
ptg12441863

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

The Core iOS
Developer’s
Cookbook

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

The Core iOS
Developer’s
Cookbook

Fifth Edition

Erica Sadun
Rich Wardwell

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

Editor-in-Chief:

Mark Taub

Senior Acquisitions
Editor:

Trina MacDonald

Senior
Development
Editor:

Chris Zahn

Managing Editor:

Kristy Hart

Senior Project
Editor:

Betsy Gratner

Copy Editor:

Kitty Wilson

Indexer:

Lisa Stumpf

Proofreader:

Anne Goebel

Technical
Reviewers:

Collin Ruffenach
Mike Shields
Ashley Ward

Editorial Assistant:

Olivia Basegio

Cover Designer:

Chuti Prasertsith

Senior Compositor:

Gloria Schurick

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com .

For questions about sales outside the U.S., please contact international@pearsoned.com .

Visit us on the web: informit.com/aw

Library of Congress Control Number: 2013953064

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder, FireWire,
iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the
iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C, Quartz,
QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode are trademarks
of Apple, Inc., registered in the United States and other countries. OpenGL and the logo
are registered trademarks of Silicon Graphics, Inc. The YouTube logo is a trademark of
Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United States
and other countries.

ISBN-13: 978-0-321-94810-6
ISBN-10: 0-321-94810-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing: March 2014

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

❖

Erica Sadun

I dedicate this book with love to my husband, Alberto,
who has put up with too many gadgets and too
many SDKs over the years while remaining both

kind and patient at the end of the day.

❖

❖

Rich Wardwell

I dedicate this book to my wife, Julie, who was relegated
to single-parent status during this endeavor,

and my children, Davis and Anne, who never stopped
asking me to play with them even after countless refusals.

❖

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

vi Contentsvi Contents

Contents

 Preface xiii

1 Gestures and Touches 1

Touches 1

Recipe: Adding a Simple Direct Manipulation Interface 5

Recipe: Adding Pan Gesture Recognizers 7

Recipe: Using Multiple Gesture Recognizers
Simultaneously 9

Recipe: Constraining Movement 14

Recipe: Testing Touches 15

Recipe: Testing Against a Bitmap 17

Recipe: Drawing Touches Onscreen 20

Recipe: Smoothing Drawings 22

Recipe: Using Multi-Touch Interaction 26

Recipe: Detecting Circles 29

Recipe: Creating a Custom Gesture Recognizer 34

Recipe: Dragging from a Scroll View 37

Recipe: Live Touch Feedback 40

Recipe: Adding Menus to Views 45

Summary 47

2 Building and Using Controls 49

The UIControl Class 49

Buttons 53

Buttons in Interface Builder 55

Recipe: Building Buttons 56

Recipe: Animating Button Responses 60

Recipe: Adding a Slider with a Custom Thumb 62

Recipe: Creating a Twice-Tappable Segmented Control 67

Working with Switches and Steppers 70

Recipe: Subclassing UIControl 72

Recipe: Building a Star Slider 76

Recipe: Building a Touch Wheel 79

Recipe: Creating a Pull Control 83

Recipe: Building a Custom Lock Control 88

Recipe: Image Gallery Viewer 93

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

viiContents viiContents

Building Toolbars 96

Summary 98

3 Alerting the User 101

Talking Directly to Your User through Alerts 101

Recipe: Using Blocks with Alerts 105

Recipe: Using Variadic Arguments with Alert Views 110

Presenting Lists of Options 112

“Please Wait”: Showing Progress to Your User 115

Recipe: Modal Progress Overlays 117

Recipe: Custom Modal Alert View 119

Recipe: Basic Popovers 124

Recipe: Local Notifications 126

Alert Indicators 128

Recipe: Simple Audio Alerts 129

Summary 133

4 Assembling Views and Animations 135

View Hierarchies 135

Recipe: Recovering a View Hierarchy Tree 137

Recipe: Querying Subviews 139

Managing Subviews 141

Tagging and Retrieving Views 142

Recipe: Naming Views by Object Association 143

View Geometry 146

Recipe: Working with View Frames 150

Recipe: Retrieving Transform Information 158

Display and Interaction Traits 164

UIView Animations 165

Recipe: Fading a View In and Out 167

Recipe: Swapping Views 168

Recipe: Flipping Views 169

Recipe: Using Core Animation Transitions 170

Recipe: Bouncing Views as They Appear 172

Recipe: Key Frame Animations 174

Recipe: Image View Animations 176

Summary 177

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

viii Contentsviii Contents

 5 View Constraints 179

What Are Constraints? 179

Constraint Attributes 180

The Laws of Constraints 182

Constraints and Frames 184

Creating Constraints 186

Format Strings 189

Predicates 194

Format String Summary 196

Aligning Views and Flexible Sizing 198

Constraint Processing 198

Managing Constraints 199

Recipe: Comparing Constraints 201

Recipe: Creating Fixed-Size Constrained Views 204

Recipe: Centering Views 209

Recipe: Setting Aspect Ratio 210

Recipe: Responding to Orientation Changes 212

Debugging Your Constraints 214

Recipe: Describing Constraints 215

Constraint Macros 218

Summary 221

 6 Text Entry 223

Recipe: Dismissing a UITextField Keyboard 224

Recipe: Dismissing Text Views with Custom Accessory
Views 228

Recipe: Adjusting Views Around Keyboards 230

Recipe: Creating a Custom Input View 235

Recipe: Making Text-Input-Aware Views 240

Recipe: Adding Custom Input Views to Nontext Views 243

Recipe: Building a Better Text Editor (Part I) 246

Recipe: Building a Better Text Editor (Part II) 248

Recipe: Text-Entry Filtering 252

Recipe: Detecting Text Patterns 255

Recipe: Detecting Misspelling in a UITextView 260

Searching for Text Strings 262

Summary 262

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

ixContents ixContents

7 Working with View Controllers 263

View Controllers 263

Developing with Navigation Controllers and Split
Views 266

Recipe: The Navigation Item Class 271

Recipe: Modal Presentation 273

Recipe: Building Split View Controllers 278

Recipe: Creating Universal Split View/Navigation
Apps 283

Recipe: Tab Bars 286

Remembering Tab State 290

Recipe: Page View Controllers 293

Recipe: Custom Containers 303

Recipe: Segues 309

Summary 315

 8 Common Controllers 317

Image Picker Controller 317

Recipe: Selecting Images 319

Recipe: Snapping Photos 326

Recipe: Recording Video 331

Recipe: Playing Video with Media Player 333

Recipe: Editing Video 336

Recipe: Picking and Editing Video 339

Recipe: E-mailing Pictures 341

Recipe: Sending a Text Message 344

Recipe: Posting Social Updates 347

Summary 349

9 Creating and Managing Table Views 351

iOS Tables 351

Delegation 352

Creating Tables 353

Recipe: Implementing a Basic Table 356

Table View Cells 360

Recipe: Creating Checked Table Cells 362

Working with Disclosure Accessories 364

Recipe: Table Edits 366

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

x Contentsx Contents

Recipe: Working with Sections 374

Recipe: Searching Through a Table 381

Recipe: Adding Pull-to-Refresh to Your Table 387

Recipe: Adding Action Rows 390

Coding a Custom Group Table 395

Recipe: Building a Multiwheel Table 396

Using UIDatePicker 400

Summary 401

 10 Collection Views 403

Collection Views Versus Tables 403

Establishing Collection Views 405

Flow Layouts 407

Recipe: Basic Collection View Flows 412

Recipe: Custom Cells 416

Recipe: Scrolling Horizontal Lists 418

Recipe: Introducing Interactive Layout Effects 422

Recipe: Scroll Snapping 424

Recipe: Creating a Circle Layout 425

Recipe: Adding Gestures to Layout 431

Recipe: Creating a True Grid Layout 433

Recipe: Custom Item Menus 440

Summary 442

11 Documents and Data Sharing 445

Recipe: Working with Uniform Type Identifiers 445

Recipe: Accessing the System Pasteboard 451

Recipe: Monitoring the Documents Folder 454

Recipe: Activity View Controller 460

Recipe: The Quick Look Preview Controller 470

Recipe: Using the Document Interaction Controller 473

Recipe: Declaring Document Support 480

Recipe: Creating URL-Based Services 486

Summary 489

12 A Taste of Core Data 491

Introducing Core Data 491

Entities and Models 492

ptg12441863

xiContents xiContents

Creating Contexts 494

Adding Data 495

Querying the Database 498

Removing Objects 500

Recipe: Using Core Data for a Table Data Source 501

Recipe: Search Tables and Core Data 505

Recipe: Adding Edits to Core Data Table Views 508

Recipe: A Core Data–Powered Collection View 514

Summary 519

 13 Networking Basics 521

Recipe: Checking Your Network Status 521

Scanning for Connectivity Changes 524

The URL Loading System 526

Recipe: Simple Downloads 528

Recipe: Downloads with Feedback 533

Recipe: Background Transfers 543

Recipe: Using JSON Serialization 546

Recipe: Converting XML into Trees 549

Summary 554

 14 Device-Specific Development 555

Accessing Basic Device Information 555

Adding Device Capability Restrictions 556

Recipe: Checking Device Proximity and Battery States 559

Recipe: Recovering Additional Device Information 563

Core Motion Basics 565

Recipe: Using Acceleration to Locate “Up” 566

Working with Basic Orientation 568

Recipe: Using Acceleration to Move Onscreen Objects 571

Recipe: Accelerometer-Based Scroll View 575

Recipe: Retrieving and Using Device Attitude 578

Detecting Shakes Using Motion Events 579

Recipe: Using External Screens 581

Tracking Users 587

One More Thing: Checking for Available Disk Space 588

Summary 589

ptg12441863

xii Contentsxii Contents

 15 Accessibility 591

Accessibility 101 591

Enabling Accessibility 593

Traits 594

Labels 595

Hints 596

Testing with the Simulator 597

Broadcasting Updates 599

Testing Accessibility on iOS 599

Speech Synthesis 601

Dynamic Type 602

Summary 604

 A Objective-C Literals 605

Numbers 605

Boxing 606

Container Literals 607

Subscripting 608

Feature Tests 609

 Index 611

ptg12441863

Preface
Welcome to a new Core iOS Developer’s Cookbook !

With iOS 7, Apple introduced the most significant changes to its mobile operating system since
its inception. This cookbook is here to help you get started developing for the latest exciting
release. This revision introduces all the new features and visual paradigms announced at the
latest Worldwide Developers Conference (WWDC), showing you how to incorporate them into
your applications.

For this edition, the publishing team has split the cookbook material into manageable print
volumes. This book, The Core iOS Developer’s Cookbook , provides solutions for the heart of
day-to-day development. It covers all the classes you need for creating iOS applications using
standard APIs and interface elements. It provides recipes you need for working with graphics,
touches, and views to create mobile applications.

And there’s Learning iOS Development: A Hands-on Guide to the Fundamentals of iOS Programming ,
which covers much of the tutorial material that used to comprise the first several chapters
of the cookbook. There you’ll find all the fundamental how-to you need to learn iOS 7
development from the ground up. From Objective-C to Xcode, debugging to deployment,
Learning iOS Development teaches you how to get started with Apple’s development tool suite.

As in the past, you can find sample code at GitHub. You’ll find the repository for this
Cookbook at https://github.com/erica/iOS-7-Cookbook , all of it refreshed for iOS 7 after
WWDC 2013.

If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact us at erica@ericasadun.com or rich@lifeisrich.org . We thank you
all in advance. We appreciate all your feedback, which helps make this a better, stronger book.

—Erica Sadun and Rich Wardwell, January 2014

https://github.com/erica/iOS-7-Cookbook

ptg12441863

xiv Preface

What You’ll Need

It goes without saying that, if you’re planning to build iOS applications, you’re going to need
at least one iOS device to test your applications, preferably a new model iPhone or iPad. The
following list covers the basics of what you’ll need to begin:

■ Apple’s iOS SDK — You can download the latest version of the iOS SDK from Apple’s iOS
Dev Center (http://developer.apple.com/ios). If you plan to sell apps through the App
Store, you need to become a paid iOS developer. This costs $99/year for individuals and
$299/year for enterprise (that is, corporate) developers. Registered developers receive
certificates that allow them to “sign” and download their applications to their iPhone/
iPod touch or iPad for testing and debugging and to gain early access to prerelease
versions of iOS. Free-program developers can test their software on the Mac-based
simulator but cannot deploy to devices or submit to the App Store.

■ A modern Mac running Mac OS X Mountain Lion (v 10.8) or, preferably, Mac OS
X Mavericks (v 10.9) — You need plenty of disk space for development, and your Mac
should have as much RAM as you can afford to put into it.

■ An iOS device — Although the iOS SDK includes a simulator for you to test your
applications, you really do need to own iOS hardware to develop for the platform. You
can tether your unit to the computer and install the software you’ve built. For real-life
App Store deployment, it helps to have several units on hand, representing the various
hardware and firmware generations, so that you can test on the same platforms your
target audience will use.

■ An Internet connection — This connection enables you to test your programs with a live
Wi-Fi connection as well as with a cellular data service.

■ Familiarity with Objective-C — To program for the iPhone, you need to know
Objective-C 2.0. The language is based on ANSI C with object-oriented extensions, which
means you also need to know a bit of C, too. If you have programmed with Java or C++
and are familiar with C, you should be able to make the move to Objective-C.

Your Roadmap to Mac/iOS Development

One book can’t be everything to everyone. If we were to pack everything you need to know
into this book, you wouldn’t be able to pick it up. (As it stands, this book offers an excellent
tool for upper-body development. Please don’t sue if you strain yourself lifting it.) There is,
indeed, a lot you need to know to develop for the Mac and iOS platforms. If you are just
starting out and don’t have any programming experience, your first course of action should
be to take a college-level course in the C programming language. Although the alphabet might
start with the letter A, the root of most programming languages, and certainly your path as a
developer, is C.

http://developer.apple.com/ios

ptg12441863

xvYour Roadmap to Mac/iOS Development

Once you know C and how to work with a compiler (something you’ll learn in that basic C
course), the rest should be easy. From there, you’ll hop right on to Objective-C and learn how
to program with that, alongside the Cocoa frameworks. The flowchart in Figure P-1 shows the
key titles offered by Pearson Education that can help provide the training you need to become
a skilled iOS developer.

No

No

ooNNo

YesYesYes

Yes

Yes

YesYes

College Level
Course on C

No

Familiar with Cocoa and Xcode?

Coming Soon

Do you know C?

Do you know Objective-C?

Figure P-1 A roadmap to becoming an iOS developer .

ptg12441863

xvi Preface

Once you know C, you’ve got a few options for learning how to program with Objective-C. If
you want an in-depth view of the language, you can either read Apple’s own documentation or
pick up one of these books on Objective-C:

■ Objective-C Programming: The Big Nerd Ranch Guide , 2nd edition, by Aaron Hillegass and
Mikey Ward (Big Nerd Ranch, 2013)

■ Learning Objective-C 2.0: A Hands-on Guide to Objective-C for Mac and iOS Developers , 2nd
edition, by Robert Clair (Addison-Wesley, 2012)

■ Programming in Objective-C 2.0 , 6th edition, by Stephen Kochan (Addison-Wesley, 2012)

With the language under your belt, next up is tackling Cocoa (Mac) or Cocoa Touch (iOS) and
the developer tools, otherwise known as Xcode. For that, you have a few different options.
Again, you can refer to Apple’s own documentation on Cocoa, Cocoa Touch, and Xcode (Apple
Developer: developer.apple.com), or if you prefer books, you can learn from the best. Aaron
Hillegass, founder of the Big Nerd Ranch in Atlanta (www.bignerdranch.com), is the coauthor
of iOS Programming: The Big Nerd Ranch Guide , 2nd edition, and author of Cocoa Programming
for Mac OS X , 4th edition. Aaron’s book is highly regarded in Mac developer circles and is the
most-recommended book you’ll see on the cocoa-dev mailing list.

Note

There are plenty of other books from other publishers on the market, including the bestselling
Beginning iOS 6 Development by Dave Mark, Jack Nutting, Jeff LaMarche, and Fredrik Olsson
(Apress, 2011). Another book that’s worth picking up if you’re a total newbie to programming is
Beginning Mac Programming by Tim Isted (Pragmatic Programmers, 2011). Don’t just limit your-
self to one book or publisher. Just as you can learn a lot by talking with different developers,
you will learn lots of tricks and tips from other books on the market.

To truly master Mac or iOS development, you need to look at a variety of sources: books, blogs,
mailing lists, Apple’s own documentation, and, best of all, conferences. If you get a chance
to attend WWDC, you’ll know what we’re talking about. The time you spend at conferences
talking with other developers—and in the case of WWDC, talking with Apple’s engineers—is
well worth the expense if you are a serious developer.

How This Book Is Organized

This book offers single-task recipes for the most common issues new iOS developers face: laying
out interface elements, responding to users, accessing local data sources, and connecting to
the Internet. Each chapter groups together related tasks, allowing you to jump directly to the
solution you’re looking for without having to decide which class or framework best matches
that problem.

The Core iOS Developer’s Cookbook offers you “cut-and-paste convenience,” which means you
can freely reuse the source code from recipes in this book for your own applications and then
tweak the code to suit the needs of each of your apps.

http://www.bignerdranch.com

ptg12441863

xviiHow This Book Is Organized

Here’s a rundown of what you’ll find in this book’s chapters:

■ Chapter 1 , “Gestures and Touches” —On iOS, touch provides the most important way
for users to communicate their intent to an application. Touches are not limited to
button presses and keyboard interaction. This chapter introduces direct manipulation
interfaces, Multi-Touch, and more. You’ll see how to create views that users can drag
around the screen and read about distinguishing and interpreting gestures, as well as how
to create custom gesture recognizers.

■ Chapter 2 , “Building and Using Controls” —Take your controls to the next level.
This chapter introduces everything you need to know about how controls work. You’ll
discover how to build and customize controls in a variety of ways. From the prosaic to
the obscure, this chapter introduces a range of control recipes you can reuse in your
programs.

■ Chapter 3 , “Alerting the User” —iOS offers many ways to provide users with heads-
ups, from pop-up dialogs and progress bars to local notifications, popovers, and audio
pings. This chapter shows how to build these indications into your applications and
expand your user-alert vocabulary. It introduces standard ways of working with these
classes and offers solutions that allow you to use a blocks-based API to easily handle alert
interactions.

■ Chapter 4 , “Assembling Views and Animations” —The UIView class and its subclasses
populate the iOS device screens. This chapter introduces views from the ground up. This
chapter dives into view recipes, exploring ways to retrieve, animate, and manipulate
view objects. You’ll learn how to build, inspect, and break down view hierarchies and
understand how views work together. You’ll discover the role that geometry plays in
creating and placing views into your interface, and you read about animating views so
they move and transform onscreen.

■ Chapter 5 , “View Constraints” —Auto Layout revolutionized view layout in iOS.
Apple’s layout features make your life easier and your interfaces more consistent.
This is especially important when working across members of the same device family
with different screen sizes, dynamic interfaces, rotation, or localization. This chapter
introduces code-level constraint development. You’ll discover how to create relations
between onscreen objects and specify the way iOS automatically arranges your views. The
outcome is a set of robust rules that adapt to screen geometry.

■ Chapter 6 , “Text Entry” —This chapter introduces text recipes that support a wide range
of solutions. You’ll read about controlling keyboards, making onscreen elements “text
aware,” scanning text, formatting text, and so forth. From text fields and text views to
iOS’s inline spelling checkers, this chapter introduces everything you need to know to
work with iOS text in your apps.

■ Chapter 7 , “Working with View Controllers” —In this chapter, you’ll discover
the various view controller classes that enable you to enlarge and order the virtual
spaces your users interact with. You’ll learn from how-to recipes that cover page view
controllers, split view controllers, navigation controllers, and more.

ptg12441863

xviii Preface

■ Chapter 8 , “Common Controllers” —The iOS SDK provides a wealth of system-supplied
controllers that you can use in your day-to-day development tasks. This chapter
introduces some of the most popular ones. You’ll read about selecting images from your
photo library, snapping photos, and recording and editing videos. You’ll discover how
to allow users to compose e-mails and text messages and how to post updates to social
media such as Twitter and Facebook.

■ Chapter 9 , “Creating and Managing Table Views” —Tables provide a scrolling
interaction class that works particularly well both on smaller devices and as a key player
on larger tablets. Many iOS apps center on tables due to their simple natural organization
features. This chapter introduces tables, explaining how tables work, what kinds of tables
are available to you as a developer, and how you can leverage table features in your
applications.

■ Chapter 10 , “Collection Views” —Collection views use many of the same concepts as
tables but provide more power and more flexibility. This chapter walks you through all
the basics you need to get started. Prepare to read about creating side-scrolling lists, grids,
one-of-a-kind layouts like circles, and more. You’ll learn about integrating visual effects
through layout specifications and snapping items into place after scrolling, and you’ll
discover how to take advantage of built-in animation support to create the most effective
interactions possible.

■ Chapter 11 , “Documents and Data Sharing” —Under iOS, applications can share
information and data as well as move control from one application to another, using
several system-supplied features. This chapter introduces the ways you can integrate
documents and data sharing between applications. You’ll see how to add these features
into your applications and use them smartly to make your apps cooperative citizens of
the iOS ecosystem.

■ Chapter 12 , “A Taste of Core Data” —Core Data offers managed data stores that can
be queried and updated from your application. It provides a Cocoa Touch–based object
interface that brings relational data management out from SQL queries and into the
Objective-C world of iOS development. This chapter introduces Core Data. It provides
just enough recipes to give you a taste of the technology, offering a jumping-off point for
further Core Data learning. You’ll learn how to design managed database stores, add and
delete data, and query data from your code and integrate it into your UIKit table views
and collection views.

■ Chapter 13 , “Networking Basics” —On Internet-connected devices, iOS is particularly
suited to subscribing to web-based services. Apple has lavished the platform with a solid
grounding in all kinds of network computing services and their supporting technologies.
This chapter surveys common techniques for network computing and offers recipes that
simplify day-to-day tasks. This chapter introduces the new HTTP system in iOS 7 and
provides examples for downloading data, including background downloading. You’ll also
read about network reachability and web services, including examples of XML parsing
and JSON serialization utilizing live services.

ptg12441863

xixAbout the Sample Code

■ Chapter 14 , “Device-Specific Development” —Each iOS device represents a meld of
unique, shared, momentary, and persistent properties. These properties include the
device’s current physical orientation, its model name, its battery state, and its access to
onboard hardware. This chapter looks at the device from its build configuration to its
active onboard sensors. It provides recipes that return a variety of information items
about the unit in use.

■ Chapter 15 , “Accessibility” —This chapter offers a brief overview of VoiceOver
accessibility to extend your audience to the widest possible range of users. You’ll read
about adding accessibility labels and hints to your applications and testing those features
in the simulator and on the iOS device.

■ Appendix A , “Objective-C Literals” —This appendix introduces new Objective-C
constructs for specifying numbers, arrays, and dictionaries.

About the Sample Code

For the sake of pedagogy, this book’s sample code uses a single main.m file. This is not how
people normally develop iPhone or Cocoa applications, or, honestly, how they should be
developing them, but it provides a great way of presenting a single big idea. It’s hard to tell
a story that requires looking through five or seven or nine individual files at once. Offering a
single file concentrates that story, allowing access to that idea in a single chunk.

The examples in this book are not intended as standalone applications. Each is here to
demonstrate a single recipe and a single idea. One main.m file with a central presentation
reveals the implementation story in one place. Readers can study these concentrated ideas and
transfer them into normal application structures, using the standard file structure and layout.
The presentation in this book does not produce code in a standard day-to-day best-practices
approach. Instead, it reflects a pedagogy that offers concise solutions that you can incorporate
into your work as needed.

Contrast this to Apple’s standard sample code, where you must comb through many files to
build up a mental model of the concepts that are being demonstrated. Those examples are built
as full applications, often involving tasks that are related to but not essential to what you need
to solve. Finding just the relevant portions is a lot of work, and the effort may outweigh any
gains.

In this book, you’ll find exceptions to this one-file-with-the-story rule: This book provides
standard class and header files when a class implementation is the recipe. Instead of
highlighting a technique, some recipes offer these classes and categories (that is, extensions to a
preexisting class rather than a new class). For those recipes, look for separate .m and .h files, in
addition to the skeletal main.m that encapsulates the rest of the story.

For the most part, the examples in this book use a single application identifier: com.sadun.
helloworld. This book uses one identifier to avoid clogging up your iOS devices with dozens
of examples at once. Each example replaces the previous one, ensuring that your home screen
remains relatively uncluttered. If you want to install several examples simultaneously, simply

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

xx Preface

edit the identifier by adding a unique suffix, such as com.sadun.helloworld.table-edits. You can
also edit the custom display name to make the apps visually distinct. Your Team Provisioning
Profile matches every application identifier, including com.sadun.helloworld. This allows you
to install compiled code to devices without having to change the identifier; just make sure to
update your signing identity in each project’s build settings.

Getting the Sample Code

You’ll find the source code for this book at github.com/erica/iOS-7-Cookbook on the open-
source GitHub hosting site. There you’ll find a chapter-by-chapter collection of source code
that provides working examples of the material covered in this book. Recipes are numbered
as they are in the book. Recipe 6 in Chapter 5 , for example, appears in the 06 subfolder of the
C05 folder.

Any project numbered 00 or that has a suffix (like 05b or 02c) refers to material that is used
to create in-text coverage and figures. For example, Chapter 9 ’s 00 – Cell Types project helped
build Figure 9-2 , showing system-supplied table view cell styles. Normally, we delete these extra
projects. Early readers of this manuscript requested that we include them in this edition. You’ll
find a half dozen or so of these extra samples scattered around the repository.

Contribute!

Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and corrections
as well as by expanding the code that’s on offer. GitHub allows you to fork repositories and
grow them with your own tweaks and features and to share them back to the main repository.
If you come up with a new idea or approach, let us know. Our team is happy to include great
suggestions both at the repository and in the next edition of this book.

Getting Git

You can download this book’s source code by using the git version control system. Xcode 5
includes robust support for git within the IDE. The git command-line tool is also packaged with
the Xcode 5 toolset. Numerous third-party free and commercial git tools are also available.

Getting GitHub

GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private
projects. With a custom web interface that includes wiki hosting, issue tracking, and an
emphasis on social networking for project developers, it’s a great place to find new code and
collaborate on existing libraries. You can sign up for a free account at the GitHub website,
where you can also copy and modify the repository for this book or create your own open-
source iOS projects to share with others.

http://github.com

ptg12441863

xxiContacting the Authors

Contacting the Authors

If you have any comments or questions about this book, please drop us an e-mail message at
erica@ericasadun.com or rich@lifeisrich.org , or stop by the GitHub repository and contact us
there.

ptg12441863

Acknowledgments
Erica Sadun

This book would not exist without the efforts of Chuck Toporek, who was my editor and whip
cracker for many years and multiple publishers. He is now at Omnigroup and deeply missed.
There’d be no cookbook were it not for him. He balances two great skill sets: inspiring authors
to do what they think they cannot do and wielding the large “reality trout” of whacking 1
to keep subject matter focused and in the real world. There’s nothing like being smacked
repeatedly by a large virtual fish to bring a book in on deadline and with compelling content.

Thanks go as well to Trina MacDonald (my terrific editor), Chris Zahn (the awesomely talented
development editor), and Olivia Basegio (the faithful and rocking editorial assistant who kept
things rolling behind the scenes). Also, a big thank you to the entire Addison-Wesley/Pearson
production team, specifically Kristy Hart, Betsy Gratner, Kitty Wilson, Anne Goebel, Lisa
Stumpf, Gloria Schurick, and Chuti Prasertsith. Thanks also to the crew at Safari for getting my
book up in Rough Cuts and for quickly fixing things when technical glitches occurred.

Thanks to Stacey Czarnowki of Studio B, my agency of many years, and to the recently retired
Neil Salkind; to tech reviewers Collin Ruffenach, Mike Shields, and Ashley Ward, who helped
keep this book in the realm of sanity rather than wishful thinking; and to all my colleagues,
both present and former, at TUAW, Ars Technica, and the Digital Media/Inside iPhone blog.

I am deeply indebted to the wide community of iOS developers, including Jon Bauer, Tim
Burks, Matt Martel, Tim Isted, Joachim Bean, Aaron Basil, Roberto Gamboni, John Muchow,
Scott Mikolaitis, Alex Schaefer, Nick Penree, James Cuff, Jay Freeman, Mark Montecalvo, August
Joki, Max Weisel, Optimo, Kevin Brosius, Planetbeing, Pytey, Michael Brennan, Daniel Gard,
Michael Jones, Roxfan, MuscleNerd, np101137, UnterPerro, Jonathan Watmough, Youssef
Francis, Bryan Henry, William DeMuro, Jeremy Sinclair, Arshad Tayyeb, Jonathan Thompson,
Dustin Voss, Daniel Peebles, ChronicProductions, Greg Hartstein, Emanuele Vulcano, Sean
Heber, Josh Bleecher Snyder, Eric Chamberlain, Steven Troughton-Smith, Dustin Howett, Dick
Applebaum, Kevin Ballard, Hamish Allan, Oliver Drobnik, Rod Strougo, Kevin McAllister, Jay
Abbott, Tim Grant Davies, Maurice Sharp, Chris Samuels, Chris Greening, Jonathan Willing,
Landon Fuller, Jeremy Tregunna, Wil Macaulay, Stefan Hafeneger, Scott Yelich, chrallelinder,
John Varghese, Andrea Fanfani, J. Roman, jtbandes, Artissimo, Aaron Alexander, Christopher
Campbell Jensen, Nico Ameghino, Jon Moody, Julián Romero, Scott Lawrence, Evan K. Stone,
Kenny Chan Ching-King, Matthias Ringwald, Jeff Tentschert, Marco Fanciulli, Neil Taylor,
Sjoerd van Geffen, Absentia, Nownot, Emerson Malca, Matt Brown, Chris Foresman, Aron
Trimble, Paul Griffin, Paul Robichaux, Nicolas Haunold, Anatol Ulrich (hypnocode GmbH),
Kristian Glass, Remy “psy” Demarest, Yanik Magnan, ashikase, Shane Zatezalo, Tito Ciuro,
Mahipal Raythattha, Jonah Williams of Carbon Five, Joshua Weinberg, biappi, Eric Mock, and
everyone at the iPhone developer channels at irc.saurik.com and irc.freenode.net, among many
others too numerous to name individually. Their techniques, suggestions, and feedback helped
make this book possible. If I have overlooked anyone who helped contribute, please accept my
apologies for the oversight.

ptg12441863

xxiiiAcknowledgments

Special thanks go out to my family and friends, who supported me through month after month
of new beta releases and who patiently put up with my unexplained absences and frequent
howls of despair. I appreciate you all hanging in there with me. And thanks to my children for
their steadfastness, even as they learned that a hunched back and the sound of clicking keys is
a pale substitute for a proper mother. My kids provided invaluable assistance over the past few
months by testing applications, offering suggestions, and just being awesome people. I try to
remind myself on a daily basis how lucky I am that these kids are part of my life.

Rich Wardwell

Although with deadlines mounting I may have versed otherwise, I give my deepest respect and
appreciation to Erica for allowing me the honor of participating in the creation of this latest
edition of the Developer’s Cookbook . Through her mentoring and fish slapping, I’ve learned a
great deal and, hopefully, at a minimum, flirted with the high standard that she has set forth.

Without the persistence of Trina MacDonald, our editor, I think I would have given up after
the first chapter, screaming into the night. She has directed and encouraged through my
frustration with, anxiety about, and ignorance of the book authoring process. I’m also indebted
to Olivia Basegio, editorial assistant, and the team of technical editors she expertly arranged
and managed. The technical editors’ comprehensive efforts resulted in a much better book
than we could have ever created on our own, for which I owe a great deal of gratitude: Thank
you, Collin Ruffenach, Mike Shields, and Ashley Ward. The production team, including Betsy
Gratner and Kitty Wilson, ensured that I appear much more adept at writing than I could ever
hope to attain on my own. Many others at Addison-Wesley/Pearson to whom I’ve never spoken
directly had a part; to each I’m immensely thankful for bringing this work to fruition.

A special thanks goes to Bil Moorhead, George Dick, and Daniel Pasco at Black Pixel, who were
incredibly understanding as the demands of the book required attention and distraction from
my daily responsibilities. It is an honor to work for and with the great folks at Black Pixel.

My parents, Rick and Janet, have been my greatest supporters, encouraging me in all my
endeavors, including this one. My in-laws, Steve and Cary, provided a home for us during
much of the writing of this book, for which I’m eternally grateful.

Finally, my wife and two children have been the true enablers of this project. I hope to
reimburse in full for every honey-do item I neglected and every invite to play that I turned
down. Their love and presence made it possible for me to complete this work.

Endnote
1 No trouts, real or imaginary, were hurt in the development and production of this book. The
same cannot be said for countless cans of Diet Coke (Erica) and Diet Mountain Dew (Rich),
who selflessly surrendered their contents in the service of this manuscript.

ptg12441863

About the Authors
Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
The iOS 5 Developer’s Cookbook. She currently blogs at TUAW.com and has blogged in the past
at O’Reilly’s Mac Devcenter, Lifehacker, and Ars Technica. In addition to being the author of
dozens of iOS-native applications, Erica holds a Ph.D. in computer science from Georgia Tech’s
Graphics, Visualization and Usability Center. A geek, a programmer, and an author, she’s
never met a gadget she didn’t love. When not writing, she and her geek husband parent three
geeks-in-training, who regard their parents with restrained bemusement when they’re not busy
rewiring the house or plotting global dominance.

Rich Wardwell is a senior iOS and Mac developer at Black Pixel, with more than 20 years of
professional software development experience in server, desktop, and mobile spaces. He has
been a primary developer on numerous top-ranking iOS apps in the Apple App Store, including
apps for USA Today and Fox News . Rich has served as a technical editor for The Core iOS 6
Developer’s Cookbook and The Advanced iOS 6 Developer’s Cookbook , both by author Erica Sadun,
as well as many other Addison-Wesley iOS developer titles. When not knee-deep in iOS code,
Rich enjoys “tractor therapy” and working on his 30-acre farm in rural Georgia with his wife
and children.

ptg12441863

Editor’s Note: We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and authors as well as your name
and phone or e-mail address. I will carefully review your comments and share them with the
authors and editors who worked on the book.

E-mail: trina.macdonald@pearson.com

Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

ptg12441863

This page intentionally left blank

ptg12441863

1
Gestures and Touches

The touch represents the heart of iOS interaction; it provides the core way that users commu-
nicate their intent to an application. Touches are not limited to button presses and keyboard
interaction. You can design and build applications that work directly with users’ gestures in
meaningful ways. This chapter introduces direct manipulation interfaces that go far beyond
prebuilt controls. You’ll see how to create views that users can drag around the screen. You’ll
also discover how to distinguish and interpret gestures, which are a high-level touch abstrac-
tion, and gesture recognizer classes, which automatically detect common interaction styles
like taps, swipes, and drags. By the time you finish reading this chapter, you’ll have read about
many different ways you can implement gesture control in your own applications.

Touches

Cocoa Touch implements direct manipulation in the simplest way possible. It sends touch
events to the view you’re interacting with. As an iOS developer, you tell the view how to
respond. Before jumping into gestures and gesture recognizers, you should gain a solid founda-
tion in this underlying touch technology. It provides the essential components of all touch-
based interaction.

Each touch conveys information: where the touch took place (both the current and previous
location), what phase of the touch was used (essentially mouse down, mouse moved, mouse
up in the desktop application world, corresponding to finger or touch down, moved, and up in
the direct manipulation world), a tap count (for example, single-tap/double-tap), and when the
touch took place (through a time stamp).

iOS uses what is called a responder chain to decide which objects should process touches. As
their name suggests, responders are objects that respond to events, and they act as a chain of
possible managers for those events. When the user touches the screen, the application looks for
an object to handle this interaction. The touch is passed along, from view to view, until some
object takes charge and responds to that event.

At the most basic level, touches and their information are stored in UITouch objects, which
are passed as groups in UIEvent objects. Each UIEvent object represents a single touch event,

ptg12441863

2 Chapter 1 Gestures and Touches

containing single or multiple touches. This depends both on how you’ve set up your applica-
tion to respond (that is, whether you’ve enabled Multi-Touch interaction) and how the user
touches the screen (that is, the physical number of touch points).

Your application receives touches in view or view controller classes; both implement touch
handlers via inheritance from the UIResponder class. You decide where you process and
respond to touches. Trying to implement low-level gesture control in non-responder classes has
tripped up many new iOS developers.

Handling touches in views may seem counterintuitive. You probably expect to separate the
way an interface looks (its view) from the way it responds to touches (its controller). Further,
using views for direct touch interaction may seem to contradict Model–View–Controller design
orthogonality, but it can be necessary and can help promote encapsulation.

Consider the case of working with multiple touch-responsive subviews such as game pieces on
a board. Building interaction behavior directly into view classes allows you to send meaningful
semantically rich feedback to your core application code while hiding implementation minutia.
For example, you can inform your model that a pawn has moved to Queen’s Bishop 5 at the
end of an interaction sequence rather than transmit a meaningless series of vector changes. By
hiding the way the game pieces move in response to touches, your model code can focus on
game semantics instead of view position updates.

Drawing presents another reason to work in the UIView class. When your application handles
any kind of drawing operation in response to user touches, you need to implement touch
handlers in views. Unlike views, view controllers don’t implement the all-important drawRect:
method needed for providing custom presentations.

Working at the UIViewController class level also has its perks. Instead of pulling out primary
handling behavior into a secondary class implementation, adding touch management directly
to the view controller allows you to interpret standard gestures, such as tap-and-hold or swipes,
where those gestures have meaning. This better centralizes your code and helps tie controller
interactions directly to your application model.

In the following sections and recipes, you’ll discover how touches work, how you can respond
to them in your apps, and how to connect what a user sees with how that user interacts with
the screen.

Phases

Touches have life cycles. Each touch can pass through any of five phases that represent the
progress of the touch within an interface. These phases are as follows:

 ■ UITouchPhaseBegan — Starts when the user touches the screen.

 ■ UITouchPhaseMoved — Means a touch has moved on the screen.

 ■ UITouchPhaseStationary — Indicates that a touch remains on the screen surface but
that there has not been any movement since the previous event.

ptg12441863

3Touches

 ■ UITouchPhaseEnded — Gets triggered when the touch is pulled away from the screen.

 ■ UITouchPhaseCancelled — Occurs when the iOS system stops tracking a particular
touch. This usually happens due to a system interruption, such as when the application
is no longer active or the view is removed from the window.

Taken as a whole, these five phases form the interaction language for a touch event. They
describe all the possible ways that a touch can progress or fail to progress within an interface
and provide the basis for control for that interface. It’s up to you as the developer to interpret
those phases and provide reactions to them. You do that by implementing a series of responder
methods.

Touches and Responder Methods

All subclasses of the UIResponder class, including UIView and UIViewController , respond to
touches. Each class decides whether and how to respond. When choosing to do so, they imple-
ment customized behavior when a user touches one or more fingers down in a view or window.

Predefined callback methods handle the start, movement, and release of touches from the
screen. Corresponding to the phases you’ve already seen, the methods involved are as follows:

 ■ touchesBegan:withEvent: — Gets called at the starting phase of the event, as the user
starts touching the screen.

 ■ touchesMoved:withEvent: — Handles the movement of the fingers over time.

 ■ touchesEnded:withEvent: — Concludes the touch process, where the finger or fingers
are released. It provides an opportune time to clean up any work that was handled
during the movement sequence.

 ■ touchesCancelled:WithEvent :— Called when Cocoa Touch must respond to a system
interruption of the ongoing touch event.

Each of these is a UIResponder method, often implemented in a UIView or
UIViewController subclass. All views inherit basic nonfunctional versions of the methods.
When you want to add touch behavior to your application, you override these methods
and add a custom version that provides the responses your application needs. Notice that
UITouchPhaseStationary does not generate a callback.

Your classes can implement all or just some of these methods. For real-world deployment,
you will always want to add a touches-cancelled event to handle the case of a user drag-
ging his or her finger offscreen or the case of an incoming phone call, both of which cancel
an ongoing touch sequence. As a rule, you can generally redirect a cancelled touch to your
touchesEnded:withEvent: method. This allows your code to complete the touch sequence,
even if the user’s finger has not left the screen. Apple recommends overriding all four methods
as a best practice when working with touches.

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

4 Chapter 1 Gestures and Touches

Note

Views have a mode called exclusive touch that prevents touches from being delivered to other
views in the same window. When enabled, this property blocks other views from receiving touch
events within that view. The primary view handles all touch events exclusively.

Touching Views

When dealing with many onscreen views, iOS automatically decides which view the user
touched and passes any touch events to the proper view for you. This helps you write concrete
direct manipulation interfaces where users touch, drag, and interact with onscreen objects.

Just because a touch is physically on top of a view doesn’t mean that a view has to respond.
Each view can use a “hit test” to choose whether to handle a touch or to let that touch fall
through to views beneath it. As you’ll see in the recipes that follow, you can use clever response
strategies to decide when your view should respond, particularly when you’re using irregular art
with partial transparency.

With touch events, the first view that passes the hit test opts to handle or deny the touch. If it
passes, the touch continues to the view’s superview and then works its way up the responder
chain until it is handled or until it reaches the window that owns the views. If the window
does not process it, the touch moves to the UIApplication instance, where it is either
processed or discarded.

Multi-Touch

iOS supports both single- and Multi-Touch interfaces. Single-touch GUIs handle just one touch
at any time. This relieves you of any responsibility to determine which touch you were track-
ing. The one touch you receive is the only one you need to work with. You look at its data,
respond to it, and wait for the next event.

When working with Multi-Touch—that is, when you respond to multiple onscreen touches at
once—you receive an entire set of touches. It is up to you to order and respond to that set. You
can, however, track each touch separately and see how it changes over time, which enables
you to provide a richer set of possible user interaction. Recipes for both single-touch and Multi-
Touch interaction follow in this chapter.

Gesture Recognizers

With gesture recognizers, Apple added a powerful way to detect specific gestures in your inter-
face. Gesture recognizers simplify touch design. They encapsulate touch methods, so you don’t
have to implement them yourself, and they provide a target-action feedback mechanism that
hides implementation details. They also standardize how certain movements are categorized, as
drags or swipes.

ptg12441863

5Recipe: Adding a Simple Direct Manipulation Interface

With gesture recognizer classes, you can trigger callbacks when iOS determines that the user
has tapped, pinched, rotated, swiped, panned, or used a long press. These detection capabilities
simplify development of touch-based interfaces. You can code your own for improved reliabil-
ity, but a majority of developers will find that the recognizers, as shipped, are robust enough
for many application needs. You’ll find several recognizer-based recipes in this chapter. Because
recognizers all basically work in the same fashion, you can easily extend these recipes to your
specific gesture recognition requirements.

Here is a rundown of the kinds of gestures built in to recent versions of the iOS SDK:

 ■ Taps — Taps correspond to single or multiple finger taps onscreen. Users can tap with
one or more fingers; you specify how many fingers you require as a gesture recognizer
property and how many taps you want to detect. You can create a tap recognizer that
works with single finger taps, or more nuanced recognizers that look for, for example,
two-fingered triple-taps.

 ■ Swipes — Swipes are short single- or Multi-Touch gestures that move in a single cardinal
direction: up, down, left, or right. They cannot move too far off course from that primary
direction. You set the direction you want your recognizer to work with. The recognizer
returns the detected direction as a property.

 ■ Pinches — To pinch or unpinch, a user must move two fingers together or apart in a
single movement. The recognizer returns a scale factor indicating the degree of pinching.

 ■ Rotations — To rotate, a user moves two fingers at once, either in a clockwise or
counterclockwise direction, producing an angular rotation as the main returned property.

 ■ Pans — Pans occur when users drag their fingers across the screen. The recognizer
determines the change in translation produced by that drag.

 ■ Long press es— To create a long press, the user touches the screen and holds his or her
finger (or fingers) there for a specified period of time. You can specify how many fingers
must be used before the recognizer triggers.

Recipe: Adding a Simple Direct Manipulation Interface

Before moving on to more modern (and commonly used) gesture recognizers, take time to
understand and explore the traditional method of responding to a user’s touch. You’ll gain a
deeper understanding of the touch interface by learning how simple UIResponder touch event
handling works.

When you work with direct manipulation, your design focus moves from the
UIViewController to the UIView . The view, or more precisely the UIResponder , forms the
heart of direct manipulation development. You create touch-based interfaces by customizing
methods that derive from the UIResponder class.

Recipe 1-1 centers on touches in action. This example creates a child of UIImageView called
DragView and adds touch responsiveness to the class. Because this is an image view, it’s
important to enable user interaction (that is, set setUserInteractionEnabled to YES). This

ptg12441863

6 Chapter 1 Gestures and Touches

property affects all the view’s children as well as the view itself. User interaction is generally
enabled for most views, but UIImageView is the one exception that stumps most beginners;
Apple apparently didn’t think people would generally use touches with UIImageView .

The recipe works by updating a view’s center to match the movement of an onscreen touch.
When a user first touches any DragView , the object stores the start location as an offset from
the view’s origin. As the user drags, the view moves along with the finger—always maintaining
the same origin offset so that the movement feels natural. Movement occurs by updating the
object’s center. Recipe 1-1 calculates x and y offsets and adjusts the view center by those offsets
after each touch movement.

Upon being touched, the view pops to the front. That’s due to a call in the touchesBegan:
withEvent: method. The code tells the superview that owns the DragView to bring that view
to the front. This allows the active element to always appear foremost in the interface.

This recipe does not implement touches-ended or touches-cancelled methods. Its interests lie
only in the movement of onscreen objects. When the user stops interacting with the screen,
the class has no further work to do.

Recipe 1-1 Creating a Draggable View

@implementation DragView
{
 CGPoint startLocation;

}

- (instancetype)initWithImage:(UIImage *)anImage
{
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 }
 return self;

}

- (void)touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event
{
 // Calculate and store offset, pop view into front if needed
 startLocation = [[touches anyObject] locationInView:self];
 [self.superview bringSubviewToFront:self];

}

- (void)touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event
{
 // Calculate offset

ptg12441863

7Recipe: Adding Pan Gesture Recognizers

 CGPoint pt = [[touches anyObject] locationInView:self];
 float dx = pt.x - startLocation.x;
 float dy = pt.y - startLocation.y;
 CGPoint newcenter = CGPointMake(
 self.center.x + dx,
 self.center.y + dy);

 // Set new location
 self.center = newcenter;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to
https://github.com/erica/iOS-7-Cookbook and go to the folder for Chapter 1 .

Recipe: Adding Pan Gesture Recognizers

With gesture recognizers, you can achieve the same kind of interaction shown in Recipe 1-1
without working quite so directly with touch handlers. Pan gesture recognizers detect dragging
gestures. They allow you to assign a callback that triggers whenever iOS senses panning.

Recipe 1-2 mimics Recipe 1-1 ’s behavior by adding a recognizer to the view when it is first
initialized. As iOS detects the user dragging on a DragView instance, the handlePan: callback
updates the view’s center to match the distance dragged.

This code uses what might seem like an odd way of calculating distance. It stores the original
view location in an instance variable (previousLocation) and then calculates the offset from
that point each time the view updates with a pan detection callback. This allows you to use
affine transforms or apply the setTranslation:inView: method; you normally do not move
view centers, as done here. This recipe creates a dx / dy offset pair and applies that offset to the
view’s center, changing the view’s actual frame.

Unlike simple offsets, affine transforms allow you to meaningfully work with rotation, scaling,
and translation all at once. To support transforms, gesture recognizers provide their coordinate
changes in absolute terms rather than relative ones. Instead of issuing iterative offset vectors,
UIPanGestureRecognizer returns a single vector representing a translation in terms of some
view’s coordinate system, typically the coordinate system of the manipulated view’s superview.
This vector translation lends itself to simple affine transform calculations and can be mathe-
matically combined with other changes to produce a unified transform representing all changes
applied simultaneously.

https://github.com/erica/iOS-7-Cookbook

ptg12441863

8 Chapter 1 Gestures and Touches

Here’s what the handlePan: method looks like, using straight transforms and no stored state:

- (void)handlePan:(UIPanGestureRecognizer *)uigr
{
 if (uigr.state == UIGestureRecognizerStateEnded)
 {
 CGPoint newCenter = CGPointMake(
 self.center.x + self.transform.tx,
 self.center.y + self.transform.ty);
 self.center = newCenter;

 CGAffineTransform theTransform = self.transform;
 theTransform.tx = 0.0f;
 theTransform.ty = 0.0f;
 self.transform = theTransform;

 return;
 }

 CGPoint translation = [uigr translationInView:self.superview];
 CGAffineTransform theTransform = self.transform;
 theTransform.tx = translation.x;
 theTransform.ty = translation.y;
 self.transform = theTransform;

}

Notice how the recognizer checks for the end of interaction and then updates the view’s posi-
tion and resets the transform’s translation. This adaptation requires no local storage and would
eliminate the need for a touchesBegan:withEvent: method. Without these modifications,
Recipe 1-2 has to store the previous state.

Recipe 1-2 Using a Pan Gesture Recognizer to Drag Views

@implementation DragView
{
 CGPoint previousLocation;

}

- (instancetype)initWithImage:(UIImage *)anImage
{
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UIPanGestureRecognizer *panRecognizer =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self action:@selector(handlePan:)];

ptg12441863

9Recipe: Using Multiple Gesture Recognizers Simultaneously

 self.gestureRecognizers = @[panRecognizer];
 }
 return self;

}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Promote the touched view
 [self.superview bringSubviewToFront:self];

 // Remember original location
 previousLocation = self.center;

}

- (void)handlePan:(UIPanGestureRecognizer *)uigr
{
 CGPoint translation = [uigr translationInView:self.superview];
 self.center = CGPointMake(previousLocation.x + translation.x,
 previousLocation.y + translation.y);

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Recipe: Using Multiple Gesture Recognizers

Simultaneously

Recipe 1-3 builds on the ideas presented in Recipe 1-2 , but with several differences. First, it
introduces multiple recognizers that work in parallel. To achieve this, the code uses three
separate recognizers—rotation, pinch, and pan—and adds them all to the DragView ’s
gestureRecognizers property. It assigns the DragView as the delegate for each recognizer.
This allows the DragView to implement the gestureRecognizer:shouldRecognize-
SimultaneouslyWithGestureRecognizer: delegate method, enabling these recognizers to
work simultaneously. Until this method is added to return YES as its value, only one recognizer
will take charge at a time. Using parallel recognizers allows you to, for example, both zoom and
rotate in response to a user’s pinch gesture.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

10 Chapter 1 Gestures and Touches

Note

UITouch objects store an array of gesture recognizers. The items in this array represent each
recognizer that receives the touch object in question. When a view is created without gesture
recognizers, its responder methods will be passed touches with empty recognizer arrays.

Recipe 1-3 extends the view’s state to include scale and rotation instance variables. These
items keep track of previous transformation values and permit the code to build compound
affine transforms. These compound transforms, which are established in Recipe 1-3 ’s
updateTransformWithOffset : method, combine translation, rotation, and scaling into a
single result. Unlike the previous recipe, this recipe uses transforms uniformly to apply
changes to its objects, which is the standard practice for recognizers.

Finally, this recipe introduces a hybrid approach to gesture recognition. Instead of adding
a UITapGestureRecognizer to the view’s recognizer array, Recipe 1-3 demonstrates how
you can add the kind of basic touch method used in Recipe 1-1 to catch a triple-tap. In this
example, a triple-tap resets the view back to the identity transform. This undoes any manipula-
tion previously applied to the view and reverts it to its original position, orientation, and size.
As you can see, the touches began, moved, ended, and cancelled methods work seamlessly
alongside the gesture recognizer callbacks, which is the point of including this extra detail in
this recipe. Adding a tap recognizer would have worked just as well.

This recipe demonstrates the conciseness of using gesture recognizers to interact with touches.

Recipe 1-3 Recognizing Gestures in Parallel

@interface DragView : UIImageView <UIGestureRecognizerDelegate>
@end

@implementation DragView
{
 CGFloat tx; // x translation
 CGFloat ty; // y translation
 CGFloat scale; // zoom scale
 CGFloat theta; // rotation angle

}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Promote the touched view
 [self.superview bringSubviewToFront:self];

 // initialize translation offsets
 tx = self.transform.tx;
 ty = self.transform.ty;
 scale = self.scaleX;
 theta = self.rotation;

}

ptg12441863

11Recipe: Using Multiple Gesture Recognizers Simultaneously

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 if (touch.tapCount == 3)
 {
 // Reset geometry upon triple-tap
 self.transform = CGAffineTransformIdentity;
 tx = 0.0f; ty = 0.0f; scale = 1.0f; theta = 0.0f;
 }

}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self touchesEnded:touches withEvent:event];

}

- (void)updateTransformWithOffset:(CGPoint)translation
{
 // Create a blended transform representing translation,
 // rotation, and scaling
 self.transform = CGAffineTransformMakeTranslation(
 translation.x + tx, translation.y + ty);
 self.transform = CGAffineTransformRotate(self.transform, theta);

 // Guard against scaling too low, by limiting the scale factor
 if (self.scale > 0.5f)
 {
 self.transform = CGAffineTransformScale(self.transform, scale, scale);
 }
 else
 {
 self.transform = CGAffineTransformScale(self.transform, 0.5f, 0.5f);
 }

}

- (void)handlePan:(UIPanGestureRecognizer *)uigr
{
 CGPoint translation = [uigr translationInView:self.superview];
 [self updateTransformWithOffset:translation];

}

- (void)handleRotation:(UIRotationGestureRecognizer *)uigr
{
 theta = uigr.rotation;
 [self updateTransformWithOffset:CGPointZero];

}

ptg12441863

12 Chapter 1 Gestures and Touches

- (void)handlePinch:(UIPinchGestureRecognizer *)uigr
{
 scale = uigr.scale;
 [self updateTransformWithOffset:CGPointZero];

}

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer

{
 return YES;

}

- (instancetype)initWithImage:(UIImage *)image
{
 // Initialize and set as touchable
 self = [super initWithImage:image];
 if (self)
 {
 self.userInteractionEnabled = YES;

 // Reset geometry to identities
 self.transform = CGAffineTransformIdentity;
 tx = 0.0f; ty = 0.0f; scale = 1.0f; theta = 0.0f;

 // Add gesture recognizer suite
 UIRotationGestureRecognizer *rot =
 [[UIRotationGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleRotation:)];
 UIPinchGestureRecognizer *pinch =
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePinch:)];
 UIPanGestureRecognizer *pan =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePan:)];
 self.gestureRecognizers = @[rot, pinch, pan];
 for (UIGestureRecognizer *recognizer
 in self.gestureRecognizers)
 recognizer.delegate = self;
 }
 return self;

}
@end

ptg12441863

13Recipe: Using Multiple Gesture Recognizers Simultaneously

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Resolving Gesture Conflicts

Gesture conflicts may arise when you need to recognize several types of gestures at the same
time. For example, what happens when you need to recognize both single- and double-taps?
Should the single-tap recognizer fire at the first tap, even when the user intends to enter a
double-tap? Or should you wait and respond only after it’s clear that the user isn’t about to add
a second tap? The iOS SDK allows you to take these conflicts into account in your code.

Your classes can specify that one gesture must fail in order for another to succeed. Accomplish
this by calling requireGestureRecognizerToFail:. This gesture recognizer method takes
one argument, another gesture recognizer. This call creates a dependency between the two
gesture recognizers. For the first gesture to trigger, the second gesture must fail. If the second
gesture is recognized, the first gesture will not be.

iOS 7 introduces new APIs that offer more flexibility in providing runtime failure conditions
via gesture recognizer delegates and subclasses. You implement gestureRecognizer:
shouldRequireFailureOfGestureRecognizer: and gestureRecognizer:shouldBe-
RequiredToFailByGestureRecognizer: in recognizer delegates and shouldRequire-
FailureOfGestureRecognizer : and shouldBeRequiredToFailByGestureRecognizer : in
subclasses.

Each method returns a Boolean result. A positive response requires the failure condition speci-
fied by the method to occur for the gesture to succeed. These UIGestureRecognizer delegate
methods are called by the recognizer once per recognition attempt and can be set up between
recognizers across view hierarchies, while implementations provided in subclasses can define
class-wide failure requirements.

In real life, failure requirements typically mean that the recognizer adds a delay until it can
be sure that the dependent recognizer has failed. It waits until the second gesture is no longer
possible. Only then does the first recognizer complete. If you recognize both single- and
double-taps, the application waits a little longer after the first tap. If no second tap happens,
the single-tap fires. Otherwise, the double-tap fires, but not both.

Your GUI responses will slow down to accommodate this change. Your single-tap responses
become slightly laggy. That’s because there’s no way to tell if a second tap is coming until time
elapses. You should never use both kinds of recognizers where instant responsiveness is criti-
cal to your user experience. Try, instead, to design around situations where that tap means “do
something now ” and avoid requiring both gestures for those modes.

Don’t forget that you can add, remove, and disable gesture recognizers on-the-fly. A single-tap
may take your interface to a place where it then makes sense to further distinguish between
single- and double-taps. When leaving that mode, you could disable or remove the double-tap
recognizer to regain better single-tap recognition. Tweaks like this can limit interface slow-
downs to where they’re absolutely needed.

www.allitebooks.com

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook
http://www.allitebooks.org

ptg12441863

14 Chapter 1 Gestures and Touches

Recipe: Constraining Movement

One problem with the simple approach of the earlier recipes in this chapter is that it’s entirely
possible to drag a view offscreen to the point where the user cannot see or easily recover it.
Those recipes use unconstrained movement. There is no check to test whether the object
remains in view and is touchable. Recipe 1-4 fixes this problem by constraining a view’s move-
ment to within its parent. It achieves this by limiting movement in each direction, splitting its
checks into separate x and y constraints. This two-check approach allows the view to continue
to move even when one direction has passed its maximum. If the view has hit the rightmost
edge of its parent, for example, it can still move up and down.

Note

iOS 7 introduces UIKit Dynamics, for modeling real-world physical behaviors including physics
simulation and responsive animations. By using the declarative Dynamics API, you can model
gravity, collisions, force, attachments, springs, elasticity, and numerous other behaviors and
apply them to UIKit objects. While this recipe presents a traditional approach to moving and
constraining UI objects via gesture recognizers and direct frame manipulation, you can con-
struct a much more elaborate variant with Dynamics.

Figure 1-1 shows a sample interface. The subviews (flowers) are constrained into the black
rectangle in the center of the interface and cannot be dragged offscreen. Recipe 1-4 ’s code is
general and can adapt to parent bounds and child views of any size.

Figure 1-1 The movement of these flowers is constrained within the black rectangle.

ptg12441863

15Recipe: Testing Touches

Recipe 1-4 Constrained Movement

- (void)handlePan:(UIPanGestureRecognizer *)uigr
{
 CGPoint translation = [uigr translationInView:self.superview];
 CGPoint newcenter = CGPointMake(
 previousLocation.x + translation.x,
 previousLocation.y + translation.y);

 // Restrict movement within the parent bounds
 float halfx = CGRectGetMidX(self.bounds);
 newcenter.x = MAX(halfx, newcenter.x);
 newcenter.x = MIN(self.superview.bounds.size.width - halfx,
 newcenter.x);

 float halfy = CGRectGetMidY(self.bounds);
 newcenter.y = MAX(halfy, newcenter.y);
 newcenter.y = MIN(self.superview.bounds.size.height - halfy,
 newcenter.y);

 // Set new location
 self.center = newcenter;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Recipe: Testing Touches

Most onscreen view elements for direct manipulation interfaces are not rectangular. This
complicates touch detection because parts of the actual view rectangle may not correspond
to actual touch points. Figure 1-2 shows the problem in action. The screen shot on the right
shows the interface with its touch-based subviews. The shot on the left shows the actual view
bounds for each subview. The light gray areas around each onscreen circle fall within the
bounds, but touches to those areas should not “hit” the view in question.

iOS senses user taps throughout the entire view frame. This includes the undrawn area, such
as the corners of the frame outside the actual circles of Figure 1-2 , just as much as the primary
presentation. That means that unless you add some sort of hit test, users may attempt to tap
through to a view that’s “obscured” by the clear portion of the UIView frame.

Visualize your actual view bounds by setting its background color, like this:

dragger.backgroundColor = [UIColor lightGrayColor];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

16 Chapter 1 Gestures and Touches

This adds the backsplashes shown in Figure 1-2 (left) without affecting the actual onscreen art.
In this case, the art consists of a centered circle with a transparent background. Unless you add
some sort of test, all taps to any portion of this frame are captured by the view in question.
Enabling background colors offers a convenient debugging aid to visualize the true extent of
each view; don’t forget to comment out the background color assignment in production code.
Alternatively, you can set a view layer’s border width or style.

Figure 1-2 The application should ignore touches to the gray areas that surround each circle
(left). The actual interface (right) uses a clear background (zero alpha values) to hide the parts of
the view that are not used.

Recipe 1-5 adds a simple hit test to the views, determining whether touches fall within the
circle. This test overrides the standard UIView ’s pointInside:withEvent: method. This
method returns either YES (the point falls inside the view) or NO (it does not). The test here
uses basic geometry, checking whether the touch lies within the circle’s radius. You can provide
any test that works with your onscreen views. As you’ll see in Recipe 1-6 , which follows in the
next section, you can expand that test for much finer control.

Be aware that the math for touch detection on Retina display devices remains the same as that
for older units, using the normalized points coordinate system rather than actual pixels. The
extra onboard pixels do not affect your gesture-handling math. Your view’s coordinate system
remains floating point with subpixel accuracy. The number of pixels the device uses to draw to
the screen does not affect UIView bounds and UITouch coordinates. It simply provides a way to
provide higher detail graphics within that coordinate system.

ptg12441863

17Recipe: Testing Against a Bitmap

Note

Do not confuse the point inside test, which checks whether a point falls inside a view, with
the similar-sounding hitTest:withEvent: . The hit test returns the topmost view (clos-
est to the user/screen) in a view hierarchy that contains a specific point. It works by calling
pointInside:withEvent: on each view. If the pointInside method returns YES , the search
continues down that hierarchy.

Recipe 1-5 Providing a Circular Hit Test

- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event
{
 CGPoint pt;
 float halfSide = kSideLength / 2.0f;

 // normalize with centered origin
 pt.x = (point.x - halfSide) / halfSide;
 pt.y = (point.y - halfSide) / halfSide;

 // x^2 + y^2 = radius^2
 float xsquared = pt.x * pt.x;
 float ysquared = pt.y * pt.y;

 // If the radius < 1, the point is within the clipped circle
 if ((xsquared + ysquared) < 1.0) return YES;
 return NO;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Recipe: Testing Against a Bitmap

Unfortunately, most views don’t fall into the simple geometries that make the hit test from
Recipe 1-5 so straightforward. The flowers shown in Figure 1-1 , for example, offer irregular
boundaries and varied transparencies. For complicated art, it helps to test touches against a
bitmap. Bitmaps provide byte-by-byte information about the contents of an image-based view,
allowing you to test whether a touch hits a solid portion of the image or should pass through
to any views below.

Recipe 1-6 extracts an image bitmap from a UIImageView . It assumes that the image used
provides a pixel-by-pixel representation of the view in question. When you distort that view

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

18 Chapter 1 Gestures and Touches

(normally by resizing a frame or applying a transform), update the math accordingly. CGPoint s
can be transformed via CGPointApplyAffineTransform() to handle scaling and rotation
changes. Keeping the art at a 1:1 proportion to the actual view pixels simplifies lookup and
avoids any messy math. You can recover the pixel in question, test its alpha level, and deter-
mine whether the touch has hit a solid portion of the view.

This example uses a cutoff of 85. This corresponds to a minimum alpha level of 33% (that is,
85 / 255). This custom pointInside: method considers any pixel with an alpha level below
33% to be transparent. This is arbitrary. Use any level (or other test, for that matter) that works
with the demands of your actual GUI.

Note

Unless you need pixel-perfect touch detection, you can probably scale down the bitmap so that
it uses less memory and adjust the detection math accordingly.

Recipe 1-6 Testing Touches Against Bitmap Alpha Levels

// Return the offset for the alpha pixel at (x,y) for RGBA
// 4-bytes-per-pixel bitmap data
static NSUInteger alphaOffset(NSUInteger x, NSUInteger y, NSUInteger w)
 {return y * w * 4 + x * 4;}

// Return the bitmap from a provided image
NSData *getBitmapFromImage(UIImage *image)
{
 if (!sourceImage) return nil;

 // Establish color space
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 if (colorSpace == NULL)
 {
 NSLog(@"Error creating RGB color space");
 return nil;
 }

 // Establish context
 int width = sourceImage.size.width;
 int height = sourceImage.size.height;
 CGContextRef context =
 CGBitmapContextCreate(NULL, width, height, 8,
 width * 4, colorSpace,
 (CGBitmapInfo) kCGImageAlphaPremultipliedFirst);
 CGColorSpaceRelease(colorSpace);
 if (context == NULL)
 {

ptg12441863

19Recipe: Testing Against a Bitmap

 NSLog(@"Error creating context");
 return nil;
 }

 // Draw source into context bytes
 CGRect rect = (CGRect){.size = sourceImage.size};
 CGContextDrawImage(context, rect, sourceImage.CGImage);

 // Create NSData from bytes
 NSData *data =
 [NSData dataWithBytes:CGBitmapContextGetData(context)
 length:(width * height * 4)];
 CGContextRelease(context);

 return data;
}

// Store the bitmap data into an NSData instance variable
- (instancetype)initWithImage:(UIImage *)anImage
{
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 data = getBitmapFromImage(anImage);
 }
 return self;

}

// Does the point hit the view?
- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event
{
 if (!CGRectContainsPoint(self.bounds, point)) return NO;
 Byte *bytes = (Byte *)data.bytes;
 uint offset = alphaOffset(point.x, point.y, self.image.size.width);
 return (bytes[offset] > 85);

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

20 Chapter 1 Gestures and Touches

Recipe: Drawing Touches Onscreen

UIView hosts the realm of direct onscreen drawing. Its drawRect: method offers a low-level
way to draw content directly, letting you create and display arbitrary elements using Quartz 2D
calls. With touch and drawing, you can build concrete, manipulatable interfaces.

Recipe 1-7 combines gestures with drawRect to introduce touch-based painting. As a user
touches the screen, the TouchTrackerView class builds a Bezier path that follows the user’s
finger. To paint the progress as the touch proceeds, the touchesMoved:withEvent: method
calls setNeedsDisplay . This, in turn, triggers a call to drawRect :, where the view strokes the
accumulated Bezier path. Figure 1-3 shows the interface with a path created in this way.

Figure 1-3 A simple painting tool for iOS requires little more than collecting touches along a
path and painting that path with UIKit/Quartz 2D calls.

Although you could adapt this recipe to use gesture recognizers, there’s really no point to it.
The touches are essentially meaningless; they’re only provided to create a pleasing tracing. The
basic responder methods (that is, touches began, moved, and so on) are perfectly capable of
handling path creation and management tasks.

This example is meant for creating continuous traces. It does not respond to any touch event
without a move. If you want to expand this recipe to add a simple dot or mark, you’ll have to
add that behavior yourself.

ptg12441863

21Recipe: Drawing Touches Onscreen

Recipe 1-7 Touch-Based Painting in a UIView

@implementation TouchTrackerView
{
 UIBezierPath * path;

}

- (instancetype)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 self.multipleTouchEnabled = NO;
 }
 return self;

}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Initialize a new path for the user gesture
 path = [UIBezierPath bezierPath];
 path.lineWidth = IS_IPAD ? 8.0f : 4.0f;

 UITouch *touch = [touches anyObject];
 [path moveToPoint:[touch locationInView:self]];

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Add new points to the path
 UITouch *touch = [touches anyObject];
 [self.path addLineToPoint:[touch locationInView:self]];
 [self setNeedsDisplay];

}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 [path addLineToPoint:[touch locationInView:self]];
 [self setNeedsDisplay];

}

- (void)touchesCancelled:(NSSet *)touches
 withEvent:(UIEvent *)event

{
 [self touchesEnded:touches withEvent:event];

}

- (void)drawRect:(CGRect)rect

ptg12441863

22 Chapter 1 Gestures and Touches

{
 // Draw the path
 [path stroke];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Recipe: Smoothing Drawings

Depending on the device in use and the amount of simultaneous processing involved, captur-
ing user gestures may produce results that are rougher than desired. Touch events are often
limited by CPU demands as well as by shaking hands. A smoothing algorithm can offset those
limitations by interpolating between points. Figure 1-4 demonstrates the kind of angularity that
derives from granular input and the smoothing that can be applied instead.

Figure 1-4 Catmull-Rom smoothing can be applied in real time to improve arcs between touch
events. The images shown here are based on identical gesture input, with (right) and without (left)
smoothing applied.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

23Recipe: Smoothing Drawings

Catmull-Rom splines create continuous curves between key points. This algorithm ensures
that each initial point you provide remains part of the final curve. The resulting path retains
the original path’s shape. You choose the number of interpolation points between each pair of
reference points. The trade-off is between processing power and greater smoothing. The more
points you add, the more CPU resources you’ll consume. As you can see when using the sample
code that accompanies this chapter, a little smoothing goes a long way, even on newer devices.
The latest iPad is so responsive that it’s hard to draw a particularly jaggy line in the first place.

Recipe 1-8 demonstrates how to extract points from an existing Bezier path and then apply
splining to create a smoothed result. Catmull-Rom uses four points at a time to calculate inter-
mediate values between the second and third points, using a granularity you specify between
those points.

Recipe 1-8 provides an example of just one kind of real-time geometric processing you might
add to your applications. Many other algorithms out there in the world of computational
geometry can be applied in a similar manner.

Note

More extensive UIBezierPath utilities similar to getPointsFromBezier can be found
in Erica Sadun’s iOS Drawing: Practical UIKit Solutions (Addison-Wesley, 2013). For many
excellent graphics-related recipes, including more advanced smoothing algorithms, check
out the Graphics Gems series of books published by Academic Press and available at
www.graphicsgems.org .

Recipe 1-8 Creating Smoothed Bezier Paths Using Catmull-Rom Splining

#define VALUE(_INDEX_) [NSValue valueWithCGPoint:points[_INDEX_]]

@implementation UIBezierPath (Points)
void getPointsFromBezier(void *info, const CGPathElement *element)
{
 NSMutableArray *bezierPoints = (__bridge NSMutableArray *)info;

 // Retrieve the path element type and its points
 CGPathElementType type = element->type;
 CGPoint *points = element->points;

 // Add the points if they're available (per type)
 if (type != kCGPathElementCloseSubpath)
 {
 [bezierPoints addObject:VALUE(0)];
 if ((type != kCGPathElementAddLineToPoint) &&
 (type != kCGPathElementMoveToPoint))
 [bezierPoints addObject:VALUE(1)];
 }

www.allitebooks.com

http://www.graphicsgems.org
http://www.allitebooks.org

ptg12441863

24 Chapter 1 Gestures and Touches

 if (type == kCGPathElementAddCurveToPoint)
 [bezierPoints addObject:VALUE(2)];

}

- (NSArray *)points
{
 NSMutableArray *points = [NSMutableArray array];
 CGPathApply(self.CGPath,
 (__bridge void *)points, getPointsFromBezier);
 return points;

}
@end

#define POINT(_INDEX_) \
 [(NSValue *)[points objectAtIndex:_INDEX_] CGPointValue]

@implementation UIBezierPath (Smoothing)
- (UIBezierPath *)smoothedPath:(int)granularity
{
 NSMutableArray *points = [self.points mutableCopy];
 if (points.count < 4) return [self copy];

 // Add control points to make the math make sense
 // Via Josh Weinberg
 [points insertObject:[points objectAtIndex:0] atIndex:0];
 [points addObject:[points lastObject]];

 UIBezierPath *smoothedPath = [UIBezierPath bezierPath];

 // Copy traits
 smoothedPath.lineWidth = self.lineWidth;

 // Draw out the first 3 points (0..2)
 [smoothedPath moveToPoint:POINT(0)];

 for (int index = 1; index < 3; index++)
 [smoothedPath addLineToPoint:POINT(index)];

 for (int index = 4; index < points.count; index++)
 {
 CGPoint p0 = POINT(index - 3);
 CGPoint p1 = POINT(index - 2);
 CGPoint p2 = POINT(index - 1);
 CGPoint p3 = POINT(index);

 // now add n points starting at p1 + dx/dy up
 // until p2 using Catmull-Rom splines

ptg12441863

25Recipe: Smoothing Drawings

 for (int i = 1; i < granularity; i++)
 {
 float t = (float) i * (1.0f / (float) granularity);
 float tt = t * t;
 float ttt = tt * t;

 CGPoint pi; // intermediate point
 pi.x = 0.5 * (2*p1.x+(p2.x-p0.x)*t +
 (2*p0.x-5*p1.x+4*p2.x-p3.x)*tt +
 (3*p1.x-p0.x-3*p2.x+p3.x)*ttt);
 pi.y = 0.5 * (2*p1.y+(p2.y-p0.y)*t +
 (2*p0.y-5*p1.y+4*p2.y-p3.y)*tt +
 (3*p1.y-p0.y-3*p2.y+p3.y)*ttt);
 [smoothedPath addLineToPoint:pi];
 }

 // Now add p2
 [smoothedPath addLineToPoint:p2];
 }

 // finish by adding the last point
 [smoothedPath addLineToPoint:POINT(points.count - 1)];

 return smoothedPath;
}
@end

// Example usage:
// Replace the path with a smoothed version after drawing completes
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 [path addLineToPoint:[touch locationInView:self]];
 path = [path smoothedPath:4];
 [self setNeedsDisplay];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

26 Chapter 1 Gestures and Touches

Recipe: Using Multi-Touch Interaction

Enabling Multi-Touch interaction in UIView instances lets iOS recover and respond to more
than one finger touch at a time. Set the UIView property multipleTouchEnabled to YES or
override isMultipleTouchEnabled for your view. When enabled, each touch callback returns
an entire set of touches. When that set’s count exceeds 1, you know you’re dealing with
Multi-Touch.

In theory, iOS supports an arbitrary number of touches. You can explore that limit by running
Recipe 1-9 on an iPad, using as many fingers as possible at once. The practical upper limit has
changed over time; this recipe modestly demurs from offering a specific number.

When Multi-Touch was first explored on the iPhone, developers did not dream of the freedom
and flexibility that Multi-Touch combined with multiple users offered. Adding Multi-Touch to
your games and other applications opens up not just expanded gestures but also new ways of
creating profoundly exciting multiuser experiences, especially on larger screens like the iPad.
Include Multi-Touch support in your applications wherever it is practical and meaningful.

Multi-Touch touches are not grouped. If you touch the screen with two fingers from each
hand, for example, there’s no way to determine which touches belong to which hand. The
touch order is also arbitrary. Although grouped touches retain the same finger order (or, more
specifically, the same memory address) for the lifetime of a single touch event, from touch
down through movement to release, the correspondence between touches and fingers may and
likely will change the next time your user touches the screen. When you need to distinguish
touches from each other, build a touch dictionary indexed by the touch objects, as shown in
this recipe.

Perhaps it’s a comfort to know that if you need it, the extra finger support has been built
in. Unfortunately, when you are using three or more touches at a time, the screen has a
pronounced tendency to lose track of one or more of those fingers. It’s hard to programmati-
cally track smooth gestures when you go beyond two finger touches. So instead of focusing
on gesture interpretation, think of the Multi-Touch experience more as a series of time-limited
independent interactions. You can treat each touch as a distinct item and process it indepen-
dently of its fellows.

Recipe 1-9 adds Multi-Touch to a UIView by setting its multipleTouchEnabled property and
tracing the lines that each finger draws. It does this by keeping track of each touch’s physi-
cal address in memory but without pointing to or retaining the touch object, as per Apple’s
recommendations.

This is, obviously, an oddball approach, but it has worked reliably throughout the history of
the SDK. That’s because each UITouch object persists at a single address throughout the touch–
move–release life cycle. Apple recommends against retaining UITouch instances, which is why
the integer values of these objects are used as keys in this recipe. By using the physical address
as a key, you can distinguish each touch, even as new touches are added or old touches are
removed from the screen.

ptg12441863

27Recipe: Using Multi-Touch Interaction

Be aware that new touches can start their life cycle via touchesBegan:withEvent: indepen-
dently of others as they move, end, or cancel. Your code should reflect that reality.

This recipe expands from Recipe 1-7 . Each touch grows a separate Bezier path, which is painted
in the view’s drawRect method. Recipe 1-7 essentially starts a new drawing at the end of each
touch cycle. That works well for application bookkeeping but fails when it comes to creating a
standard drawing application, where you expect to iteratively add elements to a picture.

Recipe 1-9 continues adding traces into a composite picture without erasing old items. Touches
collect into an ever-growing mutable array, which can be cleared on user demand. This recipe
draws in-progress tracing in a slightly lighter color, to distinguish it from paths that have
already been stored to the drawing’s stroke array.

Recipe 1-9 Accumulating User Tracings for a Composite Drawing

@interface TouchTrackerView : UIView
- (void) clear;
@end

@implementation TouchTrackerView
{
 NSMutableArray *strokes;
 NSMutableDictionary *touchPaths;

}

// Establish new views with storage initialized for drawing
- (instancetype)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 self.multipleTouchEnabled = YES;
 strokes = [NSMutableArray array];
 touchPaths = [NSMutableDictionary dictionary];
 }
 return self;

}

// On clear, remove all existing strokes, but not in-progress drawing
- (void)clear
{
 [strokes removeAllObjects];
 [self setNeedsDisplay];

}

// Start touches by adding new paths to the touchPath dictionary
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

ptg12441863

28 Chapter 1 Gestures and Touches

 for (UITouch *touch in touches)
 {
 NSString *key = [NSString stringWithFormat:@"%d", (int) touch];
 CGPoint pt = [touch locationInView:self];

 UIBezierPath *path = [UIBezierPath bezierPath];
 path.lineWidth = IS_IPAD ? 8: 4;
 path.lineCapStyle = kCGLineCapRound;
 [path moveToPoint:pt];

 touchPaths[key] = path;
 }

}
// Trace touch movement by growing and stroking the path
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 for (UITouch *touch in touches)
 {
 NSString *key =
 [NSString stringWithFormat:@"%d", (int) touch];
 UIBezierPath *path = [touchPaths objectForKey:key];
 if (!path) break;

 CGPoint pt = [touch locationInView:self];
 [path addLineToPoint:pt];
 }
 [self setNeedsDisplay];

}

// On ending a touch, move the path to the strokes array
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 for (UITouch *touch in touches)
 {
 NSString *key = [NSString stringWithFormat:@"%d", (int) touch];
 UIBezierPath *path = [touchPaths objectForKey:key];
 if (path) [strokes addObject:path];
 [touchPaths removeObjectForKey:key];
 }
 [self setNeedsDisplay];

}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self touchesEnded:touches withEvent:event];

}

ptg12441863

29Recipe: Detecting Circles

// Draw existing strokes in dark purple, in-progress ones in light
- (void)drawRect:(CGRect)rect
{
 [COOKBOOK_PURPLE_COLOR set];
 for (UIBezierPath *path in strokes)
 {
 [path stroke];
 }

 [[COOKBOOK_PURPLE_COLOR colorWithAlphaComponent:0.5f] set];
 for (UIBezierPath *path in [touchPaths allValues])
 {
 [path stroke];
 }

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

Note

Apple provides many Core Graphics/Quartz 2D resources on its developer website. Although
many of these forums, mailing lists, and source code examples are not iOS-specific, they offer
an invaluable resource for expanding your iOS Core Graphics knowledge.

Recipe: Detecting Circles

In a direct manipulation interface like iOS, you’d imagine that most people could get by
just pointing to items onscreen. And yet, circle detection remains one of the most requested
gestures. Developers like having people circle items onscreen with their fingers. In the spirit
of providing solutions that readers have requested, Recipe 1-10 offers a relatively simple circle
detector, which is shown in Figure 1-5 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

30 Chapter 1 Gestures and Touches

Figure 1-5 The dot and the outer ellipse show the key features of the detected circle.

In this implementation, detection uses a multistep test. A time test checks that the stroke is not
lingering. A circle gesture should be quickly drawn. An inflection test checks that the touch
does not change directions too often. A proper circle includes four direction changes. This test
allows for five. There’s a convergence test. The circle must start and end close enough together
that the points are somehow related. A fair amount of leeway is needed because when you
don’t provide direct visual feedback, users tend to undershoot or overshoot where they began.
The pixel distance used here is generous, approximately a third of the view size.

The final test looks at movement around a central point. It adds up the arcs traveled, which
should equal 360 degrees in a perfect circle. This example allows any movement that falls
within 45 degrees for not-quite-finished circles and 180 degrees for circles that continue on a
bit wider, allowing the finger to travel more naturally.

Upon these tests being passed, the algorithm produces a least bounding rectangle and centers
that rectangle on the geometric mean of the points from the original gesture. This result is
assigned to the circle instance variable. It’s not a perfect detection system (you can try to fool it
when testing the sample code), but it’s robust enough to provide reasonably good circle checks
for many iOS applications.

ptg12441863

31Recipe: Detecting Circles

Recipe 1-10 Detecting Circles

// Retrieve center of rectangle
CGPoint GEORectGetCenter(CGRect rect)
{
 return CGPointMake(CGRectGetMidX(rect), CGRectGetMidY(rect));

}

// Build rectangle around a given center
CGRect GEORectAroundCenter(CGPoint center, float dx, float dy)
{
 return CGRectMake(center.x - dx, center.y - dy, dx * 2, dy * 2);

}

// Center one rect inside another
CGRect GEORectCenteredInRect(CGRect rect, CGRect mainRect)
{
 CGFloat dx = CGRectGetMidX(mainRect)-CGRectGetMidX(rect);
 CGFloat dy = CGRectGetMidY(mainRect)-CGRectGetMidY(rect);
 return CGRectOffset(rect, dx, dy);

}

// Return dot product of two vectors normalized
CGFloat dotproduct(CGPoint v1, CGPoint v2)
{
 CGFloat dot = (v1.x * v2.x) + (v1.y * v2.y);
 CGFloat a = ABS(sqrt(v1.x * v1.x + v1.y * v1.y));
 CGFloat b = ABS(sqrt(v2.x * v2.x + v2.y * v2.y));
 dot /= (a * b);

 return dot;
}

// Return distance between two points
CGFloat distance(CGPoint p1, CGPoint p2)
{
 CGFloat dx = p2.x - p1.x;
 CGFloat dy = p2.y - p1.y;

 return sqrt(dx*dx + dy*dy);
}

// Offset in X
CGFloat dx(CGPoint p1, CGPoint p2)
{
 return p2.x - p1.x;

}

ptg12441863

32 Chapter 1 Gestures and Touches

// Offset in Y
CGFloat dy(CGPoint p1, CGPoint p2)
{
 return p2.y - p1.y;

}

// Sign of a number
NSInteger sign(CGFloat x)
{
 return (x < 0.0f) ? (-1) : 1;

}

// Return a point with respect to a given origin
CGPoint pointWithOrigin(CGPoint pt, CGPoint origin)
{
 return CGPointMake(pt.x - origin.x, pt.y - origin.y);

}

// Calculate and return least bounding rectangle
#define POINT(_INDEX_) [(NSValue *)[points \
 objectAtIndex:_INDEX_] CGPointValue]

CGRect boundingRect(NSArray *points)
{
 CGRect rect = CGRectZero;
 CGRect ptRect;

 for (NSUInteger i = 0; i < points.count; i++)
 {
 CGPoint pt = POINT(i);
 ptRect = CGRectMake(pt.x, pt.y, 0.0f, 0.0f);
 rect = (CGRectEqualToRect(rect, CGRectZero)) ?
 ptRect : CGRectUnion(rect, ptRect);
 }
 return rect;

}

CGRect testForCircle(NSArray *points, NSDate *firstTouchDate)
{
 if (points.count < 2)
 {
 NSLog(@"Too few points (2) for circle");
 return CGRectZero;
 }

 // Test 1: duration tolerance
 float duration = [[NSDate date]

ptg12441863

33Recipe: Detecting Circles

 timeIntervalSinceDate:firstTouchDate];
 NSLog(@"Transit duration: %0.2f", duration);

 float maxDuration = 2.0f;
 if (duration > maxDuration)
 {
 NSLog(@"Excessive duration");
 return CGRectZero;
 }

 // Test 2: Direction changes should be limited to near 4
 int inflections = 0;
 for (int i = 2; i < (points.count - 1); i++)
 {
 float deltx = dx(POINT(i), POINT(i-1));
 float delty = dy(POINT(i), POINT(i-1));
 float px = dx(POINT(i-1), POINT(i-2));
 float py = dy(POINT(i-1), POINT(i-2));

 if ((sign(deltx) != sign(px)) ||
 (sign(delty) != sign(py)))
 inflections++;
 }

 if (inflections > 5)
 {
 NSLog(@"Excessive inflections");
 return CGRectZero;
 }

 // Test 3: Start and end points near each other
 float tolerance = [[[UIApplication sharedApplication]
 keyWindow] bounds].size.width / 3.0f;
 if (distance(POINT(0), POINT(points.count - 1)) > tolerance)
 {
 NSLog(@"Start too far from end");
 return CGRectZero;
 }

 // Test 4: Count the distance traveled in degrees
 CGRect circle = boundingRect(points);
 CGPoint center = GEORectGetCenter(circle);
 float distance = ABS(acos(dotproduct(
 pointWithOrigin(POINT(0), center),
 pointWithOrigin(POINT(1), center))));
 for (int i = 1; i < (points.count - 1); i++)
 distance += ABS(acos(dotproduct(

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

34 Chapter 1 Gestures and Touches

 pointWithOrigin(POINT(i), center),
 pointWithOrigin(POINT(i+1), center))));

 float transitTolerance = distance - 2 * M_PI;

 if (transitTolerance < 0.0f) // fell short of 2 PI
 {
 if (transitTolerance < - (M_PI / 4.0f)) // under 45
 {
 NSLog(@"Transit too short");
 return CGRectZero;
 }
 }

 if (transitTolerance > M_PI) // additional 180 degrees
 {
 NSLog(@"Transit too long ");
 return CGRectZero;
 }

 return circle;
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

Recipe: Creating a Custom Gesture Recognizer

It takes little work to transform the code shown in Recipe 1-10 into a custom recognizer, but
Recipe 1-11 does it. Subclassing UIGestureRecognizer enables you to build your own circle
recognizer that you can add to views in your applications.

Start by importing UIGestureRecognizerSubclass.h from UIKit into your new class. The
file declares everything you need your recognizer subclass to override or customize. For each
method you override, make sure to call the original version of the method by calling the super-
class method before invoking your new code.

Gestures fall into two types: continuous and discrete. The circle recognizer is discrete. It either
recognizes a circle or fails. Continuous gestures include pinches and pans, where recognizers
send updates throughout their life cycle. Your recognizer generates updates by setting its state
property.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

35Recipe: Creating a Custom Gesture Recognizer

Recognizers are basically state machines for fingertips. All recognizers start in the possible
state (UIGestureRecognizerStatePossible), and then for continuous gestures pass
through a series of changed states (UIGestureRecognizerStateChanged). Discrete recogniz-
ers either succeed in recognizing a gesture (UIGestureRecognizerStateRecognized) or fail
(UIGestureRecognizerStateFailed), as demonstrated in Recipe 1-11 . The recognizer sends
actions to its target each time you update the state except when the state is set to possible or
failed.

The rather long comments you see in Recipe 1-11 belong to Apple, courtesy of the subclass
header file. They help explain the roles of the key methods that override their superclass. The
reset method returns the recognizer back to its quiescent state, allowing it to prepare itself for
its next recognition challenge.

The touches began (and so on) methods are called at similar points as their UIResponder
analogs, enabling you to perform your tests at the same touch life cycle points. This example
waits to check for success or failure until the touches ended callback, and uses the same
testForCircle method defined in Recipe 1-10 .

Note

As an overriding philosophy, gesture recognizers should fail as soon as possible. When they
succeed, you should store information about the gesture in local properties. The circle gesture
recognizer should save any detected circle so users know where the gesture occurred.

Recipe 1-11 Creating a Gesture Recognizer Subclass

#import <UIKit/UIGestureRecognizerSubclass.h>
@implementation CircleRecognizer

// Called automatically by the runtime after the gesture state has
// been set to UIGestureRecognizerStateEnded. Any internal state
// should be reset to prepare for a new attempt to recognize the gesture.
// After this is received, all remaining active touches will be ignored
// (no further updates will be received for touches that had already
// begun but haven't ended).
- (void)reset
{
 [super reset];

 points = nil;
 firstTouchDate = nil;
 self.state = UIGestureRecognizerStatePossible;

}

// mirror of the touch-delivery methods on UIResponder
// UIGestureRecognizers aren't in the responder chain, but observe
// touches hit-tested to their view and their view's subviews.

ptg12441863

36 Chapter 1 Gestures and Touches

// UIGestureRecognizers receive touches before the view to which
// the touch was hit-tested.
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 [super touchesBegan:touches withEvent:event];

 if (touches.count > 1)
 {
 self.state = UIGestureRecognizerStateFailed;
 return;
 }

 points = [NSMutableArray array];
 firstTouchDate = [NSDate date];
 UITouch *touch = [touches anyObject];
 [points addObject: [NSValue valueWithCGPoint:
 [touch locationInView:self.view]]];

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 [super touchesMoved:touches withEvent:event];
 UITouch *touch = [touches anyObject];
 [points addObject: [NSValue valueWithCGPoint:
 [touch locationInView:self.view]]];

}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 [super touchesEnded:touches withEvent: event];
 BOOL detectionSuccess = !CGRectEqualToRect(CGRectZero,
 testForCircle(points, firstTouchDate));
 if (detectionSuccess)
 self.state = UIGestureRecognizerStateRecognized;
 else
 self.state = UIGestureRecognizerStateFailed;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

37Recipe: Dragging from a Scroll View

Recipe: Dragging from a Scroll View

iOS’s rich set of gesture recognizers doesn’t always accomplish exactly what you’re looking
for. Here’s an example. Imagine a horizontal scrolling view filled with image views, one next
to another, so you can scroll left and right to see the entire collection. Now, imagine that you
want to be able to drag items out of that view and add them to a space directly below the
scrolling area. To do this, you need to recognize downward touches on those child views (that
is, orthogonal to the scrolling direction).

This was the puzzle developer Alex Hosgrove encountered while he was trying to build an
application roughly equivalent to a set of refrigerator magnet letters. Users could drag those
letters down into a workspace and then play with and arrange the items they’d chosen. There
were two challenges with this scenario. First, who owned each touch? Second, what happened
after the downward touch was recognized?

Both the scroll view and its children own an interest in each touch. A downward gesture
should generate new objects; a sideways gesture should pan the scroll view. Touches have to
be shared to allow both the scroll view and its children to respond to user interactions. This
problem can be solved using gesture delegates.

Gesture delegates allow you to add simultaneous recognition, so that two recogniz-
ers can operate at the same time. You add this behavior by declaring a protocol
(UIGestureRecognizerDelegate) and adding a simple delegate method:

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer

{
 return YES;

}

You cannot reassign gesture delegates for scroll views, so you must add this delegate override to
the implementation for the scroll view’s children.

The second question, converting a swipe into a drag, is addressed by thinking about the entire
touch lifetime. Each touch that creates a new object starts as a directional drag but ends up as a
pan once the new view is created. A pan recognizer works better here than a swipe recognizer,
whose lifetime ends at the point of recognition.

To make this happen, Recipe 1-12 manually adds that directional-movement detection, outside
the built-in gesture detection. In the end, that working-outside-the-box approach provides a
major coding win. That’s because once the swipe has been detected, the underlying pan gesture
recognizer continues to operate. This allows the user to keep moving the swiped object without
having to raise his or her finger and retouch the object in question.

The implementation in Recipe 1-12 detects swipes that move down at least 16 vertical pixels
without straying more than 12 pixels to either side. When this code detects a downward swipe,
it adds a new DragView (the same class used earlier in this chapter) to the screen and allows it
to follow the touch for the remainder of the pan gesture interaction.

ptg12441863

38 Chapter 1 Gestures and Touches

At the point of recognition, the class marks itself as having handled the swipe
(gestureWasHandled) and disables the scroll view for the duration of the panning
event. This gives the child complete control over the ongoing pan gesture without
the scroll view reacting to further touch movement.

Recipe 1-12 Dragging Items Out of Scroll Views

@implementation DragView

#define DX(p1, p2) (p2.x - p1.x)
#define DY(p1, p2) (p2.y - p1.y)

const NSInteger kSwipeDragMin = 16;
const NSInteger kDragLimitMax = 12;

// Categorize swipe types
typedef enum {
 TouchUnknown,
 TouchSwipeLeft,
 TouchSwipeRight,
 TouchSwipeUp,
 TouchSwipeDown,

} SwipeTypes;

@implementation PullView
// Create a new view with an embedded pan gesture recognizer
- (instancetype)initWithImage:(UIImage *)anImage
{
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UIPanGestureRecognizer *pan =
 [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(handlePan:)];
 pan.delegate = self;
 self.gestureRecognizers = @[pan];

}

// Allow simultaneous recognition
- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer

{
 return YES;

}

ptg12441863

39Recipe: Dragging from a Scroll View

// Handle pans by detecting swipes
- (void)handlePan:(UISwipeGestureRecognizer *)uigr
{
 // Only deal with scroll view superviews
 if (![self.superview isKindOfClass:[UIScrollView class]]) return;

 // Extract superviews
 UIView *supersuper = self.superview.superview;
 UIScrollView *scrollView = (UIScrollView *) self.superview;

 // Calculate location of touch
 CGPoint touchLocation = [uigr locationInView:supersuper];

 // Handle touch based on recognizer state

 if(uigr.state == UIGestureRecognizerStateBegan)
 {
 // Initialize recognizer
 gestureWasHandled = NO;
 pointCount = 1;
 startPoint = touchLocation;
 }

 if(uigr.state == UIGestureRecognizerStateChanged)
 {
 pointCount++;

 // Calculate whether a swipe has occurred
 float dx = DX(touchLocation, startPoint);
 float dy = DY(touchLocation, startPoint);

 BOOL finished = YES;
 if ((dx > kSwipeDragMin) && (ABS(dy) < kDragLimitMax))
 touchtype = TouchSwipeLeft;
 else if ((-dx > kSwipeDragMin) && (ABS(dy) < kDragLimitMax))
 touchtype = TouchSwipeRight;
 else if ((dy > kSwipeDragMin) && (ABS(dx) < kDragLimitMax))
 touchtype = TouchSwipeUp;
 else if ((-dy > kSwipeDragMin) && (ABS(dx) < kDragLimitMax))
 touchtype = TouchSwipeDown;
 else
 finished = NO;

 // If unhandled and a downward swipe, produce a new draggable view
 if (!gestureWasHandled && finished &&
 (touchtype == TouchSwipeDown))
 {

ptg12441863

40 Chapter 1 Gestures and Touches

 dragView = [[DragView alloc] initWithImage:self.image];
 dragView.center = touchLocation;
 [supersuper addSubview: dragView];
 scrollView.scrollEnabled = NO;
 gestureWasHandled = YES;
 }
 else if (gestureWasHandled)
 {
 // allow continued dragging after detection
 dragView.center = touchLocation;
 }
 }

 if(uigr.state == UIGestureRecognizerStateEnded)
 {
 // ensure that the scroll view returns to scrollable
 if (gestureWasHandled)
 scrollView.scrollEnabled = YES;
 }

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

Recipe: Live Touch Feedback

Have you ever needed to record a demo for an iOS app? There’s always compromise involved.
Either you use an overhead camera and struggle with reflections and the user’s hand blocking
the screen or you use a tool like Reflection (http://reflectionapp.com) but you only get to see
what’s directly on the iOS device screen. These app recordings lack any indication of the user’s
touch and visual focus.

Recipe 1-13 offers a simple set of classes (called TOUCHkit) that provide a live touch feedback
layer for demonstration use. With it, you can see both the screen that you’re recording and the
touches that create the interactions you’re trying to present. It provides a way to compile your
app for both normal and demonstration deployment. You don’t change your core application
to use it. It’s designed to work as a single toggle, providing builds for each use.

To demonstrate this, the code shown in Recipe 1-13 is bundled in the sample code repository
with a standard Apple demo. This shows how you can roll the kit into nearly any standard
application.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook
http://reflectionapp.com

ptg12441863

41Recipe: Live Touch Feedback

Enabling Touch Feedback

You add touch feedback by switching on the TOUCHkit feature, without otherwise affecting
your normal code. To enable TOUCHkit, you set a single flag, compile, and use that build for
demonstration, complete with touch overlay. For App Store deployment, you disable the flag.
The application reverts to its normal behavior, and there are no App Store–unsafe calls to worry
about:

#define USES_TOUCHkit 1

This recipe assumes that you’re using a standard application with a single primary window.
When compiled in, the kit replaces that window with a custom class that captures and dupli-
cates all touches, allowing your application to show the user’s touch bubble feedback.

There is one key code-level change you must make, but it’s a very small one. In your applica-
tion delegate class, you define a WINDOW_CLASS to use when building your iOS screen:

#if USES_TOUCHkit
#import "TOUCHkitView.h"
#import "TOUCHOverlayWindow.h"
#define WINDOW_CLASS TOUCHOverlayWindow
#else
#define WINDOW_CLASS UIWindow
#endif

Then, instead of declaring a UIWindow , you use whichever class has been set by the toggle:

WINDOW_CLASS *window;
window = [[WINDOW_CLASS alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];

From here, you can set the window’s rootViewController as normal.

Intercepting and Forwarding Touch Events

The key to this overlay lies in intercepting touch events, creating a floating presentation above
your normal interface, and then forwarding those events on to your application. A TOUCHkit
view lies on top of your interface. The custom window class grabs user touch events and pres-
ents them as circles in the TOUCHkit view. It then forwards them as if the user were interacting
with a normal UIWindow . To accomplish this, this recipe uses event forwarding.

Event forwarding is achieved by calling a secondary event handler. The TOUCHOverlayWindow
class overrides UIWindow ’s sendEvent: method to force touch drawing and then invokes its
superclass implementation to return control to the normal responder chain.

The following implementation is drawn from Apple’s Event Handling Guide for iOS. It collects
all the touches associated with the current event, allowing Multi-Touch as well as single-touch
interactions; dispatches them to TOUCHkit view layer; and then redirects them to the window
via the normal UIWindow sendEvent: implementation:

ptg12441863

42 Chapter 1 Gestures and Touches

@implementation TOUCHOverlayWindow
- (void)sendEvent:(UIEvent *)event
{
 // Collect touches
 NSSet *touches = [event allTouches];
 NSMutableSet *began = nil;
 NSMutableSet *moved = nil;
 NSMutableSet *ended = nil;
 NSMutableSet *cancelled = nil;

 // Sort the touches by phase for event dispatch
 for(UITouch *touch in touches) {
 switch ([touch phase]) {
 case UITouchPhaseBegan:
 if (!began) began = [NSMutableSet set];
 [began addObject:touch];
 break;
 case UITouchPhaseMoved:
 if (!moved) moved = [NSMutableSet set];
 [moved addObject:touch];
 break;
 case UITouchPhaseEnded:
 if (!ended) ended = [NSMutableSet set];
 [ended addObject:touch];
 break;
 case UITouchPhaseCancelled:
 if (!cancelled) cancelled = [NSMutableSet set];
 [cancelled addObject:touch];
 break;
 default:
 break;
 }
 }

 // Create pseudo-event dispatch
 if (began)
 [[TOUCHkitView sharedInstance]
 touchesBegan:began withEvent:event];
 if (moved)
 [[TOUCHkitView sharedInstance]
 touchesMoved:moved withEvent:event];
 if (ended)
 [[TOUCHkitView sharedInstance]
 touchesEnded:ended withEvent:event];
 if (cancelled)
 [[TOUCHkitView sharedInstance]
 touchesCancelled:cancelled withEvent:event];

ptg12441863

43Recipe: Live Touch Feedback

 // Call normal handler for default responder chain
 [super sendEvent: event];

}
@end

Implementing the TOUCHkit Overlay View

The TOUCHkit overlay is a single clear UIView singleton. It’s created the first time the appli-
cation requests its shared instance, and the call adds it to the application’s key window. The
overlay’s user interaction flag is disabled, allowing touches to continue past the overlay and on
through the responder chain, even after processing those touches through the standard began/
moved/ended/cancelled event callbacks.

The touch processing events draw a circle at each touch point, creating a strong pointer to the
touches until that drawing is complete. Recipe 1-13 details the callback and drawing methods
that handle that functionality.

Recipe 1-13 Creating a Touch Feedback Overlay View

@implementation TOUCHkitView
{
 NSSet *touches;
 UIImage *fingers;

}

+ (instancetype)sharedInstance
{
 // Create shared instance if it does not yet exist
 if(!sharedInstance)
 {
 sharedInstance = [[self alloc] initWithFrame:CGRectZero];
 }

 // Parent it to the key window
 if (!sharedInstance.superview)
 {
 UIWindow *keyWindow = [UIApplication sharedApplication].keyWindow;
 sharedInstance.frame = keyWindow.bounds;
 [keyWindow addSubview:sharedInstance];
 }

 return sharedInstance;
}

// You can override the default touchColor if you want
- (instancetype)initWithFrame:(CGRect)frame

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

44 Chapter 1 Gestures and Touches

{
 self = [super initWithFrame:frame];
 if (self)
 {
 self.backgroundColor = [UIColor clearColor];
 self.userInteractionEnabled = NO;
 self.multipleTouchEnabled = YES;
 touchColor =
 [[UIColor whiteColor] colorWithAlphaComponent:0.5f];
 touches = nil;
 }
 return self;

}

// Basic touches processing
- (void)touchesBegan:(NSSet *)theTouches withEvent:(UIEvent *)event
{
 touches = theTouches;
 [self setNeedsDisplay];

}

- (void)touchesMoved:(NSSet *)theTouches withEvent:(UIEvent *)event
{
 touches = theTouches;
 [self setNeedsDisplay];

}

- (void)touchesEnded:(NSSet *)theTouches withEvent:(UIEvent *)event
{
 touches = nil;
 [self setNeedsDisplay];

}

// Draw touches interactively
- (void)drawRect:(CGRect)rect
{
 // Clear
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextClearRect(context, self.bounds);

 // Fill see-through
 [[UIColor clearColor] set];
 CGContextFillRect(context, self.bounds);

 float size = 25.0f; // based on 44.0f standard touch point

 for (UITouch *touch in touches)

ptg12441863

45Recipe: Adding Menus to Views

 {
 // Create a backing frame
 [[[UIColor darkGrayColor] colorWithAlphaComponent:0.5f] set];
 CGPoint aPoint = [touch locationInView:self];
 CGContextAddEllipseInRect(context,
 CGRectMake(aPoint.x - size, aPoint.y - size, 2 * size, 2 * size));
 CGContextFillPath(context);

 // Draw the foreground touch
 float dsize = 1.0f;
 [touchColor set];
 aPoint = [touch locationInView:self];
 CGContextAddEllipseInRect(context,
 CGRectMake(aPoint.x - size - dsize, aPoint.y - size - dsize,
 2 * (size - dsize), 2 * (size - dsize)));
 CGContextFillPath(context);
 }

 // Reset touches after use
 touches = nil;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

Recipe: Adding Menus to Views

The UIMenuController class allows you to add pop-up menus to any item that acts as a first
responder. Normally menus are used with text views and text fields, enabling users to select,
copy, and paste. Menus also provide a way to add actions to interactive elements like the small
drag views used throughout this chapter. Figure 1-6 shows a customized menu. In Recipe 1-14 ,
this menu is presented after long-tapping a flower. The actions will zoom, rotate, or hide the
associated drag view.

This recipe demonstrates how to retrieve the shared menu controller and assign items to it.
Set the menu’s target rectangle (typically the bounds of the view that presents it), adjust the
menu’s arrow direction, and update the menu with your changes. The menu can now be set
to visible.

Menu items work with standard target-action callbacks, but you do not assign the
target directly. Their target is always the first responder view. This recipe omits a
canPerformAction:withSender: responder check, but you’ll want to add that if

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

46 Chapter 1 Gestures and Touches

some views support certain actions and other views do not. With menus, that support is often
tied to the state. For example, you don’t want to offer a copy command if the view has no
content to copy.

Figure 1-6 Contextual pop-up menus allow you to add interactive actions to first responder
views.

Recipe 1-14 Adding Menus to Interactive Views

- (BOOL)canBecomeFirstResponder
{
 // Menus only work with first responders
 return YES;

}

- (void)pressed:(UILongPressGestureRecognizer *)recognizer
{
 if (![self becomeFirstResponder])
 {
 NSLog(@"Could not become first responder");

ptg12441863

47Summary

 return;
 }

 UIMenuController *menu = [UIMenuController sharedMenuController];
 UIMenuItem *pop = [[UIMenuItem alloc]
 initWithTitle:@"Pop" action:@selector(popSelf)];
 UIMenuItem *rotate = [[UIMenuItem alloc]
 initWithTitle:@"Rotate" action:@selector(rotateSelf)];
 UIMenuItem *ghost = [[UIMenuItem alloc]
 initWithTitle:@"Ghost" action:@selector(ghostSelf)];
 [menu setMenuItems:@[pop, rotate, ghost]];

 [menu setTargetRect:self.bounds inView:self];
 menu.arrowDirection = UIMenuControllerArrowDown;
 [menu update];
 [menu setMenuVisible:YES];

}

- (instancetype)initWithImage:(UIImage *)anImage
{
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UILongPressGestureRecognizer *pressRecognizer =
 [[UILongPressGestureRecognizer alloc] initWithTarget:self
 action:@selector(pressed:)];
 [self addGestureRecognizer:pressRecognizer];
 }
 return self;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

Summary

UIView s and their underlying layers provide the onscreen components your users see. Touch
input lets users interact directly with views via the UITouch class and gesture recognizers. As
this chapter has shown, even in their most basic form, touch-based interfaces offer easy-to-
implement flexibility and power. You discovered how to move views around the screen and
how to bound that movement. You read about testing touches to see whether views should or

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

48 Chapter 1 Gestures and Touches

should not respond to them. You saw how to “paint” on a view and how to attach recognizers
to views to interpret and respond to gestures. Here’s a collection of thoughts about the recipes
in this chapter that you might want to ponder before moving on:

 ■ Be concrete. iOS devices have perfectly good touch screens. Why not let your users drag
items around the screen or trace lines with their fingers? It adds to the reality and the
platform’s interactive nature.

 ■ Users typically have five fingers per hand. iPads, in particular, offer a lot of screen real
estate. Don’t limit yourself to a one-finger interface when it makes sense to expand your
interaction into Multi-Touch territory, screen space allowing.

 ■ A solid grounding in Quartz graphics and Core Animation will be your friend. Using
drawRect: , you can build any kind of custom UIView presentation you want, including
text, Bezier curves, scribbles, and so forth.

 ■ If Cocoa Touch doesn’t provide the kind of specialized gesture recognizer you’re looking
for, write your own. It’s not that hard, although it helps to be as thorough as possible
when considering the states your custom recognizer might pass through.

 ■ Use Multi-Touch whenever possible, especially when you can expand your application
to invite more than one user to touch the screen at a time. Don’t limit yourself to one-
person, one-touch interactions when a little extra programming will open doors of
opportunity for multiuser use.

 ■ Explore! This chapter only touches lightly on the ways you can use direct manipulation
in your applications. Use this material as a jumping-off point to explore the full
vocabulary of the UITouch class.

ptg12441863

2
Building and Using Controls

The UIControl class is the basis for many iOS interactive elements, such as buttons, text fields,
sliders, and switches. These view objects have more in common than just deriving from their
ancestor class. Controls all use similar layout paradigms and target-action triggers. Learning to
create a single control, no matter how specialized, teaches you how all controls work. Controls
may appear visually unique and specialized but use a single design pattern. This chapter intro-
duces controls and their use. You’ll discover how to build and customize controls in a variety of
ways. This chapter introduces a range of control recipes—from the prosaic to the obscure—you
can reuse in your apps.

The UIControl Class

In iOS, controls refer to the members of a library of prebuilt objects designed for user interac-
tion. Controls consist of buttons and text fields, sliders and switches, along with other Apple-
supplied objects. A control’s role is to transform user interactions into callbacks. Users touch
and manipulate controls and in doing so communicate with your application.

The UIControl class lies at the root of the control class tree. Controls are subclasses of UIView ,
from which they inherit all attributes for display and layout. The subclass adds a response
mechanism that enhances views with interactivity.

All controls implement ways to dispatch messages when users interact with their interface.
Controls send messages using a target-action pattern. When you define a new control, you
tell it who receives messages (the target), what messages to send (the action), and when to send
those messages (the triggering condition, such as a user completing a touch within its bounds).

Target-Action

The target-action design pattern offers a low-level way of responding to user interactions. You
encounter this pattern almost exclusively with children of the UIControl class. With target-
action, you tell the control to message a given object when a specific user event takes place. For

ptg12441863

50 Chapter 2 Building and Using Controls

example, you’d specify which object receives a selector when a user presses a button or adjusts
a slider.

You supply an arbitrary selector. The selector is not checked at runtime, so use caution in
preparing your code. The compiler will warn you if the selector specified is not declared, hope-
fully preventing a typo in the selector from going unnoticed and leading to a crash at runtime.
The following snippet sets a target-action pair that calls the playSound: selector when a user
releases a touch inside a button. If the target (self) does not implement that method, the
application crashes at runtime with an undefined method call error:

[button addTarget:self action:@selector(playSound:)
 forControlEvents:UIControlEventTouchUpInside];

Target-actions do not rely on an established method vocabulary the way delegates do. Unlike
with delegates and their required protocols, there are no guarantees about a playSound: imple-
mentation. It’s up to the developer to make sure that the callback refers to an existing method.
A cautious programmer will test a target before assigning a target-action pair with a given selec-
tor. Here’s an example:

if ([someObject respondsToSelector:@selector(playSound:)])
 [button addTarget:someObject action:@selector(playSound:)
 forControlEvents:UIControlEventTouchUpInside];

Standard UIControl target-action pairs always pass either zero, one, or two arguments. These
optional arguments offer the interaction object (such as a button, slider, or switch that has
been manipulated) and a UIEvent object that represents the user’s input. Your selector can
choose to pass the interaction object or the interaction object and the event. In the preced-
ing example, the selector uses one argument: the UIButton instance that was tapped. This
self-reference, where the triggered object is included with the call, enables you to build more
general action code that knows which control produced the callback.

Kinds of Controls

System-supplied members of the UIControl family include buttons, segmented controls,
switches, sliders, page controls, and text fields. Each of these controls can be found in Interface
Builder’s (IB’s) Object Library (Command-Control-Option-3, View > Utilities > Show Object
Library), as shown in Figure 2-1 .

ptg12441863

51The UiControl Class

Figure 2-1 Interface Builder provides its available controls in the Object Library. From
the top-left, these are labels (UILabel), buttons (UIButton), segmented controls
(UISegmentedControl), text fields (UITextField), sliders (UISlider), switches (UISwitch),
activity indicators and progress indicators (UIActivityIndicatorView and UIProgressView ,
although these are not technically controls), page controls (UIPageControl), and steppers
(UIStepper).

Control Events

Controls respond primarily to three kinds of events: those based on touch, those based on
value, and those based on edits. Table 2-1 lists the full range of event types available to
controls.

Table 2-1 UIControl Event Types

Event Type Use

UIControlEventTouchDown Touch A touch down event anywhere within a
control’s bounds.

UIControlEventTouchUpInside Touch A touch up event anywhere within a
control’s bounds. This is the most
common event type used for buttons.

UIControlEventTouchUpOutside Touch A touch up event that falls strictly out-
side a control’s bounds.

UIControlEventTouchDragEnter

UIControlEventTouchDragExit
Touch Events corresponding to drags that

cross into or out from the control’s
bounds.

UIControlEventTouchDragInside

UIControlEventTouchDragOutside
Touch Drag events limited to inside the con-

trol bounds or to just outside the con-
trol bounds.

UIControlEventTouchDownRepeat Touch A repeated touch down event with a
tapCount above 1 (for example, a
double-tap).

ptg12441863

52 Chapter 2 Building and Using Controls

Event Type Use

UIControlEventTouchCancel Touch A system event that cancels the cur-
rent touch. See Chapter 1 , “Gestures
and Touches,” for more details about
touch phases and life cycles.

UIControlEventAllTouchEvents Touch A mask that corresponds to all the
touch events listed so far, used to
catch any touch event.

UIControlEventValueChanged Value A user-initiated event that changes the
value of a control such as moving a
slider’s thumb or toggling a switch.

UIControlEventEditingDidBegin

UIControlEventEditingDidEnd
Editing Touches inside or outside a

UITextField . A touch inside begins
the editing session. A touch outside
ends it.

UIControlEventEditingChanged Editing An editing change to the contents of a
UITextField .

UIControlEventEditingDidEnd-

OnExit
Editing An event that ends an editing session

but not necessarily a touch outside its
bounds.

UIControlEventAllEditingEvents Editing A mask of all editing events.

UIControlEventApplication-

Reserved
Application An application-specific event range

(rarely, if ever, used).

UIControlEventSystemReserved System A system-specific event range (rarely, if
ever, used).

UIControlEventAllEvents Touch, value,
editing, applica-
tion, system

A mask of all touch, value, editing,
application, and system events.

For the most part, events break down along the following lines. Buttons use touch events;
the single UIControlEventTouchUpInside event accounts for nearly all button inter-
action and is the default event created by IB connections. Value events (for example,
UIControlEventValueChanged) correspond to user-initiated adjustments to segmented
controls, switches, sliders, and page controls. Refresh controls for tables also trigger value
events. When users switch, slide, or tap those objects, the control value changes. UITextField
objects trigger editing events. Users cause these events by tapping into (or out from) the text
field, or by changing the text field contents.

As with all iOS GUI elements, you can lay out controls in Xcode’s IB screen or instantiate them
in code. This chapter discusses some IB approaches but focuses more intently on code-based

ptg12441863

53Buttons

solutions. IB layout, once mastered, remains pretty much the same regardless of the item
involved. You place an object into the interface, customize it with inspectors and Auto Layout
constraints, and connect it to other IB objects.

Buttons

UIButton instances provide simple buttons. Users can tap them to trigger a callback via target-
action programming. You specify how the button looks, what art it uses, and what text it
displays.

iOS offers two ways to build buttons. You can use a typed button, selected from several prede-
signed styles, or build a custom button from scratch. The current iOS SDK offers very limited
precooked types. In iOS 7, the entire UI has been redesigned with a flat, minimalistic design.
One of the most noteworthy results of this redesign is the deprecation of the timeworn
rounded rectangle. The upshot is the addition of a very new style of button, one that is plain
(but bolded) text—the UIButtonTypeSystem type. In addition, many of the remaining button
types no longer have a distinguishing UI.

The typed buttons available are not general purpose. They were added to the SDK primarily
for Apple’s convenience, not yours. As a rule, Apple does not add UI features that it does not
primarily consume itself. Nonetheless, you can use them in your programs as needed if you
follow Apple’s Human Interface Guidelines (HIG). Figure 2-2 shows the five buttons.

Figure 2-2 iOS SDK offers five typed buttons with three visually distinct interfaces. You can
access them in IB or add them to your applications directly with code. The first symbol here
represents three buttons: Detail Disclosure, Info Light, and Info Dark. The other two buttons are
the Contact Add button and the System button.

 ■ Detail Disclosure — This is a blue outlined circle encasing the letter i , as seen when you
add a detail disclosure accessory to table cells. Detail disclosures are used in tables to lead
to a screen that shows details about the currently selected cell. Prior to iOS 7, this button
was represented by an encircled chevron.

 ■ Info Light and Info Dark — These two buttons are identical to the symbol provided
by the detail disclosure, offering a blue outlined, circled i —as you see on a Macintosh’s
Dashboard widget—and they are meant to provide access to an information or settings
screen. These are used in many basic applications to flip the view from one side to the
other.

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

54 Chapter 2 Building and Using Controls

 ■ Contact Add — This blue outlined circle with a corresponding blue + in its center can be
seen in the Mail application for adding new recipients to a mail message.

 ■ System — This button provides a transparent background and a text label. The System
button contains no bezel or background appearance but can accept a custom image or
text title.

Strictly speaking, UIButtonTypeCustom is also a “precooked” button in that it adds a label. As
it offers no further appearance support, most developers can treat it as a fully custom button.

To use a typed button in code, allocate it, set its frame or Auto Layout constraints, and add a
target. Don’t worry about adding custom art or creating the overall look of the button. The SDK
takes care of all that. For example, here’s how to build a simple System button:

UIButton *button = [UIButton buttonWithType:UIButtonTypeSystem];
[button setFrame: CGRectMake(0.0f, 0.0f, 80.0f, 30.0f)];
[button setCenter: self.view.center];
[button setTitle:@"Beep" forState:UIControlStateNormal];
[button addTarget:self action:@selector(playSound)
 forControlEvents:UIControlEventTouchUpInside];

[contentView addSubview:button];

To build one of the other standard button types, omit the title line. The System button is the
only precooked button type that uses a title.

In iOS 7, all UIView s, including UIButtons , support a tintColor property. This property is
special: Without any action, subviews will inherit the color from their parent view. In this way,
setting tintColor on the application’s root view can change the tint appearance throughout
the application. Set tintColor directly on a child view to override the inherited property.

For the typed buttons, tintColor allows the replacement of the default blue for a color of
your choosing. Throughout the Apple-provided views and controls in iOS 7, tintColor is most
often used to define a color that signifies interactivity or selection of the view.

Most buttons use the “touch up inside” trigger, where the user’s touch ends inside the button’s
bounds. iOS UI standards allow a user to cancel a button press by moving his or her finger off a
button before releasing the finger from the screen. The UIControlEventTouchUpInside event
choice mirrors that standard.

When using a precooked button, you must conform to Apple’s mobile HIG on how these
buttons can be used. Adding a detail disclosure, for example, to lead to an information page
can get your application rejected from the App Store. This might seem a proper extrapolation
of the button’s role, but if it does not meet the exact wording of how Apple expects the button
to be used, it may not pass review. (Obviously, this depends on the reviewer, but you’ll be hard
pressed to defend an application that violates the HIG.) To avoid potential issues, you might
want to use System and custom buttons wherever possible.

ptg12441863

55Buttons in Interface Builder

Buttons in Interface Builder

Buttons appear by default in the IB library as System button objects (see Figure 2-1). To use
them, drag them into your interface. You can then change them to another button type via
the Attributes inspector (View > Utility > Show Attributes Inspector, Command-Option-4). A
button-type pop-up appears at the top of the inspector. Use this pop-up menu to select the
button type you want to use.

If your button uses text, you can enter that text in the Title field. The Image and Background
pull-downs let you choose a primary and background image for the button. Each button
provides four configuration settings. The four button states are Default (the button in its
normal state), Highlighted (when a user is currently touching the button), Selected (an “on”
version of the button, for buttons that support toggled states), and Disabled (when the button
is unavailable for user interaction).

Changes in the Object Attributes > Button > State Config section apply to the currently selected
configuration. You might, for example, use a different button text color for a button in its
default state than for its disabled state.

To preview each state, locate the three check boxes in Object Attributes > Control > Content.
The Highlighted, Selected, and Enabled options let you set the button state. After previewing,
and before you compile, make sure you return the button to the actual state it needs to be in
when you first run the application.

Connecting Buttons to Actions

When you Control-drag (right-drag) from a button to an IB object such as the File’s Owner
view controller in the IB editor, IB presents a pop-up menu of actions to choose from. These
actions are polled from the target object’s available IBAction s. Connecting to an action creates
a target-action pair for the button’s Touch Up Inside event. You can also Control-drag from the
button to your code, and Xcode will add empty function definitions to your implementation
file.

Alternatively, you can Control-click (right-click) the button in the document outline, scroll
down to Touch Up Inside, and drag from the unfilled dot to the target you want to connect to
(in this case, the File’s Owner object). The same pop-up menu appears, with its list of available
actions.

Note

In IB, you also encounter buttons that look like button views and act like views but are not, in
fact, views. Bar button items (UIBarButtonItem) store the properties of toolbar and naviga-
tion bar buttons but are not buttons themselves. The toolbars and navigation bars build buttons
internally to represent these logical entities.

ptg12441863

56 Chapter 2 Building and Using Controls

Recipe: Building Buttons

When using the UIButtonTypeCustom style, you supply all button art. The number of images
depends on how you want the button to work. For a simple pushbutton, you might add a
single background image and vary the label color to highlight when the button is pushed.

For a toggle-style button, you might use four images: for the “off” state in a normal presenta-
tion, the off state when highlighted (that is, pressed), and two more for the “on” state. You
choose and design the interaction details, making sure to add local state (the Boolean isOn
instance variable in Recipe 2-1) to extend a simple pushbutton to a toggle. If you supply a
normal image to buttons and do not specify highlight or disabled images, iOS automatically
generates these variants for you.

Recipe 2-1 builds a button that toggles on and off, demonstrating the basic detail that goes
into building custom buttons. When tapped, the button switches its art from green (on) to red
(off), or from red to green. This allows your (noncolorblind) users to instantly identify a current
state. The displayed text reinforces the state setting. Figure 2-3 (left) shows the button created
by this recipe.

Figure 2-3 Use UIImage stretching to resize art for arbitrary button widths. Set the left cap
width to specify where the stretching can take place.

ptg12441863

57Recipe: Building Buttons

The UIImage resizable image calls in this recipe play an important role in button creation.
Resizable images enable you to create buttons of arbitrary width and turn circular art into
lozenge-shaped buttons. You specify the caps (that is, the art that should not be stretched).
In this case, the cap is 110 pixels wide on the left and right. If you were to change the button
width from the 300 pixels used in this recipe to 220, the button would lose the middle stretch,
as shown in Figure 2-3 (right).

Buttons can assign image and background image by state. Images set the actual content of the
button. Background images provide resizable backdrops over which images and title text may
appear. Recipe 2-1 uses background images, letting the button’s built-in title field float over the
supplied art.

Note

You can round the corners of your views and buttons to different degrees by adjusting layer
properties. Adding the Quartz Core framework to your project lets you access view layers,
where you can set the layer’s cornerRadius property programmatically. Then set the view’s
clipsToBounds property to YES to achieve that Apple look.

Recipe 2-1 Building a UIButton That Toggles On and Off

#define CAPWIDTH 110.0f
#define INSETS (UIEdgeInsets){0.0f, CAPWIDTH, 0.0f, CAPWIDTH}
#define BASEGREEN [[UIImage imageNamed:@"green-out.png"] \
 resizableImageWithCapInsets:INSETS]

#define PUSHGREEN [[UIImage imageNamed:@"green-in.png"] \
 resizableImageWithCapInsets:INSETS]

#define BASERED [[UIImage imageNamed:@"red-out.png"] \
 resizableImageWithCapInsets:INSETS]

#define PUSHRED [[UIImage imageNamed:@"red-in.png"] \
 resizableImageWithCapInsets:INSETS]

- (void)toggleButton:(UIButton *)aButton
{
 self.isOn = !self.isOn;
 if (self.isOn)
 {
 [self setBackgroundImage:BASEGREEN
 forState:UIControlStateNormal];
 [self setBackgroundImage:PUSHGREEN
 forState:UIControlStateHighlighted];
 [self setTitle:@"On" forState:UIControlStateNormal];
 [self setTitle:@"On" forState:UIControlStateHighlighted];
 }
 else
 {

ptg12441863

58 Chapter 2 Building and Using Controls

 [self setBackgroundImage:BASERED
 forState:UIControlStateNormal];
 [self setBackgroundImage:PUSHRED
 forState:UIControlStateHighlighted];
 [self setTitle:@"Off" forState:UIControlStateNormal];
 [self setTitle:@"Off" forState:UIControlStateHighlighted];
 }

}

+ (instancetype)button
{
 PushButton *button =
 [PushButton buttonWithType:UIButtonTypeCustom];

 // Set up the button alignment properties
 button.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 button.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 // Set the font and color
 [button setTitleColor:
 [UIColor whiteColor] forState:UIControlStateNormal];
 [button setTitleColor:
 [UIColor lightGrayColor] forState:UIControlStateHighlighted];
 button.titleLabel.font = [UIFont boldSystemFontOfSize:24.0f];

 // Set up the art
 [button setBackgroundImage:BASEGREEN
 forState:UIControlStateNormal];
 [button setBackgroundImage:PUSHGREEN
 forState:UIControlStateHighlighted];
 [button setTitle:@"On" forState:UIControlStateNormal];
 [button setTitle:@"On" forState:UIControlStateHighlighted];
 button.isOn = YES;

 // Add action. Client can add one too.
 [button addTarget:button action:@selector(toggleButton:)
 forControlEvents: UIControlEventTouchUpInside];

 return button;
}

ptg12441863

59Recipe: Building Buttons

Multiline Button Text

The button’s titleLabel property allows you to modify title attributes such as its font and
line break mode. Here, the font is set to a very large value (basically ensuring that the text
needs to wrap to display correctly) and used with word wrap and centered alignment:

button.titleLabel.font = [UIFont boldSystemFontOfSize:36.0f];
[button setTitle:@"Lorem Ipsum Dolor Sit" forState:
 UIControlStateNormal];

button.titleLabel.textAlignment = UITextAlignmentCenter;
button.titleLabel.lineBreakMode = UILineBreakModeWordWrap;

By default, button labels stretch from one end of your button to the other. This means that
text may extend farther out than you might otherwise want, possibly beyond the edges of your
button art. To fix this problem, you can force carriage returns in word wrap mode by embed-
ding new line literals (that is, \n) into the text. This allows you to control how much text
appears on each line of the button title.

Adding Animated Elements to Buttons

When working with buttons, you can creatively layer art in front of or behind the buttons. Use
the standard UIView hierarchy to do this, making sure to disable user interaction for any view
that might otherwise obscure your button (setUserInteractionEnabled:NO). The image view
contents “leak” through to the viewer, enabling you to add live animation elements to the
button.

The sample art used in Recipe 2-1 is translucent, allowing you to experiment with this
approach. The sample code for this recipe adds optional butterfly art that you can layer behind
the button and animate.

Animated elements are particularly helpful when you’re trying to show state, such as an opera-
tion in progress. They can communicate to users why a button has become unresponsive or
creates a different reaction to being pressed. For example, a turbo-enhanced button in a game
might provide extra force when tapped. An animated visual helps users identify the change in
functionality.

Separating art and text away from button implementation can play other roles in your devel-
opment. Adding these elements behind or on top of an otherwise empty button allows you to
localize both graphic design and phrasing based on your intended deployment without having
to redesign the button directly.

Adding Extra State to Buttons

Recipe 2-1 creates a two-state button, providing visuals for on and off states. At times, you
may want to implement buttons with further easy-to-distinguish states. Games provide the
most common example of this. Many developers implement buttons that typically showcase

ptg12441863

60 Chapter 2 Building and Using Controls

four states: locked levels, unlocked-but-not-played, unlocked-and-partially-played, and
unlocked-and-mastered.

Recipe 2-1 uses a simple Boolean toggle (the isOn instance variable) to store the on/off state
and to select the art used (in the toggleButton: method) based on that state. You can easily
expand this example for a wider range of art and button states by storing the state as an integer
and providing a switch statement for art selection.

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 2 .

Recipe: Animating Button Responses

There’s more to UIControl instances than frames and target-action. All controls inherit from
the UIView class. This means you can use UIView animation blocks when working with
controls just as you would with standard views. Recipe 2-2 builds a toggle switch that zooms
itself whenever a user touches it and returns to its original size when the touch leaves the
control.

This recipe creates a livelier interaction element that helps focus greater attention on the
control in question.

Note

To add a little flare to your instances, note that buttons support delicious
NSAttributedString values via setAttributedTitleForState: . Recipe 2-4 , which
follows later in this chapter, updates a segmented control’s text color using this method.

Recipe 2-2 Adding UIView Animation Blocks to Controls

- (void)zoomButton:(id)sender
{
 // Slightly enlarge the button
 [UIView animateWithDuration:0.2f animations:^{
 button.transform =
 CGAffineTransformMakeScale(1.1f, 1.1f);}];

}

- (void)relaxButton:(id)sender
{
 // Return the button to its normal size
 [UIView animateWithDuration:0.2f animations:^{
 button.transform = CGAffineTransformIdentity;}];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

61Recipe: Animating Button Responses

}

- (void)toggleButton:(UIButton *)button
{
 self.isOn = !self.isOn;
 if (self.isOn)
 {
 [button setTitle:@"On" forState:UIControlStateNormal];
 [button setTitle:@"On" forState:UIControlStateHighlighted];
 [button setBackgroundImage:BASEGREEN
 forState:UIControlStateNormal];
 [button setBackgroundImage:PUSHGREEN
 forState:UIControlStateHighlighted];
 }
 else
 {
 [button setTitle:@"Off" forState:UIControlStateNormal];
 [button setTitle:@"Off"
 forState:UIControlStateHighlighted];
 [button setBackgroundImage:BASERED
 forState:UIControlStateNormal];
 [button setBackgroundImage:PUSHRED
 forState:UIControlStateHighlighted];
 }
 [self relaxButton:button];

}

+ (instancetype)button
{
 PushButton *button =
 [PushButton buttonWithType:UIButtonTypeCustom];

 // Add actions
 [button addTarget:button action:@selector(toggleButton:)
 forControlEvents: UIControlEventTouchUpInside];
 [button addTarget:button action:@selector(zoomButton:)
 forControlEvents: UIControlEventTouchDown |
 UIControlEventTouchDragInside |
 UIControlEventTouchDragEnter];
 [button addTarget:button action:@selector(relaxButton:)
 forControlEvents: UIControlEventTouchDragExit |
 UIControlEventTouchCancel |
 UIControlEventTouchDragOutside];

 return button;
}

ptg12441863

62 Chapter 2 Building and Using Controls

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

Recipe: Adding a Slider with a Custom Thumb

UISlider instances provide a control that allows users to choose a value by sliding a knob
(called its thumb) between its left and right extents. You’ve seen sliders in the Music applica-
tion, where the UISlider class is used to control volume.

Slider values default to 0.0 for the minimum and 1.0 for the maximum, although you can
easily customize these in the IB Attributes inspector or by setting the minimumValue and
maximumValue properties. To stylize the ends of the control, add a related pair of images
(minimumValueImage and maximumValueImage) that reinforce those settings. For example,
you might show a snowman on one end and a steaming cup of tea on the other for a slider
that controls temperature settings.

You can also set the color of the track before and after the thumb as well as the thumb itself—
by adjusting the minimumTrackTintColor , maximumTrackTintColor , and thumbTintColor
properties. In iOS 7, setting the minimumTrackTintColor to nil defaults the area before the
thumb to the tint color of the parent view. The other properties revert to their default color
when set to nil .

The slider’s continuous property controls whether a slider continually sends value updates as a
user drags the thumb. When set to NO (the default is YES), the slider sends an action event only
when the user releases the thumb.

Customizing UISlider

In addition to setting minimum and maximum images, the UISlider class lets you directly
update its thumb component. You can set a thumb to whatever image you like by calling
setThumbImage:forState: . Recipe 2-3 takes advantage of this option to dynamically build
thumb images on-the-fly, as shown in Figure 2-4 . The indicator bubble appears above the user’s
finger as part of the custom-built thumb. This bubble provides instant feedback both textu-
ally (the number inside the bubble) and graphically (the shade of the bubble reflects the slider
value, moving from black to white as the user drags).

Note

When compositing a UIView , iOS creates a bitmap for the view’s layer. The performance is
approximately the same between using a custom view and using a custom-generated bitmap.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

63Recipe: Adding a Slider with a Custom Thumb

Figure 2-4 Core Graphics/Quartz calls enable this slider’s thumb image to dim or brighten
based on the current slider value. The text inside the thumb bubble mirrors that value. (As the
user slides, the stretched icon adjusts its size to provide additional feedback as a sample of a
target-action client in the recipe sample code.)

This kind of dynamically built feedback could be based on any kind of data. You might grab
values from onboard sensors or make calls out to the Internet just as easily as you use the user’s
finger movement with a slider. No matter what live update scheme you use, dynamic updates
are certainly graphics intensive—but it’s not as expensive as you might fear. The Core Graphics
calls are fast, and the memory requirements for the thumb-sized images are minimal.

This particular recipe assigns two thumb images to the slider. The bubble appears only
when the slider is in use, for its UIControlStateHighlighted . In its normal state, namely
UIControlStateNormal , only the smaller rectangular thumb appears. Users can tap on the
thumb to review the current setting. The context-specific feedback bubble mimics the letter
highlights on the standard iOS keyboard.

www.allitebooks.com

http://www.allitebooks.org

ptg12441863

64 Chapter 2 Building and Using Controls

To accommodate these changes in art, the slider updates its frame at the start and end of
each gesture. On being touched (UIControlEventTouchDown), the frame expands by 60
pixels in height. This extra space provides enough room to show the expanded thumb during
interaction.

When the finger is removed from the screen (UIControlEventTouchUpInside or
UIControlEventTouchUpOutside), the slider returns to its previous dimensions. This restores
space to other objects, ensuring that the slider will not activate unless a user directly touches it.

Adding Efficiency

Recipe 2–3 stores a previous value for the slider to minimize the overall computational burden
on iOS. It updates the thumb with a new custom image when the slider has changed by at least
0.1, or 10% in value. You can omit this check, if you want, and run the recipe with full live
updating. This provided reasonably fast updates even on a first-generation iPod touch unit. On
recent iPhones and iPads, it has no performance issues at all.

This recipe also avoids any issues at the ends of the slider—namely when the thumb gets
caught at 0.9 and won’t update properly to 1.0. In this recipe, a hard-coded workaround for
values above 0.98 handles that particular situation by forcing updates.

Recipe 2-3 Building Dynamic Slider Thumbs

/* Thumb.m */
// Create a thumb image using a grayscale/numeric level
UIImage *thumbWithLevel(float aLevel)
{
 float INSET_AMT = 1.5f;
 CGRect baseRect = CGRectMake(0.0f, 0.0f, 40.0f, 100.0f);
 CGRect thumbRect = CGRectMake(0.0f, 40.0f, 40.0f, 20.0f);

 UIGraphicsBeginImageContext(baseRect.size);
 CGContextRef context = UIGraphicsGetCurrentContext();

 // Create a filled rect for the thumb
 [[UIColor darkGrayColor] setFill];
 CGContextAddRect(context,
 CGRectInset(thumbRect, INSET_AMT, INSET_AMT));
 CGContextFillPath(context);

 // Outline the thumb
 [[UIColor whiteColor] setStroke];
 CGContextSetLineWidth(context, 2.0f);
 CGContextAddRect(context,
 CGRectInset(thumbRect, 2.0f * INSET_AMT, 2.0f * INSET_AMT));
 CGContextStrokePath(context);

ptg12441863

65Recipe: Adding a Slider with a Custom Thumb

 // Create a filled ellipse for the indicator
 CGRect ellipseRect = CGRectMake(0.0f, 0.0f, 40.0f, 40.0f);
 [[UIColor colorWithWhite:aLevel alpha:1.0f] setFill];
 CGContextAddEllipseInRect(context, ellipseRect);
 CGContextFillPath(context);

 // Label with a number
 NSString *numString =
 [NSString stringWithFormat:@"%0.1f", aLevel];
 UIColor *textColor = (aLevel > 0.5f) ?
 [UIColor blackColor] : [UIColor whiteColor];
 UIFont *font = [UIFont fontWithName:@"Georgia" size:20.0f];
 NSMutableParagraphStyle *style =
 [[NSMutableParagraphStyle alloc] init];
 style.lineBreakMode = NSLineBreakByCharWrapping;
 style.alignment = NSTextAlignmentCenter;
 NSDictionary *attr = @{NSFontAttributeName:font,
 NSParagraphStyleAttributeName:style,
 NSForegroundColorAttributeName:textColor};
 [numString drawInRect:CGRectInset(ellipseRect, 0.0f, 6.0f)
 withAttributes:attr];

 // Outline the indicator circle
 [[UIColor grayColor] setStroke];
 CGContextSetLineWidth(context, 3.0f);
 CGContextAddEllipseInRect(context,
 CGRectInset(ellipseRect, 2.0f, 2.0f));
 CGContextStrokePath(context);

 // Build and return the image
 UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return theImage;

}

// Return a base thumb image without the bubble
UIImage *simpleThumb()
{
 float INSET_AMT = 1.5f;
 CGRect baseRect = CGRectMake(0.0f, 0.0f, 40.0f, 100.0f);
 CGRect thumbRect = CGRectMake(0.0f, 40.0f, 40.0f, 20.0f);

 UIGraphicsBeginImageContext(baseRect.size);
 CGContextRef context = UIGraphicsGetCurrentContext();

 // Create a filled rect for the thumb
 [[UIColor darkGrayColor] setFill];

ptg12441863

66 Chapter 2 Building and Using Controls

 CGContextAddRect(context,
 CGRectInset(thumbRect, INSET_AMT, INSET_AMT));
 CGContextFillPath(context);

 // Outline the thumb
 [[UIColor whiteColor] setStroke];
 CGContextSetLineWidth(context, 2.0f);
 CGContextAddRect(context,
 CGRectInset(thumbRect, 2.0f * INSET_AMT, 2.0f * INSET_AMT));
 CGContextStrokePath(context);

 // Retrieve the thumb
 UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return theImage;

}

/* CustomSlider.m */
// Update the thumb images as needed
- (void)updateThumb
{
 // Only update the thumb when registering significant changes
 if ((self.value < 0.98) &&
 (ABS(self.value - previousValue) < 0.1f)) return;

 // create a new custom thumb image for the highlighted state
 UIImage *customImg = thumbWithLevel(self.value);
 [self setThumbImage:customImg
 forState:UIControlStateHighlighted];
 previousValue = self.value;

}

// Expand the slider to accommodate the bigger thumb
- (void)startDrag:(UISlider *)aSlider
{
 self.frame = CGRectInset(self.frame, 0.0f, -30.0f);

}

// At release, shrink the frame back to normal
- (void)endDrag:(UISlider *)aSlider
{
 self.frame = CGRectInset(self.frame, 0.0f, 30.0f);

}

- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame:aFrame];

ptg12441863

67Recipe: Creating a Twice-Tappable Segmented Control

 if (self)
 {
 // Initialize slider settings
 previousValue = CGFLOAT_MIN;
 self.value = 0.0f;

 [self setThumbImage:simpleThumb()
 forState:UIControlStateNormal];

 // Create the callbacks for touch, move, and release
 [self addTarget:self action:@selector(startDrag:)
 forControlEvents:UIControlEventTouchDown];
 [self addTarget:self action:@selector(updateThumb)
 forControlEvents:UIControlEventValueChanged];
 [self addTarget:self action:@selector(endDrag:)
 forControlEvents:UIControlEventTouchUpInside |
 UIControlEventTouchUpOutside];
 }
 return self;

}

+ (instancetype)slider
{
 CustomSlider *slider = [[CustomSlider alloc]
 initWithFrame:(CGRect){.size=CGSizeMake(200.0f, 40.0f)}];

 return slider;
}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

Recipe: Creating a Twice-Tappable Segmented Control

The UISegmentedControl class presents a multiple-button interface, where users can choose
one choice out of a group. The control provides two styles of use (not to be confused with
UISegmentedControlStyle , which alters the control UI and has been deprecated in iOS 7). In
its normal radio-button-style mode, a button once selected remains selected. Users can tap on
other buttons, but they cannot generate a new event by retapping their existing choice. The
alternative style, provided by the momentary Boolean property, lets users tap on each button as
many times as desired but stores no state about a currently selected item. It provides no high-
lights to indicate the most recent selection.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

68 Chapter 2 Building and Using Controls

Recipe 2-4 builds a hybrid approach. It allows users to see their currently selected option and to
reselect that choice if needed. This is not the way segmented controls normally work. There are
times, though, when you want to generate a new result on reselection (as in momentary mode)
while visually showing the most recent selection (as in radio button mode).

Unfortunately, “obvious” solutions to create this desired behavior don’t work.
You cannot add target-action pairs that detect UIControlEventTouchUpInside.
UIControlEventValueChanged is the only control event generated by UISegmentedControl
instances. (You can easily test this yourself by adding a target-action pair for touch events.)

Here is where subclassing comes in to play. It’s relatively simple to create a new class based on
UISegmentedControl that does respond to that second tap. Recipe 2-4 defines that class. Its
code works by detecting when a touch has occurred, operating independently of the segmented
control’s internal touch handlers that are subclassed from UIControl .

Segment switches remain unaffected; they’ll continue to update and switch back and forth
as users tap them. Unlike with the parent class, touches on an already-touched segment
continue to do something. In this case, they request that the object’s delegate produce the
performSegmentAction method.

Don’t add target-action pairs to your segmented controllers the way you would normally. Since
all touch down events are detected, target-actions for value-changed events would add a second
callback and trigger twice whenever you switched segments. Instead, implement the delegate
callback and let object delegation handle the updates.

Second-Tap Feedback

With the ability to detect a second tap, the user can be provided feedback of a reselection, such
as changing the title in the navigation bar. Another alternative is modifying the attributes of
the text in the segmented control. UIKit’s text attribute feature (first introduced in iOS 5.x)
offers an excellent match to this challenge. Segment controls provide optional attributes based
on state. The setTitleTextAttributes:forState: method lets you introduce a visual flour-
ish limited to the selected segment. Recipe 2-4 uses this method to change the selected text
color from white to red after a second tap, and it resets that change after the user selects an
alternate segment, as shown in Figure 2-5 .

ptg12441863

69Recipe: Creating a Twice-Tappable Segmented Control

Figure 2-5 By detecting the multiple taps, you can provide the user feedback of this normally
unrepresented action on a segmented control. Using attributed strings, text can be decorated to
further accent the selection.

Controls and Attributes

Beginning with iOS 6, many UIKit classes, including text fields, text views, labels, buttons, and
refresh controls allow you to assign attributed (Core Text–style) strings to their text and title
properties:

[myButton setAttributedTitle:attributedString forState:UIControlStateNormal]

In iOS 7, Apple expanded the vocabulary of text attributes such as font, color, and shadow that
can be configured. A full listing of attributes that can be applied to text in an attributed string
can be found in the NSAttributedString class reference, under Character Attributes.

For segmented controls and bar items, set attributes by calling setTitleTextAttributes:
forState: . Pass an attribute dictionary using the available dictionary keys and values, such as
those in the following abbreviated list:

ptg12441863

70 Chapter 2 Building and Using Controls

 ■ NSFontAttributeName — Provides a UIFont instance.

 ■ NSForegroundColorAttributeName — Provides a UIColor instance.

 ■ NSShadowAttributeName — Provides an NSShadow instance that can specify shadow
offset, blur radius, and shadow color.

 ■ NSUnderlineStyleAttributeName — Provides an NSNumber instance that wraps the
number of required underlines.

For example, Recipe 2-4 sets a segmented control’s text color to white for its selected state.
Whenever the control is selected twice in a row, the text color changes from white to red.

Recipe 2-4 Creating a Segmented Control Subclass That Responds to a Second Tap

@class SecondTapSegmentedControl;

@protocol SecondTapSegmentedControlDelegate <NSObject>
- (void) performSegmentAction: (SecondTapSegmentedControl *) aDTSC;
@end

@interface SecondTapSegmentedControl : UISegmentedControl
@property (nonatomic, weak)
 id <SecondTapSegmentedControlDelegate> tapDelegate;

@end

@implementation SecondTapSegmentedControl
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 [super touchesEnded:touches withEvent:event];

 if (self.tapDelegate)
 [self.tapDelegate performSegmentAction:self];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 2 .

Working with Switches and Steppers

The UISwitch object offers a simple on/off toggle that lets users choose a Boolean value. The
switch object contains a single (settable) value property, called on . This property returns either
YES or NO , depending on the current state of the control. You can programmatically update

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

71Working with Switches and Steppers

a switch’s value by changing the property value directly or calling setOn:animated: , which
offers a way to animate the change:

- (void)didSwitch:(UISwitch *)theSwitch
{
 self.title = [NSString stringWithFormat:@"%@"
 theSwitch.on ? @"On" : @"Off"];

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 // Create the switch
 UISwitch *theSwitch = [[UISwitch alloc] init];

 // Trigger on value changes
 [theSwitch addTarget:self action:@selector(didSwitch:)
 forControlEvents:UIControlEventValueChanged];

 [self.view addSubview:theSwitch];

 // Initialize to "off"
 theSwitch.on = NO;
 self.title = @"Off";

}

In this example, when the switch updates, it changes the view controller’s title. IB offers rela-
tively few options for working with a switch. You can enable it and set its initial value, but
beyond that there’s not much to customize. A switch produces a value-changed event when a
user adjusts it.

Note

Do not name UISwitch instances as switch . Recall that switch is a reserved C word; it is
used for conditional statements. This simple oversight has tripped up many iOS developers.

The UIStepper class provides an alternative to sliders and switches. Whereas a slider offers a
continuous range of values, a switch offers a simple Boolean on/off choice; steppers fall some-
what in the middle. Instances present a pair of buttons, one labeled – and the other labeled +.
These iteratively increment or decrement the value property.

You generally want to assign a range to the control by setting its minimumValue and
maximumValue to some reasonable bounds so the control ties in more tightly to actual applica-
tion features such as volume, speed, and other measurable amounts. You do not have to do so,
but there are few use cases in which you want to allow user input for unbounded variables. You
can make the stepper “wrap” by setting its wraps property to YES . When the value exceeds the

ptg12441863

72 Chapter 2 Building and Using Controls

maximum or falls below the minimum, the value wraps around from min to max or max to
min, depending on the button pressed.

By default, the stepper autorepeats. That is, it continues to change as long as the user holds one
of its buttons. You can disable this by setting the autorepeat property to NO . The amount the
value changes at each tap is controlled by the stepValue property. Don’t ever set stepValue
to 0 or a negative number, or you’ll raise a runtime exception.

You can configure the interfaces of both switches and steppers with tint color properties
and custom artwork. For switches, this includes the onTintColor , tintColor , and
thumbTintColor properties for custom coloring and onImage and OffImage properties
for custom artwork. UIStepper includes tintColor as well as divider, increment, and
decrement images that you can configure by state.

Recipe: Subclassing UIControl

UIKit provides many prebuilt controls that you can use directly in your applications. There are
buttons and switches and sliders and more. But why stop there? You don’t have to limit your-
self to Apple-supplied items. Why not create your own?

Recipe 2-5 demonstrates how to subclass UIControl to build new controls from scratch. This
example creates a simple color picker. It lets the user select a color by touching or dragging
within the control. As the user traces left and right, the color changes hue. Up and down move-
ments adjust the color’s saturation. The brightness and alpha levels for the color are fixed at
100%.

This is a really simple control to work with because there’s not much interaction involved
beyond retrieving the x and y coordinates of the touch. It provides a basic example that
demonstrates most of the development issues involved in subclassing UIControl .

So why build custom controls? First, you can set your own design style. Elements that you
place into your interface can and should match your application’s aesthetics. If Apple’s prebuilt
switches, sliders, and other GUI elements don’t provide a natural fit into your interface,
custom-built controls satisfy your application’s needs without sacrificing cohesive design.

Second, you can create controls that Apple didn’t provide. From selecting ratings by swiping
through a series of stars, or choosing a color from a set of pop-up crayons, custom controls
allow your app to interact with the user beyond the system-supplied buttons and switches in
the SDK. It’s easy to build unique eye-catching interactive elements by subclassing UIControl .

Finally, custom controls allow you to add features that you cannot access directly or through
subclassing. With relatively little work, you can build your own buttons and steppers from the
ground up, which means you can adjust their interaction vocabulary exactly as you wish.

Always keep your custom items visually distinct from system supplied ones. Don’t run afoul
of HIG issues. When you do use lookalike items, you may want to add a note to Apple when
submitting apps to the App Store. Make it clear that you have created a new class rather than
using private APIs or otherwise accessing Apple’s objects in a manner that’s not App Store safe.

ptg12441863

73Recipe: Subclassing UIControl

Even then, you might be rejected for creating items that could potentially “confuse” the end
user.

Creating Controls

The process of building a UIControl generally involves four distinct steps. As Recipe 2-5
demonstrates, you begin by subclassing UIControl to create a new custom class. In that class,
you lay out the visual look of the control in your initialization. Next, you build methods to
track and interpret touches, and you finish by generating events and visual feedback.

Nearly all controls offer value of some kind. For example, switches have isOn , sliders have a
floating-point value , and text fields offer text . The kinds of values you provide with a custom
control are arbitrary. They can be integers, floats, strings, or even (as in Recipe 2-5) colors.

In Recipe 2-5 , the control layout is basically a colored rectangle. More complex controls require
more complex layout, but even a simple layout like the one shown here can provide all the
touch interaction space and feedback needed for a coherent end-user experience.

Tracking Touches

UIControl instances use an embedded method set to work with touches. These methods allow
the control to track touches throughout their interaction with the control object:

 ■ beginTrackingWithTouch:withEvent: — Called when a touch enters a control’s
bounds.

 ■ continueTrackingWithTouch:withEvent: — Follows the touch with repeated calls as
the touch remains within the control bounds.

 ■ endTrackingWithTouch:withEvent: — Handles the last touch for the event.

 ■ cancelTrackingWithEvent: — Manages a touch cancellation.

Add your custom control logic by implementing any or all these methods in a UIControl
subclass. Recipe 2-5 uses the begin and continue methods to locate the user touch and track it
until the touch is lifted or otherwise leaves the control.

Dispatching Events

Controls use target-action pairs to communicate changes triggered by events. When you build
a new control, you must decide what kind of events your object will generate and add code to
trigger those events.

Add dispatching to your custom control by calling sendActionsForControlEvents: . This
method lets you send an event (for example, UIControlEventValueChanged) to your control’s
targets. Controls transmit these updates by messaging the UIApplication singleton. As Apple
notes, the application acts as the centralized dispatch point for all messages.

ptg12441863

74 Chapter 2 Building and Using Controls

No matter how simple your class, make sure your control vocabulary is as complete as possible.
You cannot anticipate exactly how the class will be used in the future. Overdesigning your
events provides flexibility for future use. Recipe 2-5 dispatches a wide range of events for what
is, after all, a very simple control.

Where you dispatch events depends a lot on the control you end up building. Switch controls,
for example, are really only interested in touch up events, which is when their value changes.
Sliding controls, in contrast, center on touch movement and require continuing updates as the
control tracks finger movement. Adjust your coding accordingly and be mindful of presenting
appropriate visual changes during all parts of your touch cycle.

Recipe 2-5 Building a Custom Color Control

@implementation ColorControl
- (instancetype)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 self.backgroundColor = [UIColor grayColor];
 }
 return self;

}

- (void)updateColorFromTouch:(UITouch *)touch
{
 // Calculate hue and saturation
 CGPoint touchPoint = [touch locationInView:self];
 float hue = touchPoint.x / self.frame.size.width;
 float saturation = touchPoint.y / self.frame.size.height;

 // Update the color value and change background color
 self.value = [UIColor colorWithHue:hue
 saturation:saturation brightness:1.0f alpha:1.0f];
 self.backgroundColor = self.value;
 [self sendActionsForControlEvents:UIControlEventValueChanged];

}

// Continue tracking touch in control
- (BOOL)continueTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if drag is currently inside or outside
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.frame, touchPoint))
 {
 // Update color value

ptg12441863

75Recipe: Subclassing UIControl

 [self updateColorFromTouch:touch];

 [self sendActionsForControlEvents:
 UIControlEventTouchDragInside];
 }
 else
 {
 [self sendActionsForControlEvents:
 UIControlEventTouchDragOutside];
 }

 return YES;
}

// Start tracking touch in control
- (BOOL)beginTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Update color value
 [self updateColorFromTouch:touch];

 // Touch Down
 [self sendActionsForControlEvents:UIControlEventTouchDown];

 return YES;
}

// End tracking touch
- (void)endTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if touch ended inside or outside
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.bounds, touchPoint))
 {
 // Update color value
 [self updateColorFromTouch:touch];

 [self sendActionsForControlEvents:
 UIControlEventTouchUpInside];
 }
 else
 {
 [self sendActionsForControlEvents:
 UIControlEventTouchUpOutside];
 }

}

ptg12441863

76 Chapter 2 Building and Using Controls

// Handle touch cancel
- (void)cancelTrackingWithEvent:(UIEvent *)event
{
 [self sendActionsForControlEvents:UIControlEventTouchCancel];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

Recipe: Building a Star Slider

Rating sliders allow users to grade items such as movies, software, and so forth by dragging
their fingers across a set of images. It’s a common task for touch-based interfaces but one that’s
not well served by a simple UISlider instance, with its floating-point values. Instead, a picker
like the one built in Recipe 2-6 limits a user’s choice to a discrete set of elements, producing
a bounded integer value between zero and the maximum number of items shown. As a user’s
finger touches each star, the control’s value updates, and a corresponding event is spawned,
allowing your application to treat the star slider like any other UIControl subclass.

The art is arbitrary. The example shown in Figure 2-6 uses stars, but there’s no reason to limit
yourself to stars. Use any art you like, as long as you provide both “on” and “off” images.
You might consider hearts, diamonds, smiles, and so on. You can easily update this recipe to
provide a starting count of the stars before presentation.

Figure 2-6 Recipe 2-6 creates a custom star slider control that animates each star upon
selection. A simple animation block causes the star to zoom out and back as the control’s value
updates.

In addition to simple sliding, Recipe 2-6 adds animation elements. Upon achieving a new
value, a simple animation block is added to the rightmost star to zoom out and back, providing
lively feedback to the user in addition to the highlighted visuals. Because the user’s finger lays
on top of the stars in real use (rather than in the simulator-based screen shot shown in Figure
2-6), the animation uses exaggerated transforms to provide feedback that extends beyond
expected finger sizes. Here, the art is quite small, and the zoom goes to 150% of the original
size, but you can easily adapt both in your applications to match your needs.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

77Recipe: Building a Star Slider

Apart from the minimal layout and feedback elements, Recipe 2-6 follows the same kind of
custom UIControl subclass approach used by Recipe 2-5 , tracking touches through their life
cycle and spawning events at opportune times. The minimal code needed to add the star
elements and feedback in this recipe demonstrates how simple UIControl subclassing really is.

Recipe 2-6 Building a Discrete-Valued Star Slider

@implementation StarSlider
- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame:aFrame];
 if (self)
 {
 // Lay out five stars, with spacing between and at the ends
 float offsetCenter = WIDTH;
 for (int i = 1; i <= 5; i++)
 {
 UIImageView *imageView = [[UIImageView alloc]
 initWithFrame:CGRectMake(0.0f, 0.0f, WIDTH, WIDTH)];
 imageView.image = OFF_ART;
 imageView.center = CGPointMake(offsetCenter,
 self.intrinsicContentSize.height / 2.0f);
 offsetCenter += WIDTH * 1.5f;
 [self addSubview:imageView];
 }
 }

 // Place on a contrasting background
 self.backgroundColor =
 [[UIColor blackColor] colorWithAlphaComponent:0.25f];

 return self;
}

- (CGSize)intrinsicContentSize
{
 return CGSizeMake(WIDTH * 8.0f, 34.0f);

}

// Handle the value update for the touch point
- (void)updateValueAtPoint:(CGPoint)point
{
 int newValue = 0;
 UIImageView *changedView = nil;

 // Iterate through stars to check against touch point
 for (UIImageView *eachItem in [self subviews])

ptg12441863

78 Chapter 2 Building and Using Controls

 {
 if (point.x < eachItem.frame.origin.x)
 {
 eachItem.image = OFF_ART;
 }
 else
 {
 changedView = eachItem; // last item touched
 eachItem.image = ON_ART;
 newValue++;
 }
 }

 // Handle value change
 if (self.value != newValue)
 {
 self.value = newValue;
 [self sendActionsForControlEvents:
 UIControlEventValueChanged];

 // Animate the new value with a zoomed pulse
 [UIView animateWithDuration:0.15f
 animations:^{changedView.transform =
 CGAffineTransformMakeScale(1.5f, 1.5f);}
 completion:^(BOOL done){[UIView
 animateWithDuration:0.1f
 animations:^{changedView.transform =
 CGAffineTransformIdentity;}];}];
 }

}

- (BOOL)beginTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Establish touch down event
 CGPoint touchPoint = [touch locationInView:self];
 [self sendActionsForControlEvents:UIControlEventTouchDown];

 // Calculate value
 [self updateValueAtPoint:touchPoint];
 return YES;

}

- (BOOL)continueTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if drag is currently inside or outside

ptg12441863

79Recipe: Building a Touch Wheel

 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.frame, touchPoint))
 [self sendActionsForControlEvents:
 UIControlEventTouchDragInside];
 else
 [self sendActionsForControlEvents:
 UIControlEventTouchDragOutside];

 // Calculate value
 [self updateValueAtPoint:[touch locationInView:self]];
 return YES;

}

- (void)endTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if touch ended inside or outside
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.bounds, touchPoint))
 [self sendActionsForControlEvents:
 UIControlEventTouchUpInside];
 else
 [self sendActionsForControlEvents:
 UIControlEventTouchUpOutside];

}

- (void)cancelTrackingWithEvent:(UIEvent *)event
{
 // Cancelled touch
 [self sendActionsForControlEvents:UIControlEventTouchCancel];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 2 .

Recipe: Building a Touch Wheel

This next recipe creates a touch wheel, like the ones used on older model iPods. Touch wheels
provide infinitely scrollable input. Users can rotate their finger clockwise or counterclockwise,
and the object’s value increases or decreases accordingly. Each complete turn around the wheel
(that is, a traversal of 360 degrees) corresponds to a value change of 1.0. Clockwise changes

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

80 Chapter 2 Building and Using Controls

are positive; counterclockwise changes are negative. The value accumulates on each touch,
although it can be reset; simply assign the control’s value property back to 0.0 . This property
is not a standard part of UIControl instances, even though many controls use values.

This recipe computes user changes by casting out vectors from the control’s center. The code
adds differences in the angle as the finger moves, updating the current value accordingly. For
example, three spins around the touch wheel add or subtract 3 to or from the current value,
depending on the direction of movement.

This basic wheel defined in Recipe 2-7 tracks touch rotation but does little else. The origi-
nal iPod scroll wheel offered five click points: in the center circle and at the four cardinal
points of the wheel. Adding click support and the associated button-like event support (for
UIControlEventTouchUpInside) are left as an exercise for you.

Recipe 2-7 Building a Touch Wheel Control

@implementation ScrollWheel

// Layout the wheel
- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame:aFrame];
 if (self)
 {
 // This control uses a fixed 200x200 sized frame
 CGRect f;
 f.origin = aFrame.origin;
 f.size = self.intrinsicContentSize;
 self.frame = f;

 // Add the touch wheel art
 UIImageView *imageView = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"wheel.png"]];
 [self addSubview:imageView];
 }
 return self;

}

- (BOOL)beginTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 CGPoint point = [touch locationInView:self];

 // Center point of view in own coordinate system
 CGPoint centerPt = CGPointMake(self.bounds.size.width / 2.0f,
 self.bounds.size.height / 2.0f);

ptg12441863

81Recipe: Building a Touch Wheel

 // First touch must touch the gray part of the wheel
 if (!pointInsideRadius(point, centerPt.x, centerPt)) return NO;
 if (pointInsideRadius(point, 30.0f, centerPt)) return NO;

 // Set the initial angle
 self.theta = getAngle([touch locationInView:self], centerPt);

 // Establish touch down
 [self sendActionsForControlEvents:UIControlEventTouchDown];

 return YES;
}

- (CGSize)intrinsicContentSize
{
 return CGSizeMake(200, 200);

}

- (BOOL)continueTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{

 CGPoint point = [touch locationInView:self];

 // Center point of view in own coordinate system
 CGPoint centerPt = CGPointMake(self.bounds.size.width / 2.0f,
 self.bounds.size.height / 2.0f);

 // Touch updates
 if (CGRectContainsPoint(self.frame, point))
 [self sendActionsForControlEvents:
 UIControlEventTouchDragInside];
 else
 [self sendActionsForControlEvents:
 UIControlEventTouchDragOutside];

 // Falls outside too far, with boundary of 50 pixels?
 if (!pointInsideRadius(point, centerPt.x + 50.0f, centerPt))
 return NO;

 float newtheta = getAngle([touch locationInView:self], centerPt);
 float dtheta = newtheta - self.theta;

 // correct for edge conditions
 int ntimes = 0;
 while ((ABS(dtheta) > 300.0f) && (ntimes++ < 4))
 {

ptg12441863

82 Chapter 2 Building and Using Controls

 if (dtheta > 0.0f)
 dtheta -= 360.0f;
 else
 dtheta += 360.0f;
 }

 // Update current values
 self.value -= dtheta / 360.0f;
 self.theta = newtheta;

 // Send value changed alert
 [self sendActionsForControlEvents:UIControlEventValueChanged];

 return YES;
}

- (void)endTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if touch ended inside or outside
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.bounds, touchPoint))
 [self sendActionsForControlEvents:
 UIControlEventTouchUpInside];
 else
 [self sendActionsForControlEvents:
 UIControlEventTouchUpOutside];

}

- (void)cancelTrackingWithEvent:(UIEvent *)event
{
 // Cancel
 [self sendActionsForControlEvents:UIControlEventTouchCancel];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 2 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

83Recipe: Creating a Pull Control

Recipe: Creating a Pull Control

Imagine a cord at the top of your screen. Pull it hard enough, and it rings a bell or otherwise
triggers some sort of event, via a control target-action mechanism. For example, it could roll
out a secondary view, start a download, or begin video playback. Recipe 2-8 builds a control
that resembles a ribbon. The control updates clients when the interaction, which must start on
top of the “ribbon,” pulls down far enough to trigger a request. The ribbon winds itself back up
afterward, preparing for the next interaction.

Figure 2-7 shows the control built by this recipe, which is attached in this case to the bottom of
a secondary view. Tugs bring the view into place and return it offscreen when finished.

Figure 2-7 The ribbon control must be tugged a minimum distance before it triggers and winds
back up. Each success sends out a value-changed message to its target-action clients.

ptg12441863

84 Chapter 2 Building and Using Controls

Discoverability

Making the ribbon interaction discoverable presents a particular challenge in this recipe. Users
might not immediately make the connection between a hanging red shape and a control they
can manipulate.

Developer Matthijs Hollemans suggested a simple approach to address this challenge. Until
the user interacts with the ribbon, it wiggles slightly a few times, separated by several seconds
between each wiggle. The wiggle draws attention to the nature of the control, and the wiggles
stop as soon as the user has correctly worked through the control style. A system preference can
override this behavior for repeat application uses:

- (void)wiggle
{
 if (wiggleCount++ > 3) return;

 // Wiggle slightly
 [UIView animateWithDuration:0.25f animations:^(){
 pullImageView.center = CGPointMake(
 pullImageView.center.x,
 pullImageView.center.y + 10.0f);
 } completion:^(BOOL finished){
 [UIView animateWithDuration:0.25f animations:^(){
 pullImageView.center = CGPointMake(
 pullImageView.center.x,
 pullImageView.center.y - 10.0f);
 }];
 }];

 // Repeat until the count is overridden or it wiggles 3 times
 [self performSelector:@selector(wiggle)
 withObject:nil afterDelay:4.0f];

}

Adding accelerometer-based movement is another way to draw user attention to a nonobvi-
ous interaction control. Developer Charles Choi recommends allowing the ribbon to respond
gently to device movements, offering an alternative mechanism for enhancing the control’s
discoverability.

With the introduction of motion effects in iOS 7, the implementation for such an inter-
action has been greatly simplified with a new declarative API. Motion effects, as demon-
strated in Listing 2-1 , allow the association of accelerometer events from the device with
values in your UIKit objects. Simply create an instance of a UIMotionEffect subclass
(UIInterpolatingMotionEffect is the only system-supplied option currently), set the
keyPath to be modified on the view, and associate the motion effect instance with the targeted
view.

ptg12441863

85Recipe: Creating a Pull Control

Listing 2-1 Adding Motion Effects

- (void)startMotionEffects
{
 UIInterpolatingMotionEffect *motionEffectX =
 [[UIInterpolatingMotionEffect alloc]
 initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];
 UIInterpolatingMotionEffect *motionEffectY =
 [[UIInterpolatingMotionEffect alloc]
 initWithKeyPath:@"center.y"
 type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];
 motionEffectX.minimumRelativeValue = @-15.0;
 motionEffectX.maximumRelativeValue = @15.0;
 motionEffectY.minimumRelativeValue = @-15.0;
 motionEffectY.maximumRelativeValue = @15.0;
 motionEffectsGroup = [[UIMotionEffectGroup alloc] init];
 motionEffectsGroup.motionEffects =
 @[motionEffectX, motionEffectY];
 [pullImageView addMotionEffect:motionEffectsGroup];

}

Take your inspiration from Apple itself. Apple integrates discoverability hints throughout
iOS, such as using slide to unlock text that suggests how and what to slide through simple
animation.

Testing Touches

Recipe 2-8 limits interactions in two ways. First, the user must touch inside the ribbon art to
begin interaction. If the user touches anywhere other than the ribbon, the touch falls through,
and the control does not respond to it, even though touches may have begun on top of the
control’s frame. Second, the recipe tests against the ribbon bitmap to ensure that touches began
on a solid (nontransparent) part of the art. As you can see in Figure 2-7 , a notch appears at
the bottom of the artwork. Touches in this notch won’t start a tracking sequence. The recipe
compares the touch position with pixels in the art. If the transparency (alpha level) of the art
falls below 85 (about 67% transparent), the touch won’t connect with the ribbon.

The sample code provided for this recipe does not test for stretched art. It assumes a one-to-one
relationship between the art and the onscreen presentation. Because of this, you will either
have to drop the transparency test or adapt it for stretched art if you choose to resize this
control in any way.

Once the tracking begins, the art follows the touch movement, dragging up or down with the
user’s finger. If this touch travel exceeds 75 points in this recipe, the control triggers. It sends
off a value-changed event to its clients. Strictly speaking, this control does not have a “value,”
but touch up inside felt like a poor match to the way the control operates.

ptg12441863

86 Chapter 2 Building and Using Controls

Upon reaching the trigger point, the continue tracking method returns NO , indicating that
tracking has finished, and the control has finished its business for this particular interaction.
If the touch travel fails to exceed the threshold or the user stops interacting without reaching
that point, the control scrolls back its artwork to the beginning point. This resets the visual
presentation, making it ready for the next interaction.

Recipe 2-8 Building a Draggable Ribbon Control

- (BOOL)beginTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Establish touch down event
 CGPoint touchPoint = [touch locationInView:self];
 CGPoint ribbonPoint = [touch locationInView:pullImageView];

 // Find the data offset in the image
 Byte *bytes = (Byte *) ribbonData.bytes;
 uint offset = alphaOffset(ribbonPoint.x, ribbonPoint.y,
 pullImageView.bounds.size.width);

 // Test for containment and alpha value to disallow touches
 // outside the ribbon and inside the notched area

 if (CGRectContainsPoint(pullImageView.frame, touchPoint) &&
 (bytes[offset] > 85))
 {
 [self sendActionsForControlEvents:UIControlEventTouchDown];
 touchDownPoint = touchPoint;
 return YES;
 }

 return NO;
}

- (BOOL)continueTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Once the user has interacted, don't wiggle any more
 wiggleCount = CGFLOAT_MAX;

 // Test for inside/outside touches
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.frame, touchPoint))
 [self sendActionsForControlEvents:
 UIControlEventTouchDragInside];
 else

ptg12441863

87Recipe: Creating a Pull Control

 [self sendActionsForControlEvents:
 UIControlEventTouchDragOutside];

 // Adjust art based on the degree of drag
 CGFloat dy = MAX(touchPoint.y - touchDownPoint.y, 0.0f);
 dy = MIN(dy, self.bounds.size.height - 75.0f);
 pullImageView.frame = CGRectMake(10.0f,
 dy + 75.0f - ribbonImage.size.height,
 ribbonImage.size.width, ribbonImage.size.height);

 // Detect if travel has been sufficient to trigger everything
 if (dy > 75.0f)
 {
 // It has. Play a click, trigger the callback, and roll
 // the view back up.
 [self playClick];
 [UIView animateWithDuration:0.3f animations:^(){
 pullImageView.frame = CGRectMake(10.0f,
 75.0f - ribbonImage.size.height,
 ribbonImage.size.width,
 ribbonImage.size.height);
 } completion:^(BOOL finished){
 [self sendActionsForControlEvents:
 UIControlEventValueChanged];
 }];

 // No more interaction needed or allowed
 return NO;
 }

 // Continue interaction
 return YES;

}

- (void)endTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if touch ended inside or outside
 CGPoint touchPoint = [touch locationInView:self];
 if (CGRectContainsPoint(self.bounds, touchPoint))
 [self sendActionsForControlEvents:
 UIControlEventTouchUpInside];
 else
 [self sendActionsForControlEvents:
 UIControlEventTouchUpOutside];

 // Roll back the ribbon, regardless of where the touch ended

ptg12441863

88 Chapter 2 Building and Using Controls

 [UIView animateWithDuration:0.3f animations:^(){
 pullImageView.frame = CGRectMake(10.0f,
 75.0f - ribbonImage.size.height,
 ribbonImage.size.width, ribbonImage.size.height);
 }];

}

// Handle cancelled tracking
- (void)cancelTrackingWithEvent:(UIEvent *)event
{
 [self sendActionsForControlEvents:UIControlEventTouchCancel];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

Recipe: Building a Custom Lock Control

We created the lock control you see in Figure 2-8 for a conference after wrapping up the last
edition of this Cookbook . At that time, numerous people asked for this recipe to be included in
the next edition. It’s surprisingly easy to build from a UIControl point of view. It consists of
four elements: a backdrop, the lock image (which switches to an unlocked version on success),
the drag track, and the thumb.

Recipe 2-9 shows the code that creates this control’s behavior. In this recipe, interactions have
a generous margin. Touches within 20 points of the track and its thumb are considered proper
hits. This control is quite Spartan, and the extra space (roughly half the size of a standard
fingertip) allows more confident access to the control.

Similarly, users only need to drag over about 75% of the way to complete the action. Again,
this margin confirms that the user has intended a full unlock, but it doesn’t require frustrating
precision. It took a bit of fiddling and user testing to get the “springiness” right; after releasing
the thumb, it’s pulled back to the left if you haven’t finished a successful drag. We ended up
using a half second, slightly longer than most interface changes usually take. To compare, a
keyboard usually appears in one-third of a second.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

89Recipe: Building a Custom Lock Control

Recipe 2-9 Creating a Lock Control

- (BOOL)beginTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test touches for start conditions
 CGPoint touchPoint = [touch locationInView:self];
 CGRect largeTrack =
 CGRectInset(trackView.frame, -20.0f, -20.0f);
 if (!CGRectContainsPoint(largeTrack, touchPoint))
 return NO;
 touchPoint = [touch locationInView:trackView];
 CGRect largeThumb =
 CGRectInset(thumbView.frame, -20.0f, -20.0f);
 if (!CGRectContainsPoint(largeThumb, touchPoint))
 return NO;

Figure 2-8 This simple lock control unlocks and removes itself after the user successfully
swipes across at least three-quarters of the way.

ptg12441863

90 Chapter 2 Building and Using Controls

 // Begin tracking
 [self sendActionsForControlEvents:UIControlEventTouchDown];
 return YES;

}

- (BOOL)continueTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Strayed too far out?
 CGPoint touchPoint = [touch locationInView:self];
 CGRect largeTrack =
 CGRectInset(trackView.frame, -20.0f, -20.0f);
 if (!CGRectContainsPoint(largeTrack, touchPoint))
 {
 // Reset on failed attempt
 [UIView animateWithDuration:0.2f animations:^(){
 NSLayoutConstraint *constraint =
 [trackView constraintNamed:THUMB_POSITION_TAG];
 constraint.constant = 0;
 [trackView layoutIfNeeded];
 }];
 return NO;
 }

 // Track the user movement by updating the thumb
 touchPoint = [touch locationInView:trackView];
 [UIView animateWithDuration:0.1f animations:^(){
 NSLayoutConstraint *constraint =
 [trackView constraintNamed:THUMB_POSITION_TAG];
 constraint.constant = touchPoint.x;
 [trackView layoutIfNeeded];
 }];
 return YES;

}

- (void)endTrackingWithTouch:(UITouch *)touch
 withEvent:(UIEvent *)event

{
 // Test if touch ended with unlock
 CGPoint touchPoint = [touch locationInView:trackView];
 if (touchPoint.x > trackView.frame.size.width * 0.75f)
 {

ptg12441863

91Recipe: Building a Custom Lock Control

 // Complete by unlocking
 _value = 0;
 self.userInteractionEnabled = NO;
 [self sendActionsForControlEvents:
 UIControlEventValueChanged];

 // Fade away and remove
 [UIView animateWithDuration:0.5f animations:
 ^(){self.alpha = 0.0f;}
 completion:
 ^(BOOL finished){[self removeFromSuperview];
 }];
 }
 else
 {
 // Reset on failed attempt
 [UIView animateWithDuration:0.2f animations:^(){
 NSLayoutConstraint *constraint =
 [trackView constraintNamed:
 THUMB_POSITION_TAG];
 constraint.constant = 0;
 [trackView layoutIfNeeded];
 }];
 }

 if (CGRectContainsPoint(trackView.bounds, touchPoint))
 {
 [self sendActionsForControlEvents:
 UIControlEventTouchUpInside];
 }
 else
 {
 [self sendActionsForControlEvents:
 UIControlEventTouchUpOutside];
 }

}

- (void)cancelTrackingWithEvent:(UIEvent *)event
{
 [self sendActionsForControlEvents:
 UIControlEventTouchCancel];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

92 Chapter 2 Building and Using Controls

Adding a Page Indicator Control

The UIPageControl class provides a line of dots that indicates which item of a multipage
view is currently displayed. The dots at the bottom of the SpringBoard home screen present an
example of this kind of control in action. Sadly, the UIPageControl class is a disappointment
in action. Its instances are awkward to handle, hard to tap, and will generally annoy your users.
So when using it, make sure you add alternative navigation options so that the page control
acts more as an indicator and less as a control.

Figure 2-9 shows a page control with three pages. Taps to the left or right of the bright-colored
current page indicator trigger UIControlEventValueChanged events, launching whatever
method you set as the control’s action. You can query the control for its new value by calling
currentPage and set the available page count by adjusting the numberOfPages property.
SpringBoard limits the number of dots representing pages to nine, but your application can use
a higher number, particularly in landscape mode.

Figure 2-9 The UIPageControl class offers an interactive indicator for multipage presentations.
Taps to the left or right of the active dot enable users to select new pages—at least in theory.
The page control is hard to tap, requires excessive user precision, and offers poor response
performance.

ptg12441863

93Recipe: Image Gallery Viewer

Recipe: Image Gallery Viewer

Recipe 2-10 uses a UIScrollView instance to display multiple images, as shown in Figure 2-10 .
Users can scroll through the pictures using swipes, and the page indicator updates accordingly.
Similarly, users can tap on the page control, and the scroller animates the selected page into
place. This two-way relationship is built by adding a target-action callback to the page control
and a delegate callback to the scroller. Each callback updates the other object, providing a tight
coupling between the two.

Figure 2-10 In iOS 7, content is king. The only interface elements that are visible include the
page control and the iOS status bar, both of which overlay the content.

ptg12441863

94 Chapter 2 Building and Using Controls

One common mistake with UIPageControl is not sizing the control wide enough to create
user navigation tap areas to the right and left of the dots. The intrinsic size of a page control
matches closely to the visible size, which severely limits these tap areas. Centering the control
without expanding the width creates a page control that is very difficult to use in naviga-
tion. Unless the interaction would conflict with other touch elements, expand the page
control to the width of its superview through Auto Layout constraints or by setting the frame
appropriately.

The design ethos of iOS 7 revolves around content as the primary focus, with limited UI
chrome. The images in the gallery fully utilize all of the screen real estate, including under
the status bar. Fittingly, the iOS status bar no longer allows translucent or opaque styles, only
transparent, providing two styles that toggle the status bar for light and dark content. Change
the status bar style by returning a UIStatusBarStyle from the preferredStatusBarStyle
method on your view controller.

The status bar style and the page indicator tint colors could be modified to better suit the
underlying picture, based on the average color of the image or a similar metric. This advanced
treatment is left as an exercise for you.

Note

The implementation of UIScrollView presents unique challenges to arranging UI elements
with Auto Layout. Apple provides Technical Note TN2154 (http://developer.apple.com/library/
ios/#technotes/tn2154/_index.html), which describes two approaches. Recipe 2-10 uses the
mixed approach . Auto Layout is addressed in more detail in Chapter 5 , “View Constraints.”

Recipe 2-10 An Image Gallery Viewer

@implementation TestBedViewController
{
 PagedImageScrollView *scrollView;
 UIPageControl *pageControl;

}

- (UIStatusBarStyle)preferredStatusBarStyle
{
 return UIStatusBarStyleLightContent;

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor blackColor];
 self.navigationController.navigationBarHidden = YES;

 scrollView = [[PagedImageScrollView alloc] init];

http://developer.apple.com/library/ios/#technotes/tn2154/_index.html
http://developer.apple.com/library/ios/#technotes/tn2154/_index.html

ptg12441863

95Recipe: Image Gallery Viewer

 scrollView.delegate = self;
 [self.view addSubview:scrollView];
 PREPCONSTRAINTS(scrollView);
 ALIGN_VIEW_LEFT(self.view, scrollView);
 ALIGN_VIEW_RIGHT(self.view, scrollView);
 ALIGN_VIEW_TOP(self.view, scrollView);
 ALIGN_VIEW_BOTTOM(self.view, scrollView);
 scrollView.images = @[[UIImage imageNamed:@"bird"],
 [UIImage imageNamed:@"ladybug"],
 [UIImage imageNamed:@"flowers"],
 [UIImage imageNamed:@"sheep"]];

 pageControl = [[UIPageControl alloc] init];
 pageControl.numberOfPages = scrollView.images.count;
 pageControl.currentPage = 0;
 pageControl.pageIndicatorTintColor = [UIColor grayColor];
 pageControl.currentPageIndicatorTintColor =
 [UIColor redColor];
 [pageControl addTarget:self
 action:@selector(handlePageControlChange:)
 forControlEvents:UIControlEventValueChanged];
 [self.view addSubview:pageControl];
 PREPCONSTRAINTS(pageControl);
 ALIGN_VIEW_LEFT(self.view, pageControl);
 ALIGN_VIEW_RIGHT(self.view, pageControl);
 ALIGN_VIEW_BOTTOM_CONSTANT(self.view, pageControl, -20);

}

// Update the scrollView after page control interaction
- (void)handlePageControlChange:(UIPageControl *)sender
{
 CGFloat offset =
 scrollView.frame.size.width * pageControl.currentPage;
 [scrollView setContentOffset:CGPointMake(offset, 0)
 animated:YES];

}

// Update the page control after scrolling
- (void)scrollViewDidEndDecelerating:(id)sender
{
 CGFloat distance = scrollView.contentOffset.x /
 scrollView.contentSize.width;
 NSInteger page = distance * pageControl.numberOfPages;
 pageControl.currentPage = page;

}
@end

ptg12441863

96 Chapter 2 Building and Using Controls

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 2 .

Building Toolbars

It’s easy to define and lay out toolbars in code if you’ve supplied yourself with a few handy
macro definitions. The following macros return proper bar button items for the four available
styles of items, and you can easily adapt them if you need more control options in your code.
These macros are intended for automatic reference counting (ARC) use. If you use manual
retain-release (MRR) development, make sure to adapt them with appropriate autorelease calls:

#define BARBUTTON(TITLE, SELECTOR) [[UIBarButtonItem alloc] \
 initWithTitle:TITLE style:UIBarButtonItemStylePlain\
 target:self action:SELECTOR]

#define IMGBARBUTTON(IMAGE, SELECTOR) [[UIBarButtonItem alloc] \
 initWithImage:IMAGE style:UIBarButtonItemStylePlain \
 target:self action:SELECTOR]

#define SYSBARBUTTON(ITEM, SELECTOR) [[UIBarButtonItem alloc] \
 initWithBarButtonSystemItem:ITEM \
 target:self action:SELECTOR]

#define CUSTOMBARBUTTON(VIEW) [[UIBarButtonItem alloc] \
 initWithCustomView:VIEW]

These styles are text items, image items, system items, and custom view items. Each of these
macros provides a UIBarButtonItem that can be placed into a UIToolbar . Listing 2-2 demon-
strates these macros in action, showing how to add each style, including spacers. You can even
add a custom view to your toolbars, as Listing 2-2 does. It inserts a UISwitch instance as one of
the bar button items, as shown in Figure 2-11 .

Figure 2-11 Custom toolbar items can include views such as this switch.

The fixed-space bar button item represents the only instance where you need to move beyond
these handy macros. You must set the item’s width property to define how much space the
item occupies. Here are a few final pointers:

 ■ Fixed spaces can have widths. Of all UIBarButtonItem s, only
UIBarButtonSystemItemFixedSpace items can be assigned a width. So
create the spacer item, set its width, and only then add it to your items array.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

97Building Toolbars

 ■ Use a single flexible space for left or right alignment. Adding a single
UIBarButtonSystemItemFlexibleSpace at the start of an item’s list right-aligns all the
remaining items. Adding one at the end left-aligns. Use two—one at the start and one at
the end—to create center alignments.

 ■ Take missing items into account. When hiding a bar button item due to context, when
you’re not using layout constraints, don’t just use flexible spacing to get rid of the item.
Instead, replace the item with a fixed-width space that matches the item’s original size.
Doing so preserves the layout and leaves all the other icons in the same position both
before and after the item disappears.

 ■ Navigation bars support multiple items. Navigation bars and their navigation items
allow you to add arrays of bar button items. You can create a toolbar effect by adding
item arrays rather than adding a toolbar directly (for example, self.navigationItem.
rightBarButtonItems = anArray). All the toolbar hints listed here, including flexible
spacers, apply to navigation item layout as well.

Listing 2-2 Creating Toolbars in Code

@implementation TestBedViewController
- (void)action
{
 // no action actually happens

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

}

- (void)viewDidLoad
{
 [super viewDidLoad];
 UIToolbar *tb = [UIToolbar alloc] init];
 [self.view addSubview:tb];
 PREPCONSTRAINTS(tb);
 ALIGN_VIEW_BOTTOM(self.view, tb);
 ALIGN_VIEW_LEFT(self.view, tb);
 ALIGN_VIEW_RIGHT(self.view, tb);
 NSMutableArray *tbItems = [NSMutableArray array];

 // Set up the items for the toolbar
 [tbItems addObject:
 BARBUTTON(@"Title", @selector(action))];

ptg12441863

98 Chapter 2 Building and Using Controls

 [tbItems addObject:
 SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,
 nil)];

 [tbItems addObject:
 SYSBARBUTTON(UIBarButtonSystemItemAdd,
 @selector(action))];

 [tbItems addObject:
 SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,
 nil)];

 [tbItems addObject:
 IMGBARBUTTON([UIImage imageNamed:@"star.png"],
 @selector(action))];

 [tbItems addObject:
 SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,
 nil)];

 [tbItems addObject:
 CUSTOMBARBUTTON([[UISwitch alloc] init])];

 [tbItems addObject:
 SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,
 nil)];

 [tbItems addObject:
 IMGBARBUTTON([UIImage imageNamed:@"moon.png"],
 @selector(action))];

 tb.items = tbItems;
}
@end

Summary

This chapter introduces many ways to interact with and get the most from the controls in
your applications. Before you move on to the next chapter, here are a few thoughts for you to
ponder:

 ■ Just because an item belongs to the UIControl class doesn’t mean you can’t treat it like
a UIView . Give it subviews, resize it, animate it, move it around the screen, or tag it for
later.

ptg12441863

99Summary

 ■ Core Graphics and Quartz 2D let you build visual elements as needed. Combine the
comfort of the SDK classes with a little real-time wow to add punch to your presentation.

 ■ Use attributed strings and UIKit attribute dictionaries to customize your control’s text
features. Pick fonts, line and paragraph styling, colors, shadows, and more, as demanded
by your design.

 ■ If the iOS SDK hasn’t delivered the control you need, consider adapting an existing
control or building a new control from scratch.

 ■ Apple provides top-notch examples of UI excellence. Consider mimicking Apple’s
examples when creating new interaction styles, such as adding confirm buttons to
safeguard a delete action.

 ■ IB doesn’t always provide the best solution for creating interfaces. With toolbars, you
may save time by using Xcode rather than customizing each element by hand in IB.

ptg12441863

This page intentionally left blank

ptg12441863

3
Alerting the User

At times, you need to grab your user’s attention. New data might arrive or some status might
change. You might want to tell your user that there’s going to be a wait before anything more
happens—or that the wait is over and it’s time to come back and pay attention. iOS offers
many ways to provide such a heads-up to the user: from alerts and progress bars to audio
pings. In this chapter, you’ll discover how to build these indications into your applications and
expand your user-alert vocabulary. You’ll see real-life examples that showcase these classes and
discover how to make sure your user pays attention at the right time.

Talking Directly to Your User through Alerts

Alerts speak to your user. Members of the UIAlertView and UIActionSheet classes pop up
or scroll in above other views to deliver their messages. These lightweight classes add two-way
dialog to your apps. Alerts visually “speak” to users and can prompt them to reply. You present
your alert, get user acknowledgment, and then dismiss the alert to move on with other tasks.

If you think that an alert is nothing more than a message with an attached OK button, think
again. Alert objects provide incredible versatility. You can build progress indicators, allow for
text input, make queries, and more. In this chapter’s recipes, you’ll see how to create a wide
range of useful alerts that you can use in your own programs, using the system-supplied alerts
as well as some custom ones.

Building Simple Alerts

To create alerts, allocate a UIAlertView object. Initialize it with a title and an array of button
titles. The title is an NSString , as are the button titles. In the button array, each string repre-
sents a single button that should be shown.

The method snippet shown here creates and displays the simplest alert scenario. It shows a
message with a single OK button. The alert doesn’t bother with delegates or callbacks, so its
lifetime ends when the user taps a button:

ptg12441863

102 Chapter 3 Alerting the User

- (void)showAlert:(NSString *)theMessage
{
 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Title"
 message:theMessage
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [av show];

}

Add buttons by introducing them as parameters to otherButtonTitles :. Make sure you end
your arbitrary list of buttons with nil . Adding nil tells the method where your list finishes.
The following snippet creates an alert with three buttons (Cancel, Option, and OK). Because
this code does not declare a delegate, there’s no way to recover the alert and determine which
of these three buttons was tapped. The alert displays until a user taps, and then it automatically
dismisses without any further effect:

- (void)showAlert:(NSString *)theMessage
{
 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Title"
 message:theMessage
 delegate:nil
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"Option", @"OK", nil];
 [av show];

}

When working with alerts, space is at a premium. Adding more than two buttons causes the
alert to display in multiline mode. Figure 3-1 shows a pair of alerts depicting both two-button
(side-by-side display) and three-button (line-by-line display) presentations. Limit the number of
alert buttons you add at any time to no more than three or four. Having fewer buttons works
better; one or two is ideal. If you need to use more buttons, consider using action sheet objects,
which are discussed later in this chapter, rather than alert views.

UIAlertView objects provide simple “default” button highlights. These are based on the
number of buttons, as shown in Figure 3-1 . Two-button alerts highlight the rightmost button.
This is defined by the single otherButtonTitles in the alert initialization. On alerts with
more than two buttons, the bottom button is highlighted. This is usually represented by
cancelButtonTitle . If you don’t supply one, the last button item acts as the default instead.
As a rule, Cancel buttons appear at the bottom or left of alerts.

ptg12441863

103Talking Directly to Your User through Alerts

Figure 3-1 Alerts work best with one or two buttons (left). Alerts with more than two buttons
stack the buttons as a list, producing a less elegant presentation (right).

Alert Delegates

Need to know if a user tapped OK or Cancel? Alerts use delegates to recover user
choices after they’ve been made, using a simple callback. Delegates should declare the
UIAlertViewDelegate protocol. In normal use, you often set the delegate to your primary
(active) view controller object.

Delegate methods enable you to react as different buttons are pressed. As you’ve already seen,
you can omit that delegate support if all you need to do is show some message with an OK
button.

After the user has seen and interacted with your alert, the delegate receives an alertView:
clickedButtonAtIndex: callback. The second parameter passed to this method indicates
which button was pressed. Button numbering begins with zero. The Cancel button defaults to
button 0. Even though it appears at the left in some views and the bottom in others, its button
numbering remains the same unless you adjust the Cancel button index (retrievable via the
cancelButtonIndex property). This is not true for action sheet objects, which are discussed
later in this chapter.

Here is a simple example of an alert presentation and callback, which prints out the selected
button number to the debugging console:

@interface TestBedViewController : UIViewController
 <UIAlertViewDelegate>

@end

@implementation TestBedViewController
- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(int)index

{
 NSLog(@"User selected button %d\n", index);

}

ptg12441863

104 Chapter 3 Alerting the User

- (void)showAlert
{
 UIAlertView *av = [[UIAlertView alloc]
 initWithTitle:@"Alert View Sample"
 message:@"Select a Button"
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"One", @"Two", @"Three", nil];

 // Tag your UIAlertView so it can be distinguished
 // from others in your delegate callbacks.
 av.tag = MAIN_ALERT;
 [av show];

}
@end

If your controller works with multiple alerts, tags help identify which alert produced a given
callback. Unlike controls that use target-action pairs, all alerts trigger the same methods.
Adding an alert-tag-based switch statement lets you differentiate your responses to each alert.

Displaying the Alert

The show instance method tells your alert to appear. When shown, the alert works in a modal
fashion. That is, it dims the screen behind it and blocks user interaction with your applica-
tion outside the alert. This modal interaction continues until your user acknowledges the alert
through a button tap, typically by selecting OK or Cancel. When the user does so, control
passes to the alert delegate, allowing that delegate to finish working with the alert and respond
to the selected button.

The alert properties remain modifiable after creation. You may customize an alert by updating
its title or message properties. The message is the optional text that appears below the alert
title and above its buttons. You can add more buttons via addButtonWithTitle: .

Kinds of Alerts

The alertViewStyle property allows you to create several alert styles. The default style
(UIAlertViewStyleDefault) creates a standard alert, with a title and message text, followed
by buttons, as shown in Figure 3-1 . It is the bread and butter of the alert world, allowing you to
query for button presses such as Yes/No, Cancel/OK, and other simple choices.

iOS offers three more styles, specifically for entering text:

 ■ UIAlertViewStylePlainTextInput — This alert style enables users to enter text.

 ■ UIAlertViewStyleSecureTextInput — When security is an issue, this alert style allows
users to enter text that is automatically obscured as they type it. The text appears as a
series of large dots, but the input can be read programmatically by the delegate callback.

 ■ UIAlertViewStyleLoginAndPasswordInput — This alert style offers two entry fields,
including a plain-text user account login field and an obscured text password field.

ptg12441863

105Recipe: Using Blocks with Alerts

When working with text entry alerts, keep your button choices simple. Use no more than two
side-by-side buttons—usually OK and Cancel. Too many buttons create improper visuals, with
text fields floating off above or to the sides of the alert.

You can recover the text entered in each text field of the alert view. The textFieldAtIndex:
method takes one argument, an integer index starting at 0, and returns the text field at that
index. In real use, the only text field that is not at index 0 is the password field, which uses
index 1. After you’ve retrieved a text field, you can query its contents by using its text prop-
erty, as follows:

NSLog(@"%@", [myAlert textFieldAtIndex:0].text);

Recipe: Using Blocks with Alerts

Using an alert’s delegate callbacks can produce unnecessarily complex code. All your code
handling ends up in a common routine. You must implement tagging to differentiate which
alert your method must handle. You must vigilantly track which button corresponds to the
functionality you wish to execute, such as the alert in Figure 3-2 .

Figure 3-2 This alert processes responses in blocks passed at UIAlert button creation instead
of in traditional delegate callbacks.

ptg12441863

106 Chapter 3 Alerting the User

A much simpler solution is to assign the intended implementation when declaring the buttons
themselves. Blocks were built just for this task.

Blocks

Blocks are an extension to the C language that were first supported in iOS 4. They are similar in
concept to a method or function that can be stored in a variable. C provides a similar mecha-
nism for storing functions: function pointers. Blocks go beyond function pointers by storing a
copy of the enclosing scope in addition to the block of executable code.

When a block is defined, a copy of the local stack is created and attached to the block. When
the block is finally executed, it has access to this copy of the stack. This is very powerful,
allowing a block of code and its surrounding state to be passed to a method. This code can be
executed at a future point or within a certain context, such as on another thread or in a certain
order.

Block syntax can be a bit perplexing. It inherits much from C function pointers, which for
those not familiar can seem a bit unnatural. The caret symbol (̂) denotes a block. The general
syntax includes a return type, argument list, and the code block itself:

^(return type)(argument list) { // code block }

The return type can be omitted if void. The argument list can be omitted completely if there
are no arguments. The simplest block could then be defined as follows:

^{ // your code here }

The typedef syntax referring to a block is slightly modified from the above:

typedef (return type)(^typeName)(argument list);

Once a block has been defined, it can then be executed, like this:

typedef void (^SomeBlock)(BOOL);
SomeBlock myBlock = ^(BOOL success)
{
 if (success)
 NSLog(@"Successful!");
 else
 NSLog(@"FAILED!");

};
myBlock(YES);

This code does very little that could not be done in a standard method call. However, passing
blocks as parameters to methods opens up numerous opportunities, such as calling a block
while iterating through an array. The unique feature of blocks is the ability to access variables
from the enclosing scope. The following example accesses the captured myBaseNumber :

NSInteger myBaseNumber = 7;
NSArray *numbers = @[@2, @3, @5, @8, @9, @11];

ptg12441863

107Recipe: Using Blocks with Alerts

[numbers enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop)
{
 NSInteger current = [obj integerValue];
 NSLog(@"%d * %d = %d", myBaseNumber, current, myBaseNumber * current);

}];

Blocks can access their captured context even if they have left the scope of that variable.

The ability of blocks to capture their enclosing scope does come with a couple caveats. The
stack stored with a block is a copy. Any modifications made to captured variables after the
block is declared but before it is run will not be reflected in the block. Any modifications to
captured variables in the block will be lost outside the block.

To modify a captured variable from within a block, the variable must be declared with the
__block storage type modifier. The variable will reside in storage that is shared between both
the enclosing scope of the original code as well as the block. Any changes in one will impact
the other.

The second concern with blocks and captured scope is retain cycles.

Retain Cycles and Blocks

When using blocks, be wary of the creation of retain cycles. It is very easy to unintentionally
retain self inside a block. This occurs by referencing self directly or by using an ivar , which
captures self indirectly.

To avoid the retain cycle, capture a weak variant of self and then assign the weak reference to
a strong reference prior to use within the block. Adding the strong reference at the very start of
the block ensures that if a strong reference is possible, it endures throughout the entire block
scope. Don’t forget to check that the strong reference to self is not nil . The following listing
avoids issues with retain cycles and nil references:

__weak TestBedViewController *weakSelf = self;
[blockAlertView addButtonWithTitle:@"OK" actionBlock:^{
 TestBedViewController *strongSelf = weakSelf;
 if (strongSelf)
 {
 NSString *name = [strongSelf->blockAlertView
 textFieldAtIndex:0].text;
 NSLog(@"Tapped OK after entering: %@", name);
 }

}];

Blocks enable clearer APIs and greatly simplified multithreaded programming. This section has
only scratched the surface of the capabilities of and uses for blocks. The Apple documentation
has a trove of information on blocks and Grand Central Dispatch that are worth exploring.

ptg12441863

108 Chapter 3 Alerting the User

Note

Grand Central Dispatch (GCD) is a powerful tool for implementing parallel tasking. Introduced
with iOS 4, GCD provides a function-based API utilizing blocks for building concurrent code that
can take advantage of multicore hardware.

While most of Apple’s libraries are now fully integrated with blocks, a few classes have not been
modernized. UIAlert , for example, desperately calls out for blocks. Once you start using them,
you will see many new opportunities for their use.

Recipe 3-1 adds blocks to button creation on the standard UIAlertView , reducing complexity
and centralizing the actions near the button declarations. You no longer need to implement
delegates or the delegate callbacks.

While not provided in this recipe, the existing delegate methods can still be used with a bit of
effort. The setDelegate method already saves off the externalDelegate for this usage. You
can add proxy methods to BlockAlertView to forward each of the UIAlertView delegate calls
to the external delegate:

- (void)didPresentAlertView:(UIAlertView *)alertView
{
 if ([externalDelegate
 respondsToSelector:@selector(didPresentAlertView:)])
 {
 [externalDelegate didPresentAlertView:alertView];
 }

}

When the user taps a button in the alert view, the BlockAlertView executes the appropriate
block associated with that button. Another enhancement left to the reader is providing more
control over when that block is run. Currently, the block is executed in the alertView:
clickedButtonAtIndex: delegate callback of UIAlertView . While this may be appropriate,
you might require that the block be executed after the alert dismissal animation completes. You
can add a simple Boolean property to BlockAlertView and check to determine which delegate
callback should execute your block.

Recipe 3-1 Creating Blocks-Based Alerts

@implementation BlockAlertView
{
 __weak id <UIAlertViewDelegate> externalDelegate;
 NSMutableDictionary *actionBlocks;

}

- (instancetype)init
{
 self = [super init];
 if (self)

ptg12441863

109Recipe: Using Blocks with Alerts

 {
 self.delegate = self;
 actionBlocks = [[NSMutableDictionary alloc] init];
 }
 return self;

}

- (instancetype)initWithTitle:(NSString *)title
 message:(NSString *)message

{
 return [super initWithTitle:title
 message:message delegate:self cancelButtonTitle:nil
 otherButtonTitles:nil];

}

// Add cancel button to alert with title and block
- (NSInteger)setCancelButtonWithTitle:(NSString *)title
 actionBlock:(AlertViewBlock)block

{
 if (!title) return -1;
 NSInteger index = [self addButtonWithTitle:title
 actionBlock:block];
 self.cancelButtonIndex = index;
 return index;

}

// Add button to alert with title and block
- (NSInteger)addButtonWithTitle:(NSString *)title
 actionBlock:(AlertViewBlock)block

{
 if (!title) return -1;
 NSInteger index = [self addButtonWithTitle:title];
 if (block)
 {
 // Copy moves blocks from stack to heap
 actionBlocks[@(index)] = [block copy];
 }
 return index;

}

- (id<UIAlertViewDelegate>)delegate
{
 return externalDelegate;

}

// If the delegate is self, set on super, otherwise store
// for possible future use to proxy delegate methods.

ptg12441863

110 Chapter 3 Alerting the User

- (void)setDelegate:(id)delegate
{
 if (delegate == nil)
 {
 [super setDelegate:nil];
 externalDelegate = nil;
 }
 else if (delegate == self)
 {
 [super setDelegate:self];
 }
 else
 {
 externalDelegate = delegate;
 }

}

#pragma mark - UIAlertViewDelegate

// Execute the appropriate actionBlock.
// View will be automatically dismissed after this call returns
- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex

{
 AlertViewBlock actionBlock = actionBlocks[@(buttonIndex)];
 if (actionBlock)
 {
 actionBlock();
 }

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Recipe: Using Variadic Arguments with Alert Views

Methods that can take a variable number of arguments are called variadic. You declare such an
argument by using an ellipsis (…) after the last parameter. Both NSLog and printf are variadic.
You can supply them with a format string along with any number of arguments.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

111Recipe: Using Variadic Arguments with Alert Views

Because most alerts center on text, it’s handy to build methods that create alerts from format
strings. Recipe 3-2 creates a say: method that collects the arguments passed to it and builds a
string with them. The string is then passed to an alert view, which is then shown, providing a
handy instant display.

The say: method does not parse or otherwise analyze its parameters. Instead, it grabs the first
argument, uses that as the format string, and passes the remaining items to the NSString
initWithFormat:arguments: method. This builds a string, which is then passed to a one-
button alert view as its title.

Defining your own utility methods with variadic arguments lets you skip several steps where
you have to build a string with a format and then call a method. With say: you can combine
this into a single call, as follows:

[NotificationAlert say:
 @"I am so happy to meet you, %@", yourName];

This recipe, admittedly, uses a very thin example of variadic arguments. They can do a lot more
than just get passed along to a string initialization.

Recipe 3-2 Using a Variadic Method for UIAlertView Creation

+ (void)say:(id)formatstring,...
{
 if (!formatstring) return;

 va_list arglist;
 va_start(arglist, formatstring);
 id statement = [[NSString alloc]
 initWithFormat:formatstring arguments:arglist];
 va_end(arglist);

 UIAlertView *av = [[UIAlertView alloc]
 initWithTitle:statement message:nil
 delegate:nil cancelButtonTitle:@"Okay"
 otherButtonTitles:nil];
 [av show];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

112 Chapter 3 Alerting the User

Presenting Lists of Options

UIActionSheet instances create simple iOS menus. On the iPhone and iPod touch, they slide
choices—basically a list of buttons representing possible actions—onto the screen and wait for
the user to respond. On the iPad, they appear in popovers and do not display Cancel buttons.
Instead, users cancel actions by tapping outside the popovers.

Action sheets are different from alerts, although both classes derive from the same origins. They
were split into separate classes early in iPhone history. Alerts stand apart from the interface
and are better used for demanding attention. Menus slide into a view and better integrate with
ongoing application work. Cocoa Touch supplies five ways to present menus:

 ■ showInView: — On the iPhone and iPod touch, this method slides the menu up from the
bottom of the view. On the iPad, the action sheet is centered in the middle of the screen.

 ■ showFromToolBar: and showFromTabBar: —For the iPhone and iPod touch, when
you’re working with toolbars, tab bars, or any other kinds of bars that provide those
horizontally grouped buttons that you see at the bottom of many applications, these
methods align the menu with the top of the bar and slide it out exactly where it should
be. On the iPad, the action sheet is centered in the middle of the screen.

 ■ showFromBarButtonItem:animated: — On the iPad, this method presents the action
sheet as a popover from the specified bar button.

 ■ showFromRect:inView:animated: — This method shows the action sheet originating
from the rectangle you specify in the coordinates of the view you specify.

Note

Do not use showInView with tabbed child view controllers. The action sheet appears properly,
but the lower part with the Cancel button becomes unresponsive.

The following snippet shows how to initialize and present a simple UIActionSheet instance.
Its initialization method introduces a concept that is missing from UIAlertView : the
Destructive button. Colored in red, a Destructive button indicates an action from which there
is no return, such as permanently deleting a file (see Figure 3-3). Its bright red color warns the
user about the choice. Use this option sparingly.

ptg12441863

113Presenting Lists of Options

Figure 3-3 On the iPhone and iPod touch, action sheet menus slide in from the bottom of the
view. The Destructive menu button appears red and indicates permanent actions with possible
negative consequences to your users. Adding many menu items produces the scrolling list on the
right.

Action sheet values are returned in button order. In the example on the left in Figure 3-3 , the
Destructive button is number 0, and the Cancel button is number 4. This behavior contradicts
default alert view values, where the Cancel button returns 0. With action sheets, the Cancel
button’s position sets its number. This may vary, depending on how you add your buttons. In
some configurations (no Destructive button), Cancel defaults to the first item as choice 0. You
also can check the Cancel button index via the sheet’s cancelButtonIndex property. This
snippet prints the selected button index:

- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex

{
 self.title = [NSString stringWithFormat:@"Button %d", buttonIndex];

}

- (void)action:(UIBarButtonItem *)sender
{

ptg12441863

114 Chapter 3 Alerting the User

 // Destructive = 0, One = 1, Two = 2, Three = 3, Cancel = 4
 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Title"
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Destructive"
 otherButtonTitles:@"One", @"Two", @"Three", nil];
 [actionSheet showFromBarButtonItem:sender animated:YES];

}

Avoid using Cancel buttons on the iPad. Allow users to tap outside the action sheet to cancel
interaction after presenting a sheet:

UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:theTitle delegate:nil
 cancelButtonTitle:IS_IPAD ? nil : @"Cancel"
 destructiveButtonTitle:nil otherButtonTitles:nil];

Canceling an iPad action sheet returns a (default) value of –1 . You can override this, but we
cannot recommend doing so.

Note

You can use the same blocks-based approach shown in Recipe 3-1 to conveniently create
action sheets similarly to alerts.

Scrolling Menus

As a rough rule of thumb, you can fit a maximum of about 10 buttons (including Cancel)
into a portrait orientation and about 5 buttons into landscape on the iPhone and iPod touch.
(There’s quite a bit more room on the iPad.) Going beyond this number triggers the scroll-
ing presentation shown on the right in Figure 3-3 . Notice that the Cancel button is presented
below the list, even when scrolling is activated. The Cancel button is always numbered after
any previous buttons. As Figure 3-3 demonstrates, this presentation falls fairly low on the
aesthetics scale and should be avoided where possible.

Displaying Text in Action Sheets

Action sheets offer many of the same text presentation features as alert views, but they do so
with a much bigger canvas. The following snippet demonstrates how to display a message using
a UIActionSheet object. It provides a handy way to present a lot of text simultaneously:

- (void)show:(id)formatstring,...
{
 if (!formatstring) return;

ptg12441863

115“Please Wait”: Showing Progress to Your User

 va_list arglist;
 va_start(arglist, formatstring);
 id statement = [[NSString alloc]
 initWithFormat:formatstring arguments:arglist];
 va_end(arglist);

 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:statement
 delegate:nil cancelButtonTitle:nil
 destructiveButtonTitle:nil
 otherButtonTitles:@"OK", nil];

 [actionSheet showInView:self.view];
}

“Please Wait”: Showing Progress to Your User

Waiting is an intrinsic part of the computing experience and will remain so for the foresee-
able future. It’s your job as a developer to communicate that fact to your users. Cocoa Touch
provides classes that tell your users to wait for a process to complete. These progress indicators
come in two forms: as a spinning wheel that persists for the duration of its presentation and as
a bar that fills from left to right as your process moves forward from start to end. The classes
that provide these indications are as follows:

 ■ UIActivityIndicatorView — This progress indicator is a spinning circle that tells your
user to wait without providing specific information about the degree of completion. iOS’s
activity indicator is small, but its live animation catches the user’s eye and is best suited
for quick disruptions in a normal application.

 ■ UIProgressView — This view presents a progress bar. The bar provides concrete feedback
about how much work has been done and how much remains, while occupying a
relatively small space. It presents as a thin, horizontal rectangle that fills itself from left
to right as progress takes place. This classic user interface (UI) element works best for long
delays, where users want to know to what degree the job has finished.

Be aware of blocking. Both of these classes must be used on your main thread, as is the rule
with GUI objects. Computationally heavy code can block, keeping views from updating in real
time. If your code blocks, your progress view may not update in real time as progress is actually
made, getting stuck on its initial value instead.

If you need to display asynchronous feedback, use threading. For example, you may use
UIActivityIndicatorView on the main thread and perform computation on a second thread.
Your threaded computations can then perform view updates on the main thread to provide
a steady stream of progress notifications that will keep your user in sync with the work being
done.

ptg12441863

116 Chapter 3 Alerting the User

Using UIActivityIndicatorView

UIActivityIndicatorView instances offer lightweight views that display a standard rotat-
ing progress wheel. The key word to keep in mind when working with these views is small. All
activity indicators are tiny and do not look right when zoomed past their natural size.

iOS offers several different styles of the UIActivityIndicatorView class.
UIActivityIndicatorViewStyleWhite and UIActivityIndicatorViewStyleGray are
20-by-20 points in size. The white version looks best against a black background, and the gray
looks best against white. It’s a thin, sharp style. UIActivityIndicatorViewStyleWhiteLarge
is meant for use on dark backgrounds. It provides the largest, clearest indicator, at 37-by-37
points in size:

UIActivityIndicatorView *aiv = [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:
 UIActivityIndicatorViewStyleWhiteLarge];

You can tint an activity indicator by using the color property. When you set a color, it over-
rides the view style but retains the view size (regular or large):

aiv.color = [UIColor blueColor];

You need not center indicators on the screen. Place them wherever they work best for you.
As a clear-backed view, the indicator blends over whatever backdrop view lies behind it. The
predominant color of that backdrop helps select which color of indicator to use.

For general use, just add the activity indicator as a subview to the window, view, toolbar, or
navigation bar you want to overlay. Allocate the indicator and initialize it with a frame or with
Auto Layout constraints, preferably centered within whatever parent view you’re using. Start
the indicator action by sending startAnimating . To stop, call stopAnimating . Cocoa Touch
takes care of the rest, hiding the view when not in use.

Using UIProgressView

Progress views enable your users to follow task progress as it happens rather than just saying
“Please wait.” They present bars that fill over time. The bars indicate the degree to which a task
has finished. Progress bars work best for long waits where providing state feedback enables your
users to retain the feeling of control.

To create a progress view, allocate a UIProgressView instance and set its frame. To use the
bar, issue setProgress: . This takes one argument, a floating-point number that ranges
between 0% (0.0 , no progress) and 100% (1.0 , finished). Progress view bars come in two
styles: basic white and light gray. The setStyle: method chooses the kind you prefer, either
UIProgressViewStyleDefault or UIProgressViewStyleBar . The latter is meant for use in
toolbars.

ptg12441863

117Recipe: Modal Progress Overlays

Recipe: Modal Progress Overlays

Although UIAlertView and UIActionSheet provide straightforward communication and
interaction with the user, you cannot add your own subviews. To provide a modal progress
indicator, you must roll your own alert completely from scratch. Recipe 3-3 uses a simple tinted
UIView overlay with a UIActivityIndicatorView .

As shown in Figure 3-4 , the overlay view occupies the entire screen size. Using the entire screen
lets the overlay fit over the navigation bar. The overlay view must be added to the applica-
tion window and not, as you might think, to the main UIViewController ’s view. That view
only occupies the space under the navigation bar (the “application frame,” in UIScreen
terms), allowing continued access to any buttons and other control items in the bar. Filling the
window helps block that access.

Figure 3-4 A UIActivityIndicator -augmented modal view provides user feedback during
synchronous (blocking) actions. Always provide some way to cancel long-running functions without
forcefully quitting the app in your real-world applications.

ptg12441863

118 Chapter 3 Alerting the User

To prevent any user touches, the overlay sets its userInteractionEnabled property to YES .
This catches any touch events, preventing them from reaching the GUI below the alert and
creating a modal presentation where interaction cannot continue until the alert has finished.
You can easily adapt this approach to dismiss an overlay with a touch, but be aware when
creating alerts like this that the view does not belong to a view controller. It will not update
itself during device orientation changes. If you need to work with a landscape-/portrait-aware
system, you can catch the current orientation state before showing the overlay and subscribe to
reorientation notifications.

Recipe 3-3 Presenting and Hiding a Custom Alert Overlay

- (void)removeOverlay:(UIView *)overlayView
{
 [overlayView removeFromSuperview];

}

- (void)action
{
 UIWindow *window = self.view.window;

 // Create a tinted overlay, sized to the window
 UIView *overlayView =
 [[UIView alloc] initWithFrame:window.bounds];
 overlayView.backgroundColor =
 [[UIColor blackColor] colorWithAlphaComponent:0.5f];
 overlayView.userInteractionEnabled = YES;

 // Add an activity indicator
 UIActivityIndicatorView *aiv =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:
 UIActivityIndicatorViewStyleWhiteLarge];
 [aiv startAnimating];
 [overlayView addSubview:aiv];
 PREPCONSTRAINTS(aiv);
 CENTER_VIEW(overlayView, aiv);

 UILabel *label = [[UILabel alloc] init];
 label.textColor = [UIColor whiteColor];
 label.text = @"Please wait...";
 [overlayView addSubview:label];
 PREPCONSTRAINTS(label);
 CENTER_VIEW_H(overlayView, label);
 CENTER_VIEW_V_CONSTANT(overlayView, label, -44);

 [window addSubview:overlayView];

ptg12441863

119Recipe: Custom Modal Alert View

 // Use a time delay to simulate a task finishing
 [self performSelector:@selector(removeOverlay:)
 withObject:overlayView afterDelay:5.0f];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Tappable Overlays

A custom overlay can present information as well as limit interaction. You can easily expand
the overlay approach from Recipe 3-3 so that the view dismisses itself on a touch. When
tapped, the view removes itself from the screen. This behavior makes the view particularly suit-
able for showing information in a way normally reserved for the UIAlertView class:

@interface TappableOverlay : UIView
@end
@implementation TappableOverlay
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Remove this view when it is touched
 [self removeFromSuperview];

}
@end

Recipe: Custom Modal Alert View

The simplicity and lack of flexibility of the UIAlertView is often too limiting. While Recipe
3-3 provides a simple modal overlay that is perfect for providing progress during long-running
tasks, sometimes you want a fully capable and configurable alert view that doesn’t have the
artificial restrictions that Apple places on UIAlertView .

Recipe 3-4 provides an alert view that is nearly fully customizable. You can add subviews and
configure any element of the UI to meet your needs, including borders, backgrounds, and
subview placement. Bypassing the built-in alert allows for custom transition animations. Recipe
3-4 provides a bounce effect during presentation and dismissal. The bounce is implemented
with an affine scale transformation, which is covered in more detail in Chapter 5 , “View
Constraints.”

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

120 Chapter 3 Alerting the User

Note

Apple introduced Dynamics, a physics-based animation system, in iOS 7. While this example
uses a view transform to simulate a bounce in the presentation and dismissal of the alert,
Dynamics provides a declarative method of adding complex visual interactions.

As shown in Figure 3-5 , rather than box you into a specific interface, the alert is a blank slate,
ready for your use. A label and button are provided to get you started.

Figure 3-5 The iOS-supplied alert view can be very limiting. A fully custom alert provides full
customization of both the user interface and interaction.

Frosted Glass Effect

An added flourish to the custom alert is a newly introduced visual effect found in iOS 7 and
highlighted in the Control Center—the frosted glass appearance. Apple provides this effect by
default in a number of UIKit elements: UITabBar , UINavigationBar , and UIToolbar .

ptg12441863

121Recipe: Custom Modal Alert View

Outside the embedded implementation in these bars, no mechanism is available to include this
effect in your own views. Apple has provided sample code, a UIImage category, that simulates
this effect. Unfortunately, it pales in comparison to the built-in implementation. The category
is only a close approximation, and worse, is much slower than the embedded version, render-
ing it unusable as a live effect.

To work around this limitation, Recipe 3-4 subclasses a UINavigationBar to inherit the supe-
rior effect. In the future, Apple will hopefully expose this functionality directly to developers
rather than require this subtle hack.

Recipe 3-4 Custom Alert

@implementation CustomAlert
{
 UIView *contentView;

}

#pragma mark - Utility
- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object change:(NSDictionary *)change
 context:(void *)context

{
 if ([keyPath isEqualToString:@"bounds"])
 contentView.frame = self.bounds;

}

#pragma mark - Instance Creation and Initialization
- (void)internalCustomAlertInitializer
{
 // Add size observer
 [self addObserver:self forKeyPath:@"bounds"
 options:NSKeyValueObservingOptionNew context:NULL];

 // Constrain the size and width based on the initial frame
 self.translatesAutoresizingMaskIntoConstraints = NO;
 CGFloat width = self.bounds.size.width;
 CGFloat height = self.bounds.size.height;
 for (NSString *constraintString in
 @[@"V:[self(==height)]", @"H:[self(==width)]"])
 {
 NSArray *constraints = [NSLayoutConstraint
 constraintsWithVisualFormat:constraintString options:0
 metrics:@{@"width":@(width), @"height":@(height)}
 views:NSDictionaryOfVariableBindings(self)];
 [self addConstraints:constraints];
 }
 [self layoutIfNeeded];

ptg12441863

122 Chapter 3 Alerting the User

 // Add a content view for auto layout
 contentView = [[UIView alloc] initWithFrame:self.bounds];
 [self addSubview:contentView];
 contentView.autoresizingMask =
 UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleWidth;

 // Add layer styling
 self.layer.borderColor = [UIColor blackColor].CGColor;
 self.layer.borderWidth = 2;
 self.layer.cornerRadius = 20;
 self.clipsToBounds = YES;

 // Create label
 _label = [[UILabel alloc] init];
 [contentView addSubview:_label];
 _label.translatesAutoresizingMaskIntoConstraints = NO;
 _label.numberOfLines = 0;
 _label.textAlignment = NSTextAlignmentCenter;

 // Create button
 _button = [UIButton buttonWithType:UIButtonTypeSystem];
 [contentView addSubview:_button];
 _button.translatesAutoresizingMaskIntoConstraints = NO;

 // Layout subviews on content view
 for (NSString *constraintString in
 @[@"V:|-[_label]-[_button]-|",
 @"H:|-[_label]-|", @"H:|-[_button]-|"])
 {
 NSArray *constraints = [NSLayoutConstraint
 constraintsWithVisualFormat:constraintString
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(_button, _label)];
 [contentView addConstraints:constraints];
 }

}

- (instancetype)initWithFrame:(CGRect)frame
{
 if (!(self = [super initWithFrame:frame])) return self;
 [self internalCustomAlertInitializer];
 return self;

}

- (instancetype)initWithCoder:(NSCoder *)aDecoder
{

ptg12441863

123Recipe: Custom Modal Alert View

 if (!(self = [super initWithCoder:aDecoder])) return self;
 [self internalCustomAlertInitializer];
 return self;

}

- (void)dealloc
{
 [self removeObserver:self forKeyPath:@"bounds"];

}

#pragma mark - Presentation and Dismissal
- (void)centerInSuperview
{
 if (!self.superview)
 {
 NSLog(@"Error: Attempting to present without superview");
 return;
 }

 NSArray *constraintArray =
 [self.superview.constraints copy];
 for (NSLayoutConstraint *constraint in constraintArray)
 {
 if ((constraint.firstItem == self) ||
 (constraint.secondItem == self))
 [self.superview removeConstraint:constraint];
 }
 [self.superview addConstraints:CONSTRAINTS_CENTERING(self)];

}

- (void)show
{
 self.transform =
 CGAffineTransformMakeScale(FLT_EPSILON, FLT_EPSILON);
 [self centerInSuperview];

 CustomAnimationBlock expandBlock = ^{self.transform =
 CGAffineTransformMakeScale(1.1f, 1.1f);};
 CustomAnimationBlock identityBlock = ^{self.transform =
 CGAffineTransformIdentity;};
 CustomCompletionAnimationBlock completionBlock =
 ^(BOOL done){[UIView animateWithDuration:0.3f
 animations:identityBlock];};

 [UIView animateWithDuration:0.5f animations:expandBlock
 completion:completionBlock];

}

ptg12441863

124 Chapter 3 Alerting the User

- (void)dismiss
{
 CustomAnimationBlock expandBlock = ^{self.transform =
 CGAffineTransformMakeScale(1.1f, 1.1f);};
 CustomAnimationBlock shrinkBlock = ^{self.transform =
 CGAffineTransformMakeScale(FLT_EPSILON, FLT_EPSILON);};
 CustomCompletionAnimationBlock completionBlock =
 ^(BOOL done){[UIView animateWithDuration:0.3f
 animations:shrinkBlock];};

 [UIView animateWithDuration:0.5f animations:expandBlock
 completion:completionBlock];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Recipe: Basic Popovers

At the time of this writing, popovers remain an iPad-only feature. That may change as Apple
introduces new iOS models or ports some of this functionality to the iPhone family of devices.
Often you’ll want to present information using a popover as an alternative to presenting a
modal view. There are several basic rules of popovers that you need to incorporate into your
day-to-day development:

 ■ Always hang onto your popovers. Create strong local variables that retain your
popovers until they are no longer needed. In Recipe 3-5 , the variable is reset when the
popover is dismissed.

 ■ Always check for existing popovers and dismiss them. This is especially important if
you create popovers that have different roles in your apps. For example, you may provide
popovers for more than one bar button item. Before you present any new popover,
dismiss the existing one.

 ■ Always set your content size. The default iPad popover is long and thin and may not
appeal to your design aesthetics. Setting the preferredContentSize property of your
view controllers allows you to specify the dimensions the popover should use.

 ■ Always provide an iPhone option. Don’t sacrifice functionality when changing
platforms. Instead, provide an iPhone-family alternative, usually a modally presented
controller instead of a popover.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

125Recipe: Basic Popovers

 ■ Never add a Done button to popovers. Although you normally add a Done button to a
modal presentation, skip it in a popover. Users tap outside the popover to dismiss it, so a
Done button is redundant.

Note

As of the initial release of iOS 7, Apple’s documentation states that popovers no longer pres-
ent a graphical arrow pointing to the source of the popover. The popoverArrowDirection
property on UIPopoverController is documented as having been deprecated. However, the
arrow is still visible and the methods are not marked as deprecated in the provided SDK head-
ers. This inconsistency in the documentation is likely a holdover from an abandoned design
change that will be resolved in a future update.

Recipe 3-5 Basic Popovers

- (void)popoverControllerDidDismissPopover:
 (UIPopoverController *)popoverController

{
 // Stop holding onto the popover
 popover = nil;

}

- (void)action:(id)sender
{
 // Always check for existing popover
 if (popover)
 [popover dismissPopoverAnimated:YES];

 // Retrieve the nav controller from the storyboard
 UIStoryboard *storyboard =
 [UIStoryboard storyboardWithName:@"Storyboard"
 bundle:[NSBundle mainBundle]];
 UINavigationController *controller =
 [storyboard instantiateInitialViewController];

 // Present either modally or as a popover
 if (IS_IPHONE)
 {
 [self.navigationController
 presentViewController:controller
 animated:YES completion:nil];
 }
 else
 {
 // No Done button on iPads
 UIViewController *vc = controller.topViewController;

ptg12441863

126 Chapter 3 Alerting the User

 vc.navigationItem.rightBarButtonItem = nil;

 // Set the preferred content size to iPhone-sized
 vc.preferredContentSize =
 CGSizeMake(320.0f, 480.0f - 44.0f);

 // Create and deploy the popover
 popover = [[UIPopoverController alloc]
 initWithContentViewController:controller];
 [popover presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:YES];
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Recipe: Local Notifications

Local notifications alert the user when your application is not running. They offer a simple way
to schedule an alert that presents itself at a specific date and time. Unlike push notifications,
local notifications do not require any network access and do not communicate with remote
servers. As their name suggests, they are handled entirely on a local level.

Local notifications are meant to be used with schedules, such as calendar and to-do list utilities.
You can also use them with multitasking applications to provide updates when the application
is not running in the foreground. For example, a location-based app might pop up a notifica-
tion to let a user know that the app has detected that the user is near the local library and that
books are ready to be picked up.

The system does not present local notifications when the application is active, only when it’s
suspended or running in the background. Recipe 3-6 forces the app to quit as it schedules the
notification for 5 seconds in the future to allow the notification to appear properly. Don’t ever
do this in App Store applications; we’ve done it here for demonstration purposes. If you don’t
force the app to close, you’ll miss the notification.

As with push notifications, tapping the action button relaunches the application, moving
control back into the application:didFinishLaunchingWithOptions: method.
If you retrieve the options dictionary, the notification object can be found via the
UIApplicationLaunchOptionsLocalNotificationKey key.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

127Recipe: Local Notifications

Some developers have used this relaunching capability to add features to the notification
center, with varied success. The idea works like this: If you add a local notification, a tap
will launch the app to perform some task such as tweeting. Thus, you are essentially offering
features “through” the notification center. Apple doesn’t always respond well to those who use
its center in nonstandard ways; your success will most certainly vary as Apple adjusts its poli-
cies to these clever but unsanctioned uses.

Best Practices

Don’t spam your users. Just because local notifications don’t require opt-in doesn’t mean that
you should abuse them for marketing. Here’s a rule of thumb: If a notification doesn’t deliver
information that your user specifically requested, don’t send it. (This goes for push notifica-
tions as well. When users opt in, they’re not opting in for spam.)

An unsolicited notification is not the user experience you should be aiming for. When your
notification arrives in the middle of dinner or at 3 in the morning, you fail to win hearts,
reviews, and customers.

Excess notifications are wrong, regardless of whether users can switch on “do not disturb”
features. Apple regularly refuses applications that send ads through push notifications; you
should note this for local notifications as well. Notification abuse is the easiest way to find your
app, and your personal reputation, dragged through the mud.

And, as a final point, make sure to spell-check your notifications.

Recipe 3-6 Scheduling Local Notifications

- (void)action:(id)sender
{
 UIApplication *app = [UIApplication sharedApplication];

 // Remove all prior notifications
 NSArray *scheduled = [app scheduledLocalNotifications];
 if (scheduled.count)
 [app cancelAllLocalNotifications];

 // Create a new notification
 UILocalNotification* alarm =
 [[UILocalNotification alloc] init];
 if (alarm)
 {
 alarm.fireDate =
 [NSDate dateWithTimeIntervalSinceNow:5.0f];
 alarm.timeZone = [NSTimeZone defaultTimeZone];
 alarm.repeatInterval = 0;
 alarm.alertBody = @"Five Seconds Have Passed";
 [app scheduleLocalNotification:alarm];

ptg12441863

128 Chapter 3 Alerting the User

 // Force quit. Never do this in App Store code.
 exit(0);
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Alert Indicators

When an application accesses the Internet from behind the scenes, it’s polite to let your
user know what’s going on. You don’t have to create a full-screen alert because Cocoa Touch
provides a simple application property that controls a spinning network activity indicator in
the status bar. Figure 3-6 shows this indicator in action, to the right of the Wi-Fi indicator and
to the left of the current time display.

Figure 3-6 The network activity indicator is controlled by a UIApplication property.

The following snippet demonstrates how to access this property, which requires you to do little
more than toggle the indicator on or off:

- (void)action:(id)sender
{
 // Toggle the network activity indicator
 UIApplication *app = [UIApplication sharedApplication];
 app.networkActivityIndicatorVisible =
 !app.networkActivityIndicatorVisible;

}

In a real-world deployment, you normally perform network activities on a secondary thread.
At the same time, all UI updates must occur on the main thread. Using GCD, as in this code
snippet, enables you to request GUI updates from other threads:

dispatch_async(dispatch_get_main_queue(), ^{
 // set activity indicator here

});

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

129Recipe: Simple Audio Alerts

You might want to keep count of network operations in your application and enable the indi-
cator only when at least one is active.

Badging Applications

If you’ve used iOS for any time, you’ve likely seen the small red badges that appear over appli-
cations on the home screen. These might indicate the number of missed phone calls or unread
e-mails that have accumulated since the user last opened Phone or Mail.

To set an application badge from within a program, set the applicationIconBadgeNumber
property to a positive integer. To hide badges, set applicationIconBadgeNumber to 0 .

Remove your badges predictably, such as on opening the application. Users expect that opening
an application will clear the badge on the SpringBoard.

Recipe: Simple Audio Alerts

Audio alerts “speak” directly to your users. They produce instant feedback—for users who are
not hearing impaired. Fortunately, Apple built basic sound playback into the Cocoa Touch SDK
through System Audio services.

The alternatives include using Audio Queue calls or AVAudioPlayer . Audio Queue play-
back is time-consuming to program and involves much more complexity than simple alert
sounds need. In contrast, you can load and play system audio with just a few lines of code.
AVAudioPlayer also has drawbacks. It interferes with iPod audio. In contrast, System Audio
can perform a sound without interrupting any music that’s currently playing, although that
may admittedly not be the result you’re looking for, as alerts can get lost in the music.

Alert sounds work best when they’re kept short—preferably 30 seconds or shorter, according to
Apple. System Audio plays PCM and IMA audio only. That means limiting your sounds to AIFF,
WAV, and CAF formats.

System Sounds

To build a system sound, call AudioServicesCreateSystemSoundID with a file URL pointing
to the sound file. This call returns an initialized system sound object, which you can then play
at will. Just call AudioServicesPlaySystemSound with the sound object. That single call does
all the work:

AudioServicesPlaySystemSound(mySound);

When iPod audio is playing, the system sound generally plays back at the same volume,
without fading, so users may miss your alert. You can check the current playback state by
testing as follows:

if ([MPMusicPlayerController iPodMusicPlayer].playbackState ==
 MPMusicPlaybackStatePlaying)

ptg12441863

130 Chapter 3 Alerting the User

If the music player is playing, you may choose to pause the existing music playback, substi-
tute a visual element, or consider using an alert as described later in this chapter to add vibra-
tion to your sound. To access the MPMusicPlayerController , make sure you import the
MediaPlayer module. Modules are discussed in more detail in the following section.

Add an optional system sound completion callback to notify your program when a sound
finishes playing by calling AudioServicesAddSystemSoundCompletion() . Unless you use
short sounds that are chained one after another, this is a step you can generally skip.

Clean up your sounds by calling AudioServicesDisposeSystemSoundID with the sound in
question. This frees the sound object and all its associated resources.

Modules for System Frameworks

To use these system sound services, you must include the Audio Toolbox framework and
headers. In iOS 7, Apple introduced modules support to Xcode, simplifying the process of
adding system frameworks and headers to your code.

In the past, including support for a system framework required adding the framework to your
application target and using the #include macro to include the header in your source code.
With modules, a sole @import at the top of your source file will include the headers and Auto
Link the framework into your project:

@import AudioToolbox;

Modules make it easier to add Apple-provided frameworks to your project. However, their
primary purpose is to increase the performance of compilation and code indexing. Modules
include a database of all symbols in the framework for quick lookup. Apple has anecdotally
shown modules to improve build times and code indexing 200% or more, depending on the
project.

Modules are enabled by default on new projects created with Xcode 5. Use modules on existing
projects by selecting Enable Modules in the project Build Settings.

All system frameworks are available as modules. Unfortunately, there is no method currently
available to convert your own frameworks into modules.

Vibration

As with audio sounds, vibration immediately grabs a user’s attention. What’s more, vibration
works for nearly all users, including those who are hearing or visually impaired. Vibration is
available, however, only on the iPhone platform at this time. Plus, it should be used sparingly.
It puts a great drain on the device battery.

Using the same System Audio services, you can vibrate as well as play a sound. All you need is
the following one-line call to accomplish it, as used in Recipe 3-7 :

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

ptg12441863

131Recipe: Simple Audio Alerts

You cannot vary the vibration parameters. Each call produces a short 1- to 2-second buzz. On
platforms without vibration support (such as the iPod touch and iPad), this call does nothing—
but does not produce an error:

- (void)vibrate
{
 // Vibrate only works on iPhones
 AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);

}

Alerts

Audio Services provides a vibration/sound mashup called an alert sound, which you invoke as
follows:

AudioServicesPlayAlertSound(mySound);

This call, which is also demonstrated in Recipe 3-7 , plays the requested sound and, possibly,
vibrates or plays an additional alert. On iPhones, when the user has set Settings > Sounds >
Vibrate on Ring, it vibrates the phone. This vibration provides a tactile response to the user
even if the sound volume is low or muted by the user, obscuring the audio portion of the alert.

iPad units and second-generation and later iPod touch units play the sound sans vibration
(because it is unavailable on those units) through the onboard speaker. First-generation iPod
touches (see if you can find one these days!) play a short alert melody in place of the sound on
the device speaker while playing the requested audio through to the headphones.

iOS automatically lowers any currently playing music during alert playback. This property of
alerts can be a useful alternative to system sounds when music playback has been detected.

Delays

The first time you play back a system sound on iOS, you might encounter delays. You may
want to play a silent sound on application initialization to avoid a delay on subsequent
playback.

Note

When testing on iPhones, make sure you have not enabled the silent ringer switch on the left
side of the unit. Audio Services alerts do not play when that switch is enabled. This oversight
has tripped up many iPhone developers. If your alert sounds must always play, consider using
the AVAudioPlayer class.

ptg12441863

132 Chapter 3 Alerting the User

Disposing of System Sounds

Don’t forget to dispose of system sounds. Your dealloc method is a natural place to wrap up
matters at an object’s end of life. Always consider the life cycle of your sounds and find an
approach to manage the disposal of the sound.

For many applications, a few sounds can persist for the duration of an object’s (or even an
application’s) lifetime without placing a burden on memory. For others, you’ll want to clean
up after yourself as soon as the sound is played. Make sure to design sound disposal into your
applications and ensure that you dispose of resources when you’re done with them.

In recent versions of Xcode, the iOS simulator offers full sound playback.

Recipe 3-7 Playing Sounds, Alerts, and Vibrations Using Audio Services

@implementation SoundPlayer

void _systemSoundDidComplete(SystemSoundID ssID,
 void *clientData)

{
 AudioServicesDisposeSystemSoundID(ssID);

}

+ (void)playAndDispose:(NSString *)sound
{
 NSString *sndpath = [[NSBundle mainBundle]
 pathForResource:sound ofType:@"wav"];
 if ((!sndpath) ||
 (![[NSFileManager defaultManager]
 fileExistsAtPath:sndpath]))
 {
 NSLog(@"Error: %@.wav not found", sound);
 return;
 }

 CFURLRef baseURL =
 (CFURLRef)CFBridgingRetain(
 [NSURL fileURLWithPath:sndpath]);

 SystemSoundID sysSound;
 AudioServicesCreateSystemSoundID(baseURL, &sysSound);
 CFRelease(baseURL);

 AudioServicesAddSystemSoundCompletion(sysSound, NULL,
 NULL, systemSoundDidComplete, NULL);

ptg12441863

133Summary

 if ([MPMusicPlayerController iPodMusicPlayer].playbackState
 == MPMusicPlaybackStatePlaying)
 AudioServicesPlayAlertSound(sysSound);
 else
 AudioServicesPlaySystemSound(sysSound);

}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 3 .

Summary

This chapter introduces ways for your application to reach out and interact directly with your
user instead of the other way around. You’ve learned how to build alerts—visual, auditory, and
tactile—that grab your user’s attention and can request immediate feedback. Use these exam-
ples to enhance the interactive appeal of your programs and leverage some unique iPhone-only
features. Here are a few thoughts to carry away from this chapter:

 ■ Alerts take users into the moment. They’re designed to elicit responses while
communicating information. While the system alerts are fairly rigid, they are quick and
easy to implement. And, as you saw in this chapter, custom alerts can be very powerful
interface components that provide a lot of flexibility and customization.

 ■ When a task will take a noticeable amount of time, be courteous to your user by
displaying some kind of progress feedback. iOS offers many ways to do this, from heads-
up displays (HUDs) to status bar indicators and beyond. You might need to divert the
non-GUI elements of your task to a new thread to avoid blocking. It’s also courteous to
provide a way for the user to cancel out of the operation, if possible.

 ■ Use local notifications sparingly. Never display them unless there’s a compelling reason
the user would want them to be displayed. It’s very easy to alienate a user and get your
app kicked off a device by overusing local notification alerts.

 ■ System-supplied features do not and should not match every application’s design needs.
Whenever possible, build custom alerts and menus that fit with your app, using UIView
instances and animation.

 ■ Audio feedback, including beeps and vibration, can enhance your programs and make
your interaction richer. When using system sound calls, your sounds play nicely with
iPod functionality and won’t ruin the ongoing listening experience. At the same time,
don’t be obnoxious. Use alert sounds sparingly and meaningfully to avoid annoying your
users.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

This page intentionally left blank

ptg12441863

4
Assembling Views and

Animations

The UIView class and its subclasses populate the iOS device screens. This chapter introduces
views from the ground up. You’ll learn how to build, inspect, and break down view hierarchies
and understand how views work together. You’ll discover the role geometry plays in creating
and placing views in your interface, and you’ll read about animating views so they move and
transform onscreen.

Chapter 5 , “View Constraints,” introduces Auto Layout, a view layout system that leverages a
declarative constraint-based model. In declarative programming, a developer describes to the
SDK how an application or interface behaves, and the system expresses those rules at runtime.
You describe your interface by using constraint rules. Constraints produce the geometry and
layout of your views.

Whether you work with Auto Layout or not, understanding the foundational geometry of views
is critical to building user interfaces.

View Hierarchies

A tree-based hierarchy orders what you see on your iOS screen. Starting with the main window,
views are laid out in a specifically hierarchical way. All views may have children, called
subviews . Each view, including the window, owns an ordered list of these subviews. Views
might own many subviews; they might own none. Your application determines how views are
laid out and who owns whom.

Subviews display in order, always from back to front. This works something like a stack of
animation cels—the transparent sheets used to create cartoons. Only the parts of the sheets
that have been painted show through. The clear parts allow any visual elements behind the
sheet to be seen. Views, too, can have clear and painted parts and can be layered to build a
complex presentation.

ptg12441863

136 Chapter 4 Assembling Views and Animations

Figure 4-1 shows a little of the layering used in a typical window. Here the window owns a
UINavigationController -based hierarchy. The elements layer together. The window (repre-
sented by the empty, rightmost element) owns a navigation bar with its buttons and title label,
and a table with its own subviews. These items stack together to build the GUI.

Figure 4-1 Subview hierarchies combine to build complex GUIs.

Listing 4-1 shows the view hierarchy of the window in Figure 4-1 . The tree starts from the
top UIWindow and shows the classes for each of the child views. If you trace your way down
the tree, you can see the navigation bar (at level 2) with its two buttons (each at level 3) and
the table view (level 4) with its two cells (each at level 6). Some of the items in this listing
are private classes, automatically added by the SDK when laying out views. For example,
UILayoutContainerView is never used directly by developers. It’s part of the SDK UIWindow
implementation.

The only parts missing from this listing are the dozen or so line separators for the table,
omitted for space considerations. Each separator is a UITableViewSeparatorView instance.
The separators belong to UITableView and would normally display at a depth of 5.

ptg12441863

137Recipe: Recovering a View Hierarchy Tree

Listing 4-1 To-Do List View Hierarchy

--[1] UILayoutContainerView
----[2] UINavigationTransitionView
------[3] UIViewControllerWrapperView
--------[4] UITableView
----------[5] UITableViewWrapperView
------------[6] UITableViewCell
--------------[7] UITableViewCellScrollView
----------------[8] UITableViewCellContentView
------------------[9] UILabel
----------------[8] UITableViewCellDetailDisclosureView
------------------[9] UIButton
--------------------[10] UIImageView
------------------[9] UIImageView
------------[6] UITableViewCell
--------------[7] UITableViewCellScrollView
----------------[8] UITableViewCellContentView
------------------[9] UILabel
----------------[8] UITableViewCellDetailDisclosureView
------------------[9] UIButton
--------------------[10] UIImageView
------------------[9] UIImageView
----------[5] UIImageView
----------[5] UIImageView
----[2] UINavigationBar
------[3] _UINavigationBarBackground
--------[4] _UIBackdropView
----------[5] _UIBackdropEffectView
----------[5] UIView
--------[4] UIImageView
------[3] UINavigationItemView
--------[4] UILabel
------[3] UINavigationButton
--------[4] UIButtonLabel
------[3] UINavigationButton
--------[4] UIButtonLabel
------[3] _UINavigationBarBackIndicatorView

Recipe: Recovering a View Hierarchy Tree

Each view knows both its parent (aView.superview) and its children (aView.subviews). You
can build a view tree, like the one shown in Listing 4-1 , by recursively walking through a view’s
subviews. Recipe 4-1 builds a visual tree by noting the class of each view and increasing the
indentation level every time it moves down from a parent view to its children. The results are
stored in a mutable string and returned to the calling method.

ptg12441863

138 Chapter 4 Assembling Views and Animations

The code shown in Recipe 4-1 was used to create the tree shown in Listing 4-1 . You can use this
method to duplicate the results of Listing 4-1 , or you can copy it to other applications to view
their hierarchies.

Note

UIView includes a “secret” method— recursiveDescription —provided by the UIDebugging
category on UIView . Documented in the Apple Tech Note at https://developer.apple.com/
library/ios/technotes/tn2239/_index.html , it recursively iterates through child views, appending
the description of each view and providing a similar if less configurable and readable output to
Recipe 4-1 . As a private method, it is easily accessible only from the debugger. Using trickery
to access this method from within your code will likely lead to your app being rejected by the
App Store and is highly discouraged. Recipe 4-1 provides a cleaner, flexible option without this
significant restriction.

Recipe 4-1 Extracting a View Hierarchy Tree

// Recursively travel down the view tree, increasing the
// indentation level for children
- (void)dumpView:(UIView *)aView atIndent:(int)indent
 into:(NSMutableString *)outString

{
 // Add the indentation dashes
 for (int i = 0; i < indent; i++)
 [outString appendString:@"--"];

 // Follow that with the class description
 [outString appendFormat:@"[%2d] %@\n", indent,
 [[aView class] description]];

 // Recurse through each subview
 for (UIView *view in aView.subviews)
 [self dumpView:view atIndent:indent + 1 into:outString];

}

// Start the tree recursion at level 0 with the root view
- (NSString *)displayViews:(UIView *)aView
{
 NSMutableString *outString = [NSMutableString string];
 [self dumpView:aView atIndent:0 into:outString];
 return outString;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

https://developer.apple.com/library/ios/technotes/tn2239/_index.html
https://developer.apple.com/library/ios/technotes/tn2239/_index.html
https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

139Recipe: Querying Subviews

Exploring XIB and Storyboard Views

Many Xcode users create views and view controllers in Interface Builder (IB), using storyboards
and XIB files rather than building them directly in code. The following snippet demonstrates
how to use Recipe 4-1 to deconstruct views loaded from these resources:

UIView *sampleView = [[[NSBundle mainBundle]
 loadNibNamed:@"Sample" owner:self options:NULL] objectAtIndex:0];

if (sampleView)
{
 NSMutableString *outstring = [NSMutableString string];
 [self dumpView:sampleView atIndent:0 into:outstring];
 NSLog(@"Dumping sample view: %@", outstring);

}

UIStoryboard *storyboard = [UIStoryboard
 storyboardWithName:@"Sample" bundle:[NSBundle mainBundle]];

UIViewController *vc = [storyboard instantiateInitialViewController];
if (vc.view)
{
 NSMutableString *outstring = [NSMutableString string];
 [self dumpView:vc.view atIndent:0 into:outstring];
 NSLog(@"Dumping sample storyboard: %@", outstring);
}

The sample code for Recipe 4-1 includes sample XIB and storyboard files. You can edit them
yourself and test the view by dumping code to see how the underlying structure matches the
presentation you create in IB.

Recipe: Querying Subviews

A view stores an array of its children. Retrieve the array via the subviews property. The child
views are always drawn after the parent, in the order in which they appear in the subviews
array. These views draw in order from back to front, and the subviews array mirrors that
drawing pattern. Views that appear later in the array are drawn after views that appear earlier.

The subviews property returns just those views that are immediate children of a given view. At
times, you might want to retrieve a more exhaustive list of subviews, including the children’s
children. Recipe 4-2 introduces allSubviews() , a simple recursive function that returns a
full list of subviews for any view. Call this function with a view’s window (via view.window)
to return a complete set of views appearing in the UIWindow that hosts that view. This list is
useful when you want to search for a particular view, such as a specific slider or button.

Although it is not typical, iOS applications may include several windows, each of which can
contain many views, some of which may be displayed on an external screen. Recover an
exhaustive list of all application views by iterating through each available window. The
allApplicationViews() function in Recipe 4-2 does exactly that. A call to [[UIApplication

ptg12441863

140 Chapter 4 Assembling Views and Animations

sharedApplication] windows] returns the array of application windows. The function iter-
ates through these, adding their subviews to the collection.

In addition to knowing its subviews, each view knows the window it belongs to. The view’s
window property points to the window that owns it. Recipe 4-2 also includes a simple function
called pathToView() that returns an array of superviews, from the window down to the view
in question. It does this by calling superview repeatedly until arriving at a window instance.

Views can also check their superview ancestry in another way. The isDescendantOfView:
method on UIView determines whether a view lives within another view, even if that view
is not its direct superview. This method returns a simple Boolean value. YES means the view
descends from the view passed as a parameter to the method.

Recipe 4-2 Subview Utility Functions

// Return an exhaustive descent of the view's subviews
NSArray *allSubviews(UIView *aView)
{
 NSArray *results = aView.subviews;
 for (UIView *eachView in aView.subviews)
 {
 NSArray *subviews = allSubviews(eachView);
 if (subviews)
 results = [results arrayByAddingObjectsFromArray:subviews];
 }
 return results;

}

// Return all views throughout the application
NSArray *allApplicationViews()
{
 NSArray *results = [[UIApplication sharedApplication] windows];
 for (UIWindow *window in
 [UIApplication sharedApplication].windows)
 {
 NSArray *subviews = allSubviews(window);
 if (subviews) results =
 [results arrayByAddingObjectsFromArray:subviews];
 }
 return results;

}

// Return an array of parent views from the window down to the view
NSArray *pathToView(UIView *aView)
{
 NSMutableArray *array = [NSMutableArray arrayWithObject:aView];
 UIView *view = aView;
 UIWindow *window = aView.window;

ptg12441863

141Managing Subviews

 while (view != window)
 {
 view = [view superview];
 [array insertObject:view atIndex:0];
 }
 return array;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Managing Subviews

The UIView class offers numerous methods that help build and manage views. These methods
let you add, order, remove, and query the view hierarchy. As shown in Figure 4-1 , this hierar-
chy controls the order of views. Updating the way views relate to each other changes the layout
your users see in the app. Here are some approaches for typical view-management tasks.

Adding Subviews

You call addSubview: on a parent to add new subviews. This method adds a subview front-
most within the parent view, placed above any existing views. To insert a subview into the
view hierarchy at a particular location other than the front, the SDK offers a trio of utility
methods:

 ■ insertSubview:atIndex:

 ■ insertSubview:aboveSubview:

 ■ insertSubview:belowSubview:

These methods control where view insertion happens. The insertion can remain relative to
another view, or it can move into a specific index of the subviews array. The above and below
methods add subviews in front of or behind a given child, respectively. Insertion increases the
index of any subsequent views and does not replace any existing views.

Reordering and Removing Subviews

Applications often reorder and remove views as users interact with the screen. The iOS SDK
offers several easy ways to do this, allowing you to change the view order and contents:

 ■ Use [parentView exchangeSubviewAtIndex:i withSubviewAtIndex:j] to exchange
the positions of two views.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

142 Chapter 4 Assembling Views and Animations

 ■ Move subviews to the front or back by using bringSubviewToFront: and
sendSubviewToBack: .

 ■ To remove a subview from its parent, call [childView removeFromSuperview] . If the
child view had been onscreen, it disappears.

When you reorder, add, or remove views, the screen automatically redraws to show the new
view presentation.

View Callbacks

When the view hierarchy changes, callbacks can be sent to the views in question. The iOS SDK
offers six callback methods. These methods may help your application keep track of views that
are moving and changing parents:

 ■ didAddSubview: —Is sent to a parent view after it has successfully added a child view
via addSubview: or one of the other subview insertion methods listed earlier. It lets
subclasses of UIView perform additional actions when new views are added.

 ■ didMoveToSuperview: —Informs views that they’ve been reparented to a new superview.
A view may want to respond to that new parent in some way. When a view is removed
from its superview, the new parent is nil .

 ■ willMoveToSuperview: —Is sent before a move occurs.

 ■ didMoveToWindow: —Provides the callback equivalent of didMoveToSuperview but
when the view moves to a new Window hierarchy instead of to just a new superview. You
most typically use this when working with external displays with AirPlay.

 ■ willMoveToWindow: —Is sent before a move occurs.

 ■ willRemoveSubview: —Informs the parent view that a child view is about to be
removed.

These methods are rarely used, but when needed, they’re almost always lifesavers, allowing you
to add behavior without having to know in advance what kind of subview or superview class is
being used. The window callbacks are used primarily for displaying overlay views in a second-
ary window, such as alerts, and input views, such as keyboards.

Tagging and Retrieving Views

The iOS SDK offers a built-in search feature that lets you retrieve subviews by tagging them.
A tag is just a number, usually a positive integer, that identifies a view. Assign tags using a
view’s tag property (for example, myView.tag = 101). In IB, you can set a view’s tag in the
Attributes inspector. As Figure 4-2 shows, you specify the tag in the View section.

ptg12441863

143Recipe: Naming Views by Object Association

Figure 4-2 Set the tag for any view in IB’s Attributes inspector.

Tags are arbitrary. The only “reserved” tag is 0, which is the default property setting for all
newly created views. It’s up to you to decide how you want to tag your views and which values
to use. You can tag any instance that is a child of UIView , including windows and controls. So
if you have many buttons and switches, adding tags helps tell them apart when users trigger
them. You can add to your callback methods a simple switch statement that looks at the tag
and determines how to react.

Apple rarely tags subviews. The only instance we have ever found of view tagging has been in
UIAlertView s, where the buttons use tags of 1, 2, and so forth, but it has been several years
since that happened. (Apple probably left this tagging in there as a mistake.) If you worry about
conflicting with Apple tags, start your numbering at 10 or 100, or some other number higher
than any value Apple might use.

Using Tags to Find Views

Tags let you avoid passing user interface elements around your program by making them
directly accessible from any parent view. The viewWithTag: method recovers a tagged
view from a child hierarchy. The search is recursive, so the tagged item need not be an
immediate child of the view in question. You can search from the window with [window
viewWithTag:101] and find a view that is several branches down the hierarchy tree. When
more than one view uses the same tag, viewWithTag: returns the first item it finds.

The only challenge about using viewWithTag : is that it returns a UIView object. This means
you often have to cast it to the proper type before you can use it. For example, you can retrieve
a label and set its text like this:

UILabel *label = (UILabel *)[self.view.window viewWithTag:101];
label.text = @"Hello World";

Recipe: Naming Views by Object Association

Although tagging offers a handy approach to identifying views, some developers may prefer
to work with names rather than numbers. Using names adds an extra level of meaning to
your view identification schemes. Instead of referring to “the view with a tag of 101,” a switch
named Ignition Switch can describe its role and add a level of self-documentation missing from
a plain number:

// Toggle switch
UISwitch *s = (UISwitch *)[self.view viewNamed:@"Ignition Switch"];
[s setOn:!s.isOn];

ptg12441863

144 Chapter 4 Assembling Views and Animations

It’s easy to extend UIView to add a nametag property and retrieve views by name. The secret
lies in Objective-C’s runtime associated object functions. If you’ve ever written class categories,
you might be thinking, “But if I add new storage, won’t I need to subclass?” Associated objects
don’t require new instance variables. Instead, they provide a way to use key/value pairs outside
an object’s direct storage, associating that object with information stored elsewhere.

Recipe 4-3 creates a UIView nametag category. It consists of a single property (nametag), which
is supported by associated objects and a method (viewNamed:) that works to find any subview
by name. The method descends the view hierarchy with a recursive depth-first search and
returns the first subview whose name matches a search string.

Naming Views in Interface Builder

Using a named view approach allows you to retrieve subviews without having to declare
IBOutlet instance variables. (Whether this is a net benefit to code readability and maintain-
ability is beyond the scope of this section.) Consider the code you saw earlier in this section
that toggles a switch from within an interface. You can add that name (Ignition Switch) as a
custom runtime attribute in IB.

Figure 4-3 shows how you do this. Select any view and open the Identity Inspector (View >
Utilities > Show Identity Inspector). Locate the User Defined Runtime Attributes section and
click + to add a new attribute. Set the Key Path to nametag (to match the property defined in
Recipe 4-3 ’s UIView class category), Type to String, and Value to the view’s new name. Save
your changes. You can then use the category’s viewNamed: method to retrieve the switch via
code and toggle its state.

Figure 4-3 Set the tag for any view in IB’s Attributes inspector. You may assign user-defined
runtime attributes for any Key-value coded (KVC) object value. These values are set at the time the
XIB file loads.

Note

You can name a view’s layer directly, without associated objects. CALayer instances offer a
name property, which helps identify layers when you’re working with them. To use layers, import
the Quartz Core module in your source and access each layer via view.layer .

ptg12441863

145Recipe: Naming Views by Object Association

Recipe 4-3 Naming Views

#import <objc/runtime.h>
@implementation UIView (NameExtensions)

// Static variable's address acts as the key
// Thanks, Oliver Drobnik
static const char nametag_key;

- (id)nametag
{
 return objc_getAssociatedObject(self, (void *) &nametag_key);

}

- (void)setNametag:(NSString *)theNametag
{
 objc_setAssociatedObject(self, (void *) &nametag_key,
 theNametag, OBJC_ASSOCIATION_RETAIN_NONATOMIC);

}

- (UIView *)viewWithNametag:(NSString *)aName
{
 if (!aName) return nil;

 // Is this the right view?
 if ([self.nametag isEqualToString:aName])
 return self;

 // Recurse depth first on subviews
 for (UIView *subview in self.subviews)
 {
 UIView *resultView = [subview viewNamed:aName];
 if (resultView) return resultView;
 }

 // Not found
 return nil;

}

- (UIView *)viewNamed:(NSString *)aName
{
 if (!aName) return nil;
 return [self viewWithNametag:aName];

}
@end

ptg12441863

146 Chapter 4 Assembling Views and Animations

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

View Geometry

While direct control of view geometry is less necessary now than it used to be, thanks to
Apple’s introduction of Auto Layout, these tasks continue to play a fundamental role in some
situations when working with views. Some of Apple’s new APIs, such as the ones that introduce
view physics, do not play nicely with Auto Layout. Because of this, you should master the basic
ways you interact and adjust view geometry.

Geometric properties define where each view appears, what their sizes are, and how they are
oriented. These properties remain valid, even when using Auto Layout; under Auto Layout,
they are managed by the constraint system. You can still query and view these properties to
retrieve information about where a view has been placed and what geometric transformations
have been applied to it.

When working with dynamic views, views with short life spans, and ones whose geometry
changes during presentation, you may need to step away from constraints and focus on imme-
diate handling of the basic layout associated with each view. The UIView class provides two
built-in properties that define these layout aspects.

Every view uses a frame to define its boundaries. The frame specifies the outline of the view:
its location, width, and height within the coordinate system of its parent view. The associated
bounds and center properties, respectively, define the frame rectangle within the view’s own
coordinate system and the geometric center of the frame in the parent’s coordinate system.
These three properties are tightly integrated.

If you change a view’s frame, the view updates to match the new frame. If you use a bigger
width, the view stretches. If you use a new location, the view moves. The view’s frame delin-
eates each view’s outline. View sizes are not limited to their superview size or even the screen
size. A view can be smaller or larger than the screen. It can also be smaller or larger than its
parent. When a subview is larger, the subview’s visible area overflows the edges of the parent.
You can use clipToBounds on the parent view to restrict the child from displaying outside the
parent’s bounds.

Views also use a transform property that updates a view’s presentation, via affine transfor-
mations. These are mathematical equations that adjust a view’s 2D geometry. A view might
be stretched or squashed by applying a transform, or it might be rotated away from vertical.
Together, the frame and transform fully define a view’s core geometry.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

147View Geometry

Frames

A frame rectangle refers to the outline of a view in terms of its parent’s coordinate system.
Frames use a CGRect structure, which is defined as part of the Core Graphics framework, as its
CG prefix suggests. A CGRect is made up of an origin (a CGPoint , x and y) and a size (a CGSize ,
width and height). When you create views outside Auto Layout, you normally allocate them
and initialize them with a frame. Here’s an example:

CGRect rect = CGRectMake(0.0f, 0.0f, 320.0f, 416.0f);
myView = [[UIView alloc] initWithFrame:rect];

Views provide two fundamental CGRect properties, which are closely tied together: frame
and bounds . Frames are different from bounds in terms of their coordinate system. Frames are
defined with respect to the parent’s system. Bounds are defined with respect to the view’s own
coordinate system. For that reason, a view’s bounds typically use a zero origin. Its coordinate
system normally begins at the top-left corner. For some views, like scroll views, bounds may
extend beyond their visual frame.

Rectangle Utility Functions

As you’ve seen, the CGRectMake() function creates its new rectangle using four parameters: the
origin’s x and y locations, the width of the rectangle, and the height . This method is a critical
utility for creating frames. You may want to be aware of several other convenience functions,
in addition to CGRectMake() , that help you work with rectangles and frames:

 ■ NSStringFromCGRect(aCGRect) converts a CGRect structure to a formatted string. This
function makes it easy to log a view’s frame when you’re debugging.

 ■ CGRectFromString(aString) recovers a rectangle from its string representation. It is
useful when you’ve stored a view’s frame as a string in user defaults and want to convert
that string back to a CGRect .

 ■ Although not a function, [NSValue valueWithCGRect:rect] returns a new Objective-C
value object that stores the passed rectangle. You can then add the object to dictionaries
and arrays as needed. The CGRectValue method retrieves the rectangular structure from
the NSValue object. Variations on this approach exist for most Core Graphics types,
including points, sizes, and affine transforms.

 ■ CGRectInset(aRect, xinset, yinset) enables you to create a smaller or larger
rectangle that’s centered on the same point as the source rectangle. Use a positive inset
for smaller rectangles, and use a negative inset for larger ones.

 ■ CGRectOffset(aRect, xoffset, yoffset) returns a rectangle that’s offset from the
original rectangle by x and y amounts that you specify. This is handy for moving frames
around the screen and for creating easy drop-shadow effects.

 ■ CGRectGetMidX(aRect) and CGRectGetMidY(aRect) recover the x and y coordinates
in the center of a rectangle. These functions make it very convenient to recover the
midpoints of bounds and frames.

ptg12441863

148 Chapter 4 Assembling Views and Animations

 ■ CGRectIntersectsRect(rect1, rect2) lets you know whether rectangle structures
intersect. Use this function to know when two rectangular objects overlap. You can
retrieve the actual intersection via CGRectIntersection(rect1, rect2) . This returns
the null rectangle if the two rects do not intersect. (Use CGRectIsNull(rect) to check.)
The related CGRectContainsPoint(rect, point) returns true when a provided point
is located within the (non-null) rectangle.

 ■ Compare rectangles using CGRectEqualToRect(rect1, rect2) . This function checks
whether two rectangles are equal in both their size and position. Similar methods include
CGSizeEqualToSize(size1, size2) and CGPointEqualToPoint(point1, point2) ,
which allow you to compare CGSize and CGPoint instances.

 ■ Other handy utilities include CGRectDivide() , which splits a source rectangle into two
components, and CGRectApplyAffineTransform(rect, transform) , which applies
an affine transform to a rectangle and returns the smallest rectangle that can contain the
results.

 ■ CGRectZero is a rectangle constant located at (0,0) whose width and height are
zero. You can use this constant when you’re required to create a frame but are unsure
what that frame size or location will be at the time of creation. Similar constants are
CGPointZero and CGSizeZero .

Points and Sizes

The CGRect structure is made up of two substructures: CGPoint , which defines the rect-
angle’s origin, and CGSize , which defines its bounds. Points refer to locations defined with x
and y coordinates; sizes have width and height . Use CGPointMake(x, y) to create points.
CGSizeMake(width, height) creates sizes. Although these two structures appear to be the
same (two floating-point values), the iOS SDK differentiates between them semantically. Points
refer to locations. Sizes refer to extents. You cannot set myFrame.origin to a size.

Since CGRect , CGPoint , and CGSize are all structs, you can use a range of flexible struct
initializations:

CGPoint origin = {0, 0};
CGSize size = {100, 200};
CGRect rect1 = CGRectMake(0, 0, 100, 200);
CGRect rect2 = {{0, 0}, {100, 200}};
CGRect rect3 = {origin, size};
CGRect rect4 = {origin, {100, 200}}
CGRect rect5 = {.size.width = 100, .size.height = 200, .origin = {0, 0}};

All of these CGRect s are identical.

As with rectangles, you can convert the other structs to and from strings.
NSStringFromCGPoint() , NSStringFromCGSize(),CGPointFromString() , and
CGSizeFromString() perform these functions. You can also transform points and
sizes to and from dictionaries.

ptg12441863

149View Geometry

Transforms

The iOS SDK includes affine transformations as part of its Core Graphics implementation.
Affine transforms allow points in one coordinate system to transform into another coordinate
system. These functions are widely used in both 2D and 3D animations. The version used with
UIKit views uses a 3-by-3 matrix to define UIView transforms, making it a 2D-only solution. 3D
transforms use a 4-by-4 matrix and are the default for Core Animation layers. With affine trans-
forms, you can scale, translate, and rotate your views in real time. You do so by setting a view’s
transform property. Here’s an example:

float angle = theta * (PI / 100.0);
CGAffineTransform transform = CGAffineTransformMakeRotation(angle);
myView.transform = transform;

The transform is always applied with respect to the view’s center. So when you apply a rotation
like this, the view rotates around its center. If you need to rotate around another point, you
must first translate the view to the desired point, then rotate, and then return from that trans-
lation. There are ways around this, involving working directly with the view’s layer property,
but that approach is beyond the scope of this chapter.

To revert any changes, set the transform property to the identity transform. This restores the
view back to the last settings for its frame:

myView.transform = CGAffineTransformIdentity;

Note

On iOS, the y coordinate starts at the top and increases downward. This is similar to the coor-
dinate system in PostScript but opposite the Quartz coordinate system historically used on the
Mac. On iOS, the origin is in the top-left corner, not the bottom left. iOS continues to move
many features originally grounded in Quartz and Core Graphics into the UIKit world. This migra-
tion reduces the number of times you need to flip your coordinate system when laying out text
or processing images.

Coordinate Systems

As mentioned earlier, views live in two worlds. The frame and center of a view are defined
in the coordinate system of its parents. The bounds and subviews of a view are defined in
their own coordinate system. The iOS SDK offers several utilities that allow you to move
between these coordinate systems, as long as the views involved live within the same
UIWindow . To convert a point from another view into your own coordinate system, use
convertPoint:fromView: . Here’s an example:

myPoint = [myView convertPoint:somePoint fromView:otherView];

If the original point indicated the location of some object, the new point retains that loca-
tion but gives the coordinates with respect to myView ’s origin. To go the other way, use
convertPoint:toView: to transform a point into another view’s coordinate system. Similarly,

ptg12441863

150 Chapter 4 Assembling Views and Animations

convertRect:toView: and convertRect:fromView: work with CGRect structures rather than
CGPoint ones.

Be aware that the coordinate system for an iOS device may not match the pixel system used to
display that system. The discrete 640×960-pixel Retina display on the iPhone 4S, for example,
is addressed through a continuous 320×480 coordinate system in the SDK, defined as points .
Although you can supply higher-quality art to fill those pixels on Retina display units, any
locations you specify in points in your code access the coordinate based on the resolution of
the lower pixel–density units. The position (160.0, 240.0) in points remains approximately in
the center of the 3.5-inch iPhone or iPod touch screens, regardless of pixel density. That center
point moves to (160.0, 284.0) on 4-inch iPhones and iPod touches, which use Retina displays.

Note

The UIScreen class provides a property called scale that defines the relationship between a
display’s pixel density and its point system. A screen’s scale is used to convert from the logical
coordinate space of the view system (measured in points and approximately equal to 1/160
inch) to the physical pixel coordinates. Retina displays use a scale of 2.0, and non-Retina dis-
plays use a scale of 1.0.

Recipe: Working with View Frames

When you change a view’s frame manually (rather than letting Auto Layout do the dirty work),
you update its size (that is, its width and height) and its location. For example, you might
move a frame as follows:

CGRect initialRect = CGRectMake(0.0f, 0.0f, 100.0f, 100.0f);
myView = [[UIView alloc] initWithFrame:initialRect];
[topView addSubview:myView];
myView.frame = CGRectMake(0.0f, 30.0f, 100.0f, 100.0f);

This code creates a subview located at (0.0, 0.0) and then moves it down to (0.0, 30.0).

This approach for moving views is fairly uncommon. The iOS SDK does not expect you to
move views by changing frames. Instead, it focuses on a view’s position. The preferred way to
do this is by setting the view’s center . This is a view property, which you can set directly:

myView.center = CGPointMake(160.0f, 55.0f);

Although you might expect the SDK to offer a way to move a view by updating its origin, no
such option exists. It’s easy enough to build your own view class category. Retrieve the view
frame, set the origin to the requested point, and then update the frame with the change. This
snippet creates a new origin property that lets you retrieve and change the view’s origin:

- (void)setOrigin:(CGPoint)aPoint
{
 CGRect newFrame = self.frame;

ptg12441863

151Recipe: Working with View Frames

 newFrame.origin = aPoint;
 self.frame = newFrame;

}

Because this extension uses such an obvious property name, if Apple eventually implements
the features shown here, your code may break due to name overlap. In the examples in this
book, we widely use obvious names. This makes code snippets easier to read and reduces any
cognitive burden in recognizing what is being demonstrated. Avoid using obvious names in
your production code. Using your personal or company initials as a prefix helps distinguish
in-house material.

When you move a view, you don’t need to worry about things such as rectangular sections
having been exposed or hidden. iOS takes care of the redrawing. This lets you treat your views
like tangible objects and delegate rendering issues to Cocoa Touch.

Adjusting Sizes

In the simplest usage patterns, a view’s frame and bounds control its size. A frame, as you’ve
already seen, defines the location of a view in its parent’s coordinate system. If the frame’s
origin is set to (0.0, 30.0), the view appears in the superview flush with the left side of the view
and offset 30 points from the top. On non-Retina displays, this corresponds to 30 pixels down;
on Retina displays, it is 60 pixels down.

Bounds define a view within its own coordinate system. Therefore, the origin for a view’s
bounds (that is, myView.bounds) is normally (0.0, 0.0). For most views, the size matches the
normal extent—that is, the frame’s size property. (This isn’t always true for some classes, like
UIScrollView , whose extent may exceed the visual display.)

You can change a view’s size by adjusting either its frame or its bounds. In practical terms,
you’re updating the size component of those structures. As with moving origins, it’s simple to
create your own view utility method to do this directly:

- (void)setSize:(CGSize)aSize
{
 CGRect newbounds = self.bounds;
 newbounds.size = aSize;
 self.bounds = newbounds;

}

When a displayed view’s size changes, the view itself updates live. Depending on how the
elements within the view are defined and the class of the view itself, subviews may shrink or
move to fit, or they may get cropped, depending on a number of flags and whether views are
participating in the Auto Layout system:

 ■ The autoresizesSubviews property determines whether a view automatically resizes its
subviews when it updates its bounds.

ptg12441863

152 Chapter 4 Assembling Views and Animations

 ■ A view’s autoresizingMask property defines how a view reacts to changes in its parent’s
bounds. If a view participates in a constraint system, this mask is ignored, and the view
will be adjusted by iOS’s Auto Layout system.

 ■ The clipsToBounds flag determines whether subviews are visible outside a view’s
bounds. When clipped, only material within the parent’s bounds are shown. You can use
sizeToFit on a view so that it resizes to enclose all its subviews.

 ■ The contentMode property is related to other view-resizing properties but specifies
how a view’s layer (its content bitmap) adjusts when its bounds update. This property,
which can be set to a number of scaling, centering, and fitting choices, is best seen when
working with image views.

Note

Bounds are affected by a view’s transform, a mathematical component that changes the way
the view appears. Do not manipulate a view’s frame when working with transforms because
doing so may not produce expected results. (Some workarounds follow later in this chapter.)
For example, after a transform, the frame’s origin may no longer correspond mathematically
to the origin of the bounds. The normal order of updating a view is to set its frame or bounds,
then set its center, and then set its transforms, if applicable.

Sometimes, you need to resize a view before adding it to a new parent. For example, you might
have an image view to place into an alert view. To fit that view into place without changing
its aspect ratio, you can use a method like this to ensure that both the height and width scale
appropriately:

- (void)fitInSize:(CGSize)aSize
{
 CGFloat scale;
 CGRect newframe = self.frame;

 if (newframe.size.height > aSize.height)
 {
 scale = aSize.height / newframe.size.height;
 newframe.size.width *= scale;
 newframe.size.height *= scale;
 }

 if (newframe.size.width > aSize.width)
 {
 scale = aSize.width / newframe.size.width;
 newframe.size.width *= scale;
 newframe.size.height *= scale;
 }
 self.frame = newframe;

}

ptg12441863

153Recipe: Working with View Frames

CGRect s and Centers

As you’ve seen, UIView instances use a CGRect structure, composed of an origin and a size, to
define their frame. A CGRect structure contains no references to a center point. At the same
time, UIView s depend on their center property to update a view’s position when you move a
view to a new point. Unfortunately, Core Graphics doesn’t use centers as a primary rectangle
concept. As far as centers are concerned, the built-in utilities in Core Graphics are limited to
recovering a rectangle’s midpoint along the x - or y -axis.

You can bridge this gap by constructing functions that coordinate between the origin-based
CGRect struct and center-based UIView objects. Such a function retrieves the center from a
rectangle by building a point from the x and y midpoints. It takes one argument, a rectangle,
and returns its center point:

CGPoint CGRectGetCenter(CGRect rect)
{
 CGPoint pt;
 pt.x = CGRectGetMidX(rect);
 pt.y = CGRectGetMidY(rect);
 return pt;

}

Moving a rectangle by its center point is another function that may prove helpful, and one that
mimics the way UIView s work. Suppose, for example, that you need to move a view to a new
position but need to keep it inside its parent’s frame. To test before you move, you could use a
function like this to offset the view frame to a new center:

CGRect CGRectMoveToCenter(CGRect rect, CGPoint center)
{
 CGRect newrect = CGRectZero;
 newrect.origin.x = center.x-(rect.size.width/2.0);
 newrect.origin.y = center.y-(rect.size.height/2.0);
 newrect.size = rect.size;
 return newrect;

}

You could then test that offset frame against the parent (use CGRectContainsRect()) and
ensure that the view won’t stray outside its container.

Often you need to center one view in another. You can retrieve a rectangle that corresponds
to a centered subrectangle by passing the outer view’s bounds when adding a subview (the
subview coordinate system needs to start with 0, 0) or its frame when adding a view to the
outer view’s parent:

CGRect CGRectCenteredInRect(CGRect subRect, CGRect mainRect)
{
 CGFloat xOffset = CGRectGetMidX(mainRect)-CGRectGetMidX(subRect);
 CGFloat yOffset = CGRectGetMidY(mainRect)-CGRectGetMidY(subRect);
 return CGRectOffset(rect, xOffset, yOffset);

}

ptg12441863

154 Chapter 4 Assembling Views and Animations

Other Geometric Elements

As you’ve seen, it’s convenient to use a view’s origin and size as well as its center property,
which allows you to work more natively with Core Graphics calls. You can build on this idea
to expose other properties of the view, including its width and height , as well as basic geom-
etry, such as its left , right , top , and bottom points. In some ways, this breaks Apple’s design
philosophy. It exposes items that normally fall into structures without reflecting the structures.
At the same time, it can be argued that these elements are true view properties. They reflect
fundamental view characteristics and deserve to be exposed as properties.

Recipe 4-4 provides a full view frame utility category for UIView , which lets you make the
choice about whether to expose these properties. These properties do not take transforms into
account.

Note

While Auto Layout is rendering many of the utility methods in this recipe less critical than in the
past, these methods still provide great value, both when you fall back to manual layout or even
occasionally when you’re using Auto Layout.

Recipe 4-4 UIView Frame Geometry Category

@interface UIView (ViewFrameGeometry)
@property CGPoint origin;
@property CGSize size;

@property (readonly) CGPoint midpoint;

// topLeft is synonymous with origin so not included here
@property (readonly) CGPoint bottomLeft;
@property (readonly) CGPoint bottomRight;
@property (readonly) CGPoint topRight;

@property CGFloat height;
@property CGFloat width;
@property CGFloat top;
@property CGFloat left;
@property CGFloat bottom;
@property CGFloat right;

- (void)moveBy:(CGPoint)delta;
- (void)scaleBy:(CGFloat)scaleFactor;
- (void)fitInSize:(CGSize)aSize;
@end

@implementation UIView (ViewGeometry)

ptg12441863

155Recipe: Working with View Frames

// Retrieve and set the origin
- (CGPoint)origin
{
 return self.frame.origin;

}

- (void)setOrigin:(CGPoint)aPoint
{
 CGRect newFrame = self.frame;
 newFrame.origin = aPoint;
 self.frame = newFrame;

}

// Retrieve and set the size
- (CGSize)size
{
 return self.frame.size;

}

- (void)setSize:(CGSize)aSize
{
 CGRect newFrame = self.frame;
 newFrame.size = aSize;
 self.frame = newFrame;

}

// Query other frame locations

- (CGPoint)midpoint
{
 // midpoint is with respect to a view's own coordinate system
 // versus its center, which is with respect to its parent
 CGFloat x = CGRectGetMidX(self.bounds);
 CGFloat y = CGRectGetMidY(self.bounds);
 return CGPointMake(x, y);

}

- (CGPoint)bottomRight
{
 CGFloat x = self.frame.origin.x + self.frame.size.width;
 CGFloat y = self.frame.origin.y + self.frame.size.height;
 return CGPointMake(x, y);

}

- (CGPoint)bottomLeft
{
 CGFloat x = self.frame.origin.x;

ptg12441863

156 Chapter 4 Assembling Views and Animations

 CGFloat y = self.frame.origin.y + self.frame.size.height;
 return CGPointMake(x, y);

}

- (CGPoint)topRight
{
 CGFloat x = self.frame.origin.x + self.frame.size.width;
 CGFloat y = self.frame.origin.y;
 return CGPointMake(x, y);

}

// Retrieve and set height, width, top, bottom, left, right
- (CGFloat)height
{
 return self.frame.size.height;

}

- (void)setHeight:(CGFloat)newHeight
{
 CGRect newFrame = self.frame;
 newFrame.size.height = newHeight;
 self.frame = newFrame;

}

- (CGFloat)width
{
 return self.frame.size.width;

}

- (void)setWidth:(CGFloat)newWidth
{
 CGRect newFrame = self.frame;
 newFrame.size.width = newWidth;
 self.frame = newFrame;

}

- (CGFloat)top
{
 return self.frame.origin.y;

}

- (void)setTop:(CGFloat)newTop
{
 CGRect newFrame = self.frame;
 newFrame.origin.y = newTop;
 self.frame = newFrame;

}

ptg12441863

157Recipe: Working with View Frames

- (CGFloat)left
{
 return self.frame.origin.x;

}

- (void)setLeft:(CGFloat)newLeft
{
 CGRect newFrame = self.frame;
 newFrame.origin.x = newLeft;
 self.frame = newFrame;

}

- (CGFloat)bottom
{
 return self.frame.origin.y + self.frame.size.height;

}

- (void)setBottom:(CGFloat)newBottom
{
 CGFloat delta = newBottom –
 (self.frame.origin.y + self.frame.size.height);
 CGRect newFrame = self.frame;
 newFrame.origin.y += delta;
 self.frame = newFrame;

}

- (CGFloat)right
{
 return self.frame.origin.x + self.frame.size.width;

}

- (void)setRight:(CGFloat)newRight
{
 CGFloat delta = newRight–
 (self.frame.origin.x + self.frame.size.width);
 CGRect newFrame = self.frame;
 newFrame.origin.x += delta;
 self.frame = newFrame;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

158 Chapter 4 Assembling Views and Animations

Recipe: Retrieving Transform Information

Affine transforms enable you to change an object’s geometry by mapping that object from one
view coordinate system into another. The iOS SDK fully supports standard affine 2D trans-
forms. With them, you can scale, translate, rotate, and skew your views however your heart
desires and your application demands.

Transforms are defined in Core Graphics and consist of calls such as
CGAffineTransformMakeRotation() and CGAffineTransformScale() . These
build and modify 3-by-3 transform matrices. After these are built, use UIView ’s
transform property to assign 2D affine transformations to UIView objects.

For example, you might apply a rotation transform directly. This removes any existing trans-
form and replaces it with a simple rotation. The functions with Make in their name create new
transforms:

theView.transform = CGAffineTransformMakeRotation(radians);

Or you might add a scaling transform onto whatever transformations have already been applied
to the view. The functions without the word Make take a transform as their first parameter
and return an updated transform after applying a transformation according to the function
arguments:

CGAffineTransform scaled = CGAffineTransformScale(theView.transform,
 scaleX, scaleY);

theView.transform = scaled;

Retrieving Transform Properties

When working with transforms, iOS can provide an affine representation of the transform asso-
ciated with a view. This representation will not, however, tell you exactly how much the view
has been scaled or rotated. Recipe 4-5 addresses this problem by calculating the scale and rota-
tion via a simple UIView category.

An affine matrix is stored in iOS as a structure of six fields: a , b , c , d , tx , and ty . Figure 4-4
shows how these values relate to their positions in the standard affine matrix. Simple math
allows you to derive scaling and rotation from these, as shown in Recipe 4-5 . Note how you can
retrieve the tx and ty values directly from the transform. If linear algebra isn’t in your wheel-
house, don’t worry; you really don’t have to understand how these transforms work in order to
use them successfully.

In addition to answering the questions “What is the view’s current rotation?” and “By how
much is it scaled?” you often need to perform math that relates the current geometry post-
transform to the parent coordinate system. To do this, you need to be able to specify where
elements appear onscreen.

ptg12441863

159Recipe: Retrieving Transform Information

A view’s center makes the transition from pre-transform to post-transform without incident.
The value may change, especially after scaling, but the property remains meaningful, regardless
of what transform has been applied. The center property always refers to the geometric center
of the view’s frame in the parent’s coordinate system.

The frame is not so resilient. After rotation, a view’s origin may be completely decoupled from
the view. Look at Figure 4-4 (right). It shows a rotated view on top of its original frame (the
smaller of the two outlines) and the updated frame (the larger outline). The circles indicate the
view’s origin before and after rotation.

After the transform is applied, the frame updates to the minimum bounding box that encloses
the view. Its new origin (the top-left corner of the outside view) has essentially nothing to
do with the updated view origin (the circle at the top-middle). iOS does not provide a way to
retrieve that adjusted point.

Recipe 4-5 introduces several methods that perform the math for you. It establishes proper-
ties that return a transformed view’s corners: top left, top right, bottom left, and bottom right.
These coordinates are defined in the parent view; if you want to add a new view on top of the
top circle in Figure 4-4 (right), you place its center at theView.transformedTopLeft .

The recipe also offers the originalFrame method, which returns the inner (original) frame
shown in Figure 4-4 , even when a transform has been applied. It does so in a rather ham-fisted
way, but it works.

Testing for View Intersection

By reader request, Recipe 4-5 adds code to check whether two transformed views intersect. The
code also works with views that have not been transformed so that you can use it with any two
views, although it’s a bit pointless to do so. (You can use the CGRectIntersectsRect() func-
tion for simple untransformed frames.) This custom intersection method works best for views
whose frames do not represent their underlying geometry, like the one shown in Figure 4-4 .

The intersectsView: method applies an axis separation algorithm for convex polygons. For
each edge of each view, it tests whether all the points in one view fall on one side of the edge
and whether all the points of the other view fall on the other side. This test is based on the half
plane function, which returns a value indicating whether a point is on the left or right side of
an edge.

a

c

tx

0

0

1

b

d

ty

Figure 4-4 The CGAffineTransform structure holds an affine transformation matrix by defining
six key values in its fields (left). After applying an affine transform, a view’s origin may no longer
coincide with its frame’s origin (right).

ptg12441863

160 Chapter 4 Assembling Views and Animations

As soon as it finds an edge that satisfies this condition, the intersectsView : method returns
NO . The views cannot geometrically intersect if there’s a line that separates all the points in one
object from all the points in the other.

If all eight tests fail (four edges on the first view, four edges on the second), the method
concludes that the two views do intersect. It returns YES .

Recipe 4-5 Retrieving Transform Values

@implementation UIView (Transform)
- (CGFloat)xScale
{
 CGAffineTransform t = self.transform;
 return sqrt(t.a * t.a + t.c * t.c);

}

- (CGFloat)yScale
{
 CGAffineTransform t = self.transform;
 return sqrt(t.b * t.b + t.d * t.d);

}

- (CGFloat)rotation
{
 CGAffineTransform t = self.transform;
 return atan2f(t.b, t.a);

}

- (CGFloat)tx
{
 CGAffineTransform t = self.transform;
 return t.tx;

}

- (CGFloat)ty
{
 CGAffineTransform t = self.transform;
 return t.ty;

}

// The following three methods move points into and out of the
// transform coordinate system whose origin is at the view center

- (CGPoint)offsetPointToParentCoordinates:(CGPoint)aPoint
{
 return CGPointMake(aPoint.x + self.center.x,
 aPoint.y + self.center.y);

ptg12441863

161Recipe: Retrieving Transform Information

}

- (CGPoint)pointInViewCenterTerms:(CGPoint)aPoint
{
 return CGPointMake(aPoint.x - self.center.x, aPoint.y - self.center.y);

}

- (CGPoint)pointInTransformedView:(CGPoint)aPoint
{
 CGPoint offsetItem = [self pointInViewCenterTerms:aPoint];
 CGPoint updatedItem = CGPointApplyAffineTransform(
 offsetItem, self.transform);
 CGPoint finalItem =
 [self offsetPointToParentCoordinates:updatedItem];
 return finalItem;

}

// Return the original frame without transform
- (CGRect)originalFrame
{
 CGAffineTransform currentTransform = self.transform;
 self.transform = CGAffineTransformIdentity;
 CGRect originalFrame = self.frame;
 self.transform = currentTransform;

 return originalFrame;
}

// These four methods return the positions of view elements
// with respect to the current transform

- (CGPoint)transformedTopLeft
{
 CGRect frame = self.originalFrame;
 CGPoint point = frame.origin;
 return [self pointInTransformedView:point];

}

- (CGPoint)transformedTopRight
{
 CGRect frame = self.originalFrame;
 CGPoint point = frame.origin;
 point.x += frame.size.width;
 return [self pointInTransformedView:point];

}

- (CGPoint)transformedBottomRight

ptg12441863

162 Chapter 4 Assembling Views and Animations

{
 CGRect frame = self.originalFrame;
 CGPoint point = frame.origin;
 point.x += frame.size.width;
 point.y += frame.size.height;
 return [self pointInTransformedView:point];

}

- (CGPoint)transformedBottomLeft
{
 CGRect frame = self.originalFrame;
 CGPoint point = frame.origin;
 point.y += frame.size.height;
 return [self pointInTransformedView:point];

}

// Determine if two views intersect, with respect to any
// active transforms

// After extending a line, determine which side of the half
// plane defined by that line, a point will appear
BOOL halfPlane(CGPoint p1, CGPoint p2, CGPoint testPoint)
{
 CGPoint base = CGPointMake(p2.x - p1.x, p2.y - p1.y);
 CGPoint orthog = CGPointMake(-base.y, base.x);
 return (((orthog.x * (testPoint.x - p1.x)) +
 (orthog.y * (testPoint.y - p1.y))) >= 0);

}

// Utility test for testing view points against a proposed line
BOOL intersectionTest(CGPoint p1, CGPoint p2, UIView *aView)
{
 BOOL tlTest = halfPlane(p1, p2, aView.transformedTopLeft);
 BOOL trTest = halfPlane(p1, p2, aView.transformedTopRight);
 if (tlTest != trTest) return YES;

 BOOL brTest = halfPlane(p1, p2, aView.transformedBottomRight);
 if (tlTest != brTest) return YES;

 BOOL blTest = halfPlane(p1, p2, aView.transformedBottomLeft);
 if (tlTest != blTest) return YES;

 return NO;
}

// Determine whether the view intersects a second view
// with respect to their transforms

ptg12441863

163Recipe: Retrieving Transform Information

- (BOOL)intersectsView:(UIView *)aView
{
 if (!CGRectIntersectsRect(self.frame, aView.frame)) return NO;

 CGPoint A = self.transformedTopLeft;
 CGPoint B = self.transformedTopRight;
 CGPoint C = self.transformedBottomRight;
 CGPoint D = self.transformedBottomLeft;

 if (!intersectionTest(A, B, aView))
 {
 BOOL test = halfPlane(A, B, aView.transformedTopLeft);
 BOOL t1 = halfPlane(A, B, C);
 BOOL t2 = halfPlane(A, B, D);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(B, C, aView))
 {
 BOOL test = halfPlane(B, C, aView.transformedTopLeft);
 BOOL t1 = halfPlane(B, C, A);
 BOOL t2 = halfPlane(B, C, D);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(C, D, aView))
 {
 BOOL test = halfPlane(C, D, aView.transformedTopLeft);
 BOOL t1 = halfPlane(C, D, A);
 BOOL t2 = halfPlane(C, D, B);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(D, A, aView))
 {
 BOOL test = halfPlane(D, A, aView.transformedTopLeft);
 BOOL t1 = halfPlane(D, A, B);
 BOOL t2 = halfPlane(D, A, C);
 if ((t1 != test) && (t2 != test)) return NO;
 }

 A = aView.transformedTopLeft;
 B = aView.transformedTopRight;
 C = aView.transformedBottomRight;
 D = aView.transformedBottomLeft;

 if (!intersectionTest(A, B, self))
 {
 BOOL test = halfPlane(A, B, self.transformedTopLeft);
 BOOL t1 = halfPlane(A, B, C);

ptg12441863

164 Chapter 4 Assembling Views and Animations

 BOOL t2 = halfPlane(A, B, D);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(B, C, self))
 {
 BOOL test = halfPlane(B, C, self.transformedTopLeft);
 BOOL t1 = halfPlane(B, C, A);
 BOOL t2 = halfPlane(B, C, D);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(C, D, self))
 {
 BOOL test = halfPlane(C, D, self.transformedTopLeft);
 BOOL t1 = halfPlane(C, D, A);
 BOOL t2 = halfPlane(C, D, B);
 if ((t1 != test) && (t2 != test)) return NO;
 }
 if (!intersectionTest(D, A, self))
 {
 BOOL test = halfPlane(D, A, self.transformedTopLeft);
 BOOL t1 = halfPlane(D, A, B);
 BOOL t2 = halfPlane(D, A, C);
 if ((t1 != test) && (t2 != test)) return NO;
 }

 return YES;
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Display and Interaction Traits

In addition to physical screen layout, the UIView class provides properties that control how
your view appears and whether users can interact with it. Every view uses an opaqueness
factor (alpha) that ranges between opaque and transparent. Adjust this by issuing [myView
setAlpha:value] or setting the myView.alpha property where the alpha values fall between
0.0 (fully transparent) and 1.0 (fully opaque). This is a great way to fade views in and out. Use
the hidden property to hide views entirely without animation.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

165UIView Animations

You can assign a color to the background of any view. For example, the following property
colors your view red:

myView.backgroundColor = [UIColor redColor];

This property affects different view classes in different ways, depending on whether those views
contain subviews that block the background. Create a transparent background by setting the
view’s background color to clear, as shown here:

myView.backgroundColor = [UIColor clearColor];

Every view offers a background color property, regardless of whether you can see the back-
ground. Using bright, contrasting background colors is a great way to visualize the true extents
of views. When you’re new to iOS development, coloring in views provides you a concrete
sense of what is and is not onscreen and where each component is located.

Not all colors are solid tints. The UIColor class lets you use tiled patterns just as you would use
solid colors. The colorWithPatternImage: method returns a UIColor instance built from a
pattern image you supply. This method helps build textures that you can use to color views.

The userInteractionEnabled property controls whether users can touch and interact with a
given view. For most views, this property defaults to YES . For UIImageView , it defaults to NO ,
which can cause a lot of grief among beginning developers. They often place a UIImageView as
their backsplash and don’t understand why their switches, text entry fields, and buttons do not
work. Make sure to enable the property for any view that needs to accept touches, whether for
itself or for its subviews, which may include buttons, switches, pickers, and other controls.
If you’re experiencing trouble with items that seem unresponsive to touch, check the
userInteractionEnabled property value for that item and for its parents.

Disable this property for any display-only view you layer over your interaction area. To show a
noninteractive overlay clock, for example, via a transparent full-screen view, disable its interac-
tion by assigning its userInteractionEnabled flag to NO . This allows touches to pass through
the view and fall below to the actual interaction area of your application. A view with its
userInteractionEnabled flag set to NO only stops the flagged view from receiving the
touches; these touches will continue through the view to any underlying views. To create a
please-wait-style blocker, make sure to enable user interaction for your overlay. This catches
user taps and prevents users from accessing your primary interface behind that overlay.

You may also want to disable interaction during transitions to ensure that user taps do not
trigger actions as views are being animated. Unwanted touches can be problematic, particularly
for games and puzzles.

UIView Animations

UIView animation is one of the odd but lovely perks of working with iOS as a development
platform. It enables you to create a moving expression of visual changes when updating views,
producing smooth animated results that enhance the user experience. Best of all, this occurs
without requiring you to do much work.

ptg12441863

166 Chapter 4 Assembling Views and Animations

UIView animations are perfect for building a visual bridge between a view’s current and
changed states. With them, you emphasize visual change and create an animation that links
together those changes. Changes that can be animated include the following:

 ■ Changes in location — Moving a view around the screen by updating its center

 ■ Changes in size — Updating the view’s frame and bounds

 ■ Changes in stretching — Updating the view’s content stretch regions

 ■ Changes in transparency — Altering the view’s alpha value

 ■ Changes in color — Updating a view’s background color

 ■ Changes in rotation, scaling, and translation — Basically, any affine transforms you
apply to a view

Animations underwent a profound redesign between the 3.x and 4.x SDKs. Starting with the
4.x SDK, developers were offered a way to use the new Objective-C blocks paradigm to simplify
animation tasks. Although you can still work with the original animation transaction tech-
niques, the new alternatives provide a much easier approach, and the Apple documentation
specifically discourages the old-style approach.

Note

Most Apple-native animations last about one-third or one-half second. When working with
helper views (playing supporting roles that are similar to Apple’s keyboard or alerts), you
may want to match your animation durations to these timings. Call [UIApplication
statusBarOrientationAnimationDuration] to retrieve a standard time interval.

Building Animations with Blocks

Blocks constructs simplify the creation of basic animation effects in your code. Consider the
following snippet, which produces a fade-out effect for a view with a single statement in an
embedded block:

[UIView animationWithDuration: 1.0f
 animations:^{contentView.alpha = 0.0f;}];

Adding a completion block lets you tidy up after your animation finishes. The following
snippet fades out the content view and then removes it from its superview when the animation
completes:

[UIView animationWithDuration: 1.0f
 animations:^{contentView.alpha = 0.0f;}
 completion:^(BOOL done){[contentView removeFromSuperview];}];

When you need to add further options to your animations, a full-service blocks-based method
(animateWithDuration:delay:options:animations:completion:) provides both a way to

ptg12441863

167Recipe: Fading a View In and Out

pass animation options (as a mask) and to delay the animation (allowing a simple approach to
animation “chaining”).

When working with animation constants, be sure to use the modern
UIViewAnimationOptions varieties, which have the word Options in their names. Older
constants like UIViewAnimationCurveEaseInOut will not work with post-iOS 4.x calls.

Occasionally, it is necessary to ensure that a view property change is excluded from an anima-
tion. This is particularly useful when you aren’t sure where your view changes will be called,
such as from within a developer-created animation block or certain system methods that are
already within an animation block. In iOS 7, Apple provides the performWithoutAnimation :
method on UIView , which accepts a block, much like the animation methods. Any view
property changes inside the block will be excluded from animation, even when called from an
encapsulating animation block.

Recipe: Fading a View In and Out

At times, you want to add information to your screen that overlays your view but does not
of itself do anything. For example, you might show a top-scores list or some instructions or
provide a context-sensitive tooltip. Recipe 4-6 demonstrates how to use a UIView anima-
tion block to fade a view into and out of sight. This recipe follows the most basic animation
approach. It creates a view animation block that sets the alpha property.

Note how this code controls the behavior of the right bar button item. When tapped, it is
immediately disabled until the animation concludes. The animation’s completion block reen-
ables the button and flips the button text and callback selector to the opposite state. This
allows the button to toggle the animation from on to off and from off to back on.

Recipe 4-6 Animating Transparency Changes to a View’s Alpha Property

- (void)fadeOut:(id)sender
{
 self.navigationItem.rightBarButtonItem.enabled = NO;
 [UIView animateWithDuration:1.0f
 animations:^{
 // Here's where the actual fade out takes place
 imageView.alpha = 0.0f;
 }
 completion:^(BOOL done){
 self.navigationItem.rightBarButtonItem.enabled = YES;
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Fade In", @selector(fadeIn:));
 }];

}

ptg12441863

168 Chapter 4 Assembling Views and Animations

- (void)fadeIn:(id)sender
{
 self.navigationItem.rightBarButtonItem.enabled = NO;
 [UIView animateWithDuration:1.0f
 animations:^{
 // Here's where the fade in occurs
 imageView.alpha = 1.0f;
 }
 completion:^(BOOL done){
 self.navigationItem.rightBarButtonItem.enabled = YES;
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Fade Out", @selector(fadeOut:));
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Recipe: Swapping Views

The UIView animation block doesn’t limit you to a single change. Place as many animation
differences as needed in an animation block. Recipe 4-7 combines size transformations with
transparency changes to create a more compelling animation. It does this by adding several
directives simultaneously to the animation block. This recipe performs five actions at a time.
It zooms and fades one view into place while zooming out and fading away another and then
exchanges the two in the subview array list.

You’ll want to prepare the back object for its initial animation by shrinking it and making
it transparent. When the swap: method first executes, that view will be ready to appear and
zoom to size. As with Recipe 4-6 , the completion block reenables the bar button on the right,
allowing successive presses.

Recipe 4-7 Combining Multiple View Changes in Animation Blocks

@implementation TestBedViewController
- (void)swap:(id)sender
{
 self.navigationItem.rightBarButtonItem.enabled = NO;
 [UIView animateWithDuration:1.0f
 animations:^{
 frontObject.alpha = 0.0f;
 backObject.alpha = 1.0f;

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

169Recipe: Flipping Views

 frontObject.transform = CGAffineTransformMakeScale(0.25f, 0.25f);
 backObject.transform = CGAffineTransformIdentity;
 [self.view exchangeSubviewAtIndex:0
 withSubviewAtIndex:1];
 }
 completion:^(BOOL done){
 self.navigationItem.rightBarButtonItem.enabled = YES;

 // Swap the view references
 UIImageView *tmp = frontObject;
 frontObject = backObject;
 backObject = tmp;
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Recipe: Flipping Views

Transitions extend UIView animation blocks to add even more visual flair. Several transition
styles do just what their names suggest. You can flip views to their backs and curl views up and
down in the manner of the Maps application. Recipe 4-8 demonstrates how to include these
transitions in your interfaces.

Here’s a list of the set of transitions in iOS 7.0. You can see that there are four flips, two curls, a
cross dissolve, and a “do nothing” no-op choice:

 ■ UIViewAnimationOptionTransitionNone

 ■ UIViewAnimationOptionTransitionFlipFromLeft

 ■ UIViewAnimationOptionTransitionFlipFromRight

 ■ UIViewAnimationOptionTransitionFlipFromTop

 ■ UIViewAnimationOptionTransitionFlipFromBottom

 ■ UIViewAnimationOptionTransitionCurlUp

 ■ UIViewAnimationOptionTransitionCurlDown

 ■ UIViewAnimationOptionTransitionCrossDissolve

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

170 Chapter 4 Assembling Views and Animations

Recipe 4-8 uses the block-based transitionFromView:toView:duration:options:
completion: API. This method replaces a view by removing it from its superview and adding
the new view to the initial view’s parent. It animates this over the supplied duration, using the
transition specified in the options flags. Recipe 4-8 uses a flip-from-left transition, although you
can use any of the other transitions as desired.

The related transitionWithView:duration:options:animations:completion: method
provides even more flexibility. It takes an animations block as a parameter, allowing for a
completely custom transition. You can use it to create shrink/grow, flip, and other complex
view transition animations.

If you use constraints (see Chapter 5), you must redefine them as well. Removing a subview
invalidates and removes from the superview all constraints that refer to that view.

Recipe 4-8 Using Transitions with UIView Animations

- (void)flip:(id)sender
{
 self.navigationItem.rightBarButtonItem.enabled = NO;
 UIView *toView = fromPurple ? maroon : purple;
 UIView *fromView = fromPurple ? purple : maroon;
 [UIView transitionFromView: fromView
 toView: toView
 duration: 1.0f
 options: UIViewAnimationOptionTransitionFlipFromLeft
 completion: ^(BOOL done){
 self.navigationItem.rightBarButtonItem.enabled = YES;
 fromPurple = !fromPurple;
 CENTER_VIEW(self.view, toView);
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Recipe: Using Core Animation Transitions

In addition to UIView animations, iOS supports Core Animation as part of its Quartz Core
framework. The Core Animation API offers highly customizable animation solutions for your
iOS applications. Specifically, it offers built-in transitions that provide the same kind of view-to-
view changes available in Recipe 4-8 , as well as a vast wealth of other fundamental animation
possibilities that are beyond the scope of this chapter.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

171Recipe: Using Core Animation Transitions

Note

With each release of iOS, Apple has continually added more Core Animation functionality to
UIKit directly. iOS 7 introduced key frame animation to UIView —a feature that previously
required Core Animation.

Core Animation transitions expand your UIView animation vocabulary with just a few small
differences in implementation. CATransition s work on layers rather than on views. Layers
are the Core Animation rendering surfaces associated with UIView s. When working with Core
Animation, you apply CATransition s to a view’s default layer (myView.layer) rather than to
the view itself.

With these transitions, you don’t set your parameters through UIView the way you do with
UIView animation. Create a Core Animation object, set its parameters, and then add the
parameterized transition to the layer:

CATransition *animation = [CATransition animation];
animation.delegate = self;
animation.duration = 1.0f;
animation.type = kCATransitionMoveIn;
animation.subtype = kCATransitionFromTop;

// Perform some kind of view exchange or removal here

[myView.layer addAnimation:animation forKey:@"move in"];

An animation uses both a type and a subtype. The type specifies the kind of transition used.
The subtype sets its direction. Together the type and subtype tell how the views should act
when you apply the animation to them.

Core Animation transitions are distinct from the UIViewAnimationTransition s discussed
in previous recipes. Cocoa Touch offers four types of Core Animation transitions, which are
highlighted in Recipe 4-9 . The available types are cross-fades, pushes (one view pushes another
offscreen), reveals (one view slides off another), and covers (one view slides onto another).
The last three types enable you to specify the direction of motion for the transition by using
subtypes. For obvious reasons, cross-fades do not have a direction, and they do not use
subtypes.

Because Core Animation is part of the Quartz Core framework, you must use @import
QuartzCore in your code when using these features.

Note

Apple’s Core Animation features 2D and 3D routines built around Objective-C classes. These
classes provide graphics rendering and animation for your iOS and Mac applications. Core
Animation avoids many low-level development details associated with, for example, direct Open
GL, while retaining the simplicity of working with hierarchical view layers.

ptg12441863

172 Chapter 4 Assembling Views and Animations

Recipe 4-9 Animating Transitions with Core Animation

- (void)animate:(id)sender
{
 // Set up the animation
 CATransition *animation = [CATransition animation];
 animation.delegate = self;
 animation.duration = 1.0f;

 switch ([(UISegmentedControl *)self.navigationItem.titleView
 selectedSegmentIndex])
 {
 case 0:
 animation.type = kCATransitionFade;
 break;
 case 1:
 animation.type = kCATransitionMoveIn;
 break;
 case 2:
 animation.type = kCATransitionPush;
 break;
 case 3:
 animation.type = kCATransitionReveal;
 break;
 default:
 break;
 }
 animation.subtype = kCATransitionFromLeft;

 // Perform the animation
 [self.view exchangeSubviewAtIndex:0 withSubviewAtIndex:1];
 [self.view.layer addAnimation:animation forKey:@"animation"];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Recipe: Bouncing Views as They Appear

Apple often uses two animation blocks, one called after another finishes, to add bounce to
animations. For example, a view might zoom into a view a bit more than needed and then use
a second animation to bring that enlarged view down to its final size. Bounces add a little more
life to your animation sequences, providing an extra physical touch.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

173Recipe: Bouncing Views as They Appear

When calling one animation after another, be sure that the animations do not overlap. The
easiest way to ensure this is to use a nested set of animation blocks with chained animations in
the completion blocks. Recipe 4-10 uses this approach to bounce views slightly larger than their
end size and then shrink them back down to the desired frame.

This recipe uses two simple typedef s to simplify the declaration of each animation and
completion block. Notice that the animation block stages that do the work of scaling the view
in question are defined in order. The first block shrinks the view, the second one zooms it extra
large, and the third restores it to its original size.

The completion blocks go the opposite way. Because each block depends on the one before it,
you must create them in reverse order. Start with the final side effects and work your way back
to the original. In Recipe 4-10 , bounceLarge depends on shrinkBack , which in turn depends
on reenable . This reverse definition can be a bit tricky to work with, but it certainly beats
laying out all your code in nested blocks.

The sample project for this recipe contains an additional helper class (AnimationHelper),
which wraps the behavior you see in Recipe 4-10 in a slightly less-awkward package. As Recipe
4-10 demonstrates, trying to layout an animation sequence backward, so each bit can be refer-
enced by the item that called it, gets very clumsy very fast.

The helper class builds the whole block sequence and returns animation blocks similar to those
in Recipe 4-10 , which are ready to be executed and contain embedded completion blocks.

Recipe 4-10 Bouncing Views

typedef void (^AnimationBlock)(void);
typedef void (^CompletionBlock)(BOOL finished);

- (void)bounce
{
 // Prepare for animation
 self.navigationItem.rightBarButtonItem.enabled = NO;
 bounceView.transform = CGAffineTransformMakeScale(0.0001f, 0.0001f);
 bounceView.center = RECTCENTER(self.view.bounds);

 // Define the three stages of the animation in forward order
 AnimationBlock makeSmall = ^(void){
 bounceView.transform = CGAffineTransformMakeScale(0.01f, 0.01f);};
 AnimationBlock makeLarge = ^(void){
 bounceView.transform = CGAffineTransformMakeScale(1.15f, 1.15f);};
 AnimationBlock restoreToOriginal = ^(void) {
 bounceView.transform = CGAffineTransformIdentity;};

 // Create the three completion links in reverse order
 CompletionBlock reenable = ^(BOOL finished) {
 self.navigationItem.rightBarButtonItem.enabled = YES;};
 CompletionBlock shrinkBack = ^(BOOL finished) {

ptg12441863

174 Chapter 4 Assembling Views and Animations

 [UIView animateWithDuration:0.3f
 animations:restoreToOriginal completion:reenable];};
 CompletionBlock bounceLarge = ^(BOOL finished){
 [NSThread sleepForTimeInterval:0.5f]; // wee pause
 [UIView animateWithDuration:0.3f
 animations:makeLarge completion:shrinkBack];};

 // Start the animation
 [UIView animateWithDuration: 0.1f
 animations:makeSmall completion:bounceLarge];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

Recipe: Key Frame Animations

While nested animation blocks and completion blocks can be used to create fairly advanced
animations, the complexity can become overwhelming quickly. In iOS 7, Apple introduced
key frame animations to UIKit, powerful animations that are suited for advanced needs. These
animations vastly simplify creating complex effects such as the bounce in Recipe 4-10 . Key
frame animations previously required diving into Core Animation, but now, this powerful
animation tool is available directly from UIView .

In traditional key frame animation, you provide the important frames of the animation
sequence and their expected timestamps within the animation, and the system is responsible
for rendering all the in-between frames to provide for a smooth animation. The simplest form
of key frame animation is simply providing the start and end frames and letting the animation
system handle the rest.

To use key frame animation with UIView , begin a key frame animation block with animate-
KeyframesWithDuration:delay:options:animations:completion: . Within the animation
block, set each important reference frame—or, in this case, each animatable UIView property—
along with the start time and duration of that specific frame with addKeyframeWithRelative-
StartTime:relativeDuration:animations: . The key frame animation blocks will animate
in sequence at the appropriate times and durations.

One critical difference from between key frame and other animation methods: With key frame
animation, start times and durations range between 0.0 and 1.0, indicating the percentage of
progress through the animation. 0.0 represents the beginning of the overall animation, and
1.0 represents the end of the complete animation. For a 2-second animation, a start time of 0.5
corresponds to 1 full second into the animation.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

175Recipe: Key Frame Animations

Recipe 4-11 replicates the functionality of Recipe 4-10 , this time using key frame anima-
tions. No helper class is required, and the code is significantly easier to write, understand, and
manage.

Recipe 4-11 Key Frame Animation

- (void)bounce
{
 // Prepare for animation
 self.navigationItem.rightBarButtonItem.enabled = NO;
 bounceView.transform = CGAffineTransformMakeScale(0.0001f, 0.0001f);
 bounceView.center = RECTCENTER(self.view.bounds);

 // Begin the key frame animation
 [UIView animateKeyframesWithDuration:0.6
 delay:0.0
 options:UIViewKeyframeAnimationOptionCalculationModeCubic
 animations:^{
 // Implied first key frame – current view (tiny)
 // Second key frame – make view big
 [UIView addKeyframeWithRelativeStartTime:0.0
 relativeDuration:0.5
 animations:^{
 bounceView.transform =
 CGAffineTransformMakeScale(1.15f, 1.15f);
 }];

 // Third key frame – shrink to normal
 [UIView addKeyframeWithRelativeStartTime:0.5
 relativeDuration:0.5
 animations:^{
 bounceView.transform =
 CGAffineTransformIdentity;
 }];
 }
 completion:^(BOOL finished) {
 [self enable:YES];
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

176 Chapter 4 Assembling Views and Animations

Recipe: Image View Animations

In addition to displaying static pictures, the UIImageView class supports built-in animation
sequences. After loading an array of image cels, you can tell instances to animate them. Recipe
4-12 shows how.

Start by creating an array populated by individual images loaded from files and assign this array
to the UIImageView instance’s animationImages property. Set animationDuration to the
total loop time for displaying all the images in the array. Finally, begin animating by sending
the startAnimating message. (There’s a matching stopAnimating method available for use as
well.)

After you add the animating image view to your interface, you can place it into a single loca-
tion, or you can animate it just as you would animate any other UIView instance.

Recipe 4-12 Using UIImageView Animation

NSMutableArray *butterflies = [NSMutableArray array];

// Load the butterfly images
for (int i = 1; i <= 17; i++)
 [butterflies addObject:[UIImage imageWithContentsOfFile:
 [[NSBundle mainBundle]
 pathForResource: [NSString stringWithFormat:@"bf_%d", i]
 ofType:@"png"]]];

// Create the view
UIImageView *butterflyView = [[UIImageView alloc]
 initWithFrame:CGRectMake(40.0f, 300.0f, 100.0f, 51.0f)];

// Set the animation cells and duration
butterflyView.animationImages = butterflies;
butterflyView.animationDuration = 0.75f;
[butterflyView startAnimating];

// Add the view to the parent
[self.view addSubview:butterflyView];

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 4 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

177Summary

Summary

UIView s provide the components your users see and interact with. As this chapter shows, even
in their most basic form, UIView s offer incredible flexibility and power. You have discovered
how to use views to build up elements on a screen, retrieve views by tag or name, and intro-
duce eye-catching animation. Here’s a collection of thoughts about the recipes you saw in this
chapter that you might want to consider before moving on:

 ■ When you’re dealing with multiple views, hierarchy should always remain in your mind.
Use your view hierarchy vocabulary to take charge of your views and always present the
proper visual context to your users.

 ■ Don’t let the Core Graphics/UIKit center dichotomy stand in your way. Use functions
that help you move between these structures to produce the results you need, especially
when you’re working with simple views that don’t use transforms.

 ■ Make friends with tags, whether numeric or custom nametags. They provide
immediate access to views in the same way that a program’s symbol table provides
access to variables. They are not evil or wrong, and they can play a useful role in your
development vocabulary.

 ■ Take control of transforms. They’re just math. Transforms shouldn’t keep you from
retrieving information about your views, whether determining the current rotation or
scaling value, or the position of your view’s corners. Transforms provide incredible power
in many iOS development arenas, and the recipes in this chapter add tweaks that ensure
that the information and control you need are ready to use when you need them.

 ■ Blocks are wonderful. Use them to simplify your life, your code, and your animations.

 ■ Animate everything. Animations don’t have to be loud, splashy, or badly designed. The
iOS SDK’s strong animation support enables you to add smooth transitions between user
tasks. The iOS experience is characterized by subtle, short, smooth transitions.

 ■ Much of this chapter focuses on direct view hierarchies and placement, for when you
take charge of view layout yourself. Read about declarative constraints and Auto Layout
in Chapter 5 for a better, more powerful way to manage your view layouts.

ptg12441863

This page intentionally left blank

ptg12441863

5
View Constraints

Auto Layout revolutionizes the way developers create user interfaces (UIs). It provides a flex-
ible and powerful system that describes how views and their content relate to each other and
to the superviews they occupy. In contrast to the manually managed frame geometry, springs
and struts of the past, this technology offers incredible control over layout and a wider range
of customization. Apple is driving developers to adopt this technology with new device screen
sizes and new APIs that vary the UI dynamically at runtime. Before the advent of Auto Layout,
handling these scenarios was difficult or even impossible.

With Auto Layout, laying out views is as straightforward as describing the relationships
between views and letting iOS do the hard work of placing the views appropriately. In addition,
when you define relationships and dynamic layout properties of views rather than hard code
origins and sizes, view objects will behave and react correctly to orientation changes, differing
device sizes or aspect ratios, and even the varying sizes of labels due to localization or the pref-
erences of the user with Dynamic Type.

This chapter introduces code-level Auto Layout constraint development. Constraints define
how views relate to one another and to the windows and superviews they occupy. iOS
processes these constraints to define the actual frame geometry of each view.

Note

Auto Layout is a deep and expansive topic that can easily fill an entire book. It is covered
only cursorily here. For a comprehensive look at Auto Layout with vastly deeper analysis and
examples, including use within Interface Builder (IB), take a look at the latest edition of Erica
Sadun’s Auto Layout Demystified , also published by Addison-Wesley.

What Are Constraints?

Constraints are rules that allow you to describe your view layout to iOS. They limit how views
relate to each other and specify how they may be laid out. With constraints, you can say “these
items are always lined up in a horizontal row” or “this item resizes itself to match the height of
that item.” Constraints provide a layout language that you add to views to describe geometric
relationships.

ptg12441863

180 Chapter 5 View Constraints

iOS takes charge of meeting those demands via a constraint satisfaction system. The rules must
make sense. A view cannot be both to the left and to the right of another view. One of the key
challenges when working with constraints is ensuring that the rules are rigorously consistent.
When your rules fail, they fail loudly. Xcode provides you with verbose logging that explains
what may have gone wrong.

Another key challenge is making sure your rules are specific enough. An underconstrained
interface can create unexpected results when faced with many possible layout solutions. You
might request that one view lie to the right of the other, but unless you tell the system other-
wise, you might end up with the right view at the top of the screen and the left view at the
bottom—because that one rule doesn’t say anything about vertical orientation.

Constraints allow you to design resolution-independent apps. A constraint-based application
built for the 4-inch iPhone before the introduction of a future magical 5-inch iPhone should
require no code updates to work on the new device.

For apps that will be localized, use constraints instead of creating individual XIBs for each
language. One constraint-based XIB can adapt to multiple localizations.

Constraints can be declared both visually in IB and programmatically in your application
source code. Xcode 5 introduced numerous Auto Layout improvements in IB. The IB approach
is simple to use and easy to lay out. This chapter focuses on code. It offers code-centered exam-
ples that help you craft common view constraints in Objective-C.

Constraint Attributes

Constraints use a limited geometric vocabulary consisting of attributes and relations. Attributes
are the “nouns” of the constraint system, describing positions within a view’s alignment rect-
angle. Alignment rectangles will be described in detail shortly, but for the moment, you can
think of them as being closely related to the view’s frame. Relations are “verbs,” specifying how
the attributes compare to each other.

The attribute nouns speak to physical geometry. Constraints offer the following view attribute
vocabulary:

 ■ left , right , top , and bottom —The edges of a view’s alignment rectangle on the left,
right, top, and bottom of the view. These correspond to a view’s minimum X, maximum
X, minimum Y, and maximum Y values.

 ■ leading and trailing —The leading and trailing edges of the view’s alignment
rectangle. In left-to-right (English-like) systems, these correspond to “left” (leading) and
“right” (trailing). In right-to-left linguistic environments like Arabic or Hebrew, these
roles flip: Right is leading, and left is trailing.

When internationalizing your applications, always prefer leading and trailing over left
and right. This allows your interfaces to flip properly when using right-to-left languages,
like Arabic and Hebrew.

 ■ width and height —The width and height of the view’s alignment rectangle.

ptg12441863

181Constraint Attributes

 ■ centerX and centerY —The x -axis and y -axis centers of the view’s alignment rectangle.

 ■ baseline —The alignment rectangle’s baseline, typically a fixed offset above its bottom
attribute.

The relation verbs compare values. Constraint math is limited to three relations: setting equal-
ity or setting lower and upper bounds for comparison. You can use the following layout
relations:

 ■ Less-than inequality — NSLayoutRelationLessThanOrEqual

 ■ Equality — NSLayoutRelationEqual

 ■ Greater-than inequality — NSLayoutRelationGreaterThanOrEqual

You might not think that these three relations would give you much to work with. However,
these three relations cover all the ground needed for user interface layout. They offer ways to
set specific values and apply maximum and minimum limits.

Constraint Math

All constraints, regardless of how they are created, are essentially equations or inequalities in
the following form:

y (relation) m * x + b

If you have a math background, you may have seen a form more like this, with R referring to
the relation between y and the computed value on the right side:

y R m * x + b

y and x are view attributes of the kind you just read about above, such as width or centerY or
top . Here, m is a constant scaling factor, and b is a constant offset. For example, you might say,
“View B’s left side should be placed 15 points to the right of View A’s right side.” The relation
equation that results is something like this:

View B’s left = View A’s right + 15

Here, the relation is equality, the constant offset (b) is 15, and the scaling factor, or multiplier
(m), is 1. We’ve taken care here to keep the equation above from looking like code because, as
you’ll see, you do not use code directly to declare your constraints in Objective-C.

Constraints do not have to use strict equalities. They can use inequality relations as well. For
example, you might say, “View B’s left side should be placed at least 15 points to the right of
View A’s right side,” or

View B’s left >= View A’s right + 15

Offsets lets you place fixed gaps between items, and multipliers let you scale. Scaling is espe-
cially useful when laying out grid patterns, letting you multiply by the height of a view rather
than just add a fixed distance to the next view.

ptg12441863

182 Chapter 5 View Constraints

The Laws of Constraints

Although you can think of constraints as hard “math,” they’re actually just preferences. iOS
finds a layout solution that best matches your constraints; this solution may not always be
unique. Here are a few basic facts about constraints:

 ■ Constraints are relationships, not directional. You don’t have to solve the right side to
calculate the left side.

 ■ Constraints have priorities. Priorities range numerically from 0 to 1,000. The Auto
Layout system uses priorities to sort constraints. Higher priorities are always satisfied
before lower priorities. A priority of 99 is always considered after a priority of 100. During
layout, the system iterates through any constraints you have added, attempting to satisfy
them all. Priorities come into play when deciding which constraint has less sway. The 99
priority constraint will be broken in favor of the 100 priority constraint if the two come
into conflict.

The highest priority you can assign is “required” (that is, UILayoutPriorityRequired)
(value 1,000), which is also the default. A required priority should be satisfied exactly—
for example, “This button is exactly this size.” So, when you assign a different priority,
you’re actually attenuating that constraint’s sway within the overall layout system.

Even required priorities may be overridden when constraints come into conflict. Don’t
be shocked if your 100×100 view ends up being presented at 102×107 if your constraints
aren’t perfectly balanced. Table 5-1 details several priority presets and their values.

Table 5-1 Priority Constants

Type Value

UILayoutPriorityRequired (default) 1,000

UILayoutPriorityDefaultHigh 750

UILayoutPriorityDefaultLow 250

UILayoutPriorityFittingSizeLevel 50

 ■ Constraints don’t have any natural “order” outside priorities. All constraints of
the same priority are considered at the same time. If you need some constraint to take
precedence, assign it a higher priority than the others.

 ■ Constraints can be approximated. Optional constraints try to optimize their results.
Consider the constraint “View 2’s top edge should be at the same position as View 1’s
bottom edge.” The constraint system attempts to squeeze these two views together
by minimizing their distance. If other constraints prevent them from touching, the
system places them as close as it can, minimizing the absolute distance between the two
attributes.

ptg12441863

183The Laws of Constraints

 ■ Constraints can have cycles. As long as all items are satisfied, it doesn’t matter which
elements refer to which. Don’t sweat the cross-references. In this declarative system,
circular references are okay, and you will not encounter infinite looping issues.

 ■ Constraints are animatable. You can use UIView animation to gradually change from
one set of constraints to another. In the animation block, call layoutIfNeeded after
changing your constraints, and the views will animate from the previous constrained
layout to the new layout.

 ■ Constraints can refer to view siblings. You can align the center point of one view’s
subview with the center point of an entirely different view as long as both views have a
common view ancestor. For example, you might create a complex text entry view and
align its rightmost button’s right attribute with the right attribute of an embedded image
view below it. There’s just one limitation here, which follows next.

 ■ Constraints should not cross bounds systems. Don’t cross into and out of scroll views,
collection views, and table views for alignment. If there’s some sort of content view with
its own bounds system, you avoid hopping out of that to an entirely different bounds
system in another view. Doing so may not crash your app, but it’s not a good idea, and
it’s not well supported by Auto Layout.

 ■ Auto Layout may not play nicely with transforms. Exercise care when mixing
transforms with Auto Layout, especially those that include rotation.

 ■ Auto Layout does not work with iOS 7 UIKit Dynamics. You can use Auto Layout
inside any view that’s affected by dynamic behaviors, but you cannot combine Auto
Layout view placement with dynamic animator management.

 ■ Auto Layout works with iOS 7 motion effects. The visual changes applied by
UIMotionEffect instances won’t disturb your underlying layout as they only affect the
view’s layer.

 ■ Constraints can fail at runtime. If your constraints cannot be resolved (see the
examples at the end of this chapter) and come into conflict, the runtime system chooses
which constraints to disregard so it can present whatever view layout it can. This is
usually ugly and nearly always not the visual presentation you intended. Auto Layout
sends exhaustive descriptions of what went wrong to your Xcode console. Use these
reports to fix your constraints and bring them into harmony with each other.

 ■ Badly formed constraints will interrupt application execution. Unlike constraint
conflicts, which produce error messages but allow your application to continue running,
some constraint calls will actually crash your application through unhandled exceptions.
For example, if you pass a constraint format string such as @"V[view1]-|" (which is
missing a colon after the letter V) to a constraint creation method, you’ll encounter a
runtime exception:

Terminating app due to uncaught exception 'NSInvalidArgumentException', reason:
'Unable to parse constraint format'

This error cannot be detected during compilation; you must carefully check your format
strings by hand. Designing constraints in IB helps avoid bad-typo scenarios.

ptg12441863

184 Chapter 5 View Constraints

 ■ A constraint must refer to at least one view. You can create a constraint without any
items and compile that code without warnings, but the code will raise an exception at
runtime.

 ■ Beware of invalid attribute pairings. You cannot legally match a view’s left edge
to another view’s height. Invalid pairings raise runtime exceptions. Specifically, you
shouldn’t mix size attributes with edge attributes. You can generally guess which pairs
are problematic because they make no sense.

Note

Working with constraints adds all sorts of wonderful and new ways to crash your apps at
runtime. Take extreme care when developing and testing your constraint-based application
and build tests to ensure that you check their operations in as many scenarios as possible.
Let’s hope that someone builds a constraint validator to catch, at least, simple typos like
@"H:[myView" , a visual format constraint that is missing a closing square bracket.

Constraints and Frames

Auto Layout constraints work with the same underlying frame geometry introduced in Chapter
4 , “Assembling Views and Animations.” Constraints on views ultimately resolve to a frame.
Much of the power of Auto Layout revolves around properly handling views with dynamic and
varied content when laying out the UI. UIView supports two additional properties—intrinsic
content size and alignment rectangles—that extend beyond the traditional frame geometry,
allowing Auto Layout to construct the appropriate relationships between views.

Intrinsic Content Size

Under Auto Layout, a view’s content plays as important a role in its layout as its constraints.
This is expressed through each view’s intrinsicContentSize . This method describes the
minimum space needed to express the full content of the view without squeezing or clipping
that data. It derives from the natural properties of the content each view presents.

For an image view, for example, this corresponds to the size of the image it presents. A larger
image requires a larger intrinsic content size. For a label, this varies with its font and the
amount of text. As the font changes, the label’s intrinsic content height varies. As the text
length grows or shrinks in conjunction with the selected font, the label’s intrinsic content
width adjusts to match.

A view’s intrinsic size allows Auto Layout to best match a view’s frame to its natural content.
Avoiding an underconstrained or ambiguous layout generally requires setting two attributes
in each axis. When a view has an intrinsic content size, that size accounts for one of the two
attributes. You can, for example, place a text-based control or an image view in the center of
its parent, and its layout will not be ambiguous. The intrinsic content size plus the location

ptg12441863

185Constraints and Frames

combine for a fully specified placement. In reality, the intrinsic content size is resolved to
actual constraints by the layout system.

When you change a view’s contents, call invalidateIntrinsicContentSize to let Auto
Layout know to recalculate at its next layout pass.

Compression Resistance and Content Hugging

Two properties impact how Auto Layout considers the intrinsic content size. As the name
suggests, compression resistance refers to the way a view protects its content. A view with a high
compression resistance fights against shrinking. It won’t allow that content to clip. The content
hugging priority refers to the way a view prefers to avoid extra padding around its core content
or stretching of that core content (as with an image view that uses a scaled content mode).
These priorities can be set for each axis on a view (via setContentCompressionResistance-
Priority:forAxis: and setContentHuggingPriority:forAxis:).

Alignment Rectangles

Constraints take a different approach to frames than do traditional manual layout. Frames
describe where to place views on the screen and how big those views will be. When laying out
views, constraints use a related geometric element called an alignment rectangle .

As developers create complex views, they may introduce visual ornamentation such as shadows,
exterior highlights, reflections, and engraving lines. As they do, these features usually become
attached as subviews or sublayers. As a consequence, a view’s frame, its full extent, grows as
items are added.

Unlike frames, a view’s alignment rectangle is limited to a core visual element. Its size remains
unaffected as new items join the primary view. Consider Figure 5-1 (left). It depicts a view with
an attached shadow and badge, which is placed behind and offset from the main element.
When laying out this view, you want Auto Layout to focus on aligning just the core element.

Figure 5-1 A view’s alignment rectangle (center) refers strictly to the core visual element to be
aligned, without embellishments.

The center image in Figure 5-1 shows the view’s alignment rectangle. This rectangle excludes
all ornamentation, such as a drop shadow and badge. It’s the part of the view you want Auto
Layout to consider when it does its work.

ptg12441863

186 Chapter 5 View Constraints

Contrast this with the rectangle shown in the right image in Figure 5-1 . This version includes
all the visual ornamentation, extending the view’s bounds beyond the area that should be
considered for alignment. This rectangle encompasses all the view’s visual elements. These
ornaments could potentially throw off a view’s alignment features (for example, its center,
bottom, and right) if they were considered during layout.

By laying out views based on alignment rectangles instead of the frame, Auto Layout ensures
that key information like a view’s edges and center are properly considered during layout.

Declaring Alignment Rectangles

When building ornamented views, such as image views with built-in shadows, you should
report geometry details to Auto Layout. Implementing the alignmentRectForFrame: method
allows your views to declare accurate alignment rectangles when they use ornamentation such
as shadows or reflections.

This method takes one argument: a frame. This argument refers to the destination frame that
the view will inhabit; think of the rectangle on the right in Figure 5-1 . That frame will encom-
pass the entire view, including any ornamentation attached to the view. It’s up to you to
provide an accurate representation of the alignment rectangle with respect to that destination
frame and your view’s embedded elements.

Your method returns a CGRect value that specifies the rectangle for your view’s core visual
geometry, as the center rectangle in Figure 5-1 does. This is typically the main visual object’s
frame and excludes any ornamentation views you have added as subviews or into your view’s
layer as sublayers.

When planning for arbitrary transformations, make sure to implement frameForAlignment-
Rect: as well. This method describes the inverse relationship, producing the resulting fully
ornamented frame (for example, Figure 5-1 , right image) when passed a constrained alignment
rectangle (for example, Figure 5-1 , center image). You extend the bounds to include any orna-
mentation items in your view, scaling them to the alignment rectangle passed to this method.

Creating Constraints

The NSLayoutConstraint class lets you create constraints in two ways. You can use a rather
long method call to constrain one item’s attribute to another, explaining how these attributes
relate, or you can apply a rather nifty visual formatting language to specify how items are laid
out along vertical and horizontal lines.

This section demonstrates both approaches, allowing you to see what they look like and how
they are used. Remember this: Regardless of how you build your constraints, they all produce
“ y relation mx + b ” results. All constraints are members of the NSLayoutConstraint class, no
matter how you create them.

ptg12441863

187Creating Constraints

Basic Constraint Declarations

The NSLayoutConstraint ’s class method constraintWithItem:attribute:relatedBy:
toItem:attribute:multiplier:constant: (gesundheit!) creates a single constraint at a time.
These constraints relate one item to another.

The creation method produces a strict view.attribute R view.attribute * multiplier + constant rela-
tion, where R is an equal-to (==), a greater-than-or-equal-to (>=), or a less-than-or-equal-to (<=)
relation.

Consider the following example:

[self.view addConstraint:
 [NSLayoutConstraint
 constraintWithItem:textfield
 attribute:NSLayoutAttributeCenterX
 relatedBy:NSLayoutRelationEqual
 toItem:self.view
 attribute:NSLayoutAttributeCenterX
 multiplier:1.0f
 constant:0.0f]];

This call adds a new constraint to a view controller’s view (self.view). It hori-
zontally center-aligns a text field within this view. It does this by setting an equal-
ity relation (NSLayoutRelationEqual) between the two views’ horizontal centers
(NSLayoutAttributeCenterX attributes). The multiplier here is 1, and the offset
constant is 0. This relates to the following equation:

[textfield]’s centerX = ([self.view]’s centerX * 1) + 0

It basically says, “Please ensure that my view’s center and the text field’s center are co-aligned
at their X positions.” The UIView ’s addConstraint: method adds that constraint to the view,
where it is stored with any other constraints in the view’s constraints property.

Visual Format Constraints

The preceding section shows you how to create single constraint relations. A second
NSLayoutConstraint class method builds constraints using a text-based visual format
language. Think of it as ASCII art for Objective-C nerds. Here’s a simple example:

[self.view addConstraints: [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[leftLabel]-15-[rightLabel]"
 options:0
 metrics:nil
 views:NSDictionaryOfVariableBindings(leftLabel, rightLabel)]];

ptg12441863

188 Chapter 5 View Constraints

This request creates all the constraints that satisfy the relation or relations specified in the
visual format string. These strings, which you will see in many examples in following sections,
describe how views relate to each other along the horizontal (H) or vertical (V) axis. This
example basically says, “Ensure that the right label appears 15 points below the left label.”

Note several things about how this constraints formatting example is created:

 ■ The axis is specified first as a prefix, either H: or V: .

 ■ The variable names for views appear in square brackets in the strings.

 ■ The fixed spacing appears between the two as a number constant, -15- .

 ■ This example does not use any format options (the options parameter), but here is
where you would specify whether the alignment is done left to right, right to left, or
according to the leading-to-trailing direction for a given locale, discussed earlier in this
chapter.

 ■ The metrics dictionary, also not used in this example, lets you supply constant numbers
into your constraints without having to create custom formats. For example, if you want
to vary the spacing between these two text labels, you could replace 15 with a metric
name (for example, labelOffset or something like it) and pass that metric’s value in a
dictionary. Set the name as the key, the value as an NSNumber . Passing dictionaries (for
example, @{@"labelOffset", @15}) is a lot easier than creating a new format NSString
instance for each width you might use.

 ■ The views: parameter does not, despite its name, pass an array of views. It passes a
dictionary of variable bindings. This dictionary associates variable name strings with the
views they represent. This indirection allows you to use developer-meaningful symbols
like leftLabel and rightLabel in your format strings.

Building constraints with formats strings always creates an array of results. Some format strings
are quite complex, and others are simple. It’s not always easy to guess how many constraints
will be generated from each string. Be aware that you will need to add the entire collection of
constraints to satisfy the format string that you processed.

Variable Bindings

When working with visual constraints, the layout system needs to be able to associate view
names like leftLabel and rightLabel with the actual views they represent. Enter variable
bindings, via a handy macro defined in NSLayoutConstraint.h , which is part of the UIKit
headers.

The NSDictionaryOfVariableBindings() macro accepts an arbitrary number of local vari-
able arguments. As you can see in the earlier example, these need not be terminated with a

ptg12441863

189Format Strings

nil . The macro builds a dictionary from the passed variables, using the variable names as keys
and the actual variables as values. For example, this function call:

NSDictionaryOfVariableBindings(leftLabel, rightLabel)

builds this dictionary:

@{@"leftLabel":leftLabel, @"rightLabel":rightLabel}

If you’d rather not use the variable bindings macro, you can easily create a dictionary by hand
and pass it to the visual format constraints builder.

Format Strings

The format strings you pass to create constraints follow a basic grammar, which is specified as
follows:

(<orientation>:)? (<superview><connection>)? <view>(<connection><view>)*
(<connection><superview>)?

The question marks refer to optional items, and the asterisk refers to an item that may appear
zero or more times. Although daunting to look at, these strings are actually quite easy to
construct. The next sections offer an introduction to format string elements and provide
copious examples of their use.

Orientation

You start with an optional orientation—either H: for horizontal or V: for vertical alignment.
This specifies whether the constraint applies left and right or up and down. If omitted, the
orientation defaults to horizontal. Consider this constraint: "H:[view1][view2]" . It says to
place View 2 directly to the right of View 1. The H specifies the alignment that the constraint
follows. Figure 5-2 (left) shows an interface that uses this rule.

The following is an example of a vertical layout: "V:|[view1]-20-[view2]-20-[view3]" . It
leaves a gap of 20 points below View 1 before placing View 2, followed again by a 20-point gap
before View 3. Figure 5-2 (right) shows what this might look like.

Without further constraints, these views are severely underconstrained. Auto Layout will do
what it thinks you want, but it’s often wrong. In the left image, you should also constrain the
vertical layout. In this case, both views are aligned to the top of the superview. In the image to
the right, the horizontal layout should be specified—aligning each view to the left, abutting the
superview.

ptg12441863

190 Chapter 5 View Constraints

Figure 5-2 Layout results for "H:[view1][view2]" (left) and "V:|[view1]-20-[view2]-20-
[view3]" (right).

Here are the horizontal and vertical constraints, respectively, that were used in separate execu-
tions to create the images shown in Figure 5-2 :

[self.view addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@"H:[view1][view2]"
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(view1, view2)]];

and:

[self.view addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[view1]-20-[view2]-20-[view3]"
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(view1, view2, view3)]];

Note the use of the vertical bar (|) near the beginning in the format string above. The verti-
cal bar always refers to the superview. You see it only at the beginning or ending of format
strings. At the beginning, it appears just after the horizontal or vertical specifier ("V:|..." or
"H:|..."). At the end, it appears just before the terminal quote ("...|"). In iOS 7, skipping
the vertical bar in this example will cause the views to appear under the status and navigation
bars.

ptg12441863

191Format Strings

Note

During debugging, you can use the constraintsAffectingLayoutForAxis: view method to
retrieve all the constraints that affect either the horizontal or vertical layout access. Do not ship
code with this method. It is not intended for deployment use, and Apple makes it clear that it is
not App Store–safe.

Connections

Place connections between view names to specify the way a layout flows. An empty connection
(in other words, one that has been omitted) means “follow on directly.”

The first constraint you saw for Figure 5-2 , "H:[view1][view2]" , uses an empty connection.
There’s nothing specified between the square brackets of View 1 and the brackets of View 2.
This tells the constraint to place View 2 directly to the right of View 1.

A hyphen (-) indicates a small fixed space. The constraint "H:[view1]-[view2]" uses a
hyphen connection. This constraint leaves a standard (as defined by Apple) gap between View
1 and View 2, as shown in Figure 5-3 .

Figure 5-3 "H:[view1]-[view2]" adds a spacer connection.

Place a numeric constant between hyphens to set an exact gap size. The constraint
"H:[view1]-30-[view2]" adds a 30-point gap between the two views, as shown in
Figure 5-4 . This is visibly wider than the small default gap produced by the single hyphen.

ptg12441863

192 Chapter 5 View Constraints

Figure 5-4 "H:[view1]-30-[view2]" uses a fixed-size gap of 30 points, producing a
noticeably wider space.

The format "H:|[view1]-[view2]|" specifies a horizontal layout that starts with the super-
view. The superview is immediately followed by the first view, then a spacer, the second view,
and then the superview, which you can see in Figure 5-5 .

This constraint left-aligns View 1 and right-aligns View 2 with the superview. To accomplish
this, something has to give. Either the left view or the right view must resize to meet these
constraints. When we ran the test app for this edition, it happened to be View 1 that adjusted,
which is what you see in Figure 5-5 . In the previous edition, it happened to be View 2.

Figure 5-5 "H:|[view1]-[view2]|" tells both views to hug the edges of their superview. With
a fixed-size gap between them, at least one of the views must resize to satisfy the constraint.

ptg12441863

193Format Strings

Often, you don’t want to bang up right against the superview edges. A similar constraint,
"H:|-[view1]-[view2]-|" , leaves an edge inset between the edges of the superview and the
start of View 1 and end of View 2 (see Figure 5-6).

These gaps follow standard IB/Cocoa Touch layout rules and have not yet been exposed in
specifics via the iOS API. The inset gaps at the edges are normally slightly larger than the
default view-to-view gaps. You can see the gap size differences in the view layout created from
this constraint in Figure 5-6 .

Figure 5-6 "H:|-[view1]-[view2]-|" introduces edge insets between the views and their
superviews.

If your goal is to add a flexible space between views, there’s a way to do that, too. Add a rela-
tion rule between the two views (for example, "H:|-[view1]-(>=0)-[view2]-|") to allow
the two views to retain their sizes and be separate while maintaining gaps at their edges with
the superview, as shown in Figure 5-7 . This rule, which equates to “at least 0 points distance,”
provides a more flexible way to let the views spread out. It is recommended to use a small
number here so that you don’t inadvertently interfere with a view’s other geometry rules.

These constraints are not, of course, limited to just one or two views. You can easily stick in a
third, fourth, or more. Consider this constraint: "H:|-[view1]-[view2]-(>=5)-[view3]-|" .
It adds a third view, separated from the other two views by a flexible space. Figure 5-8 shows
what this might look like.

ptg12441863

194 Chapter 5 View Constraints

Figure 5-8 "H:|-[view1]-[view2]-(>=5)-[view3]-|" demonstrates a rule that includes
three views.

Predicates

The last two examples in the previous section uses relationship rules with comparisons. These
are also called predicates , an affirmation of the way a relation works between view elements.
Predicates appear in parentheses. For example, you might specify that the size of a view is at
least 50 points by using the following format:

[view1(>=50)]

Figure 5-7 "H:|-[view1]-(>=0)-[view2]-|" uses a flexible space between the two views,
allowing them to separate, while maintaining their sizes.

ptg12441863

195Predicates

This predicate relates to a single view. Notice that it is included within the view’s square brack-
ets rather than as part of a connection between views. You’re not limited to a single request.
For example, you might use a similar approach to let a view’s size range between 50 and 70
points. When adding compound predicates, separate the parts of your rule with commas:

[view1(>=50, <=70)]

Relative relation predicates allow your views to grow. If you want your view to expand across
a superview, tell it to size itself to some value greater than zero. The following rule stretches a
view horizontally across its superview, allowing only for edge insets at each side:

H:|-[view1(>=0)]-|

Figure 5-9 shows what this constraint looks like when rendered.

Figure 5-9 "H:|-[view1(>=0)]-|" adds a flexibility predicate to the view, letting it stretch
across its parent. Edge insets offset it slightly from the superview’s sides.

When using an equality relationship (==), you can skip the double-equals in your format predi-
cates. For example [view1(==120)] is equivalent to [view1(120)] , and [view1]-(==50)-
[view2] is the same as [view1]-50-[view2] .

Metrics

When you don’t know a constant’s value (like 120 or 50) a priori, use a metrics dictionary to
provide the value. This dictionary is passed as one of the parameters to the constraint creation
method. Here is an example of a format string that uses a metric stand-in:

[view1(>=minwidth)]

ptg12441863

196 Chapter 5 View Constraints

The minwidth stand-in must map to an NSNumber value in the passed metric dictionary. For
more examples of metric use, refer to Recipe 5-2 ’s constrainSize: method. It demonstrates
how to use metrics, using values from an associated dictionary in its constraints.

View-to-View Predicates

Predicates aren’t limited to numeric constants. You can relate a view’s size to another view, for
example, to ensure that it’s no bigger than that view in the layout. This example limits View
2’s extent to no bigger than that of View 1, along the axis that the constraint is currently using:

[view2(<=view1)]

You can’t do a lot more with format strings and view-to-view comparisons. If you want to
establish more complex relationships, like those between centers, tops, and heights, skip the
visual format strings and use the item constraint constructor instead.

Priorities

Each constraint may specify an optional priority by adding an at sign (@) and a number or
metric. For example, you can say that you want a view to be 500 points wide but that the
request has a relatively low priority:

[view1(500@10)]

You place priorities after predicates. Here’s an example of a layout format string with an
embedded priority:

[view1]-(>=50@30)-[view2]

Format String Summary

Table 5-2 summarizes format string components used to create constraints with the
constraintsWithVisualFormat:options:metrics:views: class method of
NSLayoutConstraint .

Table 5-2 Visual Format Strings

Type Format Example

Horizontal or vertical
arrangement

H:

V:
V:[view1]-15-[view2]

Puts View 2’s top 15 points below View
1’s bottom.

Views [item] [view1]

The view bindings dictionary matches the
bracketed name to a view instance.

ptg12441863

197Format String Summary

Type Format Example

Superview | H:|[view1]|

Make View 1’s width size to that of the
superview.

Relations ==

<=

>=

H:[view1]-(>=20)-[view2]

Set View 2’s leading edge at least 20
points from View 1’s trailing edge.

Metrics metric H:[view1(<=someWidth)]
V:[view1]-mySpacing-[view2]

Metrics are keys. someWidth and
mySpacing must map to NSNumber val-
ues in the passed metrics dictionary.

Flush alignment [item][item] H:[view1][view2]

Sets View 1’s trailing edge flush with
View 2’s leading edge.

Flexible space [item]-(>=0)-[item] [view1]-(>=0)-[view2]

Views can stretch apart as needed, “at
least zero points apart.”

Fixed space [item]-[item] [view1]-[view2]

Leave a small system-defined fixed space
(8 points) between the two views.

Custom Fixed space [item]-gap-[item] V:[view1]-20-[view2]

Set View 1’s bottom 20 points from view
2’s top.

Fixed width or height [item(size)]
[item(==size)]

[view1(50)]

Set View 1’s extent to exactly 50 points
along this axis.

Minimum and maximum
width/height

[item(>=size)]

[item(<=size)]
[view1(>=50)]

[view1(<=50)]

Limit View 1’s minimum or maximum size
for this axis.

Match width/height with
another view

[item(==item)]

[item(<=item)]

[item(>=item)]

[view1(==view2)]

Matches View 1 to View 2’s size along
the axis.

Flush with superview |[item]
[item]|

V:|[view1]

Set View 1’s top flush with the super-
view’s top.

ptg12441863

198 Chapter 5 View Constraints

Type Format Example

Inset from superview |-[item]
[item]-|

|-[view1]

Place a fixed space (20 points) between
the superview and View 1 along this axis.

Custom inset from super-
view

|-gap-[item]

[item]-gap-|
H:|-15-[view1]

Insets the view from the superview by 15
points on the leading edge.

Priority

(from 0 to 1000)

@value [view1(<=50@20)]

Gives View 1 a maximum size of 50
points along this axis, with a very low
priority (20).

Aligning Views and Flexible Sizing

It is supremely easy to align views with constraints:

 ■ The four format strings "H:|[self]" , "H:[self]|" , "V:|[self]" , and "V:[self]|" ,
respectively, produce left, right, top, and bottom alignment.

 ■ Add a predicate with a sizing relation, and these format strings become stretch to left,
stretch to right, and so on: "H:|[self(>0)]" , "H:[self(>0)]|" , "V:|[self(>0)]" ,
and "V:[self(>0)]|" .

 ■ A second vertical pipe adds full-axis resizing, allowing views to stretch from left to right
or top to bottom: "H:|[self(>0)]|" or "V:|[self(>0)]|" .

 ■ Add edge indicators to inset the stretches: "H:|-[self(>0)]-|" or "V:|-
[self(>0)]-|" .

Constraint Processing

The display of a view’s content proceeds through multiple phases. Prior to Auto Layout, two
phases were provided: the layout phase and the rendering phase. Auto Layout augments the
traditional two phases by inserting a third phase to kick off the process—the constraint phase.

The layout phase allows a developer to modify the frame geometry of the view’s subviews by
implementing the layoutSubviews method. When iOS determines the view’s layout to be
invalid, this method will be called, and you can update the manual layout of your subviews.
You can also request a relayout by calling setNeedsLayout or layoutIfNeeded . The first
method is a polite request that allows iOS to coalesce multiple layout requests and call
layoutSubviews at an appropriate time in the future. The second method is more demanding,
resulting in a nearly immediate call to layoutSubviews .

ptg12441863

199Managing Constraints

The rendering phase allows for complete control over the drawing of the view’s UI by imple-
menting the drawRect: method. When the view’s display is invalidated, the method will be
called, allowing for low-level drawing into the view. If the rendering needs to be changed, you
can request the view to be redrawn with setNeedsDisplay or setNeedsDisplayInRect: , trig-
gering a call to drawRect: .

With Auto Layout, the constraints phase occurs prior to the preceding phases. This phase
allows for the creation or updating of Auto Layout constraints through implementation of
the updateConstraints method. Much like the layout phase, the constraints phase can be
invalidated by iOS or manually, using the similarly named and behaving setNeedsUpdate-
Constraints and updateConstraintsIfNeeded methods.

Importantly, any view that overrides updateConstraints should also call [super update-
Constraints] as the final step before returning from the method. After the constraints phase
completes, Auto Layout has appropriately calculated the frame geometry of all the subviews in
the view.

When any of the above phases resolves, the next phase is triggered. The constraints phase trig-
gers the layout phase, which triggers the rendering phase.

The progression of phases provides a somewhat unexpected opportunity. The layout phase
occurs after the constraint phase has calculated and set all the frame geometry based on
the assigned constraints. Once in the layout phase, you can make changes to a view’s frame
geometry that may contradict the directions set forth by your constraints. You can even use
the constraint-generated geometry to make decisions on the final layout of a view. Since the
constraints have already been calculated, changing the frame geometry will “stick” until the
next constraints phase. Be careful that your layout pass does not make constraint changes and
trigger an infinite loop of layout and update constraint calls.

Most of the time, these hooks are not needed. On rare occasions when they’re required, the
level of flexibility and control provided is empowering.

Managing Constraints

All constraints belong to the NSLayoutConstraint class, regardless of how they are created.
When working with constraints, you can add them to your views either one by one, using
addConstraint: , or in arrays by using the addConstraints: instance method (notice the s at
the end of the name). In day-to-day work, you often deal with collections of constraints that
are stored in arrays.

A constraint always has a natural home in the nearest common ancestor of the views involved
in the constraint. A constraint must be installed on a common ancestor of every view refer-
enced. A self-installing category method on NSLayoutConstraint can programmatically deter-
mine the natural and correct view for installation. This is left as an exercise for the reader.

Constraints can be added and removed at any time. The two methods, removeConstraint:
and removeConstraints: , enable you to remove one or an array of constraints from a given

ptg12441863

200 Chapter 5 View Constraints

view. Because these methods work on objects, they might not do what you expect them to do
when you attempt to remove constraints.

Suppose, for instance, that you build a center-matching constraint and add it to your view. You
cannot then build a second version of the constraint with the same rules and expect to remove
the first by using a standard removeConstraint: call. They are equivalent constraints, but
they are not the same constraint. Here’s an example of this conundrum:

[self.view addConstraint:
 [NSLayoutConstraint constraintWithItem:textField
 attribute:NSLayoutAttributeCenterX
 relatedBy:NSLayoutRelationEqual
 toItem:self.view
 attribute:NSLayoutAttributeCenterX
 multiplier:1.0f constant:0.0f]];

[self.view removeConstraint:
 [NSLayoutConstraint constraintWithItem:textField
 attribute:NSLayoutAttributeCenterX
 relatedBy:NSLayoutRelationEqual
 toItem:self.view
 attribute:NSLayoutAttributeCenterX
 multiplier:1.0f constant:0.0f]];

Executing these two method calls ends up as follows: The self.view instance contains the
original constraint, and the attempt to remove the second constraint is ignored. Removing a
constraint not held by the view has no effect.

You have two choices for resolving this. First, you can hold onto the constraint when it’s first
added by storing it in a local variable. Here’s what that would look like, more or less:

NSLayoutConstraint *myConstraint =
 [NSLayoutConstraint constraintWithItem:textField
 attribute:NSLayoutAttributeCenterX
 relatedBy:NSLayoutRelationEqual
 toItem:self.view
 attribute:NSLayoutAttributeCenterX
 multiplier:1.0f constant:0.0f];

[self.view addConstraint:myConstraint];

// later
[self.view removeConstraint:myConstraint];

Or you can use a method (see Recipe 5-1) that compares constraints and removes a constraint
that numerically matches the one you pass.

Knowing whether your constraints will be static (used for the lifetime of your view) or dynamic
(updated as needed) helps you decide which approach you need. If you think you might need
to remove a constraint in the future, either hold on to it via a local variable so that you can
later remove it from your view or use workarounds like the one detailed in Recipe 5-1 .

ptg12441863

201Recipe: Comparing Constraints

Here are some basic points you need to know about managing constraints:

 ■ You can add constraints to and remove constraints from view instances. The
core methods are addConstraint: (addConstraints:), removeConstraint:
(removeConstraints:), and constraints . The last of these returns an array of
constraints stored by the view.

 ■ Constraints are not limited to container views. Nearly any view can work with
constraints. (A class method, requiresConstraintBasedLayout , specifies whether
classes depend on constraints to operate properly.)

 ■ If you want to code a subview with constraints, switch off the subview’s
translatesAutoresizingMaskIntoConstraints property. You’ll see this in action
in the sample code for this chapter and further discussed in the “Debugging Your
Constraints” section toward the end of this chapter.

Recipe: Comparing Constraints

All constraints use a fixed structure in the following form, along with an associated priority:

view1.attribute (relation) view2.attribute * multiplier + constant

Each element of this equation is exposed through a constraint’s object properties—namely
priority , firstItem , firstAttribute , relation , secondItem , secondAttribute ,
multiplier , and constant . These properties make it easy to compare two constraints.

Views store and remove constraints as objects. If two constraints are stored in separate memory
locations, they’re considered unequal, even if they describe the same conditions. To allow
your code to add and remove constraints on-the-fly without storing those items locally, use
comparisons.

Recipe 5-1 introduces three methods. The constraint:matches: method compares the
properties in two constraints to determine whether they match. Note that only the equation
is considered, not the priority (although you can easily add this if you want), because two
constraints describing the same conditions are essentially equivalent, regardless of the priority a
developer has assigned to them.

The two other methods, constraintMatchingConstraint: and removeMatching-
Constraint: , respectively, help locate the first matching constraint stored within a view and
remove that matching constraint.

In Recipe 5-1 , a view is bounced from the top and bottom of its superview by removing a
matched constraint and replacing it with a new constraint. In this case, it might be easier to
store this constraint as an instance variable for simple removal at a future point. That said, the
ability to retrieve and remove a similar constraint can be very useful when working with many
constraints or removing specific constraints dynamically.

ptg12441863

202 Chapter 5 View Constraints

Note

Recipe 5-1 implements a UIView class category. This category is used and expanded through-
out this chapter to provide a set of utility methods you can use in your own applications.

Recipe 5-1 Comparing Constraints

@implementation UIView (ConstraintHelper)
// This ignores any priority, looking only at y (R) mx + b

- (BOOL)constraint:(NSLayoutConstraint *)constraint1
 matches:(NSLayoutConstraint *)constraint2

{
 if (constraint1.firstItem != constraint2.firstItem) return NO;
 if (constraint1.secondItem != constraint2.secondItem) return NO;
 if (constraint1.firstAttribute != constraint2.firstAttribute) return NO;
 if (constraint1.secondAttribute != constraint2.secondAttribute) return NO;
 if (constraint1.relation != constraint2.relation) return NO;
 if (constraint1.multiplier != constraint2.multiplier) return NO;
 if (constraint1.constant != constraint2.constant) return NO;

 return YES;
}

// Find first matching constraint (priority ignored)
- (NSLayoutConstraint *)constraintMatchingConstraint:
 (NSLayoutConstraint *)aConstraint

{
 for (NSLayoutConstraint *constraint in self.constraints)
 if ([self constraint:constraint matches:aConstraint])
 return constraint;

 for (NSLayoutConstraint *constraint in self.superview.constraints)
 if ([self constraint:constraint matches:aConstraint])
 return constraint;
 return nil;

}

// Remove constraint
- (void)removeMatchingConstraint:(NSLayoutConstraint *)aConstraint
{
 NSLayoutConstraint *match =
 [self constraintMatchingConstraint:aConstraint];
 if (match)
 {
 [self removeConstraint:match];
 [self.superview removeConstraint:match];

ptg12441863

203Recipe: Comparing Constraints

 }
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

Animating Constraints

Recipe 5-1 moves a view by removing a constraint that aligns the view to the top or bottom
and adding an inverse constraint. The following snippet from Recipe 5-1 moves the view from
the top to the bottom:

NSLayoutConstraint * constraintToMatch =
 [NSLayoutConstraint constraintWithItem:view1
 attribute:NSLayoutAttributeTop
 relatedBy:NSLayoutRelationEqual toItem:self.view
 attribute:NSLayoutAttributeTop multiplier:1.0f constant:0];

[self.view removeMatchingConstraint: constraintToMatch];

NSLayoutConstraint * updatedConstraint =
 [NSLayoutConstraint constraintWithItem:view1
 attribute:NSLayoutAttributeBottom
 relatedBy:NSLayoutRelationEqual toItem:self.view
 attribute:NSLayoutAttributeBottom multiplier:1.0f constant:0];

[self.view addConstraint:updatedConstraint];

[self.view layoutIfNeeded];

The layoutIfNeeded in the final line forces Auto Layout to reprocess the constraints and
render the updated view. Unfortunately, this transition occurs abruptly. Animating the change
in constraints is actually quite simple. All that is required is calling layoutIfNeeded from
within an animation block:

[UIView animateWithDuration:0.3 animations:^{
 [self.view layoutIfNeeded];

}];

The view will now animate from the top to bottom and back in the same manner as if you
specified the actual origin values within the animation block manually.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

204 Chapter 5 View Constraints

Recipe: Creating Fixed-Size Constrained Views

When working with constraints, start thinking about your views in a new way. You don’t just
set a frame and expect the view to stay where and how big you left it. Constraint layout uses an
entirely new set of assumptions.

Here’s how you might have written a utility method to create a label before Auto Layout:

- (UILabel *)createLabelTheOldWay:(NSString *)title
{
 UILabel *label = [[UILabel alloc]
 initWithFrame:CGRectMake(0.0f, 0.0f, 100.0f, 100.0f)];
 label.textAlignment = NSTextAlignmentCenter;
 label.text = title;

 return label;
}

With Auto Layout, you approach code-level view creation in a new way. Your code adds
constraints that adjust the item’s size and position instead of building a fixed frame and setting
its center.

Disabling Autoresizing Constraints

Autoresizing refers to the struts-and-springs layout tools used in IB and to the autoresizing
flags, like UIViewAutoresizingFlexibleWidth , used in code. When you lay out a view’s resiz-
ing behavior with these approaches, that view should not be referred to in any constraints you
define.

When you move into the constraints world, you start by disabling a view property that auto-
matically translates autoresizing masks into constraints. As a rule, you either enable this, allow-
ing the view to participate in the constraint system via its autoresizing mask, or you disable it
entirely and manually add your own constraints.

The constraints-specific property in question is translatesAutoresizingMaskInto-
Constraints . Setting this to NO ensures that you can add constraints without conflicting
with the automated system. This is pretty important. If you fail to disable the property and
start using constraints, you’ll generate constraint conflicts. The autoresizing constraints won’t
coexist peacefully with ones you write directly. Here’s an example of a runtime error message
that results:

2012-06-24 15:34:54.839 HelloWorld[64834:c07] Unable to simultaneously satisfy
constraints.
Probably at least one of the constraints in the following list is one you don't
want. Try this: (1) look at each constraint and try to figure out which you don't
expect; (2) find the code that added the unwanted constraint or constraints and
fix it. (Note: If you're seeing NSAutoresizingMaskLayoutConstraints that you don't
understand, refer to the documentation for the UIView property

ptg12441863

205Recipe: Creating Fixed-Size Constrained Views

translatesAutoresizingMaskIntoConstraints)
(
 "<NSLayoutConstraint:0x6ec9430 H:[UILabel:0x6ec5210(100)]>",
 "<NSAutoresizingMaskLayoutConstraint:0x6b8e2a0
 h=--& v=--& H:[UILabel:0x6ec5210(0)]>"

)
Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x6ec9430 H:[UILabel:0x6ec5210(100)]>
Break on objc_exception_throw to catch this in the debugger.

Choosing between autoresizing layout and constraints layout is an important part of your
coding work.

Starting Within View Bounds

The first method in Recipe 5-2 , constrainWithinSuperviewBounds , requests that a view be
placed entirely within its superview’s bounds. It creates four constraints to ensure this. One
requires that the view’s left side be at or to the right of the superview’s left side, another that
the view’s top be at or below the superview’s top, and so forth.

The reason for creating this method is that in a loosely constrained system, it’s entirely possible
that your views will disappear offscreen with negative origins. This method basically says,
“Please respect the (0,0) origin and the size of the superview when placing my subviews.”

In most real-world development, this set of constraints is not normally necessary. Such
constraints are particularly useful, however, when you’re first getting started and want to
explore constraints from code. They allow you to test small constraint systems while ensur-
ing that the views you’re exploring remain visible so that you can see how they relate to each
other.

In addition, as you get up to speed with constraints, you’ll probably want to add some sort
of debugging feedback to let you know where your views end up once your primary view
loads and your constraints fire. Consider adding the following loop to your viewDidAppear:
method:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 for (UIView *subview in self.view.subviews)
 NSLog(@"View (%d) location: %@",
 [self.view.subviews indexOfObject:subview],
 NSStringFromCGRect(subview.frame));

}

ptg12441863

206 Chapter 5 View Constraints

Constraining Size

Recipe 5-2 ’s second method, constrainSize: , fixes a view’s extent to the CGSize you specify.
This is a common task when working with constraints. You cannot just set the frame the way
you’re used to setting it. And, again, remember that your constraints are requests, not specific
layouts. If your constraints are not well formed, your 100-point-wide text field may end up 107
points wide in deployment—or worse.

You can define constraints that request a specific width or height for a given view, but the sizes
for the two constraints can’t be known ahead of time. The method is meant for use across a
wide variety of views. Therefore, the sizes are passed to the constraint as metrics . Metrics basi-
cally act as numeric constraint variables.

These particular constraints use two metric names: "theHeight" and "theWidth" . The names
are completely arbitrary. As a developer, you specify the strings, which correspond to keys in
the metrics: parameter dictionary. You pass this dictionary as an argument in the constraint-
creation call. When working with metrics, each key must appear in the passed dictionary, and
its value must be an NSNumber .

The two constraints in this method set the desired horizontal and vertical sizes for the view.
The format strings ("H:[self(theWidth)]" and "V:[self(theHeight)]") tell the constraint
system how large the view should be along each axis.

A third method, constrainPosition: , builds constraints that fix the origin of a view within
its superview. Note the use of the constant to create offsets in this method.

Putting It Together

Using these tools, we can replace the old label-creation method above with a much more
powerful variant that uses Auto Layout:

- (UILabel *)createLabelWithTitle:(NSString *)title
 onParent:(UIView *)parentView

{
 UILabel *label = [[UILabel alloc] init];
 label.textAlignment = NSTextAlignmentCenter;
 label.text = title;

 // Add label to parent view so constraints can be added
 [parentView addSubview:label];

 // Turn off automatic translation of autoresizing masks into constraints
 label.translatesAutoresizingMaskIntoConstraints = NO;

 // Add constraints
 [label constrainWithinSuperviewBounds];

 [label constrainSize:CGSizeMake(100, 100)];

ptg12441863

207Recipe: Creating Fixed-Size Constrained Views

 [label constrainPosition:CGPointMake(50, 50)];

 return label;
}

Before adding constraints that relate the label above and its superview, the label must be added
as a subview to the parent view. Adding constraints to views or relating views that are not in
the same view hierarchy will result in unexpected behavior at best or, more likely, a runtime
crash. This may require a slight reordering in your view instantiation, such as the variations
above that include adding the label to the parent view.

No matter how you restructure your view generation, maintain the following order: Create your
views, add them to their parent view, disable the automatic translation of autoresizing masks,
and, finally, apply the necessary constraints.

Recipe 5-2 Basic Size Constraints

@implementation UIView (ConstraintHelper)
- (void)constrainWithinSuperviewBounds
{
 if (!self.superview) return;

 // Constrain the top, bottom, left, and right to
 // within the superview's bounds
 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeLeft
 relatedBy:NSLayoutRelationGreaterThanOrEqual
 toItem:self.superview attribute:NSLayoutAttributeLeft
 multiplier:1.0f constant:0.0f]];
 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeTop
 relatedBy:NSLayoutRelationGreaterThanOrEqual
 toItem:self.superview attribute:NSLayoutAttributeTop
 multiplier:1.0f constant:0.0f]];
 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeRight
 relatedBy:NSLayoutRelationLessThanOrEqual
 toItem:self.superview attribute:NSLayoutAttributeRight
 multiplier:1.0f constant:0.0f]];
 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeBottom
 relatedBy:NSLayoutRelationLessThanOrEqual
 toItem:self.superview attribute:NSLayoutAttributeBottom
 multiplier:1.0f constant:0.0f]];

}

- (void)constrainSize:(CGSize)aSize

ptg12441863

208 Chapter 5 View Constraints

{
 NSMutableArray *array = [NSMutableArray array];

 // Fix the width
 [array addObjectsFromArray:[NSLayoutConstraint
 constraintsWithVisualFormat:@"H:[self(theWidth@750)]"
 options:0 metrics:@{@"theWidth":@(aSize.width)}
 views:NSDictionaryOfVariableBindings(self)]];

 // Fix the height
 [array addObjectsFromArray:[NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[self(theHeight@750)]"
 options:0 metrics:@{@"theHeight":@(aSize.height)}
 views:NSDictionaryOfVariableBindings(self)]];

 [self addConstraints:array];
}

- (void)constrainPosition:(CGPoint)aPoint
{
 if (!self.superview) return;

 NSMutableArray *array = [NSMutableArray array];

 // X position
 [array addObject:[NSLayoutConstraint constraintWithItem:self
 attribute:NSLayoutAttributeLeft relatedBy:NSLayoutRelationEqual
 toItem:self.superview attribute:NSLayoutAttributeLeft
 multiplier:1.0f constant:aPoint.x]];

 // Y position
 [array addObject:[NSLayoutConstraint constraintWithItem:self
 attribute:NSLayoutAttributeTop relatedBy:NSLayoutRelationEqual
 toItem:self.superview attribute:NSLayoutAttributeTop
 multiplier:1.0f constant:aPoint.y]];

 [self.superview addConstraints:array];
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

209Recipe: Centering Views

Recipe: Centering Views

To center views, associate their center properties (centerX and centerY) with the correspond-
ing properties in their container. Recipe 5-3 introduces a pair of methods that retrieve a view’s
superview and apply the equality relation between their centers.

Notice that these constraints are added to a parent view and not the child view. This is because
constraints cannot reference views outside their own subtree. Here’s the error that’s generated if
you attempt to do otherwise:

2012-06-24 16:09:14.736 HelloWorld[65437:c07] *** Terminating app due to uncaught
exception 'NSGenericException', reason: 'Unable to install constraint on view.

Does the constraint reference something from outside the subtree of the view?
That's illegal. constraint:<NSLayoutConstraint:0x6b6ebf0 UILabel:0x6b68e40.centerY
== UIView:0x6b64a00.centerY> view:<UILabel: 0x6b68e40; frame = (0 0; 0 0); text =
'View 1'; clipsToBounds = YES; userInteractionEnabled = NO; layer = <CALayer:
0x6b67220>>'
libc++abi.dylib: terminate called throwing an exception

Here are a couple of simple rules:

 ■ When creating constraints, add them to the superview when the superview is mentioned,
as either the first or second item of the constraint.

 ■ When working with format strings, add to the superview when the string contains the
superview vertical pipe symbol anywhere.

Recipe 5-3 Centering Views with Constraints

@implementation UIView (ConstraintHelper)
- (void)centerHorizontallyInSuperview
{
 if (!self.superview) return;

 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeCenterX
 relatedBy:NSLayoutRelationEqual
 toItem:self.superview attribute:NSLayoutAttributeCenterX
 multiplier:1.0f constant:0.0f]];

}

- (void)centerVerticallyInSuperview
{
 if (!self.superview) return;

 [self.superview addConstraint:[NSLayoutConstraint
 constraintWithItem:self attribute:NSLayoutAttributeCenterY
 relatedBy:NSLayoutRelationEqual

ptg12441863

210 Chapter 5 View Constraints

 toItem:self.superview attribute:NSLayoutAttributeCenterY
 multiplier:1.0f constant:0.0f]];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

Recipe: Setting Aspect Ratio

Constraint multipliers, the m of the y = m * x + b equation, can help set aspect ratios for your
views. Recipe 5-4 demonstrates how to do this by relating a view’s height (y) to its width (x)
and setting the m value to the aspect. Recipe 5-4 builds an NSLayoutRelationEqual relation-
ship between the width and height of a view, using the aspect ratio as the multiplier.

The recipe applies its aspect updates by managing a fixed constraint, which it stores locally in
an NSLayoutConstraint variable called aspectConstraint . Each time the user toggles the
aspect from 16:9 to 4:3 or back, this recipe removes the previous constraint and creates and
then stores another one. It builds this new constraint by setting the appropriate multiplier and
then adds it to the view.

To allow the view’s sides some flexibility, while keeping the view reasonably large, the
createLabel method in this recipe does two things. First, it uses width and height predicates.
These request that each side exceed 300 points in length. Second, it prioritizes its requests.
These priorities are high (750) but not required (1000), so the constraint system retains the
power to adjust them as needed. The outcome is a system that can change aspects in real time
and dynamically change its layout definition at runtime.

For readability, the aspect ratio constraint creation is embedded in the code in Recipe 5-4 , but
it can easily be added to the ConstraintHelper category.

Aspect ratio constraints can also be used for great effect with images to maintain the natural
image aspect ratio. A view’s content mode may not sufficiently preserve its natural image
aspect. Utilize the size property provided by UIImage to build a natural aspect ratio constraint
by dividing its width by its height.

Recipe 5-4 Creating Aspect Ratio Constraints

- (UILabel *)createLabelWithTitle:(NSString *)title onParent:(UIView *)parentView
{
 UILabel *label = [[UILabel alloc] init];
 label.textAlignment = NSTextAlignmentCenter;
 label.text = title;

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

211Recipe: Setting Aspect Ratio

 label.backgroundColor = [UIColor greenColor];
 [parentView addSubview:label];

 // Turn off automatic translation of autoresizing masks into constraints
 label.translatesAutoresizingMaskIntoConstraints = NO;

 // Add constraints
 [label constrainWithinSuperviewBounds];
 [label addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@"H:[label(>=theWidth@750)]"
 options:0 metrics:@{@"theWidth":@300.0}
 views:NSDictionaryOfVariableBindings(label)]];
 [label addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[label(>=theHeight@750)]"
 options:0 metrics:@{@"theHeight":@300.0}
 views:NSDictionaryOfVariableBindings(label)]];
 [label centerInSuperview];

 return label;
}

- (void)toggleAspectRatio
{
 if (aspectConstraint)
 [self.view removeConstraint:aspectConstraint];

 if (useFourToThree)
 aspectConstraint = [NSLayoutConstraint
 constraintWithItem:view1
 attribute:NSLayoutAttributeWidth
 relatedBy:NSLayoutRelationEqual toItem:view1
 attribute:NSLayoutAttributeHeight
 multiplier:(4.0f / 3.0f) constant:0.0f];

 else
 aspectConstraint = [NSLayoutConstraint
 constraintWithItem:view1
 attribute:NSLayoutAttributeWidth
 relatedBy:NSLayoutRelationEqual toItem:view1
 attribute:NSLayoutAttributeHeight
 multiplier:(16.0f / 9.0f) constant:0.0f];

 [self.view addConstraint:aspectConstraint];
 useFourToThree = !useFourToThree;

}

ptg12441863

212 Chapter 5 View Constraints

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

Recipe: Responding to Orientation Changes

A device’s screen geometry may influence how you want to lay out interfaces. For example,
a landscape aspect ratio may not provide enough vertical range to fit in all your content.
Consider Figure 5-10 . The portrait layout places the iTunes album art on top of the album
name, the artist name, and a Buy button, with the album price. The landscape layout moves
the album art to the left and places the album name, artist, and Buy button in the lower-right
corner.

Figure 5-10 The same content in portrait and landscape layouts.

To accomplish this, your layout constraints must be orientation aware. The updateView-
ControllerConstraints method in Recipe 5-5 refreshes your constraints, based on the
current orientation. This includes removing all existing constraints and setting new constraints.
Call this method in willAnimateRotationToInterfaceOrientation:duration: . This
creates a smooth visual update that matches the animation of the rest of the interface. In
addition, this rotation method occurs after the view controller’s interfaceOrientation
property has been set to the new orientation (unlike willRotateToInterfaceOrientation:

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

213Recipe: Responding to Orientation Changes

duration:). When interface orientation is evaluated in the update method to generate the
appropriate constraints, it will be set correctly.

Recipe 5-5 uses a number of constraint macros that are detailed near the end of the chapter.

Recipe 5-5 Updating View Constraints

- (void)updateViewControllerConstraints
{
 [self.view removeConstraints:self.view.constraints];

 NSDictionary *bindings = NSDictionaryOfVariableBindings(
 imageView, titleLabel, artistLabel, button);

 if (IS_IPAD ||
 UIDeviceOrientationIsPortrait(self.interfaceOrientation) ||
 (self.interfaceOrientation == UIDeviceOrientationUnknown))
 {
 for (UIView *view in @[imageView,
 titleLabel, artistLabel, button])
 {
 CENTER_VIEW_H(self.view, view);
 }
 CONSTRAIN_VIEWS(self.view, @"V:|-80-[imageView]-30-\
 [titleLabel(>=0)]-[artistLabel]-15-[button]-(>=0)-|",
 bindings);
 }
 else
 {
 // Center image view on left
 CENTER_VIEW_V(self.view, imageView);

 // Lay out remaining views
 CONSTRAIN(self.view, imageView, @"H:|-[imageView]");
 CONSTRAIN(self.view, titleLabel, @"H:[titleLabel]-15-|");
 CONSTRAIN(self.view, artistLabel, @"H:[artistLabel]-15-|");
 CONSTRAIN(self.view, button, @"H:[button]-15-|");
 CONSTRAIN_VIEWS(self.view, @"V:|-(>=0)-[titleLabel(>=0)]\
 -[artistLabel]-15-[button]-|", bindings);

 // Make sure titleLabel doesn't overlap
 CONSTRAIN_VIEWS(self.view,
 @"H:[imageView]-(>=0)-[titleLabel]", bindings);
 }

}

// Catch rotation changes

ptg12441863

214 Chapter 5 View Constraints

- (void)willAnimateRotationToInterfaceOrientation:
 (UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration

{
 [super willAnimateRotationToInterfaceOrientation:
 toInterfaceOrientation duration:duration];
 [self updateViewControllerConstraints];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

Debugging Your Constraints

The most common problems you encounter when adding constraints programmatically are
ambiguous and unsatisfiable layouts. Expect to spend a lot of time at the Xcode debugging
console and don’t be surprised when you see a large dump of information that starts with the
phrase “Unable to simultaneously satisfy constraints.”

iOS does its best at runtime to let you know which constraints could not be satisfied and which
constraints it has to break in order to proceed. Often, it suggests a list of constraints that you
should evaluate to see which item is causing the problem. This usually looks something like
this:

Probably at least one of the constraints in the following list is one you don't
want. Try this: (1) look at each constraint and try to figure out which you don't
expect; (2) find the code that added the unwanted constraint or constraints and
fix it. (Note: If you're seeing NSAutoresizingMaskLayoutConstraints that you don't
understand, refer to the documentation for the UIView property
translatesAutoresizingMaskIntoConstraints)
(
 "<NSAutoresizingMaskLayoutConstraint:0x6e5bc90 h=-&- v=-&-

UILayoutContainerView:0x6e540f0.height == UIWindow:0x6e528a0.height>",
 "<NSAutoresizingMaskLayoutConstraint:0x6e5a5e0 h=-&- v=-&-

UINavigationTransitionView:0x6e55650.height ==
UILayoutContainerView:0x6e540f0.height>",
 "<NSAutoresizingMaskLayoutConstraint:0x6e592f0 h=-&- v=-&-

UIViewControllerWrapperView:0x6bb90d0.height ==
UINavigationTransitionView:0x6e55650.height - 64>",
 "<NSAutoresizingMaskLayoutConstraint:0x6e57b90 h=-&- v=-&-

UIView:0x6baef20.height == UIViewControllerWrapperView:0x6bb90d0.height>",
 "<NSAutoresizingMaskLayoutConstraint:0x6e5cd40 h=--- v=---

V:[UIWindow:0x6e528a0(480)]>",

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

215Recipe: Describing Constraints

 "<NSAutoresizingMaskLayoutConstraint:0x6bbe890 h=--& v=--&
UILabel:0x6bb3730.midY ==>",
 "<NSLayoutConstraint:0x6bb8cc0 UILabel:0x6bb3730.centerY ==
UIView:0x6baef20.centerY>"
)

If you get a message like this, most likely, you have forgotten to switch off
translatesAutoresizingMaskIntoConstraints for one of your views. If you see an
NSAutoresizingMaskLayoutConstraint listed, and it’s associated with, for example, a
UILabel that you’re laying out (as is the case here), this is a big hint about where your problem
lies. The two constraints that are causing the issue are highlighted in the preceding snippet.

In other cases, you might have required constraints that are simply in conflict with each other
because one contradicts what the other one is saying. In the dump above, constraints required
a view be both center-aligned and left-aligned. To keep going, the layout system had to make
a choice. It decided to cancel the y -centering requirement, allowing the view to align with the
top of its parent:

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x6e94250 UILabel:0x6b90e00.centerY ==
UIView:0x6b8ca50.centerY>

Although constraint dumps can be scary, certain strategies lend a hand. First, when working
in code, develop your constraints a little at a time. This helps you determine when things start
to break. Second, consider using the macros from the upcoming Listing 5-1 . There’s no reason
to clutter up your code with “align with superview” and “set size to n by m ” over and over
again. Finally, if you’re not required to set your constraints in code, consider using the IB tools
provided to make your visual layout life easier.

Recipe: Describing Constraints

When developing and debugging constraints, you may find it useful to produce human-
readable descriptions of arbitrary NSLayoutConstraint s. Recipe 5-6 builds concise strings that
describe constraints as equations, as follows:

 ■ (1000)[UILabel:6bb32a0].right <= [self].right

 ■ (750)[self].width == ([self].height * 1.778)

 ■ (750)[UILabel:6bb32a0].leading == ([UILabel:6ed2e70].trailing + 60.000)

This recipe transforms constraint instances into these textual presentations. It does so in the
context of the view whose constraints are being considered (and hence the references to self
and superview, in addition to specific subviews that are listed by class and memory address).

Notice that not every constraint includes two items. A constraint may refer only to itself (as in
the second example, which sets its width as a multiplier of its height). In these cases, the item2
property is invariably nil .

ptg12441863

216 Chapter 5 View Constraints

Recipe 5-6 Describing Constraints

@implementation UIView (ConstraintHelper)

// Return a string that describes an attribute
- (NSString *)nameForLayoutAttribute:(NSLayoutAttribute)anAttribute
{
 switch (anAttribute)
 {
 case NSLayoutAttributeLeft: return @"left";
 case NSLayoutAttributeRight: return @"right";
 case NSLayoutAttributeTop: return @"top";
 case NSLayoutAttributeBottom: return @"bottom";
 case NSLayoutAttributeLeading: return @"leading";
 case NSLayoutAttributeTrailing: return @"trailing";
 case NSLayoutAttributeWidth: return @"width";
 case NSLayoutAttributeHeight: return @"height";
 case NSLayoutAttributeCenterX: return @"centerX";
 case NSLayoutAttributeCenterY: return @"centerY";
 case NSLayoutAttributeBaseline: return @"baseline";
 case NSLayoutAttributeNotAnAttribute: return @"not-an-attribute";
 default: return @"unknown-attribute";
 }

}

// Return a name that describes a layout relation
- (NSString *)nameForLayoutRelation:(NSLayoutRelation)aRelation
{
 switch (aRelation)
 {
 case NSLayoutRelationLessThanOrEqual: return @"<=";
 case NSLayoutRelationEqual: return @"==";
 case NSLayoutRelationGreaterThanOrEqual: return @">=";
 default: return @"unknown-relation";
 }

}

// Describe a view in its own context
- (NSString *)nameForItem:(id)anItem
{
 if (!anItem) return @"nil";
 if (anItem == self) return @"[self]";
 if (anItem == self.superview) return @"[superview]";
 return [NSString stringWithFormat:@"[%@:%d]", [anItem class], (int) anItem];

}

// Transform the constraint into a string representation

ptg12441863

217Recipe: Describing Constraints

- (NSString *)constraintRepresentation:(NSLayoutConstraint *)aConstraint
{
 NSString *item1 = [self nameForItem:aConstraint.firstItem];
 NSString *item2 = [self nameForItem:aConstraint.secondItem];
 NSString *relation =
 [self nameForLayoutRelation:aConstraint.relation];
 NSString *attr1 =
 [self nameForLayoutAttribute:aConstraint.firstAttribute];
 NSString *attr2 =
 [self nameForLayoutAttribute:aConstraint.secondAttribute];

 NSString *result;

 if (!aConstraint.secondItem)
 {
 result = [NSString stringWithFormat:@"(%4.0f) %@.%@ %@ %0.3f",
 aConstraint.priority, item1, attr1,
 relation, aConstraint.constant];
 }
 else if (aConstraint.multiplier == 1.0f)
 {
 if (aConstraint.constant == 0.0f)
 result = [NSString stringWithFormat:@"(%4.0f) %@.%@ %@ %@.%@",
 aConstraint.priority, item1, attr1,
 relation, item2, attr2];
 else
 result = [NSString stringWithFormat:
 @"(%4.0f) %@.%@ %@ (%@.%@ + %0.3f)",
 aConstraint.priority, item1, attr1, relation,
 item2, attr2, aConstraint.constant];
 }
 else
 {
 if (aConstraint.constant == 0.0f)
 result = [NSString stringWithFormat:
 @"(%4.0f) %@.%@ %@ (%@.%@ * %0.3f)",
 aConstraint.priority, item1, attr1, relation,
 item2, attr2, aConstraint.multiplier];
 else
 result = [NSString stringWithFormat:
 @"(%4.0f) %@.%@ %@ ((%@.%@ * %0.3f) + %0.3f)",
 aConstraint.priority, item1, attr1, relation,
 item2, attr2, aConstraint.multiplier,
 aConstraint.constant];
 }

 return result;

ptg12441863

218 Chapter 5 View Constraints

}

- (void)showConstraints
{
 NSString *viewName = [NSString stringWithFormat:
 @"[%@:%d]", [self class], (int) self];
 NSLog(@"View %@ has %d constraints",
 viewName, self.constraints.count);
 for (NSLayoutConstraint *constraint in self.constraints)
 NSLog(@"%@", [self constraintRepresentation:constraint]);
 printf("\n");

}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 5 .

Constraint Macros

Constraints provide reliable components for view layout. That said, in their native form,
constraints are both overly verbose and fundamentally redundant. You end up implementing
the same complex hard-to-read calls over and over again.

Debugging constraints is a real pain. Simple typos take too much effort, and constraints tend
to be the same from app to app. A repository of predefined macros saves time and increases the
readability and reliability of the view layout sections. Instead of centering a view inside another
view and having to debug that layout each time you implement it, a single CENTER_VIEW
macro does the job consistently each time.

Creating macros, as shown in Listing 5-1 , shifts the work from producing exact constraint defi-
nitions to ensuring that constraints are consistent and sufficient across each entire view. These
two conditions should form the focus of your view layout work.

Macros

Listing 5-1 shows a comprehensive set of macro definitions. These have been tested and are
used in many recipes in this book, although they approach constraints in a fairly simple
manner. Note that these macros do not return the constraints but actually add the constraints
to the appropriate view. If you need to maintain access to newly created constraints for later
removal, you can easily add macros that return the constraints or use the functionality in
Recipe 5-1 to locate and remove constraints.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

219Constraint Macros

Another addition is not included in Listing 5-1 due to space limitations but is occasionally
handy: variants that accept constraint constants. Such a variant can be particularly useful when
aligning views to their parent and is trivial to add to your constraint macros library. You need
to gauge the level of complexity and flexibility you need to expose in your constraint code and
amend as necessary.

For the macro-averse, possible alternatives include using a function library or creating a
constraint category on UIView . Decide what works best for your code style and layout needs
and then build and refine your utility library over time.

Listing 5-1 Constraint Macros

// Prepare Constraint Compliance
#define PREPCONSTRAINTS(VIEW) \
 [VIEW setTranslatesAutoresizingMaskIntoConstraints:NO]

// Add a visual format constraint
#define CONSTRAIN(PARENT, VIEW, FORMAT) \
 [PARENT addConstraints:[NSLayoutConstraint \
 constraintsWithVisualFormat:(FORMAT) options:0 metrics:nil \
 views:NSDictionaryOfVariableBindings(VIEW)]]

#define CONSTRAIN_VIEWS(PARENT, FORMAT, BINDINGS) \
 [PARENT addConstraints:[NSLayoutConstraint \
 constraintsWithVisualFormat:(FORMAT) options:0 metrics:nil \
 views:BINDINGS]]

// Stretch across axes
#define STRETCH_VIEW_H(PARENT, VIEW) \
 CONSTRAIN(PARENT, VIEW, @"H:|["#VIEW"(>=0)]|")

#define STRETCH_VIEW_V(PARENT, VIEW) \
 CONSTRAIN(PARENT, VIEW, @"V:|["#VIEW"(>=0)]|")

#define STRETCH_VIEW(PARENT, VIEW) \
 {STRETCH_VIEW_H(PARENT, VIEW); STRETCH_VIEW_V(PARENT, VIEW);}

// Center along axes
#define CENTER_VIEW_H(PARENT, VIEW) \
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeCenterX \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeCenterX \
 multiplier:1.0f constant:0.0f]]

#define CENTER_VIEW_V(PARENT, VIEW) \
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeCenterY \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeCenterY \
 multiplier:1.0f constant:0.0f]]

ptg12441863

220 Chapter 5 View Constraints

#define CENTER_VIEW(PARENT, VIEW) \
 {CENTER_VIEW_H(PARENT, VIEW); CENTER_VIEW_V(PARENT, VIEW);}

// Align to parent
#define ALIGN_VIEW_LEFT(PARENT, VIEW) \
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeLeft \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeLeft \
 multiplier:1.0f constant:0.0f]]

#define ALIGN_VIEW_RIGHT(PARENT, VIEW)
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeRight \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeRight \
 multiplier:1.0f constant:0.0f]]

#define ALIGN_VIEW_TOP(PARENT, VIEW)
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeTop \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeTop \
 multiplier:1.0f constant:0.0f]]

#define ALIGN_VIEW_BOTTOM(PARENT, VIEW) \
 [PARENT addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute: NSLayoutAttributeBottom \
 relatedBy:NSLayoutRelationEqual \
 toItem:PARENT attribute:NSLayoutAttributeBottom \
 multiplier:1.0f constant:0.0f]]

// Set Size
#define CONSTRAIN_WIDTH(VIEW, WIDTH) \
 [VIEW addConstraint:[NSLayoutConstraint constraintWithItem:VIEW \
 attribute:NSLayoutAttributeWidth \
 relatedBy:NSLayoutRelationEqual toItem:nil \
 attribute:NSLayoutAttributeNotAnAttribute \
 multiplier:1.0f constant:WIDTH]];

#define CONSTRAIN_HEIGHT(VIEW, HEIGHT) \
 [VIEW addConstraint:[NSLayoutConstraint constraintWithItem:VIEW \
 attribute:NSLayoutAttributeHeight \
 relatedBy:NSLayoutRelationEqual toItem:nil \
 attribute:NSLayoutAttributeNotAnAttribute \
 multiplier:1.0f constant:HEIGHT]];

#define CONSTRAIN_SIZE(VIEW, HEIGHT, WIDTH) \
 {CONSTRAIN_WIDTH(VIEW, WIDTH); CONSTRAIN_HEIGHT(VIEW, HEIGHT);}

ptg12441863

221Summary

// Set Aspect
#define CONSTRAIN_ASPECT(VIEW, ASPECT) \
 [VIEW addConstraint:[NSLayoutConstraint \
 constraintWithItem:VIEW attribute:NSLayoutAttributeWidth \
 relatedBy:NSLayoutRelationEqual \
 toItem:VIEW attribute:NSLayoutAttributeHeight \
 multiplier:(ASPECT) constant:0.0f]]

// Item ordering
#define CONSTRAIN_ORDER_H(PARENT, VIEW1, VIEW2) \
 [PARENT addConstraints: [NSLayoutConstraint \
 constraintsWithVisualFormat: (@"H:["#VIEW1"]->=0-["#VIEW2"]")\
 options:0 metrics:nil \
 views:NSDictionaryOfVariableBindings(VIEW1, VIEW2)]]

#define CONSTRAIN_ORDER_V(PARENT, VIEW1, VIEW2) \
 [PARENT addConstraints:[NSLayoutConstraint \
 constraintsWithVisualFormat:(@"V:["#VIEW1"]->=0-["#VIEW2"]")
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(VIEW1, VIEW2)]]

Summary

This chapter provides an introduction to iOS’s Auto Layout features. Before you move on to the
next chapter, here are a few thoughts to take along with you:

 ■ You may be still thinking in terms of struts, springs, and flexible sizes, but Apple’s Auto
Layout system offers better control and tremendous power, with more extensible tools.

 ■ IB provides an excellent set of layout tools. However, constraint-based interfaces in code
are viable and easy to use. The layout system gives you excellent control over your views,
regardless of whether you specify your constraints visually or programmatically.

 ■ One of the great things about working with constraints is that you move away from
specific-resolution solutions for your interfaces. Yes, your user experience on a tablet is
likely to be quite different from that on a member of the iPhone family, but at the same
time, these new tools let you design for different window (and possibly screen) sizes
within the same mobile family. There’s a lot of flexibility and power hidden within these
simple rules.

 ■ Start incorporating visual ornaments such as shadows into your regular design routine.
Alignment rectangles ensure that your user interfaces will set up properly, regardless of
any secondary view elements you add to your frames.

 ■ Reserve visual format strings for general view layout and use view-to-view relations for
detail specifics. Both approaches play important roles, and neither should be omitted
from your design playbook.

ptg12441863

This page intentionally left blank

ptg12441863

6
Text Entry

Some might disparage the utility of text entry on a family of touch-based devices. After all,
users can already convey a whole lot of information by using simple gestures. However, text
plays an important role, especially as mobile users move away from the office and home for
their daily computing interactions. Users need to enter and read characters onscreen for many
reasons. Text allows users to sign in to accounts, view and reply to e-mail, specify URLs and
read the web pages they refer to, and more. Apple’s brilliant predictive keyboard transforms
text entry into a simple and fairly reliable process; its classes and frameworks offer powerful
ways to present and manipulate text from your applications.

iOS 7 could easily be considered the “text” update. Apple shed the heavy textures, user inter-
face (UI) chrome, and shadows, now centering attention on the content. In many if not most
cases, that content is text. This design focus, combined with the most significant update to
the text layout and rendering engine since iOS’s inception with the new Text Kit technology,
reveals how important text is to the iOS ecosystem.

From presentation to input, Text Kit brings foundational changes to the text system. You
have complete control over text rendering, including many attributes such as kerning and line
spacing that previously required delving into the dark magic known as Core Text. The UIKit
text and text entry controls are now built on top of Text Kit. Text Kit, in turn, is built on top of
Core Text.

While a full investigation of the offerings of Text Kit is beyond the scope of this book, the flex-
ibility and power provided are welcomed and worth exploring.

This chapter introduces text recipes that support a wide range of solutions. You’ll read about
controlling keyboards, making onscreen elements “text-aware,” scanning text, formatting
text, and editing text. This chapter provides handy recipes for common problems that you’ll
encounter while working with text entry.

ptg12441863

224 Chapter 6 Text Entry

Recipe: Dismissing a UITextField Keyboard

A commonly asked question about smaller devices and the UITextField control is “How do
I dismiss the keyboard after the user finishes typing?” There’s no built-in way to automati-
cally detect that a user has stopped typing and then respond. Yet when users finish editing the
contents of a UITextField , the keyboard really should go away. The iPad offers a keyboard-
dismissal button, but the iPhone and iPod touch do not.

Fortunately, it takes little work to respond to the end of text field edits, regardless of platform.
You do so by allowing users to tap Done and then resign first responder status. Resigning first
responder moves the keyboard out of sight, as Recipe 6-1 shows. Here are a few key points
about implementing this approach:

 ■ Setting the return key type to UIReturnKeyDone replaces the word Return with
the word Done . You can do this in Interface Builder’s (IB’s) Attributes inspector or by
assignment to the text field’s returnKeyType property. Using a Done-style return key
tells the user how to finish editing rather than just relying on the fact that users have
used a similar approach on nonmobile systems. Figure 6-1 shows a keyboard with a Done
key.

Figure 6-1 Setting the name of the Return Key to Done (left) tells a user how to finish editing
the field. Specify this directly in code or use IB’s text field Attributes inspector to customize the
way the text field looks and acts.

ptg12441863

225Recipe: Dismissing a UITextField Keyboard

 ■ Be the delegate. You set the text field’s delegate property to your view controller,
either in code or in IB by right-clicking the text field and making the assignment there.
Make sure your view controller declares and implements the UITextFieldDelegate
protocol.

 ■ Implement the textFieldShouldReturn: method. This method catches all return key
presses, no matter how they are named. Use this method to resign first responder and
hide the keyboard until the user touches another text field or text view.

Note

You can also use textFieldShouldReturn: to perform an action when the return key is
pressed in addition to dismissing the keyboard.

Your code needs to handle each of these points to create a smooth interaction process for your
UITextField instances.

Preventing Keyboard Dismissal

Just as you can take charge of keyboard dismissal, your code can also block that action. View
controllers can force keyboards to remain onscreen when the current responder does not
support text. To make this happen, override the disablesAutomaticKeyboardDismissal
method. The method returns a Boolean value that allows or disallows keyboard dismissal.

Text Trait Properties

Text fields implement the UITextInputTraits protocol. This protocol provides eight proper-
ties that you set to define the way the field handles text input:

 ■ autocapitalizationType —Defines the text autocapitalization style. Available styles
use sentence capitalization, word capitalization, all caps, and no capitalization. Avoid
capitalizing when entering user names and passwords. Use word capitalization for proper
names and street address entry fields.

 ■ autocorrectionType —Specifies whether the text is subject to iOS’s autocorrect feature.
When this property is enabled (set to UITextAutocorrectionTypeYes), iOS suggests
replacement words to the user. Most developers disable autocorrection for user name and
password fields, so iOS doesn’t accidentally correct myFacebookAccount to, for example,
myofacial count.

 ■ spellCheckingType —Determines whether to enable spell checking as the
user types. Enable it with UITextSpellCheckingTypeYes and disable it with
UITextSpellCheckingTypeNo . Spell checking is different from autocorrection, which
updates items in-place as users type. Spell checking detects and underlines misspelled
items in text views, providing a visual hint for corrective replacement. By default, spell
checking is enabled whenever autocorrection is active.

ptg12441863

226 Chapter 6 Text Entry

 ■ keyboardAppearance —Provides two keyboard presentation styles: a light look (the
default) and a dark look.

 ■ keyboardType —Lets you specify the keyboard that appears when a user interacts with
a field or text view. iOS provides nearly a dozen varieties. These types include standard
ASCII, numbers and punctuation, PIN-based number entry (0–9), phone number entry
(0–9, #, *), decimal number entry (0–9, and .), URL-optimized (prominent ., /, and .com),
e-mail-optimized (prominent @ and .), and Twitter-optimized (prominent @ and #).

Each keyboard has advantages and disadvantages in terms of the mix of characters it
presents. The e-mail keyboard, for example, is meant to support address entry. It includes
the @ symbol, along with text. The Twitter keyboard offers easy access to the hashtag (#)
symbol as well as the user ID (@) symbol.

 ■ enablesReturnKeyAutomatically —Helps control whether the return key is disabled
when there’s no text in an entry field or view. If you set this property to YES , the return
key becomes enabled after the user types at least one character.

 ■ returnKeyType —Specifies the text shown on the keyboard’s return key. You can choose
from the default (Return), Go, Google, Join, Next, Route, Search, Send, Yahoo, Done,
and Emergency Call. Choose a value that matches the action the user performs when
completing a task.

 ■ secureTextEntry —Toggles a text-hiding feature that is meant to provide more secure
text entry. When this property is enabled, you can see the last character typed, but all
other characters are shown as a series of dots. Switch on this feature for password text
fields.

Other Text Field Properties

In addition to the standard text traits, text fields offer other properties that control how the
field is presented. Here are ones you should know about:

 ■ Placeholder — Figure 6-2 shows a field’s placeholder text. This text appears in light gray
when the text field is empty. It provides a user prompt that describes the target content
for that field. Use the placeholder to provide usage hints such as User Name or E-mail
address, as demonstrated in Figure 6-2 .

Figure 6-2 Placeholder text appears inside text fields in a light gray color when the field is
empty. Any text added to the field obscures the placeholder. You can set this text by using IB’s
text field Attributes inspector or by editing the placeholder property for the field object.

ptg12441863

227Recipe: Dismissing a UITextField Keyboard

 ■ Border style — Text fields allow you to control the type of borderStyle displayed around
the text area. You can choose from a simple line, a bezel, and a rounded rectangle
presentation (used in Figure 6-2). These are best seen in IB, where the Attributes inspector
lets you toggle between the styles.

 ■ Clear button — The text field clear button appears as an X at the right side of the
entry area. Set clearButtonMode to specify if and when this button appears:
always (UITextFieldViewModeAlways), never (UITextFieldViewModeNever),
while editing (UITextFieldViewWhileEditing), or unless editing is ongoing
(UITextFieldViewModeUnlessEditing). Always gives the greatest control to the user.

Recipe 6-1 Using the Done Key to Dismiss a Text Field Keyboard

// Dismiss the keyboard when the user taps Done
- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return YES;

}

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Update all text fields, including those defined in IB,
 // setting delegate, return key type, and other useful traits
 for (UIView *view in self.view.subviews)
 {
 if ([view isKindOfClass:[UITextField class]])
 {
 UITextField *aTextField = (UITextField *)view;
 aTextField.delegate = self;

 aTextField.returnKeyType = UIReturnKeyDone;
 aTextField.clearButtonMode =
 UITextFieldViewModeWhileEditing;

 aTextField.borderStyle = UITextBorderStyleRoundedRect;
 aTextField.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 aTextField.autocorrectionType =
 UITextAutocorrectionTypeNo;

 aTextField.font =
 [UIFont fontWithName:@"Futura" size:12.0f];
 aTextField.placeholder = @"Placeholder";

ptg12441863

228 Chapter 6 Text Entry

 }
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Dismissing Text Views with Custom Accessory

Views

Custom accessory views allow you to present material whenever the keyboard is shown
onscreen. Common uses include adding custom buttons and other controls such as font
and color pickers that affect text as the user types or additional navigation through forms.
Recipe 6-2 adds two buttons: one that clears already-typed text and another that dismisses the
keyboard. Figure 6-3 shows the keyboard with these add-ons.

Figure 6-3 Accessory input views allow you to add custom view elements to standard iOS
keyboard presentations. Here, a pair of buttons augment iPhone and iPad keyboards.

Each accessory view is associated with a given responder (a descendent of the UIResponder
class), such as a text field or text view. Add accessories by setting the inputAccessoryView
property for the view. Recipe 6-2 uses a simple toolbar as its accessory view, providing extra
functionality with minimal coding.

Adding a Done button to the toolbar provides the same kind of user control for text views
(large, scrolling, multiline text editing views) as Recipe 6-1 offers for text fields (one-line text-
input controls). The difference is that this approach allows text views to continue using the
return key to add carriage returns to text for paragraph breaks.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

229Recipe: Dismissing Text Views with Custom Accessory Views

Note

One of this book’s tech reviewers writes that he can never remember which is a text view and
which is a text field. To this, I reply, “A view is two; a field is sealed.” Text views can use any
number of lines (including two or more). Text fields are single-line text entry controls, limited to
a styled bounding border.

iOS developer Phil Mills offers a more amusing mnemonic: “Take my text field...please.” Text
fields are, as he points out, one-liners.

Recipe 6-2 ’s Done button resigns first responder status in its callback method. This button is
not required for iPad users whose keyboard automatically includes a dismiss button, but it does
no harm as used here. If you want to filter out the Done button when a universal application
is run on the iPad, check the current user interface idiom. The following macro gives you a
simple way to test for an iPad:

#define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

Always be aware that Apple may introduce new iOS device form factors, with more space or
less space available to users, so try to code accordingly, especially when working with screen-
consuming features like accessory views. There’s really not much you can do on that account
with the current two idioms (iPhone and iPad), but it’s worth inserting notes into code in
places that could see changes in the future.

Recipe 6-2 Adding Custom Buttons to Keyboards

@implementation TestBedViewController
{
 UITextView *textView;
 UIToolbar *toolBar;

}

// Remove text from text view
- (void)clearText
{
 [textView setText:@""];

}

// Dismiss keyboard by resigning first responder
- (void)leaveKeyboardMode
{
 [textView resignFirstResponder];

}

- (UIToolbar *)accessoryView
{
 // Create toolbar with Clear and Done
 toolBar = [[UIToolbar alloc] initWithFrame:

ptg12441863

230 Chapter 6 Text Entry

 CGRectMake(0.0f, 0.0f, self.view.frame.size.width, 44.0f)];
 toolBar.tintColor = [UIColor darkGrayColor];

 // Set up the items as Clear – flexspace - Done
 NSMutableArray *items = [NSMutableArray array];
 [items addObject:BARBUTTON(@"Clear", @selector(clearText))];
 [items addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [items addObject:BARBUTTON(@"Done", @selector(leaveKeyboardMode))];
 toolBar.items = items;

 return toolBar;
}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 // Create text view and add the custom accessory view
 textView = [[UITextView alloc] initWithFrame:self.view.bounds];
 textView.font = [UIFont fontWithName:@"Georgia"
 size:(IS_IPAD) ? 24.0f : 14.0f];
 textView.inputAccessoryView = [self accessoryView];

 // Use constraints to fill application bounds
 [self.view addSubview:textView];
 PREPCONSTRAINTS(textView);
 STRETCH_VIEW(self.view, textView); }

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Adjusting Views Around Keyboards

By necessity, iOS keyboards are large. They occupy a good portion of the screen whenever they
are in use. Because of that, you’ll want to adjust your text fields and text views so the keyboard
does not block them when it appears onscreen. Figure 6-4 demonstrates this problem.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

231Recipe: Adjusting Views Around Keyboards

Figure 6-4 Keyboards occupy a large portion of the iOS device screen. If you do not force views
to resize themselves and/or shift up on the screen when a keyboard appears, the keyboards will
obscure onscreen material that should remain visible. You cannot see the bottom text in the last
image because the text view extends behind the keyboard and reaches all the way to the bottom
of the screen.

The top image shows the source text view, before it becomes first responder. The middle image
demonstrates what users expect to happen—namely that the entire view remains accessible by
touch even when the keyboard is onscreen. The bottom image demonstrates what happens
when you do not resize or reposition views. In this case, roughly one-third of a screen of text

ptg12441863

232 Chapter 6 Text Entry

view material becomes inaccessible. Users cannot see the final line of text, let alone edit it in
any meaningful manner. The keyboard prevents any touches from getting through to the last
paragraph or so of text.

Mitigate the keyboard’s presence by allowing views to resize or shift around it. When the
keyboard appears, views that continue to require interaction should adjust themselves out of
the way so that they don’t overlap. To accomplish this, your application must subscribe to
keyboard notifications.

iOS offers several notifications that are transmitted using the standard NSNotificationCenter ,
as follows:

 ■ UIKeyboardWillShowNotification

 ■ UIKeyboardDidShowNotification

 ■ UIKeyboardWillChangeFrameNotification

 ■ UIKeyboardWillHideNotification

 ■ UIKeyboardDidHideNotification

Listen for these by adding your class as an observer. The following snippet listens for the “will
hide” notification and uses a target-selector callback:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillHide:)
 name:UIKeyboardWillHideNotification object:nil];

You can also handle notification updates via a blocks-based API.

The two notifications you’ll usually want to listen for are “will show” and “will hide,” which
offer opportune times for you to react to the keyboard arriving onscreen or preparing to leave.
Each notification provides a userInfo dictionary that supplies the end frame for the keyboard,
using the UIKeyboardFrameEndUserInfoKey key. You are not granted direct access to the
keyboard itself.

Retrieving the keyboard frame lets you adapt your views to the keyboard’s presence. Recipe
6-3 adds a keyboard spacer view that adjusts its constraints to accommodate the height of the
keyboard. When added to the bottom of your layout, the keyboard spacer view listens to and
manages keyboard events and resizes appropriately. When you constrain your text view with
the spacer, the text view will adjust appropriately as the spacer resizes:

// Create a spacer
KeyboardSpacingView *spacer =
 [KeyboardSpacingView installToView:self.view];

// Place the spacer under the text view
CONSTRAIN(self.view, @"V:|[textView][spacer]|",
 NSDictionaryOfVariableBindings(textView, spacer));

ptg12441863

233Recipe: Adjusting Views Around Keyboards

This implementation is fully hardware-aware and properly adjusts for optional input accessory
views.

Recipe 6-3 Creating a Dedicated Keyboard Spacer

@implementation KeyboardSpacingView
{
 NSLayoutConstraint *heightConstraint;

}

// Listen for keyboard
- (void)establishNotificationHandlers
{
 // Listen for keyboard appearance
 [[NSNotificationCenter defaultCenter]
 addObserverForName:UIKeyboardWillShowNotification
 object:nil queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note)
 {
 // Fetch keyboard frame
 NSDictionary *userInfo = note.userInfo;
 NSTimeInterval duration =
 [userInfo[UIKeyboardAnimationDurationUserInfoKey]
 doubleValue];
 CGRect keyboardEndFrame = [self.superview
 convertRect:[userInfo[UIKeyboardFrameEndUserInfoKey]
 CGRectValue]
 fromView: self.window];

 // Adjust to window
 CGRect windowFrame = [self.superview
 convertRect:self.window.frame fromView:self.window];
 CGFloat heightOffset = (windowFrame.size.height –
 keyboardEndFrame.origin.y) –
 self.superview.frame.origin.y;

 // Update and animate height constraint
 heightConstraint.constant = heightOffset;
 [UIView animateWithDuration:duration animations:^{
 [self.superview layoutIfNeeded];
 }];
 }];

 // Listen for keyboard exit
 [[NSNotificationCenter defaultCenter]
 addObserverForName:UIKeyboardWillHideNotification object:nil
 queue:[NSOperationQueue mainQueue]

ptg12441863

234 Chapter 6 Text Entry

 usingBlock:^(NSNotification *note)
 {
 // Reset to zero
 NSDictionary *userInfo = note.userInfo;
 NSTimeInterval duration =
 [userInfo[UIKeyboardAnimationDurationUserInfoKey]
 doubleValue];
 heightConstraint.constant = 0;
 [UIView animateWithDuration:duration animations:^{
 [self.superview layoutIfNeeded];
 }];
 }];

}

// Stretch sides and bottom of spacer to superview
- (void)layoutView
{
 self.translatesAutoresizingMaskIntoConstraints = NO;
 if (!self.superview) return;
 for (NSString *constraintString in @[@"H:|[view]|", @"V:[view]|"])
 {
 NSArray *constraints = [NSLayoutConstraint
 constraintsWithVisualFormat:constraintString options:0
 metrics:nil views:@{@"view":self}];
 [self.superview addConstraints:constraints];
 }
 heightConstraint = [NSLayoutConstraint constraintWithItem:self
 attribute:NSLayoutAttributeHeight
 relatedBy:NSLayoutRelationEqual toItem:nil
 attribute:NSLayoutAttributeNotAnAttribute multiplier:1.0f
 constant:0.0f];
 [self addConstraint:heightConstraint];

}

+ (instancetype)installToView:(UIView *)parent
{
 if (!parent) return nil;
 KeyboardSpacingView *view = [[self alloc] init];
 [parent addSubview:view];

 [view layoutView];
 [view establishNotificationHandlers];
 return view;

}

@end

ptg12441863

235Recipe: Creating a Custom Input View

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Creating a Custom Input View

A custom input view replaces the keyboard with a view of your design whenever a text view or
text field becomes first responder. You can add custom input views to nontext views as well as
to text views. Recipe 6-4 focuses on the text scenario.

When you set a responder’s inputView property, the view that is assigned to that property
replaces the system keyboard. The easiest way to demonstrate this feature is to create a colored
view and assign it to the inputView property. Consider the following code snippet. It creates
two text fields. The code assigns the second field’s inputView property to a basic UIView
instance that has a purple background:

// Create two standard text fields
UITextField *textField1 = [[UITextField alloc] init];
textField1.borderStyle = UITextBorderStyleRoundedRect;
[self.view addSubview:textField1];
PREPCONSTRAINTS(textField1);
CONSTRAIN_SIZE(textField1, 30, 200);
CENTER_VIEW_H(self.view, textField1);
ALIGN_VIEW_TOP_CONSTANT(self.view, textField1, 40);

UITextField *textField2 = [[UITextField alloc] init];
textField2.borderStyle = UITextBorderStyleRoundedRect;
[self.view addSubview:textField2];
PREPCONSTRAINTS(textField2);
CONSTRAIN_SIZE(textField2, 30, 200);
CENTER_VIEW_H(self.view, textField2);
ALIGN_VIEW_TOP_CONSTANT(self.view, textField2, 80);

// Create a purple view to be used as the input view
UIView *purpleView = [[UIView alloc] initWithFrame:
 CGRectMake(0.0f, 0.0f, self.view.frame.size.width, 120.0f)];

purpleView.backgroundColor = COOKBOOK_PURPLE_COLOR;

// Assign the input view
textField2.inputView = purpleView;

Figure 6-5 shows this snippet’s results. When the first text field becomes first responder, the
system-supplied keyboard scrolls onscreen; when the second field is selected, the purple view
appears instead.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

236 Chapter 6 Text Entry

Figure 6-5 Otherwise identical, these two text fields produce different results upon becoming
first responder. The top field (left image) presents a standard keyboard. The solid-color view
assigned to the bottom field’s inputView property (right image) replaces the system keyboard.

Because the purple view offers no interactive elements, there’s not much you can do. You
cannot enter text; you cannot dismiss the “keyboard.” You can only marvel at the functionality
of displaying a custom view. Reselect the top text field to switch back to the standard keyboard.

For the most part, custom input views are not used for text input in real-life coding. Although
input views play an important role in other design patterns, especially gaming, their utility
for text is fairly limited. That’s because the inputAccessoryView property expands keyboard
options without sacrificing built-in keys. Further, the range of keyboard options now includes
numeric and decimal entry (added in iOS 4.1). These were the prevailing requirements for
designing custom keyboards in early iOS releases.

Where do custom input views make sense when working with text? For those willing to spend
time and effort developing their own keyboards, taking into account the various platforms and
orientations, not to mention Shift modifier keys, input views provide complete control over the
user experience. You create a fully customized skinnable input element that replaces the system
keyboard with a look and feel uniquely suited to your design. This requires a huge amount of
work, at many levels.

ptg12441863

237Recipe: Creating a Custom Input View

Recipe 6-4 provides a barebones example of a custom text-input view. Instead of character
entry, it offers two buttons: One types Hello, and the other types World (see Figure 6-6). When
tapped, each button inserts the word into its attached text view.

Figure 6-6 The custom keyboard attached as this text view’s input view allows users to enter
Hello and World—and that’s all.

The challenge in creating a custom text-input view like this lies in how the text changes propa-
gate back to the first responder. iOS offers no direct link or property that tells a custom input
view who its owner is, nor can you use simple superview properties. Because of this challenge,
you might want to implement a simple class extension to UIView to recover the current first
responder:

@interface UIView (FirstResponderUtility)
+ (UIView *)currentResponder;
@end

@implementation UIView (FirstResponderUtility)
- (UIView *)findFirstResponder
{
 if ([self isFirstResponder]) return self;

 for (UIView *view in self.subviews)

ptg12441863

238 Chapter 6 Text Entry

 {
 UIView *responder = [view findFirstResponder];
 if (responder) return responder;
 }
 return nil;

}

+ (UIView *)currentResponder
{
 UIWindow *keyWindow =
 [[UIApplication sharedApplication] keyWindow];
 return [keyWindow findFirstResponder];

}
@end

Note

In the preceding code snippet, the class method, currentResponder , is named to marginally
avoid conflict with private APIs.

firstResponder is an actual unpublished method. When adding category methods to Apple’s
classes in production code (rather than sample code, which this is), a good rule of thumb is to
prefix all method names with your initials, your company’s initials, or some other unique identi-
fier. This ensures that your method names do not overlap with Apple’s or (importantly) with
any methods Apple might add in the future. To enhance readability and recognition of method
names in samples, this book does not follow this advice.

Recipe 6-4 builds a custom UIToolbar as an input view that displays two options (Hello and
World). When tapped, the toolbar inserts a string into the first responder’s text. It retrieves
the first responder if this has not yet been set. Then it checks that the responder is a kind of
UITextView . Only then does it insert the new text.

Certain truths are universally acknowledged regarding input views. First, the owner of a
presented input view is always first responder. Second, that owner is a subview of the appli-
cation’s key window. You can leverage these facts in code, although you’ll probably want to
expand the minimal error condition checking shown in Recipe 6-4 , particularly with regard to
the reuse of the responderView instance variable.

Recipe 6-4 Creating a Custom Input View

@interface InputToolbar : UIToolbar
@end

@implementation InputToolbar
{
 UIView *responderView;

}

ptg12441863

239Recipe: Creating a Custom Input View

- (void)insertString:(NSString *)string
{
 if (!responderView || ![responderView isFirstResponder])
 {
 responderView = [UIView currentResponder];
 if (!responderView) return;
 }

 if ([responderView isKindOfClass:[UITextView class]])
 {
 UITextView *textView = (UITextView *) responderView;
 NSMutableString *text =
 [NSMutableString stringWithString:textView.text];
 NSRange range = textView.selectedRange;
 [text replaceCharactersInRange:range withString:string];
 textView.text = text;
 textView.selectedRange =
 NSMakeRange(range.location + string.length, 0);
 }
 else
 NSLog(@"Cannot insert %@ in unknown class type (%@)",
 string, [responderView class]);

}

// Perform the two insertions
- (void)hello:(id)sender {[self insertString:@"Hello "];}
- (void)world:(id)sender {[self insertString:@"World "];}

// Initialize the bar buttons on the toolbar
- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame: aFrame;
 if (self)
 {
 NSMutableArray *theItems = [NSMutableArray array];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(
 @"Hello", @selector(hello:))];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(
 @"World", @selector(world:))];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 self.items = theItems;

ptg12441863

240 Chapter 6 Text Entry

 }
 return self;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Making Text-Input-Aware Views

While only a few views support text input by default, with a bit of effort, you can add keyboard
support to almost any view. The key is the simple UIKeyInput protocol. By combining it with
a little first responder manipulation, you can update any view to offer text input.

Recipe 6-5 illustrates how to transform a standard UIToolbar into a view that accepts keyboard
entry, letting users type text directly into the toolbar, as shown in Figure 6-7 . As the user types,
the toolbar text updates, even properly handling the Delete key.

Figure 6-7 Adding the UIKeyInput protocol to a toolbar transforms the view into one that can
accept and display keyboard input, including deletions.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

241Recipe: Making Text-Input-Aware Views

This recipe requires several features. First, the toolbar must declare the UIKeyInput protocol.
This protocol announces that the view implements simple text entry and can display the
system keyboard (or a custom keyboard, if desired) when it becomes first responder.

Second, the toolbar must retain state—that is, the string being entered must be stored. Saving
the string as a retained mutable property allows the toolbar to know what text it is currently
working with and to display that text to the user.

Next, the toolbar must be able to become first responder. It does so in two ways: by imple-
menting canBecomeFirstResponder (returning YES) and by catching touches to detect when
it should assume that role. Adding a touch handler allows the toolbar to become the first
responder when a user touches the view.

Finally, it must implement the three required UIKeyInput protocol methods: hasText ,
insertText :, and deleteBackward . These methods do exactly what their names imply. The
hasText method returns YES whenever the view has any text available. The other two methods
insert text at the current insertion point (always at the end for this recipe) and delete one char-
acter at a time from the end of the displayed text.

By declaring the protocol, becoming first responder, and handling both the string state and the
input callbacks, Recipe 6-5 provides a robust way to add basic text entry to standard UIView
elements. You can extend these same text features to many other classes, including labels, navi-
gation bars, buttons, and so forth, to use in your applications as needed.

Recipe 6-5 Adding Keyboard Input to Nontext Views

@interface KeyInputToolbar: UIToolbar <UIKeyInput>
@end

@implementation KeyInputToolbar
{
 NSMutableString *string;

}

// Is there text available that can be deleted
- (BOOL)hasText
{
 if (!string || !string.length) return NO;
 return YES;

}

// Reload the toolbar with the string
- (void)update
{
 NSMutableArray *theItems = [NSMutableArray array];
 [theItems addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(string, @selector(becomeFirstResponder))];
 [theItems addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];

ptg12441863

242 Chapter 6 Text Entry

 self.items = theItems;
}

// Insert new text into the string
- (void)insertText:(NSString *)text
{
 if (!string) string = [NSMutableString string];
 [string appendString:text];
 [self update];

}

// Delete one character
- (void)deleteBackward
{
 // Super caution, even if hasText reports YES
 if (!string)
 {
 string = [NSMutableString string];
 return;
 }

 if (!string.length)
 return;

 // Remove a character
 [string deleteCharactersInRange:NSMakeRange(string.length - 1, 1)];
 [self update];

}

// When becoming first responder, send out a notification to that effect.
// Can be used to add a Done button in the navigation bar
- (BOOL)becomeFirstResponder
{
 BOOL result = [super becomeFirstResponder];
 if (result)
 [[NSNotificationCenter defaultCenter]
 postNotification:[NSNotification notificationWithName:
 @"KeyInputToolbarDidBecomeFirstResponder" object:nil]];
 return result;

}

- (BOOL)canBecomeFirstResponder
{
 return YES;

}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;

ptg12441863

243Recipe: Adding Custom Input Views to Nontext Views

{
 [self becomeFirstResponder];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Adding Custom Input Views to Nontext Views

Although custom input views can be applied to text views and text fields, they are more valu-
able in other use cases. Input doesn’t have to be about text. In fact, by taking the system
keyboard out of the equation, custom input views can range to whatever kind of scenario you
need.

Think of input views as context-sensitive graphical menus that appear only when a particular
view class becomes first responder. When you tap a warrior, perhaps a set of weapons scrolls
onscreen, including a bow, a mace, and a sword. The user can select the kind of attack the
warrior should apply. Or think of a graphics layout program. When a circle, square, or line is
tapped, maybe an onscreen palette is revealed that lets users set the stroke width, the stroke
color, and the fill. The only limit to the utility of custom input is your imagination.

Recipe 6-6 demonstrates how a custom input view can affect a nontext view. It combines
the code from Recipes 6-4 and 6-5 , creating both an input-aware view (ColorView), which
can become first responder with a touch, and an input view (InputToolbar) that affects the
display of that primary view. In this example, the base view’s role is limited to displaying a
color. The toolbar controls what color that is.

Because there’s no other way to transfer first responder control, the input view also offers a
Done button, which allows the user to dismiss the keyboard, thus resigning first responder
from the big color view.

Adding Input Clicks

Use the UIDevice class to add input clicks to your custom input accessory views. The
playInputClick method plays the standard system keyboard click and can be called
when you respond to user input taps.

Adopt the UIInputViewAudioFeedback protocol in the accessory input class and add an
enableInputClicksWhenVisible delegate method that always returns YES . This defers audio
playback to the user’s preferences, which are set in Settings > Sounds. To hear these clicks,
the user must have enabled keyboard click feedback. If the user has not done so, your calls to
playInputClick are simply ignored.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

244 Chapter 6 Text Entry

Recipe 6-6 Creating a Custom Input Controller for a Nontext View

@interface ColorView : UIView
@property (strong) UIView *inputView;
@end

// Key Input Aware View
@implementation ColorView

// UITextInput protocol
- (BOOL)hasText {return NO;}
- (void)insertText:(NSString *)text {}
- (void)deleteBackward {}

// First responder support
- (BOOL)canBecomeFirstResponder {return YES;}
- (void)touchesBegan:(NSSet *)touches
 withEvent:(UIEvent *)event {[self becomeFirstResponder];}

// Initialize with user interaction allowed
- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame:aFrame];
 if (self)
 {
 self.backgroundColor = COOKBOOK_PURPLE_COLOR;
 self.userInteractionEnabled = YES;
 }
 return self;

}
@end

// Color input toolbar
@interface InputToolbar : UIToolbar <UIInputViewAudioFeedback>
@end

@implementation InputToolbar
- (BOOL)enableInputClicksWhenVisible
{
 return YES;

}

- (void)updateColor:(UIColor *)aColor
{
 [UIView currentResponder].backgroundColor = aColor;
 [[UIDevice currentDevice] playInputClick];

}

ptg12441863

245Recipe: Adding Custom Input Views to Nontext Views

// Color updates
- (void)light:(id) sender {
 [self updateColor:[COOKBOOK_PURPLE_COLOR
 colorWithAlphaComponent:0.33f]];}

- (void)medium:(id)sender {
 [self updateColor:[COOKBOOK_PURPLE_COLOR
 colorWithAlphaComponent:0.66f]];}

- (void)dark:(id)sender {
 [self updateColor:COOKBOOK_PURPLE_COLOR];}

// Resign first responder on pressing Done
- (void)done:(id)sender
{
 [[UIView currentResponder] resignFirstResponder];

}

// Create a toolbar with each option available
- (instancetype)initWithFrame:(CGRect)aFrame
{
 self = [super initWithFrame:aFrame];
 if (self)
 {
 NSMutableArray *theItems = [NSMutableArray array];
 [theItems addObject:BARBUTTON(@"Light", @selector(light:))];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(@"Medium", @selector(medium:))];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(@"Dark", @selector(dark:))];
 [theItems addObject:SYSBARBUTTON(
 UIBarButtonSystemItemFlexibleSpace, nil)];
 [theItems addObject:BARBUTTON(@"Done", @selector(done:))];
 self.items = theItems;
 }
 return self;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

246 Chapter 6 Text Entry

Recipe: Building a Better Text Editor (Part I)

Undo support and persistence help create better text editors in your application. These features
ensure that your users can reverse mistakes and pick up their work from where they left off.
Accomplishing them requires surprisingly little programming, as demonstrated in Recipe 6-7 .

Text views provide built-in support that works hand-in-hand with select, cut, copy, and paste.
The undo manager understands these actions, and possible user messages might include
Undo Paste, Redo Cut, and so forth. All the view controller needs to do is instantiate an undo
manager; it leaves the rest of the work to the built-in objects.

Recipe 6-7 adds Undo and Redo buttons to the keyboard accessory view. These buttons must
be updated each time the text view contents change. To accomplish this, the view controller
becomes the text view’s delegate and implements the textViewDidChange : delegate method.
Buttons are enabled or disabled accordingly.

This recipe uses persistence to store the text contents between application launches. It archives
its contents to file in the performArchive method. The application delegate calls this method
right before the application is due to suspend and also each time the text view resigns first
responder status to better ensure that the data remains fresh and up to date between applica-
tion sessions:

- (void) applicationWillResignActive:(UIApplication *)application
{
 [tbvc archiveData];

}

On launch, any data in that file is read in to initialize the text view instance during the view
controller setup.

Recipe 6-7 Adding Undo Support and Persistence to Text Views

#define SYSBARBUTTON(ITEM, SELECTOR) [[UIBarButtonItem alloc] \
 initWithBarButtonSystemItem:ITEM target:self action:SELECTOR]

#define SYSBARBUTTON_TARGET(ITEM, TARGET, SELECTOR) \
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:ITEM \
 target:TARGET action:SELECTOR]

// Store data out to file
- (void)archiveData
{
 [textView.text writeToFile:DATAPATH atomically:YES
 encoding:NSUTF8StringEncoding error:nil];

}

// Update the undo and redo button states
- (void)textViewDidChange:(UITextView *)textView
{

ptg12441863

247Recipe: Building a Better Text Editor (Part I)

 [self loadAccessoryView];
}

// Choose which items to enable and disable on the toolbar
- (void)loadAccessoryView
{
 NSMutableArray *items = [NSMutableArray array];
 UIBarButtonItem *spacer =
 SYSBARBUTTON(UIBarButtonSystemItemFixedSpace, nil);
 spacer.width = 40.0f;

 BOOL canUndo = [textView.undoManager canUndo];
 UIBarButtonItem *undoItem = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemUndo, self, @selector(undo));
 undoItem.enabled = canUndo;
 [items addObject:undoItem];
 [items addObject:spacer];

 BOOL canRedo = [textView.undoManager canRedo];
 UIBarButtonItem *redoItem = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemRedo, self, @selector(redo));
 redoItem.enabled = canRedo;
 [items addObject:redoItem];
 [items addObject:spacer];

 [items addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [items addObject:BARBUTTON(@"Done", @selector(leaveKeyboardMode))];

 toolbar.items = items;
}

// Call undo on the undoManager and update toolbar buttons
- (void)undo
{
 [textView.undoManager undo];
 [self loadAccessoryView];

}

// Call redo on the undoManager and update toolbar buttons
- (void)redo
{
 [textView.undoManager redo];
 [self loadAccessoryView];

}

// Return a plain accessory view
- (UIToolbar *)accessoryView

ptg12441863

248 Chapter 6 Text Entry

{
 toolbar = [[UIToolbar alloc]
 initWithFrame:CGRectMake(0.0f, 0.0f, 100.0f, 44.0f)];
 toolbar.tintColor = [UIColor darkGrayColor];
 return toolbar;

}

- (void)loadView
{
 self.view = [[UIView alloc] init];

 // Load any existing string
 if ([[NSFileManager defaultManager] fileExistsAtPath:DATAPATH])
 {
 NSString *string =
 [NSString stringWithContentsOfFile:DATAPATH
 encoding:NSUTF8StringEncoding error:nil];
 textView.text = string;
 }

 // Subscribe to keyboard frame changes and update layout
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(updateTextViewBounds:)
 name:UIKeyboardDidChangeFrameNotification object:nil];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Building a Better Text Editor (Part II)

Starting with iOS 6, text views and text fields work with attributed text strings (that is, strings
that support styles, not just plain-text ones). This allows you to create highly featured text
views and fields with multiple fonts, styles, and colors.

Much of this functionality prior to iOS 7 leaned heavily on Core Text for anything more than
simple styles. With Text Kit, that support has been simplified and expanded. For simple text
editors, it takes very little work to add support for basic styles: bold, italic, and underline.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

249Recipe: Building a Better Text Editor (Part II)

Enabling Attributed Text

To handle style requests, you must change a flag that lets your text view work with attributed
(in other words, styled) text. Set the allowsEditingTextAttributes property to YES . Upon
doing so, several things happen:

 ■ The text view begins updating its attributedText property. This property enables you
to retrieve the text view’s contents as an attributed string.

 ■ The view begins responding to a series of special UIResponder methods that toggle
boldface, italic, and underline for selected text. These methods are detailed in the next
section.

 ■ The view’s interactive user-interface menu starts to show new options, allowing users to
style the current selection using bold, italic, and underline.

Controlling Attributes

In iOS 6, NSObject offers methods to control several text attributes. These
methods are intended for use by UIResponder subclasses and are part of the
UIResponderStandardEditActions informal protocol. This protocol declares common editing
commands for the iOS user interface.

The methods of interest include toggleBoldFace: , toggleItalics: , and toggleUnderline: .
These three methods apply styles to the current text selection or, if the styles have already been
applied, remove them.

To allow these updates, you just tell the responder (in this case, a text view) to enable text attri-
bute editing. The text view or text field in question does all the heavy lifting. You can imple-
ment these calls with nothing more than bar button actions.

Recipe 6-8 demonstrates how to build these features into your iOS application. Figure 6-8 shows
the interface built by this recipe.

ptg12441863

250 Chapter 6 Text Entry

Figure 6-8 The UIResponderStandardEditActions protocol defines common text editing
commands, which you wrap into your user interface. The keyboard accessory view offers one-
button access in addition to the BIU options that automatically appear in the system menu.
The accessory view allows you to select all (Sel) or apply (or remove) bold (B), italic (I), and
underline (U).

Other Responder Functionality

Notice the Sel option on the accessory bar, to the left of the BIU (bold, italic,
and underline) choices. This bar button adds a Select All feature via the same
UIRespondersStandardEditActions protocol used for style toggles. Editing
methods include the following:

 ■ copy: , cut: , delete: and paste: for basic edits

 ■ select: and selectAll: for selections

 ■ toggleBoldFace: , toggleItalics: , and toggleUnderline: for style updates

This protocol also lets you control the direction of writing through the makeTextWriting-
DirectionLeftToRight : and makeTextWritingDirectionRightToLeft : methods.

ptg12441863

251Recipe: Building a Better Text Editor (Part II)

Recipe 6-8 Enhanced Text Editor

// Handy bar button macros
#define BARBUTTON(TITLE, SELECTOR) [[UIBarButtonItem alloc] \
 initWithTitle:TITLE style:UIBarButtonItemStylePlain \
 target:self action:SELECTOR]

#define BARBUTTON_TARGET(TARGET, TITLE, SELECTOR) \
 [[UIBarButtonItem alloc] initWithTitle:TITLE \
 style:UIBarButtonItemStylePlain target:TARGET action:SELECTOR]

#define SYSBARBUTTON(ITEM, SELECTOR) [[UIBarButtonItem alloc] \
 initWithBarButtonSystemItem:ITEM target:self action:SELECTOR]

#define SYSBARBUTTON_TARGET(ITEM, TARGET, SELECTOR) \
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:ITEM \
 target:TARGET action:SELECTOR]

// Choose which items to enable and disable on the toolbar
- (void)loadAccessoryView
{
 NSMutableArray *items = [NSMutableArray array];

 BOOL canUndo = [textView.undoManager canUndo];
 UIBarButtonItem *undoItem = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemUndo, self, @selector(undo));
 undoItem.enabled = canUndo;
 [items addObject:undoItem];

 BOOL canRedo = [textView.undoManager canRedo];
 UIBarButtonItem *redoItem = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemRedo, self, @selector(redo));
 redoItem.enabled = canRedo;
 [items addObject:redoItem];

 // Add select all
 [items addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [items addObject:BARBUTTON_TARGET(textView, @"Sel", @selector(selectAll:))];

 // Add style buttons
 [items addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [items addObject:BARBUTTON_TARGET(textView,
 @"B", @selector(toggleBoldface:))];
 [items addObject:BARBUTTON_TARGET(textView,
 @"I", @selector(toggleItalics:))];
 [items addObject:BARBUTTON_TARGET(textView,
 @"U", @selector(toggleUnderline:))];

ptg12441863

252 Chapter 6 Text Entry

 [items addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace, nil)];
 [items addObject:BARBUTTON(@"Done", @selector(leaveKeyboardMode))];

 toolbar.items = items;
}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Text-Entry Filtering

You might sometimes want to ensure that a user enters only a certain subset of characters.
For example, you might want to create a numeric-only text field that does not handle letters.
Although you can use predicates to test the final entry against a regular expression (the
NSPredicate class’s MATCH operator supports regex values and is demonstrated in Recipe 6-10),
for filtered data, it’s easier to check each new character as it is typed against a legal set.

A UITextField delegate can catch those characters as they are typed and decide whether to add
each character to the active text field. The optional textField:shouldChangeCharacters-
InRange:replacementString: delegate method returns either YES , allowing the newly typed
character(s), or NO , disallowing it (or them). In practice, this works on a character-by-character
basis, being called after each user keyboard tap. However, with iOS’s pasteboard support, the
replacement string could theoretically be longer when text is pasted to a text field.

Recipe 6-9 looks for any disallowed characters within the new string. When it finds them,
it rejects the entry, leaving the text field unedited. It would entirely reject a paste of mixed
allowed and disallowed text.

This recipe considers four scenarios: text entry that is alphabetic only, numeric, numeric with
an allowed decimal point, and a mix of alphanumeric characters. You can adapt this example
to any set of legal characters you want.

The third entry type, numbers with a decimal point, uses a little trick to ensure that only one
decimal point gets typed. Once it finds a period character in the associated text field, it switches
the characters it accepts from a set with the period to a set without it. Users can sneak around
this by using paste. Even if you feel that it’s unlikely for users to do so, design against the
possibility. Disallow pasting by overriding your text field’s canPerformAction:withSender:
method to specifically exclude this action.

The following snippet ensures that users cannot paste into a text field. It returns NO when
queried about the paste: action. Similar guards offer selection (select and select all) when the
field has text to select (hasText). The cut and copy options mandate that the user selection
include a valid nonempty selection range:

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

253Recipe: Text-Entry Filtering

@interface LimitedTextField : UITextField
@end
@implementation LimitedTextField
- (BOOL)canPerformAction:(SEL)action withSender:(id)sender
{
 UITextRange *range = self.selectedTextRange;
 BOOL hasText = self.text.length > 0;

 if (action == @selector(cut:)) return !range.empty;
 if (action == @selector(copy:)) return !range.empty;
 if (action == @selector(select:)) return hasText;
 if (action == @selector(selectAll:)) return hasText;
 if (action == @selector(paste:)) return NO;

 return NO;
}
@end

The lesson is this: Never underestimate the user’s ability to thwart your design when you leave
openings to do so.

Recipe 6-9 Filtering User Text Entry

#define ALPHA @"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz "

@implementation TestBedViewController
- (BOOL)textField:(UITextField *)aTextField
 shouldChangeCharactersInRange:(NSRange)range
 replacementString:(NSString *)string

{
 NSMutableCharacterSet *cs =
 [NSMutableCharacterSet
 characterSetWithCharactersInString:@""];

 switch (segmentedControl.selectedSegmentIndex)
 {
 case 0:
 [cs addCharactersInString:ALPHA];
 break;
 case 1:
 [cs formUnionWithCharacterSet:
 [NSCharacterSet decimalDigitCharacterSet]];
 break;
 case 2:
 [cs formUnionWithCharacterSet:
 [NSCharacterSet decimalDigitCharacterSet]];

ptg12441863

254 Chapter 6 Text Entry

 // permit one decimal only
 if ([textField.text rangeOfString:@"."].location
 == NSNotFound)
 [cs addCharactersInString:@"."];
 break;
 case 3:
 [cs addCharactersInString:ALPHA];
 [cs formUnionWithCharacterSet:
 [NSCharacterSet decimalDigitCharacterSet]];
 break;
 default:
 break;
 }

 NSString *filtered =
 [[string componentsSeparatedByCharactersInSet:[cs invertedSet]]
 componentsJoinedByString:@""];
 BOOL basicTest = [string isEqualToString:filtered];
 return basicTest;

}

- (void)segmentChanged:(UISegmentedControl *)seg
{
 // Reset text on segment change
 textField.text = @"";

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 // Create a testbed text field to work with
 textField = [[UITextField alloc] init];
 textField.placeholder = @"Enter Text";
 [self.view addSubview:textField];

 PREPCONSTRAINTS(textField);
 CONSTRAIN(self.view, textField, @"V:|-30-[textField]");
 CONSTRAIN(self.view, textField, @"H:|-[textField(>=0)]-|");

 textField.delegate = self;
 textField.returnKeyType = UIReturnKeyDone;
 textField.clearButtonMode = UITextFieldViewModeAlways;
 textField.borderStyle = UITextBorderStyleRoundedRect;
 textField.autocorrectionType = UITextAutocorrectionTypeNo;

ptg12441863

255Recipe: Detecting Text Patterns

 // Add segmented control with entry options
 segmentedControl = [[UISegmentedControl alloc] initWithItems:
 [@"ABC 123 2.3 A2C" componentsSeparatedByString:@" "]];
 segmentedControl.selectedSegmentIndex = 0;
 [segmentedControl addTarget:self action:@selector(segmentChanged:)
 forControlEvents:UIControlEventValueChanged];
 self.navigationItem.titleView = segmentedControl;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Detecting Text Patterns

Recipe 6-9 introduces ways to limit users to entering legal characters. From there, it’s just a
short hop to matching user input against a variety of legal patterns. Consider a floating-point
number. It might be described as an optional sign followed by a whole component followed by
an optional decimal and then a fractional component. Or maybe the whole component should
be optional but the sign mandatory.

Unfortunately, there are many standard ways of describing things, and those ways increase
exponentially when you expand from simple numbers to phone numbers, e-mail addresses, and
URLs. Apple has taken care of many of these for you, with its built-in data detector classes, but
it often helps to know how to roll your own.

Rolling Your Own Expressions

Some standards organizations have published descriptions of exactly what makes up a legal
value. Enterprising developers have transformed many of those descriptions into fairly portable
regular expressions. Consider the following regular expression definition of a floating-point
number:

^[+-]?[0-9]+[\.]?[0-9]*$

It’s not a perfect definition, but for many purposes, it’s a pretty good one—and a flexible one
to boot. It accepts a pretty good range of floating-point numbers with optional signs at the
start. Admittedly, as presented, it won’t accept –.75, but it will also not accept –., which I think
offers a fair compromise because –0.75 isn’t too hard for the user to guess. Alternatively, you
could use a set of regular expression checks and accept any positive result that occurs out of

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

256 Chapter 6 Text Entry

that set—for example, adding in floating points that do not require a whole portion but do
require a decimal point to start, followed by one or more digits:

^[+-]?\.[0-9]+$

NSPredicate instances can compare NSString text to a regular expression, detecting when
users have entered a valid floating-point number. Here’s an example:

NSPredicate *fpPredicate = [NSPredicate predicateWithFormat:
 @"SELF MATCHES '^[+-]?[0-9]+[\\.]?[0-9]*$'"];

BOOL match = [fpPredicate evaluateWithObject:string];

It is, as already stated, a bit harder to detect phone numbers, e-mail addresses, and other more
sophisticated entry types. Here’s a naïve go at the phone number problem, using U.S. numbers,
in the form of a regular expression:

^[\(]?([2-9][0-9]{2})[\)]?[-.\.]?([2-9][0-9]{2})[-.\.]?([0-9]{4})$

This regular expression offers optional parentheses, although there is no way to check that they
balance; you could, however, accomplish that with some simple additional Objective-C coding.
This regular expression ensures that both the area code and the phone number prefix don’t
start with 0 or 1, and it allows the user to enter optional spacers between the numbers (a space,
a dash, or a period). In other words, for one line of description, it’s a pretty okay but not spec-
tacular definition of phone numbers.

Recipe 6-10 uses this regular expression to determine when a user has entered a phone number.
Upon receiving a positive match, it updates the navigation bar’s title to acknowledge success.
This recipe demonstrates how you can perform real-time filtering and pattern matching to
detect a particular pattern and provide a way to act on positive results.

Enumerating Regular Expressions

The NSRegularExpression class offers a block-based enumeration approach to finding
matches within a string. Use this approach to apply updates to given ranges. When you
work with attributed text, you can apply color or font hints to just the elements that match
the regex. This is similar to a text view’s spell checker, which adds underline to highlight
misspelled words.

To roll your own, create a regular expression. Enumerate it over a string (typically one found in
a text view of some sort) and use each range to create some kind of visual update. With attrib-
uted strings, it’s easier than ever to add visual feedback to text view contents:

// Check for matches
NSRegularExpression *regex = [NSRegularExpression
 regularExpressionWithPattern:@" REGEXHERE "
 options:NSRegularExpressionCaseInsensitive error:nil];

// Enumerate over a string
[regex enumerateMatchesInString:text options:0 range:fullRange

ptg12441863

257Recipe: Detecting Text Patterns

 usingBlock:^(NSTextCheckingResult *match,
 NSMatchingFlags flags, BOOL *stop){
 NSRange range = match.range;
 // Perform some action on the range

}];

Data Detectors

The NSDataDetector class is a subclass of NSRegularExpression . Data detectors allow you to
search for well-defined data types, including dates, addresses, URL links, phone numbers, and
transit information, using Apple’s fully tested algorithms instead of trying to create your own
regular expressions. Even better, they’re localized!

Take the same approach shown previously for enumerating regular expressions. This code
snippet searches for links (URLs) and phone numbers:

NSError *error = NULL;
NSDataDetector *detector = [NSDataDetector dataDetectorWithTypes:
 NSTextCheckingTypeLink|NSTextCheckingTypePhoneNumber
 error:&error];

// Enumerate over a string
[detector enumerateMatchesInString:text options:0 range:fullRange
 usingBlock:^(NSTextCheckingResult *match,
 NSMatchingFlags flags, BOOL *stop){
 NSRange range = match.range;
 // Perform some action on the range

}];

The checks are built around the NSTextCheckingResult class. This class describes items that
match the data detector’s content discovery. The kinds of data detectors supported by iOS
are going to grow over time. For now, they are limited to dates (NSTextCheckingTypeDate),
addresses (NSTextCheckingTypeAddress), links (NSTextCheckingTypeLink), phone
numbers (NSTextCheckingTypePhoneNumber), and transit info like flight information
(NSTextCheckingTypeTransitInformation). Hopefully, this list will expand to include
common stock symbols, UPS/FedEx shipping numbers, and other easily recognized patterns.

Using Built-in Type Detectors

UITextView s and UIWebView s offer built-in data type detectors, including phone numbers,
HTTP links, and so forth. Set the dataDetectorTypes property to allow the view to auto-
matically convert pattern matches into clickable URLs that are embedded into the view’s
text. Legal types include addresses, calendar events, links, and phone numbers. Use
UIDataDetectorTypeAll to match all supported types or use UIDataDetectorTypeNone to
disable pattern matching.

ptg12441863

258 Chapter 6 Text Entry

Useful Websites

When working with regular expressions, you may want to check out a number of handy
websites to assist with your work:

 ■ The Regular Expression Library (http://regexlib.com) site has indexed thousands of
regular expressions from contributors around the world.

 ■ Go to Regex Pal (http://regexpal.com) to test your regular expressions via an interactive
JavaScript tool.

 ■ Use the txt2re generator (http://txt2re.com) to build code that extracts elements from
source strings that you provide. It supports output in C as well as several other language
destinations.

Note

With Text Kit in iOS 7, an alternative approach to using the UITextField delegate used in
Recipes 6-9 and 6-10 is subclassing NSTextStorage and overriding the processEditing
method.

Recipe 6-10 Detecting Text Patterns Using Predicates and Regular Expressions

@implementation TestBedViewController
{
 UITextField *textField;
 UISegmentedControl *segmentedControl;

}

- (void)updateStatus:(NSString *)string
{
 // This is a predicate matching U.S. telephone numbers
 NSPredicate *telePredicate = [NSPredicate predicateWithFormat:
 @"SELF MATCHES \
 '^[\\(]?([2-9][0-9]{2})[\\)]?[-.\\.]?([2-9][0-9]{2})\
 [-.\\.]?([0-9]{4})$'"];
 BOOL match = [telePredicate evaluateWithObject:string];
 self.title = match ? @"Phone Number" : nil;

}

- (BOOL)textField:(UITextField *)aTextField
 shouldChangeCharactersInRange:(NSRange)range
 replacementString:(NSString *)string

{
 NSString *newString = [textField.text
 stringByReplacingCharactersInRange:range withString:string];

http://regexlib.com
http://regexpal.com
http://txt2re.com

ptg12441863

259Recipe: Detecting Text Patterns

 if (!string.length)
 {
 [self updateStatus:newString];
 return YES;
 }

 NSMutableCharacterSet *cs = [NSMutableCharacterSet
 characterSetWithCharactersInString:@""];
 [cs formUnionWithCharacterSet:
 [NSCharacterSet decimalDigitCharacterSet]];
 [cs addCharactersInString:@"()-. "];

 // Legal characters check
 NSString *filtered = [[string componentsSeparatedByCharactersInSet:
 [cs invertedSet]] componentsJoinedByString:@""];
 BOOL basicTest = [string isEqualToString:filtered];

 // Test for phone number
 [self updateStatus:basicTest ? newString : textField.text];

 return basicTest;
}

- (void)loadView
{
 self.view = [[UIView alloc] init];

 textField = [[UITextField alloc] initWithFrame:
 CGRectMake(0.0f, 0.0f, 300.0f, 30.0f)];
 textField.placeholder = @"Enter Phone Number";
 [self.view addSubview:textField];

 PREPCONSTRAINTS(textField);
 CONSTRAIN(self.view, textField, @"V:|-30-[textField]");
 CONSTRAIN(self.view, textField, @"H:|-[textField(>=0)]-|");

 textField.delegate = self;
 textField.returnKeyType = UIReturnKeyDone;
 textField.clearButtonMode = UITextFieldViewModeAlways;
 textField.borderStyle = UITextBorderStyleRoundedRect;
 textField.autocorrectionType = UITextAutocorrectionTypeNo;

}
@end

ptg12441863

260 Chapter 6 Text Entry

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Recipe: Detecting Misspelling in a UITextView

The UITextChecker class provides a way to automatically scan text for misspellings. To use
this class, you must first set the target language—for example, en for English, en_US for U.S.
English, or fr_CA for Canadian French. The language codes use a combination of ISO 639-1
and optional ISO 3166-1 regions. So, while you can choose to use a general English dictionary
(en), you can also differentiate between usage in the United States (en_US), Australia (en_AU),
and the United Kingdom (en_GB). Query UITextChecker for an array of available languages
from which to pick.

The UITextChecker class also allows you to learn new words (learnWord :) and forget words
(unlearnWord :) to customize the onboard dictionary to the user’s need. Learned words are
used across languages; so, when you add a person’s name, that name is available universally.
Checker objects can also set words to ignore using instance methods.

Recipe 6-11 demonstrates how to incorporate a text checker into your application by iteratively
selecting each misspelled word. To do this, you need to control range selection for the text
view. To select text in a UITextView , it must already be first responder. Check the responder
status and update the view if needed:

if (![textView isFirstResponder])
 [textView becomeFirstResponder];

Then calculate a range you want to select, making sure to take the content length into account,
and set the selectedRange property for the text view:

textView.selectedRange = NSMakeRange(offset, length);

Because a text view must be editable, as well as the first responder, the keyboard appears
onscreen while you perform any range selection. Because the user can edit any material you
have onscreen, code for cases in which user edits may disrupt your application.

Recipe 6-11 Searching for Misspellings

@implementation TestBedViewController

- (void)nextMisspelling:(id)sender
{
 if (![textView isFirstResponder])
 [textView becomeFirstResponder];

 NSRange entireRange = NSMakeRange(0, textView.text.length);

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

261Recipe: Detecting Misspelling in a UITextView

 // Scan for a new word from the current offset
 NSRange range = [textChecker
 rangeOfMisspelledWordInString:textView.text
 range:entireRange
 startingAt:textOffset
 wrap:YES language:@"en"];

 // Skip forward each time a new misspelling is found / select the word
 if (range.location != NSNotFound)
 {
 textOffset = range.location + range.length;
 textView.selectedRange = range;
 }
 else
 textOffset = 0;

}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 6 .

Spell Checker Protocol

Using UITextChecker , you can add a handy little protocol to NSString for checking the spell-
ing correctness of any string (see Listing 6-1).

Listing 6-1 Spell Checker Protocol

@implementation NSString (SpellCheck)
- (BOOL)isSpelledCorrectly
{
 UITextChecker *checker = [[UITextChecker alloc] init];
 NSRange checkRange = NSMakeRange(0, self.length);
 NSString *language = [[NSLocale currentLocale]
 objectForKey:NSLocaleLanguageCode];
 NSRange range = [checker rangeOfMisspelledWordInString:self
 range:checkRange startingAt:0 wrap:NO language:language];
 return (range.location == NSNotFound);

}
@end

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

262 Chapter 6 Text Entry

Searching for Text Strings

It takes little work to adapt Recipe 6-11 to search for text. To implement search, add a
text field to your navigation bar and change the bar button to Find. Use NSString ’s
rangeOfString:options:range: method to locate the desired string. Be careful: The string
you search for must not be nil . After finding the range of your target text (and assuming that
the location is not NSNotFound), you can scroll the text view to the right position by calling
scrollRangeToVisible :. Pass the range returned by the string method.

Note

NSNotFound is a constant used to indicate that a range was not successfully located. Check
the location field after a search to ensure that a valid value was set.

Summary

This chapter introduces many ways to creatively use text in your iOS applications. In this
chapter, you’ve read about controlling the keyboard and resizing views to accommodate text
entry. You’ve discovered how to create custom input views and how to filter text and test it for
valid entry. Before you leave this chapter, here are a few final thoughts to take away:

 ■ Don’t assume that your users will or will not be using Bluetooth keyboards. Test your
applications with hardware as well as software text entry.

 ■ Although accessory views provide a wonderful way to add extra functionality to your
text-input chores, don’t overdo the accessories. Keyboards on the iPhone and iPod touch
already cover an overwhelming portion of the screen. Adding accessory views further
diminishes user space. Where possible, go spartan and minimal in your accessory design.

 ■ Never assume that a user will use shake-to-undo, a feature of questionable value. Provide
undo/redo support directly in your application’s GUI, where the user can immediately
recognize what to do rather than have to recall that Apple added that obscure feature
and that it’s available for use. Shake-to-undo should always supplement other undo/redo
support, not replace it. Undo/redo buttons are a best-use scenario for accessory views.

 ■ Even though you might not be able to construct a perfect regular expression to test user
input, don’t discount regular expressions that are good enough to cover most cases. And
don’t forget that you can always use more than one regular expression in sequence to
test different approaches to the same problem.

 ■ Check out the new features offered in Text Kit. Text Kit is much more approachable than
Core Text and brings substantial functionality and flexibility to text rendering and text
input.

ptg12441863

7
Working with View

Controllers

View controllers simplify view management for many iOS applications. Each view control-
ler owns a hierarchy of views, which presents a complete element of a unified interface. View
controllers enable you to build applications that centralize many tasks, including orientation
changes and responding to user actions. This chapter looks at using view controller–based
classes and how to apply them to real-world situations for both iPhone/iPod and iPad design
scenarios.

View Controllers

As their name suggests, view controllers provide the controller component of iOS’s Model–View–
Controller design pattern. Each view controller manages a set of views that comprise a single
user-interface component within an application. View controllers coordinate view loading and
appearance as well as participate in responding to user interactions.

View controllers also harmonize with the device and underlying operating system. When a user
rotates the device, for example, the view controller may update its views’ layout. When the OS
encounters a low-memory scenario, controllers respond to memory warnings.

In short, view controllers provide central management. They negotiate with a range of orthogo-
nal development requirements sourced from views, models, iOS, and the device itself.

View controllers also centralize presentation metaphors. The ability to layer view controllers
in containers extends the paradigm to exciting custom designs. The most common styles of
system-supplied parent/child view controllers include navigation controllers that allow users to
move their attention from view to view, page view controllers that present virtual books, tab
controllers that offer pushbutton access to multiple child controllers, and split view controllers
that offer master-list/detail presentations.

ptg12441863

264 Chapter 7 Working with View Controllers

View controllers aren’t views. They are classes with no visual representation except through
the views they manage. View controllers help your views live in a larger application design
environment.

The iOS SDK offers many view controller classes. These classes range from general to specific.
Here’s a quick guide to a subset of the view controllers you’ll encounter while building your
iOS application interfaces.

The UIViewController Class

UIViewController is the parent class for view controllers and the one you use to manage
your primary views. It is the workhorse of view controllers. You may spend a large part of your
time customizing subclasses of this one class. The basic UIViewController class manages each
primary view’s lifetime from start to finish and takes into account the changes that the view
must react to along the way.

UIViewController instances are responsible for configuring how a view looks and what
subviews it displays. Often they rely on loading that information from XIB or storyboard files.
Instance methods let you manually create the view layout in code (loadView) or add behavior
after a view finishes loading (viewDidLoad).

Reacting to views being displayed or dismissed is another job that view controllers handle.
These are the realities of belonging to a larger application. Methods such as viewWillAppear:
and viewWillDisappear: let you finish any bookkeeping associated with your view manage-
ment. You might preload data in anticipation of being presented or clean up once a view will
no longer be shown onscreen.

Each of the tasks mentioned here specifies how a view fits into an enveloping application. The
UIViewController mediates between views and these external demands, allowing the view to
change itself to meet these needs.

Navigation Controllers

As the name suggests, navigation controllers allow you to drill up and down through tree-based
view hierarchies, which is an important primary interface design strategy on smaller members
of the iOS device family and a supporting one on tablets. Navigation controllers create the
translucent navigation bars that appear at the top of many standard iOS applications.

Navigation controllers let you push new views into place onto a stored stack and automatically
generate Back buttons that show the title of the calling view controller. All navigation
controllers use a “root” view controller to establish the top of their navigation tree, letting
those Back buttons lead you back to the primary view. On tablets, you can use a navigation
controller–based interface to work with bar button–based menu items, to present popover
presentations, or to integrate with UISplitViewController instances for a master/detail
presentation experience.

ptg12441863

265View Controllers

Handing off responsibility to a navigation controller lets you focus design work on creating
individual view controller screens. You don’t have to worry about specific navigation details
other than telling the navigation controller which view to move to next. The history stack and
the navigation buttons are handled for you.

Tab Bar Controllers

The UITabBarController class lets you control parallel presentations in your application.
These are like stations on a radio. A tab bar helps users select which view controller to “tune in
to,” without there being a specific navigation hierarchy. Each parallel world operates indepen-
dently, and each can have its own navigation hierarchy. You build the view controller or navi-
gation controller that inhabits each tab, and Cocoa Touch handles the multiple-view details.

For example, when tab bar instances offer more than a certain number of view controller
choices at a time (five on the iPhone family of devices, more on tablets), users can custom-
ize them through the More > Edit screen. The More > Edit screen lets users drag their favorite
controllers down to the button bar at the bottom of the screen. No extra programming
is involved. You gain editable tabs for free. All you have to do is request them via the
customizableViewControllers property.

Split View Controllers

Meant for use on tablet applications, the UISplitViewController class offers a way to encap-
sulate a persistent set of data (typically a table) and associate that data with a detail presenta-
tion. You can see split views in action in the iPad’s Mail application. When used in landscape
orientation, a list of messages appears on the left; individual message content appears on the
right. The detail view (the message content in Mail) on the right is subordinate to the master
view (Mail’s message list) on the left. Tapping a message updates the right-side view with its
contents.

In portrait orientation, the master view is normally hidden. It is accessed via a popover, which
is reached by tapping the left button of the split view’s top bar or via a swipe gesture (in iOS
5.1 and later).

Page View Controllers

Like navigation controllers, tab view controllers, and split view controllers, page view control-
lers are containers for other view controllers. They manage pages of content using either a
book-like page curling presentation or a scrolling style. When using the page curling style, you
set the book’s “spine,” typically along the left or top of the view. Build your “book” by adding
individual content view controllers. Each “page” transitions to the next using page curls or
pans.

ptg12441863

266 Chapter 7 Working with View Controllers

Popover Controllers

Specific to tablets, popover controllers create transient views that pop over other existing inter-
face content. These controllers present information without taking over the entire screen, the
way that modal views normally do. The popovers are usually invoked by tapping a bar button
item in the interface (although they can be created using other interaction techniques) and are
dismissed either by interacting with the content they present or by tapping outside their main
view.

Popovers are populated with view controller instances. Build the view controller and assign it
as the popover’s contentViewController property before presenting the popover. This allows
popovers to present any range of material that you can design into a standard view controller,
offering exceptional programming flexibility.

Note

Starting in iOS 5, you can subclass UINavigationBar and incorporate custom presentations
into your app’s navigation interfaces. Use the initWithNavigationBarClass:
toolbarClass: initialization method.

Developing with Navigation Controllers and Split Views

The UINavigationController class offers one of the most important ways of managing
interfaces on a device that has limited screen space. It creates a way for users to navigate up
and down a hierarchy of interface presentations to create a virtual GUI that’s far larger than
the device. Navigation controllers fold their GUIs into a neat tree-based scheme. Users travel
through that scheme using buttons and choices that transport them around the tree. You see
navigation controllers in the Contacts application and in Settings, where selections lead to new
screens and Back buttons move to previous ones.

Several standard GUI elements reveal the use of navigation controllers in applications, as
shown in Figure 7-1 (left). These include their large navigation bars that appear at the top of
each screen, the backward-pointing button at the top left that appears when the user drills
into hierarchies, and option buttons at the top right that offer other application functionality
such as editing. Many navigation controller applications are built around scrolling lists, where
elements in a list lead to new screens, indicated by the disclosure indicator (gray chevron) and
the detail disclosure button (encircled i) found on the right side of each table cell.

The iPad, with its large screen size, doesn’t require the kind of space-saving shortcuts that
navigation controllers leverage on iPhone-family devices. Tablet applications can use naviga-
tion controllers directly, but the UISplitViewController shown in Figure 7-1 (right) offers a
presentation that’s better suited for the more expansive device.

Notice the differences between the iPhone implementation on the left and the iPad implemen-
tation on the right of Figure 7-1 . The iPad’s split view controller contains no chevrons. When
items are tapped, their data appears on the same screen, using the large right-side detail area.

ptg12441863

267Developing with Navigation Controllers and Split Views

The iPhone, lacking this space, presents chevrons which indicate that new views will be pushed
onscreen. Each approach takes device-specific design into account in its presentation.

Figure 7-1 The iPhone’s navigation controller (left) uses gray chevrons to indicate that detail
views will be pushed onscreen when their parents are selected. On the iPad (right), split view
controllers use the entire screen, separating navigation elements from detail presentations.

Both the iPhone-family and iPad Inbox views use similar navigation controller elements. These
include the Back button (< iCloud), an options button (Edit), and the description in the title
bar (the current folder, Core iOS). Each element is created using the navigation controller API
to present a hierarchy of e-mail accounts and mailboxes.

The difference lies at the bottom of the navigation tree, at the level of individual messages that
form the leaves of the data structure. The iPhone-family standard uses chevrons to indicate
leaves. When selected, these leaf view controllers are pushed onto the navigation stack. They
join the other view’s controllers that trace a user’s progress through the interface. The iPad
doesn’t push its leaves. It presents them in a separate view and omits chevrons that otherwise
indicate that users have reached the extent of the hierarchy traversal.

iPhone-style navigation controllers play roles as well on the iPad. When iPad applications use
standard (iPhone-style) navigation controllers, they usually do so in narrow contexts such as
transient popover presentations, where the controller is presented onscreen in a small view
with a limited lifetime. Otherwise, iPad applications are encouraged to use the split view
approach that occupies the entire screen.

ptg12441863

268 Chapter 7 Working with View Controllers

Using Navigation Controllers and Stacks

Every navigation controller owns a root view controller. This controller forms the base of
its stack. You can programmatically push other controllers onto the stack as the user makes
choices while navigating through the model’s tree. Although the tree itself may be multidimen-
sional, the user’s path (essentially his history) is always a straight line representing the choices
already made to date. Moving to a new choice extends the navigation breadcrumb trail and
automatically builds a Back button each time a new view controller gets pushed onto the stack.

Users can tap a Back button to pop controllers off the stack. The name of each button is the
title of the most recent view controller. As you return through the stack of previous view
controllers, each Back button indicates the view controller that can be returned to. Users can
pop back until they reach the root. Then they can go no further. The root is the base of the
tree, and you cannot pop beyond that root.

This stack-based design lingers even when you plan to use just one view controller. You
might want to leverage the UINavigationController ’s built-in navigation bar to build
a simple utility that uses a two-button menu, for example. This would disregard any navi-
gational advantage of the stack. You still need to set that one controller as the root via
initWithRootViewController: .

Pushing and Popping View Controllers

Add new items onto the navigation stack by pushing a new controller with
pushViewController:animated: . Each view controller provides a navigationController
property. This property points to the navigation controller that this controller is participating
in. The property is nil if the controller is not pushed onto a navigation stack.

Use the navigationController property to push a new view controller onto the navigation
stack and call the push method on the navigation controller. When pushed, the new controller
slides onscreen from the right (assuming that you set animated to YES). A left-pointing Back
button appears, leading you one step back on the stack. The Back button uses a chevron along
with the title of the previous view controller on the navigation stack. Replace the chevron with
a custom image by setting the backIndicatorImage property. Always use caution when over-
riding Apple standard elements. Be sure to maintain the spirit of the Apple Human Interface
Guidelines (HIG).

You might push a new view for many reasons. Typically, these involve navigating to specialty
views such as detail views or drilling down a file structure or preferences hierarchy. You can
push controllers onto the navigation controller stack after your user taps a button, a table item,
or a disclosure accessory.

There’s little reason to ever subclass UINavigationController . Perform push requests
and navigation bar customization (such as setting up a bar’s title or buttons) inside
UIViewController subclasses. Customization gets passed up to the navigation controller
from the child controllers.

ptg12441863

269Developing with Navigation Controllers and Split Views

For the most part, you don’t access the navigation controller directly. The exceptions to this
rule include managing the navigation bar’s buttons, changing the bar’s look, and initializing
with a custom navigation bar class. You might change a bar style or its tint color by accessing
the navigationBar property directly, as follows:

self.navigationController.navigationBar.barStyle =
 UIBarStyleBlack;

Be aware that in iOS 7, Apple added barTintColor to tint the bar background instead of
tintColor . The tintColor property is repurposed to tint bar button items.

Bar Buttons

To add new buttons, you modify your navigationItem , which provides a representational
class that describes the content shown on the navigation bar, including its left and right bar
button items and its title view. Here’s how you can assign a button to the bar:

self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
 initWithTitle:@"Action" style:UIBarButtonItemStylePlain target:self
 action:@selector(performAction:)];

To remove a button, assign the item to nil . Bar button items are not views. They are classes
that contain titles, styles, and callback information that navigation items and toolbars use to
build actual buttons in to interfaces. iOS does not provide you with access to the button views
built by bar button items and their navigation items.

Starting in iOS 5, you can add multiple bar button items to the left and right. Assign an array
to the rightBarButtonItems (notice the s) or leftBarButtonItems properties for the naviga-
tion item:

self.navigationItem.rightBarButtonItems = barButtonArray;

Edge-to-Edge Layout

The design focus of iOS 7 is your application’s content—more specifically, your user’s content.
Borders and shadows have been removed and transparency has been added in navigation bars
and other UI elements. This change significantly impacts the layout of your views, especially
when you’re using a navigation bar.

Beginning with iOS 7, all view controllers use full-screen layout. The wantsFullScreenLayout
property on UIViewController has been deprecated, and setting it to NO will likely lead to
very unexpected layout. With full-screen layout, the view controller will size its view to fill the
entire screen, passing fully under the translucent system status bar. In addition, by default, all
bars in iOS 7 are now translucent to further reveal the underlying content.

The flowing of content under bars will shift your content in ways that are foreign in previous
versions. You must actively include the area underneath the status bar and your own bars in
your layout.

ptg12441863

270 Chapter 7 Working with View Controllers

To provide more control over placement, UIViewController now provides a number of new
layout properties. Manage status bar visibility at the view controller level by implementing
prefersStatusBarHidden in your subclasses and returning an appropriate Boolean. Many of
the new properties allow the positioning or sizing of views based on the currently displayed
bars.

For view controllers, you can now specify which edges of the view should be extended
under translucent bars by setting edgesForExtendedLayout . By default, this property is
UIRectEdgeAll —which means all your edges will extend through the translucent elements as
shown in Figure 7-2 (left). You can also specify any specific edge(s) or UIRectEdgeNone , stop-
ping the content view edge when it reaches the bar, as shown in Figure 7-2 (right). By default,
edgesForExtendedLayout also includes opaque bars. Set extendedLayoutIncludesOpaque-
Bars to NO to alter this behavior.

Figure 7-2 In iOS 7, edgesForExtendedLayout on UIViewController controls the edge of
the view used for layout. UIRectEdgeAll , the default, extends the edge through the translucent
bars (left). UIRectEdgeNone stops the edge at the extent of the bars (right).

Scroll views are also impacted by the system status bar and developer-implemented bars (navi-
gation bar, toolbar, and tab bar). By default, UIScrollView s automatically adjust their content
insets to handle these bar elements. To turn off this behavior and manually manage the scroll
view insets, set automaticallyAdjustsScrollViewInsets to NO .

Finally, to assist in laying out content within your views, iOS 7 provides the topLayoutGuide
and bottomLayoutGuide properties. These properties indicate the top and bottom bar edges in
your view controller’s view. The location represented depends on the visible bars.

For topLayoutGuide :

 ■ Status bar but no navigation bar visible—bottom of the status bar.

 ■ Navigation bar visible—bottom of the navigation bar.

 ■ No status or navigation bar visible—top of the screen.

For bottomLayoutGuide :

 ■ Toolbar or tab bar visible—top of the toolbar or tab bar.

 ■ No toolbar or tab bar visible—bottom of the screen.

ptg12441863

271Recipe: The Navigation Item Class

Use these properties to create relative constraints, positioning your subviews relative to the
bar edges regardless of the frame location or foreknowledge of bar visibility. Use them with
Auto Layout constraints both in Interface Builder (IB) or in your layout code. Outside of Auto
Layout, use guides in frame-based positioning. Reference the offset value in the guide’s length
property.

Recipe: The Navigation Item Class

The objects that populate the navigation bar are put into place using the UINavigationItem
class, which is a class that stores information about those objects. Navigation item properties
include the left and right bar button items, the title shown on the bar, the view used to show
the title, and any Back button used to navigate back from the current view.

This class enables you to attach buttons, text, and other UI objects in three key locations: the
left, the center, and the right of the navigation bar. Typically, this works out to be a regular
button on the right, some text (usually the UIViewController ’s title) in the middle, and
a Back-style button on the left. But you’re not limited to this layout. You can add custom
controls to any of three locations: the left, the center (title area), and the right. You might
build navigation bars with search fields in the middle instead, or segment controls, toolbars,
pictures, and more. Further, you can add multiple items to the left and right button arrays. It’s
all easy to modify.

Titles and Back Buttons

The central title area is especially customizable. You can assign a title to the navigation item
like this:

self.navigationItem.title = @"My Title"

This is equivalent to setting the view controller’s title property directly. The simplest way to
customize the actual title is to use the title property of the child view controller rather than
the navigation item:

self.title = @"Hello";

When assigned, the navigation controller uses the title to establish the Back button’s “go back”
text. If you push a new controller on top of a controller titled "Hello" , the Back button indi-
cates that it links to "Hello" .

You could also replace the text-based title with a custom view such as a control. This code adds
a custom segmented control, but this could be an image view, a stepper, or anything else:

self.navigationItem.titleView =
 [[UISegmentedControl alloc] initWithItems:items];

ptg12441863

272 Chapter 7 Working with View Controllers

Macros

Macros simplify your work when building bar buttons because the creation task is so repetitive.
The following macro creates a basic button item:

#define BARBUTTON(TITLE, SELECTOR) [[UIBarButtonItem alloc] \
 initWithTitle:TITLE style:UIBarButtonItemStylePlain \
 target:self action:SELECTOR]

You supply it with a title and a selector to call. Each call to this macro specifies only the title
and selector, tightening up the code’s readability:

self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Push", @selector(push:));

This version of the macro assumes that the target is "self" , which is quite common, although
you could easily adapt this. The following macro adds a target that you specify:

#define BARBUTTON_TARGET(TITLE, TARGET, SELECTOR) \
 [[UIBarButtonItem alloc] initWithTitle:TITLE \
 style:UIBarButtonItemStylePlain target:TARGET action:SELECTOR]

The vocabulary of bar buttons you use varies by your particular application demands. It’s
easy to create macros for system items provided by Apple, image items created from picture
resources, and custom view items, which can embed controls and other non-bar button
elements.

Recipe 7-1 combines these features to demonstrate how controller titles and navigation items
build together during drilling. It offers a super-simple interface: You select the title for the next
item you want to push onto the navigation stack, and then you push it on. This allows you to
see how the navigation controller stack grows using default behavior.

Recipe 7-1 Basic Navigation Drilling

// Array of strings
- (NSArray *)fooBarArray
{
 return [@"Foo*Bar*Baz*Qux" componentsSeparatedByString:@"*"];

}

// Push a new controller onto the stack
- (void)push:(id)sender
{
 NSString *newTitle =
 [self fooBarArray][seg.selectedSegmentIndex];

 UIViewController *newController =
 [[TestBedViewController alloc] init];
 newController.edgesForExtendedLayout = UIRectEdgeNone;

ptg12441863

273Recipe: Modal Presentation

 newController.title = newTitle;

 [self.navigationController
 pushViewController:newController animated:YES];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 // Establish a button to push new controllers
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Push", @selector(push:));

 // Create a segmented control to pick the next title
 seg = [[UISegmentedControl alloc] initWithItems:
 [self fooBarArray]];
 seg.selectedSegmentIndex = 0;
 [self.view addSubview:seg];
 PREPCONSTRAINTS(seg);

 UILabel *label =
 [self labelWithTitle:@"Select Title for Pushed Controller"];
 [self.view addSubview:label];
 PREPCONSTRAINTS(label);

 id topLayoutGuide = self.topLayoutGuide;
 CONSTRAIN(self.view, label, @"H:|-[label(>=0)]-|");
 CONSTRAIN(self.view, seg, @"H:|-[seg(>=0)]-|");
 CONSTRAIN_VIEWS(self.view,
 @"V:[topLayoutGuide]-[label]-[seg]",
 NSDictionaryOfVariableBindings(seg, label, topLayoutGuide));

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Recipe: Modal Presentation

With normal navigation controllers, you push your way along views, stopping occasionally to
pop back to previous views. That approach assumes that you’re drilling your way up and down

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

274 Chapter 7 Working with View Controllers

a set of data that matches the tree-based view structure you’re using. Modal presentation offers
another way to show a view controller.

After you send the presentViewController:animated:completion: message to a view
controller, the specified view controller appears on the screen and takes control until it’s
dismissed with dismissViewControllerAnimated:completion: . This enables you to add
special-purpose dialogs to your applications that go beyond alert views.

Typically, modal controllers prompt users to pick data such as contacts from Contacts or
photos from Photos or perform a short-lived task such as sending e-mail or setting preferences.
Use modal controllers in any setting where it makes sense to perform a limited-time task that
lies outside the normal scope of the active view controller.

Modal presentations can use four transition styles:

 ■ Slide — This transition style slides a new view over the old.

 ■ Flip — This transition style turns a view over to the “back” of the presentation.

 ■ Fade — This transition style dissolves the new view into visibility.

 ■ Curl — This transition style makes the primary view curl up out of the way to reveal the
new view beneath it.

Set these styles in the modalTransitionStyle property of the presented view controller. The
standard, UIModalTransitionStyleCoverVertical , slides the modal view up and over the
current view controller. When dismissed, it slides back down.

UIModalTransitionStyleFlipHorizontal performs a back-to-front flip from right to left. It
looks as if you’re revealing the back side of the currently presented view. When dismissed, it
flips back, left to right.

UIModalTransitionStyleCrossDissolve fades the new view in over the previous one. On
dismissal, it fades back to the original view.

Use UIModalTransitionStylePartialCurl to curl up content (in the way the Maps applica-
tion does) to reveal a modal settings view “underneath” the primary view controller.

On the iPhone and iPod touch, modal controllers always fully take over the screen. The
iPad offers more nuanced presentations. The iPad offers five presentation styles set by the
modalPresentationStyle property:

 ■ Full screen — A full-screen presentation (UIModalPresentationFullScreen) is the
default on the iPhone, where the new modal view completely covers both the screen and
any existing content. This is the only presentation style that is legal for curls; any other
presentation style raises a runtime exception, crashing the application.

 ■ Page sheet — In the page sheet style (UIModalPresentationPageSheet), coverage
defaults to a portrait aspect ratio, so the modal view controller completely covers the
screen in portrait mode and partially covers the screen in landscape mode, as if a portrait-
aligned piece of paper were added to the display.

ptg12441863

275Recipe: Modal Presentation

 ■ Form sheet — The form sheet style (UIModalPresentationFormSheet) display covers
a small center portion of the screen, allowing you to shift focus to the modal element
while retaining the maximum visibility of the primary application view.

 ■ Current context — This is the presentation style of the view’s parent view controller
(UIModalPresentationCurrentContext).

 ■ Custom — This custom presentation style (UIModalPresentationCustom), managed by
the Custom Transitions API, was added in iOS 7.

These styles are best experienced in landscape mode to visually differentiate the page-sheet
presentation from the full-screen one.

Note

iOS 7 introduces a model for creating custom transitions between view controllers to augment
those provided by the system. Custom transitions provide nearly unlimited flexibility in creating
creative transitions that can be used nearly anywhere that view controllers currently transition,
including modal presentation and navigation controller stack changes.

Presenting a Custom Modal Information View

Presenting a modal controller branches off from your primary navigation path, introducing
a new interface that takes charge until your user explicitly dismisses it. You present a modal
controller like this:

[self presentViewController:someControllerInstance animated:YES completion:nil];

The controller that is presented can be any kind of view controller subclass, as well. In the case
of a navigation controller, the modal presentation can have its own navigation hierarchy built
as a chain of interactions. Use the completion block to finish up any tasks you need to perform
after the view controller has animated into place.

Always provide a Done option of some kind to allow users to dismiss the controller. The easiest
way to accomplish this is to present a navigation controller and add a bar button to its naviga-
tion items with an action:

- (IBAction)done:(id)sender
{
 [self dismissViewControllerAnimated:YES completion:nil];

}

Storyboards simplify the creation of modal controller elements. Drag in a navigation controller
instance, along with its paired view controller, and add a Done button to the provided navi-
gation bar. Set the view controller’s class to your custom modal type and connect the Done

ptg12441863

276 Chapter 7 Working with View Controllers

button to the done: method. Name your navigation controller in the Attributes inspector so
that you can use that identifier to load it.

You can either add the modal components to your primary storyboard or create them in a sepa-
rate file. Recipe 7-2 loads a custom file (Modal~ DeviceType .storyboard), but you can just as
easily add the elements in your MainStoryboard_ DeviceType file.

Recipe 7-2 provides the key pieces for creating modal elements. The presentation is performed
in the application’s main view controller hierarchy. Here, users select the transition and presen-
tation styles from segmented controls, but these are normally chosen in advance by the devel-
oper and set in code or in IB. This recipe offers a toolbox that you can test on each platform,
using each orientation to explore how each option looks.

Note

As of the initial iOS 7 release, a well-reported issue exists in the full-screen flip transition pre-
sented in Recipe 7-2 . The navigation bar contents drop abruptly into position at the end of the
animation. Hopefully, this issue will be resolved in a future iOS release.

Recipe 7-2 Presenting and Dismissing a Modal Controller

// Presenting the controller
- (void)action:(id)sender
{
 // Load info controller from storyboard
 UIStoryboard *storyBoard = [UIStoryboard
 storyboardWithName:
 (IS_IPAD ? @"Modal~iPad" : @"Modal~iPhone")
 bundle:[NSBundle mainBundle]];
 UINavigationController *navController =
 [storyBoard instantiateViewControllerWithIdentifier:
 @"infoNavigationController"];

 // Select the transition style
 int styleSegment =
 [segmentedControl selectedSegmentIndex];
 int transitionStyles[4] = {
 UIModalTransitionStyleCoverVertical,
 UIModalTransitionStyleCrossDissolve,
 UIModalTransitionStyleFlipHorizontal,
 UIModalTransitionStylePartialCurl};
 navController.modalTransitionStyle =
 transitionStyles[styleSegment];

 // Select the presentation style for iPad only
 if (IS_IPAD)
 {

ptg12441863

277Recipe: Modal Presentation

 int presentationSegment =
 [iPadStyleControl selectedSegmentIndex];
 int presentationStyles[3] = {
 UIModalPresentationFullScreen,
 UIModalPresentationPageSheet,
 UIModalPresentationFormSheet};

 if (navController.modalTransitionStyle ==
 UIModalTransitionStylePartialCurl)
 {
 // Partial curl with any non-full-screen presentation
 // raises an exception
 navController.modalPresentationStyle =
 UIModalPresentationFullScreen;
 [iPadStyleControl setSelectedSegmentIndex:0];
 }
 else
 navController.modalPresentationStyle =
 presentationStyles[presentationSegment];
 }

 [self.navigationController presentViewController:navController
 animated:YES completion:nil];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Action", @selector(action:));

 segmentedControl =
 [[UISegmentedControl alloc] initWithItems:
 [@"Slide Fade Flip Curl"
 componentsSeparatedByString:@" "]];
 [segmentedControl setSelectedSegmentIndex:0];
 self.navigationItem.titleView = segmentedControl;

 if (IS_IPAD)
 {
 NSArray *presentationChoices =
 [NSArray arrayWithObjects:@"Full Screen",
 @"Page Sheet", @"Form Sheet", nil];
 iPadStyleControl =
 [[UISegmentedControl alloc] initWithItems:
 presentationChoices];

ptg12441863

278 Chapter 7 Working with View Controllers

 [iPadStyleControl setSelectedSegmentIndex:0];
 [self.view addSubview:iPadStyleControl];
 PREPCONSTRAINTS(iPadStyleControl);
 CENTER_VIEW_H(self.view, iPadStyleControl);
 id topLayoutGuide = self.topLayoutGuide;
 CONSTRAIN_VIEWS(self.view,
 @"V:[topLayoutGuide]-[iPadStyleControl]",
 NSDictionaryOfVariableBindings(topLayoutGuide,
 iPadStyleControl));
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Recipe: Building Split View Controllers

Using split view controllers is the preferred way to present hierarchically driven navigation
on the iPad. Such a controller generally consists of a table of contents on the left and a detail
view on the right, although the class (and Apple’s guidelines) is not limited to this presenta-
tion style. The heart of the class consists of the notion of an organizing section (master) and a
presentation section (detail), both of which can appear onscreen simultaneously in landscape
orientation, and whose organizing section optionally converts to a popover in portrait orienta-
tion. (You can override this default behavior by implementing splitViewController:
shouldHideViewController:inOrientation: in your delegate, letting your split view show
both sections in portrait mode.)

Figure 7-3 shows the very basic split view controller built by Recipe 7-3 in landscape (left) and
portrait (right) orientations. This controller sets the color of the detail view by selecting an
item from the list in the root view. In landscape, both views are shown at once. In portrait
orientation, the user must tap the upper-left button on the detail view to access the root view
as a popover or use an optional swipe gesture. When programming for this orientation, be
aware that the popover can interfere with detail view, as it is presented over that view; design
accordingly.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

279Recipe: Building Split View Controllers

Figure 7-3 At their simplest, split view controllers consist of an organizing pane and a detail
view pane. The organizing pane, which you see in this figure, is normally hidden in portrait
orientation (right). Users view it via a popover accessed from a navigation bar button or invoke it
with a swipe gesture.

The code in Recipe 7-3 builds three separate objects: the master and detail view controllers and
the split view controller that owns the first two. The split view controller always contains two
children, the master at index 0 and the detail at index 1.

You’ll want to add the master and detail controllers to navigation controller shells, to provide a
consistent interface. In the case of the detail controller, this provides a home for the bar button
in portrait orientation. The following method builds the two child view controllers, embeds
them into navigation controllers, adds them to a view controller array, and returns a new split
view controller that hosts those views:

- (UISplitViewController *)splitViewController
{
 // Create the navigation-embedded root (master) view
 ColorTableViewController *rootVC =
 [[ColorTableViewController alloc] init];
 rootVC.title = @"Colors"; // make sure to set the title
 UINavigationController *rootNav =
 [[UINavigationController alloc]
 initWithRootViewController:rootVC];

 // Create the navigation-run detail view
 DetailViewController *detailVC =
 [DetailViewController controller];
 UINavigationController *detailNav =

ptg12441863

280 Chapter 7 Working with View Controllers

 [[UINavigationController alloc]
 initWithRootViewController:detailVC];

 // Add both to the split view controller
 UISplitViewController *svc =
 [[UISplitViewController alloc] init];
 svc.viewControllers = @[rootNav, detailNav];
 svc.delegate = detailVC;

 return svc;
}

The master view controller is often some kind of table view controller, as is the one in Recipe
7-3 . What you see here is pretty much as bare bones as tables get. It is a list of color items
(specifically, UIColor method names), each one with a cell title that is tinted to match that
color.

When an item is selected, the controller uses its built-in splitViewController property to
send a request to its detail view. This property returns the split view controller that owns the
root view. From there, the controller can retrieve the split view’s delegate , which has been
assigned to the detail view. By casting that delegate to the detail view controller’s class, the
root view can affect the detail view more meaningfully. In this extremely simple example, the
selected cell’s text tint is applied to the detail view’s background color.

Note

Make sure you set the root view controller’s title property. It is used to set the text for the
button that appears in the detail view in portrait mode.

Recipe 7-3 ’s DetailViewController class is about as skeletal an implementation as you can
get. It provides the most basic functionality you need to provide a detail view implementation
with split view controllers. This consists of the will-hide/will-show method pair that adds and
hides that all-important bar button for the detail view.

When the split view controller converts the master view controller into a popover controller
in portrait orientation, it passes that new controller to the detail view controller. It is the detail
controller’s job to retain and handle that popover until the interface returns to landscape orien-
tation. In this skeletal class definition, a strong property holds onto the popover for the dura-
tion of portrait interaction.

Recipe 7-3 Building Detail and Master Views for a Split View Controller

@interface DetailViewController : UIViewController
 <UIPopoverControllerDelegate, UISplitViewControllerDelegate>

@property (nonatomic, strong)
 UIPopoverController *popoverController;

@end

ptg12441863

281Recipe: Building Split View Controllers

@implementation DetailViewController
+ (instancetype)controller
{
 DetailViewController *controller =
 [[DetailViewController alloc] init];
 controller.view.backgroundColor = [UIColor blackColor];
 return controller;

}

// Called upon going into portrait mode, hiding the normal table view
- (void)splitViewController:(UISplitViewController*)svc
 willHideViewController:(UIViewController *)aViewController
 withBarButtonItem:(UIBarButtonItem*)barButtonItem
 forPopoverController:(UIPopoverController*)aPopoverController

{
 barButtonItem.title = aViewController.title;
 self.navigationItem.leftBarButtonItem = barButtonItem;
 self.popoverController = aPopoverController;

}

// Called upon going into landscape mode
- (void)splitViewController:(UISplitViewController*)svc
 willShowViewController:(UIViewController *)aViewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem

{
 self.navigationItem.leftBarButtonItem = nil;
 self.popoverController = nil;

}

// Use this to avoid the popover hiding in portrait.
// When omitted, you get the default behavior.
/* - (BOOL)splitViewController:(UISplitViewController *)svc
 shouldHideViewController:(UIViewController *)vc
 inOrientation:(UIInterfaceOrientation)orientation

{
 return NO;

}*/
@end

@interface ColorTableViewController : UITableViewController
@end

@implementation ColorTableViewController
+ (instancetype)controller
{
 ColorTableViewController *controller =

ptg12441863

282 Chapter 7 Working with View Controllers

 [[ColorTableViewController alloc] init];
 controller.title = @"Colors";
 return controller;

}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;

}

- (NSArray *)selectors
{
 return @[@"blackColor", @"redColor", @"greenColor", @"blueColor",
 @"cyanColor", @"yellowColor", @"magentaColor", @"orangeColor",
 @"purpleColor", @"brownColor"];

}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

{
 return [self selectors].count;

}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"generic"];
 if (!cell) cell = [[UITableViewCell alloc]
 initWithStyle: UITableViewCellStyleDefault
 reuseIdentifier:@"generic"];

 // Set title and color
 NSString *item = [self selectors][indexPath.row];
 cell.textLabel.text = item;
 cell.textLabel.textColor =
 [UIColor performSelector:NSSelectorFromString(item)
 withObject:nil];

 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 // On selection, update the main view background color
 UINavigationController *nav =

ptg12441863

283Recipe: Creating Universal Split View/Navigation Apps

 [self.splitViewController.viewControllers lastObject];
 UIViewController *controller = [nav topViewController];
 UITableViewCell *cell = [tableView cellForRowAtIndexPath:indexPath];
 controller.view.backgroundColor = cell.textLabel.textColor;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Recipe: Creating Universal Split View/Navigation Apps

Recipe 7-4 modifies Recipe 7-3 ’s split view controller to provide a functionally equivalent appli-
cation that runs properly on both iPhone and iPad platforms. Accomplishing this takes several
steps that add to Recipe 7-3 ’s code base. You do not have to remove functionality from the split
view controller approach, but you must provide alternatives in several places.

Recipe 7-4 uses a macro to determine whether the code is being run on an iPad- or iPhone-style
device. It leverages the UIKit user interface idiom as follows:

#define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

This macro returns YES when the device characteristics are iPad-like rather than iPhone-like
(such as on the iPhone or iPod touch). First introduced in iOS 3.2, which introduced the iPad
as a new hardware platform, idioms allow you to perform runtime checks in your code to
provide interface choices that fit with the deployed platform.

In an iPhone deployment, the detail view controller code remains identical to Recipe 7-3 , but
to be displayed, it must be pushed onto the navigation stack rather than shown side by side in
a split view. The navigation controller is set up as the primary view for the application window
rather than the split view. A simple check at application launch lets your code choose which
approach to use:

- (UINavigationController *)navWithColorTableViewController
{
 ColorTableViewController *rootVC =
 [[ColorTableViewController alloc] init];
 rootVC.title = @"Colors";
 UINavigationController *nav = [[UINavigationController alloc]
 initWithRootViewController:rootVC];
 return nav;

}

- (BOOL)application:(UIApplication *)application

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

284 Chapter 7 Working with View Controllers

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 window = [[UIWindow alloc] initWithFrame:
 [[UIScreen mainScreen] bounds]];

 UIViewController * rootVC = nil;
 if (IS_IPAD)
 rootVC = [self splitViewController];
 else
 rootVC = [self navWithColorTableViewController];

 rootVC.edgesForExtendedLayout = UIRectEdgeNone;
 window.rootViewController = rootVC;
 [window makeKeyAndVisible];
 return YES;

}

The rest of the story lies in the two methods of Recipe 7-4 , within the color-picking table view
controller. Two key checks decide whether to show disclosure accessories and how to respond
to table taps:

 ■ On the iPad, disclosure indicators should never be used at the last level of detail
presentation. On the iPhone, they indicate that a new view will be pushed on selection.
Checking for deployment platform lets your code choose whether to include these
accessories in cells.

 ■ When you’re working with the iPhone, there’s no option for using split views, so your
code must push a new detail view onto the navigation controller stack. Compare this to
the iPad code, which only needs to reach out to an existing detail view and update its
background color.

In real-world deployment, these two checks would likely expand in complexity beyond the
details shown in this simple recipe. You’d want to add a check to your model to determine
whether you are, indeed, at the lowest level of the tree hierarchy before suppressing disclosure
accessories. Similarly, you might need to update or replace presentations in your detail view
controller.

Recipe 7-4 Adding Universal Support for Split View Alternatives

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"generic"];
 if (!cell) cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"generic"];

ptg12441863

285Recipe: Creating Universal Split View/Navigation Apps

 NSString *item = [self selectors][indexPath.row];
 cell.textLabel.text = item;
 cell.textLabel.textColor =
 [UIColor performSelector:NSSelectorFromString(item)
 withObject:nil];

 cell.accessoryType = IS_IPAD ?
 UITableViewCellAccessoryNone :
 UITableViewCellAccessoryDisclosureIndicator;

 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [tableView cellForRowAtIndexPath:indexPath];

 if (IS_IPAD)
 {
 UINavigationController *nav =
 [self.splitViewController.viewControllers lastObject];
 UIViewController *controller = [nav topViewController];
 controller.view.backgroundColor = cell.textLabel.textColor;
 }
 else
 {
 DetailViewController *controller =
 [DetailViewController controller];
 controller.view.backgroundColor = cell.textLabel.textColor;
 controller.title = cell.textLabel.text;

 [self.navigationController
 pushViewController:controller animated:YES];
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

286 Chapter 7 Working with View Controllers

Recipe: Tab Bars

On the iPhone and iPod touch, the UITabBarController class allows users to move between
multiple view controllers and to customize the bar at the bottom of the screen. This is best
seen in the music application. It offers one-tap access to different views and a More button that
leads to user selection and editing of the bottom bar. Tab bars are not recommended for use as
a primary design pattern on the iPad, although Apple supports their use when needed, espe-
cially in split views and popovers.

With tab bars, you don’t push views the way you do with navigation bars. Instead,
you assemble a collection of controllers (they can individually be UIViewController s,
UINavigationController s, or any other kind of view controllers) and add them to a tab bar
by setting the bar’s viewControllers property. Cocoa Touch does the rest of the work for you.
Set allowsCustomizing to YES to enable end-user reordering of the bar.

Recipe 7-5 creates 11 simple view controllers of the BrightnessController class. This class
sets the background to a specified gray level—in this case, from 0% to 100%, in steps of 10%.
Figure 7-4 (left) shows the interface in its default mode, with the first four items and a More
button displayed.

Users may reorder tabs by selecting the More option and then tapping Edit. This opens the
configuration panel shown in Figure 7-4 (right). These 11 view controllers offer options a user
can navigate through and select from. Note that the navigation bar in Figure 7-4 (right) has not
been converted to the standard flat UI appearance as of the iOS 7 release.

Note that the translucent navigation bar background tint is black throughout the entire inter-
face. Apple provides the UIAppearance protocol, which allows you to customize UI properties
for all instances of a given class. Recipe 7-5 uses this functionality to tint its navigation bar’s
background black:

[[UINavigationBar appearance] setBarTintColor:[UIColor blackColor]];

Note

Starting with iOS 7, tintColor no longer tints the background of bars, such as the navigation
bar. To tint the background, use the barTintColor property.

This recipe adds its 11 controllers twice. The first time it assigns them to the list of view
controllers available to the user:

tabBarController.viewControllers = controllers;

The second time it specifies that the user can select from the entire list when interactively
customizing the bottom tab bar:

tabBarController.customizableViewControllers = controllers;

ptg12441863

287Recipe: Tab Bars

Figure 7-4 Tab bar controllers allow users to pick view controllers from a bar at the bottom of
the screen (left) and customize the bar from a list of available view controllers (right).

The second line is optional; the first is mandatory. After setting up the view controllers, you
can add all or some to the customizable list. If you don’t, you still can see the extra view
controllers by tapping the More button, but users won’t be able to include them in the main
tab bar on demand.

Tab art appears inverted in color on the More screen. According to Apple, this is the expected
and proper behavior. Apple has no plans to change this. It does provide an interesting view
contrast when your 100% black swatch appears as pure white on that screen. In addition,
in iOS 7, the icon and text for items are now tinted with the inherited tintColor for the
application.

Recipe 7-5 Creating a Tab Bar View Controller

#pragma mark - BrightnessController
@interface BrightnessController : UIViewController
@end

@implementation BrightnessController
{
 int brightness;

ptg12441863

288 Chapter 7 Working with View Controllers

}

// Create a swatch for the tab icon using standard Quartz
// and UIKit image calls
- (UIImage*)buildSwatch:(int)aBrightness
{
 CGRect rect = CGRectMake(0.0f, 0.0f, 30.0f, 30.0f);
 UIGraphicsBeginImageContext(rect.size);
 UIBezierPath *path = [UIBezierPath
 bezierPathWithRoundedRect:rect cornerRadius:4.0f];
 [[[UIColor blackColor]
 colorWithAlphaComponent:(float) aBrightness / 10.0f] set];
 [path fill];

 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 return image;
}

// The view controller consists of a background color
// and a tab bar item icon
-(BrightnessController *)initWithBrightness:(int)aBrightness
{
 self = [super init];
 brightness = aBrightness;
 self.title = [NSString stringWithFormat:@"%d%%",
 brightness * 10];
 self.tabBarItem =
 [[UITabBarItem alloc] initWithTitle:self.title
 image:[self buildSwatch:brightness] tag:0];
 self.view.autoresizesSubviews = YES;
 self.view.autoresizingMask =
 UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;
 return self;

}

// Tint the background
- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor =
 [UIColor colorWithWhite:(brightness / 10.0f) alpha:1.0f];

}

+ (id)controllerWithBrightness:(int)brightness

ptg12441863

289Recipe: Tab Bars

{
 BrightnessController *controller =
 [[BrightnessController alloc]
 initWithBrightness:brightness];
 return controller;

}
@end

#pragma mark - Application Setup
@interface TestBedAppDelegate : NSObject
 <UIApplicationDelegate, UITabBarControllerDelegate>

@property (nonatomic, strong) UIWindow *window;
@end

@implementation TestBedAppDelegate
{
 UITabBarController *tabBarController;

}

- (void)applicationDidFinishLaunching:(UIApplication *)application
{
 // Globally use a black tint for nav bars
 [[UINavigationBar appearance]
 setBarTintColor:[UIColor blackColor]];

 // Build an array of controllers
 NSMutableArray *controllers = [NSMutableArray array];
 for (int i = 0; i <= 10; i++)
 {
 BrightnessController *controller =
 [BrightnessController controllerWithBrightness:i];
 UINavigationController *nav =
 [[UINavigationController alloc]
 initWithRootViewController:controller];
 nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;
 [controllers addObject:nav];
 }

 tabBarController = [[UITabBarController alloc] init];
 tabBarController.tabBar.barTintColor = [UIColor blackColor];
 tabBarController.tabBar.translucent = NO;
 tabBarController.viewControllers = controllers;
 tabBarController.customizableViewControllers = controllers;
 tabBarController.delegate = self;

 _window = [[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];

ptg12441863

290 Chapter 7 Working with View Controllers

 _window.tintColor = COOKBOOK_PURPLE_COLOR;
 tabBarController.edgesForExtendedLayout = UIRectEdgeNone;

 _window.rootViewController = tabBarController;
 [_window makeKeyAndVisible];
 return YES;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Remembering Tab State

On iOS, persistence is golden. When starting or resuming your application from termination
or interruption, always return users to a state that closely matches where they left off. This lets
your users continue whatever tasks they were involved with and provides a user interface that
matches the previous session. Listing 7-1 introduces an example of doing exactly that.

This update to Recipe 7-5 stores both the current tab order and the currently selected tab, and
it does so whenever those items are updated. When a user launches the application, the code
searches for previous settings and applies them if they are found.

To respond to updates, a tab bar delegate must declare the UITabBarControllerDelegate
protocol. The approach used here depends on two delegate methods. The first, tabBar-
Controller:didEndCustomizingViewControllers:changed: , provides the current array
of view controllers after the user has customized them with the More > Edit screen. This code
captures their titles (10%, 20%, and so on) and uses that information to relate a name to each
view controller.

The second delegate method is tabBarController:didSelectViewController: . The
tab bar controller calls this method each time a user selects a new tab. By capturing the
selectedIndex , this code stores the controller number relative to the current array.

In this example, these values are stored using iOS’s built-in user defaults system,
NSUserDefaults . This preferences system works very much like a large mutable
dictionary. Set values for keys by using setObject:forKey: , as shown here:

[[NSUserDefaults standardUserDefaults] setObject:titles
 forKey:@"tabOrder"];

Then retrieve them with objectForKey: , like so:

NSArray *titles = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"tabOrder"];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

291Remembering Tab State

Synchronizing your settings ensures that the stored defaults dictionary matches your changes:

[[NSUserDefaults standardUserDefaults] synchronize];

When the application launches, it checks for previous settings describing the last selected tab
order and selected tab. If it finds them, it uses these settings to set up the tabs and select a tab
to make active. Because the titles contain the information about what brightness value to show,
this code converts the stored title from text to a number and divides that number by 10 to send
to the initialization method.

Most applications aren’t based on such a simple numeric system. If you use titles to store your
tab bar order, make sure you name your view controllers meaningfully and in a way that lets
you match a view controller with the tab ordering.

Note

You could also store an array of the view tags as NSNumber s or, better yet, use the
NSKeyedArchiver class. Archiving lets you rebuild views using state information that you
store on termination. Another option is the state preservation system introduced in iOS 6.

Listing 7-1 Storing Tab State to User Defaults

@implementation TestBedAppDelegate
{
 UITabBarController *tabBarController;

}

- (void)tabBarController:(UITabBarController *)tabBarController
 didEndCustomizingViewControllers:(NSArray *)viewControllers
 changed:(BOOL)changed

{
 // Collect and store the view controller order
 NSMutableArray *titles = [NSMutableArray array];
 for (UIViewController *vc in viewControllers)
 [titles addObject:vc.title];

 [[NSUserDefaults standardUserDefaults] setObject:titles
 forKey:@"tabOrder"];
 [[NSUserDefaults standardUserDefaults] synchronize];

}

- (void)tabBarController:(UITabBarController *)controller
 didSelectViewController:(UIViewController *)viewController

{
 // Store the selected tab
 NSNumber *tabNumber =
 [NSNumber numberWithInt:[controller selectedIndex]];

ptg12441863

292 Chapter 7 Working with View Controllers

 [[NSUserDefaults standardUserDefaults]
 setObject:tabNumber forKey:@"selectedTab"];
 [[NSUserDefaults standardUserDefaults] synchronize];

}

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 // Globally use a black tint for nav bars
 [[UINavigationBar appearance]
 setBarTintColor:[UIColor blackColor]];

 NSMutableArray *controllers = [NSMutableArray array];
 NSArray *titles = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"tabOrder"];

 if (titles)
 {
 // titles retrieved from user defaults
 for (NSString *theTitle in titles)
 {
 BrightnessController *controller =
 [BrightnessController controllerWithBrightness:
 ([theTitle intValue] / 10)];
 UINavigationController *nav =
 [[UINavigationController alloc]
 initWithRootViewController:controller];

 nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;
 [controllers addObject:nav];
 }
 }
 else
 {
 // generate all new controllers
 for (int i = 0; i <= 10; i++)
 {
 BrightnessController *controller =
 [BrightnessController controllerWithBrightness:i];
 UINavigationController *nav =
 [[UINavigationController alloc]
 initWithRootViewController:controller];
 nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;
 [controllers addObject:nav];
 }
 }

ptg12441863

293Recipe: Page View Controllers

 tabBarController = [[UITabBarController alloc] init];
 tabBarController.tabBar.barTintColor = [UIColor blackColor];
 tabBarController.tabBar.translucent = NO;
 tabBarController.viewControllers = controllers;
 tabBarController.customizableViewControllers = controllers;
 tabBarController.delegate = self;

 // Restore any previously selected tab
 NSNumber *tabNumber = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"selectedTab"];
 if (tabNumber)
 tabBarController.selectedIndex = [tabNumber intValue];

 _window = [[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 _window.tintColor = COOKBOOK_PURPLE_COLOR;
 tabBarController.edgesForExtendedLayout = UIRectEdgeNone;

 _window.rootViewController = tabBarController;
 [_window makeKeyAndVisible];
 return YES;

}
@end

Recipe: Page View Controllers

The UIPageViewController class builds a book-like interface that uses individual view
controllers as its pages. Users swipe from one page to the next or tap the edges to move to
the next page or previous page. You can create a book-looking layout with pages, as shown in
Figure 7-5 (left), or use a flat scrolling presentation, as shown in Figure 7-5 (right). The scrolling
presentation offers an optional page indicator presentation, which is shown here at the bottom
of the view.

All of a controller’s pages can be laid out in a similar fashion, as in Figure 7-5 , or each page can
provide a unique user interaction experience. Apple precooked all the animation and gesture
handling into the class for you. You provide the content, implementing delegate and data
source callbacks.

ptg12441863

294 Chapter 7 Working with View Controllers

Figure 7-5 The UIPageViewController class creates virtual “books” from individual view
controllers. View your books in paged (left) or scrolling (right) presentations.

Book Properties

Your code customizes a page view controller’s look and behavior. Key properties specify how
many pages display simultaneously, the content used for the reverse side of each page, and
more. Here’s a rundown of those Apple-specified properties:

 ■ The transitionStyle property controls how one view controller
transitions to the next. At this writing, the only transition styles supported
by the page view controller are the page curl, as shown in Figure 7-5 (left),
UIPageViewControllerTransitionStylePageCurl , and the scrolling presentation,
UIPageViewControllerTransitionStyleScroll . This latter style was introduced in
iOS 6.

 ■ The controller’s doubleSided property determines whether content appears on both
sides of a page, as shown in Figure 7-5 (left), or just one side (right). Reserve the double-
sided presentation for side-by-side layout when showing two pages simultaneously. If you
don’t, you’ll end up making half your pages inaccessible. The controllers on the “back” of
the pages will never move into the primary viewing space. The book layout is controlled
by the book’s spine.

 ■ The spineLocation property can be set at the left or right, top or bottom, or center of
the page. The three spine constants are UIPageViewControllerSpineLocationMin ,
corresponding to top or left, UIPageViewControllerSpineLocationMax for the right
or bottom, and UIPageViewControllerSpineLocationMid for the center. The first
two of these produce single-page presentations; the last, with its middle spine, is used
for two-page layouts. Return one of these choices from the pageViewController:
spineLocationForInterfaceOrientation: delegate method, which is called whenever
the device reorients, to let the controller update its views to match the current device
orientation.

ptg12441863

295Recipe: Page View Controllers

 ■ Set the navigationOrientation property to specify whether the spine goes left/right or
top/bottom. Use either UIPageViewControllerNavigationOrientationHorizontal
(left/right) or UIPageViewControllerNavigationOrientationVertical (top/bottom).
For a vertical book, the pages flip up and down rather than employing the left and right
flips normally used.

Wrapping the Implementation

Like table views, a page view controller uses a delegate and data source to set the behavior and
contents of its presentation. Unlike with table views, it’s simplest to wrap these items into a
custom class to hide their details from applications. The code needed to support a page view
implementation is rather quirky—but highly reusable. A wrapper lets you turn your attention
away from fussy coding details to specific content-handling concerns.

In the standard implementation, the data source is responsible for providing page control-
lers on demand. It returns the next and previous view controllers in relationship to a given
one. The delegate handles reorientation events and animation callbacks, setting the page view
controller’s controller array, which always consists of either one or two controllers, depend-
ing on the view layout. As Recipe 7-6 demonstrates, it’s a bit of a mess to implement, but once
built, it’s something you really don’t need to spend much time coming back to.

Recipe 7-6 creates a BookController class. This class numbers each page, hiding the next/
previous implementation details and handling all reorientation events. A custom delegate
protocol (BookDelegate) becomes responsible for returning a controller for a given page
number when sent the viewControllerForPage: message. This simplifies implementation so
that the calling app has only to handle a single method, which it can do by building control-
lers by hand or by pulling them from a storyboard.

To use the class defined in Recipe 7-6 , you establish the controller, declare it as a child view
controller, and add its view as a subview. Adding BookController as a child view controller
ensures that it receives orientation and memory events. This type of view controller relation-
ship will be discussed in more detail in the next recipe. Finally, the initial page number is set.
Here’s what that code might look like:

- (void)viewDidLoad
{
 [super viewDidLoad];
 if (!bookController)
 bookController = [BookController bookWithDelegate:self
 style:BookLayoutStyleBook];
 bookController.view.frame = self.view.bounds;

 [self addChildViewController:bookController];
 [self.view addSubview:bookController.view];
 [bookController didMoveToParentViewController:self];

 [bookController moveToPage:0];
}

ptg12441863

296 Chapter 7 Working with View Controllers

The book controller creation convenience method also takes a second argument: a style. Recipe
7-6 allows developers to build four styles of books: a traditional book, a vertical book, and two
scrolling styles:

typedef enum
{
 BookLayoutStyleBook, // side by side in landscape
 BookLayoutStyleFlipBook, // side by side in portrait
 BookLayoutStyleHorizontalScroll,
 BookLayoutStyleVerticalScroll,

} BookLayoutStyle;

The standard book presents one page in portrait (spine vertical and to the left) and a side-by-
side presentation in landscape (spine vertical in the middle). This corresponds to a standard
Western-style book, with page movement going left to right.

The “flip”-style book uses a horizontal spine. In landscape mode, the spine is at the top, with
one page shown at a time. In portrait, that extends to two pages, with the horizontal spine in
the middle, halfway between top and bottom.

The two scroll layouts allow you to scroll horizontally and vertically through individual pages.
You cannot use multipage (side-by-side) layout with scrolling.

The tear-down process in viewWillDisappear allows the book controller to retire from its
superview:

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 [bookController willMoveToParentViewController:nil];
 [bookController.view removeFromSuperview];
 [bookController removeFromParentViewController];

}

Exploring the Recipe

Recipe 7-6 handles its delegate and data source duties by tagging each view controller’s view
with a page number. It uses this number to know exactly which page is presented at any time
and to delegate another class, BookDelegate , to produce a view controller by index.

The page controller itself always stores zero, one, or two pages in its view controller array.
Zero pages means the controller has not yet been properly set up. One page is used for spine
locations on the edge of the screen, two pages for a central spine. If the page count does not
exactly match the spine setup, you will encounter a rather nasty runtime crash.

The controllers presented in those pages are produced by the two data source methods, which
implement the before and after callbacks. In the page controller’s native implementation,
controllers are defined strictly by their relationship to each other, not by an index. This recipe

ptg12441863

297Recipe: Page View Controllers

replaces those relationships with a simple number, asking its delegate for the page at a given
index.

Here, given the orientation, the useSideBySide: method determines where to place the spine
and thus how many controllers show simultaneously. This implementation sets landscape as
side by side and portrait as one page. You may want to change this for your applications. For
example, you might use only one page on the iPhone, regardless of orientation, to enhance
text readability.

Recipe 7-6 allows both user- and application-based page control. Users can swipe and tap to
new pages, or the application can send a moveToPage: request. This allows you to add external
controls in addition to the page view controller’s gesture recognizers.

The direction that the page turns is set by comparing the new page number against the old.
This recipe uses a Western-style page turn, where higher numbers are to the right and pages flip
to the left. You may want to adjust this as needed for countries in the Middle East and Asia.

Recipe 7-6 continually stores the current page to system defaults, so it can be recovered when
the application is relaunched. It also notifies its delegate when the user has turned to a given
page.

Building a Presentation Index

Page view controllers’ scrolling layouts allow you to add an optional index
(utilizing a page control). Any book that uses the scrolling layout style
(UIPageViewControllerTransitionStyleScroll) can implement two data
source methods. iOS uses them to build the indicator at the bottom of the scrolling
book that you saw in Figure 7-5 (right).

As you can see from this snippet, the implementation since its inception is a bit wobbly:

- (NSInteger)presentationIndexForPageViewController:
 (UIPageViewController *)pageViewController

{
 // Slightly borked in iOS 6 & 7
 // return [self currentPage];
 return 0;

}

- (NSInteger)presentationCountForPageViewController:
 (UIPageViewController *)pageViewController

{
 if (bookDelegate &&
 [bookDelegate respondsToSelector:@selector(numberOfPages)])
 return [bookDelegate numberOfPages];

 return 0;
}

ptg12441863

298 Chapter 7 Working with View Controllers

Apple’s documentation states that presentationIndexForPageViewController should
return the index of the selected item. Unfortunately, this leads to madness (and crashes).
Returning 0 from the presentation index and the number of pages for the presentation count
produces the most stable indicator. The page count used here is deferred to the book’s delegate,
via an optional method called numberOfPages .

Note that you are not limited to a one-to-one correlation between your index and your page
count and current page number. For a large book, you can imagine dividing this number down
somewhat, so each page dot corresponds to 5 or 10 pages, showing progress through the book
without an exact page correspondence.

Note

Apple enables you to access a page view controller’s gesture recognizers to allow or disallow
touch-based page turns based on a touch’s location on a page. Don’t do it. First, this approach
is not valid for scroll-based controllers. Second, adding recognizer delegate methods tends to
mess up app stability.

Recipe 7-6 Creating a Page View Controller Wrapper

// Define a custom delegate protocol for this wrapper class
@protocol BookControllerDelegate <NSObject>
- (id)viewControllerForPage:(NSInteger)pageNumber;
@optional
- (NSInteger)numberOfPages; // for scrolling layouts
- (void)bookControllerDidTurnToPage:(NSNumber *)pageNumber;
@end

// A book controller wraps the page view controller
@interface BookController : UIPageViewController
 <UIPageViewControllerDelegate, UIPageViewControllerDataSource>

+ (instancetype)bookWithDelegate:
 (id<BookControllerDelegate>)theDelegate
 style:(BookLayoutStyle)aStyle;

- (void)moveToPage:(NSUInteger)requestedPage;
- (int)currentPage;

@property (nonatomic, weak)
 id <BookControllerDelegate> bookDelegate;

@property (nonatomic, assign) NSUInteger pageNumber;
@property (nonatomic) BookLayoutStyle layoutStyle;
@end

#pragma mark - Book Controller
@implementation BookController

ptg12441863

299Recipe: Page View Controllers

#pragma mark Utility
// Page controllers are numbered using tags
- (NSInteger)currentPage
{
 NSInteger pageCheck = ((UIViewController *)[self.viewControllers
 objectAtIndex:0]).view.tag;
 return pageCheck;

}

#pragma mark Presentation indices for page indicator (Data Source)
- (NSInteger)presentationIndexForPageViewController:
 (UIPageViewController *)pageViewController

{
 // Slightly borked in iOS 6 & 7
 // return [self currentPage];
 return 0;

}

- (NSInteger)presentationCountForPageViewController:
 (UIPageViewController *)pageViewController

{
 if (_bookDelegate && [_bookDelegate
 respondsToSelector:@selector(numberOfPages)])
 return [_bookDelegate numberOfPages];

 return 0;
}

#pragma mark Page Handling
// Update if you'd rather use some other decision strategy
- (BOOL)useSideBySide:(UIInterfaceOrientation)orientation
{
 BOOL isLandscape =
 UIInterfaceOrientationIsLandscape(orientation);

 // Each layout style determines whether side by side is used
 switch (_layoutStyle)
 {
 case BookLayoutStyleHorizontalScroll:
 case BookLayoutStyleVerticalScroll: return NO;
 case BookLayoutStyleFlipBook: return isLandscape;
 default: return isLandscape;
 }

}

// Update the current page, set defaults, call the delegate
- (void)updatePageTo:(NSUInteger)newPageNumber

ptg12441863

300 Chapter 7 Working with View Controllers

{
 _pageNumber = newPageNumber;

 [[NSUserDefaults standardUserDefaults]
 setInteger:_pageNumber forKey:DEFAULTS_BOOKPAGE];
 [[NSUserDefaults standardUserDefaults] synchronize];

 SAFE_PERFORM_WITH_ARG(bookDelegate,
 @selector(bookControllerDidTurnToPage:),
 @(_pageNumber));

}

// Request view controller from delegate
- (UIViewController *)controllerAtPage:(NSInteger)aPageNumber
{
 if (_bookDelegate && [_bookDelegate respondsToSelector:
 @selector(viewControllerForPage:)])
 {
 UIViewController *controller =
 [_bookDelegate viewControllerForPage:aPageNumber];
 controller.view.tag = aPageNumber;
 return controller;
 }
 return nil;

}

// Update interface to the given page
- (void)fetchControllersForPage:(NSUInteger)requestedPage
 orientation:(UIInterfaceOrientation)orientation

{
 BOOL sideBySide = [self useSideBySide:orientation];
 NSInteger numberOfPagesNeeded = sideBySide ? 2 : 1;
 NSInteger currentCount = self.viewControllers.count;

 NSUInteger leftPage = requestedPage;
 if (sideBySide && (leftPage % 2))
 leftPage = floor(leftPage / 2) * 2;

 // Only check against current page when count is appropriate
 if (currentCount && (currentCount == numberOfPagesNeeded))
 {
 if (_pageNumber == requestedPage) return;
 if (_pageNumber == leftPage) return;
 }

 // Decide the prevailing direction, check new page against the old
 UIPageViewControllerNavigationDirection direction =

ptg12441863

301Recipe: Page View Controllers

 (requestedPage > _pageNumber) ?
 UIPageViewControllerNavigationDirectionForward :
 UIPageViewControllerNavigationDirectionReverse;

 // Update the controllers, never adding a nil result
 NSMutableArray *pageControllers = [NSMutableArray array];
 SAFE_ADD(pageControllers, [self controllerAtPage:leftPage]);
 if (sideBySide)
 SAFE_ADD(pageControllers,
 [self controllerAtPage:leftPage + 1]);
 [self setViewControllers:pageControllers
 direction:direction animated:YES completion:nil];
 [self updatePageTo:leftPage];

}

// Entry point for external move request
- (void)moveToPage:(NSUInteger)requestedPage
{
 // Thanks Dino Lupo
 [self fetchControllersForPage:requestedPage
 orientation:(UIInterfaceOrientation)
 self.interfaceOrientation];

}

#pragma mark Data Source
- (UIViewController *)pageViewController:
 (UIPageViewController *)pageViewController
 viewControllerAfterViewController:
 (UIViewController *)viewController

{
 [self updatePageTo:_pageNumber + 1];
 return [self controllerAtPage:(viewController.view.tag + 1)];

}

- (UIViewController *)pageViewController:
 (UIPageViewController *)pageViewController
 viewControllerBeforeViewController:
 (UIViewController *)viewController

{
 [self updatePageTo:_pageNumber - 1];
 return [self controllerAtPage:(viewController.view.tag - 1)];

}

#pragma mark Delegate Method
- (UIPageViewControllerSpineLocation)pageViewController:
 (UIPageViewController *)pageViewController
 spineLocationForInterfaceOrientation:

ptg12441863

302 Chapter 7 Working with View Controllers

 (UIInterfaceOrientation)orientation
{
 // Always start with left or single page
 NSUInteger indexOfCurrentViewController = 0;
 if (self.viewControllers.count)
 indexOfCurrentViewController =
 ((UIViewController *)[self.viewControllers
 objectAtIndex:0]).view.tag;
 [self fetchControllersForPage:indexOfCurrentViewController
 orientation:orientation];

 // Decide whether to present side by side
 BOOL sideBySide = [self useSideBySide:orientation];
 self.doubleSided = sideBySide;

 UIPageViewControllerSpineLocation spineLocation = sideBySide ?
 UIPageViewControllerSpineLocationMid :
 UIPageViewControllerSpineLocationMin;
 return spineLocation;

}

// Return a new book controller
+ (instancetype)bookWithDelegate:(id)theDelegate
 style:(BookLayoutStyle)aStyle

{
 // Determine orientation
 UIPageViewControllerNavigationOrientation orientation =
 UIPageViewControllerNavigationOrientationHorizontal;
 if ((aStyle == BookLayoutStyleFlipBook) ||
 (aStyle == BookLayoutStyleVerticalScroll))
 orientation = UIPageViewControllerNavigationOrientationVertical;

 // Determine transitionStyle
 UIPageViewControllerTransitionStyle transitionStyle =
 UIPageViewControllerTransitionStylePageCurl;
 if ((aStyle == BookLayoutStyleHorizontalScroll) ||
 (aStyle == BookLayoutStyleVerticalScroll))
 transitionStyle = UIPageViewControllerTransitionStyleScroll;

 // Pass options as a dictionary. Keys are spine location (curl)
 // and spacing between vc's (scroll).
 BookController *bc = [[BookController alloc]
 initWithTransitionStyle:transitionStyle
 navigationOrientation:orientation
 options:nil];

ptg12441863

303Recipe: Custom Containers

 bc.layoutStyle = aStyle;
 bc.dataSource = bc;
 bc.delegate = bc;
 bc.bookDelegate = theDelegate;

 return bc;
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Recipe: Custom Containers

Apple’s split view controller was groundbreaking in that it introduced the notion that more
than one controller could live onscreen at a time. Until the split view, the rule was one control-
ler with many views at a time. With the split view, several controllers coexist onscreen, all of
them independently responding to orientation and memory events.

Apple exposed this multiple-controller paradigm to developers in the iOS 5 SDK, allowing
developers to design a parent controller and add child controllers to it. Events are passed from
parent to child as needed. This allows you to build custom containers, outside the Apple-
standard set of containers such as tab bar and navigation controllers.

Recipe 7-7 builds a reusable container that can hold either one or two children. When loaded
with two child view controllers, it lets you flip from one to the other and back. It has quite a
lot of conditionality built in. That’s because it can be used as a standalone view controller, as a
child view controller itself, and as a modal view controller. Imagine the following situations.

As with a navigation controller, you can create this flip view controller directly and set it as
your primary window’s root view controller. In that case, it has no further relationship with
any hierarchy. It merely manages its children. You can also use it as a child of some other
container, such as in a tab bar controller presentation, a split view controller, and so forth.
When used in that way, it acts as both a parent of its children and as a child of the container
that holds it. Finally, you can present the controller directly. The flip view container must
behave as a solid citizen in all these situations. The controller therefore has two tasks. First,
it must manage its children using standard UIKit calls. Second, it must be aware of how it
is participating in the view hierarchy. This recipe adds a navigation bar so a Done button
becomes available to end users.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

304 Chapter 7 Working with View Controllers

Adding and Removing a Child View Controller

In the simplest scenario, adding a child to a container controller takes three steps:

 1. Call addChildViewController: on the parent and pass the child as the argument (for
example, [self addChildViewController:childvc]).

 2. Add the child controller’s view as a subview (for example, [self.view
addSubview:childvc.view]).

 3. Call didMoveToParentViewController: on the child with the parent as its argument
(for example, [childvc didMoveToParentViewController:self]).

To remove a child view controller, the steps are almost (but not quite) mirrored:

 1. Call willMoveToParentViewController: on the child, passing nil as the argument
(for example, [childvc willMoveToParentViewController:nil]) .

 2. Remove the child controller’s view (for example, [childvc.view
removeFromSuperview]).

 3. Call removeFromParentViewController on the child (for example, [childvc
removeFromParentViewController]) .

Transitioning Between View Controllers

UIKit offers a simple way to animate view features when you move from one child view
controller to another. You provide a source view controller, a destination, and a duration for
the animated transition. You can specify the kind of transition in the options. Supported tran-
sitions include page curls, dissolves, and flips. This method creates a simple curl from one view
controller to the next:

- (void)action:(id)sender
{
 [redController willMoveToParentViewController:nil];
 [self addChildViewController:blueController];

 [self transitionFromViewController:redController
 toViewController:blueController
 duration:1.0f
 options:UIViewAnimationOptionLayoutSubviews |
 UIViewAnimationOptionTransitionCurlUp
 animations:^(void){}
 completion:^(BOOL finished){
 [redController.view removeFromSuperview];
 [self.view addSubview:blueController.view];

 [redController removeFromParentViewController];
 [blueController didMoveToParentViewController:self];

ptg12441863

305Recipe: Custom Containers

 }
];

}

You can use the same approach to animate UIView properties without the built-in transitions.
For example, this method re-centers and fades out the red controller while fading in the blue.
These are all animatable UIView features and are changed in the animations: block:

- (void)action:(id)sender
{
 [redController willMoveToParentViewController:nil];
 [self addChildViewController:blueController];

 blueController.view.alpha = 0.0f;
 [self transitionFromViewController:redController
 toViewController:blueController
 duration:2.0f
 options:UIViewAnimationOptionLayoutSubviews
 animations:^(void){
 redController.view.center = CGPointMake(0.0f, 0.0f);
 redController.view.alpha = 0.0f;
 blueController.view.alpha = 1.0f;
 }
 completion:^(BOOL finished){
 [redController.view removeFromSuperview];
 [self.view addSubview:blueController.view];

 [redController removeFromParentViewController];
 [blueController didMoveToParentViewController:self];
 }
];

}

Using transitions and view animations is an either/or scenario. Either set a transition option
or change view features in the animations block. Otherwise, they conflict, as you can easily
confirm for yourself. Use the completion block to remove the old view and move the new view
into place.

Although simple to implement, this kind of transition is not meant for use with Core
Animation. If you want to add Core Animation effects to your view-controller-to-view-
controller transitions, think about using a custom segue instead. Segues are covered in the
following recipe.

As mentioned in Recipe 7-2 , a third option is available for animating transitions between
UIViewController s in iOS 7: The custom transitions API allows you to create advanced anima-
tions that can even interact dynamically with the user.

ptg12441863

306 Chapter 7 Working with View Controllers

Recipe 7-7 Creating a View Controller Container

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
 if (!controllers.count)
 {
 NSLog(@"Error: No root view controller");
 return;
 }

 // Clean up the child view controller
 UIViewController *currentController =
 (UIViewController *)controllers[0];
 [currentController willMoveToParentViewController:nil];
 [currentController.view removeFromSuperview];
 [currentController removeFromParentViewController];

}

- (void)flip:(id)sender
{
 // Please call only with two controllers
 if (controllers.count < 2) return;

 // Determine which item is front, which is back
 UIViewController *front = (UIViewController *)controllers[0];
 UIViewController *back = (UIViewController *)controllers[1];

 // Select the transition direction
 UIViewAnimationOptions transition = reversedOrder ?
 UIViewAnimationOptionTransitionFlipFromLeft :
 UIViewAnimationOptionTransitionFlipFromRight;

 // Hide the info button until after the flip
 infoButton.alpha = 0.0f;

 // Prepare the front for removal, the back for adding
 [front willMoveToParentViewController:nil];
 [self addChildViewController:back];

 // Perform the transition
 [self transitionFromViewController: front
 toViewController:back duration:0.5f options:transition
 animations:nil completion:^(BOOL done){

 // Bring the Info button back into view
 [self.view bringSubviewToFront:infoButton];

ptg12441863

307Recipe: Custom Containers

 [UIView animateWithDuration:0.3f animations:^(){
 infoButton.alpha = 1.0f;
 }];

 // Finish up transition
 [front removeFromParentViewController];
 [back didMoveToParentViewController:self];

 reversedOrder = !reversedOrder;
 controllers = @[back, front];
 }];

}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 if (!controllers.count)
 {
 NSLog(@"Error: No root view controller");
 return;
 }

 UIViewController *front = controllers[0];
 UIViewController *back = nil;
 if (controllers.count > 1) back = controllers[1];

 [self addChildViewController:front];
 [self.view addSubview:front.view];
 [front didMoveToParentViewController:self];

 // Check for presentation and for "flippability"
 BOOL isPresented = self.isBeingPresented;

 // Clean up instance if re-use
 if (navbar || infoButton)
 {
 [navbar removeFromSuperview];
 [infoButton removeFromSuperview];
 navbar = nil;
 }

 // When presented, add a custom navigation bar.
 // iPhone navbar height must consider status bar.
 CGFloat navbarHeight = IS_IPHONE ? 64.0 : 44.0;
 if (isPresented)
 {
 navbar = [[UINavigationBar alloc] init];

ptg12441863

308 Chapter 7 Working with View Controllers

 [self.view addSubview:navbar];
 PREPCONSTRAINTS(navbar);
 ALIGN_VIEW_TOP(self.view, navbar);
 ALIGN_VIEW_LEFT(self.view, navbar);
 ALIGN_VIEW_RIGHT(self.view, navbar);
 CONSTRAIN_HEIGHT(navbar, navbarHeight);
 }

 // Right button is Done when VC is presented
 self.navigationItem.leftBarButtonItem = nil;
 self.navigationItem.rightBarButtonItem = isPresented ?
 SYSBARBUTTON(UIBarButtonSystemItemDone,
 @selector(done:)) : nil;

 // Populate the navigation bar
 if (navbar)
 [navbar setItems:@[self.navigationItem] animated:NO];

 // Size the child VC view(s)
 CGFloat verticalOffset =
 (navbar != nil) ? navbarHeight : 0.0f;
 CGRect destFrame = CGRectMake(0.0f, verticalOffset,
 self.view.frame.size.width,
 self.view.frame.size.height - verticalOffset);
 front.view.frame = destFrame;
 back.view.frame = destFrame;

 // Set up info button
 if (controllers.count < 2) return; // our work is done here

 // Create the "i" button
 infoButton = [UIButton buttonWithType:UIButtonTypeInfoLight];
 infoButton.tintColor = [UIColor whiteColor];
 [infoButton addTarget:self action:@selector(flip:)
 forControlEvents:UIControlEventTouchUpInside];

 // Place "i" button at bottom right of view
 [self.view addSubview:infoButton];
 PREPCONSTRAINTS(infoButton);
 ALIGN_VIEW_RIGHT_CONSTANT(self.view, infoButton,
 -infoButton.frame.size.width);
 ALIGN_VIEW_BOTTOM_CONSTANT(self.view, infoButton,
 -infoButton.frame.size.height);

}
@end

ptg12441863

309Recipe: Segues

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Recipe: Segues

When you use storyboards, IB provides a set of standard segues to transition between your view
controllers. With custom containers come their little brother, custom segues. Just as tab and
navigation controllers provide a distinct way of transitioning between child view controllers,
you can build custom segues that define transition animations unique to your class.

IB doesn’t provide a lot of support for custom containers with custom segues, so it’s best to
develop your segue presentations in code for now. Here’s how you might implement code to
move a view controller to a new view:

// Informal custom delegate method
- (void)segueDidComplete
{
 // Retrieve the two vc's
 UIViewController *source =
 [childControllers objectAtIndex:vcIndex];
 UIViewController *destination =
 [childControllers objectAtIndex:nextIndex];

 // Reparent as needed
 [destination didMoveToParentViewController:self];
 [source removeFromParentViewController];

 // Update the bookkeeping
 vcIndex = nextIndex;
 pageControl.currentPage = vcIndex;

}

// Transition to new view using custom segue
- (void)switchToView:(int)newIndex
 goingForward:(BOOL)goesForward

{
 if (vcIndex == newIndex) return;
 nextIndex = newIndex;

 // Segue to the new controller
 UIViewController *source =
 [childControllers objectAtIndex:vcIndex];
 UIViewController *destination =
 [childControllers objectAtIndex:newIndex];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

310 Chapter 7 Working with View Controllers

 // Start the reparenting process
 [source willMoveToParentViewController:nil];
 [self addChildViewController:destination];

 RotatingSegue *segue = [[RotatingSegue alloc]
 initWithIdentifier:@"segue"
 source:source destination:destination];
 segue.goesForward = goesForward;
 segue.delegate = self;
 [segue perform];

}

Here, the code identifies the source and destination child controllers, builds a segue, sets its
parameters, and tells it to perform. An informal delegate method is called back by that custom
segue on its completion. Recipe 7-8 shows how the segue is built. In this example, it creates
a rotating cube effect that moves from one view to the next. Figure 7-6 shows the segue in
action.

Figure 7-6 Custom segues allow you to create visual metaphors for your custom containers.
Recipe 7-8 builds a “cube” of view controllers that can be rotated from one to the next. The
switches on each controller update the art alpha value from translucent to solid and back.

ptg12441863

311Recipe: Segues

The segue’s goesForward property determines whether the rotation moves to the right or left
around the virtual cube. Although this example uses four view controllers, as you saw in the
code that laid out the child view controllers, that’s a limitation of the metaphor, not of the
code itself, which will work with any number of child controllers. You can just as easily build
three- or seven-sided presentations with this, although you are breaking an implicit “reality”
contract with your user if you do so. To add more (or fewer) sides, you should adjust the
animation geometry in the segue away from a cube to fit your virtual n -hedron.

Recipe 7-8 Creating a Custom View Controller Segue

@implementation RotatingSegue
{
 CALayer *transformationLayer;
 UIView __weak *hostView;

}

// Return a shot of the given view
- (UIImage *)screenShot:(UIView *)aView
{
 // Arbitrarily dims to 40%. Adjust as desired.
 UIGraphicsBeginImageContext(hostView.frame.size);
 [aView.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *image =
 UIGraphicsGetImageFromCurrentImageContext();
 CGContextSetRGBFillColor(UIGraphicsGetCurrentContext(),
 0, 0, 0, 0.4f);
 CGContextFillRect(UIGraphicsGetCurrentContext(),
 hostView.frame);
 UIGraphicsEndImageContext();
 return image;

}

// Return a layer with the view contents
- (CALayer *)createLayerFromView:(UIView *)aView
 transform:(CATransform3D)transform

{
 CALayer *imageLayer = [CALayer layer];
 imageLayer.anchorPoint = CGPointMake(1.0f, 1.0f);
 imageLayer.frame = (CGRect){.size = hostView.frame.size};
 imageLayer.transform = transform;
 UIImage *shot = [self screenShot:aView];
 imageLayer.contents = (__bridge id) shot.CGImage;

 return imageLayer;
}

ptg12441863

312 Chapter 7 Working with View Controllers

// On starting the animation, remove the source view
- (void)animationDidStart:(CAAnimation *)animation
{
 UIViewController *source =
 (UIViewController *) super.sourceViewController;
 [source.view removeFromSuperview];

}

// On completing the animation, add the destination view,
// remove the animation, and ping the delegate
- (void)animationDidStop:(CAAnimation *)animation
 finished:(BOOL)finished

{
 UIViewController *dest =
 (UIViewController *) super.destinationViewController;
 [hostView addSubview:dest.view];
 [transformationLayer removeFromSuperlayer];
 if (_delegate &&
 [_delegate respondsToSelector:
 @selector(segueDidComplete)])
 {
 [_delegate segueDidComplete];
 }

}

// Perform the animation
-(void)animateWithDuration:(CGFloat)aDuration
{
 CAAnimationGroup *group = [CAAnimationGroup animation];
 group.delegate = self;
 group.duration = aDuration;

 CGFloat halfWidth = hostView.frame.size.width / 2.0f;
 float multiplier = goesForward ? -1.0f : 1.0f;

 // Set the x, y, and z animations
 CABasicAnimation *translationX = [CABasicAnimation
 animationWithKeyPath:@"sublayerTransform.translation.x"];
 translationX.toValue =
 [NSNumber numberWithFloat:multiplier * halfWidth];

 CABasicAnimation *translationZ = [CABasicAnimation
 animationWithKeyPath:@"sublayerTransform.translation.z"];
 translationZ.toValue = [NSNumber numberWithFloat:-halfWidth];

 CABasicAnimation *rotationY = [CABasicAnimation
 animationWithKeyPath:@"sublayerTransform.rotation.y"];

ptg12441863

313Recipe: Segues

 rotationY.toValue =
 [NSNumber numberWithFloat: multiplier * M_PI_2];

 // Set the animation group
 group.animations = [NSArray arrayWithObjects:
 rotationY, translationX, translationZ, nil];
 group.fillMode = kCAFillModeForwards;
 group.removedOnCompletion = NO;

 // Perform the animation
 [CATransaction flush];
 [transformationLayer addAnimation:group forKey:kAnimationKey];

}

- (void)constructRotationLayer
{
 UIViewController *source =
 (UIViewController *) super.sourceViewController;
 UIViewController *dest =
 (UIViewController *) super.destinationViewController;
 hostView = source.view.superview;

 // Build a new layer for the transformation
 transformationLayer = [CALayer layer];
 transformationLayer.frame = hostView.bounds;
 transformationLayer.anchorPoint = CGPointMake(0.5f, 0.5f);
 CATransform3D sublayerTransform = CATransform3DIdentity;
 sublayerTransform.m34 = 1.0 / -1000;
 [transformationLayer setSublayerTransform:sublayerTransform];
 [hostView.layer addSublayer:transformationLayer];

 // Add the source view, which is in front
 CATransform3D transform = CATransform3DMakeIdentity;
 [transformationLayer addSublayer:
 [self createLayerFromView:source.view
 transform:transform]];

 // Prepare the destination view either to the right or left
 // at a 90/270 degree angle off the main
 transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);
 transform = CATransform3DTranslate(transform,
 hostView.frame.size.width, 0, 0);
 if (!goesForward)
 {
 transform =
 CATransform3DRotate(transform, M_PI_2, 0, 1, 0);
 transform =

ptg12441863

314 Chapter 7 Working with View Controllers

 CATransform3DTranslate(transform,
 hostView.frame.size.width, 0, 0);
 transform =
 CATransform3DRotate(transform, M_PI_2, 0, 1, 0);
 transform =
 CATransform3DTranslate(transform,
 hostView.frame.size.width, 0, 0);
 }
 [transformationLayer addSublayer:
 [self createLayerFromView:dest.view
 transform:transform]];

}

// Standard UIStoryboardSegue perform
- (void)perform
{
 [self constructRotationLayer];
 [self animateWithDuration:0.5f];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 7 .

Segues and IB

Starting in the iOS 6 SDK, you can apply custom segues in your storyboards. You’ll need to tie
those segues to some action item, such as a button or bar button press, or similar actionable
element. Figure 7-7 shows how custom segues are listed in IB. The “rotating” segue is from
Recipe 7-8 .

What’s more, segues can be “unwound.” Unwinding allows you to move back from a new view
controller to its logical parent, using a custom segue you provide. You achieve this by imple-
menting a few methods:

 ■ Specify whether you can unwind with canPerformUnwindSegueAction:
fromViewController:withSender:.

 ■ Return a view controller to viewControllerForUnwindSegueAction:
fromViewController:withSender: . This controller will be the unwinding destination.

 ■ Supply the required unwinding segue instance via segueForUnwindingToView-
Controller:fromViewController:identifier: . Typically, you’ll want your unwind
to animate in the reverse direction from your original segue.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

315Summary

Finally, you can now allow or disallow any segue by implementing shouldPerformSegue-
WithIdentifier:sender: . You return either YES or NO , depending on whether you want the
identified segue to proceed.

Figure 7-7 Storyboards allow you to apply custom segues in IB. IB scans for
UIStoryboardSegue child classes. Here, IB lists the custom “rotating” segue along with system-
supplied options.

Summary

This chapter shows many view controller classes in action. You’ve learned how to use them
to handle view presentation and user navigation for various device deployment choices. With
these classes, you have discovered how to expand virtual interaction space and create multipage
interfaces, as demanded by applications, while respecting the HIG on the platform in question.
Before moving on to the next chapter, here are a few points to consider about view controllers:

ptg12441863

316 Chapter 7 Working with View Controllers

 ■ Use navigation trees to build hierarchical interfaces. They work well for looking at file
structures or building a settings tree. When you think “disclosure view” or “preferences,”
consider pushing a new controller onto a navigation stack or using a split view to present
them directly.

 ■ Don’t be afraid to use conventional UI elements in unconventional ways, as long
as you respect the overall Apple HIG. You can apply innovative approaches for
UINavigationController that don’t involve any navigation. The tools are there for you
to use.

 ■ Be persistent. Let your users return to the same GUI state that they last left from.
NSUserDefaults provides a built-in system for storing information between application
runs. Use these defaults to re-create the prior interface state. The State Preservation and
Restoration API introduced in iOS 6 provides another path for persisting large portions of
your UI state.

 ■ Go universal. Let your code adapt itself for various device deployments rather than force
your app into an only-iPhone or only-iPad design. This chapter touches on some simple
runtime device detection and interface updates that you can easily expand for more
challenging circumstances. Universal deployment isn’t just about stretching views and
using alternate art and XIB files. It’s also about detecting when a device influences the
way you interact in addition to the look of the interface.

 ■ When working with custom containers, don’t be afraid of using storyboards directly.
You do not have to build and retain an array of all your controllers simultaneously.
Storyboards offer direct access to all your elements. As with the new page view controller
class, just load the controllers you need, when you need them.

ptg12441863

8
Common Controllers

The iOS SDK provides a wealth of system-supplied controllers that you can use in your day-
to-day development tasks. This chapter introduces some of the most popular ones. You’ll read
about selecting images from your device library, snapping photos, and recording and editing
videos. You’ll discover how to allow users to compose e-mails and text messages, and how to
post updates to social services like Twitter and Facebook. Each controller offers a way to lever-
age prepackaged iOS system functionality. Here’s the know-how you need to get started using
them.

Image Picker Controller

The UIImagePickerController class enables users to select images from a device’s media
library and to snap pictures with its camera. It is somewhat of a living fossil; its system-supplied
interface was created back in the early days of iPhone OS. Over time, as Apple rolled out
devices with video recording (iOS 3.1) and front and rear cameras (iOS 4), the class evolved. It
introduced photo and video editing, customizable camera view overlays, and more.

Image Sources

The image picker works with three sources:

 ■ UIImagePickerControllerSourceTypePhotoLibrary — This source contains all images
synced to iOS. Material in this source includes images snapped by the user (Camera
Roll), from photo streams, from albums synced from computers, copied via the camera
connection kit, and so on.

 ■ UIImagePickerControllerSourceTypeSavedPhotosAlbum — This source refers only
to the Camera Roll, which consists of pictures and videos captured by the user on units
with cameras or to the Saved Photos album for noncamera units. Photo stream items
captured on other devices also sync into the Camera Roll.

ptg12441863

318 Chapter 8 Common Controllers

 ■ UIImagePickerControllerSourceTypeCamera — This source enables users to shoot
pictures with a built-in iPhone camera. The source provides support for front and back
camera selection and both still and video capture.

Although you might want more nuanced access to iCloud and to shared and individual photo
streams, for now you can access your entire library, just the Camera Roll, or just the Camera.
Submit your enhancement suggestions to http://bugreport.apple.com .

Presenting the Picker on iPhone and iPad

Figure 8-1 shows the image picker presented on an iPhone and iPad, using a library source. The
UIImagePickerController class is designed to operate in a modal presentation on iPhone-like
devices (left) or a popover on tablets (right).

Figure 8-1 The core image picker allows users to select images from pictures stored in the
media library.

On iPhone-like devices, present the picker modally. On the iPad, embed pickers into popovers
instead. Never push image pickers onto an existing navigation stack. On older versions of iOS,
doing so would create a second navigation bar under the primary one. On modern versions of
iOS, it throws a nasty exception: "Pushing a navigation controller is not supported
by the image picker" .

http://bugreport.apple.com

ptg12441863

319Recipe: Selecting Images

Recipe: Selecting Images

In its simplest role, the image picker enables users to browse their library and select a stored
photo. Recipe 8-1 demonstrates how to create and present a picker and retrieve an image
selected by the user. Before proceeding with general how-to, you need to know about two key
how-to’s.

How To: Adding Photos to the Simulator

Before running this recipe on a Mac, you might want to populate the simulator’s photo collec-
tion. You can do this in two ways. First, you can drop images onto the simulator from Finder.
Each image opens in Mobile Safari, where you can then tap-and-hold and choose Save Image to
copy the image to your photo library.

Once you set up your test photo collection as you like, navigate to the Application Support
folder in your home library on your Mac. Open the iPhone Simulator folder and then the
folder for the iOS version you’re currently using (for example, 7.0). Inside, you’ll find a Media
folder. The path to the Media folder will look something like this: /Users/(Your Account)/
Library/Application Support/iPhone Simulator/(OS Version)/Media.

Back up the newly populated Media folder to a convenient location. Creating a backup enables
you to restore it in the future without having to re-add each photo individually. Each time you
reset the simulator’s contents and settings, this material gets deleted. Having a folder on hand
that’s ready to drop in and test with can be a huge time saver.

Alternatively, purchase a copy of Ecamm’s PhoneView (http://ecamm.com). PhoneView offers
access to a device’s Media folder through the Apple File Connection (AFC) service. Connect
an iPhone or iPad, launch the application, and then drag and drop folders from PhoneView
to your Mac. Make sure you check Show Entire Disk in PhoneView preferences to see all the
relevant folders.

Using PhoneView, copy the DCIM, PhotoData, and Photos folders from a device to a folder on
your Macintosh. Once copied, quit the simulator and add the copied folders into the ~/Library/
Application Support/iPhone Simulator/(OS Version)/Media destination. When you next launch
the simulator, your new media will be waiting for you in the Photos app.

The Assets Library Module

This recipe uses the assets library module. Be sure to add it to your source file with @import
AssetsLibrary .

Using the assets library may sound complicated, but there are strong underlying reasons why
this is a best practice for working with image pickers. An image picker may return an asset URL
without providing a direct image to use. Recipe 8-1 assumes that this is a possibility and offers

http://ecamm.com

ptg12441863

320 Chapter 8 Common Controllers

a method to load an image from the assets library (loadImageFromAssetURL:into:). A typical
URL looks something like this:

assets-library://asset/asset.JPG?id=553F6592-43C9-45A0-B851-28A726727436&ext=JPG

This URL provides direct access to media.

Fortunately, Apple has now moved past an extremely annoying assets library issue. Historically,
iOS queried the user for permission to use his or her location—permissions that users would
often deny. Apps would get stuck because you cannot force the system to ask again. Beginning
with iOS 6, the message properly states that the app would like to access a user’s photos rather
than location, hopefully leading users to grant access. Determine your authorization situa-
tion by querying the class’s authorizationStatus . You can reset these granted privileges by
opening Settings > Privacy and updating service-based permissions (like location and photo
access) on an app-by-app basis.

Unfortunately, as of the initial release of iOS 7, Apple added a nasty bug related to asset library
authorization on the iPad. A crash occurs when returning from the permission request if you
display a picker in a popover. Restarting the app resolves the issue but provides a poor first-run
experience. A workaround is to request asset library access prior to displaying the popover:

// Force authorization for asset library
[assetsLibrary enumerateGroupsWithTypes:ALAssetsGroupAll
 usingBlock:^(ALAssetsGroup *group, BOOL *stop) {
 // If authorized, catch the final iteration and display popover
 if (group == nil)
 {
 dispatch_async(dispatch_get_main_queue(), ^{
 popover = [[UIPopoverController alloc]
 initWithContentViewController:
 viewControllerToPresent];
 popover.delegate = self;
 [popover presentPopoverFromBarButtonItem:
 self.navigationItem.rightBarButtonItem
 permittedArrowDirections:
 UIPopoverArrowDirectionAny
 animated:YES];
 });
 }
 *stop = YES;
 } failureBlock:nil];

With the procedural details addressed, the next section introduces the image picker itself.

Presenting a Picker

Create an image picker by allocating and initializing it. Next, set its source type to the library
(all images) or Camera Roll (captured images). Recipe 8-1 sets the photo library source type,
allowing users to browse through all library images.

ptg12441863

321Recipe: Selecting Images

UIImagePickerController *picker = [[UIImagePickerController alloc] init];
picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

An optional editing property (allowsEditing) adds a step to the interactive selection process.
When enabled, it allows users to scale and frame the image they picked before finishing their
selection. When it is disabled, any media selection immediately redirects control to the next
phase of the picker’s life cycle.

Be sure to set the picker’s delegate property. The delegate property conforms to the
UINavigationControllerDelegate and UIImagePickerControllerDelegate protocols;
it receives callbacks after a user has selected an image or cancelled selection. When using an
image picker controller with popovers, declare the UIPopoverControllerDelegate protocol as
well.

When working on iPhone-like devices, always present the picker modally; check for the active
device at runtime. The following test (iOS 3.2 and later) returns true when run on an iPhone
and false on an iPad:

#define IS_IPHONE (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)

The following snippet shows the typical presentation patterns for image pickers:

if (IS_IPHONE)
{
 [self presentViewController:picker animated:YES completion:nil];

}
else
{
 if (popover) [popover dismissPopoverAnimated:NO];
 popover = [[UIPopoverController alloc]
 initWithContentViewController:picker];
 popover.delegate = self;
 [popover presentPopoverFromBarButtonItem:
 self.navigationItem.rightBarButtonItem
 permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:YES];

}

Handling Delegate Callbacks

Recipe 8-1 considers the following three possible image picker callback scenarios:

 ■ The user has successfully selected an image.

 ■ The user has tapped Cancel (only available on modal presentations).

 ■ The user has dismissed the popover that embeds the picker by tapping outside it.

The last two cases are simple. For a modal presentation, dismiss the controller. For a popover,
remove any local references holding onto the instance. Processing a selection takes a little more
work.

ptg12441863

322 Chapter 8 Common Controllers

Pickers finish their lives by returning a custom information dictionary to their assigned dele-
gate. This info dictionary contains key/value pairs related to the user’s selection. Depending on
the way the image picker has been set up and the kind of media the user selects, the dictionary
may contain few or many of these keys.

For example, when working with images on the simulator dropped in via Safari, expect to see
nothing more than a media type and a reference URL. Images shot on a device and then edited
through the picker may contain all six keys listed here:

 ■ UIImagePickerControllerMediaType — Defines the kind of media selected by the
user—normally public.image for images or public.movie for movies. Media types are
defined in the Mobile Core Services framework. Media types are primarily used in this
context for adding items to the system pasteboard.

 ■ UIImagePickerControllerCropRect — Returns the portion of the image selected by the
user as an NSValue that stores a CGRect .

 ■ UIImagePickerControllerOriginalImage — Offers a UIImage instance with the
original (unedited) image contents.

 ■ UIImagePickerControllerEditedImage — Provides the edited version of the image,
containing the portion of the picture selected by the user. The UIImage returned is small,
sized to fit the device screen.

 ■ UIImagePickerControllerReferenceURL — Specifies a file system URL for the selected
asset. This URL always points to the original version of an item, regardless of whether a
user has cropped or trimmed an asset.

 ■ UIImagePickerControllerMediaMetadata — Offers metadata for a photograph taken
within the image picker.

Recipe 8-1 uses several steps to move from the info dictionary contents to produce a recovered
image. First, it checks whether the dictionary contains an edited version. If it does not find
this, it accesses the original image. If that fails, it retrieves the reference URL and tries to load it
through the assets library. Normally, at the end of these steps, the application has a valid image
instance to work with. If it does not, it logs an error and returns.

Finally, don’t forget to dismiss modally presented controllers before wrapping up work in the
delegate callback.

Note

When it comes to user interaction zoology, UIImagePickerController is a cow. It is slow to
load. It eagerly consumes application memory and spends extra time chewing its cud. Be aware
of these limitations when designing your apps and do not tip your image picker.

ptg12441863

323Recipe: Selecting Images

Recipe 8-1 Selecting Images

#define IS_IPHONE (UI_USER_INTERFACE_IDIOM() == \
 UIUserInterfaceIdiomPhone)

// Dismiss the picker
- (void)performDismiss
{
 if (IS_IPHONE)
 [self dismissViewControllerAnimated:YES completion:nil];
 else
 {
 [popover dismissPopoverAnimated:YES];
 popover = nil;
 }

}

// Present the picker
- (void)presentViewController:
 (UIViewController *)viewControllerToPresent

{
 if (IS_IPHONE)
 {
 [self presentViewController:viewControllerToPresent
 animated:YES completion:nil];
 }
 else
 {
 // Workaround to an Apple crasher when asking for asset
 // library authorization with a popover displayed
 ALAssetsLibrary * assetsLibrary =
 [[ALAssetsLibrary alloc] init];
 ALAuthorizationStatus authStatus;

 if (NSFoundationVersionNumber >
 NSFoundationVersionNumber_iOS_6_0)
 authStatus = [ALAssetsLibrary authorizationStatus];
 else
 authStatus = ALAuthorizationStatusAuthorized;

 if (authStatus == ALAuthorizationStatusAuthorized)
 {
 popover = [[UIPopoverController alloc]
 initWithContentViewController:viewControllerToPresent];
 popover.delegate = self;
 [popover presentPopoverFromBarButtonItem:
 self.navigationItem.rightBarButtonItem
 permittedArrowDirections:UIPopoverArrowDirectionAny

ptg12441863

324 Chapter 8 Common Controllers

 animated:YES];
 }
 else if (authStatus == ALAuthorizationStatusNotDetermined)
 {
 // Force authorization
 [assetsLibrary enumerateGroupsWithTypes:ALAssetsGroupAll
 usingBlock:^(ALAssetsGroup *group, BOOL *stop){
 // If authorized, catch the final iteration
 // and display popover
 if (group == nil)
 {
 dispatch_async(dispatch_get_main_queue(), ^{
 popover = [[UIPopoverController alloc]
 initWithContentViewController:
 viewControllerToPresent];
 popover.delegate = self;
 [popover presentPopoverFromBarButtonItem:
 self.navigationItem.rightBarButtonItem
 permittedArrowDirections:
 UIPopoverArrowDirectionAny
 animated:YES];
 });
 }
 *stop = YES;
 } failureBlock:nil];
 }
 }

}

// Popover was dismissed
- (void)popoverControllerDidDismissPopover:
 (UIPopoverController *)aPopoverController

{
 popover = nil;

}

// Retrieve an image from an asset URL
- (void)loadImageFromAssetURL:(NSURL *)assetURL
 into:(UIImage **)image

{
 ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];
 ALAssetsLibraryAssetForURLResultBlock resultsBlock =
 ^(ALAsset *asset)
 {
 ALAssetRepresentation *assetRepresentation =
 [asset defaultRepresentation];
 CGImageRef cgImage =

ptg12441863

325Recipe: Selecting Images

 [assetRepresentation CGImageWithOptions:nil];
 CFRetain(cgImage); // Thanks, Oliver Drobnik
 if (image) *image = [UIImage imageWithCGImage:cgImage];
 CFRelease(cgImage);
 };
 ALAssetsLibraryAccessFailureBlock failureBlock =
 ^(NSError *__strong error)
 {
 NSLog(@"Error retrieving asset from url: %@",
 error.localizedFailureReason);
 };

 [library assetForURL:assetURL
 resultBlock:resultsBlock failureBlock:failureBlock];

}

// Update image and for iPhone, dismiss the controller
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info

{
 // Use the edited image if available
 UIImage __autoreleasing *image =
 info[UIImagePickerControllerEditedImage];

 // If not, grab the original image
 if (!image)
 image = info[UIImagePickerControllerOriginalImage];

 // If still no luck, check for an asset URL
 NSURL *assetURL = info[UIImagePickerControllerReferenceURL];
 if (!image && !assetURL)
 {
 NSLog(@"Cannot retrieve an image from the selected item. Giving up.");
 }
 else if (!image)
 {
 // Retrieve the image from the asset library
 [self loadImageFromAssetURL:assetURL into:&image];
 }

 // Display the image
 if (image)
 imageView.image = image;

 if (IS_IPHONE)
 [self performDismiss];

}

ptg12441863

326 Chapter 8 Common Controllers

// iPhone-like devices only: dismiss the picker with cancel button
- (void)imagePickerControllerDidCancel:
 (UIImagePickerController *)picker

{
 [self performDismiss];

}

- (void)pickImage
{
 if (popover) return;

 // Create and initialize the picker
 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;
 picker.allowsEditing = editSwitch.isOn;
 picker.delegate = self;

 [self presentViewController:picker];
}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 8 .

Recipe: Snapping Photos

In addition to selecting pictures, the image picker controller enables you to snap photos with
a device’s built-in camera. Because cameras are not available on all iOS units (specifically, older
iPod touch and iPad devices), begin by checking whether the device running the application
supports camera usage:

if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) ...

The rule is this: Never offer camera-based features for devices that don’t have cameras.
Although iOS 7 was deployed only to camera-ready devices, no one but Apple knows what
hardware will be released in the future. As unlikely as it sounds, Apple could introduce new
models without cameras. Until Apple says otherwise, assume that the possibility exists for a
noncamera system, even under modern iOS releases. Further, assume that this method will
accurately report state for camera-enabled devices whose source has been disabled through
some future system setting.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

327Recipe: Snapping Photos

Setting Up the Picker

You instantiate a camera version of the image picker the same way you create a picture selec-
tion one. Just change the source type from the library or Camera Roll to the camera:

picker.sourceType = UIImagePickerControllerSourceTypeCamera;

As with other modes, you can allow or disallow image editing as part of the photo-capture
process by setting the allowsEditing property.

Although the setup with UIImagePickerControllerSourceTypeCamera is the same as with
UIImagePickerControllerSourceTypePhotoLibrary , the user experience differs slightly
(see Figure 8-2). The camera picker offers a preview that displays after the user taps the camera
icon to snap a photo. This preview lets users retake the photo or use the photo as is. Once they
tap Use, control passes to the next phase. If you’ve enabled image editing, the user will be able
to edit the image. If not, control moves to the standard “did finish picking” method in the
delegate.

Figure 8-2 The camera version of the image picker controller offers a distinct user experience
for snapping photos.

ptg12441863

328 Chapter 8 Common Controllers

Most modern devices offer more than one camera. All iOS 7–capable devices ship with both a
rear- and front-facing camera. Even among the iOS 6–supported devices, only the iPhone 3GS
has a single camera. Assign the cameraDevice property to select which camera you want to
use. The rear camera is always the default.

The isCameraDeviceAvailable: class method queries whether a specific camera device is
available. This snippet checks to see whether the front camera is available, and if it is, selects it:

if ([UIImagePickerController isCameraDeviceAvailable:
 UIImagePickerControllerCameraDeviceFront])
 picker.cameraDevice = UIImagePickerControllerCameraDeviceFront;

Here are a few more points about the camera or cameras that you can access through the
UIImagePickerController class:

 ■ You can query the device’s ability to use flash by using the
isFlashAvailableForCameraDevice: class method. Supply either
the front or back device constant. This method returns YES for available
flash, or otherwise NO .

 ■ When a camera supports flash, you can set the cameraFlashMode property directly
to auto (UIImagePickerControllerCameraFlashModeAuto , which is the default),
to always used (UIImagePickerControllerCameraFlashModeOn), or always off
(UIImagePickerControllerCameraFlashModeOff). Selecting off disables the flash
regardless of ambient light conditions.

 ■ Choose between photo and video capture by setting the cameraCaptureMode
property. The picker defaults to photo-capture mode. You can test what modes are
available for a device by using availableCaptureModesForCameraDevice: . This
returns an array of NSNumber objects, each of which encodes a valid capture mode,
either photo (UIImagePickerControllerCameraCaptureModePhoto) or video
(UIImagePickerControllerCameraCaptureModeVideo).

Displaying Images

When working with photos, keep image size in mind. Snapped pictures, especially those from
high-resolution cameras, can be quite large, even in the age of Retina displays. Those captured
from front-facing video cameras use lower-quality sensors and are much smaller.

Content modes provide an in-app solution to displaying large images. They allow image views
to scale their embedded images to available screen space. Consider using one of the following
modes:

 ■ The UIViewContentModeScaleAspectFit mode ensures that the entire image is shown
with the aspect ratio retained. The image may be padded with empty rectangles on the
sides or the top and bottom to preserve that aspect.

 ■ The UIViewContentModeScaleAspectFill mode displays as much of the image as
possible, while filling the entire view. Some content may be clipped so that the entire
view’s bounds are filled.

ptg12441863

329Recipe: Snapping Photos

Saving Images to the Photo Album

Save a snapped image (or any UIImage instance, actually) to the photo album by calling
UIImageWriteToSavedPhotosAlbum() . This function takes four arguments. The first is the
image to save. The second and third arguments specify a callback target and selector, typically
your primary view controller and image:didFinishSavingWithError:contextInfo: . The
fourth argument is an optional context pointer. Whatever selector you use, it must take three
arguments: an image, an error, and a pointer to the passed context information.

Recipe 8-2 uses the UIImageWriteToSavedPhotosAlbum() function to demonstrate how to
snap a new image, allow user edits, and then save the image to the photo album.

Recipe 8-2 Snapping Pictures

// "Finished saving" callback method
- (void)image:(UIImage *)image
 didFinishSavingWithError:(NSError *)error
 contextInfo:(void *)contextInfo;

{
 // Handle the end of the image write process
 if (!error)
 NSLog(@"Image written to photo album");
 else
 NSLog(@"Error writing to photo album: %@",
 error.localizedFailureReason);

}

// Save the returned image
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info

{
 // Use the edited image if available
 UIImage __autoreleasing *image =
 info[UIImagePickerControllerEditedImage];

 // If not, grab the original image
 if (!image)
 image = info[UIImagePickerControllerOriginalImage];

 // If still no luck, check for an asset URL
 NSURL *assetURL = info[UIImagePickerControllerReferenceURL];
 if (!image && !assetURL)
 {
 NSLog(@"Cannot retrieve an image from selected item. Giving up.");
 }
 else if (!image)
 {

ptg12441863

330 Chapter 8 Common Controllers

 NSLog(@"Retrieving from Assets Library");
 [self loadImageFromAssetURL:assetURL into:&image];
 }

 if (image)
 {
 // Save the image
 UIImageWriteToSavedPhotosAlbum(image, self,
 @selector(image:didFinishSavingWithError:contextInfo:),
 NULL);
 imageView.image = image;
 }

 [self performDismiss];
}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 imageView = [[UIImageView alloc] init];
 imageView.contentMode = UIViewContentModeScaleAspectFit;
 [self.view addSubview:imageView];
 PREPCONSTRAINTS(imageView);
 STRETCH_VIEW(self.view, imageView);

 // Only present the "Snap" option for camera-ready devices
 if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera])
 self.navigationItem.rightBarButtonItem =
 SYSBARBUTTON(UIBarButtonSystemItemCamera,
 @selector(snapImage)));

 // Set up title view with Edits: ON/OFF
 editSwitch = [[UISwitch alloc] init];
 UILabel * editLabel =
 [[UILabel alloc] initWithFrame:CGRectMake(0, 0, 40, 13)];
 editLabel.text = @"Edits";
 self.navigationItem.leftBarButtonItems =
 @[[[UIBarButtonItem alloc] initWithCustomView:editLabel],
 [[UIBarButtonItem alloc] initWithCustomView:editSwitch]];

}

ptg12441863

331Recipe: Recording Video

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: Recording Video

Even in the age of ubiquitous cameras on iOS 7, exercise caution regarding not just the avail-
ability but also the kinds of cameras provided by each device. When recording video, your
application should check whether a device supports camera-based video recording.

This is a two-step process. It isn’t sufficient to only check for a camera, such as those in the
first-generation and 3G iPhones (in contrast to early iPad and iPod touch models, which
shipped without cameras). Only the 3GS and newer units provided video-recording capabilities
and, however unlikely, future models could ship without cameras or with still cameras.

That means you perform two checks: first, that a camera is available, and second, that the avail-
able capture types include video. This method returns a Boolean value indicating whether the
device running the application is video-ready:

- (BOOL)videoRecordingAvailable
{
 // The source type must be available
 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera])
 return NO;

 // And the media type must include the movie type
 NSArray *mediaTypes = [UIImagePickerController
 availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera]
 return [mediaTypes containsObject:(NSString *)kUTTypeMovie];

}

This method searches for a movie type (kUTTypeMovie, aka public.movie) in the results
for the available media types query. Uniform Type Identifiers (UTIs) are strings that identify
abstract types for common file formats such as images, movies, and data. UTIs are discussed
in further detail in Chapter 11 , “Documents and Data Sharing.” These types are defined in the
Mobile Core Services module. Be sure to import the module in your source file:

@import MobileCoreServices;

Creating the Video-Recording Picker

Recording video is almost identical to capturing still images with the camera. Recipe 8-3 allo-
cates and initializes a new image picker, sets its delegate, and presents it:

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

332 Chapter 8 Common Controllers

UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];

picker.sourceType = UIImagePickerControllerSourceTypeCamera;
picker.videoQuality = UIImagePickerControllerQualityTypeMedium;
picker.mediaTypes = @[(NSString *)kUTTypeMovie]; // public.movie
picker.delegate = self;

Choose the video quality you want to record. As you improve quality, the data stored per
second increases. Select from high (UIImagePickerControllerQualityTypeHigh), medium
(UIImagePickerControllerQualityTypeMedium), low (UIImagePickerController-
QualityTypeLow), or VGA (UIImagePickerControllerQualityType640x480).

As with image picking, the video version allows you to set an allowsEditing property, as
discussed in Recipe 8-5 .

Saving the Video

The info dictionary returned by the video picker contains a UIImagePickerController-
MediaURL key. This media URL points to the captured video, which is stored in a temporary
folder within the app sandbox. Use the UISaveVideoAtPathToSavedPhotosAlbum() function
to store the video to your library.

This save method takes four arguments: the path to the video you want to add to the library, a
callback target, a selector with three arguments (basically identical to the selector used during
image save callbacks), and an optional context. The save method calls the target with that
selector after it finishes its work, allowing you to check for success.

Recipe 8-3 Recording Video

- (void)video:(NSString *)videoPath
 didFinishSavingWithError:(NSError *)error
 contextInfo:(void *)contextInfo

{
 if (!error)
 self.title = @"Saved!";
 else
 NSLog(@"Error saving video: %@",
 error.localizedFailureReason);

}

- (void)saveVideo:(NSURL *)mediaURL
{
 // check if video is compatible with album
 BOOL compatible =
 UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(
 mediaURL.path);

ptg12441863

333Recipe: Playing Video with Media Player

 // save
 if (compatible)
 UISaveVideoAtPathToSavedPhotosAlbum(
 mediaURL.path, self,
 @selector(video:didFinishSavingWithError:contextInfo:),
 NULL);

}

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info

{
 [self performDismiss];

 // Save the video
 NSURL *mediaURL =
 info[UIImagePickerControllerMediaURL];
 [self saveVideo: mediaURL];

}

- (void)recordVideo
{
 if (popover) return;
 self.title = nil;

 // Create and initialize the picker
 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.sourceType = UIImagePickerControllerSourceTypeCamera;
 picker.videoQuality = UIImagePickerControllerQualityTypeMedium;
 picker.mediaTypes = @[(NSString *)kUTTypeMovie];
 picker.delegate = self;

 [self presentViewController:picker];
}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: Playing Video with Media Player

The MPMoviePlayerViewController and MPMoviePlayerController classes simplify
video display in your applications. Part of the Media Player framework, these classes allow
you to embed video into your views or to play movies back, full screen. With the ready-built

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

334 Chapter 8 Common Controllers

full-feature video player shown in Figure 8-3 , you do little more than supply a content URL.
The player provides the Done button, the time scrubber, the aspect control, and the playback
controls, plus the underlying video presentation.

Figure 8-3 The Media Player framework simplifies adding video playback to your applications.
This class allows off-device streaming video as well as fixed-size local assets. Supported video
standards include H.264 Baseline Profile Level 3.0 video (up to 640×480 at 30fps) and MPEG-4
Part 2 video (Simple Profile). Most files with .mov, .mp4, .mpv, and .3gp extensions can be played.
Audio support includes AAC-LC audio (up to 48KHz) and MP3 (MPEG-1 Audio Layer 3, up to 48KHz)
stereo.

Recipe 8-4 builds on the video recording introduced in Recipe 8-3 . It adds playback after each
recording by switching the Camera button in the navigation bar to a Play button. Once the
video finishes playing, the button returns to Camera. This recipe does not save any videos to
the library, so you can record, play, and record, play, ad infinitum.

The image picker supplies a media URL, which is all you need to establish the player. Recipe 8-4
instantiates a new player and sets two properties. The first enables AirPlay, letting you stream
the recorded video to an AirPlay-enabled receiver like Apple TV or a commercial application
like Reflector (http://reflectorapp.com). The second sets the playback style to show the video
full screen. It then presents the movie.

The two movie player classes consist of a presentable view controller and the actual player
controller, which the view controller owns as a property. This is why Recipe 8-4 makes so many
mentions of player.moviePlayer . The view controller class is quite small and easy to launch.
The real work takes place in the player controller.

http://reflectorapp.com

ptg12441863

335Recipe: Playing Video with Media Player

Movie players use notifications rather than delegates to communicate with applications. You
subscribe to these notifications to determine when the movie starts playing, when it finishes,
and when it changes state (as in pause/play). Recipe 8-4 observes two notifications: when the
movie becomes playable and when it finishes.

After the movie loads and its state changes to playable, Recipe 8-4 starts playback. The movie
appears full screen and continues playing until the user taps Done or the movie finishes. In
either case, the player generates a finish notification. At that time, the app returns to recording
mode, presenting its Camera button to allow the user to record the next video sequence.

This recipe demonstrates the basics for playing video in iOS. You are not limited to video you
record yourself. The movie player controller is agnostic about its video source. You can set the
content URL to a file stored in your sandbox or even point it to a compliant resource on the
Internet.

Note

If your movie player opens and immediately closes, check your URLs to make sure they are
valid. Do not forget that local file URLs need fileURLWithPath: , whereas remote ones can
use URLWithString: .

Recipe 8-4 Video Playback

#define SYSBARBUTTON(ITEM, SELECTOR) [[UIBarButtonItem alloc] \
 initWithBarButtonSystemItem:ITEM target:self action:SELECTOR]

- (void)playMovie
{
 // Prepare movie player and play
 MPMoviePlayerViewController *player =
 [[MPMoviePlayerViewController alloc]
 initWithContentURL:mediaURL];
 player.moviePlayer.allowsAirPlay = YES;
 player.moviePlayer.controlStyle = MPMovieControlStyleFullscreen;

 [self.navigationController
 presentMoviePlayerViewControllerAnimated:player];

 // Handle the end of movie playback
 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMoviePlayerPlaybackDidFinishNotification
 object:player.moviePlayer queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification){
 // Return to recording mode
 self.navigationItem.rightBarButtonItem =
 SYSBARBUTTON(UIBarButtonSystemItemCamera,
 @selector(recordVideo));

ptg12441863

336 Chapter 8 Common Controllers

 // Stop listening to movie notifications
 [[NSNotificationCenter defaultCenter]
 removeObserver:self];
 }];

 // Wait for the movie to load and become playable
 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMoviePlayerLoadStateDidChangeNotification
 object:player.moviePlayer queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification) {

 // When the movie sets the playable flag, start playback
 if ((player.moviePlayer.loadState &
 MPMovieLoadStatePlayable) != 0)
 [player.moviePlayer performSelector:@selector(play)
 withObject:nil afterDelay:1.0f];
 }];

}

// After recording any content, allow the user to play it
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info

{
 [self performDismiss];

 // recover video URL
 mediaURL = info[UIImagePickerControllerMediaURL];
 self.navigationItem.rightBarButtonItem =
 SYSBARBUTTON(UIBarButtonSystemItemPlay,
 @selector(playMovie));

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: Editing Video

Enabling an image picker’s allowsEditing property for a video source activates the yellow
editing bars you’ve seen in the built-in Photos app. (Drag the grips at either side to see them
in action.) During the editing step of the capture process, users drag the ends of the scrubbing
track to choose the video range they want to use.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

337Recipe: Editing Video

Surprisingly, the picker does not trim the video itself. Instead, it returns four items in the info
dictionary:

 ■ UIImagePickerControllerMediaURL

 ■ UIImagePickerControllerMediaType

 ■ _UIImagePickerControllerVideoEditingStart

 ■ _UIImagePickerControllerVideoEditingEnd

The media URL points to the untrimmed video, which is stored in a temporary folder within
the sandbox. The video start and end points are NSNumber s, containing the offsets the user
chose with those yellow edit bars. The media type is public.movie .

If you save the video to the library (as shown in Recipe 8-3), it stores the unedited version,
which is not what your user expects or you want. The iOS SDK offers two ways to edit video.
Recipe 8-5 demonstrates how to use the AV Foundation framework to respond to the edit
requests returned by the video image picker. Recipe 8-6 shows you how to pick videos from
your library and use UIVideoEditorController to edit.

AV Foundation and Core Media

This recipe requires access to two very specialized modules. The AV Foundation module
provides an Objective-C interface that supports media processing. Core Media uses a low-level
C interface to describe media properties. Together these provide an iOS version of the Mac’s
QuickTime media experience. Import both modules in your source file for this recipe.

Recipe 8-5 begins by recovering the media URL from the image picker’s info dictionary. This
URL points to the temporary file in the sandbox created by the image picker. The recipe creates
a new AV asset URL from that. Next, it creates the export range, the times within the video that
should be saved to the library. It does this by using the Core Media CMTimeRange structure,
building it from the info dictionary’s start and end times. The CMTimeMakeWithSeconds()
function takes two arguments: a time and a scale factor. This recipe uses a factor of 1, preserv-
ing the exact times.

An export session allows your app to save data back out to the file system. This session does
not save video to the library; that is a separate step. The session exports the trimmed video to
a local file in the sandbox tmp folder, alongside the originally captured video. To create an
export session, allocate it and set its asset and quality.

Recipe 8-5 saves the trimmed video to a new path. This path is identical to the one it read
from but with “-trimmed” added to the core filename. The export session uses this path to
set its output URL, uses the export range to specify what time range to include, and selects
a QuickTime movie output file type. Then it’s ready to process the video. The export session
asynchronously performs the file export, using the properties and contents of the passed asset.

ptg12441863

338 Chapter 8 Common Controllers

When the trimmed movie is complete, save it to the central media library. Recipe 8-5 does so
in the export session’s completion block.

Recipe 8-5 Trimming Video with AV Foundation

- (void)trimVideo:(NSDictionary *)info
{
 // recover video URL
 NSURL *mediaURL =
 info[UIImagePickerControllerMediaURL];
 AVURLAsset *asset =
 [AVURLAsset URLAssetWithURL:mediaURL options:nil];

 // Create the export range
 CGFloat editingStart =
 [info[@"_UIImagePickerControllerVideoEditingStart"]
 floatValue];
 CGFloat editingEnd =
 [info[@"_UIImagePickerControllerVideoEditingEnd"]
 floatValue];
 CMTime startTime = CMTimeMakeWithSeconds(editingStart, 1);
 CMTime endTime = CMTimeMakeWithSeconds(editingEnd, 1);
 CMTimeRange exportRange =
 CMTimeRangeFromTimeToTime(startTime, endTime);

 // Create a trimmed version URL: file:originalpath-trimmed.mov
 NSString *urlPath = mediaURL.path;
 NSString *extension = urlPath.pathExtension;
 NSString *base = [urlPath stringByDeletingPathExtension];
 NSString *newPath = [NSString stringWithFormat:
 @"%@-trimmed.%@", base, extension];
 NSURL *fileURL = [NSURL fileURLWithPath:newPath];

 // Establish an export session
 AVAssetExportSession *session = [AVAssetExportSession
 exportSessionWithAsset:asset
 presetName:AVAssetExportPresetMediumQuality];
 session.outputURL = fileURL;
 session.outputFileType = AVFileTypeQuickTimeMovie;
 session.timeRange = exportRange;

 // Perform the export
 [session exportAsynchronouslyWithCompletionHandler:^(){
 if (session.status ==
 AVAssetExportSessionStatusCompleted)
 [self saveVideo:fileURL];
 else if (session.status ==

ptg12441863

339Recipe: Picking and Editing Video

 AVAssetExportSessionStatusFailed)
 NSLog(@"AV export session failed");
 else
 NSLog(@"Export session status: %d", session.status);
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: Picking and Editing Video

You can use the image picker class to select videos as well as images, as demonstrated in Recipe
8-6 . All it takes is a little editing of the media types property. Set the picker source type as
normal, to either the photo library or the saved photos album, but restrict the media types
property. The following snippet shows how to set the media types to request a picker that pres-
ents video assets only:

picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
picker.mediaTypes = @[(NSString *)kUTTypeMovie];

Once the user selects a video, Recipe 8-6 enters edit mode. Always check that the video asset
can be modified. Call the UIVideoEditorController class method canEditVideoAtPath: .
This returns a Boolean value that indicates whether the video is compatible with the editor
controller:

if (![UIVideoEditorController canEditVideoAtPath:vpath]) ...

If it is compatible, allocate a new video editor. The UIVideoEditorController class provides
a system-supplied interface that allows users to interactively trim videos. Set its delegate and
videoPath properties and present it. (This class can also be used to re-encode data to a lower
quality via the videoQuality property.)

The editor uses a set of delegate callbacks that are similar but not identical to the ones used by
the UIImagePickerController class. Callbacks include methods for success, failure, and user
cancellation:

 ■ videoEditorController:didSaveEditedVideoToPath:

 ■ videoEditorController:didFailWithError:

 ■ videoEditorControllerDidCancel:

Cancellation occurs only when the user taps the Cancel button within the video editor.
Tapping outside a popover dismisses the editor but doesn’t invoke the callback. For both

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

340 Chapter 8 Common Controllers

cancellation and failure, Recipe 8-6 responds by resetting its interface, allowing users to pick
another video.

A success callback occurs when a user has finished editing the video and taps Use. The control-
ler saves the trimmed video to a temporary path and calls the did-save method. Do not
confuse this “saving” with storing items to your photo library; this path resides in the applica-
tion sandbox’s tmp folder. If you do nothing with the data, iOS deletes it the next time the
device reboots. Once past this step, Recipe 8-6 offers a button to save the trimmed data into the
shared iOS photo album, using the save-to-library feature introduced in Recipe 8-3 .

Recipe 8-6 Using the Video Editor Controller

// The edited video is now stored in the local tmp folder
- (void)videoEditorController:(UIVideoEditorController *)editor
 didSaveEditedVideoToPath:(NSString *)editedVideoPath

{
 [self performDismiss];

 // Update the working URL and present the Save button
 mediaURL = [NSURL URLWithString:editedVideoPath];
 self.navigationItem.leftBarButtonItem =
 BARBUTTON(@"Save", @selector(saveVideo));
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Pick", @selector(pickVideo));

}

// Handle failed edit
- (void)videoEditorController:(UIVideoEditorController *)editor
 didFailWithError:(NSError *)error

{
 [self performDismiss];
 mediaURL = nil;
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Pick", @selector(pickVideo));
 self.navigationItem.leftBarButtonItem = nil;
 NSLog(@"Video edit failed: %@", error.localizedFailureReason);

}

// Handle cancel by returning to Pick state
- (void)videoEditorControllerDidCancel:
 (UIVideoEditorController *)editor

{
 [self performDismiss];
 mediaURL = nil;
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Pick", @selector(pickVideo));
 self.navigationItem.leftBarButtonItem = nil;

ptg12441863

341Recipe: E-mailing Pictures

}

// Allow the user to edit the media with a video editor
- (void)editMedia
{
 if (![UIVideoEditorController canEditVideoAtPath:mediaURL.path])
 {
 self.title = @"Cannot Edit Video";
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Pick", @selector(pickVideo));
 return;
 }

 UIVideoEditorController *editor =
 [[UIVideoEditorController alloc] init];
 editor.videoPath = mediaURL.path;
 editor.delegate = self;
 [self presentViewController:editor];

}

// The user has selected a video. Offer an edit button.
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info

{
 [self performDismiss];

 // Store the video URL and present an Edit button
 mediaURL = info[UIImagePickerControllerMediaURL];
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Edit", @selector(editMedia));

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: E-mailing Pictures

The Message UI framework allows users to compose e-mail and text messages within applica-
tions. As with camera access and the image picker, first check whether a user’s device has been
enabled for these services. A simple test allows you to determine when mail is enabled:

[MFMailComposeViewController canSendMail]

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

342 Chapter 8 Common Controllers

When mail capabilities are enabled, users can send their photographs via instances of
MFMailComposeViewController . Texts are sent through MFMessageComposeViewController
instances.

Recipe 8-7 uses this composition class to create a new mail item populated with the user-
snapped photograph. The mail composition controller works best as a modally presented client
on both the iPhone family and iPad. Your primary view controller presents it and waits for
results via a delegate callback.

Creating Message Contents

The composition controller’s properties allow you to programmatically build a message includ-
ing to/cc/bcc recipients and attachments. Recipe 8-7 demonstrates the creation of a simple
HTML message with an attachment. Properties are almost universally optional. Define the
subject and body contents via setSubject: and setMessageBody: . Each method takes a
string as its argument.

Leave To Recipients unassigned to greet the user with an unaddressed message. The times
you’ll want to prefill this field include adding call-home features such as Report a Bug or Send
Feedback to the Developer or when you allow the user to choose a favorite recipient in your
settings.

Creating the attachment requires slightly more work. To add an attachment, you need to
provide all the file components expected by the mail client. Supply data (via an NSData object),
a MIME type (a string), and a filename (another string). Retrieve the image data using the
UIImageJPEGRepresentation() function. This function can take time to work, so expect
slight delays before the message view appears.

This recipe uses a hard-coded MIME type of image/jpeg . If you want to send
other data types, you can query iOS for MIME types via typical file extensions. Use
UTTypeCopyPreferredTagWithClass() , which is defined in the Mobile Core Services
framework, as shown in the following method:

#import <MobileCoreServices/UTType.h>
- (NSString *) mimeTypeForExtension: (NSString *) ext
{
 // Request the UTI for the file extension
 CFStringRef UTI = UTTypeCreatePreferredIdentifierForTag(
 kUTTagClassFilenameExtension,
 (__bridge CFStringRef) ext, NULL);
 if (!UTI) return nil;

 // Request the MIME file type for the UTI,
 // may return nil for unrecognized MIME types
 NSString *mimeType = (__bridge_transfer NSString *)
 UTTypeCopyPreferredTagWithClass(UTI, kUTTagClassMIMEType);
 CFRelease(UTI);

ptg12441863

343Recipe: E-mailing Pictures

 return mimeType;
}

This method returns a standard MIME type based on the file extension passed to it, such as
.jpg, .png, .txt, .html, and so on. Always test to see whether this method returns nil because
the iOS’s built-in knowledge base of extension-MIME type matches is limited. Alternatively,
search the Internet for the proper MIME representations and add them to your project by hand.

The e-mail uses a filename you specify to name the transmitted data you send. Use any name
you like. Here, the name is set to pickerimage.jpg. Because you’re just sending data, there’s no
true connection between the content you send and the name you assign:

[mcvc addAttachmentData:UIImageJPEGRepresentation(image, 1.0f)
 mimeType:@"image/jpeg" fileName:@"pickerimage.jpg"];

Note

When you use the iOS mail composer, attachments appear at the end of sent mail. Apple does
not provide a way to embed images inside the flow of HTML text. This is due to differences
between Apple and Microsoft representations.

Recipe 8-7 Sending Images by E-mail

- (void)mailComposeController:
 (MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error

{
 // Wrap up the composer details
 [self performDismiss];
 switch (result)
 {
 case MFMailComposeResultCancelled:
 NSLog(@"Mail was cancelled");
 break;
 case MFMailComposeResultFailed:
 NSLog(@"Mail failed");
 break;
 case MFMailComposeResultSaved:
 NSLog(@"Mail was saved");
 break;
 case MFMailComposeResultSent:
 NSLog(@"Mail was sent");
 break;
 default:
 break;
 }

ptg12441863

344 Chapter 8 Common Controllers

}

- (void)sendImage
{
 UIImage *image = imageView.image;
 if (!image) return;

 // Customize the e-mail
 MFMailComposeViewController *mcvc =
 [[MFMailComposeViewController alloc] init];
 mcvc.mailComposeDelegate = self;

 // Set the subject
 [mcvc setSubject:@"Here's a great photo!"];

 // Create a prefilled body
 NSString *body = @"<h1>Check this out</h1>\
 <p>I snapped this image from the\
 <code>UIImagePickerController</code>.</p>";
 [mcvc setMessageBody:body isHTML:YES];

 // Add the attachment
 [mcvc addAttachmentData:UIImageJPEGRepresentation(image, 1.0f)
 mimeType:@"image/jpeg" fileName:@"pickerimage.jpg"];

 // Present the e-mail composition controller
 [self presentViewController:mcvc];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 8 .

Recipe: Sending a Text Message

It’s even easier to send a text from your applications than to send an e-mail. This particular
controller is shown in Figure 8-4 . As with mail, first ensure that the capability exists on the iOS
device and declare the MFMessageComposeViewControllerDelegate protocol:

[MFMessageComposeViewController canSendText]

Monitor the availability of text support, which may change over time, by listening for the
MFMessageComposeViewControllerTextMessageAvailabilityDidChangeNotification

notification.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

345Recipe: Sending a Text Message

Figure 8-4 The message compose view controller.

Recipe 8-8 creates the new controller and sets its messageComposeDelegate and its body . If
you know the intended recipients, you can prepopulate that field by passing an array of phone
number strings. Present the controller however you like and wait for the delegate callback,
where you dismiss it.

In iOS 7, the message composer now supports attachments. Be sure to check for availability
with the MFMessageComposeViewController class method canSendAttachments before
adding yours. Recipe 8-8 adds an image to the message, if supported.

Recipe 8-8 Sending Texts

- (void)messageComposeViewController:
 (MFMessageComposeViewController *)controller
 didFinishWithResult:(MessageComposeResult)result

{
 [self performDismiss];

 switch (result)
 {

ptg12441863

346 Chapter 8 Common Controllers

 case MessageComposeResultCancelled:
 NSLog(@"Message was cancelled");
 break;
 case MessageComposeResultFailed:
 NSLog(@"Message failed");
 break;
 case MessageComposeResultSent:
 NSLog(@"Message was sent");
 break;
 default:
 break;
 }

}

- (void)sendMessage
{
 MFMessageComposeViewController *mcvc =
 [[MFMessageComposeViewController alloc] init];
 mcvc.messageComposeDelegate = self;

 if ([MFMessageComposeViewController canSendAttachments])
 [mcvc addAttachmentData:
 UIImagePNGRepresentation([UIImage
 imageNamed:@"BookCover"])
 typeIdentifier:@"png" filename:@"BookCover.png"];

 mcvc.body = @"I'm reading the iOS Developer's Cookbook";
 [self presentViewController:mcvc];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 if ([MFMessageComposeViewController canSendText])
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Send", @selector(sendMessage));
 else
 self.title = @"Cannot send texts";

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 8 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

347Recipe: Posting Social Updates

Recipe: Posting Social Updates

The Social framework offers a unified API for integrating applications with social networking
services. The framework currently supports Facebook, Twitter, and the China-based Sina Weibo
and Tencent Weibo. As with mail and messaging, start by testing whether the service type you
want to support is supported:

[SLComposeViewController isAvailableForServiceType:SLServiceTypeFacebook]

If it is, you can create a composition view controller for that service:

SLComposeViewController *fbController = [SLComposeViewController
 composeViewControllerForServiceType:SLServiceTypeFacebook];

You customize a controller with images, URLs, and initial text. Recipe 8-9 demonstrates the
steps to create the interface shown in Figure 8-5 .

Note

With the introduction of SLComposeViewController in iOS 6, the original
TWTweetComposeViewController introduced in iOS 5 was deprecated. While the
APIs are nearly identical, the deprecated version has quirks worth avoiding. Use the
SLComposeViewController variant when Twitter sharing is needed.

Figure 8-5 Composing Twitter messages.

ptg12441863

348 Chapter 8 Common Controllers

Recipe 8-9 Posting Social Updates

- (void)postSocial:(NSString *)serviceType
{
 // Establish the controller
 SLComposeViewController *controller = [SLComposeViewController
 composeViewControllerForServiceType:serviceType];

 // Add text and an image
 [controller addImage:[UIImage imageNamed:@"BookCover"]];
 [controller setInitialText:
 @"I'm reading the iOS Developer's Cookbook"];

 // Define the completion handler
 controller.completionHandler =
 ^(SLComposeViewControllerResult result){
 switch (result)
 {
 case SLComposeViewControllerResultCancelled:
 NSLog(@"Cancelled");
 break;
 case SLComposeViewControllerResultDone:
 NSLog(@"Posted");
 break;
 default:
 break;
 }
 };

 // Present the controller
 [self presentViewController:controller];

}

- (void)postToFacebook
{
 [self postSocial:SLServiceTypeFacebook];

}

- (void)postToTwitter
{
 [self postSocial:SLServiceTypeTwitter];

}

- (void)loadView
{

ptg12441863

349Summary

 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 if ([SLComposeViewController
 isAvailableForServiceType:SLServiceTypeFacebook])
 self.navigationItem.leftBarButtonItem =
 BARBUTTON(@"Facebook", @selector(postToFacebook));
 if ([SLComposeViewController
 isAvailableForServiceType:SLServiceTypeTwitter])
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Twitter", @selector(postToTwitter));

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 8 .

Data Sharing and Viewing

The previous recipes represent individualized methods of sharing information via e-mail,
text message, and specific social networks. iOS provides controllers that simplify the
sharing and viewing of data for a vastly larger set of data types and sharing targets.
UIActivityViewController centralizes the sharing of data, including many built-in activi-
ties, such as e-mail, social sharing, printing, and many more, as well as the ability to extend the
controller to your own custom activities. QLPreviewController allows the viewing of many
types of data that your app likely could not handle itself. Both of these classes are covered fully
in Chapter 11 .

Summary

This chapter introduces a number of ready-to-use controllers that you can prepare and present
to good effect. System-supplied controllers simplify programming for common tasks like tweet-
ing and sending e-mail. Here are a few parting thoughts about the recipes you just encountered:

 ■ You can roll your own versions of a few of these controllers, but why bother? System-
supplied controllers are the rare cases where enforcing your own design takes a back seat
to a consistency of user experience across applications. When a user sends an e-mail,
he or she expects that e-mail compose screen to look basically the same, regardless of
application. Go ahead and leverage Apple system services to mail, tweet, and interact
with the system media library.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

350 Chapter 8 Common Controllers

 ■ The image picker controller has grown to be a bit of a Frankenclass. It has long deserved
a proper refresh and redesign. From controlling sources at a fine grain to reducing its
memory overhead, the class deserves some loving attention from Apple. Now that so
many great media processing classes have made the jump to iOS, we’d love to see better
integration with AV Foundation, Core Media, and other key technologies—and not just
through a visual controller. Although preserving user privacy is critical, it would be nice
if the library opened up a more flexible range of APIs (with user-directed permissions, of
course).

 ■ The Social framework can do a lot more than post Facebook updates and tweets. The class
lets you submit authenticated and unauthenticated service requests using appropriate
security. Use the Accounts framework along with Social to retrieve login information for
placing credentialed requests.

ptg12441863

9
Creating and Managing

Table Views

Tables provide a scrolling list–based interaction class that works particularly well for small
GUI elements. Many apps that ship natively with the iPhone and iPod touch center on table-
based navigation, including Contacts, Settings, and iPod. On these smaller iOS devices, limited
screen size makes using tables, with their scrolling and individual item selection, an ideal way
to deliver information and content in a simple, easy-to-manipulate form. On the larger iPad,
tables integrate with larger detail presentations, providing an important role in split view
controllers. In this chapter, you’ll discover how iOS tables work, what kinds of tables are avail-
able to you as a developer, and how you can use table features in your own programs.

iOS Tables

A standard iOS table consists of a simple vertical scrolling list of individual cells. Users may
scroll or flick their way up and down until they find an item they want to interact with. On
iOS, tables are ubiquitous. Several built-in iOS apps are based entirely on table views, and they
form the core of numerous third-party applications.

Most tables you see in iOS are built using UITableView and customized with options provided
by its delegate and data source protocols. In addition to a standard scrolling list of cells, which
provides the most generic table implementation, you can create specialized tables with custom
art, background, labels, and more.

Specialized tables include the kind of tables you see in the Preferences application, with their
white cells over a gray background; tables with sections and an index, such as the ones used
in the Contacts application; and related classes of wheeled tables, such as those used to set
appointment dates and alarms. And, when you need to move beyond tables and their scrolling
lists to more grid-like presentations, you can use the related class of collection views, which are
introduced in Chapter 10 , “Collection Views.”

ptg12441863

352 Chapter 9 Creating and Managing Table Views

No matter what type of table you use, they all work in the same general way. Tables are built
around the Model–View–Controller (MVC) paradigm. They present cells provided from a data
source and respond to user interactions by calling well-defined delegate methods.

A data source provides a class with on-demand information about a table’s contents. It repre-
sents the underlying data model and mediates between that model and the table’s view. A data
source tells the table about its structure. For example, it specifies how many sections to use and
how many items each section includes. Data sources provide individual table cells on-demand
and populate those cells with model data that matches each cell’s position within the table.

Data sources express a table’s model; delegates act as controllers. Delegates manage user inter-
actions, letting applications respond to changes in table selections and user-directed edits. For
example, users might tap on a new cell to select it, reorder a cell to a new position, or add and
delete cells. Delegates monitor these user interaction requests, react by allowing and disallow-
ing them, and update the data model in response to successful actions.

The view, data source, and delegate work together to express an MVC development pattern.
This pattern is not limited to table views. You see this view/data source/delegate approach used
in a number of key iOS classes. Picker views, collection views, and page view controllers all use
data sources and delegates.

Delegation

Table view data sources and delegates are examples of delegation, assigning responsibility for
specific activities and information to a secondary object. Several UIKit classes use delegation to
respond to user interactions and to provide content. For example, when you set a table’s dele-
gate, you tell it to pass along any interaction messages and let that delegate take responsibility
for them.

Table views provide a good example of delegation. When a user taps on a table row, the
UITableView instance has no built-in way of responding to that tap. The class is general
purpose, and it provides no native semantics for taps. Instead, it consults its delegate—usually
a view controller class—and passes along the selection change. You add meaning to the tap at
a point of time completely separate from when Apple created the table class. Delegation allows
classes to be created without specific meaning while ensuring that application-specific handlers
can be added at a later time.

The UITableView delegate method tableView:didSelectRowAtIndexPath: provides a
typical delegation example. A delegate object defines this method and specifies how the app
should react to a selection change initiated by the user. You might display a menu or navigate
to a subview or place a check mark on the tapped row. The response depends entirely on how
you implement the delegated selection change method. None of this was known at the time
the table class was implemented.

To set an object’s delegate or data source, assign its delegate or dataSource property.
This instructs your application to redirect interaction callbacks to the assigned object. You

ptg12441863

353Creating Tables

let Objective-C know that your object implements the delegate methods by declaring the
protocol or protocols it implements in the class declaration. This declaration appears in
angle brackets (for example, <UITableViewDelegate> or <UITableViewDataSource>),
to the right of the class inheritance. When declaring multiple protocols, separate them
with commas within a single set of angle brackets (for example, <UITableViewDelegate,
UITableViewDataSource>). A class that declares a protocol is responsible for implementing all
required methods associated with that protocol and may implement any or all of the optional
methods as well.

Creating Tables

iOS includes two primary table classes: a prebuilt controller class (UITableViewController)
and a direct view (UITableView). The controller offers a view controller subclass customized
for tables. It includes an established table view that takes up the entire controller view, and it
eliminates repetitive tasks required for working with table instances. Specifically, it declares all
the necessary protocols and defines itself as its table’s delegate and data source. When using
a table view outside the controller class, you need to perform these tasks manually. The table
view controller takes care of them for you.

Table Styles

On the iPhone, tables come in two formats: plain table lists and grouped tables. Plain tables, by
default, display on a simple white background with transparent cells. The iOS Settings applica-
tion uses the grouped style, which displays on a light gray background with each subsection
appearing over a white background.

Changing styles requires nothing more than initializing the table view controller with a differ-
ent style. You can do this explicitly when creating a new instance. This cannot be changed
after initialization. Here’s an example:

myTableViewController = [[UITableViewController alloc]
 initWithStyle:UITableViewStyleGrouped];

When using controllers from XIBs and storyboards, adjust the Table View > Style property in
the Attributes inspector.

Laying Out the View

UITableView instances are, as the name suggests, views that present interactive tables on the
iOS screen. The UITableView class descends from the UIScrollView class. This inheritance
provides the up and down scrolling capabilities for the table. Like other views, UITableView
instances define their boundaries through frames, and they can be children or parents of other
views. To create a table view, you allocate it, initialize it with a frame or constrain it with Auto
Layout, and then add all the bookkeeping details by assigning data source and delegate objects.

ptg12441863

354 Chapter 9 Creating and Managing Table Views

UITableViewController s take care of the view layout work for you. The class creates a stan-
dard view controller and populates it with a single UITableView , sets its frame to allow for
any navigation bars or toolbars, and so on. You can access that table view via the tableView
instance variable.

Assigning a Data Source

UITableView instances rely on an external source to feed either new or existing table cells on
demand. Cells are small views that populate the table, adding row-based content. This external
source is called a data source and refers to the object whose responsibility it is to return a cell on
request to a table.

The table’s dataSource property sets an object to act as a table’s source of cells and other
layout information. That object declares and must implement the UITableViewDataSource
protocol. In addition to returning cells, a table’s data source specifies the number of sections in
the table, the number of cells per section, any titles associated with the sections, cell heights,
an optional table of contents, and more. The data source defines how the table looks and the
content that populates it.

Typically, the view controller that owns the table view acts as the data source for that view.
When working with UITableViewController subclasses, you need not declare the protocol
because the parent class implicitly supports that protocol and automatically assigns the control-
ler as the data source.

Serving Cells

The table’s data source populates the table with cells by implementing the tableView:
cellForRowAtIndexPath: method. Any time the table’s reloadData method is invoked, the
table starts querying its data source to load the onscreen cells into your table. Your code can
call reloadData at any time to force the table to reload its contents.

Data sources provide table cells based on an index path, which is passed as a parameter to the
cell request method. Index paths, objects of the NSIndexPath class, describe the path through
a data tree to a particular node—namely their section and their row. You can create an index
path by supplying a section and row:

NSIndexPath *myIndexPath = [NSIndexPath indexPathForRow:5 inSection:0];

In tables, use sections to split data into logical groups and rows to index members within each
group. It’s the data source’s job to associate an index path with a concrete UITableViewCell
instance and return that cell on demand.

ptg12441863

355Creating Tables

Registering Cell Classes

Register any cell type you work with early in the creation of your table view. Registration allows
cell dequeuing methods to automatically create new cells for you. Typically, you register cells
in your initializer or in loadView or viewDidLoad methods. Be sure that this registration takes
place before the first time your table attempts to load its data. Each table view instance registers
its own types. You supply an arbitrary string identifier, which you use as a key when requesting
new cells.

You can register by class (starting in iOS 6) or by XIBs (iOS 5 and later). Here are examples of
both approaches:

[self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"table cell"];

[self.tableView registerNib:
 [UINib nibWithNibName:@"CustomCell" bundle:[NSBundle mainBundle]]
 forCellReuseIdentifier:@"custom cell"];

Register as many kinds of cells as you need. You are not limited to one type per table. Mix and
match cells within a table however your design demands.

Dequeuing Cells

Your data source responds to cell requests by building cells from code, or it can load its cells
from Interface Builder (IB) sources. Here’s a minimal data source method that returns a cell at
the requested index path and labels it with text derived from its data model:

- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];
 cell.textLabel.text =
 [dataModel objectAtIndexPath:indexPath].text;
 return cell;

}

If you’re an established iOS developer, you’ll appreciate this: You no longer need to check to
see whether the queue already has an existing cell of the type you requested. The queue now
transparently creates and initializes new instances as needed.

Use the dequeuing mechanism to request cells. As cells scroll off the table and out of view, the
table caches them into a queue, ready for reuse. This mechanism returns any available table
cells stored in the queue; when the queue runs dry, the mechanism creates and returns new
instances.

ptg12441863

356 Chapter 9 Creating and Managing Table Views

Registering cells for reuse provides each instance with an identifier tag. The table searches for
that type and pops them off the queue as needed. This saves memory and provides a fast, effi-
cient way to feed cells when users scroll quickly through long lists onscreen.

Assigning a Delegate

Like many other Cocoa Touch interaction objects, UITableView instances use delegates to
respond to user interactions and implement meaningful responses. Your table’s delegate can
respond to events such as the table scrolling, user edits, or row selection changes. Delegation
allows the table to hand off responsibility for reacting to these interactions to the object you
specify, typically the controller object that owns the table view.

If you’re working directly with a UITableView , assign the delegate property to a respon-
sible object. The delegate declares the UITableViewDelegate protocol. As with data
sources, you can skip setting the delegate and declaring the protocol when working with
UITableViewController or its custom subclass.

Recipe: Implementing a Basic Table

A basic table implementation consists of little more than a set of data used to label cells and a
few methods. Recipe 9-1 provides about as basic a table as you can imagine. It creates the flat
(nonsectioned) table shown in Figure 9-1 . Each cell includes a text label and an image consist-
ing of the cell’s row number inside a box.

Users can tap on cells. When they do so, the controller’s title updates to match the selected
item. A Deselect button tells the table to remove the current selection and reset the title; a
Find button moves the selection into view, even if it’s been scrolled offscreen.

This implementation attempts to scroll the “found” selection to the top
(UITableViewScrollPositionTop), space permitting. Zulu, the last item in this
table, cannot scroll any higher than the bottom of the view because you simply run
out of table after its cell.

ptg12441863

357Recipe: Implementing a Basic Table

Figure 9-1 Recipe 9-1 builds this basic table view.

Data Source Methods

To display a table, even a basic flat one like the one that Recipe 9-1 builds, every table data
source must implement three core instance methods. These methods define how the table is
structured and provide content for the table:

 ■ numberOfSectionsInTableView — Tables can display their data in sections or as a single
list. For flat tables, return 1 . This indicates that the entire table should be presented as
one single list. For sectioned lists, return a value of 2 or higher.

 ■ tableView:numberOfRowsInSection: — This method returns the number of rows
for a given section. For Recipe 9-1 ’s flat list, this method returns the number of rows
for the entire table. For more complex lists, you need to provide a way to report back
per section. Core Data provides especially simple sectioned table integration, as you’ll
read about in Chapter 12 , “A Taste of Core Data.” As with all counting in iOS, section
ordering starts with 0 as the first section.

ptg12441863

358 Chapter 9 Creating and Managing Table Views

 ■ tableView:cellForRowAtIndexPath: — This method returns a cell to the calling table.
Use the index path’s row and section properties to determine which cell to provide
and make sure to take advantage of reusable cells where possible to minimize memory
overhead.

Responding to User Touches

Recipe 9-1 responds to the user in the tableView:didSelectRowAtIndexPath: delegate
method. This recipe’s implementation updates the view controller’s title and enables both bar
buttons for searching and deselecting. These buttons remain enabled as long as there’s a valid
selection. If the user chooses the Deselect option, this code calls deselectRowAtIndexPath:
animated: and disables both buttons.

Note

When you want a table cell to ignore user touches, set the cell’s selectionStyle property to
UITableViewCellSelectionStyleNone . This disables the gray overlay that displays on the
selected cell. The cell is still selected but will not highlight on selection in any way. If selecting
the cell produces some kind of side effect other than presenting information, this may not be
the best approach.

Recipe 9-1 Building a Basic Table

@implementation TestBedViewController
{
 UIFont *imageFont;
 NSArray *items;

}

// Number of sections
- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView
{
 return 1;

}

// Rows per section
- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section

{
 return items.count;

}

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

ptg12441863

359Recipe: Implementing a Basic Table

{
 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];

 // Cell label
 cell.textLabel.text = items[indexPath.row];

 // Cell image
 NSString *indexString =
 [NSString stringWithFormat:@"%02d", indexPath.row];
 cell.imageView.image =
 stringImage(indexString, imageFont, 6.0f);

 return cell;
}

// On selection, update the title and enable find/deselect
- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [self.tableView cellForRowAtIndexPath:indexPath];
 self.title = cell.textLabel.text;
 self.navigationItem.rightBarButtonItem.enabled = YES;
 self.navigationItem.leftBarButtonItem.enabled = YES;

}

// Deselect any current selection
- (void)deselect
{
 NSArray *paths = [self.tableView indexPathsForSelectedRows];
 if (!paths.count) return;

 NSIndexPath *path = paths[0];
 [self.tableView deselectRowAtIndexPath:path animated:YES];
 self.navigationItem.rightBarButtonItem.enabled = NO;
 self.navigationItem.leftBarButtonItem.enabled = NO;

 self.title = nil;
}

// Move to the selection
- (void)find
{
 [self.tableView scrollToNearestSelectedRowAtScrollPosition:
 UITableViewScrollPositionTop animated:YES];

ptg12441863

360 Chapter 9 Creating and Managing Table Views

}

// Set up table
- (void)viewDidLoad
{
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor whiteColor];

 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Deselect", @selector(deselect));
 self.navigationItem.leftBarButtonItem =
 BARBUTTON(@"Find", @selector(find));
 self.navigationItem.rightBarButtonItem.enabled = NO;
 self.navigationItem.leftBarButtonItem.enabled = NO;

 imageFont = [UIFont fontWithName:@"Futura" size:18.0f];

 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 items = [@"Alpha Bravo Charlie Delta Echo Foxtrot Golf \
 Hotel India Juliet Kilo Lima Mike November Oscar Papa \
 Quebec Romeo Sierra Tango Uniform Victor Whiskey Xray \
 Yankee Zulu" componentsSeparatedByString:@" "];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

Table View Cells

The UITableViewCell class offers four utilitarian base styles, which are shown in Figure
9-2 . This class provides two text label properties: a primary textLabel and a secondary
detailTextLabel , which is used for creating subtitles. The four styles are as follows:

 ■ UITableViewCellStyleDefault — This cell offers a single left-aligned text label and an
optional image. When images are used, the label is pushed to the right, decreasing the
amount of space available for text. You can access and modify detailTextLabel , but it
is not shown onscreen.

 ■ UITableViewCellStyleValue1 — This cell style offers a large black primary label on the
left side of the cell and a slightly smaller, gray subtitle detail label to its right.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

361Table View Cells

 ■ UITableViewCellStyleValue2 — This kind of cell consists of a small primary label on
the left, displayed with the current tintColor , and a small black subtitle detail label to
its right. The small width of the primary label means that most text will be cut off by an
ellipsis. This cell does not support images.

 ■ UITableViewCellStyleSubtitle — This cell pushes the standard text label up a bit to
make way for the smaller detail label beneath it. Both labels display in black. Like the
default cell, the subtitle cell offers an optional image.

Figure 9-2 Cocoa Touch provides four standard cell types, several of which support optional
images.

Selection Style

Tables enable you to set the selectionStyle for the selected cell. In iOS 7, despite the name,
UITableViewCellSelectionStyleBlue and UITableViewCellSelectionStyleGray both
result in a light gray background for the selected cell. If you’d rather not show a selection, use
UITableViewCellSelectionStyleNone . The cell can still be selected, but the gray background
will not display.

Adding Custom Selection Traits

When a user selects a cell, Cocoa Touch helps you emphasize the cell’s selection. Customize a
cell’s selection behavior by updating its traits to stand out from its fellows. There are two ways
to do this.

ptg12441863

362 Chapter 9 Creating and Managing Table Views

The selectedBackgroundView property allows you to add controls and other views to just the
currently selected cell. This works in a similar manner to the accessory views that appear when
a keyboard is shown. You might use the selected background view to add a preview button or a
purchase option to the selected cell.

The cell label’s highlightedTextColor property lets you choose an alternative text color
when the cell is selected.

Recipe: Creating Checked Table Cells

Accessory views expand normal UITableViewCell functionality. Check marks create interac-
tive one-of- n or n -of- n selections, as shown in Figure 9-3 . With these kinds of selections, you
can ask your users to pick what they want to have for dinner or choose which items they want
to update.

Figure 9-3 Check mark accessories offer a convenient way of making one-of- n or n -of- n
selections from a list.

ptg12441863

363Recipe: Creating Checked Table Cells

To check an item, use the UITableViewCellAccessoryCheckmark accessory type. Unchecked
items use the UITableViewCellAccessoryNone variation. You set these by assigning the cell’s
accessoryType property.

Cells have no “memory” to speak of other than their last presentation state. They do not know
how an application last used them. They are views and nothing more. Therefore, if you reuse
cells without tying those cells to some sort of data model, you can end up with unexpected and
unintentional results. This is a natural consequence of the MVC design paradigm.

Consider the following scenario. Say you create a series of cells, each of which owns a toggle
switch. Users can interact with that switch and change its value. A cell that scrolls offscreen,
landing on the reuse queue, could therefore show an already toggled state for a table element
the user hasn’t yet touched.

To fix this problem, always check your cell state against a stored model and fully configure
your cell in cellForRowAtIndexPath: . This keeps the view consistent with your application
data and avoids lingering “dirty” state from the cell’s last use. It’s the cell that’s being toggled,
not the logical item associated with the cell. Reused cells may remain checked or unchecked at
next use, so always set the accessory to match the model state, not the cell state.

Recipe 9-2 builds a simple state dictionary to store the on/off state for each index path. Its data
source returns cells initialized to match that dictionary. You can easily expand this recipe to
store its state to user defaults so it persists between runs. This simple-to-add enhancement is
left as an exercise for the reader.

Recipe 9-2 Accessory Views and Stored State

// Return a cell populated with data model state for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];

 // Cell label
 cell.textLabel.text = items[indexPath.row];
 BOOL isChecked =
 ((NSNumber *)stateDictionary[indexPath]).boolValue;
 cell.accessoryType = isChecked ?
 UITableViewCellAccessoryCheckmark :
 UITableViewCellAccessoryNone;

 return cell;
}

// On selection, update the title
- (void)tableView:(UITableView *)aTableView

ptg12441863

364 Chapter 9 Creating and Managing Table Views

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [self.tableView cellForRowAtIndexPath:indexPath];

 // Toggle the cell checked state
 BOOL isChecked =
 !((NSNumber *)stateDictionary[indexPath]).boolValue;
 stateDictionary[indexPath] = @(isChecked);
 cell.accessoryType = isChecked ?
 UITableViewCellAccessoryCheckmark :
 UITableViewCellAccessoryNone;

 // Count the checked items
 int numChecked = 0;
 for (NSUInteger row = 0; row < items.count; row++)
 {
 NSIndexPath *path =
 [NSIndexPath indexPathForRow:row inSection:0];
 isChecked =
 ((NSNumber *)stateDictionary[path]).boolValue;
 if (isChecked) numChecked++;
 }

 self.title = [@[@(numChecked).stringValue, @" Checked"]
 componentsJoinedByString:@" "];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 9 .

Working with Disclosure Accessories

Disclosures refer to the gray, right-facing chevrons and tintColor -imbued info button found
on the right of table cells. Disclosures help you link from a cell to a view that supports that cell.
In the Contacts list and Calendar applications on the iPhone and iPod touch, these chevrons
connect to screens that help you customize contact information and set appointments. Figure
9-4 shows a table view example where each cell displays a disclosure control, showing the two
available types.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

365Working with Disclosure Accessories

On the iPad, you should consider using a split view controller rather than disclosure accesso-
ries. The greater space on the iPad display allows you to present both an organizing list and its
detail view at the same time, a feature that the disclosure chevrons attempt to mimic on the
smaller iPhone units.

The disclosure accessories play two roles:

 ■ The UITableViewCellAccessoryDetailDisclosureButton is an actual button—an
encircled i along with a gray chevron. The button responds to touches and is intended to
indicate that tapping leads to a full interactive detail view.

 ■ The gray chevron of UITableViewCellAccessoryDisclosureIndicator does not track
touches and should lead your users to a further options view—specifically, options about
that choice.

Figure 9-4 The right-pointing chevrons and encircled info buttons indicate disclosure controls,
allowing you to link individual table items to another view.

You see these two accessories in play in the Settings application on the iPhone. The disclo-
sure indicator for the Wi-Fi networks enables you to proceed to the Wi-Fi screen. In the Wi-Fi
screen, the detail disclosures lead to specific details about each Wi-Fi network: its IP address,
subnet mask, router, DNS info, and so forth.

You find disclosure indicators whenever one screen leads to a related submenu. When working
with submenus, stick to the simple gray chevron. Remember this rule of thumb: Submenus
use gray chevrons, and object customization uses the info button. Respond to cell selection for
disclosure indicators and to accessory button taps for detail disclosure buttons.

ptg12441863

366 Chapter 9 Creating and Managing Table Views

The following snippet sets accessoryType for each cell to
UITableViewCellAccessoryDetailDisclosureButton . It also sets
editingAccessoryType to UITableViewCellAccessoryNone :

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"CustomCell"];
 cell.accessoryType =
 UITableViewCellAccessoryDetailDisclosureButton;
 cell.editingAccessoryType = UITableViewCellAccessoryNone;

 return cell;
}

// Respond to accessory button taps
-(void)tableView:(UITableView *)tableView
 accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

{
 // Do something here

}

To handle user taps on the detail disclosure button, the tableView:accessoryButtonTapped-
ForRowWithIndexPath: method enables you to determine the row that was tapped and imple-
ment some appropriate response. In real life, you’d move to a view that explains more about
the selected item and enables you to choose from additional options.

Gray disclosure indicators use a different approach. Because these accessories are not buttons,
they respond to cell selection rather than the accessory button tap. Add your logic to
tableView:didSelectRowAtIndexPath: to push the disclosure view onto your navigation
stack or by presenting a modal view controller or an alert view.

Neither disclosure accessory changes the way the rest of the cell works. Even when sporting
accessories, you can select cells, edit cells, and so forth. Accessories add an extra interaction
modality; they don’t replace the ones you already have.

Recipe: Table Edits

Bring your tables to life by adding editing features. Table edits transform a static information
display into an interactive scrolling control that invites your user to add and remove data.
Although the bookkeeping for working with table edits is moderately complex, the same tech-
niques easily transfer from one app to another. Once you master the basic elements of entering
and leaving edit mode and supporting undo, you can use these items over and over.

Recipe 9-3 introduces a table that responds meaningfully to table edits. This example creates a
scrolling list of random images. Users create new cells by tapping Add and remove cells either

ptg12441863

367Recipe: Table Edits

by swiping or entering edit mode (by tapping Edit) and using the round red remove controls
(see Figure 9-5).

In day-to-day use, every iOS user quickly becomes familiar with the small red circles used to
delete cells from tables. Many users also pick up on basic swipe-to-delete functionality. This
recipe also adds move controls, those triplets of small gray, horizontal lines that allow users to
drag items to new positions. Users leave edit mode by tapping Done.

Adding Undo Support

Cocoa Touch offers the NSUndoManager class to provide a way to reverse user actions. By
default, every application window provides a shared undo manager. You can use this shared
manager or create your own.

All children of the UIResponder class can find the nearest undo manager in the responder
chain. This means that if you use the window’s undo manager in your view controller, the
controller automatically knows about that manager through its undoManager property. This is
enormously convenient because you can add undo support in your main view controller, and
all your child views basically pick up that support for free.

The manager can store an arbitrary number of undo actions. You may want to specify how
deep that stack goes. The bigger the stack, the more memory you use. Many applications allow
3, 5, or 10 levels of undo when memory is tight. Each action can be complex, involving groups
of undo activities, or the action can be simple, as in the examples shown in Recipe 9-3 .

This recipe uses an undo manager to support user undo and redo actions for adding, deleting,
and moving cells. Undo and Redo buttons enable users to move through their edit history. In
this recipe, these buttons are enabled when the undo manager supplies actions to support their
use.

Implementing Undo

Recipe 9-3 handles both adding and deleting items by using the same method, updateItem-
AtIndexPath:withObject: . The method works like this: It inserts any non- nil object at the
index path. When the passed object is nil , it instead deletes the item at that index path.

This might seem like an odd way to handle requests, because it involves an extra method and
extra steps, but there’s an underlying motive. This approach provides a unified foundation for
undo support, allowing simple integration with undo managers.

The method, therefore, has two jobs to do. First, it prepares an undo invocation. That is, it tells
the undo manager how to reverse the edits it is about to apply. Second, it applies the actual
edits, making its changes to the items array and updating the table and bar buttons.

The setBarButtonItems method controls the state of the Undo and Redo buttons. This
method checks the active undo manager to see whether the undo stack provides undo and redo
actions. If so, it enables the appropriate buttons.

ptg12441863

368 Chapter 9 Creating and Managing Table Views

Although we’re not fans of shake-to-undo, this recipe does support it. Its viewDidLoad method
sets the applicationSupportsShakeToEdit property of the application delegate. Also note
the first responder calls added to provide undo support. The table view becomes the first
responder as it appears and resigns it when it disappears.

Figure 9-5 Round red remove controls allow your users to interactively delete items from a table.

Displaying Remove Controls

The table displays remove controls with a single call: [self.tableView setEditing:YES
animated:YES] . This updates the table’s editing property and presents the round remove
controls shown in Figure 9-5 on each cell. The animation is optional but recommended. As a
rule, use animations in your iOS interfaces to lead your users from one state to the next so that
they’re prepared for the mode changes that happen onscreen.

Recipe 9-3 uses a system-supplied Edit/Done button (self.editButtonItem) and implements
setEditing:animated: to move the table into and out of an editing state. When a user taps
the Edit or Done button (it toggles back and forth), this method updates the edit state and the
navigation bar’s buttons.

ptg12441863

369Recipe: Table Edits

Handling Delete Requests

On row deletion, the table communicates with your application by issuing a tableView:
commitEditingStyle:forRowAtIndexPath: callback. A table delete removes an item from the
visual table but does not alter the underlying data. Unless you manage the item removal from
your data source, the “deleted” item will reappear on the next table refresh. This method offers
the place for you to coordinate with your data source and respond to the row deletion that the
user just performed.

Delete an item from the data structure that supplies the data source methods (in this recipe,
through an NSMutableArray of image items) and handle any real-world action such as deleting
files, removing contacts, and so on, that occur as a consequence of the user’s edit.

Recipe 9-3 animates its cell deletions. The beginUpdates and endUpdates method pair allows
simultaneous animation of table operations such as adding and deleting rows.

Swiping Cells

Swiping is a clean method for removing items from your UITableView instances. To enable
swipes, simply provide the commit-editing-style method. The table takes care of the rest.

To swipe, users drag swiftly from the right side of the cell to the left. The rectangular delete
confirmation appears to the right of the cell, but the cells do not display the round remove
controls on the left.

After users swipe and confirm, the tableView:commitEditingStyle:forRowAtIndexPath:
method applies data updates just as if the deletion had occurred in edit mode.

Reordering Cells

You empower your users when you allow them to directly reorder the cells of a table. Figure 9-5
shows a table that displays the reorder control’s stacked gray lines. Users can apply this interac-
tion to sort to-do items by priority, choose which songs should go first in a playlist, and so on.
iOS ships with built-in table reordering support that’s easy to add to your applications.

Like swipe-to-delete, cell reordering support is contingent on the presence or absence of a single
method. The tableView:moveRowAtIndexPath:toIndexPath method synchronizes your data
source with the onscreen changes, similar to committing edits for cell deletion. Adding this
method instantly enables reordering.

Adding Cells

Recipe 9-3 uses an Add button to create new content for the table. This button takes the form
of a system bar button item, which displays as a plus sign. (See the top-left corner of Figure
9-5 .) The addItem: method in Recipe 9-3 appends a new random image at the end of the
items array.

ptg12441863

370 Chapter 9 Creating and Managing Table Views

Recipe 9-3 Editing Tables

@implementation TestBedViewController
{
 NSMutableArray *items;

}

#pragma mark Data Source
// Number of sections
- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView
{
 return 1;

}

// Rows per section
- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section

{
 return items.count;

}

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];
 cell.imageView.image = items[indexPath.row];
 return cell;

}

#pragma mark Edits
- (void)setBarButtonItems
{
 // Expire any ongoing operations
 if (self.undoManager.isUndoing ||
 self.undoManager.isRedoing)
 {
 [self performSelector:@selector(setBarButtonItems)
 withObject:nil afterDelay:0.1f];
 return;
 }

 UIBarButtonItem *undo = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemUndo, self.undoManager,
 @selector(undo));
 undo.enabled = self.undoManager.canUndo;

ptg12441863

371Recipe: Table Edits

 UIBarButtonItem *redo = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemRedo, self.undoManager,
 @selector(redo));
 redo.enabled = self.undoManager.canRedo;
 UIBarButtonItem *add = SYSBARBUTTON(
 UIBarButtonSystemItemAdd, @selector(addItem:));

 self.navigationItem.leftBarButtonItems = @[add, undo, redo];
}

- (void)setEditing:(BOOL)isEditing animated:(BOOL)animated
{
 [super setEditing:isEditing animated:animated];
 [self.tableView setEditing:isEditing animated:animated];

 NSIndexPath *path = [self.tableView indexPathForSelectedRow];
 if (path)
 [self.tableView deselectRowAtIndexPath:path animated:YES];

 [self setBarButtonItems];
}

- (void)updateItemAtIndexPath:(NSIndexPath *)indexPath
 withObject:(id)object

{
 // Prepare for undo
 id undoObject =
 object ? nil : items[indexPath.row];
 [[self.undoManager prepareWithInvocationTarget:self]
 updateItemAtIndexPath:indexPath withObject:undoObject];

 // You cannot insert a nil item. Passing nil is a delete request.
 [self.tableView beginUpdates];
 if (!object)
 {
 [items removeObjectAtIndex:indexPath.row];
 [self.tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationTop];
 }
 else
 {
 [items insertObject:object atIndex:indexPath.row];
 [self.tableView insertRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationTop];
 }
 [self.tableView endUpdates];

ptg12441863

372 Chapter 9 Creating and Managing Table Views

 [self performSelector:@selector(setBarButtonItems)
 withObject:nil afterDelay:0.1f];

}

- (void)addItem:(id)sender
{
 // add a new item
 NSIndexPath *newPath =
 [NSIndexPath indexPathForRow:items.count inSection:0];
 UIImage *image = blockImage(IMAGE_SIZE);
 [self updateItemAtIndexPath:newPath withObject:image];

}

- (void)tableView:(UITableView *)aTableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath

{
 // delete item
 [self updateItemAtIndexPath:indexPath withObject:nil];

}

// Provide re-ordering support
-(void)tableView:(UITableView *)tableView
 moveRowAtIndexPath:(NSIndexPath *)oldPath
 toIndexPath:(NSIndexPath *)newPath

{
 if (oldPath.row == newPath.row) return;

 [[self.undoManager prepareWithInvocationTarget:self]
 tableView:self.tableView moveRowAtIndexPath:newPath
 toIndexPath:oldPath];

 id item = [items objectAtIndex:oldPath.row];
 [items removeObjectAtIndex:oldPath.row];
 [items insertObject:item atIndex:newPath.row];

 if (self.undoManager.isUndoing || self.undoManager.isRedoing)
 {
 [self.tableView beginUpdates];
 [self.tableView deleteRowsAtIndexPaths:@[oldPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 [self.tableView insertRowsAtIndexPaths:@[newPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 [self.tableView endUpdates];
 }

ptg12441863

373Recipe: Table Edits

 [self performSelector:@selector(setBarButtonItems)
 withObject:nil afterDelay:0.1f];

}

#pragma mark First Responder for undo support
- (BOOL)canBecomeFirstResponder
{
 return YES;

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [self becomeFirstResponder];

}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 [self resignFirstResponder];

}

#pragma mark View Setup
- (void)viewDidLoad
{
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor whiteColor];

 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 self.tableView.rowHeight = IMAGE_SIZE + 20.0f;
 self.tableView.separatorStyle =
 UITableViewCellSeparatorStyleNone;
 self.navigationItem.rightBarButtonItem = self.editButtonItem;

 items = [NSMutableArray array];

 // Provide shake to undo support
 [UIApplication sharedApplication].applicationSupportsShakeToEdit = YES;
 [self setBarButtonItems];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

374 Chapter 9 Creating and Managing Table Views

Recipe: Working with Sections

Many iOS applications use sections as well as rows. Sections provide another level of structure
to lists, grouping items together into logical units. The most commonly used section scheme
is alphabetic, although you are certainly not limited to organizing your data this way. You can
use any section scheme that makes sense for your application.

Figure 9-6 shows a table that uses sections to display grouped names. Each section presents a
separate header (that is, “Crayon names starting with . . . ”), and an index on the right offers
quick access to each of the sections. Notice that there are no sections listed for K , Q, X, and Z
in the index because those sections are empty. You generally want to omit empty sections from
the index.

Figure 9-6 Sectioned tables present headers and an index to help users find information as
quickly as possible.

Building Sections

When working with groups and sections, think two dimensionally. Section arrays let you store
and access the members of data in a section-by-section structure. Implement this approach by

ptg12441863

375Recipe: Working with Sections

creating an array of arrays. A section array can store one array for each section, which in turn
contains the titles for each cell.

Predicates help you build sections from a list of strings. The following method alphabetically
retrieves items from a flat array. The beginswith predicate matches each string that starts with
the given letter:

- (NSArray *)itemsInSection:(NSInteger)section
{
 NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"SELF beginswith[cd] %@", [self firstLetter:section]];
 return [crayonColors.allKeys
 filteredArrayUsingPredicate:predicate];

}

Add these results iteratively to a mutable array to create a two-dimensional sectioned array
from an initial flat list:

sectionArray = [NSMutableArray array];
for (int i = 0; i < 26; i++)
 [sectionArray addObject:[self itemsInSection:i]];

To work, this particular implementation relies on two things: first, that the words are already
sorted (each subsection adds the words in the order they’re found in the array); and second,
that the sections match the words. Entries that start with punctuation or numbers won’t work
with this loop. You can trivially add an “other” section to take care of these cases, which this
(simple) sample omits.

Although, as mentioned, alphabetic sections are useful and probably the most common
grouping, you can use any kind of structure you like. For example, you might group people
by departments, gems by grades, or appointments by date. No matter what kind of grouping
you choose, an array of arrays provides the table view data source that best matches sectioned
tables.

From this initial startup, it’s up to you to add or remove items using this two-dimensional
structure. As you can easily see, creation is simple, but maintenance gets tricky. Here’s where
Core Data really helps out. Instead of working with multileveled arrays, you can query your
data store on any object field and sort it as desired. Chapter 12 introduces using Core Data with
tables. And as you will read in that chapter, it greatly simplifies matters. For now, this example
continues to use a simple array of arrays to introduce sections and their use.

Counting Sections and Rows

To create sectioned tables, customize two key data source methods:

 ■ numberOfSectionsInTableView: — This method specifies how many sections appear
in your table, establishing the number of groups to display. When using a section
array, as recommended here, return the number of items in the section array—that is,
sectionArray.count . If the number of items is known in advance (26 in this case, even

ptg12441863

376 Chapter 9 Creating and Managing Table Views

though some sections have no items), you can hard-code that number, but it’s better to
code more generally where possible.

 ■ tableView:numberOfRowsInSection: — This method is called with a section number.
Specify how many rows appear in that section. With the recommended data structure,
just return the count of items at the n th subarray:

sectionArray[sectionNumber].count

Returning Cells

Sectioned tables use both row and section information to find cell data. Earlier recipes in this
chapter use a flat array with a row number index. Tables with sections must use the entire
index path to locate both the section and row index for the data populating a cell. This
method, from a crayon handler helper class, first retrieves the current items for the section and
then pulls out the specific item by row. Recipe 9-4 details the helper class methods that work
with an array-of-arrays section data source:

// Color name by index path
- (NSString *)colorNameAtIndexPath:(NSIndexPath *)path
{
 if (path.section >= sectionArray.count)
 return nil;
 NSArray *currentItems = sectionArray[path.section];

 if (path.row >= currentItems.count)
 return nil;
 NSString *crayon = currentItems[path.row];

 return crayon;
}

A similar method retrieves the color:

// Color by index path
- (UIColor *)colorAtIndexPath:(NSIndexPath *)path
{
 NSString *crayon = [self colorNameAtIndexPath:path];
 if (crayon)
 return crayonColors[crayon];
 return nil;

}

Here is the data source method that uses these calls to return a cell with the proper color and
name:

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

ptg12441863

377Recipe: Working with Sections

{
 UITableViewCell *cell =
 [self.tableView dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];

 // Retrieve the crayon name
 NSString *crayonName = [crayons colorNameAtIndexPath:indexPath];

 // Update the cell
 cell.textLabel.text = crayonName;

 // Tint the title
 if ([crayonName hasPrefix:@"White"])
 cell.textLabel.textColor = [UIColor blackColor];
 else
 cell.textLabel.textColor = [crayons colorAtIndexPath:indexPath];

 return cell;
}

Creating Header Titles

It takes little work to add section headers to your grouped table. The optional tableView:
titleForHeaderInSection: method supplies the titles for each section. It’s passed an integer.
In return, you supply a title. If your table does not contain any items in a given section or
when you’re only working with one section, return nil :

// Return the header title for a section
- (NSString *)tableView:(UITableView *)aTableView
 titleForHeaderInSection:(NSInteger)section

{
 NSString *sectionName = [crayons nameForSection:section];
 if (!sectionName) return nil;
 return [NSString stringWithFormat:
 @"Crayon names starting with '%@'", sectionName];

}

If you aren’t happy using titles, you can return custom header views instead.

Customizing Headers and Footers

Sectioned table views are extremely customizable. Both the tableHeaderView property and
the related tableFooterView property can be assigned to any type of view, each with its own
subviews. So you might add labels, text fields, buttons, and other controls to extend the table’s
features.

ptg12441863

378 Chapter 9 Creating and Managing Table Views

Headers and footers aren’t just one each per table. Each section offers a customizable header
and footer view as well. You can alter heights or swap elements out for custom views. The
optional tableView:heightForHeaderInSection : (or the sectionHeaderHeight property)
and tableView:viewForHeaderInSection: methods let you add individual headers to each
section. Corresponding methods exist for footers as well as headers.

Creating a Section Index

Tables that implement sectionIndexTitlesForTableView: present the kind of index view
that appears on the right in Figure 9-6 . This method is called when the table view is created,
and the array that is returned determines what items are displayed onscreen. Return nil to skip
an index. Apple recommends adding section indexes only to plain table views—that is, table
views created using the default plain style of UITableViewStylePlain and not grouped tables:

// Return an array of section titles for index
- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)aTableView
{
 NSMutableArray *indices = [NSMutableArray array];
 for (int i = 0; i < crayons.numberOfSections; i++)
 {
 NSString *name = [crayons nameForSection:i];
 if (name) [indices addObject:name];
 }
 return indices;

}

Although this example uses single-letter titles, you are certainly not limited to those items. You
can use words or, if you’re willing to work out the Unicode equivalents, symbols, including
emoji items, that are part of the iOS character library. Here’s how you could add a small yellow
smile:

[indices addObject:@"\ue057"];

Handling Section Mismatches

Touching the table index scrolls the table based on the user touch offset. As mentioned earlier
in this section, this particular table does not display sections for K , Q, X, and Z. These missing
letters can cause a mismatch between a user selection and the results displayed by the table.

To remedy this, implement the optional tableView:sectionForSectionIndexTitle:
method. This method’s role is to connect a section index title (that is, the one returned by the
sectionIndexTitlesForTableView : method) with a section number. This overrides any order
mismatches and provides an exact one-to-one match between a user index selection and the
section displayed:

ptg12441863

379Recipe: Working with Sections

#define ALPHA @"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index

{
 return [ALPHA rangeOfString:title].location;

}

Delegation with Sections

As with data source methods, the trick to implementing delegate methods in a sectioned table
involves using the index path section and row properties. These properties provide the double
access needed to find the correct section array and then the item within that array for this
example:

// On selecting a row, update the navigation bar tint
- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 UIColor *color = [crayons colorAtIndexPath:indexPath];
 self.navigationController.navigationBar.barTintColor = color;

}

Recipe 9-4 Supporting a Table with Sections

/* CrayonHandler.m */
// Return an array of items that appear in each section
- (NSArray *)itemsInSection:(NSInteger)section
{
 NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"SELF beginswith[cd] %@", [self firstLetter:section]];
 return [[crayonColors allKeys] filteredArrayUsingPredicate:predicate];

}

// Count of available sections
- (NSInteger)numberOfSections
{
 return sectionArray.count;

}

// Number of items within a section
- (NSInteger)countInSection:(NSInteger)section
{
 return [sectionArray[section] count];

}

ptg12441863

380 Chapter 9 Creating and Managing Table Views

// Return the letter that starts each section member's text
- (NSString *)firstLetter:(NSInteger)section
{
 return [[ALPHA substringFromIndex:section] substringToIndex:1];

}

// The one-letter section name
- (NSString *)nameForSection:(NSInteger)section
{
 if (![self countInSection:section])
 return nil;
 return [self firstLetter:section];

}

// Color name by index path
- (NSString *)colorNameAtIndexPath:(NSIndexPath *)path
{
 if (path.section >= sectionArray.count)
 return nil;
 NSArray *currentItems = sectionArray[path.section];

 if (path.row >= currentItems.count)
 return nil;
 NSString *crayon = currentItems[path.row];

 return crayon;
}

// Color by index path
- (UIColor *)colorAtIndexPath:(NSIndexPath *)path
{
 NSString *crayon = [self colorNameAtIndexPath:path];
 return crayonColors[crayon];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

381Recipe: Searching Through a Table

Recipe: Searching Through a Table

A search display controller is a kind of controller that enables user-driven searches. These
controllers allow users to filter a table’s contents in real time, providing instant responsiveness
to a user-driven query. It’s a great feature that lets users interactively find what they’re looking
for, with the results updating as each new character is entered into the search field.

You create these controllers by initializing them with a search bar instance and a content
controller, normally a table view, whose data source is searched. Recipe 9-5 demonstrates the
steps involved in creating and using a search display controller in an application.

Searches are best built around predicates, enabling you to filter arrays to retrieve matching
items with a simple method call. Here is how you might search through a flat array of strings
to retrieve items that match the text from a search bar. The [cd] after contains refers to case-
insensitive and diacritic-insensitive matching. Diacritics are small marks that accompany a
letter, such as the dots of an umlaut (¨) or the tilde (~) above a Spanish n :

NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"SELF contains[cd] %@",
 searchBar.text];

filteredArray = [[crayonColors allKeys]
 filteredArrayUsingPredicate:predicate];

The search bar in question should appear at the top of the table as its header view, as in Figure
9-7 (left). The same search bar is assigned to the search display controller, as shown in the
following code snippet:

self.tableView.tableHeaderView = searchBar;
searchController = [[UISearchDisplayController alloc]
 initWithSearchBar:searchBar contentsController:self];

Search bars in iOS 7 now support a style property for configuring the presentation:
UISearchBarStyleProminent , UISearchBarStyleMinimal , and UISearchBarStyleDefault .
The prominent style, which is the default, provides a translucent background with an opaque
search field, matching the style found in previous versions of iOS. The minimal style removes
the background and provides a translucent search field. When users tap in the search box, the
view shifts, and the search bar moves up to the navigation bar area, as shown in Figure 9-7
(right). A search results table view is presented, temporarily supplanting the original table. The
search bar and results table view remain until the user taps Cancel, returning the user to the
unfiltered table display.

ptg12441863

382 Chapter 9 Creating and Managing Table Views

Figure 9-7 The user must scroll to the top of the table to initiate a search. The search bar
appears as the first item in the table in its header view (left). Once the user taps within the search
bar and makes it active, the search bar jumps into the navigation bar and presents a filtered list of
items based on the search criteria (right).

Creating a Search Display Controller

Search display controllers help manage the display of data owned by another controller (in this
case, a standard UITableViewController). A search display controller presents a subset of that
data in its own table view, usually by filtering that data source through a predicate. You initial-
ize a search display controller by providing it with a search bar and a contents controller.

Set up the search bar’s text trait features as you would normally do but do not set a delegate.
The search bar works with the search display controller without explicit delegation on your
part.

When setting up the search display controller, make sure you set both its search results data
source and delegate, as shown here. These usually point back to the primary table view control-
ler subclass, which is where you adjust your normal data source and delegate methods to
comply with the searchable table:

ptg12441863

383Recipe: Searching Through a Table

// Create a search bar
searchBar = [[UISearchBar alloc]
 initWithFrame:CGRectMake(0.0f, 0.0f, width, 44.0f)];

searchBar.autocorrectionType = UITextAutocorrectionTypeNo;
searchBar.autocapitalizationType = UITextAutocapitalizationTypeNone;
searchBar.keyboardType = UIKeyboardTypeAlphabet;
self.tableView.tableHeaderView = searchBar;

// Create the search display controller
searchController = [[UISearchDisplayController alloc]
 initWithSearchBar:searchBar contentsController:self];

searchController.searchResultsDataSource = self;
searchController.searchResultsDelegate = self;

Registering Cells for the Search Display Controller

When dequeuing, register cell types for each table view in your application. That includes the
search display controller’s built-in table. Forgetting this step and assuming you can dequeue a
cell from self.tableView sets you up for a rather nasty crash. Here’s how you might register
cell classes for both tables:

// Register cell classes
[self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];

[searchController.searchResultsTableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];

A new issue in iOS 7 requires a change in the timing of cell class registration. When retrieving
the cells in the tableView:cellForRowAtIndexPath: data source method, the search table
provided is freshly created; any previously created registrations are lost. The easiest way to
resolve this is to register your cell class at the very beginning of the method. This doesn’t feel
like an efficient approach, but it ensures the availability of the cell class registration until Apple
provides a more elegant method.

As you can see in the recipe code, workarounds are used for cases where iOS confuses which
table it’s requesting cells for.

Building Searchable Data Source Methods

The number of items displayed in a table changes as users search. A shorter search string
generally matches more items than a longer one. You report the current number of rows for
each table. The number of rows changes as the user updates text in the search field. To detect
whether the table view controller or the search display controller is currently in charge, check
the passed table view parameter. Adjust the row count accordingly:

ptg12441863

384 Chapter 9 Creating and Managing Table Views

- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section

{
 if (aTableView == searchController.searchResultsTableView)
 return [crayons filterWithString:searchBar.text];
 return [crayons countInSection:section];

}

Use a predicate to report the count of items that match the text in the search box. Predicates
provide an extremely simple way to filter an array and return only items that match a search
string. The predicate used here performs a case-insensitive contains match. Each string that
contains the text in the search field returns a positive match, allowing that string to remain
part of the filtered array. Alternatively, you might want to use beginswith to avoid matching
items that do not start with that text. The following method performs the filtering, stores the
results, and returns the count of items that it found:

- (NSInteger)filterWithString:(NSString *)filter
{
 NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"SELF contains[cd] %@", filter];
 filteredArray = [[crayonColors allKeys]
 filteredArrayUsingPredicate:predicate];
 return filteredArray.count;

}

When providing cells, it is especially critical to check the requesting table view. Cell registra-
tion calls must be sent to the appropriate table, and, conversely, cells must be dequeued and
initialized from the expected table. The following method returns cells retrieved from either the
standard set or the filtered set:

- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 [aTableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 UITableViewCell *cell =
 [aTableView dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];

 NSString *crayonName;
 if (aTableView == self.tableView)
 {
 crayonName = [crayons colorNameAtIndexPath:indexPath];
 }
 else
 {
 if (indexPath.row < crayons.filteredArray.count)
 crayonName = crayons.filteredArray[indexPath.row];

ptg12441863

385Recipe: Searching Through a Table

 }

 cell.textLabel.text = crayonName;
 cell.textLabel.textColor = [crayons colorNamed:crayonName];
 if ([crayonName hasPrefix:@"White"])
 cell.textLabel.textColor = [UIColor blackColor];

 return cell;
}

Delegate Methods

Search awareness is not limited to data sources. Determining the context of a user tap is criti-
cal for providing the correct response in delegate methods. As with the previous data source
methods, this delegate method checks the callback’s table view parameter to determine which
table view was active. Based on the selected table and index, it picks a color with which to tint
both the search bar and the navigation bar:

// Respond to user selections by updating tint colors
- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 UIColor *color = nil;
 if (aTableView == self.tableView)
 color = [crayons colorAtIndexPath:indexPath];
 else
 {
 if (indexPath.row < crayons.filteredArray.count)
 {
 NSString *colorName =
 crayons.filteredArray[indexPath.row];
 if (colorName)
 color = [crayons colorNamed:colorName];
 }
 }
 self.navigationController.navigationBar.barTintColor = color;
 searchBar.barTintColor = color;

}

Using a Search-Aware Index

Recipe 9-5 highlights some of the other ways to adapt a sectioned table to accommodate
search-ready tables. When you support search, the first item added to a table’s section index
should be the UITableViewIndexSearch constant. Intended for use only in table indexes,
and only as the first item in the index, this option adds the small magnifying glass icon that
indicates that the table supports searches. Use it to provide a quick jump to the beginning of

ptg12441863

386 Chapter 9 Creating and Managing Table Views

the list. Update tableView:sectionForSectionIndexTitle:atIndex: to catch user requests.
The scrollRectToVisible:animated: call used in this recipe manually moves the search bar
into place when a user taps the magnifying glass. Otherwise, users would have to scroll back
from section 0, which is the section associated with the letter A.

Add a call in viewWillAppear: to scroll the search bar offscreen when the view first loads.
This allows your table to start with the bar hidden from sight, ready to be scrolled up to or
jumped to as the user desires.

Finally, respond to cancelled searches by proactively clearing the search text from the bar.

Recipe 9-5 Using Search Features

// Add Search to the index
- (NSArray *)sectionIndexTitlesForTableView:
 (UITableView *)aTableView

{
 if (aTableView == searchController.searchResultsTableView)
 return nil;

 // Initialize with the search magnifying glass
 NSMutableArray *indices = [NSMutableArray
 arrayWithObject:UITableViewIndexSearch];

 for (int i = 0; i < crayons.numberOfSections; i++)
 {
 NSString *name = [crayons nameForSection:i];
 if (name) [indices addObject:name];
 }

 return indices;
}

// Handle both the search index item and normal sections
- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index

{
 if (title == UITableViewIndexSearch)
 {
 [self.tableView scrollRectToVisible:searchBar.frame
 animated:NO];
 return -1;
 }
 return [ALPHA rangeOfString:title].location;

}

ptg12441863

387Recipe: Adding Pull-to-Refresh to Your Table

// Handle the Cancel button by resetting the search text
- (void)searchBarCancelButtonClicked:(UISearchBar *)aSearchBar
{
 [searchBar setText:@""];

}

// Titles only for the main table
- (NSString *)tableView:(UITableView *)aTableView
 titleForHeaderInSection:(NSInteger)section

{
 if (aTableView == searchController.searchResultsTableView)
 return nil;
 return [crayons nameForSection:section];

}

// Upon appearing, scroll away the search bar
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 NSIndexPath *path =
 [NSIndexPath indexPathForRow:0 inSection:0];
 [self.tableView scrollToRowAtIndexPath:path
 atScrollPosition:UITableViewScrollPositionTop
 animated:NO];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

Recipe: Adding Pull-to-Refresh to Your Table

Pull-to-refresh is a widely used app feature that has become popular in the App Store over
the past few years. It lets you refresh tables by pulling down their tops enough to indi-
cate a request. It is so intuitive to use that many wondered why Apple didn’t add it to its
UITableViewController class. In iOS 6, though, Apple created a highly stylized and stretch-
able animated refresh control. With iOS 7, the stretchable control was replaced with a more
traditional activity indicator with a slightly expanded animation to provide feedback on the
state of the control (see Figure 9-8).

The new UIRefreshControl class provides an extremely handy control that initiates a table
view’s refresh. Recipe 9-6 demonstrates how to add it to your applications. Create a new
instance and assign it to a table view controller’s refreshControl property. The control

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

388 Chapter 9 Creating and Managing Table Views

appears directly in the table view, without requiring any further work. When the user pulls
down the table view, the pull control is displayed and triggered.

To activate the refresh control programmatically, start a refresh event with beginRefreshing .
The refresh control turns into an animated progress wheel. When the new data has been
prepared, end the refreshing (endRefreshing) and reload the table view.

Descending from UIControl , instances use target-action to send a custom selector to clients
when activated. For some reason, it updates with a value-changed event. Surely, it’s long past
time for Apple to introduce a UIControlEventTriggered event for stateless control triggers
like this one.

Figure 9-8 You can easily add a pull-to-refresh option to your tables. Users pull down to request
updated data.

Using pull-to-refresh allows your applications to delay performing expensive routines. For
example, you might hold off fetching new information from the Internet or computing new
table elements until the user triggers a request for those operations. Pull-to-refresh places your
user in control of refresh operations and provides a great balance between information-on-
demand and computational overhead.

ptg12441863

389Recipe: Adding Pull-to-Refresh to Your Table

The DataManager class referred to in Recipe 9-6 loads its data asynchronously, using an opera-
tion queue:

- (void)loadData
{
 NSString *rss = @"http://itunes.apple.com/us/rss/topalbums/limit=30/xml";
 NSOperationQueue *queue = [[NSOperationQueue alloc] init];
 [queue addOperationWithBlock:
 ^{
 root = [[XMLParser sharedInstance] parseXMLFromURL:
 [NSURL URLWithString:rss]];
 [[NSOperationQueue currentQueue] addOperationWithBlock:^{
 [self handleData];
 }];
 }];

}

This approach ensures that data loading won’t block the main thread. The refresh control’s
progress wheel won’t be hindered, and the user will be free to interact with other UI elements
in your app. After the fetch completes, move control back to the main thread:

if (delegate &&
 [delegate respondsToSelector:@selector(dataIsReady:)])
 [delegate performSelectorOnMainThread:@selector(dataIsReady:)
 withObject:self waitUntilDone:NO];

Recipe 9-6 offers a Load button in addition to the refresh control. Most applications skip this
redundancy, but Recipe 9-6 includes it to show how it would interact with the refresh control.
When the user taps Load, you still need to perform the refresh control’s startRefreshing and
endRefreshing methods. This ensures that the refresh control operates synchronously with
the manual reload.

Recipe 9-6 Building Pull-to-Refresh into Your Tables

- (void)dataIsReady:(id)sender
{
 // Update the title
 self.title = @"iTunes Top Albums";

 // Reenable the bar button item
 self.navigationItem.rightBarButtonItem.enabled = YES;

 // Stop refresh control animation and update the table
 [self.refreshControl endRefreshing];
 [self.tableView reloadData];

}

- (void)loadData

ptg12441863

390 Chapter 9 Creating and Managing Table Views

{
 // Provide user status update
 self.title = @"Loading...";

 // Disable the bar button item
 self.navigationItem.rightBarButtonItem.enabled = NO;

 // Start refreshing
 [self.refreshControl beginRefreshing];

 [manager loadData];
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.tableView.rowHeight = 72.0f;
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"generic"];

 // Offer a bar button item and...
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Load", @selector(loadData));

 // Alternatively, use the refresh control
 self.refreshControl = [[UIRefreshControl alloc] init];
 [self.refreshControl addTarget:self action:@selector(loadData)
 forControlEvents:UIControlEventValueChanged];

 // This custom data manager asynchronously (nonblocking) loads
 // data in a secondary thread
 manager = [[DataManager alloc] init];
 manager.delegate = self;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

Recipe: Adding Action Rows

Action rows (aka drawer cells) slide open to expose extra cell-specific functionality when users
tap the cell associated with them. You may have seen this kind of functionality in commercial

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

391Recipe: Adding Action Rows

apps such as Tweetbot (http://tapbots.com). Recipe 9-7 builds an action row table featuring a
pair of buttons in each of its drawers (see Figure 9-9). When tapped, the Title button sets the
title on the navigation bar to the cell text; the Alert button displays the same string in a pop-up
alert. iOS developer Bilal Sayed Ahmad (@Demonic_BLITZ on Twitter) suggested adding this
recipe to the Cookbook , and this code is inspired from a sample project he created.

Figure 9-9 Action rows offer cell-specific actions that slide open when a user selects a cell. In
this example, the user has tapped the Romeo cell and disclosed a hidden drawer with the Title
and Alert buttons.

Recipe 9-7 works by adding a phantom cell to its table view. All other cells adjust around
its presence. The implementation starts by adjusting the method that reports the number of
rows per section. The drawer lives at actionRowPath . When the phantom cell is present, the
number of cells increases by one. When it is hidden, the data source simply reports the normal
count of its items.

The viewDidLoad method registers two cell types: one for standard rows and one for the action
row. The data source returns a custom cell when passed a path it recognizes as the custom
index.

http://tapbots.com

ptg12441863

392 Chapter 9 Creating and Managing Table Views

The action cell has other quirks. It cannot be selected. Recipe 9-7 ’s tableView:
willSelectRowAtIndexPath: method ensures this by returning nil when passed
the action row path.

Most of this implementation work takes place in the tableView:didSelectRowAtIndexPath:
method. It moves the action drawer around by changing its path and performing table updates.
Here, the code considers three possible states: The drawer is closed and a new cell is tapped,
the drawer is open and the same cell is tapped, and the drawer is open and a different cell is
tapped.

The action row path is always nil whenever the drawer is shut. When a cell is tapped, the
method sets a path for the new drawer directly after the tapped cell. If the user taps the associ-
ated cell above the drawer when it is open, the drawer “closes,” and the path is set back to nil .
When the user taps a different cell, this method adjusts its math, depending on whether the
new cell is below the old action drawer or above it.

The beginUpdates and endUpdates method pair used here allows simultaneous animation of
table operations. Use this block to smoothly introduce all the row changes created by moving,
adding, and removing the action drawer.

Recipe 9-7 Adding Action Drawers to Tables

// Rows per section
- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section

{
 return items.count + (self.actionRowPath != nil);

}

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 if ([self.actionRowPath isEqual:indexPath])
 {
 // Action Row
 CustomCell *cell = (CustomCell *)[self.tableView
 dequeueReusableCellWithIdentifier:@"action"
 forIndexPath:indexPath];
 [cell setActionTarget:self];
 return cell;
 }
 else
 {
 // Normal cell
 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];

ptg12441863

393Recipe: Adding Action Rows

 // Adjust item lookup around action row if needed
 NSInteger adjustedRow = indexPath.row;
 if (_actionRowPath &&
 (_actionRowPath.row < indexPath.row))
 adjustedRow--;
 cell.textLabel.text = items[adjustedRow];

 cell.textLabel.textColor = [UIColor blackColor];
 cell.selectionStyle = UITableViewCellSelectionStyleGray;
 return cell;
 }

}

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 // Only select normal cells
 if([indexPath isEqual:self.actionRowPath]) return nil;
 return indexPath;

}

// Deselect any current selection
- (void)deselect
{
 NSArray *paths = [self.tableView indexPathsForSelectedRows];
 if (!paths.count) return;

 NSIndexPath *path = paths[0];
 [self.tableView deselectRowAtIndexPath:path animated:YES];

}

// On selection, update the title and enable find/deselect
- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 NSArray *pathsToAdd;
 NSArray *pathsToDelete;

 if ([self.actionRowPath.previous isEqual:indexPath])
 {
 // Hide action cell
 pathsToDelete = @[self.actionRowPath];
 self.actionRowPath = nil;
 [self deselect];
 }
 else if (self.actionRowPath)
 {

ptg12441863

394 Chapter 9 Creating and Managing Table Views

 // Move action cell
 BOOL before = [indexPath before:self.actionRowPath];
 pathsToDelete = @[self.actionRowPath];
 self.actionRowPath = before ? indexPath.next : indexPath;
 pathsToAdd = @[self.actionRowPath];
 }
 else
 {
 // New action cell
 pathsToAdd = @[indexPath.next];
 self.actionRowPath = indexPath.next;
 }

 // Animate the deletions and insertions
 [self.tableView beginUpdates];
 if (pathsToDelete.count)
 [self.tableView deleteRowsAtIndexPaths:pathsToDelete
 withRowAnimation:UITableViewRowAnimationNone];
 if (pathsToAdd.count)
 [self.tableView insertRowsAtIndexPaths:pathsToAdd
 withRowAnimation:UITableViewRowAnimationNone];
 [self.tableView endUpdates];

}

// Set up table
- (void)viewDidLoad
{
 [super viewDidLoad];
 self.tableView.rowHeight = 60.0f;
 self.tableView.backgroundColor =
 [UIColor colorWithWhite:0.75f alpha:1.0f];

 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 [self.tableView registerClass:[CustomCell class]
 forCellReuseIdentifier:@"action"];
 items = [@"Alpha Bravo Charlie Delta Echo Foxtrot Golf \
 Hotel India Juliet Kilo Lima Mike November Oscar Papa \
 Quebec Romeo Sierra Tango Uniform Victor Whiskey Xray \
 Yankee Zulu" componentsSeparatedByString:@" "];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 9 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

395Coding a Custom Group Table

Coding a Custom Group Table

If alphabetic section list tables are the M. C. Eschers of the iPhone table world, with each
section block precisely fitting into the negative spaces provided by other sections in the list,
then freeform group tables are the Marc Chagalls. Every bit is drawn as a freeform, handcrafted
work of art.

It’s relatively easy to code up all the tables you’ve seen so far in this chapter once you’ve
mastered the knack. Perfecting group table coding (which devotees usually call preferences table
because that’s the kind of table used in the Settings application) remains an illusion.

Building group tables in code is all about the collage—handcrafting a look, piece by piece.
Creating a presentation like this in code involves a lot of detail work.

Creating Grouped Preferences Tables

There’s nothing special involved in terms of laying out a new UITableViewController for
a preferences table. You allocate it. You initialize it with the grouped table style. That’s pretty
much the end of it. It’s the data source and delegate methods that provide the challenge. Here
are the methods you need to define:

 ■ numberOfSectionsInTableView: — All preferences tables contain groups of items. Each
group is visually contained in an edge-to-edge white background, contrasting with the
gray background of the containing table. Return the number of groups you’ll be defining
as an integer.

 ■ tableView:titleForHeaderInSection: — Add the title for each section into this
optional method. Return an NSString with the requested section name.

 ■ tableView:numberOfRowsInSection: — Each section may contain any number of cells.
Have this method return an integer indicating the number of rows (that is, cells) for that
group.

 ■ tableView:heightForRowAtIndexPath: — Tables that use flexible row heights cost
more in terms of computational intensity. If you need to use variable heights, implement
this optional method to specify what those heights will be. Return the value by section
and by row.

 ■ tableView:cellForRowAtIndexPath: — This is the standard cell-for-row method you’ve
seen throughout this chapter. What sets it apart is its implementation. Instead of using
one kind of cell, you’ll probably want to create different kinds of reusable cells (with
different reuse tags) for each cell type. Make sure you manage your reuse queue carefully
and use as many IB-integrated elements as possible.

 ■ tableView:didSelectRowAtIndexPath: — You provide case-by-case reactions to cell
selection in this optional delegate method, depending on the cell type selected.

ptg12441863

396 Chapter 9 Creating and Managing Table Views

Note

The open-source llamasettings project at Google Code (http://llamasettings.googlecode.com)
automatically produces grouped tables from property lists meant for iPhone settings bundles. It
allows you to bring settings into your application without forcing your user to leave the app. The
project can be freely added to commercial iOS SDK applications without licensing fees.

Recipe: Building a Multiwheel Table

Sometimes you’d like your users to pick from long lists or from several lists simultaneously.
This is where UIPickerView instances really excel. UIPickerView objects produce tables offer-
ing individually scrolling “wheels,” as shown in Figure 9-10 . Users interact with one or more
wheels to build their selection.

Figure 9-10 UIPickerView instances enable users to select from independently scrolling
wheels.

These tables, although superficially similar to standard UITableView instances, use distinct
data and delegate protocols:

http://llamasettings.googlecode.com

ptg12441863

397Recipe: Building a Multiwheel Table

 ■ There is no UIPickerViewController class. UIPickerView instances act as subviews
to other views. They are not intended to be the central focus of an application view. You
can place a UIPickerView instance onto another view.

 ■ Picker views use numbers, not objects. Components (that is, the wheels) are indexed
by numbers and not by NSIndexPath instances. It’s a more informal class than
UITableView.

You can supply either title strings or views via the data source. Picker views can handle both
approaches.

Creating the UIPickerView

When creating the picker, don’t forget to assign the delegate and data source. Without
this support, you cannot add data to the view, define its features, or respond to selection
changes. Your primary view controller should implement the UIPickerViewDelegate and
UIPickerViewDataSource protocols.

Data Source and Delegate Methods

Implement three key data source methods for your UIPickerView to make it function properly
at a minimum level. These methods are as follows:

 ■ numberOfComponentsInPickerView: — Return the number of columns, as an integer.

 ■ pickerView:numberOfRowsInComponent: — Return the maximum number of rows per
wheel, as an integer. The number of rows does not need to be identical. You can have
one wheel with many rows and another with very few.

 ■ pickerView:titleForRow:forComponent or pickerView:viewForRow:forComponent:
reusingView: —These methods specify the text or view used to label a row on a given
component.

In addition to these data source methods, you might want to supply one further delegate
method. This method responds to a user’s wheel selection:

 ■ pickerView:didSelectRow:inComponent: — Add any application-specific
behavior to this method. If needed, you can query pickerView to return the
selectedRowInComponent: for any of the wheels in your view.

Using Views with Pickers

Picker views use a basic view-reuse scheme, caching the views supplied to it for possible reuse.
When the final parameter for the pickerView:viewForRow:forComponent:reusingView:
method is not nil , you can reuse the passed view by updating its settings or contents. Check
for the view and allocate a new one only if one has not been supplied.

ptg12441863

398 Chapter 9 Creating and Managing Table Views

Notice the high number of components: 1 million. The reason for this high number lies in
a desire to emulate real cylinders. Normally, picker views have a first element and a last, and
that’s where they end. This recipe takes another approach, asking “What if the components
were actual cylinders, so the last element were connected to the first?” To emulate this, the
picker in this recipe uses a much higher number of components than any user will ever be
able to access. It initializes the picker to the middle of that number by calling selectRow:
inComponent:Animated: . The image shown at each component “row” is derived by the
modulo of the actual reported row and the number of individual elements to display (in this
case, % 4). Although the code knows that the picker actually has 1 million rows per wheel, the
user experience offers a cylindrical wheel of just four rows.

Note

Pickers have traditionally been displayed in a different view from the referencing content. For
example, date pickers were often presented in a new view when the user tapped on a date
field. In iOS 7, Apple’s apps have begun to embed pickers within the content of the app, includ-
ing in tables. Apple’s Human Interface Guidelines (HIG) now state that pickers should be inline
with the content, without requiring the user to navigate to a different view. This is readily visible
in the iOS 7 Calendar app.

Recipe 9-8 Creating the Illusion of a Repeating Cylinder

- (NSInteger)numberOfComponentsInPickerView:
 (UIPickerView *)pickerView

{
 return 3; // three columns

}

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component

{
 return 1000000; // arbitrary and large

}

- (CGFloat)pickerView:(UIPickerView *)pickerView
 rowHeightForComponent:(NSInteger)component

{
 return 120.0f;

}

- (UIView *)pickerView:(UIPickerView *)pickerView

The height need not match the actual view. Implement pickerView:rowHeightForComponent:
to set the row height used by each component. Recipe 9-8 uses a row height of 120 points,
providing plenty of room for each image and laying the groundwork for the illusion that the
picker could be continuous rather than having a starting point and an ending point.

ptg12441863

399Recipe: Building a Multiwheel Table

 viewForRow:(NSInteger)row forComponent:(NSInteger)component
 reusingView:(UIView *)view

{
 // Load up the appropriate row image
 NSArray *names = @[@"club", @"diamond", @"heart", @"spade"];
 UIImage *image = [UIImage imageNamed:names[row%4]];

 // Create an image view if one was not supplied
 UIImageView *imageView = (UIImageView *) view;
 imageView.image = image;
 if (!imageView)
 imageView = [[UIImageView alloc] initWithImage:image];

 return imageView;
}

- (void)pickerView:(UIPickerView *)pickerView
 didSelectRow:(NSInteger)row inComponent:(NSInteger)component

{
 // Respond to selection by setting the view controller's title
 NSArray *names = @[@"C", @"D", @"H", @"S"];
 self.title = [NSString stringWithFormat:@"%@•%@•%@",
 names[[pickerView selectedRowInComponent:0] % 4],
 names[[pickerView selectedRowInComponent:1] % 4],
 names[[pickerView selectedRowInComponent:2] % 4]];

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 // Set random selections as the view appears
 [picker selectRow:50000 + (rand() % 4) inComponent:0 animated:YES];
 [picker selectRow:50000 + (rand() % 4) inComponent:1 animated:YES];
 [picker selectRow:50000 + (rand() % 4) inComponent:2 animated:YES];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 // Create the picker and center it
 picker = [[UIPickerView alloc] initWithFrame:CGRectZero];
 [self.view addSubview:picker];
 PREPCONSTRAINTS(picker);
 CENTER_VIEW_H(self.view, picker);

ptg12441863

400 Chapter 9 Creating and Managing Table Views

 CENTER_VIEW_V(self.view, picker);

 // Initialize the picker properties
 picker.delegate = self;
 picker.dataSource = self;
 picker.showsSelectionIndicator = YES;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 9 .

Using UIDatePicker

Sometimes you want to ask a user to enter date information. Apple supplies a tidy subclass of
UIPickerView to handle several kinds of date and time entry. Figure 9-11 shows the four built-
in styles of UIDatePicker s you can choose from—for selecting a time, selecting a date, select-
ing a combination of the two, and a countdown timer.

Creating the Date Picker

Lay out a date picker exactly as you would a UIPickerView . The geometry is identical. After
that, things get much, much easier. You need not set a delegate or define data source methods.
You do not have to declare any protocols. Just assign a date picker mode. Choose from
UIDatePickerModeTime , UIDatePickerModeDate , UIDatePickerModeDateAndTime , and
UIDatePickerModeCountDownTimer :

[datePicker setDate:[NSDate date]]; // set date
datePicker.datePickerMode = UIDatePickerModeDateAndTime; // set style

Optionally, add a target for when the selection changes (UIControlEventValueChanged) and
create the callback method for the target-action pair.

Here are a few properties you’ll want to take advantage of in the UIDatePicker class:

 ■ date — Set the date property to initialize the picker or to retrieve the information set by
the user as he or she manipulates the wheels.

 ■ maximumDate and minimumDate —These properties set the bounds for date and time
picking. Assign each one a standard NSDate . With these, you can constrain your user to
pick a date from next year rather than just enter a date and then check whether it falls
within an accepted time frame.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

401Summary

 ■ minuteInterval — Sometimes you want to use 5-, 10-, 15-, or 30-minute intervals
on your selections, such as for applications used to set appointments. Use the
minuteInterval property to specify that value. Whatever number you pass, it has to be
evenly divisible into 60.

 ■ countDownDuration — Use this property to set the maximum available value for a
countdown timer. You can go as high as 23 hours and 59 minutes (that is, 86,399
seconds).

Figure 9-11 The iPhone offers four stock date picker models. Use the datePickerMode
property to select the picker you want to use in your application.

Summary

This chapter introduces iOS tables, both simple and complex. You’ve seen all the basic iOS
table features—from simple tables, to edits, to reordering and undo. You’ve also learned about
a variety of advanced elements—from indexed alphabetic listings, to refresh controls, to picker
views. The skills covered in this chapter enable you to build a wealth of table-based applica-
tions for the iPhone, iPad, and iPod touch. Here are some key points to take away from this
chapter:

 ■ When it comes to understanding tables, make sure you know the difference between data
sources and delegate methods. Data sources fill up your tables with meaningful content.
Delegate methods respond to user interactions.

 ■ UITableViewController s simplify applications built around a central UITableView . Do
not hesitate to use UITableView instances directly, however, if your application requires
them—especially in popovers or with split view controllers. Just make sure to explicitly
support the UITableViewDelegate and UITableViewDataSource protocols when
needed.

ptg12441863

402 Chapter 9 Creating and Managing Table Views

 ■ Index controls provide a great way to navigate quickly through large ordered lists.
Take advantage of their power when working with tables that would otherwise become
unnavigable. Stylistically, it’s best to avoid index controls when working with grouped
tables.

 ■ Dive into edits. Giving the user control over the table data is easy to do, and your code
can be reused over many projects. Don’t hesitate to design for undo support from the
start. Even if you think you may not need undo at first, you might change your mind
later.

 ■ It’s easy to convert flat tables into sectioned ones. Don’t hesitate to use the predicate
approach introduced in this chapter to create sections from simple arrays. Sectioned
tables allow you to present data in a more structured fashion, with index support and
easy search integration.

 ■ Date pickers are highly specialized and very good at what they do: soliciting your users
for dates and times. Picker views provide a less-specialized solution but require more
work on your end.

ptg12441863

10
Collection Views

Introduced in iOS 6, collection views present organized grids that lay out cells. These collec-
tions go well beyond standard table views and their vertically scrolling lists of cells. Collection
views use many of the same concepts as tables but provide more power and more flexibility.
With collection views, you create side-scrolling lists, grids, one-of-a-kind layouts like circles,
and more. Plus, this class offers integrated visual effects through layout specifications and lots
of great features like snapping into place after scrolling.

As with tables, you can add an enormous range of implementation details to collection views.
This chapter introduces you to the basics: to the collection view, its client sources, its special-
purpose controller, and its cells. You’ll read about how to develop standard and customized
collections, how to start adding special effects to your presentations, and how to take advan-
tage of the built-in animation support to create the most effective interaction possible.

Keep in mind that collection views are more powerful than any single chapter can properly
cover. This chapter offers fundamental collection view concepts. From here, how you hone
your collection view knowledge and experience is up to you.

Collection Views Versus Tables

UICollectionView instances present an ordered collection of data items. Like table views,
collections are made up of cells, headers, and footers powered by data sources and delegates.
Unlike tables, collections introduce a layout—a class that specifies how items are placed
onscreen. Layouts organize the location of each cell, so items appear exactly where needed.

Table 10-1 compares these two layout families. As you see, each family offers a core view class
and a prebuilt controller class. These classes rely on a data source that feeds cells on demand
and provides other content information. They use a delegate to respond to user interactions.

There are also several fundamental differences, starting with the humble index path. Both
classes are organized by section as their primary grouping, and each section contains indexed
individual cells. Because collection views can scroll either direction, vertical or horizontal,

ptg12441863

404 Chapter 10 Collection Views

terminology has changed. Table views use sections and rows; collection views use sections and
items. The NSIndexPath class was updated in iOS 6 as well to reflect this scheme.

Collection views introduce a new kind of content called “decoration” views, which provide
visual enhancements like backdrops. This class understands that cells and scrolling are just the
starting point. You can customize the entire look to create coherent presentations using any
metaphor you can imagine. Collection views also rethink headers and footers, transforming
them into supplementary views with a little more API flexibility than those found in tables.

Table 10-1 Collection Views Versus Tables

Item Collection Views Tables

Primary class UICollectionView UITableView

Controller UICollectionViewController UITableViewController

Contents Cells, supplementary views
(for example, headers and footers),
decoration views (backdrops and
visual adornments)

Cells, headers, and footers

User-directed
reloading

Flow updates in real time to match
current data. Refresh controls in
limited situations.

Refresh controls
(UIRefreshControl)

Programmatic
reloading

reloadData reloadData

Reusable cells UICollectionViewCell

(dequeueReusableCellWithReuse-
Identifier:forIndexPath:)

UITableViewCell (dequeue-
ReusableCellWithIdentifier:

forIndexPath:)

Registration Register class or XIB for cell,
supplementary, or decoration view reuse

Register class or XIB for cell reuse

Headers and
footers

UICollectionReusableView UITableViewHeaderFooterView

Layout UICollectionViewLayout and
UICollectionViewFlowLayout

Not applicable

Data source UICollectionViewDataSource UITableViewDataSource

Delegation UICollectionViewDelegate UITableViewDelegate

Layout delega-
tion

UICollectionViewDelegate-

FlowLayout
Not applicable

Indexing Sections and items Sections and rows

Scrolling
directions

Horizontal or vertical Vertical

Visual effects Set up via custom layouts Not applicable

ptg12441863

405Establishing Collection Views

Practical Implementation Differences

Expect a few practical differences between building table views and collection views. Collection
views are less tolerant of lazy data loading. As a rule, when you create a collection view, make
sure the data source that powers that view is fully prepared to go—even if it’s prepared with a
minimal or empty set of cells as you load data elsewhere in your application.

You cannot wait until your initialization or loadView or viewDidLoad methods to prepare
content. Get content ready and going first, whether in your application delegate or before
you instantiate and add your collection view or push a new child collection view controller. If
your data is not ready to go, your app will crash; this is not the user experience you should be
aiming toward.

Make sure you fully establish your collection view’s layout object before presenting the collec-
tion. As you’ll see in recipes in this chapter, you set up all layout details, including the scroll
direction and any properties that don’t rely on delegate callbacks. Only then do you create and
initialize your collection view, as shown here:

MyCollectionController *mcc = [[MyCollectionController alloc]
 initWithCollectionViewLayout:layout];

Passing a nil layout produces an exception.

You are not limited to a single layout for the life of the collection view. The collection-
ViewLayout property provides direct access to the layout of the collection. Setting this prop-
erty updates the layout immediately, without animation. iOS 7 provides a simple method to
animate the transition between multiple layouts:

- (void)setCollectionViewLayout:(UICollectionViewLayout *)layout
 animated:(BOOL)animated completion:(void (^)(BOOL finished))completion

With iOS 7, Apple also introduced a mechanism for creating complex, interactive tran-
sitions. Although beyond the scope of this book, more information is available in the
UICollectionView Class Reference available at Apple’s iOS Developer Center or in
Xcode’s iOS 7 docset.

Establishing Collection Views

As with tables, collections come in two flavors: views and prebuilt controllers. You
either build an individual collection view instance and add it to a presentation or use a
UICollectionViewController object that conveniently offers a view controller prepopulated
with a collection view. The controller automatically sets the view’s data source delegate to itself
and declares both protocols. Embed the collection view controller as a child of any container
(such as a navigation controller, tab bar controller, split view controller, page view controller,
and so on) or present it on its own.

ptg12441863

406 Chapter 10 Collection Views

Note

Like table views, collection views have delegate and dataSource properties. The
UICollectionViewFlowLayout class expects the collection view’s delegate to also adopt
the UICollectionViewDelegateFlowLayout protocol. Your collection view controller can
implement the appropriate methods of all three protocols.

Controllers

To build a controller, first create and set up a layout object and then allocate the new instance
and initialize it with the prepared layout:

UICollectionViewFlowLayout *layout =
 [[UICollectionViewFlowLayout alloc] init];

layout.scrollDirection = UICollectionViewScrollDirectionHorizontal;

MyCollectionController *mcc = [[MyCollectionController alloc]
 initWithCollectionViewLayout:layout];

This snippet uses a collection view flow layout in its default form, only setting the scroll direc-
tion. As you’ll see through this chapter, you can do a lot more with layouts. Typically, you set
additional properties or subclass system-supplied layouts and add your own behavior.

As a rule, you use the UICollectionViewFlowLayout class. It’s the layout workhorse for
collection views. Use it to build any basic presentation. In its default form, each section auto-
matically wraps items to fit the screen, and you can specify how much space appears between
sections, between lines, between items, and so forth. It’s insanely customizable, as you’ll see in
the next section, which details many tweaks you can apply to flow layouts.

The parent class UICollectionViewLayout offers an abstract base class for subclassing (which
you mostly avoid; nearly every time, you’ll want to subclass the flow layout version instead)
and isn’t meant for direct use.

Note

When looking at subclassing layouts, refer to UICollectionViewLayout . The parent of the
UICollectionViewFlowLayout class, its documentation provides the canonical list of
customizable methods.

Views

To create a collection view for embedding into another view (without using a
UICollectionViewController), establish a layout, create the collection view using
the layout, and set the data source and delegate. The flow layout delegate utilizes
the object you set as the collection view’s delegate property:

ptg12441863

407Flow Layouts

UICollectionViewFlowLayout *layout =
 [[UICollectionViewFlowLayout alloc] init];

layout.scrollDirection = UICollectionViewScrollDirectionHorizontal;

collectionView = [[UICollectionView alloc] initWithFrame:CGRectZero
 collectionViewLayout:layout];

collectionView.dataSource = self;
collectionView.delegate = self;

Data Sources and Delegates

View controllers coordinating collection views declare UICollectionViewDataSource and
UICollectionViewDelegate . Unlike with table views, when using a flow layout, a third proto-
col is also declared, UICollectionViewDelegateFlowLayout .

The delegate flow layout protocol coordinates layout information with your collection’s layout
instance through a series of callbacks. Your collection view’s delegate adopts this protocol—
that is, you do not have to specify a third collection view property like delegateFlowLayout .

As with table views, the data source provides section and item information and returns cells
and other collection view items on demand. The delegate handles user interactions and
provides meaningful responses to user changes. The flow layout delegate introduces section-
by-section layout details and is, for the most part, completely optional. You’ll read about flow
layouts and their delegate callbacks in the next section.

Flow Layouts

Flow layouts provided by the UICollectionViewFlowLayout class create organized grid
presentations in an application. They provide built-in properties that you edit directly or estab-
lish via delegate callbacks. These properties specify how the flow sets itself up to place items
onscreen. In its most basic form, the layout properties provide you with a geometric vocabu-
lary, where you talk about row spacing, indentation, and item-to-item margins.

Scroll Direction

The scrollDirection property controls whether sections are lined up horizontally
(UICollectionViewScrollDirectionHorizontal) or vertically (UICollectionViewScroll-
DirectionVertical). Figure 10-1 demonstrates otherwise identical layouts with horizontal
(left) and vertical (right) flows. The members of each grouped section wrap to available space,
based on the current flow. Because there is more vertical space than horizontal space in the
iPhone portrait presentation, section groups are longer and thinner in the horizontal flow than
in the vertical flow.

ptg12441863

408 Chapter 10 Collection Views

Figure 10-1 Horizontal (left) and vertical (right) flows determine a collection view’s overall
scrolling direction. The left image scrolls left–right. The right image scrolls up–down. For each
example, a flow layout automatically handles wrapping duties at the end of each line. There are 6
items per line in the left image and 4 per line on the right. Each section includes 12 items.

Item Size and Line Spacing

Use the itemSize property to specify the default size for each onscreen item, like the small
squares in Figure 10-1 . The minimumLineSpacing and minimumInteritemSpacing properties
specify how much space you need wrapped between objects within each section. Line spacing
always goes between each line in the direction of flow. For example, line spacing refers to the
space between S0(0) and S0(6) in Figure 10-1 (left) or between S0(0) and S0(4) in Figure 10-1
(right). Item spacing is orthogonal (at right angles) to lines, specifying the gap to leave between
each consecutive item, such as between S0(0) and S0(1) and between S0(1) and S0(2).

Figure 10-2 shows these properties in action, in this case using a vertical flow. The left figure
shows consistent spacing of 10 points. The middle figure expands line spacing to 50 points.
This space appears between lines of items, where the flow wraps from one line to the next.
The right figure expands item spacing to 30 points. Item spaces appear along each row, adding
spacers between each object.

ptg12441863

409Flow Layouts

As with many new layout items introduced in iOS 6 and later, these settings are requests.
Specifically, the spacing may exceed whatever value you specify, but the layout tries to respect
the minimums you assign.

You can set the mentioned layout properties directly to assign default values applied across an
entire collection. You can also use flow layout delegate callback methods to specify values from
code. Setting these values at runtime offers far more nuance than the default settings, as they
are applied on a section-by-section and item-by-item basis rather than globally. The following
methods handle item size and minimum spacing:

 ■ collectionView:layout:sizeForItemAtIndexPath: — Corresponds to the itemSize
property, on an item-by-item basis.

 ■ collectionView:layout:minimumLineSpacingForSectionAtIndex: — Corresponds to
the minimumLineSpacing property but controls it on a section-by-section basis.

 ■ collectionView:layout:minimumInteritemSpacingForSectionAtIndex: —
Corresponds to the minimumInteritemSpacing property, again on a section-by-section
basis.

Of these, the first method for item sizes offers the adaptation most typically used in iOS devel-
opment. It enables you to build collections whose items, unlike those shown in Figure 10-2 ,
vary in dimension. Figure 10-4 , which follows later in this chapter, shows a flow layout that
adjusts itself to multisized contents.

Figure 10-2 Minimum line and inter-item spacing control how items are wrapped within each
section. Item sizes specify the dimensions for each cell. The left image uses default spacing. The
center image increases line spacing to 50 points. The right image increases inter-item spacing to
30 points.

ptg12441863

410 Chapter 10 Collection Views

Header and Footer Sizing

The headerReferenceSize and footerReferenceSize properties define how wide or how
high header and footer items should be. Notice the difference between the extents for these
items in Figure 10-3 in the top two and bottom two screen shots. The horizontal flow at
the top uses 60-point-wide spacing for these two items. The vertical flow at the bottom uses
30-point-high spacing. Although you supply a full CGSize to these properties, the layout uses
only one field at any time, based on the flow direction. For horizontal flow, it’s the width field;
for vertical flow, it’s the height.

Here are the two callbacks used to generate the Figure 10-3 layouts. They return complete size
structures even though only one field is used at any time. If the delegate does not implement
these methods, the flow layout object uses the property values above:

- (CGSize) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
 referenceSizeForHeaderInSection:(NSInteger)section

{
 return CGSizeMake(60.0f, 30.0f);

}

- (CGSize) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
 referenceSizeForFooterInSection:(NSInteger)section

{
 return CGSizeMake(60.0f, 30.0f);

}

Insets

The two minimum spacing properties define how each in-section item relates to other items
within a section. In contrast, the sectionInset property describes how the outer edges of a
section add padding. This padding affects how sections relate to their optional headers and
footers and how sections move apart from each other in general.

Edge insets consist of a set of {top, left, bottom, right} values. Figure 10-3 shows how this works
with collection views. Each shot in Figure 10-3 presents a flow using the same edge insets of 50
points at the top, 30 points at the bottom, and 10 points left and right:

UIEdgeInsetsMake(50.0f, 10.0f, 30.0f, 10.0f)

The top screens show a horizontal flow and the bottom screens a vertical flow. In each case,
you see how the insets affect layout. The insets pad the content items from their enclosing
container. In the horizontal flow, the content items adjust vertically from the top of the collec-
tion view to allow for the top spacing and horizontally from the header and footer. In the
vertical flow, the padding of the content items happens below the header and above the footer.
Similarly, the left and right spacing are incorporated between the edges of the collection view
and the contained items.

ptg12441863

411Flow Layouts

Figure 10-3 Section insets control the space that leads up to and away from a section’s items.
The top images show a horizontal flow and the bottom images a vertical flow. All images use a top
spacing of 50 points and a bottom spacing of 30 points, along with 10-point left and right spacing.

ptg12441863

412 Chapter 10 Collection Views

Recipe: Basic Collection View Flows

Recipe 10-1 introduces a basic collection view controller implementation, with support for
optional headers and footers. This recipe implements the essential data source and delegate
methods you need for a simple grid-based flow layout. Apple provides a number of proper-
ties to configure responses for the common collection view and flow layout delegate methods.
Use these provided properties and simple modification of the source to adjust the number
of sections to be viewed, the items per section, and any other layout details that control the
overall flow.

Boolean properties determine whether a collection view uses headers and footers. The size can
be configured by implementing the first two reference size requests in Recipe 10-1 . You’ll find
these two methods, one each for header and footer, just after the Flow Layout pragma mark.
Returning a 0 size to the header or footer flow delegate method tells the collection view to omit
those features for the section in question. When you return any other size, the collection view
moves on to requesting the supplementary views for either a header or footer.

Make sure to register all cell and supplementary view classes before using them in your data
source. Recipe 10-1 registers its classes in its viewDidLoad method. Once they are registered,
you can dequeue instances on demand. You do not have to check whether a dequeuing request
returns a usable instance. The methods create and initialize instances for you when needed.

We encourage you to dive into the sample code for Recipe 10-1 and tweak each layout value
and callback (which was done to create the figures you’ve already seen in this section) to see
how they affect overall flow and appearance. Recipe 10-1 offers a great jumping-off point for
testing collection views and seeing how each property influences the final presentation.

Recipe 10-1 Basic Collection View Controller with Flow Layout

@interface TestBedViewController : UICollectionViewController
// Layout and collection view configuration
@property (nonatomic, assign) BOOL useHeaders;
@property (nonatomic, assign) BOOL useFooters;
@property (nonatomic, assign) NSInteger numberOfSections;
@property (nonatomic, assign) NSInteger itemsInSection;
@end

@implementation TestBedViewController

#pragma mark Flow Layout
- (CGSize)collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
 referenceSizeForHeaderInSection:(NSInteger)section

{
 return self.useHeaders ? CGSizeMake(60.0f, 30.0f) : CGSizeZero;

}

ptg12441863

413Recipe: Basic Collection View Flows

- (CGSize)collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
 referenceSizeForFooterInSection:(NSInteger)section

{
 return self.useFooters ? CGSizeMake(60.0f, 30.0f) : CGSizeZero;

}

#pragma mark Data Source
// Number of sections total
- (NSInteger)numberOfSectionsInCollectionView:
 (UICollectionView *)collectionView

{
 return self.numberOfSections;

}

// Number of items per section
- (NSInteger)collectionView:(UICollectionView *)collectionView
 numberOfItemsInSection:(NSInteger)section

{
 return self.itemsInSection;

}

// Dequeue and prepare a cell
- (UICollectionViewCell *)collectionView:
 (UICollectionView *)aCollectionView
 cellForItemAtIndexPath:(NSIndexPath *)indexPath

{
 UICollectionViewCell *cell = [self.collectionView
 dequeueReusableCellWithReuseIdentifier:@"cell"
 forIndexPath:indexPath];

 cell.backgroundColor = [UIColor whiteColor];
 cell.selectedBackgroundView =
 [[UIView alloc] initWithFrame:CGRectZero];
 cell.selectedBackgroundView.backgroundColor =
 [[UIColor blackColor] colorWithAlphaComponent:0.5f];

 return cell;
}

// If using headers and footers, dequeue and prepare a view
- (UICollectionReusableView *)collectionView:
 (UICollectionView *)aCollectionView
 viewForSupplementaryElementOfKind:(NSString *)kind
 atIndexPath:(NSIndexPath *)indexPath

{
 if (kind == UICollectionElementKindSectionHeader)

ptg12441863

414 Chapter 10 Collection Views

 {
 UICollectionReusableView *header = [self.collectionView
 dequeueReusableSupplementaryViewOfKind:
 UICollectionElementKindSectionHeader
 withReuseIdentifier:@"header" forIndexPath:indexPath];
 header.backgroundColor = [UIColor blackColor];
 return header;
 }
 else if (kind == UICollectionElementKindSectionFooter)
 {
 UICollectionReusableView *footer = [self.collectionView
 dequeueReusableSupplementaryViewOfKind:
 UICollectionElementKindSectionFooter
 withReuseIdentifier:@"footer" forIndexPath:indexPath];
 footer.backgroundColor = [UIColor darkGrayColor];
 return footer;
 }
 return nil;

}

#pragma mark Delegate methods
- (void)collectionView:(UICollectionView *)aCollectionView
 didSelectItemAtIndexPath:(NSIndexPath *)indexPath

{
 NSLog(@"Selected %@", indexPath);

}

- (void)collectionView:(UICollectionView *)aCollectionView
 didDeselectItemAtIndexPath:(NSIndexPath *)indexPath

{
 NSLog(@"Deselected %@", indexPath);

}

#pragma mark Setup
- (void)viewDidLoad
{
 [super viewDidLoad];
 // Register any cell and header/footer classes for re-use queues
 [self.collectionView
 registerClass:[UICollectionViewCell class]
 forCellWithReuseIdentifier:@"cell"];
 [self.collectionView
 registerClass:[UICollectionReusableView class]
 forSupplementaryViewOfKind:UICollectionElementKindSectionHeader
 withReuseIdentifier:@"header"];
 [self.collectionView
 registerClass:[UICollectionReusableView class]

ptg12441863

415Recipe: Basic Collection View Flows

 forSupplementaryViewOfKind:UICollectionElementKindSectionFooter
 withReuseIdentifier:@"footer"];

 self.collectionView.backgroundColor = [UIColor lightGrayColor];

 // Allow users to select/deselect items by tapping
 self.collectionView.allowsMultipleSelection = YES;

}

- (instancetype)initWithCollectionViewLayout:(UICollectionViewLayout *)layout
{
 self = [super initWithCollectionViewLayout:layout];
 if (self)
 {
 // Set some reasonable defaults
 self.useFooters = NO;
 self.useHeaders = NO;
 self.numberOfSections = 1;
 self.itemsInSection = 1;
 }
 return self;

}
@end

// From the application delegate
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 _window = [[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 _window.tintColor = COOKBOOK_PURPLE_COLOR;

 // Create the layout and then pass to our collection VC
 UICollectionViewFlowLayout *layout =
 [[UICollectionViewFlowLayout alloc] init];
 TestBedViewController *tbvc = [[TestBedViewController alloc]
 initWithCollectionViewLayout:layout];
 tbvc.edgesForExtendedLayout = UIRectEdgeNone;

 // Configure layout and collection view properties
 layout.itemSize = CGSizeMake(50.0f, 50.0f);
 layout.sectionInset =
 UIEdgeInsetsMake(10.0, 10.0f, 50.0f, 10.0f);
 layout.scrollDirection =
 UICollectionViewScrollDirectionVertical;
 layout.minimumLineSpacing = 10.0f;
 layout.minimumInteritemSpacing = 10.0f;

ptg12441863

416 Chapter 10 Collection Views

 tbvc.numberOfSections = 10;
 tbvc.itemsInSection = 12;
 tbvc.useHeaders = YES;
 tbvc.useFooters = YES;

 UINavigationController *nav = [[UINavigationController alloc]
 initWithRootViewController:tbvc];
 _window.rootViewController = nav;
 [_window makeKeyAndVisible];
 return YES;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Custom Cells

Recipe 10-1 creates uniformly sized objects, but there’s no reason your collections cannot be
filled with items of any dimension. Flow layouts allow you to create far more varied presenta-
tions, as shown in Figure 10-4 . Recipe 10-2 adapts its collection view to provide this juiced-up
presentation by creating custom cells. These cells add image views, and the image’s size powers
the “size for item at index path” callback to the collection view’s data source:

- (CGSize) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout*)collectionViewLayout
 sizeForItemAtIndexPath:(NSIndexPath *)indexPath

{
 UIImage *image = artDictionary[indexPath];
 return image.size;

}

To create custom cells, subclass UICollectionViewCell and add any new views to the
cell’s contentView . This recipe adds a single image view subview and exposes it through an
imageView property. When providing cells, the data source adds custom images to the image
view, and the layout delegate specifies their sizes.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

417Recipe: Custom Cells

Figure 10-4 Flow layouts work with items that present varying heights and widths, not just basic
grids.

Recipe 10-2 Custom Collection View Cells

@interface ImageCell : UICollectionViewCell
@property (nonatomic) UIImageView *imageView;
@end

@implementation ImageCell
- (instancetype)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 _imageView = [[UIImageView alloc] initWithFrame:
 CGRectInset(self.bounds, 4.0f, 4.0f)];
 _imageView.autoresizingMask =
 UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;
 [self.contentView addSubview:_imageView];
 }
 return self;

}
@end

ptg12441863

418 Chapter 10 Collection Views

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Scrolling Horizontal Lists

Collection views offer the ability to create horizontal scrolling lists, a counterpoint to table
views that only scroll vertically. To accomplish this, you need to take a few things into account,
primarily that flow layouts in their default state naturally wrap their sections. Consider Figure
10-5 . It shows two collection views, both of which scroll horizontally. The top image consists
of a single section with 100 items; the bottom has 100 sections of a single item each.

Figure 10-5 Top: A single section with 100 items. Bottom: 100 sections with a single item
each.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

419Recipe: Scrolling Horizontal Lists

You could force the top layout not to wrap by adding large left and right section margins, but
getting them to work correctly is messy; the margins depend on both device and orientation.
Assigning one item per section is a much easier solution and ensures a single line of items,
regardless of size.

Recipe 10-3 creates a horizontally scrolling collection as a standalone view rather than as a
view controller. This approach allows the view to be inset as a subview, neatly avoiding the big
empty area at the bottom of the screen shown in Figure 10-5 (bottom).

This recipe’s InsetCollectionView class provides its own data source and exposes its collec-
tion view as a read-only property to allow clients to provide delegation. Figure 10-6 shows this
recipe in action, providing an embedded horizontally scrolling list.

Recipe 10-8 , which appears later in this chapter, introduces a fully customized layout subclass
that offers true grid layouts. Recipe 10-3 offers a handy shortcut for using the default flow
layout, as shipped. Plus, it demonstrates how to create a collection view outside the context of
a prebuilt controller.

Figure 10-6 Recipe 10-3 creates an embeddable horizontally scrolling collection view.

Recipe 10-3 Horizontal Scroller Collection View

@interface InsetCollectionView : UIView
 <UICollectionViewDataSource>

@property (strong, readonly) UICollectionView *collectionView;

ptg12441863

420 Chapter 10 Collection Views

@end

@implementation InsetCollectionView

// 100 sections of 1 item each
- (NSInteger)numberOfSectionsInCollectionView:
 (UICollectionView *)collectionView

{
 return 100;

}

- (NSInteger)collectionView:(UICollectionView *)collectionView
 numberOfItemsInSection:(NSInteger)section

{
 return 1;

}

// This is a little utility that returns a view showing the
// section and item numbers for an index path
- (UIImageView *)viewForIndexPath:(NSIndexPath *)indexPath
{
 NSString *string = [NSString stringWithFormat:
 @"S%d(%d)", indexPath.section, indexPath.item];
 UIImage *image = blockStringImage(string, 16.0f);
 UIImageView *imageView =
 [[UIImageView alloc] initWithImage:image];
 return imageView;

}

// Return an initialized cell
- (UICollectionViewCell *)collectionView:
 (UICollectionView *)_collectionView
 cellForItemAtIndexPath:(NSIndexPath *)indexPath

{
 UICollectionViewCell *cell = [self.collectionView
 dequeueReusableCellWithReuseIdentifier:@"cell"
 forIndexPath:indexPath];

 cell.backgroundColor = [UIColor whiteColor];
 cell.selectedBackgroundView =
 [[UIView alloc] initWithFrame:CGRectZero];
 cell.selectedBackgroundView.backgroundColor =
 [[UIColor blackColor] colorWithAlphaComponent:0.5f];

 // Show the section and item in a custom subview
 if ([cell viewWithTag:999])
 [[cell viewWithTag:999] removeFromSuperview];

ptg12441863

421Recipe: Scrolling Horizontal Lists

 UIImageView *imageView = [self viewForIndexPath:indexPath];
 imageView.tag = 999;
 [cell.contentView addSubview:imageView];

 return cell;
}

#pragma mark Setup
- (instancetype)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 UICollectionViewFlowLayout *layout =
 [[UICollectionViewFlowLayout alloc] init];
 layout.scrollDirection =
 UICollectionViewScrollDirectionHorizontal;
 layout.sectionInset =
 UIEdgeInsetsMake(40.0f, 10.0f, 40.0f, 10.0f);
 layout.minimumLineSpacing = 10.0f;
 layout.minimumInteritemSpacing = 10.0f;
 layout.itemSize = CGSizeMake(100.0f, 100.0f);

 _collectionView = [[UICollectionView alloc]
 initWithFrame:CGRectZero collectionViewLayout:layout];
 _collectionView.backgroundColor = [UIColor darkGrayColor];
 _collectionView.allowsMultipleSelection = YES;
 _collectionView.dataSource = self;

 [_collectionView registerClass:[UICollectionViewCell
 class] forCellWithReuseIdentifier:@"cell"];
 [self addSubview:_collectionView];

 PREPCONSTRAINTS(_collectionView);
 CONSTRAIN(self, _collectionView,
 @"H:|[_collectionView(>=0)]|");
 CONSTRAIN(self, _collectionView,
 @"V:|-20-[_collectionView(>=0)]-20-|");
 }
 return self;}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

422 Chapter 10 Collection Views

Recipe: Introducing Interactive Layout Effects

Flow layouts are fully controllable. When subclassing UICollectionViewFlowLayout , you
gain immediate real-time control over how items are sized and placed onscreen. This provides
incredible power to you as a developer, letting you specify item presentation with great deli-
cacy. You can use this power to develop flows that seem to work in three dimensions or ones
that break the linear mold and transform columns and rows into circles, piles, Bezier curves,
and more.

Customizable layout attributes include standard layout elements (frame , center , and
size), transparency (alpha and hidden), position on the z -axis (zIndex), and transform
(transform3d). You adjust these when the flow layout requests element attributes, as
demonstrated in Recipe 10-4 .

This recipe creates a flow that zooms items out toward the user in the center of the screen and
shrinks them as they move away to the left or right. It calculates how far away each item is
from the horizontal center of the screen. It applies its scaling based on a cosine function (that
is, one that maxes out as the distance from the center decreases).

Figure 10-7 shows this effect, although it’s much better to run Recipe 10-4 yourself and see the
changes in action.

Figure 10-7 The custom layout defined by Recipe 10-4 zooms items as they move toward the
horizontal center of the screen.

ptg12441863

423Recipe: Introducing Interactive Layout Effects

Recipe 10-4 Interactive Layout Effects

@interface PunchedLayout : UICollectionViewFlowLayout
@end
@implementation PunchedLayout
{
 CGSize boundsSize;
 CGFloat midX;

}

// Allow the presentation to resize as needed
- (BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)bounds
{
 return YES;

}

// Calculate the distance from the view center
-(void)prepareLayout
{
 [super prepareLayout];
 boundsSize = self.collectionView.bounds.size;
 midX = boundsSize.width / 2.0f;

}

// Lay out elements
- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
{
 // Retrieve the default layout
 NSArray *array = [super layoutAttributesForElementsInRect:rect];
 for (UICollectionViewLayoutAttributes* attributes in array)
 {
 attributes.transform3D = CATransform3DIdentity;
 // Only handle layouts for visible items
 if (!CGRectIntersectsRect(attributes.frame, rect)) continue;

 CGPoint contentOffset = self.collectionView.contentOffset;
 CGPoint itemCenter = CGPointMake(
 attributes.center.x - contentOffset.x,
 attributes.center.y - contentOffset.y);
 CGFloat distance = ABS(midX - itemCenter.x);

 // Normalize the distance and calculate the zoom factor
 CGFloat normalized = distance / midX;
 normalized = MIN(1.0f, normalized);
 CGFloat zoom = cos(normalized * M_PI_4);

ptg12441863

424 Chapter 10 Collection Views

 // Set the transform
 attributes.transform3D =
 CATransform3DMakeScale(zoom, zoom, 1.0f);
 }
 return array;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Scroll Snapping

Recipe 10-4 focuses user attention at the center of the screen. Why not ensure that the central
object moves to the most optimal position? Accomplish this by implementing a layout method
that snaps to specific boundaries. Recipe 10-5 shows how.

The targetContentOffsetForProposedContentOffset: method, which is called during
scrolling, specifies where the scroll would naturally stop. It iterates through all the onscreen
objects, finds the one closest to the view’s horizontal center, and adjusts the offset so that the
object’s center coincides with the view’s.

Recipe 10-5 Customizing the Target Content Offset

- (CGPoint)targetContentOffsetForProposedContentOffset:
 (CGPoint)proposedContentOffset
 withScrollingVelocity:(CGPoint)velocity

{
 CGFloat offsetAdjustment = CGFLOAT_MAX;

 // Retrieve all onscreen items at the proposed starting point
 CGRect targetRect = CGRectMake(proposedContentOffset.x, 0.0,
 boundsSize.width, boundsSize.height);
 NSArray *array =
 [super layoutAttributesForElementsInRect:targetRect];

 // Determine the proposed center x-coordinate
 CGFloat proposedCenterX = proposedContentOffset.x + midX;

 // Search for the minimum offset adjustment
 for (UICollectionViewLayoutAttributes* layoutAttributes in array)
 {
 CGFloat distance =

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

425Recipe: Creating a Circle Layout

 layoutAttributes.center.x - proposedCenterX;
 if (ABS(distance) < ABS(offsetAdjustment))
 offsetAdjustment = distance;
 }

 CGPoint desiredPoint =
 CGPointMake(proposedContentOffset.x + offsetAdjustment,
 proposedContentOffset.y);

 // Workaround for edge conditions. Hat tip, Nicolas Goles.
 if ((proposedContentOffset.x == 0) ||
 (proposedContentOffset.x >=
 (self.collectionViewContentSize.width –
 boundsSize.width)))
 {
 NSNotification *note = [NSNotification
 notificationWithName:@"PleaseRecenter" object:
 [NSValue valueWithCGPoint:desiredPoint]];
 // Notify view controller of modified desired point
 [[NSNotificationCenter defaultCenter]
 postNotification:note];
 return proposedContentOffset;
 }

 // Offset the content by the minimal amount necessary to center
 return desiredPoint;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Creating a Circle Layout

Circle layouts offer an eye-catching way to arrange views around a central area, as shown in
Figure 10-8 . Recipe 10-6 is heavily based on Apple’s sample code, which was first presented at
WWDC 2012. This layout provides an excellent introduction to the way items can animate into
place upon creation and deletion.

Recipe 10-6 ’s layout flow uses a fixed content size via the collectionViewContentSize
method. This prevents collection view scrolling as it creates a layout area with well-
understood static geometry. The code further limits its layout to an inset area, calculated
in the prepareLayout method. The height or width of the screen, whichever is currently
smaller, determines the circle’s radius. This remains fixed, regardless of device orientation.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

426 Chapter 10 Collection Views

The layout calculates each item’s position by its index path. This presentation uses a single
section, and the order of the item within that section (that is, whether it is the third or fifth
item) sets its progress along the circle:

CGFloat progress = (float) path.item / (float) numberOfItems;
CGFloat theta = 2.0f * M_PI * progress;

You can easily extend this to any shape or path whose progress can be normalized within the
range [0.0, 1.0]. For a circle, this goes from 0 to 2 pi. A spiral might go out 3, 4, or even 5 pi.
For a Bezier curve, you iterate along whatever control points define the curve and interpolate
between them as needed.

Creation and Deletion Animation

Of particular interest in Recipe 10-6 are the methods that specify the initial attributes for newly
inserted items and final attributes for newly deleted ones. These properties allow your collec-
tion views to animate item creation and deletion from the previous layout to the new layout
after those items have been added or removed.

In this recipe, as in Apple’s original sample code, new items start off transparent in the center
of the circle and fade into view as they move out to their assigned position. Deleted items
shrink, fade, and move to the center. When you run the sample code, you’ll see these anima-
tions take effect.

The documentation for the initialLayoutAttributesForAppearingItemAtIndexPath and
finalLayoutAttributesForDisappearingItemAtIndexPath methods is confusing at best;
it implies that these methods are only called on the inserted and deleted items. In reality, the
starting and ending attribute requests are called on all items, not just the added and deleted
ones. Because of this, Recipe 10-6 sorts items into collections: added index paths and deleted
index paths. It limits its custom insertion and deletion attributes to those items.

This mechanism offers a way to animate layout attributes for all items, enabling you to add
extra animations as needed. For example, you might animate an object moving from the end
of row 3 to the start of row 4 as a new item is inserted into row 3. This approach allows you to
animate the cell offscreen to the right of row 3 and then onscreen from the left of row 4 versus
the default behavior, which has it move diagonally from its old position to the new one.

Powering the Circle Layout

This recipe makes a number of changes to Apple’s original sample. For one thing, Recipe 10-6
uses Add and Delete bar buttons rather than gestures. For another, each view is distinct and
identifiable by its color. Instead of deleting “any item” or adding “some item,” Recipe 10-6 uses
selections. The user chooses an item to focus on. That selection controls which item is deleted
(the selected item) or where new items should be added (just after the selected item).

ptg12441863

427Recipe: Creating a Circle Layout

The following deletion code retrieves the currently selected item, deletes it, and selects the next
item. Then it enables or disables the Add and Delete buttons, depending on how many items
are currently onscreen:

- (void)delete
{
 if (!count) return;

 // Decrement the number of onscreen items
 count--;

 // Determine which item to delete
 NSArray *selectedItems =
 [self.collectionView indexPathsForSelectedItems];
 NSInteger itemNumber = selectedItems.count ?
 ((NSIndexPath *)selectedItems[0]).item : 0;

 NSIndexPath *itemPath =
 [NSIndexPath indexPathForItem:itemNumber inSection:0];

 // Perform deletion
 [self.collectionView performBatchUpdates:^{
 [self.collectionView deleteItemsAtIndexPaths:@[itemPath]];
 } completion:^(BOOL done){
 if (count)
 [self.collectionView selectItemAtIndexPath:
 [NSIndexPath indexPathForItem:
 MAX(0, itemNumber - 1) inSection:0]
 animated:NO
 scrollPosition:UICollectionViewScrollPositionNone];
 self.navigationItem.rightBarButtonItem.enabled =
 (count > 0);
 self.navigationItem.leftBarButtonItem.enabled =
 (count < (IS_IPAD ? 20 : 8));
 }];

}

In the real world, there are very few use cases for adding and deleting interchangeable views,
but there are many use cases for views that have meaning. These changes provide a more solid
jumping-off point for extending this recipe to practical applications.

The Layout

Figure 10-8 shows the layout that Recipe 10-6 builds. As users add new items, the circle grows
more crowded, up to a maximum count of 20 items on the iPad and 8 on the iPhone. You can
easily modify these limits in the add and delete methods to match the view sizes for your
particular application.

ptg12441863

428 Chapter 10 Collection Views

Figure 10-8 This circle layout flow is inspired by sample code provided by Apple and was
encouraged by the efforts of developer Greg Hartstein.

Recipe 10-6 Laying Out Views in a Circle

@implementation CircleLayout
{
 NSInteger numberOfItems;
 CGPoint centerPoint;
 CGFloat radius;

 NSMutableArray *insertedIndexPaths;
 NSMutableArray *deletedIndexPaths;

}

// Calculate and save off the current state
- (void)prepareLayout
{
 [super prepareLayout];
 CGSize size = self.collectionView.frame.size;
 numberOfItems =
 [self.collectionView numberOfItemsInSection:0];
 centerPoint =
 CGPointMake(size.width / 2.0f, size.height / 2.0f);
 radius = MIN(size.width, size.height) / 3.0f;

ptg12441863

429Recipe: Creating a Circle Layout

 insertedIndexPaths = [NSMutableArray array];
 deletedIndexPaths = [NSMutableArray array];

}

// Fix the content size to the frame size
- (CGSize)collectionViewContentSize
{
 return self.collectionView.frame.size;

}

// Calculate position for each item
- (UICollectionViewLayoutAttributes *)
 layoutAttributesForItemAtIndexPath:(NSIndexPath *)path

{
 UICollectionViewLayoutAttributes *attributes =
 [UICollectionViewLayoutAttributes
 layoutAttributesForCellWithIndexPath:path];
 CGFloat progress = (float) path.item / (float) numberOfItems;
 CGFloat theta = 2.0f * M_PI * progress;
 CGFloat xPosition = centerPoint.x + radius * cos(theta);
 CGFloat yPosition = centerPoint.y + radius * sin(theta);
 attributes.size = [self itemSize];
 attributes.center = CGPointMake(xPosition, yPosition);
 return attributes;

}

// Calculate layouts for all items
- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
{
 NSMutableArray *attributes = [NSMutableArray array];
 for (NSInteger index = 0; index < numberOfItems; index++)
 {
 NSIndexPath *indexPath =
 [NSIndexPath indexPathForItem:index inSection:0];
 [attributes addObject:
 [self layoutAttributesForItemAtIndexPath:indexPath]];
 }
 return attributes;

}

// Build insertion and deletion collections from updates
- (void)prepareForCollectionViewUpdates:(NSArray *)updates
{
 [super prepareForCollectionViewUpdates:updates];

 for (UICollectionViewUpdateItem* updateItem in updates)
 {

ptg12441863

430 Chapter 10 Collection Views

 if (updateItem.updateAction ==
 UICollectionUpdateActionInsert)
 [insertedIndexPaths
 addObject:updateItem.indexPathAfterUpdate];
 else if (updateItem.updateAction ==
 UICollectionUpdateActionDelete)
 [deletedIndexPaths
 addObject:updateItem.indexPathBeforeUpdate];
 }

}

// Establish starting attributes for added item
- (UICollectionViewLayoutAttributes *)
 insertionAttributesForItemAtIndexPath:(NSIndexPath *)itemIndexPath

{
 UICollectionViewLayoutAttributes *attributes =
 [self layoutAttributesForItemAtIndexPath:itemIndexPath];
 attributes.alpha = 0.0;
 attributes.center = centerPoint;
 return attributes;

}

// Establish final attributes for deleted item
- (UICollectionViewLayoutAttributes *)
 deletionAttributesForItemAtIndexPath:(NSIndexPath *)itemIndexPath

{
 UICollectionViewLayoutAttributes *attributes =
 [self layoutAttributesForItemAtIndexPath:itemIndexPath];
 attributes.alpha = 0.0;
 attributes.center = centerPoint;
 attributes.transform3D = CATransform3DMakeScale(0.1, 0.1, 1.0);
 return attributes;

}

// Handle insertion animation for all items
- (UICollectionViewLayoutAttributes*)
 initialLayoutAttributesForAppearingItemAtIndexPath:
 (NSIndexPath*)indexPath

{
 return [insertedIndexPaths containsObject:indexPath] ?
 [self insertionAttributesForItemAtIndexPath:indexPath] :
 [super initialLayoutAttributesForAppearingItemAtIndexPath:
 indexPath];

}

// Handle deletion animation for all items
- (UICollectionViewLayoutAttributes*)

ptg12441863

431Recipe: Adding Gestures to Layout

 finalLayoutAttributesForDisappearingItemAtIndexPath:
 (NSIndexPath*)indexPath

{
 return [deletedIndexPaths containsObject:indexPath] ?
 [self deletionAttributesForItemAtIndexPath:indexPath] :
 [super finalLayoutAttributesForDisappearingItemAtIndexPath:
 indexPath];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Adding Gestures to Layout

Recipe 10-7 builds on Recipe 10-6 , adding interactive gestures that adjust presentation layout. It
uses two recognizers, a pinch recognizer and a rotation recognizer, to enable users to scale and
rotate the circle of views. These items are set up to recognize simultaneously, so users can pinch
and rotate at the same time.

The rotate recognizer uses a slightly more sophisticated approach than the pinch one. Unlike
pinch values, rotations are relative. You rotate by an amount, not to a specific angle. To accom-
modate this, Recipe 10-7 implements callbacks to handle two states. The first is called as rota-
tions happen, updating the presentation to match each movement. The second resets the
rotation baseline as the gesture ends, so the next interaction will take up where the last one
left off:

- (void)pinch:(UIPinchGestureRecognizer *)pinchRecognizer
{
 CircleLayout *layout =
 (CircleLayout *)self.collectionView.collectionViewLayout;
 [layout scaleTo:pinchRecognizer.scale];
 [layout invalidateLayout];

}

- (void)rotate:(UIRotationGestureRecognizer *)rotationRecognizer
{
 CircleLayout *layout =
 (CircleLayout *)self.collectionView.collectionViewLayout;

 if (rotationRecognizer.state == UIGestureRecognizerStateEnded)
 [layout rotateTo:rotationRecognizer.rotation];
 else

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

432 Chapter 10 Collection Views

 [layout rotateBy:rotationRecognizer.rotation];
 [layout invalidateLayout];

}

Notice how these callbacks invalidate the layout so that the presentation is updated in real
time. This recipe is best tested on-device due to the high graphical load.

Recipe 10-7 calculates the effect of user gestures on the layout by adjusting the view radius (it
scales from a minimum of 0.5 to a maximum of 1.3 times the original layout) and the layout’s
start angle, which is initially at 0 degrees but is adjusted each time the rotation updates. The
scaled radius and the adjusted angle value form the basis for the new presentation.

Recipe 10-7 Adding Gestures to Collection View Layouts

// Intermediate rotation
- (void)rotateBy:(CGFloat)theta
{
 currentRotation = theta;

}

// Final rotation
- (void)rotateTo:(CGFloat)theta
{
 rotation += theta;
 currentRotation = 0.0f;

}

// Scaling
- (void)scaleTo:(CGFloat)factor
{
 scale = factor;

}

// Calculate position for each item
- (UICollectionViewLayoutAttributes *)
 layoutAttributesForItemAtIndexPath:(NSIndexPath *)path

{
 UICollectionViewLayoutAttributes *attributes =
 [UICollectionViewLayoutAttributes
 layoutAttributesForCellWithIndexPath:path];
 CGFloat progress = (float) path.item / (float) numberOfItems;
 CGFloat theta = 2.0f * M_PI * progress;

 // Update the scaling and rotation to match the current gesture
 CGFloat scaledRadius = MIN(MAX(scale, 0.5f), 1.3f) * radius;
 CGFloat rotatedTheta = theta + rotation + currentRotation;

ptg12441863

433Recipe: Creating a True Grid Layout

 // Calculate the new positions
 CGFloat xPosition =
 centerPoint.x + scaledRadius * cos(rotatedTheta);
 CGFloat yPosition =
 centerPoint.y + scaledRadius * sin(rotatedTheta);
 attributes.size = [self itemSize];
 attributes.center = CGPointMake(xPosition, yPosition);
 return attributes;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Creating a True Grid Layout

The default flow layout wraps its rows to fit into a scrolling view that moves in just one direc-
tion. If you’re willing to do the math—there’s quite a bit of it, and it’s not easy—you can create
a custom layout subclass that shows a grid of items that scrolls in both directions and doesn’t
wrap its lines. Figure 10-9 shows such a layout.

Recipe 10-8 fully customizes its layout subclass, overriding collectionViewContentSize and
layoutAttributesForItemAtIndexPath: to manually place each item. This implementation
fully respects all spacing requests and delegate callbacks. In contrast, the normal flow layout
attempts to fit items in while meeting various minimum values. This layout uses those values
exactly but adjusts the underlying scrolling view’s content size to precisely match sizing needs.

Recipe 10-8 works by exhaustively calculating each layout element. What it doesn’t use,
however, is the line-spacing property that describes how to wrap rows. This grid presentation
never wraps any rows, so the recipe ignores that entirely.

This recipe also adds a new custom layout property, alignment . This property controls whether
each grid row aligns at the top, center, or bottom. It accomplishes this by looking at the overall
height for an entire row and then optionally offsetting items that are smaller than that height.

Recipe 10-8 includes the entire layout code to give you a sense of how much effort is involved
for a complete custom subclass. The trick is, of course, in the details. Test layouts as thoroughly
as possible over a wide range of source objects.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

434 Chapter 10 Collection Views

Figure 10-9 This custom layout grid enables users to scroll in both directions.

Recipe 10-8 Grid Layout Customization

@implementation GridLayout

#pragma mark Items
// Does a delegate provide individual sizing?
- (BOOL)usesIndividualItemSizing
{
 return [self.collectionView.delegate respondsToSelector:
 @selector(collectionView:layout:sizeForItemAtIndexPath:)];

}

// Return cell size for an item
- (CGSize)sizeForItemAtIndexPath:(NSIndexPath *)indexPath
{
 CGSize itemSize = self.itemSize;
 if ([self usesIndividualItemSizing])
 itemSize = [(id <UICollectionViewDelegateFlowLayout>)
 self.collectionView.delegate
 collectionView:self.collectionView
 layout:self sizeForItemAtIndexPath:indexPath];
 return itemSize;

}

ptg12441863

435Recipe: Creating a True Grid Layout

#pragma mark Insets
// Individual insets?
- (BOOL)usesIndividualInsets
{
 return [self.collectionView.delegate respondsToSelector:
 @selector(collectionView:layout:insetForSectionAtIndex:)];

}

// Return insets for section
- (UIEdgeInsets)insetsForSection:(NSInteger)section
{
 UIEdgeInsets insets = self.sectionInset;
 if ([self usesIndividualInsets])
 insets = [(id <UICollectionViewDelegateFlowLayout>)
 self.collectionView.delegate
 collectionView:self.collectionView
 layout:self insetForSectionAtIndex:section];
 return insets;

}

#pragma mark Item Spacing
// Individual item spacing?
- (BOOL)usesIndividualItemSpacing
{
 return [self.collectionView.delegate respondsToSelector:
 @selector(collectionView:layout:
 minimumInteritemSpacingForSectionAtIndex:)];

}

// Return spacing for section
- (CGFloat)itemSpacingForSection:(NSInteger)section
{
 CGFloat spacing = self.minimumInteritemSpacing;
 if ([self usesIndividualItemSpacing])
 spacing = [(id <UICollectionViewDelegateFlowLayout>)
 self.collectionView.delegate
 collectionView:self.collectionView
 layout:self
 minimumInteritemSpacingForSectionAtIndex:section];
 return spacing;

}

#pragma mark Layout Geometry
// Find the tallest subview
- (CGFloat)maxItemHeightForSection:(NSInteger)section
{
 CGFloat maxHeight = 0.0f;
 NSInteger numberOfItems =

ptg12441863

436 Chapter 10 Collection Views

 [self.collectionView numberOfItemsInSection:section];
 for (int i = 0; i < numberOfItems; i++)
 {
 NSIndexPath *indexPath = INDEXPATH(section, i);
 CGSize itemSize = [self sizeForItemAtIndexPath:indexPath];
 maxHeight = MAX(maxHeight, itemSize.height);
 }
 return maxHeight;

}

// "Horizontal" row-based extent from the start of the section to its end
- (CGFloat)fullWidthForSection:(NSInteger)section
{
 UIEdgeInsets insets = [self insetsForSection:section];
 CGFloat horizontalInsetExtent = insets.left + insets.right;
 CGFloat collectiveWidth = horizontalInsetExtent;

 NSInteger numberOfItems =
 [self.collectionView numberOfItemsInSection:section];
 for (int i = 0; i < numberOfItems; i++)
 {
 NSIndexPath *indexPath = INDEXPATH(section, i);
 CGSize itemSize = [self sizeForItemAtIndexPath:indexPath];

 collectiveWidth += itemSize.width;
 collectiveWidth += [self itemSpacingForSection:section];
 }

 // Take back one spacer, n-1 fence post
 collectiveWidth -= [self itemSpacingForSection:section];

 return collectiveWidth;
}

// Bounding size for each section
- (CGSize)fullSizeForSection:(NSInteger)section
{
 CGFloat headerExtent = (self.scrollDirection ==
 UICollectionViewScrollDirectionHorizontal) ?
 self.headerReferenceSize.width :
 self.headerReferenceSize.height;
 CGFloat footerExtent = (self.scrollDirection ==
 UICollectionViewScrollDirectionHorizontal) ?
 self.footerReferenceSize.width :
 self.footerReferenceSize.height;

 UIEdgeInsets insets = [self insetsForSection:section];
 CGFloat verticalInsetExtent = insets.top + insets.bottom;

ptg12441863

437Recipe: Creating a True Grid Layout

 CGFloat maxHeight = [self maxItemHeightForSection:section];

 CGFloat fullHeight = headerExtent + footerExtent +
 verticalInsetExtent + maxHeight;
 CGFloat fullWidth = [self fullWidthForSection:section];

 return CGSizeMake(fullWidth, fullHeight);
}

// How far is each item offset within the section
- (CGFloat)horizontalInsetForItemAtIndexPath:(NSIndexPath *)indexPath
{
 UIEdgeInsets insets = [self insetsForSection:indexPath.section];
 CGFloat horizontalOffset = insets.left;
 for (int i = 0; i < indexPath.item; i++)
 {
 CGSize itemSize = [self sizeForItemAtIndexPath:
 INDEXPATH(indexPath.section, i)];
 horizontalOffset += (itemSize.width +
 [self itemSpacingForSection:indexPath.section]);
 }
 return horizontalOffset;

}

// How far is each item down
- (CGFloat)verticalInsetForItemAtIndexPath:(NSIndexPath *)indexPath
{
 CGSize thisItemSize = [self sizeForItemAtIndexPath:indexPath];
 CGFloat verticalOffset = 0.0f;

 // Previous sections
 for (int i = 0; i < indexPath.section; i++)
 verticalOffset += [self fullSizeForSection:i].height;

 // Header
 CGFloat headerExtent = (self.scrollDirection ==
 UICollectionViewScrollDirectionHorizontal) ?
 self.headerReferenceSize.width :
 self.headerReferenceSize.height;
 verticalOffset += headerExtent;

 // Top inset
 UIEdgeInsets insets = [self insetsForSection:indexPath.section];
 verticalOffset += insets.top;

 // Vertical centering
 CGFloat maxHeight =
 [self maxItemHeightForSection:indexPath.section];

ptg12441863

438 Chapter 10 Collection Views

 CGFloat fullHeight = (maxHeight - thisItemSize.height);
 CGFloat midHeight = fullHeight / 2.0f;

 switch (self.alignment)
 {
 case GridRowAlignmentNone:
 case GridRowAlignmentTop:
 break;
 case GridRowAlignmentCenter:
 verticalOffset += midHeight;
 break;
 case GridRowAlignmentBottom:
 verticalOffset += fullHeight;
 break;
 default:
 break;
 }

 return verticalOffset;
}

#pragma mark Layout Attributes
// Provide per-item placement
- (UICollectionViewLayoutAttributes *)layoutAttributesForItemAtIndexPath:
 (NSIndexPath *)indexPath

{
 UICollectionViewLayoutAttributes *attributes =
 [UICollectionViewLayoutAttributes
 layoutAttributesForCellWithIndexPath:indexPath];
 CGSize thisItemSize = [self sizeForItemAtIndexPath:indexPath];

 CGFloat verticalOffset =
 [self verticalInsetForItemAtIndexPath:indexPath];
 CGFloat horizontalOffset =
 [self horizontalInsetForItemAtIndexPath:indexPath];

 if (self.scrollDirection == UICollectionViewScrollDirectionVertical)
 attributes.frame = CGRectMake(horizontalOffset,
 verticalOffset, thisItemSize.width, thisItemSize.height);
 else
 attributes.frame = CGRectMake(verticalOffset,
 horizontalOffset, thisItemSize.width,
 thisItemSize.height);

 return attributes;
}

ptg12441863

439Recipe: Creating a True Grid Layout

// Return full extent
- (CGSize)collectionViewContentSize
{
 NSInteger sections = self.collectionView.numberOfSections;

 CGFloat maxWidth = 0.0f;
 CGFloat collectiveHeight = 0.0f;

 for (int i = 0; i < sections; i++)
 {
 CGSize sectionSize = [self fullSizeForSection:i];
 collectiveHeight += sectionSize.height;
 maxWidth = MAX(maxWidth, sectionSize.width);
 }

 if (self.scrollDirection ==
 UICollectionViewScrollDirectionVertical)
 return CGSizeMake(maxWidth, collectiveHeight);
 else
 return CGSizeMake(collectiveHeight, maxWidth);

}

// Provide grid layout attributes
- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
{
 NSMutableArray *attributes = [NSMutableArray array];
 for (NSInteger section = 0;
 section < self.collectionView.numberOfSections; section++)
 for (NSInteger item = 0;
 item < [self.collectionView
 numberOfItemsInSection:section];
 item++)
 {
 UICollectionViewLayoutAttributes *layout =
 [self layoutAttributesForItemAtIndexPath:
 INDEXPATH(section, item)];
 [attributes addObject:layout];
 }
 return attributes;

}

- (BOOL) shouldInvalidateLayoutForBoundsChange:(CGRect)oldBounds
{
 return YES;

}
@end

ptg12441863

440 Chapter 10 Collection Views

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Recipe: Custom Item Menus

Collection views support menus like the one shown in Figure 10-10 , using a standard tap-and-
hold gesture. The menu provides cut, copy, and paste actions by default. These default actions
can be filtered out and custom actions added to build a menu like the one shown.

Menu support is provided through three delegate methods on UICollectionView :

 ■ collectionView:shouldShowMenuForItemAtIndexPath: — Determines whether an
item at the specified index path should show a menu.

 ■ collectionView:canPerformAction:forItemAtIndexPath:withSender: — Confirms
that the delegate can perform the specified action on the item at the index path. This
delegate method can be used to filter out unwanted default actions: cut, copy, and paste.

 ■ collectionView:performAction:forItemAtIndexPath:withSender: — Tells the
delegate to perform the specified action on the item at the index path.

In addition to returning YES for the first two items and handling the action delegate method,
your collection view must be able to become a first responder:

- (BOOL)canBecomeFirstResponder
{
 return YES;

}

Once you carefully meet all these requirements, a menu appears when the user taps and holds
on a collection view item.

Double-Tap Alternative

Instead of implementing the long-tap gesture menu provided by UICollectionView , Recipe
10-9 creates a custom cell class and adds a double-tap gesture recognizer. When activated, the
callback sets the cell as the first responder and presents a standard menu.

Recipe 10-9 shows the relevant details. The cell subclass declares that it can become the first
responder, a necessary precondition for presenting menus. It sets the menu items it wants to
work with and then adds the canPerformAction:withSender: support that confirms each
item’s appearance. Figure 10-10 displays the menu created by this code.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

441Recipe: Custom Item Menus

Figure 10-10 These custom item-by-item menus require cells to become the first responder.

Recipe 10-9 Custom Collection View Cell Menus

- (BOOL)canBecomeFirstResponder
{
 return YES;

}

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender
{
 if (action == @selector(ghostSelf)) return YES;
 if (action == @selector(popSelf)) return YES;
 if (action == @selector(rotateSelf)) return YES;
 if (action == @selector(colorize)) return YES;
 return NO;

}

- (void)tapped:(UIGestureRecognizer *)uigr
{

ptg12441863

442 Chapter 10 Collection Views

 if (uigr.state != UIGestureRecognizerStateRecognized) return;

 [[UIMenuController sharedMenuController] setMenuVisible:NO
 animated:YES];
 [self becomeFirstResponder];

 UIMenuController *menu = [UIMenuController sharedMenuController];
 UIMenuItem *pop = [[UIMenuItem alloc]
 initWithTitle:@"Pop" action:@selector(popSelf)];
 UIMenuItem *rotate = [[UIMenuItem alloc]
 initWithTitle:@"Rotate" action:@selector(rotateSelf)];
 UIMenuItem *ghost = [[UIMenuItem alloc]
 initWithTitle:@"Ghost" action:@selector(ghostSelf)];
 UIMenuItem *colorize = [[UIMenuItem alloc]
 initWithTitle:@"Colorize" action:@selector(colorize)];

 [menu setMenuItems:@[pop, rotate, ghost, colorize]];
 [menu update];
 [menu setTargetRect:self.bounds inView:self];
 [menu setMenuVisible:YES animated:YES];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 10 .

Summary

This chapter introduces collection views paired with the powerful flow layout. You’ve read how
to create both basic collection view controllers and their standalone views. You’ve discovered
how to set critical layout properties. You’ve learned about creating live effect feedback and
insertion and deletion dynamic effects. Before moving on to the next chapter, here are a few
points to consider about collection views:

 ■ Collection views offer an amazing amount of power without requiring a lot of coding.
Most things that are maddening and nearly impossible with table views are now possible
with a much more powerful set of APIs.

 ■ This chapter barely touches on header and footer views, and it doesn’t use decoration
views at all. See the sample code included with this chapter for more details on the fine
points of creating custom supplementary view classes.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

443Summary

 ■ Transform-based updates help bring life to your collection view layouts. Don’t be afraid
to let your interfaces animate to respond to user interactions. At the same time, avoid
adding effects simply for the sake of adding effects. A little animation goes a long way.

 ■ Speaking of animations, the same inserted and deleted attribute methods this chapter
uses for items are available for supplementary elements. This feature lets you animate the
arrival and departure of new sections in your collection.

 ■ On a similar note, integrate gestures meaningfully. If a user isn’t likely to discover
your long-press or triple-tap add or delete request, skip it. Instead, use pop-ups, menus,
floating overlays, or simple buttons to communicate how items can be managed and
changed.

 ■ When exploring layout, don’t depend on the flow layout documentation. Look instead
through the UICollectionViewLayout abstract parent class. It details all the core
methods you override.

 ■ Finally, always test on devices. The performance of layouts, especially ones that update
frequently or use transforms, cannot be represented accurately on the simulator. Device
testing, along with Instruments, will better reflect whether you’re actually asking too
much from your presentation.

ptg12441863

This page intentionally left blank

ptg12441863

11
Documents and Data

Sharing

Under iOS, applications can share information and data as well as move control from one
application to another, using a variety of system features. Each application has access to a
common system pasteboard that enables copying and pasting across apps. The apps can request
a number of system-supplied “actions” to apply to a document, such as printing, tweeting, or
posting to Facebook. Apps can declare custom URL schemes that can be embedded in text and
web pages. This chapter introduces the ways you can integrate documents and data sharing
between applications. You’ll see how to add these features to your applications and use them
smartly to make your app a cooperative citizen of the iOS ecosystem.

Recipe: Working with Uniform Type Identifiers

Uniform Type Identifiers (UTIs) represent a central component of iOS information sharing. You
can think of them as the next generation of MIME types. UTIs are strings that identify resource
types such as images and text. UTIs specify what kind of information is being used for common
data objects. They do this without relying on older indicators, such as file extensions, MIME
types, or file-type metadata such as OSType s. UTIs replace these items with a newer and more
flexible technology.

UTIs use a reverse-domain-style naming convention. Common Apple-derived identifiers look
like this: public.html and public.jpeg . These refer, respectively, to HTML source text and
JPEG images, which are both specialized types of information.

Inheritance plays an important role with UTIs. UTIs use an OO-like system of inheritance,
where child UTIs have an “is-a” relationship to parents. Children inherit all attributes of their
parents but add further specificity of the kind of data they represent. That’s because each UTI
can assume a more general or more specific role, as needed. Take the JPEG UTI, for example.
A JPEG image (public.jpeg) is an image (public.image) , which is in turn a kind of data
(public.data), which is a kind of user-viewable (or listenable) content (public.content),

ptg12441863

446 Chapter 11 Documents and Data Sharing

which is a kind of item (public.item), the generic base type for UTIs. This hierarchy is called
conformance , where child UTIs conform to parent UTIs. For example, the more specific jpeg
UTI conforms to the more general image or data UTI.

Figure 11-1 shows part of Apple’s basic conformance tree. Any item lower down on the tree
must conform to all of its parent data attributes. Declaring a parent UTI implies that you
support all of its children. So, an application that can open public.data must service text,
movies, image files, and more.

… …

…

… …

…

public.data

public.jpeg public.tiff public.movie

public.imagepublic.text public.audiovisual-content

public.html public.mpegpublic.plain-text com.apple.quicktime-movie

com.mycorp.myapp.myspecialtext

Figure 11-1 Apple’s public UTI conformance tree.

UTIs enable multiple inheritance. An item can conform to more than one UTI parent. So, you
might imagine a data type that offers both text and image containers, which declares confor-
mance to both.

There is no central registry for UTI items, although each UTI should adhere to conventions.
The public domain is reserved for iOS-specific types, common to most applications. Apple has
generated a complete family hierarchy of public items. Add any third-party company-specific
names by using standard reverse domain naming (for example, com.sadun.myCustomType and
com.apple.quicktime-movie).

Determining UTIs from File Extensions

The Mobile Core Services module offers utilities that enable you to retrieve UTI information
based on file extensions. Be sure to import the module when using these C-based functions.
The following function returns a preferred UTI when passed a path extension string. The
preferred identifier is a single UTI string:

@import MobileCoreServices;

NSString *preferredUTIForExtension(NSString *ext)
{
 // Request the UTI for the file extension

ptg12441863

447Recipe: Working with Uniform Type Identifiers

 NSString *theUTI = (__bridge_transfer NSString *)
 UTTypeCreatePreferredIdentifierForTag(
 kUTTagClassFilenameExtension,
 (__bridge CFStringRef) ext, NULL);
 return theUTI;

}

You can pass a MIME type instead of a file extension to UTTypeCreatePreferredIdentifier-
ForTag() by using kUTTagClassMIMEType as the first argument. This function returns a
preferred UTI for a given MIME type:

NSString *preferredUTIForMIMEType(NSString *mime)
{
 // Request the UTI for the MIME type
 NSString *theUTI = (__bridge_transfer NSString *)
 UTTypeCreatePreferredIdentifierForTag(
 kUTTagClassMIMEType,
 (__bridge CFStringRef) mime, NULL);
 return theUTI;

}

Together these functions enable you to move from file extensions and MIME types to the UTI
types used for modern file access.

Moving from UTI to Extension or MIME Type

To go the other way, producing a preferred extension or MIME types from a UTI, use
UTTypeCopyPreferredTagWithClass() . The following functions return jpeg and image/
jpeg , respectively, when passed public.jpeg :

NSString *extensionForUTI(NSString *aUTI)
{
 CFStringRef theUTI = (__bridge CFStringRef) aUTI;
 CFStringRef results =
 UTTypeCopyPreferredTagWithClass(
 theUTI, kUTTagClassFilenameExtension);
 return (__bridge_transfer NSString *)results;

}

NSString *mimeTypeForUTI(NSString *aUTI)
{
 CFStringRef theUTI = (__bridge CFStringRef) aUTI;
 CFStringRef results =
 UTTypeCopyPreferredTagWithClass(
 theUTI, kUTTagClassMIMEType);
 return (__bridge_transfer NSString *)results;

}

ptg12441863

448 Chapter 11 Documents and Data Sharing

You must work at the leaf level with these functions—at the level that declares the type
extensions directly. You cannot reference the parent types. Extensions are declared in property
lists, where features like file extensions and default icons are described. So, for example,
passing public.text or public.movie to the extension function returns nil , whereas
public.plain-text and public.mpeg return extensions of txt and mpg , respectively.

The former items live too high up the conformance tree, providing an abstract type rather than
a specific implementation. There’s no current API function to look down to find items that
descend from a given class that are currently defined for the application. You may want to file
an enhancement request at bugreport.apple.com. Surely, all the extensions and MIME types
are registered somewhere (otherwise, how would the UTTypeCopyPreferredTagWithClass()
lookup work in the first place?), so the ability to map extensions to more general UTIs should
be possible.

MIME Helper

Although the extension-to-UTI service is exhaustive, returning UTIs for nearly any extension
you throw at it, the UTI-to-MIME results are scattershot. You can usually generate a proper
MIME representation for any common item; less common ones are rare.

The following lines show an assortment of extensions, their UTIs (retrieved via
preferredUTIForExtension()), and the MIME types generated from each UTI (via
mimeTypeForUTI()):

xlv: dyn.age81u5d0 / (null)
xlw: com.microsoft.excel.xlw / application/vnd.ms-excel
xm: dyn.age81u5k / (null)
xml: public.xml / application/xml
z: public.z-archive / application/x-compress
zip: public.zip-archive / application/zip
zoo: dyn.age81y55t / (null)
zsh: public.zsh-script / (null)

As you can see, there are quite a number of blanks. These functions return nil when they
cannot find a match. To address this problem, the sample code for this recipe includes an extra
MIMEHelper class. It defines one function, which returns a MIME type for a supplied extension:

NSString *mimeForExtension(NSString *extension);

Its extensions and MIME types are sourced from the Apache Software Foundation, which has
placed its list in the public domain. Out of the 450 extensions in the sample code for this
recipe, iOS returned all 450 UTIs but only 89 MIME types. The Apache list ups this number to
230 recognizable MIME types.

Testing Conformance

You test conformance using the UTTypeConformsTo() function. This function takes two argu-
ments: a source UTI and a UTI to compare to. It returns true if the first UTI conforms to the

ptg12441863

449Recipe: Working with Uniform Type Identifiers

second. Use this to test whether a more specific item conforms to a more general one. Test
equality using UTTypeEqual() . Here’s an example of how you might use conformance testing
to determine whether a file path likely points to an image resource:

BOOL pathPointsToLikelyUTIMatch(NSString *path, CFStringRef theUTI)
{
 NSString *extension = [path pathExtension];
 NSString *preferredUTI = preferredUTIForExtension(extension);
 return (UTTypeConformsTo(
 (__bridge CFStringRef) preferredUTI, theUTI));

}

BOOL pathPointsToLikelyImage(NSString *path)
{
 return pathPointsToLikelyUTIMatch(path, CFSTR("public.image"));

}

BOOL pathPointsToLikelyAudio(NSString *path)
{
 return pathPointsToLikelyUTIMatch(path, CFSTR("public.audio"));

}

Retrieving Conformance Lists

UTTypeCopyDeclaration() offers the most general (and most useful) of all UTI functions in
the iOS API. It returns a dictionary that includes the following keys:

 ■ kUTTypeIdentifierKey — The UTI name, which you passed to the function (for
example, public.mpeg)

 ■ kUTTypeConformsToKey — Any parents that the type conforms to (for example,
public.mpeg conforms to public.movie)

 ■ kUTTypeDescriptionKey — A real-world description of the type in question, if one exists
(for example, “MPEG movie”)

 ■ kUTTypeTagSpecificationKey — A dictionary of equivalent OSType s (for example, MPG
and MPEG), file extensions (mpg , mpeg , mpe , m75 , and m15), and MIME types (video/mpeg ,
video/mpg , video/x-mpeg , and video/x-mpg) for the given UTI

In addition to these common items, you encounter more keys that specify imported and
exported UTI declarations (kUTImportedTypeDeclarationsKey and kUTExportedType-
DeclarationsKey), icon resources to associate with the UTI (kUTTypeIconFileKey), a URL
that points to a page describing the type (kUTTypeReferenceURLKey), and a version key that
offers a version string for the UTI (kUTTypeVersionKey).

Use the returned dictionary to ascend through the conformance tree to build an array that
represents all the items that a given UTI conforms to. For example, the public.mpeg type
conforms to public.movie , public.audiovisual-content , public.data , public.item , and

ptg12441863

450 Chapter 11 Documents and Data Sharing

public.content . These items are returned as an array from the conformanceArray function
in Recipe 11-1 .

Recipe 11-1 Testing Conformance

// Build a declaration dictionary for the given type
NSDictionary *utiDictionary(NSString *aUTI)
{
 NSDictionary *dictionary =
 (__bridge_transfer NSDictionary *)
 UTTypeCopyDeclaration((__bridge CFStringRef) aUTI);
 return dictionary;

}

// Return an array where each member is guaranteed unique
// but that preserves the original ordering wherever possible
NSArray *uniqueArray(NSArray *anArray)
{
 NSMutableArray *copiedArray =
 [NSMutableArray arrayWithArray:anArray];

 for (id object in anArray)
 {
 [copiedArray removeObjectIdenticalTo:object];
 [copiedArray addObject:object];
 }

 return copiedArray;
}

// Return an array representing all UTIs that a given UTI conforms to
NSArray *conformanceArray(NSString *aUTI)
{
 NSMutableArray *results =
 [NSMutableArray arrayWithObject:aUTI];
 NSDictionary *dictionary = utiDictionary(aUTI);
 id conforms = [dictionary objectForKey:
 (__bridge NSString *)kUTTypeConformsToKey];

 // No conformance
 if (!conforms) return results;

 // Single conformance
 if ([conforms isKindOfClass:[NSString class]])
 {
 [results addObjectsFromArray:conformanceArray(conforms)];
 return uniqueArray(results);

ptg12441863

451Recipe: Accessing the System Pasteboard

 }

 // Iterate through multiple conformance
 if ([conforms isKindOfClass:[NSArray class]])
 {
 for (NSString *eachUTI in (NSArray *) conforms)
 [results addObjectsFromArray:conformanceArray(eachUTI)];
 return uniqueArray(results);
 }

 // Just return the one-item array
 return results;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Accessing the System Pasteboard

Pasteboards, also known as clipboards on some systems, provide a central OS feature for sharing
data across applications. Users can copy data to the pasteboard in one application, switch tasks,
and then paste that data into another application. Cut/copy/paste features are similar to those
found in most other operating systems. Users can also copy and paste within a single applica-
tion, when switching between text fields or views, and developers can establish private paste-
boards for app-specific data that other apps would not understand.

The UIPasteboard class offers access to a shared device pasteboard and its contents. This
snippet returns the general system pasteboard, which is appropriate for most general copy/paste
use:

UIPasteboard *pb = [UIPasteboard generalPasteboard];

The system-provided general pasteboard and the find pasteboards are shared across all applica-
tions on the device. In addition to the shared system pasteboards, iOS offers both application-
specific and custom-named pasteboards that can be used across applications from the same
organization with a common team ID in the application portal. Create app-specific pasteboards
using pasteboardWithUniqueName , which returns an application pasteboard object that
persists until the application quits.

Create shared pasteboards using pasteboardWithName:create: , which returns a pasteboard
with the specified name. The create parameter specifies whether the system should create the
pasteboard if it does not yet exist. This kind of pasteboard can persist beyond a single applica-
tion run; set the persistent property to YES after creation. Use removePasteboardWithName: to
destroy a pasteboard and free up the resources it uses.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

452 Chapter 11 Documents and Data Sharing

Note

Prior to iOS 7, custom-named pasteboards could be shared across all applications aware of the
pasteboard name, not just applications from the same organization and application group. This
has changed in iOS 7, as described in the iOS 7 Release Notes. This change breaks numer-
ous existing applications that relied on publicly sharable custom pasteboards. You now need
new methods for sharing between apps. Consider using openURL (see Recipe 11-8) or external
shared storage.

Storing Data

A pasteboard can store one or more items at a time. Each pasteboard item is represented as a
dictionary containing one or more key-value pairs that store the data and the associated type.
A single pasteboard item might contain multiple entries to make it more likely that other apps
can find a compatible data type. A UTI is commonly used to specify what kind of data is stored.
For example, you might find public.text (and, more specifically, public.utf8-plain-text)
to store text data, public.url for URL address, and public.jpeg for image data. These are
among the many common data types used on iOS.

UIPasteboard provides methods to work with a single pasteboard item or multiple pasteboard
items at a time, including investigating the data types of items as well as getting and setting
pasteboard data. Many of the single pasteboard item methods work specifically on the first item
in the pasteboard. You can retrieve an array of all available items via the pasteboard’s items
property.

You can set the data and associate a type for the first item in the pasteboard by passing an
NSData object and a UTI that describes a type the data conforms to:

[[UIPasteboard generalPasteboard]
 setData:theData forPasteboardType:theUTI];

Alternatively, for property list objects (that is, string, date, array, dictionary, number, or
URL), set an NSValue via setValue:forPasteboardType: . These property list objects are
stored internally somewhat differently than their raw-data cousins, giving rise to the method
differentiation.

Storing Common Types

Pasteboards are further specialized for several data types, which represent the most commonly
used pasteboard items. These are colors (not a property list “value” object), images (also not a
property list “value” object), strings, and URLs. The UIPasteboard class provides specialized
getters and setters to make it easier to handle these items. You can treat each of these as proper-
ties of the pasteboard, so you can set and retrieve them using dot notation. What’s more, each
property has a plural form, allowing you to access those items as arrays of objects.

Pasteboard properties greatly simplify using the system pasteboard for the most common use
cases. The property accessors include the following:

ptg12441863

453Recipe: Accessing the System Pasteboard

 ■ string — Sets or retrieves the string of the first pasteboard item

 ■ strings — Sets or retrieves an array of all strings on the pasteboard

 ■ image — Sets or retrieves the image of the first pasteboard item

 ■ images — Sets or retrieves an array of all images on the pasteboard

 ■ URL — Sets or retrieves the URL of the first pasteboard item

 ■ URLs — Sets or retrieves an array of all URLs on the pasteboard

 ■ color — Sets or retrieves the first color on the pasteboard

 ■ colors — Sets or retrieves an array of all colors on the pasteboard

Retrieving Data

When using one of the four special classes listed previously, simply use the associated property
to retrieve data from the pasteboard. Otherwise, you can fetch data using the dataForPaste-
boardType: method. This method returns the data from the first item in the pasteboard. Any
other items in the pasteboard are ignored.

If you need to retrieve all matching data, recover an itemSetWithPasteboardTypes: and then
iterate through the set to retrieve each dictionary. Recover the data type for each item from the
single dictionary key and the data from its value.

Modified pasteboards issue a UIPasteboardChangedNotification , which you can listen to
via a default NSNotificationCenter observer. You can also watch custom pasteboards and
listen for their removal via UIPasteboardRemovedNotification .

Note

If you want to successfully paste text data to Notes or Mail, use public.utf8-plain-
text as your UTI of choice when storing information to the pasteboard. Using the string or
strings properties automatically enforces this UTI.

Passively Updating the Pasteboard

iOS’s selection and copy interfaces are not, frankly, the most streamlined elements of the oper-
ating system. There are times when you want to simplify matters for your user while preparing
content that’s meant to be shared with other applications.

Consider Recipe 11-2 . It enables the user to use a text view to enter and edit text, while auto-
mating the process of updating the pasteboard. When the watcher is active (toggled by a simple
button tap), the text updates the pasteboard on each edit. This is accomplished by implement-
ing a text view delegate method (textViewDidChange:) that responds to edits by automati-
cally assigning changes to the pasteboard (updatePasteboard).

ptg12441863

454 Chapter 11 Documents and Data Sharing

This recipe demonstrates the relative simplicity involved in accessing and updating the
pasteboard.

Recipe 11-2 Automatically Copying Text to the Pasteboard

- (void)updatePasteboard
{
 // Copy the text to the pasteboard when the watcher is enabled
 if (enableWatcher)
 [UIPasteboard generalPasteboard].string = textView.text;

}

- (void)textViewDidChange:(UITextView *)textView
{
 // Delegate method calls for an update
 [self updatePasteboard];

}

- (void)toggle:(UIBarButtonItem *)bbi
{
 // switch between standard and auto-copy modes
 enableWatcher = !enableWatcher;
 bbi.title = enableWatcher ? @"Stop Watching" : @"Watch";

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Monitoring the Documents Folder

iOS documents aren’t trapped in their sandboxes. You can and should share them with your
users. Offer users direct control over their documents and access to any material they may have
created on-device. A simple Info.plist setting enables iTunes to display the contents of a
user’s Documents folder and enables those users to add and remove material on demand.

At some point in the future, you may use a simple NSMetadataQuery monitor to watch your
Documents folder and report updates. At this writing, that metadata surveillance is not yet
extended beyond iCloud for use with other folders. Code ported from OS X fails to work as
expected on iOS. At this writing, there are precisely two available search domains for iOS: the

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

455Recipe: Monitoring the Documents Folder

ubiquitous data scope and the ubiquitous documents scope (that is, iCloud and iCloud). Until
general functionality arrives in iOS, use kqueue . This older technology provides scalable event
notification. With kqueue , you can monitor, add, and clear events. This roughly equates to
looking for files being added and deleted, which are the primary kinds of updates you want to
react to. Recipe 11-3 presents a kqueue implementation for watching the Documents folder.

Enabling Document File Sharing

To enable file sharing, add an Application Supports iTunes File Sharing key to the applica-
tion’s Info.plist and set its value to YES . You can edit the plist directly or use the Xcode-
provided editor. The editor is accessible in the Custom iOS Target Properties of the application
target in the Project > Target > Info screen, as shown in Figure 11-2 . When working with raw
keys and values, this item is called UIFileSharingEnabled . iTunes lists all applications that
declare file-sharing support in each device’s Apps tab, as shown in Figure 11-3 .

Figure 11-2 Enable Application Supports iTunes File Sharing to allow user access to the
Documents folder via iTunes.

User Control

You cannot specify which kinds of items are allowed to be in the Documents folder. Users
can add any materials they like, and they can remove any items they want to remove. What
they cannot do, however, is navigate through subfolders using the iTunes interface. Notice the
Inbox folder in Figure 11-3 . This is an artifact left over from application-to-application docu-
ment sharing, and it should not be there. Users cannot manage that data directly, and you
should not leave the subfolder there to confuse them.

ptg12441863

456 Chapter 11 Documents and Data Sharing

Figure 11-3 Each installed application that declares UIFileSharingEnabled is listed in iTunes
in the device’s Apps tab.

Users cannot delete the Inbox in iTunes the way they can delete other files and folders. Nor
should your application write files directly to the Inbox. Respect the Inbox’s role, which is to
capture any incoming data from other applications. When you implement file-sharing support,
always check for an Inbox on resuming active status and process that data to clear out the
Inbox and remove it whenever your app launches and resumes. Best practices for handling
incoming documents are discussed later in this chapter.

Xcode Access

As a developer, you have access not only to the Documents folder but also to the entire
application sandbox. Use the Xcode Organizer (Command-Shift-2) > Devices tab > Device
> Applications > Application Name to browse, upload, and download files to and from the
sandbox.

Test basic file sharing by enabling the UIFileSharingEnabled property to an application and
loading data to your Documents folder. After those files are created, use Xcode and iTunes to
inspect, download, and delete them.

Scanning for New Documents

Recipe 11-3 works by requesting kqueue notifications in its beginGeneratingDocument-
NotificationsInPath: method. Here, it retrieves a file descriptor for the path you supply (in
this case, the Documents folder) and requests notifications for add and clear events. It adds this
functionality to the current run loop, enabling notifications whenever the monitored folder
updates.

ptg12441863

457Recipe: Monitoring the Documents Folder

Upon receiving that callback, it posts a notification (for example, the custom kDocument-
Changed , in the kqueueFired method) and continues watching for new events. This all runs
in the primary run loop on the main thread, so the GUI can respond and update itself upon
receiving the notification.

The following snippet demonstrates how you might use Recipe 11-3 ’s watcher to update a
file list in your GUI. Whenever the contents change, an update notification allows the app to
refresh those directory contents listings:

- (void)scanDocuments
{
 NSString *path = [NSHomeDirectory()
 stringByAppendingPathComponent:@"Documents"];
 items = [[NSFileManager defaultManager]
 contentsOfDirectoryAtPath:path error:nil];
 [self.tableView reloadData];

}

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 [self scanDocuments];

 // React to content changes
 [[NSNotificationCenter defaultCenter]
 addObserverForName:kDocumentChanged
 object:nil queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification){
 [self scanDocuments];
 }];

 // Start the watcher
 NSString *path = [NSHomeDirectory()
 stringByAppendingPathComponent:@"Documents"];
 helper = [DocWatchHelper watcherForPath:path];

}

Test this recipe by connecting a device to iTunes. Add and remove items using the iTunes App
tab interface. The device’s onboard file list updates to reflect those changes in real time.

There are some cautions to be aware of when using Recipe 11-3 . First, for larger documents,
you shouldn’t be reading the file immediately after you’re notified of their creation. You might
want to poll file sizes to determine when data has stopped being written. Second, iTunes File
Sharing transfer can, upon occasion, stall. Code accordingly.

ptg12441863

458 Chapter 11 Documents and Data Sharing

Recipe 11-3 Using a kqueue File Monitor

#import <fcntl.h>
#import <sys/event.h>

#define kDocumentChanged \
 @"DocumentsFolderContentsDidChangeNotification"

@interface DocWatchHelper : NSObject
@property (strong) NSString *path;
+ (id)watcherForPath:(NSString *)aPath;
@end

@implementation DocWatchHelper
{
 CFFileDescriptorRef kqref;
 CFRunLoopSourceRef rls;

}

- (void)kqueueFired
{
 int kq;
 struct kevent event;
 struct timespec timeout = { 0, 0 };
 int eventCount;

 kq = CFFileDescriptorGetNativeDescriptor(self->kqref);
 assert(kq >= 0);

 eventCount = kevent(kq, NULL, 0, &event, 1, &timeout);
 assert((eventCount >= 0) && (eventCount < 2));

 if (eventCount == 1)
 [[NSNotificationCenter defaultCenter]
 postNotificationName:kDocumentChanged
 object:self];

 CFFileDescriptorEnableCallBacks(self->kqref,
 kCFFileDescriptorReadCallBack);

}

static void KQCallback(CFFileDescriptorRef kqRef,
 CFOptionFlags callBackTypes, void *info)

{
 DocWatchHelper *helper =
 (DocWatchHelper *)(__bridge id)(CFTypeRef) info;
 [helper kqueueFired];

}

ptg12441863

459Recipe: Monitoring the Documents Folder

- (void)beginGeneratingDocumentNotificationsInPath:
 (NSString *)docPath

{
 int dirFD;
 int kq;
 int retVal;
 struct kevent eventToAdd;
 CFFileDescriptorContext context =
 { 0, (void *)(__bridge CFTypeRef) self,
 NULL, NULL, NULL };

 dirFD = open([docPath fileSystemRepresentation], O_EVTONLY);
 assert(dirFD >= 0);

 kq = kqueue();
 assert(kq >= 0);

 eventToAdd.ident = dirFD;
 eventToAdd.filter = EVFILT_VNODE;
 eventToAdd.flags = EV_ADD | EV_CLEAR;
 eventToAdd.fflags = NOTE_WRITE;
 eventToAdd.data = 0;
 eventToAdd.udata = NULL;

 retVal = kevent(kq, &eventToAdd, 1, NULL, 0, NULL);
 assert(retVal == 0);

 self->kqref = CFFileDescriptorCreate(NULL, kq,
 true, KQCallback, &context);
 rls = CFFileDescriptorCreateRunLoopSource(
 NULL, self->kqref, 0);
 assert(rls != NULL);

 CFRunLoopAddSource(CFRunLoopGetCurrent(), rls,
 kCFRunLoopDefaultMode);
 CFRelease(rls);

 CFFileDescriptorEnableCallBacks(self->kqref,
 kCFFileDescriptorReadCallBack);

}

- (void)dealloc
{
 self.path = nil;
 CFRunLoopRemoveSource(CFRunLoopGetCurrent(), rls,
 kCFRunLoopDefaultMode);
 CFFileDescriptorDisableCallBacks(self->kqref,

ptg12441863

460 Chapter 11 Documents and Data Sharing

 kCFFileDescriptorReadCallBack);
}

+ (id)watcherForPath:(NSString *)aPath
{
 DocWatchHelper *watcher = [[self alloc] init];
 watcher.path = aPath;
 [watcher beginGeneratingDocumentNotificationsInPath:aPath];
 return watcher;

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Activity View Controller

Introduced in iOS 6, the activity view controller integrates data activities into the interface
shown in Figure 11-4 . With minimal development cost on your part, this controller enables
your users to copy items to the pasteboard, post to social media, share via e-mail and texting,
and more. Built-in activities include Facebook, Twitter, Weibo, SMS, mail, printing, copying to
pasteboard, assigning data to a contact, and saving to the Camera Roll. iOS 7 adds a new set
of activities, including adding to the Reading List, Flickr, Vimeo, Weibo, and AirDrop. Apps
can define their own custom services as well, which you’ll read about later in this section. The
comprehensive list of current activity types includes the following:

 ■ UIActivityTypePostToFacebook

 ■ UIActivityTypePostToTwitter

 ■ UIActivityTypePostToWeibo

 ■ UIActivityTypeMessage

 ■ UIActivityTypeMail

 ■ UIActivityTypePrint

 ■ UIActivityTypeCopyToPasteboard

 ■ UIActivityTypeAssignToContact

 ■ UIActivityTypeSaveToCameraRoll

 ■ UIActivityTypeAddToReadingList

 ■ UIActivityTypePostToFlickr

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

461Recipe: Activity View Controller

 ■ UIActivityTypePostToVimeo

 ■ UIActivityTypePostToTencentWeibo

 ■ UIActivityTypeAirDrop

Significantly missing from this list are two important activities: Open in... for sharing docu-
ments between applications and Quick Look for previewing files. These two features are
discussed later in this chapter, with recipes that show you how to support these features inde-
pendently and, in the case of Quick Look, integrated with the activity view controller.

Figure 11-4 The UIActivityViewController class offers system and custom services.

Presenting the Activity View Controller

How you present the controller varies by device. Show it modally on members of the iPhone
family and in a popover on tablets. The UIBarButtonSystemItemAction icon provides the
perfect way to populate bar buttons linking to this controller.

Best of all, almost no work is required on your end. After users select an activity, the controller
handles all further interaction, such as presenting a mail or Twitter composition sheet, adding a
picture to the onboard library, or assigning it to a contact.

ptg12441863

462 Chapter 11 Documents and Data Sharing

Activity Item Sources

Recipe 11-4 creates and presents the activity view controller from code. This implementation
has its main class adopt the UIActivityItemSource protocol and adds self to the items
array passed to the controller:

UIActivityViewController *activity =
 [[UIActivityViewController alloc] initWithActivityItems:@[self]
 applicationActivities:nil];

[self presentViewController:activity];

The UIActivityItemSource — self in this case—represents the data that is being acted upon.

The protocol’s two mandatory methods supply the item to process (the data that will be used
for the activity) and a placeholder for that item. The item corresponds to an object that’s
appropriate for a given activity type. You can vary which item you return based on the kind of
activity that’s passed to the callback. For example, you might tweet “I created a great song in
App Name ,” but you might send the actual sound file through e-mail.

The placeholder for an item is typically the same data returned as the item unless you have
objects that you must process or create. In that case, you can create a placeholder object
without real data.

Both callbacks run on the main thread, so keep your data small. If you need to process your
data, consider using a provider described in the next section instead.

Optional methods introduced in iOS 7 allow the delegate to configure further options on your
data. Delegate methods are provided to return the thumbnail preview image, subject text, and a
UTI for the specified activity type. These elements can be used by activity services that support
them.

Item Providers

Extending the previous approach, the UIActivityItemProvider class conforms to the
UIActivityItemSource protocol and enables you to delay passing data. It’s a type of opera-
tion (NSOperation) that offers you the flexibility to manipulate data before sharing. For
example, you might need to process a large video file before it can be uploaded to a social
sharing site, or you might need to subsample some audio from a larger sequence.

Subclass the provider class and implement the item method. This takes the place of the main
method you normally use with operations. Generate the processed data, safe in the knowledge
that the method will run asynchronously without blocking your user’s interactive experience.

Item Source Callbacks

Recipe 11-4 passes self to the controller as part of its items array. self adopts the source
protocol (< UIActivityItemSource >), so the controller understands to use callbacks when
retrieving data items. The callback methods enable you to vary your data based on each one’s
intended use. Use the activity types (such as Facebook or Add to Contacts; they’re listed earlier

ptg12441863

463Recipe: Activity View Controller

in this section) to choose the exact data you want to provide. This is especially important when
selecting from resolutions for various uses. When printing, keep your data quality high. When
tweeting, a low-res image may do the job instead.

If your data is invariant—that is, you’ll be passing the same data to e-mail as you would to
Facebook—you can directly supply an array of data items (typically strings, images, and URLs)
instead of UIActivityItemSource objects. For example, you could create the controller like
this, using a single image:

UIActivityViewController *activity = [[UIActivityViewController alloc]
 initWithActivityItems:@[imageView.image]
 applicationActivities:nil];

This direct approach is far simpler. Your primary class need not declare the item source proto-
col; you do not need to implement the extra methods. It’s a quick and easy way to manage
activities for simple items.

You’re not limited to passing single items, either. Include additional elements in the activity
items array as needed. The following controller might add its two images to an e-mail or save
both to the system Camera Roll, depending on the user’s selection:

UIImage *secondImage = [UIImage imageNamed:@"Default.png"];
UIActivityViewController *activity = [[UIActivityViewController alloc]
 initWithActivityItems:@[imageView.image, secondImage]
 applicationActivities:nil];

Broadening activities to use multiple items enables users to be more efficient while using your
app.

Recipe 11-4 The Activity View Controller

- (void)presentViewController:
 (UIViewController *)viewControllerToPresent

{
 if (popover) [popover dismissPopoverAnimated:NO];
 if (IS_IPHONE)
 {
 [self presentViewController:viewControllerToPresent
 animated:YES completion:nil];
 }
 else
 {
 popover = [[UIPopoverController alloc]
 initWithContentViewController:viewControllerToPresent];
 popover.delegate = self;
 [popover presentPopoverFromBarButtonItem:
 self.navigationItem.leftBarButtonItem
 permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:YES];

ptg12441863

464 Chapter 11 Documents and Data Sharing

 }
}

// Popover was dismissed
- (void)popoverControllerDidDismissPopover:
 (UIPopoverController *)aPopoverController

{
 popover = nil;

}

// Return the item to process
- (id)activityViewController:
 (UIActivityViewController *)activityViewController
 itemForActivityType:(NSString *)activityType

{
 return imageView.image;

}

// Return a thumbnail version of that item
- (id)activityViewControllerPlaceholderItem:
 (UIActivityViewController *)activityViewController

{
 return imageView.image;

}

// Create and present the view controller
- (void)action
{
 UIActivityViewController *activity =
 [[UIActivityViewController alloc]
 initWithActivityItems:@[self]
 applicationActivities:nil];
 [self presentViewController:activity];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Adding Services

Each app can provide application-specific services by subclassing the UIActivity class and
passing that activity to the UIActivityController on initialization. These custom activities
are available in the presented activity view controller alongside the system-provided activities.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

465Recipe: Activity View Controller

When selected, the custom activity presents a view controller allowing the user to interact with
the passed data or service in some way, such as entering credentials or manipulating the data.

Listing 11-1 introduces a skeletal UIActivity subclass that presents a simple text view. This
custom activity is shown in Figure 11-5 as the List Items (Cookbook) option. When this icon
is tapped, a custom view controller is presented, displaying a view that lists the items passed
to it by the activity controller. It displays each item’s class and description. The view
controller includes a handler that updates the calling UIActivity instance by sending
activityDidFinish: when the user taps Done.

Adding a way for your activity to complete is important, especially when your controller
doesn’t have a natural ending point. When your action uploads data to an FTP server, you
know when it completes. If it tweets, you know when the status posts. In this example, it’s up
to the user to determine when this activity finishes. Make sure your view controller contains a
weak property pointing back to the activity so that you can send the did-finish method after
your work concludes.

The activity class contains a number of mandatory and optional items. You should implement
all the methods shown in the following list. The methods to support a custom activity include
the following:

 ■ activityType — Returns a unique string that describes the type of activity.
One of this string’s counterparts in the system-supplied activities is
UIActivityTypePostToFacebook . Use a similar naming scheme. This string
identifies a particular activity type and what it does. Listing 11-1 returns
@"CustomActivityTypeListItemsAndTypes" , which describes the activity.

 ■ activityTitle — You supply the text you want to show in the activity controller. The
custom text in Figure 11-5 was returned by this method. Use active descriptions when
describing your custom action. Follow Apple’s lead and use, for example, Save to Camera
Roll, Print, and Copy. Your title should finish the phrase “I Want to...”—for example, “I
Want to Print,” “I Want to Copy,” or, in this example, “I Want to List Items.” Use header
case and capitalize each word except for minor ones like to or and.

 ■ activityImage — Returns an image for the controller to use. The controller converts your
image to a one-value bitmap. Use simple art on a transparent background to build the
contents of your icon image.

 ■ canPerformWithActivityItems: — Scans the passed items and decides whether your
controller can process them. If so, returns YES .

 ■ prepareWithActivityItems: — Stores the passed items for later use (here, the passed
activity items are assigned to a local instance variable) and performs any necessary
preprocessing.

 ■ activityViewController — Returns a fully initialized presentable view controller, using
the activity items passed earlier. This controller is automatically presented to the user,
and he or she can customize options before performing the promised action.

ptg12441863

466 Chapter 11 Documents and Data Sharing

Adding custom activities allows your app to expand its data-handling possibilities while inte-
grating features into a consistent system-supplied interface. It’s a powerful iOS feature. The
strongest activity choices integrate with system services (such as copying to the pasteboard
or saving to the photo album) or provide a connection to off-device APIs, such as Facebook,
Twitter, Dropbox, and FTP.

This example, which simply lists items, represents a weak use case. There’s no reason the same
feature couldn’t be provided as a normal in-app screen. When you think actions , try to project
outside the app. Connect your user’s data with sharing and processing features that expand
beyond the normal GUI.

Figure 11-5 Adding your own custom application activities.

Listing 11-1 Application Activities

// All activities present a view controller. This custom controller
// provides a full-sized text view.
@interface TextViewController : UIViewController
 @property (nonatomic, readonly) UITextView *textView;
 @property (nonatomic, weak) UIActivity *activity;

@end

ptg12441863

467Recipe: Activity View Controller

@implementation TextViewController

// Make sure you provide a done handler of some kind, such as this
// or an integrated button that finishes and wraps up
- (void)done
{
 [_activity activityDidFinish:YES];

}

// Just a super-basic text view controller
- (instancetype)init
{
 self = [super init];
 if (self)
 {
 _textView = [[UITextView alloc] init];
 _textView.font =
 [UIFont fontWithName:@"Futura" size:16.0f];
 _textView.editable = NO;

 [self.view addSubview:_textView];
 PREPCONSTRAINTS(_textView);
 STRETCH_VIEW(self.view, _textView);

 // Prepare a Done button
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Done", @selector(done));
 }
 return self;

}
@end

// A custom activity subclass to display a list of source items
@interface MyActivity : UIActivity
@end

@implementation MyActivity
{
 NSArray *items;

}

// A unique type name
- (NSString *)activityType
{
 return @"CustomActivityTypeListItemsAndTypes";

}

ptg12441863

468 Chapter 11 Documents and Data Sharing

// The title listed on the controller
- (NSString *)activityTitle
{
 return @"List Items (Cookbook)";

}

// A custom image that says "iOS" with a rounded rect edge
- (UIImage *)activityImage
{
 CGRect rect = CGRectMake(0.0f, 0.0f, 75.0f, 75.0f);
 UIGraphicsBeginImageContext(rect.size);
 rect = CGRectInset(rect, 15.0f, 15.0f);
 UIBezierPath *path = [UIBezierPath
 bezierPathWithRoundedRect:rect cornerRadius:4.0f];
 [path stroke];
 rect = CGRectInset(rect, 0.0f, 10.0f);
 NSMutableParagraphStyle * paragraphStyle =
 [[NSMutableParagraphStyle alloc] init];
 paragraphStyle.lineBreakMode = NSLineBreakByWordWrapping;
 paragraphStyle.alignment = NSTextAlignmentCenter;
 NSDictionary * attributes =
 @{NSParagraphStyleAttributeName : paragraphStyle,
 NSFontAttributeName : [UIFont fontWithName:@"Futura"
 size:18.0f]};
 [@"iOS" drawInRect:rect withAttributes:attributes];
 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 return image;
}

// Specify if you can respond to these items
- (BOOL)canPerformWithActivityItems:(NSArray *)activityItems
{
 return YES;

}

// Store the items locally for later use
- (void)prepareWithActivityItems:(NSArray *)activityItems
{
 items = activityItems;

}

// Return a view controller, in this case one that lists
// its items and their classes
- (UIViewController *)activityViewController
{

ptg12441863

469Recipe: Activity View Controller

 TextViewController *tvc = [[TextViewController alloc] init];
 tvc.activity = self;
 UITextView *textView = tvc.textView;

 NSMutableString *string = [NSMutableString string];
 for (id item in items)
 [string appendFormat:
 @"%@: %@\n", [item class], [item description]];
 textView.text = string;

 // Make sure to provide some kind of done: handler in
 // your main controller.
 UINavigationController *nav = [[UINavigationController alloc]
 initWithRootViewController:tvc];
 return nav;

}
@end

Items and Activities

The activities presented for each item vary by the kind of data you pass. Table 11-1 lists offered
activities by source data type on a U.S. phone:

Table 11-1 Activity Types for Data Types

Source Offered Activity

NSString

String, single or multiple

Message, Mail, Twitter, Facebook, Copy.

NSAttributedString

Attributed string

Message, Mail, Twitter, Facebook, Copy.

UIImage

Image, single

Message, Mail, Twitter, Facebook, Save Image,
Assign to Contact, Copy, Print.

UIImage

Image, multiple

Message, Mail, Facebook, Save Images, Copy, Print.

UIColor

Colors

Copy.

NSURL

URLs

Message, Mail, Twitter, Facebook, Add to Reading
List, Copy. URLs using the assets-library:
scheme can be used with Facebook. The mailto:
scheme is valid with Mail activities, and sms: works
with Message.

ptg12441863

470 Chapter 11 Documents and Data Sharing

Source Offered Activity

UIPrintPageRenderer ,
UIPrintFormatter , and UIPrintInfo

Print.

NSDictionary

Dictionaries

If objects are supported, the activities for those
objects. Sadly, the same does not hold true for
arrays, which are unsupported.

Unsupported items For example, AVAsset,NSData , NSArray , NSDate ,
or NSNumber: Nothing, a blank view controller.

Various items Union of all supported types (for example, for
string plus image, you get Message, Mail, Twitter,
Facebook, Save Image, Assign to Contact, Copy,
Print).

These activities may vary based on locale. As you see in the recipes that follow, preview control-
ler support expands beyond these foundation types:

 ■ iOS’s Quick Look framework integrates activity controllers into its file previews. The
Quick Look–provided activity controller can print and e-mail many kinds of documents.
Some document types support other activities as well.

 ■ Document interaction controllers offer “Open in...” features that enable you to share files
between applications. The controller adds activities into its “options”-style presentation,
combining activities with “Open in...” choices.

Excluding Activities

You can specifically exclude activities by supplying a list of activity types to the
excludedActivityTypes property:

UIActivityViewController *activity =
 [[UIActivityViewController alloc]
 initWithActivityItems:items
 applicationActivities:@[appActivity]];

activity.excludedActivityTypes = @[UIActivityTypeMail];

Recipe: The Quick Look Preview Controller

The Quick Look preview controller class enables users to preview many document types. This
controller supports text, images, PDF, RTF, iWork files, Microsoft Office documents (Office 97
and later, including DOC, PPT, XLS, and so on), and CSV files. You supply a supported file
type, and the Quick Look controller displays it for the user. An integrated system-supplied
activity view controller helps share the previewed document, as you can see in Figure 11-6 .

ptg12441863

471Recipe: The Quick Look Preview Controller

Either push or present your preview controllers. The controller adapts to both situations,
working with navigation stacks and with modal presentation. Recipe 11-5 demonstrates both
approaches.

Figure 11-6 This Quick Look controller is presented modally and shows the screen after the
user has tapped the Action button. Quick Look handles a wide range of document types, enabling
users to see the file contents before deciding on an action to apply to them.

Implementing Quick Look

Implementing Quick Look requires just a few simple steps:

 1. Declare the QLPreviewControllerDataSource protocol in your primary controller class.

 2. Implement the numberOfPreviewItemsInPreviewController: and preview-
Controller:previewItemAtIndex: data source methods. The first of these methods
returns a count of items to preview. The second returns the preview item referred to by
the index.

 3. Ensure that preview items conform to the QLPreviewItem protocol. This protocol
consists of two required properties: a preview title and an item URL. Recipe 11-5 creates a
conforming QuickItem class. This class implements an absolutely minimal approach to
support the data source.

ptg12441863

472 Chapter 11 Documents and Data Sharing

Once these requirements are met, your code is ready to create a new preview controller, set its
data source, and present or push it.

Recipe 11-5 Quick Look

@interface QuickItem : NSObject <QLPreviewItem>
@property (nonatomic, strong) NSString *path;
@property (readonly) NSString *previewItemTitle;
@property (readonly) NSURL *previewItemURL;
@end

@implementation QuickItem

// Title for preview item
- (NSString *)previewItemTitle
{
 return [_path lastPathComponent];

}

// URL for preview item
- (NSURL *)previewItemURL
{
 return [NSURL fileURLWithPath:_path];

}
@end

#define FILE_PATH [NSHomeDirectory() \
 stringByAppendingPathComponent:@"Documents/PDFSample.pdf"]

@interface TestBedViewController : UIViewController
 <QLPreviewControllerDataSource>

@end

@implementation TestBedViewController
- (NSInteger)numberOfPreviewItemsInPreviewController:
 (QLPreviewController *)controller

{
 return 1;

}

- (id <QLPreviewItem>)previewController:
 (QLPreviewController *)controller
 previewItemAtIndex:(NSInteger)index;

{
 QuickItem *item = [[QuickItem alloc] init];
 item.path = FILE_PATH;
 return item;

ptg12441863

473Recipe: Using the Document Interaction Controller

}

// Push onto navigation stack
- (void)push
{
 QLPreviewController *controller =
 [[QLPreviewController alloc] init];
 controller.dataSource = self;
 [self.navigationController
 pushViewController:controller animated:YES];

}

// Use modal presentation
- (void)present
{
 QLPreviewController *controller =
 [[QLPreviewController alloc] init];
 controller.dataSource = self;
 [self presentViewController:controller
 animated:YES completion:nil];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Push", @selector(push));
 self.navigationItem.leftBarButtonItem =
 BARBUTTON(@"Present", @selector(present));

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Using the Document Interaction Controller

The UIDocumentInteractionController class enables applications to present interaction
options to users, enabling them to use document files in a variety of ways. With this class, users
can take advantage of the following:

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

474 Chapter 11 Documents and Data Sharing

 ■ iOS application-to-application document sharing (that is, “Open this document in...
some app ”)

 ■ Document preview using Quick Look

 ■ Activity controller options such as printing, sharing, and social networking

You’ve already seen the latter two features in action in the activity view controller earlier in
this chapter. In both presentation and behavior, UIDocumentInteractionController is
actually very similar to UIActivityViewController. The document interaction class adds a
powerful app-to-app sharing capability.

The controller offers two styles, as shown in Figure 11-7 . The “Open in...” style offers only
“Open in” choices. The “options” style provides a list of interaction options, including “Open
in...,” Quick Look, and any supported actions. It’s essentially all the good stuff you get from
a standard Actions menu, along with “Open in...” extras. You do have to explicitly add Quick
Look callbacks, but doing so takes little work.

Figure 11-7 The UIDocumentInteractionController shown in its “Open in...” style (left)
and options style (right).

ptg12441863

475Recipe: Using the Document Interaction Controller

Creating Document Interaction Controller Instances

Each document interaction controller is specific to a single document file. This file is typically
stored in the user’s Documents folder, represented by the fileURL in this snippet:

dic = [UIDocumentInteractionController
 interactionControllerWithURL:fileURL];

You supply a local file URL and present the controller using either the “options” variation
(basically the Action menu) or the “Open in...” style. Present the Options menu in one of these
two styles from a bar button or an onscreen rectangle:

 ■ presentOptionsMenuFromRect:inView:animated:

 ■ presentOptionsMenuFromBarButtonItem:animated:

 ■ presentOpenInMenuFromRect:inView:animated:

 ■ presentOpenInMenuFromBarButtonItem:animated:

The iPad uses the bar button or rect you pass to present a popover. On the iPhone, the imple-
mentation presents a modal controller view. As you would expect, more bookkeeping takes
place on the iPad, where users may tap on other bar buttons, may dismiss the popover, and so
forth.

Disable each iPad bar button item after presenting its associated controller and re-enable it after
dismissal. This is important because you don’t want your user to re-tap an in-use bar button
and need to handle situations where a different popover needs to take over. Basically, there are
a variety of unpleasant scenarios that can happen if you don’t carefully monitor which buttons
are active and what popover is in play. Recipe 11-6 guards against these scenarios.

Document Interaction Controller Properties

Each document interaction controller offers a number of properties, which can be used in your
controller delegate callbacks:

 ■ URL — This property enables you to query the controller for the file it is servicing. This is
the same URL you pass when creating the controller.

 ■ UTI — This property is used to determine which apps can open the document. It uses the
system-supplied functions discussed earlier in the chapter to find the most preferred UTI
match, based on the filename and metadata. You can override this in code to set the
property manually.

 ■ name — This property provides the last path component of the URL, offering a quick way
to provide a user-interpretable name without having to manually strip the URL yourself.

 ■ icons — Use this property to retrieve an icon for the file type that’s in play. Applications
that declare support for certain file types provide image links in their declaration
(as you’ll see shortly, in the discussion about declaring file support). These images
correspond to the values stored for the kUTTypeIconFileKey key, as mentioned earlier
in this chapter.

ptg12441863

476 Chapter 11 Documents and Data Sharing

 ■ annotation — This property provides a way to pass custom data along with a file
to any application that will open the file. There are no standards for using this
property; however, the item must be set to some top-level property list object—namely
dictionaries, arrays, data, strings, numbers, and dates. Because there are no community
standards, use of this property tends to be minimal except where developers share the
information across their own suite of published apps.

Providing Document Quick Look Support

Add Quick Look support to the controller by implementing a trio of delegate callbacks:

#pragma mark QuickLook
- (UIViewController *)
 documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *)controller

{
 return self;

}

- (UIView *)documentInteractionControllerViewForPreview:
 (UIDocumentInteractionController *)controller

{
 return self.view;

}

- (CGRect)documentInteractionControllerRectForPreview:
 (UIDocumentInteractionController *)controller

{
 return self.view.frame;

}

These methods declare which view controller will be used to present the preview, which view
will host it, and the frame for the preview size. You may have occasional compelling reasons to
use a child view controller with limited screen presence on tablets (such as in a split view, with
the preview in just one portion), but for the iPhone family, there’s almost never any reason not
to allow the preview to take over the entire screen.

Checking for the Open Menu

When you use a document interaction controller, the Options menu almost always provides
valid menu choices, especially if you implement the Quick Look callbacks. You may or may
not, however, have any “Open in...” options to work with. Those options depend on the file
data you provide to the controller and the applications users install on their devices.

A no-open-options scenario happens when there are no applications installed on a device that
support the file type you are working with. This may be caused by an obscure file type, but

ptg12441863

477Recipe: Using the Document Interaction Controller

more often it occurs because the user has not yet purchased and installed a relevant applica-
tion. This is a common occurrence when using the iOS simulator.

Always check whether to offer an “Open in...” menu option. Recipe 11-6 performs a rather ugly
test to see if external apps will offer themselves as presenters and editors for a given URL. This
is what it does: It creates a new temporary controller and attempts to present it. If it succeeds,
conforming file destinations exist and are installed on the device. If not, there are no such
apps, and any “Open in...” buttons should be disabled.

On the iPad, you must run this check in viewDidAppear: or later—that is, after a window has
been established. The method immediately dismisses the controller after presentation. Your end
user should not notice it, and none of the calls use animation.

This is obviously a rather dreadful implementation, but it has the advantage of testing as you
lay out your interface or when you start working with a new file. File an enhancement request
at bugreporter.apple.com.

One further caution: Although this test works on primary views (as in Recipe 11-6), it can cause
headaches in nonstandard presentations in popovers on the iPad.

Note

You rarely offer users both option and “Open in...” items in the same application. Recipe 11-6
uses the system-supplied Action item icon for the Options menu. You may want to use this in
place of “Open in...” text for apps that exclusively use the open style.

Recipe 11-6 Document Interaction Controllers

@implementation TestBedViewController
{
 NSURL *fileURL;
 UIDocumentInteractionController *dic;
 BOOL canOpen;

}

#pragma mark QuickLook
- (UIViewController *)
 documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *)controller

{
 return self;

}

- (UIView *)documentInteractionControllerViewForPreview:
 (UIDocumentInteractionController *)controller

{
 return self.view;

ptg12441863

478 Chapter 11 Documents and Data Sharing

}

- (CGRect)documentInteractionControllerRectForPreview:
 (UIDocumentInteractionController *)controller

{
 return self.view.frame;

}

#pragma mark Options / Open in Menu

// Clean up after dismissing options menu
- (void)documentInteractionControllerDidDismissOptionsMenu:
 (UIDocumentInteractionController *)controller

{
 self.navigationItem.leftBarButtonItem.enabled = YES;
 dic = nil;

}

// Clean up after dismissing open menu
- (void)documentInteractionControllerDidDismissOpenInMenu:
 (UIDocumentInteractionController *)controller

{
 self.navigationItem.rightBarButtonItem.enabled = canOpen;
 dic = nil;

}

// Before presenting a controller, check to see if there's an
// existing one that needs dismissing
- (void)dismissIfNeeded
{
 if (dic)
 {
 [dic dismissMenuAnimated:YES];
 self.navigationItem.rightBarButtonItem.enabled = canOpen;
 self.navigationItem.leftBarButtonItem.enabled = YES;
 }

}

// Present the options menu
- (void)action:(UIBarButtonItem *)bbi
{
 [self dismissIfNeeded];
 dic = [UIDocumentInteractionController
 interactionControllerWithURL:fileURL];
 dic.delegate = self;
 self.navigationItem.leftBarButtonItem.enabled = NO;
 [dic presentOptionsMenuFromBarButtonItem:bbi animated:YES];

ptg12441863

479Recipe: Using the Document Interaction Controller

}

// Present the open-in menu
- (void)open:(UIBarButtonItem *)bbi
{
 [self dismissIfNeeded];
 dic = [UIDocumentInteractionController
 interactionControllerWithURL:fileURL];
 dic.delegate = self;
 self.navigationItem.rightBarButtonItem.enabled = NO;
 [dic presentOpenInMenuFromBarButtonItem:bbi animated:YES];

}

#pragma mark Test for Open-ability
- (BOOL)canOpen:(NSURL *)aFileURL
{
 UIDocumentInteractionController *tmp =
 [UIDocumentInteractionController
 interactionControllerWithURL:aFileURL];
 BOOL success =
 [tmp presentOpenInMenuFromRect:CGRectMake(0,0,1,1)
 inView:self.view animated:NO];
 [tmp dismissMenuAnimated:NO];
 return success;

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 // Only enable right button if the file can be opened
 canOpen = [self canOpen:fileURL];
 self.navigationItem.rightBarButtonItem.enabled = canOpen;

}

#pragma mark View management
- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Open in...", @selector(open:));
 self.navigationItem.leftBarButtonItem =
 SYSBARBUTTON(UIBarButtonSystemItemAction,
 @selector(action:));

 NSString *filePath = [NSHomeDirectory()
 stringByAppendingPathComponent:@"Documents/DICImage.jpg"];

ptg12441863

480 Chapter 11 Documents and Data Sharing

 fileURL = [NSURL fileURLWithPath:filePath];
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Declaring Document Support

Application documents are not limited to files an application creates or downloads from the
Internet. As you discovered in Recipe 11-6 , applications may handle certain file types. They
may open items passed from other apps. You’ve already seen document sharing from the
sending point of view, using the “open in” controller to export files to other applications. Now
it’s time to look at it from the receiver’s end.

Applications declare their support for certain file types in their Info.plist property list. The
Launch Services system reads this data and creates the file-to-app associations that the docu-
ment interaction controller uses.

Although you can edit the property list directly, Xcode offers a simple form as part of the
Project > Target > Info screen. Open the Document Types section, which is below the Custom
iOS Target Properties. Click + to add a new supported document type. Figure 11-8 shows what
this looks like for an app that accepts JPEG image documents.

Figure 11-8 Declare supported document types in Xcode’s Target > Info screen.

This declaration contains three minimal details:

 ■ Name — The name is both required and arbitrary. It should be descriptive of the kind of
document in play, but it’s also somewhat of an afterthought on iOS. This field makes
more sense when used on a Macintosh (it’s the “kind” string used by Finder), but it is not
optional.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

481Recipe: Declaring Document Support

 ■ One or more UTIs — Specify one or more UTIs as your types. This example specifies only
public.jpeg . Add commas between items when listing several items. For example,
you might have an image document type that opens public.jpeg , public.tiff , and
public.png . Enumerate specific types when you need to limit file support. Although
declaring public.image would cover all three types, it might allow unsupported image
styles to be opened as well.

 ■ Handler rank — The launch services handler rank describes how the app views itself
alongside the competition for handling this file type. Owner says that this is a native app
that creates files of this type. Alternate, as in Figure 11-8 , offers a secondary viewer. You
add the LSHandlerRank key manually in the additional document type properties.

You may optionally specify icon files. These are used in OS X as document icons and have
minimal overlap with the iOS world. The only case where you might see these icons is in the
iTunes Apps tab when you’re using the File Sharing section to add and remove items. Icons are
typically 320×320 (UTTypeSize320IconFile) and 64×64 (UTTypeSize64IconFile) and are
normally limited to files that your app creates and for which it defines a custom type.

Under the hood, Xcode uses this interactive form to build a CFBundleDocumentTypes array in
your application’s Info.plist . The following snippet shows the information from Figure 11-8
in its Info.plist form:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeIconFiles</key>
 <array/>
 <key>CFBundleTypeName</key>
 <string>jpg</string>
 <key>LSHandlerRank</key>
 <string>Alternate</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>public.jpeg</string>
 </array>
 </dict>

</array>

Creating Custom Document Types

When your application builds new kinds of documents, you should declare them in the
Exported UTIs section of the Target > Info editor, which you see in Figure 11-9 . This registers
support for this file type with the system and identifies you as the owner of that type.

ptg12441863

482 Chapter 11 Documents and Data Sharing

Figure 11-9 Declare custom file types in the Exported UTIs section of the Target > Info editor.

To define the new type, supply a custom UTI (here, com.sadun.cookbookfile), document art
(at 64 and 320 sizes), and specify a filename extension that identifies your file type. As with
declaring document support, Xcode builds an exported declaration array into your project’s
Info.plist file. Here is what that material might look like for the declaration shown in Figure
11-9 :

<key>UTExportedTypeDeclarations</key>
<array>
 <dict>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.text</string>
 </array>
 <key>UTTypeDescription</key>
 <string>Cookbook</string>
 <key>UTTypeIdentifier</key>
 <string>com.sadun.cookbookfile</string>
 <key>UTTypeSize320IconFile</key>
 <string>Cover-320</string>
 <key>UTTypeSize64IconFile</key>
 <string>Cover-64</string>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>public.filename-extension</key>
 <string>cookbook</string>
 </dict>
 </dict>

</array>

If you add this to your project, your app should open any files with the cookbook extension,
using the com.sadun.cookbookfile UTI.

ptg12441863

483Recipe: Declaring Document Support

Implementing Document Support

When your application provides document support, you should check for an Inbox folder each
time it becomes active:

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 // perform inbox test here

}

Specifically, see if an Inbox folder has appeared in the Documents folder. If it has, you should
move elements out of that Inbox to where they belong, typically in the main Documents direc-
tory. After the Inbox has been cleared, delete it. This provides the best user experience, espe-
cially in terms of any file sharing through iTunes, where the Inbox and its role may confuse
users.

When moving items to Documents, check for name conflicts and use an alternative path name
(typically by appending a hyphen followed by a number) to avoid overwriting any existing
file. Recipe 11-7 helps find an alternative name for a destination path. It gives up after a thou-
sand attempts. Seriously, none of your users should be hosting that many duplicate document
names. If they do, there’s something deeply wrong with your overall application design.

Recipe 11-7 walks through the ugly details of scanning for the Inbox and moving files into
place. It removes the Inbox after it is emptied. As you can see, any method like this is File
Manager–intensive. It primarily involves handling all the error combination possibilities
that might pop up throughout the task. Processing the Inbox should run quickly for small
file support. If you must handle large files, such as video or audio, make sure to perform this
processing on its own operation queue.

If you plan to support public.data files (which will open anything), you might want to
display those files by using UIWebView instances. Refer to Technical Q&A QA1630 (http://
developer.apple.com/library/ios/#qa/qa1630) for details about which document types iOS can
and cannot display in those views. Web views can present most audio and video assets, as well
as Excel, Keynote, Numbers, Pages, PDF, PowerPoint, and Word resources, in addition to simple
HTML.

Recipe 11-7 Handling Incoming Documents

#define DOCUMENTS_PATH [NSHomeDirectory() \
 stringByAppendingPathComponent:@"Documents"]

#define INBOX_PATH [DOCUMENTS_PATH \
 stringByAppendingPathComponent:@"Inbox"]

@implementation InboxHelper
+ (NSString *)findAlternativeNameForPath:(NSString *)path
{
 NSString *ext = path.pathExtension;
 NSString *base = [path stringByDeletingPathExtension];

http://developer.apple.com/library/ios/#qa/qa1630
http://developer.apple.com/library/ios/#qa/qa1630

ptg12441863

484 Chapter 11 Documents and Data Sharing

 for (int i = 1; i < 999; i++)
 {
 NSString *dest =
 [NSString stringWithFormat:@"%@-%d.%@", base, i, ext];

 // if the file does not yet exist, use this destination path
 if (![[NSFileManager defaultManager]
 fileExistsAtPath:dest])
 return dest;
 }

 NSLog(@"Exhausted possible names for file %@. Bailing.",
 path.lastPathComponent);
 return nil;

}

- (void)checkAndProcessInbox
{
 // Does the Inbox exist? If not, we're done
 BOOL isDir;
 if (![[NSFileManager defaultManager]
 fileExistsAtPath:INBOX_PATH isDirectory:&isDir])
 return;

 NSError *error;
 BOOL success;

 // If the Inbox is not a folder, remove it
 if (!isDir)
 {
 success = [[NSFileManager defaultManager]
 removeItemAtPath:INBOX_PATH error:&error];
 if (!success)
 {
 NSLog(@"Error deleting Inbox file (not directory): %@",
 error.localizedFailureReason);
 return;
 }
 }

 // Retrieve a list of files in the Inbox
 NSArray *fileArray = [[NSFileManager defaultManager]
 contentsOfDirectoryAtPath:INBOX_PATH error:&error];
 if (!fileArray)
 {
 NSLog(@"Error reading contents of Inbox: %@",

ptg12441863

485Recipe: Declaring Document Support

 error.localizedFailureReason);
 return;
 }

 // Remember the number of items
 NSUInteger initialCount = fileArray.count;

 // Iterate through each file, moving it to Documents
 for (NSString *filename in fileArray)
 {
 NSString *source = [INBOX_PATH
 stringByAppendingPathComponent:filename];
 NSString *dest = [DOCUMENTS_PATH
 stringByAppendingPathComponent:filename];

 // Is the file already there?
 BOOL exists =
 [[NSFileManager defaultManager] fileExistsAtPath:dest];
 if (exists) dest = [self findAlternativeNameForPath:dest];
 if (!dest)
 {
 NSLog(@"Error. File name conflict not resolved");
 continue;
 }

 // Move file into place
 success = [[NSFileManager defaultManager]
 moveItemAtPath:source toPath:dest error:&error];
 if (!success)
 {
 NSLog(@"Error moving file from Inbox: %@",
 error.localizedFailureReason);
 continue;
 }
 }

 // Inbox should now be empty
 fileArray = [[NSFileManager defaultManager]
 contentsOfDirectoryAtPath:INBOX_PATH error:&error];
 if (!fileArray)
 {
 NSLog(@"Error reading contents of Inbox: %@",
 error.localizedFailureReason);
 return;
 }

ptg12441863

486 Chapter 11 Documents and Data Sharing

 if (fileArray.count)
 {
 NSLog(@"Error clearing Inbox. %d items remain",
 fileArray.count);
 return;
 }

 // Remove the inbox
 success = [[NSFileManager defaultManager]
 removeItemAtPath:INBOX_PATH error:&error];
 if (!success)
 {
 NSLog(@"Error removing inbox: %@",
 error.localizedFailureReason);
 return;
 }

 NSLog(@"Moved %d items from the Inbox", initialCount);
}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Recipe: Creating URL-Based Services

Apple’s built-in applications offer a variety of services that can be accessed via URL calls. You
can ask Safari to open web pages, open Maps to show a map, or use the mailto: -style URL to
start composing a letter in Mail. A URL scheme refers to the first part of the URL that appears
before the colon, such as http or ftp .

These services work because iOS knows how to match URL schemes to applications. A URL that
starts with http: opens in Mobile Safari. The mailto: URL always links to Mail. What you
may not know is that you can define your own URL schemes and implement them in your
applications. Not all standard schemes are supported on iOS. For example, the FTP scheme is
not available for use.

Custom schemes enable applications to launch whenever Mobile Safari or another application
opens a URL of that type. For example, if your application registers xyz, xyz: links go directly
to your application for handling, where they’re passed to the application delegate’s URL
opening method. You do not have to add any special coding there. If all you want to do is run
an application, adding the scheme and opening the URL enables cross-application launching.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

487Recipe: Creating URL-Based Services

Handlers extend launching to allow applications to do something with the URL that’s been
passed to it. They might open a specific data file, retrieve a particular name, display a certain
image, or otherwise process information included in the call.

Declaring the Scheme

To declare your URL scheme, edit the URL Types section of the Target > Info editor (see Figure
11-10) and list the URL schemes you will use. The Info.plist section created by this declara-
tion looks like this:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLName</key>
 <string>com.sadun.urlSchemeDemonstration</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>xyz</string>
 </array>
 </dict>

</array>

Figure 11-10 Add custom URL schemes in the URL Types section of the Target > Info editor.

The CFBundleURLTypes entry consists of an array of dictionaries that describe the URL types
the application can open and handle. Each dictionary is quite simple. Each one contains
two keys: a CFBundleURLName (which defines an arbitrary identifier) and an array of
CFBundleURLSchemes .

The schemes array provides a list of prefixes that belong to the abstract name. You can add
one scheme or many. This following example declares just one. You might want to prefix your
name with an x (for example, x-sadun-services). Although the iOS family is not part of any
standards organization, an x prefix indicates that this is an unregistered name. A draft specifica-
tion for x-callback-url is under development at http://x-callback-url.com .

A number of informal registries have popped up so iOS developers can share their schemes in
central listings. You can discover services you want to use and promote services you offer. Each
registry lists services and their URL schemes and describes how other developers can use these
services. Some of these registries include http://handleopenurl.com , http://wiki.akosma.com/
IPhone_URL_Schemes , and http://applookup.com/Home .

http://x-callback-url.com
http://handleopenurl.com
http://wiki.akosma.com/IPhone_URL_Schemes
http://wiki.akosma.com/IPhone_URL_Schemes
http://applookup.com/Home

ptg12441863

488 Chapter 11 Documents and Data Sharing

Testing URLs

You can test whether a URL service is available. If the UIApplication ’s canOpenURL: method
returns YES , you are guaranteed that openURL: can launch another application to open that
URL:

if ([[UIApplication sharedApplication] canOpenURL:aURL])
 [[UIApplication sharedApplication] openURL:aURL];

You are not guaranteed that the URL is valid—only that its scheme is registered properly to an
existing application.

Adding the Handler Method

To handle URL requests, you implement the URL-specific application delegate method shown
in Recipe 11-8 . Unfortunately, this method is guaranteed to trigger only when the applica-
tion is already running. If the app is not running and the app is launched by the URL request,
control first goes to the launching methods (will- and did-finish).

You want to ensure that your normal application:didFinishLaunchingWithOptions:
method returns YES . This allows control to pass to application:openURL:
sourceApplication:annotation: , so the incoming URL can be processed and handled.

Recipe 11-8 Providing URL Scheme Support

// Called if the app is open or if didFinishLaunchingWithOptions returns YES
- (BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation

{
 NSString *logString = [NSString stringWithFormat:
 @"DID OPEN: URL[%@] App[%@] Annotation[%@]\n",
 url, sourceApplication, annotation];
 tbvc.textView.text =
 [logString stringByAppendingString:tbvc.textView.text];
 return YES;

}

// Make sure to return YES
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 _window = [[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 tbvc = [[TestBedViewController alloc] init];

 UINavigationController *nav = [[UINavigationController alloc]
 initWithRootViewController:tbvc];

ptg12441863

489Summary

 window.rootViewController = nav;
 [window makeKeyAndVisible];
 return YES;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 11 .

Summary

Want to share data across applications and leverage system-supplied actions? This chapter
shows you how. You’ve read about UTIs and how they are used to specify data roles across
applications. You’ve seen how the pasteboard worked and how to share files with iTunes.
You’ve read about monitoring folders and discovered how to implement custom URLs. You’ve
dived deep into the activity view controller and document interaction controller, and you’ve
seen how to add support for everything from printing to copying to previews. Here are a few
thoughts to take with you before leaving this chapter:

 ■ You are never limited to the built-in UTIs that Apple provides, but you should follow
Apple’s lead when you decide to add your own. Be sure to use custom reverse domain
naming and add as many details as possible (public URL definition pages, typical icons,
and file extensions) in your exported definitions. Precision matters.

 ■ Conformance arrays help you determine what kind of thing you’re working with.
Knowing that you’re working with an image and not, say, a text file or movie, can help
you better process the data associated with any file.

 ■ The Documents folder belongs to the user and not to you. Remember that and provide
respectful management of that directory.

 ■ When you’re looking for one-stop shopping for data sharing, you’ll be hard-pressed to
find a better solution than an activity view controller. Easy to use, and simple to present,
this single controller does the work of an army, integrating your app with iOS’s system-
supplied services.

 ■ For a lot of reasons, many developers used custom URL schemes in the past, but the
document interaction controller often provides a better alternative. Use this controller to
provide the app-to-app interaction your users demand and don’t be afraid of introducing
annotation support to help ease the transition between apps.

 ■ Don’t offer an “Open in...” menu option unless there are onboard apps ready to back
up that button. The solution you read about in this chapter is crude, but using it is
better than dealing with angry, frustrated, or confused users through customer support.
Consider providing an alert, backed by this method, that explains when there are no
other apps available.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

This page intentionally left blank

ptg12441863

12
A Taste of Core Data

iOS’s Core Data framework provides persistent data solutions. Your applications can query
and update Core Data’s managed data stores. With Core Data, you gain a Cocoa Touch–based
object interface that brings relational data management out from SQL queries and into the
Objective-C world of iOS development. Core Data delivers the perfect technology to power
your table view and collection view instances.

This chapter introduces Core Data. It provides just enough how-to to give you a taste of the
technology, offering a jumping-off point for further Core Data learning. By the time you finish
reading through this chapter, you’ll have seen Core Data for iOS in action and gotten an over-
view of the technology.

Introducing Core Data

Core Data simplifies the way your applications create and use persisted objects, known as
managed objects. Until the 3.x SDK, all data management and SQL access were left to a fairly
low-level library. It wasn’t pretty, and it wasn’t easy to use. Since then, Core Data has joined
the Cocoa Touch framework family, bringing powerful data management solutions to iOS. Core
Data provides a flexible infrastructure, offering tools for working with persistent data stores and
generating solutions for the complete object life cycle.

Core Data lives in the model portion of the Model–View–Controller (MVC) paradigm. It under-
stands that application-specific data must be defined and controlled outside the application’s
GUI, even as it powers that interface. Core Data integrates beautifully with table view and
collection view instances. Cocoa Touch’s fetched-results controller class was designed and built
with these kinds of classes in mind. It offers useful properties and methods that support data
source and delegate integration.

ptg12441863

492 Chapter 12 A Taste of Core Data

Entities and Models

Entities live at the top of the Core Data hierarchy. They describe objects stored inside your
database. Entities provide the virtual cookie cutters that specify how each data object is created.
When you build new objects, entities detail the attributes and relationships that make up each
object. Every entity has a name, which Core Data uses to retrieve entity descriptions as your
application runs.

You build entities inside model files. Each project that links against the Core Data framework
includes one or more model files. These .xcdatamodeld files define entities, their attributes,
and their relationships.

Building a Model File

Create your model in Xcode by laying out a new data model file. Some iOS templates allow
you to include Core Data as part of the project. Otherwise, you create these Xcode model files
by selecting File > New > File from the Xcode menu and then choosing iOS, Core Data, Data
Model, and Next. Enter a name for your new file (this example uses Person), check the targets
for your project, and click Save. Xcode creates and then adds the new model file to your project
(for example, Person.xcdatamodeld). Click the xcdatamodeld file in the File Navigator to
open it in the editor window shown in Figure 12-1 .

Figure 12-1 Xcode’s editor enables you to build managed object definitions for your Core Data
applications.

ptg12441863

493Entities and Models

You add new entities (basically classes of objects) to the left list in the editor window by click-
ing the Add Entity button near the bottom left. Add attributes (essentially instance variables for
entities) by clicking the Add Attribute button at the bottom right. Double-click any individual
entity or attribute name to change it; use the Type pop-up to set an attribute’s type.

Use the center portion of the editor to customize your attributes and relationships.
Relationships are the optional ways entities relate to each other in the database. An inspector
to the right provides context-specific settings. In Figure 12-1 , it’s showing details for the Person
entity’s emailaddress attribute.

The Entity editor provides two layout styles. Toggle between the table view and an object graph
by tapping the Editor Style buttons at the bottom right of the editor pane.

The detail table style shown in Figure 12-1 provides a list of each entity, attribute, and relation-
ship defined in the model. The object graph offers a grid-based visual presentation of the enti-
ties you have defined, allowing you to visualize and edit entity relationships—the way entities
relate to each other. For example, a parent can have several children and one spouse. A depart-
ment may include members, and a manager may serve on several committees.

Attributes and Relationships

Each entity may include attributes, which store information such as a name, a birth date, a
designation, and so forth. The Objective-C object that corresponds to an entity expresses prop-
erties defined by these attributes.

Each entity may also define relationships, which are links between one object and another.
These relationships can be single, using a one-to-one relationship (spouse, employer), or they
can be multiple (children, credit card accounts), using a one-to-many relationship. In addition,
relationships should be reciprocal, providing an inverse relationship (my child, his parent).

Select an entity to start adding attributes. With the entity selected, tap the Add Attribute
button at the bottom right of the editor pane. (Or tap and hold this button to choose either
Add Attribute, Add Relationship, or Add Fetched Property.) Each attribute has a name and a
data type, just as you would define an instance variable.

Relationships provide pointers to other objects. When working with the Graph editor, you can
Control-drag to create them. Arrows represent the relationships between the various kinds of
entities in a project.

At the simplest level, you can work with just one entity and without relationships, even though
Core Data offers a fully powered relational database. Most iOS applications do not require a
high level of sophistication. A flat database with section attributes is all you need to power
table views and collection views.

To build the model in Figure 12-1 , create a Person entity and add these seven attributes:
emailaddress , gender , givenname , middleinitial , occupation , surname , and section . Set
each type to String .

ptg12441863

494 Chapter 12 A Taste of Core Data

Building Object Classes

After creating your entity definition, save your changes to the data model file. Select an entity
in the column on the left and from the Xcode menu, choose Editor > Create NSManagedObject
Subclass. Select your data model and the entity (or entities) you intend to manage. Save to your
project folder, select the group you want to add the classes to, and click Create. Xcode gener-
ates class files from your entity description. Here is what the automatically generated Person
class looks like:

@interface Person : NSManagedObject

@property (nonatomic, strong) NSString *section;
@property (nonatomic, strong) NSString *emailaddress;
@property (nonatomic, strong) NSString *gender;
@property (nonatomic, strong) NSString *givenname;
@property (nonatomic, strong) NSString *middleinitial;
@property (nonatomic, strong) NSString *occupation;
@property (nonatomic, strong) NSString *surname;

@end

@implementation Person

@dynamic section;
@dynamic emailaddress;
@dynamic gender;
@dynamic givenname;
@dynamic middleinitial;
@dynamic occupation;
@dynamic surname;

@end

Each attribute corresponds to a string property. When you use other attribute types, their prop-
erties correspond accordingly (for example, NSDate , NSNumber , NSData). If you were to add a
one-to-many relationship, you’d see a set. The @dynamic directive creates property accessors at
runtime.

Creating Contexts

In Core Data, entities provide descriptions. Objects are actual class instances that you create
from entity specifications. These instances all descend from the NSManagedObject class and
represent entries in the database.

Core Data objects live within a managed object context. These contexts, which are instances
of NSManagedObjectContext , each represent an object space within your application. This

ptg12441863

495Adding Data

chapter uses a single object context, although more complex implementations may be required
in your own apps, primarily to support multithreaded Core Data access.

In this single-object-context example, you establish your context as you start up your applica-
tion and use that context for all object fetch requests from the stored data. The context story
begins by loading any models you have created from the application bundle. You do not need
to specify any names:

// Init the model
NSManagedObjectModel *managedObjectModel =
 [NSManagedObjectModel mergedModelFromBundles:nil];

Next, create a store coordinator and connect it to a file (a store) in the app sandbox. The
coordinator manages the relationship between the managed object model in your application
and a local file. You provide a file URL that specifies where to save the data. This snippet uses
NSSQLiteStoreType , which creates a file using the standard SQLite binary format:

// Create the store coordinator
NSPersistentStoreCoordinator *persistentStoreCoordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:managedObjectModel];

// Connect to the data store (on disk)
NSURL *url = [NSURL fileURLWithPath:dataPath];
if (![persistentStoreCoordinator
 addPersistentStoreWithType: NSSQLiteStoreType
 configuration:nil URL:url options:nil error:&error])

{
 NSLog(@"Error creating persistent store coordinator: %@",
 error.localizedFailureReason);
 return;

}

Finally, you create the actual context and set a property to the coordinator you just created:

// Create a context and assign to the context property
_context = [[NSManagedObjectContext alloc] init];
_context.persistentStoreCoordinator = persistentStoreCoordinator;

Adding Data

The NSEntityDescription class enables you to insert new objects into your context. This lets
you add new data entries to populate your file. Provide an entity name and the context you’re
working with:

// Create new object
- (NSManagedObject *)newObject
{

ptg12441863

496 Chapter 12 A Taste of Core Data

 NSManagedObject *object = [NSEntityDescription
 insertNewObjectForEntityForName:_entityName
 inManagedObjectContext:_context];
 return object;

}

The request returns a new managed object for you to work with. After you receive the new
managed object, you customize it however you like and then save the context:

// Save
- (BOOL)save
{
 NSError __autoreleasing *error;
 BOOL success;
 if (!(success = [_context save:&error]))
 NSLog(@"Error saving context: %@", error.localizedFailureReason);
 return success;

}

A typical call pattern goes like this: Create one or more new objects, set their properties, and
save. You could use the above methods to insert a new Person entity in the database as follows:

Person *person = (Person *)[dataHelper newObject];
person.givenname = @"Chris";
person.surname = @"Zahn";
person.section = [[person.surname substringFromIndex:0] substringToIndex:1];
person.occupation = @"Editor";
[dataHelper save]

Notice that the section property here derives from the surname. In nearly every basic iOS
application, you’ll want to add a section property to allow Core Data to group entries together
by some common connection. The property name does not matter; you pass it as an argument.
section is easy to recognize and remember. Advanced users will write a method to provide
their grouping criteria instead of hard-coding it as this example does.

This snippet creates a group-by-surname-initial approach. When you want to group by some
other property, either iterate through your data to update the property you use for sections or
supply a different attribute to your fetch request. This flexibility makes it easy to change from
grouping by last initial to grouping by occupation. A section later in this chapter discusses fetch
requests and querying your Core Data store.

Don’t confuse iOS sections (used for table views and collection views) with sorting, which is
another concept you encounter with Core Data. Sections specify groupings within your object
collection. Sorting controls how items are ordered within each section.

ptg12441863

497Adding Data

Examining the Data File

If you run the preceding code in the simulator, you can easily inspect the SQLite file that
Core Data creates. Navigate to the simulator folder (~/Library/Application Support/iPhone
Simulator/ Firmware /Applications, where Firmware is the current firmware release; for example,
7.0) and then into the folder for the application itself.

Stored in the Documents folder (depending on the URL used to create the persistent store), an
SQLite file contains the database representation you’ve created. The command-line sqlite3
utility enables you to inspect the contents by performing a .dump operation:

% sqlite3 Person.sqlite
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .dump
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE ZPERSON (Z_PK INTEGER PRIMARY KEY, Z_ENT INTEGER, Z_OPT INTEGER,
ZEMAILADDRESS VARCHAR, ZGENDER VARCHAR, ZGIVENNAME VARCHAR, ZMIDDLEINITIAL VARCHAR,
ZOCCUPATION VARCHAR, ZSECTION VARCHAR, ZSURNAME VARCHAR);
INSERT INTO "ZPERSON" VALUES(1,1,1,'ChristopherLRobinson@foomail.com','male','Christop
her','L','Home care aide','C','Robinson');
INSERT INTO "ZPERSON" VALUES(2,1,1,'NicholasJGrant@spambob.com','male','Nicholas','J',
'Steadicam operator','N','Grant');
INSERT INTO "ZPERSON" VALUES(3,1,1,'JosephJTreece@spambob.
com','male','Joseph','J','Shoe machine operator','J','Treece');
INSERT INTO "ZPERSON" VALUES(4,1,1,'HelenEShaffer@dodgit.
com','female','Helen','E','Coin vending and amusement machine servicer
repairer','H','Shaffer');
CREATE TABLE Z_PRIMARYKEY (Z_ENT INTEGER PRIMARY KEY, Z_NAME VARCHAR, Z_SUPER INTEGER,
Z_MAX INTEGER);
INSERT INTO "Z_PRIMARYKEY" VALUES(1,'Person',0,3000);
CREATE TABLE Z_METADATA (Z_VERSION INTEGER PRIMARY KEY, Z_UUID VARCHAR(255), Z_PLIST
BLOB);
INSERT INTO "Z_METADATA" VALUES(1,'85E928DB-1464-4C3B-BCEA-
9277B8817A04',X'62706C6973743030D601020304050607090A0D0E0F5F101E4E5353746F72654D6F646
56C56657273696F6E4964656E746966696572735F101D4E5350657273697374656E63654672616D65776F
726B56657273696F6E5F10194E5353746F72654D6F64656C56657273696F6E4861736865735B4E5353746
F7265547970655F10125F4E534175746F56616375756D4C6576656C5F10204E5353746F72654D6F64656C
56657273696F6E48617368657356657273696F6EA1085011019AD10B0C56506572736F6E4F1020D261E38
54795D61A5D69048846ECC3DCFEAC4861D9FCD1540A071C875FE89EA95653514C69746551321003081536
56727E93B6B8B9BCBFC6E9F0F200000000000001010000000000000010000000000000000000000000000
000F4');
COMMIT;
sqlite> .quit
%

ptg12441863

498 Chapter 12 A Taste of Core Data

Here you see several SQL table definitions that store the information for each object plus the
insert commands used to store the instances built in your code. Although you are thoroughly
cautioned against directly manipulating the Core Data store with sqlite3 , it offers a valuable
insight into what’s going on under the Core Data hood.

Querying the Database

Retrieve objects from the database by performing fetch requests. A fetch request describes your
search criteria for selecting objects. It’s passed through to Core Data and used to initialize a
results object that contains an array of fetched objects that meet those criteria. Here is a
sample fetch method that saves the resulting fetched results to a local instance variable
(_fetchedResultsController) associated with a helper class property:

- (void)fetchItemsMatching:(NSString *)searchString
 forAttribute:(NSString *)attribute
 sortingBy:(NSString *)sortAttribute

{
 // Build an entity description
 NSEntityDescription *entity = [NSEntityDescription
 entityForName:_entityName inManagedObjectContext:_context];

 // Init a fetch request
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 fetchRequest.entity = entity;
 [fetchRequest setFetchBatchSize:0];

 // Apply an ascending sort for the items
 NSString *sortKey = sortAttribute ? : _defaultSortAttribute;
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:sortKey ascending:YES selector:nil];
 NSArray *descriptors = @[sortDescriptor];
 fetchRequest.sortDescriptors = descriptors;

 // Optional setup predicate
 if (searchString && attribute) fetchRequest.predicate =
 [NSPredicate predicateWithFormat:@"%K contains[cd] %@",
 attribute, searchString];

 // Perform the fetch
 NSError __autoreleasing *error;
 _fetchedResultsController = [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest managedObjectContext:_context
 sectionNameKeyPath:@"section" cacheName:nil];
 if (![_fetchedResultsController performFetch:&error])
 NSLog(@"Error fetching data: %@", error.localizedFailureReason);

}

ptg12441863

499Querying the Database

Setting Up the Fetch Request

A fetch request describes how you want to search through data. This process starts by retrieving
an entity description for a given entity name. For the Person entity, that name is @"Person".
The description specifies what kinds of data you want to search for.

Create a new fetch request, initializing it with the entity description you just retrieved and a
batch size. A 0 batch size corresponds to an indefinite request. If you want to limit the number
of returned results, set the batch size to a positive number.

Each request must contain at least one sort descriptor. This method sorts in ascending order
(ascending:YES), using a sort key. As with the entity name, the sort key is a string (for
example, @"surname"). Set the fetch request’s sortDescriptors property with an array of
descriptors.

Fetch requests use optional predicates to narrow the results to items that match certain rules.
When callers supply the appropriate searchString and attribute parameters, this method
creates a predicate of the form attribute contains [cd] searchString .

This form creates a non-case-sensitive text match; the [cd] after contains refers to non-case-
sensitive and non-diacritic-sensitive matching. Diacritics are small marks that accompany a
letter, such as the dots of an umlaut (¨) or the tilde (~) above a Spanish n.

The %@ format includes an item directly in the predicate, such as the search string used here.
The %K format specifies an entity attribute. If you fail to use it, the predicate ' surname '
contains[cd] 'u' will always return true because the second letter in surname is u. Use %K
to match the property, not the name of the property.

For more complex queries, you could assign a compound predicate. Compound predicates
allow you to combine simple predicates using standard logical operations such as AND, OR,
and NOT. The NSCompoundPredicate class builds compound predicates out of component
predicates. You can also skip the compound predicate class and include AND, OR, and NOT
notation directly in simple NSPredicate text.

Note

Predicates provide a powerful mechanism to filter and search data. Apple’s Predicate
Programming Guide provides an exhaustive review of creating and using predicates. See
https://developer.apple.com/library/ios/DOCUMENTATION/Cocoa/Conceptual/Predicates/
predicates.html .

Performing the Fetch

Create a new fetched results controller for each query. Initialize it with the fetch request, the
context, and the section name key path. You can always use @"section" and make sure to
define a section attribute for the objects; often, the needs are not complex.

https://developer.apple.com/library/ios/DOCUMENTATION/Cocoa/Conceptual/Predicates/predicates.html
https://developer.apple.com/library/ios/DOCUMENTATION/Cocoa/Conceptual/Predicates/predicates.html

ptg12441863

500 Chapter 12 A Taste of Core Data

The controller also uses a cache name parameter. Caching reduces overhead associated with
producing data that’s structured with sections and indexes. Multiple fetch requests are ignored
when the data has not changed, minimizing the cost associated with fetch requests over the
lifetime of an application. The name used for the cache is arbitrary. Either use nil to prevent
caching or supply a name in the form of a string. This method uses nil to avoid errors related
to mutating a fetch request.

Finally, perform the fetch. If it is successful, the method returns true . If not, it updates the
error that you pass by reference, so you can see why the fetch failed.

The fetch is synchronous. When this method returns, you can use the array of objects in the
fetched results controller’s fetchedObjects property right away. Here’s an example of using
this method to fetch data, where the request searches for surnames matching a text field’s
string and lists the matching data in a text view:

- (void)list
{
 if (!textField.text.length) return;

 [dataHelper fetchItemsMatching:textField.text
 forAttribute:@"surname" sortingBy:@"surname"];
 NSMutableString *string = [NSMutableString string];
 for (Person *person in dataHelper.fetchedResultsController.fetchedObjects)
 {
 NSString *entry = [NSString stringWithFormat: @"%@, %@ %@: %@\n",
 person.surname, person.givenname,
 person.middleinitial, person.occupation];
 [string appendString:entry];
 }
 textView.text = string;

}

Removing Objects

Removing objects from a flat database is straightforward: Just tell the context to delete an
object and save the results. Here are two methods that delete either one object or all objects
from a database:

// Delete one object
- (BOOL)deleteObject:(NSManagedObject *)object
{
 [self fetchData];
 if (!_fetchedResultsController.fetchedObjects.count) return NO;
 [_context deleteObject:object];
 return [self save];

}

ptg12441863

501Recipe: Using Core Data for a Table Data Source

// Delete all objects
- (BOOL)clearData
{
 [self fetchData];
 if (!_fetchedResultsController.fetchedObjects.count) return YES;
 for (NSManagedObject *entry in
 _fetchedResultsController.fetchedObjects)
 [_context deleteObject:entry];
 return [self save];

}

Working with relationships can prove slightly more difficult than simply removing objects.
Core Data ensures internal consistency before writing data out, and it throws an error if it
cannot. Some models that use cross-references get complicated. In some data models, you must
clear lingering references before the object can safely be removed from the persistent store. If
you don’t clear the references, objects may point to deleted items and unexpected failure cases.

To avoid this problem, set Core Data delete rules in the data model inspector. Delete rules
control how an object responds to an attempted delete. You can Deny delete requests to ensure
that a relationship has no connection before allowing object deletion. Nullify resets inverse
relationships before deleting an object. Cascade deletes an object plus all its relationships; for
example, you could delete an entire department (including its members) all at once with a
cascade. No Action ensures that the objects pointed to by a relationship remain unaffected,
even if those objects point back to the item that is about to be deleted.

Xcode issues warnings when it detects nonreciprocal relationships. Avoid unbalanced relation-
ships to simplify your code and provide better internal consistency. If you cannot avoid nonre-
ciprocal items, you need to take them into account when you create your delete methods.

Recipe: Using Core Data for a Table Data Source

Core Data on iOS works closely with table views. The NSFetchedResultsController class
includes features that simplify the integration of Core Data objects with table data sources.
As you can see in the following subsections, many of the fetched results class’s properties and
methods are designed from the ground up for table support.

Index Path Access

The fetched results class offers object–index path integration in two directions. You can recover
objects from a fetched object array using index paths by calling objectAtIndexPath: . You can
query for the index path associated with a fetched object by calling indexPathForObject: .
These two methods work with both sectioned tables and tables that are flat—that is, that use
only a single section for all their data.

ptg12441863

502 Chapter 12 A Taste of Core Data

Section Key Path

The sectionNameKeyPath property links a managed object attribute to section names. This
property helps determine which section each managed object belongs to. You can set this prop-
erty directly at any time, or you can initialize it when you set up your fetched results controller.

Recipe 12-1 uses an attribute named section to distinguish sections, although you can use any
attribute name for this key path. For this example, this attribute is set to the first character of
each object name to assign a managed object to a section. Set the key path to nil to produce a
flat table without sections.

Section Groups

Recover section subgroups with the controller’s sections property. This property returns a
collection of sections, each of which stores the managed objects whose section attribute maps
to the same letter.

Each returned section implements the NSFetchedResultsSectionInfo protocol. This proto-
col ensures that sections can report their objects and numberOfObjects , their name , and an
indexTitle —that is, the title that appears on the quick reference index optionally shown
above and at the right of the table.

Index Titles

The fetched results controller’s sectionIndexTitles property generates a list of section titles
from the sections within the fetched data. For Recipe 12-1 , that array includes single-letter
titles. The default implementation uses the value of each section key to return a list of all
known sections.

Two further instance methods, sectionIndexTitleForSectionName: and sectionFor-
SectionIndexTitle:atIndex: , provide section title lookup features. The first returns a title
for a section name. The second looks up a section via its title. Override these to use section
titles that do not match the data stored in the section name key.

Table Readiness

As the properties and methods you’ve learned about reveal, fetched results instances are table-
ready. Recipe 12-1 presents all the standard table methods, adapted to Core Data fetched
results. As you can see, each method used for creating and managing sections is tiny. The built-
in Core Data access features reduce these methods to one or two lines each. That’s because all
the work in creating and accessing the sections is handed over directly to Core Data. The call
that initializes each fetched data request specifies what data attribute to use for the sections.
Core Data then takes over and performs the rest of the work.

Figure 12-2 shows the interface that Recipe 12-1 builds. It offers a full-featured table, complete
with section headers and a floating index.

ptg12441863

503Recipe: Using Core Data for a Table Data Source

Figure 12-2 Recipe 12-1 creates a full-featured table with an absolute minimum of programming.
Core Data powers all these features, from cell contents to section headers to the index.

Note

Reset the simulator or delete the Hello World app from your devices between recipes in this
chapter because they all use the same database file (Person.sqlite), which will persist in
the Documents folder.

Recipe 12-1 Building a Sectioned Table with Core Data

#pragma mark Data Source
// Number of sections
- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView

{
 return dataHelper.fetchedResultsController.sections.count;

}

// Rows per section

ptg12441863

504 Chapter 12 A Taste of Core Data

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

{
 id <NSFetchedResultsSectionInfo> sectionInfo =
 dataHelper.fetchedResultsController.sections[section];
 return sectionInfo.numberOfObjects;

}

// Return the title for a given section
- (NSString *)tableView:(UITableView *)aTableView
 titleForHeaderInSection:(NSInteger)section

{
 NSArray *titles = [dataHelper.fetchedResultsController
 sectionIndexTitles];
 if (titles.count <= section)
 return @"Error";
 return titles[section];

}

// Section index titles
- (NSArray *)sectionIndexTitlesForTableView:
 (UITableView *)aTableView

{
 return [dataHelper.fetchedResultsController
 sectionIndexTitles];

}

// Populate a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:
 @"cell" forIndexPath:indexPath];
 Person *person =
 (Person *)[dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 cell.textLabel.text = person.fullname;

 return cell;
}

#pragma mark Delegate
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 // When a row is selected, update title accordingly

ptg12441863

505Recipe: Search Tables and Core Data

 Person *person =
 (Person *)[dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 self.title = person.fullname;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 12 .

Recipe: Search Tables and Core Data

Core Data stores are designed to work efficiently with NSPredicate s. Predicates allow you to
create fetch requests that select only managed objects that match the predicate’s rule or rules.
Adding a predicate to a fetch request limits the fetched results to matching objects. Recipe 12-2
takes advantage of the predicates introduced earlier in this chapter to add searching to a table
view.

Users may search for entries whose last names match the search string they type. As the
text in the search bar at the top of the table changes, the search bar’s delegate receives a
searchBar:textDidChange: callback. In turn, that callback method performs a new fetch,
using that string as the basis for searching.

Only a few changes to Recipe 12-1 are required to support search within your table, as shown
in Recipe 12-2 :

 ■ The loadView method adds a search controller; the viewDidAppear: method scrolls the
search field out of sight.

 ■ The section index expands to include a search icon, and the section for indexing method
respects that icon by scrolling the search controller frame into view.

 ■ The search bar delegate methods fetch new results whenever the search field contents
change. They submit a new Core Data fetch requests and use those results to populate
the table view.

Together, these few changes create a search field–powered table that responds to user-driven
queries. As both Recipes 12-1 and 12-2 show, it takes surprisingly little work to make table
views work with Core Data.

Recipe 12-2 Using Fetch Requests with Predicates

// Section index titles plus search
- (NSArray *)sectionIndexTitlesForTableView:
 (UITableView *)aTableView

{

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

506 Chapter 12 A Taste of Core Data

 if (aTableView == searchController.searchResultsTableView)
 return nil;
 return [[NSArray arrayWithObject:UITableViewIndexSearch]
 arrayByAddingObjectsFromArray:
 [dataHelper.fetchedResultsController sectionIndexTitles]];

}

// Allow scrolling to search bar
- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index

{
 if (title == UITableViewIndexSearch)
 {
 [self.tableView scrollRectToVisible:
 searchController.searchBar.frame animated:NO];
 return -1;
 }
 return [dataHelper.fetchedResultsController.sectionIndexTitles
 indexOfObject:title];

}

// Return a cell specific to the table being shown
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 [aTableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
 UITableViewCell *cell =
 [aTableView dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];
 Person *person = [dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 cell.textLabel.text = person.fullname;
 return cell;

}

// Handle cancel by fetching all data
- (void)searchBarCancelButtonClicked:(UISearchBar *)aSearchBar
{
 aSearchBar.text = @"";
 [dataHelper fetchData];

}

// Handle search field update by fetching matching entries
- (void)searchBar:(UISearchBar *)aSearchBar
 textDidChange:(NSString *)searchText

ptg12441863

507Recipe: Search Tables and Core Data

{
 [dataHelper fetchItemsMatching:aSearchBar.text
 forAttribute:@"surname" sortingBy:nil];

}

// Set up search and Core Data
- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.tableView = [[UITableView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

 // Create a search bar
 UISearchBar *searchBar =
 [[UISearchBar alloc] initWithFrame:
 CGRectMake(0.0f, 0.0f, 0.0f, 44.0f)];
 searchBar.autocorrectionType = UITextAutocorrectionTypeNo;
 searchBar.autocapitalizationType = UITextAutocapitalizationTypeNone;
 searchBar.keyboardType = UIKeyboardTypeAlphabet;
 searchBar.delegate = self;
 self.tableView.tableHeaderView = searchBar;

 // Create the search display controller
 searchController = [[UISearchDisplayController alloc]
 initWithSearchBar:searchBar contentsController:self];
 searchController.searchResultsDataSource = self;
 searchController.searchResultsDelegate = self;

 // Establish Core Data
 dataHelper = [[CoreDataHelper alloc] init];
 dataHelper.entityName = @"Person";
 dataHelper.defaultSortAttribute = @"surname";

 // Check for existing data
 BOOL firstRun = !dataHelper.hasStore;

 // Set up Core Data
 [dataHelper setupCoreData];
 if (firstRun)
 [self initializeData];

 [dataHelper fetchData];
 [self.tableView reloadData];

}

// Hide the search bar
- (void)viewDidAppear:(BOOL)animated

ptg12441863

508 Chapter 12 A Taste of Core Data

{
 [super viewDidAppear:animated];
 NSIndexPath *path = [NSIndexPath indexPathForRow:0 inSection:0];
 [self.tableView scrollToRowAtIndexPath:path
 atScrollPosition:UITableViewScrollPositionTop animated:NO];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 12 .

Recipe: Adding Edits to Core Data Table Views

You’ve seen how table views integrate well with static data. Now it’s time to bring that technol-
ogy to the next level. Recipe 12-3 demonstrates how to add edits to both the table presentation
and the Core Data store that’s backing the table.

Much of this recipe should look familiar. Its code is based on the basic edits you read about in
Chapter 9 , “Creating and Managing Table Views.” Users can add new rows by tapping + and
delete them by swiping or entering edit mode. All the remaining features, including the search
table and the section index, remain in place.

In this recipe, the new data is loaded from a collection of fake contacts, courtesy of
fakenamegenerator.com. When users tap +, the app loads a random name into the database
from its collection.

You should make a number of adaptations to bring table edits into the Core Data world. Topics
you should consider when building your table implementation include undo/redo support, user
control limits, and using controller delegation for data updates.

Adding Undo/Redo Support

Core Data simplifies table undo/redo support to an astonishing degree. It provides automatic
support for these operations and requires little programming effort. Add this support by assign-
ing an undo manager when you create a Core Data context:

_context = [[NSManagedObjectContext alloc] init];
_context.persistentStoreCoordinator = persistentStoreCoordinator;
_context.undoManager = [[NSUndoManager alloc] init];
_context.undoManager.levelsOfUndo = 999;

As with all other undo/redo support, your primary controller must become the first
responder while it is onscreen. The standard suite of first responder methods includes
canBecomeFirstResponder (respond YES), viewDidAppear: (the controller view

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

509Recipe: Adding Edits to Core Data Table Views

becomes first responder as soon as it appears), and viewWillDisappear: (the controller view
resigns first responder as it leaves the screen):

- (BOOL)canBecomeFirstResponder
{
 return YES;

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [self becomeFirstResponder];

 if (dataHelper.numberOfEntities == 0) return;

 // Hide the search bar
 NSIndexPath *path = [NSIndexPath indexPathForRow:0 inSection:0];
 [self.tableView scrollToRowAtIndexPath:path
 atScrollPosition:UITableViewScrollPositionTop animated:NO];

}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 [self resignFirstResponder];

}

Notice that this search bar is scrolled offscreen only if the table contains at least one entry.
That workaround was not needed in Recipe 12-2 . On a table where users have direct control
over the contents by adding and removing entries, it is entirely possible that the table is
presented without any data at all.

Creating Undo Transactions

Build your Core Data updates into undo transactions by bracketing them into undo groupings.
The beginUndoGrouping and endUndoGrouping calls appear before and after context updates.
Specify an action name that describes the operation that just took place. This action name is
primarily used for shake-to-undo support (for example, “Undo delete?”). It also helps document
the action you’re expressing.

The braces used in the following undo-grouping sample are purely stylistic. You do not need to
include them in your code. They are provided to highlight the transactional nature that under-
lies undo groupings:

// Delete request
if (editingStyle == UITableViewCellEditingStyleDelete)
{
 NSManagedObject *object = [dataHelper.fetchedResultsController

ptg12441863

510 Chapter 12 A Taste of Core Data

 objectAtIndexPath:indexPath];
 NSUndoManager *manager = dataHelper.context.undoManager;
 [manager beginUndoGrouping];
 [manager setActionName:@"Delete"];
 {
 [dataHelper.context deleteObject:object];
 }
 [manager endUndoGrouping];
 [dataHelper save];

}

The three calls (begin, end, and setting the action name) in this snippet ensure that Core Data
can reverse its operations. For this minimal effort, your application gains a fully realized undo
management system, courtesy of Core Data. Be aware that any undo/redo history will not
survive quitting your application. The stack resets each time the app launches.

Rethinking Edits

When working with Core Data–powered tables, Recipe 12-3 doesn’t let users reorder
rows. That’s because its fetch requests sort the data, not users. Recipe 12-3 ’s tableView:
canMoveRowAtIndexPath: method hard-codes its result to NO . Yes, you can work around
this by introducing a custom row position attribute. Much of the time you won’t want to.
Recipe 12-3 shows a common use case.

In a similar vein, make sure you coordinate any database edits to your data sources. With Core
Data–driven tables, these changes may come from user requests (swiping, pressing +, and so
forth) and also from the undo manager. By subscribing to the fetched results controller as its
delegate, you’ll know whenever data has updated from undo actions. Use the fetch result dele-
gate callbacks to reload your data whenever data changes occur.

Recipe 12-3 Adapting Table Edits to Core Data

// Update items in the navigation bar
- (void)setBarButtonItems
{
 // Expire any ongoing operations
 if (dataHelper.context.undoManager.isUndoing ||
 dataHelper.context.undoManager.isRedoing)
 {
 [self performSelector:@selector(setBarButtonItems)
 withObject:nil afterDelay:0.1f];
 return;
 }

 UIBarButtonItem *undo = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemUndo,
 dataHelper.context.undoManager, @selector(undo));

ptg12441863

511Recipe: Adding Edits to Core Data Table Views

 undo.enabled = dataHelper.context.undoManager.canUndo;
 UIBarButtonItem *redo = SYSBARBUTTON_TARGET(
 UIBarButtonSystemItemRedo,
 dataHelper.context.undoManager, @selector(redo));
 redo.enabled = dataHelper.context.undoManager.canRedo;
 UIBarButtonItem *add = SYSBARBUTTON(
 UIBarButtonSystemItemAdd, @selector(addItem));

 self.navigationItem.leftBarButtonItems = @[add, undo, redo];
}

// Refetch data
- (void)refresh
{
 // If searching, fetch search results, otherwise all data
 if (searchController.searchBar.text)
 [dataHelper fetchItemsMatching:
 searchController.searchBar.text
 forAttribute:@"surname" sortingBy:nil];
 else
 [dataHelper fetchData];
 dataHelper.fetchedResultsController.delegate = self;

 // Reload tables
 [self.tableView reloadData];
 [searchController.searchResultsTableView reloadData];

 // Update bar button items
 [self setBarButtonItems];

}

// Respond to section changes
- (void)controller:(NSFetchedResultsController *)controller
 didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo
 atIndex:(NSUInteger)sectionIndex
 forChangeType:(NSFetchedResultsChangeType)type

{
 if (type == NSFetchedResultsChangeDelete)
 [self.tableView deleteSections:
 [NSIndexSet indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationAutomatic];

 if (type == NSFetchedResultsChangeInsert)
 [self.tableView insertSections:
 [NSIndexSet indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationAutomatic];

ptg12441863

512 Chapter 12 A Taste of Core Data

 sectionHeadersAffected = YES;
}

// Respond to item changes
- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath

{
 UITableView *tableView = self.tableView;

 if (type == NSFetchedResultsChangeInsert)
 [tableView insertRowsAtIndexPaths:@[newIndexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];

 if (type == NSFetchedResultsChangeDelete)
 [tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];

}

// Prepare for updates
- (void)controllerWillChangeContent:
 (NSFetchedResultsController *)controller

{
 sectionHeadersAffected = NO;
 [self.tableView beginUpdates];

}

// Apply updates
- (void)controllerDidChangeContent:
 (NSFetchedResultsController *)controller

{
 [self.tableView endUpdates];

 // Update section headers if needed
 if (sectionHeadersAffected)
 [self.tableView reloadSections:
 [NSIndexSet indexSetWithIndexesInRange:
 NSMakeRange(0, self.tableView.numberOfSections)]
 withRowAnimation:UITableViewRowAnimationNone];

 [self setBarButtonItems];
}

ptg12441863

513Recipe: Adding Edits to Core Data Table Views

// Only allow editing on the main table
- (BOOL)tableView:(UITableView *)aTableView
 canEditRowAtIndexPath:(NSIndexPath *)indexPath

{
 if (aTableView == searchController.searchResultsTableView) return NO;
 return YES;

}

// No reordering allowed
- (BOOL)tableView:(UITableView *)tableView
 canMoveRowAtIndexPath:(NSIndexPath *)indexPath

{
 return NO;

}

- (void)addItem
{
 // Surround the "add" functionality with undo grouping
 NSUndoManager *manager = dataHelper.context.undoManager;
 [manager beginUndoGrouping];
 {
 Person *person = (Person *)[dataHelper newObject];
 [self setupNewPerson:person];
 }
 [manager endUndoGrouping];
 [manager setActionName:@"Add"];
 [dataHelper save];

}

// Handle deletions
- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath

{
 // delete request
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 NSManagedObject *object = [dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 NSUndoManager *manager = dataHelper.context.undoManager;
 [manager beginUndoGrouping];
 {
 [dataHelper.context deleteObject:object];
 }
 [manager endUndoGrouping];

ptg12441863

514 Chapter 12 A Taste of Core Data

 [manager setActionName:@"Delete"];
 [dataHelper save];
 }

}

// Toggle editing mode
- (void)setEditing:(BOOL)isEditing animated:(BOOL)animated
{
 [super setEditing:isEditing animated:animated];
 [self.tableView setEditing:isEditing animated:animated];

 NSIndexPath *path = [self.tableView
 indexPathForSelectedRow];
 if (path)
 [self.tableView deselectRowAtIndexPath:path
 animated:YES];

 [self setBarButtonItems];
}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 12 .

Recipe: A Core Data–Powered Collection View

It takes work to convert Recipe 12-3 from a table to a collection view, but it doesn’t take an
overwhelming amount. Ditch the search view controller, get rid of the index view, update the
edits a little, and switch out the controller class from table to collection. Figure 12-3 shows the
results. This collection view displays the same data as the table did, offering selectable cells,
edits, and undo/redo support.

The refactoring story begins with the data model. Recipe 12-4 adds a new attribute, a binary
data item called imageData . The image is built out of each person’s first and last name and
it’s saved in binary format. This extra attribute allows the collection view to present each data
entry as a reusable image, sized to fit each name.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

515Recipe: A Core Data–Powered Collection View

The data source methods all update from table view to collection view versions. Some need
little work. The section count and items-per-section methods switch to their collection view
counterparts, while their internals essentially stay the same.

Others experience a bigger makeover. The cell-for-path method gets a complete refresh as cells
are built to present images rather than populate a title with text. Recipe 12-4 does not include
the search view controller and the index view and header callbacks. Finally, Recipe 12-4 adds a
custom cell size layout method to match each view size to its embedded image size. That layout
is an important component in collection views but is not needed in table views.

Edits are affected as well and no longer center around cell animation. Instead of providing
deletion support through a table-based commit edits method, Recipe 12-4 adds a standalone
deleteItem method that corresponds to the addItem method used in Recipe 12-3 .

The bar button on the right that used to switch into and out of edit mode on the table now
becomes a Delete button that is activated whenever any item is selected in the collection
view. The remaining items in the navigation bar that provide undo and redo support, and the
methods that power them, make the jump from tables to collection views unchanged.

Figure 12-3 Recipe 12-4 builds a collection view powered by Core Data.

ptg12441863

516 Chapter 12 A Taste of Core Data

Nothing much else changes, which is what you’d expect with MVC development. The Core
Data model methods are the same ones used in Recipe 12-3 . The UIKit-provided views are stock
items. Only the controller part needs or receives updates, which simplifies this refactoring
exercise.

Recipe 12-4 Core Data Collection View

#pragma mark Data Source
// Return the number of sections
- (NSInteger)numberOfSectionsInCollectionView:
 (UICollectionView *)collectionView

{
 if (dataHelper.numberOfEntities == 0) return 0;
 return dataHelper.fetchedResultsController.sections.count;

}

// Return the number of items per section
- (NSInteger)collectionView:(UICollectionView *)collectionView
 numberOfItemsInSection:(NSInteger)section

{
 id <NSFetchedResultsSectionInfo> sectionInfo =
 dataHelper.fetchedResultsController.sections[section];
 return sectionInfo.numberOfObjects;

}

// This method builds images into collection view cells
- (UICollectionViewCell *)collectionView:
 (UICollectionView *) aCollectionView
 cellForItemAtIndexPath:(NSIndexPath *)indexPath

{
 UICollectionViewCell *cell = [self.collectionView
 dequeueReusableCellWithReuseIdentifier:@"cell"
 forIndexPath:indexPath];
 Person *person = [dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 UIImage *image = [UIImage imageWithData:person.imageData];

 cell.backgroundColor = [UIColor clearColor];
 if (![cell.contentView viewWithTag:IMAGEVIEWTAG])
 {
 UIImageView *imageView =
 [[UIImageView alloc] initWithImage:image];
 imageView.tag = IMAGEVIEWTAG;
 [cell.contentView addSubview:imageView];
 }

 UIImageView *imageView =

ptg12441863

517Recipe: A Core Data–Powered Collection View

 (UIImageView *)[cell.contentView viewWithTag:IMAGEVIEWTAG];
 imageView.frame = CGRectMake(0.0f, 10.0f, image.size.width, image.size.height);
 imageView.image = image;

 cell.selectedBackgroundView = [[UIView alloc] init];
 cell.selectedBackgroundView.backgroundColor =
 [UIColor redColor];

 return cell;
}

// Return the size for layout
- (CGSize)collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout*)collectionViewLayout
 sizeForItemAtIndexPath:(NSIndexPath *)indexPath

{
 Person *person = [dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];
 UIImage *image = [UIImage imageWithData:person.imageData];
 return CGSizeMake(image.size.width, image.size.height + 20.0f);

}

#pragma mark Delegate methods
- (void)collectionView:(UICollectionView *)aCollectionView
 didSelectItemAtIndexPath:(NSIndexPath *)indexPath

{
 [self setBarButtonItems];

}

#pragma mark Editing and Undo
- (void)setBarButtonItems
{
 // Delete requires a selected item
 self.navigationItem.rightBarButtonItem.enabled =
 (self.collectionView.indexPathsForSelectedItems.count != 0);

 // Set up undo/redo items
 UIBarButtonItem *undo =
 SYSBARBUTTON_TARGET(UIBarButtonSystemItemUndo,
 self.dataHelper.context.undoManager, @selector(undo));
 undo.enabled = self.dataHelper.context.undoManager.canUndo;
 UIBarButtonItem *redo =
 SYSBARBUTTON_TARGET(UIBarButtonSystemItemRedo,
 self.dataHelper.context.undoManager, @selector(redo));
 redo.enabled = self.dataHelper.context.undoManager.canRedo;
 UIBarButtonItem *add =
 SYSBARBUTTON(UIBarButtonSystemItemAdd, @selector(addItem));

ptg12441863

518 Chapter 12 A Taste of Core Data

 self.navigationItem.leftBarButtonItems = @[add, undo, redo];
}

// Refresh the data, update the view
- (void)refresh
{
 [dataHelper fetchData];
 dataHelper.fetchedResultsController.delegate = self;
 [self.collectionView reloadData];
 [self performSelector:@selector(setBarButtonItems)
 withObject:nil afterDelay:0.1f];

}

- (void)controllerDidChangeContent:
 (NSFetchedResultsController *)controller

{
 // Respond to data change from undo controller
 [self refresh];

}

// Add a new item
- (void)addItem
{
 NSUndoManager *manager = dataHelper.context.undoManager;
 [manager beginUndoGrouping];
 {
 Person *person = (Person *)[dataHelper newObject];
 [self setupNewPerson:person];
 }
 [manager endUndoGrouping];
 [manager setActionName:@"Add"];
 [dataHelper save];
 [self refresh];

}

// Delete the selected item
- (void)deleteItem
{
 if (!self.collectionView.indexPathsForSelectedItems.count)
 return;

 NSIndexPath *indexPath =
 self.collectionView.indexPathsForSelectedItems[0];
 NSManagedObject *object =
 [dataHelper.fetchedResultsController
 objectAtIndexPath:indexPath];

ptg12441863

519Summary

 NSUndoManager *manager = dataHelper.context.undoManager;
 [manager beginUndoGrouping];
 {
 [dataHelper.context deleteObject:object];
 }
 [manager endUndoGrouping];
 [manager setActionName:@"Delete"];
 [dataHelper save];
 [self refresh];

}

#pragma mark Setup
- (void)viewDidLoad
{
 [super viewDidLoad];
 [self.collectionView registerClass:
 [UICollectionViewCell class]
 forCellWithReuseIdentifier:@"cell"];

 self.collectionView.backgroundColor =
 [UIColor lightGrayColor];
 self.collectionView.allowsMultipleSelection = NO;
 self.collectionView.allowsSelection = YES;

 self.navigationItem.leftBarButtonItem =
 SYSBARBUTTON(UIBarButtonSystemItemAdd,
 @selector(addItem));
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Delete", @selector(deleteItem));
 self.navigationItem.rightBarButtonItem.enabled = NO;

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 12 .

Summary

When you are working with table views and collection views, Core Data provides the perfect
backing technology. It offers easy-to-use model support that easily integrates into UIKit data
sources. This chapter offers just a taste of Core Data’s capabilities. These recipes have shown
you how to design and implement basic Core Data support for managed object models. You’ve
read about defining a model and implementing fetch requests. You’ve seen how to add objects,

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

520 Chapter 12 A Taste of Core Data

modify them, delete them, and save them. You’ve learned about predicates and undo opera-
tions. After reading through this chapter, here are a few final thoughts to take away with you:

 ■ If you’re not using Core Data with tables and collection views, you’re missing out on one
of the most elegant ways to populate and control your data.

 ■ When working with Core Data, you’re not limited to scrolling views of content. Use Core
Data to save any kind of tabular information. It offers a relational database solution that
goes well beyond the demands of most applications.

 ■ Always design for undo/redo support. Even if you don’t think you’ll need it right away,
having the work done in advance lets you add features later. We’re not big fans of shake-
to-undo, but it offers a button-free way to integrate this functionality into otherwise
overdesigned interfaces.

 ■ Predicates are one of our favorite SDK features. Spend some time learning how to
construct them and use them with all kinds of objects, such as arrays and sets, not just
with Core Data.

 ■ iCloud provides a tantalizing match between Core Data and ubiquitous data, extending
iOS data to the user’s desktop, to each of his or her devices, and to the cloud as a whole.
While Core Data integration with iCloud has been panned in the past due to stability
and related issues, Apple insists that iOS 7 includes much-needed improvements. Look up
UIManagedDocument to learn more about iCloud and Core Data integration.

 ■ Core Data’s capabilities go way beyond the basic recipes you’ve seen in this chapter.
Check out Tim Isted and Tom Harrington’s Core Data for iOS: Developing Data-Driven
Applications for the iPad, iPhone, and iPod touch (Addison-Wesley Professional) for an
in-depth exploration of Core Data and its features.

ptg12441863

13
Networking Basics

As Internet-connected devices, the iPhone and its iOS family members are particularly well
suited to retrieving remote data and accessing web-based services. Apple has lavished the plat-
form with a solid grounding in all kinds of network computing and its supporting technologies.
This chapter surveys basic techniques for network computing, from connectivity testing and
web-based downloading to processing the traditional forms of data provided via web services.

Recipe: Checking Your Network Status

Networked applications need a live connection to communicate with the Internet or other
nearby devices. Applications should know whether such a connection exists before reaching
out to send or retrieve data. Checking the network status lets an application communicate with
users and explain why certain functions might be disabled.

Apple has rejected and will continue to reject applications that do not check network status
before providing download options to the user. Apple reviewers are trained to check whether
you properly notify the user, especially in the case of network errors. Always verify network
status and alert the user accordingly.

Apple also may reject applications based on “excessive data usage.” If you plan to stream large
quantities of data, such as voice or video, in your application, you should test for the current
connection type. Provide lower-quality data streams for users on a cell network connection
and higher-quality data for users with a Wi-Fi connection. Apple has had little tolerance for
applications that place high demands on cell network data. Keep in mind that unlimited data
has given way to metered accounts in the United States. You can alienate your users as well as
Apple by overusing cell networks.

iOS tests for the following configuration states: some (that is, any kind of) network connection
available, Wi-Fi available, and cell service available. No App Store–safe application program-
ming interfaces (APIs) allow the iPhone to test for Bluetooth connectivity at this time (although
you can limit your application to run only on Bluetooth-enabled devices), nor can you check
whether a user is roaming and utilizing a potentially expensive cellular network before offering
data access.

ptg12441863

522 Chapter 13 Networking Basics

The System Configuration framework offers network-checking functions. Among these,
SCNetworkReachabilityCreateWithAddress tests whether an IP address is reachable. Recipe
13-1 shows a simple example of this test in action.

The networkAvailable method determines whether your device has outgoing connectivity,
which it defines as having both access and a live connection. This method, based on Apple
sample code, returns YES when the network is available and NO otherwise. The flags used here
indicate both that the network is reachable (kSCNetworkFlagsReachable) and that no further
connection is required (kSCNetworkFlagsConnectionRequired). Other flags you may use are
as follows:

 ■ kSCNetworkReachabilityFlagsIsWWAN —Tests whether your user is using the carrier’s
wireless wide area network (WWAN) or local Wi-Fi. When available via WWAN, the
network can be reached via EDGE, GPRS, LTE, or another type of cell connection.
When using a WWAN connection, you might want to use lightweight versions of your
resources (for example, smaller versions of images or lower-bandwidth videos) due to the
connection’s constricted or costly bandwidth.

 ■ kSCNetworkReachabilityFlagsConnectionOnTraffic —Specifies that addresses can
be reached with the current network configuration but that a connection must first be
established. Any actual traffic will initiate the connection.

 ■ kSCNetworkReachabilityFlagsIsDirect —Tells whether the network traffic goes
through a gateway or arrives directly.

Evaluating whether connectivity code works, it is best to test on a variety of devices. The
iPhone and cell-enabled iPads offer the most options. These devices provide both cell and Wi-Fi
support, enabling you to confirm that the network remains reachable when using a cellular
WWAN connection.

Test this code by toggling Wi-Fi and cell data off and on in the iPhone’s Settings app. A slight
delay sometimes occurs when checking for network reachability, so design your applications
accordingly. Let the user know what your code is up to during the check.

SCNetworkReachabilityGetFlags is a synchronous call that can block for a long period of
time, particularly on Domain Name System (DNS) lookup if there is no connection. Never call
this method from your main thread in production code. A long enough delay on the main
thread will result in your app being booted by the iOS watchdog.

Use NSOperationQueue to move the blocking call off the main thread. Be sure to push any
interaction with the UI back on to the main thread:

[[[NSOperationQueue alloc] init] addOperationWithBlock:
^{
 // blocking call
 BOOL networkAvailable = [device networkAvailable];

 // UI interaction
 [[NSOperationQueue mainQueue] addOperationWithBlock:^{

ptg12441863

523Recipe: Checking Your Network Status

 textView.text = networkAvailable ? @"Yes" : @"No";
 }];

}];

Indicate whether your application is using the network by setting the networkActivity-
IndicatorVisible property for the shared application instance. A spinning indicator in the
status bar shows that network activity is in progress.

Recipe 13-1 Testing a Network Connection

SCNetworkReachabilityRef reachability;
SCNetworkConnectionFlags connectionFlags;

- (void)pingReachability
{
 if (!reachability)
 {
 BOOL ignoresAdHocWiFi = NO;
 struct sockaddr_in ipAddress;
 bzero(&ipAddress, sizeof(ipAddress));
 ipAddress.sin_len = sizeof(ipAddress);
 ipAddress.sin_family = AF_INET;
 ipAddress.sin_addr.s_addr =
 htonl(ignoresAdHocWiFi ? INADDR_ANY : IN_LINKLOCALNETNUM);

 reachability = SCNetworkReachabilityCreateWithAddress(
 kCFAllocatorDefault, (struct sockaddr *)&ipAddress);
 CFRetain(reachability);
 }

 // Recover reachability flags
 BOOL didRetrieveFlags = SCNetworkReachabilityGetFlags(
 reachability, &connectionFlags);
 if (!didRetrieveFlags)
 NSLog(@"Error. Could not recover network reachability flags");

}

- (BOOL)networkAvailable
{
 [[UIApplication sharedApplication]
 setNetworkActivityIndicatorVisible:YES];
 [self pingReachability];
 BOOL isReachable =
 (connectionFlags & kSCNetworkFlagsReachable) != 0;
 BOOL needsConnection =
 (connectionFlags & kSCNetworkFlagsConnectionRequired) != 0;
 [[UIApplication sharedApplication]

ptg12441863

524 Chapter 13 Networking Basics

 setNetworkActivityIndicatorVisible:NO];
 return (isReachable && !needsConnection) ? YES : NO;

}}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

Scanning for Connectivity Changes

Connectivity state may change while an application is running. Checking once at application
launch usually isn’t enough for an application that depends on data connections throughout
its lifetime. When a network connection is lost or when it can finally be established, your UI
should adjust accordingly, such as disabling or enabling a button or alerting the user.

Listing 13-1 addresses this challenge by extending the UIDevice reachability category to
monitor network changes. It provides a pair of methods that allow you to schedule and
unschedule reachability watchers—observers that notify when the connectivity state changes. It
builds a callback that messages a watcher object when that state changes. The monitor is sched-
uled on the current run loop and runs asynchronously. Upon detecting a change, the callback
function triggers.

Listing 13-1 ’s callback function redirects itself to a custom delegate method, reachability-
Changed , which must be implemented by its watcher. That watcher object can then query for
current network state.

The method that schedules the watcher assigns the delegate as its parameter. Here’s a trivial
case of how that might be implemented skeletally, using Listing 13-1 ’s implementation. In
real-world deployment, you’ll want to update the functionality presented in your GUI to match
the availability (or lack thereof) of network-only features. Inform your user when connectiv-
ity changes and update your interface to mirror the current state. You might want to disable
buttons or menu items that depend on network access when that access disappears. Providing
an alert of some kind lets the user know why the GUI has updated.

Be prepared for multiple callbacks. Your application will generally receive one callback at a
time for each kind of state change (that is, when the cellular data connection is established
or released) or when Wi-Fi is established or lost. Your user’s connectivity settings (especially
remembering and logging in to known Wi-Fi networks) will affect the kind and number of call-
backs you may have to handle.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

525Scanning for Connectivity Changes

Listing 13-1 Monitoring Connectivity Changes

@protocol ReachabilityWatcher <NSObject>
- (void)reachabilityChanged;
@end

// For each callback, ping the watcher
static void ReachabilityCallback(
 SCNetworkReachabilityRef target,
 SCNetworkConnectionFlags flags, void* info)

{
 @autoreleasepool {
 id watcher = (__bridge id) info;
 if ([watcher respondsToSelector: @selector(reachabilityChanged)])
 [watcher performSelector: @selector(reachabilityChanged)];
 }

}

// Schedule watcher into the run loop
- (BOOL)scheduleReachabilityWatcher:(id <ReachabilityWatcher>)watcher
{
 [self pingReachability];

 SCNetworkReachabilityContext context =
 {0, (__bridge void *)watcher, NULL, NULL, NULL};
 if(SCNetworkReachabilitySetCallback(reachability,
 ReachabilityCallback, &context))
 {
 if(!SCNetworkReachabilityScheduleWithRunLoop(
 reachability, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes))
 {
 NSLog(@"Error: Could not schedule reachability");
 SCNetworkReachabilitySetCallback(reachability, NULL, NULL);
 return NO;
 }
 }
 else
 {
 NSLog(@"Error: Could not set reachability callback");
 return NO;
 }
 return YES;

}

// Remove the watcher
- (void)unscheduleReachabilityWatcher

ptg12441863

526 Chapter 13 Networking Basics

{
 SCNetworkReachabilitySetCallback(reachability, NULL, NULL);
 if (SCNetworkReachabilityUnscheduleFromRunLoop(
 reachability, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes))
 NSLog(@"Success. Unscheduled reachability");
 else
 NSLog(@"Error: Could not unschedule reachability");

 CFRelease(reachability);
 reachability = nil;

}

The URL Loading System

Apple provides a robust stack of APIs for communicating over the network. Each level of
the stack is available to you, starting with the BSD Sockets layer at the base, the C-based
CoreFoundation layer, and the Objective-C–based Foundation layer. For client-side apps, there
is rarely a need to dive deeper than the Foundation layer.

For most applications, your network communication can be provided by the URL Loading
System found in the Foundation layer. With this system, you connect, download, and upload
data to many services that can be referenced via a URL. This functionality is not limited to
HTTP-based services (http and https) but includes support for file transfer protocol (ftp), local
file URLs, and data URLs.

The URL Loading System shipped with the initial iOS SDK, NSURLConnection (which is confus-
ingly both the name of the technology as well as the name of the headlining class), provided
the heavy network lifting for thousands of apps. This framework was initially built for the
Safari browser and then migrated to Foundation.

With iOS 7, Apple radically overhauled NSURLConnection to be even more flexible, configu-
rable, and robust. The new technology, NSURLSession , is a complete replacement that provides
substantial improvements to the granularity of configuration, better authentication handling, a
more convenient and richer delegate model, and easy access to the new background download-
ing also introduced in iOS 7. While the old NSURLConnection system is still available, there is
no reason not to move to the new NSURLSession technology.

While many classes used in NSURLConnection are maintained in NSURLSession , such as
NSURL , NSURLRequest , and NSURLResponse , a new set of classes provide additional support for
configuration and the task of downloading or uploading data.

ptg12441863

527The URL Loading System

Configuration

Configuration of a session uses an NSURLSessionConfiguration object. Each session uses a
separate configuration object, improving on the global configuration provided in the legacy
NSURLConnection . You set properties for connection policies, number of connections, cell
usage, cache, credentials, and cookie storage. Use one of the class factories to create a configura-
tion and then modify appropriately.

One welcome new property is an explicit resource timeout in addition to the network timeout.
The network timeout (timeoutIntervalForRequest), which existed as a request-level configu-
ration in the past, specifies the timeout for the minimum frequency of incoming bytes of data.
The new resource timeout (timeoutIntervalForResource) specifies the overall timeout for
the entire transfer.

Once the NSURLSessionConfiguration object is configured, pass it to the constructor of your
NSURLSession object. A copy of your NSURLSessionConfiguration is stored in the session.
While the configuration object is mutable, once it is passed to your session, changes are
ignored; make sure your configuration is set appropriately.

Tasks

Each unit of work in a session is defined by an NSURLSessionTask object. Tasks are a close
corollary to the original NSURLConnection class, each representing a single network request. A
task provides the current state of a request. Once active, you can use a task to cancel, suspend,
or resume activity. Much of the connection state that required the implementation of a dele-
gate to access in NSURLConnection are now available as properties on NSURLSessionTask .

NSURLSessionTask is an abstract class with three concrete classes provided for general data
transfers, download, and upload functions, as shown in Figure 13-1 (left): NSURLDataTask ,
NSURLDownloadTask , and NSURLUploadTask . All these tasks support a convenient block-based
handler as well as a more flexible delegate-based mechanism for performing and handling the
network request.

NSURLSessionTask

NSURLSessionDownloadTaskNSURLSessionDataTask

NSURLSessionUploadTask

NSURLSessionDelegate

NSURLSessionTaskDelegate

NSURLSessionDownloadDelegateNSURLSessionDataDelegate

Figure 13-1 A family of session tasks provide the ability to download and upload data (left). An
accompanying hierarchy of delegate protocols for the tasks as well as NSURLSession allow for
accessing and responding to state changes (right).

ptg12441863

528 Chapter 13 Networking Basics

The subclasses of NSURLSessionTask provide similar functionality, with a few important differ-
ences. Data tasks provide a general-purpose base class, supporting both the sending and receiv-
ing of data from memory. Upload tasks are identical to data tasks (they are actually a subclass
of NSURLSessionDataTask) but with an additional delegate call for status and the ability to
be used in the background transfer functionality (see Recipe 13-5). Download tasks store the
incoming data directly to a file and allow the resumption of a cancelled or failed download.

NSURLSession

In the new URL Loading System, sessions maintain the current configuration and serve as
the factory for creating tasks. These long-lived objects are intended to be active over multiple
network tasks. When creating a session, you can use the class constructors to retrieve the
default session or create a custom session. The primary difference is that the default session
uses a shared configuration (actually the same shared stack that the legacy NSURLConnection
uses), whereas the custom session can be configured with your own customized, private
configuration.

NSURLSession also maintains the single delegate that is used for callbacks from
the entire stack of session classes, as shown in Figure 13-1 (right). This includes
NSURLSessionDelegate , NSURLSessionTaskDelegate , NSURLSessionDataTaskDelegate ,
NSURLSessionDownloadTaskDelegate , and NSURLSessionUploadTaskDelegate . Delegate
usage is addressed further in Recipe 13-3 .

When you are done with a session, be sure to invalidate it with invalidateAndCancel , cancel-
ling outstanding tasks immediately, or finishTasksAndInvalidate , which returns and waits
for the last task to complete. After the tasks have been cancelled or finished, references to the
delegate objects and callbacks will be severed and released. You cannot use a session object
again once it’s invalidated.

Recipe: Simple Downloads

Many classes provide convenience methods that allow you to request data from the Internet,
wait until that data is received, and then move on to the next step in the application. The
following snippet is both synchronous and blocking:

- (UIImage *)imageFromURLString:(NSString *)urlstring
{
 // This is a blocking call
 return [UIImage imageWithData:[NSData
 dataWithContentsOfURL:[NSURL URLWithString:urlstring]]];

}

You will not return from this method until all the data is received. If the connection hangs,
so will your app. The iOS system watchdog will summarily terminate your app if it blocks the
main thread for too long; it won’t just hang forever.

ptg12441863

529Recipe: Simple Downloads

Do not use such convenience methods without moving them to a background thread (as
shown in Recipe 13-1).

While these helper methods are quick and easy to use, they lack flexibility and control, such as
tracking the progress of the download, suspending the transfer, or setting security credentials.
Using NSURLSession is the preferred approach for general downloads with full control and
configurability. You can use a series of delegate callbacks or a convenient block-based handler.

Recipe 13-2 focuses on the simpler, block-based approach. On your session, use the
NSURLSessionDownloadTask factory method that accepts a completion handler:

NSURLSessionDownloadTask *task =
 [session downloadTaskWithRequest:request
 completionHandler:^(NSURL *location,
 NSURLResponse *response,
 NSError *error) { // do something }];

When the download finishes, the completion handler is passed the location of the downloaded
file, a response object, and an error object. You can then process the downloaded file or move
it to a more appropriate location. The initial location of the file is temporary; the file should
not be used outside the handler.

Some Internet providers produce a valid web page, even when given a completely bogus URL.
The data returned in the response parameter helps you determine when this happens. This
parameter points to an NSURLResponse object. It stores information about the data returned
by the URL connection. These parameters include expected content length and a suggested file-
name. If the expected content length is less than zero, that’s a good clue that the provider has
returned data that does not match up to your expected request:

NSLog(@"Response expects %d bytes",
 response.expectedContentLength);

Recipe 13-2 allows testing with three predefined URLs. There’s one that downloads a short
(3 MB) movie, another using a larger (35 MB) movie, and a final fake URL to test errors. The
movies are sourced from the Internet Archive (http://archive.org), which provides a wealth of
public domain data.

With the large movie, you may wish to allow access only via a non-cellular connection. This
can be configured using the NSURLSessionConfiguration object:

NSURLSessionConfiguration *configuration =
 [NSURLSessionConfiguration defaultSessionConfiguration];

configuration.allowsCellularAccess = NO;

Pass this configuration when creating your NSURLSession :

NSURLSession *session =
 [NSURLSession sessionWithConfiguration:configuration];

http://archive.org

ptg12441863

530 Chapter 13 Networking Basics

As you can see in Recipe 13-2 , NSURLSessionDownloadTask with the completion handler
provides no interdownload feedback. Recipe 13-3 addresses this issue by using the somewhat
more complex but fully featured delegate mechanism.

Recipe 13-2 Simple Downloads

// Large Movie (35 MB)
#define LARGE_MOVIE @"http://www.archive.org/download/\
 BettyBoopCartoons/Betty_Boop_More_Pep_1936_512kb.mp4"

// Short movie (3 MB)
#define SMALL_MOVIE @"http://www.archive.org/download/\
 Drive-inSaveFreeTv/Drive-in--SaveFreeTv_512kb.mp4"

// Fake address
#define FAKE_MOVIE \
 @"http://www.idontbelievethisisavalidurlforthisexample.com"

// Current URL to test
#define MOVIE_URL [NSURL URLWithString:LARGE_MOVIE]

// Location to copy the downloaded item
#define FILE_LOCATION [NSHomeDirectory()\
 stringByAppendingString:@"/Documents/Movie.mp4"]

@interface TestBedViewController : UIViewController
@end

@implementation TestBedViewController
{
 BOOL success;
 MPMoviePlayerViewController *player;

}

- (void)playMovie
{
 // Instantiate movie player with location of downloaded file
 player = [[MPMoviePlayerViewController alloc]
 initWithContentURL:[NSURL fileURLWithPath:FILE_LOCATION]];
 [player.moviePlayer setControlStyle: MPMovieControlStyleFullscreen];
 player.moviePlayer.movieSourceType = MPMovieSourceTypeFile;
 player.moviePlayer.allowsAirPlay = YES;
 [player.moviePlayer prepareToPlay];

 // Listen for finish state
 [[NSNotificationCenter defaultCenter] addObserverForName:
 MPMoviePlayerPlaybackDidFinishNotification

ptg12441863

531Recipe: Simple Downloads

 object:player.moviePlayer queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification)
 {
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:nil];
 self.navigationItem.rightBarButtonItem.enabled = YES;
 }];

 [self presentMoviePlayerViewControllerAnimated:player];
}

// Perform an asynchronous download
- (void)downloadMovie:(NSURL *)url
{
 // Turn on network activity indicator
 [UIApplication sharedApplication].networkActivityIndicatorVisible
 = YES;

 NSDate *startDate = [NSDate date];

 // Create a URL request with the URL to the movie
 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 // Create a session configuration
 NSURLSessionConfiguration *configuration =
 [NSURLSessionConfiguration defaultSessionConfiguration];

 // Turn off cellular access for this session
 configuration.allowsCellularAccess = NO;

 // Create a session with the custom configuration
 NSURLSession *session =
 [NSURLSession sessionWithConfiguration:configuration];

 // Create a download task with the block-based convenience
 // handler to fetch the data
 NSURLSessionDownloadTask *task =
 [session downloadTaskWithRequest:request
 completionHandler:^(NSURL *location,
 NSURLResponse *response, NSError *error) {

 // Turn off the network activity indicator
 [UIApplication sharedApplication]
 .networkActivityIndicatorVisible = NO;

 // Upon an error, reset the UI and abort.

ptg12441863

532 Chapter 13 Networking Basics

 if (error)
 {
 self.navigationItem.rightBarButtonItem.enabled = YES;
 NSLog(@"Failed download.");
 return;
 }

 // Copy temporary file
 [[NSFileManager defaultManager] copyItemAtURL:location
 toURL:[NSURL fileURLWithPath:FILE_LOCATION]
 error:&error];

 NSLog(@"Elapsed time: %0.2f seconds.",
 [[NSDate date] timeIntervalSinceDate:startDate]);

 // Play the movie
 [self playMovie];
 }];

 // Begin the download task
 [task resume];

}

// Respond to the user's request to play movie
- (void)action
{
 self.navigationItem.rightBarButtonItem.enabled = NO;

 // Stop any existing movie playback
 [player.moviePlayer stop];
 player = nil;

 // Remove any existing data
 if ([[NSFileManager defaultManager] fileExistsAtPath:FILE_LOCATION])
 {
 NSError *error;
 if (![[NSFileManager defaultManager]
 removeItemAtPath:FILE_LOCATION error:&error])
 NSLog(@"Error removing existing data: %@",
 error.localizedFailureReason);
 }

 // Fetch the data
 [self downloadMovie:MOVIE_URL];

}

- (void)loadView

ptg12441863

533Recipe: Downloads with Feedback

{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Play Movie", @selector(action));

}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

Recipe: Downloads with Feedback

The block-based factory methods provided by NSURLSession create tasks with a convenient
completion handler. When a task is completed, you can process your data and move on.
While these methods are simple to use, sometimes you may need more interaction during
your download or upload. NSURLSessionDelegate and its family of subprotocols provide
more access and configurability to your tasks. The subprotocols include support for the parent
NSURLSession -related delegate methods as well as callbacks specific to a general task, data task,
or download task.

These delegates provide corresponding data about the progress or state of your session and
tasks. Your NSURLSession object maintains a single, common delegate object that will respond
to any of the session callbacks as well as possible task callbacks. This can seem a bit odd at first
but realize that whatever delegate you assign to the NSURLSession object is responsible for
responding to delegate methods for both the session and corresponding tasks.

To monitor the state of the download task, implement the URLSession:downloadTask:
didWriteData:totalBytesWritten:totalBytesExpectedToWrite: delegate method.
totalBytesWritten (number of total bytes transferred) and totalBytesExpectedToWrite
(expected number of bytes to be transferred) provide ample information to create a progress
indicator in your user interface. You can also query the countOfBytesReceived and
countOfBytesExptectedToReceive properties on the download task directly. Note the
somewhat confusing use of written and received in these method signatures; each refers to the
bytes transferred, and they should be interchangeable.

By dividing the bytes transferred by those expected to be transferred, you can derive a useful
status string and compute a percentage that can be passed to a UIProgressView :

int64_t kilobytesReceived =
 downloadTask.countOfBytesReceived / 1024;

int64_t kilobytesExpected =
 downloadTask.countOfBytesExpectedToReceive / 1024;

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

534 Chapter 13 Networking Basics

NSString * statusString = [NSString stringWithFormat:@"%lldk of %lldk",
 kilobytesReceived, kilobytesExpected];

double progress = (double)kReceived / (double)kExpected;
progressLabel.text = statusString;

[progressBarView setProgress:progress animated:YES];

In Recipe 13-3 , a table provides a list of sizable movie downloads that can be downloaded by
tapping on the table view cell. The navigation bar provides the live progress of the download
and is updated in real time, as shown in Figure 13-2 . At the completion of the download, the
video can be viewed. While multiple downloads can be easily supported, the complexities in
designing an instructional example while providing status on multiple downloads is a bit egre-
gious. Recipe 13-3 restricts the user to a single download at a time.

Figure 13-2 A table view tracks a list of download tasks and their current progress state.

Note

In iOS 7, Apple introduced NSProgress to provide generalized progress tracking and reporting.
In Recipe 13-3 , with single file downloads and basic status reporting, little tracking beyond the
immediate update of the UI is required. This is easily provided by the download delegate call-
backs, making the more robust and complex NSProgress unnecessary. NSProgress excels at
tracking the overall state of a group of tasks, including tasks that provide less opportunity and
access for tracking, as well as progress to UI elements through Key-value observing (KVO).

ptg12441863

535Recipe: Downloads with Feedback

Recipe 13-3 Downloads with Feedback

// Helper class to hold information about a movie and its corresponding download
@interface MovieDownload : NSObject
@property (nonatomic, strong) NSURL *movieURL;
@property (nonatomic, strong) NSURLSessionDownloadTask *downloadTask;
@property (nonatomic, readonly) NSString *localPath;
@property (nonatomic, readonly) NSString *movieName;
@property (nonatomic, readonly) NSString *statusString;
@property (nonatomic, readonly) double progress;
- (instancetype)initWithURL:(NSURL *)movieURL
 downloadTask:(NSURLSessionDownloadTask *)downloadTask;

@end

@implementation MovieDownload

- (instancetype)initWithURL:(NSURL *)movieURL
 downloadTask:(NSURLSessionDownloadTask *)downloadTask

{
 self = [super init];
 if (self)
 {
 _movieURL = movieURL;
 _downloadTask = downloadTask;
 }
 return self;

}

// A local file path for copying our temporary file
- (NSString *)localPath
{
 NSString *localPath =
 [NSString stringWithFormat:@"%@/Documents/%@",
 NSHomeDirectory(), [self.movieURL lastPathComponent]];
 return localPath;

}

// Display name in UI
- (NSString *)movieName
{
 return [self.movieURL lastPathComponent];

}

// Status string based on progress from download task
- (NSString *)statusString
{
 int64_t kReceived =

ptg12441863

536 Chapter 13 Networking Basics

 self.downloadTask.countOfBytesReceived / 1024;
 int64_t kExpected =
 self.downloadTask.countOfBytesExpectedToReceive / 1024;
 NSString *statusString =
 [NSString stringWithFormat:@"%lldk of %lldk",
 kReceived, kExpected];
 return statusString;

}

// Progress percentage from download task
- (double)progress
{
 double progress = (double)self.downloadTask.countOfBytesReceived /
 (double)self.downloadTask.countOfBytesExpectedToReceive;
 return progress;

}
@end

// Large Movie (35 MB)
#define LARGE_MOVIE @"http://www.archive.org/download/\
 BettyBoopCartoons/Betty_Boop_More_Pep_1936_512kb.mp4"

// Medium movie (8 MB)
#define MEDIUM_MOVIE @"http://www.archive.org/download/\
 mother_goose_little_miss_muffet/\
 mother_goose_little_miss_muffet_512kb.mp4"

// Short movie (3 MB)
#define SMALL_MOVIE @"http://www.archive.org/download/\
 Drive-inSaveFreeTv/Drive-in--SaveFreeTv_512kb.mp4"

@interface TestBedViewController : UITableViewController
 <NSURLSessionDownloadDelegate>

@end

@implementation TestBedViewController
{
 NSMutableArray *movieDownloads;
 NSURLSession *session;
 UIProgressView *progressBarView;
 MPMoviePlayerViewController *player;
 BOOL downloading;

}

#pragma mark - NSURLSessionDownloadDelegate

// Handle download completion from the task

ptg12441863

537Recipe: Downloads with Feedback

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didFinishDownloadingToURL:(NSURL *)location

{
 NSInteger index =
 [self movieDownloadIndexForDownloadTask:downloadTask];
 if (index < 0) return;
 MovieDownload *movieDownload = movieDownloads[index];

 // Copy temporary file
 NSError *error;
 [[NSFileManager defaultManager] copyItemAtURL:location
 toURL:[NSURL fileURLWithPath:[movieDownload localPath]]
 error:&error];

}

// Handle task completion
- (void)URLSession:(NSURLSession *)session
 task:(NSURLSessionTask *)task
 didCompleteWithError:(NSError *)error

{
 if (error)
 NSLog(@"Task %@ failed: %@", task, error);

 // Update UI
 [progressBarView setProgress:0 animated:NO];
 self.navigationItem.title = @"";
 downloading = NO;

 // This method is called after didFinishDownloadingToURL
 // Task state is up-to-date and reflects completion.
 [self.tableView reloadData];

}

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didResumeAtOffset:(int64_t)fileOffset
 expectedTotalBytes:(int64_t)expectedTotalBytes

{
 // Required delegate method

}

// Handle progress update from the task
- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten

ptg12441863

538 Chapter 13 Networking Basics

 totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite
{
 NSInteger index =
 [self movieDownloadIndexForDownloadTask:downloadTask];
 if (index < 0) return;
 MovieDownload *movieDownload = movieDownloads[index];

 // Update UI
 [progressBarView setProgress:movieDownload.progress animated:YES];
 self.navigationItem.title = movieDownload.statusString;

}

#pragma mark - UITableViewDatasource

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 NSInteger sectionCount = 1;
 return sectionCount;

}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

{
 NSInteger rowCount = movieDownloads.count;
 return rowCount;

}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 static NSString *cellIdentifier = @"CellIdentifier";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:cellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:cellIdentifier];
 }

 // Reset the cell UI
 cell.selectionStyle = UITableViewCellSelectionStyleDefault;
 cell.textLabel.enabled = YES;
 cell.detailTextLabel.enabled = YES;

 // Set our text label to the file name
 cell.textLabel.text = [movieDownloads[indexPath.row] movieName];

ptg12441863

539Recipe: Downloads with Feedback

 // Acquire the appropriate download task and check its state
 NSURLSessionDownloadTask *downloadTask =
 [movieDownloads[indexPath.row] downloadTask];
 if (downloadTask.state == NSURLSessionTaskStateCompleted)
 {
 cell.detailTextLabel.text = @"Ready to Play";
 }
 else if (downloadTask.state == NSURLSessionTaskStateRunning)
 {
 cell.detailTextLabel.text = @"Downloading...";
 }
 else if (downloadTask.state == NSURLSessionTaskStateSuspended)
 {
 // If download already in progress, disable suspended cells.
 if (downloading)
 {
 cell.selectionStyle = UITableViewCellSelectionStyleNone;
 [cell.textLabel setEnabled:NO];
 [cell.detailTextLabel setEnabled:NO];
 }

 if (downloadTask.countOfBytesReceived > 0)
 {
 cell.detailTextLabel.text = @"Download Paused";
 }
 else
 {
 cell.detailTextLabel.text = @"Not Started";
 }
 }

 return cell;
}

#pragma mark - UITableViewDelegate

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 // Acquire downloadTask and respond to user's selection
 NSURLSessionDownloadTask *downloadTask =
 [movieDownloads[indexPath.row] downloadTask];
 if (downloadTask.state == NSURLSessionTaskStateCompleted)
 {
 // Download is complete. Play movie.
 NSURL *movieURL =
 [NSURL fileURLWithPath:[movieDownloads[indexPath.row]

ptg12441863

540 Chapter 13 Networking Basics

 localPath]];
 [self playMovieAtURL:movieURL];
 }
 else if (downloadTask.state == NSURLSessionTaskStateSuspended)
 {
 // If suspended and not already downloading, resume transfer.
 if (!downloading)
 {
 [downloadTask resume];
 downloading = YES;
 }
 }
 else if (downloadTask.state == NSURLSessionTaskStateRunning)
 {
 // If already downloading, pause the transfer.
 [downloadTask suspend];
 downloading = NO;
 }
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
 [tableView reloadData];

}

#pragma mark - Movie Download Handling & UI

// Helper method to get index of a movieDownload object from array
- (NSInteger)movieDownloadIndexForDownloadTask:
 (NSURLSessionDownloadTask *)downloadTask

{
 NSInteger foundIndex = -1;
 NSInteger index = 0;
 for (MovieDownload *movieDownload in movieDownloads)
 {
 if (movieDownload.downloadTask == downloadTask)
 {
 foundIndex = index;
 break;
 }
 index++;
 }
 return foundIndex;

}

// Play movie at the provided URL
- (void)playMovieAtURL:(NSURL *)url
{
 // Instantiate movie player with location of downloaded file
 player =

ptg12441863

541Recipe: Downloads with Feedback

 [[MPMoviePlayerViewController alloc] initWithContentURL:url];
 player.moviePlayer.controlStyle = MPMovieControlStyleFullscreen;
 player.moviePlayer.movieSourceType = MPMovieSourceTypeFile;
 player.moviePlayer.allowsAirPlay = YES;
 [player.moviePlayer prepareToPlay];

 [self presentMoviePlayerViewControllerAnimated:player];
}

// Convenience method to add movieDownload objects to our array
- (void)addMovieDownload:(NSString *)urlString
{
 NSURL * url = [NSURL URLWithString:urlString];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 NSURLSessionDownloadTask *downloadTask =
 [session downloadTaskWithRequest:request];

 MovieDownload *movieDownload = [[MovieDownload alloc]
 initWithURL:url downloadTask:downloadTask];
 [movieDownloads addObject:movieDownload];

}

// Reset the UI, session, and tasks
- (void)reset
{
 for (MovieDownload *movieDownload in movieDownloads)
 {
 // Cancel each task
 NSURLSessionDownloadTask *downloadTask =
 movieDownload.downloadTask;
 [downloadTask cancel];

 // Remove any existing data
 if ([[NSFileManager defaultManager]
 fileExistsAtPath:movieDownload.localPath])
 {
 NSError *error;
 if (![[NSFileManager defaultManager]
 removeItemAtPath:movieDownload.localPath
 error:&error])
 NSLog(@"Error removing existing data: %@",
 error.localizedFailureReason);
 }
 }

 // Cancel all tasks and invalidate session (releases delegate)
 [session invalidateAndCancel];

ptg12441863

542 Chapter 13 Networking Basics

 session = nil;

 // Create new configuration / session and set delegate
 NSURLSessionConfiguration *sessionConfiguration =
 [NSURLSessionConfiguration defaultSessionConfiguration];
 session = [NSURLSession
 sessionWithConfiguration:sessionConfiguration
 delegate:self delegateQueue:[NSOperationQueue mainQueue]];

 // Create the MovieDownload objects
 movieDownloads = [[NSMutableArray alloc] init];
 [self addMovieDownload:SMALL_MOVIE];
 [self addMovieDownload:MEDIUM_MOVIE];
 [self addMovieDownload:LARGE_MOVIE];

 // Reset the UI
 [progressBarView setProgress:0 animated:NO];
 self.navigationItem.title = @"";
 downloading = NO;
 [self.tableView reloadData];

}

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor whiteColor];
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Reset", @selector(reset));

 // Set up the progress bar in the navigation bar
 progressBarView = [[UIProgressView alloc]
 initWithProgressViewStyle:UIProgressViewStyleBar];
 progressBarView.frame = CGRectMake(0, 0,
 self.navigationController.navigationBar.frame.size.width, 4);
 [self.navigationController.navigationBar
 addSubview:progressBarView];

 [self reset];
}

@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

543Recipe: Background Transfers

Resuming Downloads

One neat feature of NSURLSessionDownloadTask is support for resuming downloads. If
a download fails, you can query the download task for a resume data blob. Connection
error callbacks provide this resume data in the [error userInfo] dictionary, with the
NSURLSessionDownloadTaskResumeData key. You can also cancel your download task and
receive the most current resume data blob via a block handler:

[downloadTask cancelByProducingResumeData: ^(NSData *resumeData) {
 // save resume data
 }];

When you are ready to resume your download, you can use the session downloadTask-
WithResumeData: or downloadTaskWithResumeData:completionHandler: , passing in the
saved resume data blob to create a new task that will continue the download near where the
previous download task left off.

Recipe: Background Transfers

iOS 7 introduced an amazing feature that has been on many developers’ wish lists since the
creation and availability of the SDK: the ability to continue and process a download or upload
even when the application is in the background. Background transfers require the use of a dele-
gate for event delivery. You can use either the upload or download tasks and their correspond-
ing delegates. Background transfers are also limited to HTTP and HTTPS protocols. They can be
created in the foreground or even when the app is already in the background.

In many ways, there is little difference between the creation and handling of an in-process
transfer and of an out-of-process transfer. You set up your session and your download task and
begin the network transfer.

The key to enabling background transfers is the configuration of your session. Use the
backgroundSessionConfiguration: class constructor on NSURLSessionConfiguration ,
passing a unique identifier string that you will use in the future to reconnect with this session:

NSURLSessionConfiguration *configuration =
 [NSURLSessionConfiguration
 backgroundSessionConfiguration:@"CoreiOSBackgroundID"];

configuration.discretionary = YES;

session = [NSURLSession sessionWithConfiguration:configuration
 delegate:self delegateQueue:nil];

The discretionary configuration property is available for background transfers to encourage
them to occur when a device is plugged into power and on Wi-Fi.

When handling background transfers, this session setup needs to occur when you are estab-
lishing your application. If the app is launched after a crash or exit while a background trans-
fer is proceeding, the re-creation of the session with the background ID will reestablish the

ptg12441863

544 Chapter 13 Networking Basics

background session that may be in progress. Delegate method calls will immediately begin
firing for tasks associated with that session. You can also call getTasksWithCompletion-
Handler: to receive all the existing background tasks directly.

If your application remains in the foreground, the progress and completion delegate methods
will be called normally, and the transfer will resolve as a normal in-process download. If your
application leaves the foreground, the download task will continue. Once completed, your app
will be relaunched in the background.

Note

If your application suspends, exits, or even crashes, the background transfer will continue.
Background transfers occur in a separate daemon process. The data will be available for your
application on its next launch.

In your app delegate, you will implement application:handleEventsForBackgroundURL-
Session:completionHandler: . If your application is not running and your transfer requires
an authorization request or when your tasks complete, your application will be launched in the
background, and the application delegate method will be called.

Although your application is running in the background, your application UI is actually fully
restored but hidden. You can update your UI based on the data just downloaded. An updated
snapshot of your UI will be taken for use in the task switcher. To initiate this snapshot, call
the completionHandler block passed to the app delegate method when you have finished
handling your background tasks and updated your UI.

Recipe 13-4 takes the basic functionality of Recipe 13-2 and expands the download process to
allow for background transfers. After the movie download is initiated, exiting or suspending
the application will not stop the transfer. When the transfer completes, the movie will be saved
and the UI prepared for the next foregrounding of the application. Unfortunately, the back-
ground transfer API does not allow you to bring your application into the foreground automati-
cally. However, as shown in Recipe 13-4 , it is possible to trigger a local notification.

Testing Background Transfers

To test, begin your download and tap the Home button on the device to suspend your app
or use the Exit App button in the navigation bar. This button calls abort() , a function that
immediately terminates the application. (Don’t ever use this function in a production applica-
tion; it will be rejected in the app review process.)

Immediately relaunching the application after backgrounding or termination should bring up
the app with the download still in progress. Following this same process without relaunching
allows the transfer to complete in the background. When it is complete, the app is launched in
the background, kicking off a local notification and an update of the UI in the task switcher.

ptg12441863

545Recipe: Background Transfers

Recipe 13-4 Background Transfers

// Notify the user of a background transfer completion
- (void)presentNotification
{
 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];
 localNotification.alertBody = @"Download Complete!";
 localNotification.alertAction = @"Background Transfer";
 localNotification.soundName = UILocalNotificationDefaultSoundName;
 localNotification.applicationIconBadgeNumber = 1;
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:localNotification];

}

// Reset the application icon badge on activation
- (void)applicationDidBecomeActive:(UIApplication *)application
{
 application.applicationIconBadgeNumber = 0;

}

// Handle the background transfer completion event
- (void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler

{
 // Update the UI to make it apparent in the task switcher
 tbvc.view.backgroundColor = [UIColor greenColor];
 tbvc.statusLabel.text = @"BACKGROUND DOWNLOAD COMPLETED!";

 // Present the local notification to the user
 [self presentNotification];

 // Update the task switcher snapshot
 completionHandler();

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

546 Chapter 13 Networking Basics

Web Services

It is becoming difficult to build an iOS app of any significance these days without interact-
ing with one or more web services. Nearly all data available on the Internet, both public and
private, is provided via a web service.

These utilitarian network endpoints generally use HTTP with messages encoded as JSON or
XML. The APIs for these services are published publically for many sites. While many require
registration to use, a few are still fully accessible. Private enterprise web services are only docu-
mented and accessible to those who have the correct authorization.

Apple provides the tools required to download and process most web services with ease. The
URL Loading System gets and posts your data, and provided parsers can interpret and generate
the messages passed back and forth.

Recipe: Using JSON Serialization

The NSJSONSerialization class is tremendously handy when you’re working with JSON-based
web services. All you need is a valid JSON container (namely an array or a dictionary) whose
components are also valid JSON objects, including strings, numbers, arrays, dictionaries, and
NSNull . Test an object’s validity with isValidJSONObject , which returns YES if the object can
be safely converted to JSON format:

// Build a basic JSON object
NSArray *array = @[@"Val1", @"Val2", @"Val3"];
NSDictionary *dict = @{@"Key 1":array,
 @"Key 2":array, @"Key 3":array};

// Convert it to JSON
if ([NSJSONSerialization isValidJSONObject:dict])
{
 NSData *data = [NSJSONSerialization
 dataWithJSONObject:dict options:0 error:nil];
 NSString *result = [[NSString alloc]
 initWithData:data encoding:NSUTF8StringEncoding];
 NSLog(@"Result: %@", result);

}

The code from this method produces the following JSON. Notice that dictionary output is not
guaranteed to be in alphabetic order:

Result: {"Key 2":["Val1","Val2","Val3"],"Key 3":
 ["Val1","Val2","Val3"],"Key 1":["Val1","Val2","Val3"]}

Moving from JSON to a conforming object is just as easy. Recipe 13-5 uses JSONObjectWith-
Data:options:error: to convert NSData representing a JSON object into an Objective-C
representation. This recipe downloads the current weather forecast from the site http://
openweathermap.org , retrieves an array of forecasts for the next seven days from the returned
dictionary, and uses it to power a standard table view.

http://openweathermap.org
http://openweathermap.org

ptg12441863

547Recipe: Using JSON Serialization

Recipe 13-5 JSON Data

#define WXFORECAST @"http://api.openweathermap.org/data/2.5/\
 forecast/daily?q=%@&units=Imperial&cnt=7&mode=json"

#define LOCATION @"Fairbanks"

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 // Top level dictionary for the forecast data
 NSDictionary *top = [items objectAtIndex:indexPath.row];

 // The date of this forecast under top
 NSString *unixtime = top[@"dt"];

 // The weather dictionary that includes the sky description
 NSDictionary * weather = top[@"weather"][0];

 // The sky description string under weather
 NSString *wxDescription = weather[@"description"];

 // Convert the unixtime to something we can use
 NSDate *wxDate = [NSDate dateWithTimeIntervalSince1970:
 [unixtime doubleValue]];

 UITableViewCell *cell = [self.tableView
 dequeueReusableCellWithIdentifier:@"cell"];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:@"cell"];
 }
 cell.textLabel.text = wxDescription;
 cell.detailTextLabel.text =
 [dateFormatter stringFromDate:wxDate];
 return cell;

}

#pragma mark - Web Service Download

- (void)loadWebService
{
 self.title = LOCATION;

 // Start the refresh control
 [self.refreshControl beginRefreshing];

ptg12441863

548 Chapter 13 Networking Basics

 // Create the URL string based on location
 NSString *urlString =
 [NSString stringWithFormat:WXFORECAST, LOCATION];

 // Set up the session
 NSURLSessionConfiguration * configuration =
 [NSURLSessionConfiguration defaultSessionConfiguration];
 NSURLSession *session =
 [NSURLSession sessionWithConfiguration:configuration];
 NSURLRequest *request =
 [NSURLRequest requestWithURL:[NSURL
 URLWithString:urlString]];

 // Create a data task to transfer the web service endpoint contents
 NSURLSessionDataTask *dataTask =
 [session dataTaskWithRequest:request
 completionHandler:^(NSData *data,
 NSURLResponse *response, NSError *error) {

 // Stop the refresh control
 [self.refreshControl endRefreshing];
 if (error)
 {
 self.title = error.localizedDescription;
 return;
 }

 // Parse the JSON from the data object
 NSDictionary *json = [NSJSONSerialization
 JSONObjectWithData:data options:0 error:nil];

 // Store off the top level array of forecasts
 items = json[@"list"];

 [self.tableView reloadData];
 }];

 // Start the data task
 [dataTask resume];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

549Recipe: Converting XML into Trees

Recipe: Converting XML into Trees

While many web services have moved to the simpler JSON format, XML is still a popular and
powerful document encoding. iOS’s NSXMLParser class scans through XML, creating callbacks
as new elements are processed and finished (that is, using the typical logic of a SAX parser).
This class is terrific for when you’re downloading simple data feeds and want to scrape just a
bit or two of relevant information. It might not be so great when you’re doing production-type
work that relies on error checking, status information, and back-and-forth handshaking.

Recipe 13-6 retrieves the same weather forecast data from http://openweathermap.org as Recipe
13-5 but in XML format. It requests the xml mode rather than the json mode and uses an XML
parser to populate its table:

#define WXFORECAST \
 @"http://api.openweathermap.org/data/2.5/\
 forecast/daily?q=%@&units=Imperial&cnt=7&mode=xml"

#define LOCATION @"Fairbanks"

- (void)loadWebService
{
 self.title = LOCATION;

 // Start the refresh control
 [self.refreshControl beginRefreshing];

 // Create the URL string based on location
 NSString *urlString =
 [NSString stringWithFormat:WXFORECAST, LOCATION];

 // Set up the session
 NSURLSessionConfiguration * configuration =
 [NSURLSessionConfiguration defaultSessionConfiguration];
 NSURLSession *session =
 [NSURLSession sessionWithConfiguration:configuration];
 NSURLRequest *request =
 [NSURLRequest requestWithURL:[NSURL URLWithString:urlString]];

 // Create a data task to transfer the web service endpoint contents
 NSURLSessionDataTask *dataTask =
 [session dataTaskWithRequest:request
 completionHandler:^(NSData *data, NSURLResponse *response,
 NSError *error) {

 // Stop the refresh control
 [self.refreshControl endRefreshing];
 if (error)
 {
 self.title = error.localizedDescription;

http://openweathermap.org

ptg12441863

550 Chapter 13 Networking Basics

 return;
 }

 // Create the XML parser
 XMLParser *parser = [[XMLParser alloc] init];

 // Parse the XML from the data object
 root = [parser parseXMLFromData:data];

 // Store off the top level parent of forecasts
 forecastsRoot = [root nodesForKey:@"forecast"][0];

 [self.tableView reloadData];
 }];

 // Start the data task
 [dataTask resume];

}

// Return a cell for the index path
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 TreeNode *forecastRoot = forecastsRoot.children[indexPath.row];
 NSString *day = [forecastRoot attributes][@"day"];
 TreeNode *cloudsNode = [forecastRoot nodeForKey:@"clouds"];
 NSString *wxDescription = [cloudsNode attributes][@"value"];

 UITableViewCell *cell =
 [self.tableView dequeueReusableCellWithIdentifier:@"cell"];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:@"cell"];
 }
 cell.textLabel.text = wxDescription;
 cell.detailTextLabel.text = day;
 return cell;

}

Trees

Using tree data structures is an excellent way to represent XML data. They allow you to create
search paths through data so that you can find just the data you’re looking for, as long as you
can comfortably fit the data into memory. You can retrieve all elements, search for a success
value, and so forth. Trees convert text-based XML back into a multidimensional structure.

ptg12441863

551Recipe: Converting XML into Trees

To bridge the gap between NSXMLParser and tree-based parse results, you can use an
NSXMLParser -based helper class to return more standard tree-based data. This requires a simple
tree node like the kind shown here:

@interface TreeNode : NSObject
@property (nonatomic, weak) TreeNode *parent;
@property (nonatomic, strong) NSMutableArray *children;
@property (nonatomic, strong) NSString *key;
@property (nonatomic, strong) NSDictionary *attributes;
@property (nonatomic, strong) NSString *leafValue;
@end

This node uses double linking to access its parent and its children, allowing two-way traversal
in a tree. Only parent-to-child values are retained, allowing the tree to deallocate without being
explicitly torn down.

For example, take the following simplified XML snippet from the open http://weathermap.org
web service:

<time day="2013-12-01">
 <clouds value="sky is clear"/>

</time>

This valid XML will be parsed into two TreeNode objects with key values time and clouds .
The time node’s children array will contain a clouds node. The clouds node will have a
time node as a parent . The time node will have an attributes dictionary that includes a day
key with the value 2013-12-01 . Similarly, the clouds node will have an attributes diction-
ary with a value key and a corresponding value sky is clear .

Building a Parse Tree

Recipe 13-6 introduces the XMLParser class. Its job is to build a parse tree as the NSXMLParser
class works its way through the XML source. The three standard NSXML routines (start element,
finish element, and found characters) read the XML stream and perform a recursive depth-first
descent through the tree.

The class adds new nodes when reaching new elements (parser:didStartElement:
qualifiedName:attributes:) and adds leaf values when encountering text
(parser:foundCharacters:). Because XML allows siblings at the same tree depth, this code
uses a stack to keep track of the current path to the tree root. Siblings always pop back to the
same parent in parser:didEndElement: , so they are added at the proper level.

After finishing the XML scan, the parseXMLFromData: method returns the root node.

http://weathermap.org

ptg12441863

552 Chapter 13 Networking Basics

Recipe 13-6 The XMLParser Helper Class

@implementation XMLParser
// Parser returns the tree root. Go down
// one node to the real results
- (TreeNode *)parse:(NSXMLParser *)parser
{
 stack = [NSMutableArray array];
 TreeNode *root = [TreeNode treeNode];
 [stack addObject:root];

 [parser setDelegate:self];
 [parser parse];

 // Pop down to real root
 TreeNode *realRoot = [[root children] lastObject];

 // Remove any connections
 root.children = nil;
 root.leafValue = nil;
 root.key = nil;
 realRoot.parent = nil;

 // Return the true root
 return realRoot;

}

- (TreeNode *)parseXMLFromURL:(NSURL *)url
{
 TreeNode *results = nil;
 @autoreleasepool {
 NSXMLParser *parser =
 [[NSXMLParser alloc] initWithContentsOfURL:url];
 results = [self parse:parser];
 }
 return results;

}

- (TreeNode *)parseXMLFromData:(NSData *)data
{
 TreeNode *results = nil;
 @autoreleasepool {
 NSXMLParser *parser =
 [[NSXMLParser alloc] initWithData:data];
 results = [self parse:parser];
 }
 return results;

ptg12441863

553Recipe: Converting XML into Trees

}

// Descend to a new element
- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict

{
 if (qName) elementName = qName;

 TreeNode *leaf = [TreeNode treeNode];
 leaf.parent = [stack lastObject];
 [(NSMutableArray *)[[stack lastObject] children] addObject:leaf];
 leaf.attributes = attributeDict;
 leaf.key = [NSString stringWithString:elementName];
 leaf.leafValue = nil;
 leaf.children = [NSMutableArray array];

 [stack addObject:leaf];
}

// Pop after finishing element
- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName

{
 [stack removeLastObject];

}

// Reached a leaf
- (void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string

{
 if (![[stack lastObject] leafValue])
 {
 [[stack lastObject]
 setLeafValue:[NSString stringWithString:string]];
 return;
 }
 [[stack lastObject] setLeafValue:
 [NSString stringWithFormat:@"%@%@",
 [[stack lastObject] leafValue], string]];

}
@end

ptg12441863

554 Chapter 13 Networking Basics

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 13 .

Summary

This chapter introduces basic network-supporting technologies. You have seen how to check for
network connectivity, download data, and convert to and from JSON. Here are a few thoughts
to take away with you from this chapter:

 ■ A portion of Apple’s networking support is provided through low-level C-based routines.
If you can find a friendly Objective-C wrapper to simplify your programming work,
consider using it. The only drawback occurs when you specifically need tight networking
control at the most basic level of your application, which is rare. There are superb
resources out there. Just search online for them.

 ■ The NSURLSession -based URL Loading System in iOS 7 provides a powerful new
abstraction to downloading and uploading data from the Internet. Take advantage of this
new API when possible.

 ■ The background transfer support in iOS 7 can be tremendously useful in providing a
responsive and up-to-date user experience. When combined with the new silent push
notifications (notifications that do not display alerts but can trigger download activity)
and background fetch (a new background mode for frequent background downloads) also
introduced in iOS 7, your application can always be current when the user launches.

 ■ The most important lesson about connecting from a device to the network is this: It
can fail. Design your apps accordingly. Check for network connectivity, test for aborted
downloads, and assume that data may arrive corrupted. Everything else follows from the
basic fact that you cannot rely on data to arrive when you want, how you expect it to,
and as you requested.

 ■ When working with networking, always think “threaded.” Naiveté in your approach to
networking and the main thread will likely result in your application being summarily
killed. Blocks and queues are your new best friends when it comes to creating positive
user experiences in networked applications.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

14
Device-Specific

Development

Each iOS device represents a meld of unique, shared, momentary, and persistent properties.
These properties include the device’s current physical orientation, its model name, its battery
state, and its access to onboard hardware. This chapter looks at devices—from their build
configuration to their active onboard sensors. It provides recipes that return a variety of infor-
mation items about the unit in use. You’ll read about testing for hardware prerequisites at
runtime and specifying those prerequisites in the application’s Info.plist file. You’ll discover
how to solicit sensor feedback via Core Motion and subscribe to notifications to create callbacks
when sensor states change. You’ll read about adding screen mirroring and second-screen output
and about soliciting device-specific details for tracking. This chapter covers the hardware, file
system, and sensors available on the iPhone, iPad, and iPod touch and helps you programmati-
cally take advantage of those features.

Accessing Basic Device Information

The UIDevice class exposes key device-specific properties, including the iPhone, iPad, or iPod
touch model being used, the device name, and the OS name and version. It’s a one-stop solu-
tion for pulling out certain system details. Each method is an instance method, which is called
using the UIDevice singleton, via [UIDevice currentDevice] .

The system information you can retrieve from UIDevice includes these items:

 ■ systemName —This property returns the name of the operating system currently in use.
For current generations of iOS devices, there is only one OS that runs on the platform:
iPhone OS. Apple has not yet updated this name to match the general iOS rebranding.

 ■ systemVersion —This property lists the firmware version currently installed on the unit:
for example, 4.3, 5.1.1, 6.0, 7.0.2, and so on.

ptg12441863

556 Chapter 14 Device-Specific Development

 ■ model —This property returns a string that describes the platform—namely iPhone, iPad,
and iPod touch. Should iOS be extended to new devices, additional strings will describe
those models. localizedModel provides a localized version of this property.

 ■ userInterfaceIdiom —This property represents the interface style used on the current
device—either iPhone (for iPhone and iPod touch) or iPad. Other idioms may be
introduced as Apple offers additional platform styles.

 ■ name —This property presents the iPhone name assigned by the user in iTunes, such as
“Joe’s iPhone” or “Binky.” This name is also used to create the local hostname for the
device.

Here are a few examples of these properties in use:

UIDevice *device = [UIDevice currentDevice];
NSLog(@"System name: %@", device.systemName);
NSLog(@"Model: %@", device.model);
NSLog(@"Name: %@", device.name);

For current iOS releases, you can use the idiom check with a simple Boolean test. Here’s an
example of how you might implement an iPad check:

#define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

Notice the convenience macro provided by UIKit— UI_USER_INTERFACE_IDIOM() . It tests for
selector conformance and then returns [[UIDevice currentDevice] userInterfaceIdiom]
if possible, and UIUserInterfaceIdiomPhone otherwise. If this test fails, you can currently
assume that you’re working with an iPhone/iPod touch. If and when Apple releases a new
family of devices, you’ll need to update your code accordingly for a more nuanced test.

Adding Device Capability Restrictions

An application’s Info.plist property list enables you to specify application requirements when
you submit applications to the App Store. These restrictions enable you to tell iTunes and the
mobile App Store what device features your application needs.

Each iOS unit provides a unique feature set. Some devices offer cameras and GPS capabilities.
Others don’t. Some have onboard gyros, autofocus, and other powerful options. You specify
what features are needed to run your application on a device.

When you include the UIRequiredDeviceCapabilities key in your Info.plist file, iTunes and
the mobile App Store limit application installation to devices that offer the required capabili-
ties. Provide this list as either an array of strings or a dictionary.

An array specifies each required capability; each item in that array must be present on your
device. A dictionary enables you to explicitly require or prohibit a feature. The dictionary keys
are the capabilities. The dictionary values set whether the feature must be present (Boolean
true) or omitted (Boolean false).

ptg12441863

557Adding Device Capability Restrictions

Table 14-1 details the current keys for required device capabilities. Only include those features
that your application absolutely requires or cannot support. If your application can provide
workarounds, do not add restrictions in this way. Table 14-1 discusses each feature in a positive
sense. When using a prohibition rather than a requirement, reverse the meaning—for example,
that an autofocus camera or gyro cannot be onboard, or that Game Center access cannot be
supported.

Table 14-1 Required Device Capabilities

Key Use

telephony Application requires the Phone application or uses tel://
URLs.

wifi Application requires local 802.11-based network access. If
iOS must maintain that Wi-Fi connection as the app runs, add
UIRequiresPersistentWiFi as a top-level property list key.

sms Application requires the Messages application or uses
sms:// URLs.

still-camera Application requires an onboard still camera and can use the
image picker interface to capture photos from that still cam-
era.

auto-focus-camera Application requires extra focus capabilities for macro photog-
raphy or especially sharp images for in-image data detection.

front-facing-camera Application requires a front-facing camera on the device.

camera-flash Application requires a camera flash feature.

video-camera Application requires a video-capable camera.

accelerometer Application requires accelerometer-specific feedback beyond
simple UIViewController orientation events.

gyroscope Application requires an onboard gyroscope on the device.

location-services Application uses Core Location of any kind.

gps Application uses Core Location and requires the additional
accuracy of GPS positioning.

magnetometer Application uses Core Location and requires heading-related
events—that is, the direction of travel. (The magnetometer is
the built-in compass.)

gamekit Application requires Game Center access (iOS 4.1 and later).

microphone Application uses either built-in microphones or (approved)
accessories that provide a microphone.

opengles-1 Application requires OpenGL ES 1.1.

ptg12441863

558 Chapter 14 Device-Specific Development

Key Use

opengles-2 Application requires OpenGL ES 2.0.

armv6 Application is compiled only for the armv6 instruction set (3.1
or later).

armv7 Application is compiled only for the armv7 instruction set (3.1
or later).

peer-peer Application uses GameKit peer-to-peer connectivity over
Bluetooth (3.1 or later).

bluetooth-le Application requires Bluetooth low-energy support (5.0 and
later).

For example, consider an application that offers an option for taking pictures when run on a
camera-ready device. If the application otherwise works on pre-camera iPod touch units, do not
include the still-camera restriction. Instead, check for camera capability from within the appli-
cation and present the camera option when appropriate. Adding a still-camera restriction elimi-
nates many early iPod touch (first through third generations) and iPad (first generation) owners
from your potential customer pool.

User Permission Descriptions

To protect privacy, the end user must explicitly permit your applications to access calendar
data, the camera, contacts, photos, location, and other functionality. To convince the user to
opt in, it helps to explain how your application can use this data and describe your reason for
accessing it. Assign string values to the following keys at the top level of your Info.plist file:

 ■ NSBluetoothPeripheralUsageDescription

 ■ NSCalendarsUsageDescription

 ■ NSCameraUsageDescription

 ■ NSContactsUsageDescription

 ■ NSLocationUsageDescription

 ■ NSMicrophoneUsageDescription

 ■ NSMotionUsageDescription

 ■ NSPhotoLibraryUsageDescription

 ■ NSRemindersUsageDescription

When iOS prompts your user for resource-specific permission, it displays these strings as part of
its standard dialog box.

ptg12441863

559Recipe: Checking Device Proximity and Battery States

Other Common Info.plist Keys

Here are a few other common keys you may want to assign in your property list, along with
descriptions of what they do:

 ■ UIFileSharingEnabled (Boolean, defaults to off) —Enables users to access the contents
of your app’s Documents folder from iTunes. This folder appears at the top level of your
app sandbox.

 ■ UIAppFonts (array, strings of font names including their extension) —Specifies custom
TTF fonts that you supply in your bundle. When added, you access them using standard
UIFont calls.

 ■ UIApplicationExitsOnSuspend (Boolean, defaults to off) —Enables your app to
terminate rather than move to the background when the user taps the Home button.
When this property is enabled, iOS terminates the app and purges it from memory.

 ■ UIRequiresPersistentWifi (Boolean, defaults to off) —Instructs iOS to maintain a
Wi-Fi connection while the app is active.

 ■ UIStatusBarHidden (Boolean, defaults to off) —If enabled, hides the status bar as the
app launches.

 ■ UIStatusBarStyle (string, defaults to UIStatusBarStyleDefault) —Specifies the style
of the status bar at app launch.

Recipe: Checking Device Proximity and Battery States

The UIDevice class offers APIs that enable you to keep track of device characteristics including
the states of the battery and proximity sensor. Recipe 14-1 demonstrates how you can enable
and query monitoring for these two technologies. Both provide updates in the form of notifica-
tions, which you can subscribe to so your application is informed of important updates.

Enabling and Disabling the Proximity Sensor

Proximity is an iPhone-specific feature at this time. The iPod touch and iPad do not offer prox-
imity sensors. Unless you have some pressing reason to hold an iPhone against body parts (or
vice versa), using the proximity sensor accomplishes little.

When proximity is enabled, it has one primary task: It detects whether there’s a large object
right in front of it. If there is, it switches the screen off and sends a general notification. Move
the blocking object away, and the screen switches back on. This prevents you from pressing
buttons or dialing the phone with your ear when you are on a call. Some poorly designed
protective cases keep the iPhone’s proximity sensors from working properly.

Siri uses the proximity feature. When you hold the phone up to your ear, it records your query
and sends it to be interpreted. Siri’s voice interface does not depend on a visual GUI to operate.

ptg12441863

560 Chapter 14 Device-Specific Development

Recipe 14-1 demonstrates how to work with proximity sensing on the iPhone. Its
code uses the UIDevice class to toggle proximity monitoring and subscribes to
UIDeviceProximityStateDidChangeNotification to catch state changes. The
two states are on and off. When the UIDevice proximityState property returns
YES , the proximity sensor has been activated.

Monitoring the Battery State

You can programmatically keep track of the battery and charging state. APIs enable you to
know the level to which the battery is charged and whether the device is plugged into a charg-
ing source. The battery level is a floating-point value that ranges between 1.0 (fully charged)
and 0.0 (fully discharged). It provides an approximate discharge level that you can use to query
before performing operations that put unusual strain on the device.

For example, you might want to caution your user about performing a large series of math-
ematical computations and suggest that the user plug in to a power source. You retrieve the
battery level via this UIDevice call, and the value returned is produced in 5% increments:

NSLog(@"Battery level: %0.2f%%",
 [UIDevice currentDevice].batteryLevel * 100);

The charge state has four possible values. The unit can be charging (that is, connected to a
power source), full, unplugged, and a catchall “unknown.” Recover the state by using the
UIDevice batteryState property:

NSArray *stateArray = @[
 @"Battery state is unknown",
 @"Battery is not plugged into a charging source",
 @"Battery is charging",
 @"Battery state is full"];

NSLog(@"Battery state: %@",
 stateArray[[UIDevice currentDevice].batteryState]);

Don’t think of these choices as persistent states. Instead, think of them as momentary reflec-
tions of what is actually happening to the device. They are not flags. They are not OR’ed
together to form a general battery description. Instead, these values reflect the most recent state
change.

You can easily monitor state changes by responding to notifications that the battery state
has changed. In this way, you can catch momentary events, such as when the battery finally
recharges fully, when the user has plugged in to a power source to recharge, and when the user
disconnects from that power source.

To start monitoring, set the batteryMonitoringEnabled property to YES . During monitoring,
the UIDevice class produces notifications when the battery state or level changes. Recipe 14-1
subscribes to both notifications. Note that you can also check these values directly, without
waiting for notifications. Apple provides no guarantees about the frequency of level change
updates, but as you can tell by testing this recipe, they arrive in a fairly regular fashion.

ptg12441863

561Recipe: Checking Device Proximity and Battery States

Recipe 14-1 Monitoring Proximity and Battery

// View the current battery level and state
- (void)peekAtBatteryState
{
 NSArray *stateArray = @[@"Battery state is unknown",
 @"Battery is not plugged into a charging source",
 @"Battery is charging",
 @"Battery state is full"];

 NSString *status = [NSString stringWithFormat:
 @"Battery state: %@, Battery level: %0.2f%%",
 stateArray[[UIDevice currentDevice].batteryState],
 [UIDevice currentDevice].batteryLevel * 100];

 NSLog(@"%@", status);
}

// Show whether proximity is being monitored
- (void)updateTitle
{
 self.title = [NSString stringWithFormat:@"Proximity %@",
 [UIDevice currentDevice].proximityMonitoringEnabled ? @"On" : @"Off"];

}

// Toggle proximity monitoring off and on
- (void)toggle:(id)sender
{
 // Determine the current proximity monitoring and toggle it
 BOOL isEnabled = [UIDevice currentDevice].proximityMonitoringEnabled;
 [UIDevice currentDevice].proximityMonitoringEnabled = !isEnabled;
 [self updateTitle];

}

- (void)loadView
{
 self.view = [[UIView alloc] init];

 // Enable toggling and initialize title
 self.navigationItem.rightBarButtonItem =
 BARBUTTON(@"Toggle", @selector(toggle:));
 [self updateTitle];

 // Add proximity state checker
 [[NSNotificationCenter defaultCenter]
 addObserverForName:UIDeviceProximityStateDidChangeNotification
 object:nil queue:[NSOperationQueue mainQueue]

ptg12441863

562 Chapter 14 Device-Specific Development

 usingBlock:^(NSNotification *notification) {
 // Sensor has triggered either on or off
 NSLog(@"The proximity sensor %@",
 [UIDevice currentDevice].proximityState ?
 @"will now blank the screen" : @"will now restore the screen");
 }];

 // Enable battery monitoring
 [[UIDevice currentDevice] setBatteryMonitoringEnabled:YES];

 // Add observers for battery state and level changes
 [[NSNotificationCenter defaultCenter]
 addObserverForName:UIDeviceBatteryStateDidChangeNotification
 object:nil queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification) {
 // State has changed
 NSLog(@"Battery State Change");
 [self peekAtBatteryState];
 }];

 [[NSNotificationCenter defaultCenter]
 addObserverForName:UIDeviceBatteryLevelDidChangeNotification
 object:nil queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notification) {
 // Level has changed
 NSLog(@"Battery Level Change");
 [self peekAtBatteryState];
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Detecting Retina Support

In recent years, Apple has converted all but a few lower-cost devices to Retina displays. Pixel
density of Retina displays, according to Apple, is high enough that the human eye cannot
distinguish individual pixels. Apps shipped with higher-resolution art take advantage of this
improved display quality.

The UIScreen class offers an easy way to check whether the current device offers a built-in
Retina display. Check the screen scale property, which provides the factor that converts from
the logical coordinate space (points, each approximately 1/160 inch) into a device coordinate

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

563Recipe: Recovering Additional Device Information

space (pixels). It is 1.0 for standard displays, so 1 point corresponds to 1 pixel. It is 2.0 for
Retina displays (4 pixels per point):

- (BOOL) hasRetinaDisplay
{
 return ([UIScreen mainScreen].scale == 2.0f);

}

The UIScreen class also offers two useful display-size properties. bounds returns the screen’s
bounding rectangle, measured in points. This gives you the full size of the screen, regardless of
any onscreen elements such as status bars, navigation bars, or tab bars. The applicationFrame
property, also measured in points, excludes the status bar, providing the frame for your applica-
tion’s initial window size.

Recipe: Recovering Additional Device Information

Both sysctl() and sysctlbyname() enable you to retrieve system information. These stan-
dard UNIX functions query the operating system about hardware and OS details. You can get
a sense of the kind of scope on offer by glancing at the /usr/include/sys/sysctl.h include file on
the Macintosh. There you can find an exhaustive list of constants that can be used as param-
eters to these functions.

These constants enable you to check for core information such as the system’s CPU count,
the amount of available memory, and more. Recipe 14-2 demonstrates this functionality. It
introduces a UIDevice category that gathers system information and returns it via a series of
method calls.

You might wonder why this category includes a platform method, when the standard
UIDevice class returns device models on demand. The answer lies in distinguishing different
types of units.

An iPhone 3GS’s model is simply iPhone , as is the model of an iPhone 4S. In contrast, this
recipe returns a platform value of iPhone2,1 for the 3GS, iPhone4,1 for the iPhone 4S, and
iPhone5,1 for the iPhone 5. This enables you to programmatically differentiate the 3GS unit
from a first-generation iPhone (iPhone1,1) or iPhone 3G (iPhone1,2).

Each model offers distinct built-in capabilities. Knowing exactly which iPhone you’re dealing
with helps you determine whether that unit likely supports features such as accessibility, GPS,
and magnetometers.

Recipe 14-2 Extending Device Information Gathering

@implementation UIDevice (Hardware)
+ (NSString *)getSysInfoByName:(char *)typeSpecifier
{
 // Recover sysctl information by name
 size_t size;

ptg12441863

564 Chapter 14 Device-Specific Development

 sysctlbyname(typeSpecifier, NULL, &size, NULL, 0);

 char *answer = malloc(size);
 sysctlbyname(typeSpecifier, answer, &size, NULL, 0);

 NSString *results = [NSString stringWithCString:answer
 encoding: NSUTF8StringEncoding];
 free(answer);

 return results;
}

- (NSString *)platform
{
 return [UIDevice getSysInfoByName:"hw.machine"];

}

- (NSUInteger)getSysInfo:(uint)typeSpecifier
{
 size_t size = sizeof(int);
 int results;
 int mib[2] = {CTL_HW, typeSpecifier};
 sysctl(mib, 2, &results, &size, NULL, 0);
 return (NSUInteger) results;

}

- (NSUInteger)busFrequency
{
 return [UIDevice getSysInfo:HW_BUS_FREQ];

}

- (NSUInteger)totalMemory
{
 return [UIDevice getSysInfo:HW_PHYSMEM];

}

- (NSUInteger)userMemory
{
 return [UIDevice getSysInfo:HW_USERMEM];

}

- (NSUInteger)maxSocketBufferSize
{
 return [UIDevice getSysInfo:KIPC_MAXSOCKBUF];

}
@end

ptg12441863

565Core Motion Basics

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Core Motion Basics

The Core Motion framework centralizes access to the motion data generated by the iOS hard-
ware. It provides monitoring of three key onboard sensors: the gyroscope, which measures
device rotation; the magnetometer, which provides a way to measure compass bearings; and
the accelerometer, which detects gravitational changes along three axes. A fourth entry point,
called device motion , combines all three of these sensors into a single monitoring system.

Core Motion uses raw values from these sensors to create readable measurements, primarily in
the form of force vectors. Measurable items include the following properties:

 ■ attitude —Device attitude is the device’s orientation relative to some frame of reference.
The attitude is represented as a triplet of roll, pitch, and yaw angles, each measured in
radians.

 ■ rotationRate —The rotation rate is the rate at which the device rotates around each
of its three axes. The rotation includes x , y , and z angular velocity values, measured in
radians per second.

 ■ gravity —Gravity is a device’s current acceleration vector, as imparted by the normal
gravitational field. Gravity is measured in g’s, along the x -, y -, and z -axes. Each unit
represents the standard gravitational force imparted by Earth (namely 32 feet per second
per second, or 9.8 meters per second per second).

 ■ userAcceleration —User acceleration is the acceleration vector being imparted by the
user. Like gravity , user acceleration is measured in g’s along the x -, y -, and z -axes. When
added together, the user vector and the gravity vector represent the total acceleration
imparted to the device.

 ■ magneticField —The magnetic field is the vector representing the overall magnetic field
values in the device’s vicinity. The field is measured in microteslas along the x -, y -, and
z -axes. A calibration accuracy is also provided, to inform your application of the field
measurements quality.

Testing for Sensors

As you read earlier in this chapter, you can use the application’s Info.plist file to require or
exclude onboard sensors. You can also test in-app for each kind of sensor support by querying a
Core Motion CMMotionManager object:

if (motionManager.gyroAvailable)
 [motionManager startGyroUpdates];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

566 Chapter 14 Device-Specific Development

if (motionManager.magnetometerAvailable)
 [motionManager startMagnetometerUpdates];

if (motionManager.accelerometerAvailable)
 [motionManager startAccelerometerUpdates];

if (motionManager.deviceMotionAvailable)
 [motionManager startDeviceMotionUpdates];

Accessing Sensor Data

Core Motion provides two mechanisms for accessing sensor data. For periodic, passive access to
motion data, activate the appropriate sensor (for example, startAccelerometerUpdates) and
then access the data from the corresponding motion data property on the CMMotionManager
object (accelerometerData).

In cases where polling is not sufficient, you can use a block-based update mechanism that
executes a block that you provide for each sensor update (for example, startAccelerometer-
UpdatesToQueue:withHandler:). When using the handler methods, be sure to set the update
interval for the sensor (accelerometerUpdateInterval). The interval is capped at minimum
and maximum values, so if the actual frequency is critical to your app, make sure to check the
timestamp associated with the data object passed to the block.

Recipe: Using Acceleration to Locate “Up”

The iPhone and iPad provide three onboard sensors that measure acceleration along the
device’s perpendicular axes: left/right (X), up/down (Y), and front/back (Z). These values indi-
cate the forces affecting the device, from both gravity and user movement. You can get some
neat force feedback by swinging the iPhone around your head (centripetal force) or dropping it
from a tall building (freefall). Unfortunately, you might not recover that data after your iPhone
becomes an expensive bit of scrap metal.

To monitor accelerometer updates, create a Core Motion manager object, set the interval for
updates, and start the manager, passing in a handler block to be processed:

motionManager = [[CMMotionManager alloc] init];
motionManager.accelerometerUpdateInterval = 0.005;
if (motionManager.isAccelerometerAvailable)
{
 [motionManager startAccelerometerUpdatesToQueue:
 [NSOperationQueue mainQueue]
 withHandler:^(CMAccelerometerData *accelerometerData,
 NSError *error) {
 // handle the accelerometer update
 }];

}

ptg12441863

567Recipe: Using Acceleration to Locate “Up”

When using Core Motion, always check for the availability of the requested sensor. When
started, your handler block receives CMAccelerometerData objects, which you can track and
respond to. Each of these objects contains a CMAcceleration structure consisting of floating-
point values for the x -, y -, and z -axes, and each value ranges from –1.0 to 1.0.

Recipe 14-3 uses these values to help determine the “up” direction. It calculates the arctangent
between the X and Y acceleration vectors and returns the up-offset angle. As new acceleration
messages are received, the recipe rotates a UIImageView instance with its picture of an arrow,
as shown in Figure 14-1 , to point up. The real-time response to user actions ensures that the
arrow continues pointing upward, no matter how the user reorients the device.

Figure 14-1 A little math recovers the “up” direction by performing an arctan function using
the x and y force vectors. In this example, the arrow always points up, no matter how the user
reorients the device.

Recipe 14-3 Handling Acceleration Events

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];

ptg12441863

568 Chapter 14 Device-Specific Development

 arrow = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"arrow"]];
 [self.view addSubview:arrow];
 PREPCONSTRAINTS(arrow);
 CENTER_VIEW(self.view, arrow);

 motionManager = [[CMMotionManager alloc] init];
 motionManager.accelerometerUpdateInterval = 0.005;
 if (motionManager.isAccelerometerAvailable)
 {
 [motionManager
 startAccelerometerUpdatesToQueue:
 [NSOperationQueue mainQueue]
 withHandler:
 ^(CMAccelerometerData *accelerometerData,
 NSError *error) {
 CMAcceleration acceleration =
 accelerometerData.acceleration;

 // Determine up from the x and y acceleration components
 float xx = -acceleration.x;
 float yy = acceleration.y;
 float angle = atan2(yy, xx);
 [arrow setTransform:CGAffineTransformMakeRotation(angle)];
 }];
 }

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Working with Basic Orientation

The UIDevice class uses the built-in orientation property to provide the physical orientation
of a device. iOS devices support seven possible values for this property:

 ■ UIDeviceOrientationUnknown —The orientation is currently unknown.

 ■ UIDeviceOrientationPortrait —The home button is down.

 ■ UIDeviceOrientationPortraitUpsideDown —The home button is up.

 ■ UIDeviceOrientationLandscapeLeft —The home button is to the right.

 ■ UIDeviceOrientationLandscapeRight —The home button is to the left.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

569Working with Basic Orientation

 ■ UIDeviceOrientationFaceUp —The screen is face up.

 ■ UIDeviceOrientationFaceDown —The screen is face down.

The device can pass through any or all these orientations during a typical application session.
Although orientation is created in concert with the onboard accelerometer, these orientations
are not tied in any way to a built-in angular value.

iOS offers two built-in macros to help determine whether a device orientation enumer-
ated value is portrait or landscape: UIDeviceOrientationIsPortrait() and
UIDeviceOrientationIsLandscape() . It is convenient to extend the UIDevice class
to offer these tests as built-in device properties, as shown in the following snippet:

@property (nonatomic, readonly) BOOL isLandscape;
@property (nonatomic, readonly) BOOL isPortrait;

- (BOOL) isLandscape
{
 return UIDeviceOrientationIsLandscape(self.orientation);

}

- (BOOL) isPortrait
{
 return UIDeviceOrientationIsPortrait(self.orientation);

}

The orientation property returns zero until the orientation notifications have been initi-
ated with beginGeneratingDeviceOrientationNotifications. Once device orientation
notifications are enabled, your code can subscribe directly to device reorientation notifications
by adding an observer to catch the ensuing UIDeviceOrientationDidChangeNotification
updates. As you would expect, you can finish listening by calling
endGeneratingDeviceOrientationNotification .

Calculating Orientation from the Accelerometer

The UIDevice class does not report a proper orientation when applications are first
launched. It updates the orientation only after the device has moved into a new position or
UIViewController methods kick in.

An application launched in portrait orientation may not read as “portrait” until the user moves
the device out of and then back into the proper orientation. This condition exists on the
simulator and on the iPhone device and is easily tested. (Radars—tickets filed in Apple’s issue
tracking system—for this issue have been closed with updates that the features are working as
designed.)

For a workaround, consider recovering the angular orientation from the accelerometer via Core
Motion. You can then calculate the device angle:

ptg12441863

570 Chapter 14 Device-Specific Development

float xx = acceleration.x;
float yy = -acceleration.y;
device_angle = M_PI / 2.0f - atan2(yy, xx);

if (device_angle > M_PI)
 device_angle -= 2 * M_PI;

Once this is calculated, convert from the accelerometer-based angle to a device orientation.
Here’s how that might work in code:

// Limited to the four portrait/landscape options
- (UIDeviceOrientation)acceleratorBasedOrientation
{
 CGFloat baseAngle = self.orientationAngle;
 if ((baseAngle > -M_PI_4) && (baseAngle < M_PI_4))
 return UIDeviceOrientationPortrait;
 if ((baseAngle < -M_PI_4) && (baseAngle > -3 * M_PI_4))
 return UIDeviceOrientationLandscapeLeft;
 if ((baseAngle > M_PI_4) && (baseAngle < 3 * M_PI_4))
 return UIDeviceOrientationLandscapeRight;
 return UIDeviceOrientationPortraitUpsideDown;

}

Be aware that this example looks only at the x – y plane, which is where most user interface deci-
sions need to be made. This snippet completely ignores the z- axis, meaning that you’ll end up
with vaguely random results for the face-up and face-down orientations. Adapt this code to
provide that nuance if needed.

The UIViewController class’s interfaceOrientation instance method reports the orienta-
tion of a view controller’s interface. Although this is not a substitute for accelerometer read-
ings, many interface layout issues rest on the underlying view orientation rather than device
characteristics.

Be aware that, especially on the iPad, a child view controller may use a layout orientation that’s
distinct from a device orientation. For example, an embedded controller may present a portrait
layout within a landscape split view controller. Even so, consider whether your orientation-
detection code is satisfiable by the underlying interface orientation. It may be more reliable
than device orientation, especially as the application launches. Develop accordingly.

Calculating a Relative Angle

Screen reorientation support means that an interface’s relationship to a given device angle
must be supported in quarters, one for each possible front-facing screen orientation. As the
UIViewController automatically rotates its onscreen view, the math needs to catch up to
account for those reorientations.

ptg12441863

571Recipe: Using Acceleration to Move Onscreen Objects

The following method, which is written for use in a UIDevice category, calculates angles so
that the angle remains in synchrony with the device orientation. This creates simple offsets
from vertical that match the way the GUI is currently presented:

- (float)orientationAngleRelativeToOrientation:
 (UIDeviceOrientation)someOrientation

{
 float dOrientation = 0.0f;
 switch (someOrientation)
 {
 case UIDeviceOrientationPortraitUpsideDown:
 {dOrientation = M_PI; break;}
 case UIDeviceOrientationLandscapeLeft:
 {dOrientation = -(M_PI/2.0f); break;}
 case UIDeviceOrientationLandscapeRight:
 {dOrientation = (M_PI/2.0f); break;}
 default: break;
 }

 float adjustedAngle =
 fmod(self.orientationAngle - dOrientation, 2.0f * M_PI);
 if (adjustedAngle > (M_PI + 0.01f))
 adjustedAngle = (adjustedAngle - 2.0f * M_PI);
 return adjustedAngle;

}

This method uses a floating-point modulo to retrieve the difference between the actual screen
angle and the interface orientation angular offset to return that all-important vertical angular
offset.

Note

Beginning with iOS 6, instead of using shouldAutorotateToInterfaceOrientation: , use
supportedInterfaceOrientations on your root view controller and/or your Info.plist file to
allow and disallow orientation changes. iOS uses the intersection of these two values to deter-
mine whether rotation is allowed.

Recipe: Using Acceleration to Move Onscreen Objects

With a bit of programming, the iPhone’s onboard accelerometer can make objects “move”
around the screen, responding in real time to the way the user tilts the phone. Recipe 14-4
builds an animated butterfly that users can slide across the screen.

The secret to making this work lies in adding a “physics timer” to the program. Instead of
responding directly to changes in acceleration, the way Recipe 14-3 does, the accelerometer

ptg12441863

572 Chapter 14 Device-Specific Development

handler measures the current forces. It’s up to the timer routine to apply those forces to the
butterfly over time by changing its frame. Here are some key points to keep in mind:

 ■ As long as the direction of force remains the same, the butterfly accelerates. Its velocity
increases, scaled according to the degree of acceleration force in the x or y direction.

 ■ The tick routine, called by the timer, moves the butterfly by adding the velocity vector
to the butterfly’s origin.

 ■ The butterfly’s range is bounded. So when it hits an edge, it stops moving in that
direction. This keeps the butterfly onscreen at all times. The tick method checks for
boundary conditions. For example, if the butterfly hits a vertical edge, it can still move
horizontally.

 ■ The butterfly reorients itself so it is always falling “down.” This happens through the
application of a simple rotation transform in the tick method. Be careful when using
transforms in addition to frame or center offsets. Always reset the math before applying
offsets and then reapply any angular changes. Failing to do so may cause your frames to
zoom, shrink, or skew unexpectedly.

Setup and Teardown

The establishMotionManager and shutDownMotionManager methods in Recipe 14-4 enable
your application to start up and shut down the motion manager on demand. These methods
are called from the application delegate when the application becomes active and when it
suspends:

- (void)applicationWillResignActive:(UIApplication *)application
{
 [tbvc shutDownMotionManager];

}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 [tbvc establishMotionManager];

}

These methods provide a clean way to shut down and resume motion services in response to
the current application state.

Note

Timers in their natural state do not use a block-based API. If you’d rather use a block than call-
backs with your timers, check GitHub to find an implementation that does this.

ptg12441863

573Recipe: Using Acceleration to Move Onscreen Objects

Recipe 14-4 Sliding an Onscreen Object Based on Accelerometer Feedback

@implementation TestBedViewController

- (void)tick
{
 butterfly.transform = CGAffineTransformIdentity;

 // Move the butterfly according to the current velocity vector
 CGRect rect = CGRectOffset(butterfly.frame, xVelocity, 0.0f);
 if (CGRectContainsRect(self.view.bounds, rect))
 butterfly.frame = rect;

 rect = CGRectOffset(butterfly.frame, 0.0f, yVelocity);
 if (CGRectContainsRect(self.view.bounds, rect))
 butterfly.frame = rect;

 butterfly.transform =
 CGAffineTransformMakeRotation(mostRecentAngle - M_PI_2);

}

- (void)shutDownMotionManager
{
 NSLog(@"Shutting down motion manager");
 [motionManager stopAccelerometerUpdates];
 motionManager = nil;

 [timer invalidate];
 timer = nil;

}

- (void)establishMotionManager
{
 if (motionManager)
 [self shutDownMotionManager];

 NSLog(@"Establishing motion manager");

 // Establish the motion manager
 motionManager = [[CMMotionManager alloc] init];
 if (motionManager.accelerometerAvailable)
 [motionManager
 startAccelerometerUpdatesToQueue:
 [[NSOperationQueue alloc] init]
 withHandler:^(CMAccelerometerData *data, NSError *error)
 {
 // Extract the acceleration components

ptg12441863

574 Chapter 14 Device-Specific Development

 float xx = -data.acceleration.x;
 float yy = data.acceleration.y;
 mostRecentAngle = atan2(yy, xx);

 // Has the direction changed?
 float accelDirX = SIGN(xVelocity) * -1.0f;
 float newDirX = SIGN(xx);
 float accelDirY = SIGN(yVelocity) * -1.0f;
 float newDirY = SIGN(yy);

 // Accelerate. To increase viscosity,
 // lower the additive value
 if (accelDirX == newDirX)
 xAccel = (abs(xAccel) + 0.85f) * SIGN(xAccel);
 if (accelDirY == newDirY)
 yAccel = (abs(yAccel) + 0.85f) * SIGN(yAccel);

 // Apply acceleration changes to the current velocity
 xVelocity = -xAccel * xx;
 yVelocity = -yAccel * yy;
 }];

 // Start the physics timer
 timer = [NSTimer scheduledTimerWithTimeInterval: 0.03f
 target:self selector:@selector(tick)
 userInfo:nil repeats:YES];

}

- (void)initButterfly
{
 CGSize size;

 // Load the animation cells
 NSMutableArray *butterflies = [NSMutableArray array];
 for (int i = 1; i <= 17; i++)
 {
 NSString *fileName =
 [NSString stringWithFormat:@"bf_%d.png", i];
 UIImage *image = [UIImage imageNamed:fileName];
 size = image.size;
 [butterflies addObject:image];
 }

 // Begin the animation
 butterfly = [[UIImageView alloc]
 initWithFrame:(CGRect){.size=size}];
 [butterfly setAnimationImages:butterflies];

ptg12441863

575Recipe: Accelerometer-Based Scroll View

 butterfly.animationDuration = 0.75f;
 [butterfly startAnimating];

 // Set the butterfly's initial speed and acceleration
 xAccel = 2.0f;
 yAccel = 2.0f;
 xVelocity = 0.0f;
 yVelocity = 0.0f;

 // Add the butterfly
 [self.view addSubview:butterfly];

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 // Get our butterfly centered
 butterfly.center = RECTCENTER(self.view.bounds);

}

- (void)loadView
{
 self.view = [[UIView alloc] init];
 self.view.backgroundColor = [UIColor whiteColor];
 [self initButterfly];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Recipe: Accelerometer-Based Scroll View

Several readers asked that we include a tilt scroller recipe in this edition. A tilt scroller uses a
device’s built-in accelerometer to control movement around a UIScrollView ’s content. As the
user adjusts the device, the material “falls down” accordingly. Instead of a view being posi-
tioned onscreen, the content view scrolls to a new offset.

The challenge in creating this interface lies in determining where the device should have its
resting axis. Most people would initially suggest that the display should stabilize when lying on
its back, with the z -direction pointed straight up in the air. It turns out that’s actually a fairly
bad design choice. To use that axis means the screen must actually tilt away from the viewer

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

576 Chapter 14 Device-Specific Development

during navigation. With the device rotated away from view, the user cannot fully see what is
happening onscreen, especially when using the device in a seated position and somewhat when
looking at the device while standing overhead.

Instead, Recipe 14-5 assumes that the stable position is created by the z -axis pointing at
approximately 45 degrees, the natural position at which users hold an iPhone or iPad in their
hands. This is halfway between a face-up and a face-forward position. The math in Recipe 14-5
is adjusted accordingly. Tilting back and forward from this slanting position leaves the screen
with maximal visibility during adjustments.

The other change in this recipe compared to Recipe 14-4 is the much lower acceleration
constant. This enables onscreen movement to happen more slowly, letting users more easily
slow down and resume navigation.

Recipe 14-5 Tilt Scroller

- (void)tick
{
 xOff += xVelocity;
 xOff = MIN(xOff, 1.0f);
 xOff = MAX(xOff, 0.0f);

 yOff += yVelocity;
 yOff = MIN(yOff, 1.0f);
 yOff = MAX(yOff, 0.0f);

 // update the content offset based on the current velocities
 UIScrollView *sv = (UIScrollView *) self.view;
 CGFloat xSize = sv.contentSize.width - sv.frame.size.width;
 CGFloat ySize = sv.contentSize.height - sv.frame.size.height;
 sv.contentOffset = CGPointMake(xOff * xSize, yOff * ySize);

}

- (void) viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 NSString *map = @"http://maps.weather.com/images/\
 maps/current/curwx_720x486.jpg";
 NSOperationQueue *queue = [[NSOperationQueue alloc] init];
 [queue addOperationWithBlock:
 ^{
 // Load the weather data
 NSURL *weatherURL = [NSURL URLWithString:map];
 NSData *imageData = [NSData dataWithContentsOfURL:weatherURL];

 // Update the image on the main thread using the main queue
 [[NSOperationQueue mainQueue] addOperationWithBlock:^{
 UIImage *weatherImage = [UIImage imageWithData:imageData];

ptg12441863

577Recipe: Accelerometer-Based Scroll View

 UIImageView *imageView =
 [[UIImageView alloc] initWithImage:weatherImage];
 CGSize initSize = weatherImage.size;
 CGSize destSize = weatherImage.size;

 // Ensure that the content size is significantly bigger
 // than the screen can show at once
 while ((destSize.width < (self.view.frame.size.width * 4)) ||
 (destSize.height < (self.view.frame.size.height * 4)))
 {
 destSize.width += initSize.width;
 destSize.height += initSize.height;
 }

 imageView.frame = (CGRect){.size = destSize};
 UIScrollView *sv = (UIScrollView *) self.view;
 sv.contentSize = destSize;
 [sv addSubview:imageView];

 // only allowing accelerometer-based scrolling
 scrollView.userInteractionEnabled = NO;

 // Activate the accelerometer
 [motionManager startAccelerometerUpdatesToQueue:
 [NSOperationQueue mainQueue] withHandler:
 ^(CMAccelerometerData *accelerometerData,
 NSError *error) {

 // extract the acceleration components
 CMAcceleration acceleration =
 accelerometerData.acceleration;
 float xx = -acceleration.x;
 // between face-up and face-forward
 float yy = (acceleration.z + 0.5f) * 2.0f;

 // Has the direction changed?
 float accelDirX = SIGN(xVelocity) * -1.0f;
 float newDirX = SIGN(xx);
 float accelDirY = SIGN(yVelocity) * -1.0f;
 float newDirY = SIGN(yy);

 // Accelerate. To increase viscosity lower the additive value
 if (accelDirX == newDirX)
 xAccel = (abs(xAccel) + 0.005f) * SIGN(xAccel);
 if (accelDirY == newDirY)
 yAccel = (abs(yAccel) + 0.005f) * SIGN(yAccel);

ptg12441863

578 Chapter 14 Device-Specific Development

 // Apply acceleration changes to the current velocity
 xVelocity = -xAccel * xx;
 yVelocity = -yAccel * yy;
 }];

 // Start the physics timer
 [NSTimer scheduledTimerWithTimeInterval:0.03f
 target:self selector:@selector(tick)
 userInfo:nil repeats:YES];
 }];
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Recipe: Retrieving and Using Device Attitude

Imagine an iPad sitting on a desk. There’s an image displayed on the iPad, which you can bend
over and look at. Now imagine rotating that iPad as it lays flat on the desk, but as the iPad
moves, the image appears to stay fixed in place, retaining the same alignment with the world
around it. Regardless of how you spin the iPad, the image doesn’t “move” with the device as
the image view updates to balance the physical movement. That’s how Recipe 14-6 works,
taking advantage of a device’s onboard gyroscope—a necessary requirement to make this recipe
work.

The image adjusts however you hold the device. In addition to that flat manipulation, you can
pick up the device and orient it in space. If you flip the device and look at it over your head,
you see the reversed “bottom” of the image. As you manipulate the device, the image responds
to create a virtual still world within that iPad.

Recipe 14-6 shows how to do this with just a few simple geometric transformations. It estab-
lishes a motion manager, subscribes to device motion updates, and then applies image trans-
forms based on the roll, pitch, and yaw returned by the motion manager.

Recipe 14-6 Using Device Motion Updates to Fix an Image in Space

- (void)shutDownMotionManager
{
 NSLog(@"Shutting down motion manager");
 [motionManager stopDeviceMotionUpdates];
 motionManager = nil;

}

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

579Detecting Shakes Using Motion Events

- (void)establishMotionManager
{
 if (motionManager)
 [self shutDownMotionManager];

 NSLog(@"Establishing motion manager");

 // Establish the motion manager
 motionManager = [[CMMotionManager alloc] init];
 if (motionManager.deviceMotionAvailable)
 [motionManager
 startDeviceMotionUpdatesToQueue:
 [NSOperationQueue currentQueue]
 withHandler: ^(CMDeviceMotion *motion, NSError *error) {
 CATransform3D transform;
 transform = CATransform3DMakeRotation(
 motion.attitude.pitch, 1, 0, 0);
 transform = CATransform3DRotate(transform,
 motion.attitude.roll, 0, 1, 0);
 transform = CATransform3DRotate(transform,
 motion.attitude.yaw, 0, 0, 1);
 imageView.layer.transform = transform;
 }];

}

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Detecting Shakes Using Motion Events

When the iPhone detects a motion event, such as a shake, it passes that event to the current
first responder, the primary object in the responder chain. Responders are objects that can
handle events. All views and windows are responders, and so is the application object.

The responder chain provides a hierarchy of objects, all of which can respond to events. When
an object toward the start of the chain handles an event, that event does not get passed further
down. If it cannot handle it, that event can move on to the next responder.

An object may become the first responder by declaring itself to be so, via becomeFirst-
Responder . In this snippet, UIViewController ensures that it becomes the first responder
whenever its view appears onscreen, and upon disappearing, it resigns the first responder
position:

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

580 Chapter 14 Device-Specific Development

- (BOOL)canBecomeFirstResponder {
 return YES;

}

// Become first responder whenever the view appears
- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 [self becomeFirstResponder];

}

// Resign first responder whenever the view disappears
- (void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 [self resignFirstResponder];

}

First responders receive all touch and motion events. The motion callbacks mirror UIView
touch callback stages. The callback methods are as follows:

 ■ motionBegan:withEvent: —This callback indicates the start of a motion event. At this
writing, only one kind of motion event is recognized: a shake. This may not hold true in
the future, so you might want to check the motion type in your code.

 ■ motionEnded:withEvent: —The first responder receives this callback at the end of the
motion event.

 ■ motionCancelled:withEvent: —As with touches, motions can be cancelled by
incoming phone calls and other system events. Apple recommends that you implement
all three motion event callbacks (and, similarly, all four touch event callbacks) in
production code.

The following snippet shows a pair of motion callback examples:

- (void)motionBegan:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {

 // Play a sound whenever a shake motion starts
 if (motion != UIEventSubtypeMotionShake) return;
 [self playSound:startSound];

}

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 // Play a sound whenever a shake motion ends
 if (motion != UIEventSubtypeMotionShake) return;
 [self playSound:endSound];

}

ptg12441863

581Recipe: Using External Screens

If you test this on a device, notice several things. First, from a user perspective, the began and
ended events happen almost simultaneously. Playing sounds for both types is overkill. Second,
there is a bias toward side-to-side shake detection. The iPhone is better at detecting side-to-side
shakes than the front-to-back and up-and-down versions. Finally, Apple’s motion implementa-
tion uses a slight lockout approach. You cannot generate a new motion event until a second or
so after the previous one was processed. This is the same lockout used by shake-to-shuffle and
shake-to-undo events.

Recipe: Using External Screens

There are many ways to use external screens. Take the newest iPads, for example. The second-,
third-, and fourth-generation models offer built-in screen mirroring. Attach a VGA or HDMI
cable, and your content can be shown on external displays and on the built-in screen. Certain
devices enable you to mirror screens wirelessly to Apple TV using AirPlay, Apple’s proprietary
cable-free over-the-air video solution. These mirroring features are extremely handy, but you’re
not limited to simply copying content from one screen to another in iOS.

The UIScreen class enables you to detect and write to external screens independently. You
can treat any connected display as a new window and create content for that display separate
from any view you show on the primary device screen. You can do this for any wired screen,
and with the iPad 2 and later, the iPhone 4S and later, and the iPod touch fifth generation and
later, you can do so wirelessly using AirPlay to Apple TV 2 and later. A third-party app called
Reflector enables you to mirror your display to Mac or Windows computers using AirPlay.

Geometry is important. Here’s why: iOS devices currently include the 320×480 old-style iPhone
displays, the 640×960-pixel Retina display units, the 1024×768-pixel iPads, and the 2048×1536-
pixel Retina display units. Typical composite/component output is produced at 720×480 pixels
(480i and 480p) and VGA at 1024×768 and 1280×720 (720p), and then there’s the higher-
quality HDMI output as well. Add to this the issues of overscan and other target display limita-
tions, and Video Out quickly becomes a geometric challenge.

Fortunately, Apple has responded to this challenge with some handy real-world adaptations.
Instead of trying to create one-to-one correspondences with the output screen and your built-in
device screen, you can build content based on the available properties of your output display.
You just create a window, populate it, and display it.

If you intend to develop Video Out applications, don’t assume that your users are strictly using
AirPlay. Many users still connect to monitors and projectors using old-style cable connections.
Make sure you have at least one of each type of cable on hand (composite, component, VGA,
and HDMI) and an AirPlay-ready iPhone and iPad, so you can thoroughly test on each output
configuration. Third-party cables (not branded with Made for iPhone/iPad) won’t work, so
make sure you purchase Apple-branded items.

ptg12441863

582 Chapter 14 Device-Specific Development

Detecting Screens

The UIScreen class reports how many screens are connected:

#define SCREEN_CONNECTED ([UIScreen screens].count > 1)

You know that an external screen is connected whenever this count goes above 1. The first
item in the screens array is always your primary device screen.

Each screen can report its bounds (that is, its physical dimensions in points) and its screen
scale (relating the points to pixels). Two standard notifications enable you to observe when
screens have been connected to and disconnected from the device:

// Register for connect/disconnect notifications
[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(screenDidConnect:)
 name:UIScreenDidConnectNotification object:nil];

[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(screenDidDisconnect:)
 name:UIScreenDidDisconnectNotification object:nil];

Connection means any kind of connection, whether by cable or via AirPlay. Whenever you
receive an update of this type, make sure you count your screens and adjust your user interface
to match the new conditions.

It’s your responsibility to set up windows whenever new screens are attached and tear them
down when detach events occur. Each screen should have its own window to manage content
for that output display. Don’t hold onto windows upon detaching screens. Let them release and
then re-create them when new screens appear.

Note

Mirrored screens are not represented in the screens array. Instead, the mirror is stored in
the main screen’s mirroredScreen property. This property is nil when mirroring is disabled,
unconnected, or simply not supported by the device’s abilities.

Creating a new screen and using it for independent external display always overrides mirroring.
So even if a user has enabled mirroring, when your application begins writing to and creating an
external display, it takes priority.

Retrieving Screen Resolutions

Each screen provides an availableModes property. This is an array of resolution objects
ordered from lowest to highest resolution. Each mode has a size property that indicates a
target pixel-size resolution. Many screens support multiple modes. For example, a VGA display
might offer as many as one-half dozen or more different resolutions. The number of supported
resolutions varies by hardware. There will always be at least one resolution available, but you
should offer choices to users when there are more.

ptg12441863

583Recipe: Using External Screens

Setting Up Video Out

After retrieving an external screen object from the [UIScreens screens] array, query the
available modes and select a size to use. As a rule, you can get away with selecting the last
mode in the list to always use the highest possible resolution or the first mode for the lowest
resolution.

To start a Video Out stream, create a new UIWindow and size it to the selected mode. Add a new
view to that window for drawing. Then assign the window to the external screen and make it
key and visible. This orders the window to display and prepares it for use. After you do that,
make the original window key again. This allows the user to continue interacting with the
primary screen. Don’t skip this step. Nothing makes end users crankier than discovering their
expensive device no longer responds to their touches. The following snippet implements all of
these necessary steps to set up the secondary screen for use:

self.outputWindow = [[UIWindow alloc] initWithFrame:theFrame];
outputWindow.screen = secondaryScreen;
[outputWindow makeKeyAndVisible];
[delegate.view.window makeKeyAndVisible];

Adding a Display Link

Display links are a kind of timer that synchronizes drawing to a display’s refresh rate. You
can adjust this frame refresh time by changing the display link’s frameInterval property. It
defaults to 1 . A higher number slows down the refresh rate. Setting it to 2 halves your frame
rate. Create the display link when a screen connects to your device. The UIScreen class imple-
ments a method that returns a display link object for its screen. You specify the target for the
display link and a selector to call.

The display link fires on a regular basis, letting you know when to update the Video Out
screen. You can adjust the interval up for less of a CPU load, but you get a lower frame rate in
return. This is an important trade-off, especially for direct manipulation interfaces that require
a high level of CPU response on the device side.

The code in Recipe 14-7 uses common modes for the run loop, providing the least latency. You
invalidate your display link when you are done with it, removing it from the run loop.

Overscanning Compensation

The UIScreen class enables you to compensate for pixel loss at the edge of display screens by
assigning a value to the overscanCompensation property. The techniques you can assign are
described in Apple’s documentation; they basically correspond to whether you want to clip
content or pad it with black space.

ptg12441863

584 Chapter 14 Device-Specific Development

VIDEOkit

Recipe 14-7 introduces VIDEOkit, a basic external screen client. It demonstrates all the features
needed to get up and going with wired and wireless external screens. You establish screen
monitoring by calling startupWithDelegate: . Pass it the primary view controller whose job it
will be to create external content.

The internal init method starts listening for screen attach and detach events and builds and
tears down windows as needed. An informal delegate method (updateExternalView :) is called
each time the display link fires. It passes a view that lives on the external window that the
delegate can draw onto as needed.

In the sample code that accompanies this recipe, the view controller delegate stores a local
color value and uses it to color the external display:

- (void)updateExternalView:(UIImageView *)aView
{
 aView.backgroundColor = color;

}

- (void)action:(id)sender
{
 color = [UIColor randomColor];

}

Each time the action button is pressed, the view controller generates a new color. When
VIDEOkit queries the controller to update the external view, it sets this as the background
color. You can see the external screen instantly update to a new random color.

Note

Reflector App ($12.99/single license, $54.99/5-computer license, http://reflectorapp.com)
provides an excellent debugging companion for AirPlay, offering a no-wires/no-Apple TV solution
that works on Mac and Windows computers. It mimics an Apple TV AirPlay receiver, letting you
broadcast from iOS direct to your desktop and record that output.

Recipe 14-7 VIDEOkit

@protocol VIDEOkitDelegate <NSObject>
- (void)updateExternalView:(UIView *)view;
@end

@interface VIDEOkit : NSObject
@property (nonatomic, weak) UIViewController<VIDEOkitDelegate> *delegate;
@property (nonatomic, strong) UIWindow *outputWindow;
@property (nonatomic, strong) CADisplayLink *displayLink;
+ (void)startupWithDelegate:
 (UIViewController<VIDEOkitDelegate> *)aDelegate;

http://reflectorapp.com

ptg12441863

585Recipe: Using External Screens

@end

@implementation VIDEOkit
{
 UIImageView *baseView;

}

- (void)setupExternalScreen
{
 // Check for missing screen
 if (!SCREEN_CONNECTED) return;

 // Set up external screen
 UIScreen *secondaryScreen = [UIScreen screens][1];
 UIScreenMode *screenMode =
 [[secondaryScreen availableModes] lastObject];
 CGRect rect = (CGRect){.size = screenMode.size};
 NSLog(@"Extscreen size: %@", NSStringFromCGSize(rect.size));

 // Create new outputWindow
 self.outputWindow = [[UIWindow alloc] initWithFrame:CGRectZero];
 _outputWindow.screen = secondaryScreen;
 _outputWindow.screen.currentMode = screenMode;
 [_outputWindow makeKeyAndVisible];
 _outputWindow.frame = rect;

 // Add base video view to outputWindow
 baseView = [[UIImageView alloc] initWithFrame:rect];
 baseView.backgroundColor = [UIColor darkGrayColor];
 [_outputWindow addSubview:baseView];

 // Restore primacy of main window
 [_delegate.view.window makeKeyAndVisible];

}

- (void)updateScreen
{
 // Abort if the screen has been disconnected
 if (!SCREEN_CONNECTED && _outputWindow)
 self.outputWindow = nil;

 // (Re)initialize if there's no output window
 if (SCREEN_CONNECTED && !_outputWindow)
 [self setupExternalScreen];

 // Abort if encounter some weird error
 if (!self.outputWindow) return;

ptg12441863

586 Chapter 14 Device-Specific Development

 // Go ahead and update
 SAFE_PERFORM_WITH_ARG(_delegate,
 @selector(updateExternalView:), baseView);

}

- (void)screenDidConnect:(NSNotification *)notification
{
 NSLog(@"Screen connected");
 UIScreen *screen = [[UIScreen screens] lastObject];

 if (_displayLink)
 {
 [_displayLink removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];
 [_displayLink invalidate];
 _displayLink = nil;
 }

 self.displayLink = [screen displayLinkWithTarget:self
 selector:@selector(updateScreen)];
 [_displayLink addToRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];

}

- (void)screenDidDisconnect:(NSNotification *)notification
{
 NSLog(@"Screen disconnected.");
 if (_displayLink)
 {
 [_displayLink removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];
 [_displayLink invalidate];
 self.displayLink = nil;
 }

}

- (instancetype)init
{
 self = [super init];
 if (self)
 {
 // Handle output window creation
 if (SCREEN_CONNECTED)
 [self screenDidConnect:nil];

 // Register for connect/disconnect notifications
 [[NSNotificationCenter defaultCenter]

ptg12441863

587Tracking Users

 addObserver:self selector:@selector(screenDidConnect:)
 name:UIScreenDidConnectNotification object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(screenDidDisconnect:)
 name:UIScreenDidDisconnectNotification object:nil];
 }
 return self;

}

- (void)dealloc
{
 [self screenDidDisconnect:nil];

}

+ (VIDEOkit *)sharedInstance
{
 static dispatch_once_t predicate;
 static VIDEOkit *sharedInstance = nil;
 dispatch_once(&predicate, ^{
 sharedInstance = [[VIDEOkit alloc] init];
 });
 return sharedInstance;

}

+ (void)startupWithDelegate:
 (UIViewController <VIDEOkitDelegate> *)aDelegate

{
 [[self sharedInstance] setDelegate:aDelegate];

}
@end

Get This Recipe’s Code

To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 14 .

Tracking Users

Tracking is an unfortunate reality of developer life. Apple deprecated the UIDevice property
that provided a unique identifier tied to device hardware. It replaced it with two identifier
properties. Use advertisingIdentifier in the ASIdentifierManager class to return a
device-specific identifier unique to the current device for advertising purposes. The
identifierForVendor property on UIDevice supplies an identifier that’s tied to each app
vendor. This should return the same unique identifier, regardless of which of your apps is in

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

ptg12441863

588 Chapter 14 Device-Specific Development

use. This is not a customer ID. The same app on a different device can return a different identi-
fier, as can an app from a different vendor.

These identifiers are built using the new NSUUID class. You can use this class outside the track-
ing scenario to create UUID strings that are guaranteed to be globally unique. Apple writes,
“UUIDs (Universally Unique Identifiers), also known as GUIDs (Globally Unique Identifiers) or
IIDs (Interface Identifiers), are 128-bit values. A UUID is made unique over both space and time
by combining a value unique to the computer on which it was generated and a value represent-
ing the number of 100-nanosecond intervals since October 15, 1582 at 00:00:00.”

The UUID class method can generate a new RFC 4122v4 UUID on demand. Use [NSUUID
UUID] to return a new instance. (Bonus: It’s all in uppercase!) From there, you can retrieve the
UUIDString representation or request the bytes directly via getUUIDBytes: .

One More Thing: Checking for Available Disk Space

The NSFileManager class enables you to determine how much space is free on the iPhone and
how much space is provided on the device as a whole. Listing 14-1 demonstrates how to check
for these values and show the results using a friendly comma-formatted string. The values
returned represent the total and free space in bytes.

Listing 14-1 Recovering File System Size and File System Free Size

- (void)logFileSystemAttributes
{
 NSFileManager *fm = [NSFileManager defaultManager];
 NSDictionary *fsAttr =
 [fm attributesOfFileSystemForPath:NSHomeDirectory()
 error:nil];

 NSNumberFormatter *numberFormatter =
 [[NSNumberFormatter alloc] init];
 numberFormatter.numberStyle = NSNumberFormatterDecimalStyle;

 NSNumber *fileSystemSize =
 [fsAttr objectForKey:NSFileSystemSize];
 NSLog(@"System space: %@ bytes",
 [numberFormatter stringFromNumber:fileSystemSize]);

 NSNumber *fileSystemFreeSize =
 [fsAttr objectForKey:NSFileSystemFreeSize];
 NSLog(@"System free space: %@ bytes",
 [numberFormatter stringFromNumber:fileSystemFreeSize]);

}

ptg12441863

589Summary

Summary

This chapter introduces core ways to interact with an iOS device. You have seen how to recover
device info, check the battery state, and subscribe to proximity events. You have learned how
to differentiate the iPod touch from the iPhone and iPad and determine which model you’re
working with. You have discovered the accelerometer and have seen it in use in several exam-
ples, from the simple “finding up” to moving onscreen objects and shake detection. You have
jumped into Core Motion and learned how to create update blocks to respond to device events
in real time. You have also seen how to add external screen support to your applications. Here
are a few parting thoughts about the recipes you just encountered:

 ■ Low-level calls can be App Store–friendly. They don’t depend on Apple APIs that may
change based on the current firmware release. UNIX system calls may seem daunting, but
many are fully supported by the iOS device family.

 ■ When submitting to iTunes, use the Info.plist file to specify which device capabilities are
required. iTunes uses this list of required capabilities to determine whether an application
can be downloaded to a given device and run properly on that device.

 ■ Remember device limitations. You might want to check for free disk space before
performing file-intensive work and for battery charge before running the CPU at full
steam.

 ■ Dive into Core Motion. The real-time device feedback it provides is the foundation for
integrating iOS devices into real-world experiences.

 ■ The iPhone and iPad accelerometer provides a novel way to complement the touch-based
interface. Use acceleration data to expand user interactions beyond the “touch here”
basics and to introduce tilt-aware feedback.

 ■ Now that AirPlay has cut the cord for external display tethering, you can use Video Out
for many more exciting projects than you might have previously imagined. AirPlay and
external video screens mean you can transform your iOS device into a remote control for
games and utilities that display on big screens and are controlled on small ones.

ptg12441863

This page intentionally left blank

ptg12441863

15
Accessibility

Accessibility enhancements open up iOS to users with disabilities. General Settings features
enable users to magnify (or “zoom”) displays, invert colors, and more. For a developer, acces-
sibility enhancement centers on VoiceOver, which enables visually impaired users to “listen” to
their GUI. VoiceOver converts an application’s visual presentation into an audio description.

Don’t confuse VoiceOver with Voice Control, or the Siri assistant. The former is a method for
presenting an audio description of a UI and is highly gesture-based. The latter refers to Apple’s
proprietary voice-recognition technology for hands-free interaction.

This chapter briefly overviews VoiceOver accessibility. You’ll read about adding accessibility
labels and hints to your applications and testing those features in the simulator and on the iOS
device. Accessibility is available and can be tested on third-generation or later devices, includ-
ing all iPads, the iPhone 3GS and later, and the third-generation iPod touch and later.

Accessibility 101

Create accessibility by adding descriptive attributes to your UI elements. This programming
interface is defined by the informal UIAccessibility protocol and consists of a set of proper-
ties including labels, hints, and values. Together, they act to supply information to VoiceOver
to present an audible presentation of your interface.

Either assign these properties in code or add them through Interface Builder (IB). Listing 15-1
shows how you could set a button’s accessibilityHint property. This property describes
how this control reacts to a user action. In this example, the button’s hint updates when a user
types a username into a related text field. The hint changes to match the context of the current
UI. Instead of giving a general hint about placing a call, the updated version directly names its
target.

ptg12441863

592 Chapter 15 Accessibility

Listing 15-1 Programmatically Updating Accessibility Information

- (BOOL)textField:(UITextField *)textField
 shouldChangeCharactersInRange:(NSRange)range
 replacementString:(NSString *)string

{
 // Catch the change to the username field and update
 // the accessibility hint to mirror that
 NSString *username = textField.text;
 if (username && username.length > 1)
 callbutton.accessibilityHint = [NSString
 stringWithFormat:@"Places a call to %@", username];
 else
 callbutton.accessibilityHint =
 @"Places a call to the person named in the text field.";
 return YES;

}

The UIAccessibility protocol includes the following properties:

 ■ accessibilityTraits — A set of flags that describe a UI element. These flags specify
how items behave or how the interpretive system should treat them. For example, these
traits include state, such as selected or enabled, and behavior, such as behaving like a
button.

 ■ accessibilityLabel — A short phrase or word that describes the view’s role or the
control’s action (for example, Pause or Delete). Labels can be localized.

 ■ accessibilityHint — A short phrase that describes what user actions do with this
element (for example, Navigates to the home page). Hints can also be localized.

 ■ accessibilityFrame — A rectangle specifically for non-view elements, which describes
how the object should be represented onscreen. Views use their normal UIView frame
property.

 ■ accessibilityPath — A UIBezierPath that can be used instead of the accessibility
frame for elements that are non-rectangular.

 ■ accessibilityValue — The value associated with an object, such as a slider’s current
level (for example, 75%) or a switch’s on/off setting (for example, ON).

Accessibility in IB

The IB Identity Inspector > Accessibility pane (see Figure 15-1) enables you to add accessibility
details to UIKit elements in your interface. These fields and the text they contain play different
roles in the accessibility picture. There’s a one-to-one correlation with the UIAccessibility
protocol and the inspector elements presented in IB. As with direct code access, labels iden-
tify views; hints describe them. In addition to these fields, you’ll find a general Accessibility
Enabled check box and a number of Traits check boxes.

ptg12441863

593Enabling Accessibility

Figure 15-1 IB’s Identity Inspector lets you specify object accessibility information.

Enabling Accessibility

The Enabled check box controls whether a UIKit view works with VoiceOver. To declare an
element’s accessibility support, set the isAccessibilityElement property to YES in code or
check the Accessibility Enabled box in IB (see Figure 15-1). This Boolean property allows GUI
elements to participate in the accessibility system. By default, all UIControl instances inherit
the value YES .

As a rule, enable accessibility unless the view is a container whose subviews need to be acces-
sible. Enable only the items at the most direct level of interaction or presentation. Views that
organize other views don’t play a meaningful role in the voice presentation. Exclude them.

Table view cells offer a good example of accessibility containers (that is, objects that contain
other objects). The rules for table view cells are as follows:

 ■ A table view cell without embedded controls should be accessible.

 ■ A table view cell with embedded controls should not be accessible. Its child controls
should be.

ptg12441863

594 Chapter 15 Accessibility

Nonaccessible containers are responsible for reporting how many accessible children they
contain and which child views those are. See Apple’s Accessibility Programming Guide for iOS for
further details about programming containers for accessibility. Custom container views need to
declare and implement the UIAccessibilityContainer protocol.

Traits

Traits characterize UIKit item behaviors. VoiceOver uses these traits while describing interfaces.
As Figure 15-1 shows, there are numerous possible traits you can assign to views. Select the
traits that apply to the selected view, keeping in mind that you can always update these choices
programmatically.

Traits help characterize the elements in your interface to the VoiceOver system. They
specify how items behave and how VoiceOver should treat them. You set them via the
accessibilityTraits property, by selecting a single flag or OR’ing two or more flags.
You can also set them in IB, as you saw in Figure 15-1 . These traits vary in how they operate
and how VoiceOver uses them.

At the most basic, default level, there’s the “no trait” flag:

 ■ UIAccessibilityTraitNone — The element has no traits.

There are also flags that describe what the user element is. These include the following:

 ■ UIAccessibilityTraitButton — The element is a button.

 ■ UIAccessibilityTraitLink — The element is a hyperlink.

 ■ UIAccessibilityTraitStaticText — The element is unchanging text.

 ■ UIAccessibilityTraitSearchField — The element is a search field.

 ■ UIAccessibilityTraitImage — The element is a picture.

 ■ UIAccessibilityTraitKeyboardKey — The element acts as a keyboard key.

 ■ UIAccessibilityTraitHeader — The element is a content header.

Apple’s accessibility documents request that you only check one of the following four mutu-
ally exclusive items at any time: Button, Link, Static Text, or Search Field. If a button works as a
link as well, choose either the button trait or the link trait but not both. You choose which best
characterizes how that button is used. At the same time, a button might show an image and
play a sound when tapped, and you can freely add those traits.

There are a few basic state flags, which discuss the selection, adjustability, and interactive state
of the object:

 ■ UIAccessibilityTraitSelected — The element is currently selected, such as in a
segmented control or the selected row in a table.

 ■ UIAccessibilityTraitNotEnabled — The element is disabled, disallowing user
interaction.

ptg12441863

595Labels

 ■ UIAccessibilityTraitAdjustable — The element can be set to multiple values, as with
a slider or picker. You specify how much each interaction adjusts the current value by
implementing the accessibilityIncrement and accessibilityDecrement methods.

 ■ UIAccessibilityTraitAllowsDirectInteraction — The user can touch and interact
with the element.

If an element plays a sound when interacted with, there’s a flag for that as well:

 ■ UIAccessibilityTraitPlaysSound — The element will play a sound when activated.

Finally, a handful of states caution and describe how an element behaves and interacts with the
larger world:

 ■ UIAccessibilityTraitUpdatesFrequently — The element changes often enough that
you won’t want to overburden the user with its state changes, such as the readout of a
stopwatch.

 ■ UIAccessibilityTraitStartsMediaSession — The element begins a media session. Use
this to limit VoiceOver interruptions when playing back or recording audio or video.

 ■ UIAccessibilityTraitSummaryElement — The element provides summary information
when the application starts, such as the current settings or state.

 ■ UIAccessibilityTraitCausesPageTurn — The element should automatically turn the
page when VoiceOver finishes reading its text.

As Figure 15-1 demonstrates, most of these traits (but not all) can be toggled off or on through
the IB Identity Inspector pane. If you need finer-grained control, set the flags in code.

Labels

Set an element’s label by assigning its accessibilityLabel property. A good label tells the
user what an item is, often with a single word. Label an accessible GUI the same way you’d
label a button with text. Edit, Delete, and Add all describe what objects do. They’re excellent
button text and accessibility label text.

But accessibility isn’t just about buttons. Feedback, User Photo, and User Name might describe
the contents and function of a text view, an image view, and a text label. If an object plays a
visual role in your interface, it should play an auditory role in VoiceOver. Here are a few tips
for designing your labels:

 ■ Do not add the view type into the label. For example, don’t use “Delete button,”
“Feedback text view,” or “User Name text field.” VoiceOver adds this information
automatically, so “Delete button” in the identity pane becomes “Delete button button”
in the VoiceOver playback.

 ■ Capitalize the label but don’t add a period. VoiceOver uses your capitalization to
properly inflect the label when it speaks. Adding a period typically causes VoiceOver to
end the label with a downward tone, which does not blend well into the object-type that
follows. “Delete. button” sounds wrong. “Delete button” does not.

ptg12441863

596 Chapter 15 Accessibility

 ■ Aggregate information. When working with complex views that function as a single
unit, build all the information in that view into a single descriptive label and attach it
to that parent view. For example, in a table view cell with several subviews but without
individual controls, you might aggregate all the text information into a single label that
describes the entire cell.

 ■ Label only at the lowest interaction level. When users need to interact with subviews,
label at that level. Parent views, whose children are accessible, do not need labels.

 ■ Localize. Localizing your accessibility strings opens them up to the widest audience of
users.

Hints

Assign the accessibilityHint property to set an element’s hint. Hints tell users what to
expect from interaction. In particular, they describe any nonobvious results. For example,
consider an interface where tapping on a name—for example, John Smith—attempts to call
that person by telephone. The name itself offers no information about the interaction outcome,
so offer a hint telling the user about it—for example, “Places a phone call to this person,” or,
even better, “Places a phone call to John Smith.” Here are tips for building better hints:

 ■ Use sentence form. Start with a capital letter and end with a period. Do this even
though each hint has a missing, implied subject. For example, in “Clears text in the
form,” the implied subject is “ This button .” Using sentence format ensures that VoiceOver
speaks the hint with proper inflection.

 ■ Use verbs that describe what the element does, not what the user does. “ [This text
label] Places a phone call to this person.” provides the right context for the user. “ [You
will] Place a phone call to this person.” does not.

 ■ Do not say the name or type of the GUI element. Avoid hints that refer to the UI
item being manipulated. Skip the GUI name (its label, such as “Delete”) and type (its
class, such as “button”). VoiceOver adds that information where needed, preventing any
overly redundant playback, such as the confusing “Delete button [label] button [VoiceOver
description] button [hint] removes item from screen.” Use the succinct “Removes item
from screen.” instead.

 ■ Avoid the action. Do not describe the action that the user takes. Do not say “Swiping
places a phone call to this person” or “Tapping places a phone call to this person.”
VoiceOver uses its own set of gestures to activate GUI elements. Never refer to gestures
directly.

 ■ Be verbose. “Places call” does not describe the outcome as well as “Places a call to this
person,” or, even better, “Places a call to John Smith.” A short but thorough explanation
better helps the user than one that is so terse that the user has to guess about details.
Avoid hints that require the user to listen again before proceeding.

 ■ Localize. As with labels, localizing your accessibility hints works with the widest user
base.

ptg12441863

597Testing with the Simulator

Testing with the Simulator

The iOS simulator’s Accessibility Inspector is designed for testing accessible applications before
deploying them to the iOS device. The simulator’s inspector simulates VoiceOver interaction
with your application, providing immediate visual feedback via a floating pane (there is no
actual voice produced) without requiring the use of the VoiceOver gesture interface directly.
Because you cannot replicate many VoiceOver gestures with the simulator (such as triple-swipes
and sequential hold-then-tap gestures), the inspector focuses on describing interface items
rather than responding to VoiceOver gestures.

Enable this feature by opening Settings > General > Accessibility. Switch the Accessibility
Inspector to On. The inspector, shown in Figure 15-2 , immediately appears. It lists the current
settings for the currently selected accessible element.

Note

Unfortunately, Apple’s current Xcode 5 development tools do not properly support the simula-
tor’s Accessibility Inspector. Apple should remedy this in a future update. The screen shots
presented here are edited compositions based on the current presentation in Xcode 5 along
with the valid inspector content provided with Xcode 4.6. The fully functional screens should be
similar to those provided.

Figure 15-2 The iPad simulator’s Accessibility Inspector highlights the currently selected GUI
feature, revealing its label, hint, and other accessibility properties.

ptg12441863

598 Chapter 15 Accessibility

Know how to enable and disable the inspector: The circled X in the top-left corner of the
inspector controls that behavior. Click it once to shrink the inspector to a disabled single
line. Click again to restore the inspector to active mode. For the most part, keep the inspector
disabled until you actually need to inspect a GUI item. Figure 15-3 shows a button interface as
described in the Accessibility Inspector.

Figure 15-3 The Accessibility Inspector reflects the values set either in IB or in code that
describe the currently selected item.

Like VoiceOver, the inspector interferes with normal application gestures. It will slow down
your work, so use it sparingly (normally when you are ready to test). Launch your application
with the inspector disabled but available. Navigate to the screen you want to work with and
then enable the inspector.

When you update accessibility hints in code, the inspector updates in real time to match those
changes. Activating the inspector allows you to view the current hint as those changes happen,
ensuring that the onscreen hints and labels reflect the up-to-date interface.

ptg12441863

599Testing Accessibility on iOS

Broadcasting Updates

Your application should post notifications to let the VoiceOver accessibility system know about
onscreen element changes outside direct user interaction:

 ■ When you add or remove a GUI element the UIAccessibilityLayoutChanged-
Notification gives the VoiceOver accessibility system a heads-up about those changes.

 ■ Applications can post a UIAccessibilityPageScrolledNotification after completing
a scroll action. The notification’s object should contain a description of the new scroll
position (for example, “Page 5 of 17” or “Tab 2 of 4”).

 ■ When the zoomed frame changes, send a UIAccessibilityZoomFocusChanged
notification. Include a user dictionary with type , frame , and view parameters. These
parameters specify the type of zoom that has taken place, the currently zoomed frame (in
screen coordinates), and the view that contains the zoomed frame.

In addition to these change updates, you can broadcast general announcements through the
accessibility VoiceOver system. UIAccessibilityAnnouncementNotification takes one
parameter, a string, which contains an announcement. Use this to notify users when tiny GUI
changes take place, or for changes that only briefly appear on screen, or for changes that don’t
affect the UI directly.

Testing Accessibility on iOS

Testing on the iPhone or iPad is a critical part of accessibility development. The device enables
you to work with the actual VoiceOver utility rather than a window-based inspector. You hear
what your users will hear and can test your GUI with your fingers and ears rather than with
your eyes.

Like the simulator, the iPhone provides a way to enable and disable VoiceOver on-the-fly.
Although you can enable VoiceOver in Settings and then test your application with VoiceOver
running, you’ll find that it’s much easier to use a special toggle. The toggle lets you avoid the
hassle of navigating out of Settings and over to your application by using VoiceOver gestures.
You can switch VoiceOver off, use normal iOS interactions to get your application started, and
then switch VoiceOver back on when you’re ready to test.

To enable that toggle, follow these steps:

 1. Go to the Accessibility settings pane. Navigate to Settings > General > Accessibility.

 2. Locate and tap Accessibility Shortcut to display a list of possible accessibility actions for
when you triple-click the hardware Home button.

 3. Choose VoiceOver to set it as your triple-click action. When it is selected (a check appears
to its right), enable and disable VoiceOver by triple-clicking the physical Home button at
the bottom of your iOS device. A spoken prompt confirms the current VoiceOver setting.

ptg12441863

600 Chapter 15 Accessibility

This VoiceOver toggle offers you the ability to skip many of the laborious details involved in
navigating to your application using triple-fingered drags and multistage button clicks. At the
same time, you should be conversant with VoiceOver gestures and interactions. Table 15-1
summarizes the VoiceOver gestures that you need to know to test your application.

Take special note of Screen Curtain, which enables you to blank your device display, offering a
true test of your application as an audio-based interface. Try the iPhone calculator application
with Screen Curtain enabled to gain a true sense of the challenge of using an iPhone applica-
tion without sight.

Table 15-1 Common VoiceOver Gestures for Applications

Task VoiceOver Equivalent

Toggle VoiceOver Triple-tap the physical Home button.

Toggle ScreenCurtain Three-finger triple-tap the screen (that is, tap the screen three
times with three fingers).

Toggle VoiceOver speech Toggle the VoiceOver speech entirely (not just for a single
description) by double-tapping the screen with three fingers.

Stop speaking the current item Double-tap the screen with two fingers. Repeat the gesture to
resume speaking. In the home screen, when VoiceOver is not
active, this gesture stops and resumes audio playback.

Activate an item

(Example: Activate a button)

Method 1: Tap and hold the item with one finger. Tap the screen
with another finger.

Method 2: Tap the item to select it. Double-tap the screen to
activate the button.

Adjust the text insertion point With an editable text view or field selected, adjust the insertion
point by flicking up or down with a single finger. The point may
move by characters or by words, depending on how you have set
your preferences.

Access the spoken text menu With an editable text view or field selected, place two fingers on
the screen and twist clockwise or counterclockwise. This gesture
is properly known as the rotor.

Select and deselect text Set the insertion point and enter text edit mode. Two-finger pinch
open and close to select and deselect text.

Type text Enter text edit mode by selecting a text field or text view and
then double-tap the screen. The keyboard appears onscreen.

Method 1: Tap and hold a keyboard button with your left pointer
finger. Tap somewhere else on the screen with your right pointer
finger. This is the best way to use the Delete key repeatedly.

Method 2: Tap on a key to select it. Double-tap the screen to
type that key.

ptg12441863

601Speech Synthesis

Task VoiceOver Equivalent

Move sliders Select the slider and then flick up or down with a single finger to
adjust the slider value.

Scroll up or down one page Flick three fingers up or down.

Scroll left or right one page Flick three fingers left or right.

Select and speak an item Tap the item.

Spell out the selected item one
character or word at a time

Flick a single finger up or down. This uses the settings from the
spoken text menu.

Move to the next or
previous item

Flick a single finger left or right.

Read the entire screen Two-finger flick upward. This doesn’t work as consistently as it
should. Alternatively, use the following approach: Flick left repeat-
edly to the first item in the screen. Read the screen starting
from the currently selected item using the two-finger flick-down
gesture.

Unlock Select the Unlock slider. One-finger double-tap the screen.

Speech Synthesis

In iOS 7, Apple added text-to-speech capability, providing another handy tool for both acces-
sibility and other tasks, including navigation and general fun. Use the AVSpeechSynthesizer
and AVSpeechUtterance classes to speak any string you would like. This can be handy for
long-form speech and provides a greater level of programmatic control than VoiceOver, includ-
ing voice selection, pitch, rate, and timing. In addition, this functionality is available even
when the user is not utilizing Accessibility.

Listing 15-2 demonstrates the utterance of a simple string with the added twist of randomizing
the voice from all currently available English-speaking voices. You can easily change this to
other languages and locales. Use AVSpeechSynthesisVoice to select a specific language or to
iterate through all available voices.

Listing 15-2 Utilizing Text-to-Speech in iOS 7

- (void)action
{
 // Establish a new utterance
 AVSpeechUtterance *utterance =
 [AVSpeechUtterance speechUtteranceWithString:
 @"Hello there you beautiful world!"];

ptg12441863

602 Chapter 15 Accessibility

 // Slow down the rate
 utterance.rate = AVSpeechUtteranceMinimumSpeechRate +
 (AVSpeechUtteranceMaximumSpeechRate –
 AVSpeechUtteranceMinimumSpeechRate) * 0.2f;

 // Set the language
 utterance.voice = [self anotherVoiceForLanguage:@"en"];

 // Speak
 AVSpeechSynthesizer *synthesizer =
 [[AVSpeechSynthesizer alloc] init];
 [synthesizer speakUtterance:utterance];

}

- (AVSpeechSynthesisVoice *)anotherVoiceForLanguage:
 NSString *)lang

{
 srand(time(NULL));
 NSArray *voices = [AVSpeechSynthesisVoice speechVoices];
 NSMutableArray *voicesForLanguage =
 [[NSMutableArray alloc] init];
 for (AVSpeechSynthesisVoice * voice in voices)
 {
 if ([voice.language hasPrefix:lang])
 [voicesForLanguage addObject:voice];
 }
 NSUInteger voiceIndex =
 rand() % voicesForLanguage.count;
 return voicesForLanguage[voiceIndex];

}

Dynamic Type

iOS has long supported accessibility features to adapt apps for a wide range of abilities and limi-
tations. Now, under iOS 7, that philosophy has entered the mainstream of day-to-day app use.
Users may adjust display settings throughout all their installed apps that opt in.

A single setting in General > Text Size (see Figure 15-4) globally adjusts reading size—includ-
ing font weight, line height, and spacing. Younger users with strong eyes can dial back on font
sizes, displaying more text on each screen. Older folks with weaker vision can push out bigger
font requests with a simple drag.

ptg12441863

603Dynamic Type

Figure 15-4 Changing text size globally involves a simple slider in the General system
preferences in iOS 7.

To use Dynamic Type in your app, you must select fonts via the preferredFontFor-
TextStyle method and pass in one of the following styles: UIFontTextStyleHeadline ,
UIFontTextStyleSubheadline , UIFontTextStyleBody , UIFontTextStyleFootnote ,
UIFontTextStyleCaption1 , or UIFontTextStyleCaption2 . If you use the preconfigured
text styles instead of specifying a font name and size directly, iOS will style and size your fonts
appropriately, based on the General settings.

To respond to user changes in text size, add an observer for UIContentSizeCategoryDid-
ChangeNotification and update your UI appropriately:

UIViewController __weak *weakself = self;
[[NSNotificationCenter defaultCenter]
addObserverForName:UIContentSizeCategoryDidChangeNotification
object:nil
queue:[NSOperationQueue mainQueue]
usingBlock:^(NSNotification *note) {
 UIViewController *strongSelf = weakself;
 [strongSelf performSelector:@selector(updateLayout)];
}];

ptg12441863

604 Chapter 15 Accessibility

Using Auto Layout and standard UIKit text elements, much of the work will be handled
for you. Generally, resetting the font on the UILabel or UITextView will invalidate the
intrinsic content size and force a re-layout. For manual, frame-based layout, you need to
call setNeedsLayout to trigger a re-layout.

Summary

When an iOS application opens itself to Accessibility, it becomes an active participant in a
wider ecosystem, with a larger potential user base. Here are a few thoughts to take with you:

 ■ Including accessibility labels and hints creates new audiences for your application, just as
language localizations do. Adding these takes relatively little work to achieve and offers
excellent payoffs to your users.

 ■ Keep the role of labels and hints in mind as you prepare an auditory description of your
application in IB.

 ■ Don’t be afraid to change hints programmatically. Let your interface descriptions update
as your interface does, to provide the best possible experience for visually impaired users.

 ■ iOS’s accessibility system is an evolving system. Keep on top of Apple’s documentation to
find the latest updates and changes.

 ■ Test with Screen Curtain. A blank screen provides the best approximation of the
VoiceOver user experience.

ptg12441863

A
Objective-C Literals

Think about how often you type cookie-cutter templates like [NSNumber numberWith-
Integer:5] to produce number objects in your code. Perhaps you’ve defined macros to
simplify your coding. Beginning in Xcode 4.4 (and LLVM 4.0), Objective-C literals introduce
features that transform awkward constructs such as NSNumber and NSArray creation instances
into easy-to-read parsimonious expressions.

Speaking as those who long created/used macro definitions for the NSNumber declarations, we
love the way these literals provide more readable, succinct code. These literals save an enor-
mous amount of typing and provide a natural, coherent presentation.

Now, instead of establishing an endless series of those declarations, you can use a simple
literal like @5 . This number literal is just like the string literals you’ve used for years. With
strings, follow the at sign with a string constant (for example, @"hello"); with numbers, use
an at sign followed by a number value. Similar literals simplify the creation and indexing of
NSDictionary s and NSArray s.

This new advance squeezes together previously wordy constructs to create simpler, more
succinct representations.

Numbers

Through the magic of its LLVM Clang compiler, Xcode’s number literals allow you to wrap
scalar values like integers and floating-point numbers into object containers. Just add an @
prefix to a scalar. For example, you can transform 2.7182818 to a conforming NSNumber object
as follows:

NSNumber *eDouble = @2.7182818;

This number literal is functionally equivalent to the following:

NSNumber *eDouble = [NSNumber numberWithDouble: 2.7182818];

ptg12441863

606 Appendix A Objective-C Literals

The difference is that the compiler takes care of the heavy lifting for you. You don’t have to use
a class call, and you don’t have to write out a full method, brackets and all. Instead, you prefix
the number with @ and let Clang do the rest of the work.

Standard suffixes allow you to specify whether a number is a float (F), long (L), longlong (LL),
or unsigned (U). Here are some examples of how you would use them. Notice how simple each
declaration is, not requiring you to use numerous specialized method calls:

NSNumber *two = @2; // [NSNumber numberWithInt:2];
NSNumber *twoUnsigned = @2U; // [NSNumber numberWithUnsignedInt:2U];
NSNumber *twoLong = @2L; // [NSNumber numberWithLong:2L];
NSNumber *twoLongLong = @2LL; // [NSNumber numberWithLongLong:2LL];
NSNumber *eDouble = @2.7182818; // [NSNumber numberWithDouble: 2.7182818];
NSNumber *eFloat = @2.7182818F; // [NSNumber numberWithFloat: 2.7182818F];

Unfortunately, according to the Clang specification, you cannot wrap long double numbers.
(Apple’s runtime doesn’t support long doubles either.) Be aware that the following statement
causes the compiler to complain:

NSNumber *eLongDouble = @2.7182818L; // Will not compile

The Boolean constants @YES and @NO produce number objects equivalent to [NSNumber
numberWithBool:YES] and [NSNumber numberWithBool:NO] .

Finally, note that @-5 works in Xcode 4.5 and later. You don’t have to enclose the value in
parentheses.

Boxing

Xcode 4.4 supports only literal scalar constants after the @ . If you want to interpret a value and
then convert it to a number object, you have to use the traditional method call:

NSNumber *two = [NSNumber numberWithInt:(1+1)];

Xcode 4.5 introduced boxed expression support, avoiding this awkward approach. Boxed
expressions are values that are interpreted and then converted to number objects. A boxed
expression is enclosed in parentheses, and it tells the compiler to evaluate and then convert to
an object. For example:

NSNumber *two = @(1+1);

and

int foo = ...; // some value
NSNumber *another = @(foo);

Boxed expressions are not limited to numbers. They work for strings as well. The following
assignment evaluates the results of strstr() and forms an NSString from the results (that is,
@"World!"):

NSString *results = @(strstr("Hello World!", "W"));

ptg12441863

607Container Literals

Enums

When working with boxing, you need to think of other considerations as well. Take enums, for
example. Although you might think that you should be able to define an enum and then use it
directly, allowing user-defined sequences that start with @ and continue with text could cause
issues. Observe the following poorly chosen enum:

enum {interface, implementation, protocol};

You might imagine that you could create an NSNumber with the value 2 by defining the
following:

NSNumber *which = @protocol;

This would, quite obviously, be bad. Boxing prevents any conflict with current and future
@ -delimited literals:

NSNumber *which = @(protocol); // [NSNumber numberWithInt:2];

Container Literals

Container literals add another great language feature to the LLVM Clang compiler. Prior to its
addition, you had to create dictionaries and arrays as shown in the following snippet, which
creates a three-item array and a three-key dictionary:

NSArray *array = [NSArray arrayWithObjects: @"one", @"two", @"three", nil];
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @"value 1", @"key 1",
 @"value 2", @"key 2",
 @"value 3", @"key 3",
 nil];

These forms are wordy and require a nil terminator. That’s not always a bad thing, but
certainly it’s a thing that’s easy to forget and that’s bitten nearly every developer at some point
along the line. What’s more, the dictionary declaration requires value followed by key. That’s
the opposite of how most people conceptualize and express dictionary entries, even though the
method name indicates the proper order.

Container literals address both concerns by introducing a new, simpler syntax. These examples
declare an array and a dictionary with the same contents as the manual example you saw
detailed earlier:

NSArray *array = @[@"one", @"two", @"three"];
NSDictionary *dict = @{
 @"key 1":@"value 1",
 @"key 2":@"value 2",
 @"key 3":@"value 3"
 };

ptg12441863

608 Appendix A Objective-C Literals

Array literals consist of square brackets with a comma-delimited list of items. Dictionaries are
formed with a list enclosed in curly braces, where comma-delimited key/value pairs are associ-
ated by colons. In neither case do you need to add a nil terminator. Notice that the key/value
ordering has switched to a far more sensible key-then-value definition versus the older object-
then-key layout.

When evaluated, these expressions produce the same results as the previous two assignments
declared with the traditional approach. The standard container rules still apply:

 ■ Don’t add keys or values that evaluate to nil .

 ■ Make sure that each item is typed as an object pointer.

 ■ Keys must conform to <NSCopying> .

Subscripting

Clang introduces container access using standard subscripting, via square brackets. In other
words, you can now access an NSArray just as you would a C array. You can do the same with
an NSDictionary , although indexed by key rather than number. Here are a couple examples of
doing so, using the array and dictionary declared earlier:

NSLog(@"%@", array[1]); // @"two"
NSLog(@"%@", dictionary[@"key 2"]); // @"value 2"

But you’re not just limited to value look-ups. Using this new syntax, you can also perform
assignments for mutable instances. Here’s how you might use the new subscripting features in
simple assignments:

mutableArray[0] = @"first!";
mutableDictionary[@"some key"] = @"new value";

You still have to watch out for the index. Reading and writing an index outside the array range
raises an exception.

Best of all, you can extend this subscripted behavior to custom classes by implementing
support for a few core methods. So, if you want an element of a custom class to offer indexed
access, you can provide that support by implementing one or more of the following methods:

 ■ -(id) objectAtIndexedSubscript: anIndex

 ■ -(void) setObject: newValue atIndexedSubscript: anIndex

 ■ -(id) objectForKeyedSubscript: aKey

 ■ -(void) setObject: newValue forKeyedSubscript: aKey

You choose whether you want access by order (array-style index) or keyword (dictionary-style
key) and whether that access can update values (mutable style). Simply implement the methods
you want to support and let the compiler handle the rest for you.

ptg12441863

609Feature Tests

Feature Tests

As a final note, be aware that you can create feature-dependent coding. Just use Clang’s __has_
feature test to see whether literals are available in the current compiler. Feature tests include
array literals (objc_array_literals), dictionary literals (objc_dictionary_literals), object
subscripting (objc_subscripting), numeric literals (objc_bool), and boxed expressions
(objc_boxed_expressions):

#if __has_feature(objc_array_literals)
 // ...

#else
 // ...

#endif

ptg12441863

This page intentionally left blank

ptg12441863

A
acceleration

monitoring, 566 - 568

moving onscreen objects, 571 - 575

accelerometer, calculating, orientation,

569 - 570

accelerometer-based scroll view, 575 - 578

accessibility, 591 - 592

broadcasting, updates, 599

Dynamic Type, 601 - 604

enabling, 593 - 594

hints, 596

IB, 592

labels, 595 - 596

speech synthesis, 600 - 601

testing

on iOS, 599 - 601

with simulators, 597 - 598

traits, 594 - 595

Accessibility Inspector, 597 - 598

accessibilityFrame, 592

accessibilityHint, 592

accessibilityLabel, 592

accessibilityLabel property, 595

accessibilityPath, 592

accessibilityTraits, 592

accessibilityValue, 592

Index

accessing

basic device information, 555 - 556

sensor data, 566

system pasteboards, 451 - 452

accessory views, 363 - 364

accessoryType property, 363

accumulating, user tracings for composite

drawings, 27 - 29

action rows, adding to tables, 390 - 394

action sheets, 112

displaying, text, 114 - 115

values, 113

actions, connecting, to buttons, 55

activating, refresh controls, 388

activities

activity view controller, 469-470

excluding, 470

activity item sources, 462

activity view controller, 460 - 461

activity item sources, 462

adding services, 464 - 465

code, 463 - 464

excluding activities, 470

item providers, 462

item source callbacks, 462 - 463

items and activities, 469-470

presenting, 461

activityImage, 465

activityTitle, 465

ptg12441863

612 activityType

activityType, 465

activityViewController, 465

adapting, table edits to Core Data,

510 - 514

adding

action rows, to tables, 390 - 394

animated elements, to buttons, 59

cells to tables, 369

child view controllers, 304

custom buttons to keyboards, 229 - 230

custom input views to nontext views,
243

custom selection traits, to table view
cells, 361 - 362

data, Core Data, 495 - 496

device capability restrictions, 556 - 557

display links, 583

edits to Core Data table views, 508 ,
510 - 514

undo/redo support, 508 - 509

undo transactions, 509 - 510

efficiency to sliders, 64

extra state to buttons, 59 - 60

gestures to layout, collection views,
431 - 433

handler method, URL-based services,
488

input clicks, 243

keyboard input to nontext views,
241 - 243

menus, to views, 45 - 47

motion effects, 85

page indicator controls, 92

pan gesture recognizers, 7 - 9

persistence to text views, 246 - 248

photos to simulators, 319

pull-to-refresh to tables, 387 - 390

services, activity view controller,
464 - 465

simple direct manipulation interfaces,
5 - 7

sliders, 62 - 67

subviews, 141

undo support

table edits, 367

to text views, 246 - 248

adjusting

sizes, frames, 151 - 152

views, around keyboards, 230 - 234

advertisingIdentifier, 588

alert indicators, 128 - 129

badging applications, 129

alert sounds, 131

alert views, variadic arguments, 110 - 111

alerts, 101

audio alerts, 129 , 131

delays, 131

disposing of system sounds, 132

system sounds, 129 - 130

vibration, 130 - 131

blocks, 105 - 107

blocks-based alerts, creating, 108 - 110

custom modal alert view, 119 - 120

frosted glass effect, 120 - 124

delegates, 103 - 104

displaying, 104 - 105

kinds of alerts, 104 - 105

lists of options, 112 - 114

local notifications, 126 - 127

best practices, 127 - 128

modal progress overlays, 117 - 119

popovers, 124 - 126

simple alerts, building, 101 - 102

tappable overlays, 119

variadic arguments, 110 - 111

ptg12441863

613background transfers

alerts, audio alert modules for system

frameworks, 130

alertViewStyle property, 104

aligning views and flexible sizing with con-

straints, 198

alignment rectangles, 185 - 186

declaring, 186

allowsEditing property, 336

Alpha property, 167 - 168

animated elements, adding to buttons, 59

animating

button responses, 60 - 62

constraints, 203

animation

creation and deletion animation, col-
lection views, 426

image view animations, 176

key frame animations, 174 - 175

UIView animations, 165 - 166

building with blocks, 166 - 167

animation blocks, adding to controls

(UIView), 60 - 61

annotation, document interaction control-

ler, 476

Apple, checking network status, 521

application activities, code, 466 - 469

array literals, 608

ASIdentifierManager, 588

aspect ratio, 210 - 211

assets library module, image picker con-

trollers, 319 - 320

assigning

data sources, tables, 354

delegates, 356

attitude, devices, 578 - 579

attributed text, enabling, 249

attributes

constraints, 180 - 181

controlling, 249

controls and, 69 - 70

Core Data, 493

audio alerts, 129 , 131

delays, 131

disposing of system sounds, 132

modules for system frameworks, 130

system sounds, 129 - 130

vibration, 130 - 131

Audio Services, 131

playing sounds, alerts, and vibrations,
132 - 133

Audio Toolbox framework, 130

Auto Layout, 179

alignment rectangles, 185 - 186

constraint processing, 198 - 199

constraints, 183

Auto Layout system, 151

autocapitalizationType, 225

autocorrectionType, 225

autoresizesSubviews property, 151

autoresizing constraints, disabling,

204 - 205

autoresizingMask property, 152

AV Foundation

Core Media and, 337 - 338

video, trimming, 338 - 339

B
back buttons, navigation item class, 271

background transfers, 543 - 544

testing, 544 - 545

web services, 546

converting XML into trees,
549 - 551

JSON serialization, 546 - 548

ptg12441863

614 badging applications

badging applications, 129

bar buttons, navigation controllers, 269

basic constraint declarations, creating, 187

battery state, monitoring, 560 - 562

beginTrackingWithTouch:withEvent:, 73

Bezier paths, creating smooth with

Catmull-Rom splining, 23 - 25

bitmap alpha levels, testing, touches

against, 18 - 19

bitmaps, testing against, 17 - 19

blocks

alerts, 105 - 107

creating blocks-based alerts,
108 - 110

building animations, 166 - 167

retain cycles, 107 - 108

blocks-based alerts, 108 - 110

book properties, page view controllers,

294 - 295

border style, 227

bottomLayoutGuide, 270

bouncing, views, 172 - 174

bounds, 152

boxed expressions, 606

enums, 607

broadcasting, updates, accessibility, 599

built-in type detectors, 257

button responses, animating, 60 - 62

buttons, 53 - 54

adding, to keyboards, 229 - 230

animating button responses, 60 - 62

building, 56 - 60

adding animated elements, 59

adding extra state to buttons,
59 - 60

buttons that toggle on and off,
57 - 58

multiline button text, 59

connecting to actions, 55

Interface Builder, 55

C
calculating

orientation, from accelerometer,
569 - 570

relative angle, 570 - 571

callbacks, views, 142

cameras, UIImagePickerController class,

328

Cancel button, 114

cancelTrackingWithEvent:, 73

canPerformWithActivityItems, 465

caret symbols, 106

Catmull-Rom, 22 - 23

creating smoothed Bezier paths using
Catmull-Rom splining, 23 - 25

cell classes, registering, 355

cells, 354

adding to tables, 369

checked table cells, creating, 362 - 364

custom cells, collection views, 416 - 417

dequeuing, 355 - 356

registering for search display control-
lers, 383

reordering, 369

returning in sections, 376 - 377

swiping, 369

table view cells, 360

adding custom selection traits,
361 - 362

selection style, 361

tables, 354

centering views, constraints, 209 - 210

centers, frames, 153

CFBundleURLTypes, 487

ptg12441863

615code

code

accessory views and stored state,
363 - 364

accumulating user tracings for a com-
posite drawing, 27 - 29

activity view controller, 463 - 464

adapting table edits to Core Data,
510 - 514

adding action drawers to tables,
392 - 394

adding custom buttons to keyboards,
229 - 230

adding gestures to collection view lay-
outs, 432 - 433

adding keyboard input to nontext
views, 241 - 243

adding menus to interactive views,
46 - 47

adding motion effects, 85

adding UIViewAnimation blocks to
controls, 60 - 61

adding undo support and persistence
to text views, 246 - 248

adding universal support for split view
alternatives, 284 - 285

animating transitions with Core
Animation, 172

animating transparency changes to a
view's alpha property, 167 - 168

application activities, 466 - 469

automatically copying text to the
pasteboard, 454

background transfers, 545

basic collection view controller with
flow layout, 412 - 416

basic navigation drilling, 272 - 273

basic popovers, 125 - 126

basic size constraints, 207 - 208

bouncing views, 172 - 174

building a basic table, 358 - 360

CGAffineTransform, 159

CGPoint, 148

CGRect, 147

CGRectApplyAffineTransform, 148

CGRectDivide(), 148

CGRectEqualToRect, 148

CGRectFromString(aString), 147

CGRectGetMidX, 147

CGRectInset(aRect, xinset, yinset), 147

CGRectIntersectsRect, 148

CGRectOffset, 147

CGRects, 148

frames, 153

CGRectZero, 148

CGSize, 148

checked table cells, creating, 362 - 364

checking

for available disk space, 588

network status, 521 - 524

chevrons, 364

child view controllers, adding/removing,

304

circle layout, collection views, 425 - 426

creation and deletion animation, 426

powering, 426 - 427

circles

detecting, 29 - 34

laying out views in, 428 - 431

circular hit tests, 17

Clang specification, number literals, 606

classes, gesture recognizer subclasses,

35 - 36

clear button, 227

clipsToBounds flag, 152

ptg12441863

616 code

building a custom color control, 74 - 76

building a discrete-valued star slider,
76 - 79

building a draggable ribbon control,
86 - 88

building a pull-to-refresh into your
tables, 390

building a sectioned table with Core
Data, 503 - 505

building a touch wheel control, 80 - 82

building a UIButton that toggles on
and off, 57 - 58

building detail and master view for a
split view controller, 280 - 283

building dynamic slider thumbs, 64 - 67

centering views with constraints,
209 - 210

combining multiple view changes in
animation blocks, 168 - 169

comparing constraints, 202 - 203

constrained movement, 15

constraint macros, 219 - 221

Core Data collection view, 516 - 519

creating a custom input controller for a
nontext view, 244 - 245

creating a custom input view, 238 - 240

creating a custom view controller
segue, 311 - 314

creating a dedicated keyboard spacer,
233 - 234

creating a draggable view, 6 - 7

creating a gesture recognizer subclass,
35 - 36

creating a lock control, 89 - 91

creating a page view controller wrap-
per, 298 - 303

creating a segmented control subclass
that responds to a second tap, 70

creating a tab bar view controller,
287 - 290

creating a touch feedback overlay view,
43 - 45

creating a view controller container,
306 - 308

creating aspect ratio constraints,
210 - 211

creating blocks-based alerts, 108 - 110

creating smoothed Bezier paths using
Catmull-Rom splining, 23 - 25

creating the illusion of a repeating cyl-
inder, 398 - 400

creating toolbars in code, 97 - 98

custom alert, 121 - 124

custom collection view cell menus,
441 - 442

custom collection view cells, 417

customizing the target content offset,
424 - 425

describing constraints, 216 - 218

detecting circles, 31 - 33

detecting text patterns using predicates
and regular expressions, 258 - 259

to-do list view hierarchy, 137

document interaction controllers,
477 - 480

downloads with feedback, 535 - 542

dragging items out of scroll views,
38 - 40

editing tables, 370 - 373

enhanced text editor, 251 - 252

extending device information gather-
ing, 563 - 564

extracting a view hierarchy tree, 138

grid layout customization, 434 - 439

handling acceleration events, 567 - 568

handling incoming documents,
483 - 486

horizontal scroller collection view,
419 - 421

image gallery viewer, 94 - 95

ptg12441863

617code

storing tab state to user defaults,
291 - 293

subview utility functions, 140 - 141

supporting a table with sections,
379 - 380

testing conformance, 450 - 451

testing a network connection, 523 - 524

testing touches against bitmap alpha
levels, 18 - 19

tilt scroller, 576 - 578

touch-based painting in a UIView,
21 - 22

trimming video with AV Foundation,
338 - 339

UIViewFrame geometry category,
154 - 157

updating view constraints, 213 - 214

using a kqueue file monitor, 458 - 460

using a pan gesture recognizer to drag
views, 8 - 9

using a variadic method for
UIAlertView creation, 111

using device motion updates to fix an
image in space, 578 - 579

using fetch requests with predicates,
505 - 508

using search features, 386 - 387

using the done key to dismiss a text
field keyboard, 227 - 228

using the video editor controller,
340 - 341

using transitions with UIView anima-
tions, 170

using UIImageView animation, 176

utilizing text-to-speech in iOS 7,
601 - 602

video playback, 335 - 336

VIDEOkit, 584 - 587

XMLParser helper class, 552 - 553

interactive layout effects, 423 - 424

JSON data, 547 - 548

key frame animation, 175

laying out views in a circle, 428 - 431

monitoring connectivity changes,
525 - 526

monitoring proximity and battery,
561 - 562

naming views, 145

playing sounds, alerts, and vibrations
using audio services, 132 - 133

posting social updates, 348 - 349

presenting and dismissing a modal
controller, 276 - 278

presenting and hiding a custom alert
overlay, 118 - 119

programmatically updating accessibility
information, 592

providing a circular hit test, 17

providing URL scheme support,
488 - 489

pull controls, testing touches, 85 - 88

quick look, 472 - 473

recognizing gestures in parallel, 10 - 12

recording video, 332 - 333

recovering file system size and file sys-
tem free size, 588

retrieving transform values, 160 - 164

scheduling local notifications, 127 - 128

searching for misspellings, 260 - 261

selecting images, 323 - 326

sending images by e-mail, 343 - 344

sending texts, 345 - 346

simple downloads, 530 - 533

sliding an onscreen object based on
accelerometer feedback, 573 - 575

snapping pictures, 329 - 330

spell checker protocol, 261

ptg12441863

618 collection views

collection views, 403 , 405 - 406

adding gestures to layout, 431 - 433

circle layout, 425 - 426

creation and deletion animation,
426

powering, 426 - 427

controllers, 406

Core Data, 514 - 519

custom cells, 416 - 417

data sources, 407

delegates, 407

flow layouts, 407 , 412 - 416

header and footer sizing, 410

insets, 410

item size and line spacing, 408

scroll direction, 407

grid layouts, creating, 433 - 439

interactive layout effects, 422 - 424

item menus, 440 - 442

scroll snapping, 424 - 425

scrolling horizontal lists, 418 - 421

versus tables, 403 - 405

views, 406 - 407

colorWithPatternImage: method, 165

common keys, 559

common types, storing, on pasteboards,

452 - 453

comparing constraints, 201 - 203

composite drawings, accumulating user

tracings, 27 - 29

composition view controller, 347 - 349

compression resistance, 185

configurations, URL Loading System, 527

conformance, testing, 450 - 451

conformance lists, retrieving, 449 - 451

conformance trees, UTIs (Uniform Type

Identifiers), 446

connecting buttons, to actions, 55

connections, format strings, 191 - 193

connectivity changes

monitoring, 525 - 526

scanning for, 524 - 526

constrained movement, code, 15

constraining

movement, 14 - 15

sizes, constraints, 206

constrainPosition:, 206

constraint multipliers, 210

constraints, 179 - 180

aligning views and flexible sizing, 198

animating, 203

aspect ratio, 210 - 211

attributes, 180 - 181

Auto Layout, 183

centering views, 209 - 210

comparing, 201 - 203

constraining size, 206

creating, 186

basic constraint declarations, 187

fixed-size constrained views, 204

variable bindings, 188 - 189

visual format constraints, 187 - 188

debugging, 214 - 215

describing, 215 - 218

disabling autoresizing constraints,
204 - 205

fixed-size constrained views, 206 - 208

format strings, 189 , 196 - 197

connections, 191 - 193

orientation, 189 - 191

frames, 184

alignment rectangles, 185 - 186

intrinsic content size, 184 - 185

laws of, 182 - 184

macros, 218 - 221

managing, 199 - 201

ptg12441863

619Core Animation transitions

navigation controllers. See navigation
controllers

Quick Look preview controller. See
Quick Look preview controller

Social framework, 347 - 349

video editor controller, 340 - 341

controlling attributes, 249

controls

attributes and, 69 - 70

building, custom color controls, 74 - 76

buttons. See buttons

creating, UIControl class, 73

custom lock controls, building, 88 - 92

draggable ribbon controls, building,
86 - 88

image picker controllers, selecting
images, 323 - 326

lock controls, creating, 89 - 91

motion effects, adding, 85

page indicator controls, adding, 92

pull controls

creating, 83

discoverability, 84 - 85

sliders, adding, 62 - 67

star sliders, building, 76 - 79

steppers, 70 - 72

switches, 70 - 72

touch wheels, building, 79 - 82

twice-tappable segmented controls, cre-
ating, 67 - 70

UIControl class, 49 - 50

control events, 51 - 53

target-actions, 49 - 50

converting XML into trees, 549 - 551

coordinate systems, view geometry,

149 - 150

copying text to pasteboards, 454

Core Animation transitions, 170 - 172

math, 181

orientation changes, 212 - 214

predicates, 194 - 195

metrics, 195 - 196

priorities, 196

view-to-view predicates, 196

priorities, 182

processing, 198 - 199

starting within view bounds, 205

updating, 213 - 214

Contact Add button, 54

container literals, 607 - 608

containers, custom containers, 303

adding/removing child view control-
lers, 304

content hugging, 185

contentMode property, 152

contentViewController property, 266

contexts, creating (Core Data), 494 - 495

continueTrackingWithTouch:withEvent:, 73

control events, UIControl class, 51 - 53

controllers

activity view controller. See activity
view controller

collection views, 406

composition view controller, 347 - 349

document interaction controller. See
document interaction controller

image picker controllers

adding photos to simulators, 319

assets library module, 319 - 320

delegate callbacks, 321 - 322

image sources, 317 - 318

iPhone/iPad, 318

presenting pickers, 320 - 321

Media Player, 333 - 336

Message UI framework, 341 - 344

ptg12441863

620 Core Data

Core Data, 491

adding data, 495 - 496

adding edits to table views, 508 ,
510 - 514

undo/redo support, 508 - 509

undo transactions, 509 - 510

collection views, 514 - 519

contexts, creating, 494 - 495

entities, 492

attributes and relationships, 493

building model files, 492 - 493

building object classes, 494

examining, data files, 497 - 498

model files, building, 492 - 493

models, 492

querying database, 498

fetch requests, 499

removing, objects, 500 - 501

search tables, 505 - 508

table data sources, 501

index path access, 501

index titles, 502

section groups, 502

section key paths, 502

table readiness, 502 - 503

Core Data querying database, performing

fetch requests, 499 - 500

Core Graphics, 62 - 64

Core Media, AV Foundation, 337 - 338

Core Motion, 565

monitoring accelerometer, 566

testing, sensors, 565 - 566

counting sections and rows, 375 - 376

creation animation, circle layout (collection

views), 426

curls, modal presentations, 274

current context style, 275

custom accessory views, dismissing text

views, 228 - 230

custom alert overlays, 118 - 119

custom buttons, adding to keyboards,

229 - 230

custom cells, collection views, 416 - 417

custom color controls, building, 74 - 76

custom containers, 303

adding/removing child view control-
lers, 304

custom document types, creating, 481 - 482

custom gesture recognizers, creating,

34 - 36

custom group tables, 395

custom input view, creating, 235 - 240

custom input views to nontext views, add-

ing to nontext views, 243

custom lock controls, building, 88 - 92

custom modal alert view, 119 - 120

frosted glass effect, 120 - 124

custom modal information view, 275 - 278

custom presentation style, 275

custom selection traits, adding to table

view cells, 361 - 362

custom view controller segues, creating,

311 - 314

customizing

grids, collection views, 434 - 439

headers and footers, sections, 377 - 378

sliders, 62 - 64

target content offsets, collection views,
424 - 425

D
data

adding (Core Data), 495 - 496

retrieving from system pasteboards, 453

storing on pasteboards, 452

ptg12441863

621devices

describing constraints, 215 - 218

Deselect button, 356

Detail Disclosure button, 53

detail views, split view controllers, 280 - 283

DetailViewController class, 280

detecting

circles, 29 - 34

misspelling in UITextView, 260 - 261

retina support, 562 - 563

screens, 582

shakes, using motion events, 579 - 581

text patterns, 255

built-in type detectors, 257

data detectors, 257

enumerating regular expressions,
256 - 257

expressions, 255 - 256

predicates and regular expressions,
258 - 259

device capability restrictions, adding,

556 - 557

device information

accessing, 555 - 556

recovering, 563 - 564

devices

accelerometer-based scroll view,
575 - 578

attitude, 578 - 579

battery state, 560 - 562

calculating relative angle, 570 - 571

checking for available disk space, 588

common keys, 559

detecting

retina support, 562 - 563

screens, 582

external screens, 581

adding display links, 583

overscanning compensation, 583

data detectors, 257

built-in type detectors, 257

data files, examining (Core Data), 497 - 498

data source methods

multiwheel tables, 397

tables, 357 - 358

data sources

assigning to tables, 354

collection views, 407

tables, 352

databases (Core Data), querying, 498

fetch requests, 499 - 500

dataSource property, 354

date pickers, creating, 400

debugging constraints, 214 - 215

declaring

alignment rectangles, 186

document support, 480 - 481

creating custom document types,
481 - 482

schemes, URL-based services, 487

delays, audio alerts, 131

delegate callbacks, image picker control-

lers, 321 - 322

delegate methods

multiwheel tables, 397

searching tables, 385

delegates, 352

alerts, 103 - 104

assigning, 356

collection views, 407

sections, 379

table views, 352 - 353

delete requests, table edits, 369

deletion animation, circle layout (collection

views), 426

dequeuing cells, 355 - 356

ptg12441863

622 devices

retrieving screen resolutions, 582

video out, 583

VIDEOkit, 584 - 587

moving onscreen objects, with accel-
eration, 571 - 575

orientation, 568 - 569

proximity sensors, 559 - 560

required device capabilities, 557-558

tracking, users, 587 - 588

user permissions, 558

diacritics, 381

didAddSubview:, 142

didMoveToSuperview:, 142

didMoveToWindow, 142

direct manipulation

adding interfaces, 5 - 7

multiple gesture recognizers, using
simultaneously, 9 - 13

pan gesture recognizers, adding, 7 - 9

touches, 1 - 2

drawing onscreen, 20 - 22

gesture recognizers, 4 - 5

Multi-Touch, 4 , 26 - 29

phases, 2 - 3

responder methods, 3 - 4

testing, 15 - 17

views, 4

disabling autoresizing constraints, 204 - 205

disclosure accessories, table views,

364 - 366

discoverability, pull controls, 84 - 85

disk space, checking for available disk

space, 588

dismissing

text views with custom accessory views,
228 - 230

UITextField keyboard, 224 - 225

text trait properties, 225 - 228

dispatching events, UIControl class, 73 - 74

display links, adding, 583

display traits, 164 - 165

displaying

alerts, 104 - 105

images, image picker controllers, 328

remove controls, table edits, 368

text, in action sheets, 114 - 115

disposing of system sounds, 132

document interaction controller, 473 - 474

checking, for open menu, 476 - 477

code for, 477 - 480

creating instances, 475

properties, 475 - 476

providing Quick Look support, 476

document support

declaring, 480 - 481

creating custom document types,
481 - 482

implementing, 483

document types, creating, 481 - 482

documents

document interaction controller. See
document interaction controller

handling incoming, 483 - 486

Quick Look preview controller. See
Quick Look preview controller

scanning for, 456 - 457

Documents folder, monitoring, 454 - 455

file sharing, 455

scanning for new documents, 456 - 457

user control, 455 - 456

Xcode, 456

double-tap gesture, 440

doubleSided property, 294

ptg12441863

623flexible sizing

excluding activities, 470

exclusive touch, views, 4

expressions

detecting text patterns, 255 - 256

enumerating, 256 - 257

regular expressions, resources for, 258

extensions, UTIs (Uniform Type Identifiers),

447 - 448

external screens, 581

adding display links, 583

detecting, 582

overscanning compensation, 583

retrieving, screen resolutions, 582

video out, 583

VIDEOkit, 584 - 587

extracting view hierarchy trees, 138

F
fades, modal presentations, 274

fading in and out, views, 167 - 168

feature tests, 609

feedback

downloads, 533 - 542

second-tap feedback, 68

fetch requests

Core Data, 499

performing, Core Data, 499 - 500

predicates, 505 - 508

file sharing

Documents folder, 455

Xcode, 456

filtering, text entry, 252 - 255

finding views with tags, 143

fixed-size constrained views, 206 - 208

creating, 204

flexible sizing, aligning with constraints,

198

downloads

with feedback, 533 - 542

running, 543

simple downloads, 528 - 533

draggable ribbon controls, building, 86 - 88

draggable views, creating, 6 - 7

dragging, from scroll view, 37 - 40

DragView, 6

drawing touches, onscreen, 20 - 22

drawings

composite drawings, accumulating user
tracings, 27 - 29

smoothing, 22 - 25

dynamic sliders, building, 64 - 67

Dynamic Type, 602 - 604

Dynamics, 120

E
e-mailing pictures, Message UI framework,

341 - 344

edge-to-edge layout, navigation controllers,

269 - 271

editing video, 336 - 341

efficiency, adding to sliders, 64

enablesReturnKeyAutomatically, 226

endTrackingWithTouch:withEvent:, 73

entities, Core Data, 492

attributes and relationships, 493

building model files, 492 - 493

building object classes, 494

Entity editor, 493

enumerating regular expressions, 256 - 257

enums, 607

establishMotionManager, 572

events, dispatching (UIControl class), 73 - 74

examining, data files (Core Data), 497 - 498

exceptions, 608

ptg12441863

624 flipping

flipping, views, 169 - 170

flips, modal presentations, 274

flow layouts, collection views, 407 ,

412 - 416

header and footer sizing, 410

insets, 410

item size and line spacing, 408

scroll direction, 407

footer sizing, flow layouts (collection views),

410

footers, customizing in sections, 377 - 378

form sheet style, 275

format strings, 189 , 196 - 198

connections, 191 - 193

orientation, 189 - 191

forwarding touch events, 41 - 43

frames

constraints, 184

alignment rectangles, 185 - 186

intrinsic content size, 184 - 185

view geometry, 147

views, 150 - 151

centers, 153

CGRects, 153

frames views, adjusting sizes, 151 - 152

frosted glass effect, 120 - 124

full-screen presentation, 274

G
geometry, views, 146 , 154 - 157

coordinate systems, 149 - 150

frames, 147

points and sizes, 148

rectangle utility functions, 147 - 148

transforms, 149

gesture recognizer subclasses, creating,

35 - 36

gesture recognizers, 4 - 5

creating custom, 34 - 36

using multiple gesture recognizers
simultaneously, 9 - 13

gestures

adding to layout, collection views,
431 - 433

double-tap gesture, 440

recognizing in parallel, 10 - 12

resolving conflicts, 13

VoiceOver, 600-601

GitHub, xx

gray disclosure indicators, 366

grid layouts, collection views, 433 - 439

grids, customizing (collection views),

434 - 439

grouped preferences tables, creating,

395 - 396

GUIs, navigation controllers, 266

H
handlePan: method, 8

handler method, adding to URL-based ser-

vices, 488

Hartstein, Greg, 428

header sizing, flow layouts (collection

views), 410

header titles, sections, 377

headers, customizing in sections, 377 - 378

hierarchies

view hierarchy trees, recovering,
137 - 139

views, 135 - 137

HIG (Human Interface Guidelines), 53

hints, accessibility, 596

Hollemans, Matthijs, 84

horizontal lists, scrolling (collection views),

418 - 421

ptg12441863

625interactive layout effects

implementing

document support, 483

page view controllers, 295 - 296

Quick Look preview controller, 471 - 472

tables, 356

data source methods, 357 - 358

responding to user touches, 358

TOUCHkit overlay view, 43

undo, table edits, 367

Inbox (iTunes), 456

incoming, documents, handling, 483 - 486

index path access, Core Data (table data

sources), 501

index titles, Core Data (table data sources),

502

indexes

presentation indexes, page view con-
trollers, 297 - 298

search-aware index, 385 - 386

indicators

alert indicators, 128 - 129

badging applications, 129

showing progress, 115

Info Dark button, 53

Info Light button, 53

inheritance, UTIs (Uniform Type Identifiers),

446

input clicks, adding, 243

inputView property, 235

insertSubview:aboveSubview:, 141

insertSubview:atIndex:, 141

insertSubview:belowSubview:, 141

insets, flow layouts, collection views, 410

instances, creating for document interac-

tion controllers, 475

interaction traits, 164 - 165

interactive layout effects, collection views,

422 - 424

Hosgrove, Alex, 37

Human Interface Guidelines (HIG), 53

I
IB (Interface Builder)

accessibility, 592

segues, 314

IB Identity Inspector, accessibility, 592

icons, document interaction controller, 475

identifierForVendor property, 588

image gallery viewer, 93 - 95

image picker controllers, 317

adding photos to simulators, 319

assets library module, 319 - 320

delegate callbacks, 321 - 322

displaying images, 328

image sources, 317 - 318

iPhone/iPad, 318

presenting pickers, 320 - 321

recording video, 331 - 333

saving images, 329

selecting images, 323 - 326

snapping photos, 326 - 330

video

editing, 336 - 339

picking and editing, 339 - 341

recording, 332 - 333

saving, 332

image sources, image picker controllers,

317 - 318

image view animations, 176

imageData, 514

images

displaying, image picker controllers,
328

saving, image picker controllers, 329

selecting, image picker controllers,
323 - 326

ptg12441863

626 intercepting touch events

intercepting touch events, 41 - 43

Interface Builder, 355

buttons, 55

naming views, 144 - 145

interfaces, adding simple direct manipula-

tion interfaces, 5 - 7

internationalizing applications, constraint

attributes, 180

intrinsic content size, frames, constraints,

184 - 185

iOS tables, 351 - 352

testing accessibility, 599 - 601

iPad, image picker controllers, 318

iPhone, image picker controllers, 318

iPhone-style navigation controllers, 267

item menus, collection views, 440 - 442

item providers, activity view controller, 462

item size, flow layouts, collection views,

408

item source callbacks, activity view control-

ler, 462 - 463

items, activity view controller, 469-470

J-K
JSON serialization, 546 - 548

key frame animations, views, 174 - 175

keyboard dismissal, preventing, 225

keyboardAppearance, 226

keyboards

adding custom buttons to, 229 - 230

adding input to nontext views, 241 - 243

adjusting views, 230 - 234

creating dedicated keyboard spacers,
233 - 234

keyboardType, 226

kqueue file monitor, 458 - 460

kSCNetworkReachabilityFlagsConnection-

OnTraffic, 522

kSCNetworkReachabilityFlagsIsDirect, 522

kSCNetworkReachabilityFlagsIsWWAN, 522

kUTTypeConformsToKey, 449

kUTTypeDescriptionKey, 449

kUTTypeIdentifierKey, 449

kUTTypeTagSpecificationKey, 449

L
labels, accessibility, 595 - 596

laws of constraints, 182 - 184

laying out views in circles, 428 - 431

line spacing, flow layouts (collection views),

408

List Items, 465

lists of options, alerts, 112 - 114

literals, 605

array literals, 608

boxed expressions, 606

enums, 607

container literals, 607 - 608

feature tests, 609

number literals, 605 - 606

subscripting, 608

local notifications, 126 - 127

best practices, 127 - 128

scheduling, 127 - 128

lock controls, creating, 89 - 91

long presses, 5

M
macros

constraints, 218 - 221

navigation item class, 272

managing, constraints, 199 - 201

master view controller, 280

master views, split view controllers,

280 - 283

ptg12441863

627naming views

Model-View-Controller (MVC), 352

models, Core Data, 492

modules for system frameworks, audio

alerts, 130

monitoring

acceleration, 566 - 568

battery state, 560 - 562

connectivity changes, 525 - 526

Documents folder, 454 - 455

file sharing, 455

scanning for new documents,
456 - 457

user control, 455 - 456

Xcode, 456

motion effects, adding, 85

motion events, detecting shakes, 579 - 581

movement, constraining, 14 - 15

moving

onscreen objects with acceleration,
571 - 575

UTIs (Uniform Type Identifiers) to
extensions or MIME types, 447 - 448

Multi-Touch, 4 , 26 - 29

multiline button text, 59

multiple gesture recognizers, using simulta-

neously, 9 - 13

multiwheel tables, 396 - 397

data source and delegate methods, 397

picker views, 397 - 398

UIPickerView, 397

MVC (Model-View-Controller), 352 , 491

myView.alpha property, 164

N
name, 556

document interaction controller, 475

naming views

in Interface Builder, 144 - 145

by object association, 143 - 144

math, constraints, 181

Media Player, playing video, 333 - 336

menu support, item menus, 440

menus, 112

adding to views, 45 - 47

scrolling, 114

showFromBarButtonItem:animated,
112

showFromRect:inView:animated, 112

showFromTabBar, 112

showFromToolBar, 112

showInView, 112

message contents, creating, 342 - 343

Message UI framework, e-mailing pictures,

341 - 344

metrics, predicates, 195 - 196

metrics dictionary, 188

MFMessageComposeViewController-

Delegate protocol, 344

MIME helper, UTIs (Uniform Type

Identifiers), 448

MIME type

message contents, 342 - 343

UTIs (Uniform Type Identifiers),
447 - 448

minwidth, 196

mismatches, sections, 378 - 379

misspelling in UITextView, detecting,

260 - 261

modal controllers, code, 276 - 278

modal presentations

custom modal information view,
275 - 278

navigation controllers, 273 - 275

modal progress overlays, 117 - 119

modalPresentationStyle property, 274 - 275

model, 556

model files, building (Core Data), 492 - 493

ptg12441863

628 navigation apps

navigation apps, creating, 283 - 285

navigation controllers, 264 - 265

bar buttons, 269

custom containers, 303

adding/removing child view con-
trollers, 304

edge-to-edge layout, 269 - 271

modal presentations, 273 - 275

custom modal information view,
275 - 278

navigation drilling, 272 - 273

navigation item class, 271

macros, 272

titles and back buttons, 271

page view controllers, 265 , 293 ,
296 - 297

book properties, 294 - 295

implementing, 295 - 296

presentation indexes, 297 - 298

popover controllers, 266

segues, 309 - 314

split view controllers, 265

creating, 278 - 283

split views, 266 - 267

stacks, 268

tab bar controllers, 286 - 290

tab state, 290 - 293

universal split view/navigation apps,
creating, 283 - 285

view controllers

pushing and popping, 268 - 269

transitioning between, 304 - 308

navigation item class, 271

macros, 272

titles and back buttons, 271

navigationOrientation property, 295

network connections, testing, 523 - 524

network status, checking, 521 - 524

network timeouts, 527

networkAvailable method, 522

nontext views, adding custom input views,

243

notifications, local notifications, 126 - 127

best practices, 127 - 128

NSAttributedString, 469

NSDataDetector class, 257

NSDictionary, 469

NSDictionaryOfVariableBindings() macro,

189

NSEntityDescription, 495

NSFontAttributeName, 70

NSForegroundColorAttributeName, 70

NSJSONSerialization, 546

NSNotFound, 262

NSNumber, 605 - 606

NSOperationQueue, 522

NSProgress, 534

NSRegularExpression class, 256

NSShadowAttributeName, 70

NSSQLiteStoreType, 495

NSString, 469

NSStringFromCGRect, 147

NSUnderlineStyleAttribute Name, 70

NSURL, 469

NSURLSession, 528

NSURLSessionConfiguration object, 527

NSURLSessionDownloadTask, 543

NSURLSessionTask, 527

number literals, 605 - 606

numberOfSectionsInTableView, 357 , 375 ,

395

O
object association, naming views, 143 - 144

object classes, building (Core Data), 494

objects, removing (Core Data), 500 - 501

ptg12441863

629progress

onscreen objects, moving with acceleration,

571 - 575

Open in options, 476 - 477

open menus, checking for in document

interaction controller, 476 - 477

open-source llamasettings project, 396

orientation

calculating, from accelerometer,
569 - 570

devices, 568 - 569

format strings, 189 - 191

orientation changes, constraints, 212 - 214

overlays

modal progress overlays, 117 - 119

tappable overlays, 119

overscanning compensation, 583

P
page indicator controls, adding, 92

page sheet style, 274

page view controllers, 265 , 293 , 296 - 297

book properties, 294 - 295

implementing, 295 - 296

presentation indexes, 297 - 298

wrappers, creating, 298 - 303

pan gesture recognizers, adding, 7 - 9

pans, 5

parse trees, building, 551 - 553

pasteboards. See system pasteboards

performing fetch requests, Core Data,

499 - 500

permissions, user permissions, 558

persistence, adding to text views, 246 - 248

phases, touches, 2 - 3

photos

adding to simulators, 319

snapping, image picker controllers,
326 - 330

picker views, multiwheel tables, 397 - 398

pickers, presentation indexes (image picker

controllers), 320 - 321

picking video, 339 - 341

pictures, e-mailing (Message UI frame-

work), 341 - 344

pinches, 5

placeholders, 226

playing video with Media Player, 333 - 336

points, view geometry, 148

popover controllers, 266

popoverArrowDirection property, 125

popovers, 124 - 126

posting social updates, 347 - 349

powering, circle layout (collection views),

426 - 427

predicates, 194 - 195

detecting data patterns, 258 - 259

fetch requests, 505 - 508

metrics, 195 - 196

priorities, 196

view-to-view predicates, 196

prepareWithActivityItems, 465

presentation indexes, page view controllers,

297 - 298

presenting

activity view controller, 461

pickers, image picker controllers,
320 - 321

preventing keyboard dismissal, 225

priorities

constraints, 182

predicates, 196

processing constraints, 198 - 199

progress, showing, 115

UIActivityIndicatorView, 116

UIProgressView, 116

ptg12441863

630 properties

properties

accessoryType property, 363

document interaction controller,
475 - 476

inputView property, 235

scrollDirection property, 407

text trait properties, 225 - 228

transforms, retrieving, 158 - 159

providing

Quick Look support, document interac-
tion controller, 476

URL scheme support, 488 - 489

proximity sensors, devices, 559 - 560

pull controls

creating, 83

discoverability, 84 - 85

testing, touches, 85 - 88

pull-to-refresh, adding to tables, 387 - 390

pushing view controllers, 268 - 269

Q
QLPreviewController, 349

querying

databases (Core Data), 498

fetch requests, 499

performing fetch requests, 499 - 500

subviews, 139 - 141

Quick Look, providing support for document

interaction controllers, 476

Quick Look preview controller, 470 - 471

code, 472 - 473

implementing, 471 - 472

R
reachabilityChanged, 524

recording video, image picker controllers,

331 - 333

recovering

device information, 563 - 564

view hierarchy trees, 137 - 139

rectangle utility functions, view geometry,

147 - 148

refresh controls, activating, 388

registering

cell classes, 355

cells for search display controllers, 383

regular expressions

detecting data patterns, 258 - 259

resources for, 258

relationships, Core Data, 493

relative angle, calculating, 570 - 571

remove controls, displaying in table edits,

368

removing

child view controllers, 304

objects, Core Data, 500 - 501

subviews, 141 - 142

reordering

cells, 369

subviews, 141 - 142

repeating cylinders, creating illusion of,

398 - 400

resolving, gesture conflicts, 13

resources for regular expressions, 258

responder methods, touches, 3 - 4

responders, text editors, 250

responding to user touches, 358

restrictions, adding device capability restric-

tions, 556 - 557

retain cycles, blocks, 107 - 108

retina support, detecting, 562 - 563

retrieving

conformance lists, UTIs (Uniform Type
Identifiers), 449 - 451

data, system pasteboards, 453

ptg12441863

631sectionIndexTitlesForTableView

device attitude, 578 - 579

screen resolutions, 582

transform information, 158

properties, 158 - 159

testing for view intersection,
159 - 164

returning cells, sections, 376 - 377

returnKeyType, 226

root view controllers, 268

rotations, 5

rows, counting, 375 - 376

running downloads, 543

S
saving

images, image picker controllers, 329

video, image picker controllers, 332

scanning

for connectivity changes, 524 - 526

for new documents, 456 - 457

scheduling, local notifications, 127 - 128

schemes

declaring, URL-based services, 487

URL scheme support, providing,
488 - 489

SCNetworkReachabilityGetFlags, 522

screen resolutions, retrieving, 582

screens

detecting, 582

external screens, 581

adding display links, 583

overscanning compensation, 583

retrieving screen resolutions, 582

video out, 583

VIDEOkit, 584 - 587

scroll direction, flow layouts (collection

views), 407

scroll snapping, collection views, 424 - 425

scroll view, dragging from, 37 - 40

scrollDirection property, 407

scrolling

horizontal lists, collection views,
418 - 421

menus, 114

search-aware index, 385 - 386

search bars, 381

search display controllers

creating, 382 - 383

registering cells, 383

search features, 386 - 387

search tables, Core Data, 505 - 508

searchable data source methods, building,

383 - 385

searching

tables, 381

building searchable data source
methods, 383 - 385

creating search display controllers,
382 - 383

delegate methods, 385

registering cells for the search dis-
play controller, 383

search-aware index, 385 - 386

for text strings, 262

second-tap feedback, 68

section groups, Core Data (table data

sources), 502

section index, creating, 378

section key paths, Core Data (table data

sources), 502

sectioned tables, creating with Core Data,

503 - 505

sectionIndexTitlesForTableView, 378

ptg12441863

632 sections

sections, 374

counting, 375 - 376

creating, 374 - 375

section index, 378

customizing headers and footers,
377 - 378

delegates, 379

header titles, 377

mismatches, 378 - 379

returning cells, 376 - 377

supporting tables with sections, code,
379 - 380

secureTextEntry, 226

segmented control subclasses, second

taps, 70

segues, 309 - 314

IB, 314

selecting images, image picker controllers,

323 - 326

selection style, table view cells, 361

sending

text messages, 344 - 346

texts, 345 - 346

sensor data, accessing, 566

sensors

proximity sensors, devices, 559 - 560

testing, Core Motion, 565 - 566

services, adding (activity view controller),

464 - 465

setBarButtonItems method, 367

shakes, detecting using motion events,

579 - 581

sharing data, system pasteboards, 451 - 452

showFromRect:inView:animated, 112

showFromTabBar, 112

showFromToolBar, 112

showing progress, 115

UIActivityIndicatorView, 116

UIProgressView, 116

showInView, 112

shutDownMotionManager, 572

simple alerts, building, 101 - 102

simple downloads, 528 - 533

simulators

adding photos to, 319

testing, accessibility, 597 - 598

sizes

adjusting frames, 151 - 152

constraining, constraints, 206

view geometry, 148

sliders

adding, 62 - 67

building, 64 - 67

customizing, 62 - 64

efficiency, adding, 64

star sliders, building, 76 - 79

slides, modal presentations, 274

smoothing, drawings, 22 - 25

snapping photos, image picker controllers,

326 - 330

Social framework, 347 - 349

social updates, posting, 347 - 349

speech synthesis, 600 - 601

spell checker protocol, 261

spellCheckingType, 225

spineLocation property, 294

splining, Catmull-Rom (creating smoothed

Bezier paths), 23 - 25

split view alternatives, adding universal

support for, 284 - 285

split view controllers, 265

creating, 278 - 283

detail views, 280 - 283

master views, 280 - 283

split views, navigation controllers, 266 - 267

stacks, navigation controllers, 268

ptg12441863

633table view cells

star sliders, building, 76 - 79

starting within view bounds, constraints,

within view bounds, 205

steppers, 70 - 72

stored state, 363 - 364

storing

common types, on pasteboards,
452 - 453

data, system pasteboards, 452

tab states to user defaults, 291 - 293

storyboard views, XIB, 139

storyboards, 314

styles, table styles, 353

subclassing, UIControl class, 72 - 76

subscripting, 608

subview utility functions, 140 - 141

subviews, 135

adding, 141

querying, 139 - 141

removing, 141 - 142

reordering, 141 - 142

subviews property, 139

suffixes, for number literals, 606

swapping views, 168 - 169

swipes, 5

swiping cells, 369

switches, 70 - 72

sysctl(), 563

sysctlbyname(), 563

System button, 54

System Configuration framework, 522

system pasteboards

accessing, 451 - 452

copying text to, 454

retrieving data, 453

storing

common types, 452 - 453

data, 452

updating, 453 - 454

system sounds, 129 - 130

disposing of, 132

systemName, 555

systemVersion, 555

T
tab bar controllers, 265 , 286 - 290

creating, 287 - 290

tab state, 290 - 293

storing to user default, 291 - 293

table data sources, Core Data, 501

index path access, 501

index titles, 502

section groups, 502

section key paths, 502

table readiness, 502 - 503

table edits, 366 - 367

adding

cells, 369

undo support, 367

code, 370 - 373

delete requests, 369

displaying remove controls, 368

implementing undo, 367

reordering cells, 369

swiping cells, 369

table readiness, Core Data (table data

sources), 502 - 503

table styles, 353

table view cells, 360

accessibility, 593

adding custom selection traits, 361 - 362

selection style, 361

ptg12441863

634 table views

table views, 353 - 354

Core Data, 508

delegates, 352 - 353

iOS tables, 351 - 352

sections. See sections

table views disclosure accessories, 364 - 366

tables

adding

action rows, 390 - 394

pull-to-refresh, 387 - 390

versus collection views, 403 - 405

Core Data

table views, 510 - 514

undo/redo support, 508 - 509

undo transactions, 509 - 510

creating, 353

assigning data sources, 354

assigning delegates, 356

building basic tables, 358 - 360

cells, 354

dequeuing cells, 355 - 356

registering cell classes, 355

table styles, 353

views, 353 - 354

creating checked table cells, 362 - 364

custom group tables, 395

Deselect button, 356

grouped preferences tables, creating,
395 - 396

implementing, 356

data source methods, 357 - 358

responding to user touches, 358

iOS tables, 351 - 352

multiwheel tables, 396 - 397

data source and delegate methods,
397

picker views, 397 - 398

UIPickerView, 397

search tables, Core Data, 505 - 508

searching, 381

building searchable data source
methods, 383 - 385

creating search display controllers,
382 - 383

delegate methods, 385

registering cells for the search dis-
play controller, 383

search-aware index, 385 - 386

section tables, creating with Core Data,
503 - 505

table view cells, 360

adding custom selection traits,
361 - 362

selection style, 361

UIDatePicker, 400

creating, 400

tableView:cellForRowAtIndexPath:, 358 ,

395

tableView:didSelectRowAtIndexPath, 395

tableView:heightForRowAtIndexPath, 395

tableView:numberOfRowsInSection:, 357 ,

376 , 395

tableView:titleForHeaderInSection, 395

tagging views, 142 - 143

tags, finding views, 143

tappable overlays, 119

taps, 5

target-actions, UIControl class, 49 - 50

tasks, URL Loading System, 527 - 528

testing

accessibility

on iOS, 599 - 601

with simulators, 597 - 598

background transfers, 544 - 545

against bitmaps, 17 - 19

ptg12441863

635touches

conformance, 450 - 451

UTIs (Uniform Type Identifiers),
448 - 449

network connections, 523 - 524

sensors, Core Motion, 565 - 566

touches, 15 - 17

against bitmap alpha levels, 18 - 19

pull controls, 85 - 88

URLs, 488

for view intersection, transforms,
159 - 164

tests, circular hit tests, 17

text

copying, 454

displaying in action sheets, 114 - 115

text editors

attributed text, 249

attributes, controlling, 249

building, 246 - 248

responders, 250

text entry, 223

adding

custom input views to nontext
views, 243

input clicks, 243

building text editors, 246 - 252

creating, custom input view, 235 - 240

detecting

misspelling in UITextView, 260 - 261

text patterns, 255

dismissing UITextField keyboard,
224 - 225

filtering, 252 - 255

keyboards. See keyboards

text-input-aware views, 240 - 243

text strings, searching for, 262

text-input-aware views, 240 - 243

Text Kit, 223 , 258

text messages, sending, 344 - 346

text patterns, detecting, 255

built-in type detectors, 257

data detectors, 257

enumerating regular expressions,
256 - 257

expressions, 255 - 256

predicates and regular expressions,
258 - 259

text strings, searching for, 262

text trait properties, 225 - 228

text views, 246

dismissing, with custom accessory
views, 228 - 230

persistence, adding, 246 - 248

undo support, adding, 246 - 248

textFieldAtIndex: method, 105

textFieldShouldReturn:, 225

texts, sending, 345 - 346

tintColor property, 269

titles, navigation item class, 271

to-do list view hierarchy, 137

toolbars

building, 96 - 98

creating, code, 97 - 98

topLayoutGuide, 270

touch-based painting, UIView, 21 - 22

touch events, intercepting/forwarding,

41 - 43

touch feedback, 40

enabling, 41

overlay view, creating, 43 - 45

touch events, intercepting/forwarding,
41 - 43

touch wheels, building, 79 - 82

touches, 1 - 2

dragging from scroll view, 37 - 40

drawing, onscreen, 20 - 22

ptg12441863

636 touches

feedback

enabling, 41

intercepting/forwarding, 41 - 43

TOUCHkit overlay view, 43

gesture recognizers, 4 - 5

creating custom, 34 - 36

Multi-Touch, 4 , 26 - 29

phases, 2 - 3

responder methods, 3 - 4

testing, 15 - 17

against bitmap alpha levels, 18 - 19

pull controls, 85 - 88

tracking, UIControl instances, 73

views, 4

touchesBegan:withEvent:, 3

touchesCancelled:WithEvent:, 3

touchesEnded:withEvent:, 3

touchesMoved:withEvent:, 3

TOUCHkit, 40

implementing, 43

TOUCHOverlayWindow class, 41

tracking

touches, UIControl instances, 73

users, 587 - 588

traits, accessibility, 594 - 595

transfers, background transfers, 543 - 544

testing, 544 - 545

web services, 546

transforms

defined, 158

retrieving information, 158

properties, 158 - 159

testing for view intersection,
159 - 164

view geometry, 149

transitioning between view controllers,

304 - 308

transitions

Core Animation transitions, 170 - 172

flipping views, 169 - 170

transitionStyle property, 294

trees, 550 - 551

converting XML into, 549 - 551

parse trees, building, 551 - 553

trimming video with AV Foundation,

338 - 339

twice-tappable segmented controls, creat-

ing, 67 - 70

U
UIAccessibility protocol, 592

UIAccessibilityLayoutChangeNotification,

599

UIAccessibilityPageScrolledNotification, 599

UIAccessibilityTraitAdjustable, 595

UIAccessibilityTraitAllowsDirectInteraction,

595

UIAccessibilityTraitButton, 594

UIAccessibilityTraitCausesPageTurn, 595

UIAccessibilityTraitHeader, 594

UIAccessibilityTraitImage, 594

UIAccessibilityTraitKeyboardKey, 594

UIAccessibilityTraitLink, 594

UIAccessibilityTraitNone, 594

UIAccessibilityTraitNotEnabled, 594

UIAccessibilityTraitPlaysSound, 595

UIAccessibilityTraitSearchField, 594

UIAccessibilityTraitSelected, 594

UIAccessibilityTraitStartsMediaSession, 595

UIAccessibilityTraitStaticText, 594

UIAccessibilityTraitSummaryElement, 595

UIAccessibilityTraitUpdatesFrequently, 595

UIAccessibilityZoomFocusChange, 599

UIActionSheet, 101

UIActionSheet instances, 112

ptg12441863

637UIProgressView

UIActivityIndicatorView, 115

modal view, 117

showing progress, 116

UIActivityItemProvider, 462

UIActivityItemSource, 462

UIAlertView, 101 - 102

variadic methods, 111

UIAlertViewStyleLoginAndPasswordInput,

104

UIAlertViewStylePlainTextInput, 104

UIAlertViewStyleSecureTextInput, 104

UIAppearance protocol, 286

UIAppFonts, 559

UIApplication property, 128

UIApplicationExitsOnSuspend, 559

UIBarButtonItems, 96 - 98

UIBarButtonSystemItemFlexibleSpace, 97

UIButton instances, 53 - 54

UIButtonTypeCustom, 54 , 56

UICollectionView instances, 403

UICollectionViewFlowLayout, 406

UIColor, 469

UIControl class, 49

control events, 51 - 53

dispatching events, 73 - 74

kinds of controls, 50

subclassing, 72 - 76

target-actions, 49 - 50

UIControl event types, 52

UIControl instances, tracking touches, 73

UIControlEventValueChanged, 73

UIDatePicker, 400

creating, 400

UIDevice class, 555 - 556

UIDocumentInteractionController, 473

UIFileSharingEnabled, 559

UIImage, 56 , 469

UIImagePickerController class, cameras,

328

UIImagePickerControllerCropRect, 322

UIImagePickerControllerEditedImage, 322

UIImagePickerControllerMediaMetadata,

322

UIImagePickerControllerMediaType, 322 ,

337

UIImagePickerControllerMediaURL, 337

UIImagePickerControllerOriginalImage, 322

UIImagePickerControllerReferenceURL, 322

UIImagePickerControllers class, 317

UIImagePickerControllerSourceType-

Cameras, 318

UIImagePickerControllerSourceTypePhoto

Library, 317

UIImagePickerControllerSourceTypeSaved-

PhotosAlbum, 317

_UIImagePickerControllerVideoEditingEnd,

337

_UIImagePickerControllerVideoEditingStart,

337

UIImageView, animation, 176

UIKeyInput protocol, 241

UIKit Dynamics, 14

UIModalTransitionStyleCrossDissolve, 274

UIModalTransitionStyleFlipHorizontal, 274

UIModalTransitionStylePartialCurl, 274

UINavigationController, hierarchies, 136

UIPageControl class, 92

UIPasteboard, 451

UIPickerView, 396 , 397

UIPopoverController, 125

UIPrintFormatter, 469

UIPrintInfo, 469

UIPrintPageRenderer, 469

UIProgressView, 115 , 533

showing progress, 116

ptg12441863

638 UIRequiredDeviceCapabilities

UIRequiredDeviceCapabilities, 556

UIRequiresPersistentWifi, 559

UIResponder class, 3

UIScreen, 562 - 563 , 582

UIScrollView instance, 93

UISegmentedControl class, 67

UISlider, 62

UISplitViewController, 264 , 265

UIStatusBarHidden, 559

UIStatusBarStyle, 559

UIStepper class, 71

UISwitch instances, 71

UISwitch object, 71

UITabBarController class, 265

UITabBarControllerDelegate protocol, 290

UITableView delegate method, 352

UITableViewCellAccessoryDetailDisclosure-

Button, 365

UITableViewCellAccessoryDisclosure-

Indicator, 365

UITableViewCellStyleDefault, 360

UITableViewCellStyleSubtitle, 361

UITableViewCellStyleValue1, 360

UITableViewCellStyleValue2, 361

UITableViewControllers, 354

UITextChecker, 261

UITextField keyboard, dismissing, 224 - 225

text trait properties, 225 - 228

UITextView, detecting misspelling, 260 - 261

UITouch objects, 10

UITouchPhaseBegan, 2

UITouchPhaseCancelled, 3

UITouchPhaseEnded, 3

UITouchPhaseMoved, 2

UITouchPhaseStationary, 2

UIView animations, 165 - 166

building with blocks, 166 - 167

transitions, 170

UIView class

adding animation blocks to controls,
60 - 61

touch-based painting, 21 - 22

touches, 2

UIViewContentModeScaleAspectFill mode,

328

UIViewContentModeScaleAspectFit mode,

328

UIViewController class, 269 - 271

view controllers, 264

UIViewFrame geometry category, 154 - 157

undo, implementing in table edits, 367

undo/redo support, Core Data table views,

508 - 509

undo support, adding

to table edits, 367

to text views, 246 - 248

undo transactions, Core Data table views,

509 - 510

Uniform Type Identifiers. See UTIs (Uniform

Type Identifiers)

universal split view/navigation apps, creat-

ing, 283 - 285

updates, broadcasting, accessibility, 599

updateTransformWithOffset: method, 10

updating

system pasteboards, 453 - 454

view constraints, 213 - 214

URL, 475

testing, 488

URL-based services

adding handler method, 488

creating, 486 - 487

declaring schemes, 487

testing URLs, 488

ptg12441863

639views

URL Loading System, 526

configurations, 527

NSURLSession, 528

tasks, 527 - 528

URL scheme support, providing, 488 - 489

user control, Documents folder, 455 - 456

user permissions, 558

user touches, responding to user touches,

358

user tracings, accumulating for composite

drawings, 27 - 29

userInterfaceIdiom, 556

users, tracking, 587 - 588

UTI declarations, 449

UTIs (Uniform Type Identifiers), 445 - 446 ,

475

conformance lists, retrieving, 449 - 451

conformance trees, 446

file extensions, 446 - 447

inheritance, 446

MIME helper, 448

moving to extensions or MIME types,
447 - 448

testing conformance, 448 - 449

UTTypeCopyPreferredTagWithClass(), 447

UUIDs (Universally Unique Identifiers), 588

V
variable bindings, 188 - 189

variadic arguments, alerts, 110 - 111

verbose logging, 180

vibration, 130 - 131

video

editing, 336 - 339

picking and editing, 339 - 341

playing with Media Player, 333 - 336

recording, image picker controllers,
331 - 333

saving, image picker controllers, 332

trimming with AV Foundation, 338 - 339

video editor controller, 340 - 341

video out, external screens, 583

video-recording picker, creating, 331 - 332

VIDEOkit, 584 - 587

view bounds, starting constraints, 205

view controller containers, creating,

306 - 308

view controllers, 263 - 264

navigation controllers, 264 - 265

pushing and popping, 268 - 269

segues, 309 - 314

tab bar controllers, 265

transitioning between, 304 - 308

UIViewController class, 264

view hierarchy trees

extracting, 138

recovering, 137 - 139

view intersection, testing for, 159 - 164

view-to-view predicates, 196

viewDidLoad method, 368 , 391

views

accelerometer-based scroll view,
575 - 578

adding menus to, 45 - 47

adjusting around keyboards, 230 - 234

aligning with constraints, 198

bouncing, 172 - 174

callbacks, 142

centering in constraints, 209 - 210

collection views, 406 - 407

Core Animation transitions, 170 - 172

display traits, 164 - 165

exclusive touch, 4

fading in and out, 167 - 168

finding with tags, 143

flipping, 169 - 170

ptg12441863

640 views

frames, 150 - 151

adjusting sizes, 151 - 152

centers, 153

CGRects, 153

geometry, 146 , 154 - 157

coordinate systems, 149 - 150

frames, 147

points and sizes, 148

rectangle utility functions, 147 - 148

transforms, 149

hierarchies, 135 - 137

image view animations, 176

interaction traits, 164 - 165

key frame animations, 174 - 175

laying out in circles, 428 - 431

naming

in Interface Builder, 144 - 145

by object association, 143 - 144

swapping, 168 - 169

tables, 353 - 354

tagging, 142 - 143

text-input-aware views, 240 - 243

touching, 4

views: parameter, 188

visual format constraints, creating, 187 - 188

VoiceOver, 591

gestures for apps, 600-601

speech synthesis, 601

testing accessibility, 599 - 601

UIAccessibilityLayoutChange-
Notification, 599

VoiceOver toggle, 599

W
web services, background transfers, 546

converting XML into trees, 549 - 551

JSON serialization, 546 - 548

willMoveToSuperview:, 142

willMoveToWindow:, 142

willRemoveSubview, 142

wrappers, page view controllers, 298 - 303

X
.xcdatamodeld files, 492

Xcode

file sharing, 456

verbose logging, 180

Xcode5, accessibility, 597

XIB, storyboard views, 139

XML, converting into trees, 549 - 551

XMLParser class, 551 - 553

XMLParser helper class, 551 - 553

Y-Z
y coordinate, 149

ptg12441863

Learning iOS Design
William Van Hecke
ISBN-13: 978-0-321-88749-8

For more information and to
read sample material, please
visit informit.com/learnmac.

Titles are also available at
safari.informit.com.

iOS Auto Layout
Demystified
Erica Sadun
ISBN-13: 978-0-321-96719-0

iOS Drawing: Practical
UIKIT Solutions
Erica Sadun
ISBN-13: 978-0-321-94787-1

Learning Core Data
for iOS
Tim Roadley
ISBN-13: 978-0-321-90576-5

Essential Books, eBooks, and Video
for iOS Developers

iOS and Mac Network
Programming
LiveLessons
(Video Training)
Jiva DeVoe
ISBN-13: 978-0-321-94885-4

Effective
Objective-C 2.0
Matt Galloway
ISBN-13: 978-0-321-91701-0

Xcode and Instruments
Fundamentals
LiveLessons
(Video Training)
Downloadable Version
Brandon Alexander
ISBN-13: 978-0-321-91204-6

informit.com/learnmac

ptg12441863

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.indd 1 12/5/08 3:37:06 PM

ptg12441863

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg12441863

* Available to new subscribers only. Discount applies to the Safari Library and is valid for � rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

ptg12441863

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: YOJZGAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of The Core iOS Developer’s Cookbook includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with over thousands of
books and videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media,
Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

SFOE_9780321948106.indd 1 2/7/14 3:03 PM

	Contents
	Preface
	1 Gestures and Touches
	Touches
	Recipe: Adding a Simple Direct Manipulation Interface
	Recipe: Adding Pan Gesture Recognizers
	Recipe: Using Multiple Gesture Recognizers Simultaneously
	Recipe: Constraining Movement
	Recipe: Testing Touches
	Recipe: Testing Against a Bitmap
	Recipe: Drawing Touches Onscreen
	Recipe: Smoothing Drawings
	Recipe: Using Multi-Touch Interaction
	Recipe: Detecting Circles
	Recipe: Creating a Custom Gesture Recognizer
	Recipe: Dragging from a Scroll View
	Recipe: Live Touch Feedback
	Recipe: Adding Menus to Views
	Summary

	2 Building and Using Controls
	The UIControl Class
	Buttons
	Buttons in Interface Builder
	Recipe: Building Buttons
	Recipe: Animating Button Responses
	Recipe: Adding a Slider with a Custom Thumb
	Recipe: Creating a Twice-Tappable Segmented Control
	Working with Switches and Steppers
	Recipe: Subclassing UIControl
	Recipe: Building a Star Slider
	Recipe: Building a Touch Wheel
	Recipe: Creating a Pull Control
	Recipe: Building a Custom Lock Control
	Recipe: Image Gallery Viewer
	Building Toolbars
	Summary

	3 Alerting the User
	Talking Directly to Your User through Alerts
	Recipe: Using Blocks with Alerts
	Recipe: Using Variadic Arguments with Alert Views
	Presenting Lists of Options
	“Please Wait”: Showing Progress to Your User
	Recipe: Modal Progress Overlays
	Recipe: Custom Modal Alert View
	Recipe: Basic Popovers
	Recipe: Local Notifications
	Alert Indicators
	Recipe: Simple Audio Alerts
	Summary

	4 Assembling Views and Animations
	View Hierarchies
	Recipe: Recovering a View Hierarchy Tree
	Recipe: Querying Subviews
	Managing Subviews
	Tagging and Retrieving Views
	Recipe: Naming Views by Object Association
	View Geometry
	Recipe: Working with View Frames
	Recipe: Retrieving Transform Information
	Display and Interaction Traits
	UIView Animations
	Recipe: Fading a View In and Out
	Recipe: Swapping Views
	Recipe: Flipping Views
	Recipe: Using Core Animation Transitions
	Recipe: Bouncing Views as They Appear
	Recipe: Key Frame Animations
	Recipe: Image View Animations
	Summary

	5 View Constraints
	What Are Constraints?
	Constraint Attributes
	The Laws of Constraints
	Constraints and Frames
	Creating Constraints
	Format Strings
	Predicates
	Format String Summary
	Aligning Views and Flexible Sizing
	Constraint Processing
	Managing Constraints
	Recipe: Comparing Constraints
	Recipe: Creating Fixed-Size Constrained Views
	Recipe: Centering Views
	Recipe: Setting Aspect Ratio
	Recipe: Responding to Orientation Changes
	Debugging Your Constraints
	Recipe: Describing Constraints
	Constraint Macros
	Summary

	6 Text Entry
	Recipe: Dismissing a UITextField Keyboard
	Recipe: Dismissing Text Views with Custom Accessory Views
	Recipe: Adjusting Views Around Keyboards
	Recipe: Creating a Custom Input View
	Recipe: Making Text-Input-Aware Views
	Recipe: Adding Custom Input Views to Nontext Views
	Recipe: Building a Better Text Editor (Part I)
	Recipe: Building a Better Text Editor (Part II)
	Recipe: Text-Entry Filtering
	Recipe: Detecting Text Patterns
	Recipe: Detecting Misspelling in a UITextView
	Searching for Text Strings
	Summary

	7 Working with View Controllers
	View Controllers
	Developing with Navigation Controllers and Split Views
	Recipe: The Navigation Item Class
	Recipe: Modal Presentation
	Recipe: Building Split View Controllers
	Recipe: Creating Universal Split View/Navigation Apps
	Recipe: Tab Bars
	Remembering Tab State
	Recipe: Page View Controllers
	Recipe: Custom Containers
	Recipe: Segues
	Summary

	8 Common Controllers
	Image Picker Controller
	Recipe: Selecting Images
	Recipe: Snapping Photos
	Recipe: Recording Video
	Recipe: Playing Video with Media Player
	Recipe: Editing Video
	Recipe: Picking and Editing Video
	Recipe: E-mailing Pictures
	Recipe: Sending a Text Message
	Recipe: Posting Social Updates
	Summary

	9 Creating and Managing Table Views
	iOS Tables
	Delegation
	Creating Tables
	Recipe: Implementing a Basic Table
	Table View Cells
	Recipe: Creating Checked Table Cells
	Working with Disclosure Accessories
	Recipe: Table Edits
	Recipe: Working with Sections
	Recipe: Searching Through a Table
	Recipe: Adding Pull-to-Refresh to Your Table
	Recipe: Adding Action Rows
	Coding a Custom Group Table
	Recipe: Building a Multiwheel Table
	Using UIDatePicker
	Summary

	10 Collection Views
	Collection Views Versus Tables
	Establishing Collection Views
	Flow Layouts
	Recipe: Basic Collection View Flows
	Recipe: Custom Cells
	Recipe: Scrolling Horizontal Lists
	Recipe: Introducing Interactive Layout Effects
	Recipe: Scroll Snapping
	Recipe: Creating a Circle Layout
	Recipe: Adding Gestures to Layout
	Recipe: Creating a True Grid Layout
	Recipe: Custom Item Menus
	Summary

	11 Documents and Data Sharing
	Recipe: Working with Uniform Type Identifiers
	Recipe: Accessing the System Pasteboard
	Recipe: Monitoring the Documents Folder
	Recipe: Activity View Controller
	Recipe: The Quick Look Preview Controller
	Recipe: Using the Document Interaction Controller
	Recipe: Declaring Document Support
	Recipe: Creating URL-Based Services
	Summary

	12 A Taste of Core Data
	Introducing Core Data
	Entities and Models
	Creating Contexts
	Adding Data
	Querying the Database
	Removing Objects
	Recipe: Using Core Data for a Table Data Source
	Recipe: Search Tables and Core Data
	Recipe: Adding Edits to Core Data Table Views
	Recipe: A Core Data–Powered Collection View
	Summary

	13 Networking Basics
	Recipe: Checking Your Network Status
	Scanning for Connectivity Changes
	The URL Loading System
	Recipe: Simple Downloads
	Recipe: Downloads with Feedback
	Recipe: Background Transfers
	Recipe: Using JSON Serialization
	Recipe: Converting XML into Trees
	Summary

	14 Device-Specific Development
	Accessing Basic Device Information
	Adding Device Capability Restrictions
	Recipe: Checking Device Proximity and Battery States
	Recipe: Recovering Additional Device Information
	Core Motion Basics
	Recipe: Using Acceleration to Locate “Up”
	Working with Basic Orientation
	Recipe: Using Acceleration to Move Onscreen Objects
	Recipe: Accelerometer-Based Scroll View
	Recipe: Retrieving and Using Device Attitude
	Detecting Shakes Using Motion Events
	Recipe: Using External Screens
	Tracking Users
	One More Thing: Checking for Available Disk Space
	Summary

	15 Accessibility
	Accessibility
	Enabling Accessibility
	Traits
	Labels
	Hints
	Testing with the Simulator
	Broadcasting Updates
	Testing Accessibility on iOS
	Speech Synthesis
	Dynamic Type
	Summary

	A: Objective-C Literals
	Numbers
	Boxing
	Container Literals
	Subscripting
	Feature Tests

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

