	a	few	seconds.

17.2.	Load	Plugin	Via	TypoScript

Extbase	itself	loads	the	plugin	via	TypoScript,	making	it	very	easy	for	us	to	do	the	same – 
for	example,	to	include	the	plugin	on	every	page	without	the	need	to	add	it	as	a	content
element.

An	example:

10	=	USER

10	{

				userFunc	=	TYPO3\CMS\Extbase\Core\Bootstrap->run

				extensionName	=	Simpleblog

				pluginName	=	Bloglisting

				vendorName	=	Lobacher

				controller	=	Blog

				action	=	rss

				switchableControllerActions	{

								Blog	{

												1	=	rss

								}

				}

				settings	=<	plugin.tx_simpleblog.settings

				persistence	=<	plugin.tx_simpleblog.persistence

				view	=<	plugin.tx_simpleblog.view

}

extensionName

Contains	the	name	of	the	extension	(in	UpperCamelCase).
pluginName

Specifies	the	plugin	name.
vendorName

Contains	the	vendor	name.
controller

If	you	want	to	jump	into	a	specific	controller,	name	it	here.
action

If	you	want	to	execute	a	specific	action,	name	it	here.
switchableControllerActions

Allows	access	to	be	restricted	to	specific	controller/action	combinations	for	this
implementation.	The	next	subkey	represents	the	controller	name	and	subsequently	the
action	as	a	number	(starting	at	1)	and	the	name	of	the	action.

settings

Sets	the	settings	which	can	be	copied	and/or	referenced.
persistence

Sets	the	persistence	settings	which	can	be	copied	and/or	referenced.
view

Sets	the	view	settings	which	can	be	copied	and/or	referenced.

17.3.	RSS-Feed

In	a	perfect	world	it	would	not	be	necessary	to	check	if	there	are	any	new	Posts	in	our
Blog;	we	would	use	an	RSS	Feed	to	inform	us	automatically	instead.	This	is	what	we	will
implement	in	the	step	below.

First,	position	a	link	in	the	show	template	of	your	Blog:

<f:link.action	action="rss"	format="xml"	pageType="100"	arguments="{blog:blog}"	class="btn	btn-small	btn-warning">RSS</f:link.action>

The	<f:link>	ViewHelper	refers	to	the	action	rss,	which	we	have	to	implement	later.
Additionally,	we	force	the	format	to	be	xml	rather	than	the	default	html	and	request	page
type	100	explicitly,	which	means	a	custom	TypoScript	rendering	is	required.	Finally,	we
add	the	Blog	as	an	argument	to	the	request,	so	we	can	show	its	posts	in	the	RSS	feed.

In	the	next	step	we	edit	file	typo3conf/ext/simpleblog/ext_localconf.php	and	enable
the	new	action	rss:

\TYPO3\CMS\Extbase\Utility\ExtensionUtility::configurePlugin(

				'Lobacher.'	.	$_EXTKEY,

				'Bloglisting',

				array(

								'Blog'	=>	'...,delete,rss',

								...

),

				//	non-cacheable	actions

				array(

								'Blog'	=>	'...,delete,rss',

								...

)

);

Now	we	extend	the	Blog	controller
typo3conf/ext/simpleblog/Classes/Controller/BlogController.php	by	adding	the
appropriate	method:

				/**

					*	RSS	Feed	for	the	posts	of	one	blog

					*

					*	@param	\Lobacher\Simpleblog\Domain\Model\Blog	$blog

					*/

				public	function	rssAction(\Lobacher\Simpleblog\Domain\Model\Blog	$blog)	{

								$this->view->assign('blog',	$blog);

				}

We	also	have	to	create	the	file
typo3conf/ext/simpleblog/Resources/Private/Templates/Blog/Rss.xml	to	show	the

RSS	feed:

<feed	xmlns="http://www.w3.org/2005/Atom">

<author>

				<name>Author	of	the	Weblog</name>

</author>

<title>{blog.title}</title>

<id>{f:uri.action(action:'show',	controller:'Blog',	arguments:'{blog:blog}',	absolute:'TRUE')	->	f:format.htmlspecialchars()}</id>

<updated><f:format.date	format='Y-m-d\TH:i:sP'>{blog.crdate}</f:format.date></updated>

<f:for	each="{blog.posts}"	as="post">

<entry>

				<title>{post.title}</title>

				<link	href="{f:uri.action(action:'show',	controller:'Post',	arguments:'{post:post,blog:blog}',	absolute:'TRUE')	->	f:format.htmlspecialchars()}"/>

				<id>{f:uri.action(action:'show',	controller:'Post',	arguments:'{post:post,blog:blog}',	absolute:'TRUE')	->	f:format.htmlspecialchars()}</id>

				<updated><f:format.date	format='Y-m-d\TH:i:sP'>{post.postdate}</f:format.date></updated>

				<summary>{post.content	->	f:format.crop(maxCharacters:'30')}</summary>

				<content>{post.content}</content>

</entry>

</f:for>

</feed>

In	order	to	read	the	crdate,	the	TCA	and	the	Blog	model	need	to	be	expanded.	Let’s	start
with	the	TCA	and	edit	the	file
typo3conf/ext/simpleblog/Configuration/TCA/Blog.php:

...

								'crdate'	=>	Array	(

												'exclude'	=>	0,

												'label'	=>	'Creation	date',

												'config'	=>	Array	(

																'type'	=>	'none',

																'format'	=>	'date',

																'eval'	=>	'date',

)

),

...

The	property	crdate	and	the	appropriate	getter	as	well	as	the	setter	are	added	to	the	Blog
model:

...

				/**

					*	crdate

					*	@var	DateTime

					*/

				protected	$crdate;

				/**

					*	@param	DateTime	$crdate

					*	@return	void

					*/

				public	function	setCrdate(DateTime	$crdate)	{

								$this->crdate	=	$crdate;

				}

				/**

					*	@return	DateTime

					*/

				public	function	getCrdate()	{

								return	$this->crdate;

				}

...

Finally,	we	implement	the	page	type	in	TypoScript:

rss	=	PAGE

rss	{

				typeNum	=	100

				10	=	USER

				10	{

								userFunc	=	TYPO3\CMS\Extbase\Core\Bootstrap->run

								extensionName	=	Simpleblog

								pluginName	=	Bloglisting

								vendorName	=	Lobacher

								controller	=	Blog

								action	=	rss

								switchableControllerActions	{

												Blog	{

																1	=	rss

												}

								}

								settings	=<	plugin.tx_simpleblog.settings

								persistence	=<	plugin.tx_simpleblog.persistence

								view	=<	plugin.tx_simpleblog.view

				}

				config	{

								disableAllHeaderCode	=	1

								additionalHeaders	=	Content-type:application/xml

								xhtml_cleaning	=	0

								admPanel	=	0

				}

}

17.4.	UriBuilder

Extbase	comes	with	its	own	UriBuilder	that	enables	developers	to	generate	URLs	based
on	specific	factors	such	as	the	current	action,	controller,	required	UID,	etc.	You	can	easily
build	links	in	your	controller	or	ViewHelper	analogue	to	the	ViewHelper
<f:link.action>.

...

$uriBuilder	=	$this->controllerContext->getUriBuilder();

$uri	=	$uriBuilder->uriFor('show',array('blog'=>$blog),'Blog');

...

Method	uriFor()	has	the	following	parameters:

public	function	uriFor($actionName	=	NULL,	$controllerArguments	=	array(),	$controllerName	=	NULL,	$extensionName	=	NULL,	$pluginName	=	NULL)

In	order	to	generate	a	“standard	link”	further	methods	can	be	called	to	provide	granular
control:

$uriBuilder	=	$this->controllerContext->getUriBuilder();

$uri	=	$uriBuilder->reset()

												->setTargetPageUid($pageUid)

												->setTargetPageType($pageType)

												->setNoCache($noCache)

												->setUseCacheHash(!$noCacheHash)

												->setSection($section)

												->setFormat($format)

												->setLinkAccessRestrictedPages($linkAccessRestrictedPages)

												->setArguments($additionalParams)

												->setAbsoluteUriScheme($absoluteUriScheme)

												->setCreateAbsoluteUri($absolute)

												->setAddQueryString($addQueryString)

												->setArgumentsToBeExcludedFromQueryString($argumentsToBeExcludedFromQueryString)

												->setAddQueryStringMethod($addQueryStringMethod)

												->build();

Every	method	(such	as	setFormat())	is	also	available	as	a	reading	method	(getFormat()).

The	example	above	also	shows	a	reset	of	all	the	parameters	used	in	order	to	build	the	URL
completely	from	scratch.

The	UriBuilder	can	also	be	used	to	determine	the	current	URL:

$this->uriBuilder->getRequest()->getRequestUri());

17.5.	File	Upload

As	part	of	the	domain	model	we	also	allowed	for	a	property	image	in	the	Blog	object.	We
have	ignored	this	until	now	however,	because	Extbase	does	not	yet	offer	a	native	function
to	deal	with	such	uploads.

We	will	change	this	now	and	bring	this	feature	to	life.	This	requires	some	steps:

17.5.1.	Adding	an	Upload	Field

To	begin,	we	extend	the	<f:form>	ViewHelper	in	the	file
typo3conf/ext/simpleblog/Resources/Private/Partials/Blog/Form.html	and	add	a
(conditional)	image	ViewHelper	as	well	as	an	upload	field:

<f:form	enctype="multipart/form-data"	action="{action}"	object="{blog}"	name="blog"	additionalAttributes="{role:'form'}">

...

				<div	class="form-group">

								<label>Blog-Bild</label>

								<f:if	condition="{blog.image}">
<f:image	src="uploads/tx_simpleblog/{blog.image}"	/></f:if>

								<f:form.upload		property="image"	class="form-control"	/>

				</div>

				<f:form.submit	value="{submitmessage}"	class="btn	btn-primary"	/>

</f:form>

Due	to	the	fact	that	the	image	ViewHelper	only	stores	the	file	name	in	{blog.image},	we
can	simply	use	a	<f:if>	ViewHelper	to	check	if	an	image	exists.

17.5.2.	Blog	Controller	Adjustments

As	soon	as	someone	selects	an	image	and	submits	the	form	the	following	error	message
appears:

#1297759968:	Exception	while	property	mapping	at	property	path	"image":No	converter	found	which	can	be	used	to	convert	from	"array"	to	"string".

The	reason	for	this	is	that	an	upload	is	sent	as	an	array	internally	(file	name,	temporary
name,	etc.)	but	the	property	expects	a	string	instead.

Figure	17.2.	Error	message	at	Property	Mapper

An	example	array	could	look	like	the	following:

array(5)	{

		["name"]=>

		string(14)	"tv_twitter.png"

		["type"]=>

		string(9)	"image/png"

		["tmp_name"]=>

		string(26)	"/private/var/tmp/phpmmDkhX"

		["error"]=>

		int(0)

		["size"]=>

		int(3033)

}

We	have	learnt	already	that	this	scenario	requires	a	TypeConverter – for	example	in	the
initializeAction()	of	the	Blog	controller
typo3conf/ext/simpleblog/Classes/Controller/BlogController.php:

				public	function	initializeAction(){

								if	($this->arguments->hasArgument('blog'))	{

												$this->arguments->getArgument('blog')->getPropertyMappingConfiguration()->setTargetTypeForSubProperty('image',	'array');

								}

				}

Assuming	an	argument	blog	exists,	attribute	image	is	converted	before	the	Blog	object	is
passed	on	to	the	action.

17.5.3.	Blog	Model	Adjustments

At	the	time	of	the	upload	the	image	is	represented	as	an	array,	however	a	string	is	required
(simply	the	file	name).	In	theory	we	could	make	this	conversion	take	place	in	the
controller	but	this	is	business	logic	which	belongs	to	the	model.

Instead,	we	adjust	the	setter	of	property	image	in	the	Blog	model.	To	do	so,	edit	the	file
typo3conf/ext/simpleblog/Classes/Domain/Model/Blog.php:

				/**

					*	Sets	the	image

					*

					*	@param	\array	$image

					*	@return	void

					*/

				public	function	setImage(array	$image)	{

								if	(!empty($image['name']))	{

												//	image	name

												$imageName	=	$image['name'];

												//	temporary	name	(incl.	path)	in	upload	directory

												$imageTempName	=	$image['tmp_name'];

												$basicFileUtility	=	\TYPO3\CMS\Core\Utility

								\GeneralUtility::	makeInstance('TYPO3\\CMS\\Core\\Utility\\File\\BasicFileUtility');

												//	determining	a	unique	namens	(incl.	path)	in

												//	uploads/tx_simpleblog/	and	copy	file

												$imageNameNew	=	$basicFileUtility->getUniqueName($imageName,	\TYPO3\CMS\Core\Utility\GeneralUtility::getFileAbsFileName('uploads/tx_simpleblog/'));

								\TYPO3\CMS\Core\Utility\GeneralUtility::	upload_copy_move($imageTempName,	$imageNameNew);

												//	set	name	without	path

												$this->image	=	basename($imageNameNew);

								}

				}

17.5.4.	TCA	Adjustments

Last	but	not	least,	we	have	to	update	the	TCA	by	editing	the	file
typo3conf/ext/simpleblog/Configuration/TCA/Blog.php:

...

								'image'	=>	array(

												'exclude'	=>	0,

												'label'	=>	'LLL:EXT:simpleblog/Resources/Private/Language/locallang_db.xlf:tx_simpleblog_domain_model_blog.image',

												'config'	=>	array(

																'type'	=>	'group',

																'internal_type'	=>	'file',

																'uploadfolder'	=>	'uploads/tx_simpleblog',

																'show_thumbs'	=>	1,

																'size'	=>	1,

																'allowed'	=>	$GLOBALS['TYPO3_CONF_VARS']['GFX']['imagefile_ext'],

																'disallowed'	=>	'',

),

),

...

This	declares	that	exactly	one	file	can	be	assigned	to	image	(size)	and	that	a	thumbnail
(preview	image)	appears	in	the	backend	(show_thumbs).

Upload	via	FAL	(File	Abstraction	Layer)
Intentionally,	the	example	above	does	not	use	the	FAL	(File	Abstraction
Layer)	which	is	part	of	the	TYPO3	CMS	core	since	version	6.0.	The	reason	is
because	the	write	process	is	not	yet	fully	implemented.	Currently,	reading	files
is	classified	as	stable	with	FAL	and	is	well	documented	in	the	TYPO3	Wiki
for	example.[44]

17.6.	StdWrap	in	Settings

Our	current	TypoScript	settings	do	not	support	any	stdWrap	functionalities.	It	would	be
great	if	something	like	the	following	worked:

plugin.tx_simpleblog	{

				settings	{

								uid.dataWrap	=	{page:uid}

				}

}

However	this	would	not	be	parsed	and	processed.	To	allow	such	dynamic	data	the	settings
array	needs	to	be	converted	into	a	dot-syntax	in	the	controller	and	the	stdWrap	function
applied	to	it:

//	load	TypoScript	service	class

$typoScriptService	=	$this->objectManager->get('TYPO3\\CMS\\Extbase\\Service\\TypoScriptService');

//	convert	settings	into	TypoScript	array

$settingsAsTypoScriptArray	=	$typoScriptService->convertPlainArrayToTypoScriptArray($this->settings);

//	apply	stdWrap

$this->settings['uid']	=	$this->configurationManager->getContentObject()->stdWrap($settingsAsTypoScriptArray['uid'],		$settingsAsTypoScriptArray['uid.']);

17.7.	Signal	Slot	Dispatcher

The	Signal	Slot	concept	is	a	design	pattern	in	the	software	engineering	which	implements
an	event-driven	program	flow – specifically	event-driven	communication	between	objects.
Originally	introduced	by	the	framework	Qt,	this	concept	is	used	by	a	number	of	other
software	libraries	today.

The	pattern	is	an	application	of	the	design	pattern	Observer	and	can	be	seen	as	an
alternative	to	direct	callback	functions.

Generally	speaking,	an	object	can	send	(emit)	a	signal	at	any	time,	e. g.	when	a	specific
event	occurs,	for	example	“added	to	the	repository”.	On	the	other	hand,	slots	are
functions,	which	are	associated	with	one	or	multiple	signals	and	are	executed
automatically,	if	one	of	those	signals	is	emitted.

The	main	area	of	application	of	Signal	and	Slots	is	in	the	expansion	of	extensions	by	other
extensions – similar	to	Hooks	or	the	XCLASS	concept	of	the	traditional	extension
development	with	pi_base().

Signals	are	emitted	by	a	so-called	Dispatcher	which	has	the	following	syntax:

$this->signalSlotDispatcher->dispatch(

				$signalClassName,

				$signalName,

				array	$signalArguments	=	array()

);

A	practical	example	could	be:

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterInsertObject',

				array('object'	=>	$object)

);

PHP’s	predefined	“magical”	constant	__CLASS__	defines	the	current	class	name	followed
by	the	Signal	name	and	all	arguments	which	are	given	to	the	signal	to	take	with	them.

Then	the	Slot	function	is	connected	to	the	Signal	and	with	that	the	function	is	called
automatically	when	the	Signal	is	emitted:

$this->signalSlotDispatcher->connect(

				$signalClassName,

				$signalName,

				$slotClassNameOrObject,

				$slotMethodName	=	'',

				$passSignalInformation	=	TRUE);

A	practical	example	could	be:

$this->signalSlotDispatcher->connect(

				'TYPO3\\CMS\\Extbase\\Persistence\\Generic\\Backend',

				'afterUpdateObject',

				'Lobacher\\Simpleblog\\Service\\SignalService',

				'handleUpdateEvent',

				TRUE

);

Arguments	are	the	class	name – which	emits	the	Signal – followed	by	the	Signal	name.
Then	follow	the	name	of	the	Slot	class	and	the	appropriate	method,	which	will	be
executed	as	soon	as	the	Signal	is	emitted.	The	last	argument	defines	any	additional
information	that	should	be	passed,	e. g.	$signalClassName	.	'::'	.	$signalName	(for
example:	TYPO3\CMS\Extbase\Persistence\Generic\Backend::afterUpdateObject).

17.7.1.	Built-in	Signals

Extbase	comes	with	numerous	built-in	Signals	which	can	be	used	straight	away.

In	the	file	TYPO3\CMS\Extbase\Persistence\Generic\Backend:

//	emits	a	signal	before	object	data	is	fetched

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'beforeGettingObjectData',

				array($query)

);

//	emits	a	signal	after	object	data	is	fetched

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterGettingObjectData',

				array($query,	$result)

);

//	emits	a	signal	after	an	object	is	added	to	the	storage

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterInsertObject',

				array('object'	=>	$object)

);

//	emits	a	signal	after	an	object	is	updated	in	storage

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterUpdateObject',

				array('object'	=>	$object)

);

//	emits	a	signal	after	an	object	is	removed	from	storage

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterRemoveObject',

				array('object'	=>	$object)

);

In	file	TYPO3\CMS\Extbase\Mvc\Dispatcher:

//	emits	a	signal	after	a	request	is	dispatched

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'afterRequestDispatch',

				array('request'	=>	$request,	'response'	=>	$response)

);

In	file	TYPO3\CMS\Extbase\Mvc\Controller\ActionController:

//	emits	a	signal	before	the	current	action	is	called

$this->signalSlotDispatcher->dispatch(

				__CLASS__,

				'beforeCallActionMethod',

				array(

								'controllerName'	=>	get_class($this),

								'actionMethodName'	=>	$this->actionMethodName,

								'preparedArguments'	=>	$preparedArguments

)

);

17.7.2.	Example	Usage	of	Built-in	Signals

As	an	example	of	how	to	use	built-in	Signals	we	will	write	a	log	file	entry	as	soon	as	a
new	comment	has	been	added.	For	that	we	use	the	Signal	afterInsertObject,	which	we
have	to	connect	to	a	Slot	in	the	file	ext_localconf.php:

$signalSlotDispatcher	=	\TYPO3\CMS\Core\Utility\GeneralUtility::makeInstance(

				'TYPO3\\CMS\\Extbase\\SignalSlot\\Dispatcher'

);

$signalSlotDispatcher->connect(

				'TYPO3\\CMS\\Extbase\\Persistence\\Generic\\Backend',

				'afterInsertObject',

				'Lobacher\\Simpleblog\\Service\\SignalService',

				'handleInsertEvent'

);

As	soon	as	the	Signal	afterInsertObject	is	emitted	the	method	handleUpdateEvent	of
class	Lobacher\Simpleblog\Service\SignalService	is	called.

We	need	to	create	the	file
typo3conf/ext/simpleblog/Classes/Service/SignalService.php	with	the	following
content:

<?php

namespace	Lobacher\Simpleblog\Service;

class	SignalService	implements	\TYPO3\CMS\Core\SingletonInterface	{

				/**

					*	@param	\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$object

					*/

				public	function	handleInsertEvent(\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$object,$signalInformation){

								if	($object	instanceof	\Lobacher\Simpleblog\Domain\Model\Comment)	{

												$content	=	'Comment:	'.	$object->getComment();

												$content	.=	'	/	'	.	$object->getCommentdate()->format('Y-m-d	H:i:s');

												$content	.=	"	/	"	.	$signalInformation	.	chr(10);

												$this->writeLogFile($content);

								}

				}

				/**

					*	@param	$content	string

					*/

				public	function	writeLogFile($content){

								$logfile	=	"logfile.txt";

								$handle	=	fopen($logfile,	"a+");

								fwrite	($handle,	$content);

								fclose	($handle);

				}

}

?>

The	current	object	is	transferred	to	the	method	handleUpdateEvent()	as	$object.	The
first	step	is	to	check	if	the	object	is	of	the	type	comment.	If	this	is	the	case,	a	string
$content	is	created,	which	shows	the	following	content	written	to	the	file	logfile.txt:

Comment:	This	is	a	comment	/	2013-12-27	13:18:25	/	TYPO3\CMS\Extbase\Persistence\Generic\Backend::afterInsertObject

This	also	shows	from	where	the	Signal	originated:
TYPO3\CMS\Extbase\Persistence\Generic\Backend::afterInsertObject

(Class::SignalName).

Parameter	modifications
It	is	not	only	possible	to	read	data	in	a	Slot,	but	we	can	also	update	them.	The
comment	object	could	also	be	modified	by	executing	$object-
>setComment('New	comment')	for	example.

17.7.3.	Create	Your	Own	Signals

With	the	knowledge	gained	so	far	it	becomes	very	easy	to	implement	your	own	Signals.
This	is	especially	important	if	your	extensions	should	be	expandable	by	other	extensions.
Whenever	it	makes	sense	to	extend	functionality,	implement	a	Signal	and	document	this
clearly.	This	enables	other	developers	who	use	your	extension	to	add	features	by	writing	a
Slot,	without	modifying	the	code	of	your	extension.

Let’s	add	a	Signal	to	the	Post	controller	of	the	action	ajax	to	allow	others	to	“expand”
comments	at	this	level	as	required.

To	achieve	this,	edit	the	file
typo3conf/ext/simpleblog/Classes/Controller/PostController.php:

class	PostController	extends	\TYPO3\CMS\Extbase\Mvc\Controller\ActionController	{

				...

				/**

					*	SignalSlotDispatcher

					*

					*	@var	\TYPO3\CMS\Extbase\SignalSlot\Dispatcher

					*	@inject

					*/

				protected	$signalSlotDispatcher;

				...

				public	function	ajaxAction(

								\Lobacher\Simpleblog\Domain\Model\Post	$post,

								\Lobacher\Simpleblog\Domain\Model\Comment	$comment	=	NULL)	{

								$comment->setCommentdate(new	\DateTime());

								$post->addComment($comment);

								//	signal	for	comments

								$this->signalSlotDispatcher->dispatch(

												__CLASS__,

												'beforeCommentCreation',

												array($comment,$post)

);

								$this->postRepository->update($post);

								...

				}

				...

}

First	of	all,	we	make	sure	that	the	Signal	Slot	Dispatcher	is	available	by	using	Dependency
Injection.	Then	we	implement	its	method	dispatch()	in	our	ajaxAction()	in	order	to
emit	a	Signal	with	the	name	beforeCommentCreation	and	the	parameters	$comment	and
$post.

At	this	point	we	are	able	to	receive	and	process	the	Signal	in	any	extension	we	choose.	For
the	sake	of	simplicity	we	will	do	this	in	our	own	Simpleblog	extension.

Edit	file	ext_localconf.php:

$signalSlotDispatcher->connect(

				'Lobacher\\Simpleblog\\Controller\\PostController',

				'beforeCommentCreation',

				'Lobacher\\Simpleblog\\Service\\SignalService',

				'handleCommentInsertion'

);

Finally,	we	need	a	method	handleCommentInsertion()	in	the	file
typo3conf/ext/simpleblog/Classes/Service/SignalService.php,	which	we	have
defined	as	the	Signal	name	in	the	method	call	connect()	before.

				/**

					*	@param	\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$comment

					*	@param	\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$post

					*	@param	$signalInformation	string

					*/

				public	function	handleCommentInsertion(

												\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$comment,

												\TYPO3\CMS\Extbase\DomainObject\DomainObjectInterface	$post,

												$signalInformation){

								$content	=	'Comment:	'.	$comment->getComment();

								$content	.=	'	(Post:	'	.	$post->getTitle()	.	')';

								$content	.=	"	/	"	.	$signalInformation	.	chr(10);

								$this->writeLogFile($content);

				}

This	results	in	a	log	entry	such	as:

Comment:	My	owner	always	works	on	his	book	rather	than	going	for	a	stroll!	(Post:	Rocky	wants	to	go	for	a	stroll!)	/	Lobacher\Simpleblog\Controller\PostController::beforeCommentCreation

Comment:	My	owner	always	works	on	his	book	rather	than	going	for	a	stroll!	/	2013-12-27	14:34:31	/	TYPO3\CMS\Extbase\Persistence\Generic\Backend::afterInsertObject

The	first	entry	originates	from	the	Signal	beforeCommentCreation	(and	the	appropriate
Slot	handleCommentInsertion()),	the	second	from	the	Signal	afterInsertObject	(and
the	appropriate	Slot	handleInsertEvent()).

17.8.	File	Abstraction	Layer	(FAL)

Since	TYPO3	CMS	version	6.0	the	File	Abstraction	Layer	(FAL)	is	used	to	manage	all
kinds	of	media	files,	such	as	images	or	videos.	While	write	access	to	the	FAL	is	not	yet
fully	supported	by	Extbase,	reading	data	is	not	a	problem	and	a	convenient	way	to	deal
with	multimedia	files.

A	new	column	in	the	database	table	is	required	in	order	to	equip	the	model	with	a	FAL
image	field:

images	int(11)	unsigned	DEFAULT	'0',

Then,	we	have	to	reference	the	field	in	the	appropriate	TCA	of	the	model:

...

				'images'	=>	array(

								'exclude'	=>	0,

								'label'	=>	'images',

								'config'	=>	\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::getFileFieldTCAConfig(

												'images',

												array(

																'appearance'	=>	array(

																				'headerThumbnail'	=>	array(

																								'width'	=>	'100',

																								'height'	=>	'100',

),

																'createNewRelationLinkTitle'	=>	'LLL:EXT:your_extension/Resources/Private/Language/locallang_db.xlf:tx_yourextension_db_table.add-images'

),

												//	custom	configuration	for	displaying	fields	in	the	overlay/reference	table

												//	to	use	the	imageoverlayPalette	instead	of	the	basicoverlayPalette

												'foreign_types'	=>	array(

																'0'	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

),

																\TYPO3\CMS\Core\Resource\File::FILETYPE_TEXT	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

),

																\TYPO3\CMS\Core\Resource\File::FILETYPE_IMAGE	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

),

																\TYPO3\CMS\Core\Resource\File::FILETYPE_AUDIO	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

),

																\TYPO3\CMS\Core\Resource\File::FILETYPE_VIDEO	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

),

																\TYPO3\CMS\Core\Resource\File::FILETYPE_APPLICATION	=>	array(

																				'showitem'	=>	'

																								--palette--;LLL:EXT:lang/locallang_tca.xlf:sys_file_reference.imageoverlayPalette;imageoverlayPalette,

																								--palette--;;filePalette'

)

),

),

								$GLOBALS['TYPO3_CONF_VARS']['GFX']['imagefile_ext']

)

),

...

The	model	itself	must	be	extended	by	the	property	and	the	getter	and	setter	methods:

/**

	*	FAL	Image	Connector

	*	@var	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\TYPO3\CMS\Extbase\Domain\Model\FileReference>

	*	@lazy

	*/

protected	$images;

/**

	*	Constructor

	*	@return	AbstractObject

	*/

public	function	__construct()	{

			...

			$this->images	=	new	\TYPO3\CMS\Extbase\Persistence\ObjectStorage();

			...

}

/**

	*	Images	Setter

	*	@param	\TYPO3\CMS\Extbase\Persistence\ObjectStorage	$images

	*	@return	void

	*/

public	function	setImages($images)	{

			$this->images	=	$images;

}

/**

	*	Images	Getter

	*	@return	\TYPO3\CMS\Extbase\Persistence\ObjectStorage

	*/

public	function	getImages()	{

			return	$this->images;

}

After	these	few	preparations	images	can	be	selected	and	assigned	via	FAL	in	the	backend
of	TYPO3	and	displayed	in	a	Fluid	template:

<f:for	each="{images}"	as="image"	>

			

						<f:image	src="{image.uid}"	alt=""	width="100"	height="50"	treatIdAsReference="1"	/>

			

</f:for	>

Usually,	a	title	“Create	new	relation”	is	shown	in	the	backend	where	the	user	has	the
option	to	add	images	via	FAL.	You	can	alter	this	title	by	the	following	code	(for	example
in	the	file	ext_tables.php):

\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::getFileFieldTCAConfig('images',

			array(

						'appearance'	=>	array(

									'headerThumbnail'	=>	array(

												'width'	=>	'100',

												'height'	=>	'100',

),

									'createNewRelationLinkTitle'	=>	'LLL:EXT:your_extension/Resources/Private/Language/locallang_db.xlf:tx_yourextension_db_table.add-images'

)

),

			'jpg,jpeg,png');

Providing	the	following	conditions	are	met:

image	contains	the	FAL	object.
imageoriginalResource	contains	the	sys_file_reference	data	record.
imageoriginalResource.originalFile	contains	the	sys_file	data	record.

You	can	access	the	FAL	data	by	the	keywords	listed	below:

File	name:				{image.originalResource.originalFile.name}

Title:								{image.originalResource.originalFile.title}

Description:		{image.originalResource.originalFile.description}

Alt	text:					{image.originalResource.originalFile.alternative}

UID:										{image.originalResource.originalFile.uid}

Path:									{image.originalResource.publicUrl}

Reference	attributes:

Title:								{image.originalResource.title}

Description:		{image.originalResource.name}

Display	as	an	image:

<f:image	src="{image.originalResource.originalFile.uid}"	alt=""	/>

<f:image	src="{image.uid}"	alt=""	treatIdAsReference="TRUE"	/>

17.9.	Category	API

Extbase	features	a	so-called	category	API	since	TYPO3	CMS	version	6.0.	To	enable	data
records	to	be	able	to	be	categorised	the	following	API	code	can	be	used:

\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::makeCategorizable(

				$extensionKey,

				$tableName,

				//	optional:	in	case	the	field	would	need	a	different	name	as	"categories".

				//	The	field	is	mandatory	for	TCEmain	to	work	internally.

				$fieldName	=	'categories',

				//	optional:	add	TCA	options	which	controls	how	the	field	is	displayed.	e.g	position	and	name	of	the	category	tree.

				$options	=	array()

);

You	can	choose	between	using	the	Extension	Builder	or	the	manual	method	to	add
categories	to	your	own	model.

For	the	Extension	Builder	the	following	steps	are	required:

create	a	model,	which	should	be	categorised;
add	a	1:n	relation	with	the	name	categories;
in	field	Relation	to	external	class,	enter:	\TYPO3\CMS\Extbase\Domain\Model\Category
extend	file	ext_tables.php	by	the	API	call
\TYPO3\CMS\Core\Utility\ExtensionManagementUtility::makeCategorizable()

(see	above)	to	make	the	field	categorisable;
modify	the	model	TCA	and	delete	the	configuration,	which	has	been	added	by	the
Extension	Builder	automatically	for	the	field	categories;	and,
access	categories	via	getter	and	setter	directly.

Alternatively,	this	is	the	manual	procedure:

/**

	*	Categories

	*

	*	@var	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\TYPO3\CMS\Extbase\Domain\Model\Category>

	*/

protected	$categories;

/**

	*	Adds	a	Category

	*

	*	@param	\TYPO3\CMS\Extbase\Domain\Model\Category	$category

	*	@return	void

	*/

public	function	addCategory(\TYPO3\CMS\Extbase\Domain\Model\Category	$category)	{

				$this->categories->attach($category);

}

/**

	*	Removes	a	Category

	*

	*	@param	\TYPO3\CMS\Extbase\Domain\Model\Category	$categoryToRemove	The	Category	to	be	removed

	*	@return	void

	*/

public	function	removeCategory(\TYPO3\CMS\Extbase\Domain\Model\Category	$categoryToRemove)	{

				$this->categories->detach($categoryToRemove);

}

/**

	*	Returns	the	categories

	*

	*	@return	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\TYPO3\CMS\Extbase\Domain\Model\Category>	$categories

	*/

public	function	getCategories()	{

				return	$this->categories;

}

/**

	*	Sets	the	categories

	*

	*	@param	\TYPO3\CMS\Extbase\Persistence\ObjectStorage<\TYPO3\CMS\Extbase\Domain\Model\Category>	$categories

	*	@return	void

	*/

public	function	setCategories(\TYPO3\CMS\Extbase\Persistence\ObjectStorage	$categories)	{

				$this->categories	=	$categories;

}

Further	details	can	be	found	in	the	Wiki	of	the	TYPO3	project.[45]

17.10.	Extbase	Models

Extbase	already	contains	a	number	of	models,	which	can	be	found	in	folder
typo3conf/sysext/extbase/Classes/Domain/Model/.

Backend	user	(BackendUser.php)
Backend	usergroup	(BackendUserGroup.php)
Frontend	user	(FrontendUser.php)
Frontend	usergroup	(FrontendUserGroup.php)
Categories	(Category.php)
Files	(File.php)
Filemounts	(FileMount.php)
File	references	(FileReference.php)
Folders	(Folder.php)
Folder-based	file	collections	(FolderBasedFileCollection.php)
Static	file	collections	(StaticFileCollection.php)

17.11.	Scheduler	Tasks

Extbase	can	also	be	used	for	Scheduler	Tasks.	The	main	only	thing	to	you	should	be	aware
of	here	is	the	fact	that	you	are	not	working	within	TYPO3’s	internal	automatismsbuilt-in
automatic	features	and	you	might	therefore,	you	possibly	have	to	do	some	things
manually.	The	following	example	shows	a	Scheduler	Task,	that	deletes	files	automatically
after	a	certain	period	of	time.

First	of	all,	register	the	Scheduler	Task	in	file	ext_localconf.php	as	follows:

$GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['scheduler']['tasks']['Lobacher

\\Simpleblog\\Command\\FileCommandController']	=	array(

			'extension'	=>	$_EXTKEY,

			'title'	=>	'Filecenter	Delete	Files',

			'description'	=>	'Deletes	Files	in	Filecenter	after	the	defined	period	of	time',

			'additionalFields'	=>	''

);

After	that,	create	a	new	file	FileCommandController.php	in	the	directory
typo3conf/ext/simpleblog/Classes/Command/:

<?php

namespace	Lobacher\Simpleblog\Command;

/**

	*	Class	FileCommandController

	*

	*	Deletes	files	after	a	certain	period	of	time

	*/

class	FileCommandController	extends	\TYPO3\CMS\Scheduler\Task\AbstractTask	{

				public	function	execute()	{

								//	Fetch	ObjectManager

								$objectManager	=	\TYPO3\CMS\Core\Utility\GeneralUtility::

makeInstance('TYPO3\\CMS\\Extbase\\Object\\ObjectManager');

								//	instantiate	Repository

								$repository	=	$objectManager->get('Lobacher\\Simpleblog\\Domain\\Repository\\FileRepository');

								//	fetch	configuration

								$configurationManager	=	$objectManager->get('TYPO3\\CMS\\Extbase\\Configuration\\ConfigurationManagerInterface');

								$settings	=	$configurationManager->getConfiguration(\TYPO3\CMS\

Extbase\Configuration\ConfigurationManagerInterface::CONFIGURATION_TYPE_

FULL_TYPOSCRIPT);

								$storagePid	=	$settings['plugin.']['tx_simpleblog.']

['persistence.']['storagePid'];

								//	set	query	settings	(PID)

								$querySettings	=	$objectManager->get('TYPO3\\CMS\\Extbase\\

Persistence\\Generic\\Typo3QuerySettings');

								$querySettings->setStoragePageIds(array($storagePid));

								$repository->setDefaultQuerySettings($querySettings);

								//	access	Repository

								$files	=	$repository->findAll();

								//	...	delete	files…

								return	count($files);

				}

}

The	only	things	left	are	to	set	the	appropriate	repository	and	some	TypoScript.

17.12.	JSON	View

The	feature	“JsonView”	has	been	ported	from	TYPO3	Flow	to	TYPO3	CMS	in	version
6.2	LTS.	When	using	AJAX	or	specifically	when	developing	a	web	service,	the	controller
expects	a	particular	data	format	that	is	easy	to	process.

The	JSON	format	is	quite	popular	because	it	is	lightweight	and	easy	to	parse.	You	could
also	implement	JSON	by	a	Fluid	template,	but	a	“real”	view	is	much	more	practical.	In
order	to	use	the	JSON	view	in	the	controller,	it	must	be	enabled	with	the	variable
$defaultViewObjectName.

class	FooController	extends	ActionController	{

				/**

					*	@var	string

					*/

					protected	$defaultViewObjectName	=	'TYPO3\CMS\Extbase\Mvc\View\JsonView';

					#	…

}

The	assignment	happens	as	before:

/**

	*	@param	\Acme\Demo\Model\Product	$product

	*	@return	void

	*/

public	function	showAction(Product	$product)	{

				$this->view->assign('value',	$product);

}

Variable	value	can	be	rendered	now.	To	render	other	variables,	they	have	to	be	configured
first:

$this->view->setVariablesToRender(array('articles'));

$this->view->assign('articles',	$this->articleRepository->findAll());

The	output	looks	like	the	following	then:

{"name":"Arabica","weight":1000,"price":23.95}

You	can	configure	the	array	in	a	very	granular	way:

$this->view->assign('value',	$product);

$this->view->setConfiguration(ARRAY);

The	following	syntax	is	a	valid	configuration	for	the	ARRAY:

array(

				'value'	=>	array(

								//	rendering	of	property	"name"	of	the	object	value

								'_only'	=>	array('name')

),

				'anothervalue'	=>	array(

								//	rendering	of	all	properties,	except	"password"

								'_exclude'	=>	array('password')

								//	additionally,	sub-object	"address"	should	be	included	as	a

								//	nested	JSON	object

								'_descend'	=>	array(

												'address'	=>	array(

																//	here	you	can	use	_only,	_exclude	und	_descend	again

)

)

),

				'arrayvalue'	=>	array(

								//	descend	into	all	sub	objects

								'_descendAll'	=>	array(

												//	here	you	can	use	_only,	_exclude	und	_descend	again

)

),

				'valueWithObjectIdentifier'	=>	array(

								//	the	object	identifier	is	not	included	in	the	output	by

								//	default,	but	can	be	added	if	required

								'_exposeObjectIdentifier'	=>	TRUE,

								//	the	object	identifier	should	not	be	rendered	as	"__identity",

								//	but	as	"guid"

								'_exposedObjectIdentifierKey'	=>	'guid'

)

)

Possible	options	are:

_only	(array)
include	the	listed	proporties	only

_exclude	(array)
include	all	properties,	except	properties	listed

_descend	(associative	array)
include	specified	sub-objects

_descendAll	(array)
include	all	sub	objects	(as	a	numeric	array)

_exposeObjectIdentifier	(boolean)
include	the	object	identifier	as	__identifier

_exposeObjectIdentifierKey	(string)
JSON	field	name

[44]	http://wiki.typo3.org/FAL#Usage_in_Extbase_.28in_progress.29

[45]	http://wiki.typo3.org/TYPO3_6.0#Category

http://wiki.typo3.org/FAL#Usage_in_Extbase_.28in_progress.29
http://wiki.typo3.org/TYPO3_6.0#Category

Part	I.	Appendix

Appendix	A.	Reference

A.1.	ext_emconf.php

The	file	ext_emconf.php	provides	all	extension	configurations	required	for	the	TYPO3
Extension	Repository	(TER)	and	the	Extension	Manager.	An	array	$EM_CONF[$_EXTKEY]
contains	key/value	pairs:

$EM_CONF[$_EXTKEY]	=	array	(

			'key'	=>	'value',

			...

);

The	following	keys	exist:

title	(string,	mandatory)
Extension	name	(in	English).

description	(string,	mandatory)
Short	description	of	functionality	(in	English).

category	(string)
be	(backend),	module	(backend	module),	fe	(frontend),	plugin	(frontend	plugin),
misc	(miscellaneous),	services	(TYPO3	services),	templates	(website	template),
example	(example),	doc	(documentation).

version	(main.sub.dev)
Version	of	the	extension.	Automatically	managed	by	the	Extension	Manager.	The
Format	is	[int].[int].[int].

constraints	(array)

array(

		'depends'	=>

				array(

						'php'	=>	'5.4.0-5.5.99',

						'typo3'	=>	'6.2.0-7.999.999',

),

		'conflicts'	=>

				array(

),

		'suggests'	=>

				array(

),

),

dependencies	lists	extensions,	which	have	to	be	installed;	conflicts	lists	extensions
which	conflict	with	the	extension;	suggests	lists	extensions	which	use	useful	and
should	be	installed,	too.	The	version	string	6.2.0-7.999.999	includes	all	version
from	6.2.x	to	7.x. x.

state	(string)

one	of	the	following	strings:	alpha,	beta,	stable,	experimental,	test,	obsolete	or
excludeFromUpdates.

uploadFolder	(boolean)
If	set	to	1,	a	folder	named	uploads/tx_[extensionkey]	should	be	present
(extensionkey	without	underscore).

createDirs	(string)
Comma-separated	directories	to	be	created	upon	extension	installation.

clearCacheOnLoad	(boolean)
If	set	to	1,	the	Extension	Manager	will	request	TYPO3	to	clear	the	cache	when	this
extension	is	loaded.

author	(string)
Extension	author’s	name.

author_email	(string)
Extension	author’s	email	address.

author_company	(string)
Extension	author’s	company	name.

Other	options	are	likely	outdated/deprecated	and	should	not	be	used.	The	official	TYPO3
core	API	reference[46]	lists	all	valid	configuration	options	and	explains	their	purpose	and
usage.

A.2.	Flexform	Field	Types

A.2.1.	Text	Field
<label>Text	Field</label>

<config>

		<type>input</type>

		<size>20</size>

		<max>30</max>

		<eval>trim</eval>

</config>

A.2.2.	Date	Field
<label>Date	Field</label>

<config>

		<type>input</type>

		<size>8</size>

		<max>8</max>

		<eval>date</eval>

		<checkbox>1</checkbox>

</config>

A.2.3.	Checkbox
<label>Checkbox</label>

<config>

		<type>check</type>

</config>

A.2.4.	Textarea
<label>Textarea</label>

<config>

		<type>text</type>

		<cols>24</cols>

		<rows>3</rows>

</config>

A.2.5.	Textarea	with	RTE
<label>Textarea</label>

<config>

		<type>text</type>

		<cols>24</cols>

		<rows>3</rows>

		<defaultExtras>richtext[*]:rte_transform[mode=ts_css]</defaultExtras>

</config>

A.2.6.	Radio	Buttons
<label>Radio	Buttons</label>

<config>

		<type>radio</type>

		<items	type="array">

				<numIndex	index="0"	type="array">

						<numIndex	index="0">label1</numIndex>

						<numIndex	index="1">value1</numIndex>

				</numIndex>

				<numIndex	index="1"	type="array">

						<numIndex	index="0">label2</numIndex>

						<numIndex	index="1">value2</numIndex>

				</numIndex>

				<numIndex	index="3"	type="array">

						<numIndex	index="0">label3</numIndex>

						<numIndex	index="1">value3</numIndex>

				</numIndex>

		</items>

</config>

A.2.7.	Selectbox
<label>Selectbox</label>

<config>

		<type>select</type>

		<items	type="array">

				<numIndex	index="0"	type="array">

						<numIndex	index="0">label1</numIndex>

						<numIndex	index="1">value1</numIndex>

				</numIndex>

				<numIndex	index="1"	type="array">

						<numIndex	index="0">label2</numIndex>

						<numIndex	index="1">value2</numIndex>

				</numIndex>

				<numIndex	index="3"	type="array">

						<numIndex	index="0">label3</numIndex>

						<numIndex	index="1">value3</numIndex>

				</numIndex>

		</items>

</config>

A.2.8.	Selectbox	(Multi-Select)
<label>Selectbox	Multi-Select</label>

<config>

		<type>select</type>

		<items	type="array">

				<numIndex	index="0"	type="array">

						<numIndex	index="0">label1</numIndex>

						<numIndex	index="1">value1</numIndex>

				</numIndex>

				<numIndex	index="1"	type="array">

						<numIndex	index="0">label2</numIndex>

						<numIndex	index="1">value2</numIndex>

				</numIndex>

				<numIndex	index="3"	type="array">

						<numIndex	index="0">label3</numIndex>

						<numIndex	index="1">value3</numIndex>

				</numIndex>

		</items>

		<maxitems>3</maxitems>

		<size>3</size>

</config>

A.2.9.	Page	Browser
<label>Page	Browser</label>

<config>

		<type>group</type>

		<internal_type>db</internal_type>

		<allowed>pages</allowed>

		<size>1</size>

		<maxitems>1</maxitems>

		<minitems>0</minitems>

		<show_thumbs>1</show_thumbs>

</config>

[46]	http://docs.typo3.org/typo3cms/CoreApiReference/ExtensionArchitecture/DeclarationFile/Index.html

http://docs.typo3.org/typo3cms/CoreApiReference/ExtensionArchitecture/DeclarationFile/Index.html

Index

Symbols

__toString	Method	Side	Note:	Template	Rendering

A

ACME	The	New	TYPO3	Universe
Action	The	Show-Action	Call
two-steps	Form	to	Create	an	Object

ActionController	Implementing	listActionAJAX	Comments	&	AJAXAnnotation

@api	The	Persistence	Manager:	Manual	Persistence
@inject	Persisting	the	Blogs
@param	Form	to	Create	an	Object
@return	Implementing	listAction
@validate	Property	Validation
@var	Persisting	the	Blogs

AOP	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)API	The	Persistence	Manager:	Manual
PersistenceAspect	Oriented	Programming	(see	AOP)

B

Backend	Modules	Backend	Modules
Action	Menu	Action	Menu
Context	Sensitive	Help	CSH	Buttons
Icon	button	Icon	Button
Language	Labels	Language	File	for	Labels
Shortcut	button	Shortcut	Button
TypoScript	TypoScript

Berlin-Manifesto	The	Berlin-ManifestoBest	Practices	Best	Practices

C

Cache	Form	Processing

Cache	hash	Create	Your	Own	Action
Category	API	Category	API
cHash	Create	Your	Own	Action
Complex	Partials	Complex	Partials
Configuration	Manager	TypoScript	for	the	Next	Sections	of	this	Book
Controller	Controller:	Pluswerk\Efempty\Controller\StartController
Convention	over	configuration	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)
Cross-Site	Request	Forgery	(see	CSRF)
CRUD
Create	Creating	an	Object
Delete	Deletion	of	an	Object
Process	The	CRUD	Process
Read	Display	a	Blog	(Read)
Update	Update	an	Object

CSRF	Generated	HTML	Form

D

DDD	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3),	Domain	Driven	Design
1:1	Relation
1:n	Relation
Aggregate	Aggregate
Aggregate	Root	Aggregate
Bounded	Context	Bounded	Context
Context	Map	Context	Map
Core	Domain	Core	Domain
Domain	Domain	Driven	Design
Domain	Model	The	Domain	Model
Entity	Entity
Factory	Factory
Glossary	Ubiquitous	Language
Infrastucture	Ignorance	Infrastructure	Ignorance
m:n	Relation
Modelling	The	Domain	Model
MVC	MVC
n:1	Relation
Relation	Relation
Repository	Repository
Service	Service
Shared	Kernel	Shared	Kernel
Ubiquitous	Language	Ubiquitous	Language
Value	Object	Value	Object

DebuggerUtilty	Side	Note:	DebuggingDebugging	Side	Note:	DebuggingDependency

Injection	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)Design	Pattern

Observer	Signal	Slot	Dispatcher

DI

Dependency	Injection	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)

Domain	Domain:	Pluswerk\Efempty\Domain\Model\StartDomain	Driven	Design	(see
DDD)Domain	Model	Creating	the	Domain	Model

Backend	usergroups	Extbase	Models
Backend	users	Extbase	Models
Blog	example	Creating	the	Domain	Model
Categories	Extbase	Models
File	references	Extbase	Models
Filemounts	Extbase	Models
Files	Extbase	Models
Folder	file	collections	Extbase	Models
Folders	Extbase	Models
Frontend	usergroups	Extbase	Models
Frontend	users	Extbase	Models
Static	file	collections	Extbase	Models

Domain-Driven	Design	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)

E

efempty	extension	Installation	of	Extension	efempty
Error	Handling	Validation	and	Error	Handling
form.validationResults	Error	Handling

Escaping	Dynamic	Search	in	RepositoryEvans,	Eric	Domain	Driven	DesignEXT:efempty
Installation	of	Extension	efemptyEXT:phpstorm	TYPO3	Extension	phpstormEXT:vhs
Side	Note:	FluidExtbase	Backports:	Extbase	&	Fluid

Installation	Installation	of	Extbase	&	Fluid
Models	Extbase	Models

Extension

efempty	Installation	of	Extension	efempty
phpstorm	TYPO3	Extension	phpstorm
vhs	Side	Note:	Fluid

Extension	Builder	Modelling	in	Extbase	-	The	Extension	Builder

Backup	Create	a	Backup
Domain	model	properties	Domain	Model	Properties
excludeField	Properties	of	the	Domaim	Object	“Blog”
Lazy	Loading	Relation	Between	Blog	and	Post
Modelling	Domain	Model
Properties	Extension	Properties
Relations	Domain	Model	Relations
Roundtrip	Modifying	the	Model
YAML	Modifying	the	Model

ext_emconf.php	Files	ext_emconf.php	and	ext_icon.gif,	ext_emconf.phpext_icon.gif	Files
ext_emconf.php	and	ext_icon.gifext_localconf.php	ext_localconf.phpext_tables.php	File
ext_tables.php

F

FAL	File	Abstraction	Layer	(FAL)
Upload	TCA	Adjustments

File	Abstraction	Layer	(see	FAL)Flash	Messages	Flash	MessagesFlexForm	TypoScript
and	FlexForm	Configuration,	FlexForms

Fieldtypes	Flexform	Field	Types
Switchable	Controller	Actions	Switchable	Controller	Actions	(SCA)

FLOW3	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3)Fluid	Side	Note:	Fluid

Array	Side	Note:	Fluid
Escaping	Dynamic	Search	in	Repository
Installation	Installation	of	Extbase	&	Fluid
Layout	Fluid	Templating:	Templates,	Layouts	and	Partials
Object	Accessor	Side	Note:	Fluid
Partial	Fluid	Templating:	Templates,	Layouts	and	Partials
Special	characters	Dynamic	Search	in	Repository
Template	Fluid	Templating:	Templates,	Layouts	and	Partials
ViewHelper	Side	Note:	Fluid
ViewHelper	inline	syntax	Option	1:	In-house	Means
ViewHelper	syntax	Side	Note:	Fluid

Form	Form	to	Create	an	Object,	Form	SyntaxFrontend	frameworks	Frontend	Frameworks

G

getControllerContext	method	Side	Note:	Request	Object

Glossary	The	Glossary

I

IDE	IDE	Settings
Fluid	schema	Include	Fluid’s	Schema	File
Include	path	Add	Core	Files	to	the	Include	Path
Resolving	class	names	Tips	About	Resolving	Class	Names
XSD	Include	Fluid’s	Schema	File

Implicit	persistence	Side	Note:	Persistence

J

JSON	JSON	View
JSON	View	JSON	View

L

Layout	Fluid	Templating:	Templates,	Layouts	and	Partials
locallang.xlf	The	Show-Action	Call
Logged-in	user	Logged-in	User	as	the	Author

M

Manual	persistence	The	Persistence	Manager:	Manual	Persistence
Marker/Subpart	Side	Note:	Fluid
Model	View	Controller	(see	MVC)
Multi-Language	Multi-Language
Domain	Objects	Multi-Language	for	Domain	Objects
Labels	in	PHP	Language	Labels	in	PHP
Labels	in	TypoScript	Overwrite	Language	Labels	by	TypoScript
Labels	with	placeholders	Language	Labels	with	Placeholders
Language	labels	Language	Labels
locallang.php	Language	Labels
locallang.xlf	Language	Labels
locallang.xml	Language	Labels
XLIFF	Language	Labels

MVC	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3),	MVC

O

Object	Manager	Create	Static	Blogs,	The	Persistence	Manager:	Manual	Persistence
Object	Storage
attach	Relation	in	Domain	Model
detach	Relation	in	Domain	Model

Object-orientated	programming	(see	OOP)OOP	The	Basics	of	Object-Orientated
Programming

$this	Access	by	Using	$this
Abstract	Classes	Abstract	Classes
Annotation	Annotations
Arrow	operator	The	Arrow	Operator
Classes	Classes	and	Objects
Constructor	The	Constructor
Dependency	Injection	Dependency	Injection
Derivation	Methods
Design	pattern	Important	Design	Patterns
DI	Dependency	Injection
extends	Inheritance	of	Classes
Fully	qualified	class	name	Namespaces
Function	Methods
Getter	Getter	and	Setter
Inheritance	Inheritance	of	Classes
instanceof	Verifying	Class	Derivation
Instantiation	Methods
Interface	Interfaces
lowerCamelCase	Classes	and	Objects
Method	Methods
Method	Body	Methods
Method	Signature	Methods
Namespaces	Namespaces
parent	Access	by	Using	parent
Property	Classes	and	Objects
protected	Visibility:	Public	and	Protected
Prototype	Prototype
public	Visibility:	Public	and	Protected
Scope	Resolution	Operator	Access	by	Using	parent
Setter	Getter	and	Setter
Singleton	Singleton
Static	calls	Static	Calls
Syntax	Classes	and	Objects
Type	hint	Type	Hints
UpperCamelCase	Classes	and	Objects

P

Partial	Fluid	Templating:	Templates,	Layouts	and	Partials,	Partials
Arguments	Complex	Partials

persistAll	method	The	Persistence	Manager:	Manual	PersistencePersistence	Persisting	the
BlogsPersistence	Manager	The	Persistence	Manager:	Manual	PersistencePHP

Suggested	literature	Programming	on	an	Advanced	Level

PHP	Doc	Comments	Preserve	PHP	Doc	CommentsPHPStorm	IDE	Settingsphpstorm
extension	TYPO3	Extension	phpstormpi_base	Programming	on	an	Advanced	Level,	Side
Note:	FluidPlugin

Load	via	TypoScript	Load	Plugin	Via	TypoScript

Property	Mapper	The	Property	Mapper

allowAllProperties	Property	Mapper	Configuration
allowProperties	Property	Mapper	Configuration
allowPropertiesExcept	Property	Mapper	Configuration
API	API	Reference
Configuration	Property	Mapper	Configuration
MVC	Stack	Property	Mapper	Configuration	in	MVC	Stack
setMapping	Property	Mapper	Configuration
setTypeConverter	Property	Mapper	Configuration
setTypeConverterOption	Property	Mapper	Configuration
setTypeConverterOptions	Property	Mapper	Configuration
TypeConverter	Examples

Public	API	The	Persistence	Manager:	Manual	Persistence

Q

Query	Manager	Query	Manager	and	Repositories
contains	Determine	Result	Set
count	Default	Structure	of	a	Query
createQuery	Default	Structure	of	a	Query
defaultOrderings	Limiting	Result	Set,	Templates	and	Partials	Adjustments
equals	Determine	Result	Set
execute	Default	Structure	of	a	Query
getFirst	Default	Structure	of	a	Query
greaterThan	Determine	Result	Set
greaterThanOrEqual	Determine	Result	Set
in	Determine	Result	Set

lessThan	Determine	Result	Set
lessThanOrEqual	Determine	Result	Set
like	Determine	Result	Set
logialOr	Logical	Conjunction
logicalAnd	Logical	Conjunction
logicalNot	Logical	Conjunction
matching	Adjusting	Queries
Query	Settings	Query	Settings
setEnableFieldsToBeIgnored	Query	Settings
setIgnoreEnableFields	Query	Settings
setIncludeDeleted	Query	Settings
setLanguageMode	Query	Settings
setLanguageOverlayMode	Query	Settings
setLanguageUid	Query	Settings
setLimit	Limiting	Result	Set
setOffset	Limiting	Result	Set
setOrderings	Limiting	Result	Set
setRespectStoragePage	Query	Settings
setRespectSysLanguage	Query	Settings
setReturnRawQueryResult	Default	Structure	of	a	Query,	Query	Settings
setStoragePageIds	Query	Settings
SQL	Native	SQL
SQL	Query	Side	Note:	Debugging
statement	Native	SQL
toArray	Default	Structure	of	a	Query
Typo3DbBackend	Side	Note:	Debugging

QueryResult	Side	Note:	Debugging

R

Reconstitute	Form	to	Create	an	Object
Recursive	sections	Creating	and	Referencing	Layouts
Redirect	Create	Your	Own	Action
Reflection	Form	Processing
Relations	Relations
1:1	The	1:1	Relation	Using	the	Example	of	Authors
1:n	The	Table	Configuration	Array	(TCA)
Intermediate	table	m:n	Relations	Using	the	Example	of	Tags
m:n	m:n	Relations	Using	the	Example	of	Tags

Repository	Persisting	the	Blogs,	Structure	of	a	Repository	Class

add	Persisting	the	Blogs,	Repository	Functions	for	Write	Operations
countAll	Repository	Functions	for	Read	Operations

countByProperty	Repository	Functions	for	Read	Operations
findAll	Persisting	the	Blogs,	Repository	Functions	for	Read	Operations
findByPropery	Repository	Functions	for	Read	Operations
findByUid	Repository	Functions	for	Read	Operations
findOneByProperty	Repository	Functions	for	Read	Operations
Read	access	Side	Note:	Persistence
Remove	Deletion	of	an	Object
remove	Repository	Functions	for	Write	Operations
removeAll	Repository	Functions	for	Write	Operations
Update	Update	an	Object
update	Repository	Functions	for	Write	Operations
Write	access	Side	Note:	Persistence

Request	Side	Note:	Request	Object

getArgument	Side	Note:	Request	Object
getArguments	Side	Note:	Request	Object
getControllerActionName	Side	Note:	Request	Object
getControllerExtensionKey	Side	Note:	Request	Object
getControllerExtensionName	Side	Note:	Request	Object
getControllerObjectName	Side	Note:	Request	Object
getFormat	Side	Note:	Request	Object
getPluginName	Side	Note:	Request	Object
hasArgument	Side	Note:	Request	Object
isDispatched	Side	Note:	Request	Object
setArgument	Side	Note:	Request	Object
setArguments	Side	Note:	Request	Object
setControllerActionName	Side	Note:	Request	Object
setControllerExtensionName	Side	Note:	Request	Object
setControllerObjectName	Side	Note:	Request	Object
setDispatched	Side	Note:	Request	Object
setFormat	Side	Note:	Request	Object
setPluginName	Side	Note:	Request	Object

Request	Object	Side	Note:	Request	ObjectRSS-Feed	RSS-Feed

S

Scheduler	Scheduler	Tasks
Task	Scheduler	Tasks

Signal	Slot	Dispatcher	Signal	Slot	Dispatcher

Built-in	Signals	Built-in	Signals
Create	custom	Signals	Create	Your	Own	Signals

SplObjectStorage	Relation	in	Domain	ModelSwitchable	Controller	Actions	Switchable
Controller	Actions	(SCA)

T

T3BOARD	The	TYPO3	Dilemma
T3DD	The	Modern	Way	of	Extension	Development
Table	Configuration	Array	(see	TCA)
TCA	The	Table	Configuration	Array	(TCA)
Template	Output	Via	View,	Fluid	Templating:	Templates,	Layouts	and	Partials
Rendering	Side	Note:	Template	Rendering

Templating	engine	Side	Note:	Fluidtransient	Side	Note:	Persistencetransitive	Side	Note:
PersistenceTwitter	Bootstrap	Frontend	FrameworksTwitter	Share	Simple	PartialsTwo-
steps	action	Form	to	Create	an	ObjectTypeConverter	ExamplesTYPO3	Association	A
New	TYPO3	Arises

Budget	A	New	TYPO3	Arises

TYPO3	CMS	The	New	TYPO3	UniverseTYPO3	Coding	Guidelines	Classes	and
ObjectsTYPO3	Developer	Days	The	Modern	Way	of	Extension	DevelopmentTYPO3
Flow	The	Hour	of	Birth	of	TYPO3	Flow	(FLOW3),	The	New	TYPO3	UniverseTYPO3
Neos	The	New	TYPO3	UniverseTYPO3	Phoenix	A	New	TYPO3	ArisesTYPO3	v5.0	A
New	TYPO3	ArisesTypoScript	TypoScript	and	FlexForm	Configuration

AJAX	Define	AJAX	Page	Type	in	TypoScript
Backend	Module	TypoScript	for	Backend	Modules
config.extbase	Setup	Scope
Configuration	Manager	TypoScript	for	the	Next	Sections	of	this	Book
enableAutomaticCacheClearing	Option:	persistence
Fallback	paths	Option:	view
features	Sub-keys,	Option:	features
ignoreAllEnableFieldsInBe	Option:	features
layoutRootPaths	Option:	view
legacy	Sub-keys,	Option:	legacy
mapping	Option:	persistence.classes
module.tx_…	Setup	Scope
mvc	Sub-keys,	Option:	mvc
newRecordStoragePid	Option:	persistence.classes
objects	Sub-keys,	Option:	objects
partialRootPaths	Option:	view
persistence	Sub-keys,	Option:	persistence
plugin.tx_…	Setup	Scope
recursive	Option:	persistence
rewrittenPropertyMapper	Option:	features

settings	Sub-keys,	Option:	settings
skipDefaultArguments	Option:	features
stdWrap	in	settings	StdWrap	in	Settings
storagePid	Option:	persistence
templateRootPaths	Option:	view
updateReferenceIndex	Option:	persistence
view	Sub-keys,	Option:	view
_CSS_DEFAULT_STYLE	Sub-keys,	Option:	_CSS_DEFAULT_STYLE
_LOCAL_LANG	Sub-keys,	Option:	_LOCAL_LANG

U

Upload	File	Upload
via	FAL	TCA	Adjustments

UriBuilder	UriBuilderUUID	Display	a	Blog	(Read)

V

Validation	Validation	and	Error	Handling
Action	Validation	Validation	Overview,	Action	Validation
Object	Validation	Validation	Overview,	Object	Validation
Property	Validation	Validation	Overview,	Property	Validation
Show	errors	Error	Display	in	the	Form	Field
Validators	Built-in	Validators

Validators

Alphanumeric	Built-in	Validators
Boolean	Built-in	Validators
Conjunction	Built-in	Validators
Custom	Validators	Custom	Validators
DateTime	Built-in	Validators
Disjunction	Built-in	Validators
EmailAddress	Built-in	Validators
Float	Built-in	Validators
Integer	Built-in	Validators
NotEmpty	Built-in	Validators
Number	Built-in	Validators
NumberRange	Built-in	Validators
RegularExpression	Built-in	Validators
String	Built-in	Validators
StringLength	Built-in	Validators

Text	Built-in	Validators

Valididation

Multiple	Validators	Multiple	Validators

vhs	extension	Side	Note:	FluidView	View	AllocationViewHelper	Side	Note:	Fluid

Create	your	own	Creating	Your	Own	ViewHelpers
If	ViewHelper	Creating	Your	Own	ViewHelpers,	If	ViewHelper
Inline	syntax	Option	1:	In-house	Means
Namespace	Namespace	Declaration
Namespace	declaration	Namespace	Declaration
Repository	Side	Note:	Fluid
Tag	ViewHelper	Creating	Your	Own	ViewHelpers
Tag	Viewhelper	Tag	ViewHelper
Text	Viewhelper	Creating	Your	Own	ViewHelpers,	Text	ViewHelper
Widget	Widget	ViewHelper
Widget	ViewHelper	Creating	Your	Own	ViewHelpers,	Widget	ViewHelper

W

Widget	Widget	ViewHelper

Z

Zurb	Foundation	Frontend	Frameworks

	Titel
	Impressum
	Preface
	1. Patrick’s Background
	2. Michael’s Background
	3. Acknowledgement
	1. The Modern Way of Extension Development
	1.1. A New TYPO3 Arises
	1.2. The Berlin-Manifesto
	1.3. The Hour of Birth of TYPO3 Flow (FLOW3)
	1.4. Like Phoenix from the Ashes
	1.5. The TYPO3 Dilemma
	1.6. The New TYPO3 Universe
	1.7. The History of Extbase & Fluid
	1.7.1. Backports: Extbase & Fluid
	1.7.2. Programming on an Advanced Level
	2. The Basics of Object-Orientated Programming
	2.1. Classes and Objects
	2.2. Methods
	2.2.1. The Arrow Operator
	2.2.2. The Constructor
	2.2.3. Access by Using $this
	2.2.4. Filling Methods with Content
	2.3. Inheritance of Classes
	2.3.1. Access by Using parent
	2.3.2. Verifying Class Derivation
	2.4. Abstract Classes
	2.5. Interfaces
	2.6. Visibility: Public and Protected
	2.6.1. Getter and Setter
	2.7. Type Hints
	2.8. Static Calls
	2.9. Namespaces
	2.10. Important Design Patterns
	2.10.1. Singleton
	2.10.2. Prototype
	2.10.3. Dependency Injection
	2.11. Annotations
	3. Domain Driven Design
	3.1. Infrastructure Ignorance
	3.2. The Domain Model
	3.2.1. Ubiquitous Language
	3.2.2. Building Blocks of DDD
	Entity
	Value Object
	Service
	Factory
	Repository
	Aggregate
	Relation
	MVC
	3.3. Structuring DDD
	3.3.1. Bounded Context
	3.3.2. Context Map
	3.3.3. Core Domain
	3.3.4. Shared Kernel
	4. Overview of Extbase
	4.1. Installation of Extbase & Fluid
	4.1.1. Preserve PHP Doc Comments
	4.2. Installation of Extension efempty
	4.3. Tour Through Extension efempty
	4.3.1. Files ext_emconf.php and ext_icon.gif
	4.3.2. File ext_tables.php
	4.3.3. ext_localconf.php
	Interna
	4.3.4. Controller: Pluswerk\Efempty\Controller\StartController
	View Allocation
	4.3.5. Domain: Pluswerk\Efempty\Domain\Model\Start
	4.3.6. Output Via View
	4.3.7. The Show-Action Call
	5. Domain Model Creation (Modelling)
	5.1. Domain Model Used in this Book
	5.2. Basic Concept
	5.2.1. The Glossary
	5.2.2. Creating the Domain Model
	5.3. Modelling in Extbase - The Extension Builder
	5.3.1. Extension Properties
	5.3.2. Domain Model
	5.3.3. Domain Model Properties
	Properties of the Domaim Object “Blog”
	Properties of the Domain Object “Post”
	Properties of the Domain Object “Comment”
	Properties of the Domain Object “Author”
	Properties of the domain object “Tag”
	5.3.4. Domain Model Relations
	5.3.5. Relation Between Blog and Post
	5.3.6. Relation Between “Post” and “Comment”
	5.3.7. Relations Between “Post” and “Author”/“Tag”
	5.4. Installation of the Extension
	5.5. Analysing Files Created by Extension Builder
	5.6. Further Functions of the Extension Builder
	5.6.1. Create a Backup
	5.6.2. Modifying the Model
	5.6.3. Class Builder
	6. Preparation
	6.1. Frontend Frameworks
	6.2. Load Static TypoScript
	6.3. Load CSS File
	6.4. IDE Settings
	6.4.1. Add Core Files to the Include Path
	6.4.2. Include Fluid’s Schema File
	6.4.3. Tips About Resolving Class Names
	6.4.4. TYPO3 Extension phpstorm
	7. The CRUD Process
	7.1. Creating an Object
	7.1.1. Implementing listAction
	7.1.2. Creating the Template of listAction
	7.1.3. Side Note: Template Rendering
	7.1.4. Create Static Blogs
	7.1.5. Persisting the Blogs
	7.1.6. Side Note: Persistence
	7.1.7. The Persistence Manager: Manual Persistence
	7.1.8. Create Your Own Action
	7.1.9. Form to Create an Object
	Side Note: Fluid
	Form Syntax
	Generated HTML Form
	Form Processing
	7.2. Display a Blog (Read)
	7.3. Update an Object
	7.4. Deletion of an Object
	8. Fluid Templating: Templates, Layouts and Partials
	8.1. Creating and Referencing Layouts
	8.2. Partials
	8.2.1. Simple Partials
	8.2.2. Complex Partials
	9. Query Manager and Repositories
	9.1. Structure of a Repository Class
	9.2. Repository Functions for Write Operations
	9.3. Repository Functions for Read Operations
	9.4. Default Structure of a Query
	9.4.1. Side Note: Debugging
	9.5. Adjusting Queries
	9.5.1. Determine Result Set
	9.5.2. Limiting Result Set
	9.5.3. Logical Conjunction
	9.5.4. Native SQL
	9.5.5. Query Settings
	9.6. Example: Search for Keyword in Title
	9.7. Dynamic Search in Repository
	9.8. Side Note: Request Object
	10. TypoScript and FlexForm Configuration
	10.1. TypoScript
	10.1.1. Setup Scope
	10.1.2. Sub-keys
	10.1.3. Option: view
	10.1.4. Option: persistence
	Option: persistence.classes
	10.1.5. Option: objects
	10.1.6. Option: features
	10.1.7. Option: mvc
	10.1.8. Option: legacy
	10.1.9. Option: settings
	10.1.10. Option: _LOCAL_LANG
	10.1.11. Option: _CSS_DEFAULT_STYLE
	10.2. FlexForms
	10.2.1. FlexForm Configuration
	10.2.2. Switchable Controller Actions (SCA)
	10.3. TypoScript for the Next Sections of this Book
	10.4. TypoScript for Backend Modules
	11. Validation and Error Handling
	11.1. Error Handling
	11.2. Validation Overview
	11.3. Property Validation
	11.3.1. Built-in Validators
	11.3.2. Multiple Validators
	11.3.3. Custom Validators
	11.4. Object Validation
	11.5. Action Validation
	11.6. Error Display in the Form Field
	11.6.1. Option 1: In-house Means
	11.6.2. Option 2: ViewHelper
	12. Relations
	12.1. Relation in Domain Model
	12.2. The Table Configuration Array (TCA)
	12.3. The CRUD Process of Posts
	12.3.1. Preparation
	12.3.2. Create Posts
	12.3.3. Read Posts
	12.3.4. Update Posts
	12.3.5. Delete Posts
	12.4. m:n Relations Using the Example of Tags
	12.4.1. Creation of Tags in the Backend
	12.4.2. Repository for Tags
	12.4.3. Post-Controller Adjustments
	12.4.4. Templates and Partials Adjustments
	12.4.5. Show Tags in List
	12.5. The 1:1 Relation Using the Example of Authors
	12.5.1. Creation of Frontend Users and Groups
	12.5.2. Link Domain Object author to fe_users Table
	12.5.3. Defining the Author When Creating and Editing a Post
	12.5.4. Logged-in User as the Author
	12.6. Comments & AJAX
	12.6.1. Registering the AJAX Action
	12.6.2. Display of Comments
	12.6.3. JavaScript Handler
	12.6.4. AJAX Action in Post controller
	12.6.5. Define AJAX Page Type in TypoScript
	13. Creating Your Own ViewHelpers
	13.1. Namespace Declaration
	13.2. Text ViewHelper
	13.2.1. Parameter Via Attribute
	13.2.2. Parameter Via Content
	13.3. Tag ViewHelper
	13.4. If ViewHelper
	13.5. Widget ViewHelper
	13.5.1. Use of Widget ViewHelpers
	13.5.2. Creation of Widget ViewHelpers
	13.5.3. The Controller
	13.5.4. The View
	13.5.5. The A to Z Widget
	14. Multi-Language
	14.1. Language Configuration
	14.2. Language Labels
	14.3. Language Labels with Placeholders
	14.4. Overwrite Language Labels by TypoScript
	14.5. Language Labels in PHP
	14.6. Multi-Language for Domain Objects
	15. Backend Modules
	15.1. Registering the Module
	15.2. Language File for Labels
	15.3. TypoScript
	15.4. Comment Repository
	15.5. Comment Controller
	15.6. List View
	15.6.1. Structure
	15.6.2. Content of the List Template
	15.6.3. CSH Buttons
	15.6.4. Action Menu
	15.6.5. Shortcut Button
	15.6.6. Icon Button
	16. The Property Mapper
	16.1. Examples
	16.2. Property Mapper Configuration
	16.3. Property Mapper Configuration in MVC Stack
	16.4. Security Aspects
	16.5. API Reference
	16.5.1. Automatic Resolution of TypeConverter
	17. Best Practices
	17.1. Flash Messages
	17.2. Load Plugin Via TypoScript
	17.3. RSS-Feed
	17.4. UriBuilder
	17.5. File Upload
	17.5.1. Adding an Upload Field
	17.5.2. Blog Controller Adjustments
	17.5.3. Blog Model Adjustments
	17.5.4. TCA Adjustments
	17.6. StdWrap in Settings
	17.7. Signal Slot Dispatcher
	17.7.1. Built-in Signals
	17.7.2. Example Usage of Built-in Signals
	17.7.3. Create Your Own Signals
	17.8. File Abstraction Layer (FAL)
	17.9. Category API
	17.10. Extbase Models
	17.11. Scheduler Tasks
	17.12. JSON View
	I. Appendix
	A. Reference
	A.1. ext_emconf.php
	A.2. Flexform Field Types
	A.2.1. Text Field
	A.2.2. Date Field
	A.2.3. Checkbox
	A.2.4. Textarea
	A.2.5. Textarea with RTE
	A.2.6. Radio Buttons
	A.2.7. Selectbox
	A.2.8. Selectbox (Multi-Select)
	A.2.9. Page Browser
	Index

