
The Blockchain
Developer

A Practical Guide for Designing,
Implementing, Publishing,
Testing, and Securing Distributed
Blockchain-based Projects
—
Elad Elrom

www.allitebooks.com

http://www.allitebooks.org

The Blockchain
Developer

A Practical Guide for
Designing, Implementing,
Publishing, Testing, and

Securing Distributed
Blockchain-based Projects

Elad Elrom

www.allitebooks.com

http://www.allitebooks.org

The Blockchain Developer

ISBN-13 (pbk): 978-1-4842-4846-1 ISBN-13 (electronic): 978-1-4842-4847-8
https://doi.org/10.1007/978-1-4842-4847-8

Copyright © 2019 by Elad Elrom

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Chris Barbalis on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484248461.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Elad Elrom
New York, NY, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4847-8
http://www.allitebooks.org

I would like to dedicate this book to my children, Romi
Scarlett Elrom and Ariel Rocco Elrom. Have solid

boundaries, and don’t allow anyone to dictate what you
cannot achieve or cannot do. I love you very much and will

always be there for you.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ��xv

About the Technical Reviewer ��xvii

Table of Contents

Chapter 1: Blockchain Basics ���1

Introduction to Cryptoeconomics ��2

Ig-pay Atin-lay ���3

Blockchain Explained ��8

Blocks + Chain = Blockchain ��9

Cryptomining by Cryptominers ��13

Cryptocurrency Wallet ���13

Cryptocurrencies Overload��13

Bitcoin Digital Cash ���14

Tokens ���15

Alternative Cryptocurrency Coins (Altcoins) ��15

Blockchain P2P Network ���17

Consensus Mechanism ��18

Proof of Work, Proof of Stake, and Delegated Proof of Stake ������������������������19

Mining Layer ��27

Propagation Layer ���28

Semantic Layer ��28

Application Layer ���29

Summary���30

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Blockchain Nodes ���31

Running a Blockchain Node ��31

Create a Bitcoin Miner ���32

Create a NEO Bookkeeping Node ��36

Create an EOS Block Producer ��49

Bitcoin Core API ���52

Serialized Blocks ���61

Block Header ���63

Block Version ���65

Bitcoin Wallet ���71

Summary���72

Chapter 3: Creating Your Own Blockchain ��73

Creating a Basic P2P Network ��74

Creating Genesis Block and Sharing Blocks ���86

Registering Miners and Creating New Blocks ���94

Storing Blocks in LevelDB ���101

Creating a Blockchain Wallet ��105

Creating an API ��109

Creating a Command-Line Interface ���113

Where to Go from Here��118

Summary���119

Chapter 4: Bitcoin Wallets and Transactions ������������������������������������121

Bitcoin Core RPC Resources ���121

Bitcoin Wallet ��123

Create a Legacy Wallet Address and Retrieve Private Keys�������������������������124

Pay to Witness a Public Key Hash (P2WPKH): SegWit Soft Fork ������������������126

Elliptic Curve Digital Signature Algorithm��127

Table of ConTenTsTable of ConTenTs

vii

Transactions ��129

Simple Command ��130

Testnet ���132

Viewing Transactions on Block Explorer ��134

Sending Testnet Coins via the Bitcoin Core Wallet GUI ��������������������������������137

Generating Raw Transactions with One Output ���149

Transactions that Require Multisignature ��157

Setting Electrum with a Multisignature Wallet ��157

Replaceable Transactions and Locktime ���166

Bitcoin Colored Coins ��167

Sending a Transaction with OP_RETURN ���167

Bitcoin’s Colored Coins ��170

Summary���171

Chapter 5: Ethereum Wallets and Smart Contracts ��������������������������173

Ganache Simulated Full-Node Client ��177

Install Ganache ��177

Ganache CLI: Listen to Port ��178

IntelliJ IDEA Plugin for Solidity ��178

Truffle Suite ���179

Create Your Smart Contracts ���181

Connect Truffle to the Ganache Network ���183

“Hello, World” Smart Contract ���184

“MD5SmartContract” Smart Contract ���186

Create Truffle Migration Files for Your Smart Contract Deployment ������������187

Compile Your Smart Contract with Truffle ��188

Deploy the Smart Contract to Your Development Network ��������������������������189

Truffle Console ���190

Interact with Your Smart Contract via the Truffle CLI �����������������������������������191

Table of ConTenTsTable of ConTenTs

viii

Compile with Remix ��193

Private Ethereum Blockchain with Geth ��195

Initialized Geth Private Blockchain ��195

Geth Console ���197

Mine Ethereum for Your Private Testnet ��198

Deploy Remix to Geth ��199

Deploy Truffle to Geth ��200

Useful Commands in Geth ���201

Connect the Mist Ethereum Wallet to Your Private Network �����������������������������202

Others to Interact with Your Smart Contract ��203

MetaMask ���206

Public Testnet ��209

Syncing Blocks ��209

Public Testnet Faucet ��210

Ethereum Mainnet ���211

Recommended Tools for Smart Contracts ���211

Summary���211

Chapter 6: EOS�IO Wallets and Smart Contracts �������������������������������213

Setting Up a Testnet Environment ���216

Install EOS�IO ���216

Install EOSIO�CDT ���218

Build EOS�IO ���220

keosd and nodeos Configuration Files ��220

Create and Manage a Wallet with cleos ��221

EOS�IO Wallets ���222

Delete and Back Up Wallets ���223

EOS�IO Wallet with Custom Name ��223

Table of ConTenTsTable of ConTenTs

ix

EOS�IO: Open, Lock, and Unlock a Wallet ���224

Generating EOS�IO Keys ���224

Spin Up a node with nodeos ��227

Re-spin Up a Testnet Local node (nodeos) ��229

EOS�IO Accounts ��230

Wallets, Keys, and Accounts: Complete Commands ������������������������������������233

Custom, Single Signature (Single-Sig), and Multisignature (Multisig) ���������234

“HelloWorld” Smart Contract ��234

“HelloWorld” Smart Contract Accounts ���234

“HelloWorld” C++ Code ���235

Smart Contract IDE ��237

Compile a Contract and Generate an ABI ��238

Ricardian Contracts ���238

Deploy a Contract ��240

Interact with a Smart Contract Action ���241

Smart Contact Tokens ���241

Create Accounts ��241

Compile wasm with the Latest eosio�token Code ��242

Deploy eosio�token ��242

Create the EOS�IO Token ��243

Issue Tokens ��244

Transfer Tokens ���244

Connecting to a Public Testnet Block Producer ��245

Buy Resource Allocation on the Public Testnet Block Producer ������������������248

Publish Your HelloWorld Contract on the Public Testnet ������������������������������250

Connecting to Mainnet ��251

Resource Allocation Explained ��253

Buy RAM on Mainnet ���253

Table of ConTenTsTable of ConTenTs

x

Create an EOS�IO Account on Mainnet ���254

Change Your Account’s Public and Private Keys ��254

CPU and Bandwidth Allocations ���255

Where to Go from Here��255

Summary���255

Chapter 7: NEO Blockchain and Smart Contracts �����������������������������257

NEO’s High-Level Blockchain Architecture ��258

What Is NEO’s Smart Economy? ��260

Setting Up Your Local Environment ���262

Xcode 10�2 ���263

Install Visual Studio 2017 IDE ��263

Install �NET Core ��264

Download NeoCompiler and Generate neon�dll ���267

neo-cli to Generate a NEO Node ��269

Create a Local NEO Private Testnet ���271

Python 3�6 ���272

Install neo-python ��273

Install neo-privatenet-docker ��275

Start a Network and Claim Initial NEO and Gas ���275

Bootstrapping the Testnet ��277

Start NEO Bash ��277

Potential Problems During Installation ��279

NEO “Hello, World” ���281

Building the NeoContract Framework: Neo�SmartContract�
Framework�dll ���282

Create a NEO “Hello, World” Project ��284

Coding the NEO “Hello, World” Smart Contract in C# ����������������������������������287

Table of ConTenTsTable of ConTenTs

xi

Coding the NEO “Hello, World” Smart Contract in Python����������������������������288

Compiling Your Smart Contracts to �avm ���289

Publish a Smart Contract on a Private Testnet ��290

Publishing to Mainnet ���292

Bootstrapping to Mainnet ��292

Installing the neo-gui Client ��292

Ethereum vs� EOS vs� NEO : Smart Contracts Developer
Perspective Showdown ���292

Where to Go from Here��297

Summary���298

Chapter 8: Hyperledger ���299

Hyperledger Overview ���300

Understanding Hyperledger Fabric ���304

Installing Hyperledger Fabric and Composer ��308

Prerequisites ���309

Installing VSCode with Hyperledger Composer Extension ���������������������������313

Spinning Off a Local Hyperledger Fabric Business Network �����������������������322

Hyperledger Composer ���325

“Hello, World” with Playground ���326

Deploying a Business Network ��327

Business Network Archive (�bna) ���328

Adding the Model File ��329

Adding Chaincode ��331

Creating an Asset ��331

Access Control ���332

Testing the Model ��333

Importing/Exporting the Model ��334

Playground Online ���336

Table of ConTenTsTable of ConTenTs

xii

Deploying on a Local Hyperledger Fabric Network ���340

Running the “hello-network” Network ��341

Starting the “hello-network” Business Network and Admin Card ���������������341

Importing a Business Card ��342

Where to Go from Here��343

Error Troubleshooting ��344

Composer Runtime Install Error or Card Not Found ������������������������������������344

Docker Unauthorized Authentication Required Error �����������������������������������345

Docker Container Conflicting Errors ��345

Mismatch and Cleanup ��346

Summary���347

Chapter 9: Build Dapps with Angular: Part I �������������������������������������349

What Is a Dapp? ��350

Dapp Classification ��352

Dapp Projects ��353

How Do You Create Your Own Dapp? ���354

Why Angular? ��357

Creating an Angular Dapp ��359

Styling an Angular App ��376

Creating Content ��382

Summary���394

Chapter 10: Build Dapps with Angular: Part II ����������������������������������395

Transfer a Smart Contract ���396

Create a Smart Contract ��398

Create the Truffle Development Network ���400

Deploy the Smart Contract ��401

Table of ConTenTsTable of ConTenTs

xiii

Link with the Ethereum Network ��406

Transfer Service ��407

Connect to MetaMask ���413

Test Your Dapp Functionality ���417

Where to Go from Here��417

Summary���418

Chapter 11: Security and Compliance ��419

Security and Compliance Readiness ���421

Security Readiness ��421

Compliance Readiness ��423

Readiness Recommendations ���427

Common Blockchain Attacks ��431

Wallet Cyberattacks ���431

Blockchain Network Attacks ��437

Platform Attack ��444

Development Cycle ���456

Design and Coding���457

Discovery, Audit, and Test ��457

Discovery ���458

Audit ��458

Test ��459

Readiness Assessment ��464

Release ��465

Where to Go from Here��465

Summary���466

Table of ConTenTsTable of ConTenTs

xiv

Chapter 12: Blockchain Beyond Crypto ��467

Harnessing Blockchain ���468

Coins ��469

Tokens ���470

Ledgers ��472

Smart Contracts and Dapps ���473

Decentralization of Industries and Verticals ��474

Financial ��475

Cybersecurity���478

Real Estate ��481

Mobile ��483

Supply Chain ��485

Encrypted Messaging ��487

Elections and Voting ��487

Marketing ��488

Healthcare ���490

Gaming ��494

Music ���495

Where to Go from Here��500

Summary���500

Index ���503

Table of ConTenTsTable of ConTenTs

xv

About the Author

Elad Elrom is a coder, technical lead, and

technical writer. As a writer, he has co-authored

four technical books. Elad has consulted for a

variety of clients, from large corporations, such

as HBO, Viacom, NBC Universal, and Weight

Watchers, to smaller startups. Aside from

coding, Elad is a certified PADI dive instructor

and an accomplished certified pilot. You can

contact him at elad.ny@gmail.com.

http://nispathak@gmail.com/

xvii

About the Technical Reviewer

Nishith Pathak is India’s first Artificial

Intelligence (AI) Most Valuable Professional

(MVP), a Microsoft Regional Director (RD),

a lead architect, a speaker, an AI thinker, an

innovator, and a strategist. Nishith’s expertise

lies in helping Fortune 100 companies design

and architect next-generation solutions that

incorporate AI, machine learning, cognitive

services, blockchain, and many more. He sits

on several technical advisory boards across the

globe and is the author of multiple books on AI

and blockchain. Nishith has played a PAN account enterprise architect role

where he was responsible for everything from the overall architecture to

the design in multiple projects. He is an internationally acclaimed speaker

on technologies such as AI and blockchain and regularly speaks at various

technical conferences.

For his expertise on artificial intelligence, Microsoft awarded him the

first Most Valuable Professional in the Artificial Intelligence category.

Globally, he is among 19 MVPs on AI, recognized by Microsoft for their

sheer expertise in AI. He has also been awarded the Microsoft Regional

Director award, bestowed upon 150 of the world’s top technology

visionaries chosen specifically for their proven cross-platform expertise.

Nishith is currently working on key areas such as artificial intelligence,

machine learning, cognitive computing, blockchain, Internet of Things,

and cloud computing; he helps companies architect solutions based on

these technologies.

xviii

He can be contacted at NisPathak@GMail.com or found on LinkedIn

(https://www.linkedin.com/in/nishithpathak/), Twitter (http://

twitter.com/nispathak), or Microsoft (https://rd.microsoft.com/

en-us/nishith-pathak).

abouT The TeChniCal RevieweRabouT The TeChniCal RevieweR

https://www.linkedin.com/in/nishithpathak/
http://twitter.com/nispathak
http://twitter.com/nispathak
https://rd.microsoft.com/en-us/nishith-pathak
https://rd.microsoft.com/en-us/nishith-pathak

1© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_1

CHAPTER 1

Blockchain Basics
This chapter will serve as your ground school before you “take off”

toward development. It will introduce basic concepts that will help you to

understand the blockchain technology. This chapter is split into four parts.

 – Introduction to Cryptoeconomics

 – Blockchain Explained

 – Cryptocurrencies Overload

 – Blockchain P2P Network

To understand cryptoeconomics, you first need to understand

concepts such as encryption and decryption, private-public keys,

cryptography, digital assets, cryptography, and cryptocurrency.

Once you understand these basic concepts, I will cover blockchain.

I will cover the pieces that make up an individual blockchain, such as

blocks, and how the blocks are linked together, as well as the problems

with blockchain such as double spending. I will also explain cryptomining,

cryptominers, and cryptocurrency wallets.

Then, I will cover the different types of cryptocurrencies: bitcoin,

tokens, and alternative cryptocurrency coins (altcoins).

Last, I will cover the P2P network that is used with the blockchain

technology and the different layers that make up the network: consensus

layer, miner layer, propagation layer, semantic layer, and application layer.

2

 Introduction to Cryptoeconomics
The world of crypto is full of technical jargon that can confuse even

the savviest technology ninja. Bitcoin introduced the concept of

cryptoeconomics and paved the way for the creation of many blockchain

platforms. Before we dive deep into how a blockchain works, let’s

understand what cryptoeconomics is and the underlying concepts behind

a blockchain.

Verbal communication is based on selecting words to describe

a message you want to convey. However, sometimes you want to

communicate with only certain people while excluding others. A good

example is during wartime; a commander communicates with soldiers

stationed on the front line while ensuring the enemy is unable to listen.

The commander could use encryption for this communication.

Electronically speaking, today all shopping sites offer their

merchandise over an encryption protocol, called Secure Sockets Layer

(SSL), that can protect your personal information from hackers. Video

encryption and decryption are common to ensure the delivery of video to

authorized members only, and on personal computers, people often use

encryption to back up and protect files and passwords.

Moreover, as a developer, you likely sent encrypted messages and also

decrypt incoming messages with the help of libraries as all programming

languages offer string encryption and decryption functions.

So, let’s look at some definitions:

 – Encryption: Encryption is a process of converting your

message into code so that only authorized parties can

access it.

 – Decryption: Decryption is reversing the encryption

process so that the message can be converted to the

original message.

Chapter 1 BloCkChain BasiCs

3

 – Cryptography: This is using the techniques of

encryption and decryption to send and receive

messages.

 – Cryptocurrency: This is using cryptography the same

way as the earlier SSL or video example but specifically

to fit the needs of a digital asset.

Note a digital asset can be anything of value, such as the
combination to your home safe, a secret password, a list, a message,
electronic cash, a document, a photo, and so on.

 – Cryptoeconomics: This is the combination of

cryptography and economics to provide a platform to

pass digital assets.

For further clarification, let’s look at these terms in more detail and

apply them to the topics I will be covering in this book.

 Ig-pay Atin-lay
To begin, let’s go back in time. Have you ever spoken as a child in Pig

Latin? The secret Pig Latin language is simple. You take off the first letter of

the word you want to say and then move the letter to the end of the word,

as well as add the sound “ay.”

For example:

 – “Pig” become “ig-pay.”

 – “Latin” becomes “atin-lay.”

What we just have done is encryption. Then to understand the words

we have encrypted, we need to work backward.

Chapter 1 BloCkChain BasiCs

4

 – “Ig-pay” becomes “pig” by removing “ay” from the end

and taking the last letter and putting it as the first letter.

 – Similarly, “atin-lay” becomes “Latin.”

What we have just done is decryption. Children are able to use these

techniques to encrypt and decrypt words in a simple form of cryptography.

 Encryption/Decryption

Encryption enables you to pass messages between specific parties in a

secure manner so excluded parties will not understand them. Throughout

history, there was a need to be able to send secret messages between

parties. One party sends an encrypted message at one place, and then the

other party is able to receive and decrypt the message elsewhere.

In fact, encryption was used a lot during World War I (WWI) and World

War II (WWII). The Nazis used a machine called Enigma to encrypt and

decrypt messages (see Figure 1-1). The Allies figured out a way to break

the Nazi Enigma machine’s secret code and decrypt the messages. This is

believed to have shortened WWII by years.

Figure 1-1. Enigma machine. Photo credit: wikimedia.org.

Chapter 1 BloCkChain BasiCs

5

Encryption and decryption went from pure Army usage to public usage

by way of the development of the Data Encryption Standard (DES) by IBM

in 1970 and the invention of key cryptography in 1976. In fact, in the past,

cryptography and encryption were synonymous.

 Encryption + Decryption = Cryptography

As mentioned, cryptography is the process of using the techniques of

encryption and decryption. The word cryptography came from the Greek

word kryptos, which means hidden or secret.

In the Pig Latin language example, I described how you can encrypt

and decrypt words. That technique of removing the first letter and adding

it to the end with “ay,” and then vice versa, is cryptography. Without

knowledge of the technique, you wouldn’t be able to understand the Pig

Latin language.

Most people are probably smart enough to figure out the secret Pig

Latin language as it’s simple in nature; however, a complex encryption

example would be a different story.

For instance, going back to the WWII Enigma machine, the Nazis

were passing messages over the air. The Allies were capable of receiving

these messages (the messages were the “public keys”), but without a way

to decode them (the “private keys”), it was not enough. It took a scientist

named Turing and others five-and-a-half months to decrypt the Nazi’s

secret messages.

Note a cryptographic key can be used to encrypt a message. the
encrypted message can then be decrypted only by using the second
key (a private key) that is known only to the recipient.

Chapter 1 BloCkChain BasiCs

6

Turing’s contribution was to automate a machine that was capable of

figuring out different settings the Nazis made in their Enigma machine so

they could decrypt messages In other words, it automated the process of

searching for the private key. That machine was called bombe.

 Digital Assets + Cryptography = Cryptocurrency

Cryptocurrency is a digital asset designed so that electronic cash is able to

be exchanged using strong cryptography (encryption and decryption) to

ensure the security of funds, transactions, and the creation of new funds.

The cryptography’s private key mechanism must be strong enough

that it would be almost impossible (in other words, take too much time

and effort) to figure out. Otherwise, all users could potentially lose their

electronic cash if the cryptography could be figured out within a few

months such as with the Enigma machine.

An example of cryptocurrency is bitcoin. Although bitcoin was not the

first cryptocurrency invented, it’s generally considered the first successful

cryptocurrency.

Bitcoin’s success is attributed to the following characteristics: no one

can break the public-private key, it’s distributed without a controlled

government, it’s publicly available, and it’s published as open source code.

Note Bitcoin was invented in 2008 by satoshi nakamotoi with the
publication of a white paper called “Bitcoin: a peer-to-peer electronic
Cash system” (https://bitcoin.org/bitcoin.pdf). the actual
complete open source software was released a year later in 2009
(https://github.com/bitcoin/bitcoin).

Chapter 1 BloCkChain BasiCs

https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bitcoin

7

 Cryptography + Economics = Cryptoeconomics

Cryptoeconomics is the combination of cryptography and economics

to provide a platform that gives an incentive to maintain the platform,

its scalability, and its security; in addition, it is absent of central or local

government control. In other words, it’s decentralized. The network is

made up of a collection of multiple computers instead of one central

computer.

Note Decentralized is the opposite of central control; it means
without central or local government control.

Bitcoin is able to achieve cryptoeconomics’ goals by using the private-

public key concepts; cryptography and cryptographic hashing functions

are used indirectly. In fact, the relation between cryptography and

cryptocurrency is indirect not just for bitcoin but for most cryptocurrency

out there.

For instance, cryptography is used in bitcoin in other ways such as the

following:

 – Bitcoin uses private keys (bitcoin calls these digital

signatures) with the help of an algorithm function

(called the ECDSA elliptic curve) to prove ownership.

 – Hashing algorithms are used for holding the structure

of the database ledger data (or blockchain) via a hash

generator called SHA256.

 – The hashing algorithms are used to generate math

puzzles that a computer tries to solve for a prize. Once

the puzzle is solved, the computer is selected to help

handle the transactions.

Chapter 1 BloCkChain BasiCs

8

 – Hashing algorithms are also used to generate account

addresses.

 – There is the concept of Merkle trees (covered in the

next chapter), which use the hashing keys of large data

in small pieces. This is useful for lightweight wallets

that are needed on constrained hardware devices such

as mobile devices.

Bitcoin does not gather identity information for its users; however, the

transactions are public, meaning that all the information is transmitted

and available online. Think of the Enigma example again; this means that

anyone can intercept the messages transmitted. However, without the

private key, no one can decrypt the messages.

Since the release of bitcoin in 2009, there are many other platforms

that use different types of privacy for sending information in a secure

manner and that use encryption for more portions of the process so

that less information is public. Platforms such as Monero and Zcash use

anonymity via cryptography even for messaging a transaction’s details.

 Blockchain Explained
As I mentioned, bitcoin was the first successful open source digital cash.

Blockchain is the core technology, or the heart behind bitcoin and in fact

behind all cryptocurrency platforms.

But what is blockchain?

In short, a blockchain is a shared digital ledger. Think of a database

that instead of storing all the database entries on one computer it stores

the data on multiple computers. A fancier definition would be that a

blockchain is a decentralized and distributed global ledger.

Chapter 1 BloCkChain BasiCs

9

 Blocks + Chain = Blockchain
Each block contains records and transactions; these blocks are shared

across multiple computers and should not be altered absent an agreement

(consensus) of the entire network. The network is ruled according to a

specific policy. The computers are connected on one network and called

peers or nodes.

Note What is blockchain? a blockchain is a digital decentralized
(no financial institutions involved) and distributed ledger. in layperson’s
terms, it is a database that stores records and transactions on multiple
computers without one controlling party and according to an agreed
policy. the data that is stored is a block, and the blocks are linked
(chained) together to form a blockchain.

 Linked Blocks

A blockchain consists of a collection of data (a block) linked to the previous

block. How are they linked? A block contains data, and each block

references the block preceding it, so they are linked just as a chain link

would be connected to the chain link before it. Take a look at Figure 1-2; as

you can see, each block is referencing the previous block.

Chapter 1 BloCkChain BasiCs

10

So, a blockchain contains blocks, which hold records of transactions.

The private keys are held by the owner to show proof of ownership (this

is the digital signature), so no one without the private key can decrypt the

string and claim ownership. This combination of public keys and private

keys represents the electronic cash.

Note peers form a network of nodes, so throughout this book, you
may see the word peer or node. these words are synonymous for the
purpose of this book.

As I said, digital assets can be anything—a music file, video file,

electronic document, and so on. In cryptocurrency, a digital asset is

represented as electronic cash; you can think of the public key as your

bank account and routing number and the private key as the actual cash in

your account. Yes, you can share your bank’s information with others, but

the funds will stay in your account. To claim your cash, you need to prove

ownership. You go to the bank and show a form of ID and prove it’s you by

a way of signature; only then can you get your money out of your account.

A similar process happens with cryptocurrency. There is a public address

Figure 1-2. Blocks chained together

Chapter 1 BloCkChain BasiCs

11

that represents your account, and only the owner holds the private key to

prove ownership.

 Double Spending Problem

A digital signature (public keys and private keys) securely ensures a party’s

identity is kept private and electronic cash is stored.

This concept of a private-public key combo enables you to encrypt

and decrypt strings and keep a string safe, just as you saw with the Enigma

machine. However, it is still not enough to solve the biggest problem of

digital currency—double spending.

When you use fiat money (a paper money made legal by a

government) such as U.S. dollars or euros, the paper is inconvertible,

which means that once you gave the paper away, you cannot spend it

again. In cryptocurrency, what happens if you prove ownership and send

your digital asset twice at the exact same time? This could lead to double

spending.

Hackers can try to reproduce digital assets as well as potentially double

spend them, which cryptocurrency had to solve before it could be used as

a digital currency.

Note Double spending is the risk that digital currency can be spent
twice because the digital signature could be reproduced and one could
prove ownership and send a digital asset twice at the same time.

Blocks that hold keys are not enough to provide security and solve the

double-spending potential issue to form a digital currency.

Bitcoin solves this problem by creating a network of computers and

proving that no attempts of double spending have occurred. This is done

by having all the computers on the network aware of every transaction. All

the transactions are shared with all the computers in the network.

Chapter 1 BloCkChain BasiCs

12

 Double Spending Solution: P2P Network

In cryptocurrency, using a peer-to-peer network provided the solution to

solve the double-spending problem.

Note P2P networking is a distributed application architecture that
splits the tasks that need to be performed between different peers,
with each peer having the same privilege. together the peers create a
p2p network of nodes.

Any computer that is connected on the network is called a peer. The

peer can be any computer that meets the network requirements such as

a laptop, mobile device, or server. The computers are connected to each

other on the Internet via a P2P network protocol and form a network of

nodes.

The P2P network protocol is not new. It has been used extensively

on the Web for years now, from downloading files via Kazaa or LimeWire

networks to having video chats via Skype.

As I mentioned, bitcoin was the first viable cryptocurrency, and it

solved the double spending issue as well as allows electronic cash to be

stored without going through financial institutions by utilizing P2P to form

the blockchain protocol.

“A purely peer-to-peer version of electronic cash would allow
online payments to be sent directly from one party to another
without going through a financial institution.”

—Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic
Cash System

Chapter 1 BloCkChain BasiCs

13

 Cryptomining by Cryptominers
As noted, each computer that holds a copy of the shared ledger and is

connected to the P2P network is a peer. A peer can help to add records

and verify transactions. The process is called cryptocurrency mining or

cryptomining, and the peer that helps record and verify the transactions is

called a cryptominer or a miner for short.

Each miner helps to verify and add transactions to the blockchain

digital ledger. The miners are often rewarded with a fee for the work, and

to stay competitive with other miners, the miner usually needs a computer

with specialized hardware.

 Cryptocurrency Wallet
I covered what the public keys and private keys are and how they are

used to encrypt and decrypt strings. The strings are digital currency or

cryptocurrency, and the keys represent digital money.

A cryptocurrency wallet stores one or multiple public key and private

key combinations and is used to receive or spend cryptocurrency.

A good analogy is to think of a wallet like your bank account.

Cryptocurrency can be created by getting a reward by doing the miner

work, or it can be purchased. I will expand on wallets later in the book.

 Cryptocurrencies Overload
Before diving deeper into the blockchain P2P network, you should know

that another concept that can cause confusion is the difference between

coins and tokens. According to Coinmarketcap.com, at the time of writing,

there are 1,833 listed cryptocurrencies with a market cap of $200 billion.

Chapter 1 BloCkChain BasiCs

14

Many of these coins will surely disappear in the years to come as they

offer little value, and these projects will be terminated because of a lack of

interest or being a scam.

This can be confusing and intimidating, and most people don’t

understand the concept of bitcoin, let alone the large number of coins

and tokens out there. To help understand these concepts, let’s break

down cryptocurrencies into three types: bitcoin, tokens, and alternative

cryptocurrency coins (altcoins). See Figure 1-3.

Figure 1-3. Cryptocurrency coins and tokens. Photo credit: blog.
citowise.com.

 Bitcoin Digital Cash
Bitcoin was the first successful implementation of a decentralized

distributed digital currency. There are 21 million coins in total. The coins

replace a traditional fiat currency.

Chapter 1 BloCkChain BasiCs

15

 Tokens
Tokens are a decentralized product offering. It is another option similar to

an initial public offering (IPO) or crowdfunding. The tokens can be created

anywhere in the world and delivered via Ethereum, EOS, or another

capable blockchain platform. Tokens are usually created and distributed to

the public via an initial coin offering (ICO).

Tokens stand for a utility or an asset that usually sits on top of a native

blockchain. It can represent any digital asset including loyalty points,

cryptocurrencies, or any good or commodity with individual units that

are an interchangeable, fungible, or tradable asset. You can create a token

using an existing blockchain template such as the Ethereum platform, or

you can create your own tokens on an existing native blockchain and issue

your own tokens. You can utilize smart contracts to simplify the process of

creating tokens, as will be discussed in later chapters.

Note smart contracts are programmable code that runs on its
own without the need for third parties. For instance, solidity is a
contact- oriented programming language and can be deployed on
multiple blockchains.

 Alternative Cryptocurrency Coins (Altcoins)
Alternative cryptocurrency coins (altcoins for short) are coins that are

derived from bitcoin core source code by forking it (soft fork or hard

fork). Examples are litecoin (which was a fork of the bitcoin core client),

dogecoin (dogecoin 1.10 is a complete rebuild based on the bitcoin 0.11

build), bitcoinX, bitcoin cash, and bitcoin gold. In fact, at the time of

writing, there are 26 altcoins.

Chapter 1 BloCkChain BasiCs

16

Note hard forks are backward incompatible because the
changes split the network code into two—the p2p network with
the original code and the new p2p network running the new code.
soft forks are backward compatible, meaning that previously
valid blocks/transactions become invalid, and old nodes recognize
new blocks as valid. this forking happens often when there is a
disagreement of developers regarding a direction. For instance, some
developers would like to implement changes that other developers
disagree with or a major fix is needed to be implemented.

Litecoin was a fork of the bitcoin’s core client. Litecoin changed

the time of blocks being sent from 10 minutes to 2.5 minutes, enabling

transactions to be transferred quickly and more efficiently than bitcoin.

Litecoin can then continue and add features as it’s not relying on bitcoin’s

code anymore. For instance, in the future, litecoin will enable atomic swap,

allowing people to convert Litecoin to bitcoin via smart contracts without

involving an exchange. However, changes in the bitcoin core will require

manual implementation to have these changes included in litecoin.

With that said, many will argue that Litecoin and many of these

altcoins don’t offer enough value to survive and are made with the purpose

of enriching the developers who created the fork. Only time will tell.

EOS is another good example of altcoins. This time, the altcoin

is turning into a token, as upon its release the EOS company issued

Ethereum tokens, but as EOS is building its own blockchain platform, it is

replacing the Ethereum token with its own EOS tokens.

In a nutshell, the main difference between altcoins and tokens is in

their structure. An altcoin is its own currency like bitcoin or Litecoin, with

its own dedicated network blockchain and need for miners. Tokens such as

Ethereum tokens operate on top of an existing blockchain, which provides

the token and the infrastructure (such as Ethereum) for the creation of a

Chapter 1 BloCkChain BasiCs

17

decentralized application (dapp). An example of an Ethereum token is the

binance token (BNB).

In regard to Ethereum tokens, Ethereum offers the creation of different

token standards or Ethereum Request for Comments (ERCs) such as

ERC-20, ERC-223, or ERC-777. In the BNB token example, ERC-20 was

used. These standards differ and will be discussed in more detail in later

chapters.

 Blockchain P2P Network
Now that you have a better understanding of the key concepts, you can

dive deeper into understanding how a blockchain uses a P2P network to

solve the double spending issue as well as exclude financial institutions.

In this section, you will see how the cryptocurrency P2P network

works. You will explore different blockchains policies specifically and the

P2P network in general by breaking the P2P network into five layers.

• Consensus layer

• Miner layer

• Propagation layer

• Semantic layer

• Application layer

The overview here will pave the way for the next chapters where you

will be utilizing the bitcoin core API to configure and run a peer. This

fundamental understanding can help you understand how any blockchain

network works by utilizing different policies such as NEO and EOS.

Chapter 1 BloCkChain BasiCs

18

 Consensus Mechanism
In a traditional centralized system such as a bank, there is a master

computer that is trusted with the ledger of transactions. The bank can

obviously trust its own computer, and therefore it has no problem being

the one responsible for the security and integrity of the master computer.

When you are dealing with untrusted peers sharing a ledger, there is

a need to place rules that will ensure security and provide integrity of the

ledger to prevent double spending and other potential hacker attacks.

These rules and agreements are called a consensus mechanism.

Note a consensus mechanism is an agreement needed for the
network to operate properly even in the event of a failure. it needs to
be able to achieve agreement on the data of the network within the
distributed p2p network.

The blockchain is not just one master computer and aims to work

globally. It achieves integrity with a consensus of the data by all the

computers connected on the network. A distributed consensus means

that a pool of peers, geographically apart, agree in a decentralized manner,

instead of one master computer (centralized). Instead of regulations, there

are rules that are usually set in an open source environment instead of

being set by a government entity.

The P2P network enables a ledger. To achieve this goal in a secure way,

the P2P network stores the digital ledger rules and security. The consensus

mechanism provides not only the rules but also the incentives to do the

work of storing the data and creating transactions by giving the reward to

miners.

The P2P network works globally using an Internet connection and

is able to provide a platform to achieve a globally distributed consensus

mechanism. In cryptocurrencies, the consensus/agreement is on whether

Chapter 1 BloCkChain BasiCs

19

the blocks are valid or not. If a block is valid, the block will be added to the

blockchain. If a block is invalid, it will be rejected from being added to the

blockchain.

That’s where a consensus policy comes into play. Most of the peers

in the network hold the same blocks in their validated best blockchain

and follow the same rules (consensus rules); that’s how blockchain

ensures security. The most difficult to re-create chain is known as the best

blockchain (more about this concept later in the chapter).

 Proof of Work, Proof of Stake, and Delegated
Proof of Stake
As the blockchain gained popularity, many consensus mechanisms

policies were created. The first one was created by bitcoin, and many

others were built to solve problems that exist in other mechanisms. In the

following sections, I will discuss a few popular ones.

 – Proof of work (PoW)

 – Proof of stake (PoS)

 – Delegated proof of stake (DPoS)

In addition to these three, there are many other consensus

mechanisms that are not covered in this book, such as proof of

importance, proof of elapsed time (PoET), proof of authority (PoA), proof

of burn, proof of capacity, proof of activity, and so on. Feel free to explore

these on your own; each has its pros and cons and fits different needs.

 Proof of Work

PoW is the first and most popular mechanism; it’s used by bitcoin and

Ethereum, which are the most popular cryptocurrencies at the time of

writing. PoW is achieved by having a network of miners and presenting the

Chapter 1 BloCkChain BasiCs

20

miners with a mathematical problem. When miners solve a problem, they

are rewarded with a cryptocurrency. The reward is the proof of the “work”

done, and that’s where the name comes from.

Note ethereum’s development community is looking to move
from poW to pos or progpoW (reduced asiCs’ hash rate benefit
mechanism).

PoW determines what peer does the work by the amount of computer

power (hash rate) and allocates the work as a percentage so it’s fair. PoW

does not trust any peer on the network individually, but the network trusts

all of them as a collective network.

This does not mean that one miner competes against another miner.

A network of miners (called a pool) can compete against another pool of

miners for the job. The higher hash rate the pool has, the more chances it

has to get the “work.”

As covered previously, cryptocurrencies are decentralized and work

without one trusted computer in charge of the ledger. The PoW is the

mechanism that ensures data integrity and discourages malicious attacks.

The proof of work (PoW) is the mathematical puzzle the miner needs

to solve. A miner needs to find a solution to a complex mathematical

problem to become the leader and be able to create the next best block

to be added to the blockchain. The more miners that exist in the network,

the more complex the mathematical difficulty that needs to be solved.

For bitcoin, only one block is added every ten minutes with only one

winner, so the competition is fierce. Solving a problem puts the chips in

the computer to work, which consume electricity and produce heat. Think

of your computer running an intensive video game that includes lots of

media or your computer processing a video for production.

Chapter 1 BloCkChain BasiCs

21

You can also use this online resource, which connects to a bitcoin peer

and does all sort of calculations to figure out the next difficulty: https://

bitcoinwisdom.com/bitcoin/difficulty.

This information is useful for figuring out mining profitability. At

the time of writing, bitcoin shows 5 trillion as the difficulty rate, with an

estimated next difficulty increase of +3.74% and a total hash rate of 43

trillion GH/s. It also shows that one block takes 9.9 minutes to create, and

it generates about 25 bitcoins. A quick calculation shows that if every 10

minutes we get a block the data size of 4.2 MB per year, then 80 bytes of

data per block ∗ 6 hours ∗ 24 hours ∗ 365 days = 4.2 MB of data per year.

Having a block created every ten minutes is a limiting factor, and the

number of transactions that can be included in each block is limited.

That creates a scalability issue that other consensus mechanisms tried to

improve on.

To summarize, each miner is racing to solve the same problem; once

the problem is solved, the process restarts. This problem is a mathematical

puzzle known as the proof-of-work problem, and the reward is given to

the first miner who solves the problem. Then the verified transactions are

stored in the public ledger.

This PoW is not without its own disadvantages; this type of algorithm

can create all sorts of problems in today’s world. For instance, if one

mining pool controls more than 51 percent of the total mining power, the

entire blockchain security is at risk as you have one central collective not

much different than having one computer. A DDOS attack against the

network can put the entire trustworthiness of the network at risk.

This actually happened and is not just a theory. At the time of writing,

bitcoin gold, a forked version of bitcoin, has suffered a DDOS attack.

a distributed denial-of-service (DDos) attack happens when multiple
systems are attacking a target’s system resource/bandwidth.

Chapter 1 BloCkChain BasiCs

https://bitcoinwisdom.com/bitcoin/difficulty
https://bitcoinwisdom.com/bitcoin/difficulty

22

On PoW, as the difficulty goes up, that means less profit. Less profit

results in less incentive to mine coins. Ethereum cryptocurrency is facing

a problem of reduced miners in the network, and in 2018 Ethereum had

to plan a “difficulty bomb,” which reduced the difficulty (raising profit for

miners), as well as switch from PoW to PoS to increase scalability.

How is an attack is achieved? A pool that accounts for 51 percent of

the network’s hashing power is able to create its own block and post it

faster than the main blockchain updates. The block holds 51 percent of the

network and is able to double spend coins by removing transactions after

spending so that the coins are not taken from the originating wallet. This

threat is real. At the time of writing, Bitmain, a mining company, controls

more than 40 percent of the total bitcoin’s hash rate.

Many view PoW as unsustainable and insufficient because of the

amount of electricity a miner uses and the slow transaction speed

compared to other algorithms. To put things in perspective, bitcoin’s

current estimated annual electricity consumption is about 60 to 73

terawatt hour (TWh) per year. That’s a similar amount of electricity that it

takes to power Switzerland in a year; imagine multiple coins becoming as

popular as bitcoin utilizing PoW.

Read more about PoW in the bitcoin white paper at https://bitcoin.

org/bitcoin.pdf written by Satoshi Nakamoto.

 Proof of Stake

PoS was created by Sunny King and Scott Nadal in 2012 as an alternative to

solve the PoW cons mentioned earlier.

PoS relies on how many coins a peer holds. The peer needs to stake the

number of coins it wants to mine.

Instead of hashing power, we have stake power, and there is no

dependency on energy consumption because there is no puzzle to solve.

PoS provides a similar hashing block scheme to bitcoin’s PoW, but it limits

the number of peers. This provides the needed security yet lowers the cost

Chapter 1 BloCkChain BasiCs

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

23

and power consumption. A network fee is provided to peers instead of

giving a reward for solving a mathematical puzzle as in PoW.

PoS determines what peer does the work by the size of the stake the

peer holds. This achieves a distributed consensus at less energy and less

cost. DDOS attacks and frauds are still possible. However, attackers cannot

transact more digital currency than they are staking. Otherwise, they

would lose their deposits, so the chances are lower for an attack. Keep in

mind that attackers can stake other people coins and won’t care to lose

these coins as they are not theirs, so there are still ways for a DDOS attack.

Any peer can participate in the mining process by staking coins in

order to validate a new transaction. To become a miner, there are two

options; you can stake your coins to be used by a trustworthy node (but

you can lose your coin via a fraud of the PoS network by the node), or you

can submit a full node to be selected as a miner. Decentralization is limited

as only a few miners can hold most of the coins and have majority control.

For the work, each miner gets selected randomly; it’s not based on solving

a puzzle. Take a look at Table 1-1, which compares PoW and PoS.

Table 1-1. PoW vs. PoS

Category PoW PoS

Generating new

blocks

First miner to solve

problem selected based

on hashing power

random selection based on stake

power (how many coins a peer

holds)

reward Block reward network fees

energy and resource

consumption

asiC miner and large

footprint

little resource and low energy

consumption

You can set a staking wallet that holds the coins you need for the

PoS. Your coins can earn a return annually in some blockchain networks.

Chapter 1 BloCkChain BasiCs

24

Here is a list of some popular cryptocurrency coins that use PoS:

• Dash: You need 1,000 units to be a master node. It gives

an annual return of approximately 7.5 percent per year.

• NEO: Staking wallets return approximately 5.5 percent

per year. There’s no need to mine; you get gas coins just

by holding coins.

• Others: LSK, PIVX, NAV, RDD, BEAN, Linda, DCR,

NEBL, OK, STRAT.

Although some coins provide annual returns, keep in mind that in case

the coin market cap stays stable, a single coin will be worth less over time,

as new coins are generated. By staking a wallet, the hold (HODL) wallet’s

value is less affected as you get more coins to maintain your wallet value.

Similar to how a bank gives you an X% interest rate and the inflation is

X%, your balance shows more funds, but realistically you own the same

amount of money.

Note hoDl is a slang term coined in association with
cryptocurrency to describe holding cryptocurrency disregarding price
fluctuation.

Let’s examine NEO as an example. You won’t need to mine NEO to get

a reward. You will get gas coin just for holding coins as a reward for help

with staking transactions. You can calculate how much gas coin you will

receive by using this URL: https://neotogas.com/. At the time of writing,

if you purchase five NEO coins and hold them for a year, you will get 0.4799

gas coins (currently at a price of $7.73) by placing them in staking wallets.

See Figure 1-4.

Chapter 1 BloCkChain BasiCs

https://neotogas.com/

25

I encourage you to read the white paper about PoS here:

https://peercoin.net/assets/paper/peercoin-paper.pdf.

 Delegated Proof of Stake

Delegated proof of stake is a census algorithm method invented by Dan

Larimer discussed in the white paper at https://github.com/EOSIO/

Documentation/blob/master/TechnicalWhitePaper.md. DPoS is aimed

at improving PoS cons by providing a democracy instead of the random

process of selecting a miner.

Note in Dpos, the miners are called block producers.

Figure 1-4. Neotogas.com gas staking calculation

Chapter 1 BloCkChain BasiCs

https://peercoin.net/assets/paper/peercoin-paper.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md

26

DPoS achieves a technological democracy by splitting the process of

mining into two parts.

• Election: When electing a group of block producers,

there are only 21 block producers instead of unlimited

as with PoW.

• Scheduling production: Each one of the 21 block

producers takes turns to produce a block every 3

seconds.

The election process provides a technological democracy and ensures

stakeholders are in control because large stakeholders have the most to

lose if a network fails.

Each block producer takes a turn at producing a block, and the longest

possible chain gets adopted (just like in PoW). Take a look at a normal

operation, as shown in Figure 1-5. You’ll see that each peer 1 through 3

gets its turn to produce the longest chain block. Anytime an honest peer

node sees a valid strictly longer chain, it will switch from its current fork to

the longer one.

Figure 1-5. DPoS normal operation

DPoS is able to continue and function even when most of the

producers fail. Figure 1-6 shows a minority fork, where peer 2 only gets

to post the longest chain once during a cycle. During a fail process, the

community can vote and replace a failed peer producer, in this case peer 1,

or peer producers until the network resumes to normal operation.

Chapter 1 BloCkChain BasiCs

27

This white paper describes in detail this process and how blocks are

being produced and the rules to handle fail chains: https://steemit.com/

dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper.

Setting a community of block producers and staked users who agree

to these sets of rules gives the efficiency of PoS with the decentralized way

that PoW operates. DPoS uses the power of stakeholders to approve voting

of the consensus algorithm rules such as incentive fees, block intervals,

forks, and transaction sizes.

These rules can be fine-tuned by the elected delegates. This type

of consensus can decrease the transaction time significantly (1 second

versus 10 minutes for PoW). Further, the consensus protocol is designed

to protect all the participants against unwanted interference of a group

of nodes as possible in POW. Examples of popular DPOS blockchains are

Bitshares, Steem, and EOS.

 Mining Layer
What the miners are doing behind the scenes on networks could be

described as competition to do the blockchain’s work, which is really

doing the network bookkeeping. For bitcoin and most coins out there that

utilize PoW, each peer needs to hold the entire public ledger, which holds

a record of all the transactions that were ever conducted. PoW miners

are based on computing power and pools, while other networks take into

account other considerations.

For bitcoin, transactions must be validated by the miners who check

the ledger, ensure the sender is not transferring funds it doesn’t have, and

Figure 1-6. DPoS minority fork

Chapter 1 BloCkChain BasiCs

https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper

28

only then add the transaction to the ledger. Finally, to ensure protection

from hackers, the miners seal these transactions behind multiple layers

of computational work, requiring too much work for a hacker to possibly

achieve. This service is rewarded by providing bitcoins as a fee to the

miner.

For bitcoin, the size of each batch of coins drops by half about

every four years; around 2140 (unless a faster calculation than SHA2 is

discovered), it will be cut to zero, and the total number of bitcoins in

circulation will be 21 million.

 Propagation Layer
The propagation layer is responsible for deciding how the shared ledger

and the blocks are transmitted on the P2P network. This layer is described

in detail in the blockchain white papers.

Each of the peers can transmit a new transaction to other nodes on the

network. This architecture allows nodes to communicate indirectly. For

instance, you can send a transaction affecting two wallets without each

wallet being connected directly to each other.

Any node that receives a valid transaction it has not seen before will

immediately forward it to all other nodes to which it is connected. This is

a propagation technique known as flooding. Thus, the transaction rapidly

propagates out across the P2P network, reaching a large percentage of the

nodes within seconds.

 Semantic Layer
The semantic layer takes care of how new blocks relate to previous blocks

and provides the protocol for verifying the consensus rules.

As you have seen, there are different types of consensus mechanisms

based on how many trusted machines are connected, staking, speed,

hashing power, and more, but they do work similarly to how new blocks

Chapter 1 BloCkChain BasiCs

29

are related with previous blocks to ensure security. Every blockchain has

specifications. In this layer, transactions happen where coins/tokens are

transferred between accounts. I discussed the best block chain and how

each block contains data, and a chain of blocks has each block referencing

the block preceding it. The consensus in the blockchain holds the same

blocks in their validated best block chain and follows the same rules

(consensus rules). That’s how a blockchain ensures security.

 Application Layer
This layer takes care of deploying applications on top of the blockchain.

For instance, dapps, smart contracts, exchanges, and sites that

provide information about a blockchain are applications built on top of

blockchains.

For the application layer, the blockchain needs to expose APIs.

Different blockchains are similar as they all provide a way for a client to

communicate with the network.

Bitcoin offers a full node, which is currently about 27 GB and includes

a fully enforced node and all the rules of the blockchain. That is needed

for mining as well as ensuring the peer you run that gets connected to the

application layer is synced with the latest blocks.

These full nodes contribute to the functionality of the P2P network and

help support the network and its security.

It’s common for a blockchain to also offer a “light” node version. In

fact, the bitcoin light client is referencing a trusted full node’s copy of

the blockchain. The light client allows users to interact with the bitcoin’s

blockchain and makes and confirms transactions without committing the

large 27 GB disk space, which helps less capable devices such as mobile.

It’s important to understand that a light client is trustworthy and does

not include all the consensus rules. A full node is trustless and will reject

blocks that violate consensus rules, even if all the other nodes on the

network recognize the transaction as valid.

Chapter 1 BloCkChain BasiCs

30

I used NEO as an example of a popular PoS blockchain. NEO also

provides NEO-CLI, which includes an API that supports a consensus

function that can be used for the application layer.

Similarly, EOS delegated proof of stake provides a full-node and

light-node option. You will start noticing that although there are many

blockchain options out there, there are many similarities in the way the

blockchain is implemented.

 Summary
In this chapter, I laid the foundations and explained basic concepts

regarding blockchain; I explained concepts such as encryption

and decryption, cryptography, digital assets, cryptography, and

cryptocurrency.

I covered the pieces that make up a blockchain, including blocks,

double spending, cryptocurrency, cryptomining, cryptominers, and

cryptocurrency wallets. I covered different types of cryptocurrencies:

bitcoin, tokens, and altcoins.

Lastly, I covered the blockchain P2P network and the different layers

that make up the network: consensus layer, miner layer, propagation layer,

semantic layer, and application layer. You also learned about the peer-to-

peer network core logic and proof of work (PoW), proof of stake (PoS), and

delegated proof of stake blockchain (DPOS).

In this chapter, I introduced many terms that will be useful throughout

this book such as digital asset, public and private keys, decentralized,

double spending, smart contracts, and HODL.

In the next chapter, you will install and learn about the bitcoin core

API as well as learn how to create a full peer in different blockchains. This

will enable you to access the blockchain P2P network and even be able to

understand and create peers that can act as miners.

Chapter 1 BloCkChain BasiCs

31© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_2

CHAPTER 2

Blockchain Nodes
In the previous chapter, I covered basic concepts related to blockchain

and the pieces that make up an individual blockchain. I covered how

blockchain technology solved the double spending problem by utilizing

a P2P network, which led to the creation of a global distributed shared

ledger and digital cash. The blockchain P2P network is stitched together by

connecting multiple nodes, and in this chapter, you will be taking a closer

look at the nodes that make up the network.

The nodes or peers are machines that maintain the transactions and

records on the blockchain network. Each cryptocurrency has its own

blockchain and nodes; however, I will cover how to install three different

blockchains that utilize different consensus mechanisms.

In addition, I will cover how to interact with a node. I will be using the

bitcoin core API as an example so you will have a better understanding of

the ledger, blocks, transactions, and wallets. These concepts will continue

to lay out the foundations and basic concepts that are needed in the next

chapters.

 Running a Blockchain Node
As we mentioned, the blockchain P2P network consists of peers that store

a full copy of all the blocks in the network, which is the shared ledger. Each

blockchain validates blocks via a specific consensus mechanism and is

able to reject blocks that do not conform with the set of rules agreed on by

32

the network. To be able to connect to blocks and execute commands, you

need to have a peer connected to the blockchain. In this chapter, you will

be setting up a full node and will learn how to get rewarded for helping the

network; therefore, you will fully understand how the nodes on different

networks operate. You will be creating nodes for the following: bitcoin,

NEO, and EOS. Because blockchain technologies operate on different

consensus mechanisms, they also have different names for the node

capable of managing the blockchain.

 – For bitcoin, a node that can create blocks is called a miner.

 – For NEO, a node that has management rights is called a book-

keeping node.

 – For EOS, a node running the underlying network layer and able

to process all transactions is called a block producer.

The reason I selected these blockchains is so you can examine how

different peers working on different networks with different consensus

mechanism operate. Once you are able to work with different blockchains,

you will start noticing a pattern and be well rounded in blockchain

technology.

 Create a Bitcoin Miner
In this section, you will turn your own computer into a bitcoin

cryptominer and start cryptomining. Before doing that, you need to

understand that the hashing power of your computer is not going to

generate enough hash power for the mining of bitcoin to be profitable.

Nevertheless, it will allow you to fully understand the full cycle, and you

may be able to find other coins where mining using your CPU/GPU is

profitable such as ETN, BCN, XMR, and ETH. The process is similar in all

PoW-based networks.

Chapter 2 BloCkChain nodes

33

Today, for a miner to be profitable, it’s a matter of hash rate and

power consumption, price of electricity, bitcoin puzzle difficulty rate, and

maintenance costs as well as other factors.

Note Hash rate is the number of calculations in a second that your
computer can perform trying to solve the mathematical puzzle.

In the early days of bitcoin, your desktop could use your central

processing unit (CPU) or graphics processing unit (GPU) for processing

bitcoin, and it would have been enough for bitcoin mining to be profitable.

Your computer would have been able to support the bitcoin network;

however, the competition has increased, and you now need a field

programmable gate array (FPGA) or application-specific integrated circuit

(ASIC) miner to be profitable.

What are ASIC and FPGA miners? An FPGA is an integrated circuit

that is able to be configured after being built. The miners have better

performance than CPUs and GPUs mining; they can hash 750 megahashes

per second.

ASICs are computers that have an integrated circuit dedicated to

performing the single task of mining instead of operating as a regular

computer. There is nothing more on that computer; everything else was

stripped out.

This makes the computer much faster and more efficient in processing

transactions, and it is able to hash more. At the time of writing, there are

ASICs that can hash over 56 TH/sec, and they use less power than older

generation ASCIs.

This type of mining equipment is not only unique to bitcoin; at the

time of writing, there are ASIC miners for other cryptocurrency such as

litecoin, zCash, ethereum, and others.

To get started, you first need mining software. There is a lot of mining

software to choose from. For instance macOS users can, this one is free, open

source, and easy to use: http://downloads.fabulouspanda.co.uk/macminer/.

Chapter 2 BloCkChain nodes

http://downloads.fabulouspanda.co.uk/macminer/

34

Once you have downloaded the software, install it. Next, you need to

join a mining pool. Here I’ll show how to connect to Antpool, the largest

bitcoin pool; however, any pool would work. Sign up on Antpool here:

https://www.antpool.com.

Antpool calls a miner a worker. You can create a worker by clicking the

Dashboard tab, then clicking the Worker link, and finally clicking Create

Worker, as shown in Figure 2-1.

Now that you have your worker ready, you will set up your miner as a

CPU miner utilizing your CPU, and for your GPU, you could set your miner

to utilize your graphics card.

Open the MacMiner software you downloaded and click File and then

Preference option from the File drop menu. In the Preferences section, set

the miner as a CPU and/or GPU miner, as shown in Figure 2-2.

Figure 2-1. Antpool dashboard page for creating a mining worker

Chapter 2 BloCkChain nodes

https://www.antpool.com

35

In the next step of the preferences, you set the pool URL and your

username. Antpool is set up without a password, so it’s not needed, and

the pool URL is listed on the Antpool site:

startum+tcp://startum.antpool.com:3333

See Figure 2-3.

Figure 2-2. MacMiner preferences

Figure 2-3. MacMiner Preferences window for setting up a miner pool

Chapter 2 BloCkChain nodes

36

That’s it. Click the Start button to start mining and click Stop to stop

mining, as shown in Figure 2-4.

Figure 2-4. MacMiner starting a miner

Six years ago, you would have been able to mine more than 100 BTC on

your GPU. As you can see, my mining power on my 2018 MacBook resulted

in 13.74 Mh (Mega hashes) of hashing power.

There are many resources online to help you calculate mining

profitability; try http://www.bitcoinx.com/profit/. As expected and

according to their calculation, it would not be profitable at the current

conditions.

 Create a NEO Bookkeeping Node
Previously I introduced NEO as an example of a popular PoS blockchain.

In this section, you will be setting up a node (NEO calls these

bookkeeping nodes) and getting the machine ready so it can be selected to

help manage the network and receive a transaction reward.

Chapter 2 BloCkChain nodes

http://www.bitcoinx.com/profit/

37

Note neo does not call its managing node a miner. a miner can
be an analogy for the hard work that nodes do to maintain a poW-
based blockchain. as neo uses the pos census algorithm and
uses a technological democracy to selecting the managing nodes,
there is no hashing power and no hard labor when using the poW
census algorithm. to better understand how neo node works, it is
recommended to read the neo white paper at https://github.
com/neo-project/docs/blob/master/en-us/whitepaper.md.

The node validates the blockchain blocks and pays in a cryptocurrency

coin called gas. To be selected, you need to set a full node on a capable

machine. The minimum required machine is listed on the NEO project

wiki at https://github.com/neo- project/neo/wiki/Bookkeeping-Node-

Deployment.

Next, you need to obtain a consensus authority certificate and get

staking gas to be nominated as a bookkeeping node.

Note You may need to be a Chinese citizen and set up a Chinese
business to receive an identification certificate; see the neo docs
at http://docs.neo.org/en-us/index.html. You also need
1,000 staking gas to be nominated as a bookkeeping node.

To receive a fee from supporting the NEO network, you will need to

create a full node by following these steps:

 1. Set up a full NEO node.

 2. Request a consensus authority certificate.

 3. Stake 1,000 gas.

 4. Be elected by NEO holders.

Chapter 2 BloCkChain nodes

https://github.com/neo-project/docs/blob/master/en-us/whitepaper.md
https://github.com/neo-project/docs/blob/master/en-us/whitepaper.md
https://github.com/neo-project/neo/wiki/Bookkeeping-Node-Deployment
https://github.com/neo-project/neo/wiki/Bookkeeping-Node-Deployment
http://docs.neo.org/en-us/index.html

38

To set up a full NEO node, you also need to meet the system minimum

requirement listed here: https://github.com/neo- project/neo/wiki/

Bookkeeping-Node-Deployment.

 Setting Up a NEO Node on AWS Ubuntu

As my computer does not meet the minimum requirement list, I will be

utilizing AWS to set up a full node. However, if you have a machine that

meets these requirements, feel free to skip using Amazon AWS or select

another service provider to set your Node.

For AWS, go to the following URL: https://aws.amazon.com/free/.

Select “Create free account” and sign up.

Once you complete the sign-up process, select the free Basic Plan.

Then sign into the console at https://us-east-2.console.aws.amazon.

com/console/home and select “Launch a virtual machine.”

In the first step, you can select the machine type. Select Ubuntu.

“On the Step 1, wizard page: Choose an Amazon Machine Image (AMI)” ➤

Next, select: Ubuntu Server 16.04 LTS (HVM), SSD Volume Type ➤ Click the

“select” button. See Figure 2-5.

Figure 2-5. AWS, selecting Ubuntu Server 16.04 LTS

Chapter 2 BloCkChain nodes

https://github.com/neo-project/neo/wiki/Bookkeeping-Node-Deployment
https://github.com/neo-project/neo/wiki/Bookkeeping-Node-Deployment
https://aws.amazon.com/free/
https://us-east-2.console.aws.amazon.com/console/home
https://us-east-2.console.aws.amazon.com/console/home

39

On the next screen, you will be prompted to create key pairs: Select

“create a new key pair” ➤ next, select “key pair name” ➤ call the key “neo”

➤ then download the key: “download key pair” ➤ Lastly, select “Launch

Instances.” See Figure 2-7. Make sure you download the key, as you won’t

be able to connect via SSH to the box without the key.

Note secure shell (ssh) uses port 22 to connect your computer to
another computer on the internet.

On the next screen, select General purpose - t2.micro - free tier eligible

check-box. See Figure 2-6.

Figure 2-6. AWS, selecting t2.micro machine

Chapter 2 BloCkChain nodes

40

Next, you will get a message, with a link: your instances are now launching.

The following instance launches have been initiated: [instance id].

Click the link and you will be able to view the instance, as shown in

Figure 2-8.

In the instance, you will find a link to the security settings. Scroll to the

right of the screen, or go to the top-left navigation bar, and select Network

& Security ➤ Security Groups. You will be able to change the security

settings.

Figure 2-7. AWS key pairs

Figure 2-8. AWS, launching an instance

Chapter 2 BloCkChain nodes

41

For HTTP and SSH, you want to open the port to the world (0.0.0.0/0),

but SSH limits you to your own computer, called My IP. See Figure 2-9.

Next, you can create an SSH shortcut to access the server via one

command, as shown here:

> mkdir ~/.ssh

> vim ~/.ssh/config

Paste the following into the config file:

Host NEO

HostName [ip address]

User ubuntu

IdentityFile /[location of key]/neo.pem

Configure these settings with the IP address of the machine and with

the location of your key. Next set the permissions for the key.

> chmod 400 /[location of key]/neo.pem

Now, you can access your machine with one command, as shown in

Figure 2-10.

> ssh NEO

Figure 2-9. AWS inbound security rules

Chapter 2 BloCkChain nodes

42

If you run into any problems connecting to the machine, use the AWS

Troubleshooting page, which you can find at https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.

html#TroubleshootingInstancesConnectingMindTerm.

 Installing Bookkeeping-Node-Deployment on
Ubuntu 16.04

Now that you have a machine to fit the minimum needs of a full node,

you can install the software needed. Start by installing dependencies, as

shown here:

> sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.

trafficmanager.net/repos/dotnet-release/ trusty main" > /etc/

apt/sources.list.d/dotnetdev.list'

Figure 2-10. Connecting to an AWS machine via SSH

Chapter 2 BloCkChain nodes

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#TroubleshootingInstancesConnectingMindTerm
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#TroubleshootingInstancesConnectingMindTerm
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#TroubleshootingInstancesConnectingMindTerm

43

> sudo apt-key adv --keyserver apt-mo.trafficmanager.net

--recv-keys 417A0893

> sudo apt-get update

> sudo apt-get install dotnet-dev-1.0.4

It appears that the current installation instructions in the NEO docs

produce errors during installation, as shown here:

Depends:

dotnet-sharedframework-microsoft.netcore.app-1.0.4,

dotnet-sharedframework-microsoft.netcore.app-1.1.1

The workaround is to install a different dotnet core environment

sources list and update; then you will be able to install the dotnet-dev-1.0.4

core environment.

> sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.

trafficmanager.net/repos/dotnet-release/ xenial main" >

/etc/apt/sources.list.d/dotnetdev.list'

> sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80

--recv-keys 417A0893

> sudo apt-get update

Remember to change the sources list back to the following:

> sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.

trafficmanager.net/repos/dotnet-release/ trusty main" >

/etc/apt/sources.list.d/dotnetdev.list'

Now that the dotnet core environment is installed, check whether

the dotnet core environment is successfully installed with the following

command:

> mkdir hwapp

> cd hwapp

> dotnet new xunit --framework netcoreapp1.1

Chapter 2 BloCkChain nodes

44

> dotnet restore hwapp.csproj

> dotnet run

> cd ..

> rm -rf hwapp/

 Bookkeeping Node Deployment

Now that you have the dotnet core environment installed, you can install

additional dependencies and check out the NEO project.

> sudo apt-get install libleveldb-dev sqlite3 libsqlite3-dev

libunwind8-dev

> git clone https://github.com/neo-project/neo-cli

> git branch -a

> git checkout v3.0

> git checkout head

To run the NEO node, you will need version 1.1.2 of .NET Core.

Download the SDK binary; for Ubuntu 16.4, the commands are listed here:

https://www.microsoft.com/net/download/linux-package-manager/

ubuntu16-04/sdk-2.1.300.

Next, run the dpkg package manager to install the package:

> wget -q https://packages.microsoft.com/config/ubuntu/16.04/

packages-microsoft-prod.deb

> sudo dpkg -i packages-microsoft-prod.deb

Now you can restore the NEO build and compile, as shown here:

> dotnet restore

> dotnet publish -c Release

Once you compile the code, you get the location of the DLLs.

neo-cli -> /home/ubuntu/neo-cli/neo-cli/bin/Release/

netcoreapp2.0/neo-cli.dll .

Chapter 2 BloCkChain nodes

https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.300

45

neo-cli -> /home/ubuntu/neo-cli/neo-cli/bin/Release/

netcoreapp2.0/publish/

Run the full node:

> dotnet /home/ubuntu/neo-cli/neo-cli/bin/Release/

netcoreapp2.0/neo-cli.dll .

This command opens a terminal command call “neo” with the version.

NEO-CLI Version: 3.0.0.0

In the neo terminal, you can query the version to ensure it’s working

correctly.

neo> show state

You can also create a wallet.

neo> create wallet wallet.db3

This command will request a password.

password: [select a password]

password: [select a passwrod]

Then it generates a public key and address for your wallet.

address: AXZmWZckF55xb1p566No2qh19uj8vt5d2R

 pubkey: 03b80edc66c9324077c8c1c4bbad1e1ace7e1b7e8ac63945a3

b5bb9f642f4520f1

You now have a NEO node on an AWS machine, and you are able to

interact with the NEO command-line interface (CLI). In the next chapters,

you will be interacting with the CLI. Feel free to get a head start and review

the documentation for smart contracts and dapp development at the NEO

site here: http://docs.neo.org/en-us/node/cli.html.

Chapter 2 BloCkChain nodes

http://docs.neo.org/en-us/node/cli.html

46

 Request Consensus Authority Certificate

Now that you have a working node on a qualified Ubuntu server, you can

obtain a consensus authority certificate. The NEO white paper discusses

the need to have an actual real identity:

“DBFT combines digital identity technology, meaning the
bookkeepers can be a real name of the individual or institu-
tion. Thus, it is possible to freeze, revoke, inherit, retrieve, and
affect judicial decisions on them. This facilitates the registra-
tion of compliant financial assets in the NEO network.
The NEO network plans to support such operations when
necessary.”

You can obtain CA certificates from OnChain/Neo directly.

Additionally, you can find more information on the NEO forums: https://

www.reddit.com/r/NEO/. This process is beyond the scope of this book,

but it’s needed in order to be selected as a node.

 Getting Gas

To be selected as a node, you also need 1,000 gas to stake in order to

become a bookkeeper. The easiest way to purchase gas is on exchanges.

The other option is to hold NEO, and you will get 0.33 gas per 1,000. See

Figure 2-11 shows a button to claim gas coins once you hold NEO coins.

Chapter 2 BloCkChain nodes

https://www.reddit.com/r/NEO/
https://www.reddit.com/r/NEO/

47

A simple calculation of prices of NEO and gas at the time of writing

shows it’s a large investment.

 Elected as a Bookkeeper

NEO is an electronic democracy, and NEO holders can vote on who

should be a bookkeeper. At the time of writing, the NEO team has

not implemented the voting features; however, they are likely to be

implemented in the near future as the GitHub wiki shows a payment

structure with fees, including 10 gas for voting a bookkeeper: https://

github.com/neo-project/neo/wiki/Network- Protocol.

For now, stop the EC2 node so you won’t be charged.

Figure 2-11. Neotracker.io provides a Claim Gas option

Chapter 2 BloCkChain nodes

https://github.com/neo-project/neo/wiki/Network-Protocol
https://github.com/neo-project/neo/wiki/Network-Protocol

48

Tip amazon can charge storage fees for the eBs volumes attached
to a stopped instance. the cost is five cents per gigabyte. amazon
provides one year for free. to completely avoid being charged, you
need to “terminate” the instance instead of just stopping it.

You can make sure you are not charged at this URL: https://console.

aws.amazon.com/billing/home.

To stop the instance, select EC2 Dashboard ➤ Running instances ➤

Actions ➤ Instance State ➤ Stop. See Figure 2-12.

Figure 2-12. AWS, stop instance action

Chapter 2 BloCkChain nodes

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/billing/home

49

 Create an EOS Block Producer
You will now learn how to run a full EOS node on a dedicated server;

you just need to make sure you meet the minimum hardware requirement.

The requirements are listed here: https://developers.eos.io/

eosio-nodeos/docs/install-nodeos.

At the time of writing, the system requirements on all platforms are

as follows:

• 7 GB RAM free required

• 20 GB of available storage

You will learn how to set up an Ubuntu server. I will be using AWS. In

AWS, select Ubuntu Server 16.04 LTS (HVM), SSD Volume Type ➤ Choose

an Instance Type ➤ General purpose ➤ t2.large. This type of machine has

8 GB RAM free.

An EOS node needs at least 20 GB of a storage space, so you’ll set this

machine to 25 GB to be safe. To do that, select Configure Instance Detail.

Next select: add storage. In the next window select: Size (GiB) 25 GB. The

next wizard window you will be able to: Review and Launch. Launch the

instance.

For security, set the same settings as you did for the NEO full-node

server: select an existing security group. Next, select: launch-wizard-1 that

includes port 22 for SSH and public HTTP/HTTPS. Now we can: Review and

Launch in the next window and lastly, Launch.

In the key pairs, use the same key you created for NEO or create a new

key. To select the same key, select Choose an existing key pair. We will call

the key: EOS.

That’s it. You can now update the SSH config file with the new server to

be able to connect quickly.

> vim ~/.ssh/config

Chapter 2 BloCkChain nodes

https://developers.eos.io/eosio-nodeos/docs/install-nodeos
https://developers.eos.io/eosio-nodeos/docs/install-nodeos

50

And paste the following:

Host EOS

HostName [ip address]

User ubuntu

IdentityFile /[location of key]/EOS.pem

Now you can connect to the EOS server.

> ssh EOS

 Installing an EOS Full Node

Now that you have the Ubuntu server configured with 8 GB of memory and

a 25 GB hard drive, you can clone the project and build.

> git clone https://github.com/EOSIO/eos --recursive

> cd eos

> ./eosio_build.sh #takes about 30 mins to an hour.

Once the build is completed, you will see the screen shown in Figure 2-13.

Figure 2-13. EOS full-node build, complete output

Chapter 2 BloCkChain nodes

51

Ensure that the daemon is working correctly by running the -h flag to

get a list of commands.

> cd build/programs/nodeos

> ./nodeos -h #list of commands

Now you can run the EOS node daemon; Figure 2-14 shows the output.

> ./nodeos -e -p eosio --plugin eosio::chain_api_plugin

--plugin eosio::history_api_plugin

Figure 2-14. EOS full node running

EOS provides a portal at https://developers.eos.io/ to get started

with nodes, dapps, smart contract, tokens, and much more. In the next

chapters, you will be interacting more with the EOS platform.

 Marketing and Listing

Now that you have an EOS node running, you need to create a marketing

campaign to be elected. You can set the submission profile to be similar to

this URL: https://github.com/consenlabs/eos-bp-profile.

Next, you are ready to receive votes. You can get voting through the

imToken 2.0 app (iPhone or Android). It offers block producers voting;

follow this guide for instructions: https://medium.com/imtoken/guide-

imtoken-2-0-block-producers-voting- 141983f9a76e.

Chapter 2 BloCkChain nodes

https://developers.eos.io/
https://github.com/consenlabs/eos-bp-profile
https://medium.com/imtoken/guide-imtoken-2-0-block-producers-voting-141983f9a76e
https://medium.com/imtoken/guide-imtoken-2-0-block-producers-voting-141983f9a76e

52

 Terminating an EOS Node

You want to ensure that you terminate the node so you won’t get charged,

as this machine configuration is not part of the free tier server on Amazon.

Just you did before, select EC2 Dashboard ➤ Running instances ➤ Actions

➤ Instance State ➤ Terminate.

You’ll also want to terminate the 25 GB volume you created. Select

Volume from the left navigation menu and then select Actions ➤ Detach

Volume. Then select Delete Volume. See Figure 2-15.

Figure 2-15. Detaching a volume and deleting a volume

 Bitcoin Core API
As a developer, you want to have deep understanding of how a technology

works, so to better understand blockchain in general and the bitcoin

blockchain specifically, you will be downloading and installing the bitcoin

Chapter 2 BloCkChain nodes

53

core code. The full node and the bitcoin miner you set up previously

on bitcoin core can be compiled from source code, or you can use a

precompiled executable.

Previously you set up a bitcoin node capable of doing mining on your

computer. To interact with the bitcoin core API, you need a full node. What

is the difference between a full node and a miner then?

A full node is a complete copy of the blockchain that is able to verify all

the transactions that ever occurred on the blockchain since the first block was

created. This requires 180 GB at the time of writing. However, as you will see,

you can set the full node not to download the entire ledger. A full node does

not need to solve any mathematical problem, and hashing is not an issue.

A miner is a node in the network; however, as you have seen, its job is

to generate blocks by working on transactions and coming up with the best

block (or hash) to store the information. Miners compete and spend about

10 minutes coming up with a solution to the problem. Full nodes keep

blocks forever in the database and are verified by other nodes. Miners,

on the other hand, don’t need to know about previous blocks, just the

block before, and they focus on hashing. However, a bitcoin miner does

download the entire 180 GB blockchain ledger.

In the following exercise, you will be installing and configuring a full

node to be able to connect and interact with the bitcoin core API.

INSTALLING AND CONFIGURATING A FULL BITCOIN NODE

Setting Up Your System

In this exercise, you will set up your environment and then download,

configure, and start a full working node of bitcoin. this will come in handy

as you continue to examine how bitcoin and blockchain work. You will be

using the bitcoin core source code. Bitcoin core code includes docs that give

complete instructions for installing the code on different oss. in this book, i am

focusing on macos, so i am providing instructions to expedite the installation

Chapter 2 BloCkChain nodes

54

process for your convenience; however, you can install bitcoin core on other

platforms. here is the link for the complete instructions for Mac and pC:

• macos install instructions: https://github.com/bitcoin/

bitcoin/blob/master/doc/build-osx.md

• Windows: https://github.com/bitcoin/bitcoin/blob/

master/doc/build-windows.md

to get started, you need Xcode and the Xcode tools installed, so this would

be a good time to install these tools if you don’t have them already. to check

whether Xcode is installed on your computer, open a command-line terminal

by clicking the spotlight search and type Terminal.

at the command line, type the following command to check whether you have

Xcode installed:

> xcode-select –v

it should return xcode-select and the version number, as shown in Figure 2-16.

Figure 2-16. Terminal xcode-select version

if you don’t have Xcode installed, you can download it from https://

developer.apple.com/xcode/.

Note this installation can take hours, depending on your internet
connection.

Chapter 2 BloCkChain nodes

https://github.com/bitcoin/bitcoin/blob/master/doc/build-osx.md
https://github.com/bitcoin/bitcoin/blob/master/doc/build-osx.md
https://github.com/bitcoin/bitcoin/blob/master/doc/build-windows.md
https://github.com/bitcoin/bitcoin/blob/master/doc/build-windows.md
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

55

now that you have Xcode downloaded, execute the command-line tools

for Xcode.

> xcode-select –install

With command-line tools installed, you can install homebrew and the wget

tools by using these commands:

> /usr/bin/ruby -e "$(curl –fsSL https://raw.githubusercontent.

com/Homebrew/install/master/install)"

> brew install wget

after homebrew and wget are installed, you are able to install the rest of the

needed dependencies for bitcoin core, as shown here:

> brew install automake berkeley-db4 libtool boost miniupnpc

openssl pkg-config protobuf python qt libevent qrencode librsvg

Installing Bitcoin Core

At this point you have the needed tools and dependencies installed, and you

can clone the bitcoin code project, compile, and run it.

> git clone https://github.com/bitcoin/bitcoin.git

> cd bitcoin/

now, you can build the Berkeley dB version 4, used by the bitcoin core node:

> ./contrib/install_db4.sh .

Continue the installation;

> ./autogen.sh

> ./configure

> make

> make check && sudo make install

Chapter 2 BloCkChain nodes

56

Bitcoin core code includes two tools: bitcoind and bitcoin-Cli.

• bitcoind (the bitcoin daemon): this implements the bitcoin

protocol for remote procedure call (rpC) use. once it’s installed,

you can make api calls. there is a list of all the api calls here:

https://en.bitcoin.it/wiki/Original_Bitcoin_

client/API_Calls_list.

• bitcoin-CLI (the bitcoin command-line interface): this enables

you to interact with the bitcoin core daemon. to ensure the

installation went well, you can check that the bitcoin daemon

and bitcoin-Cli are configured and working as expected.

to ensure these tools were installed correctly, you can execute the which

command on these tools to get the location of them.

> which bitcoind

> which bitcoin-cli

the output returns the location of the bitcoind and bitcoin-cli:

/usr/local/bin/bitcoind

/usr/local/bin/bitcoin-cli

Configuring and Compiling Bitcoin Core

Next, you want to configure a node. each bitcoin core node does not do mining

but contributes to the bitcoin network and consists of clients, miners, wallets,

and so on. to configure the node, you can find the configuration files’ location

by typing the following command in terminal:

> bitcoind -printtoconsole

after a few seconds, stop this service (Control+C). the command shows the

bitcoin.conf configuration file location. see Figure 2-17 for the output.

"> Using config file /[path]/.bitcoin/bitcoin.conf"

Chapter 2 BloCkChain nodes

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list

57

Figure 2-17. bitcoin.conf file location

at the time of writing, a full-index bitcoin core node requires 2 GB raM and

at least 180 GB of disk space (https://blockchain.info/charts/

blocks-size). additionally, as the bitcoin nodes send and receive

transactions and blocks constantly, you will need a fast internet connection.

the full node is advisable for a working project running a miner as you can

run a dedicated server and interact with the bitcoind via Bitcoin- Cli; however,

for the purpose of this book, most of the time you won’t need a full node. i

recommend that you constrain bitcoin node resources usage on your computer

so it won’t hog your computer’s resources and internet bandwidth.

to limit your node from downloading the entire shared ledger, use vim or your

favorite editor to edit the bitcoin.conf file.

> vim /[path]/.bitcoin/bitcoin.conf

after vim opens up bitcoin.conf, paste the following configurations:

alertnotify=myemailscript.sh "Alert: %s"

prune=3000

maxconnections=10

dbcache=150

maxmempool=100

maxsendbuffer=500

maxreceivebuffer=2000

txindex=0

Chapter 2 BloCkChain nodes

https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size

58

Make sure you don’t erase the following lines already there:

rpcuser=bitcoinrpcrpc

password=[password]

For your knowledge, the configuration file holds the following params:

• prune: Utilizing prune, you can limit the disk usage. set this

to 3000.

• Maxconnections: By setting a limited maxconnections value,

you are limiting the maximum nodes number to ten connections

• dbcache: in dbcache, you reduce the size of the UtXo cache

from 300 MiB to 100 MiB.

• Maxsendbuffer and maxreceivebuffer: You can limit the

memory buffer per connection to the number you set; for

instance, set maxreceivebuffer to 2000 MB.

• Txindex: set this to 1 to get transaction data for any transaction

on the blockchain; however, this will use up more disk space.

Running Bitcoin Core Daemon

Now that you have configured your node, you can start the bitcoin core

daemon. to run the bitcoind, execute the following command in terminal:

> bitcoind -printtoconsole

the first time running the daemon, it will download the blockchain. this

can take several hours (depending on your internet connection). Because

you set the parameter to print to the console (-printtoconsole), you

will be able to watch the process as it downloads the entire blockchain.

see Figure 2-18.

Chapter 2 BloCkChain nodes

59

While the process is running, open a second terminal window to query the

bitcoind interact with the apis via the bitcoin-cli. note: you can call the help

feature and get help about the available apis. For instance, to get a list of all

available apis, use this:

> bitcoin-cli --help # outputs list of command-line options.

> bitcoin-cli help # outputs list of RPC commands when the

daemon is running.

> bitcoin-cli help getblockhash # get help on specific API, for

instance "getblockhash";

to be able to retrieve the complete information, you would need to run a

full node. to run a full node in the config file, change txindex=1 in the

bitcoin.conf file and remove prune=3000. open bitcoin.conf using

your favorite editor.

> vim /[path]/.bitcoin/bitcoin.conf

Change the params as follows:

txindex=1 # prune=3000 - comment out this line

Figure 2-18. Bitcoin core daemon (bitcoind)

Chapter 2 BloCkChain nodes

60

this change will allow you to run a full node and provide the index information

so you can review transaction data for any transaction on the blockchain. now

you can start the bitcoin core daemon again and tell the daemon to re-index

all the data.

> bitcoind -reindex –printtoconsole

once again, this process can take hours; however, as it is downloading the

blocks, you will be able to interact with the downloaded blocks.

to get the blockchain information, you can query the daemon to show the

progress of your node. see the expected output in Figure 2-19.

> bitcoin-cli getblockchaininfo

Figure 2-19. Getting blockchain information

Chapter 2 BloCkChain nodes

61

this did not complete the full download of the bitcoin node; however, you

already have 209,513 blocks and 538,726 block headers. the node first

downloads the block headers of the best chain blocks and then downloads the

full blocks.

in this exercise, you set your environment and downloaded blocks, configured

them, and started a bitcoin node.

 Serialized Blocks
Each full node holds the same validated blocks and follows the same

rules (consensus rules). Each bitcoin block in the chain contains a 1 MB

serialized code according to the current bitcoin consensus rules.

The block header holds encoded information that includes the

following:

• Version

• Previous block header

• Merkle root hash

• Time

• nBits

• nounce

• txn_count (holds the total number of transactions)

• txns (raw transaction)

This data is being hashed and is part of the proof-of-work algorithm

and the consensus rules. The Satoshi Nakamoto white paper explains the

consensus rules.

Chapter 2 BloCkChain nodes

62

“They vote with their CPU power, expressing their acceptance
of valid blocks by working on extending them and rejecting
invalid blocks by refusing to work on them. Any needed rules
and incentives can be enforced with this consensus
mechanism.”

—Bitcoin: A Peer-to-Peer Electronic Cash System.

The proof of work (PoW) in bitcoin is based on Adam Back’s Hashcash.

Each miner is racing to solve the problem; once the problem is solved, the

process restarts. The problem is a mathematical puzzle known as a proof-

of-work problem, and the reward is given to the first miner who solves the

problem. Then the verified transactions are stored in the public ledger.

You’ll learn more about this in the next section. It takes 9.9 minutes to

generate about 25 bitcoins. Per the Satoshi white paper:

“A block header with no transactions would be about 80 bytes.
If we suppose blocks are generated every 10 minutes, 80 bytes
∗ 6 ∗ 24 ∗ 365 = 4.2MB per year”

—Bitcoin: A Peer-to-Peer Electronic Cash System.

At the time of writing, bitcoin processes three transactions per

seconds, and if the bitcoin transactions increase to four transactions per

second, then bitcoin will be operating at peak capacity. Ethereum, on the

other hand, is running five transactions per seconds, and if it goes to eight,

that would be peak capacity. This design creates a scalability flaw as large

corporations need to process hundreds of thousands of transactions per

seconds not just four to eight per second.

Chapter 2 BloCkChain nodes

63

 Block Header
As mentioned, a block is shared between nodes on the bitcoin network.

Each block header is a serialized 80-byte format. The following

information is encoded in each block header:

• Version: At the time of writing, there are four block

versions. Version 1 is the genesis block (2009), and

version 2 was a soft fork in bitcoin core 0.7.0 (2012).

Version 3 blocks were a soft fork in bitcoin core

0.10.0 (2015). Version 4 blocks are BIP65 in bitcoin

core 0.11.2 (2015).

Note What is Bip? Bip is a bitcoin improvement proposal (Bip). it is
a document for introducing features or information to bitcoin. Bip is
the standard for communicating ideas as bitcoin is open source and
has no formal structure.

• Previous block header hash: This is an

SHA256(SHA256()) hash of the previous block’s header.

This ensures integrity because changing one previous

block will require changing each previous block.

• Merkle root hash: A Merkle tree is a binary tree that

holds all the hashed pairs of the tree.

• Time: This is a Unix epoch time when the miner started

hashing the header.

• nBits: nBits is the target section of the block header.

• nonce: This is an arbitrary number that miners change

to modify the header hash in order to produce a hash

that is less than or equal to the target threshold.

Chapter 2 BloCkChain nodes

64

You already downloaded a portion of the blockchain, and you are able

to query the block height already downloaded.

> bitcoin-cli getblockhash 375617

The daemon returned a string with the block hash of the best block

chain at index 375617. You can then request to get the actual block.

> bitcoin-cli getblock 00000000000000000f270563d7f2187beec75

cdc04f98823572e5a31baf0a261

Figure 2-20 shows the results. As you can see, the block information

includes the previousblockhash key and the nextblockhas key. These

keys are SHA256(SHA256()) hash-encrypted keys. The rules ensure

blocks cannot be changed. These rules are part of the consensus rules that

are set to maintain the blockchain security by untrusted nodes.

Figure 2-20. Getting block information

Chapter 2 BloCkChain nodes

65

 Block Version
The block version is part of the block header. You can see the block

versions used in the block. In Figure 2-20 you can see that only version 1

is used for block 00000000000000000f270563d7f2187beec75cdc04f9882

3572e5a31baf0a261.

The consensus mechanism can only be changed by the bitcoin open source

development team, which published instructions on how to handle upgrades

suggestions. The BIP that introduced the upgrade method to handle the path

for versioned transactions and blocks was used in versions 2, 3, and 4.

The function added to bitcoin core manages the soft forking. You can

learn more about this BIP feature here: https://github.com/bitcoin/

bips/blob/master/bip-0034.mediawiki.

 Merkle Trees

You called to retrieve the block information and received a Merkle root

hash key. A Merkle tree is a binary tree. The root node of the Merkle tree

holds all the hashed pairs of the tree. To help visualize this process, look at

the following simple ASCII example of a binary list of a hashed tree:

Transactions list: H(A)->H(B)->H(C)->H(D)

 Hash(A|B|C|D)

 / \

 Hash(A|B) Hash(C|D)

 / \ / \

 Hash(A) Hash(B) Hash(C) Hash(D)

The block headers included in this Merkle root are a representation

of the descendants of all the transactions in that block. HASH(A|B|C|D)

is the Merkle root. Each element A, B, C, and D would be a hash of all the

transactions in that block. In our example we have only one transaction in

each block.

Chapter 2 BloCkChain nodes

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

66

Merkle Root: H(A)

 /

 Hash(A)

 Target nBits

The block header includes nBits. nBits is the target section of the block

header. nBits is a 32-bit compact encoding of the 256-bit target threshold.

It works like scientific notation but uses base-256 instead of base-10. Every

2,016-block bitcoin core re-target point and adjusts nBits according to

bitcoin difficulty rules. Bitcoin difficulty increases or decreases depending

on whether it took less time or more time than two weeks to find 2,016

blocks. In other words, the difficulty will increase if the hash rate increases

or decrease if the network hash rate decreases.

For instance, to convert an nBits 0x181b8330 into the target threshold,

you would calculate it using the same shorthand you use with regular

scientific notation; see Figure 2-21.

Convert 0x1bc3300

to nBits of 0x181b8330. That will be our target threshold.

Figure 2-21. Calculating nBits. Photo credit. stackexchange.com.

Chapter 2 BloCkChain nodes

67

 txn_count

The txn_count parameter represents the total number of transactions in a

given block including the coinbase transaction.

Coinbase is a special field used as an input for coinbase transactions.

The coinbase allows you to claim the block reward and provides up to 100

bytes for arbitrary data.

Each block contains transactions, and the first transaction in a block is

created by a miner; it includes a single coinbase.

 Block Reward

Bitcoin miners claim the reward for creating a block. The reward is the sum

of block subsidies plus the transaction fees paid by transactions included

in the block.

A block subsidy is the newly available satoshis reward. It started at 50

bitcoins and is being halved every 210,000 blocks, approximately once

every four years. At the time of writing, it’s about 12.5 bitcoins. Eighty

percent of the block subsidy has already been paid, and only 4.2 million

bitcoins are left to mine until the 21 million supply cap is reached. At that

point, the miners will receive a reward of only transaction fees.

As mentioned, each block contains transactions, and the first

transaction in a block is created by a miner; it includes a single coinbase,

the reward.

 txns: Decode a Transaction

txns is the raw transaction in the block. To better understand this process,

let’s work with an actual transaction. Bitcoin transactions that are stored in

the blockchain ledger are broadcast between different peers in serialized

byte format (raw format or raw transaction). To decode the SHA256 raw

transaction, you can call the bitcoin client and utilize the different APIs.

Chapter 2 BloCkChain nodes

68

To start, you can retrieve a block you would like to work with. The

daemon you are running lists the blocks as the new best, as shown in

Figure 2-22.

As you can see, you are able to find the new best block by looking

at the output of the bitcoin daemon. In this case, you choose the hash

000000000000ea2ca199cafd1362ece59d7c6f3867b5e0d6f20c12af6752fb48.

The best block chain is the block selected that is the hardest chain to

re-create. Remember, in a chain of blocks, each block refers to the block

that came before it; that’s how you have a blockchain that creates the

security and prevents the double spending.

Now that you have the new best block, you can retrieve the hash data

of that block.

> bitcoin-cli getblock 000000000000ea2ca199cafd1362ece59d7

c6f3867b5e0d6f20c12af6752fb48

The getblock command returns to a coded SHA256 hash data about

the block you requested (Figure 2-23).

Figure 2-22. Bitcoin daemon printing to console result

Chapter 2 BloCkChain nodes

69

Let’s examine the result of the getblock call. You got a Merkle root as a

hash as well as hash tx of all the transactions in that block.

"tx": [

 "a73226fc261f95db14eba45cd734aeb0b8784911aeb24f301f94858

a09184036",

 Transaction hash 02,

 Transaction hash 03,

 and so on...

]

As you can see, there are multiple tx (transactions) in the array of this

block. You can now request to retrieve the raw transaction data of each

transaction (tx).

Figure 2-23. getblock retrieving block information

Chapter 2 BloCkChain nodes

70

The getrawtransaction command will return the raw data.

> bitcoin-cli getrawtransaction a73226fc261f95db14eba45cd734

aeb0b8784911aeb24f301f94858a09184036

Here is the raw transaction SHA256 data:

010000000100

000000000000ffffffff070439f3001b0141ffffffff0100f2052a01000000

434104b5a750a0ca4bb5a47b6f169b8a8f42b39e2dbb7967d046f1bf018d

927d102c280f1123ebfd973f6e651f2e5ff4486e18a90cc67d6d17ccdb95cd6

bf028d791cfac00000000

You can now decode the SHA256 raw transaction data with the

decoderawtransaction command.

> bitcoin-cli decoderawtransaction 0100000001000000000000000000

00ffffffff070439

f3001b0141ffffffff0100f2052a01000000434104b5a750a0ca4bb5a47

b6f169b8a8f42b39e2dbb7967d046f1bf018d927d102c280f1123ebfd973

f6e651f2e5ff4486e18a90cc67d6d17ccdb95cd6bf028d791cfac00000000

The command returns the transaction result in a readable format, as

shown in Figure 2-24.

Figure 2-24. Decode transaction utilizing the decoderawtransaction
command

Chapter 2 BloCkChain nodes

71

 Bitcoin Wallet
As you saw in Figure 2-24, the wallet address is 1Mr2G632PfQuq4uJXRBN

WLoRKH71Qwor51, and the value is 50 coins.

You can also confirm the transactions of this wallet online by visiting

services that contain a full node and checking the wallet’s balance.

Figure 2-25 shows a screenshot from https://bitref.com/1Mr2G632PfQuq

4uJXRBNWLoRKH71Qwor51.

Figure 2-25. 1Mr2G632PfQuq4uJXRBNWLoRKH71Qwor51 wallet
balance

Similarly, you can query your wallet’s available funds via the CLI:

> bitcoin-cli getbalance 1Mr2G632PfQuq4uJXRBNWLoRKH71Qwor51

Chapter 2 BloCkChain nodes

https://bitref.com/1Mr2G632PfQuq4uJXRBNWLoRKH71Qwor51
https://bitref.com/1Mr2G632PfQuq4uJXRBNWLoRKH71Qwor51

72

In the next chapters, I will be covering wallets, so I will explain in

more detail the wallet’s operations, but for now, you can see that the

user purchased 50 coins in 2003 and sold them in 2012. Notice that

although you do not know the identity of the person who owns the

wallet, you are able to view the wallet’s current balance as this is public

information.

 Summary
In this chapter, you learned how to run a blockchain node that can help

manage a blockchain. For bitcoin, you created a node called a miner.

For NEO, you created a node that has management rights called a

bookkeeping node, and for EOS you created a block producer. You also

explored what you need to do to have your node elected or running so

it is profitable.

Next, you installed a full bitcoin node that is capable of running the

bitcoin core API. You installed and configured your node and learned how

to run the bitcoin core demon. You then interacted with the bitcoin core

API and were able to learn how to serialize blocks and understand better

the data inside each block.

I covered block rewards, transactions, and the bitcoin wallet. In the

next chapter, you will be building your very own blockchain P2P network

to get a much deeper understanding of how a blockchain works.

Chapter 2 BloCkChain nodes

73© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_3

CHAPTER 3

Creating Your Own
Blockchain
In this chapter, I will cover how to build your very own blockchain P2P

network. This is a seven-step process, so in each section I’ll start with a

brief introduction followed by an exercise. You can download the code for

each of the following exercises from GitHub and follow along:

• Creating a basic P2P network

• Sending and receiving blocks

• Registering miners and creating new blocks

• Setting up a name-value database, LevelDB

• Creating a private-public wallet

• Using API services

• Creating a command-line interface

This chapter will drill down into the code, and the examples in this

chapter are simple in nature and intended for learning purposes. They will

give you a better understanding of blockchain and the elements that are

needed to achieve a fully working prototype of a blockchain.

74

Note It’s not feasible to create a full production-grade blockchain
in this short instructional chapter; however, I will give you the
fundamentals for creating a basic working one.

 Creating a Basic P2P Network
The first step in creating your blockchain is to create a P2P network. As

you saw in previous chapters, the P2P network was the key to making

blockchain work. In cryptocurrency the P2P network can help prevents the

double spending issue for PoW and is also the core architecture behind

PoS. In a blockchain, it allows you to sync any data needed on a network.

Note Peer-to-peer (P2P) is a type of computer network that uses
a distributed architecture. Each peer or node shares the workload
and is equal to the other peers, meaning there should not be any
privileged peer.

“We have proposed a system for electronic transactions with-
out relying on trust. We started with the usual framework of
coins made from digital signatures, which provides strong
control of ownership, but is incomplete without a way to pre-
vent double-spending. To solve this, we proposed a peer-to-
peer network using proof-of-work to record a public history of
transactions that quickly becomes computationally impracti-
cal for an attacker to change if honest nodes control a majority
of CPU proof-of-worker.”

—Bitcoin: A Peer-to-Peer Electronic Cash System

ChaPtEr 3 CrEatIng Your own BloCkChaIn

75

In this chapter, I will show you how to create your blockchain with

Node.js, but you can do this with any other programming language

because the principles are the same. You will be setting up your machine

with the WebStorm integrated development environment (IDE) that will

be used throughout this book. To download WebStorm, go to https://

www.jetbrains.com/webstorm/. WebStorm offers a 30-day trial; however,

it’s not necessary, and you can choose any IDE of your liking and achieve

the same results. At the time of writing, the WebStorm version is 2018.2.

STEP 1: BASIC P2P NETWORK EXERCISE

Setting Up Your Project

In this exercise, you will set up your project and create a basic P2P network to

send and receive messages. after you are able to send and receive messages,

you will be able to create a block class and a chained library and tie several

blocks together to create a blockchain. You will need node.js installed on

your machine; there are many ways to install it. one easy way is through the

prebuilt installer manager; find one that fits your platform here: https://

nodejs.org/en/download/.

after you have downloaded webStorm, you can create a new project. Select

File ➤ Create new Project ➤ node.js Express app ➤ CrEatE. In location,

call the project Blockchain, and click Create (see Figure 3-1).

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

76

Creating a P2P Network

Create a folder and name it Blockchain. then create a file and name

it p2p.js and write the following code. alternatively, you could just clone the

code from github.

https://github.com/Apress/the-blockchain-developer/blob/master/

chapter2/step1/p2p.js

> git clone https://github.com/Apress/the-blockchain-developer

Tip You can clone the entire code listings in this book
from github. use the following terminal command: > git clone
https://github.com/Apress/the-blockchain-developer/
chapter3/step1/

Figure 3-1. WebStorm, creating a new project wizard

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/chapter3/step1/
https://github.com/Apress/the-blockchain-developer/chapter3/step1/

77

Listing 3-1. Shows Node.js P2P Network initial code to send and

receive messages

const crypto = require('crypto'),

 Swarm = require('discovery-swarm'),

 defaults = require('dat-swarm-defaults'),

 getPort = require('get-port');

const peers = {};

let connSeq = 0;

let channel = 'myBlockchain';

const myPeerId = crypto.randomBytes(32);

console.log('myPeerId: ' + myPeerId.toString('hex'));

const config = defaults({

 id: myPeerId,

});

const swarm = Swarm(config);

(async () => {

 const port = await getPort();

 swarm.listen(port);

 console.log('Listening port: ' + port);

 swarm.join(channel);

 swarm.on('connection', (conn, info) => {

 const seq = connSeq;

 const peerId = info.id.toString('hex');

 console.log(`Connected #${seq} to peer: ${peerId}`);

 if (info.initiator) {

 try {

 conn.setKeepAlive(true, 600);

ChaPtEr 3 CrEatIng Your own BloCkChaIn

78

 } catch (exception) {

 console.log('exception', exception);

 }

 }

 conn.on('data', data => {

 let message = JSON.parse(data);

 console.log('----------- Received Message start ----

---------');

 console.log(

 'from: ' + peerId.toString('hex'),

 'to: ' + peerId.toString(message.to),

 'my: ' + myPeerId.toString('hex'),

 'type: ' + JSON.stringify(message.type)

);

 console.log('----------- Received Message end -----

--------');

 });

 conn.on('close', () => {

 console.log(`Connection ${seq} closed, peerId:

${peerId}`);

 if (peers[peerId].seq === seq) {

 delete peers[peerId]

 }

 });

 if (!peers[peerId]) {

 peers[peerId] = {}

 }

 peers[peerId].conn = conn;

 peers[peerId].seq = seq;

 connSeq++

 })

})();

ChaPtEr 3 CrEatIng Your own BloCkChaIn

79

setTimeout(function(){

 writeMessageToPeers('hello', null);

}, 10000);

writeMessageToPeers = (type, data) => {

 for (let id in peers) {

 console.log('-------- writeMessageToPeers start -------- ');

 console.log('type: ' + type + ', to: ' + id);

 console.log('-------- writeMessageToPeers end ----------- ');

 sendMessage(id, type, data);

 }

};

writeMessageToPeerToId = (toId, type, data) => {

 for (let id in peers) {

 if (id === toId) {

 console.log('-------- writeMessageToPeerToId start

-------- ');

 console.log('type: ' + type + ', to: ' + toId);

 console.log('-------- writeMessageToPeerToId end ---

-------- ');

 sendMessage(id, type, data);

 }

 }

};

sendMessage = (id, type, data) => {

 peers[id].conn.write(JSON.stringify(

 {

 to: id,

 from: myPeerId,

 type: type,

ChaPtEr 3 CrEatIng Your own BloCkChaIn

80

 data: data

 }

));

};

to get this example to work, you need to run two instances of this code. You

can run it from two separate machines as would be done in real life, or you

could run two instances from the same machine via terminal.

Your code needs to find and connect peers, deploy servers that are used to

discover other peers, and get an available tCP port. that is done by utilizing

these three libraries:

 – discovery-swarm: used to create a network swarm that uses

discovery-channel to find and connect peers

 – dat-swarm-defaults: Deploys servers that are used to discover

other peers

 – get-port: gets available tCP ports

to install these libraries, run this command:

> npm install crypto discovery-swarm dat-swarm-defaults get-port

--save

now that are libraries are installed, open two terminal instances and navigate

to the location of the library. run the following command:

> node p2p.js

to run the code from the clone library on github, navigate to the code, follow

these terminal commands to install the libraries, and run a node.js instance

attaching our p2p.js code:

> cd [location]/chapter2/step2

> npm install

> node p2p.js

Figure 3-2 shows the output of running the node.js code.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

81

as you can see in Figure 3-2, the network generated a random peer ID for

your machine and picked a random port utilizing the discovery libraries you

installed. then the code was able to discover other peers on the network and

send and receive messages to and from these peers. You are now connected

on a P2P network with other users.

let’s walk through the code to better understand how it all works. the first

lines of code are an import statement for the open source libraries that you

are using in your code.

 const crypto = require('crypto'),

 Swarm = require('discovery-swarm'),

 defaults = require('dat-swarm-defaults'),

 getPort = require('get-port');

notice that you use const to set your variable instead of let. You want to

ensure there is no rebinding, and you always refer to the same object, so

selecting const is advised according to best practices.

next, you set your variables to hold an object with the peers and connection

sequence, and you choose a channel name that all your nodes will be

connecting to. You also set a randomly generated peer ID for your peer utilizing

the crypto library.

const peers = {};

let connSeq = 0;

let channel = 'myBlockchain';

Figure 3-2. P2P running two peers in Terminal

ChaPtEr 3 CrEatIng Your own BloCkChaIn

82

const myPeerId = crypto.randomBytes(32);

console.log('myPeerId: ' + myPeerId.toString('hex'));

next, you generate a config object that holds your peer ID. then you use the

config object to initialize the swarm library. the swarm library can be found

here: https://github.com/mafintosh/discovery-swarm. what it does

is create a network swarm that uses the discovery-channel library to find

and connect peers on a uCP/tCP network.

const config = defaults({

 id: myPeerId,

});

const swarm = Swarm(config);

now that everything is set up and ready, you will be creating a node.js async

function to continuously monitor swarm.on event messages.

(async () => {

You listen on the random port selected, and once a connection is made to the

peer, you use setKeepAlive to ensure the network connection stays with

other peers.

 const port = await getPort();

 swarm.listen(port);

 console.log('Listening port: ' + port);

 swarm.join(channel);

 swarm.on('connection', (conn, info) => {

 const seq = connSeq;

 const peerId = info.id.toString('hex');

 console.log(`Connected #${seq} to peer: ${peerId}`);

 if (info.initiator) {

 try {

 conn.setKeepAlive(true, 600);

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/mafintosh/discovery-swarm

83

 } catch (exception) {

 console.log('exception', exception);

 }

 }

once you receive a data message on the P2P network, you parse the data

using JSON.parse, which is a node.js native command, so you do not need

to include any import statement. this command decodes your message back

into an object, and the toString command converts bytes into a readable

string data type.

 conn.on('data', data => {

 let message = JSON.parse(data);

 console.log('----------- Received Message start ----

---------');

 console.log(

 'from: ' + peerId.toString('hex'),

 'to: ' + peerId.toString(message.to),

 'my: ' + myPeerId.toString('hex'),

 'type: ' + JSON.stringify(message.type)

);

 console.log('----------- Received Message end -----

--------');

 });

You also listen to a close event, which will indicate that you lost a connection

with peers, so you can take action, such as delete the peers from your peers

list object.

 conn.on('close', () => {

 console.log(`Connection ${seq} closed, peerId: ${peerId}`);

 if (peers[peerId].seq === seq) {

 delete peers[peerId]

 }

 });

ChaPtEr 3 CrEatIng Your own BloCkChaIn

84

 if (!peers[peerId]) {

 peers[peerId] = {}

 }

 peers[peerId].conn = conn;

 peers[peerId].seq = seq;

 connSeq++

 })

})();

here, you will be using a setTimeout node.js native function to send

a message after ten seconds to any available peers. the first message

you will be sending is just an “hello” message. You create methods called

writeMessageToPeers and writeMessageToPeerToId to handle your

object, so it’s formatted with the data you want to transmit and who you want

to send it to.

setTimeout(function(){

 writeMessageToPeers('hello', null);

}, 10000);

the writeMessageToPeers method will be sending messages to all the

connected peers.

writeMessageToPeers = (type, data) => {

 for (let id in peers) {

 console.log('-------- writeMessageToPeers start ------

-- ');

 console.log('type: ' + type + ', to: ' + id);

 console.log('-------- writeMessageToPeers end ---------

-- ');

 sendMessage(id, type, data);

 }

};

ChaPtEr 3 CrEatIng Your own BloCkChaIn

85

additionally, you will be creating another method,

writeMessageToPeerToId, that will be sending the message to a specific

peer ID, in case you want to communicate with just one specific peer.

writeMessageToPeerToId = (toId, type, data) => {

 for (let id in peers) {

 if (id === toId) {

 console.log('-------- writeMessageToPeerToId start

-------- ');

 console.log('type: ' + type + ', to: ' + toId);

 console.log('-------- writeMessageToPeerToId end ---

-------- ');

 sendMessage(id, type, data);

 }

 }

};

lastly, sendMessage is a generic method that you will be using to send a

message formatted with the params you would like to pass and includes the

following:

 – to/from: the peer ID you are sending the message from and to

 – type: the message type

 – data: any data you would like to share on the P2P network

these params will be useful once you share your blockchain block. notice

that the message you pass needs to be a string and cannot be an object, so

you are using a JSON.stringify native function to encode your messages

before sharing them over the P2P network.

sendMessage = (id, type, data) => {

 peers[id].conn.write(JSON.stringify(

 {

 to: id,

 from: myPeerId,

ChaPtEr 3 CrEatIng Your own BloCkChaIn

86

 type: type,

 data: data

 }

));

};

In this exercise, you downloaded and installed the webStorm IDE and created

your project, which includes a basic P2P network. You were able to keep a

connection to a tCP network random port and send and receive messages

including encoding and decoding these messages. You are ready to move

to the next exercise and send an actual block between each node on your

network.

 Creating Genesis Block and Sharing Blocks
In the next exercise, you will be creating block objects that you can share

between your nodes. But before you do that, let’s take a closer look at

the Block object. The Block object is not the same for every blockchain.

Different blockchains utilize different types of Block objects; you will be

using a Block object similar to bitcoin; I covered in details during

Chapter 2. To better understand the architecture, take a look at a Unified

Modeling Language (UML) diagram of the Block and the BlockHeader

objects you will be using in the next exercise, as shown in Figure 3-3.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

87

As a reminder, from Chapter 2, the Block object contains the following

properties:

• index: GenesisBlock is our first block, we assign the

block index with the value of 0.

• txns: This is the raw transaction in the block. I don’t

want to focus on just cryptocurrencies in this chapter,

so think of this as any type of data you want to store.

Figure 3-3. Block and BlockHeader UML diagram

ChaPtEr 3 CrEatIng Your own BloCkChaIn

88

Included in the Block object is the BlockHeader object, which contains

the following properties:

• Version: At the time of writing, there are four block

versions. Version 1 is the genesis block (2009), and

version 2 is a soft fork of bitcoin core 0.7.0 (2012). Version

3 blocks were a soft fork of bitcoin core 0.10.0 (2015).

Version 4 blocks are BIP65 in bitcoin core 0.11.2 (2015).

• Previous block header hash: This is an

SHA-256 (Secure Hash Algorithm) hash function of the

previous block’s header. It ensures that the previous

block cannot be changed as this block needs to be

changed as well.

• Merkle root hash: A Merkle tree is a binary tree that

holds all the hashed pairs of the tree.

• Time: This is the Unix epoch time when the miner

started hashing the header.

As you recall, bitcoin also includes a difficulty property for the miners

that gets recalculated every 2,016 blocks. Here you won’t use the nBits and

nounce params, as you are not doing PoW.

• nounce: The nonce in a bitcoin block is a 32-bit (4-byte)

field whose value is adjusted by miners so that the hash

of the block will be less than or equal to the current

target of the network.

• nBits: This refers to the target. The target is a 256-bit

number and inversely proportional to the difficulty. It is

recalculated every 2,016 blocks.

In terms of P2P communication, the flow of blocks between each peer

on the P2P network consists of requesting the latest block from a peer on the

network and then receiving a block request. Figure 3-4 shows the flow diagram.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

89

Figure 3-4. Flow diagram of P2P communications requesting latest
block and receiving latest block

ChaPtEr 3 CrEatIng Your own BloCkChaIn

90

Now that you understand the architecture and the flow of blocks in the

P2P network, in the following exercise you will be sending and requesting

blocks.

STEP 2: P2P NETWORK SENDING BLOCKS EXERCISE

Setting Up a Block Class and Chain Library

In this exercise, you will create your blockchain. the blockchain consists of

two files: block.js and chain.js. the file Block.js will hold the block

class object, and chain.js will be the glue with methods to handle the

interactions with the blocks. In terms of the Block object, you will be creating

properties similar to the properties that bitcoin core holds. take a look at

listing 3-2, block.js file include Block and Blockheader objects.

Listing 3-2. block.js

exports.BlockHeader = class BlockHeader {

 constructor(version, previousBlockHeader, merkleRoot, time)

{

 this.version = version;

 this.previousBlockHeader = previousBlockHeader;

 this.merkleRoot = merkleRoot;

 this.time = time;

 }

};

exports.Block = class Block {

 constructor(blockHeader, index, txns) {

 this.blockHeader = blockHeader;

 this.index = index;

 this.txns = txns;

 }

}

ChaPtEr 3 CrEatIng Your own BloCkChaIn

91

as you can see, chain.js contains the first block, which is called the genesis

block, as well as a method to receive the entire blockchain object, add a block,

and retrieve a block. note that you will be adding a library called moment to

save the time in a unix time format in your chain.js library. to do so, install

moment with npm.

> npm install moment --save

now that you have the block.js file created, you can create the chain.js

class; see listing 3-3.

Listing 3-3. chain.js

let Block = require("./block.js").Block,

 BlockHeader = require("./block.js").BlockHeader,

 moment = require("moment");

let getGenesisBlock = () => {

 let blockHeader = new BlockHeader(1, null, "0x1bc33000000000

00000000000000000000000000000000000", moment().unix());

 return new Block(blockHeader, 0, null);

};

let getLatestBlock = () => blockchain[blockchain.length-1];

let addBlock = (newBlock) => {

 let prevBlock = getLatestBlock();

 if (prevBlock.index < newBlock.index && newBlock.

blockHeader.previousBlockHeader === prevBlock.blockHeader.

merkleRoot) {

 blockchain.push(newBlock);

 }

}

let getBlock = (index) => {

 if (blockchain.length-1 >= index)

ChaPtEr 3 CrEatIng Your own BloCkChaIn

92

 return blockchain[index];

 else

 return null;

}

const blockchain = [getGenesisBlock()];

if (typeof exports != 'undefined') {

 exports.addBlock = addBlock;

 exports.getBlock = getBlock;

 exports.blockchain = blockchain;

 exports.getLatestBlock = getLatestBlock;

}

You now have a block object that is included in chain.js. Your library can

create your genesis block and add a block to your blockchain object. You also

will be able to send and request blocks.

next, in your P2P network class, you can use the chain.js file you created.

First you need to import the class chain.js.

const chain = require("./chain");

then you can define a message type to request and receive the latest block.

when you send messages in your P2P network, you need to be able to figure

out the purpose of messages. By using a MessageType property, you can

define a switch mechanism so different messages types will be used for

different functions.

let MessageType = {

 REQUEST_LATEST_BLOCK: 'requestLatestBlock',

 LATEST_BLOCK: 'latestBlock'

};

once a connection data event message is received, you can create your switch

code to handle the different types of requests, as shown in listing 3-4.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

93

Listing 3-4. Message Switch and Handlers

switch (message.type) {

 case MessageType.REQUEST_BLOCK:

 console.log('-----------REQUEST_BLOCK-------------');

 let requestedIndex = (JSON.parse(JSON.stringify(message.

data))).index;

 let requestedBlock = chain.getBlock(requestedIndex);

 if (requestedBlock)

 writeMessageToPeerToId(peerId.toString('hex'),

MessageType.RECEIVE_NEXT_BLOCK, requestedBlock);

 else

 console.log('No block found @ index: ' + requestedIndex);

 console.log('-----------REQUEST_BLOCK-------------');

 break;

 case MessageType.RECEIVE_NEXT_BLOCK:

 console.log('-----------RECEIVE_NEXT_BLOCK-------------');

 chain.addBlock(JSON.parse(JSON.stringify(message.data)));

 console.log(JSON.stringify(chain.blockchain));

 let nextBlockIndex = chain.getLatestBlock().index+1;

 console.log('-- request next block @ index: ' +

nextBlockIndex);

 writeMessageToPeers(MessageType.REQUEST_BLOCK, {index:

nextBlockIndex});

 console.log('-----------RECEIVE_NEXT_BLOCK-------------');

 break;

}

lastly, you will set a timeout request that will send a request to retrieve the

latest block every 5,000 milliseconds (5 seconds).

setTimeout(function(){

writeMessageToPeers(MessageType.REQUEST_BLOCK, {index: chain.

getLatestBlock().index+1});

}, 5000);

ChaPtEr 3 CrEatIng Your own BloCkChaIn

94

You can download the complete exercise from here: https://github.com/

Apress/the-blockchain-developer/tree/master/chapter3/step2/.

In this exercise, you were able to generate your genesis block and create a

mechanism to request and receive blocks by sending messages requests. the

ability to request and receive blocks allows you to sync new peers that enter

the P2P network. You also need a sync for any additional blocks you generate

after the genesis block creation.

 Registering Miners and Creating New Blocks
At this point, you have a basic P2P network, and you are able to connect

peers in the network, create a genesis block, and send and receive blocks.

The next step is being able to generate new blocks. As you saw in

Chapter 2, proof of work is based on creating a mathematical problem and

rewarding miners that find the solution for the problem first. However, in

this example, you will take an approach of proof of stake (PoS) where you

trust each miner to generate your blocks. Each peer will register as a miner

and will take a turn to mine a block. You can see an overview of each miner

generating a block in Figure 3-5.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step2/
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step2/

95

Lastly, before you start your next exercise, revisit Figure 3-4 to better

understand your flow. The flow shows how your P2P network handles peer

communications requesting the latest block and receiving the latest block.

In the next exercise, you will register your peers as miners and create new

blocks.

STEP 3: REGISTER MINERS AND CREATING NEW BLOCKS EXERCISE

Register Miners

In this exercise, you will register miners and create new blocks. You can

download the complete exercise from here: https://github.com/Apress/

the-blockchain-developer/tree/master/chapter3/step3.

Figure 3-5. Your blockchain handles mining using a simple PoS
mechanism

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step3
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step3

96

to automate the process of generating a block every x number of minutes, you

can use a node.js library called cron, which is similar to the linux library that

automates tasks.

to install the cron open source library, run the following command:

> npm install cron --save

next, in your p2p.js file, you will create two variables to keep track of the

registered miners as well as who mined the last block so you can assign the

next block to the next miner.

let registeredMiners = [];

let lastBlockMinedBy = null;

You are also going to add two messages types.

• REQUEST_ALL_REGISTER_MINERS

• REGISTER_MINER

let MessageType = {

 REQUEST_BLOCK: 'requestBlock',

 RECEIVE_NEXT_BLOCK: 'receiveNextBlock',

 RECEIVE_NEW_BLOCK: 'receiveNewBlock',

 REQUEST_ALL_REGISTER_MINERS: 'requestAllRegisterMiners',

 REGISTER_MINER: 'registerMiner'

};

Before you register your peers as miners, you will request to receive all the

existing registered miners in the network, and then you will add your peer as

a miner in a registeredMiners object. You do that by running a timer to

update your miners every five seconds.

setTimeout(function(){

writeMessageToPeers(MessageType.REQUEST_ALL_REGISTER_MINERS,

null);

}, 5000);

ChaPtEr 3 CrEatIng Your own BloCkChaIn

97

now, that have an automated timeout command that can point to a handler

to update the list of registered miners you can also automate a command to

register your peer as a miner;

setTimeout(function(){

 registeredMiners.push(myPeerId.toString('hex'));

 console.log('----------Register my miner --------------');

 console.log(registeredMiners);

 writeMessageToPeers(MessageType.REGISTER_MINER,

registeredMiners);

 console.log('---------- Register my miner --------------');

}, 7000);

In your switch command, you want to modify the code to be able to set

handlers for incoming messages regarding the registrations of miners. You

want to keep track of the registered miners as well as handle a message once

a new block is mined. See listing 3-5 for the miner’s handlers.

Listing 3-5. Miner’s Handlers

case MessageType.REQUEST_ALL_REGISTER_MINERS:

 console.log('-----------REQUEST_ALL_REGISTER_

MINERS------------- ' + message.to);

 writeMessageToPeers(MessageType.REGISTER_MINER,

registeredMiners);

 registeredMiners = JSON.parse(JSON.stringify(message.

data));

 console.log('-----------REQUEST_ALL_REGISTER_

MINERS------------- ' + message.to);

 break;

 case MessageType.REGISTER_MINER:

 console.log('-----------REGISTER_MINER------------- ' +

message.to);

 let miners = JSON.stringify(message.data);

 registeredMiners = JSON.parse(miners);

ChaPtEr 3 CrEatIng Your own BloCkChaIn

98

 console.log(registeredMiners);

 console.log('-----------REGISTER_MINER------------- ' +

message.to);

 break;

Unregister Miners

You also need to unregister a miner once a connection with the miner is closed

or lost.

 console.log(`Connection ${seq} closed, peerId: ${peerId}`);

 if (peers[peerId].seq === seq) {

 delete peers[peerId];

 console.log('--- registeredMiners before: ' + JSON.

stringify(registeredMiners));

 let index = registeredMiners.indexOf(peerId);

 if (index > -1)

 registeredMiners.splice(index, 1);

 console.log('--- registeredMiners end: ' + JSON.

stringify(registeredMiners));

 }

});

Mine a New Block

as opposed to bitcoin, which generates a block every 10 minutes, your

blockchain will be improved and will generate a block every 30 seconds. to

achieve that, you already installed the open source cron library for node.js.

the cron library works the same as the linux cron. You can utilized the cron

library to set how often to call the same code again, which will be used to call

your miners every 30 seconds.

to do so, first include the library in your code’s import statement on top of

the p2p.js file.

let CronJob = require('cron').CronJob;

ChaPtEr 3 CrEatIng Your own BloCkChaIn

99

next, you can set your cronjob to run every 30 seconds, and job.start();

will start the job, as shown in listing 3-6.

Listing 3-6. crobjob to Mine a New Block

const job = new CronJob('30 ∗ ∗ ∗ ∗ ∗', function() {
 let index = 0; // first block

 if (lastBlockMinedBy) {

 let newIndex = registeredMiners.indexOf(lastBlockMinedBy);

 index = (newIndex+1 > registeredMiners.length-1) ? 0 :

newIndex + 1;

 }

 lastBlockMinedBy = registeredMiners[index];

 console.log('-- REQUESTING NEW BLOCK FROM: ' +

registeredMiners[index] + ', index: ' + index);

 console.log(JSON.stringify(registeredMiners));

 if (registeredMiners[index] === myPeerId.toString('hex')) {

 console.log('-----------create next block -------------

----');

 let newBlock = chain.generateNextBlock(null);

 chain.addBlock(newBlock);

 console.log(JSON.stringify(newBlock));

 writeMessageToPeers(MessageType.RECEIVE_NEW_BLOCK,

newBlock);

 console.log(JSON.stringify(chain.blockchain));

 console.log('-----------create next block -------------

----');

 }

});

job.start();

ChaPtEr 3 CrEatIng Your own BloCkChaIn

100

reviewing the code, notice that the first block’s index is 0, so after the first

block is mined, lastBlockMinedBy will be set, and you will be requesting

the next block from your next miner.

let newIndex = registeredMiners.indexOf(lastBlockMinedBy);

index = (newIndex+1 > registeredMiners.length-1) ? 0 : newIndex

+ 1;

to generate and add a new block, you will be calling chain

generateNextBlock and addBlock. lastly, you will broadcast the new

block to all the connected peers.

let newBlock = chain.generateNextBlock(null);

chain.addBlock(newBlock);

writeMessageToPeers(MessageType.RECEIVE_NEW_BLOCK, newBlock);

In your code, your switch will handle the new incoming blocks.

case MessageType.RECEIVE_NEW_BLOCK:

 if (message.to === myPeerId.toString('hex') && message.from

!== myPeerId.toString('hex')) {

 console.log('-----------RECEIVE_NEW_BLOCK------------- '

+ message.to);

 chain.addBlock(JSON.parse(JSON.stringify(message.data)));

 console.log(JSON.stringify(chain.blockchain));

 console.log('-----------RECEIVE_NEW_BLOCK------------- '

+ message.to);

 }

 break;

to see this code in action, run three instances of your code.

> node p2p.js

You can see the messages of registering each peer as a miner, as well as your

code starting to mine blocks every 30 seconds in order, as shown in Figure 3-6.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

101

In this exercise, you were able to register your peers as a miners, generate

new blocks, and share blocks with other peers; you used a simple PoS for the

consensus mechanism and were able to test the functionality by creating three

peers. the consensus mechanism is simple and does not take into account

every use case that can happen or security. In the next step, you will save your

blocks in a levelDB database.

 Storing Blocks in LevelDB
If you run your blockchain for a few hours, you will notice that the number

of blocks created grows, which can become a problem as currently these

blocks are stored in your computer’s memory cache. As you add more and

more blocks, the memory usage will grow, and eventually your code will

crash. Further, without storing your blocks in a database, you will not be

able to start and stop your P2P network, as the blocks are not saved.

To accommodate these use cases and others, you will be using a

LevelDB database.

Figure 3-6. Code registering miners and generating new blocks

ChaPtEr 3 CrEatIng Your own BloCkChaIn

102

Note a levelDB database stores name-value pairs in what is called
a level-up and level-down fashion. It is an ideal option for blockchain
networks. In fact, bitcoin uses levelDB to store not only block
information but also transaction information. See https://github.
com/bitcoin-core/leveldb.

STEP 4: LEVELDB TO STORE BLOCKS EXERCISE

LevelDB

In this exercise, you will implement a database to store your blocks. You

can download the complete exercise from here: https://github.com/

Apress/the-blockchain-developer/tree/master/chapter3/

step4/blockchain. remember to run the install command to retrieve all

the npm modules.

> npm install

to get started on your own from the previous step, you will be using a node.

js levelDB wrapper so you can communicate with levelDB through your code.

Install the library via npm.

> npm install level -save

next, make a directory where you will be saving the database.

> mkdir db

You can now implement the database. In your chain.js library, you will

add some code to save your block in the levelDB database, as shown in

listing 3-7.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/bitcoin-core/leveldb
https://github.com/bitcoin-core/leveldb
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step4/blockchain
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step4/blockchain
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step4/blockchain

103

Listing 3-7. Storing Blocks in LevelDB

let level = require('level'),

 fs = require('fs');

let db;

let createDb = (peerId) => {

 let dir = __dirname + '/db/' + peerId;

 if (!fs.existsSync(dir)){

 fs.mkdirSync(dir);

 db = level(dir);

 storeBlock(getGenesisBlock());

 }

}

as you can see, you use the __dirname node.js native class to give you the

directory path location because you need the full path to save your database.

Because you are running multiple instances of your P2P network on the same

machine, you cannot use the same path for each peer because the database

needs to be separate. what you can do is set each database’s location in a

separate path location using the folder name as the name of your peer ID; then

each database can be stored in the db folder. also notice that you save the

first block, getGenesisBlock().

next, you create a storeBlock method to store the new block.

let storeBlock = (newBlock) => {

 db.put(newBlock.index, JSON.stringify(newBlock), function (err) {

 if (err) return console.log('Ooops!', err) // some kind

of I/O error

 console.log('--- Inserting block index: ' + newBlock.

index);

 })

}

ChaPtEr 3 CrEatIng Your own BloCkChaIn

104

when you generate a new block using the generateNextBlock method, you

can now store the block in the levelDB database.

storeBlock(newBlock);

You are also going to add a method to be able to retrieve a block from the

levelDB database.

let getDbBlock = (index, res) => {

 db.get(index, function (err, value) {

 if (err) return res.send(JSON.stringify(err));

 return(res.send(value));

 });

}

Make sure you expose the createDb and getDbBlock methods.

if (typeof exports != 'undefined') {

 exports.createDb = createDb;

 exports.getDbBlock = getDbBlock;}

lastly, in your P2P network code, all you need to do is create a database once

you start the code.

chain.createDb(myPeerId.toString('hex'));

to see the code in action, run an instance of the P2P network.

> node p2p.js

You can monitor the database’s data in the db folder using the tail command

with the -f flag. terminal will stay open and can show you new blocks as they

are being generated (see the output in Figure 3-7).

> cd step4/db/[our peer Id]

> tail –f 000003.log

ChaPtEr 3 CrEatIng Your own BloCkChaIn

105

In this exercise, you created a levelDB database. You are storing your blocks

so you will be able to retrieve them instead of relying on your cache memory.

I am keeping things simple; if this were a real working blockchain, you would

implement the following steps:

 1. Mitigate all the possible security risks.

 2. Store and retrieve your blocks from the levelDB database.

 3. Create a method to restore levelDB’s entries.

 4. Clean old databases because new ones are created on

every init.

 Creating a Blockchain Wallet
In cryptocurrency, a wallet is necessary in order to reward miners for

generating blocks as well as to be able to create transactions and send

transactions. In this section, you will create a wallet. You need to create

a combination of public and private keys not just to authenticate a user

but so you can store and retrieve data that the user owns. You will create a

wallet with public and private keys.

In bitcoin, the wallet’s original software is the bitcoin core protocol

you downloaded in Chapter 2; it needs the entire ledger of all transactions

since 2009, which is more than 150 GB at the time of writing. For that

Figure 3-7. tail command with the LevelDB database showing new
blocks being generated

ChaPtEr 3 CrEatIng Your own BloCkChaIn

106

reason, most wallets in use are “light” wallets or what’s called simplified

payment verification (SPV) wallets that sync to bitcoin core. In blockchain,

there are many different wallets available, from online all the way to a

paper wallet where you write your private key on a piece of paper.

Before proceeding, let’s take a quick look at how you can communicate

with a bitcoin wallet. As you recall, in Chapter 2 you were able to get the

balance of a certain bitcoin wallet. To better understand wallets, you can

create a bitcoin wallet using the bitcoin core.

First, you need to run the bitcoin daemon.

> bitcoind –printtoconsole

Next, you can request an address.

> bitcoin-cli help getnewaddress

Then, you are able to dump your private keys into a text file.

> bitcoin-cli dumpwallet ~/mywallet.txt

You can get the location of your private key and view the key.

> vim /Users/[location]/mywallet.txt

For reference, check the C++ bitcoin core wallet code here:

> vim /[Bitcoin Core Location]/bitcoin/src/wallet/init.cpp

STEP 5: WALLET EXERCISE

Create a Blockchain Wallet

In this exercise, you will generate public-private keys to be used for your

wallet. You can download the complete exercise from https://github.

com/Apress/the-blockchain-developer/tree/master/chapter3/

step5/blockchain and run the npm install command. additionally,

create a folder named wallet.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step5/blockchain
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step5/blockchain
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step5/blockchain

107

> npm install

> mkdir wallet

You will be using the elliptic-curve cryptography library implementation

to generate private-public key combos. note that the elliptic-curve

library uses secp256k1 as the ECDSa curve algorithm.

Note Elliptical curve cryptography (ECC) is the public key
encryption technique used by bitcoin. It’s based on elliptic curve
theory to generate the cryptographic keys. Secp256k1 is the graph
elliptic curve ECDSa algorithm.

to install the library, run the following command:

> npm install elliptic --save

next, add a file and name it wallet.js. take a look at the complete code in

listing 3-8.

Listing 3-8. wallet.js

let EC = require('elliptic').ec,

 fs = require('fs');

const ec = new EC('secp256k1'),

 privateKeyLocation = __dirname + '/wallet/private_key';

exports.initWallet = () => {

 let privateKey;

 if (fs.existsSync(privateKeyLocation)) {

 const buffer = fs.readFileSync(privateKeyLocation, 'utf8');

 privateKey = buffer.toString();

 } else {

 privateKey = generatePrivateKey();

 fs.writeFileSync(privateKeyLocation, privateKey);

 }

ChaPtEr 3 CrEatIng Your own BloCkChaIn

108

 const key = ec.keyFromPrivate(privateKey, 'hex');

 const publicKey = key.getPublic().encode('hex');

 return({'privateKeyLocation': privateKeyLocation,

'publicKey': publicKey});

};

const generatePrivateKey = () => {

 const keyPair = ec.genKeyPair();

 const privateKey = keyPair.getPrivate();

 return privateKey.toString(16);

};

In the wallet file, you create and initialize the EC context.

const ec = new EC('secp256k1'),

You then store the location of your wallet’s private key,

privateKeyLocation.

privateKeyLocation = __dirname + '/wallet/private_key';

next, you are able to create a method exports.initWallet to generate the

actual public-private key, generatePrivateKey.

 const keyPair = ec.genKeyPair();

 const privateKey = keyPair.getPrivate();

notice that you will be generating a new wallet only if one doesn’t exist.

if (fs.existsSync(privateKeyLocation))

In this exercise, you create a wallet.js file utilizing the Elliptic Curve

Cryptography library to generate your private-public key combo.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

109

to see the code working, add the following code temporarily at the end of the

wallet.js file. the script will create the public and private keys.

let wallet = this;

let retVal = wallet.initWallet();

console.log(JSON.stringify(retVal));

next, create a wallet directory to store the private key and run the script. the

code will initialize the script and create your public key.

> mkdir wallet

> node wallet.js

> cat wallet/private_key

when you run the node wallet.js command, you can see the public key.

See Figure 3-8 for the output.

Figure 3-8. Generating a wallet’s private-public key

remember to comment out these lines because in the next exercise, you will

create an aPI to be able to create your keys via the browser.

 Creating an API
The next step is creating an application program interface (API) to be able

to access the code you write. This is an important part of a blockchain,

as you want to access your blocks and wallet or any other P2P network

operation using an HTTP service. In this section, you will be using the

express library, as it’s easy to run, and you will be able to create your

API easily.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

110

STEP 6: API P2P BLOCKCHAIN EXERCISE

Creating API

In this exercise, you will create an aPI to interact with your P2P

blockchain network. You can download the complete exercise from here:

https://github.com/Apress/the-blockchain-developer/tree/

master/chapter3/step6/blockchain.

You will be creating the following services:

• blocks: retrieves all the blocks in the blockchain

• getBlock: retrieves a specific block by index

• getDBBlock: retrieves a block from the database

• getWallet: Creates a new wallet by generating a public-private key

You will install express and body-parser. these libraries will allow you to

create a server and display pages in the browser.

> npm install express body-parser --save

You also need to import the wallet.js file you created.

let express = require("express"),

 bodyParser = require('body-parser'),

 wallet = require('./wallet');

next, you create a method called initHttpServer that will initiate the

server and create the services. as you utilize different instances of the P2P

network and run instances on the same computer, you want to utilize different

port numbers. It’s common to use port 80 or 8081 for httP services but not

required. what you will do is pass the random port number you are using and

utilize the slice method to get the last two digits of the port number.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step6/blockchain
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step6/blockchain

111

let initHttpServer = (port) => {

 let http_port = '80' + port.toString().slice(-2);

 let app = express();

 app.use(bodyParser.json());

the Blocks service will be retrieving all of your blocks.

 app.get('/blocks', (req, res) => res.send(JSON.stringify(

chain.blockchain)));

the getBlock service will be retrieving one block based on an index.

 app.get('/getBlock', (req, res) => {

 let blockIndex = req.query.index;

 res.send(chain.blockchain[blockIndex]);

 });

the getDBBlock service will be retrieving a levelDB database entry based

on an index.

 app.get('/getDBBlock', (req, res) => {

 let blockIndex = req.query.index;

 chain.getDbBlock(blockIndex, res);

 });

the getWallet service will be utilizing the wallet.js file you created in the

previous step and generate your public-private key pair.

 app.get('/getWallet', (req, res) => {

 res.send(wallet.initWallet());

 });

lastly, you will utilize the Express listen method.

 app.listen(http_port, () => console.log('Listening http on

port: ' + http_port));

};

ChaPtEr 3 CrEatIng Your own BloCkChaIn

112

You will call the initHttpServer method you created after you start the P2P

network and a random port was selected.

(async () => {

 const port = await getPort();

 initHttpServer(port);

}

to call your services, run the P2P network, and then you can open a browser

and call the aPI.

http://localhost:80[port]/getWallet

http://localhost:80[port]/blocks

http://localhost:80[port]/getBlock?index=0

http://localhost:80[port]/ getDBBlock?index=0

See Figure 3-9, for instance, as you retrieve all the blocks in your blockchain.

Figure 3-9. Retrieving all the blocks in your blockchain

In this exercise, you created aPI services, and you can now interact with your

P2P network. You created your services so you will be able to create multiple

instances of the P2P networks on the same machine; however, in reality, every

machine will be holding only one peer. In the next exercise, you will create a

command-line interface (ClI) to easily call these services.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

113

 Creating a Command-Line Interface
For the last step in this chapter, you will be creating a command-line

interface (CLI). The CLI is needed to be able to easily access the services

you created. I won’t get into the entire internal process of the CLI script,

as it’s beyond the scope of this chapter; however, you can download the

whole example and review it.

STEP 7: CLI EXERCISE

Block Command

In this exercise, you will create a ClI to interact with and access your P2P

blockchain network. You can download the complete exercise from here:

https://github.com/Apress/the-blockchain-developer/tree/

master/chapter3/step7/blockchain.

next, install the libraries you will be utilizing to run promises, run the async

function, add colors to the console, and store cookies.

> npm babel-polyfill async update-notifier handlebars colors

nopt --save

In the block.js command, you will be setting two commands: get and all.

take a look at the entire code in listing 3-9.

Listing 3-9. Block Command Code

let logger = require('../logger');

function Block(options) {

 this.options = options;

}

ChaPtEr 3 CrEatIng Your own BloCkChaIn

https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step7/blockchain.
https://github.com/Apress/the-blockchain-developer/tree/master/chapter3/step7/blockchain.

114

Block.DETAILS = {

 alias: 'b',

 description: 'block',

 commands: ['get', 'all'],

 options: {

 create: Boolean

 },

 shorthands: {

 s: ['--get'],

 a: ['--all']

 },

 payload: function(payload, options) {

 options.start = true;

 },

};

Block.prototype.run = function() {

 let instance = this,

 options = instance.options;

 if (options.get) {

 instance.runCmd('curl http://localhost:' + options.argv.

original[2] + '/getBlock?index=' + options.argv.original[3]);

 }

 if (options.all) {

 instance.runCmd('curl http://localhost:' + options.argv.

original[2] + '/blocks');

 }

};

Block.prototype.runCmd = function(cmd) {

 const { exec } = require('child_process');

 logger.log(cmd);

 exec(cmd, (err, stdout, stderr) => {

ChaPtEr 3 CrEatIng Your own BloCkChaIn

115

 if (err) {

 logger.log(`err: ${err}`);

 return;

 }

 logger.log(`stdout: ${stdout}`);

 });

};

exports.Impl = Block;

as you can see, the wallet.js command will include the get and all

methods to point to a curl command to run the httP service call.

Wallet Command

Similarly, the block.js command will include a create method and a curl

command to run the httP service call. See listing 3-10.

Listing 3-10. Wallet Command Code

let logger = require('../logger');

function Wallet(options) {

 this.options = options;

}

Wallet.DETAILS = {

 alias: 'w',

 description: 'wallet',

 commands: ['create'],

 options: {

 create: Boolean

 },

 shorthands: {

 c: ['--create']

 },

ChaPtEr 3 CrEatIng Your own BloCkChaIn

116

 payload: function(payload, options) {

 options.start = true;

 },

};

Wallet.prototype.run = function() {

 let instance = this,

 options = instance.options;

 if (options.create) {

 instance.runCmd('curl http://localhost:' + options.argv.

original[2] + '/getWallet');

 }

};

Wallet.prototype.runCmd = function(cmd) {

 const { exec } = require('child_process');

 logger.log(cmd);

 exec(cmd, (err, stdout, stderr) => {

 if (err) {

 logger.log(`err: ${err}`);

 return;

 }

 logger.log(`stdout: ${stdout}`);

 });

};

exports.Impl = Wallet;

now that you have your commands set up, you can add your ClI to the bash_

profile as an alias to be able to run the ClI from any path location.

> vim ~/.bash_profile

alias cli='node /[project location]/step7/bin/bin/cli.js

ChaPtEr 3 CrEatIng Your own BloCkChaIn

117

Save and run bash_profile to apply these changes.

> . ~/.bash_profile

You can call the ClI once you run the P2P and know the ports you are using.

> cli block --get [port] 1 #port #index

> cli block –all [port] #port

> cli wallet --create [port]

For instance, run an instance of the P2P network in terminal.

> node p2p.js

next, open a new window terminal and run the ClI command to retrieve the

first generated block.

> cli block --get [port] 1

You can see the output in Figures 3-10 and 3-11.

Figure 3-10. Running the P2P blockchain network on port 8057

ChaPtEr 3 CrEatIng Your own BloCkChaIn

118

In this exercise, you created two commands for getting blocks and creating

your wallet. this is a starting point for your ClI, and you will be able to

continue to add commands as needed.

 Where to Go from Here
I already mentioned that the code in this chapter does not take into account

many use cases and has no security to keep it simple. There are many

things you can do to improve the code.

• Confirmations: Each miner sends a message with a

block. You can create a confirmation system to ensure

the integrity of the data.

• Transactions/data: You could implement transactions

or data objects to address double spending, transaction

validation, and coinbase transactions.

• levelDB: Once the P2P is initialized, you can create

a script to retrieve and write all the blocks into the

LevelDB database, validate them, and clean the

database as needed.

Figure 3-11. Retrieving blocks on port 8057

ChaPtEr 3 CrEatIng Your own BloCkChaIn

119

 Summary
This chapter covered how to create your very own basic P2P blockchain

network; you were able to send and receive messages and include blocks

in these messages. You were able to register and unregister miners and

implement a simple PoS consensus mechanism. You created new blocks

and sent them between the peers. You also set up a name-value LevelDB

database to store blocks. You continued and created a wallet that consists

of private-public key pairs. Lastly, you created ways to communicate with

your P2P network via API services and the CLI. In the next chapter, you

will be diving deep into understanding bitcoin wallets and transactions by

interacting with the bitcoin core API.

ChaPtEr 3 CrEatIng Your own BloCkChaIn

121© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_4

CHAPTER 4

Bitcoin Wallets
and Transactions
In this chapter, you will be diving deep into bitcoin’s core RPC and learn

about wallets and transactions. You will learn how to utilize legacy and

SegWit’s bitcoin wallets. You will extract a wallet’s public and private keys.

The majority of this chapter will deal with transactions, from sending

funds in a simple way utilizing bitcoin’s testing blockchain to more

complex transactions. Additionally, you will learn how to send coins via

bitcoin’s core wallet GUI, and you will learn how to view transactions in

the Block Explorer and understand confirmations. You will look into raw

transactions and learn how to create a raw transaction with one output

as well as how to create transactions with multiple users signing them.

Additionally, you will replace your transaction and set a lock time. You will

also learn the difference between pay options and fees.

Lastly, I will cover how to pass data in a raw transaction. By the end of

this chapter, you will have a much better understanding of transactions,

wallets, fees, payment options, and bitcoin’s core RPC.

 Bitcoin Core RPC Resources
You learned how to interact with bitcoin core utilizing the bitcoin daemon

and bitcoin core function as an HTTP JSON-RPC server, and you are now

122

able to make calls and receive JSON responses. In this section, you will

build on these skills to understand wallets and transactions.

The first step is to initialize and run the bitcoin daemon.

> bitcoind –printtoconsole

Then in a different Terminal window, you can view the available RPC

commands by running the help command.

> bitcoin-cli help

You can also request help on any command you run by adding help

before the command. For instance, add help before the getnewaddress

command like this:

> bitcoin-cli help getnewaddress

At the time of writing, the latest RPC version is bitcoin core version

v0.18.99.0-56376f336 (release build); as new versions of bitcoin core are

released, the commands in this chapter may change, so it’s useful to check

https://bitcoincore.org/en/doc/ for the latest RPC commands.

Note that documentation for v0.18 is not live at the time of writing;

v0.17 is the latest doc (https://bitcoincore.org/en/doc/0.17.0/). In

the menu on the right, select RAWTRANSACTIONS and WALLET for a list

of RPC commands relevant to this chapter.

Note In addition to bitcoin core documentation, there are two free
web resources that can help you better understand the bitcoin RPC
command line beyond what is covered in this chapter. They are
https://github.com/ChristopherA/Learning-bitcoin-
from-the-Command-Line and http://learnmeabitcoin.
com/guide/transactions.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://bitcoincore.org/en/doc/
https://bitcoincore.org/en/doc/0.17.0/
https://github.com/ChristopherA/Learning-bitcoin-from-the-Command-Line
https://github.com/ChristopherA/Learning-bitcoin-from-the-Command-Line
http://learnmeabitcoin.com/guide/transactions
http://learnmeabitcoin.com/guide/transactions

123

 Bitcoin Wallet
In Chapter 2, you queried a wallet’s available funds via the getbalance

command, and you created a new bitcoin wallet utilizing the

getnewaddress command.

In Chapter 3, you created your very own blockchain wallet for your

blockchain; you did so by creating a wallet.js file utilizing the Elliptic

Curve Cryptography Node.js library and generating a private-public key

combo that you then were able to expose using a CLI. In this section, I will

expand on this knowledge by looking at bitcoin’s core and how wallets and

transactions are generated.

Bitcoin allows users to send and receive coins. A user can generate a

wallet, which holds a public key, and the sender will send the coins to the

receiver’s wallet’s public key address.

Sending coins follows the same process but in reverse. The receiver

provides the sender with a wallet’s public key address where they expect to

be paid, and the sender sends coins to that public key address. The wallet

address is the public key that was generated by the public/private key

hashing algorithm. The receiver can generate a new public key every time

the user expects payment. Users who don’t need to be anonymous can use

just one public key for multiple transactions; however, bitcoin’s original

vision encourages users to give a different public key for each transaction,

as well as set many private keys that correspond with many public keys.

The private keys are stored in a wallet, and each public key represents a

wallet address.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

124

 Create a Legacy Wallet Address and Retrieve
Private Keys
The most common bitcoin address and the type you generated in

Chapter 2 is called a Pay to PubKey Hash (P2PKH) address. P2PKH is the

public key, and the public key address gets hashed by an algorithm.

Bitcoin also supports the P2SH-SEGWIT protocol, which I will discuss

later in this chapter.

Note segregated Witness (segWit) was an addition to bitcoin
core code via a soft fork that increased bitcoin’s block size limit by
removing the signature data that unlocks the transaction. When the
unlocking code is removed, the additional space is used to include
more transactions in the chain.

To generate an address with P2SH-SEGWIT and P2PKH support, just

run the following:

> bitcoin-cli getnewaddress

2N96AMUEX4VMNTApPAbUaA6wzP4V9QrbveK

To generate the P2PKH address, you will be using the legacy flag.

> bitcoin-cli getnewaddress "" legacy

13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT

As you can see, the commands return the public keys. The wallet’s

private keys can be viewed via dumping the keys into a file, as you did

previously, or just by using the dumpprivkey command.

> bitcoin-cli dumpprivkey "13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT"

L5gDpFvfEkUSFeMSQb92kueD1BuX4JeZLAhQkXoEtjcZMog3uXB4

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

125

Private keys should not be shared with anyone, as they unlock the

funds associated with the public address. With that said, I am sharing this

one with you here as a learning example.

Note Protect your private keys. If your private keys are lost, you
lose your coins/funds.

As you know, you are able to dump the private keys into a text file.

> bitcoin-cli dumpwallet ~/mywallet.txt

{

 "filename": "/Users/Eli/mywallet.txt"

}

Then, you can get the location of the wallet and can view your keys.

> vim /Users/[location]/mywallet.txt

The data file you saved contains not only the public and private keys

but also transactions related to your wallet.

Another useful RPC feature, as you might recall, is that you can query

the bitcoin daemon for a specific wallet’s funds.

> bitcoin-cli getbalance 1Mr2G632PfQuq4uJXRBNWLoRKH71Qwor51

To get the available funds in your wallet, you just run the getbalance

command, which returns a 0 balance because you have not deposited any

funds yet.

> bitcoin-cli getbalance

0.00000000

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

126

 Pay to Witness a Public Key Hash (P2WPKH):
SegWit Soft Fork
Bitcoin (BTC) and bitcoin cash (BCH) have hard-forked mainly over a

disagreement of the block size, meaning how much data can be included

in each block. In 2017, bitcoin core code was hard-forked into bitcoin cash

and allowed to increase the block’s size limit. In 2019, bitcoin cash forked

once again because of a dispute over several new features for each fork.

The block size limitation in bitcoin means transactions sometimes

have to wait to be included in a block; however, because of the 1 MB

limitation, they might not be included in the next block, causing slow

transaction times when there too many transactions in the network,

resulting in an increase of miner fees. To correct this, bitcoin open source

developers created a soft fork and included Segregated Witness (SegWit).

SegWit increased bitcoin’s block size limit by removing the signature data

that unlocks the transaction. When the unlocking code is removed, the

additional space can be used to include more transactions in the chain.

This method increases the block size to 4 MB.

Note segWit is a process where the block size limit on a blockchain
is increased by removing the signature data from bitcoin transactions.
This process frees up space and allows you to add more transactions.
segWit uses a Bech32 address defined in BIP173. It is 90 characters
and consists of a human-readable part, separator, and data.

The unlocking validation code is the witness data. You can say that the

new code “segregated the witness.” That’s where the name came from.

In the build we are using, v17.0, there is a Witness Public Key Hash

option in a wallet and transaction to replace the scriptSig parameters and

check the transaction validity. The old legacy code still works, as this is a

soft fork.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

127

You have seen this in the getaddressinfo command, which includes

both scriptPubKey to support the legacy addresses as well as iswitness.

You can run the getaddressinfo command and see these parameters.

> bitcoin-cli getaddressinfo $address1

Prior to bitcoin core v0.16, you would have had to use the

addwitnessaddress command to turn a legacy address into a P2WPKH.

Since bitcoin core v0.16.0, an address accommodates both P2SH and

P2WPKH. Thus, the wallet is a P2SH-P2WPKH. If you are using v0.18, you

can see that getaddressinfo addresses have both parameters for legacy

scriptSig and for SegWit.

 Elliptic Curve Digital Signature Algorithm
Bitcoin core allows you to create a signature by utilizing the Elliptic Curve

Digital Signature Algorithm (ECDSA). This can be achieved by utilizing the

signmessage command. Adding a signature allows you to prove that you

own the private keys of the wallet and thus adds another security layer for

the sender to ensure they are sending the funds to the correct address.

> bitcoin-cli signmessage "13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT"

"John Doe"

This command outputs a hash:

HzicuTXMl1COVh7Xw9ky9A/cl7ZjMSWNH10Y/invAgHWa74gS8EOvio3FJkofpH

0nunIA7pJoGwWLRa0UdD7dc8=

The sender can verify the wallet prior to sending the funds.

> bitcoin-cli verifymessage "13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT"

"HzicuTXMl1COVh7Xw9ky9A/cl7ZjMSWNH10Y/invAgHWa74gS8EOvio3FJk

ofpH0nunIA7pJoGwWLRa0UdD7dc8=" "John Doe"

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

128

The verify command will output a true or false response. In this case, it

will respond with this:

true

This allows users to confirm they actually own a wallet. This is useful,

for instance, on the code level, because the P2PKH address will be utilizing

the private key to generate a signature. A P2PKH address is a hash of the

public key corresponding to the private key that made the signature.

Note eCdsa is the cryptographic algorithm utilized by bitcoin to
ensure ownership of funds. It is used to generate the public/private
keys and can also include the signature in the algorithm.

The ECDSA signature can be checked against up to four possible

ECDSA public keys. These public keys will be reconstructed from the

signature hash; each key is hashed and compared against the P2PKH

wallet address provided for a match. The result is either true or false.

As you saw earlier, the example received a true once you ran the

verifymessage command.

Note QR code is an image representation of a string. QR readers
are used for things such as reading URls or encoding a wallet’s
public key address.

You can generate QR code via the Chart Google API:

https://chart.googleapis.com. For instance to generate a QR code

for address: 13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT in the amount of

0.00016 BTC you would generate the following URL:

https://chart.googleapis.com/chart?chs=250x250&cht=qr&chl=

bitcoin:13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT?&amount=0.00016.

See Figure 4-1.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://chart.googleapis.com
https://chart.googleapis.com/chart?chs=250x250&cht=qr&chl=bitcoin:13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT?&amount=0.00016
https://chart.googleapis.com/chart?chs=250x250&cht=qr&chl=bitcoin:13oWKiVQ7C5Ewwjv6KRpP3Xm5YstzqFixT?&amount=0.00016

129

 Transactions
In this section, I will cover transactions. You will learn how to send coins

with bitcoin’s daemon on a testnet utilizing both the command line and

the bitcoin core wallet GUI. You will learn how to use the bitcoin explorer

to view your transactions. Then I will cover more advanced creation of

transactions by showing how to create a raw transaction with one output as

well as more complex transactions with utilizing Multisignature (multisig),

which is requesting more than a single key to authorize a transaction.

Additionally, I will cover how to change other options such as replacing a

transaction for a change of fee as well as setting a locktime. You will learn

the difference between P2PKH and P2SH-SEGWIT. Lastly, you will learn

how to attach other data than just coins with bitcoin using OP_RETURN

params. Let’s get started.

Figure 4-1. Bitcoin QR code via Chart.googleapi.com

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

130

 Simple Command
The first transaction in a block is called the coinbase transaction; this

transaction consists of the transaction fees paid by transactions included

in the block. To send a transaction, you need to pay a transaction fee to the

miners. If there is a low fee or no fee is paid, the transaction may get stuck

for a long period of time or even forever in the P2P network until the fee is

changed.

To set the transaction fee, you can add a parameter to the bitcoin.

conf file with a default fee. First, you need to find the file location. To do so,

right after you run the daemon, you can track down the location of the file.

> bitcoind –printtoconsole

After a few seconds, stop this service by pressing Control+C. The

command shows the bitcoin.conf file location. It returns the location of

the configuration file. Then you can open the file and modify it by adding

the default fee. In this case, it was nested inside the Application Support

folder.

/Users/[my user]/Library/Application Support/Bitcoin/bitcoin.conf

When you open the file, you can see that the default transaction fee is

set to 0.00000020 (mintxfee=0.00000020).

Note There are other fees and settings in bitcoind. You can modify
transactions you send (paytxfee), maximum total fees (maxtxfee),
fallback fees, and so on. Visit this bitcoin page for all the available
options: https://en.bitcoin.it/wiki/Running_Bitcoin.

Monitor and updating the bitcoin transaction fee can ensure the funds

being sent get changed by market forces. There are web sites, apps, and

forms that can try to predict the fee that needs to be paid. There are many

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://en.bitcoin.it/wiki/Running_Bitcoin

131

sites that help calculate transaction fee prediction, such as this API, that

you can call from your code:

https://bitcoinfees.earn.com/api/v1/fees/recommended

The API returned at the time of writing a fee of 20 satoshis.

{"fastestFee":20,"halfHourFee":20,"hourFee":18}

Another example is https://bitcoinfees.net/. This site shows a

majority of transactions are at five to six satoshis at less than six hours, or

49 to 50 satoshis for less than 20 minutes at the time of writing.

Note a satoshi is a hundredth of a millionth BTC and is named after
satoshi nakamoto. It’s the smallest fraction of a bitcoin that can be
sent: 0.00000001 BTC. a faster fee would be 50 satoshi at the time
of writing.

Now that you know the fee, you can modify the config file with the

minimum fee to a higher fee such as 50 satoshis.

> vim '/[location]/bitcoin/bitcoin.conf'

mintxfee=0.00000050

txconfirmtarget=3

The mintxfee value sets a minimum transaction fee of 50 satoshis, or

0.00000050 ฿. That will set a 20 satoshis/byte of data in your transaction.

This means the floating fee needs to figure out a good amount to get the

transaction into the next three blocks. As you recall, each block takes about

10 minutes to hash, so it will aim at 30 minutes to include your transaction.

Once you have modified the config file, remember to restart bitcoind.

> bitcoind –printtoconsole

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://bitcoinfees.earn.com/api/v1/fees/recommended
https://bitcoinfees.net/

132

 Testnet
In this section, you will learn more about transactions, and to understand

transactions better, you will need to send and receive bitcoins. To get

bitcoins on mainnet (the actual production chain), you would need to

either mine coins or trade them. However, you don’t want to handle actual

coins as you learn, because you would have to pay fees as well as risk losing

coins if you make mistakes. Also, the price of the bitcoin may go down.

Luckily, bitcoin offers an alternative blockchain that is used for testing;

it’s called testnet. This alternative blockchain enables you to experiment

without using real bitcoins or abusing the bitcoin chain. You can start

a bitcoin core instance with the -testnet flag. On testnet, this is done

through faucets, the pretend coins. You connect to the testnet blockchain

instead of the main blockchain by stopping the bitcoin core demon and

restarting it with the testnet flag.

> bitcoind –testnet

Keep in mind that just as with bitcoin’s mainnet chain, the syncing and

indexing portions may take hours, depending on your Internet connection.

Run the command and take a long coffee break if you want to start working

with blocks.

The BTC testnet offers you free faucet bitcoins that you can use for

testing. Testnet requests that you return these coins once you complete

testing as this service is free, and returning these coins will benefit the next

developer who needs them.

You can read more about testnet here: https://en.bitcoin.it/wiki/

Testnet. At the time of writing, testnet3 is the latest blockchain used for

testing.

You will be using coinfaucet.eu, which can be found at https://

coinfaucet.eu/en/btc-testnet/. However, there are other faucets in

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://en.bitcoin.it/wiki/Testnet
https://en.bitcoin.it/wiki/Testnet
https://coinfaucet.eu/en/btc-testnet/
https://coinfaucet.eu/en/btc-testnet/

133

case this one ceases to exist. The first step is to send coins to your wallet.

First generate a new P2PKH wallet address using the following command:

> bitcoin-cli getnewaddress "" legacy

mnMs77edsGV8VKwtB3d7fsnvrNuZ8ECKfh

As you can see, the output you receive is the public key that you can use

to receive funds. Next, paste that address into https://coinfaucet.eu,

choose “Bitcoin testnet,” verify you are not a robot, and click the

“Get bitcoins!” button, as shown in Figure 4-2.

Once the coins have been sent to your wallet, you receive a

confirmation with the tx number, as shown in Figure 4-3.

Figure 4-2. Coin testnet faucet, requesting funds for testing

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://coinfaucet.eu

134

Note Keep in mind that these faucet testnet sites often go offline,
and you may need to find a new faucet testnet site. For your
convenience, here is another one that is working at the time of
writing: https://testnet-faucet.mempool.co/.

 Viewing Transactions on Block Explorer
On the testnet faucet, you can monitor the bitcoins that have been sent

just as can be done on the maintest production bitcoin’s blockchain. This

is done in the testnet Blockchain Explorer; see the “tx” link, as shown in

Figure 4-3. As you recall, “tx ID” stands for the transaction ID. Alternatively,

you can paste that transaction ID directly into the Block Explorer at

https://live.blockcypher.com/btc-testnet/. See Figure 4- 4.

Figure 4-3. Coin testnet faucet, bitcoins have been sent

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://testnet-faucet.mempool.co/
https://live.blockcypher.com/btc-testnet/

135

In fact, every transaction that ever occurs on the blockchain is publicly

available to view by anyone in the Blockchain Explorer; that includes

all the transaction data except for the users’ private keys. Although the

transaction data is publicly available, the identifying information about the

owner is not public information and is not needed to perform transactions.

What connects the user to the coins you send is the private key associated

with the public key.

Similarly, you can do the same check of information via the RPC

command line. You already know how to check your wallet’s balance, as

shown here:

> bitcoin-cli getbalance

0.0000000

When coins have been received, they will not be available to spend until

the transaction has been confirmed by the mined blocks’ confirmations.

That’s why if you check your balance right away, it will still show 0.

Figure 4-4. Viewing transaction information on live.
blockcypher.com

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

136

You will be able to see the coins as unconfirmed via the

getunconfirmedbalance command right after your transaction is included

in the next block. To check, run the getunconfirmedbalance command.

> bitcoin-cli getunconfirmedbalance

0.10413028

Once you have enough confirmations, the getbalance command will

show your new balance, and getunconfirmedbalance will show 0.

Similarly, you can be more specific and request the minimum

confirmations to be 2.

> bitcoin-cli getbalance "*" 2

Note a transaction stays “unconfirmed” until the next new block
is created. once the new block is created, the new transaction is
verified and included in that block. now, the transaction will have one
confirmation. about ten minutes pass, and a new block is created,
and the transaction is confirmed again. each confirmation increases
the safety of the transaction, and the chances of the transaction
being reversed decrease. The norm on exchanges is that four to six
confirmations are required to allow you to use the coins; it may be
wise to wait for even sixty confirmations for large amounts of coins,
which takes about ten hours.

Another useful command is the listtransactions command; it

provides the full list of transaction data related to your wallet.

> bitcoin-cli listtransactions

[

 {

 "address": "mnMs77edsGV8VKwtB3d7fsnvrNuZ8ECKfh",

 "category": "receive",

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

137

 "amount": 0.10413028,

 "label": "",

 "vout": 0,

 "confirmations": 420,

 "blockhash": "0000000000125d2714882704562c8442a6700c58a41ca

d0b4108305474be3bb1",

 "blockindex": 4,

 "blocktime": 1541783585,

 "txid": "645a34a5cbdd66b126e6f81560dc79957c6e1a175a68f8ad23

ca7fd38046df85",

 "walletconflicts": [

],

 "time": 1541783585,

 "timereceived": 1541890511,

 "bip125-replaceable": "no"

 }

]

 Sending Testnet Coins via the Bitcoin
Core Wallet GUI
You initialized a bitcoin core instance with the testnet flag; however, there

is another even easier way to send and receive coins. Bitcoin core includes

a GUI wallet you can use. You will be utilizing the GUI software that comes

out of the box with bitcoin core. To get started, terminate the bitcoind

daemon in Terminal by pressing Control+C and then run bitcoin-qt in

a command-line terminal with the testnet flag so you connect to testnet

and not mainnet.

> bitcoin-qt –testnet

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

138

This command opens a new window and then syncs with the

testnet blockchain. Just as before, if you did not complete a testnet sync,

it may take hours, depending on your Internet connection, as shown in

Figure 4- 5. However, at the wallet GUI, you will see an estimated time for

how long the sync will take.

As before, you need to wait for the sync to complete; only then can

you retrieve your wallet’s public key address and spend your coins. In

the Overview menu you will see the balances, including the confirmed

(Available) funds and the unconfirmed (Pending) funds. You can also get

a list of transactions by clicking the Transactions button at the top. See

Figure 4-6.

Figure 4-5. Bitcoin wallet testnet GUI sync with testnet network

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

139

To create a new wallet’s public key address, click Receive at the top and

then click the Request Payment button. This will generate an address for

your wallet, as shown in Figure 4-7.

Figure 4-6. Bitcoin core wallet overview screen

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

140

As you can see, the GUI created a QR code for your convenience. You

can scan it when you send coins, where this feature is supported. Now, let’s

go ahead and send some more coins to your wallet via the testnet faucet at

https://live.blockcypher.com/btc-testnet/.

As you can see, you can then receive coins just as you did via the

command line. Next, you will send some coins.

You will be sending 0.01 BTC back to the testnet faucet for other

developers to use. To do so, click the Send button at the top of the GUI and

paste in the testnet faucet wallet address that was provided to you when

you sent coins to your wallet.

Notice that there is a Choose button next to Transaction Fee in the

bitcoin core wallet GUI. This allows you to select the fee, as well as the

Figure 4-7. Bitcoin core wallet, receive coins screen

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://live.blockcypher.com/btc-testnet/

141

number of confirmations. It also includes a way to enable a “replace by”

fee. This feature allows you to change the fee in case the fee is too low and

the transaction is not getting included in the block. See Figure 4-8.

Figure 4-8. Bitcoin core wallet send screen

The testnet faucet sends coins to the wallet address you provided.

When you send and receive coins, you get a notification pop-up from

the GUI and an updated balance on the overview screen. Click the

Transactions button to see the transaction’s information. You can also click

each transaction to see the actual transaction data. This is similar to what

you saw with the listtransactions command. See Figure 4-9.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

142

 Raw Transaction

So far you have received one transaction into your wallet via the command

line as well as coins using the bitcoin core GUI. You also were able to view

confirmations, the fees balance, and transactions. If you send funds back

to the testnet faucet and receive coins, things are simple. This is called

a one-input, one-output transaction, as you have one sender and one

receiver, and you spent the same amount you received (minus the fees).

In real life, transactions can become more complex as there are many use

cases where there are one input and multiple outputs or multiple inputs

and multiple outputs. Bitcoin core provides you with sets of commands to

access a raw transaction (RawTransaction) so you can have more granular

control over your transaction.

You will start with the simple one-input, one-output transaction via the

RPC command line.

Figure 4-9. Bitcoin core wallet transaction

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

143

Note Creating and understanding RawTransaction is useful
for building software, as you have full granular control over your
transaction. however, making mistakes can result in a catastrophic
outcome and loss of coins, so use caution and double-check
everything before sending any funds.

When you receive a transaction, the transaction stays in a state called

unspent transaction output (UTXO) in your wallet. To send a one-input,

one-output transaction, you need your amount to be equal to the funds

you want to send. You can then generate a new UTXO for the receiver

you are sending the coins to. The receiver can use these UTXOs to send

transactions to a new receiver or receivers, and this process can continue

endlessly.

Note a UTXo is an individual incoming coin transaction in your
wallet. When you receive multiple transactions to one or multiple
wallets’ addresses, each stays as a UTXo, so you will have multiple
UTXos. To create a new outgoing transaction, you collect one or more
UTXos as needed depending on how much you are trying to send.

Now, what if your UTXO includes a larger amount than you would like

to spend? Then you would need to send the remaining of the coins back

to your wallet. To get a list of unspent coins, you can use the listunspent

command.

Close the bitcoin core GUI wallet via Control+C and start the daemon

again with the testnet flag.

> bitcoind -testnet

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

144

When you run the getbalance command, you get your wallet’s

balance, which includes the two transactions you received from https://

live.blockcypher.com/btc-testnet/ less the transaction you sent back

to the testnet faucet.

> bitcoin-cli getbalance

0.18505841

I would like to point out that at any time you can use the -named flag

instead of using order arguments. The named argument is useful to ensure

you are not making mistakes when working with mainnet. For instance, a

getbalance command with the named argument would look as follows:

> bitcoin-cli -named getbalance minconf=2

0.18505841

Next, let’s take a look at the listunspent command. As the name

suggests, it returns JSON with transactions for coins you did not spend, in

other words, your UTXOs. The listunspent command also returns JSON

with a variable called vout, which represents the index number of the

output in a transaction.

Note The vout value represents the index number of the output
of a transaction. You will be using a txid and a vout to select the
existing output as the input of a new transaction.

> bitcoin-cli listunspent

[

 {

 "txid": "50e91c9b73a90bd883f4a9a8a51be729770df20fae0445a

9090b80a8621f4538",

 "vout": 0,

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://live.blockcypher.com/btc-testnet/
https://live.blockcypher.com/btc-testnet/

145

 "address": "2N67MKgL5rYcbuySDFUdypU5DvKjmwZoYEb",

 "label": "",

 "redeemScript": "0014c27b4e6bd8eb821ee80a239e0edd59070f

57233d",

 "scriptPubKey": "a9148d1c6e108c60cfdfa61565ac328be66245

91404b87",

 "amount": 0.09092813,

 "confirmations": 17,

 "spendable": true,

 "solvable": true,

 "safe": true

 },

 {

 "txid": "be05d068d1245f1c60ea4229c00eb5e96f2a5c5527f1deb7c6

de5e1e20a4b4db",

 "vout": 1,

 "address": "2MveVhMe6PTzuhsJHx5zXAjDBwQvzdyqGjM",

 "redeemScript": "00142e29123ba343c577ab9517ede9b74f047d2c2ea3",

 "scriptPubKey": "a914254f0e95fb26c0f29975f866e69543519bf5

65e787",

 "amount": 0.09413028,

 "confirmations": 16,

 "spendable": true,

 "solvable": true,

 "safe": true

 }

]

These UTXOs show you a property called txid, which is included in

bitcoin’s blocks. The txid property allows you to track transactions, as you

saw via the Blockchain Explorer.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

146

Notice that the index starts at 0, and because you have two

transactions, it is now 0 and then 1. If you had more transactions, this

index would continue. Figure 4-10 illustrates the listunspent result if you

have two UTXOs.

Figure 4-10. vout index illustration

You can get all the data regarding the transaction via the

getrawtransaction command. Here I picked the first tx property from the

UTXO you received, and then I added the 1 flag to decode the hex-encoded

transaction data; take a look at the command and entire output,

shown here:

> bitcoin-cli getrawtransaction

50e91c9b73a90bd883f4a9a8a51be729770df20fae0445a9090b80a862

1f4538 1

{

 "txid": "50e91c9b73a90bd883f4a9a8a51be729770df20fae0445a9090b

80a8621f4538",

 "hash": "e420b350f5b95e29f51b722a5bd44ea2e9d27a7239d2

e17da02f28e04c757b14",

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

147

 "version": 2,

 "size": 248,

 "vsize": 166,

 "weight": 662,

 "locktime": 1443113,

 "vin": [

 {

 "txid": "2645c128d68194640a7207eeae6ea42e8e528bcba2369

eec0ba572566228b507",

 "vout": 0,

 "scriptSig": {

 "asm": "00143bfa0326c076fa6cab0d23aea170bac38ac9a164",

 "hex": "1600143bfa0326c076fa6cab0d23aea170bac38ac9a164"

 },

 "txinwitness": [

 "3045022100fb7f0fc2cf99c8174eb3d14169e1c206157d434d

8290b2efbefa5a37d0773923022065f0b671c0596816c062b9bdc7

b30931edfd99a846a0f1633d301bfb7c03db3c01",

 "02d208ff6da0583b99392d30e33c5a12da61b9d9de4c35bb0

d20c33ba3bfc49302"

],

 "sequence": 4294967294

 }

],

 "vout": [

 {

 "value": 0.09092813,

 "n": 0,

 "scriptPubKey": {

 "asm": "OP_HASH160 8d1c6e108c60cfdfa61565ac328be66

24591404b OP_EQUAL",

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

148

 "hex": "a9148d1c6e108c60cfdfa61565ac328be6624591404b87",

 "reqSigs": 1,

 "type": "scripthash",

 "addresses": [

 "2N67MKgL5rYcbuySDFUdypU5DvKjmwZoYEb"

]

 }

 },

 {

 "value": 1453.63689543,

 "n": 1,

 "scriptPubKey": {

 "asm": "OP_HASH160 f4eb3fe1578076853a774d36f193684f86f

71d5f OP_EQUAL",

 "hex": "a914f4eb3fe1578076853a774d36f193684f86f71d5f87",

 "reqSigs": 1,

 "type": "scripthash",

 "addresses": [

 "2NFaEgWoTNL5akkTuGtYQhzTvWhUaCbxBtL"

]

 }

 }

],

 "hex": "0200000000010107b528625672a50bec9e36a2cb8b528e2ea46

eaeee07720a649481d628c1452600000000171600143bfa0326c

076fa6cab0d23aea170bac38ac9a164feffffff02cdbe8a00000

0000017a9148d1c6e108c60cfdfa61565ac328be6624591404b8

747e059d82100000017a914f4eb3fe1578076853a774d36f1936

84f86f71d5f8702483045022100fb7f0fc2cf99c8174eb3d1416

9e1c206157d434d8290b2efbefa5a37d0773923022065f0b671c

0596816c062b9bdc7b30931edfd99a846a0f1633d301bfb7c03d

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

149

b3c012102d208ff6da0583b99392d30e33c5a12da61b9d9de4c3

5bb0d20c33ba3bfc4930229051600",

 "blockhash": "00000000000000321b56aece3932b187927ac3e7d

c4532f8811aa612bcfa639a",

 "confirmations": 17,

 "time": 1542029870,

 "blocktime": 1542029870

}

Notice that you have information about the block, confirmation, in,

out, and much more.

 Generating Raw Transactions with One Output
Transactions can get complicated easily because there is often a need for

more than one input or more than one output. For instance, if you want

to send the unspent coins back to your wallet, as well as send coins to

multiple addresses, it starts to get complicated. Using RawTransaction,

you get full access to where the coins go and are able to achieve complex

transactions.

You will start by creating a simple RawTransaction by sending one

UTXO from one wallet to another. Previously, you sent coins back to the

testnet faucet via the bitcoin core wallet GUI. Let’s do the same thing but

with the RawTransaction command.

To get started, let’s confirm your wallet’s balance prior to sending coins.

> bitcoin-cli getbalance

0.18505841

Next, let’s pick the UTXO you will be using to fund the transaction. As

you recall, you can get a list of UTXOs, via the listunspent command,

and then look at the JSON response and pick the transaction txid. Pick

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

150

a transaction that has enough funds to feed your new transaction and a

transaction that has been confirmed.

> utxo_txid="50e91c9b73a90bd883f4a9a8a51be729770df20fae0445a909

0b80a8621f4538"

As you probably recall, vout is the index number for an output in a

transaction. In this example, I will be pointing to a vout and generating a

new transaction. The new transaction can include multiple other vouts, as

illustrated in Figure 4-11.

In this example, you will set the first index for vout.

> utxo_vout="0"

The last but most important variable you need to set is the recipient

address. Here, you will be using the same wallet address as you used

previously to send your coins.

> recipient="mv4rnyY3Su5gjcDNzbMLKBQkBicCtHUtFB"

Figure 4-11. vout new transaction illustration

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

151

Lastly, you can use the echo command to verify and double-check that

you set your variables correctly.

> echo $utxo_txid

> echo $utxo_vout

> echo $recipient

Now that you have your variables set, you can generate a

RawTransaction object via the createrawtransaction command. You do

that by including all the variables you set and declaring the amount you

would like to spend. You are using 0.xxx, but you need to use the UTXO

less the fee you would like to pay to send the entire coins you have in the

UTXO.

> rawtxhex=$(bitcoin-cli createrawtransaction "'[{ "txid":

"'$utxo_txid'", "vout": '$utxo_vout' }]"'

"'{ "'$recipient'": 0.xxx }"')

Next, you can extract the rawtxhex value.

> echo $rawtxhex

020000000138451f62a8800b09a94504ae0ff2

0d7729e71ba5a8a9f483d80ba9739b1ce9500000000000ffff

ffff0140420f00000000001976a9149f9a7abd600c0caa03983

a77c8c3df8e062cb2fa88ac00000000

The rawtxhex value includes your new transaction information as a

hex-encoded data. The following decoderawtransaction command will

return some JSON output with decoded data for your transaction:

> bitcoin-cli decoderawtransaction $rawtxhex

{

 "txid": "91d4e108f8957251d2997e1f8dcdd0eec97192e8accf85a9e81

f772f586118af",

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

152

 "hash": "91d4e108f8957251d2997e1f8dcdd0eec97192e8accf85a9e81

f772f586118af",

 "version": 2,

 "size": 85,

 "vsize": 85,

 "weight": 340,

 "locktime": 0,

 "vin": [

 {

 "txid": "50e91c9b73a90bd883f4a9a8a51be729770df20fae0445a9

090b80a8621f4538",

 "vout": 0,

 "scriptSig": {

 "asm": "",

 "hex": ""

 },

 "sequence": 4294967295

 }

],

 "vout": [

 {

 "value": 0.01000000,

 "n": 0,

 "scriptPubKey": {

 "asm": "OP_DUP OP_HASH160 9f9a7abd600c0caa03983a77c

8c3df8e062cb2fa OP_EQUALVERIFY OP_CHECKSIG",

 "hex": "76a9149f9a7abd600c0caa03983a77c8c3df8e062cb2fa

88ac",

 "reqSigs": 1,

 "type": "pubkeyhash",

 "addresses": [

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

153

 "mv4rnyY3Su5gjcDNzbMLKBQkBicCtHUtFB"

]

 }

 }

]

}

As you have seen, to create a transaction, you generate a signature

from the wallet’s public hash and the private key hash. The transaction

output script takes the public key and the signature and checks to see

whether you have a match to the public key hash. If results are true, you

are able to spend the coins; otherwise, you can’t.

Note a public key visible in the transaction is a type of transaction
called Pay to Pubkey (P2PK). a hidden public key as you have been
using is a type of transaction called Pay to PubKey hash (P2PKh).

You will sign your transaction via P2PKH to match your wallet’s

type. There are two ways to sign the transaction; you can use

signrawtransactionwithkey or signrawtransactionwithwallet.

These two signed methods are available in 0.18.0 RPC, including

inputs for raw transactions in a serialized hex-encoded format.

The signrawtransactionwithwallet command format is as follows:

signrawtransactionwithwallet "hexstring" ([{"txid":"id","vout":

n,"scriptPubKey":"hex","redeemScript":"hex"},...] sighashtype)

Notice that the signrawtransactionwithwallet command allows you

to include a second argument called “prevtxs”. “prevtxs” is formatted as an

array that includes the previous transaction outputs. If you decide to utilize

and insert value for “prevtxs” the transaction will depends on the previous

transaction that may not even be in the blockchain yet. In case you don’t

need this feature just set “prevtxs” to null.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

154

The signrawtransactionwithkey command format is as follows:

signrawtransactionwithkey "hexstring" ["privatekey1",...]

Notice that the second argument is a base58-encoded array of private

keys that will be the only keys used to sign the transaction. The third

optional argument is an array of previous transaction outputs that this

transaction depends on but may not yet be in the blockchain.

In our case, you will not include the second argument because your

transaction does not need to depend on other conditions.

> bitcoin-cli signrawtransactionwithwallet $rawtxhex

{

 "hex": "0200000000010138451f62a8800b09a94504ae0ff20d7729e71ba

5a8a9f483d80ba9739b1ce9500000000017160014c27b4e6bd8eb

821ee80a239e0edd59070f57233dffffffff0140420f0000000000

1976a9149f9a7abd600c0caa03983a77c8c3df8e062cb2fa88

ac0247304402205cc4b04859e34aa6b1e924745f33a7643fbe45

fcd6e900fdaa29281feae3f8f6022059d4083a3cf81c3bb8226

7931660afb8ffc4bae87ede8dfa11efcb6af6a14ac90121028

926735fcd5bf6580e6f669c240da8975dddf23a6d4015e

4e0bc1ca3f1d2b7f100000000",

 "complete": true

}

The previous command returned signed, hex-encoded data in the

JSON response. Use that data to set the hex for the signedtx variable.

> signedtx="0200000000010138451f62a8800b09a94504ae0ff20d7729e71

ba5a8a9f483d80ba9739b1ce9500000000017160014c27b4e6bd8eb821ee8

0a239e0edd59070f57233dffffffff0140420f00000000001976a9149f9a7

abd600c0caa03983a77c8c3df8e062cb2fa88ac0247304402205cc4b04859

e34aa6b1e924745f33a7643fbe45fcd6e900fdaa29281feae3f8f6022059d

4083a3cf81c3bb82267931660afb8ffc4bae87ede8dfa11efcb6af6a14ac9

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

155

0121028926735fcd5bf6580e6f669c240da8975dddf23a6d4015e4e0bc

1ca3f1d2b7f100000000"

That’s it; you can now send your transaction via the

sendrawtransaction command.

> bitcoin-cli sendrawtransaction $signedtx

ff75dbb08da6f4dc6463dd32d8f9b1a4781e1eeee338e93e8282

0d0fdfbd43ff

The output gets you a txid response that you can check in the

Blockchain Explorer as you did before. You can also verify that the funds

were removed from your account via the getbalance command.

> bitcoin-cli getbalance

0.09413028

As well as listunspent command.

> bitcoin-cli listunspent

[

 {

 "txid": "be05d068d1245f1c60ea4229c00eb5e96f2a5c5527f1de

b7c6de5e1e20a4b4db",

 "vout": 1,

 "address": "2MveVhMe6PTzuhsJHx5zXAjDBwQvzdyqGjM",

 "redeemScript": "00142e29123ba343c577ab9517ede9b74f047d

2c2ea3",

 "scriptPubKey": "a914254f0e95fb26c0f29975f866e69543519b

f565e787",

 "amount": 0.09413028,

 "confirmations": 86,

 "spendable": true,

 "solvable": true,

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

156

 "safe": true

 }

]

Additionally, you can view the transaction via the listtransactions

command.

> bitcoin-cli listtransactions

[

...

 {

 "address": "mv4rnyY3Su5gjcDNzbMLKBQkBicCtHUtFB",

 "category": "send",

 "amount": -0.01000000,

 "label": "",

 "vout": 0,

 "fee": -0.08092813,

 "confirmations": 1,

 "blockhash": "0000000000000016ba1c314375d9bb17b6a857e091fd

4924bda5c9d7d9a2fd15",

 "blockindex": 1,

 "blocktime": 1542070705,

 "txid": "ff75dbb08da6f4dc6463dd32d8f9b1a4781e1eeee338e93e82

820d0fdfbd43ff",

 "walletconflicts": [

],

 "time": 1542070656,

 "timereceived": 1542070656,

 "bip125-replaceable": "no",

 "abandoned": false

 }

]

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

157

 Transactions that Require Multisignature
So far you have been doing standard “single-signature transactions,”

as you needed only one signee with one signature to sign a transaction

and perform the transfer. However, the bitcoin network supports a more

complicated transaction. These transactions can be set to require a

signature of multiple signees. For instance, institutions, partners, spouses,

or programmed scripts may want to have all parties sign instead of just

one. These cases would need all the users’ private keys before funds could

be sent.

To do a multiple-signees transaction, you will create two separate

wallets for testing. You can run bitcoin core on two separate machines and

use the RPC calls to generate a new public address for each wallet, or you

can download the Electrum wallet at https://electrum.org/#download

and run it in testnet mode to generate your second wallet.

As a first example, you will run Electrum because you can use its built-

in multisignature wallet to understand this process. Once you complete

downloading Electrum, run Electrum as testnet via the command line.

> open -n /Applications/Electrum.app --args –testnet

 Setting Electrum with a Multisignature Wallet
After Electrum starts, select “Multi-signature wallet” for the create wallet

option and then click Next. See Figure 4-12.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://electrum.org/#download

158

On the next screen, you can select how many cosigners are

required and how many signatures are needed. These transactions are

often referred to as M-of-N transactions, for instance, a 2-of-3 scenario.

A 2-of-3 would mean you need at least two private keys (signatures) from

three cosigners to authorize the transaction. You can move the sliders to

better understand this feature, as shown in Figure 4-13.

Figure 4-13. Electrum multisignature wallet cosigners and
signatures

Figure 4-12. Electrum multisignature wallet

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

159

Here, select a 2-of-2 multisignature wallet, which means two cosigners

and two signatures. Then click the Next button. On the following screen,

click “Create a new seed” and click the Next button.

On the following screen, you can choose the seed type. Standard

means P2PKH or SegWit, which means a P2SH-SEGWIT, so select Standard

and click Next.

For the next step, you are given a seed that represents your private key.

Store your seed and be careful not to share it with anyone. You are then

provided with what Electrum calls your master public key, and you are

asked to share it with your cosigners, as shown in Figure 4-14.

Note The electrum public master key is part of the electrum
hierarchical deterministic (hd) wallet that generates an address for
you based on a master seed that can be used to back up all your
funds. The seed consists of words used to retrieve your wallet’s
private keys; losing your seeds would mean losing your private keys.

Click Next, and you can enter a cosigner’s public key or private key. See

Figure 4-15.

Figure 4-14. Electrum install wizard master public key

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

160

On the next screen of the wizard, you will be using the master private

key of your bitcoin core’s wallet to allow Electrum to sign the second wallet

on your behalf. You can retrieve the private key from inside your private

key backup file. It shows under extended private masterkey.

> vim /Users/[location]/mywallet.txt

extended private masterkey: [key]

The Electrum wizard sets your cosigners for you, and the next step of the

install wizard asks you to set up your password, if you like, for extra security.

That’s it. Now that the wizard has completed setting up your account,

you can send and receive funds from and to your cosigner wallet. Click

Receive at the top to get your wallet address, as shown in Figure 4-16.

Figure 4-15. Electrum install wizard cosigner key

Figure 4-16. Electrum wallet receive address and QR code

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

161

You will be using Coinfaucet.eu again to fund your new wallet:

https://coinfaucet.eu/en/btc-testnet/.

Then you can send these coins back to the Coinfaucet.eu wallet’s

address after the coins have been confirmed; here is Coinfaucet.eu wallet’s

address:

2N7RzS3j2eKHVj1E5yV7iGuwfgUtobrCnrc

Since you have been providing both of the cosigner’s private keys, this

transaction will be happening using the send command. However, in case

you set two accounts and provide only one public key, the second cosigner

would need to approve this transaction on his account before the send

command will actually send the coins.

Similarly, you can do this transaction via the RPC command line.

To get started, click File ➤ Delete at the top of Electrum to create a

standard wallet instead of a cosigner wallet.

Once this wallet is removed, you can start over and create a new

Standard (P2PKH) wallet that you will be using as the second cosigner. To

retrieve your wallet’s address, click the View link at the top and then click

Addresses.

Next, right-click an address for which you’d like to see its public key.

This will show the address public key. See Figure 4-17.

 – Here is the example’s wallet address:

mxaFFFW5CFfJi6fbhn1qFDi8gv6eFsSBKQ

 – Here is the example’s public key:

038e6fb8b842c750eb68bfccfd0fa1aa1c

e8e455d58137e260a067e6d2fb853ea6

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://coinfaucet.eu/en/btc-testnet/

162

Next, you will create a new address for your cosigner via

command- line RPC.

> bitcoin-cli getnewaddress

2Msggcttx7wDDbcib6yD8ng2oKRdq8Bz4wV

Next, you can set the two cosigners’ addresses.

> address1=2Msggcttx7wDDbcib6yD8ng2oKRdq8Bz4wV

> address2=mxaFFFW5CFfJi6fbhn1qFDi8gv6eFsSBKQ

Ensure the address is correct via the validateaddress command.

> bitcoin-cli validateaddress $address2

You need both cosigners’ public keys to create your cosigner wallet.

You already have the Electrum wallet’s public key; now you need bitcoin

core’s RPC public key. To get this, you use the getaddressinfo command

to take a look at the RPC JSON response and pubkey variable.

Figure 4-17. Electrum Standard wallet address and public key

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

163

> bitcoin-cli getaddressinfo $address1

{

 "address": "2Msggcttx7wDDbcib6yD8ng2oKRdq8Bz4wV",

 "scriptPubKey": "a91404d0a132b5796d4462f39865d56af4ff7255d1b

287",

 "ismine": true,

 "iswatchonly": false,

 "isscript": true,

 "iswitness": false,

 "script": "witness_v0_keyhash",

 "hex": "001440bbb1a949badb3a12a941a44bc994f7127c595c",

 "pubkey": "034ffed96ffc416b90daa97df5c09b618d7fbf99076ed8100

900cfa0890e763ac0",

 "embedded": {

 "isscript": false,

 "iswitness": true,

 "witness_version": 0,

 "witness_program": "40bbb1a949badb3a12a941a44bc994f7127c595c",

 "pubkey": "034ffed96ffc416b90daa97df5c09b618d7fbf99076ed81

00900cfa0890e763ac0",

 "address": "tb1qgzamr22fhtdn5y4fgxjyhjv57uf8ck2u4glnj9",

 "scriptPubKey": "001440bbb1a949badb3a12a941a44bc994f7127c5

95c"

 },

 "label": "",

 "timestamp": 1541782726,

 "hdkeypath": "m/0'/0'/9'",

 "hdseedid": "572deaa922cbf31076701942878c3e5fc2e23b60",

 "hdmasterkeyid": "572deaa922cbf31076701942878c3e5fc2e23b60",

 "labels": [

 {

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

164

 "name": "",

 "purpose": "receive"

 }

]

}

Now, you are ready to create your cosigners’ multisigned address via the

createmultisig command because you have both cosigners’ public keys.

> bitcoin-cli -named createmultisig nrequired=2 keys="'["034ffe

d96ffc416b90daa97df5c09b618d7fbf99076ed8100900cfa0890e763ac0",

"038e6fb8b842c750eb68bfccfd0fa1aa1ce8e455d58137e260a067e6d2

fb853ea6"]"'

{

 "address": "2MtBkhgVLJ6VA1nFbjam36iUY1dCiWFf4ix",

 "redeemScript": "5221034ffed96ffc416b90daa97df5c09b618d7fbf99

076ed8100900cfa0890e763ac021038e6fb8b842c

750eb68bfccfd0fa1aa1ce8e455d58137e260a0

67e6d2fb853ea652ae"

}

Next, you need to pick a UTXO txid and vout to sign your transaction,

just as you did in previous raw transactions.

> bitcoin-cli listunspent

[

 {

 "txid": "ea3fb46ab103d15120e02ed6b60e3d83b265fed26794e3ed

739496b62445410b",

 "vout": 0,

 ...

]

Then you set the utxo_txid property.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

165

> utxo_txid=ea3fb46ab103d15120e02ed6b60e3d83b265fed26794e3ed73

9496b62445410b

> utxo_vout=0

> recipient="mv4rnyY3Su5gjcDNzbMLKBQkBicCtHUtFB"

> rawtxhex=$(bitcoin-cli -named createrawtransaction

inputs="'[{ "txid": "'$utxo_txid'", "vout": '$utxo_vout' }]"'

outputs="'{ "'$recipient'": 0.001}"')

Now decode and set the hexstring property.

> bitcoin-cli -named decoderawtransaction hexstring=$rawtxhex

> bitcoin-cli signrawtransactionwithwallet $rawtxhex

{

 "hex": "020000000001010b414524b6969473ede39467d2fe65b2833d0eb

6d62ee02051d103b16ab43fea0000000017160014040c578cf60bf

00980bfde1920f54459eaab3a09ffffffff01a086010000000000

1976a9149f9a7abd600c0caa03983a77c8c3df8e062cb2fa88ac0

24730440220603883ace41bdf5cf85c87e80f7362b45e35949114

f46ac5e5b89f5e13d8d95002205c5eb45ca7de8b2da88c41c4311

711beb14e8e0d679e40d1fbc2cb8e81e053fb01210205e848e0f2

2dfe0c428d02c356d0c9a8d064a789a6bbcaa43a245d701948aba

200000000",

 "complete": true

}

Lastly, sign your transaction via the signedtx command.

> signedtx="020000000001010b414524b6969473ede39467d2fe65b283

3d0eb6d62ee02051d103b16ab43fea0000000017160014040c578cf

60bf00980bfde1920f54459eaab3a09ffffffff01a0860100000000

001976a9149f9a7abd600c0caa03983a77c8c3df8e062cb2fa88ac

024730440220603883ace41bdf5cf85c87e80f7362b45e35949114

f46ac5e5b89f5e13d8d95002205c5eb45ca7de8b2da88c41c43117

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

166

11beb14e8e0d679e40d1fbc2cb8e81e053fb01210205e848e0f22dfe0

c428d02c356d0c9a8d064a789a6bbcaa43a245d701948aba200000000"

You are ready to send your transaction using sendrawtransaction value.

> bitcoin-cli sendrawtransaction $signedtx

 Replaceable Transactions and Locktime
When creating a RawTransaction with the createrawtransaction

command you can includes two more variables you can utilize: locktime

and replaceable.

createrawtransaction [{"txid":"id","vout":n},...] [{"address":a

mount},{"data":"hex"},...] (locktime) (replaceable)

You can learn more about these arguments here:

https://bitcoincore.org/en/doc/0.17.0/rpc/rawtransactions/

createrawtransaction/

As the name suggests, replaceable allows a raw transaction to be

replaced by a new transaction with higher fees. This happens when the fee

you set is too low, causing the transaction not to go through. For instance,

if the fee you are trying to pay is too high, you can get the following error

message:

absurdly-high-fee, 11563419 > 10000000 (code 256)

Bitcoin core supports the locktime argument in the raw transaction;

this argument allows you to send transactions at some time in the future,

and until they’re sent, the sender can cancel the transaction.

There are two options. Block height is used for small numbers, and

UNIX timestamps are used for big numbers. These arguments mean that

the transaction is not inserted into the block until the conditions are met.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://bitcoincore.org/en/doc/0.17.0/rpc/rawtransactions/createrawtransaction/
https://bitcoincore.org/en/doc/0.17.0/rpc/rawtransactions/createrawtransaction/

167

Note Block height is the number of blocks in the chain between
any specific block and the first chain block on the chain.

 Bitcoin Colored Coins
Bitcoin transactions hold a property called OP_RETURN. This property can

be used to hold up to 80 bytes of data, which can be used for passing data.

This may not seem much, but it’s enough for proof of ownership or passing

small pieces of data to authenticate. Utilizing the OP_RETURN property is

done by setting data code word in the vout property of the transaction. To

pass the data we want to include in your transaction, you still need to send

funds for the transaction to be included in the blockchain, but you can set

the recipient to be your own wallet in case you don’t want to pay someone.

That way you get to store data in the Bitcoin persistence Blockchain and

you only need to pay the transaction fee as you don’t pay anyone.

Note OP_RETURN is the opcode script that defines the transaction
as valid or invalid; it can be used to insert data into the transaction
that will result in storing that data in the bitcoin blockchain. Keep
in mind that there are different opinions about whether it’s okay to
utilize this property. some believe that storing noncurrency data in
the blockchain is a bad idea; because there are less costly and more
efficient ways to store data, it really depends on usage.

 Sending a Transaction with OP_RETURN
Before you set your transaction, you will want to introduce a small

lightweight utility program called jq to streamline creating a

RawTranaction object. This is a command-line JSON processor that you

can use to process your RPC JSON in the terminal. You can download it

from https://stedolan.github.io/jq/download.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://stedolan.github.io/jq/download

168

Install it with Brew.

> brew install jq

The jq utility allows you to retrieve pieces of the returned JSON so you

will be able to stream your transaction quicker and with fewer mistakes.

Next, you can set some data to send via the OP_RETURN param. This

example will create an MD5 for a file. In real life, this can be a version of a

contract between parties or any piece of code you need.

Note The Message-digest 5 (Md5) algorithm is a function that
generates a 128-bit hash value. It’s common to create a file that
holds checksum files and that ensures the integrity of data because
each file change would result in a new Md5 result.

You can pick one of bitcoin’s core files such as config.log to generate

an MD5 hash and set the op_return_data variable.

> md5 config.log

MD5 (config.log) = 634ef85e038cea45bd20900fc97e09dc

> op_return_data="634ef85e038cea45bd20900fc97e09dc"

As you saw previously in this chapter, you can use the listunspent

command to select your UTXO that you want to spend.

> bitcoin-cli listunspent

Now using the jq utility, you can stream the process, so you don’t need

to do a copy and paste and can avoid errors.

> utxo_txid=$(bitcoin-cli listunspent | jq -r '.[0] | .txid')

> utxo_vout=$(bitcoin-cli listunspent | jq -r '.[0] | .vout')

> recipient=$(bitcoin-cli getrawchangeaddress)

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

169

Notice a few things here. You set the first JSON item [0] here, but you

can set any item you want, such as [1] or [2]. Also, notice that you need to

run the listunspent command to find out the “amount” the UTXO has.

For this example, the amount is 0.1166341, and since you want to pay

0.00000200 for fees (200 satoshis), you will be sending 0.1166321 in total.

If you don’t set the fee correctly, you may end up spending too much

on fees or getting an error message such as the following:

- min relay fee not met, 29 < 161 (code 66)

- absurdly-high-fee, 24432219 > 10000000 (code 256)

You can use the echo command to ensure your variable is set correctly.

Then you can continue and set your transaction’s data.

> rawtxhex=$(bitcoin-cli -named createrawtransaction

inputs="'[{ "txid": "'$utxo_txid'", "vout": '$utxo_vout' }]"'

outputs="'{ "data": "'$op_return_data'", "'$recipient'":

0.1166321}"')

Next, you need to sign and send the transaction.

> signedtx=$(bitcoin-cli signrawtransactionwithwallet

$rawtxhex | jq -r '.hex')

> bitcoin-cli sendrawtransaction $signedtx

43a14c3b1ac446e4774c5338e5ae4e23839ab65a38c45da8b790f44

49b090ae5

Now, you can track the RawTransaction object on the testnet

Blockchain Explorer ledger, as shown in Figure 4-18. Here’s the URL:

https://live.blockcypher.com/btc-testnet/tx/43a14c3b1ac44

6e4774c5338e5ae4e23839ab65a38c45da8b790f4449b090ae5/

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

https://live.blockcypher.com/btc-testnet/tx/43a14c3b1ac446e4774c5338e5ae4e23839ab65a38c45da8b790f4449b090ae5/
https://live.blockcypher.com/btc-testnet/tx/43a14c3b1ac446e4774c5338e5ae4e23839ab65a38c45da8b790f4449b090ae5/

170

As you can see in Figure 4-18, you are getting the message “Data

Embedded in Transaction with Unknown Protocol.” If you were to design

some software that uses this method on a regular basis, you would want to

include a keyword to identify your data.

 Bitcoin’s Colored Coins
The colored coins name stuck from bitcoin core’s older implementations

of the EPOBC protocol where an asset is associated with satoshis (thus

“coloring”). Now you are able to achieve coloring with the OP_RETURN param.

OP_RETURN colored your coins and provided a new capability for

bitcoin’s blockchain, as you were able to embed data that provided proof of

ownership. You can also set other conditions to happen at a specific time

or pass data related to the transaction you inserted into the blockchain.

OP_RETURN is powerful, and later in this book you will see how OP_RETURN is

utilized in production-grade projects to solve all sorts of issues.

Figure 4-18. Block Explorer testnet, transaction with data

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

171

 Summary
In this chapter, you dove deep into the bitcoin core RPC. You generated a

legacy and SegWit bitcoin wallets, and you were able to retrieve the wallet’s

private keys and better understand the Elliptic Curve Digital Signature

Algorithm (ECDSA) and how the public and private keys are created.

You spent the majority of this chapter looking into transactions; you

sent coins with bitcoin’s daemon on testnet as well as utilizing bitcoin’s

core wallet GUI to send coins. After coins were sent, you learned how

to view your transactions in bitcoin’s Block Explorer. You continued by

looking into RawTransaction and learned how to generate transactions

with one output as well as more complex transactions with multiple

signers via Electrum as well as the command line.

Additionally, you learned other options such as replacing your

transaction for a change of fee as well as setting the locktime variable.

You learned the difference between P2PKH and P2SH-SEGWIT. Lastly, I

covered how to pass data using the OP_RETURN params, which can be used

for bitcoin colored coins or just to pass additional data utilizing bitcoin’s

blockchain for more than spending coins. In the next chapter, you will take

a closer look at Ethereum and how to write smart contracts.

ChaPTeR 4 BITCoIn WalleTs and TRansaCTIons

173© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_5

CHAPTER 5

Ethereum Wallets
and Smart Contracts
In Chapter 1, I introduced Ethereum when I covered bitcoin, altcoins, and

different consensus mechanisms. Specifically, I covered Ethereum’s PoW

consensus and how utilizing Ethereum enables developers to create their

own smart contracts and tokens. I mentioned that the Ethereum tokens

can be generated as Ethereum requests for comment (ERCs) such as

ERC- 20, ERC-223, or ERC-777. In Chapter 3, you created your own

blockchain, and I covered bitcoin wallets and transactions.

In this chapter, I will be expanding on Ethereum in more detail.

Ethereum allows you to create code (smart contracts) to handle funds

utilizing blockchain technology to overcome downtime and third-party

interference. The Ethereum platform is mostly credited to Vitalik Buterin

and Gavin Wood. According to the Ethereum web site, the definition of

Ethereum is as follows:

“Ethereum is a decentralized platform that runs smart contracts:
applications that run exactly as programmed without any
possibility of downtime, censorship, fraud or third-party
interference.”

—Ethereum.org

174

In previous chapters, you were able to pass and store data such as the

bitcoin colored coins use case with the OP_RETURN param. This is useful

because you’re able to generate an MD5 hash of a file and store it on

bitcoin’s network. The MD5 you stored could be of a document, a contract,

or anything you want. However, as you saw, bitcoin is limited to only

storing the information, and you were unable to interact with the data.

Specifically, you are able to pass and store data on the network, but you are

unable to run code against your file such as to perform operations against

your data. Ethereum solves this lack of functionality by allowing you to

create a smart contract utilizing the power of blockchain.

Note Smart contracts are programmable code used to handle
funds. The code runs on its own, absent of the need of third parties.
Solidity is a popular Ethereum contact-oriented programming
language and can be used to write smart contracts and deploy the
code on multiple blockchains.

At the heart of Ethereum is the Ethereum Virtual Machine (EVM). The

EVM is where the smart contracts run in Ethereum. A good way to help

you understand the EVM is to think about the EVM as a distributed global

computer where the smart contracts can be executed.

Note The EVM is a distributed global computer to run arbitrary,
algorithmic, complex code. More simply, the EVM consists of all the
nodes in the Ethereum network connected as a singular consensus
and able to take a smart contract’s code, process it, and execute it.
The EVM uses 256 bits as the fundamental consensus mechanism; it
can handle a 1 TB block, and the standard block time is 15 seconds.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

175

Decentralized application developers write smart contracts and then run

the code on the EVM with the help of front-end code. See Figure 5-1. The EVM

executes the code in parallel connections on all the connected Ethereum

nodes. This ensures the consensus of the nodes. The size of the Ethereum

blockchain can be as big as 1 TB at the time of writing versus bitcoin’s block

height, which is limited to 4 MB per block. Additionally, bitcoin takes about 10

minutes to create a new block versus 15 seconds on the EVM.

Although it is advantageous for the decentralized code to run as a

singular consensus, there are also drawbacks. For instance, the smart

contract’s code is slower and more expensive than a traditional computer

as it runs on all nodes.

Figure 5-1. Ethereum 10,000-foot perspective. Photo credit: xbt.net.

To run an Ethereum miner, you need to run a full-node EVM. The

miners are running a PoW consensus mechanism to verify transactions

just like bitcoin. During the mining process, five coins are mined on every

block. Just as you saw with NEO in Chapter 1, the Ethereum miners get

paid for running smart contracts with Ethereum coins, which get changed

into what is called gas.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

176

Note Ethereum gas is a fraction of an Ethereum token. Ethereum
gas is changed and used by the contract to pay the miner for their
efforts. Think of a car. It needs gas to operate, and so does Ethereum.
absent Ethereum gas, you cannot execute the smart contract.

Because Ethereum offers the ability to build interesting applications,

the platform has been acknowledged for its potential and is utilized in

one way or another by Microsoft, Intel, Amazon, J.P. Morgan, and even

governments. This has turned Ethereum into an extensive ecosystem

with many options to choose from to help you create your smart contracts

easily. You can choose from a large number of development tools, apps

 communicating with other tools, best practices, infrastructure, testing,

security, monitoring tools, and much more.

It can be overwhelming and confusing to choose tools to use,

especially when many of the tools are still in alpha, beta, or not fully

tested. However, keep in mind that by now you are already equipped

with a good fundamental understanding of blockchain technologies,

including transactions, wallets, and how it all works. Additionally, the

blockchain you developed in Chapter 3 was in JavaScript utilizing Node.js,

which is fundamental for many Ethereum tools. There are two lists that I

recommend you bookmark, listed here:

 – https://github.com/ConsenSys/ethereum-

developer-tools-list

 – https://github.com/ConsenSys/ethereum-

developer-tools-list/blob/master/

EcosystemResources.md

These resources provide an extensive list of all the development tools

and resources related to Ethereum. It’s beyond the scope of this book to

cover all these different tools, but I recommend you review these tools at

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/ConsenSys/ethereum-developer-tools-list
https://github.com/ConsenSys/ethereum-developer-tools-list
https://github.com/ConsenSys/ethereum-developer-tools-list/blob/master/EcosystemResources.md
https://github.com/ConsenSys/ethereum-developer-tools-list/blob/master/EcosystemResources.md
https://github.com/ConsenSys/ethereum-developer-tools-list/blob/master/EcosystemResources.md

177

some point if you focus on Ethereum development so you can make your

own determination about which tool fits your project best.

In this chapter, I will be focusing on Ethereum smart contracts and

running them on a testnet, just as you have done in the previous chapters

for bitcoin. I will show how to set up your development tools and IDE and

give you basic information for dapp mainnet deployment, which I will

expand upon in later chapters in this book.

 Ganache Simulated Full-Node Client
Ganache (previously known as ethereumjs-testrpc) allows you to run a

simulated full-node client of Ethereum on your machine and to interact

with your contract via a CLI. This tool is useful because you will be setting

up a development network and a private testnet network to test your smart

contract code.

Just as you saw in the previous chapter, setting up a testnet network

allows you to test your code with pretend money before committing your

code to mainnet. I decided to use Ganache in this chapter as it is part of

the Truffle development suite and integrates well with Truffle.

 Install Ganache
To get started, you can install Ganache globally with npm and confirm it’s

working correctly by calling the help command.

> npm install -g ganache-cli

> ganache-cli help

If you have installation issues or want to get more information

regarding the tool, visit the Ganache GitHub page: https://github.com/

trufflesuite/ganache-cli. You can also check the version of CLI by

running this command:

> ganache-cli -v

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/trufflesuite/ganache-cli
https://github.com/trufflesuite/ganache-cli

178

This command outputs the version. At the time of writing, the Ganache

CLI is version v6.4.3 (ganache-core: 2.5.5).

 Ganache CLI: Listen to Port
You can run Ganache on your machine while you develop and debug your

contracts. To do this, you set up the Ganache CLI in Terminal to listen to

the port you will be setting in truffle.js later in this chapter.

> ganache-cli -p 8584

Notice that at this point there is nothing running on port 8584, so let’s

assume you will be setting up port 8584. The command should output the

following:

Listening on 127.0.0.1:8584

 IntelliJ IDEA Plugin for Solidity
In Chapter 3, you downloaded and used WebStorm as your IDE to develop

your blockchain. WebStorm is a subset of IntelliJ IDEA and has a plugin for

the Solidity language, which provides an easy way to write your contracts.

Also, it provides highlights and code completion to make development

easier. You can use the WebStorm version you previously installed

and just add the Solidity plugin. To do so, first download the plugin here:

https://plugins.jetbrains.com/plugin/9475-intellij-solidity.

To get the plugin installed, follow these steps:

 1. Select WebStorm ➤ Preferences (or press command + ,).

 2. Select Plugins.

 3. Search in “Plugins” for “Solidity”. It will say

“No Plugins founds.” With a link to “Search in

repositories”. Click the “Search in repositories” link.

“Intellij-Solidity” plugin will show. See Figure 5-2.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://plugins.jetbrains.com/plugin/9475-intellij-solidity

179

 4. Install both “Intellij-Solidity” plugins: LANGUAGES

and INSPECTION. See Figure 5-2.

 5. Click IntelliJ-Solidity ➤ install. See Figure 5-2.

 6. Under Plugins search for Solidity Solhint. It will say “No

Plugins founds.” With a link to “Search in repositories”.

Click the “Search in repositories” link. Click Solidity

Solhint INSPECTION ➤ and then click Install.

 7. Restart WebStorm.

Note that if you are a Visual Studio fan, there is also a Solidity extension

for Visual Studio; see https://marketplace.visualstudio.com/

items?itemName=ConsenSys.Solidity. At the time of writing, the plugin

works only for Visual Studio 2015 or earlier.

Keep in mind that, as always, you can use your favorite IDE, text editor,

or even vim to write your code; there’s no need to buy an IDE.

 Truffle Suite
You will be using Truffle as it’s one of the most popular tools and has

integrated libraries that help expedite the development cycle. Truffle Suite

includes Truffle, Ganache, and Drizzle; see Figure 5-3.

Figure 5-2. Installing IntelliJ-Solidity and Solidity Solhint in WebStorm

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://marketplace.visualstudio.com/items?itemName=ConsenSys.Solidity
https://marketplace.visualstudio.com/items?itemName=ConsenSys.Solidity

180

“Truffle is a development environment, testing framework
and asset pipeline for Ethereum, aiming to make life as an
Ethereum developer easier.”

—https://github.com/trufflesuite/truffle

The Truffle documentation includes installation instructions, which

can be found at https://truffleframework.com/docs.

To get started, open a new Terminal window and install Truffle globally

on your machine (at the time of writing, the current Truffle version is

5.0.14). Then ensure it’s installed correctly by running the help command

to view a list of all available commands.

> npm install -g truffle

+ truffle@5.0.14

> truffle help

Truffle v5.0.14 - a development framework for Ethereum

Usage: truffle <command> [options]

Figure 5-3. Truffle Suite documentation

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/trufflesuite/truffle
https://truffleframework.com/docs

181

 Create Your Smart Contracts
To get started, let’s create your folder and initialize the Truffle wizard to

generate all the code needed to get started. In Terminal, type the following:

> mkdir MySmartContract && cd $_

> truffle init

These commands create a folder named MySmartContract and

change the directory location to the new project; then the truffle init

command initializes the project. You can see the output in Figure 5-4.

Figure 5-4. Creating the MySmartContract project and initializing
with the truffle init command

Next, open WebStorm and open the project you created by selecting

File ➤ Open. Navigate to the MySmartContract project directory and click

Open. WebStorm will open the project, as shown in Figure 5-5.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

182

EVM supports many programming languages such as Solidity,

JavaScript, GO, C++, Python, Java, Ruby, Web Assembly, Rust, and Haskell.

In this section, you will be using Solidity as it’s the most popular Ethereum

programming language for smart contracts at the time of writing. Solidity

is based on ECMAScript and influenced by JavaScript, C++, and Python.

Solidity has an advantage as you are able to deploy your smart contract

transactions on other various blockchain platforms beside Ethereum, such

as Ethereum Classic, Tendermint, ErisDB, and Counterparty.

Solidity uses the .sol file extension; in fact, if you check in the

contracts folder of your project, you will find a file called Migrations.sol,

as shown in Figure 5-5. This file was generated automatically for you when

you initialized the Truffle wizard. The migration files help you deploy

contracts to the Ethereum network. As your project progresses, you will

create new migration files.

Figure 5-5. MySmartContract open in WebStorm

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

183

 Connect Truffle to the Ganache Network
Next, you will customize your environment by calling your network

development and setting the URL and port. As you recall, you are already

running Ganache and have programmed your network to listen on

127.0.0.1, port 8584. You’ll use these settings for deploying your contracts

on your Ethereum blockchain network.

To get started, open MySmartContract/truffle-config.js and inside

the network object add a development object with these configuration

settings:

module.exports = {

 networks: {

 development: {

 host: "127.0.0.1",

 port: 8584,

 network_id: "∗",
 gas: 4712388,

 gasPrice: 100000000000

 }

}

You set the host, port, and network ID, as well as the gas and

gasPrice parameters. The following is according to Truffle docs

 (https://truffleframework.com/docs/truffle/reference/

configuration#networks):

 – gas: This is the gas limit used for deploys. The default is 4712388.

 – gasPrice: This is the gas price used for deploys. The default

is 100000000000 (100 Shannon).

You are setting the default values, which you can achieve also by

omitting the gas and gasPrice tags; however, for the live mainnet network,

at the time of writing, I recommend setting a 21,000 gas price that is a

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://truffleframework.com/docs/truffle/reference/configuration#networks
https://truffleframework.com/docs/truffle/reference/configuration#networks

184

reasonable value. Check the ETH Gas Station (https://ethgasstation.

info/) to figure out how much the gasPrice value should be, as shown in

Figure 5-6.

Figure 5-6. Ethgasstation.info calculates a recommended gas price

As you can see, at the time of writing, paying a fiat of $0.014 provides a

standard 5.6 transaction time.

You have set up a development environment only; however, as you

move your code from development to a public testnet network and then

production, you can add more environments to the truffle-config.js file.

 “Hello, World” Smart Contract
As mentioned, smart contracts are account objects on the Ethereum

blockchain; you can write functions to interact with other contracts,

send coins, make decisions, and store data. Generally speaking, the

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://ethgasstation.info/
https://ethgasstation.info/

185

contracts are built to be decentralized; however, keep in mind they can

be programmed with a regulated option, making them centralized. For

instance, the Ethereum Gemini dollar has the option to freeze transactions

or even reverse them, and other coins can be built with a self-destruct

function by the owner.

You’ll start by creating a simple “Hello, World” contract. This is the

minimum code, and the intention here is not to create anything useful but

to help you understand how to create a smart contract.

In Terminal, at the project location, create a new contract and call it

HelloWorldContract using the command truffle.

> truffle create contract HelloWorldContract

If the CLI worked correctly and without errors, it doesn’t output

anything.

Next, open the contract you created; it will show up under contracts/

HelloWorldContract.sol. As you can see, the Truffle wizard created your

contract for you.

This first smart contract is a minimal working example; it just holds a

message and allows you to retrieve the message by calling your main function.

Replace the existing code in contracts/HelloWorldContract.sol with the

following below;

pragma solidity ^0.5.0;

contract HelloWorldContract {

 string greeting;

 constructor() public {

 greeting = 'Hello World';

 }

 function greet() public view returns (string memory) {

 return greeting;

 }

}

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

186

As you can see, Solidity scripting is similar to JavaScript or C++, and

it’s easy to read. The first line of code is the Solidity compiler version; you

will be using 0.5.0. In the HelloWorldContract constructor, you are setting

the greeting variable to 'Hello World'. The main function is greet().

Once you call the main function, you can retrieve the value of the greeting

 variable.

 “MD5SmartContract” Smart Contract
Now you will create a second contract that is more practical. This contact

will allow you to store the MD5 hash you stored in the previous chapter,

but this time you will be able to interact with it instead of just storing the

MD5 data on the blockchain.

In Terminal, at the project level, create a new contract called

MD5SmartContract using the command truffle.

> truffle create contract MD5SmartContract

Next, open the contract you created called contracts/

RegisterContract.sol. You will be running the following contact:

pragma solidity ^0.5.0;

contract MD5SmartContract {

 bytes32 public signature;

 event signEvent(bytes32 signature);

 constructor() public {

 }

 function sign(string memory document) public {

 signature = sha256(bytes(document));

 emit signEvent(signature);

 }

}

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

187

The code creates a variable call signature. Then your main function

signs your document. You pass the document MD5, and using SHA256,

you sign the document. You create an event to get dispatched once you

sign your document.

Note Secure hash algorithm (Sha) is one of a number of cryptographic
hash functions. a cryptographic hash function acts as a signature for
text or data; it is one-way and cannot be decrypted. The generated
Sha256 hash is a fixed-size, 256 bits (32 bytes), and almost unique.

Create Truffle Migration Files for Your Smart
Contract Deployment
As mentioned, Truffle migration files help you deploy your contracts

on the Ethereum network. You will create a migration file for your

deployment. To do so, create a new deployment file; call it 2_deploy_

contracts.js, and place the file here: migrations/2_deploy_contracts.

js. You can point to the smart contract code you created as follows:

const HelloWorldContract = artifacts.

require("HelloWorldContract.sol");

module.exports = function(deployer) {

 deployer.deploy(HelloWorldContract);

};

Create another deployment file, called 3_deploy_contracts.js, and

place the file here: migrations/3_deploy_contracts.js.

const MD5SmartContract = artifacts.require("MD5SmartContract.sol");

module.exports = function(deployer) {

 deployer.deploy(MD5SmartContract);

};

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

188

At this point, your project includes two smart contracts and migration

files. You can compare your project directory and files with mine; see

Figure 5-7.

Another technique for lazier developers is to use the Truffle create

wizard to generate the migration file.

> truffle create migration deploy_my_contract

This command generates the migration file automatically for you.

 Compile Your Smart Contract with Truffle
In a separate Terminal window, you will run Truffle to compile your smart

contract. The compile command turns your Solidity code to bytecode, which

can be interpreted by the EVM. For now, Ganache simulates the EVM.

> truffle compile

Figure 5-7. MySmartContract including two smart contracts and
migration files

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

189

You can see your contract’s bytecode in the JSON file found here:

build/contracts/HelloWorldContract.json and build/contracts/

MD5SmartContract.json. Look for the bytecode tag shown here:

"bytecode": "0x608060405234801561001057600080fd5b5061031...",

Note Keep in mind that ideally you should delete the contract’s
contracts/∗.json file manually before compiling again. This
will ensure the latest code gets compiled because the ClI does not
always recognize changes right away.

 Deploy the Smart Contract to Your
Development Network
Now that you have bytecode compiled from your smart contract, you

can migrate the bytecode into your development environment so you

can run the migration command to switch to the network you set in the

truffle.js file.

> truffle migrate --network development

Running this command will return the response shown in Figure 5-8.

This shows you that three migration files have been deployed successfully

on the network. You have a successful deployment for each contract.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

190

Keep in mind that the --reset flag is useful when you change your

code, as you need to recompile, and re-deploy.

> truffle migrate --reset

 Truffle Console
Now that your contract has been deployed to your development network

you can communicate with your smart contract via the Truffle CLI. To do

so, you can open a console and connect it to your development network.

> truffle console --network development

Once you run the console command, your Terminal shows you are in

Truffle CLI development mode.

truffle(development)>

To get out of CLI mode, click Control+C twice or type .exit in the console.

Figure 5-8. Truffle migrate command response

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

191

 Interact with Your Smart Contract via the
Truffle CLI
You set two variables, hello and sign, for your smart contracts so that you

can interact with them.

truffle(development)> HelloWorldContract.deployed().then(_app

=> { hello = _app })

undefined

truffle(development)> MD5SmartContract.deployed().then(_app =>

{ doc = _app })

undefined

To interact with your HelloWorldContract contract, you can call the

main public function you created because you exposed the function greet.

truffle(development)> hello.greet()

'Hello World'

Similarly, you can interact with the MD5SmartContract.sol

contract. You will pass the same MD5 hash you generated in Chapter 3

(634ef85e038cea45bd20900fc97e09dc) and call your main function called

sign. That function will generate an SHA256 hash, as shown in Figure 5-9.

truffle(development)> doc.sign('634ef85e038cea45bd20900fc97e09dc')

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

192

Now you can confirm that you have an SHA256 hash by calling the

signature function; see the output in Figure 5-10.

truffle(development)> doc.signature()

'0x7869cd540ff8c3b2635ec87251f361e21ad3c72fbc2f79897b9816

bec54b0a48'

Figure 5-9. Creating a doc.sign transaction

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

193

You can download the entire smart contract project from here:

https://github.com/Apress/the-blockchain-developer/chapter5/step1/.

 Compile with Remix
So far you used the Truffle tools, Ganache network, and WebStorm IDE to

create, compile, deploy, and interact with your contract; however, there is

another even easier way. Remix offers an online IDE that can do the same

as WebStorm and Truffle.

To see this work, go to the Remix site: https://remix.ethereum.org.

Paste in the “Hello, World” smart contract code from your example.

Ensure that the right-side panel is set to the correct compiler; you will be

using “Current version:0.4.22.” Then click “Start to compile (Ctrl-S).” See

Figure 5-11.

Figure 5-10. Interacting with the MD5SmartContract smart contract
to produce a signature

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/Apress/the-blockchain-developer/chapter5/step1/
https://remix.ethereum.org

194

Create a new folder in your project and name it remix; then create

a file and name it HelloWorldContract.js. Click the Details button in

Remix Online IDE and copy and paste the WEB3DEPLOY content into the

HelloWorldRemix.js file you created, as shown in Figure 5-12.

Figure 5-11. “Hello, World” smart contract

Figure 5-12. “Hello, World” smart contract WEB3DEPLOY code

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

195

Note web3.js is Ethereum JavaScript apI; its libraries allow you to
interact with an Ethereum node via an hTTp or IpC connection. The
WEB3DEPLOY code can be deployed on a local or remote node.

 Private Ethereum Blockchain with Geth
You have interacted with your smart contract on your local machine. Next,

it’s advisable to run a full node and test your smart contract on a testnet

blockchain; this tests it in a more realistic environment. Geth offers a full

Ethereum node implemented in Go that you can run locally. This private

testnet will allow you to develop and test your current smart contract in

isolation from the real Ethereum blockchain.

To get started, first install Geth using Brew.

> brew tap ethereum/ethereum

> brew install ethereum

To ensure installation went well, run the --version command for the

current Geth version (I am using 1.8.27 at the time of writing).

> geth version

Version: 1.8.27-stable

 Initialized Geth Private Blockchain
Now that you have Geth installed, you will create your first block, or block 0,

which is called the genesis block. Create a file called genesis_block.json

and place it in the project root. For now just paste the provided JSON, but

note that you can generate a custom genesis block with the Python script

found here: https://blog.ethereum.org/2015/07/27/final- steps/.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://blog.ethereum.org/2015/07/27/final-steps/

196

For the scope of this book, you will use this script and set a low

difficulty of 1000 and gas limit of 1000000 for easy mining and low gas

fees; however, feel free to adjust as needed in your own experiments. See

genesis_block.json.

{

 "config": {

 "chainId": 1,

 "homesteadBlock": 0,

 "eip155Block": 0,

 "eip158Block": 0

},

 "difficulty": "0x1000",

 "gasLimit": "0x1000000",

 "alloc": {

 "0x44dc998cbc1c7504bec0a96af4a9aef6606a768a":

 {"balance": "0x1337000000000000000000"}

 }

}

Next you will create your private testnet. In Terminal, run this command:

> geth --identity "MyTestNet" --nodiscover --networkid 1999

--datadir testnet-blockchain init genesis_block.json

You will need an account for your testnet-blockchain; use the

account command. Select a simple password as you are running a local

test network, but on mainnet you need to be mindful of security; here I’m

choosing password 123.

> geth account new --datadir testnet-blockchain

Passphrase: 123

Repeat passphrase: 123

Address: { a8eceb3e2dd7af9c6fdb12edd8a7e84290932c2d}

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

197

As you can see, you received a wallet address after picking a password.

You can compare your output with mine, as shown in Figure 5-13.

 Geth Console
Now that you have your account set and testnet-blockchain chain, you

can open a Geth console to interact with the chain.

> geth --identity "MyTestNet" --datadir testnet-blockchain

--nodiscover --networkid 1999 console 2>> geth.log

Notice that I used the 2>> geth.log param to output the logs into a

custom file location. Once the Geth console starts, you can run the eth.

syncing command to check the current block being synced. In this case,

it will return false because there is nothing to sync; you are starting from

block 0 on a local network.

Figure 5-13. Creating a private testnet and wallet with Geth

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

198

You will receive a pop-up alert asking you the following:

“Do you want the application “geth” to accept incoming net-
work connections? Clicking Deny may limit the application’s
behaviour. This setting can be changed in the Firewall pane of
Security & Privacy preferences.” Select “Allow”.

Next, in the Geth terminal, run the syncing command.

geth> eth.syncing

false

If you run the eth.blockNumber command, it will return a zero as you

have not mined any blocks yet.

geth> eth.blockNumber

0

 Mine Ethereum for Your Private Testnet
You can then confirm you have a balance in your account with the

getBalance command.

geth> eth.getBalance(eth.accounts[0])

0

With the eth.accounts command, you will get the new account you

created.

geth> eth.accounts

["0xa2a6d8fe7e39645613e74fe19c79071ee52009ba"]

You can either generate or mine ether coins on the private Ethereum

chain you created. Regardless, you need to know how to mine coins,

because you will need transactions to be included in mined blocks as you

test your code. To start mining, just run the miner.start command.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

199

geth> miner.start()

null

Similarly, to stop mining, simply run the miner.stop command.

> miner.stop()

null

If you let the mining run, you will mine some blocks, so when you

check the block number, you will now see results as well as funds.

geth> eth.blockNumber

1672

geth> eth.getBalance(eth.accounts[0])

8.36e+21

 Deploy Remix to Geth
Now that your node is synced and you know how to mine, you can

deploy your contracts to the testnet. First, you need to unlock your main

Geth account to be able to use it. Ensure your account holds a balance;

otherwise, you won’t be able to deploy your contract on the network. On

Geth, unlock your account with your password so Geth can use it.

geth> personal.unlockAccount(eth.accounts[0], "123", 24∗3600)
true

I used the password 123, but you need to change it to your password if

you used a different password. Next, load the web3.js script you generated

on Remix.

> loadScript("remix/HelloWorldContract.js")

null [object Object]

true

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

200

It takes a few seconds to mine the next block and include this contract;

once it’s mined, you will receive the following message:

Contract mined! address: 0x9905f1663f1b808d52dca42ce26e0d264

8f8be07 transactionHash: 0x66b80787eb3eae16c9535a1bd86ff1a

623c1914ac9ffc2addde74655aed09157

If you are not seeing this message, make sure you are mining.

geth> miner.start()

Once the contact is mined, you will get the following message in

Terminal, which includes the address and transaction hash:

Contract mined! address: 0xe49da16551c5c5735de46e07e8ab9e

713310a13b transactionHash: 0x36d3ec593f63280ca6aae1b079bfb6

f00eea719468e04960643c23f39cbef5b3

 Deploy Truffle to Geth
Similarly, to deploy the web3.js contract’s script via Truffle, you run the

migrate --reset command. The --reset flag tells Truffle to run all the

migrations from the beginning. Ensure you use .exit to exit the Truffle

console prior to running the migrate command. Truffle will compile your

contract automatically.

truffle(development)> .exit

> truffle migrate --reset

Using network 'development'.

Network up to date.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

201

Now you can open a development console again.

> truffle console --network development

truffle(development)> HelloWorldContract.deployed().then(_app

=> { hello = _app })

undefined

truffle(development)> hello.greet() 'Hello World'

The contract is redeployed, and you can interact with your contract

again. You can download this step from here: https://github.com/

Apress/the-blockchain-developer/chapter5/step2/.

 Useful Commands in Geth
You can stop the Geth process by pressing Command+C and then exit, or

you can stop the process via aux to check whether there are any processes

open. Or you can use the killall command to stop the process.

> ps aux | grep geth

> killall -HUP geth

At any time, you can run the help flag to get a list of commands.

> geth –help

To get a list of the pending transactions, run the following:

> geth --identity "MyTestNet" --datadir testnet-blockchain

--nodiscover --networkid 1999 console 2>> geth.log

geth> eth.pendingTransactions

To remove your locally synced blockchain data from the public testnet,

use this:

geth> geth removedb

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/Apress/the-blockchain-developer/chapter5/step2/
https://github.com/Apress/the-blockchain-developer/chapter5/step2/

202

To remove your private blockchain testnet data, use this:

geth> geth removedb --datadir test-net-blockchain

To synchronize the blockchain more quickly, use the --fast flag

to perform a fast Ethereum sync. Note that you will not retain the past

transaction data with this command. The cache flag sets the cache limit.

geth> geth --fast --cache=1024

 Connect the Mist Ethereum Wallet to Your
Private Network
It would be useful to have a wallet to connect to your private network.

That’s where Mist is helpful. You can connect your private blockchain

to Mist and perform transactions, conducting realistic transactions as if

people were using your contracts.

To get started, download Mist from here: https://github.com/

ethereum/mist/releases.

For Mac, the file to download is called Mist-macosx-0-11-1.dmg at the

time of writing. Note that you can also achieve the same results with an

Ethereum wallet, which you can download from the same URL.

Next, you will be starting Mist and connecting it to your testnet

blockchain. At the command line, point to Mist’s location and the geth.

ipc database.

> /Applications/Mist.app/Contents/MacOS/Mist --rpc /[project

location]/MySmartContract/testnet-blockchain/geth.ipc

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases

203

Mist opens and shows your active account and balance, as shown in

Figure 5-14.

 Others to Interact with Your Smart Contract
Once the contract is published, anyone can use the address and

application binary interface (ABI) to connect and interact with the

contract. You can start and interact with your contract as if an actual

person is using your contract prior to publishing it to mainnet.

Mist is a desktop app that can be used for testing. To watch a contract,

in Mist, click the Contracts link at the top right and then click Watch

Contract, as shown in Figure 5-15.

Figure 5-14. Mist active account and balance

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

204

For others to run your contract, they need two things.

• Contract address

• Application binary interface

Note an aBI describes the contract’s functions. This description is
needed in order to know how to call the function. Think of it as a user
manual.

You can retrieve the contract address, as shown here:

truffle(development)>var hello = HelloWorldContract.deployed().

then(_app => { hello = _app })

truffle(development)>hello.address

'0x0b4f69f88390bc8cec93e730128a5e5c5dffd56c'

Similarly, you can retrieve the contract’s ABI with this command:

truffle(development)>JSON.stringify(hello.abi)

'[{"inputs":[],"payable":false,"stateMutability":"nonpayable","

type":"constructor","signature" '[{"inputs":[],"payable":false,

"stateMutability":"nonpayable","type":

"constructor","signature":"constructor"},{"constant":true,

"inputs":[],"name":"greet","outputs":[{"name":"","type":"string"}],

"payable":false,"stateMutability":"view","type":"function",

"signature":"0xcfae3217"}]'

Figure 5-15. Mist’s Watch Contract button

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

205

Then pass the contract address and ABI in Mist, as shown in

Figure 5- 16.

Notice that you omit the single quote from the ABI and address before

pasting it into Mist.

Now click OK, and you can see your contract in the watched contracts

list. See Figure 5-17.

Figure 5-16. Passing info in Mist

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

206

You have your contract in Mist, and you can interact with it, send

funds, listen to events, and interact with functions, just as users will

interact with your contract on mainnet.

 MetaMask
Similar to Mist, another way to interact with your contracts, without even

downloading a desktop app, is in your Chrome or Firefox browser with a

plugin called MetaMask. Just as with Mist, you can utilize MetaMask to

connect your contract to mainnet, a public testnet, and a local blockchain

(such as the one you created with Ganache), or you can even connect

to Truffle Develop. To get started, download the MetaMask plugin for

Chrome or Firefox.

• Chrome Web Store: https://chrome.

google.com/webstore/detail/metamask/

nkbihfbeogaeaoehlefnkodbefgpgknn. Click the Add to

Chrome button. See Figure 5-18.

• Firefox Add-ons page: https://addons.mozilla.org/

en-US/firefox/addon/ether-metamask. Click the Add

to Firefox button.

Figure 5-17. Mist’s watched contracts

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn
https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn
https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn
https://addons.mozilla.org/en-US/firefox/addon/ether-metamask
https://addons.mozilla.org/en-US/firefox/addon/ether-metamask

207

Click the MetaMask icon and then the Continue button. Next, select

a password, accept the terms, save your secret backup phrase, and create

your account.

Now that the account is created, you have an option in the top

drop- down of which network to connect to, as shown in Figure 5-19.

Figure 5-18. MetaMask beta Chrome add-on

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

208

As you might recall, you programmed the truffle.js values to set

a network on localhost port 8584, which matches the default network;

however, you can set a custom RPC or connect to testnet or mainnet.

For more information regarding connecting Truffle with Metamask,

visit the Truffle framework docs;

https://truffleframework.com/docs/truffle/getting-started/

truffle-with-metamask

Figure 5-19. MetaMask beta Chrome network drop-down

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://truffleframework.com/docs/truffle/getting-started/truffle-with-metamask
https://truffleframework.com/docs/truffle/getting-started/truffle-with-metamask

209

 Public Testnet
Now that you are able to run your smart contract on a development

network, you can take an additional step prior to going to mainnet. You

can run your contract on a public testnet network.

 Syncing Blocks
There are three well-known testnets: Ropsten, Kovan, and Rinkeby. You can

program Geth to connect to a testnet with the --testnet flag, which will

connect to the public testnet network (Ropsten).

> geth --testnet --syncmode "fast" --cache=512 console

As before, the rpc flag is needed to accept the Geth RPC connections

and for Truffle to be able to connect to Geth. You are also setting it to fast

sync and limiting the cache size to 512. This command includes starting

the Geth console.

To check the status of the syncing command, use this:

geth> eth.syncing

{

 currentBlock: 1011878,

 highestBlock: 3569550,

 knownStates: 2058862,

 pulledStates: 2056745,

 startingBlock: 968873

}

Once complete, the syncing command will return false. Keep in mind

that there are millions of state entries and 3,569,550 blocks at the time of

writing, which could take hours depending on your connection speed.

The currentBlock value is the current block being retrieved out of a total

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

210

 number of blocks (the highest block). This can give you an idea of how

long the download will take.

As you recall, you can check current block number being sync by running

the eth.blockNumber command in a Geth console, as well as check your

balance in your account to see whether it has been updated yet.

> eth.blockNumber

> eth.getBalance(eth.accounts[0])

 Public Testnet Faucet
In addition to the testnet coins, you can get additional testnet coins via a

faucet, just as you did with bitcoin. Go to https://faucet.ropsten.be/, as

shown in Figure 5-20, and request coins to your wallet address set in Mist.

Figure 5-20. Ropsten Ethereum faucet

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

https://faucet.ropsten.be/

211

 Ethereum Mainnet
From the Ganache console, you were able to publish to a public testnet

network (Ropsten). The next step is to publish to the Ethereum mainnet.

To do so, you will restart Geth and connect this time to the mainnet.

> geth --fast --cache=512

Just as with the public testnet, you will have to wait for Geth to sync.

Once syncing is complete, you can call the Truffle migrate command to

deploy, and as before, you need your account to have ether coins.

> truffle migrate --reset

 Recommended Tools for Smart Contracts
In this chapter, I covered Ganache, Solidity, IntelliJ, Truffle, Geth, Remix,

and MetaMask; however, there are other tools worth mentioning.

 – Solium: Solidity code cleaning solution

 – conteract.io: Interacting with smart contracts

 – Populus: Development framework for Ethereum smart

contracts

 – Parity: Light-weight Ethereum node

 – Drizzle: Front-end dapp solution

 Summary
In this chapter, I covered how to utilize Ganache to simulate a full-node

Ethereum client. You installed Ganache, and once you were able to

connect to the Ganache CLI, you were able to create a network and listen

to a port. You learned how to use the IntelliJ IDEA plugin for Solidity to

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

212

easily develop smart contracts with autocomplete and highlights. You

also learned about the Truffle Suite and how to create your own smart

contracts using the command-line wizard. You connected Truffle to the

Ganache network and then created a “Hello, World” smart contract as well

as “MD5SmartContract” smart contract.

Once you created your contracts, you were able to migrate your smart

contract utilizing the Truffle deployment process. You compiled and

deployed your smart contract code with Truffle to your development

network. Then, you used the Truffle console to interact with your smart

contract via the Truffle CLI. Next, you created a private Ethereum

blockchain with Geth and initialized the blockchain. You utilize the Geth

console and mined pretend Ethereum on your Geth private testnet.

Next, you deployed your Remix web3.js to the Geth private testnet you

created, as well as deployed your Truffle contracts. In addition, you looked

at some useful Geth commands that will help you while developing smart

contracts. You connected your Mist Ethereum wallet to the private Geth

network you created and were able to interact with your smart contract.

You were able to use MetaMask in your browser as a replacement for a

desktop client.

Once you were able to see your contract working, you set a public

testnet and synced blocks as well as got coins via a faucet. Lastly, you

learned how to migrate your code to the Ethereum mainnet.

In next chapters, you will learn how to build front-end code for smart

contracts and publish a complete dapp.

ChapTEr 5 EThErEuM WallETS and SMarT ConTraCTS

213© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_6

CHAPTER 6

EOS.IO Wallets
and Smart Contracts
In Chapter 2, I introduced EOS.IO when I covered bitcoin, altcoins, and

different consensus mechanisms. Specifically, I covered how EOS.IO is

an example of altcoins that turn into tokens; you created an EOS block

producer and were able to create a full node capable of mining EOS

tokens. Ethereum was the beginning of your blockchain smart contract

development, and you learned to use the Solidity language to write smart

contracts and dapps. EOS.IO has created a more robust architecture than

Ethereum for smart contract and dapp development.

In this chapter, I will expand on the EOS.IO blockchain and show how to

build a EOS.IO smart contract that can be used in decentralized applications

(dapps). You will set up a local testnet environment and learn how to

configure the EOS.IO tools and libraries. You will learn about EOS.IO wallets

and how to create, delete, and back up wallets as well as perform operations

such as opening, locking, and unlocking a wallet. I will cover the wallet’s key

pairs and how to spin up and re-spin up a local testnet block producer. You

will learn about permissions and single-signature and multisignature options.

To better understand EOS.IO smart contracts, you will create a

“HelloWorld” smart contract and smart contract token. You will create

accounts, write smart contract C++ code, compile code, and generate

WebAssembly and ABI files as well as Ricardian contracts. You then will

learn how to deploy your smart contracts and interact with them, as well as

issue tokens and transfer tokens to another user.

214

Lastly, you will connect to a public testnet block producer for testing

in a more realistic environment as well as connecting and publishing on a

mainnet block producer.

Note EOS is the native cryptocurrency (token) that powers the EOS.IO
software. EOS.IO is an industrial-scale, fully customized blockchain
architecture protocol that enables decentralized applications by
providing access to the parts that make up the blockchain. Think
of EOS.IO as a blockchain OS as it emulates a real computer and
enables access to resources such as the CPU, GPU, RAM, and hard
disk. EOS.IS does not charge transaction fees while performing
millions of transactions per second. An EOS token is a utility token,
and owning the token (staking) provides bandwidth and storage on
the EOS.IO blockchain. You receive resources in proportion to the total
stake you own to the total stake (owning 1 percent of EOS tokens
gives usage up to 1 percent of total EOS.IO bandwidth).

“EOS.IO software introduces a new blockchain architecture
designed to enable vertical and horizontal scaling of decen-
tralized applications. This is achieved by creating an operat-
ing system-like construct upon which applications can be
built. The software provides accounts, authentication, data-
bases, asynchronous communication, and the scheduling of
applications across many of CPU cores or clusters. The result-
ing technology is a blockchain architecture that may ulti-
mately scale to millions of transactions per second, eliminates
user fees, and allows for quick and easy deployment and
maintenance of decentralized applications, in the context of a
governed blockchain.”

—EOS.IO block.one white paper

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

215

As mentioned in Chapter 2, EOS.IO is built on the delegated proof of

stake (DPoS) consensus. EOS.IO is able to handle low latency and tens of

millions of active users daily (bypassing Ethereum). This is achieved by the

DPoS consensus as well as EOS.IO running as multithreaded (running on

multiple computer cores) and acting as an OS.

This type of scalability can enable adoption of blockchain technology by

large businesses. EOS.IO offers many additional features such as the following:

• Free rate-limited transactions

• Low-latency transactions (such as 0.25 seconds

broadcast time or 0.5 block time)

• Recovery of stolen keys

• Parallel execution of applications

• Atomic transactions with multiple accounts

I encourage you to read the EOS.IO white paper and visit the GitHub

page for a full list of features.

 – https://github.com/EOSIO/eos

 – https://github.com/EOSIO/Documentation/blob/master/

TechnicalWhitePaper.md

Financially speaking, EOS was developed by a private company called

block.one and was able to raise an astonishing $4 billion in initial coin

offering (ICO) via an ERC-20 tokens sale. At the time of writing, EOS’s price is

selling around $2 to $8, and it has a total market capitalization of around $2

billion, which makes EOS the seventh largest cryptocurrency by market cap.

EOS offers a few repositories to help with the development of EOS.IO

contracts; they are listed at https://github.com/EOSIO and include the

following: eos, eosio.cdt, eosjs, demux-js, and eosio.contracts. You will

be installing the EOS and EOSIO.CDT libraries in this chapter. The EOS

library is an open source smart contract platform, and the EOSIO.CDT

library is a suite of tools for building EOS.IO contracts.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/EOSIO/eos
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO

216

At the time of writing, the EOS.IO platform has a steep learning curve.

The code keeps changing, and the documentation and examples of EOS.IO

are not being updated in timely manner, so it may feel like chasing a

moving target at times. This results in code sometimes not compiling,

commands not working, and documentation and examples containing

code and commands that have been deprecated. It’s easy to find yourself

stumped a few times while developing a contract; however, once you

understand EOS.IO, it’s easy to overcome these obstacles.

 Setting Up a Testnet Environment
Before jumping into coding, let’s start by installing EOS.IO and EOSIO.

CDT. You will build your EOS.IO version and set up a local testnet block

producer. Then you will learn about the EOS.IO tools called cleos, keosd,

and nodeos and how to configure them and create and manage a wallet

with cleos. These tools and libraries are necessary for development.

 Install EOS.IO
The easiest way to install EOS.IO on macOS is with Brew.

> brew tap eosio/eosio

> brew install eosio

The current EOS.IO is version 1.7.3. I recommend checking the repo

and issues section on GitHub (https://github.com/eosio/eos) or doing

a Google search in case you encounter errors when installing or building

EOS.IO. Also see https://github.com/EOSIO/eos/issues.

Once the installation is complete, you will see the message in Figure 6- 1

in Terminal.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/eosio/eos
https://github.com/EOSIO/eos/issues

217

Next, add the EOS.IO binaries location to your environment, so you

can run nodeos from anywhere.

> export PATH=$PATH:/usr/local/eosio/bin

This will set the path variable on this Terminal session, but you want

to set the path environment variable permanently, so add it to your bash_

profile file by opening the file with vim or your favorite text editor.

> vim ~/.bash_profile

Next, insert the following lines:

Setting PATH for EOSIO

PATH="/usr/local/eosio/bin:${PATH}"

Lastly, run bash_profile to commit the changes.

> . ~/.bash_profile

EOS.IO comes out of the box with built-in tools and programs; they

are here: /usr/local/eosio/. Figure 6-2 shows an architecture diagram of

these tools.

• nodeos: This is the core EOS.IO daemon that enables

you to run a blockchain node component. nodeos

can be configured with plugins. Additionally, nodeos

can be configured to run a block producer in a local

development environment or on dedicated endpoints.

It interacts with a blockchain by creating blocks.

Figure 6-1. EOS.IO successfully built

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

218

• cleos: This is the main command-line tool for EOS.IO.

It interfaces with the REST API exposed by nodeos. It

can also access wallets as it interacts with keosd. For a

list of cleos commands, just run the following:

> cleos

• keosd: This is the wallet daemon to load and manage

the wallet’s keys. It does this by loading wallet-related

plugins, such as the HTTP interface and the RPC API.

• eosio-launcher: This tool will help you deploy a

multinode blockchain network.

Figure 6-2. Basic architecture of EOS. Photo credit: developers.eos.io.

 Install EOSIO.CDT
You installed EOS.IO. The other important library you need is EOSIO.CDT

(CDT stands for “contract development toolkit”). EOSIO.CDT is the suite

of tools used to build EOS.IO contracts. To get the library installed, you will

be using Brew.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

219

> brew tap eosio/eosio.cdt

> brew install eosio.cdt

The latest EOSIO.CDT at the time of writing is version 1.6.1. Run brew

update if you have an older version.

> brew upgrade eosio.cdt

To ensure installation went well, run the eosio-cpp command with the

help argument.

> eosio-cpp --help

As you recall, you used Truffle and Remix to generate the Ethereum’s

application binary interface (ABI) files. For EOS.IO smart contracts, you

use eosio-cpp, which is a compiler that generates a WebAssembly (.wasm)

file, which is the ABI that is needed to be uploaded to the blockchain

for the smart contract. eosio-cpp also generates helper functions that

serialize/deserialize the types defined in the ABI code for the smart

contract development.

You can find more information about EOSIO.CDT on the GitHub page:

https://github.com/EOSIO/eosio.cdt.

In the future, if you need to remove EOSIO and EOSIO.CDT, run the

following commands:

> brew remove eosio

> brew remove eosio.cdt

Note eosio-cpp is the replacement for eosiocpp, which has
been deprecated. Originally eosiocpp was part of the EOS.IO
installation, but now it’s part of CdT.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/EOSIO/eosio.cdt

220

 Build EOS.IO
A good way to visually understand EOS.IO and the tools associated with

EOS.IO is to look at Figure 6-2.

 keosd and nodeos Configuration Files
The default ports for keosd and nodeos utilize the same port: 8888.

To configure nodeos, see this config file:

> vim "/Users/[user]/Library/Application Support/eosio/nodeos/

config/config.ini"

Inside the config.ini file, a notable variable to change is the plugins

list that you load. You won’t make changes, but as you advance in your

development, you may need to make changes.

Like with nodeos, you can configure keosd by editing this config file:

> vim ~/eosio-wallet/config.ini

Once you open the file, note that there is a variable named http-

server-address that can be used to change from port 8888 in case you

need that port for other software. Here let’s set it to any port you like.

The variable is commented out. To set it to port 9000, change it

from this:

http-server-address =

to the following:

http-server-address = http://127.0.0.1:9000

You could use the default port; however, it’s good to know how to

configure EOS.IO.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

221

 Create and Manage a Wallet with cleos
In the previous section, I introduced some EOS.IO built-in programs and

tools.

As mentioned, cleos provides a REST API interface that is exposed

by nodeos. The cleos reference guide can be found here: https://

developers.eos.io/eosio-cleos/reference.

To find the cleos --version number, run the --version client

command. At the time of writing, you get to build d4ffb4eb.

> cleos version client

d4ffb4eb

As mentioned, to get a list of commands, just type cleos. or cleos

--help;.

> cleos --help

If you don’t remember a specific subcommand, type the command

and get the subcommands list in the output; for instance, the get

command outputs the subcommands list such as info for your block

producer’s info.

> cleos get

> cleos get info

Failed to connect to nodeos at http://127.0.0.1:8888/; is

nodeos running?

Notice that as you don’t have a node running, you get no results and

an error message; however, later in this chapter, when you spin up nodeos,

you will get information about your block producer.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://developers.eos.io/eosio-cleos/reference
https://developers.eos.io/eosio-cleos/reference

222

 EOS.IO Wallets
The EOS.IO wallets use keys and offer a locked (encrypted) state and

an unlocked (decrypted) state to protect the keys. The lock and unlock

commands need the high entropy password that is provided to you once

you create a wallet. The wallet’s keys can be associated with an account to

provide permission to the account’s tokens, but it’s not necessary for the

creation of a wallet.

The wallet’s software uses cleos as the intermediary layer between

keosd key retrieval operations and the nodeos blockchain actions. For

instance, you can use cleos to access an account as it requires signatures

to be generated from the keys. To create the default wallet, just run the

create wallet command. Use the --to-console flag to get the master key

(password).

> cleos wallet create --to-console

Creating wallet: default

Save password to use in the future to unlock this wallet.

Without password imported keys will not be retrievable.

"[DEFAULT_MASTER_KEY]"

Make sure you store the password. Now you can check that the wallet

was created and run the wallet list command, and you will be able

to see an array that lists the wallets and includes the default wallet you

created.

> cleos wallet list

Wallets:

[

 "default ∗"
]

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

223

Notice that once you create your default wallet, there is an asterisk next

to the wallet’s name. The asterisk means that it’s unlocked. You’ll learn

more about the lock and unlock states in the next section.

 Delete and Back Up Wallets
To remove the wallet you created, you need to remove the actual wallet’s

file; it’s located here: ~/eosio-wallet.

> rm -rf ~/eosio-wallet

Run the wallet list command, and you can see that the wallet array

is empty.

> cleos wallet list

"/usr/local/eosio/bin/keosd" launched

Wallets:

[]

To back up the wallet, copy the wallet’s files and store them in a safe

location.

 EOS.IO Wallet with Custom Name
So far, you created the default wallet. Now let’s say you want to create

another wallet and name it mywallet. All you have to do is utilize the

-n or --name flag. Choose a name and be careful about the strict name

restrictions (a–z and 1–5 are allowed only, with a length of 12). I am

choosing mywallet.

> cleos wallet create -n mywallet --to-console

Creating wallet: mywallet

Save password to use in the future to unlock this wallet.

Without password imported keys will not be retrievable.

"[DEFAULT_MASTER_KEY]"

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

224

 EOS.IO: Open, Lock, and Unlock a Wallet
When you created your wallet, you got a high entropy master key, which

is your password. This password is used to encrypt (lock) and decrypt

(unlock) your wallet file. To lock and unlock your wallet, use the following

commands:

> cleos wallet lock -n mywallet

> cleos wallet unlock -n mywallet

password: [DEFAULT_MASTER_KEY]

password: Unlocked: mywallet

The lock and unlock commands enable your wallet to set a state of

encryption and decryption that is protected by your password. What you

are protecting are the wallet’s keys.

To unlock the default wallet, just run the following:

> cleos wallet unlock

Also, to perform operations on your wallets, you need to first open the

wallet. When keosd gets restarted, the wallet will be closed. Run the open

command to open the wallet as needed.

> cleos wallet open

Opened: default

 Generating EOS.IO Keys
Just as in other blockchains, EOS.IO stores keys in a wallet. You generate

these keys and assign them to an EOS.IO account. There are multiple ways

to create keys. You will be using cleos here. First let’s re-create the default

wallet, in case you deleted it previously.

> cleos wallet create --to-console

Creating wallet: default

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

225

Save password to use in the future to unlock this wallet.

Without password imported keys will not be retrievable.

"[DEFAULT_MASTER_KEY]"

Running wallet list should show you two wallets.

> cleos wallet list

Wallets:

[

 "default",

 "mywallet ∗"
]

Next, to create two public/private key pairs, run the create key

command.

> cleos create key --to-console

Private key: [PRIVATE_KEY_1]

Public key: [PUBLIC_KEY_1]

> cleos create key --to-console

Private key: [PRIVATE_KEY_2]

Public key: [PUBLIC_KEY_2]

As you noticed, you ran the create key command twice. This is not

a typo; you need to have two keys: one for the active user and one for the

owner. You’ll learn more about this concept once you create an account.

The command you ran output key pairs of public and private keys.

Notice that the public key starts with the EOS keyword. These arbitrary

key pairs are meaningless by themselves because they have no authority

(they do not belong to any wallet or account). To assign these key pairs to a

wallet, you can import these keys into your wallet.

> cleos wallet import --private-key [PRIVATE_KEY_1]

imported private key for:

[PRIVATE_KEY_1]

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

226

imported private key for: [key]

> cleos wallet import --private-key [PRIVATE_KEY_2]

imported private key for: [PRIVATE_KEY_2]

In the output of your command, you received a confirmation message

from the command line that the key pairs were added. However, you can

also confirm that the key pairs were added by calling the wallet keys

command.

> cleos wallet keys

[PUBLIC_KEY_1, PUBLIC_KEY_2]

Additionally, you can request to view the key pairs.

> cleos wallet private_keys --password [DEFAULT_MASTER_KEY]

[[PUBLIC_KEY_1, PRIVATE_KEY_2],[PUBLIC_KEY_1, PUBLIC_KEY_2]]

In the previous command, you passed the --password argument

instead of waiting for the command line to ask that you enter your master

password.

Lastly, you need to import a special EOS.IO parent account. This

special parent account is used to bootstrap the EOS.IO nodes. Without this

private key, you won’t be able to create your account. EOS.IO accounts

need a parent account to create another account; that’s how EOS.IO

allocates resources and protects against spam and hackers.

> cleos wallet import --private-key

5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3

imported private key for:

EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV

Note At the time of writing, the parent wallet works; however, this
can change, and you may need to find a parent wallet that can be
used to bootstrap the EOS.IO wallet.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

227

Take a look at your output in case you would like to compare yours

with mine; see Figure 6-3.

 Spin Up a node with nodeos
Transactions are attached to a block, and you need a block producer to be

able to pass these transactions to the network.

You can skip creating an EOS node (nodeos) if you connect directly to

a public testnet or the mainnet; however, it’s better to first run your smart

contracts on a local testnet network before committing your code to a

public testnet or mainnet.

At this point, you should be used to this process as you did the same

thing when you developed a smart contract for Ethereum. Feel free to

revisit Figure 6-2, where you can see the diagram of nodeos and the EOS.

IO blockchain relationship.

To start your own single-node local blockchain block producer, in a

separate terminal, run nodeos.

> nodeos -e -p eosio --plugin eosio::chain_api_plugin --plugin

eosio::history_api_plugin --contracts-console

Figure 6-3. Setting up EOS.IO wallet keys with a special parent account

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

228

This command starts the block producer and should display the

process on the console.

info 2019-04-28T19:03:34.776 thread-0 chain_plugin.cpp:333

 plugin_initialize] initializing chain plugin

info 2019-04-28T19:03:34.811 thread-0 block_log.cpp:134

 open] Log is nonempty

info 2019-04-28T19:03:34.820 thread-0 block_log.cpp:161

 open] Index is nonempty

info 2019-04-28T19:03:34.878 thread-0 http_plugin.cpp:422

 plugin_initialize] configured http to listen on

127.0.0.1:8888

...

...

...

As you can see, the console shows that your local network starts

producing blocks. Notice the command you used sets the plugins, and also

you set the --contracts-console flag.

This flag is necessary to be able to see messages you print to the

console while in development mode.

Note You can also set the --contracts-console flag inside
the config.ini file instead of passing this argument with nodeos
every time.

As you recall, you previously were running the cleos get info

command and getting no results, as you did not have a block producer

running; now if you run the same command in a new Terminal, you can

observe information about your blocks.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

229

> cleos get info

{

 "server_version": "d4ffb4eb",

 "chain_id": "cf057bbfb72640471fd910bcb67639c22df9f92470936cd

dc1ade0e2f2e7dc4f",

 "head_block_num": 73699,

 "last_irreversible_block_num": 73698,

 "last_irreversible_block_id": "00011fe2a80bf11315396c85e70860

122dddc24ac083911fba31f7ee2d64eb3e",

 "head_block_id": "00011fe36fab1fc2d4885067e1391c72782895d43f14

cf7970ac282ddef17d67",

 "head_block_time": "2019-04-28T19:04:06.500",

 "head_block_producer": "eosio",

 "virtual_block_cpu_limit": 200000000,

 "virtual_block_net_limit": 1048576000,

 "block_cpu_limit": 199900,

 "block_net_limit": 1048576,

 "server_version_string": "v1.5.1-dirty"

}

 Re-spin Up a Testnet Local node (nodeos)
If you want to clear the block producer’s history, delete all the blocks, and

re-spin up your local testnet, you will use what is called a hard replay by

using the following flags:

--delete-all-blocks --delete-state-history --hard-replay

These arguments will clear the accounts on the local testnet as well as

the blocks. The complete command will look as follows:

> nodeos -e -p eosio --plugin eosio::chain_api_plugin --plugin

eosio::history_api_plugin --delete-all-blocks --delete-state-

history --hard-replay --contracts- console

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

230

 EOS.IO Accounts
EOS.IO accounts hold a human-readable name that is stored on the EOS.

IO blockchain.

To create an account on the mainnet, someone with an EOS.IO

account needs to create it for you. The reasons behind this regulated

process are spam and hacker prevention and resource allocation. By

default, the account holds two native names/permissions.

 – Owner: This is used to recover other permissions, which

is useful in the event that the permission has been

compromised.

 – Active: This is used for high-level account changes

such as transferring funds or voting for block producers.

When you created your testnet account, you imported a special EOS.IO

parent account key to bootstrap. Each permission name needs a “parent.”

The parent authority is to be able to make changes to any of the permission

settings for all of its children. EOS.IO provides a special account’s parent

key for the local testnet that you imported in order to create your account.

See Figure 6-4.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

231

For a transaction to be valid and signed, each named permission needs

conditions to be met such as a client with an unlocked wallet, and the

wallet has to grant authority permission for the account. If you don’t meet

these conditions, the transaction will fail.

Now that you understand accounts, you are ready to create your own

account. You already created a wallet and imported the parent key. To

create an account, you run the following command’s syntax:

> cleos create account eosio [ACCOUNT_NAME] [OWNER_PUBLIC_KEY]

[ACTIVE_PUBLIC_KEY]

The OWNER_KEY value is the public key of the account owner authority,

and the ACTIVE_KEY value is the public key of the account’s active

authority.

Figure 6-4. Account high-level architecture and permission structure.
Photo credit: hackernoon.com.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

232

In this example, let’s call the account myaccount and use the two

keys you created. The command will look like so (see Figure 6-5 for the

expected output):

> cleos create account eosio myaccount [PUBLIC_KEY_1]

[PUBLIC_KEY_2]

You generated two keys, so it doesn’t matter which key you decide to

use as your active and which one as an owner; just remember which key

you used for which.

To see the list of the account, use this:

> cleos get accounts [PUBLIC_KEY_1]

{

 "account_names": [

 "myaccount"

]

}

Note You may get an error message while trying to create the
account if you missed any of the steps provided in this chapter. The
error is “Error 3090003: provided keys, permissions, and delays do
not satisfy declared authorizations.”

Figure 6-5. Creating your first EOS.IO account called myaccount

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

233

 Wallets, Keys, and Accounts: Complete
Commands
To ensure you fully understand the process, here is a summary of how to

create an account:

 1. Ensure nodeos is running in a separate Terminal window.

> nodeos -e -p eosio --plugin eosio::chain_api_plugin

--plugin eosio::history_api_plugin --delete-all-blocks

--delete-state-history --hard-replay --contracts-

console

 2. Ensure your wallet is unlocked. Run > cleos

wallet list (check that there is an asterisk next to

the wallet’s name).

 3. The EOS.IO special account’s parent key (5KQwrPbwd

L6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3)

was imported to bootstrap the EOS.IO.

cleos wallet import --private-key 5KQwrPbwdL

6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3

 4. Check the key’s list using > cleos wallet keys. It

should output an array with the keys you imported.

To summarize what you have done so far or to redo the entire process

of creating an account, here are the complete steps:

> rm -rf ~/eosio-wallet

> cleos wallet create --to-console

> cleos wallet open

> cleos wallet unlock --password [DEFAULT_MASTER_KEY]

> cleos create key --to-console

> cleos create key --to-console

> cleos wallet import --private-key [PRIVATE_KEY_1]

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

234

> cleos wallet import --private-key [PRIVATE_KEY_2]

> cleos wallet import --private-key

5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3

> cleos wallet keys

> cleos create account eosio myaccount [EOS∗ OWNER_KEY] [EOS∗
ACTIVE_KEY]

 Custom, Single Signature (Single-Sig),
and Multisignature (Multisig)
By default, you configured your account with a single signature (aka single-

sig) because it’s authorized for actions with the default (active and owner)

permissions. However, it’s possible to configure your accounts with a

multisignature (aka multisig) or with custom permissions. For instance, you

can configure your account with multiple keys to authorize specific owner

actions and active actions. You could use this feature, for instance, to create a

permission called “publish” and give this permission to an account to allow

only published smart contracts without the ability to withdraw tokens.

 “HelloWorld” Smart Contract
You will be writing a smart contract with the minimal code. You will call

your smart contract “HelloWorld.”

 “HelloWorld” Smart Contract Accounts
To get started, you will create two accounts for your smart contract, one

to publish your smart contract and one for interacting with a user. See the

output in Figure 6-6.

> cleos create account eosio helloworld [PUBLIC_KEY]

> cleos create account eosio john [PUBLIC_KEY]

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

235

 “HelloWorld” C++ Code
EOS selected C++, which resulted in mixed reviews from the blockchain

development community. C++ is a low-level language, and it allows

better management of resources such as memory pointers and operator

overloading. This can result in better performance; however, it comes with

a cost of increased code effort, especially if you are not familiar with C++.

The EOS.IO infrastructure is written in C++, so it should not be a

surprise that C++ was selected by EOS.IO’s team. EOS.IO smart contracts

are written in C++ saved as the CPP file format; then you compile the C++

code to WebAssembly that is then used for deployment.

Note EOS.IO smart contract source files can be broken into three:
CPP, hPP, and Ricardian. The hPP file defines the smart contract
class, actions, and tables. The CPP file is the C++ code, which
implements the action logic. The Ricardian file is the digital document
(more about this in the next section).

Start by creating the helloworld contract directory by navigating into

the directory.

> mkdir ~/Desktop/helloworld && cd $_

Notice that you used your desktop but can use any directory you like.

Next, paste the helloworld.cpp code with vim or your favorite text editor.

Figure 6-6. Creating your accounts for the “HelloWorld” smart contract

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

236

> vim helloworld.cpp

#include <eosiolib/eosio.hpp>

using namespace eosio;

class helloworld : public contract {

 public:

 using contract::contract;

 [[eosio::action]]

 void hello(name user) {

 print("World: User: ", user);

 }

};

EOSIO_DISPATCH(helloworld, (hello))

The code imports EOS.IO libraries. The class HelloWorld is of type

contract, and you create a method called hello. The method is your

action; you pass the user and print the word world and the username.

Once a user interacts with your contract and calls the hello action, they

will get world with the user’s name.

Notice that in this example you included the eosio.hpp file. To debug

the EOS.IO smart contract, you need to use old-fashioned caveman

debugging.

Note Caveman debugging, aka printf() debugging, is nothing
more than adding print statements around your code. The EOS.IO
Print API supports the char array, 64-bit and 128- bit unsigned integer,
and others. The print is done by wrapping the C++ code printi,
prints_l, printi128, and others in print.hpp, which includes
the import eosio.hpp library statement.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

237

 Smart Contract IDE
Using Terminal is perfectly acceptable, but as the code becomes more

complex, using a professional IDE can be helpful for code completion,

highlights, and readability. You can use the IDE of your liking. As you

already used WebStorm, you can continue and import the project to

WebStorm. WebStorm already includes a C++ plugin, so there’s no need

to install any special plugin. Figure 6-7 shows HelloWorld project open in

WebStorm.

To import your project, select File ➤ Open and navigate to the project’s

location: ~/Desktop/helloworld.

Figure 6-7. HelloWorld project imported into WebStorm version
2018.2.4

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

238

 Compile a Contract and Generate an ABI
As mentioned, the eosio-cpp tool takes C++ code and outputs

WebAssembly and ABI. This is done by running the following command:

> eosio-cpp -o helloworld.wasm helloworld.cpp --abigen

Notice that in the command you specify the output file’s name, which

is helloworld.wasm. After running this command, the compiler generates

the following files: helloworld.wasm and helloworld.abi.

To ensure the compiler worked as expected, you should be able to see

these two files; see Figure 6-7.

 Ricardian Contracts
Once you generate your WASM and ABI files, notice that you are getting

more than 20 warnings. Among these warnings, you should find the

following warnings in the output:

Warning, empty ricardian clause file

Warning, empty ricardian clause file

Warning, action <hello> does not have a ricardian contract

Note Ricardian contracts were invented by Ian Grigg in 1996 to
help bridge the gap between software application and court of law.
The Ricardian contracts file in EOS is a digital document in Markdown
language format (.md, .markdown) and defines the terms and
conditions of the interaction between the parties. It is set as
parameters but written as readable text. EOS uses cryptographically
to sign and verify the Ricardian contracts.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

239

To help generate the Ricardian contracts, you can copy a Python script

and template from a contributor that generates the files automatically:

https://github.com/EOS-Mainnet/governance.

As it’s just three files, instead of using clone, you can use wget to

download these files.

Check that you have wget installed on your machine.

> wget --help

In case it’s not installed, install wget on macOS via Ruby and Brew.

> ruby -e "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/master/install)" < /dev/null 2> /dev/null

> brew install wget

> brew upgrade wget

Next, inside your helloworld project, create the directory and

download the files you need.

> cd ~/desktop/helloworld

> mkdir rc && cd $_

> wget https://raw.githubusercontent.com/EOS-Mainnet/

governance/master/scripts/abi_to_rc/abi_to_rc.py

> wget https://raw.githubusercontent.com/EOS-Mainnet/

governance/master/scripts/abi_to_rc/rc-action-template.md

> wget https://raw.githubusercontent.com/EOS-Mainnet/

governance/master/scripts/abi_to_rc/rc-overview-template.md

Next, run the Python script.

> cd ../

> python rc/abi_to_rc.py helloworld.abi

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/EOS-Mainnet/governance

240

The script generates for you automatically helloworld-rc.md and

helloworld-hello-rc.md already formatted in the Markdown language.

If you view these files, you will notice that the Python script used the

templates you downloaded to generate your files, and you can fill in the

terms and conditions about your smart contract.

You can lay out the guidelines of what exactly your users are

purchasing/exchanging and allow better trust between parties; it can

include terms and conditions such as intent, warranty, remedies, force

majeure, dispute resolution, governing law, and many others. Pay close

attention to the terms you set as these can be enforced in a court of law.

These terms allow skipping middlemen such as attorneys to have the

smart contract set the terms and conditions that both parties agree to.

 Deploy a Contract
To deploy your smart contract to your local testnet network, the set

contract command is used to upload the contract. See Figure 6-8 for the

expected output.

> cleos set contract helloworld ~/Desktop/helloworld -p

helloworld@active

Figure 6-8. Terminal output of deploying your smart contract

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

241

 Interact with a Smart Contract Action
Now that you have your smart contract deployed on your local blockchain, you

can interact with the hello action you created. You will call the hello action

and pass your username to the user’s active key. See the output in Figure 6-9.

> cleos push action helloworld hello '["john"]' -p john@active

You can download the entire smart contract project from here:

https://github.com/Apress/the-blockchain-developer/chapter6/

helloworld/.

 Smart Contact Tokens
The EOS.IO GitHub project has a library of smart contracts as examples

that can be used. One of these libraries is a smart contract called eosio.

token. This contract enables developers to create other tokens as well

as transfer a token. You will be using these libraries to create your own

tokens. To get started, you will create a new smart contract project and call

it eosio.token.

> mkdir ~/Desktop/eosio.token && cd $_

 Create Accounts
Token gets issued by an “issuer” account. You will start off by creating the

“issuer” account and an account called jane that you can use to transfer

some tokens.

> cleos create account eosio eosio.token [public key]

> cleos create account eosio jane [public key]

Figure 6-9. Terminal output of push action on a smart contract

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/Apress/the-blockchain-developer/chapter6/helloworld/
https://github.com/Apress/the-blockchain-developer/chapter6/helloworld/

242

 Compile wasm with the Latest eosio.token Code
To issue eosio.token, you will be using the eosio.token.hpp file that

defines the contract’s class, actions, and tables, as well as eosio.token.

cpp that holds the logic and coding. You can find these files and the

entire SmartContract project here: https://github.com/Apress/the-

blockchain-developer/chapter6/eosio.token/.

Next, ensure you change the include statement in the CPP code to

point to the HPP file you downloaded from GitHub using vim or your

favorite text editor.

> vim eosio.token.cpp

Change the eosio.token.cpp file on line 6 to point to the location of

eosio.token.hpp file; in this case, it’s here:

include "~/Desktop/eosio.token/eosio.token.hpp"

 Deploy eosio.token
Equipped with eosio.token.hpp and eosio.token.cpp, you have all the

files needed. You can compile the latest HPP and CPP files to generate

the .wasm code with the eosio-cpp command, just as you did in the

HelloWorld smart contract example.

> eosio-cpp -o eosio.token.wasm eosio.token.cpp --abigen

Next, deploy the eosio.token contract using the set contract command.

> cleos wallet unlock --password [DEFAULT_MASTER_KEY]

> cleos set contract eosio.token ~/Desktop/eosio.token --abi

eosio.token.abi -p eosio.token@active

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://github.com/Apress/the-blockchain-developer/chapter6/eosio.token/
https://github.com/Apress/the-blockchain-developer/chapter6/eosio.token/

243

 Create the EOS.IO Token
To create your new token, you utilize the create action. You will be passing

the symbol_name type, which includes two parameters.

 – Maximum supply float: In this example, you’ll set this to

20 million as your max tokens: 20000000.0000.

 – Symbol: For symbol_name, you need to pick a name.

The name must be capital alpha characters only; in this

example, select the name TOKEN.

The “issuer” account has the authority to make a call issue action or

any other actions such as recalling, freezing, and whitelisting owners.

To create a new token action, run the following command. See

Figure 6-10 for the expected output.

> cleos wallet unlock --password [DEFAULT_MASTER_KEY]

> cleos push action eosio.token create '["eosio",

"20000000.0000 TOKEN"]' -p eosio.token@active

You can confirm the tokens were issued by calling the currency stats

command.

> cleos get currency stats eosio.token TOKEN

{

 "TOKEN": {

 "supply": "0.0000 TOKEN",

Figure 6-10. Expected output for creating an eosio.token action

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

244

 "max_supply": "20000000.0000 TOKEN",

 "issuer": "eosio"

 }

}

 Issue Tokens
Let’s create another account that you can use to send some of the tokens

you issued. We’ll call this account jane.

> cleos create account eosio jane [public key]

Next, call the “issue” action to issue tokens. In this example, you will

issue jane 500 tokens.

> cleos push action eosio.token issue '["jane", "500.0000

TOKEN", "move tokens to Jane"]' -p eosio@active

To see the TOKEN balance in the jane account, you can use the get

currency command.

> cleos get currency balance eosio.token jane TOKEN

500.0000 TOKEN

 Transfer Tokens
To transfer tokens, you run the transfer action. As an example, let’s

transfer tokens from Jane’s account to John’s account.

> cleos push action eosio.token transfer '["jane", "john",

"100.0000 TOKEN", "transfer tokens"]' -p jane@active

You can confirm John’s account received the tokens by running the

currency balance command on both accounts to ensure the math adds up.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

245

> cleos get currency balance eosio.token jane TOKEN

 400.0000 TOKEN

> cleos get currency balance eosio.token john TOKEN

 100.0000 TOKEN

Figure 6-11 shows the expected output.

 Connecting to a Public Testnet Block
Producer
At the time of writing, EOS.IO provides two public testnets so you can test

in a more realistic environment before committing your code to mainnet.

 – Jungle2.0: https://jungletestnet.io/

 – Kylin: https://www.cryptokylin.io/

I chose Jungle2.0 for the public testnet in this example, but feel free to

test both; it’s the same process just with different endpoints.

To get started, visit the Jungle project’s GitHub page here: https://

github.com/CryptoLions/EOS-Jungle-Testnet.

The EOS Jungle testnet is almost identical to your local testnet. You just

need to set up the Jungle API endpoint and generate EOS faucet tokens to

pay for the account’s creation and RAM usage.

Figure 6-11. Expected output for creating, transferring, and
balancing eosio.token actions

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://jungletestnet.io/
https://www.cryptokylin.io/
https://github.com/CryptoLions/EOS-Jungle-Testnet
https://github.com/CryptoLions/EOS-Jungle-Testnet

246

The testnet API endpoint is https://jungle.eosio.cr:443; just add

the endpoint so your previous commands will work.

Note Always test on testnet before publishing your code to mainnet.
In September 2018 alone, $240,000 worth of EOS tokens were stolen
from EOSBet’s smart contract accounts, and it was because of a
smart contracts programming bug that was exploited by hackers and
not bugs in the EOS.IO platform itself. You’ll learn more about security
in Chapter 10.

To create an account, you will generate the two default permissions:

owner and active. You can do this at https://nadejde.github.io/eos-

token-sale/ or by running the same command line you used before twice.

> cleos create key --to-console

Private key: [key]

Public key: [key]

Next, you need to create an account. You can create an account by

visiting the Jungle page and using the public keys you generated: https://

monitor.jungletestnet.io/#account.

I picked a random name of liontestaa11, but feel free to use any

name you want. Just be careful of the strict name restrictions (a–z and 1–5

are allowed only, with a length of 12). If you don’t comply with this strict

name restriction, your account won’t get created. See Figure 6-12.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://jungle.eosio.cr:443
https://nadejde.github.io/eos-token-sale/
https://nadejde.github.io/eos-token-sale/
https://monitor.jungletestnet.io/#account
https://monitor.jungletestnet.io/#account

247

Notice that you get the same warning as you got on your local testnet

regarding the transaction being executed, but it’s not confirmed.

To get information about the testnet, you can run the same get info

command you ran for your local testnet. Just add the Jungle endpoint URL

argument.

> cleos --url https://jungle.eosio.cr:443 get info

All the cleos commands need the URL endpoint argument; you can

edit your bash file to point cleos to the URL you want. Edit the bash

profile and point to the public testnet for the block producer, while still

pointing to your local machine for the wallet.

> vim ~/.bash_profile

Figure 6-12. Jungle2.0’s liontestaa11 account was created

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

248

Add the following line:

alias cleos-testnet='cleos --url https://jungle.eosio.cr:443

--wallet-url http://localhost:8888'

You did not set the config.ini file here with a custom port, but you are

changing the port to 8888. Remember, to run the bash profile to commit

the changes, run this:

> . ~/.bash_profile

Now you can run the all the commands with cleos-testnet.

> cleos-testnet get info

 Buy Resource Allocation on the Public Testnet
Block Producer
Now you will be publishing your “HelloWorld” smart contract you created

in the previous section.

If you were publishing your contract on mainnet, you would need to

buy RAM and pay to create your account so you could publish your smart

contract. EOS tokens are used to purchase resources. In the public testnet,

you don’t need to spend actual money for your resources. You get fake

faucet tokens that can be used for the Jungle block producer to purchase

your resources.

To get these tokens, all you need is your account name. Type your

account name to get tokens from the Jungle faucet: http://monitor.

jungletestnet.io/#faucet. See Figure 6-13.

I’ll explain resource allocation in more detail in the next section when

you ready to publish to mainnet.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

http://monitor.jungletestnet.io/#faucet
http://monitor.jungletestnet.io/#faucet

249

You can check the account balance with the get account command;

see the output in Figure 6-14.

> cleos --url https://jungle.eosio.cr:443 get account liontestaa11

Figure 6-13. Jungle2.0 gets tokens through the Jungle faucet

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

250

Now that you have EOS tokens, you can run the cleos system buyram

command to purchase RAM so you can publish your smart contract.

> cleos --url https://jungle.eosio.cr:443 system buyram

liontestaa11 liontestaa11 "10 EOS"

 Publish Your HelloWorld Contract on the Public
Testnet
Now that you have tokens, you can publish your HelloWorld smart contract

on the public testnet. Run the set contract command.

> cleos --url https://jungle.eosio.cr:443 set contract

liontestaa11 ~/Desktop/helloworld

You can confirm the code was published using the get code

command. You can see the entire expected output in Figure 6-15.

> cleos --url https://jungle.eosio.cr:443 get code liontestaa11

Figure 6-14. Jungle faucet account balance

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

251

 Connecting to Mainnet
The EOS.IO mainnet is almost the same as the testnet; you just need to use

a different API endpoint and actually pay for the accounts and RAM with

real EOS tokens.

There are three main ways to get EOS tokens:

• Mine: This creates a block producer and mines EOS.

• Purchase EOS tokens: They can be purchased on crypto

exchanges.

• Gift: This gets an EOS as a gift from someone.

As you saw in previous chapters, creating a block producer and getting

selected by the EOS.IO network is not an easy process or guaranteed, and

as you just need coins to buy RAM for opening an account and getting

resources, you don’t need too many coins. At this point, it’s easy to just

purchase these tokens.

Figure 6-15. Expected output when publishing contract on public testnet

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

252

You would need to first purchase bitcoin, Ethereum, or other coins

on a fiat exchange such as Coinbase, CEX.io, or Coinmama. Then use

exchanges such as Binance or Changelly to change your coins to EOS

tokens. The reason is that there is no known exchange available at the time

of writing that can directly change your fiat to EOS.

Next, you need an endpoint. The 21 selected block producers are

able to provide you with an endpoint. You can find all the available block

producers and other data regarding the blocks being mined here:

 – http://eosnetworkmonitor.io/

 – https://eostracker.io/producers

Once you find a block producer you would like to use, you append

/bp.json to the end of the URL to find the endpoint. Here’s an example:

https://api.eosnewyork.io/bp.json.

The JASON output gives you the block producer’s information and

ensures it’s ready for usage. To set the URL, just adjust the --url flag to the

block producer you would like to connect to; the rest of the commands are

all the same as the public testnet.

> cleos --url https://api.eosnewyork.io:443 get info

As before, you can edit the bash profile file as you did with the public

testnet.

alias cleos-mainnet='cleos --url https://api.eosnewyork.io:443

--wallet-url http://localhost:8888'

Your bash profile should look like this:

PATH="/usr/local/eosio/bin:${PATH}"

alias cleos-testnet='cleos --url https://jungle.eosio.cr:443

--wallet-url http://localhost:8888'

alias cleos-mainnet='cleos --url https://api.eosnewyork.io:443

--wallet-url http://localhost:8888'

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

http://eosnetworkmonitor.io/
https://eostracker.io/producers
https://api.eosnewyork.io/bp.json

253

Confirm it works by running the get info command.

> cleos-mainnet get info

I’ll spare you from repeating the same steps as in the public testnet

section and spending actual tokens on the “HelloWorld” sample smart

contract. However, I will cover resource allocation, as you need a good

understanding of it to publish smart contracts on mainnet.

 Resource Allocation Explained
I spoke a bit about resource allocation when I covered testnets, as you

needed to get EOS tokens to publish your smart contract on a public

testnet.

For mainnet, you need actual EOS tokens to buy RAM and create your

account. There are three types of resources consumed by EOS.IO accounts.

 – Disk: Bandwidth and log storage (disk)

 – CPU: Staking computation and computational

backlog (CPU)

 – Ram: Staking state storage

 Buy RAM on Mainnet
To free up RAM, you need to delete data from the account state

mechanism, and then the RAM can be sold on the RAM marketplace at

the current RAM price. The RAM marketplace price can be found here:

https://www.feexplorer.io/EOS_RAM_price.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://www.feexplorer.io/EOS_RAM_price

254

 Create an EOS.IO Account on Mainnet
EOS.IO accounts are necessary, as they are needed to interact with

the EOS.IO network and create an account. As I explained previously,

someone who already has an account needs to vouch for creating new

accounts. If you don’t have someone with an EOS account who can create

your account, you can get an account created with third-party providers.

The third-party providers normally charge you a fee. For instance, you

can download EOS Lynx on your phone and pay $2 to create an EOS.IO

account.

 Change Your Account’s Public and Private Keys
Once you get a mainnet account, you are not done. You need to make sure

you change your private key before funding your account, as the service

that creates your account could just store your private keys and take your

funds. You are already familiar with all these steps; the only new command

here is remove_key, which removes the old key from your wallet. You

create a new key, unlock your wallet, reset the permissions with the new

key, and remove the old public key as well as import the new private key.

Follow these steps:

> cleos create key

> cleos wallet unlock

> cleos set account permission [ACCOUNT NAME] active [PUBLIC

KEY] owner -p [ACCOUNT NAME]@owner

> cleos set account permission MYACCOUNT owner [PUBLIC KEY] -p

[ACCOUNT NAME]@owner

> cleos wallet remove_key [OLD PUBLIC KEY]

> cleos wallet import [PRIVATE KEY]

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

255

 CPU and Bandwidth Allocations
To get bandwidth and CPU, you need to allocate EOS tokens, and the

resource will be available automatically for you proportional to the amount

held in the staking contract period.

For instance, during the staking window, say you would like to

consume 1 CPU unit. To do so, you would need to compete with other

accounts so you have 0.1 percent of all CPU-staked tokens under your

account or have someone else delegate these tokens to your account.

After the staking period, the consumed resources free up, and you

can reuse the same staked tokens, so there’s no need to keep purchasing

more EOS tokens each time. The EOS tokens can be undelegated after

you are done.

 Where to Go from Here
EOS.IO offers an online resource with links; see https://developers.eos.io.

The developer resource provides valuable documentation as well as

information about other tools I did not cover such as these:

 – State handler: demux-js

 – JavaScript library: eosjs

I also recommend exploring the EOS GitHub smart contracts

examples, which can help you learn about all the functionally and what’s

possible with EOS.IO.

 Summary
In this chapter, I covered the EOS.IO blockchain in more detail. You set

up a local testnet environment by installing the EOS.IO and EOSIO.CDT

libraries and learned how to configure keosd and nodeos. You learned

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

https://developers.eos.io

256

about EOS.IO wallets, including how to create, delete, and back up

wallets as well as how to create a wallet with custom names and perform

operations such as opening, locking, and unlocking a wallet.

Next, I covered a wallet’s key pairs and how to spin and re-spin up

a local node (nodeos) to run a local block producer. You learned about

active and owner permissions as well as single-signature (single-sig) and

multisignature (multisig) are accounts.

To understand EOS.IO smart contracts, you created a “HelloWorld”

smart contract and tokens by first creating accounts and then writing C++

code. You then compiled and generated WebAssembly and ABI files as

well as Ricardian contracts. You then learned how to deploy the contracts

you created and interact with them. Once your tokens were generated, you

were able to issue and transfer tokens between accounts.

You continued by connecting to a public testnet block producer

to test your smart contracts in a more realistic environment, and lastly

you learned how to connect and publish on mainnet and learned about

resource allocations on an EOS.IO network.

In the next chapter, I will cover NEO blockchain wallets and NEO smart

contracts.

ChAPTER 6 EOS.IO WAllETS And SMART COnTRACTS

257© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_7

CHAPTER 7

NEO Blockchain
and Smart Contracts
In Chapter 1, I covered the NEO proof of stake (PoS) blockchain consensus

mechanism. In Chapter 2, you created a NEO bookkeeping node on AWS

Ubuntu and learned how to request a consensus authority certificate and

get elected as a bookkeeper.

In this chapter, I will expand on the NEO blockchain, and you will learn

how to set up a local environment, do operations in NEO wallets, create

smart contracts (NeoContracts), and publish. In this chapter, I will cover

NEO’s blockchain high-level architecture and how to set up your local

environment, create a local testnet chain, create “Hello, World” projects in

both C# and Python, publish these smart contracts, and learn the criteria

to compare Ethereum versus EOS versus NEO.

As you can see, understanding smart contracts, blockchain, and the

process of publishing is similar between projects, and covering three

projects is sufficient to gain an understanding of how to work with the

rest of the 40 (at the time of writing) projects available for writing smart

contracts that are out there.

258

 NEO’s High-Level Blockchain Architecture
NEO was founded in 2014 with the name of AntShares by Da Hongfei and

Erik Zhang and then was open sourced on GitHub in June 2015 with the

name of NEO. The NEO consensus mechanism is called Byzantine Fault

Tolerant (dBFT), which is a modified PoS. This type of mechanism makes

NEO a scalable blockchain. Bookkeeping nodes are randomly selected to

validate transactions and can support up to 10,000 transactions per second.

“NEO is a non-profit community-driven blockchain project. It
utilizes blockchain technology and digital identity to digitize
assets and automate the management of digital assets using
smart contracts. Using a distributed network, it aims to create
a ‘Smart Economy’. ”

—Neo.org

NEO transactions are charges with NEO gas tokens. The NEO genesis

block includes 100 million NEO. Half were sold to early investors, and half

were locked in NEO smart contract tokens. Each year 15 million NEO tokens

are unlocked to be used for the NEO development team to fund development

goals. NEO charges fees for transactions as well as a smart contract’s related

transactions. The NEO fee structure related to smart contracts is listed in the

NEO white paper: http://docs.neo.org/en-us/sc/systemfees.html.

In term of programming languages, NEO smart contracts support

the NeoVM (NEO’s Universal Lightweight Virtual Machine) compiler,

Microsoft.net, Java, Kotlin, Go, and Python.

Here are some notable NEO development features:

 – NEO can create smart contract tokens built with the

Communications Standard (NEP5). These tokens are

able to communicate with other NEO tokens.

 – Smart contracts can communicate with other

blockchains (this feature is called NeoX).

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

http://docs.neo.org/en-us/sc/systemfees.html

259

 – NEO can pass information via a file sharing protocol

(called NeoFS).

 – It uses a lattice-based cryptographic mechanism called

quantum-safe (NeoQS).

NEO’s “smart economy” infrastructure (I will explain this concept in

the next section) enables smart contracts to support front-end applications

and integrate with other smart contracts and other blockchains through an

open API.

NEO’s open API allows you to integrate data from external sources.

Figure 7-1 shows a high-level architecture diagram of the NeoVM. The

NeoVM core is the deployment box (the dashed box). As you can see,

the external data with the execution engine (green box) enables smart

contracts to interact and perform operations. Then data can be stored on

the NEO distributed ledger.

“We hope the platform can be used for different front end
 scenarios, such as the Digital asset wallet, Forum, Voting,
Profile management and Mobile applications. The platform
also features an open API that can be used for integration with
other systems.”

—Da Hongfei, Zhao Chen founder of NEO

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

260

 What Is NEO’s Smart Economy?
NEO coined the term smart economy, which explains NEO’s vision.

This vision consists of changing your existing market from a traditional

economy to the smart economy with the power of a decentralized

blockchain. To achieve this goal, NEO integrates digital assets, digital

identities, and smart contracts into its platform.

Figure 7-1. NEO’s virtual machine architecture diagram. Image
credit: docs.neo.org.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

261

Note NeO’s smart economy vision is aimed to change the way existing
markets work, from a traditional economy to a “smart economy,” with
the power of a decentralized blockchain. this is achieved by integrating
digital assets, digital identities, and smart contracts.

NEO’s smart economy concept consists of integrating the following

three components:

 – NEO digital assets: These assets contain electronic data

and can be programmed. Placing the digital assets on a

blockchain provides the benefit of PoS blockchains, such

as decentralization, trust, traceability, and transparency.

The NEO blockchain enables users to register, trade,

and transfer different types of assets. Physical assets get

digitization through digital identity; then these digital

assets can be protected by law through validation. For

an ICO, it costs 5,000 gas to register a digital asset. Then

there is a renewal fee of 5,000 gas per year.

 – NEO digital identity: This is the digitization of

the identity of individuals, organizations, or any

other entities. A NEO digital identity is based on

the public key infrastructure (PKI) X.509 standard

implementation that also supports web of trust point-

to-point certificates.

 – NEO smart contract: Smart contracts on NEO are called

NeoContracts, and they support the C#, VB.NET, F#,

Java, Kotlin, and Python languages. Supporting these

languages gives the benefits of having sophisticated

development, debugging, and compilation in the Visual

Studio, Eclipse, and WebStorm IDEs. NeoVM is built for

scalability.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

262

 Setting Up Your Local Environment
As mentioned, NEO supports enterprise-level programming languages such

as C#, VB.NET, F# Java, Kotlin, and Python. This selection of programming

languages gives NEO an advantage in building NeoContracts because you

can utilize the Visual Studio 2017 IDE, which offers enterprise tools for

development. In this chapter, I will be using the following .NET tools:

 – Visual Studio 2017 IDE: To follow along, install the

Visual Studio (VS) Community Edition for Mac.

 – .NET Core: To follow along, install .NET Core to be able

to publish DLL library files.

In addition to .NET, you need the following tools:

 – Xcode 10.1: You need Xcode 10.2 for the tools and

libraries you will be installing.

 – Docker: Docker is a popular tool for creating containers

and integrating software. You will be using Docker for

your private net to run a whole NEO blockchain to

simulate four consensus nodes in a single, lightweight

Docker container.

 – neo-compiler: The NEO compiler is needed to turn your

code to an .avm file that can be deployed on the NEO

blockchain.

 – neo-cli: You will install and use the NEO command-line

tools for wallets, operations, and RPC calls to the

NEO API.

Now that you know what needed, let’s get started.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

263

 Xcode 10.2
At the time of writing, you need Xcode with at least version 10.1 for the

tools and libraries needed for NEO. The latest Xcode at the time of writing

is Xcode 10.2.1.

You can check whether you already have Xcode installed via the

command line.

> xcodebuild --version

Xcode 10.1

Build version 10B61

This command will output the version if Xcode is installed. If you need

to upgrade or install, visit the Apple developer portal: https://developer.

apple.com/download/.

 Install Visual Studio 2017 IDE
Next, download and install the latest version of Visual Studio (VS)

Community Edition for Mac. The community edition is free and can be

downloaded from the following URL: https://visualstudio.microsoft.

com/vs/community/.

For future reference, to uninstall a portion or all of VS, follow the

instructions here: https://docs.microsoft.com/en-us/visualstudio/

mac/uninstall#net-core-script.

The complete VS 2017 consumes a lot of disk space; however, you don’t

need all the packages downloaded. You need only Xamarin Workbooks in

order to develop NeoContracts, so only download what’s needed.

During the installation process, the wizard gives you an option of what

platforms and tools to install. Select Xamarin Workbooks by clicking the

checkbox and click the Install button. See Figure 7-2.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://developer.apple.com/download/
https://developer.apple.com/download/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://docs.microsoft.com/en-us/visualstudio/mac/uninstall#net-core-script
https://docs.microsoft.com/en-us/visualstudio/mac/uninstall#net-core-script

264

 Install .NET Core
You will be installing .NET Core so you will be able to publish DLL libraries

files via the command line. This will be done via the dotnet publish

command. To download it, go to the dotnet Microsoft site; see Figure 7-3.

https://dotnet.microsoft.com/download

Figure 7-2. Visual Studio Community Edition for Mac install wizard

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://dotnet.microsoft.com/download

265

You will be downloading both: Build apps - SDK v2.2.101 and Run

apps - Runtime v2.2.0.

To confirm the installation went well, run the dotnet --version

command.

> dotnet --version

2.2.101

This command will output the dotnet version, which at the time of

writing is 2.2.101.

If the SDK is not installed, you will get the following error message:

Did you mean to run dotnet SDK commands? Please install dotnet

SDK from: http://go.microsoft.com/fwlink/?LinkID=798306&clcid=

0x409

You can also output your machine info via the info command.

> dotnet --info

Figure 7-3. Downloading Microsoft dotnet core

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

266

 Install Docker

Next, you will install Docker. Docker is needed to create a container that

you will be using to create your local blockchain.

 – Download Docker from here: https://download.docker.com/mac/

beta/Docker.dmg

 – Installation instructions: https://runnable.com/docker/

install-docker-on-macos

Once Docker is downloaded and installed, double-click Docker from

the Applications menu to get Docker running. You will see the Docker icon

in the top menu on your computer. You can verify it’s installed correctly by

typing docker at the command line; it lists the Docker commands.

> docker

Run docker ps to view containers running to ensure you do not get

any error messages.

> docker ps

If Docker is not running, you will get the following message:

Cannot connect to the Docker daemon at unix:///var/run/docker.

sock. Is the docker daemon running?

Just open Docker in case you get this message. Additionally, if your

container is not running but it was already created, you can use the -a (all)

flag and find the container ID.

> docker ps –a

List containers

Then when you have the container ID, you can start that container.

> docker start [CONTAINER ID]

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://download.docker.com/mac/beta/Docker.dmg
https://download.docker.com/mac/beta/Docker.dmg
https://runnable.com/docker/install-docker-on-macos
https://runnable.com/docker/install-docker-on-macos

267

For now, you won’t see any list of containers as you have not created

your containers yet.

 Download NeoCompiler and Generate neon.dll
To create your NeoContract, you need to generate an .avm file. To do so,

you need to create a neon.dll file to be able to generate the smart contract.

To get started, you will clone the neo-compiler to your desktop and then

generate the neon.dll file.

> cd ~/Desktop

> git clone https://github.com/neo-project/neo-compiler

> cd ~/Desktop/neo-compiler/neon/

To publish your self-contained .avm file, you need to set a runtime

identifier. You can set the neon.csproj runtime identifier to the correct OS.

As I am using a Mac and not a PC here, I need to change the neon.csproj

file. To follow along, first make a copy of the original.

> cp neon.csproj neon.csproj.backup

I am using vim, but feel free to use your favorite editor.

> vim neon.csproj

Once the file is open, replace the following configuration, which sets a

target framework.

Note You can compare your output and settings with my project
here: chapter7/NEO/neo-compiler/neon/. also, you can find
neon.csproj there.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

268

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <Copyright>2016-2017 The Neo Project</Copyright>

 <AssemblyTitle>Neo.Compiler.MSIL</AssemblyTitle>

 <Version>2.3.1.1</Version>

 <Authors>The Neo Project</Authors>

 <TargetFramework>netcoreapp2.0</TargetFramework>

 <PlatformTarget>anycpu</PlatformTarget>

 <AssemblyName>neon</AssemblyName>

 <OutputType>Exe</OutputType>

 <PackageId>Neo.Compiler.MSIL</PackageId>

 <RuntimeIdentifiers>osx.10.12-x64</RuntimeIdentifiers>

 <RootNamespace>Neo.Compiler</RootNamespace>

 <Company>The Neo Project</Company>

 <Product>Neo.Compiler.MSIL</Product>

 <Description>Neo.Compiler.MSIL</Description>

 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'==

'Release|AnyCPU'">

 <DefineConstants>RELEASE;NETCOREAPP1_0</DefineConstants>

 <DebugType>none</DebugType>

 <DebugSymbols>False</DebugSymbols>

 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>

 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'==

'Debug|AnyCPU'">

 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>

 </PropertyGroup>

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

269

 <ItemGroup>

 <PackageReference Include="Mono.Cecil" Version="0.10.0" />

 <PackageReference Include="Neo.VM" Version="2.3.0" />

 </ItemGroup>

</Project>

Now publish pointing to the runtime identifier osx.10.11-x64 by

passing the RuntimeIdentifier setting param.

> dotnet publish -r osx.10.11-x64

The compiler created your neon.dll file here:

bin/Debug/netcoreapp2.0/osx.10.11-x64/publish/neon.dll

See Figure 7-4 for the output.

Figure 7-4. Compiling neon.dll for the target osx.10.11-x64

 neo-cli to Generate a NEO Node
Next, you want to create a fill NEO node. To generate a full NEO node,

there are two full-node options.

 – neo-gui: This can be used by both developers and NEO

users. It can be used to do basic user-client operations

such as managing wallets but also publishing smart

contracts. It has a visual user interface. However, it

works only on Windows at the time of writing.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

270

 – neo-cli: This provides an external API for basic wallet

operations. It also helps other nodes keep a consensus

with the network and generate new blocks.

In this case, I am installing on a Mac, so you will be using neo-cli to

manage your wallet via the command line. However, it’s good for you to

know that you can install neo-gui and create a virtual PC that way.

 neo-cli

For neo-cli, you need to install the LevelDB package as it’s a dependency.

As you recall, you already installed LevelDB in Chapter 3 via Homebrew.

If you did not install LevelDB previously, here is the command again:

> brew install leveldb

Alternatively, you can check if you have it and upgrade.

> brew upgrade leveldb

Next, clone neo-cli to your desktop.

> cd ~/Desktop

> git clone https://github.com/neo-project/neo-cli

Now, you can use dotnet to publish neo-cli from the source code you

downloaded.

> cd neo-cli

> dotnet restore

> dotnet publish -c Release

The .dll file should be created in the Release folder; see Figure 7-5 for

the output.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

271

Note You can compare your output and settings with my project
here: chapter7/NEO/neo-cli.

To run the .dll file, you use dotnet and the location of the DLL file,

which starts a NEO command-line terminal.

> cd bin/Release/netcoreapp2.1/

> dotnet neo-cli.dll.

neo-cli also supports plugins. For instance, you can enable logs in

neo-cli with application logs, or you can improve security in RPC nodes

via RPC Security. A list of plugins can be found here: https://github.

com/neo-project/neo-plugins.

 Create a Local NEO Private Testnet
You can run your NeoContracts on public testnets just as you have done

with other blockchains; however, it’s much better to run your own private

testnet so you have full control of it. A private testnet can be on the cloud,

but you will have to pay for the service provider, so it’s better if you set up

your testnet on your local box.

Figure 7-5. Building the neo-cli DLL

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://github.com/neo-project/neo-plugins
https://github.com/neo-project/neo-plugins

272

As evident by the documentation, the tools for NEO were primarily

developed for PC users. However, because of the tools developed by the

City of Zion community (CoZ, https://github.com/CityOfZion), running

a private chain is possible on any platform with Docker and Python.

The steps you need to take to run a local NEO private testnet are as

follows:

 1. Install neo-python: This allows you to run a full NEO

node and to interact with the blockchain.

 2. Create neo-privatenet-docker: This allows you to run

a whole NEO blockchain with four consensus nodes

in a single, lightweight Docker container.

 3. Create a NEO wallet: This connects to the private net

and creates a wallet.

 4. Claim: This is initially 100,000,000 NEO.

 5. Bootstrap the testnet: This synchronizes the network.

 Python 3.6
neo-python needs Python 3.6 or later. Mac comes out of the box with

Python, and you can verify you have python3 installed via the --version

command.

> python3 --version

Python 3.6.x

If you are running a previous version of Python and need to install/re-

install Python, follow these steps:

> brew unlink python

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://github.com/CityOfZion

273

Next, install Python with Brew.

> brew install --ignore-dependencies

https://raw.githubusercontent.com/Homebrew/homebrew-core/

f2a764ef944b1080be64bd88dca9a1d80130c558/Formula/python.rb

Now switch the Python versions.

> brew switch python 3.7.0

> brew switch python 3.6.5_1

In case you don’t have pip installed, run this:

> curl -O https://bootstrap.pypa.io/get-pip.py

> sudo python get-pip.py

> pip

 Install neo-python
Next, clone neo-python from the City of Zion and check out the

development branch.

> cd ~/Desktop

> git clone https://github.com/CityOfZion/neo-python.git

> cd neo-python

> git checkout development

You can create a virtual environment using Python 3.6 and then run

the activate script.

> python3.6 -m venv venv

> source venv/bin/activate

Ensure you have the latest pip version by running this command:

(venv)> pip install --upgrade pip

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

274

Now you can install the package in an editable form.

(venv)> pip install -e.

You can compare your output with mine; for the steps you took so far,

see Figure 7-6.

Figure 7-6. neo-python installation output

To confirm the installation went well, run the --version command. At

the time of writing, it outputs version 0.8.3.

> np-prompt --version

neo-python v0.8.3-dev

Now you can open a NEO bash with the np-prompt command. To exit

bash, run the exit command.

> np-prompt

neo>exit

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

275

 Install neo-privatenet-docker
You already installed Docker, so now you can create a Docker container

that will create four NEO nodes to create a private testnet. Go ahead and

install the Docker container on your desktop and build the files, as shown

here:

> cd ~/Desktop

> git clone https://github.com/CityOfZion/neo-privatenet-

docker.git

> cd neo-privatenet-docker

>./docker_build.sh

After the image is built, you can start a private network like this:

>./docker_build.sh

Successfully built #build number

Note if docker needs to be restarted or is not running, run the
following command:

> ./docker_run.sh

 Start a Network and Claim Initial NEO and Gas
Next, you will start your private network, create your wallet, and claim

the initial NEO and 40 gas. This is done by running the docker_run_and_

create_wallet.sh script. You can see the output in Figure 7-7.

> ./docker_run_and_create_wallet.sh

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

276

Once the process is completed, you can get a confirmation of the two

files that were created (see Figure 7-7).

 – neo-privnet.wallet: This file is a wallet that you can use

with neo-python.

 – neo-privnet.wif: This file is a WIF private key you can

import into other clients, such as neo-gui.

These files give you access to the wallet containing the NEO and gas for

your private network. The script automatically claimed the NEO and gas

for you.

You can check Docker and see the neo-privnet container running, as

shown in Figure 7-8.

> docker ps

Figure 7-8. neo-privnet Docker container running

Figure 7-7. docker_run_and_create_wallet script output

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

277

 Bootstrapping the Testnet
Now that you have a private testnet running, you need to bootstrap the

testnet blockchain database. This synchronizes the network and is done by

running np-bootstrap. This can take a while; once completed, you will get

confirmation.

> np-bootstrap -n

confirm

Successfully downloaded bootstrap chain!

Notice that you use the –n flag to get database notifications.

 Start NEO Bash
Now that you have your private testnet container running with four nodes

and you bootstrap your testnet database, you can start a neo-cli bash by

calling the prompt.py command.

> cd ~/Desktop/neo-python/neo/bin

> python3.6 prompt.py –p

Once you run this command, the NEO bash opens, and you can use

the state command to view information about the blockchain, as shown

in Figure 7-9.

neo> state

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

278

neo-cli offers access to many RPC calls via the NEO API; however, the

wallet needs to be open to run these commands. You can open your wallet

with the wallet command and the file location. This command will ask for

the wallet’s password. For the password, use coz.

neo> wallet open ~/Desktop/neo-privatenet-docker/neo-privnet.

wallet

password: coz

Next, rebuild the wallet and call the wallet command. You will see the

NEO and NeoGas fake testnet coins available (see Figure 7-10).

neo> wallet rebuild

neo> wallet

Figure 7-9. Information about your blockchain via the state
command

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

279

To close the wallet and exit bash, use the wallet close command

and exit.

neo> wallet close

neo> exit

You have succeeded in creating a private NEO blockchain running on a

testnet with 100 million NEO and 40.0 NeoGas claimed coins that you can

use for development.

 Potential Problems During Installation
NEO feels like chasing a moving target at times. In fact, it’s likely that by the

time you are utilizing the instructions in this book, the code won’t work as

expected because of changes in NEO. Moreover, during installation, there

Figure 7-10. neo-privnet wallet showing claimed coins

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

280

are some potential problems that you can encounter. I suggest you check

the latest information here:

https://github.com/CityOfZion/neo-python#getting-started

 Clean Database

If you need to clean the neo-python database to bootstrap and sync again,

run the following command:

> rm -rf ~/.neopython/Chains/privnet*

 b’Corruption Message

If you are getting a “b’Corruption: corrupted compressed block contents”

message, you need to re-install LevelDB.

> brew reinstall leveldb

 Restart Docker

It’s good to know how to restart Docker in case you need to restart your

computer, upgrade the Docker version, or upgrade the container files.

To restart Docker, select Docker from the top menu and click Restart

(see Figure 7-11).

The state is deleted (the whole “old” blockchain will be gone), and you

should also remove Chains/privnet from neo-python and any privnet

wallets you created.

> rm ~/Desktop/neo-privatenet-docker/*.wallet

> rm ~/Desktop/neo-privatenet-docker/*.wif

> rm -rf ~/.neopython/Chains/privnet*
> docker ps

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://github.com/CityOfZion/neo-python#getting-started

281

 NEO “Hello, World”
You have your local private testnet environment and NEO tools set up

on your machine, so now you are ready for the development of your

NeoContract project. You can develop in different languages, and the

process is similar. I will show you the code in C# as well as Python. I have

kept the code to a simple working “Hello, World” example, but once you

are able to get to this point, you can experiment with the different features

NEO has to offer. Follow these steps to create and publish your code:

 1. Building the NeoContract framework: Generate a

Neo.SmartContract.Framework.dll file.

 2. Create a NEO “Hello, World” Project: Create your #C

contract project.

 3. Code a NEO “Hello, World” smart contract in C#:

Code your minimalistic example in C#.

 4. Code a NEO “Hello, World” smart contract in Python:

Code your minimalistic example in Python.

 5. Publish: Publish your contract to your private testnet

chain.

Figure 7-11. Docker top menu icon restart button

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

282

 Building the NeoContract Framework: Neo.
SmartContract.Framework.dll
The first step is to create a file that holds the NeoContract framework code

that you need to include in your NeoContract in order to access the NEO

features.

To build your NeoContract, you will be downloading and installing

the NEO Development Pack. You will place these tools on your desktop for

easy access. Note that you can always move the files to a better location

later. Navigate to the desktop and clone the neo-devpack-dotnet project.

> cd ~/Desktop

> git clone https://github.com/neo-project/neo-devpack-dotnet

Next, run the neo-devpack-dotnet.sln file by double-clicking it or run

the Terminal open command.

> open neo-devpack-dotnet.sln

VS opens, and you should expect to get three error messages. Click

OK to dismiss these messages, as these errors will not affect building your

project.

In the left window, you can see the Solution tab, as shown in Figure 7- 12.

Expand “neo-devpack-dotnet (master)” if it’s not expanded.

Next, right-click Neo.Smartcontract.Framework and choose Build Neo.

Smartcontract.Framework. See Figure 7-12.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

283

Once the build is completed, you will get a “Build successful”

message in the VS output’s top middle window. You can also find the Neo.

Smartcontract.Framework.dll file here:

> cat ~/Desktop/neo-devpack-dotnet/Neo.SmartContract.Framework/

bin/Debug/netstandard1.6/Neo.SmartContract.Framework.dll

The .dll file is a .NET Intermediate Language (IL) language file

that you will include in your library to have access to the NeoContract

framework code. Neo.SmartContract.Framework does not support the full

set of C# features because of the differences between the NeoVM and the

C# IL file.

Figure 7-12. Building the Neo.SmartContract.Framework project

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

284

 Create a NEO “Hello, World” Project
Now that the Neo.Smartcontract.Framework.dll file is ready to be

used, you can create your project and include the NEO framework as a

dependency.

To get started, open Visual Studio. Select File ➤ New Solution... ➤ New

Project wizard opens up. In the left menu, select Library ➤ .NET Standard

Library. Next, select .NET Standard 2.0 for the .NET Core version and then

click Next. See Figure 7-13.

Figure 7-13. New Project template wizard

The configure wizard opens with a new project window. Call the

project hello_contract, leave the default settings and click the Create

button. See Figure 7-14.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

285

Once the project is created, you need to attach the file Neo.

Smartcontract.Framework.dll as a dependency. To do that, right-

click the Dependencies folder in the Solution menu and then click Edit

References. See Figure 7-15.

Figure 7-14. VS create new project wizard

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

286

In the Edit References window, go to the .NET assembly tab. Choose

Browse and add the Neo.Smartcontract.Framework.dll file located here:

~/Desktop/neo-devpack-dotnet/Neo.SmartContract.Framework/bin/

Debug/netstandard1.6/Neo.SmartContract.Framework.dll

Next, click Open, as shown in Figure 7-16. Select the Neo.

SmartContract.Framework.dll checkbox and click Ok.

Figure 7-15. “Hello, World” project dependencies edit reference

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

287

 Coding the NEO “Hello, World” Smart Contract
in C#
In this section, you will be using C# to develop your NEO “Hello, World”

smart contract in .NET. The NeoVM is more compact; you can compile

only limited C#/dotnet features into your AVM file. You can view the list of

features available for development here: https://docs.neo.org/en-us/

sc/quickstart/limitation.html.

The examples will use the “Hello, World” example provided in the NEO

examples.

using Neo.SmartContract.Framework;

using Neo.SmartContract.Framework.Services.Neo;

public class Class1: SmartContract

{

 public static void Main()

 {

 Storage.Put(Storage.CurrentContext, "Hello", "World");

 }

}

Figure 7-16. VC edit references .NET assembly

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://docs.neo.org/en-us/sc/quickstart/limitation.html
https://docs.neo.org/en-us/sc/quickstart/limitation.html

288

After writing the code, select Build from the top menu and then Build

All (or Command+B) to compile the Class1.cs code.

The .dll library file was created in the bin/Debug/netstandard2.0/

folder. You will use this .dll file with the neo-compiler and convert the

.dll file to an AVM file. After compiling the DLL file, the hello_contract.

dll file is created here:

~/Projects/hello_contract/hello_contract/obj/Debug/

netstandard2.0/hello_contract.dll

Note the NeoContract framework generates the NeoVm bytecode.
the code is saved in the aVm file format. the *.avm file can then be
deployed on the NeO blockchain.

 Coding the NEO “Hello, World” Smart Contract
in Python
Like in #C, you can generate some minimalistic Python code to print

“Hello, World.” You can use the Eclipse IDE (https://www.eclipse.org/

ide/) or any editor of your choosing. These instructions will be using vim.

Create a file named sample1.py.

> vim ~/Desktop/smartContracts/sample1.py

Type the following code to print “Hello World.”

def Main():

 print("Hello World")

 return True

To close and save the file, type :wq in vim.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://www.eclipse.org/ide/
https://www.eclipse.org/ide/

289

 Compiling Your Smart Contracts to .avm
Now that you have two files named sample1.py and hello_contract.dll,

the next step is to compile these files into NEO virtual machine files (.avm)

that you will deploy on the NEO blockchain.

Let’s start by compiling the hello_contract.dll file. Change the

directory to the DLL file.

> cd ~/Desktop/neo-compiler/neon/bin/Debug/netcoreapp2.0/

osx.10.11-x64/publish

Copy Neo.SmartContract.Framework.dll.

> cp ~/Projects/hello_contract/hello_contract/bin/Debug/

netstandard2.0/Neo.SmartContract.Framework.dll ~/Projects/

hello_contract/hello_contract/obj/Debug/netstandard2.0

Now, you can use the dotnet core tool to publish your DLL into an

AVM file, as shown in Figure 7-17.

> dotnet neon.dll ~/Projects/hello_contract/hello_contract/obj/

Debug/netstandard2.0/hello_contract.dll

You can see the output, as shown in Figure 7-17.

Figure 7-17. Converting a DLL into AVM bytecode

You can see the AVM bytecode file using the ls command.

> ls ~/Projects/hello_contract/hello_contract/obj/Debug/

netstandard2.0/∗.avm
hello_contract.avm

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

290

Similarly, you can compile the Python sample1.py file into AVM. In

NEO bash, use the sc build command.

> cd ~/Desktop/neo-python/neo/bin

> python3.6 prompt.py –p

neo> sc build ~/Desktop/smartContracts/sample1.py

Saved output to ~/Desktop/smartContracts/sample1.avm

 Publish a Smart Contract on a Private
Testnet
The next step is to deploy your AVM files to the NEO private testnet chain.

You don’t need to remember all the options. You can call the command

with the help flag to see the options.

neo> sc deploy help

Deploy a smart contract (.avm) file to the blockchain

Usage: sc deploy {path} {storage} {dynamic_invoke} {payable}

{params} (returntype)

path - path to the desired Python (.py) file

storage - boolean input to determine if smart contract

requires storage

dynamic_invoke - boolean input to determine if smart contract

requires dynamic invoke

payable - boolean input to determine if smart contract

is payable

params - input parameter types of the smart contract

returntype - (Optional) the return type of the smart

contract output

For more information about parameter types see

 https://neo-python.readthedocs.io/en/latest/

data-types.html#contractparametertypes

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

291

Figure 7-18. Publishing an AVM file on a private testnet chain

Next set storage, dynamic_invoke, and payable as false, and set

params and returntype as 01, as shown in Figure 7-18.

neo> sc deploy ~/Desktop/smartContracts/sample1.avm False False

False 01 01

NEO asks for a contract name; let’s call the contract helloWorld. Leave

the version, author, email, and description fields blank and enter your

wallet password to pay for the contract.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

292

 Publishing to Mainnet
To publish on mainnet, you can use the same process as you did with the

testnet; just bootstrap to the mainnet.

 Bootstrapping to Mainnet
To bootstrap to the mainnet blockchain, just run np-bootstrap with the

-m flag (it’s close to 10 GB). You can also use the notifications database on

mainnet.

> np-prompt –m -n

 Installing the neo-gui Client
An easier approach is to set and publish a NeoContract through neo-gui.

You need to set up a virtual machine for PC, but deploying AVM files is a

breeze. Follow these instructions:

https://docs.neo.org/en-us/sc/quickstart/deploy-invoke.html

https://docs.neo.org/en-us/node/gui/install.html

 Ethereum vs. EOS vs. NEO : Smart Contracts
Developer Perspective Showdown
At this point, I have covered three major blockchains for developing smart

contracts, and it’s hard not to compare them. However, there are so many

factors to take into account when comparing these three blockchains.

Additionally, at the time of writing, there are more than 40 blockchain

projects that you can choose from for the deployment of smart contracts.

Each project has pros and cons, and it’s beyond the scope of this book to

cover all of them. Instead, I will be focusing on specific criteria to try to

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://docs.neo.org/en-us/sc/quickstart/deploy-invoke.html
https://docs.neo.org/en-us/node/gui/install.html

293

help you understand what factors to consider when selecting a platform

out of the three I have covered so far.

There is an organization that tries to rate these different blockchains;

it’s called the China Center for Information Industry Development

(CCID). CCID utilizes contributions from professors and researchers at

China’s most prestigious educational institutions including Tsinghua and

Beijing University to take into account features, adoption rates, and many

other indicators to rank each blockchain. However, these ratings change

often, and you should check the latest blockchain ratings on the web site:

http://special.ccidnet.com/pub-bc-eval/index.shtml. Note that

at the time of writing, EOS and Ethereum have been maintaining their

dominance for the fourth consecutive time on the CCID list.

Further, determining what blockchain to utilize to publish smart

contracts should take into account more factors, such as your team’s

ability, funding, the number of needed transactions, the number of

accounts needed, wallets, exchanges, and much more.

Another major indicator to consider in determining the health of a

blockchain is the user and developer adoption. You can find the current

number of dapps for different smart contract platforms by checking these sites:

 – EOS: https://dappradar.com/eos-dapps

 – Ethereum: https://dappradar.com/dapps

 – NEO: http://ndapp.org/

Looking through the list of dapps, keep in mind that although there are

6,050 dapps listed on Dappradar.com at the time of writing, there are only

106,938 users, which indicates that few dapps are being used and mass

adaptation is not here yet.

Additionally, note that this comparison holds true at the time of

writing and is based on my opinion. You should do your own research

and due diligence before selecting the ideal blockchain to fit your smart

contract needs. Table 7-1 provides the comparison.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

http://special.ccidnet.com/pub-bc-eval/index.shtml
https://dappradar.com/eos-dapps
https://dappradar.com/dapps
http://ndapp.org/

294

Table 7-1. Etherum vs. EOS vs. NEO Smart Contracts Comparison

Category Ethereum EOS NEO

adoption Currently holds the

crown

Steady increase in

adoption

least adopted out of

the three

CCid ranking rank #2 rank #1 rank #5

Consensus

mechanism

poW dpoS dBFt

transactions

per second

15 millions 10,000 transactions

per second

dapp

deployment

cost

minimum fee of

32,000 gas, plus 200

gas per byte of the

source code

~120 eOS Fixed cost of 100 to

1,000 gas

iCO costs 5,000 gas

to register digital

asset; renew fee of

5,000 gas per year

transaction

cost

$0.05 to $3.5 $0 (however, creating

a new account costs

$1 to $4 per account

paid by application

developers)

initial 10 gas

execution free, fees

for system calls and

instruction

(see white paper)

Scalability No; await hard fork Yes Yes

dev tools mature development

tools from project and

community, including

tools for development

frameworks, ides,

communicating, and

test tools

dev tools could use an

upgrade; debugging

still done utilizing

caveman debugging

mature development

tools

(continued)

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

295

(continued)

Table 7-1. (continued)

Category Ethereum EOS NEO

docs Well documented

by both project and

community

Developers.

EOS.IO docs and

community tutorials

are not keeping up

with eOS.iO Github

changes; many Github

issues regarding

installation

projects docs

(http://docs.

neo.org) and

community tutorials

Community

support

the ethereum

Community

Fund (eCF) with

organization support:

microsoft, intel,

amazon, J.p. morgan,

and even government

involvement

Committed $1 billion

in funds focused on

the growth of the eOS

ecosystem

has run and

supported more

than 100 community

events

development

languages

Solidity, Bamboo,

Vyper, lll, Flint

C, C++ C#, VB.Net, F#

Java, kotlin, and

python; future plans

to support more

languages

market cap $14,068,553,166

USd

$2,341,702,969 USd $488,507,580 USd

Number of

dapps

1,324 226 less than 100

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

http://docs.neo.org
http://docs.neo.org

296

This list summarizes the Ethereum, EOS.IO, and NEO Blockchain

platforms’ pros and cons:

 – Ethereum’s biggest pro is that it was the first and most

popular smart contract platform and has the most

developers, third-party tools, support, documentation,

and support community. The biggest downside is the

Ethereum scalability issue of using PoW; there is a

hard fork in the works at the time of writing to remedy

this downside and move Ethereum to PoS. Another

downside is the cost of 200 gas per byte for source code;

this is pricey if your code is not optimized, especially as

you need to constantly republish your code. Lastly, the

support for less popular programming languages such

as Solidity is less than ideal.

 – EOS’s advantage is its scalability and ability to run

millions of transactions per second with no change,

Category Ethereum EOS NEO

Wallet desktop and

hardware wallets,

more options than

eOS and NeO

desktop and

hardware wallets

desktop and

hardware wallets

large

exchange

support

available on all major

exchanges

Not supported yet

on many major

exchanges such as

Coinbase

Not supported yet

on many major

exchanges such as

Coinbase

turing

complete

Yes No No

Table 7-1. (continued)

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

297

as well as faster code execution using WASM. EOS

supports C and C++, and the actual blockchain coded

in C++ gives it an advantage as C has a larger developer

base than Solidity. However, EOS has a long way to go

in terms of adoption, providing $1 billion funding can

be useful for companies and individuals with the right

idea. Its high ratings and great features are not enough

to replace Ethereum in dominance it claims to be. Only

time will tell.

 – NEO supports major programming languages (C#,

VB.NET, Java, and Python), giving it a big advantage

as a large number of developers can code with a

smaller learning curve. Additionally, the efficient and

inexpensive computationally execution of contracts

is an advantage; however, NEO has the smallest

community support out of the three platforms, and the

stiff 5,000 NeoGas to register digital assets yearly may

be a buzz killer for many potential projects.

 Where to Go from Here
Try these resources:

• Read the NEO docs here: http://docs.neo.org.

The site includes tutorials for sample NeoContracts,

creating NEO nodes, NEO utilities, white papers, and

more.

• Visit https://neo.org/client to find NEO wallets

from third parties.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

http://docs.neo.org
https://neo.org/client

298

• For debugging, check Neunity.Adapter or Neo- Debugger

to write test cases and run source code in the IDE:

https://github.com/CityOfZion/neo-debugger-

tools/releases.

• Create additional NeoContracts and include

SmartContractEvent, which gets dispatched through

neo.EventHub; subscribe and test your contracts.

 Summary
In this chapter, I covered the NEO blockchain and NEOContracts. You

looked at NEO’s high-level blockchain architecture and learned about

NEO’s smart economy. You set your local environment and upgraded

Xcode, installed Visual Studio 2017 IDE, and installed .NET Core.

You installed Docker, so you can now create containers, and you

downloaded neo-compiler and generated neon.dll. Lastly, you built the

neo-cli so you can manage your wallet and run other RPC operations.

Next, you created a local NEO private testnet by installing neo-python

and neo-privatenet-docker. You bootstrapped the testnet and started

NEO bash and were then able to start your network and claim NEO

and gas.

Additionally, I covered potential problems during the installation of

your NEO tools.

Next, you created two “Hello, World” projects, one in C# and one in

Python, and were able to compile these projects into the NEO virtual

machine’s bytecode (AVM) files. You took these files and learned how

to publish them on the NEO testnet blockchain as well as on the NEO

mainnet.

Lastly, I compared Ethereum versus EOS versus NEO to help you better

understand the differences between these platforms as well what criteria

to look at when selecting a platform for your smart contracts.

Chapter 7 NeO BlOCkChaiN aNd Smart CONtraCtS

https://github.com/CityOfZion/neo-debugger-tools/releases
https://github.com/CityOfZion/neo-debugger-tools/releases

299© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_8

CHAPTER 8

Hyperledger
In previous chapters, I covered blockchain technologies that are focused

on cryptocurrency, and in fact, each project I have covered so far has

included its own currency. Hyperledger is different; it does not have a

currency attached, although you can create a coin if needed. Instead,

Hyperledger was created with the aim of being an open source platform

targeted at utilizing blockchain to fit business needs.

Hyperledger started in 2015 as an open source blockchain contributed

by Digital Asset and IBM as a result of a hackathon (now the blockchain

is called Hyperledger Fabric), and it extended to consists of multiple

pluggable modules and the entire project is called Hyperledger aimed at

improving a blockchain’s performance and reliability so you can assemble

modules to create your own unique platform to fit your business needs.

Note The Hyperledger project is an umbrella strategy modular
architecture consisting of a collection of pluggable components that
are used to create custom blockchain solutions for businesses. The
Hyperledger architecture aims to provide scalability, performance,
confidentiality, resiliency, and flexibility. Note that if you visit
Hyperledger’s documentation, you’ll often see the term distributed
ledger technology (DLT); this term is synonymous with blockchain.

300

 Hyperledger Overview
The modular architecture allows you to adjust things like the blockchain’s

consensus mechanism, as well as manage storage, set services for identities,

set permissions for the identities you set, and create smart contracts (in

Hyperledger Fabric, smart contracts are called chaincode). In terms of

programming languages, Hyperledger’s chaincode is written in Go (Golang);

however, you can utilize JavaScript with the Hyperledger Composer tool.

Chaincode can then be used to implement and automate the business logic.

The Hyperledger project’s managing team consists of ten members,

and the executive director at the time of writing is Brian Behlendorf. In

addition, 159 engineers from 27 organizations contributed to Hyperledger

Fabric v1.0, according to developer.ibm.com.

“Hyperledger is an open source development project to benefit
an ecosystem of Hyperledger based solution providers and
users. It is focused on blockchain related use cases that will
work under a variety of industrial sectors.”

—Brian Behlendorf (executive director, Hyperledger)

Hyperledger is hosted by the Linux Foundation, and in terms of

adoption, it’s supported by large enterprise companies such as IBM, Intel,

and SAP, as well as implemented by Oracle, Accenture, The National

Association of Realtors, Deutsche Borse Group, Sony Global Education,

and many others.

The Hyperledger consensus mechanism allows the network of nodes

to choose between a no-op (no consensus) mechanism and an agreement

protocol called Practical Byzantine Fault Tolerance (PBFT). The PBFT

consensus enables two or more nodes to agree by giving the nodes

full control. This precludes other nodes on the network from forcing a

block, which can prevent potential double spending attacks, as you saw

with PoW’s 51 percent potential for mining attacks. Hyperledger gives

CHapTer 8 HyperLeDger

301

control over the consensus mechanism, and you can restrict access to

transactions. This results in improved performance and scalability as there

are fewer nodes that need to agree on a block. Additionally, PBFT provides

privacy for the network, which fits businesses better instead of providing

full transparency as you have seen in other blockchains.

To give you an idea about Hyperledger’s flexibility, you can use a

dynamic consensus and enable what is called hot swapping, where you

replace the consensus algorithms while the network is running (done with

Hyperledger Sawtooth).

Blockchains focused on cryptocurrency usually provide transparency

of transactions and network data, because they are dealing with funds and

mostly untrusted members. However, this also limits the flexibility and

how much you can modify the network and how much you can control as

you are limited by the set of rules. Hyperledger is not backed by its own

currency and provides more granular control.

Hyperledger project was built with basic functionality, vanilla flavor,

with the intention of enabling developers to customize as much as

possible, from the blockchain’s consensus mechanism to the web interface

identity’s permissions, which provides limited data to members.

This modular architecture approach allows developers to create

specific customized personalized blockchains to fit exact business needs.

Hyperledger contains the following main open source frameworks and tools.

 – Hyperledger frameworks:

• Hyperledger Fabric (contributed by IBM): This is a

permission blockchain infrastructure with SDKs for

Node.js, Java, and GoLang. Hyperledger Fabric is

the heart of Hyperledger and supports chaincode

in GoLang and JavaScript (utilizing Hyperledger

Composer or natively). Blockchain is based on the

endorser/orderer architecture. You’ll learn more

about this later this chapter.

CHapTer 8 HyperLeDger

302

• Hyperledger Burrow: This is an Ethereum VM built

to specification.

• Hyperledger Indy: Think independent. This is a tool

and library for running independent identities on

distributed ledgers.

• Hyperledger Iroha: This is focused on mobile

applications; the code is based on Hyperledger Fabric.

• Hyperledger Grid: This is a solution for a supply

chain on a distributed ledger. The framework

encapsulates Hyperledger implementations of

data types, models, and smart contracts as well as

showcases practical ways to create a supply chain

business solution.

• Hyperledger Sawtooth (contributed by Intel): This

framework includes dynamic consensus and

enables hot swapping of consensus algorithms

on a running network. This is a more traditional

blockchain architecture.

 – Hyperledger tools:

• Hyperledger Caliper: This is a blockchain

benchmark tool.

• Hyperledger Cello: This is an on-demand

blockchain module toolkit for creating, managing,

and terminating blockchains.

• Hyperledger Composer: This tool has collaboration

features used with Hyperledger Fabric for building

blockchains aimed at businesses for chaincode and

blockchain applications.

CHapTer 8 HyperLeDger

303

• Hyperledger Explorer: This is a module to view,

invoke, deploy, and query blocks, transactions, and

network data.

• Hyperledger URSA: This is a shared cryptographic

library; it includes shared projects such as the

implementation of several different signature

schemes (base crypto libraries) and Z-mix,

zero-knowledge proofs (https://github.com/

hyperledger-labs/z- mix).

• Hyperledger Quilt/Interledger.js: This is an

Interledger Protocol (ILP), meaning an atomic

swapping between ledgers. The payments protocol

enables transferring an asset (value) across

distributed and nondistributed ledgers. There are

two implementations: the Java one is called Quilt,

and the JavaScript one is called Interledger.js.

A Hyperledger project can be built to allows transactions to be

transparent as well as confidential when needed. For instance, think of the

following business need: an airline wants to sell seats to another business,

let’s say Expedia. The airline business need is to create its own blockchain

to keep track of its inventory, create transactions, set the price, and keep

data confidential. The airline can benefit from blockchain, but it has no

need for cryptocurrency nor does it want to share all the data publicly.

The airline can utilize Hyperledger and set a private permission network,

without exposing the data to the whole world, as you would on a public

ledger.

The airline can then set special permissions to identities by issuing

encryption keys with limited access and then give these encryption keys

to specific parties only. For instance, only one organization, let’s say

Expedia, is able to view Expedia-related transactions, seat pricing, and

CHapTer 8 HyperLeDger

https://github.com/hyperledger-labs/z-mix
https://github.com/hyperledger-labs/z-mix

304

flight information, while other identities such as the actual customer can

view only the reservation’s information related to their account and flight

information.

The finance team can hold the encryption key that can provide more

data such as profits and loss, cost of fuel, and other data needed for

internal usage. This can be beneficial to businesses because they can run

their data on a ledger instead of a centralized database, which is more

prone to hacker attacks.

As you see, Hyperledger is a large project that covers six frameworks

as well as five tools. It is impractical to cover all these in one chapter; in

fact, it could easily take a whole book. In this chapter, I will give you a good

foundation that can help you understand Hyperledger basics, and you can

continue to experiment on your own with the other platforms and tools.

In this chapter, you will be focusing on Hyperledger Fabric, as it’s the most

popular Hyperledger platform.

 Understanding Hyperledger Fabric
As I pointed out, Hyperledger Fabric is an open source framework

implementation, and it’s intended for a private and permission-based

business network.

In this chapter, you will create private network permission identities,

and then you will create a chaincode to implement specific business logic.

Hyperledger Fabric is designed as the foundation for Hyperledger,

and you can then use the Hyperledger’s modular architecture to add

specific modules depending on your business needs. A Hyperledger Fabric

network consists of the following components:

 – Assets: Assets are key-value pairs that represent a value.

A value can be anything such as a document, stock, or

cryptocurrency token. Each asset holds a state and

ownership.

CHapTer 8 HyperLeDger

305

 – Shared ledger: A shared ledger holds its own copy of the

ledger with the state of the asset. This ledger is called the

world state. The shared ledger also holds a copy of the

blockchain, which stores the ownership of the asset by

recording the transaction’s history.

 – Smart contracts (chaincode): Hyperledger Fabric calls

smart contracts chaincodes that can be programmed in

Go (GoLang) or JavaScript (Node.js). Chaincode can

interact with the shared ledger, assets, and transactions.

There’s nothing new here; you saw this in other block-

chains. Chaincode contains the business logic and can

set an endorsement policy.

Note In Hyperledger Fabric, users can define an asset endorsement
policy for the execution of a chaincode. The endorsement policies
set the node peers that are needed in order to agree on an accepted
transaction to be valid and added to the shared ledger.

 – Membership services provider (MSP): The MSP is the

certificate authority that manages the digital certificate;

it manages user IDs and authenticates all participants on

the network. All members must be known identities in

order to transact on Fabric. That’s because the network is

private and based on permissions. The MSP is used to

authenticate and validate these members’ identities and

permissions. The MSP uses a certificate generation tool

called cryptogen. To understand MSP better, visit the

documentation here: https://hyperledger-fabric.

readthedocs.io/en/latest/msp.html.

CHapTer 8 HyperLeDger

https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html

306

 – Peer nodes: The Hyperledger Fabric network is built on

peer nodes that are owned and contributed by members

of the network. A node can be an organization or an

individual. Nodes hold shared ledgers and can execute

chaincode. Nodes can access ledger data; they can

endorse transactions and interface with applications.

Nodes can have permission to endorse peers or role for

endorsers. Peer nodes receive ordered ledger state

updates as part of the blocks they receive in order to

maintain the ledger, or what Hyperledger calls world state.

 – Channel: Channels can be created by a collection of peer

nodes. A group of nodes can create a separate ledger of

transactions. A channel is similar to the P2P channel you

created when you formed your own blockchain in

Chapter 3.

 – Organizations: Each peer node contributes resources,

and together they form the collective network. The

owning organization can assign peer nodes using a

digital certificate through the MSP. Additionally, peer

nodes from different organizations can join a channel.

Organizations with separate peer nodes are able to share

the same MSPs. Best practice is to have one MSP for each

organization.

 – Ordering service: This service packages transactions into blocks.

Blocks can then be broadcast to peer nodes and clients on the

shared P2P channel. The channel outputs the same messages

with the same logical order to all peer nodes. A consistent logical

order is called atomic delivery.

Take a look at Figure 8-1, which is a graphical representation of the

components that make up Hyperledger Fabric.

CHapTer 8 HyperLeDger

307

Let’s walk through the Fabric network using the 10,000-foot graphical

overview in Figure 8-1. The Hyperledger Fabric network acts as the back-

end layer for client applications.

A client application can be anything such as a dapp, portal, business

activity, or web site; these types of applications are the front-end layer,

and they can access chaincodes, transactions, and events through coding

the Hyperledger Fabric SDK or a REST web service. The client calls a

chaincode node, which uses the SDK to interact with the network. Unlike

the traditional blockchains covered so far, Fabric is different because not

all peer nodes have the same permissions.

Also unlike traditional blockchains, Hyperledger Fabric does not allow

unknown identities to transact on the network. Organizations, which are

called members, build the Hyperledger Fabric network, and each member

can set up their node peers through the MSP. You can see in Figure 8-1 that

the example has ORG1 MSP and ORG 2 MSP.

Peer nodes can be set up with different rules in the network: endorser

peer, anchor peer, and orderer peer.

 – Endorser peer: This receives a request to validate the

transaction and execute chaincode. The endorser can

approve or disapprove the transaction. Only the

endorsing peer executes chaincode, so there’s no need

to install chaincode on all peer nodes.

Figure 8-1. Hyperledger Fabric graphical explanation. Photo credit:
developer.ibm.com.

CHapTer 8 HyperLeDger

308

 – Anchor peer: These peers receive messages and send

messages to other peers in the organization. The P2P

network is made up of the different channels that can be

set up with permissions so they are not visible to every-

one on the network.

 – Orderer peer: This peer handles the shared ledger and is

responsible for keeping state across the network. The

orderer peer generates blocks and broadcasts to all

peers. The orderer peer can be set as Solo or Kafka.

Solo: This is used for development with a single

point of failure. That’s what you’ll set for your

development environment in this chapter.

Kafka: This is used for production. Kafka is built

with fault-tolerant features.

You’ll create chaincode and deploy it to the Fabric network on a Solo

peer, and then you will be able to access and run functions. To send a

transaction, your client application can connect to the SDK and create

a transaction. The transaction is then sent to the endorsing Solo peer,

which verifies the signature and sends an endorsement signature. The

endorsement signature is sent out to the ordering service. In production,

the ordering service will then send the transactions to all network-

connected peers, which update their world state on their ledger.

I encourage you to visit the Hyperledger page to learn more and read

the white papers: https://www.hyperledger.org/projects/fabric.

 Installing Hyperledger Fabric and Composer
A good place to start with a Hyperledger network is to install Hyperledger

Fabric and Composer. You will be setting up the environment by

installing all the tools and libraries as well as Hyperledger Fabric and

CHapTer 8 HyperLeDger

https://www.hyperledger.org/projects/fabric

309

Composer; then you will verify installation went well by starting and

stopping Hyperledger Fabric and checking that Composer’s libraries

installed correctly.

 Prerequisites
Hyperledger Fabric and Hyperledger Composer rely on many tools and

libraries, and because each user uses a different machine, it is possible that

this process won’t be quick and easy and will probably limit the adaptation

of the Hyperledger. I have broken the process down to these steps:

 1) Verify the already installed prerequisites.

 2) Update Git.

 3) Install Node Version Manager.

 4) Update Node.js.

 5) Install VSCode.

 6) Install Hyperledger Composer Extension.

 7) Install the Hyperledger Composer Essential CLI

tools.

 8) Install Hyperledger Fabric.

It’s recommended that you visit the Hyperledger Fabric prerequisites

page as the versions and requirements may have changed: https://

hyperledger.github.io/composer/v0.19/installing/installing-

prereqs.html.

Before getting started, it’s recommended that you update and upgrade

Brew if you haven’t done so for a while.

> brew update && brew upgrade

CHapTer 8 HyperLeDger

https://hyperledger.github.io/composer/v0.19/installing/installing-prereqs.html
https://hyperledger.github.io/composer/v0.19/installing/installing-prereqs.html
https://hyperledger.github.io/composer/v0.19/installing/installing-prereqs.html

310

 Verifying the Already Installed Prerequisites

There is a long list of prerequisites for installing Hyperledger Fabric;

however, if you have been following along with this book’s chapters, most

of the prerequisites should already be installed on your computer.

For the operating system (OS), Fabric needs at least macOS 10.12. You

can check your version via the top-left menu on your computer. Click the

Apple icon, and click About This Mac. The Overview tab opens and shows

the macOS version. If you are running an older version, then get the 10.12

update by clicking the software Update button. At the time of writing,

macOS is called Mojave at version 10.14.4.

You also need Xcode and Docker. These were already installed in

previous chapters, but you need to confirm they are installed and are the

correct versions. Just run the xcode-select --version command to ensure

Xcode is running. You can compare your results with mine, shown here:

> xcode-select -v

xcode-select version 2354.

> docker --version

Docker version 19.03.0-beta3, build c55e026

You need Docker-Compose version 1.8 or higher.

> docker-compose --version

docker-compose version 1.24.0, build 0aa59064

You need npm version v5.x or higher.

> npm --version

6.8.0

You need Python 2.7.x or higher.

> python --version

Python 2.7.10

CHapTer 8 HyperLeDger

311

 Updating Git

The installation is requesting Git 2.2.x or higher. However, Mac comes with

an older version of Git; you can check your version with this:

> git --version

git version 2.20.1 (Apple Git-117)

To upgrade Git, you will be installing Git via Brew and set your

machine to use the Git version in Brew instead of the one that comes with

Mac. First, install Git via Brew.

> brew install git

Next, you will set your path to point to the new Git location; use vim or

your favorite text editor.

> vim ~/.bash_profile

Add the following to the PATH:

#git point to brew

PATH=/usr/local/bin:$PATH

Don’t forget to run bash_profile after you save and quit the bash

profile file to ensure the changes take effect.

> . ~/.bash_profile

Lastly, you can verify the version of Git.

> git --version

You are now pointing to the location of Git you installed with Brew,

and for a future upgrade of Git, you can just run the following:

> brew upgrade git

git version 2.21.0

CHapTer 8 HyperLeDger

312

 Installing Node Version Manager (nvm)

Node Version Manager (nvm) is needed. To download or update nvm, check

the GitHub page at https://github.com/creationix/nvm/blob/master/

README.md and run this command:

> curl -o- https://raw.githubusercontent.com/creationix/nvm/

v0.33.0/install.sh | bash

Once the installation is completed, you can confirm it’s installed

correctly. Open a new terminal, and type the following. I have version

0.34.0 installed.

> nvm --version

0.34.0

 Updating Node.js

Node needs to be version 8. To check what you are running, run this

command:

> node --version

At the time of writing, the prerequisites hyperledger.github.io page

stated that you should install the latest (long-term support) version of

Node; however, it has been generating fatal errors and has a recorded bug

on GitHub. Node.js version 9 is not supported either at the time of writing.

To get Hyperledger Composer to work, you will be installing node 8

and pointing nvm to use node 8.

> nvm install 8

> npm config delete prefix

> nvm use 8

You can confirm node 8 is installed and set correctly.

> node --version

v8.15.0

CHapTer 8 HyperLeDger

https://github.com/creationix/nvm/blob/master/README.md
https://github.com/creationix/nvm/blob/master/README.md

313

 Installing VSCode with Hyperledger Composer
Extension
It’s recommended that you install Visual Studio Code (VSCode) with the

Hyperledger Composer extension and use it as your code editor. The

extension will provide code highlighting and is a professional free IDE. To

get started, download VSCode from here: https://code.visualstudio.

com. Click Download for Mac, as shown in Figure 8-2.

Figure 8-2. Visual Studio Code installation page

Once installation is complete, launch VSCode.

To install the Hyperledger Composer extension, click VSCode’s

left menu, select Extensions (two square icons) from the left menu bar,

and type Hyperledger Composer in the search box. Select: Hyperledger

Composer. Then click Install. Lastly, Reload to activate it. See Figure 8-3.

CHapTer 8 HyperLeDger

https://code.visualstudio.com
https://code.visualstudio.com

314

 Hyperledger Composer Essential CLI Tools

You will be installing the Hyperledger Composer Essential CLI tools

including composer-rest-server, Composer Playground, and the Yeoman

generator.

To install the Composer CLI, run the following command.

> npm install -g composer-cli @0.19

Note I am using version 0.19. There are some open bugs with
Hyperledger’s latest version, 0.20.6, in connection with all the
tools and libraries, so I am using a previous version of Hyperledger
Composer and Hyperledger Fabric. This may change, so you may
want to check the documentation and install another version. also,
I assembled many potential bugs you may run into during installing
and running Hyperledger Composer and Fabric; see the “error
Troubleshooting” section later in this chapter.

Figure 8-3. VSCode Hyperledger Composer extension

CHapTer 8 HyperLeDger

315

Next, install the Yeoman tool for generating Hyperledger Composer

applications, which utilizes generator-hyperledger-composer. Execute

the following command:

> npm install -g generator-hyperledger-composer@0.19

You can now install Composer Playground globally with npm.

> npm install -g composer-playground@0.19

Part of Composer is a tool called composer-rest-server that generates

a loopback-based REST interface to be able to access the network you will

create. To install the tool, execute this command:

> npm install -g composer-rest-server@0.19

> npm install -g Yeoman

You can verify that the installation went well by running the --version flag.

> composer --version

v0.19.20

> composer-rest-server --version

v0.15.2

> composer-playground --version

0.20.6

To ensure the generator tool was installed, if you run the Yeoman

command, it should list Hyperledger Composer generator.

> Yeoman

It will output the following:

? 'Allo! What would you like to do? (Use arrow keys)

 Run a generator

◻ Hyperledger Composer

Press Control+C to get out of the Yeoman command.

CHapTer 8 HyperLeDger

316

 Installing Composer Playground with Docker

In addition to installing Composer tools globally with npm, you can run

Hyperledger Composer Playground with Docker; just run the container

and assign composer-playground as the name. You will be running it on

port 8080.

> docker run --name composer-playground --publish 8080:8080

hyperledger/composer-playground

The Docker command downloads the image, and you can see the

output in Figure 8-4.

Figure 8-4. Composer-playground docker container output

To cancel the container, press Control+C.

Now to run Playground in the browser on port 8080, open a new

Terminal window by pressing Command+T and run the open command.

> open http://localhost:8080

You can see the Hyperledger Composer playground welcome page, as

shown in Figure 8-5.

CHapTer 8 HyperLeDger

317

Keep in mind that to stop Docker, you can run the stop command.

> docker stop composer-playground

To remove the composer-playground name so you can use it again, you

will need to run the following command:

> docker rm --force composer-playground

 Installing Hyperledger Fabric Dev Servers

At the time of writing, Hyperledger Fabric’s latest version is v1.4.1;

you should visit the GitHub page to find out the latest version and

documentation as this may change; see https://github.com/

hyperledger/fabric.

Figure 8-5. Playground welcome screen

CHapTer 8 HyperLeDger

https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric

318

The Hyperledger Fabric dev servers have different versions to choose

from. You will be setting up a Hyperledger Fabric v1.2 network for your

development.

You then can deploy your blockchain business networks built with

Hyperledger Composer and test your applications.

Create a directory to download Fabric; I picked ~/fabric-dev-

servers, but you can choose any directory.

> mkdir ~/fabric-dev-servers && cd ~/fabric-dev-servers

You’ll use curl to get the .tar.gz file you need to install Hyperledger

Fabric, as shown here:

> curl -O https://raw.githubusercontent.com/hyperledger/

composer-tools/master/packages/fabric-dev-servers/fabric-dev-

servers.tar.gz

Use tar to extract the files you downloaded.

> tar xzf fabric-dev-servers.tar.gz

Once these are extracted, you have script files to help you quickly spin

up a Hyperledger Fabric instance.

Run the ls command, and you can see the .sh files among other useful

files.

> ls

startFabric.sh

teardownAllDocker.sh

stopFabric.sh

teardownFabric.sh

CHapTer 8 HyperLeDger

319

When you run the Composer –v command, you can check the version

you are running. You saw that you indeed installed Hyperledger Composer

v0.19, so you will need to use Hyperledger Fabric v1.1 according to the

documentation, and you can also set the starting Fabric timeout to 30

seconds; that’s the wait time once you run the script to ensure the network

is running.

> export FABRIC_VERSION=hlfv11

> export FABRIC_START_TIMEOUT=30

Tip If you are running a different version of Hyperledger Composer,
check the gitHub page to see which version of Fabric you need to set:
https://github.com/hyperledger/composer-tools/tree/
master/packages/fabric-dev-servers.

To spin up your Hyperledger Fabric network, you need to first execute

the download Fabric script; this can take some time, depending on your

Internet connection.

>./downloadFabric.sh

That’s it; you should see the output shown in Figure 8-6.

CHapTer 8 HyperLeDger

https://github.com/hyperledger/composer-tools/tree/master/packages/fabric-dev-servers
https://github.com/hyperledger/composer-tools/tree/master/packages/fabric-dev-servers

320

Once the download is complete, you can confirm you have Docker

containers.

> docker image ls hyperledger/*
hyperledger/fabric-ca

hyperledger/fabric-orderer

hyperledger/fabric-peer

hyperledger/fabric-ccenv

hyperledger/fabric-couchdb

 Network Connection Profile

There is a network connection profile JSON file called DevServer_

connection.json.

Figure 8-6. Downloading the Hyperledger Fabric output

CHapTer 8 HyperLeDger

321

In this section, you will modify the file to fit with the Docker localhost

container you will create. Before you modify the file, it’s a good idea to

make a copy first.

> cd ~/fabric-tools/

> cp DevServer_connection.json DevServer_connection-backup.json

Change the original file’s orderers, peers, and certificate authorities to

point to localhost as you will be running Composer Rest Server as the Docker

container in the network and will access these hostnames on the network.

Edit the DevServer_connection file with vm or your favorite editor.

> vim DevServer_connection.json

See Figure 8-7.

You also need to edit the hosts to point to 127.0.0.1 on the local server.

> sudo vim /etc/hosts

fabric

127.0.0.1 orderer.example.com peer0.org1.example.com

ca.org1.example.com

Figure 8-7. Changing devServer.json to point to localhost

CHapTer 8 HyperLeDger

322

 Spinning Off a Local Hyperledger Fabric
Business Network
The first time you run Hyperledger Fabric, you need to execute commands

to start a local Hyperledger Fabric instance and issue an ID card for the

admin. The default admin is called PeerAdmin. To get started, run the

start fabric command.

> ./startFabric.sh

The expected output is confirming your variables.

Development only script for Hyperledger Fabric control

Running 'startFabric.sh'

FABRIC_VERSION is set to [version number]

...

Creating network "composer_default" with the default driver

Creating ca.org1.example.com

Creating orderer.example.com

As part of the start script, you can see the output lines that confirm

that the composer_default Docker network was created and running

the containers in the created network. The containers are able to

communicate using the custom hostnames: ca.org1.example.com and

orderer.example.com.

 Creating an Admin ID Card

Now that you have a network running, the last setup step is to create

credentials.

You can use Hyperledger Composer to create what Hyperledger Fabric

calls a .card file.

CHapTer 8 HyperLeDger

323

You can generate the admin ID card by executing the following

command:

> ./createPeerAdminCard.sh

You can compare your output with mine, which is shown in Figure 8-8.

To confirm the card was created correctly, execute the following

command with <card name>:

> composer card list --card PeerAdmin@hlfv1

This command outputs information about the ID card. See Figure 8-9.

Figure 8-8. Hyperledger Composer generate card

CHapTer 8 HyperLeDger

324

 Stopping Hyperledger Fabric

Leave Fabric running for now, but once you complete your exercises, you

can shut down the Hyperledger Fabric runtime by executing the stop

command.

> ./stopFabric.sh

Also, you should execute the teardown script at the completion of your

development cycle to ensure the memory is freed.

> ./teardownFabric.sh

Note If you run the teardown script, the next time you start the
runtime, you’ll need to create a new peeradmin card just like you did
with the first-time startup steps. See the following steps.

 Re-creating the PeerAdmin ID Card

After you stop and tear down with these commands:

> ./stopFabric.sh

> ./teardownFabric.sh

Figure 8-9. Hyperledger Composer card list

CHapTer 8 HyperLeDger

325

you need to re-create the admin ID card, so just follow the same

commands.

> ./startFabric.sh

> ./createPeerAdminCard.sh

> composer card list --card PeerAdmin@hlfv1

It’s a good idea to follow the process in Figure 8-10, which shows what

you need to do in order to start a card, stop a card, create a card, and tear

down.

 Hyperledger Composer
Now that you have the Hyperledger Fabric network installed and

running, the next step is to write chaincode. You can write chaincode

in Hyperledger Fabric natively with Go; however, you can also utilize

Hyperledger Composer to help create chaincode and blockchain

applications via coding in JavaScript instead of Go. Hyperledger Composer

takes definition files and generates Business Network Archive (.bna) files

that you can then deploy to the Hyperledger network to run. Composer is

easy to use and aimed not just at developers but at business owners.

Figure 8-10. Fabric-dev-servers start-stop flow. Photo credit: github.
com/hyperledger/composer-tools.

CHapTer 8 HyperLeDger

326

There are three components that make up Hyperledger Composer

(see Figure 8-11).

• Business network archive (.bna): This consists of four

files packaged together.

• Hyperledger Composer Playground: This is used to

configure and deploy network as well as test code

without rolling out a blockchain.

• REST API support: This exposes functions to be used by

front-end clients such as dapps.

 “Hello, World” with Playground
You will be creating a “Hello, World” application and deploying it on

the network using Playground. To get started, open Playground via the

command line and execute this command:

> composer-playground

Figure 8-11. Hyperledger Composer graphical explanation. Photo
credit: developer.ibm.com.

CHapTer 8 HyperLeDger

327

Alternatively, you can use Docker. Once it’s open, dismiss the welcome

screen by clicking “Let’s Blockchain!”

 Deploying a Business Network
Next, select “Deploy a new business network.” In the deploy wizard, insert

the basic information, such as typing hello-network in the “Give your new

Business Network a name” input box.

Select the middle “empty-business-network” network definition and

click Deploy, as shown in Figure 8-12.

The ID card for an admin is created for your network. To connect to the

network, click the “Connect now” link, as shown in Figure 8-13.

Figure 8-12. Hyperledger Composer Playground, deploying new
business network wizard

CHapTer 8 HyperLeDger

328

You are now connected to the business network definition network,

and you can define and work with the model.

 Business Network Archive (.bna)
The business network model includes assets and the transactions related

to these assets. Hyperledger Composer needs the following to be packaged

together: a network model file, a JavaScript file (.js), an access control file

(.acl), and a query file (.qry). These files are definition files that generate

your network.

 – Network model (.cto): This is the file that defines the

assets, transactions, and participants who can interact

with these assets. The file is created with a modeling

language called CTO (named after the original project

name, Concerto).

Figure 8-13. Connecting to the hello-network business network
definition

CHapTer 8 HyperLeDger

329

 – JavaScript file (.js): This is the file that defines the trans-

action processor functions. It is the chaincode.

 – Access control (ACL) (.acl): This is the file that contains

the access control rules that define the rights of the

different participants.

 – Query (.qry): This is the file that defines the queries that can run

in a network.

Hyperledger Composer takes these four files and creates a business

network definition that is packaged as an archive (.bna) file. The .bna files

can be deployed on the Hyperledger Fabric network.

You can than write a client application such as a dapp that can use

Hyperledger Composer APIs to access the smart contract (.bna functions)

that you write through the Hyperledger Fabric network.

 Adding the Model File
To create the model file, you can add the files that make up the .bna

archive. For instance, to add a model file. Click “Add a file,” select Model

File (.cto), and click Add, as shown in Figure 8-14.

CHapTer 8 HyperLeDger

330

For the .cto file, you will define the processing function and transaction.

For the namespace, you will use a fictional company called Skynet,

with an identified ID of type String. You will also create a msg string and

a transaction Hello and pass the Myfunction asset that will include the

message.

namespace org.skynet.mymodel

asset Myfunction identified by id {

 o String id

 o String msg

}

transaction Hello {

 --> Myfunction check

}

Figure 8-14. Adding a file to the business network model

CHapTer 8 HyperLeDger

331

 Adding Chaincode
Next, you will add a JS file by clicking “Add a file.” Write chaincode as the

logic of the transaction to print the message to the console, as shown here:

/**
@param {org.skynet.mymodel.Hello} hello

@transaction

*/

function hello(hello) {

 console.log("Hello " + hello.check.msg);

}

Transactions represent the chaincode, which is the business logic

of your application. Notice that the comments state that the code is a

function for a transaction and the namespace. Click “Deploy changes” to

update your definition model.

 Creating an Asset
Next, to test the model, you will create a new asset, extend it, and store it.

To do that, click + Create New Asset at the top-right corner. The create new

asset wizard opens, as shown in Figure 8-15. The model already has an ID;

however, for this example, you will change it to 001 (but the string can be

any string). For the message, you will pass world.

CHapTer 8 HyperLeDger

332

 Access Control
Notice that there is an Access Control option with the permissions.acl

file as part of the Define tab at the bottom left of the screen, as shown in

Figure 8-16.

As you can see, the rules grant wide-open “allow all” access, which can

be changed.

Figure 8-15. Create New Asset Wizard

CHapTer 8 HyperLeDger

333

 Testing the Model
Now that the model instance is saved, you can submit the transaction to

invoke the transaction. On the left side, click the “Submit transaction”

button. The Submit Transaction Wizard opens. Set the ID to 001, as shown

in Figure 8-17.

Figure 8-17. Hyperledger Playground, Submit Transaction Wizard

Figure 8-16. ACL permission file on your hello-network

CHapTer 8 HyperLeDger

334

Before you test, open the developer console so you can see the

JavaScript messages. For Safari, follow these instructions.

In the top menu, select Safari ➤ Preferences. Click the Advanced tab

and then select the “Show Develop menu in menu bar” box.

After following these steps, you will see in the top menu Developer as

an item. Select “Show JavaScript console” (or press Command+Option+C).

Next, click Submit; you will see the message “Hello world” in the

JavaScript console, as shown in Figure 8-18.

 Importing/Exporting the Model
To export the model, you can generate the business network archive (.bna)

file. The .bna file can then be deployed in production. All you have to do is

click the Export link, as shown in Figure 8-19.

Figure 8-18. “Hello world” message showing in the JavaScript
console

CHapTer 8 HyperLeDger

335

Playground generates the hello-network.bna file, which will be

downloaded to your computer.

Similarly, you can import a .bna file, click the “Add a file” link, and

under “Upload a file from your computer...,” you can browse or drag and

drop the .bna file.

The import/export is not just for publishing; it can be used to share

models with others for testing, development, or other reasons. I included

the hello-network.bna file with this book’s code, so feel free to import it;

see https://github.com/Apress/the-blockchain-developer/chapter8/

hello-network.

The .bna file is nothing more than a zip folder named bna. In fact, you

can copy the .bna file as .zip and unzip the files.

> cp hello-network.bna hello-network.zip

> unzip hello-network.zip

VSCode can be used as your IDE for your entire Hyperledger project.

For instance, now that you have unzipped your files, you can open VSCode

and drag and drop the model file models/org.example.model.cto into

VSCode. You can see that the code is highlighted, as shown in Figure 8-20.

Figure 8-19. Exporting the .bna file

CHapTer 8 HyperLeDger

https://github.com/Apress/the-blockchain-developer/chapter8/hello-network
https://github.com/Apress/the-blockchain-developer/chapter8/hello-network

336

You wrote your files in Composer Playground using the web interface.

This suite is a less developer savvy approach; however, a larger project can

include complex business logic, events, many transactions, and testing,

so it is advisable to create your project and manage files with VSCode and

then upload those files into Playground for deployment.

 Playground Online
Hyperledger Composer Playground has an online version available at

https://composer-playground.mybluemix.net/. You can use the same

steps you used before to create your network and files. See Figure 8-21.

Figure 8-20. Model CTO file in VSCode

CHapTer 8 HyperLeDger

https://composer-playground.mybluemix.net/

337

To test Playground Online, you can import the hello-network.bna file

you created previously. To do so, first click “Let’s Blockchain!” and under

“2. MODEL NETWORK STARTER TEMPLATE” select “Drop here to upload

or browse” and upload the hello-network.bna file. Click the Deploy

button at the bottom-right corner. You can see the network created. Click

the “Connect now” link to connect to the new network. See Figure 8-22.

Figure 8-21. Composer Playground

CHapTer 8 HyperLeDger

338

You can repeat the same steps to create an asset and test, just as you

have done on the local playground.

 Creating a Business Network with Yeoman

You used Hyperledger Playground to generate your business network.

Hyperledger Playground is aimed not just for developers but also at

business owners because of its simplicity; however, you can also create a

network in Terminal.

Yeoman provides a wizard you can use. If you are unfamiliar with

Yeoman, it provides a wizard generator through the command line. You

can either run Yeoman and select Hyperledger Composer and the Business

Network generator or run the following:

> Yeoman hyperledger-composer:businessnetwork

Keep in mind that Hyperledger Composer can be used for more than

just generating the business network; it can be used for Angular, LoopBack,

and Model as well. See Figure 8-23.

Figure 8-22. hello-network connect link

CHapTer 8 HyperLeDger

339

The hello-network folder is generated and includes permissions.acl,

models, features, test, and lib. Next, to create the .bna file, you can use

Hyperledger Composer. See Figure 8-24.

> cd hello-network

> composer archive create -t dir -n .

Figure 8-23. Generating hello-network with the Yeoman wizard

CHapTer 8 HyperLeDger

340

Run the ls command and confirm that the hello-network@0.0.1.bna

file is generated.

> ls *.bna

hello-network@0.0.1.bna

 Deploying on a Local Hyperledger Fabric
Network
To deploy the .bna file to a local Hyperledger Fabric network, run the

composer network install command and point to the .bna file while

specifying the identity card.

> cd ~/fabric-dev-servers/

> composer network install --archiveFile ~/Desktop/hello-

network.bna --card PeerAdmin@hlfv1

This will result in the successful output shown in Figure 8-25.

Figure 8-24. Generating the hello-network BNA file with Hyperledger
Composer

CHapTer 8 HyperLeDger

341

 Running the “hello-network” Network
Hyperledger Composer is the application development framework for

building blockchain applications based on Hyperledger Fabric.

Hyperledger Composer generates REST APIs based on the business

network definition you created. This is done using what is called a

LoopBack connector. You can take these REST APIs to be used by

a) a client such as a dapp b) integrate with non-blockchain clients such as

a web site. That allows you to use the blockchain ledger just as you would

use any other database with a middleware. That is powerful.

Hyperledger Composer can generate a REST interface. You can run

Hyperledger Fabric on your computer and generate a GUI that you can

then use to interact with the network running on your computer just like it

would be on a real production server.

 Starting the “hello-network” Business Network
and Admin Card
To run your “hello-network” network, run the following command, and

see the output in Figure 8-26:

> composer network start --networkName hello-network

--networkVersion 0.0.2-deploy.3 -A admin -S adminpw -c

PeerAdmin@hlfv1 --file networkadmin.card

Figure 8-25. Installing local Hyperledger Fabric command output

CHapTer 8 HyperLeDger

342

To confirm this worked, you can run the docker ps command. You

should see the dev-peer0.org1.example.com-hello-network-0.0.2-

deploy.3-0 image created, as shown in Figure 8-27.

> docker ps

 Importing a Business Card
Next, import a new network admin card so you can use admin@hello-

network in the business network you started.

> composer card import --file networkadmin.card

This command imports the network admin card, which will include

admin@hello-network.

> composer network ping --card admin@hello-network

Figure 8-27. Docker container hello-network

Figure 8-26. Starting the business network

CHapTer 8 HyperLeDger

343

You can compare your output with mine, which is shown in Figure 8- 28.

 Where to Go from Here
From here you can choose from many passport strategies for your users.

For example, you can use Google OAUTH2.0, SAML, Passport-JWT, or

LDAP, depending on what your organization is using.

Then you will be able to run a REST server in multiuser mode and test

the interaction with a client application such as the one you created.

Here are couple of articles that can help you with the process of setting

up your app for authenticating multiple users:

• Passport-JWT: https://hyperledger.github.io/

composer/latest/tutorials/google_oauth2_rest

• Google OAUTH2.0: hyperledger/fabric-ca docker

hyperledger/fabric-orderer hyperledger/fabric-

peer hyperledger/fabric-ccenv hyperledger/

fabric-couchdb

Hyperledger is a large project, and it consists of five major platforms as

well as five major tools. This chapter focused only on Hyperledger Fabric.

However, you are encouraged to continue experimenting with other

Hyperledger platforms and tools such as Hyperledger Sawtooth, including

setting up an environment, creating an account, writing a more complex

chaincode, and deploying as well as connecting your chaincode to a dapp.

Figure 8-28. Importing the business network card

CHapTer 8 HyperLeDger

https://hyperledger.github.io/composer/latest/tutorials/google_oauth2_rest
https://hyperledger.github.io/composer/latest/tutorials/google_oauth2_rest

344

To get more information on getting started, visit the official web

site here: https://sawtooth.hyperledger.org/docs/seth/releases/

latest/getting_started.html.

In fact, you can find more information about all the platforms and tools

here: https://www.hyperledger.org/.

Lastly, bookmark the Hyperledger dev center here: https://

developer.ibm.com/technologies/blockchain/.

 Error Troubleshooting
Hyperledger was built to be plain and allows you to stitch together

modules on many different machines, but not without problems.

Hyperledger is set up for more advanced users and may request system

admin privileges to set up servers. You may have encountered a few errors,

so here I have compiled them into this section.

 Composer Runtime Install Error or Card Not
Found
If you get errors such as these:

 – “composer runtime install error card not found

peerAdmin”

 – “Error: Card not found: PeerAdmin@hlfv1”

it’s because the admin ID card was not created successfully or the

correct process wasn’t followed; all you need to do is remove the ID card

and re-create it. You need to remove the composer folder, create a new

folder, and run the command again.

> rm -rf ~/.composer

> mkdir ~/.composer

> ./createPeerAdminCard.sh

CHapTer 8 HyperLeDger

https://sawtooth.hyperledger.org/docs/seth/releases/latest/getting_started.html
https://sawtooth.hyperledger.org/docs/seth/releases/latest/getting_started.html
https://www.hyperledger.org/
https://developer.ibm.com/technologies/blockchain/
https://developer.ibm.com/technologies/blockchain/

345

 Docker Unauthorized Authentication Required
Error
You may get the following error while downloading Hyperledger Fabric:

• “unauthorized: authentication required”

There are issues with authenticating or proxying to Docker Hub and

not Hyperledger Fabric.

To try to fix this, set your computer time to match UTC time zone:

https://www.timeanddate.com/worldclock/timezone/utc.

Create an account with Docker at https://hub.docker.com, and then

log in.

> docker login

Alternatively, try again after you logged out.

> docker logout

 Docker Container Conflicting Errors
When you are using the Docker container for a project, you might need

to re-create a container or stop a container; otherwise, you may get

conflicting errors.

All you need to do is stop and remove the container.

> docker stop [container id]

> docker rm [container id]

CHapTer 8 HyperLeDger

https://www.timeanddate.com/worldclock/timezone/utc
https://hub.docker.com

346

Tip If you already created a Mongo-Docker container or any other
Docker container that creates a conflict, you will get the following
conflict error when you try to create a new one: “The container name
is already in use by container [container id].” all you need to do is
stop the container and remove it.

> docker stop [container id]
> docker rm [container id]

 Mismatch and Cleanup
If you have a mismatch between Hyperledger Composer and Hyperledger

Fabric versions, you may get the following error:

• “Starting business network definition. This may take a

minute... Error: Error trying to start business network.

Error: Failed to connect to any peer event hubs. It is

required that at least 1 event hub has been connected

to receive the commit event Command failed.”

This error is also generated on Hyperledger Fabric 1.2 with

Hyperledger Composer 0.20.6 because there is an open bug. To fix this, you

need to check your Hyperledger Composer and uninstall through npm, as

well as re-install Hyperledger Fabric.

Additionally, if you need to completely clean up, you need to stop and

tear down Fabric. To remove the Docker images, remove fabric-dev-

servers, and lastly remove Composer, follow this process:

> cd ~/fabric-tools

> ./stopFabric.sh

> ./teardownFabric.sh

CHapTer 8 HyperLeDger

347

Next, stop the Docker containers, remove them, and also remove all

the Docker images by running these commands:

> docker kill $(docker ps -q)

> docker rm $(docker ps -a -q) –f

> docker rmi $(docker images -q) -f

You can now completely remove fabric-dev-servers.

> rm -rf ~/fabric-dev-servers

To remove Composer and admin ID card, run these commands:

> sudo rm -rf ~/.composer

> npm uninstall -g composer-cli

The npm uninstall command will output a confirmation that the

library was uninstalled.

 Summary
In this chapter, I introduced Hyperledger to help you get started and

understand the power of it. I covered the Hyperledger ecosystem and

terminology and gave you a good understanding of the pieces that make

up the network as well as the major Hyperledger platforms and tools

available. You installed Hyperledger Fabric and Hyperledger Composer,

ensuring the prerequisite libraries are installed. You created “Hello, World”

application with Playground as well as create a .bna file you deployed on

a local network. I mentioned Hyperledger Playground Online as well as

explained how to generate a network with Yeoman generator. I covered the

different pieces that make up the .bna archive file including handling ID

cards. I also covered potential errors and troubleshooting to ensure your

installation went well. Lastly, I covered a few recommendations on where

to go from here to continue with Hyperledger.

CHapTer 8 HyperLeDger

348

In the next chapter, you will learn how to build a dapp with Angular.

Dapps can interact with the smart contracts you have developed in the

past three chapters and are an important ingredient in the blockchain

ecosystem.

CHapTer 8 HyperLeDger

349© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_9

CHAPTER 9

Build Dapps with
Angular: Part I
In previous chapters, I covered different blockchains, and you learned how

to create smart contracts that can interact with a blockchain. You created

smart contracts in Ethereum, NEO, EOS, and Hyperledger. In Chapter 1,

I broke down the process into five layers: consensus layer, miner or booking

layer, propagation layer, semantic layer, and application layer. Smart

contracts are part of the application layer in the development cycle;

however, the application layer is incomplete without having a front-end

interface that enables an end user to interact with the blockchain.

Tip Many times you will hear decentralized applications (dapps)
referred to as smart contracts. Smart contracts are self-executing
contracts. Dapps use smart contracts but run on a P2P network and
not on a single system.

Developers and more savvy users can interact with the smart contracts

you created via the command-line interface and tools mentioned in

previous chapters, but developing a front-end application that is able to

interact with a blockchain is essential for all other users. You do this by

creating a decentralized application (dapp). In this chapter and the next,

350

you will be creating a decentralized application with the help of Angular so

that users can interact with a smart contract using a friendly and intuitive

user interface (UI). I broke down the process into two parts.

Part I, covered in this chapter, contains the following topics:

• Developing the dapp, including its benefits and

classification

• Using Angular, including its architecture, benefits,

prerequisites, and creating an Angular skeleton app

• Creating and styling Angular custom components

Part II, covered in Chapter 10, contains the following topics:

• Creating the dapp’s smart contract with Truffle

• Integrating the smart contract with the dapp

• Linking and connecting your dapp to the Ethereum

network

Let’s get started.

 What Is a Dapp?
A decentralized application (shortened as ÐApp, dapp, Dapp, dApp, or

DApp and pronounced as “dee-app”) is a web application that is able to

interact with a smart contract. Dapps run on the blockchain and utilize the

distributed ledger. The Ethereum blockchain is currently the most popular

platform to run dapps; however, other distributed ledger technologies

(DLTs) you have seen also provide the ability to create dapps. I covered

NEO, EOS, and Hyperledger in previous chapters; others include ICON,

Cardano, and Hashgraph (Hedera).

ChaPter 9 BuilD DaPPS with angular: Part i

351

“Everything that can be decentralized will be decentralized.”

—David Johnston, CEO of the DApp Fund
https://github.com/DavidJohnstonCEO/

DecentralizedApplications

If you have ever developed a standard desktop, web, or mobile

application, you will find that dapps are similar but also very different.

A dapp is built using the same tools and languages you use to build any

other app, but for an app to be categorized as a dapp, it needs to meet the

following criteria:

 – Open source: Its code is published as open source and

should not be governed by one entity (centralized). Keep in

mind that the application may adapt its own protocol in

response to proposed improvements and market feedback;

however, the consensus of its users drives all changes.

 – Decentralized: Dapps utilize a blockchain or a P2P

network.

 – Incentive: Dapps use digital assets for funding.

 – Algorithm/protocol: Dapps often generate tokens and

include a consensus mechanism such as PoW, PoS, or

even their own.

These criteria ensure dapps don’t have downtime like other apps

you download from marketplaces such as iTunes or Google Play; dapps

also give control to a community instead of one entity. These criteria can

be significant. For instance, Apple and Google often reject apps for not

meeting their arbitrary or monetary-based policies. These policies do not

always make sense and are not always in the best interest of the end user;

they often are there to block usage of a competitor or for monetary gain.

ChaPter 9 BuilD DaPPS with angular: Part i

https://github.com/DavidJohnstonCEO/DecentralizedApplications
https://github.com/DavidJohnstonCEO/DecentralizedApplications

352

Dapps that are based on open source code implemented on

decentralized blockchains and funded by tokens generated using a

specific consensus mechanism are believed by many to be the future of all

businesses. Only time will tell.

Additionally, open source software is an advantage because it allows

users to view the source code and potentially contribute. Decentralizing

using a blockchain harnesses the advantages of blockchain as DLT and

serves as a replacement to the traditional one-server database.

Finally, adding records/transactions to ledgers is usually done utilizing

tokens, and the consensus mechanism of a token is also an agreement

between all the users of the dapp.

 Dapp Classification
In addition to the previous criteria, dapps can be categorized. The

classification is based on the infrastructure the dapp is utilizing and can be

broken down to these three categories:

 – Dedicated blockchain dapps: These are dapps that use a

dedicated blockchain directly; examples are bitcoin,

Ethereum, EOS, and NEO.

 – Dapps relying on another blockchain: For instance, the

Omni Layer Protocol (formerly called Mastercoin) is a

digital currency and communications protocol that is

built on top of the bitcoin blockchain.

 – Dapps relying on another protocol that built on top of

another blockchain: These dapps use a protocol that is

built on top of another blockchain. An example is the

safe network using the Omni Layer Protocol.

ChaPter 9 BuilD DaPPS with angular: Part i

353

A good example to help understand the classification concept is

the USDT (Tether) token. This token was issued twice based on two

blockchains: bitcoin and Ethereum. In this case, there are two types

of USDT. The original, which is based on bitcoin, is done by using the

Omni Layer Protocol to generate the token, and the Ethereum-based

USDT is compatible with the Ethereum’s ERC20 standard. Take a look

at Figure 9-1.

Figure 9-1. Representation of clasisification for USDT

 Dapp Projects
Most dapps are built directly on top of the Ethereum blockchain or use a

blockchain for their tokens. However, there are some dapps that even build

their own dedicated blockchain. Take a look at Table 9-1 for a sample of

different dapps and their classifications.

ChaPter 9 BuilD DaPPS with angular: Part i

354

In addition to the information in Table 9-1, there are many resources

to find more dapps; these two web sites provide a list of dapps that you can

check: https://dapps.ethercasts.com/ and https://coinsutra.com.

 How Do You Create Your Own Dapp?
The success of bitcoin and blockchain have brought an explosion of dapps.

Developers and business owners have created a basic process to follow for

developing dapps. You don’t need to follow this exactly, and it may change

by the time of writing; however, many of the published dapps out there

have followed this process. The process consists of these five steps:

 1. Write a white paper.

 2. Launch an initial coin offering (ICO).

 3. Develop the dapp.

Table 9-1. Example of Dapps and Classifications

Dapp Description Classification Token Blockchain

ethlance Marketplace for

job postings and

hiring freelancers. 0

percent fees.

uses ethereum directly no

token

ethereum

blockchain

golem global market for

idle computer power.

token based on ethereum gnt ethereum

blockchain

the SaFe

network

Data storage and

communications

network.

implementation relying

on another protocol (Omni

protocol) that is built on

top of another blockchain

(bitcoin)

SFe Bitcoin

ChaPter 9 BuilD DaPPS with angular: Part i

https://dapps.ethercasts.com/
https://coinsutra.com

355

 4. Launch your dapp.

 5. Market your dapp.

Let’s review these steps.

 Write a White Paper

The white paper is similar to a company’s business plan aimed at investors.

However, it targets more than just investors; it’s the technical blueprint.

The white paper is the technical document as well as the business plan

and should explain the problem being solved and the concept, features,

and technical aspects of the dapp.

Just like in a business plan, it’s a good idea to include your unique

selling proposition (USP), road map, members’ résumés, capabilities, and

history to help establish credibility.

Note the unique selling proposition (uSP) is the problem your dapp
is aiming to solve.

Once the white paper is published, it is good to get feedback from

peers and the community in the early stages and prior to development.

Social media, forms, and publications are often used to promote dapps

and help create credibility.

 Launch an Initial Coin Offering

Once the white paper is published, the next step is to launch an ICO and sell

coins or tokens to fund and support your dapp. The coin should have a reason

for existence, rather than be the same as another coin/token out there, so you

should explain how and why your dapp needs its own token or coin.

ChaPter 9 BuilD DaPPS with angular: Part i

356

You also need to decide on the type of classification for your dapp,

which will determine whether you will need any or all of the following:

1) issue token 2) set usage fees. 3) have a dedicated blockchain. 4) have

a mining mechanism 5) set the allocation of fees 6) rewards investors

7) allocate fees to pay for different departments of your business: support,

development, marketing, and business.

 Develop the Dapp

Development should be open source, and GitHub is usually used for repos

for the development effort. On every release, it’s a good idea to let investors

and others know of a release to build users and a developer community

around your project. Many dapps have tried to get funds and delivered

no usable products; set yourself apart and avoid potential problems with

regulators. (I will cover regulators in Chapter 11.)

 Launch Your Dapp

Launch your dapp and include your release notes, documentation, road

map, and maintenance plan. It’s crucial to meet the promised launch date.

 Market Your Dapp

The last step is marketing. In addition to traditional marketing, dapps often

hire or work with prompters during early phases or after release to get the

word out. Another unique marketing aspect for a dapp is to get the coin/

token listed on exchanges. This is the final stamp of recognition. Some

exchanges have a voting system put in place to select the next coin/token

to be listed. Some exchanges have been abusing this process and charging

hefty fees to list a token or coin. For instance, a utility token listing on

Binance exchange can cost from $0.5 million to $3 million.

Many early investors including dapp owners have been able to “cash

out” if a token is listed on major exchanges as its price often goes up high

ChaPter 9 BuilD DaPPS with angular: Part i

357

because of the listing; however, it has become more and more difficult for

a dapp to be listed, and it needs to provide real value. Fraudsters are often

exposed, and coins/tokens get de-listed as quickly as they are listed.

 Why Angular?
With dapps, just like with any traditional app, you can write your application

natively to the device you publish your app to (in the supported language

of your device such as Xcode for iOS); however, it has been proven that

using a framework can speed up development. For instance, if you want to

utilize the same code and deploy your application on multiple devices with

different screen sizes, that can become a challenge for a small team. Angular

helps you build cross-platform modern applications for web, mobile, and

desktop at the same time. The Angular CLI and Component Dev Kit (CDK)

can help accelerate the development of apps.

Using Angular can be beneficial because of the following factors:

 – Large community support

 – Enterprise architecture and scaling

 – Cross-platform support

 – Documentation

Angular is a structural framework and enables you to create front-end

client-side applications. The pieces are loosely coupled and structured in a

modular fashion, resulting in less code to write, added flexibility, easier-to-

read code, and quicker development time.

Angular allows the developer to put together a toolset for building a

framework that will fit your exact application’s needs. You can use HTML

as your template language and extend HTML’s syntax so the application’s

components can be read easily. Other than HTML, the coding is done with

TypeScript, which turns JavaScript into an object-oriented programming

language and gives you an enterprise-level environment.

ChaPter 9 BuilD DaPPS with angular: Part i

358

Additionally, Angular is well structured and built to be fully accessible,

in accordance with accessible rich Internet applications (ARIAs), so your

app or site can be built correctly for people with disabilities.

Angular also gets along well with other JavaScript libraries so you can

install libraries such as the Ethereum JavaScript API web3.js with npm

manager. Lastly, Angular’s features can be easily modified or replaced to fit

your exact needs.

Note the word angular means having multiple angles or measured
by an angle. angular is a structural framework and enables you to
create front-end client-side applications for the web, mobile, and
desktop. it is an open source, front-end framework for dynamic app
development.

Angular’s most significant features are data binding and dependency

injection. These can help decrease code. Also, Angular has been around

for years; it’s on its seventh release.

Note Dependency injection is a design pattern technique. as
the name suggests, it means using one object as a dependency to
another object by injecting the code.

Angular 2 was a complete rewrite of AngularJS and offered a major

change; however, there are no major differences between Angular 2 up to

version 8.

The latest release version of Angular at the time of writing is 7.3.1, and

in this version, a few features were added such as the following:

 – Dependencies: The dependencies were upgraded, and

support for Typescript 3.1, RxJS 6.3, and Node 10 was

added.

ChaPter 9 BuilD DaPPS with angular: Part i

359

 – Bundle budget: You can set a warning for the size of the

application to ensure you don’t exceed the limit (the

default is 2 MB).

 – Angular CLI: By running the CLI wizard, you can add

components such as routing and decide on the format of

the CSS.

 – Component Dev Kit (CDK) of Angular Material: Add new

features such as out-of-the-box virtual scrolling, drag

and drop, and “mat-form-field” support for native select

fields. (I’ll cover Material later in this chapter.)

Angular 8 is at release candidate 2 (rc.2), and the features expected are

mostly to improve performance. It will include an improved view engine

called Angular Ivy, improved upload of JavaScript for modern browsers

that support ES2015+, support for web workers to use hardware for heavy

lifting, support for TypeScript, a benchmarks tool, and more.

Tip i selected angular, but angular is not the only framework that
can help expedite development. You can use other frameworks such
as react (https://reactjs.org) and achieve similar benefits.
this decision is really a matter of personal taste and your team’s skill
set. You could easily convert this project to a react project mostly by
copying your project’s files over to the react project.

 Creating an Angular Dapp
In this section, you will be creating an actual dapp that will connect to the

Ethereum network and transfer funds from one account to another. This

is often the core feature of any dapp out there. For instance, you can build

a dapp that sells products, provides services, or pays users to take quizzes,

ChaPter 9 BuilD DaPPS with angular: Part i

https://reactjs.org

360

and all these types would need to have a mechanism in place to transfer

coins/tokens. In this section of this chapter, you will be creating a dapp

utilizing Angular.

In terms of environment and deployment, you will be using the Truffle

web framework you used in Chapter 5, as it offers benefits for quickly

creating a smart contract. Truffle is able to do more than just help compile

your smart contract; it does everything you need to inject your smart

contract into a web app and can run the test suite. You are also going to

utilize MetaMask again to get a secure blockchain account in the browser.

Lastly, you will use and run Ganache to create a local blockchain RPC

server to test and develop against.

 Prerequisites

Most of what you need is already installed. Angular needs Node and npm

manager, which you have installed previously. Confirm the correct version

is installed by running the libraries with the v flag, just as you have done in

previous chapters.

> node -v

> npm -v

In case you do not have npm and node, just run the following command:

> brew install node

Give npm ownership for your user so you won’t need to use sudo to

install libraries.

> sudo chown -R $USER:$GROUP ~/.npm

> sudo chown -R $USER:$GROUP ~/.config

It’s recommended that you upgrade npm to ensure you are using the

latest version; at the time of writing, it’s 6.9.0.

> [sudo] npm install -g npm

+npm@6.9.0

ChaPter 9 BuilD DaPPS with angular: Part i

361

 Angular CLI

Next, you need to install the Angular command-line interface (CLI). For

Angular CLI, it’s recommended (but not required) to install Angular CLI

with sudo and allow-root and ensure Angular CLI will have the correct

privileges. You will be installing version 7.3.9, which is the latest stable

release version of Angular.

> sudo npm install -g @angular/cli@7.3.9 --unsafe-perm=true

--allow-root

+ @angular/cli@7.3.9

added 363 packages from 197 contributors in 13.691s

You could also install the latest version of Angular but your

example code may break, with newer versions of Angular.

> sudo npm install -g @angular/cli --unsafe-perm=true --allow- root

To verify installation went well, run the version flag, and you should

see version 7.3.9; Figure 9-2 shows the expected output.

> ng version

ChaPter 9 BuilD DaPPS with angular: Part i

362

 Create an Angular Project

Now that you have the main tools and libraries installed, you can proceed

and create your project from scratch by downloading other needed

libraries, test libraries, and build scripts, as well as make your own folder

structure; however, to expedite this process, you can use the Angular seed

project that includes a skeleton project to quickly bootstrap your project.

Using the Angular seed project can help you start development quickly

and efficiently, following Angular's best practices. There are pros and cons

of using boilerplate skeleton code. You can decide on your own if you want

to use this skeleton for future projects, but for this demo app, it is ideal.

Figure 9-2. Angular CLI installation verification

ChaPter 9 BuilD DaPPS with angular: Part i

363

There are many ways you can create your project using the Angular

seed skeleton. I will be showing you two options here: using the Angular

CLI and using WebStorm.

The ng new command will run a script that will create your app. You

can run the CLI new command and give the name ethdapp as your app

name.

> cd ~/desktop

> ng new ethdapp

Would you like to add Angular routing? (y/N) y

Which stylesheet format would you like to use? CSS

Notice that I added routing here and decided to use CSS for styles. I

will get more into these later in the chapter.

Once installation is complete, it will output all the files that are created.

CREATE ethdapp/README.md (1024 bytes)

CREATE ethdapp/angular.json (3557 bytes)

CREATE ethdapp/package.json (1313 bytes)

...

Change directories to the newly created folder and confirm you have

the initial files and directories.

> cd ethdapp

Running the following command will analyze your package.json

config file with recommendations:

> ng update

You can run the following command to follow the recommendations:

> ng update --all

ChaPter 9 BuilD DaPPS with angular: Part i

364

Next, install Bower globally. Bower is a package manager that is used

often with Angular. At the time of writing, it’s at version 1.8.8.

> npm install -g bower

> bower -v

1.8.8

Let’s do a walk-through of what was created in a workspace and the

starter project files (see Figure 9-3).

Figure 9-3. Ethdapp files created by Angular CLI

 – A new workspace: This is the root folder named ethdapp.

 – e2e folder: This contains an end-to-end test project,

located here: ethdapp/e2e. The testing folder includes

the Jasmin library’s JSON configuration file.

 – src folder: This is your project folder, which includes all

the files of your project.

• An initial skeleton app project, located here:

ethdapp/src/app

• The assets folder with the entry file index.html

• Other configuration files

ChaPter 9 BuilD DaPPS with angular: Part i

365

 – .gitignore: Here you list any files and folders that you

would like to ignore when you upload your project to Git.

 – angular.json: This is your project configuration file and

includes information about your project.

 – package.json: This is the npm manager configuration file and

includes all the libraries you will be using in your project.

 – README.MD: This is documentation about your project;

this will be the “home page” document of your project

and the first file developers will read to get instructions

on how to get the project running.

 – tsconfig.json: This is the TypeScript config file.

 – tslint.json: This is the Lint config file used to set your

best-practice formatting, spacing, and the like.

Serve the Application

To see your actual dapps, you will be using the ng serve command, which

builds the app, starts the development server, watches the source files, and

rebuilds the app as you make changes to those files. The --open flag opens

the app in a browser on port 4200 here: http://localhost:4200/. Run the

ng serve command with the open flag.

> ng serve --open

You should see the dapp running in your browser, as shown in

Figure 9-4.

ChaPter 9 BuilD DaPPS with angular: Part i

366

The skeleton app includes links to a tour, documentation, and

an Angular blog. By going through the “Tour of Heroes” and the CLI

documentation, you can get a good understanding of how Angular works,

and bookmarking the Angular blog can give you updates on future releases

and announcements.

To stop the application from serving, press Command+C in Terminal.

Figure 9-4. Angular seed app running in the browser

ChaPter 9 BuilD DaPPS with angular: Part i

367

Angular Project with WebStorm

Another option for firing up the Angular seed project is utilizing the

WebStorm IDE, which you have been using in previous chapters.

WebStorm allows you to either import the seed project you created or

create a new seed project.

To import the ethdapp project you created with the Angular CLI

ng new command, open WebStorm, select File ➤ Open, and navigate to

the ethdapp directory. That’s it; WebStorm will automatically import the

project.

Alternatively, to start a new Angular seed project in WebStorm, select

File ➤ New ➤ Project from the top menu. Next, select Angular CLI and

name your project ethdapp. Use the drop-down menu to select the version

of the Angular CLI, as shown in Figure 9-5.

Figure 9-5. Generating the Angular seed project in WebStorm

ChaPter 9 BuilD DaPPS with angular: Part i

368

Now that the project is created, you can run the same command,

utilizing the Terminal tab in the bottom menu of WebStorm, as shown in

Figure 9-6.

> ng serve –open

Figure 9-6. Serving ethdapp in WebStorm’s Terminal

You can download the skeleton application from the book repository:

https://github.com/Apress/the-blockchain-developer/chapter9/

step1.zip.

When you download your steps, make sure you run npm install

because I stripped out the node module to decrease the size of the project.

> npm install

ChaPter 9 BuilD DaPPS with angular: Part i

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

369

Note i excluded node_modules, which holds all the project’s
dependencies, from the project. it’s common not to include it with a
project because of its size; you can install it with the npm install
command.

Ensure No Mismatch with Angular CLI Version

You can create your Angular seed project either with WebStorm or through the

ng command, and you need to check that there is no mismatch of the global

Angular CLI with the local project Angular CLI. This can happen when setting

files pointing to a previous version, or you may have used Angular in the past

with an older version. What happens is that your local project Angular shows

an older version than the global Angular installed on your computer.

To ensure this is not the case, run any ng command, and if this issue

exists, you will see the following error message:

> ng

Your global Angular CLI version (7.3.9) is greater than your local

version (6.2.9). The local Angular CLI version is used.

If you continue with these settings, you will be running version 6.x

instead of 7.x. To fix this, what you need to do is uninstall the Angular CLI

from your dev environment and then install version 7.x.

> npm uninstall --save-dev angular-cli

> npm install --save-dev @angular/cli@7.3.9

Notice that you use the --save-dev flag so the new version will be saved

in your package.json project file. Now if you run the version command

again, you should see the correct version with no warning messages.

> ng --version

Angular CLI: 7.3.2

ChaPter 9 BuilD DaPPS with angular: Part i

370

Now that you have ensured you are running the correct version of

Angular CLI, you are ready to continue development and make changes to

the seed starter app.

 Angular Components

An Angular best practice is to use a Model View Controller (MVC)–style

architecture. Angular supports coding with a separation of concerns just

like any other mature framework.

The Angular MVC includes the following three elements:

 – Model: This contains the application’s data and Angular

data binding, which allows reflection of data.

Note reflection in relation to data binding, elements bound to a data
and any data change is automatically reflected. For instance, you bind
price change to multiple view elements and once the price change
data is updated all the view elements are updated automatically.

 – View: This contains the HTML or a template and

directives.

 – Controller: This is the glue holding the model and the

view together. The controller takes the data, applies

business logic, and sends the results to the view.

As you probably recall, Angular’s welcome page opened when you

were running the serve command. The welcome component is the

application shell. The shell is controlled by an Angular component named

AppComponent.

Components are the fundamental building blocks of an Angular

application. They display data on the screen, listen for user input, and take

action based on that input.

ChaPter 9 BuilD DaPPS with angular: Part i

371

You will be creating a component called transfer that you will

be using to transfer coins to another address. To create the transfer

component, run the ng generate component command.

> ng g c components/transfer

Notice that you used the shortcuts g and c that stand for “generate”

and “component,” respectively, but you can also use the full name instead

of the abbreviation.

The ng command generated the four following files for you:

 – transfer.component.css: Component’s specific CSS styles

 – transfer.component.html: Component template,

written in HTML

 – transfer.component.spec.ts: Testing file

 – transfer.component.ts: Component class code,

written in TypeScript

These four files together act as the implementation of the transfer

component. You can see the folder structure in Figure 9-7.

Figure 9-7. Transfer component file structure

ChaPter 9 BuilD DaPPS with angular: Part i

372

An application’s structure is usually created with a header, a footer, and

a navigation menu so you can navigate to different partial views.

Using this architecture of header and footer components can help you

create different views and split the page view into separate files. Think of

each piece as a stand-alone reusable UI module. Angular Seed promotes

this type of architecture and comes with the welcome component already

created. Let’s create a start component, a header, and footer components.

> ng g c components/start

> ng g c components/header

> ng g c components/footer

You can see in the output that each component generated the

following files:

CREATE src/app/components/[component-name]/[component-name].

component.css

CREATE src/app/components/[component-name]/[component-name].

component.html

CREATE src/app/components/[component-name]/[component-name].

component.spec.ts

CREATE src/app/components/[component-name]/[component-name].

component.ts

In addition to these files, you can open ethdapp/src/app/app.module.

ts and notice that the app.module.ts file was modified every time you

created a component. The app.module.ts file is one of the most important

files in Angular; it’s the app controller written in TypeScript. The controller

is a global file that will tie your components together, so every component

you want to use in your app needs to be defined in that file. If you did not

use the ng script, you will need to modify app.module.ts yourself to link to

the new component.

ChaPter 9 BuilD DaPPS with angular: Part i

373

Since you used the CLI, these imports are included automatically for you:

import { TransferComponent } from './components/transfer/

transfer.component';

import { StartComponent } from './components/start/start.

component';

import { HeaderComponent } from './components/header/header.

component';

import { FooterComponent } from './components/footer/footer.

component';

 Routing Module

Another important file and a good practice to create is an app-routing

module. This file acts as a controller to instruct Angular how to navigate to

different views in your app.

Normally to generate a route for your app, you do not need to manually

do so, since during the creation of your app, you decided to create the

routing file called app-routing.

If you need to create the app-routing file, you can run the following

the module command:

> ng generate module app-routing --flat --module=app

CREATE src/app/app-routing.module.ts

UPDATE src/app/app.module.ts

Notice that this time in your command you are using the full name

generate module instead of just the first letters of g and m. Both options

work the same way.

The generate module command creates the initial code shown in

Listing 9-1 for src/app/app-routing.module.ts.

ChaPter 9 BuilD DaPPS with angular: Part i

374

Listing 9-1. app-routing Initial Startup Code

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

const routes: Routes = [];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

The initial code includes an import statement to Angular code and

module tag. Next, replace the pre-populated code of app-routing.

module.ts file with the code in Listing 9-2.

Listing 9-2. app-routing Code to Route Views

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { RouterModule, Routes } from '@angular/router';

import { StartComponent } from './components/start/start.

component';

import { TransferComponent } from './components/transfer/

transfer.component';

const routes: Routes = [

 { path: '', redirectTo: '/start', pathMatch: 'full' },

 { path: 'start', component: StartComponent },

 { path: 'transfer', component: TransferComponent }

];

@NgModule({

 declarations: [],

 imports: [RouterModule.forRoot(routes), CommonModule],

ChaPter 9 BuilD DaPPS with angular: Part i

375

 exports: [RouterModule]

})

export class AppRoutingModule { }

In Listing 9-2, you imported the view components you will be using;

these are start and transfer. They will act as web pages on a web site or

partial views on a mobile app. The route tells your app what view to match

with what keyword, and lastly you set import statements to tell Angular

who can access this module.

Now that the routing is set, you can get the footer, header, and body of

the page to display. All you have to do is open src/app/app.component.

html and update from the welcome page’s HTML code to the following

three lines:

<app-header></app-header>

<router-outlet></router-outlet>

<app-footer></app-footer>

To test the changes you made to your application, you don’t need to

publish your app again or run any scripts; just save the files and run the

same serve command you ran before in Terminal.

> ng serve

⌈wdm⌋: Compiled successfully.

The serve script includes scripts to watch for changes in files and

update your app automatically, so all you have to do when you make

a change to your files is go back to the browser. Most of the time you

won’t even need to refresh your web page; the changes will be there

automatically. Navigate to http://localhost:4200 to see the changes.

If you would like to go directly to the transfer page, all you have to do

is add the keyword you selected at the end of the URL as you set up the

routing mechanism: http://localhost:4200/transfer. See Figure 9-8.

ChaPter 9 BuilD DaPPS with angular: Part i

376

You can download this step here: https://github.com/Apress/the-

blockchain-developer/chapter9/step2.zip.

 Styling an Angular App
Your app at this point is not styled and only shows text with a header,

the page, and a footer; however, before you start styling, it’s helpful to

understand the Angular style architecture to ensure you don’t end up with

a Cascading Style Sheets (CSS) file that is too big to manage. You can style

your app on a global level with styles that you need across your entire app

as well as a specific style unique to only one component.

Additionally, it would be neat to sprint from zero to a styled app quickly.

This can be done with Angular Material. Angular Material gives you a

shortcut to get a consistent “look” to your app without all the hassle of

thinking about cross-browser, cross-device programming. Let’s take a look.

 Angular-Style Architecture

Angular is set up to have a global CSS file. That CSS file is called style.

css, and you can find it in the root of the project. src/style.css holds the

styles that you want to use for your entire app, such as fonts, themes, styles

for all the components, and so on.

Figure 9-8. Ethdapp header, footer, and transfer page

ChaPter 9 BuilD DaPPS with angular: Part i

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

377

As you have seen, each component also includes a private CSS file. The

specific component CSS file is where you put styles that are unique and

used only for that component.

For instance, /src/app/components/footer/footer.component.css

holds the styles specific for the footer component.

 Angular Material

Right now, your starter application is fast because it includes minimal

code; however, there is a potential performance issue as you add more

and more components, assets, and style to your app. You can get your app

bloated easily, and every millisecond dealy counts.

The other potential issue is testing. All the different browsers, versions

of browsers, screen sizes, and devices need to be tested, and creating your

pages from scratch will require rigid testing and a quality assurance (QA)

team to ensure it works consistency across devices.

Angular Material solves all these issues plus provides accessibility

and internationalization. That is because Angular Material is optimized

for Angular and built by the Angular team, so it integrates seamlessly with

Angular. It has already passed all these compatibility tests.

For more information, check the Angular Material getting started page:

https://material.angular.io/guide/getting-started.

 Install Angular Material

There are a few ways to install Material. Because you have installed the

Angular DevKit, you are able to just run the ng add command to get

the Angular Material library. You need to first install cdk because it’s a

dependency.

> ng add @angular/cdk

ChaPter 9 BuilD DaPPS with angular: Part i

https://material.angular.io/guide/getting-started

378

Next, install Material.

> ng add @angular/material

Notice that the output asks you which theme color you would like with

links. I will cover themes in the next section of this chapter, but for now,

select the first or any color you prefer.

? Choose a prebuilt theme name, or "custom" for a custom theme:

(Use arrow keys)

□ Indigo/Pink [Preview: https://material.angular.

io?theme=indigo-pink]

 Deep Purple/Amber [Preview: https://material.angular.

io?theme=deeppurple-amber]

 Pink/Blue Grey [Preview: https://material.angular.

io?theme=pink-bluegrey]

 Purple/Green [Preview: https://material.angular.

io?theme=purple-green]

You can also set up gesture recognitions and animations.

? Set up HammerJS for gesture recognition? Yes

? Set up browser animations for Angular Material? Yes

The expected output should be showing the files that were updated:

UPDATE package.json

UPDATE angular.json

UPDATE src/app/app.module.ts

UPDATE src/index.html

UPDATE src/styles.css

 Import Angular Material Modules

Next, you want to modify your app to have Angular Material include

animations, Material icons, gesture support, and component modules.

ChaPter 9 BuilD DaPPS with angular: Part i

379

In your project, you will only be using component modules and not

all the features that Angular Material has to offer; what you need to do

is import NgModule for each component you want to use. Open src/

app/app.module.ts and add the import statements.

import {

 MatButtonModule,

 MatCheckboxModule,

 MatInputModule,

 MatSelectModule,

 MatDatepickerModule,

 MatNativeDateModule

} from '@angular/material';

Next, update the import statements of @NgModule to include the

Material modules you imported.

imports: [

 BrowserModule,

 AppRoutingModule,

 BrowserAnimationsModule,

 MatButtonModule,

 MatInputModule,

 MatDatepickerModule,

 MatNativeDateModule,

 MatCheckboxModule,

 MatSelectModule

]

That’s it. You can now have access to the Angular Material components

you included.

ChaPter 9 BuilD DaPPS with angular: Part i

380

 Theme Your Angular Material App

Now that you have access to the Angular Material components, you can

use themes to style them. A theme is a set of colors that will be used on

your Angular Material components.

In Angular Material, a theme is created by creating multiple palettes.

 – Primary palette: These are the colors most used across

all screens and components.

 – Accent palette: These are the colors used for the button

and interactive elements.

 – Warn palette: These are the colors for errors.

 – Foreground palette: These are the colors for text and icons.

 – Background palette: These are the colors for an

element’s backgrounds.

In Angular Material, all theme styles are generated statically at build

time to avoid slowing the app on startup.

Angular Material comes prepackaged with several prebuilt theme CSS

files. As you probably recall, you had an option of selecting a theme to use

when you installed Material.

These theme files also include all of the styles for the core (styles

common to all components), so you have to include only a single CSS file

for Angular Material in your app. You can include a theme file directly into

your application from @angular/material/prebuilt-themes.

These are the available prebuilt themes:

 – deeppurple-amber.css

 – indigo-pink.css

 – pink-bluegrey.css

 – purple-green.css

ChaPter 9 BuilD DaPPS with angular: Part i

381

You are using Angular CLI here, so you can simply include the style you

want in the global src/styles.css file.

Originally it has this initial precode:

html, body { height: 100%; }

body { margin: 0; font-family: 'Roboto', sans-serif; }

Add the following import statement at the top of the document:

@import "~@angular/material/prebuilt-themes/indigo-pink.css";

While you have the src/style.css file open, you can also create a style

for a container, a paragraph, and a button that you can use across your app

for your pages.

p {

 padding-left: 20px;

 font-size: 12px;

}

.container {

 margin-right: auto;

 margin-left: auto;

 padding: 20px 15px 30px;

 width: 750px;

}

button {

 color: #ffffff;

 background-color: #611BBD;

 border-color: #130269;

 display: inline-block;

 margin-bottom: 0;

 font-weight: normal;

 text-align: center;

 vertical-align: middle;

ChaPter 9 BuilD DaPPS with angular: Part i

382

 touch-action: manipulation;

 cursor: pointer;

 white-space: nowrap;

 padding: 6px 12px;

 font-size: 12px;

 line-height: 1.42857143;

 border-radius: 4px;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

}

You can compare your files with mine: https://github.com/Apress/

the-blockchain-developer/chapter9/step3.zip.

 Creating Content
At this point, you have a skeleton app with a header, body, and footer.

The body can be switched between your start page and transfer page by

changing the URL in the browser. You also imported and injected Material

modules and set up global styles for your app. The next step is to create

actual content to replace the temporary text message you placed in your

header, footer, and start components.

 Footer Component

For the footer component, you will just replace the message for your

company copyright. To do so, all you need to do is open src/app/components/

footer/footer.component.html and replace the default code.

<p>

 footer works!

</p>

ChaPter 9 BuilD DaPPS with angular: Part i

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

383

Replace the code by creating a div container with the style you added

to the global CSS file.

<div class="ng-scope">

 <div class="container">

 <p>Copyright (c) 2019 Company Name. All Rights Reserved.</p>

 </div>

</div>

You are also going to create a specific style for the footer component,

so every time you use the p tag, your font will be size 12px with no padding

on the left. Open src/app/components/footer/footer.component.css

and insert the following:

p {

 padding-left: 0;

 font-size: 11px;

}

Notice that you defined the <p> tag twice, once in the global CSS file

and one at the component level. What’s going to happen is that the global

<p> tag will be overwritten by the component <p>, so you can use the <p>

tag for your footer and a different <p> tag for other components such as the

start and transfer pages while keeping your HTML code free of CSS code.

 Header Component

For the header component, you will create a navigation menu to be able

to switch between the start page and the transfer page. For styles specific

to the header component, open src/app/components/header/header.

component.css and add the nav list styles.

ChaPter 9 BuilD DaPPS with angular: Part i

384

.nav {

 margin-bottom: 0;

 padding-left: 0;

 list-style: none;

}

li {

 display: block;

 float: left;

 width: 100px;

 height: 25px;

 padding: 5px;

}

.nav>li>a {

 margin-bottom: 0;

 padding-left: 0;

 font-weight: 500;

 font-size: 12px;

 text-transform: uppercase;

 position: relative;

}

For src/app/components/header/header.component.html, you create

a container and a list of the two links to the pages start and transfer. To do

so replace the initial code:

<p>

 header works!

</p>

with the following;

<div class="ng-scope">

 <div class="container">

 <ul class="nav">

ChaPter 9 BuilD DaPPS with angular: Part i

385

 home

 transfer

 </div>

</div>

The working dapp now includes basic styling and functional navigation,

as shown in Figure 9-9.

Figure 9-9. Ethdapp with basic styling and working navigation

You can download this step here: https://github.com/Apress/the-

blockchain-developer/chapter9/step4.zip.

ChaPter 9 BuilD DaPPS with angular: Part i

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

386

 Transfer Component

The transfer component will hold a form that you will submit to transfer

Ethereum coins from one account address to another. You will be using

the forms module to expedite creating your form. To do so, you need

to include the Material FormsModule and ReactiveFormsModule form

modules in app.module.ts just as you did with other Material modules.

Open src/app/app.module.ts and add the following import statement:

import { FormsModule, ReactiveFormsModule } from '@angular/forms';

You also want to update the import statement.

 imports: [

 FormsModule,

 ReactiveFormsModule,

 ..

]

You will be using the <mat-form-field> tag, which represents a

component that wraps several Angular Material components together

and applies common text field styles such as the underline, floating label,

and hint messages. This will expedite development as you won’t need to

implement all of these and test them on multiple devices/browsers.

The form field is the wrapper component named <mat-form-field>.

You can use any of the form field controls (such as input, textarea, list, etc.).

You can find information about mat-forms here: https://material.

angular.io/components/form-field/overview.

For src/app/components/transfer/transfer.component.ts, you will

update the initial code. First you need to import the components you will

be using; in this case, you need to initialize the class and use form, form

control, and validators.

import {FormBuilder, FormControl, FormGroup, Validators} from

'@angular/forms';

ChaPter 9 BuilD DaPPS with angular: Part i

https://material.angular.io/components/form-field/overview
https://material.angular.io/components/form-field/overview

387

Then you need to update the component definition to implement the

OnInit method.

export class TransferComponent implements OnInit {

You will be using a flag to indicate whether the form was submitted

and to create an instance of a form group, as well as an object called user,

to hold the user’s information.

 formSubmitted: Boolean = false;

 userForm: FormGroup;

 user: any;

To validate your form, you will define the messages in case the form

is not filled in correctly. Each form control needs to be defined with the

required fields and messages.

 account_validation_messages = {

 'transferAddress': [

 { type: 'required', message: 'Transfer Address is required' },

 { type: 'minLength', message: 'Transfer Address must be

42 characters long' },

 { type: 'maxLength', message: 'Transfer Address must be

42 characters long' }

],

 'amount': [

 { type: 'required', message: 'Amount is required' },

 { type: 'pattern', message: 'Amount must be a positive

number' }

],

 'remarks': [

 { type: 'required', message: 'Remarks are required' }

]

 };

ChaPter 9 BuilD DaPPS with angular: Part i

388

When you create the constructor, you need to include the FormBuilder

component to be able to generate the form.

 constructor(private fb: FormBuilder) { }

When your component gets init, you will set the formSubmitted flag

to false and set default values for the user’s information. You then will

call a method to go fetch the user’s account and balance, which you will

implement later. Lastly, you will call the createForms method that will

generate the form.

 ngOnInit() {

 this.formSubmitted = false;

 this.user = { address: '', transferAddress: '', balance: '',

amount: '', remarks: ''};

 this.getAccountAndBalance();

 this.createForms();

 }

The createForms method will generate the form controls by passing

the validators and data.

 createForms() {

 this.userForm = this.fb.group({

 transferAddress: new FormControl(this.user.transferAddress,

Validators.compose([

 Validators.required,

 Validators.minLength(42),

 Validators.maxLength(42)

])),

 amount: new FormControl(this.user.amount, Validators.

compose([

 Validators.required,

 Validators.pattern('^[+]?([.]\\d+|\\d+[.]?\\d*)$')

ChaPter 9 BuilD DaPPS with angular: Part i

389

])),

 remarks: new FormControl(this.user.remarks, Validators.

compose([

 Validators.required

]))

 });

 }

The getAccountAndBalance method will set the user account’s address

and balance; for now you are using dummy data, but you will implement

the actual service later in this chapter.

 getAccountAndBalance = () => {

 const that = this;

 that.user.address = '0xd8d0101f83e79fb4e8d21134f5325e64816b

d6a0';

 that.user.balance = 0;

 // TODO: fetch data

 }

Lastly, once you submit your form, you need a method to handle the

data and call the service. submitForm will be used by checking whether the

form is valid, and then later you will call the service component you will

create.

 submitForm() {

 if (this.userForm.invalid) {

 alert('transfer.components :: submitForm :: Form invalid');

 return;

 } else {

 console.log('transfer.components :: submitForm :: this.

userForm.value');

 console.log(this.userForm.value);

ChaPter 9 BuilD DaPPS with angular: Part i

390

 // TODO: service call

 }

 }

}

For transfer.component.html, you will set the form tag to call the

submitForm method once the form is submitted.

<form [formGroup]="userForm" (ngSubmit)="submitForm()"

 novalidate autocomplete="off">

Next, you will create the wrapping divs and use data binding to display

the user’s account address and balance.

 <div class="container">

 <div class="transfer-container">

 <div>

 Address: {{user.address}}

 Balance: {{user.balance}} Eth

 </div>

Notice that you have used the transfer-container style, which you

have not yet defined; you will define it in your CSS file, and it will be used

to format your form.

For form controls, you need input boxes for the account you are

transferring the funds to, the amount, and a message. You also need to set

up your validations.

 <mat-form-field>

 < input matInput placeholder="Transfer Address"

name="transferAddress" formControlName="transferAddress"

 maxlength="42" minlength="42" required>

 < mat-error *ngFor="let validation of account_

validation_messages.transferAddress">

ChaPter 9 BuilD DaPPS with angular: Part i

391

 <mat-error *ngIf="userForm.get('transferAddress').

hasError(validation.type) && (userForm.

get('transferAddress').dirty || userForm.

get('transferAddress').touched)">{{validation.

message}}</mat-error>

 </mat-error>

 </mat-form-field>

 <mat-form-field>

 < input matInput placeholder="Amount" name="amount"

formControlName="amount" required>

 < mat-error *ngFor="let validation of account_

validation_messages.amount">

 <mat-error *ngIf="userForm.get('amount').

hasError(validation.type) && (userForm.

get('amount').dirty || userForm.get('amount').

touched)">{{validation.message}}</mat- error>

 </mat-error>

 </mat-form-field>

 <mat-form-field>

 < input matInput placeholder="Remarks" name="remarks"

formControlName="remarks"

 maxlength="42" required>

 < mat-error *ngFor="let validation of account_

validation_messages.remarks">

 < mat-error *ngIf="userForm.get('remarks').

hasError(validation.type) && (userForm.

get('remarks').dirty || userForm.get('remarks').

touched)">{{validation.message}}</mat- error>

 </mat-error>

 </mat-form-field>

ChaPter 9 BuilD DaPPS with angular: Part i

392

Lastly, remember to close the divs and form, as well as include a

submit button.

 <div style="width: 100px">

 <button type="submit">Transfer Ether</button>

 </div>

 </div>

 </div>

</form>

For transfer.component.css, you will be using the transfer-

container div to format your form horizontally.

.transfer-container {

 display: flex;

 flex-direction: column;

}

.transfer-container > * {

 width: 100%;

}

That’s it. Now you can check your dapp in the browser, and you should

be able to see the user’s default data, test the form, validate it, and submit

the form. See Figure 9-10.

ChaPter 9 BuilD DaPPS with angular: Part i

393

You can download this step here: https://github.com/Apress/the-

blockchain-developer/chapter9/step5.zip.

 Angular Directives

Creating directives in Angular gives you the ability to create your own

custom HTML tags with just a few lines of code, just as you saw in the

Material form. You were able to include custom tags that wrap many

components. At a high level, directives are markers on a DOM element.

These markers can point to any DOM component, from an attribute

to an element name or even a comment or CSS class. These markers then

tell the AngularJS's HTML compiler to attach a specified behavior or to

transform the entire DOM element and its children based on specific logic.

Angular comes with many of these directives built-in. However, during

development, it’s a good chance you will be creating your own directives.

Your dapp is simple now, so you don’t need to create any directive, and

it’s beyond the scope of this chapter to explain this. When you do need to

Figure 9-10. Ethdapp transfer page including user’s info, validators,
and submit button

ChaPter 9 BuilD DaPPS with angular: Part i

https://github.com/Apress/the-blockchain-developer/chapter9/step5.zip
https://github.com/Apress/the-blockchain-developer/chapter9/step5.zip

394

generate a skeleton directive, use the Angular CLI just as you generated

other components.

> ng generate directive {directive-name}

Although you are not creating a directive in your app, I wanted to

introduce you to the concept as it’s an integral part of creating an Angular

project.

 Summary
In this chapter, you took a deep dive into what a dapp is and looked at dapp

classifications and projects. You learned how to start your own dapp project

by breaking the process into five steps: writing a white paper, launching an

ICO, developing the dapp, launching it, and marketing your dapp.

You then looked at why to use Angular. Next, you created an Angular

dapp, first ensuring the prerequisites were installed and installing

the Angular CLI. Then you created an Angular project and served the

application.

Next, you learned how to import your Angular project to WebStorm

or create a new project. You looked at the pieces that make Angular such

as components, modules, and directives. You also learned how to style

the dapp by understanding Angular-style architecture and working with

Angular Material.

You started building components and created content; you split your

app into a footer, header, and body and created a custom component

called transfer that includes a form to be able to later transfer tokens.

In the next chapter, you will create a transfer smart contract and a

Truffle development project as well as connect to the Ganache development

network. You will learn how to work with the Ethereum network via Truffle

and test your smart contract. You also will link your dapp with the Ethereum

Network’s web3 library and connect via MetaMask.

ChaPter 9 BuilD DaPPS with angular: Part i

395© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_10

CHAPTER 10

Build Dapps with
Angular: Part II
In the previous chapter, you started developing your dapp. Specifically,

you learned about dapp classifications and projects and that you can

break your own dapp project into five steps. You then looked at why

to use Angular and its benefits. Next, you created an Angular project,

first ensuring the prerequisites were installed and then installing the

Angular CLI. You looked at the pieces that make up Angular such as

components, modules, and directives. You also learned how to style a

dapp by understanding Angular-style architecture and working with

Angular Material. You started building your own custom components

and creating content; you split your app into a footer, header, and

body and created a custom transfer component that you will be using

in this chapter.

In this chapter, I will cover the following:

• Creating the dapp’s smart contract with Truffle

• Integrating a smart contract in your dapp’s Angular

project

• Linking and connecting your dapp to the Ethereum

network

396

You will be utilizing the tools I have been covering so far: the Angular

CLI, Truffle, ganache-cli, and MetaMask. You will create a smart contract

that you will use for your dapp with Truffle, and then you’ll use the web3

library to connect to the Ethereum local network and call the smart

contract’s functions and events. MetaMask will be used to manage and

connect to your account.

Tip It’s recommended that you complete the previous chapter
and Chapter 5 prior to going through this chapter in order to fully
understand the examples here, which build on the concepts, tools,
and installed libraries from Chapters 9 and 5.

 Transfer a Smart Contract
You already have the front-end logic to transfer tokens in your app from

the previous chapter; however, you don’t have a smart contract to interact

with the blockchain. Smart contracts can be created before the front-end

portion, after, or in parallel (if you work with a team of developers).

You already created an Ethereum smart contract in Chapter 5, so the

steps in this section should be familiar to you. Feel free to revisit Chapter 5

to refresh your memory, as I won’t go into much detail regarding the tools

and commands used in this chapter.

To get started, you will create a new folder in your ethdapp project to

hold the Truffle project. You can download the latest step, where you left

off from, here: https://github.com/Apress/the-blockchain-developer/

chapter9/step5.zip.

In real-life projects with multiple developers, the smart contract could

be a separate project. For simplicity, you will be including it in your project

so you can utilize the WebStorm Terminal window’s bottom tab to run

commands.

Chapter 10 BuIld dapps wIth angular: part II

https://github.com/Apress/the-blockchain-developer/chapter9/step5.zip
https://github.com/Apress/the-blockchain-developer/chapter9/step5.zip

397

Start by creating a folder called truffle inside your project and

initialize Truffle to create the project. You can see the expected output in

Figure 10-1.

> mkdir ethdapp/truffle

> cd truffle

> truffle init

Figure 10-1. Output of creating a Truffle project

Tip If you get errors such as “error: truffle Box,” uninstall truffle,
and then re-install it and try again.

To re-install truffle in case of error messages, remove truffle

globally and install it again.

> npm uninstall -g truffle

If you do not have Truffle installed or need to re-install Truffle globally,

run the install command.

> npm install -g truffle

Chapter 10 BuIld dapps wIth angular: part II

398

After re-installing or performing a fresh install, run the truffle init

command again and make sure you run the test in a new Terminal window

to ensure the changes were applied.

> truffle compile

> truffle migrate

> truffle test

You can compare your results with mine, shown in Figure 10-2.

Figure 10-2. Truffle compiling, migrating, and testing your project

 Create a Smart Contract
You’ll create a smart contract and call it Transfer.sol; put it here:

truffle/contracts/Transfer.sol. The contract will allow you to transfer

funds from one account to another. First navigate to the location of the

contracts in Truffle and use an editor to create a new file.

> cd ethapp/truffle/contracts

> vim Transfer.sol

Chapter 10 BuIld dapps wIth angular: part II

399

The complete Transfer.sol code is listed here:

pragma solidity ^0.5.0;

contract Transfer {

 address payable from;

 address payable to;

 constructor() public {

 from = msg.sender;

 }

 event Pay(address _to, address _from, uint amt);

 function pay(address payable _to) public payable returns

(bool) {

 to = _to;

 to.transfer(msg.value);

 emit Pay(to, from, msg.value);

 return true;

 }

}

Let’s walk through the code. First you need to define the solidity

version you will be using and the contract name.

pragma solidity ^0.5.0;

contract Transfer {

Next, define the from and to addresses and the constructor.

 address payable from;

 address payable to;

 constructor() public {

 from = msg.sender;

 }

Chapter 10 BuIld dapps wIth angular: part II

400

You will be using a Pay event that will be dispatched once the pay

function is used.

 event Pay(address _to, address _from, uint amt);

The pay function uses the Pay event to interact with the network and

do the actual transfer.

 function pay(address payable _to) public payable returns

(bool) {

 to = _to;

 to.transfer(msg.value);

 emit Pay(to, from, msg.value);

 return true;

 }

}

That’s it. You kept it basic and simple with only one event and one function.

You can download this step from here: https://github.com/Apress/

the-blockchain-developer/chapter10/step1.zip.

 Create the Truffle Development Network
The next step is to replace the truffle/truffle-config.js file with the

following configuration:

module.exports = {

 networks: {

 development: {

 host: "127.0.0.1",

 port: 8545,

 network_id: "*",

 gas: 5000000,

Chapter 10 BuIld dapps wIth angular: part II

https://github.com/Apress/the-blockchain-developer/chapter10/step1.zip
https://github.com/Apress/the-blockchain-developer/chapter10/step1.zip

401

 gasPrice: 100000000000

 }

 }

};

Notice that you point to port 8545, which will help you when you run

MetaMask later in this chapter.

 Deploy the Smart Contract
The other configuration file you need is the deploy contract file. Create a

deployment file and call it truffle/migrations/2_deploy_contracts.js.

In this config file all you do is point to the Transfer smart contract SOL

code you created.

var Transfer = artifacts.require("./Transfer.sol");

module.exports = function(deployer) {

 deployer.deploy(Transfer);

};

Now you are ready to create your network on port 8545 with Ganache,

so navigate to the Truffle project, and run this command:

> cd ethdapp/truffle

> ganache-cli -p 8545

Tip If you get any errors such as “nOde_MOdule_VersIOn
mismatch,” uninstall and re-install ganache-cli. then open a new
terminal window and ensure it’s running correctly.

Chapter 10 BuIld dapps wIth angular: part II

402

To re-install ganache-cli if needed, run this:

> npm uninstall -g ganache-cli

> npm install -g ganache-cli

To ensure it’s running correctly, run this:

> ganache-cli help

Next, in a new Terminal window, let’s compile and deploy your

contract while ganache is still running.

> truffle compile

The compile output should provide success, creating your contract in

the Contract folder.

Compiling ./contracts/Transfer.sol...

Writing artifacts to ./build/contracts

The file that was created is Transfer.json, which you will be using in

your dapp to interact with the network. Next, you will deploy your contract

with the migrate command.

> truffle migrate --network development

The output should confirm the contract was migrated to the network,

as shown in Figure 10-3.

Chapter 10 BuIld dapps wIth angular: part II

403

The output summary should also show that the deployment went well

and a charge.

Summary

=======

> Total deployments: 2

> Final cost: 0.0525573 ETH

 Truffle Console

Now that you have the contract compiled and deployed, to interact with

the network, start a console, as shown here:

> truffle console --network development

A good resource for the commands you can run against the Truffle CLI

is at the Ethereum JavaScript API wiki page here: https://github.com/

ethereum/wiki/wiki/JavaScript-API.

Figure 10-3. Truffle migrate project

Chapter 10 BuIld dapps wIth angular: part II

https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API

404

 Accounts

If you run getAccounts, you’ll get a list of accounts associated with your

wallet.

truffle(development)> web3.eth.getAccounts()

['0x1eFf25A40C82EA65BC88E45d02368897EC922FEf',

 '0xC135058b33d5df78636Cf14b74F281f95c4a407c',

 '0xe682300Ef633F7d4f0d8Cb07c1bAD5d9B4eaE974'

....]

You can then define address1 and address2 as the first and second

accounts.

truffle(development)> web3.eth.getAccounts().then(function(a)

{address1=a[0]})

undefined

truffle(development)> web3.eth.getAccounts().then(function(a)

{address2=a[1]})

undefined

Now that they are defined, you can call them and get the first and

second accounts in the output.

truffle(development)> address1

'0x1eFf25A40C82EA65BC88E45d02368897EC922FEf'

truffle(development)> address2

'0xC135058b33d5df78636Cf14b74F281f95c4a407c'

You can also use getBalance to get the balance you have in these addresses.

truffle(development)> web3.eth.getBalance(address1)

'99942134400000000000'

truffle(development)> web3.eth.getBalance(address2)

'100000000000000000000'

Chapter 10 BuIld dapps wIth angular: part II

405

 Test the Transfer of a Smart Contract

Now that you have defined two addresses and you know the balance

in these accounts, you can define your contract and pass some funds

between the accounts. To do so, first define the contract and call it

transferSmartContract.

truffle(development)> Transfer.deployed().

then(function(instance){transferSmartContract = instance;})

undefined

Next, run the transferSmartContract variable you defined to ensure it

worked and show the object value.

> transferSmartContract

Now you can transfer funds with your smart contract between the two

accounts. Account 2 holds a nice round number, so you will transfer 5 eth.

> transferSmartContract.pay(address2, {from: address1, value: 5});

The command output shows information about the transaction and

mining. Now you are able to see the balance updated.

> web3.eth.getBalance(address1);

'99942134399999999995'

> web3.eth.getBalance(address2);

'100000000000000000005'

As you can see, the balance changed, and you were able to transfer

tokens between two addresses.

Chapter 10 BuIld dapps wIth angular: part II

406

 Link with the Ethereum Network
You got your contract working in Terminal; the next step is for your dapp

to interact with the contract. This is done via web3.js, which is a collection

of libraries allowing you to interact with a local or remote Ethereum node

using an HTTP or IPC connection. First navigate back into your Angular

project folder and then install web3.js with the flag --save to save the

library you are installing.

> cd ethdapp/

> npm install web3 –save

+ web3@1.0.0-beta.55

If installation went well, you will see in the output that the version did

install. At the time of writing, web3 is at version 1.0.0-beta55.

You also need to install truffle-contract, which provides wrapper

code that makes interaction with your contract easier. At the time of

writing, the latest is version 4.0.7 but will probably change by the time you

are reading this book.

> npm install truffle-contract –save

+ truffle-contract@4.0.15

Tip web3 version 1.0.0 beta and truffle-contract version
4.0.15 are the latest versions and compatible with angular 7.3.x.
however, this can change, so watch the version you are installing
to ensure it’s compatible and to avoid errors. re-install with exact
@[version], for instance @4.0.15, if you run into compatibility
issues.

Chapter 10 BuIld dapps wIth angular: part II

407

 Transfer Service
Now that you have your libraries installed, you can continue. In this

section, you will create and write a service class. A service class is going

to be your front-end middle layer to interact with web3. To get started, you

can utilize the ng s flag, which stands for “service.”

> ng g s services/transfer --module=app.module

CREATE src/app/services/transfer.service.spec.ts

CREATE src/app/services/ transfer.service.ts

You will replace the service class’s initial code with logic to interact

with web3. First you will define the libraries you will be using, which are the

Angular core and the truffle-contract and web3 libraries you installed.

import { Injectable } from '@angular/core';

const Web3 = require('web3');

import * as TruffleContract from 'truffle-contract';

Next, you will define three variables you will be using later: require,

window, and tokenAbi. Notice that tokenAbi points to the ABI file you

compiled from the contract SOL file.

declare let require: any;

declare let window: any;

const tokenAbi = require('../../../truffle/build/contracts/

Transfer.json');

You need access to root to interact with web3, so you need to inject it

into your project.

@Injectable({

 providedIn: 'root'

})

Chapter 10 BuIld dapps wIth angular: part II

408

Next, define the class definition, the account and web3 variables, and

init web3.

export class TransferService {

 private _account: any = null;

 private readonly _web3: any;

 constructor() {

 if (typeof window.web3 !== 'undefined') {

 this._web3 = window.web3.currentProvider;

 } else {

 this._web3 = new Web3.providers.HttpProvider('http://

localhost:8545');

 }

 window.web3 = new Web3(this._web3);

 console.log('transfer.service :: this._web3');

 console.log(this._web3);

 }

notice that you wrapped console.log messages around the code
so you can see the messages in the browser console messages
section under developer tool mode to help you understand what’s
happening. to do so open the browser in a developer tool mode. For
Chrome, select View developer View ➤ developer ➤ developer tools.

You need an async method to get the account address and balance,

so you can use a promise function. If your account was not retrieved

previously, you’ll call web3.eth.getAccounts just as you did in Terminal to

retrieve the data. You also need error code if something goes wrong.

private async getAccount(): Promise<any> {

 console.log('transfer.service :: getAccount :: start');

 if (this._account == null) {

Chapter 10 BuIld dapps wIth angular: part II

409

 this._account = await new Promise((resolve, reject) => {

 console.log('transfer.service :: getAccount :: eth');

 console.log(window.web3.eth);

 window.web3.eth.getAccounts((err, retAccount) => {

 console.log('transfer.service :: getAccount: retAccount');

 console.log(retAccount);

 if (retAccount.length > 0) {

 this._account = retAccount[0];

 resolve(this._account);

 } else {

 alert('transfer.service :: getAccount :: no

accounts found.');

 reject('No accounts found.');

 }

 if (err != null) {

 alert('transfer.service :: getAccount :: error

retrieving account');

 reject('Error retrieving account');

 }

 });

 }) as Promise<any>;

 }

 return Promise.resolve(this._account);

 }

Similarly, you need a service method to interact with and get the balance

of the account. You use web3.eth.getBalance just as you did in Terminal

and wrap some error checking. You also set this as a promise. The reason

you need a promise is that these calls are async, and JavaScript is not.

Chapter 10 BuIld dapps wIth angular: part II

410

 public async getUserBalance(): Promise<any> {

 const account = await this.getAccount();

 console.log('transfer.service :: getUserBalance :: account');

 console.log(account);

 return new Promise((resolve, reject) => {

 window.web3.eth.getBalance(account, function(err, balance) {

 console.log('transfer.service :: getUserBalance ::

getBalance');

 console.log(balance);

 if (!err) {

 const retVal = {account: account, balance: balance};

 console.log('transfer.service :: getUserBalance ::

getBalance :: retVal');

 console.log(retVal);

 resolve(retVal);

 } else {

 reject({account: 'error', balance: 0});

 }

 });

 }) as Promise<any>;

 }

Last, you need a method to pass the values from your form and transfer

payment from one account to another. Use the contract pay method and

wrap some error checking.

 transferEther(value) {

 const that = this;

 console.log('transfer.service :: transferEther to: ' +

value.transferAddress + ', from: ' + that._account + ',

amount: ' + value.amount);

 return new Promise((resolve, reject) => {

 console.log('transfer.service :: transferEther :: tokenAbi');

Chapter 10 BuIld dapps wIth angular: part II

411

 console.log(tokenAbi);

 const transferContract = TruffleContract(tokenAbi);

 transferContract.setProvider(that._web3);

 console.log('transfer.service :: transferEther ::

transferContract');

 console.log(transferContract);

 transferContract.deployed().then(function(instance) {

 return instance.pay(

 value.transferAddress,

 {

 from: that._account,

 value: value.amount

 });

 }).then(function(status) {

 if (status) {

 return resolve({status: true});

 }

 }).catch(function(error) {

 console.log(error);

 return reject('transfer.service error');

 });

 });

 }

}

Now that you have the transfer service complete, you can connect

transfer.component to get the user’s account address and balance and be

able to transfer funds once the form is filled in.

First you need to define the service component you created. Open src/

app/component/transfer/transfer.component.ts and add the import

statement at the top of the document.

import {TransferService} from '../../services/transfer.service';

Chapter 10 BuIld dapps wIth angular: part II

412

For the component definition, add TransferService as a provider.

@Component({

..

 providers: [TransferService]

})

Also, add TransferService to the constructor so you can use it in your

class.

constructor(private fb: FormBuilder,

 private transferService: TransferService) { }

Next, update the getAccountAndBalance method to include a call to

the service class and retrieve the user actual account and balance.

 getAccountAndBalance = () => {

 const that = this;

 this.transferService.getUserBalance().

then(function(retAccount: any) {

 that.user.address = retAccount.account;

 that.user.balance = retAccount.balance;

 console.log('transfer.components :: getAccountAndBalance

:: that.user');

 console.log(that.user);

 }).catch(function(error) {

 console.log(error);

 });

 }

Lastly, update submitForm to call transferEther to transfer and pay.

Replace the submitForm TODO comments shown here with the call to the

service calls:

// TODO: service call

Chapter 10 BuIld dapps wIth angular: part II

413

Then pass the data the user submitted:

this.transferService.transferEther(this.userForm.value).

then(function() {

 }).catch(function(error) {

 console.log(error);

 });

});

You can download the complete step from here: https://github.com/

Apress/the-blockchain-developer/chapter10/step2.zip.

 Connect to MetaMask
At this point, your dapp code is complete. However, if you test your dapp

now, web3 won’t be able to connect to an account. What you need to do

is connect to MetaMask. There is a privacy issue related to dapps where

malicious web sites are able to inject code to view users’ activities and

Ethereum addresses and then find the balance, transaction history, and

personal information.

These malicious sites are then able to initiate unwanted transactions

on a user’s behalf, and the user accidentally may approve an unauthorized

transaction and lose funds.

To avoid these issues and to connect your Angular service, you will

connect the browser to the network via MetaMask.

You have already used MetaMask, so you should have it installed.

Let’s back up for a second. As you’ll recall, you started a network via

ganache-cli on port 8545.

> ganache-cli -p 8545

And you connected Truffle to the network.

> truffle migrate --network development

Chapter 10 BuIld dapps wIth angular: part II

https://github.com/Apress/the-blockchain-developer/chapter10/step2.zip
https://github.com/Apress/the-blockchain-developer/chapter10/step2.zip

414

Then you were able to connect on port 8545 and run commands in

Terminal.

You can now connect MetaMask in a browser. To connect, select

MetaMask and select Localhost 8545 in the drop-down menu. See

Figure 10-4.

Figure 10-4. Connecting MetaMask to a private network on port 8545

Notice that you picked port 8545 earlier in this chapter. It’s the default

port on MetaMask, so it’s easy to connect to on your private network by

selecting the drop-down menu item instead of pointing to a custom port.

However, when you check the list of accounts, you don’t see any

accounts. The reason you don’t see accounts is that every time you start

your network, you need to update the accounts. There are two ways to

update MetaMask with the list of accounts.

Option 1: When you run Ganache, use the m flag to pass the mnemonic

that represents the private keys you had in Ganache. For instance, the

command will look like this:

> ganache-cli -p 8545 -m 'journey badge medal slender behind

junk develop produce spy enemy transfer room'

Chapter 10 BuIld dapps wIth angular: part II

415

Option 2: When you run ganache-cli, you will see the list of accounts,

private keys, and mnemonics.

> ganache-cli -p 8545

Look for this output and copy the mnemonic.

HD Wallet

==================

Mnemonic: journey badge medal slender behind junk develop

produce spy enemy transfer room

Base HD Path: m/44'/60'/0'/0/{account_index}

Then, log out of MetaMask and paste the mnemonic manually. Click

the right button and select “Log out,” as shown in Figure 10-5.

Figure 10-5. MetaMask logout of account

After logging out, the welcome screen comes back with a link under it

that says, “Import using account seed phrase.” Click that link, as shown in

Figure 10-6.

Chapter 10 BuIld dapps wIth angular: part II

416

Now you can paste the mnemonic by selecting a password and clicking

Restore, as shown in Figure 10-7.

Figure 10-7. Restoring MetaMask account using a mnemonic

Figure 10-6. MetaMask welcome page

Chapter 10 BuIld dapps wIth angular: part II

417

 Test Your Dapp Functionality
Now you are finally ready to test your dapp. Once the browser gets

refreshed, you will see the address and balance.

Next, fill in the form and initialize a transfer. Notice that MetaMask

opens to confirm the transfer. This is an extra measurement of security to

ensure only authorized transfers get approved.

See Figure 10-8.

Figure 10-8. MetaMask notification to complete a transfer

 Where to Go from Here
Continue working and improving the dapp you created. For instance, you

could do the following:

 – Create a user service class and a shared service class to

hold users’ information and shared information

 – Create a login/logout service

Chapter 10 BuIld dapps wIth angular: part II

418

 – Create an option to switch between accounts

 – Create a side menu to better navigate the app

 – Update the smart contract and add more methods

and events

 Summary
In this chapter, you created a transfer smart contract and Truffle

development project as well as connected to the Ganache local development

network. You learned how to work with the Ethereum network via Truffle

and how to test your smart contract. You test the transfer of funds using your

smart contract via the command line.

Lastly, you linked your dapp with the Ethereum network using an

Angular TransferService component that you created. Using the web3

library, you made some service calls. Lastly, you connected to MetaMask

to manage your accounts.

In the next chapter, you will learn about blockchain security and

compliance.

Chapter 10 BuIld dapps wIth angular: part II

419© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_11

CHAPTER 11

Security and
Compliance
As you have seen, most blockchains are decentralized, and the identity

of each party is normally protected; however, most blockchain-related

code involves storing some confidential data such as a user’s personal

information, passwords, cryptocurrency, and wallets.

Blockchain-related code has characteristics that make it a magnet for

hackers.

 – The code is usually open source for transparency and to

promote contributors.

 – Much of the code out there is not mature enough to be

considered release grade.

 – In cryptocurrency-related blockchains, losing data can

mean more than just a mere privacy breach. Once funds

are transferred, it’s not easy to track them, and the trans-

fer is likely to be irreversible.

These concerns have been magnified as blockchain technology has

become more popular and more people are invested in blockchain. In fact,

there have been increasing reports regarding blockchain-related losses,

and new attacks are being published on news outlet almost daily. For

instance, during the writing of this book, $40 million was stolen from the

420

Binance exchange. Additionally, in the past 12 months, an estimated $23

million was stolen in double spending attacks. Similarly, a staggering $1.5

billion was stolen from crypto exchanges.

Postmortem reports sometimes show a sophisticated heist method

that you would need to be a genius to prevent. However, most attacks can

be prevented easily and are nothing more than a simple oversight or the

result of not using tools capable of revealing vulnerabilities.

“Intellectuals solve problems; geniuses prevent them.”

—Albert Einstein

As professionals, it is your responsibility to your customers who place

their trust in you, as well as your reputation and fiduciary responsibility, to

mitigate these risks and ensure data is protected. Security measures should

be considered during all stages of the development cycle; in fact, security

should be the most important aspect of your development. However, it is

unrealistic to presume that I will be able to cover all aspects of security in

just one chapter, as there are thousands of specific known attacks.

In addition to security, another aspect that needs to be addressed is

regulation. Regulators have been shaping technology in general and the

blockchain industry in particular, and there are multiple regulations to

abide by in each geographic location.

Because new attacks are invented daily, regulatory laws are revised

often. Understanding common attacks, security, privacy, compliance, and

regulations can be a challenging task.

In this chapter, I will give you insights into the security mind-set and

help you become more aware of security, privacy, and compliance. This

chapter is split into three parts.

• Security readiness: I will cover areas you should be

taking into account before and while developing your

platform.

Chapter 11 SeCurity and ComplianCe

421

• Common blockchain attacks: I will cover some of the

most famous and common blockchain attacks.

• Development cycle: I will provide you with a

recommended development cycle so you can take into

account security and compliance.

Specifically, I will cover security testing, privacy, and compliance

requirements to ensure your code takes into account as many scenarios as

possible to help secure your users’ data. I will cover common blockchain-

related cyber attacks that caused large losses, as well as blockchain

network–specific attacks. I will cover how these attacks could have

been prevented as a user and as a developer. Lastly, I will introduce a

recommended development cycle that you can employ to reduce the risks

of losses and your platform shutting down.

 Security and Compliance Readiness
In this section, I will cover what the general areas are that you need to

consider in regard to security testing and what it means to achieve security

readiness. Additionally, you will understand what it means to achieve

compliance readiness by looking at the regulations in Europe and the

United States as examples. Lastly, I will highlight recommendations you

should be considering during the development cycle and prior to releasing

your code.

 Security Readiness
In a traditional coding environment, you need to consider security testing

to find security defects in your code to ensure it functions correctly, as

intended, and that the data is protected.

Chapter 11 SeCurity and ComplianCe

422

Note Security testing is a process aimed at finding security defects
in code to ensure that both the code and the data are functioning as
intended.

Security testing includes the following measures:

 – Confidentiality: Ensuring a user’s information is pro-

tected. An example is implementing a members-only area

behind a Secure Sockets Layer (SSL) connection, which

uses encryption for data sent via the Internet.

 – The integrity of information: Protecting information from

being changed. An example is encrypting and decrypting

data as it passes between different layers of your system.

 – Authentication: Confirming a user’s identity, as well as

ensuring the system is trusted. An example is a login

system.

 – Availability: Ensuring your system is up and running. An

example is to install a firewall to prevent an attack.

 – Authorization: Ensuring the requester is allowed to

receive a service or perform an action. An example is

creating a Hyperledger-permissioned blockchain that

limits access to a specific entity.

 – Nonrepudiation: Ensuring that there is a confirmation

system in place when sending and receiving messages so

parties cannot deny receiving a message. An example is

an e-mail notification sent to confirm a transfer of digital

assets.

Chapter 11 SeCurity and ComplianCe

423

 Compliance Readiness
In addition to these traditional security testing considerations, you need to

also consider blockchain-specific security and local compliance to ensure

your platform is in compliance with regulatory requirements.

Note Security compliance is a legal concern for entities. it is a
regulatory standard for providing recommendations for privacy as
well as improving security.

Being in compliance doesn’t directly focus on security; however,

many of the local compliance requirements take into account security and

ensuring both the user and the data are protected, so indirectly they are

intertwined. Many large companies employ both security and compliance

experts to ensure both are met.

You may be wondering, why do I even need to take regulations into

account anyway? Wasn’t blockchain intended to be decentralized?

That is true; however, in recent years, regulations have been taken

against blockchain’s operators because of constant frauds and attacks,

which resulted in significant losses, and privacy policies and security

measures have been put in place in many countries. As a result, you

need to check compliance and security regulations to ensure you are not

breaching any laws.

In fact, many institutions and authorities have published research

papers to analyze the relationship between blockchain and data protection

regulations and how to prepare to achieve “compliance readiness.”

Note Compliance readiness ensures that the implementation meets
governance requirements. Blockchain is not excluded from any
applicable laws and regulations in many locations around the world.

Chapter 11 SeCurity and ComplianCe

424

For instance, in Europe and the United States, there are compliance

legislation and policies tied to the Data Protection Impact Assessment

(DPIA) and the General Data Protection Regulation (GDPR) that describe

specifically what information is not allowed to be stored on a blockchain.

It’s not just what data can and cannot be stored, though; many

countries have implemented privacy laws that restrict the type of data that

can be transferred across geographical boundaries.

Unlike many in the blockchain community who believe that

compliance laws are put in place only to restrict and control blockchain

technologies from replacing traditional institutions, many of the rules

are to protect investors from losses, as well as to protect a user’s privacy.

Additionally, in some countries there are laws and regulations that require

that you do record-keeping and store users’ data to help prevent fraud,

money laundering, and terrorism.

For instance, in 2013 in the United States the Bank Secrecy Act of 1970

(BSA) and FinCEN issued guidance to exchanges and ICOs, categorizing

them as money service businesses (MSBs) that require registration,

reporting, and record-keeping regulations. What this means is that in the

United States, exchanges and ICOs are required to register to FinCEN as

MSBs.

Ignoring compliance can lead to subpoenas, financial penalties,

shutdown, and even criminal charges. For instance, in Europe, the GDPR

set a deadline to comply with specific compliance. Companies that are

unable to comply risk getting a hefty fine. This applies to mobile devices,

TV apps, web portals, web sites, APIs, and cloud storage. In fact, in 2019,

CNIL fined Google 50 million euros. Another example is the stable coin

tether that at the time of writing was ordered to freeze transfers of its coin

on the Bitfinex exchange by the New York Supreme Court.

Each geographical location is subject to a specific requirement

regarding dealing with blockchain technology, so it’s important to

be aware of the law, security, and privacy rules put in place prior to

developing your software.

Chapter 11 SeCurity and ComplianCe

425

In fact, each geographical boundary regulators can set their own

rules. If you take the United States and Europe as an example, each has

different rules regarding blockchain, and in case you have even one visitor

from these countries, you should be complying with these regulations.

In this chapter, you will take a look at the United States and Europe as an

example; however, you need to check each specific geographical boundary

for the specific rules that apply locally.

 United States Compliance

The United States has security regulations and money transfer laws that

require that you comply with specific state laws, and you may even need

to apply for a state license if you transfer crypto. The bodies that deal with

blockchain-related technologies in the United States are the Securities and

Exchange Commission (SEC) and Alternative Trading Systems (ATS).

At the time of writing, the SEC views both initial coin offerings (ICOs)

and security token offerings (STOs) as securities. As such, they are under

the regulations of the Securities Exchange Act of 1934, which outlines

how to transfer securities between entities. For instance, the SEC requires

exchanges to register with the national securities exchange and/or ATS.

Tip Sto and iCo are both considered securities in the united
States; however, Stos are more fashionable among investors than
iCos, as many iCos were forced to refund investors in 2018 and
2019.

Exchanges also bind to specific regulations; for instance, exchanges

that deal with the derivative need to register with the Commodity

Futures Trading Commission (CFTC) as a CFTC Exchange or Designated

Commodity Market (DCM) because of the Commodity Exchange Act of

1936 (CEA).

Chapter 11 SeCurity and ComplianCe

426

Note to better understand how to become compliant in the united
States, read the following report by niSt: https://nvlpubs.nist.
gov/nistpubs/ir/2018/NIST.IR.8202.pdf.

 Europe Union Compliance

The European Union is in the process of implementing specific

requirements for blockchain and crypto markets; these requirements

will take into account a protocol known as Know Your Client (KYC) and

antimoney laundering (AML) laws.

In regard to digital assets, the European Union’s regulation currently

doesn’t oppose crypto-fiat and fiat-crypto exchanges. Most of the concerns

are to make sure that crypto is not used to finance illicit activities, such as

money laundering and terrorism.

To take these concerns into account, crypto platforms need to do due

diligence on customers and report any suspicious transactions according

to KYC.

To better understand how to become compliant in Europe, read these

EUBOF and CNIL report:

• https://www.eublockchainforum.eu/sites/default/

files/reports/eu_observatory_blockchain_in_

government_services_v1_2018- 12- 07.pdf.

• https://www.cnil.fr/sites/default/files/atoms/

files/blockchain.pdf

Tip regulations change often; keep an eye out for news and
information released by the SeC, euBoF, and other organizations where
your platform is published. if you are on social media, follow those
organizations’ accounts or add news updates to your reading list.

Chapter 11 SeCurity and ComplianCe

https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/eu_observatory_blockchain_in_government_services_v1_2018-12-07.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/eu_observatory_blockchain_in_government_services_v1_2018-12-07.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/eu_observatory_blockchain_in_government_services_v1_2018-12-07.pdf
https://www.cnil.fr/sites/default/files/atoms/files/blockchain.pdf
https://www.cnil.fr/sites/default/files/atoms/files/blockchain.pdf

427

 Readiness Recommendations
By having awareness, you can achieve both compliance and security

readiness to ensure your platform is ready for production and help prevent

shutdown by attackers or governments.

There isn’t an exact set of rules you can use globally to ensure readiness

because compliance is different between geographical boundaries; however,

there are certain key elements that are good practice and can help you be

security and compliance ready. In the next sections, I will cover specific

attacks; these general recommendations are basic recommendations to take

into account while you’re still developing your app.

 – Geographical location: If you intend to have even one user

registered on your platform, you need to be compliant

ready at that user’s location and be aware of the rules and

regulations there.

 – Solve a problem: Ensure you are actually solving a prob-

lem. Ask yourself, what is my unique selling proposition

(USP)? Don’t just utilize the blockchain to get in on the

hype. The 2017 ICOs party is over as many coins got

de-listed and ICOs have been forced to refund investors.

 – Permission-based blockchain: If you are building a per-

mission-based blockchain, you should define the roles of

members such as admin, publishers, users, and so on.

 – Privacy: Regarding providing user information, the more

the better. Inform your users as much as possible con-

cerning privacy matters. When you gather data, the less is

better; capture only what you need. The following are

some specific recommendations in regard to privacy.

Chapter 11 SeCurity and ComplianCe

428

Tip Based on reports from Cnil, niSt, and euBoF, implement your
code following the General data protection regulation (Gdpr).

• Privacy policy: Set a privacy policy and let the user

know what information is stored and what information

is shared with third parties. For example, inform users

of logging data into an analytics tool in your privacy

policy.

• Unsubscribe: Publish a form or an e-mail address for

consent, withdrawal, and complaints related to the

privacy policy on your platform.

• Policy changes: Inform the user of any privacy policy

change.

• Gathering users’ data: Take a minimalistic approach

when gathering all users’ information; store only what’s

needed.

• Data collected: Split data into the data you need in

order to operate your platform and the other data

collected.

• Anonymization: Consider implementing your platform

with full anonymization.

• Geographical location: When storing data, ensure the

data is collected according to the guidelines in that

geographical location.

• Permission: Request permission from the user when

storing any data, such as in cookies, in a local database,

or in the cloud.

Chapter 11 SeCurity and ComplianCe

429

• Clear everything: Clear cookies, sessions, and other

storage once the user has logged out. Allow the user

to clear data from any third-party tools used on your

platform.

• Clean: Allow the user to delete data and clean history.

• Export: Allow the user to export data.

• Inform: Inform users of any data breach.

 – Here are general security recommendations:

• Secure Sockets Layer (SSL): HTTPS should be used

throughout web applications and especially when

requesting and exporting data.

• Zero knowledge proof (ZKP): For blockchains, use zero

knowledge proof (ZKP); see https://github.com/

topics/zero-knowledge-proofs.

Note ZKp is a method where one party proves to the verifier that
they know the value of, let’s say, x. a real-life analogy would be
knocking on a door and providing a secret word to get access to a
private, members-only club.

• Encryption: Use homomorphic encryption or secure

multiparty computation.

• Secure authentication system: Use a secure

authentication system such as OAuth 2.0 standards.

Example: https://developer.github.com/apps/

building-oauth-apps/.

Chapter 11 SeCurity and ComplianCe

https://github.com/topics/zero-knowledge-proofs
https://github.com/topics/zero-knowledge-proofs
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/

430

• Service timeout and restrictions: Set up a timeout

mechanism on services for delayed responses to ensure

not to cause services to choke (slow down). Implement

throttling login attempts. Set up secured handshake

everywhere.

• Common security vulnerabilities: Protect against

common security vulnerabilities such as distributed

denial-of-service (DDoS) and cross-origin resource

sharing (CORS).

Note CorS uses additional http headers to give an application running
on one domain access to resources on a server at a different domain.

• Sensitive information: Save passwords and any

other sensitive information as hashed data using an

encrypted method.

• IP restriction: Restrict IPs that can access your ports.

For example, don’t have root and FTP access to any IP

addresses, just to your IP address.

• Security measurement: Include security measures into

the development cycle (see the “Development Cycle”

section later in this chapter).

To summarize, I reviewed what it means to be security ready, what

security testing is, and how to be compliance ready. You looked at the United

States and Europe Union compliance regulations regarding blockchain

technology, and lastly, I covered security readiness recommendations you

should take into account in the early stages of your development cycle. In

the next section of this chapter, you will be looking at specific crypto wallet

attacks that can cause significant losses and how to prevent them.

Chapter 11 SeCurity and ComplianCe

431

 Common Blockchain Attacks
In this section, I will be covering some of the most famous and common

blockchain attacks. I have broken these attacks into three categories.

• Wallet cyberattacks: Directed at crypto wallets.

• Blockchain network attacks: Aimed at the blockchain

P2P network.

• Platform attacks: Aimed at platforms that support

blockchain, such as exchanges, web sites, and lending

platforms.

Keep in mind that although I have broken the process down into three

categories, most of these attacks use different techniques and different

targets but have the same goal of capturing crypto private keys.

 Wallet Cyberattacks
In this section, I will review specific cyber attacks directed at crypto

wallets. As I highlighted at the beginning of this chapter, once crypto funds

are transferred, it’s not easy to track them down as they can be transferred

from one wallet to another, and the transfer is irreversible, unless the

majority of peers on the network agree to change the block.

“For every lock, there is someone out there trying pick it or
break in.”

—David Bernstein

Common wallet attacks can come in many shapes and forms by

producing the same result of the user losing their private keys. The

attacker often starts as a “phishing attack” resulting in a user’s confidential

information being compromised, and then the perpetrator is able to

transfer funds out of the account.

Chapter 11 SeCurity and ComplianCe

432

Note a phishing attack (think fishing for information) is an attempt
to fraudulently capture a user’s confidential information such as
usernames, passwords, account numbers, and so on. this is done
by using electronic communication such as e-mail to disguise the
attacker as a trustworthy entity.

In fact, other than crypto scams such as Bitconnect and iFan, wallet-

related theft has resulted in the second biggest losses in crypto assets,

amounting to close to $5 billion (see Figure 11-1).

Figure 11-1. Biggest crypto theft incidents

The best solution against a wallet attack is removing cryptocurrency

from exchanges altogether when not in use and placing these cryptos in

your own “cold wallet” centralized storage. This can be achieved with

hardware wallets such as Nano, Trezor, KeepKey, and so on. Moving

crypto to a cold wallet gives you the highest level of protection and avoids

exchange losses such as the Mt. Gox incidents where the admin’s password

was cracked and many users lost their wallet keys.

Chapter 11 SeCurity and ComplianCe

433

Note Cold storage is a method of keeping crypto’s private keys on
a uSB drive, paper wallet, or other data storage medium in a safe
location. think of it as being your own bank.

In the next section, you will be looking at common wallet attacks. I will

provide a postmortem analysis to help ensure you don’t repeat the same

mistakes others did, both as a developer and as a user.

 Online Wallet Phishing-Malware Attacks

Online wallets are more prone to attacks than offline wallets as they are

connected to the Internet. For instance, a phishing-malware attack was

carried out recently against Electrum’s wallet and caused more than $1

million in losses.

Note malware comes from a mashup of the words malicious and
software. the software is built to disrupt, damage, or gain access to
the victim computer.

This was done by the hacker setting up malicious servers; then when a

user wallet got connected to one of those servers and tried to send a BTC

transaction, the attacker’s code showed an official-looking message telling

the user they needed to update their Electrum wallet, along with a false

URL to download a fake version of Electrum’s wallet with malware.

Once the user used the attacker URL and downloaded the new fake

version of Electrum, the wallet requested the user to re-enter their passwords,

which was then sent to the hacker. Then the hacker was equipped with the

login information of the user and was able to log into the real Electrum’s

wallet and transfer the user’s private keys into their own wallet.

Chapter 11 SeCurity and ComplianCe

434

Postmortem

As a user, besides avoiding online wallets altogether and using cold

storage, you can reduce the risk by doing the following:

• Download only official software: Do not download

online wallets or upgrade from any other source other

than the wallet’s official web site. Check URLs by

hovering over links but not clicking them. Especially

check for small misspelling; see if you can notice the

little misspellings here: paypaI.com, Electrom.com.

• Protect your information: Be careful with information

shared via e-mail. E-mails requesting that you confirm

your account credentials need to be sent from the

business you recognize and by you initiating the

request.

• Ensure authentication: Download the wallet’s

software and check the GPG signature. Never give

away your crypto assets’ private keys to any “official”

representative.

• Recognize false support phone number: Often

companies that are phishing for your information

use a fake support number. Many do a Google search

to find the phone number of companies and fall

victim of this attack.

As a developer, you should do the following:

• Use GPG signature verification: Implement GPG

signature verification.

Chapter 11 SeCurity and ComplianCe

435

Tip GpG/Gnu is a suite of cryptographic software used in encryption
to ensure authenticity by checking signatures against the downloaded
files. to ensure the prevention of wallet attacks, implement GpG or Gnu
privacy Guard. as a user, don’t forget to also check that the actual GpG/
Gnu itself is authenticated and from the developer.

• Educate your users: Set pages, video tutorials, and blog

posts to educate your users and prevent users from

making common mistakes.

 Keylogger Malware

Most malware software intends to harm your computer. Popular malware

software that can be used to extract your cryptos is a keylogger or screen

scraper. This software records everything you type as well as takes

screenshots of your computer in an attempt to capture passwords and

personal information. These types of attacks are less likely to happen at

home, as the attacker needs to attach an actual Universal Serial Bus (USB)

key to your computer to record the key log; however, this can happen when

you use a public computer, for example, at a hotel lobby or a library.

Postmortem

As mentioned, at home you are less likely to be attacked by a keylogger;

however, when logging into a public computer, be cautious, check if

there is a USB key attached to that computer, and avoid accessing your

important accounts. At your own computer, on a Mac, check Activity

Monitor to ensure you recognize all the services that are running in the

background. If needed, do a web search to find any services you don’t

recognize, and if anything looks odd, stop and remove the service and app.

Install antivirus software and re-install your OS if in doubt.

Chapter 11 SeCurity and ComplianCe

436

 Dust Attack

A dust attack is done by the attacker sending a tiny (dust) transaction that

the hackers use either to spam the blockchain network and take up a block

space or to mark the targeted addresses in hopes that the user transacts

these cryptos, which can help the attacker identify a user’s personal

information by tracing the transaction history.

Postmortem

As a user, do not spend unrecognized transactions.

As a developer, implement a coin control feature so unrecognized

transactions can be marked as “Do Not Spend” and not be included with

your transactions.

Read the privacy document regarding bitcoin, which provides valuable

information regarding protecting privacy that can apply to many scenarios:

https://en.bitcoin.it/wiki/Privacy.

 Hot Wallet Attack

In a hot wallet attack, the attacker retrieves the wallet’s private keys from

a “hot wallet” where the private keys are stored online by way of phishing,

password cracking, or any other method. Once the private keys are pulled

from an online network, attackers can transfer these keys to their own

wallet.

Note exchanges store the user’s crypto private keys online in
what is called hot wallets, or operational wallets. the reason these
private keys are stored online is to allow real-time withdrawals
from wallets.

Chapter 11 SeCurity and ComplianCe

https://en.bitcoin.it/wiki/Privacy

437

Postmortem

As a user, the best way to avoid these losses is to keep your crypto under

your own control in a cold wallet and not on centralized exchanges.

As a developer, do the following:

• Keep a cold wallet: Store a user’s keys in cold storage

and avoid hot wallets as much as possible. For

instance, Coinbase.com claims that it stores 98 percent

of its users’ funds on paper backups distributed

geographically to safe deposit boxes.

• Encrypt private keys: If you need to store private keys

on storage connected to an online network, at least

encrypt the keys with a strong encryption key.

• Watch for unusual activity: For instance, many

exchanges approve large withdrawals manually.

 Blockchain Network Attacks
In this section, I will cover common attacks that target the blockchain

network.

 Sybil Attacks

The name Sybil is synonymous with someone who has a multiple

personality disorder.

Note a blockchain Sybil attack is an entity attempting to influence
the p2p network by way of creating multiple identities and controlling
multiple nodes.

Chapter 11 SeCurity and ComplianCe

438

A Sybil attack creates multiple fake accounts in order to control

a network. The entity that controls these multiple accounts can then

influence the network as they have additional voting power in a

democratic network.

An easy way to understand this is the 2017 United States election

where one entity, Russia, influenced an election process by creating

multiple social media accounts and controlling the content of them.

A blockchain example would be attackers attempting to out-vote

honest nodes on the P2P network by creating multiple Sybil identities.

By having a majority vote, the attackers can refuse to receive blocks or

transmit fake blocks.

If the Sybil attacks carry out a large enough attack, they are able to

control the majority of the P2P network’s hash rate and change blocks,

which is then a double spending attack.

Postmortem

As a developer, you can discourage Sybil attacks by making them

impractical. If there is a cost associated with launching a Sybil attack such

as costs to create an account, run servers, have electricity, etc., this can

discourage or make attacks impractical. However, make sure you take into

account legitimate users who need to create multiple accounts.

In fact, popular blockchains have been taking Sybil attacks into

consideration. For instance, the bitcoin PoW census algorithm needs a

lot of processing power, so creating a block is proportional to the total

processing power. This discourages attackers, because miners would

rather do actual mining than risk losing on a failed Sybil attack. Similarly,

the PoS census algorithm requires staking coins, so attackers will risk

losing these coins.

In addition, as you have seen in previous chapters, Ethereum, EOS,

and NEO include a large cost associated with the deployment of dapps.

Ethereum has a minimum fee of 32,000 gas and 200 gas per byte, EOS is

Chapter 11 SeCurity and ComplianCe

439

around 120 coins, and NEO has a fixed cost of 100 to 1,000 gas. On top

of that, many blockchains such as bitcoin, Ethereum, and NEO charge

a transaction fee, which helps discourage attackers. Similarly, EOS does

not charge transaction fees, but it is using a “chain of trust” to combat

attackers.

Note a chain of trust is a way to combat Sybil attacks by requiring
trust before allowing new identities to join a network. a version of the
chain of trust can include allowing a user to create a new account but
not giving it full privileges for a certain time.

EOS charges $1 to $4 per new account to developers; obviously,

developers will be reluctant to create accounts and put in place mitigation

to get an account approved.

Another way to combat a Sybil attack is by changing the hierarchy from

a democracy to a meritocracy (governed by selected people). Users who

were created a long time ago and have a good reputation would have more

weight than new accounts. Think of the Stackoverflow.com or Wikipedia.

com reputation system; see https://stackoverflow.com/help/whats-

reputation.

 Double Spending or 51 Percent Attack

Previously in this book, I talked about potential double spending attacks

against cryptocurrencies, where a malicious node gains control of more

than 50 percent of a blockchain network’s hash rate and is able to alter

and manipulate blocks. Large blockchains like bitcoin and Ethereum are

not easy to overtake by a 51 percent attack due to the miner competition,

which demands a high level of resources. For instance, according to

https://www.crypto51.app, the theoretical cost of attacking bitcoin

would be $257,472 at the time of writing; see Figure 11-2.

Chapter 11 SeCurity and ComplianCe

https://stackoverflow.com/help/whats-reputation
https://stackoverflow.com/help/whats-reputation
https://www.crypto51.app

440

However, smaller blockchains have been the target of the 51 percent

attack. This happened to the Verge blockchain, which lost almost $3

million in two attacks. Bitcoin gold suffered the biggest loss of $18 million,

and Ethereum Classic lost $1.1 million. In fact, there was a total of $23

million in losses in less than a year during 2018 and 2019; see Figure 11-3.

Figure 11-2. Theoretical cost of a 51 percent attack on various blockchains

Figure 11-3. Double spending losses from 2018, to January 2019

Chapter 11 SeCurity and ComplianCe

441

Postmortem

As an investor, you should check the cost to attack the blockchain you are

interested in investing in and whether there is a safety net mechanism in

place for the blockchain.

Blockchain developers should create some sort of a safety net

mechanism, for instance, creating a hash that holds a snapshot of all

transactions and balances of each of your blocks and then storing that

hash into a larger blockchain. For instance, you could utilize bitcoin’s OP_

RETURN, just as you did in Chapter 4, and store the hash as a backup in case

there is a 51 percent attack.

In fact, http://komodoplatform.com was able to solve the double

spending problem by creating a delayed proof of work (dPoW) security

mechanism.

 Miner Ransomware

As I mentioned, bitcoin has been unaffected by these 51 percent attacks

so far; however, hackers have found a new way to affect blockchains by

attacking miners with ransomware.

Note ransomware is a type of malicious software aimed at
blocking a computer until money is paid. the name is a mashup of
the words ransom and software.

Hackers lock up mining rigs using similar techniques that ransomware is

using on personal computers. On personal computers, malware, such as

the NotPetya ransomware, gets downloaded and installed and then is able

to lock the user’s computer until a ransom is paid to a wallet address.

Chapter 11 SeCurity and ComplianCe

http://komodoplatform.com

442

Up until now, ransomware targeted only personal computers; however,

new ransomware such as hAnt is taking aim at miners. How hAnt is

installed is not known, but it is estimated that it is probably downloaded

with a version of the mining rig firmware. Then the ransomware has access

to the firmware of the miner and can control the miner.

The attacker displays a message once the admin login threatens

to overheat and destroy the miner. This can be achieved by turning

off the fans if the victims don’t infect other devices or pay a bitcoin

ransom, as shown in Figure 11-4. So far, only bitcoin and litecoin miners

manufactured by Antminer and Avalon have been affected, but this attack

can be potentially done to any miner.

Figure 11-4. hAnt ransomware message. Image credit:
sensorstechforum.com.

Postmortem

Getting rid of the ransomware is not easy. The software may be built with

a “tripwire” script that can damage the miner if the miner disconnects

from the Internet. To solve this problem, you need to first remove the

Chapter 11 SeCurity and ComplianCe

443

ransomware surgically from the miner’s Secure Digital (SD) cards.

Additionally, a mining farm going offline for a period of time is costly.

The best approach is to avoid this attack altogether by not

downloading a firmware upgrade from any source than the official

vendor’s web site.

 Eclipse Attack on the P2P Network

An informational eclipse attack can be conducted on its own or as

part of a different attack, such as a 51 percent attack. The attackers

gain control over a peer’s access to information in the P2P network

by manipulating the network so that nodes communicate only with

malicious nodes. The attacker can then manipulate the mining and the

consensus mechanism.

Postmortem

Run analysis, simulations, and experiments to find countermeasures to

avoid an eclipse attack. Good research with potential countermeasures to

increase bitcoin’s security countermeasures against an eclipse attack can

be found here (and can be applied to many other blockchain networks):

https://hackernoon.com/eclipse-attacks-on-blockchains-peer-to-

peer-network-26a62f85f11.

 Routing Attacks

Internet routing attacks include BGP hijacks, and malicious attacks against

Internet service providers (ISPs) can be also executed against blockchains.

Note a BGp hijack is a maliciously rerouted internet traffic attack.
this is done by falsely announcing ownership of groups of ip
addresses (ip prefixes).

Chapter 11 SeCurity and ComplianCe

https://hackernoon.com/eclipse-attacks-on-blockchains-peer-to-peer-network-26a62f85f11
https://hackernoon.com/eclipse-attacks-on-blockchains-peer-to-peer-network-26a62f85f11

444

Large mining farms are centralized in a few geographical locations,

which makes them ideal for an ISP type of attack. Attackers can commit

the following:

 – Partition attack: An ISP can partition the P2P network by

hijacking a few IP prefixes.

 – Delay attack: An ISP delays traffic to and from a block-

chain node, which results in a delay in the block propaga-

tion, slowing transactions.

These types of attacks could reduce a node’s revenue as well as turn

into a 50 percent attack as fewer nodes influence the network. Additionally,

these attacks can also prevent the transaction from being sent by large

entities such as exchanges.

Postmortem

Create a custom script or install hardware to monitor the network. Many

ISPs provide a paid solution to monitor the network and prevent an

attack. Refer to the “DoS and DDoS Attacks” postmortem section for more

solutions that can help mitigate this attack.

 Platform Attack
Bitcoin’s blockchain network is by design a secure network and has proven

reliable. Bitcoin was released in 2009, and there has not been a successful

attack on bitcoin’s blockchain network at the time of writing.

The reason bitcoin’s blockchain has a high level of security is that the

data is distributed between nodes. Additionally, mining bitcoin is energy

expensive, so attacking bitcoin’s network could cost more than mining itself,

and attackers risk losing money just attempting an attack. However, that’s

not the only reason; a big contributing factor to bitcoin withstanding the test

of time is that it’s open source and enables developers to quickly implement

changes based on research and recommendations by security experts.

Chapter 11 SeCurity and ComplianCe

445

With that being said, that does not keep other platforms safe that

provide services built on top of safe blockchains, such as exchanges,

lending platforms, wallet-based services, and dapps that store private keys.

For instance, exchanges hold billions in deposits and make a perfect

target for hackers. As mentioned, exchanges store the user’s crypto in the

form of private keys, and some of these keys are kept online in a hot wallet

to allow real-time withdrawals and trading. Not handling these private

keys with care can cause losses.

Mt. Gox’s 2011 security breach is a good example. This attack

happened because a hacker was able to crack the password of a Mt. Gox

auditor and was able to transfer 800,000 bitcoins to himself. Besides Mt.

Gox, there is a constant stream of news about exchanges shutting down

due to loss of crypto.

As you can see from Figure 11-5, the biggest loss of close to $1 billion

was by Mt. Gox in two attacks, and the largest theft in crypto history was

caused by an attack on the Coincheck exchange network in 2018.

Figure 11-5. Biggest exchanges losses of BTC

Chapter 11 SeCurity and ComplianCe

446

In the next section, I will review some of the largest attacks and give

you recommendations for how these attacks could be prevented.

 Credential Attacks

Authentication-related attacks such as password cracking caused losses in

the millions.

 – Direct attack on exchanges: As mentioned, Mt. Gox’s 51

percent attack in 2011 caused two separated losses: 2,609

BTC and over 750,000 BTC. Hackers were able to get an

auditor’s credentials and transferred these bitcoins to the

hacker’s address.

 – Attack on users: Millions in losses occurred because of

taking over users’ accounts. For instance, phone compa-

nies enabled the takeover of cell phone numbers by

providing simple billing information. Hackers can port a

number to a new provider and can then approve a reset

password of accounts on exchanges using SMS

verifications.

Postmortem

As a user, the best way to avoid these losses is to keep your crypto assets in

a cold wallet and not on centralized exchanges.

On your own computer:

 – SSL: Don’t register on sites that don’t have an SSL

certificate.

 – Strong passwords: Use unique and strong passwords long

in length and include numbers, characters, and special

characters.

Chapter 11 SeCurity and ComplianCe

447

 – Unique passwords: Don’t reuse the same password on

different platforms.

 – Layers of security: Set up all recommended layers of

security such as SMS, 2FA enabled, e-mail confirmation,

and so on.

 – Antivirus: Install paid or free virus-scanning software. On

personal computers, Avast security has a free version

used by 435 million people: https://www.avast.com. It

includes a plugin for Chrome that warns against phishing

sites.

 – VPN: Use VPN connection as much as possible especially

on a network that is public and isn’t secured.

 – Avoid malware and ransomware: Be mindful of software

you install and ensure it’s from a reputable vendor. Read

all messages during the installation; don’t just agree to all

messages. Install software that prevents ransomware.

Tip Keep your crypto assets under your own control in a cold wallet
and not on centralized exchanges. Set up more layers than just
SmS verifications on important accounts. Security layers can be 2Fa
authentication, e-mail verifications, and ip restriction.

As a developer, password cracking is the most common way of gaining

access to a web app. Implement a security tester that ensures the system

demands a strong encrypted password.

A good example of such a solution is the John the Ripper password

cracker: https://github.com/magnumripper/JohnTheRipper.

Chapter 11 SeCurity and ComplianCe

https://www.avast.com
https://github.com/magnumripper/JohnTheRipper

448

In addition, implement the following:

 – Protect credentials: Protect your users’ credentials using

multiple layers.

• Strong password: Enforce strong passwords on

account creation and reset passwords.

• 2FA enabled: Set up a two-factor authentication

(aka 2FA enabled); a popular example is Google

Authenticator.

• Confirmation: Require both SMS confirmation and

an e-mail verification on important operations such

as transfers.

 – Storage: Store users’ sensitive data (such as private keys)

encrypted and on servers that are disconnected from the

Internet.

 – Encryption: Use SSL on all pages. Use AES-256

encryption. Hash passwords with a cost factor of 12.

 – Lock account: Limit login attempts and lock an account

once multiple failed attempts occur.

 – On your development personal computer:

• Remote connection: Use strong login passwords

especially if you connect remotely to your machine.

• Encrypt data: Encrypt your hard drive to turn

encryption on. Go to System Preferences and select

Privacy & Security. Click Turn On FileVault.

• Lock on inactive: On the General tab under Advanced,

set it up to log out after five minutes of inactivity and

enable screen locking by selecting “require an admin

password to access system-wide preference.”

Chapter 11 SeCurity and ComplianCe

449

• Firewall: Set up a firewall on your computer; on the

Firewall tab, turn on the firewall.

• VPN: Use a VPN when working on a none-secure

network.

• Software: Be mindful of software you are installing

and ensure it is from a reputable vendor.

• Libraries: Avoid installing code libraries with root

access if possible.

 Faulty Code

Faulty code is one of the biggest reasons for losses. It has become so

significant that many large companies set bounties for white-hat hackers

to discover bugs, making it profitable for hackers to point out flaws instead

of steal.

Note a white-hat hacker is a moral person who gains unauthorized
access to data to point out flaws in a system.

For example, hackers exploited a faulty withdrawal code in Poloniex in

2014. The exact number of bitcoin stolen was not shared by the company.

Postmortem

As developers:

 – SQL injections: Avoid SQL injections by testing and

implementing SQL injection filters. You can find more

information here: http://sqlmap.org/.

Chapter 11 SeCurity and ComplianCe

http://sqlmap.org/

450

Note a SQl injection is an attack where a hacker passes illegal
SQl statements through a text entry input box to gain access to
content. the hackers can then use this vulnerability to add, change,
or delete data from a SQl database.

 – CSRF attack: The hacker exploits service requests to

modify and retrieve data and verify the authenticity of

POST, PUT, and DELETE requests. To avoid this, follow

these recommendations:

• Restrict IPs: Set services to respond to certain IPs only.

• Set tools and libraries: Find tools to avoid CSRF attacks

here: https://github.com/0xInfection/XSRFProbe.

 – Cross-site scripting (XSS): Avoid XSS by using tools and

libraries such as these:

• https://pentest-tools.com/website-

vulnerability- scanning/xss-scanner-online

• https://github.com/topics/xss-scanner

Note XSS attacks are executed by an injection of malicious code
into a trusted website.

 Dependency Backdoor Attack

A dependency backdoor attack starts as a social engineering attack and

includes the injection of malicious code.

Chapter 11 SeCurity and ComplianCe

https://github.com/0xInfection/XSRFProbe
https://pentest-tools.com/website-vulnerability-scanning/xss-scanner-online
https://pentest-tools.com/website-vulnerability-scanning/xss-scanner-online
https://github.com/topics/xss-scanner

451

Note a social engineering attack, the engineer is a conman.
the attacker conceals his true identity and motives to gain access
or data. For instance, you get an email that seem legit from your
manager asking for a specific information.

For instance, in late 2018, a hacker was able to successfully insert

malicious code into event-stream, an npm JavaScript library (https://

www.npmjs.com/package/event-stream). The library is used by millions

and targets a company called Bitpay, which has a Git library called copay.

copay is an open source wallet hosted on GitHub (https://github.com/

bitpay/copay).

Like many open source libraries, the developer was not being paid for

the work on event-stream and lost interest in the project before giving it

away to a new maintainer. The new maintainer injected malicious code

that targets copay. The code captures account details and private keys from

accounts having a balance of more than 100 bitcoin or 1,000 bitcoin cash.

copay then updated its dependency library on versions 5.0.2 and included

the attacker code, which resulted in a loss of millions.

The code captured the victims’ account data and private keys and then,

using a service call, sent the data to the attacker server undetected.

The complete detail and analysis of this attack can be found here:

 – https://blog.npmjs.org/post/180565383195/

details-about-the-event-stream-incident

 – https://snyk.io/blog/a-post-mortem-of-the-

malicious-event-stream-backdoor/

Chapter 11 SeCurity and ComplianCe

https://www.npmjs.com/package/event-stream
https://www.npmjs.com/package/event-stream
https://github.com/bitpay/copay
https://github.com/bitpay/copay
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

452

Postmortem

As a user, as recommended throughout this chapter, place crypto in a

cold wallet. As a developer, be cautious when handling open source

libraries. The open source model relies on many packages, but few

developers support the libraries, which could enable a malicious

takeover. To help avoid this, run npm audit to detect any vulnerable

dependency.

> npm audit

Check and test your code for any reported vulnerabilities on a

vulnerability database, such as the snyk.io site: https://snyk.io/vuln.

Do not set your package.json file to include an automatic update of

libraries.

"dependencies": { "some-library": "latest" }

Instead, check pull requests on the libraries you want to update and

check changes manually for the dependencies you use. Use a library-

specific version.

"dependencies": { "some-library": "1.0.0" }

It’s the same with npm install. Install specific libraries, especially on

less known libraries.

> npm install -g some-library@1.0.0

 DoS and DDoS Attacks

A denial-of-service (DoS) attack is a common attack intended to prevent

users from accessing a service. A distributed denial-of-service (DDoS)

attack is similar to DoS, but instead of the attacker utilizing a single

machine to attack, the attacker uses multiple machines all attacking at

Chapter 11 SeCurity and ComplianCe

https://snyk.io/vuln

453

the same time. Because of the usage of multiple machines, the chances

of a successful attack increases, and it’s harder to pinpoint the attacker’s

exact location.

Exchanges and web sites are popular targets for DoS and DDoS attacks.

For instance, when bitcoin gold officially launched, it was targeted by a

DDoS attack that ended up crashing the web site for hours.

Popular blockchain networks have a simple built-in DoS prevention

mechanism; however, many networks are not protected against more

sophisticated attacks.

The most common types of attacks are as follows:

 – Buffer overflow: This attack sends more traffic to the target

service than the service is able to handle. This attack can

give the attacker the ability to crash and even control the

targeted service.

 – ICMP flood: Also known as “the ping of death” or a “smurf

attack,” this attack is intended to overload the network by

forcing a node to distribute bogus packets to all nodes,

which results in an overload on the network.

 – SYN flood: A request to connect is sent, but it never gets

fully authenticated. The requester then attacks all the

open ports on the server until the server crashes.

 – NTP/DNS amplification: This is an attack on NTP

servers, where the attacker sends a large number of UDP

packets and spoofs the source IP address, making the

NTP server believe that these packets are legit traffic

from the intended target. The overload causes the NTP

server to crash.

Chapter 11 SeCurity and ComplianCe

454

Postmortem

As a developer, you need to take Dos/DDoS attacks into account and

implement countermeasures against them. See the following examples:

 – Filter bad traffic:

• Script: One way to prevent is to implement a

script to check for DOS/DDOS attacks. Check

out the GitHub DDOS protection libraries:

https://github.com/topics/ddos-protection.

http://vddos.voduy.com/ is a popular one.

• Firewall: Use a firewall to block bad traffic.

See Figure 11-6.

Figure 11-6. DDoS protection reverse proxy explained. Photo credit:
vddos.voduy.com.

Chapter 11 SeCurity and ComplianCe

https://github.com/topics/ddos-protection
http://vddos.voduy.com/

455

 – Dedicated hardware: Purchase and deploy dedicated

hardware to handle mitigations of DDoS attacks. The

hardware sits in a data center in front of the servers

and routers and can detect and filter malicious traffic.

An example of such hardware is FortiDDoS from

www.fortinet.com.

 – ISP: ISPs provide DDoS mitigation solutions to customers.

For instance, Amazon provides a shield where all AWS

customers benefit from automatic protections and

provides a higher-tier levels of protection against attacks;

see https://aws.amazon.com/shield.

 – Cloud mitigation: Some cloud services provide DoS/

DDoS mitigation. These services scrub the traffic to

eliminate any malicious traffic. A popular provider is

cloudflare.com, which provides a free standard version

and paid enterprise solution.

In terms of a blockchain network DoS/DDoS attack, examine

existing blockchain prevention implementations such as the bitcoin

satoshi client protection, which was implemented in version 0.7.0; see

https://en.bitcoin.it/wiki/Weaknesses.

To summarize, I reviewed common attacks on platforms. You looked

at credential attacks, faulty code, dependency backdoor attacks, and DoS/

DDoS attacks. Additionally, I reviewed ways to help you reduce the risk

and prevent these attacks. In the next section, I will give you a suggested

development cycle you can employ to help reduce the risks and to use a

methodological approach to prevent attacks.

Chapter 11 SeCurity and ComplianCe

http://www.fortinet.com
https://aws.amazon.com/shield
http://cloudflare.com
https://en.bitcoin.it/wiki/Weaknesses

456

 Development Cycle
As you saw throughout this chapter, your platform needs to be secure and

protected against potential attacks. You cannot rely on luck and need to

ensure you use all the available measures to reduce the risk of an attack on

your platform as well as ensure you implement all the latest regulations

related to your locale.

The process can be broken into the following phases:

 – Design and coding

 – Discover, audit, and test

 – Readiness assessment

 – Release

As you can see from Figure 11-7, each phase can result in going back to

the design and coding phase as the findings can result in a security risk or

a showstopper.

Figure 11-7. Suggested development cycle to reduce security and
compliance risks

Tip this development is a basic approach for a development cycle.
Feel free to employ your own approach or a different approach that
fits your platform and needs better.

Chapter 11 SeCurity and ComplianCe

457

 Design and Coding
Prior to and during the design and coding phase, you should incorporate

all the security, privacy, and compliance elements discussed in the

early part of this chapter. These should be taken into account for all the

elements of your platform, including the pages, login system, privacy page,

integrations with third-party plugins, the creation of services, setting up

servers, and so on.

It is a good idea for you to create your own checklist of everything that

needs to be incorporated and taken into account that specifically applies

to your unique platform. It’s not possible to get one list that fits everything.

Every platform should have a unique checklist. Additionally, as you start

a new development cycle, you may need to update the requirements. For

instance, let’s say you want your platform to be supported in a new locale;

this will require a new checklist.

 Discovery, Audit, and Test
This step can be broken into three steps. The steps are intertwined and rely

on one another, so you should consider these steps as one phase. These

steps are as follows:

 – Discovery: Find out the versions used in your platforms

such as versions of libraries, firmware, software, third-

party SDKs, and so on.

 – Audit: Audit your code and platform to find common

problems, accessibility of your services, and performance

issues that can degrade and make your platform inaccessible.

 – Test: This is when you run actual tests against your

platform. The purpose is to identify the systems and

services that your platform is using and potential

security vulnerabilities.

Chapter 11 SeCurity and ComplianCe

458

 Discovery
The discovery is all about discovering what versions are used in your

platform. For instance, you need to run a discovery phase to find out

the firmware you are using. Knowledge of the version provides valuable

information in case a version of something was marked with security

vulnerability or has been deprecated. The discovery phase can then be

used to audit and test and provide an indication of potential vulnerabilities

in your platform.

You may find out during the discovery check that you need to go back

to the coding and design phase because of versioning issues. For instance,

once you change the version of a library or firmware, your code may break,

and you may need to refactor your code.

 Audit
For the auditing phase, you should conduct a systematic review of specific

potential issues.

Just as an accountant audit financial aspect of a company and even

this book was audited by a team, your platform needs auditing and testing

to ensure your code follows best practices to improve performance,

accessibility, and compliance with security and regulatory requirements.

An audit inspection can be done by your own platform team but is

often done by an independent entity. It’s important to recognize that

audits can't be expected to detect all the issues that need to be addressed.

A blockchain-based platform should take into account security and

compliance audits as well.

 Security Audit

The security audit can utilize a complete manual approach or utilize

automated tools to do vulnerability assessments, security assessments,

and penetration tests to determine what needs to be addressed. There are

Chapter 11 SeCurity and ComplianCe

459

more than 1,500 exploits, so it’s a good idea to rely at least to some degree

on automated audit tools as an integral part of your development cycle

and ensure your platform passes common problems. Even when hiring a

third-party auditor, it’s better to first check for common problems before

starting a more vigorous audit.

 Compliance Audit

In blockchain, you need to check beyond just the security aspects; you

need to also conduct a compliance audit to ensure privacy and regulations

are implemented according to the law.

Just like a security audit, a compliance audit can be done by a third-

party auditor or in-house. As you saw previously in this chapter, many of

the problems that concern lawmakers in different locales relate to security

vulnerabilities. As I pointed out, the compliance regulations can change

often and different between locales, so the compliance assessment is often

better done in a manual manner than an automatic one.

 Test
The discovery and audit rely on testing to make recommendations on how

to fix problems in your platform. In terms of testing, there are three types.

 – Dynamic testing: Test vulnerabilities that an attacker may

target. An attacker trying to exploit your platform would

not have access to your code and platform, so the tests are

run without access to your source code.

 – Static testing: This is an inside-out approach, testing for

vulnerabilities in the source code of your platform. This

testing offers a more in-depth real-time snapshot of your

platform and the libraries that make up your platform.

Chapter 11 SeCurity and ComplianCe

460

 – Penetration test: This simulates an actual malicious

attack. The penetration test can rely on found vulnerabili-

ties to gain further access to your platform. This can help

you understand what access an attacker can gain over

confidential information.

Tests can be conducted by automated tools, but it’s recommended

you also include a manual test by an actual tester, who can rely on his

experience and knowledge to find vulnerabilities not found by automated

tools.

 Automated Tools

There are many testing tools that can assist you in doing the three types of

testing. For instance, for the static testing of libraries, I already mentioned

the npm audit, which helps detect any vulnerable in a dependency’s

version.

> npm audit

For a web app, the Google Chrome developer tools provide built-in

audit tools, as shown in Figure 11-8.

Chapter 11 SeCurity and ComplianCe

461

A browser’s developer tools provide a simple web proxy network tool;

however, these tools don’t have many of features you may need, such as

exporting data, running simulations, and filtering data. You may find it

useful to utilize a third-party web proxy tool during the audit phase. The

web proxy tool is mainly a network protocol analyzer, which can provide

details of your network protocols, packet information, decryption, and so

on. The two popular tools are Charlesproxy and Wireshark.

 – https://www.charlesproxy.com/

 – https://www.wireshark.org/

Figure 11-8. Google Chrome developer tool audit report

Chapter 11 SeCurity and ComplianCe

https://www.charlesproxy.com/
https://www.wireshark.org/

462

In terms of automated penetration tools, there are many tools out

there. Here are examples of a few popular ones:

 1. Security automation tools

 a. The OWASP Zed Attack Proxy (ZAP): This

includes popular free security tools.

See www.owasp.org/index.php/OWASP_Zed_

Attack_Proxy_Project.

 b. Burp Suite: This automation tool includes

free community and paid version. See

www.portswigger.net/burp.

 2. Metasploit: This tool is based on exploit, which

tries to overtake the security measures of your

platform. You can run it from a GUI or command

line. See https://www.rapid7.com/products/

metasploit/download/editions/.

 3. CORE Impact: Core Impact Pro tests mobile device

penetration, password identification, cracking,

and so on. It also has a GUI and a command-line

interface but has high price tag. See https://www.

coresecurity.com/core-impact/.

 4. Netsparker: This includes a web application scanner

that can help identify vulnerabilities such as

accessing sensitive data and suggesting solutions.

It includes SQL injection and local file induction

(LFI). The penetration test fabricates an internal

or external unauthorized attack. See https://www.

netsparker.com/.

 5. Free Security tool from Google (ratproxy): See

https://code.google.com/archive/p/ratproxy/.

Chapter 11 SeCurity and ComplianCe

http://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.portswigger.net/burp
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.coresecurity.com/core-impact/
https://www.coresecurity.com/core-impact/
https://www.netsparker.com/
https://www.netsparker.com/
https://code.google.com/archive/p/ratproxy/

463

 6. Kali Linux operating system (OS): This tool is for

hackers, with many hacking tools pre-installed already.

The OS sits as a virtual machine on your Mac/PC.

 7. SQL injections:

 a. Sqlmap: This is an open source penetration

automated testing tool to detect and exploiting

SQL injections. See https://sqlmap.org.

 b. SQLNinja: This tool checks for SQL injection

vulnerabilities aimed at Microsoft SQL Server.

See https://sqlninja.sourceforge.net.

 c. Firefox add-on called Hackbar: This test helps you

test site security including SQL injections and

XSS holes. See https://www.addons.mozilla.

org/en-US/firefox/addon/hackbartool/.

Note File inclusion allows an attacker to insert a file by exploiting
dynamic file inclusion (such as jQuery’s $.getScript), which is
implemented in the application to include another file. the file is then
uploaded by user input and where there isn’t proper validation to
check the file. the solution is to implement validation for dynamic file
inclusion to ensure the origin and content.

There are security testing automated tools to list; however, you can

check a few curated lists of security testing automated tools online that fit the

exact test you want to run:

• https://github.com/topics/testing-tools

• https://github.com/atinfo/awesome-test- automation

• https://forum.bugcrowd.com/t/researcher-

resources- tools/167

Chapter 11 SeCurity and ComplianCe

https://sqlmap.org
https://sqlninja.sourceforge.net
https://www.addons.mozilla.org/en-US/firefox/addon/hackbartool/
https://www.addons.mozilla.org/en-US/firefox/addon/hackbartool/
https://github.com/topics/testing-tools
https://github.com/atinfo/awesome-test-automation
https://forum.bugcrowd.com/t/researcher-resources-tools/167
https://forum.bugcrowd.com/t/researcher-resources-tools/167

464

Follow the OWASP IoT testing guide and OWASP IoT testing handout

recommendations:

• Print and follow: https://www.owasp.org/

images/2/2d/Iot_testing_methodology.JPG

• Follow this checklist: www.owasp.org/index.php/

IoT_Testing_Guides

During the discover, audit, and test phases, you most likely will

find small to major vulnerabilities that may require you to go back to

the coding phase and rinse and repeat this process until your platform

passes all the tests.

 Readiness Assessment
Once your platform passes the discover, audit, and test phases, you are

ready to take an in-depth look at the technical aspects of the blockchain

application to ensure security and compliance have been implemented.

That is done by running a security and compliance assessment manually.

 Security and Compliance Assessment

This assessment builds upon the vulnerability assessments you did

in previous phases. Prior to release, it’s recommended that you add a

manual verification step to confirm that industry and/or internal security

standards have been applied to your platform and assess the risks and

exposure. This phase should also include the security readiness concerns I

discussed in the first part of this chapter.

In addition, verification could examine the following:

 – Checking authorized access to your platform and con-

firming system settings

 – Examining platform and server logs

Chapter 11 SeCurity and ComplianCe

https://www.owasp.org/images/2/2d/Iot_testing_methodology.JPG
https://www.owasp.org/images/2/2d/Iot_testing_methodology.JPG
http://www.owasp.org/index.php/IoT_Testing_Guides
http://www.owasp.org/index.php/IoT_Testing_Guides

465

 – Ensuring compliance with current regulations

 – Checking and tracking error codes and messages

 – Examining the latest privacy and laws

 – Examining the design and architecture documents to

ensure the code meets these requirements

 – Performing a code review

Keep in mind that the security and compliance assessment is the

bigger picture, and you shouldn’t be looking at specific exposure of

just one vulnerability. Instead, look at the platform as a whole. The

assessments may find additional risks and exposures that are not

acceptable, which will require you to go back to the design and coding

phase and start this process all over again.

 Release
Once your platform has passed the readiness assessment phase, publish

your platform. It’s advised to run the same tests and checks again on the

actual production code to ensure the platform is still passing the tests

and assessments. Once you have completed this cycle, you can rinse and

repeat this process for your new development cycle.

 Where to Go from Here
 – A good resource with links related to blockchain security

is available online: https://github.com/1522402210/

BlockChain-Security-List.

 – Create a compliance and security checklist, taking into

account your specific platform and locale.

 – If you have a platform/site, run the audit and automated

testing tool on your existing platform or site.

Chapter 11 SeCurity and ComplianCe

https://github.com/1522402210/BlockChain-Security-List
https://github.com/1522402210/BlockChain-Security-List

466

 Summary
In this chapter, I broke down the security and compliance of the blockchain

process into three parts: security readiness, common blockchain attacks,

and a recommended development cycle.

The first part served as an introduction so you could better understand

the terms and mind-set of building a secure platform. I covered security

testing and compliance readiness, looking specifically at the United States

and the Europe Union compliance requirements as examples. I covered

security readiness recommendations to take into account during the

design and coding phase. Then I covered common blockchain attacks

that resulted in billions of dollars in losses. These attacks were targeting

mostly crypto wallets, but also blockchain networks and blockchain-based

platforms. Lastly, I gave you a recommended development cycle to ensure

you take into account all the needed security and compliance issues.

In the next and last chapter, you will explore blockchain beyond just

crypto. I will cover the power of blockchain and how it can be harnessed,

as well as the decentralization of specific industries, examining a few

industries being disrupted by blockchain and specific case studies.

Chapter 11 SeCurity and ComplianCe

467© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8_12

CHAPTER 12

Blockchain Beyond
Crypto
As you are approaching the last pages of this book, I wanted to inspire

you and help you see what’s possible in the coming years from the

blockchain technology. Crypto paved the way by providing an alternative

to fiat currency with the introduction of bitcoin. Although the invention

of bitcoin was more than a decade ago (it was introduced in 2008),

blockchain is still in its infancy. However, it’s poised to potentially become

one the most useful technological innovations of the 21st century.

With that said, the road for technological integration and adoption

by the masses is still long and bumpy, and blockchain has already

experienced multiple ups and downs, driven by financial speculation,

security, performance, trust, scalability, and regulation (not to mention

crypto attacks from charlatans and hackers). These concerns have caused

many to become skeptics. Despite all this, blockchain cannot be ignored.

It has the potential to improve all industries and become as big of a

globalized technological innovation as the Internet or the fax machine.

The potential of blockchain has been recognized by many, and in fact,

in 2019 alone, companies are expected to invest more than $3 billion in

blockchain technologies. By examining the current projects in development,

the bigger picture shows that cryptocurrency is not the final frontier but just

the beginning, because many blockchain projects are expanding beyond

just cryptocurrency and disrupting more than just fiat currencies.

468

In fact, many large corporations are incorporating blockchain

technologies into their systems in one way or another. Hundreds of

startups are slowly entering the mainstream, the potential utilization of

blockchain technology seems limitless, and in many cases, blockchain

opens up new potential revenue streams and new business models.

“We’ll all look back in 20 years and conclude that bitcoin
was an influential platform for innovation as the Internet
itself was.”

—Marc Andreessen

This chapter is broken into two parts. First I will cover how blockchain

can be harnessed and expand on what’s possible when utilizing elements

of blockchain technologies. Then I will cover the decentralization of

industries by discussing a few industries being disrupted by blockchain

and by showing specific case studies.

Understanding the power and capabilities of blockchain technology

and the technological innovations can give you insight into how you

can harness the blockchain technological innovations for your own new

greenfield project or an existing project and industry.

 Harnessing Blockchain
Before discussing the decentralization of industries, let’s quickly review

the specific elements of blockchain that are readily available to implement

now. Although I already covered everything in this section in previous

chapters, here I will expand on these elements in the context of how they

can be used in a project. I’ll discuss the following:

 – Coins

 – Tokens

Chapter 12 BloCkChain Beyond Crypto

469

 – Ledgers

 – Smart contracts and dapps

These blockchain elements can then be used on their own, mashed

together, or used as a hybrid of a blockchain and none-blockchain project

to implement a unique application.

 Coins
Blockchain technology started with bitcoin and expanded to more than

2,000 listed cryptocurrencies with a market cap of billions of dollars.

Many of these coins listed through ICOs are not providing much value

other than attempting to enrich the publishers and investors of these

coins. However, the capabilities of creating coins and using blockchain

as a cryptocurrency to make payments globally quickly and for low costs

have inspired many. The crypto use cases highlight blockchain reliability

as it’s able to replace fiat currency.

“The future of money is digital currency.”

—Bill Gates

At the time of writing, a large portion of the population in certain

countries have heard of crypto, but it is not considered mainstream

just yet. But in this section you’ll see there are projects in the works

that can push the usage of coins into mainstream use. For instance, in

December 2018, media outlets reported that Facebook is developing a

“stablecoin” for its WhatsApp users and is holding talks with exchanges

about listing its stablecoin, which will be tied “to a basket of different

foreign currencies, rather than just the dollar.” Adoption by Facebook,

which is used by a large portion of the population, will raise more

awareness of crypto.

Chapter 12 BloCkChain Beyond Crypto

470

Note Stablecoins are crypto designed to minimize the volatility of
price because they are tied to a more “stable” asset (or a basket of
stable assets), such as a currency or exchange-traded commodities
such as gold.

In addition, you saw examples of how coins themselves can offer more

value than just the face value of the coin.

 – Bitcoin cash (BCH) colored coins: These use the BCH

protocol to create tokenized assets, which allows you to

add tokens to BCH.

 – Bitcoin: This uses bitcoin’s OP_RETURN param to allow you

to store data with the transaction.

These examples highlight the potential of coins as they can be used to

transfer value more than just the digital currency.

 Tokens
Cryptographic tokens are accounting units that can be used to

represent the digital balance of a certain asset. For instance, bitcoin is a

cryptographic token because it uses a digital signature in conjunction with

ownership; however, not all cryptographic tokens are cryptocurrencies.

Tokens can be created with unique data and are called nonfungible

tokens (NFTs) to represent something completely unique. These NFTs are

not interchangeable as there is only one token with that exact data.

Note in contrast to crypto digital asset coins or many utility tokens
that are fungible in nature, nFt is a special cryptographic token that
represents something unique. these tokens are not interchangeable
because they cannot be replaced.

Chapter 12 BloCkChain Beyond Crypto

471

Both NFT and utility tokens use a tokenization process that allows you

to create a security. The security takes the digital asset and fractionalizes

its ownership by creating digital tokens. Each token then represents a

percentage of ownership in the asset. The use of blockchain makes the

chain of custody and proof of ownership immutable, which gives an

advantage to certain applications as the information cannot be altered like

in a regular database.

Note Chain of custody in this context is the “paper trail” that
records the sequence of transfer or analysis of the data.

In practice, this can be done with both digital assets and physical

assets. For instance, the Kik messaging app (https://www.kik.com) turned

its company into a digital asset and started selling tokens that represent

a fraction of ownership in its company. Kik was able to raise $100 million

that can now be used to grow its platform. What it has done is a reverse

ICO; instead of raising funds prior to creating the company, it is selling

a portion of the company after it’s already up and running, just as a

company can “go public” in the stock market.

Tip keep in mind that there are many other industries, not
mentioned in this chapter, that have the potential to gain by utilizing
blockchain technology. i picked a few to get you inspired; however,
you should do your own research to investigate and find more
industries.

Additionally, tokens can take old ideas and revive them. For instance,

some pay phones and trains used tokens; these token have no value other

than the context of using them in a pay phone or the train station but not

anywhere else. The dollar also used to be tied to the amount of gold that

Chapter 12 BloCkChain Beyond Crypto

https://www.kik.com

472

the government kept in vaults, so when you held dollars prior to 1971,

you used to own a token in the gold the U.S. government kept in its vaults.

Similarly, today, stablecoin tokens represent fiat currency such as DAI,

GUSD, TUSD, USDC, and USDT tokens created with the use of Ethereum.

These tokens are based on companies placing fiat currency in an escrow

account and registering their company with regulators.

Tokens can then represent any digital or physical value such as the

following:

 – Stocks

 – Options

 – Digital obligations

 – Fiat currencies

 – Ownership rights

 – Rights for a service

Tokens can also combine a few assets. For instance, a token can

represent a basket of different stocks or a basket of different fiat currencies.

The possibilities are unlimited, and as you have seen in previous

chapters, there are many blockchains such as Ethereum, EOS, Hyperledger,

and NEO that can provide an easy mechanism to create tokens.

 Ledgers
A blockchain ledger can be used as a decentralized data storage for more

than just crypto. Traditional cloud storage services are centralized, and you

need to place your trust in a single entity with your valuable information or

digital assets.

With blockchain, the data storage itself can become decentralized. P2P

networks such as PirateBay, Limelight, and others have proven capable

of stitching pieces of data together from different computers around the

Chapter 12 BloCkChain Beyond Crypto

473

globe to store digital assets such as video, music, images, and software.

Although many of these P2P networks are in violation of copyright Material

and considered illegal in many countries, a blockchain P2P network can

share files by legitimate publishers while limiting access to authorized

customers. Blockchain works in a similar way to these P2P networks and

can be used to store any data. In fact, Storj (https://storj.io/) and Sai

(https://sia.tech) are examples of cloud storages based on blockchain

aimed at improving security, reducing costs, and decreasing dependency.

Users can rent out their storage capacity when not in usage, creating a

whole new marketplace that never existed.

Utilizing blockchain as decentralized data storage combined with

other elements of blockchains such as coins and tokens can create

interesting new possibilities.

 Smart Contracts and Dapps
As you have seen, smart contracts are the programming of the cloud; they

allow you to code against a blockchain. Smart contracts are created to be

legally binding, programmable, digital documents. Just like traditional

agreements, smart contracts create a set of rules to which two or more

parties agree.

When the contractual obligations are met, funds can be automatically

released, eliminating the need for a third party to be involved in the

arrangement. Utilizing smart contracts for legal concerns can potentially

become a better alternative to paper as they are stable, honest, and less

prone to human errors. Using a smart contract, the middleman is not

needed (middlemen can be attorneys, escrow agents, notaries, bankers,

loan officers, and so on).

In this book, you created smart contracts on multiple blockchain

platforms. Using these smart contracts, you were able to create a dapp’s

front-end interface to utilize the smart contract and publish the dapp.

Chapter 12 BloCkChain Beyond Crypto

https://storj.io/
https://sia.tech

474

In fact, companies are using smart contracts to automate many

services. For instance, Slock.it created payments for renting usable

devices; these devices can be any object such as bikes, cars, or even

toolboxes. Similarly, Fizzy (https://fizzy.axa/) tracks flight delays and

automatically refunds passengers when flights are delayed. These services

are done automatically; you don’t need to stand in lines or be passed along

by phone representatives from one department to another. Additionally,

these refunds can occur automatically. These contracts are saving the user

and the businesses time, effort, and money. Additionally, customer service

is improved, and as these services are automated, this can reduce the

number of employees you need.

To summarize, in this section, I covered what’s readily available from

a business point of view that you can implement utilizing blockchain

technology. I covered what you can do with coins beyond crypto, including

using tokens to represent any value, using the blockchain ledger as a

decentralized database, and writing code in the cloud utilizing smart

contracts and dapps. By combining these elements, you get expedited

services that are more reliable and cut out the middleman.

 Decentralization of Industries and Verticals
In this section, I will show you examples from a few industries and how

blockchain is utilized or can be utilized vertically and horizontally across

different industries. The industries I am covering can serve as inspiration

when implementing blockchain into an existing industry or for a new

greenfield project.

Note in this context, vertical means specifically in a particular field,
and horizontal can be adopted by everyone or any field.

Chapter 12 BloCkChain Beyond Crypto

https://fizzy.axa/

475

I will be covering the following industries:

 – Financial

 – Cybersecurity

 – Real estate

 – Mobile

 – Supply chain improvement

 – Encrypted messaging platforms

 – Elections and voting

 – Marketing

 – Healthcare

 – Gaming

In today’s world, many industries rely on one another, and there is

much crossover between technology and brick-and-mortar businesses.

For instance, real estate relies on the financial industry. The financial

industry relies on security as there is a need to be able to verify documents

and identities. Marketing relies on collecting data and forecasting.

These crossovers and a mashup of services have the potential to create

a seamless user experience that expedites the security, reliability, and

globalization of blockchain; increases the speed of executing transactions;

and offers lower costs to everyone involved.

 Financial
In terms of the financial industry, you can split the actors into two groups:

small financial groups and major financial institutions. Small financial

groups can be startups, retailers, small banks, and individually owned

companies. Major institutions include investment groups, large banks, and

Fortune 500 companies.

Chapter 12 BloCkChain Beyond Crypto

476

Small financial groups have been experimenting with crypto and

blockchain for years now. In regard to major financial institutions, it has

been a love-hate relationship in regard to crypto; many financial CEOs

and gurus have been criticizing crypto, with J.P. Morgan leading the way

by calling any employee caught trading bitcoin “stupid” and with financial

guru Warren Buffett calling bitcoin “delusion” and “attracts charlatans.”

However, when it comes to the blockchain technology itself, it’s a different

story. J.P. Morgan announced this year the creation of its own blockchain

called Quorum and its own coin called JPM Coin.

Many other major financial companies are also starting to slowly

warm up to the blockchain technology. Crypto exchanges have already

passed through the Nasdaq’s vetting process. NASDAQ, Citi, and Visa have

invested $30 million in the blockchain-based startup Chain.com. NASDAQ

also recognized Overstock.com’s full support of a bitcoin payment option

as well as the not-yet-published platform Roobee (https://roobee.io), an

investment platform developed for retail investors.

In general, there are many areas in which both small and major

financial groups can benefit from blockchain. I will be covering three:

currency, infrastructure, and digital assets.

• Currency: This replaces fiat with crypto as an electronic

cash system. Anyone can hold coins and pay quickly and

inexpensive, cutting out the middle man (such as banks

and credit cards). The current concerns around crypto

replacing fiat currency are the volatility of price (because

of the fluctuations of many coins), trust, and knowledge

of how to create and accept a transfer and manage a

wallet. These concerns can make many uneasy, especially

ones who are not technology savvy. The large financial

institutions can benefit from crypto by formalizing the

transfer of crypto funds to the mainstream by creating

their own cryptocurrency and/or accepting transfers of

Chapter 12 BloCkChain Beyond Crypto

https://roobee.io

477

existing crypto. Sure, there will probably be a fee involved

as the middleman is getting involved again; however,

crypto can potentially be used by the mainstream as a

payment method just like other methods such as Visa, fiat

currency, automated clearinghouses (ACHs), exchange-

traded funds (ETFs), and so on. Users can then send

funds around the globe while dealing with a trusted

party. Here are some case studies:

• Coinpayments (https://www.coinpayments.

net), BitPay (https://bitpay.com/), and Abra

(https://www.abra.com/) are just a few examples

of merchants that accept crypto payments.

• Bank-backed coins are another example.

J.P. Morgan announced that the bank was starting a

trial by transforming a trillion dollars that the bank

lends to corporations to JPM Coin. This represents

the first coin from a major bank.

• Infrastructure: Companies can replace existing

infrastructure such as a centralized database with

blockchain to replace to achieve better security and

reduce costs. One of the concerns with a crypto transfer

is that the user needs to understand what they are

doing or risk losing funds. Here are some case studies:

• Transferring funds: Western Union is testing Ripple

(XRP) to see whether it can optimize the existing

settlement system to expedite the transfer of funds

with blockchain. For the time being, Western

Union claims it has not proved that using XRP can

expedite transfers. “We tested with Mexico, one of

our biggest corridors…and with the efficiency that

Chapter 12 BloCkChain Beyond Crypto

https://www.coinpayments.net
https://www.coinpayments.net
https://bitpay.com/
https://www.abra.com/

478

we have currently, we didn’t find the efficiency

with Ripple yet,” according to Western Union CEO

Hikmet Ersek.

• Bookkeeping: J.P. Morgan’s Quorum blockchain

(https://www.jpmorgan.com/global/Quorum) is being

used by institutions to keep track of financial data.

• Digital assets: As I mentioned, blockchain can be used

to create digital assets using tokens. These assets can be

any financial vehicle. Here are some case studies:

• Chain (https://chain.com/): This offers what is

called a sequence. It uses blockchain infrastructure

to let organizations build financial services from

the ground up with open source code on GitHub;

see https://github.com/chain.

• Openchain (https://www.openchain.org): This is a

startup focused on issuing and managing digital assets.

• Symbiont.io (https://symbiont.io/solutions):

This brings mass adoption of blockchain to financial

services. Additionally, NASDAQ has invested in

Symbiont.io.

 Cybersecurity
As you saw in the previous chapter when I covered security, phishing-

malware and other hacker attacks aimed at identity theft have become

a common practice. Many identity thefts are due to a hacker cracking a

user’s password. Instead of relying on a password to authenticate a user,

blockchain has the potential to revolutionize digital identities by using

cryptography to secure them. This is done by assigning each user private

keys in the same way blockchain attaches private/public keys and then uses

these keys to authenticate a user and find transactions that belong to a user.

Chapter 12 BloCkChain Beyond Crypto

https://www.jpmorgan.com/global/Quorum
https://chain.com/
https://github.com/chain
https://www.openchain.org
https://symbiont.io/solutions

479

In addition, verifying data can be an agonizing process and a major

pain point for many people. Think about when you need to get a passport,

notarize a document, or renew your driver’s license. These processes

involve a lot of effort and time. Blockchain can help ensure and verify the

document’s ownership and authenticity while expediting the time it takes,

and you can do it all from the comfort of your home instead of waiting in a

line or filling out a complex form.

These techniques can be applied to the following:

 – Passports

 – Digital identity

 – Driver’s license and ID

 – E-residency

 – Birth certificates

 – Wedding/divorce certificates

 – Notary of documents

 – Online account login

Some use cases include the following:

 – Verifying identity: Companies that offer blockchain IDs

can be used to sign in on apps and web sites, digitally sign

documents, and so on, reducing the risk of identity theft.

Here are some case studies:

• Guardtime (https://guardtime.com): This is

a blockchain company that has enhanced data

authentication protocols by using Keyless Signature

Infrastructure (KSI) transactions. The code either

grants or denies access to the network based on

the command received instead of a password. A

prominent client of Guardtime is Verizon.

Chapter 12 BloCkChain Beyond Crypto

https://guardtime.com

480

• Keybase (https://keybase.io): Keybase holds

an encryption key directory to map social media

identities. Users can then use encrypt chat and

cloud storage.

• Onename (https://onename.com): This company

provides you with an .id namespace on its

Blockstack network.

• ShoCard (https://shocard.com): This identity

service is aimed at providing banks and financial

institutions with a way to authenticate users.

 – Verifying data: You can use blockchain to create a verifiable

record of any data, file, business process, or just about

anything on the blockchain. Here are some case studies:

• Factom (https://www.factom.com): This provides

a REST API to read, write, and search its Factom

blockchain entries and platform, which includes

SDKs, documentation, and a blockchain explorer to

verify and debug entries.

• Proof of Existence (https://proofofexistence.

com): This company verifies the existence of files via

the transaction’s timestamped property.

• Tierion (https://tierion.com): This is similar

to Proof of Existence. Tierion offers proof and

chainpoint. Chainpoint protects data by anchoring

it to the bitcoin’s blockchain, and the proof is using

blockchain’s timestamp property as a notary. This

service is used by companies such as Dell and

Xero. It also has a developer portal:

 https://chainpoint.org.

Chapter 12 BloCkChain Beyond Crypto

https://keybase.io
https://onename.com
https://shocard.com
https://www.factom.com
https://proofofexistence.com
https://proofofexistence.com
https://tierion.com
https://chainpoint.org

481

 Real Estate
The real estate industry can potentially benefit from utilizing blockchain

technology vertically and horizontally. If you have ever been involved

in a real estate transaction, you know they are often complex and

nontransparent and include a lot of paperwork and hard-to-follow moving

pieces such as dealing with agents, property checks, deeds, financing,

notaries, and in many cases attorneys. There are many pain points in the

process. Blockchain can help reduce the costs, increase security, increase

privacy, and expedite the process.

Combined with some of the elements discussed previously, these

solutions can provide value such as identity, verify documents, and

financial:

 – Confirming identity

• Securely identifying both buyer and sellers

• Ensuring ownership

• Keeping information private and on a need-to-

know basis

 – Verifying documents

• Due diligence on property

 – Conducting financial transactions

• Transferring funds

• Distributing funds between parties such as agents

and sellers

• Paying bills

Blockchain services addressing these elements can speed up the

process and at the same time reduce paperwork and decrease costs.

Chapter 12 BloCkChain Beyond Crypto

482

Here are some case studies:

 – Harbor (https://goharbor.io): This provides an

Ethereum ERC-20 token that allows for the resale of

currency as security. It’s a platform for digital securities

such as funds, private equity, and commercial real estate.

 – Ubitquity (https://www.ubitquity.io): This offers a real

estate SaaS platform utilizing the blockchain platform

aimed at mortgage, title, and financial companies. It

works with entities around the globe to gather property

information and documents. Ubitquity offers an API for

integration with its blockchain platform (https://www.

ubitquity.io/).

 – Propy (https://propy.com/browse/): This company

raised an ICO of more than $15 million and claims it can

save people up to 25 percent in fees when buying prop-

erty as well as avoid wire and fraud. Propy processes

payments in any currency, including crypto.

 – Silentnotary (https://silentnotary.com), Dnote

(www.dnote.online), and Blocknotary (https://www.

blocknotary.com): These are just a few examples of

companies that offer a decentralized notary. The concept

is similar to Proof of Existence. The company verifies

identity, and using blockchain’s timestamp property it

can verify documents. Blockchain captures the hash at a

specific point in time, which can then be utilized to

confirm the existence of something at that time. The

timestamp can be used in a court of law and in the same

way as a traditional notary. These services can eliminate

the need for a physical notary. In fact, many states such as

Arizona, Florida, Kentucky, Louisiana, Nebraska, and

Nevada are already accepting e-notaries of deeds.

Chapter 12 BloCkChain Beyond Crypto

https://goharbor.io
https://www.ubitquity.io
https://www.ubitquity.io/
https://www.ubitquity.io/
https://propy.com/browse/
https://silentnotary.com
http://www.dnote.online
https://www.blocknotary.com
https://www.blocknotary.com

483

 – ShelterZoom (https://www.shelterzoom.com): This

company is aimed at buyers, sellers, and renters. Sales are

done using Ethereum’s smart contracts.

 – StreetWire (http://www.streetwire.net/): This

company tokenized physical real estate assets as well as

providing data management services.

 Mobile
Blockchain-based services can benefit users and help pain points related

to mobile devices. Here are some examples:

 – Privacy: Users around the globe are getting fed up with

the lack of privacy as social media, telecommunications,

and Internet companies are taking advantage of them by

holding users’ data and sharing the data for profit.

 – Dapps: Supporting dapps can provide access to large

numbers of new services without being censored by the

mobile app’s store.

 – Income: Mobile phones can generate income via mining,

leaving reviews for coins, etc., reducing the monthly bills

for the user.

In fact, the mobile industry has recognized the potential and is

harnessing blockchain to provide the user with more control, value, and

privacy, with many big names making headlines this year.

“Telecommunications and Internet companies have derived
tremendous value from controlling data. By decentralizing
apps, we can put this data onto a smart contract, effectively
giving control back to creators and to users,” and “Much of
what we call peer-to-peer or ‘decentralized’ services continue
to be built upon centralized networks. We are changing that.”

—Pundi X founder and CEO Zac Cheah

Chapter 12 BloCkChain Beyond Crypto

https://www.shelterzoom.com
http://www.streetwire.net/

484

Here are some case studies:

 – Electroneum (https://electroneum.com/m1/): This is a

new phone from a company called Electroneum. It has

the following features:

• ETN cloud mining: Users can mine up to $3 worth

of ETN per month by running the cloud mining

application.

• Low price: It has a low price tag of $80.

• Hardware/software: It is an Android device running

version 8.1 Go, powered by a quad-core 1.3GHz

CPU and supports 4G broadband cellular network

technology and dual SIM cards.

 – HTC (https://www.htc.com/): This supports multiple

dapps.

 – Pundi X (https://pundix.com): This company has

redesigned its XPhone, estimated to be released for

purchase in late 2019. It will include the following:

• Blockchain mode: Services can operate

independently of centralized carriers. Users

can route phone calls, messages, and data via

blockchain nodes without a centralized service

provider.

• X button: This allows users to switch to blockchain

mode.

 – Samsung Galaxy S10 (https://www.samsung.com/us/

mobile/galaxy- s10/): This includes the following:

Chapter 12 BloCkChain Beyond Crypto

https://electroneum.com/m1/
https://www.htc.com/
https://pundix.com
https://www.samsung.com/us/mobile/galaxy-s10/
https://www.samsung.com/us/mobile/galaxy-s10/

485

• Built-in crypto wallet: This has private key storage

with support for bitcoin, Ethereum, Cosmo Coin,

and Enjin Coin, a gaming cryptocurrency.

• Dapps: It has out-of-the-box support for dapps.

• Cosmo coin (COSM): It has support for the cosmo

token, which powers the South Korean blockchain.

• Earn coins: Users can earn cosmo tokens in

exchange for leaving reviews in the app.

• Payment: It has support for contactless payments

with crypto.

 Supply Chain
Companies can benefit greatly by utilizing blockchain as a private

decentralized ledger to better store and use their own data globally. As

you have seen, blockchain can store, monitor, and optimize data in an

immutable and honest way that can be applied to supply chains. The

supply chain can be broken down into these elements:

 – Chain of custody: You can trace the chain of ownership of

an asset.

 – Product identity: You can store serial numbers or other

product identification information on a blockchain

allowing all parties (manufacturers, distributors, retailers,

and consumers) to verify an item’s authenticity. Keeping

track of supply chains can help in many ways such as

eliminating counterfeit products.

 – Monitor: You can trace in real time supply chains, from

raw Materials to a finished good.

Chapter 12 BloCkChain Beyond Crypto

486

Here are some case studies:

 – Blockverify (www.blockverify.io): This company uses

blockchain for anticounterfeit measures by identifying

counterfeits, preventing the duplication of products, and

enabling companies to verify their products and monitor

their supply chains.

 – British Airways (https://www.britishairways.com):

This company uses blockchain to ensure that flight

information is correct. It is also testing VChain (https://

www.vchain.tech), a verification system to replace

security checks.

 – Inxeption (https://www.inxeption.com): UPS has

teamed up with the Inxeption platform to improve mer-

chant supply chains.

 – Maersk (https://maersk.com/): The world’s largest

shipping company has teamed up with IBM to create a

Hyperledger blockchain to monitor the cargo of ships.

 – Tracr (https://www.tracr.com): This is used by De

Beers, the largest diamond producer utilizing blockchain

technology, to create an immutable and permanent

digital record for registered diamonds to cut down on

conflict (“blood”) diamonds.

 – Walmart: This company is using blockchain to allow its

employees to scan goods in the store’s app and monitor

the product from manufacturing to the store’s floor.

Chapter 12 BloCkChain Beyond Crypto

http://www.blockverify.io
https://www.britishairways.com
https://www.vchain.tech
https://www.vchain.tech
https://www.inxeption.com
https://maersk.com/
https://www.tracr.com

487

 Encrypted Messaging
In Chapter 1, I covered cryptography and how the Enigma machines

were used to encrypt and decrypt messages in military communication.

Blockchain is derived from messaging, and it can be used to send reliable

encrypted messaging.

Blockchain can be used to update traditional solutions for end-to- end

messaging encryption by leveraging a decentralization ledger to send

messages anonymously and without a private user’s data being sent, even

masking the user’s IP address.

Here are some case studies:

 – ADAMANT (https://adamant.im): This is an open

source private messenger with a crypto payment option.

See https://github.com/adamant-im.

 – Crypviser (https://crypviser.network): This is a private

message platform.

 – Matrix (https://matrix.org/blog/home/): This is a chat

ecosystem with open source code; see https://github.

com/matrix-org/matrix.org.

 Elections and Voting
Voting manipulation and electoral integrity are real problems; attackers

have been known to use techniques such as Sybil attack to manipulate

elections. Not surprisingly, many times there are recounts, accusations of

fraud, and distrust as the whole process is often vague.

Voting requires the authentication of the voters’ identities and secure

record keeping, vote tracking, and tallying. Blockchain has the potential to

revolutionize how voters cast their votes and could expedite the speed of

completing this process in an honest and open way.

Chapter 12 BloCkChain Beyond Crypto

https://adamant.im
https://github.com/adamant-im
https://crypviser.network
https://matrix.org/blog/home/
https://github.com/matrix-org/matrix.org
https://github.com/matrix-org/matrix.org

488

Blockchain tools could be used together as the infrastructure from start

to finish. This could potentially eliminate the need for recounts and could

build public trust in elections.

Voatz and Votem both point to a few potential advantages of utilizing

blockchain for voting.

 – Verification: Voters can verify that a vote was cast as

intended and detect false results.

 – Transparency: Governments and independent outside

parties can confirm a vote’s results as they are transparent

when stored on a public blockchain.

 – Security: Instead of one centralized computer on a tradi-

tional server system, voting data on the blockchain is

distributed on many nodes, making it harder to alter

results like when hacking into a single system.

Here are some case studies:

 – FollowMyVote (https://followmyvote.com): This is an

election platform in beta.

 – Voatz (https://voatz.com/): This company wants to

make voting safer and more accessible. It has already

teamed up with the City of Denver and West Virginia to

offer a mobile voting pilot.

 – Votem (https://votem.com): This voting platform is focused

on mobile to secure votes in elections across the globe.

 Marketing
Traditional analysts combine data from different sources in a

nontransparent way and then use the data in many ways such as to

monetize data, make a prediction, make businesses decisions, and so

Chapter 12 BloCkChain Beyond Crypto

https://followmyvote.com
https://voatz.com/
https://votem.com

489

on. However, if the data is false, the cost is high. False data gathering is

estimated to cost more than $1 billion in losses every year.

As you have seen, the blockchain ledger can include other data with

the transactions in a precise and immutable manner. The data can then

be used to support planning, analysis, and forecasting, as well as follow

supply chains. Data can be captured more accurately with a blockchain

decentralized ledger because it reduces human error and data alteration.

Once marketing data is captured, it can be analyzed by many industries

such as entertainment, sports, music, and finance as well as by machine

learning algorithms.

Using blockchain as an immutable database, where you can follow

the chain of custody, is already is use in many of the blockchain industries

covered in this chapter. In this section, I will highlight companies that

focus on just the data aspect. The data can then be used for forecasting,

leads, and decision-making.

Online advertisers rely on pay-per-click rates, followers on social

media, and analytics, and it can become a challenging task to verify

the accuracy of statistics and ensure companies are billed correctly

for advertisements. There have been many tracking and measurement

miscalculations, causing businesses to overpay. The reason for the

miscalculations is that the traffic sent can come from bots, artificially

bolstering stats, or fake followers in security attacks such as a Sybil attack.

These miscalculations have resulted in billions of dollars in losses in the

advertising industry.

Blockchain can record an encrypted and transparent chain of traffic

(like chain of custody) to help determine whether the ads clicked and

followers are coming from real audiences in a transparent way.

Additionally, blockchain can help connect brands with influencers

and reach consumers easier by offering an agreement based on a smart

contract and immediate crypto payment.

Chapter 12 BloCkChain Beyond Crypto

490

Here are some case studies:

 – AdChain (https://metax.io/en/products/adchain_

registry/): This is a community-curated list of

ad-supported web sites to provide advertisers with a stamp

of approval on the web sites best suited for serving their ads.

 – Augur (https://www.augur.net): This is a prediction

market protocol based on Ethereum, allowing users to

forecast events. The platform incorporates a reward

system for accurate predictions, enabling users to bet on

everything including stocks, sports, presidential predic-

tions, and more.

 – BOOSTO (https://boosto.io/): This is a decentralized

app store, where brands can ensure that partners are

reaching the consumers that the brand requests. Smart

contracts are used for agreements, and payment are made

once the terms decided on by the parties involved have

been met utilizing its own crypto.

 – SWIPECrypto (https://www.swipecrypto.com/): This

data monetization platform includes a privacy and data

sharing protocol, as well as governance layers that reward

data entry.

 – Wilbson (https://wibson.org): This allows users to sell

their private information for profit, while protecting privacy.

 Healthcare
There are many specific pain points in the healthcare industry that

blockchain can help solve. For instance, just as with high-end brands,

drug counterfeiting is a major problem in the pharmaceutical industry as

10 percent to 30 percent of all the drugs sold in developing countries are

Chapter 12 BloCkChain Beyond Crypto

https://metax.io/en/products/adchain_registry/
https://metax.io/en/products/adchain_registry/
https://www.augur.net
https://boosto.io/
https://www.swipecrypto.com/
https://wibson.org

491

counterfeit. These counterfeits amount to a loss to healthcare companies

of billions of dollars. Most of the counterfeit drugs are manufactured in

either India or China. Additionally, many of the counterfeit drugs contain

the wrong ingredients or wrong dose, putting patients’ health at risk.

Private blockchains controlled by a pharmaceutical company can

register drugs and ensure that fake drugs get discovered as they won’t be

registered on their ledger.

According to Bisresearch, the blockchain market is expected to grow

and reach more than $5 billion by 2025: https://bisresearch.com/

industry-report/global-blockchain-in-healthcare-market-2025.html.

“A global blockchain in the healthcare market is expected
grow at a CAGR of 63.85% from 2018 to 2025, to reach a value
of $5.61 billion by 2025. The use of blockchain for healthcare
data exchange will contribute the largest market share
throughout the forecast period, reaching a value of $1.89
 billion by 2025, owing to the use of blockchain to solve the
most widespread problem in healthcare information systems
related to interoperability and nonstandardization that has
created data silos in the industry.”

—Bisresearch

In addition, the healthcare industry can utilize blockchain to benefit

from storing all kinds of important information about drugs as well as

analyzing and processing information better.

 – Identifying patients: Organizations such as CHIME and

HIMSS have been pushing to create patient identity cards

for almost two decades. The creation of a unique patient

identifier can be easily solved with blockchain and ensure

there are no mismatched patient electronic health records

(EHRs), which leads to errors in patient care.

Chapter 12 BloCkChain Beyond Crypto

https://bisresearch.com/industry-report/global-blockchain-in-healthcare-market-2025.html
https://bisresearch.com/industry-report/global-blockchain-in-healthcare-market-2025.html

492

 – Tracing drugs: As I mentioned, counterfeits can hold the

wrong ingredients and cause harm to patients. Internet

sales of counterfeit drugs account for $75 billion of the

total market. Blockchain can be utilized to register all the

authentic drugs’ serial numbers.

 – Tracking drug results: Blockchain can make it possible

create a public ledger of patients to report the results of a

specific drug. The system can validate that the user

actually purchased the drug and the patient’s condition.

Using this data can provide valuable information to the

pharmaceutical company or any related entity.

Here are some case studies:

 – Ambrosus (https://ambrosus.com/#mission): This

blockchain system is aimed at following the chain of

custody of clinical trials and pharmaceuticals. Food and

pharmaceutical enterprises can use the platform to

optimize supply chain visibility and QA.

 – ConnectingCare (https://www.simplyvitalhealth.

com/): Here, patients and providers can share health data.

It allows all kinds of unique applications, from calculating

costs to the patient’s ability to control their privacy to

even allowing users to sell their data for research.

 – FarmaTrust (https://www.farmatrust.com): This is

aimed at stopping counterfeit drugs with the usage of

blockchain as a ledger.

 – Hashed Health (https://hashedhealth.com): This is

aimed at solving credential problem by making data more

transparent and easily accessible. The platform has a

professional credentials exchange, where members can

Chapter 12 BloCkChain Beyond Crypto

https://ambrosus.com/#mission
https://www.simplyvitalhealth.com/
https://www.simplyvitalhealth.com/
https://www.farmatrust.com
https://hashedhealth.com

493

verify the credentials of and track records of various

health professionals. This can expedite the hiring process

and provide an unalterable history of a professional’s

healthcare career history.

 – MedicalChain (https://medicalchain.com/en/): This

enables patient–doctor interactions through the usage of

blockchain. The project is funded through MedTokens.

Patients have full access and control over their own

personal health data and can grant doctors access to their

health record via their mobile devices, while data is

secure on the blockchain or via wristbands on patients,

which medical professionals can scan to access a person’s

medical history if they are unconscious.

 – MedRec (https://medrec.media.mit.edu/): This

provides EHRs on the blockchain via an Ethereum smart

contract.

 – MTBC (https://www.mtbc.com): This is a large player

aimed at improving EHR with the usage of blockchain. A

patient will have the ability to allow the transfer of records

from one doctor to another. The blockchain API runs on

the Hyperledger platform.

 – Phros (https://phros.io/#home): This was released by

Taipei Medical University Hospital and Digital Treasury

Corporation (DTCO) to share health data while ensuring

data privacy. The goal is to place all of a patient’s medical

information on the blockchain.

 – U.S. Department of Defense, U.S. Defense Logistics Agency:

These organizations are experimenting with a block-

chain-based system that would allow data to be added

Chapter 12 BloCkChain Beyond Crypto

https://medicalchain.com/en/
https://medrec.media.mit.edu/
https://www.mtbc.com
https://phros.io/#home

494

and tracked through a blockchain ledger, providing a live

feed of multiple agencies’ relief efforts in order to help

save lives and reduce costs. See https://www.dla.mil/

AboutDLA/News/NewsArticleView/Article/1720207/

troop-support-event-poses-question-how-and-where-

can- blockchain-help/.

 Gaming
Games can benefit from blockchain by utilizing a blockchain ledger to

store information as well as implement hybrid games that use a crypto

marketplace for NFT transactions to purchase game-related items.

This usage of blockchain is already in motion. Sony is utilizing

blockchain to record who owns what on the PlayStation Network. Fortnite

creator Epic Games has partnered with a blockchain firm, Microsoft is

using blockchain to handle Xbox Live royalty payments to developers, and

many other companies are experimenting with blockchain usage.

Additionally, there is a Blockchain Game Alliance (BGA), which

includes companies such as Ubisoft, ConsenSys, Everdreamsoft, and Enjin.

The goal of BGA is to combine blockchain and gaming to develop solutions

and develop standards and best practices.

Here are case studies:

 – Beyond the Void (https://beyond-the-void.net/): This

is a game that utilizes Ethereum’s blockchain to allow

players to buy, sell, and trade “cosmetic in-game items”

using NFT transactions.

 – Crypto card games: These are similar to traditional card

games, but instead of being physical cards, the cards are

nonfungible. The cards are created using ERC-721

Ethereum tokens. Trading cards can be exchanged or

played arcade-battle style. These cards can get expensive.

Chapter 12 BloCkChain Beyond Crypto

https://www.dla.mil/AboutDLA/News/NewsArticleView/Article/1720207/troop-support-event-poses-question-how-and-where-can-blockchain-help/
https://www.dla.mil/AboutDLA/News/NewsArticleView/Article/1720207/troop-support-event-poses-question-how-and-where-can-blockchain-help/
https://www.dla.mil/AboutDLA/News/NewsArticleView/Article/1720207/troop-support-event-poses-question-how-and-where-can-blockchain-help/
https://www.dla.mil/AboutDLA/News/NewsArticleView/Article/1720207/troop-support-event-poses-question-how-and-where-can-blockchain-help/
https://beyond-the-void.net/

495

For instance, in 2018, CryptoKitties sold one cat for

$111,000, and Gods Unchained sold a single card for

$60,000. Examples are CryptoKitties (https://www.

cryptokitties.co), Gods Unchained (https://godsun-

chained.com), and Spells of Genesis (https://spellsof-

genesis.com).

 – HashCraft by Ubisoft: This was built as an unreleased

prototype that incorporates blockchain as the core

gameplay, enabling players to be the builders of the game

by utilizing a blockchain ledger as a database.

 – Plague Hunters (https://store.steampowered.com/

app/746530/Plague_hunter/): This is a free-to-play

strategy game with a built-in, Ethereum marketplace

using NFT transactions for buying and selling weapons

and “hunters.” Plague Hunters passed Sony’s review

process and is scheduled to be released on PlayStation 4.

It is the first blockchain- enabled game that provides NFT

token trading on a major console.

In addition to these case studies, there is a dedicated web site just to

keep track of advancements in blockchain technology related to games:

https://blockchaingamer.net/. This resource can provide valuable

information regarding current trends and news.

 Music
In the current marketplace, many music industry artists, producers, fans,

and consumers are frustrated, and blockchain has appeared to be a breath

of fresh air to them because it has the potential to solve many pain points.

Chapter 12 BloCkChain Beyond Crypto

https://www.cryptokitties.co
https://www.cryptokitties.co
https://godsunchained.com
https://godsunchained.com
https://spellsofgenesis.com
https://spellsofgenesis.com
https://store.steampowered.com/app/746530/Plague_hunter/
https://store.steampowered.com/app/746530/Plague_hunter/
https://blockchaingamer.net/

496

For instance, many artists and producers spend a lot of time and

resources to infiltrate the market, publish work, and access the top

music streaming platforms. Once an artist reaches the large streaming

platforms such as Pandora, Spotify, and so on, they can access 250 million

customers; however, many artists are unhappy with the payment structure

and the time it takes to get paid. For instance, a song on Spotify would

need more than 152,000 playbacks from premium users to be able to

generate a mere revenue of $100 to the artist. The majority of the money

goes to a long list of intermediary middlemen. Not only do artists get paid

very little, it sometimes takes years to get these payouts.

By utilizing blockchain, artists can benefit in the following ways:

 – Increase the artist’s revenues: Blockchain can offer

transparent and fair payouts. The content provider’s

revenue share can be split in a fair and transparent

manner.

 – Streamline revenues: Blockchain can provide a quicker

way to pay artist royalties right away using crypto globally.

 – Split revenues automatically: Smart contracts can be used

to set up a payment structure for each individual involved

in content creation such as songwriter.

 – Better connect with customers: Fans can invest and

connect with artists directly.

 – Store data: Blockchain can be used to store information

on the public ledger for digital right management (DRM),

artists, assets, events, artists, venues, and so on.

 – Provide a streaming service: A blockchain’s P2P network

can be used to stream music. Current music streaming

services cost a lot or include too many ads.

Chapter 12 BloCkChain Beyond Crypto

497

The integration of music platforms needs to account for music formats

and industry standards such as the following:

 – Common Works Registration (CWR) (www.cmrra.ca/):

This is the standard format for registering and revising

musical works.

 – DDEX (http://ddex.net): Provide a digital supply chain

consortium by receiving data from leading media

companies, music licensing organizations, digital

service providers, and technical intermediaries and

creating a standard.

Just like the gaming BGA Alliance, the music industry has created an

organization to keep up with blockchain developments. The Open Music

Initiative (open-music.org) explores the use of blockchain to help identify

the rightful music rights holders and originators so they can modernize

and streamline royalty payment and so artists can receive fair royalties.

This can be done by utilizing blockchain for transparency and analyzing

data better. Prominent members are Soundcloud, Red Bull Media and

Netflix, Sony, YouTube, and Spotify.

Similar to hackathon competitions, Smackathon (https://www.

smackathon.co) is an annual competition for interesting blockchain-based

ideas in the music industry. For instance, in 2018, a blockchain platform

was invented to pay listeners for every second they listened to a song, as

well as providing fan engagement tools.

Looking at some of the more prominent projects, you will see that

there are duplications of similar ideas. This reinforces how there are real

pain points that need to be resolved in the music industry. The following

are some case studies:

 – Audius (https://audius.co/): This uses a blockchain

P2P network as a streaming service. Audius also uses

blockchain for payment via smart contracts to send artists

their payments immediately.

Chapter 12 BloCkChain Beyond Crypto

http://www.cmrra.ca/
http://ddex.net
http://open-music.org
https://www.smackathon.co
https://www.smackathon.co
https://audius.co/

498

 – BitSong (https://bitsong.io/en): This company claims to

be the first to use blockchain’s P2P network for music

streaming. Artists can upload songs and attach

advertisements. For each advertisement listened to, the artist

and the listeners get up to 90 percent of the profits that were

invested by the advertiser. The platform includes a token

called $BTSG to donate to indie artists and to purchase music.

 – Blokur (https://www.blokur.com): The Blokur platform

combines AI and blockchain. Blockchain is used as the

database to allow publishers to catalog their music, and

then the community can approve or reject it. An AI

algorithm resolves data conflicts automatically, such as

rights disputes, to ensure the original artists get paid.

There are already 50,000 songwriters and 7,000 publishers

that have published their work.

 – Choon (https://choon.co): This uses blockchain for

music streaming as well as digital payments to expedite

the artists’ payment. Artists can use Ethereum’s smart

contracts with each song to split the contributors’

revenue. Other features are crowdfunding for new artists

and rewards for users who create playlists.

 – eMusic (https://www.emusic.com): This uses blockchain

and Ethereum smart contracts for music distribution of

royalty payouts using a crypto token called eMusic.

 – Inmusik (https://inmusik.co): This has a crypto token

called $OUND. Sounds are classified as “securitized

music,” and fans can “invest” in an artist to share

earnings. Fans can also earn tokens for finding new songs,

voting for best artists, and supporting the community.

Artists can create an “army,” get investors, and earn more

than $20,000 per million streams.

Chapter 12 BloCkChain Beyond Crypto

https://bitsong.io/en
https://www.blokur.com
https://choon.co
https://www.emusic.com
https://inmusik.co

499

 – MediaChain (www.mediachain.io): Acquired by

Spotify, MediaChain utilizes blockchain’s ledger for

sharing information across different applications and

organizations by issuing unique identifiers for each piece

of information. MediaChain also works with artists to get

them paid fairly using smart contracts.

 – Mycelia (myceliaformusic.org): This uses a

blockchain ledger to hold a “creative passport,” which

contains information about a song, including IDs,

acknowledgments, business partners, and payment

mechanisms. Artists can create a smart contract payment

system to split pay among all contributors.

 – MusicLife (https://www.musiclife.io): MusicLife

created a media app called Echo (www.app-echo.com/

index/download) with millions of users. The platform

uses blockchain to process transactions quickly and do

the bookkeeping. It created its own ecosystem and issued

a token called $MITC. The algorithm allows an artist to

claim music rights and get paid. Users can earn tokens as

well as make purchases.

 – Musicoin (https://musicoin.org): This is a music

blockchain streaming platform. Musicoin created a coin

called $MUSIC to trade music- related purchases. Royalty

earnings and tips go to artists immediately.

 – Ujo Music (https://www.ujomusic.com): This blockchain

is used as a database to hold music ownership rights of an

artist. Smart contracts and crypto are used to automate

royalty payments to the artist and enable fans to tip artists

directly. Artists can upload songs, control licensing, and

manage distributions for free. Fans are charged a small

fee of $1 for every 100 streams.

Chapter 12 BloCkChain Beyond Crypto

http://www.mediachain.io
http://myceliaformusic.org
https://www.musiclife.io
http://www.app-echo.com/index/download
http://www.app-echo.com/index/download
https://musicoin.org
https://www.ujomusic.com

500

 – Viberate (https://www.viberate.com/fan): This uses a

blockchain ledger. Viberate claims to be the world’s

largest live music database, which holds at the time of

writing 460,000 artists and 500,000 events at 100,000

venues in 230 countries. Instead of hiring data entry

people to keep insert and update artists, events, and

venues, Viberate pays contributors with a $VIB crypto

token.

 – VOISE (https://www.voise.com): This is a blockchain-

powered app with an Ethereum token called

$VOISE. Artists can upload content. Users’ royalty pay

goes almost entirely to the artists, cutting out the

middleman.

 Where to Go from Here
Blockchain already is in usage by many industries as well as has the

potential to alter and improve many industries horizontally and vertically.

I have covered only a few in this chapter; other industries include

gambling, insurance, entertainment, and many others. I encourage you to

do your own research regarding the relevant industry you are interested

in as well as check the latest news, trends, and updates regarding current

blockchain projects.

 Summary
This book has been a journey into understanding blockchain technology.

This chapter served as a 10,000-foot big picture of what’s possible

and I hope has inspired you on ways you can harness the blockchain

technology.

Chapter 12 BloCkChain Beyond Crypto

https://www.viberate.com/fan
https://www.voise.com

501

As I pointed out, there are many use cases where replacing a

centralized service with blockchain would not bring much value; however,

there are many specific usages where blockchain platforms are benefiting

industries already. Blockchain helps remove the long list of middlemen,

closes the gap between users and entities, automates payments, improves

data integrity, expedites services, globalizes transactions, improves

security, lowers costs, and increases reliability.

In the first section of this chapter, I covered how to harness blockchain

by examining what’s readily available for you right now. I identified coins,

tokens, ledgers, smart contracts, and dapps as the main elements that can

be utilized to quickly tap into blockchain to potentially improve an existing

platform. In the second part of this chapter, I covered many specific

industries that can and have benefited from blockchain technology as

well as listed case studies of specific blockchain-related ideas that being

developed or have already been published.

Blockchain technology shows great promise, and the use cases, as

well as the functionalities, are still unfolding. Over the next few years,

blockchain usage is expected to increase and result in more widespread

experimentation in many industries and verticals. Knowledgeable

blockchain developers are believed to be a valuable commodity.

I would like to thank you, the reader, for purchasing this book and

congratulate you for completing this chapter and this book. I hope that this

book has provided you with valuable information, good coding examples,

and a point of reference that will inspire you to create blockchain

technology. Good luck in any new project you may take on.

Chapter 12 BloCkChain Beyond Crypto

503© Elad Elrom 2019
E. Elrom, The Blockchain Developer, https://doi.org/10.1007/978-1-4842-4847-8

Index

A
Accessible rich Internet

applications (ARIAs), 358
Alternative Trading Systems

(ATS), 425
Anchor peer, 308
Angular 2, 358
Angular app

benefits, 357
content

directives, 393, 394
footer component, 382, 383
header component, 383–385
transfer component (see

Transfer component,
Angular app)

dapp (see Decentralized
application (dapp),
Angular)

features, 358, 359
styling, 376

architecture, 376
import Material

modules, 378, 379
install Material, 377, 378
Material, 377
theme, 380, 381

Angular CLI, 359

Angular CLI and Component Dev
Kit (CDK), 357

Angular Ivy, 359
Angular project, dapp, 362

ensure no mismatch, 369
ethdapp files, 364
ng new command, 363
serve application, 365, 366
WebStorm, 367, 368

Application binary interface
(ABI), 203

Application layer, 29
Application program interface

(API), 109
creating, 110
getDBBlock service, 111
getWallet service, 111
initHttpServer, 110
retrieving blocks, 112

Application-specific integrated
circuit (ASIC), 33

B
Bitcoin, 7

HTTP JSON-RPC server, 121
Bitcoin core API

bitcoin wallet, 71, 72
block header, 63, 64

https://doi.org/10.1007/978-1-4842-4847-8

504

block version, 65
block reward, 67
Merkle tree, 65
target nBits, 66
txn_count parameter, 67
txns, 67–70

configuration file, 58
daemon (bitcoind), 59, 60
full node, 53, 54, 57
miner, 53
serialized blocks, 61, 62
tools, 56

Bitcoin transaction
Block Explorer testnet, 170
coinbase, 130, 131
listunspent command, 168
locktime argument, 166
multisag, 157
OP_RETURN colored, 170
OP_RETURN param, 170
rawtxhex value, 151
RETURN property, 167
testnet, 132–134
tx property, 146–149
UTXO, 143, 144
viewing on Blockchain

Explorer, 134–137
vout, 144, 146, 150
wallet testnet GUI

sync, 138, 139
Bitcoin wallet

ECDSA, 127, 128
P2PPKH, 124, 125

P2WPKH, 126
SegWit, 126

Blockchain
cryptocurrency wallet, 13
digital signature, 11
ledger, 472, 473
linked blocks, 10
network attacks

double spending, 439, 440
eclipse, 443
ransomware, 442
routing, 443, 444
Sybil, 437, 438

peers/nodes, 9
P2P network protocol, 12

Block producer, 26, 32, 49
EOS full node, 50, 51
marketing and listing, 51
platforms, 49
public testnet

Hello World
contract, 250, 251

Jungle 2.0, 245–247
resource

allocation, 248–250
terminating EOS node, 52

Bookkeeping node, 32, 36
AWS Ubuntu, 38–42
consensus authority

certificate, 46
deployment, 44, 45
gas, 37
getting gas, 46
steps to create, 37

Bitcoin core API (cont.)

INDEX

505

Ubuntu 16.04, deployment
on, 42, 43

voting features, 47, 48
Business network archive (.bna), 326

C
Compliance readiness, 423

European Union, 426
recommendations, 427, 429, 430
The United States, 425

Central processing unit (CPU), 33
Chaincode, 300
China Center for Information

Industry Development
(CCID), 293

Coinbase transaction, 130
Cold storage method, 433
Command-line interface (CLI), 113

block command, 113, 114
retrieving blocks, 118
running P2P network, 117
wallet command, 115, 116

Commodity Futures Trading
Commission (CFTC), 425

Component Dev Kit (CDK), 359
Credential attacks, 446
Crypto

coins, 469, 470
cybersecurity, 478–480
dapps, 473, 474
financial industry, 475, 476, 478
ledger, 472, 473
mobile devices, 483–485

music
benefits, 496
case studies, 497–500
industry standards, 497

real estate industry, 481
smart contracts, 473, 474
tokens, 470–472

Cryptocurrency, 3, 6
altcoins, 15, 16
mining/cryptomining, 13
tokens, 15
wallet, 13

Cryptoeconomics, 3
Ig-pay Atin-lay, 3, 4

Bitcoin, 7, 8
cryptocurrency, 6
cryptography, 5, 6

Cryptogen, 305
Cryptography, 3, 5
Cryptominer/miner, 13

D
Data Encryption Standard

(DES), 5
Data Protection Impact

Assessment (DPIA), 424
Decentralized application

(dapp), 349
advantages, 352
Angular, 359

Angular CLI, 361, 362
components, 370–373
prerequisites, 360

Index

506

project (see Angular project,
dapp)

routing module, 373–376
classification, 352–354
criteria, 351
defining, 350
development, 356
ICO, 355
launching, 356
marketing, 356, 357
projects, 353
white paper, 355

Decryption, 2
Delegated proof of stake

(DPoS), 19, 215
Delegated the Byzantine Fault

Tolerant (dBFT)
mechanism, 258

Denial-of-service (DoS) attack, 452
Dependency backdoor attack, 450
Distributed denial-of-service

(DDoS) attack, 452
Distributed ledger technologies

(DLTs), 350
Docker, 262, 266, 267
Double spending /51 percent

attack, 439
Dust attack, 436

E
Eclipse attack, 443
Electroneum, 484

Elliptical curve cryptography
(ECC), 107

Elliptic Curve Digital Signature
Algorithm (ECDSA), 127

Encryption, 2
Endorser peer, 307
EOS.IO, 213

defining, 214
DPoS, 215
features, 215
mainnet (see Mainnet)
online resource, 255
repositories, 215
smart contract (see Smart

contract)
testnet environment (see

Testnet environment)
tools and libraries, 213

eosio.token, 241
Ethereum

definition, 174
EVM, 174
mainnet, 210
tools, 176

Ethereum Blockchain, Geth
creating private

testnet, 196, 197
deploy Remix to Geth, 199
deploy Truffle to Geth, 200
eth.syncing command, 197, 198
genesis block, 195, 196
killall command, 201, 202
miner.start command, 198
miner.stop command, 199

Decentralized application
(dapp) (cont.)

INDEX

507

Ethereum network, 406
transfer service, 407, 408

async method, 408, 409
getAccountAndBalance

method, 412
pay method, 410, 411
transfer.component, 411

truffle-contract, 406
Ethereum requests for comment

(ERCs), 173
Ethereum Virtual Machine

(EVM), 174

F
Field programmable gate array

(FPGA), 33

G
Ganache

CLI, 178
installation, 177

General Data Protection Regulation
(GDPR), 424, 428

Genesis and share blocks, 86, 195
block.js file, 90
chain.js file, 91, 92
message switch and

handlers, 92, 93
MessageType property, 92
moment library, 91
P2P communication, 88, 89
properties, 88

sending blocks, 90
UML diagram, 87

GPG/GNU, 435
Graphics processing unit (GPU), 33

H
Hard replay, 229
Hashing algorithms, 7
Hash rate, 33
Hot wallet attack, 436
Hyperledger

components, 304–306
definition, 299, 300
error trouble shooting, 344–347
Fabric and composer, 299, 326

business network, 322–325
CLI tools, 314, 315
dev servers, 318–320
Docker, 316, 317
network connection

profile, 320
nvm, 312
prerequisites page, 309
updating Node.js, 312
upgrade Git, 311
VS code, 313, 314
Xcode, 310

frameworks, 301
“Hello, World”, playground

Access Control
option, 332, 333

adding chaincode, 331
adding model file, 329, 330

Index

508

.bna, 328, 329
business network, 338, 339
create asset, 331, 332
deploy business network,

327, 328
deploying Fabric

network, 340
import/export model,

334–336
testing model, 333, 334

PBFT, 300
peer nodes

anchor, 308
endorser, 307
orderer, 308

running hello-network, 341, 342
tools, 302, 304

I, J
Initial coin offering

(ICO), 15, 355, 425
Initial public offering (IPO), 15
Integrated development

environment (IDE), 75
Interledger.js, 303
Internet routing attacks, 443
Internet service providers (ISPs), 443

K
Keylogger/screen scraper, 435
Know Your Client (KYC), 426

L
LevelDB database, 118
LevelDB, storing blocks, 101–103

createDb and getDBBlock
methods, 104

__dirname Node.js, 103
generateNextBlock method, 104
implementation, 105
storeBlock method, 103

LoopBack connector, 341

M
Mainnet, 251

CPU and bandwidth
allocations, 255

EOS.IO accounts, 254
EOS tokens, 251
exchanges, 252
public and private keys,

account’s, 254
publishing

bootstrapping, 292
neo-gui client, 292

RAM on, 253
resource allocation, 253

MD5SmartContract, 186
Membership services provider

(MSP), 305
Message-Digest 5 (MD5)

algorithm, 168
MetaMask, 206, 207, 413

ganache-cli, 413, 415
logging out, 415

Hyperledger (cont.)

INDEX

509

notification, transfer, 417
private network, 414
restoring, 416
welcome page, 416

Miners, 32
AntPool dashboard, 34
ASIC and FPGA, 33
confirmations, 118
MacMiner software, 34–36
profitability, 36
registering and new blocks,

94–96, 98
crobjob, 99
handlers, 97, 98
PoS mechanism, 94
unregister miners, 98

Mining layer, 27
Model View Controller (MVC), 370
Money service businesses

(MSBs), 424

N
NEO blockchain

dBFT mechanism, 258
Ethereum vs. EOS vs. NEO,

292–297
high-level architecture, 258–260
neo-compiler and neon.dll file,

267–269
smart economy, 260, 261

neo-cli, 262, 270, 271
NEO compiler, 262
NeoFS, 259

neo-gui, 269
NeoQS, 259
NeoVM, 259
NeoX, 258
.NET Core, 262, 264, 265
Nodes, 31

bitcoin miner, 32–36
bookkeeping node (see

Bookkeeping node)
EOS block producer (see Block

producer)
managing, 32

Nonfungible tokens (NFTs), 470
Node Version Manager

(nvm), 312

O
Orderer peer, 308

P
P2P network, 12

application layer, 29
block producer, 26
consensus mechanism, 18, 19
DPoS, 25, 27
mining layer, 27, 28
PoET, 19
PoS, 22–25
PoW, 19, 21, 22

vs. PoS, 23
propagation layer, 28
semantic layer, 28

Index

510

Pay to PubKey Hash (P2PKH),
124, 153

Pay to Pubkey (P2PK), 153
Pay to Witness a Public Key Hash

(P2WPKH), 126
Peer nodes, 307
Peers/nodes, 9, 31
Peer-to-peer (P2P) network, 74

close event, 83
import statement, 81
Node.js, 77, 78, 80
project, 75, 76
running in terminal, 81
sendMessage, 85
setKeepAlive, 82
setTimeout, 84
toString command, 83
writeMessageToPeers method, 84

Phishing attack, 432
Phishing-malware attack, 433
Platform attack

bitcoin’s blockchain network,
444, 446

credential, 446–449
DDoS, 452, 453, 455
dependency backdoor, 450–452
DoS, 452
faulty code, 449, 450

Practical Byzantine Fault Tolerance
(PBFT), 300

Private testnet, local NEO
bash, 277–279
bootstrapping, 277
compiling smart contracts, 289

Docker, 275
Hello, World, 281

project, 284–286
Python, 288
using C#, 287, 288

initial NEO and gas,
claim, 275, 276

NeoContract
framework, 282, 283

neo-python, 273, 274
problems during

installation, 279
b’ corruption message, 280
clean database, 280
restart Docker, 280

publishing smart
contracts, 290, 291

Python 3.6, 272, 273
steps, 272

Proof of elapsed time (PoET), 19
Proof of stake (PoS)

mechanism, 94
Proof of work (PoW), 20, 62
Propagation layer, 28
Public testnet network

Ethereum mainnet, 210
faucet, 210
syncing blocks, 209

Python 3.6, 272, 273

Q
Quilt, 303
Quorum, 476

INDEX

511

R
Ransomware, 441
Ricardian contracts, 238–240

S
Secure Hash Algorithm (SHA), 187
Secure Sockets Layer

(SSL), 2, 422, 429
Securities and Exchange

Commission (SEC), 425
Security and compliance readiness

development cycle
auditing phase, 458
design and coding phase, 457
discovery, 458
readiness assessment,

464, 465
testing, 459–461, 463

Security compliance, 423
Security testing, 422

measures, 422
Security token offerings (STOs), 425
Segregated Witness (SegWit), 124
Semantic layer, 28
Simplified payment verification

(SPV), 106
Smart contract, 396

deployment, 240, 401
accounts, 404
ganache-cli, 402
migrate command, 402
transfer, test, 405
Truffle console, 403

hello action, 241
Hello World

accounts, 234, 235
C++ code, 235, 236

IDE, 237
pay event, 400
solidity version, 399
tokens

creating accounts, 241
deploying, 242
EOS.IO, 243
issue of, 244
transfer, 244, 245
wasm with eosio.token

code, 242
Transfer.sol code, 399
Truffle project, 397

compiling, migrating, and
testing, 398

development
network, 400, 401

install command, 397
Smart contracts, 473

IntelliJ IDEA, solidity, 178, 179
tools, 211

Sntimoney laundering
(AML), 426

Stablecoins, 470
Supply chain

electoral integrity, 487
elements, 485, 486
gaming, 494
healthcare, 490, 492, 493
marketing, 489

Index

512

messaging encryption, 487
voting manipulation, 487

Sybil attack, 438

T
Testnet environment, 132

build EOS.IO, 220
delete and back up wallets, 223
EOS.IO accounts, 230–232
EOS.IO keys, 224–227
EOS.IO wallets, 222
installing EOS.IO, 216–218
installing EOSIO.CDT, 218, 219
keosd and nodeos, 220
lock and unlock, wallet, 224
re-spin up nodeos, 229
single and multi signature, 234
spin up nodeos, 227–229
wallets, keys, and

accounts, 233, 234
wallet with cleos, 221
wallet with custom name, 223

Tokens, 15, 472
Transfer component,

Angular app, 386
createForms method, 388, 389
Ethdapp transfer page, 393
FormBuilder component, 388
getAccountAndBalance

method, 389
import statement, 386
<mat-form-field> tag, 386

OnInit method, 387
submitForm

method, 389, 390
transfer-container

style, 390, 392
validation, 387

Truffle Console, 190
Truffle Suite

compile command, 188, 189
connect to Ganache

network, 183, 184
console command, 190
creating, 181, 182
documentation, 179, 180
HelloWorldContract, 185, 186
MD5SmartContract, 186, 187
migrate command

response, 190
migration file, 187, 188
remix compilation, 193, 194

U
Unified Modeling Language

(UML), 86
Unique selling proposition

(USP), 355
Unspent transaction output

(UTXO), 143

V
Visual Studio 2017 IDE, 262–264
vout, 144

Supply chain (cont.)

INDEX

513

W
Wallet, 105

bitcoin daemon, 106
creating, 106, 107
private-public key, 109
SPV, 106
wallet.js code, 108–109

Wallet cyberattacks
cold storage, 433
dust attack, 436
GPG/GNU, 434, 435
hot wallet attack, 436, 437

keylogger malware, 435
phishing-malware

attacks, 433
postmortem, 434

web3.js, 195

X, Y
Xcode 10.2, 262, 263

Z
Zero knowledge proof (ZKP), 429

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Blockchain Basics
	Introduction to Cryptoeconomics
	Ig-pay Atin-lay
	Encryption/Decryption
	Encryption + Decryption = Cryptography
	Digital Assets + Cryptography = Cryptocurrency
	Cryptography + Economics = Cryptoeconomics

	Blockchain Explained
	Blocks + Chain = Blockchain
	Linked Blocks
	Double Spending Problem
	Double Spending Solution: P2P Network

	Cryptomining by Cryptominers
	Cryptocurrency Wallet

	Cryptocurrencies Overload
	Bitcoin Digital Cash
	Tokens
	Alternative Cryptocurrency Coins (Altcoins)

	Blockchain P2P Network
	Consensus Mechanism
	Proof of Work, Proof of Stake, and Delegated Proof of Stake
	Proof of Work
	Proof of Stake
	Delegated Proof of Stake

	Mining Layer
	Propagation Layer
	Semantic Layer
	Application Layer

	Summary

	Chapter 2: Blockchain Nodes
	Running a Blockchain Node
	Create a Bitcoin Miner
	Create a NEO Bookkeeping Node
	Setting Up a NEO Node on AWS Ubuntu
	Installing Bookkeeping-Node-Deployment on Ubuntu 16.04
	Bookkeeping Node Deployment
	Request Consensus Authority Certificate
	Getting Gas
	Elected as a Bookkeeper

	Create an EOS Block Producer
	Installing an EOS Full Node
	Marketing and Listing
	Terminating an EOS Node

	Bitcoin Core API
	Serialized Blocks
	Block Header
	Block Version
	Merkle Trees
	Target nBits
	txn_count
	Block Reward
	txns: Decode a Transaction

	Bitcoin Wallet

	Summary

	Chapter 3: Creating Your Own Blockchain
	Creating a Basic P2P Network
	Creating Genesis Block and Sharing Blocks
	Registering Miners and Creating New Blocks
	Storing Blocks in LevelDB
	Creating a Blockchain Wallet
	Creating an API
	Creating a Command-Line Interface
	Where to Go from Here
	Summary

	Chapter 4: Bitcoin Wallets and Transactions
	Bitcoin Core RPC Resources
	Bitcoin Wallet
	Create a Legacy Wallet Address and Retrieve Private Keys
	Pay to Witness a Public Key Hash (P2WPKH): SegWit Soft Fork
	Elliptic Curve Digital Signature Algorithm

	Transactions
	Simple Command
	Testnet
	Viewing Transactions on Block Explorer
	Sending Testnet Coins via the Bitcoin Core Wallet GUI
	Raw Transaction

	Generating Raw Transactions with One Output
	Transactions that Require Multisignature
	Setting Electrum with a Multisignature Wallet
	Replaceable Transactions and Locktime

	Bitcoin Colored Coins
	Sending a Transaction with OP_RETURN
	Bitcoin’s Colored Coins

	Summary

	Chapter 5: Ethereum Wallets and Smart Contracts
	Ganache Simulated Full-Node Client
	Install Ganache
	Ganache CLI: Listen to Port

	IntelliJ IDEA Plugin for Solidity
	Truffle Suite
	Create Your Smart Contracts
	Connect Truffle to the Ganache Network
	“Hello, World” Smart Contract
	“MD5SmartContract” Smart Contract
	Create Truffle Migration Files for Your Smart Contract Deployment
	Compile Your Smart Contract with Truffle
	Deploy the Smart Contract to Your Development Network
	Truffle Console
	Interact with Your Smart Contract via the Truffle CLI

	Compile with Remix
	Private Ethereum Blockchain with Geth
	Initialized Geth Private Blockchain
	Geth Console
	Mine Ethereum for Your Private Testnet
	Deploy Remix to Geth
	Deploy Truffle to Geth
	Useful Commands in Geth

	Connect the Mist Ethereum Wallet to Your Private Network
	Others to Interact with Your Smart Contract

	MetaMask
	Public Testnet
	Syncing Blocks
	Public Testnet Faucet

	Ethereum Mainnet
	Recommended Tools for Smart Contracts
	Summary

	Chapter 6: EOS.IO Wallets and Smart Contracts
	Setting Up a Testnet Environment
	Install EOS.IO
	Install EOSIO.CDT
	Build EOS.IO
	keosd and nodeos Configuration Files
	Create and Manage a Wallet with cleos
	EOS.IO Wallets
	Delete and Back Up Wallets
	EOS.IO Wallet with Custom Name
	EOS.IO: Open, Lock, and Unlock a Wallet
	Generating EOS.IO Keys
	Spin Up a node with nodeos
	Re-spin Up a Testnet Local node (nodeos)
	EOS.IO Accounts
	Wallets, Keys, and Accounts: Complete Commands
	Custom, Single Signature (Single-Sig), and Multisignature (Multisig)

	“HelloWorld” Smart Contract
	“HelloWorld” Smart Contract Accounts
	“HelloWorld” C++ Code

	Smart Contract IDE
	Compile a Contract and Generate an ABI
	Ricardian Contracts

	Deploy a Contract
	Interact with a Smart Contract Action
	Smart Contact Tokens
	Create Accounts
	Compile wasm with the Latest eosio.token Code
	Deploy eosio.token
	Create the EOS.IO Token
	Issue Tokens
	Transfer Tokens

	Connecting to a Public Testnet Block Producer
	Buy Resource Allocation on the Public Testnet Block Producer
	Publish Your HelloWorld Contract on the Public Testnet

	Connecting to Mainnet
	Resource Allocation Explained
	Buy RAM on Mainnet
	Create an EOS.IO Account on Mainnet
	Change Your Account’s Public and Private Keys
	CPU and Bandwidth Allocations

	Where to Go from Here
	Summary

	Chapter 7: NEO Blockchain and Smart Contracts
	NEO’s High-Level Blockchain Architecture
	What Is NEO’s Smart Economy?

	Setting Up Your Local Environment
	Xcode 10.2
	Install Visual Studio 2017 IDE
	Install .NET Core
	Install Docker

	Download NeoCompiler and Generate neon.dll
	neo-cli to Generate a NEO Node
	neo-cli

	Create a Local NEO Private Testnet
	Python 3.6
	Install neo-python
	Install neo-privatenet-docker
	Start a Network and Claim Initial NEO and Gas
	Bootstrapping the Testnet
	Start NEO Bash
	Potential Problems During Installation
	Clean Database
	b’Corruption Message
	Restart Docker

	NEO “Hello, World”
	Building the NeoContract Framework: Neo.SmartContract.Framework.dll
	Create a NEO “Hello, World” Project
	Coding the NEO “Hello, World” Smart Contract in C#
	Coding the NEO “Hello, World” Smart Contract in Python
	Compiling Your Smart Contracts to .avm

	Publish a Smart Contract on a Private Testnet
	Publishing to Mainnet
	Bootstrapping to Mainnet
	Installing the neo-gui Client

	Ethereum vs. EOS vs. NEO: Smart Contracts Developer Perspective Showdown
	Where to Go from Here
	Summary

	Chapter 8: Hyperledger
	Hyperledger Overview
	Understanding Hyperledger Fabric
	Installing Hyperledger Fabric and Composer
	Prerequisites
	Verifying the Already Installed Prerequisites
	Updating Git
	Installing Node Version Manager (nvm)
	Updating Node.js

	Installing VSCode with Hyperledger Composer Extension
	Hyperledger Composer Essential CLI Tools
	Installing Composer Playground with Docker
	Installing Hyperledger Fabric Dev Servers
	Network Connection Profile

	Spinning Off a Local Hyperledger Fabric Business Network
	Creating an Admin ID Card
	Stopping Hyperledger Fabric
	Re-creating the PeerAdmin ID Card

	Hyperledger Composer
	“Hello, World” with Playground
	Deploying a Business Network
	Business Network Archive (.bna)
	Adding the Model File
	Adding Chaincode
	Creating an Asset
	Access Control
	Testing the Model
	Importing/Exporting the Model
	Playground Online
	Creating a Business Network with Yeoman

	Deploying on a Local Hyperledger Fabric Network
	Running the “hello-network” Network
	Starting the “hello-network” Business Network and Admin Card
	Importing a Business Card

	Where to Go from Here
	Error Troubleshooting
	Composer Runtime Install Error or Card Not Found
	Docker Unauthorized Authentication Required Error
	Docker Container Conflicting Errors
	Mismatch and Cleanup

	Summary

	Chapter 9: Build Dapps with Angular: Part I
	What Is a Dapp?
	Dapp Classification
	Dapp Projects
	How Do You Create Your Own Dapp?
	Write a White Paper
	Launch an Initial Coin Offering
	Develop the Dapp
	Launch Your Dapp
	Market Your Dapp

	Why Angular?
	Creating an Angular Dapp
	Prerequisites
	Angular CLI
	Create an Angular Project
	Serve the Application
	Angular Project with WebStorm
	Ensure No Mismatch with Angular CLI Version

	Angular Components
	Routing Module

	Styling an Angular App
	Angular-Style Architecture
	Angular Material
	Install Angular Material
	Import Angular Material Modules
	Theme Your Angular Material App

	Creating Content
	Footer Component
	Header Component
	Transfer Component
	Angular Directives

	Summary

	Chapter 10: Build Dapps with Angular: Part II
	Transfer a Smart Contract
	Create a Smart Contract
	Create the Truffle Development Network
	Deploy the Smart Contract
	Truffle Console
	Accounts
	Test the Transfer of a Smart Contract

	Link with the Ethereum Network
	Transfer Service

	Connect to MetaMask
	Test Your Dapp Functionality
	Where to Go from Here
	Summary

	Chapter 11: Security and Compliance
	Security and Compliance Readiness
	Security Readiness
	Compliance Readiness
	United States Compliance
	Europe Union Compliance

	Readiness Recommendations

	Common Blockchain Attacks
	Wallet Cyberattacks
	Online Wallet Phishing-Malware Attacks
	Postmortem

	Keylogger Malware
	Postmortem

	Dust Attack
	Postmortem

	Hot Wallet Attack
	Postmortem

	Blockchain Network Attacks
	Sybil Attacks
	Postmortem

	Double Spending or 51 Percent Attack
	Postmortem

	Miner Ransomware
	Postmortem

	Eclipse Attack on the P2P Network
	Postmortem

	Routing Attacks
	Postmortem

	Platform Attack
	Credential Attacks
	Postmortem

	Faulty Code
	Postmortem

	Dependency Backdoor Attack
	Postmortem

	DoS and DDoS Attacks
	Postmortem

	Development Cycle
	Design and Coding
	Discovery, Audit, and Test
	Discovery
	Audit
	Security Audit
	Compliance Audit

	Test
	Automated Tools

	Readiness Assessment
	Security and Compliance Assessment

	Release

	Where to Go from Here
	Summary

	Chapter 12: Blockchain Beyond Crypto
	Harnessing Blockchain
	Coins
	Tokens
	Ledgers
	Smart Contracts and Dapps

	Decentralization of Industries and Verticals
	Financial
	Cybersecurity
	Real Estate
	Mobile
	Supply Chain
	Encrypted Messaging
	Elections and Voting
	Marketing
	Healthcare
	Gaming
	Music

	Where to Go from Here
	Summary

	Index

