
www.allitebooks.com

http://www.allitebooks.org

The Essential Guide to
Flash CS4 with

ActionScript

Paul Milbourne, Chris Kaplan, and
Michael Oliver with Serge Jespers

www.allitebooks.com

http://www.allitebooks.org

Lead Editor
Clay Andres

Technical Reviewer
Kunal Mittal

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham,

Tony Campbell, Gary Cornell, Jonathan Gennick,
Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,

Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager
Denise Santoro Lincoln

Copy Editor
Ami Knox

Associate Production Director
Kari Brooks-Copony

Production Editor
Laura Esterman

Compositor
Molly Sharp

Proofreader
Martha Whitt

Indexer
Carol Burbo

Artist
April Milne

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

The Essential Guide to Flash CS4
with ActionScript

Copyright © 2009 by Paul Milbourne, Chris Kaplan, and Michael Oliver

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1811-1

ISBN-13 (electronic): 978-1-4302-1812-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail ,

or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the
Downloads section.

Credits

www.allitebooks.com

http://www.allitebooks.org

To Katie and Sara, for celebrating everything and never
letting me forget what is truly important in life. To Lindsey, for

making sure that life was taken care of during this journey.
—Chris

To Erica, the love of my life and still the kissin’est in the world,
thanks for your consummate patience. I’m guessing you’ll be

calling the shots for a while!
—Paul

To my colleagues and staff at Corent Technology,
without whom I simply could not have done it.

—Mike “Ollie” Oliver

www.allitebooks.com

http://www.allitebooks.org

iv

CONTENTS AT A GLANCE

Foreword .xxi

About the Authors . xxiii

About the Technical Reviewer .r xxv

Acknowledgments .xxvii

Preface . xxix

PARTPP ONE: BASICS

Chapter 1: How It All Began . 3

Chapter 2: The New Interface of Flash CS4 . 19

Chapter 3: Drawing with Flash’s Vector Tools . 51

Chapter 4: External Assets and Symbol Management . 81

Chapter 5: Working with Blends, Filters, and 3D Transformations 105

PARTPP TWO: ANIMATION .123

Chapter 6: Basic Animation in Flash . 125

Chapter 7: Playing with Dolls: Introducing Flash IK . 159

PARTPP THREE: ACTIONSCRIPT .183

Chapter 8: The Programming Primer: A Flash Designer’s Intro to
ActionScript 3.0 . 185

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 9: The Building Blocks of Interactivity .y 223

Chapter 10: Learning the Display Model and Bringing It All Together.r 243

Chapter 11: Managing External Assets and Communication. 273

Chapter 12: XML: The Best Way In and Out of Flash . 297

PARTPP FOUR: ADDITIONAL USER INR TERFACES .319

Chapter 13: Working with Text and Strings . 321

Chapter 14: Using Components . 351

PARTPP FIVE: ENHANCED MEDIA DA EVELOPMENT. .377

Chapter 15: Using the Adobe Media Encoder—A Crash Course 379

Chapter 16: Working with Audio in Flash . 403

Chapter 17: Working with Video in Flash . 429

PARTPP SIX: PREPARING YOUR PR ROJECT FOR DR EPLOYMENT459

Chapter 18: Publishing, Exporting, and Debugging Your Flash Projectt 461

Chapter 19: Building AIR Applications with Flash CS4 . 491

Index .x 521

www.allitebooks.com

http://www.allitebooks.org

vii

CONTENTS

Foreword . xxi

About the Authors .xxiii

About the Technical Reviewer . xxv

Acknowledgments . xxvii

Preface .xxix

PART ONE: BASICS

Chapter 1: How It All Began . 3

Animators, coders, designers, oh my . 4
What is this thing called Flash? . 4
How did we get here? . 5

Creating Flash: SmartSketch . 5
The world today—addicted to change . 7

Rich Internet Applications . 8
The stateless Internet . 8
Three-tiered application model . 9
Natural evolution of thin clients. 12

The rise of ActionScript. 14
Flash Platform, open source, and Web 2.0 . 15

The Flash Platform. 15
Web 2.0 means what you want it to . 15
The open source Flash explosion . 16

Summary. 17

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

viii

Chapter 2: The New Interface of Flash CS4 .19

Welcome Screen . 20
The Flash CS4 interface is nearly identical between operating systems 22
Working with panels and windows . 23

Understanding panels (color-coded panel parts—three shades of gray) 23
Panel tab. 23
Panel header . 23
Panel group header . 24
Docking, grouping, stacking, and floating . 24

The Property inspector—one panel to rule them all . 26
Changing numeric property values (new behavior!) . 27

The document window . 27
Understanding the document window . 27
Controlling the document window . 28

Stage view options . 28
Tools for using the interface . 30

Hand tool . 30
Zoom tool (Z is for bones, silly rabbit!) . 31
Rulers, guides, and snapping . 31

Property inspector options of the document window . 32
Changing the document frame rate . 33
Changing the stage size . 33
Changing the default document settings . 33

The Timeline panel . 33
Understanding the Timeline panel . 34

Controlling layers . 35
The timeline . 36

Adding frames/keyframes to the timeline . 37
Persistence and tinting frames . 38
The timeline flows like water . 38
Adding and inserting frames and keyframes to layers . 40
Adding and inserting frames and keyframes to all layers . 41
Inserting frames willy nilly . 41
Copying/pasting frames . 42
Controlling the timeline . 43

The Tools panel . 43
Customizing the interface . 43

Working with workspaces . 44
Customizing the interface with workspaces . 45
Switching between workspaces . 45
Managing workspaces . 45
Modifying existing workspaces . 46
Customizing the Tools panel . 46
Customizing keyboard shortcuts . 47

Summary . 48

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

ix

Chapter 3: Drawing with Flash’s Vector Tools. .51

Understanding graphic types . 52
Bitmap graphics . 52
Vector graphics . 53

Working with vector graphics . 53
Drawing modes: Merge Drawing vs. Object Drawing . 53

Merge Drawing. 53
Object Drawing . 54

Creating and manipulating lines . 55
The Line tool . 55
Selecting and manipulating lines. 56
The Pencil tool . 58

Drawing shapes . 58
Anatomy of a shape. 58
Drawing squares and rectangles . 59
Drawing ovals, donuts, and pie shapes . 60
Drawing polygons and stars . 60
The primitive tools. 61

Selecting and manipulating shapes . 61
Strokes and fills . 63

Stroke properties . 64
Color properties and fills. 65
The Color panel . 66
The Swatches panel . 67
The Paint Bucket tool . 70
The Ink Bottle tool. 73
The Gradient Transform tool. 73
The Kuler panel . 74

Advanced drawing . 75
The anatomy of a path . 75
The Pen tool. 75
Manipulating paths . 78

Summary. 79

Chapter 4: External Assets and Symbol Management.81

Using bitmaps in your Flash projects . 82
Importing external bitmaps into Flash . 82

Importing to the stage or library . 83
Importing an image sequence . 84
Opening an external library . 84

Importing your first bitmap into Flash . 85
Setting bitmap properties in the Library panel . 86
Breaking apart bitmaps . 87

Using the Trace Bitmap feature . 89
Swapping bitmap images. 91

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

x

Using and organizing symbols . 92
Types of symbols . 92
Creating and managing symbols . 93

Creating symbol instances . 94
Creating button symbols . 95
Editing symbols . 95
Preparing to add states to the button . 96
Swapping symbols . 97
Breaking apart symbol instances . 98
Duplicating symbols . 98

The Library panel . 99
Getting familiar with the Library panel . 99

Examining library items . 100
Organizing with folders . 101
Sorting and searching . 101
Finding unused library items . 101
Updating imported library items . 102

Summary . 102

Chapter 5: Working with Blends, Filters,
and 3D Transformations . 105

Blends . 106
Applying a blend mode . 107

Working with filters . 108
Applying filters . 109
Creating a skewed drop shadow . 112

Introducing 3D transformations . 112
Vanishing point . 113
Rotating a multiple-object selection in 3D space . 115
Rotating objects in 3D space . 116
Rotating a single object in 3D space . 116
3D space movement . 117
Moving a single object in 3D space . 118
Moving multiple objects in 3D space . 119
Transform panel rotation . 120
Perspective angle . 120

Summary . 122

PART TWO: ANIMATION . 123

Chapter 6: Basic Animation in Flash . 125

Animating to convey information . 126
Animation for impact and emotion . 127
The disciplines of animation . 127
Understanding animation in Flash . 127

Motion tweening vs. frame-by-frame animation . 127
The shape tween . 128

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

xi

Introducing the new motion tween . 128
Classic tween . 129

Creating a motion tween—a step-by-step primer . 129
Modifying a motion tween . 132

Moving a motion path . 133
Changing the curve of a motion path . 133
To rotate, scale, or skew the motion path . 133

Understanding easing . 134
Changing the easing of your tween . 134
Changing the duration of your motion tween . 136
Roving keyframes vs. nonroving keyframes . 137

Modifying your symbol . 137
Changing the position of your symbol . 137
Changing the rotation of your symbol . 138
Color animation . 139
Filter animation . 139

Introducing the Motion Editor. 141
Understanding the Motion Editor . 142
The Motion Editor interface . 143

The property layers . 144
The Eases section . 145
Making custom eases in the Motion Editor . 146
The graph . 147

Adding a color effect . 149
Adding filters to your tween . 149
Something to keep in mind . 151

Reusing animation . 151
Duplicating a tween from the timeline quickly . 151
Saving animation as ActionScript . 152
Saving animation as XML . 152
Using motion presets . 153

Applying motion presets . 153
Saving your animation as a custom preset . 153
Managing motion presets . 154
Converting motion presets to frame-by-frame animations 155
Exporting and importing motion presets . 156

Summary . 157

Chapter 7: Playing with Dolls: Introducing Flash IKK 159

What is kinematics? . 160
Inverse kinematics . 160
An arm or a leg: Experimenting with IK . 161

Getting started with the arm . 161
The anatomy of a bone. 162
Adding bones to the arm . 162
Controlling the motion of specific bones . 163
Applying constraints to specific bones. 165
Constraining bone movement . 166

CONTENTS

xii

Creating motion with an IK system . 166
Comparing IK to motion tweening . 166
Animating the arm . 167

Author-time versus runtime IK animation . 169
Using IK with complex anatomies . 171

Simple anatomy: A little help from Leonardo . 171
Applying IK to a human character . 172
Setting up the core . 174
Adding the arms . 175
Adding the legs . 176
Cleaning up your character . 177
Animating the character . 177

Using IK with shapes and the Bind tool . 178
Working with bones and vector shapes . 179

Selecting shapes for IK . 179
Applying bones to a vector shape . 180

Using the Bind tool . 180
Accessing the Bind tool . 180
Applying binds to shapes . 181

Summary . 182

PART THREE: ACTIONSCRIPT . 183

Chapter 8: The Programming Primer: A Flash Designer’s
Intro to ActionScript 3.0 . 185

Dreaming in metaphors . 186
Following the evolution of ActionScript 3.0 . 187
Crafting your first ActionScript application . 188
The trace statement: Leaving breadcrumbs . 191
Moving into the Actions panel: Your new home . 192

Looking closely at the Actions panel . 192
Actions panel toolbar . 194
Pinning scripts so you don’t lose them . 194
Script Assist—taking it easy . 195

Basic elements of ActionScript programming. 196
Syntax . 196

Case sensitivity . 197
Dot syntax . 197
Expressions and literals . 199
Semicolons . 199
Parentheses . 199
Comments . 200

Variables . 201
Data types . 202
Operators . 204

Postfix operators . 205
Multiplicative and additive operators . 205
Relational operators . 206

CONTENTS

xiii

Equality operators . 206
Logical operators . 207

Conditional statements . 208
if . . . else statement . 208
else . . . if clause . 209
Logical operators && and || . 209
switch . 209

Loops . 210
for . 210
while . 211

Functions . 211
Defining your own functions . 212
Returning values from functions . 212

Variable scope . 214
Global variables . 214
Local variables . 214
Shadowing global variables . 214

Having a little class or a big one . 215
Building your first application . 215

The document class . 216
Packages and import statements . 216
Class definition . 217
Constructor functions . 218
Wrapping it up . 218

Summary . 220

Chapter 9: The Building Blocks of Interactivity .y 223

Properties: I unpacked my adjectives . 224
Translating properties from stage to ActionScript . 225
Changing properties with ActionScript . 226
Incrementing ActionScript with frame loops . 228

Methods: Just do it! . 230
Events: Are we there yet? . 230

EventDispatcher class and the Flash event model . 230
The Flash event model . 231
Event listeners and handlers . 231

Event objects . 232
Mouse events. 233
Event targeting . 233

Event propagation . 234
Event phases . 235
Welcomed side effects of event propagation . 235
Assigning events to parent objects. 236

Frame and timer events . 237
Frame events . 237
Timer events. 238

Accepting keyboard input . 239
Removing events and listeners . 240
Summary. 241

CONTENTS

xiv

Chapter 10: Learning the Display Model
and Bringing It All Together. .r 243

Working with display objects . 244
Traversing the display list . 246
Examining display object containers . 248

Adding children . 249
Inserting display objects at different depths . 250
Removing children . 251
Swapping depths . 252

Germaphobe . 252
Setting up the game . 253
Assigning the document class . 253

Defining the Germophobe class . 254
Class and property attributes . 255

Setting up the germs . 256
Defining the class . 256
Linking to a graphic symbol . 257

Initializing the game . 258
A cleaner point of entry . 258
Randomly adding germs to the stage . 259

Picking the germ’s face . 260
Making the germ scurry . 262

Creating random motion with the scurry event . 262
Checking for walls . 264

Killing germs . 265
Setting up the kill . 265
Things are killed, and then they die . 266

Allowing germs to reproduce . 266
Adding by intervals . 266
The addGerms function . 267

Keeping score . 268
Ending the game by infestation . 269

Checking for infestation . 269
Removing leftover germs . 270
The final score . 270

Summary . 271

Chapter 11: Managing External Assets and Communication 273

Working with external data . 274
URLRequest—go get it pup! . 274
Using the URLLoader . 275

Loading a simple data file . 275
Waiting for the data to arrive . 276

Sending data to external places . 277
GET and POST methods . 277
Name-Value pairs . 278
URLVariables . 279

CONTENTS

xv

There and back again: A variable’s tale . 279
Checking for program errors . 281

Loading external display objects . 282
Communicating: SWF to SWF . 283

LocalConnection class . 284
Send method . 284
Connect method . 284

SWF to SWF . 285
Setting up the sender . 285
Setting up the receiver . 286

Storing data to a local machine . 288
Taking a closer look at local shared objects . 289
Examining the .SOL file . 291
Creating a simple shared object .t 292

Summary . 295

Chapter 12: XML: The Best Way In and Out of Flash 297

What is XML? . 298
ActionScript 3.0 and E4X . 299
Learning to see XML. 300
Using proper structure and syntax . 302

Elements . 302
Rules for working with elements . 303
Filling out the XML tree . 303

Entities and escapes. 304
Attributes . 305
Empty elements . 306
Efficiency . 306
Commenting XML . 307

Standard XML-style comment. 307
CDATA comments . 307

Loading an XML file with ActionScript . 308
URLRequest and URLLoader objects . 308
Event handler . 309

Reading the XML data . 310
XML and XMLList classes . 310
Accessing XML data . 312

Accessing elements . 312
Drilling down into the structure . 313
Using the children() method. 314
Retrieving text node values. 314
Double dot notation . 315
Accessing attribute values. 315
Bracket (array) notation . 316
Filtering node values . 318

Summary. 318

CONTENTS

xvi

PART FOUR: ADDITIONAL USER INTERFACES . 319

Chapter 13: Working with Text and Strings . 321
Creating text with the Text tool . 322

Revisiting the Property inspector . 323
Starting a simple contact form . 323
Positioning text fields . 325
Render modes and text field modifiers . 327
Embedding characters . 329
Formatting paragraphs . 330
Using the Options section of the Property inspector . 331
Filtering text elements . 331
Continuing the contact form . 332

Breaking apart and animating text . 334
Animating text fields . 335
Applying tweens to layers . 336
Imploding letters . 336

Manipulating text with ActionScript . 337
Plucking some strings . 337

Concatenation . 338
Filtering and deconstructing strings . 339

Formatting and creating text fields . 340
TextFormat class . 340
Assigning formats to text fields . 341
Adding dynamic text fields to the contact form . 343

Summary . 348

Chapter 14: Using Components . 351

Understanding components . 352
SWC-based components . 352
FLA-based components . 353
Tour de Components . 353

User interface components . 354
Video components . 355
Third-party components . 356

Adding components to your application . 357
Adding components to your application in Flash . 358
Adding components to your application using ActionScript . 358

Controlling components . 360
Configuring components in Flash . 360

Using the Component inspector . 361
Configuring components using ActionScript . 363

Creating an application using the document class . 363
Creating the form . 364
Making the form do something—listening to components 367

CONTENTS

xvii

Skinning components in Flash . 368
Skinning components using ActionScript . 370

Component style definitions . 371
Summary . 375

PART FIVE: ENHANCED MEDIA DEVELOPMENT . 377

Chapter 15: Using the Adobe Media Encoder—A Crash Course379

Introduction to the interface. 380
Encoding your first video using presets . 381

Choosing a preset . 382
Choosing your output file name and location . 383

Encoding multiple files . 384
Taking a close look at the Export Settings window . 385

Simple mode encoding features . 386
Cropping your video . 386
Setting in and out points . 388
Managing custom presets . 390

Advanced mode encoding features . 390
Cue points . 391
Advanced encoding options . 393
Filters tab . 393
Format tab . 394
Video tab and bitrate settings . 394
Audio tab . 397
The Others tab. 398

XMP metadata . 399
Summary. 400

Chapter 16: Working with Audio in Flash . 403

Thinking about audio . 404
Understanding audio in the Flash authoring environment . 405

Using the Sound panel . 405
Applying audio to a keyframe. 406
Quickly applying effects . 406
Selecting a synchronization type for your audio instance. 406
Info. 407
Export settings in the Sound Properties dialog . 408

Fine-tuning audio with the Envelope Editor . 410
Trimming your audio. 410
Custom effects. 411
Changing the view . 411

Adding audio to a button . 411

CONTENTS

xviii

Using library audio assets at runtime . 412
First things first—let’s create our application . 413
Application states made simple . 414
Buttons please—changing states . 414
Making library audio assets available to ActionScript . 416
Creating sound objects and changing sounds at runtime . 416

Loading audio at runtime . 418
Understanding the Flash.media package . 418
Creating a playlist with XML . 419
Loading the playlist into the media player application . 419
Creating the user interface . 420
Wiring the UI and making it play . 422

Manipulating audio at runtime . 424
When the music stops—handling audio events . 426
Summary . 427

Chapter 17: Working with Video in Flash . 429

Using the Video Import Wizard . 430
Understanding the FLVPlayback component . 434

Hello World . 434
FLVPlayback Component inspector . 434

Understanding and setting the scaleMode parameter . 435
Setting the skin parameters . 436
Setting the source parameter . 437

Menu-driven video playback . 437
Customizing the FLVPlayback component skin . 438

Understanding the FLVPlayback component skin . 439
Creating custom play controls . 445

Understanding play control components . 445
Assigning custom play controls to an FLVPlayback component 447

Synchronizing video, text, and other media using events . 447
Beyond the Ready event—other key video events . 448
Understanding cue points . 449

Creating ActionScript cue points . 450
Handling the CUE_POINT event and reading cue point parameters 452

Adding captions to the FLVPlayback component . 454
Timed Text XML Schema for the FLVPlaybackCaptioning component 454
Understanding the FLVPlaybackCaptioning component . 456

Summary . 457

PART SIX: PREPARING YOUR PROJECT FOR DEPLOYMENT 459

Chapter 18: Publishing, Exporting,
and Debugging Your Flash Project . 461

Understanding the Publish Settings window . 462
Selecting publish formats . 463
Setting Flash publishing options . 464

CONTENTS

xix

Targeting player version and ActionScript version . 465
Images and Sounds area . 466
SWF Settings area . 466
Advanced area . 467

Setting HTML publishing options . 468
Choosing a template . 468
Setting dimensions . 469
Changing Playback options . 469
Changing quality . 470
Changing window mode . 470
Changing HTML alignment . 471
Changing scale behavior . 471
Changing Flash alignment . 471

Setting GIF publishing options . 471
Setting image dimensions . 472
Changing playback behavior . 472
Other options . 473
Changing transparency . 473
Changing dither . 473
Changing palette type and other color settings. 474

Setting PNG publishing options . 474
Bit depth . 474
Filter options . 475

Setting JPEG publishing options . 475
Dimensions . 475
Quality .y 475

Managing publish profiles . 475
Importing and exporting profiles . 476
Creating publish profiles . 476
Duplicating publish profiles . 476
Deleting publish profiles . 477

Exporting file formats . 477
Exporting an image . 477
Exporting your FLA as a movie or image sequence . 478

QuickTime . 478
Windows AVI . 479

Debugging in Flash . 480
Using the Compiler Errors panel . 481
Using the Output window—strategies for tracing . 483

Hunting scope errors . 483
Finding typos . 484
Tracking timing errors . 484

Using the debugger . 485
Setting and removing breakpoints . 486
Understanding the call stack . 486
Navigating code while debugging . 487
Resuming normal code execution . 488
Using the Variables panel . 488

Summary . 489

CONTENTS

xx

Chapter 19: Building AIR Applications with Flash CS4 491

Using AIR APIs . 492
Windowing API . 493

The normal window . 493
The utility window . 493
The lightweight window . 494
Creating windows with the NativeWindow class . 495
Windowing API methods . 495
Windowing API events . 496

Menu API . 496
Window menu . 497
Application menu . 497
System tray menu . 498
Dock menu . 498
Handling menu events . 498

Network Detection API . 499
URLMonitor . 499
SocketMonitor . 499

File System API . 500
Common file paths . 500
Reading and writing files . 500

Building your first AIR application with Flash CS4 . 501
Creating your AIR application . 503
The AIR – Application & Installer Settings dialog . 505
The Advanced Settings dialog . 506
Creating applications with custom chrome . 506
Enabling dragging . 507
Adding Close and Minimize buttons . 507
Adding functionality . 508

Creating a three-state icon . 508
Checking server and service availability . 508
Using the URLMonitor class . 509
Saving the last server. 510
Writing and reading files . 512

Creating your AIR package . 515
Deploying your AIR application . 517
Summary . 518

Index .x 521

www.allitebooks.com

http://www.allitebooks.org

xxi

FOREWORD

When I started fooling around with Flash, back in the late 1990s, I remember being blown
away by sites like Eye4U, GaboCorp, and NRG. What they did with Flash was absolutely revo-
lutionary and never seen before on the Web, and wouldn’t have been possible with tradi-
tional web technologies. When I start reminiscing about those days, I always think back to
the early conferences. I remember going to the first Flash Forward in San Francisco. I won-
der if anyone remembers getting a free copy of Dreamweaver or a free copy of GoLive. I’m
sure I’m not the only one who went home with both, right? A few months later, I went to
the first Flash Forward conference in New York. Anyone who was there must remember that
Adobe party with the live performance of Run DMC, right? I also remember the Adobe key-
note with a couple of guys in suits. I wonder if they still work at Adobe. Sigh, those were the
days. Who would have thought back then that Adobe would one day buy Macromedia? The
Flash community was certainly a little skeptical about that merge, but I’m sure everyone will
now agree that it has made the Flash Platform even stronger.

Flash has definitely changed the way we think about the Web, and it continues to do so with
every new release. The Flash Player has become a trusted household name and a synonym
for interactive and engaging web experiences. With Flash Player installs being upgraded
faster and faster, it literally only takes a few months before reaching critical mass. This
almost immediately gives designers and developers the ability to use the new features intro-
duced in a new version of the Flash Player.

The way we interact with web content isn’t the only thing that changed. The content you
find on the Web also significantly changed throughout the years. It’s not just about anima-
tions and video anymore. More and more applications find their way to the Web. Rich
Internet Applications are pretty common these days. RIAs combine the best of the Web with
the power of desktop applications. With that shift in mind, Adobe added the Adobe
Integrated Runtime (AIR) to the Flash Platform. Flash designers and developers can now use
their existing skills to build applications that run on the desktop and are not restricted by
the browser sandbox.

FOREWORD

xxii

With every new release, I am always amazed when I see what people do with Flash, and I am
very curious to see where all this leads to in the future. Flash has become incredibly power-
ful, and the new features in Flash CS4 and Flash Player 10 will raise the bar once more. The
Essential Guide to Flash CS4 with ActionScript will give you an excellent overview on how tot
use these new features. You’ll deploy your work targeted at Flash Player 10 or the AIR run-
time in no time. Flash on!

Serge Jespers
Platform evangelist

Adobe Systems

xxiii

ABOUT THE AUTHORS

Chris Kaplan is a multimedia consultant for Mosaic Learning, located
in Greenbelt, Maryland. An award-winning multimedia developer,
Chris has been working in Flash for over 10 years on teams contrib-
uting to interactive experiences for the U.S. Mint, UNICEF, Ameriquest,
the Bill of Rights Institute, and many others. As an audio engineer
and composer, he has worked on productions for National
Geographic, TLC, America’s Most Wanted, and in 2005, with Two
Animators! LLP (), he was a finalist for Best
Cartoon at the Flash Forward Film Festival for his work on The
Poochinos—Dog Mafia. Chris has been streaming live video over the
Internet for over 10 years as a webcast engineer for events with Vice

President Al Gore, Cisco Systems, the Peace Corps, Buzz Aldrin, and the Office of Head Start.
Chris brings considerable experience in combining live webcasting, video production, and
postproduction disciplines with creating multimedia experiences. He currently lives with his
wife, Lindsey, and two daughters in Maryland.

Paul Milbourne is an Adobe Certified Expert and Instructor for
Flash. He has been a Flash platform consultant in the Washington-
Baltimore metropolitan area for the better part of a decade. His
journey has allowed him to work with such clients as the Washington
Redskins, Baltimore Ravens, Democratic National Committee, and
many others. For the most part, Paul has made a handsome career
cleaning up after other developers. This experience has exposed him
to most aspects of Flash development through a multitude of indus-
tries.

His true passion is the advancement of the Flash community in that
area. Paul is the principal and founding member of the Baltimore-Washington Adobe Flash
User Group, which now boasts more than 300 members. His vision is to unite that commu-
nity in a collaborative effort, both informationally and vocationally.

Paul currently studies computer science and art at the University of Maryland. And, though
he was a professional chef in a former life, he is not responsible for any of the food refer-
ences in this book!

xxiv

ABOUT THE AUTHORS

Michael Oliver is chief technology officer of Corent Technology.
He has 38+ years of experience in the industry with Sun Microsystems,
Sperry Corp, SAIC, OpenText, and several Internet startups in roles
from salesperson to CTO and almost everything in between. He is
an Apache Software Foundation committer and a published author,
and has been active in promoting standards such as WfMC, IETF,
and others.

xxv

ABOUT THE TECHNICAL REVIEWER

Kunal Mittal serves as an executive director of technology at Sony
Pictures Entertainment where he is responsible for the SOA and
Identity Management programs. He provides a centralized engineer-
ing service to different lines of business and consults on the Content
Management, Collaboration, and Mobile strategies.

Kunal is an entrepreneur who helps startups define their technology
strategy, product roadmap, and development plans. With strong rela-
tions with several development partners worldwide, he is able to help
startups and even large companies build appropriate development
partnerships. He generally works in an advisor or consulting CTO

capacity and serves actively in the project management and technical architect functions.

Kunal has authored and edited several books and articles on J2EE, WebLogic, and SOA. He
holds a master’s degree in software engineering and is an instrument-rated private pilot.

xxvii

ACKNOWLEDGMENTS

First and foremost, to Lindsey, who has been my link to reality through this amazing experi-
ence. Her support has not only seen me through this project, but all of the projects prior that
led to me being able to contribute to this book in the first place. Thank you.

To Mom and Dad, thank you for the tools. They are not perfect, but they are mine because
you cared enough to make sure I had them. They have made all the difference in my life.

To Sherry for always cheering for me.

To Greg Kaplan () and Tamara Yee ()
for constantly raising the bar and then patiently helping me reach it.

This book would not be a book without the talent and hard work of the editorial and production
teams at Apress. It has been truly amazing to watch our primitive manuscripts evolve through
developmental edits and technical review that, when combined together with the production
layout process, produced what you would most certainly call a book when you flip through it. A
big thank you to all who have worked so hard with us on this book to bring it to its current form.

To the Flash team at Adobe for continuing the evolution of this tool. Without their ingenuity
and openness with the Flash development community, we would have little to write about.

To every author of every Flash book and online tutorial I’ve ever read. Without them, finding
my way through Flash would be much like eating a soup sandwich. A special nod to Colin
Moock, who single-handedly cracked open the guts of ActionScript, poured them into a
book, and pointed at all the parts in a way that made sense to me.

To Tom and Joe Costantini of Two Animators! LLP () for pushing my
limits and inspiring me, and who, together with Steven Karp of Karptoons (

), lent me insight into their approach to character animation in Flash.

To Woody Scally and everyone at Mosaic Learning () for allowing
me the luxury of a full-time job and the flexibility I needed to complete this book.

Finally, to Paul for inviting me to join him in writing this book. Thank you.

Chris

xxviii

ACKNOWLEDGMENTS

To Clay for giving us the opportunity to write this book and his incomparable grace. What an
amazing person to have met.

To Denise, the lady who shares my love of the kitchen—I can only say thank you, I’m sorry,
and I hope you still have all your hair. If we are ever on the same coast, I owe you a meal!

To Valerie—I appreciate your work very much. I don’t know how I would have kept my sanity
without you. Thanks for seeing me to port.

To Ollie for hanging in there! Your insights and encouragement were always helpful.

To Kunal and Serge for picking up the slack and plugging the holes.

To Ami, Laura, and everyone thereafter—Wow! You guys have definitely cornered the market
on spit and polish. Thanks for all your hard work.

To all the fish that died during the writing of this book—sorry fellas, better luck next time!

To Chris—you had better watch whose hand you shake in the parking lot, they may steal
6 months of your life. Thanks for being a stand-up guy and really going to bat late in the
game. I will never figure out when you sleep, but I am thankful for how much you gave up.

Paul

I would like to thank Paul Milbourne for having me on this fine book and to all the staff at
Apress who put up with my constant delays. It is amazing how patient they have been. I
would also like to acknowledge my wife and my coworkers and business partners for giving
me the time and support to do it.

Ollie

xxix

PREFACE

There are more pantomimists on the planet than Flash developers—this book intends to do
something about it!

What you need to know about this book is that it was written for beginning to intermediate
users of Flash. That being said, we made a concerted effort to write examples that included an
entire process using best practices within a real-world context as much as possible in order to t
present them in a way that would be most useful in day-to-day work, not in a petri dish.

Having been a beginner in Flash for more than 10 years now, I (Chris) thought that I might be
able to help introduce this technology with an approach that not only demonstrates how to w
do something, but also explains why it works when you do it that way.y

The parts of this book are organized into clear disciplines and should serve you well as a
focused reference that includes solutions and explanations of common work tasks facing the
Flash developer and designer alike, as well as a thorough introduction to the new features of
Flash CS4 including IK and the new Motion Editor.

Flash has evolved in so many ways to be so many things. It has been a daunting task to attempt
to explore and demonstrate the many uses of this tool in a single book. We sincerely hope that
you can use this book from your first introduction to Flash through to some fairly advanced
applications of the concepts within. Now take it—and go kick some pantomimist butt!

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in .

New or changed code is normally presented in .

PREFACE

xxx

Menu commands are written in the form Menu Submenu Submenu.

Where we want to draw your attention to something, we’ve highlighted it like this:

Ahem, don’t say we didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, we use an arrow
like this: .

PART ONE

BASICS

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

HOW IT ALL BEGAN

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

4

For designers and developers, there has never been a better time to become involved in
the Flash culture. Flash has firmly cemented its status as one of the most versatile pieces
of commercial software ever written. And, nearly 20 years after its creation, Flash contin-
ues to redefine the way interactive material is delivered. What began as a tablet drawing
program has enjoyed continuous development and innovation, thanks to feedback from
virtually every corner of new media development.

With the release of Flash CS4, Flash takes its next step into the explosive world of mass
extendibility and open source development. A recent increase in the number of external
solutions offered in the form of plug-ins and third-party APIs is unparalleled compared to
those for previous versions of Flash. Users now enjoy integrated support for many external
environments, such as kuler and PixelBender.

Finally, the persistent rise in the number of high-caliber programmers using Flash contin-
ues to motivate the evolution of ActionScript, Flash’s native scripting language, toward a
full-fledged, standards-compliant, object-oriented programming language.

Animators, coders, designers, oh my . . .
We realize there are people coming to Flash from different backgrounds, with different
needs. Some of us might use Flash for design, lacking only a touch of ActionScript to fin-
ish the job. Others may be programming an interface and need to gain a relatively quick
understanding of the various graphics and animation elements Flash has to offer. Flash
has become such a powerful, versatile tool that presenting this book to “all people” for
“all purposes” is a daunting challenge at best. Nonetheless, it is our goal to write a book
that helps people understand this powerful tool and to see how it can be used. This
release brings improvements to workflows and tool sets for animators, coders, and
designers alike.

If you are a programmer migrating from another language, you can use this book as your
transition into the world of Flash. You can easily take your familiarity with another lan-
guage and apply those principles to ActionScript.

Simply stated, because Flash is so versatile with so many practical applications in so many
industries, this book will serve as an excellent starting point for anyone looking to start
learning and applying Flash to their specific needs.

What is this thing called Flash?
If you have had no prior exposure to using Flash, you may be wondering what Flash is,
exactly. For most people, Flash is the software that is used to make “super cool” web sites.
It has traditionally been used to add a level of pizzazz to the Web either through sophisti-
cated animation or highly dynamic page elements like buttons.

As a piece of software, however, Flash is somewhat of an enigma. As you will learn in the
rest of this chapter, and eventually the rest of this book, Flash is somewhat of a Frankenstein’s

HOW IT ALL BEGAN

5

1

monster. It is certainly true that Flash was originally intended to bring animation to the
Internet. However, as Flash becomes older, it acquires a greater scope of functionality and
purpose.

People now use Flash to any end that requires an interactive solution. Not only is Flash
used for enhancing web sites, it can also be used for the creation of presentations, casual
games, kiosks, e-learning courseware, and much more. Flash also has the ability to be
deployed via the Internet, DVDs, CDs, or local networks. The possibilities are really endless.
Because Flash is so adaptable to the needs of the users, it will continue to evolve to meet
any requirement the industry places on it.

How did we get here?
Our story begins in the late 1600s, when Sir Isaac Newton wrote a letter to the then-head
of the Royal Society, Robert Hooke. You may be wondering how Isaac Newton is relevant
to becoming a Flash developer. Well, he isn’t—at least, not directly.

You see, Newton had an appreciation for the foundation of his accomplishments. In his cor-
respondence, Newton wrote, “If I have seen further, it is by standing on the shoulders of
giants.” Now, consider for a moment that Sir Isaac Newton had one of the most influential
minds of the last thousand years. His accomplishments in theology, astronomy, optics,
mathematics, and chemistry were all revolutionary for his time—and much of his work was
in new territory. But what he confided to Robert Hooke is a profoundly humble insight.

Whatever his personal accomplishments, Sir Isaac Newton never failed to recognize and
incorporate the hard work of those who laid the foundation before him. He also believed
that until a person had sufficient mastery over the fundamental principles of a subject,
they had very little business in the realm of discovery.

So, if you’re an eager beaver and you want to jump right into Flash, we would suggest you
skip directly to Chapter 2.

However, if you are a person who values the completeness that comes with a well-rounded
education, we invite you to take a few minutes and learn the peculiar origins of Flash: how
it went from a simple vector drawing program to what is now an entire industry. This his-
tory is as important to understanding why Flash works the way it does in day-to-day use as
it is to gaining insight into how it may evolve in the future.

Creating Flash: SmartSketch

The story of Jonathan Gay and the origins of Flash is a rather interesting one. Having
started his professional programming career in high school, Gay achieved more success
before graduating college than most current programmers achieve in a lifetime.

As a high school student in the early 1980s, Gay first flexed his programming prowess on
the Apple II computer. It was in this environment that Gay took his first steps into the
world of graphics editing software. Though his first program didn’t sell a million copies, it
did attract the attention of soon-to-be-colleague Charlie Jackson.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

6

Gay first met Jackson at a local Macintosh user group that Jackson organized. At the time,
Jackson was interested in starting a software firm aimed at the development of Macintosh-
based software titles. Though he did have the necessary capital and hardware resources,
Jackson required a relatively inexpensive solution to his development needs. Since Gay was
a proven programmer but still a high school student, he had the necessary skills and finan-
cial flexibility to accommodate Jackson’s requirements. Gay began to work for Silicon
Beach Software, Jackson’s newly formed software firm, while still a senior in high school.

Gay spent his college years writing gaming titles for Silicon Beach. Some of his more nota-
ble titles, such as Airborne, Dark Castle, and Return to Dark Castle, won awards and were
critically acclaimed. It was during this period that Gay began to develop his interest in rapid
and responsive interactive programs. Because of his exposure to animation and interactiv-
ity, Gay credits this time as the original inspiration for what would become Flash.

Still in college, Gay returned to graphics development software with his work on Superpaint 2.
Superpaint was a ground-breaking program that combined the editability of both vector
illustration and raster-based graphics (bitmaps). In this respect, Superpaint was well ahead
of its time: the combination of vector and bitmap-based technologies was not effectively
realized as an industry standard until the release of Adobe Photoshop 6 in 2000—more
than a decade later. (In fact, today’s leaders in the production of graphic editing software,
like Adobe, still maintain independent environments for the editing of bitmaps and vector
drawings.)

In the early 1990s, Gay graduated from college and began full-time work on a pen com-
puting program known as IntelliDraw. Soon after, Silicon Beach Software was acquired
by the Aldus Corporation, and IntelliDraw was first released. It was at this time that Gay
realized the forthcoming success of the pen computing market. By working as a devel-
oper on IntelliDraw, Gay became aware of the how he could revolutionize the user’s
experience with pen-styled computing. He approached Charlie Jackson with his ideas
and suggested that they form a software company devoted to developing cutting-edge,
pen-based computing.

In 1993, Gay and Jackson started FutureWave Software. Along with programmer Robert
Tatsumi, TT FutureWave began development on SmartSketch, an innovative pen-based draw-
ing program to run on GO Corporation’s PenPoint operating system. Unfortunately for the
FutureWave team, PenPoint was discontinued shortly after the release of SmartSketch.
This obviously left SmartSketch without a viable platform for deployment. Faced with
some tough choices, FutureWave decided to write versions of SmartSketch for both the
Macintosh and Windows systems. With existing industry-standard drawing programs
already in place for those systems, FutureWave faced stiff competition. It was at this point
that the true essence of Flash was born.

Flash’s greatness is driven by both innovative vision and an abundance of user feedback.
While attending SIGGRAPH in 1995, the creators of SmartSketch received a considerable
number of requests for their tool to offer animation functionality. It was also around this
time that the emergence of the World Wide Web was beginning to take hold. At this point,
the Web was still stateless, and the only way to offer more complex interaction was through
Java Applets. Gay knew that this added functionality would ultimately be the key to giving
SmartSketch its needed diversification, uniqueness, and edge. This enhanced version of
SmartSketch, called FutureSplash Animator, was released in 1996, offering full Netscape

HOW IT ALL BEGAN

7

1

support (via plug-in) and an integrated time line for frame-based animations. The com-
bined features of this new software made it possible to quickly and easily deploy vector-
based animation to the Web.

It didn’t take long for FutureSplash to make its mark on the world of design. When the
Microsoft and Disney corporations harnessed its potential for their respective web sites,
FutureSplash won the respect of more established and substantially larger software devel-
opment companies. Because of this exposure, FutureWave was approached by Macromedia.
Excited at the prospect of financial stability, FutureWave agreed to be purchased and
assimilated by Macromedia.

Thus, in 1996 Macromedia Flash was born. With the release of Dreamweaver in 1997, Flash
helped Macromedia successfully redefine itself as the premiere company for the develop-
ment of web authoring tools. Jonathan Gay remained with Macromedia (and Flash) until its
eventual purchase by the Adobe Corporation in 2005. For more than a decade, Gay cham-
pioned the innovation, direction, and vision of the Flash Platform. This vision is ultimately
given much of the credit for moving Flash and the web industry in the direction of the
Rich Internet Application (RIA).

It has been over 20 years since Gay first began writing graphics editing programs. In that
time, the Flash Player has become one of the most widely distributed pieces of software in
the history of computing.

The world today—addicted to change
Before we go any further, it’s important to understand the way technologies propagate
through popular culture. For example, at the time of this book’s writing, the world is
entering the social networking and collective intelligence era of web application develop-
ment. This is not to say that web-based social networking is a new technology—it isn’t by
any stretch of the imagination. It simply means that, for the next several months, social
networking will be the focus of what most companies try to achieve for their respective
businesses.

Companies specializing in social networking have been around for years (for example,
MySpace and Facebook). However, now that the gold has been discovered, the rush will be
on to harness as much of this potential as the market will bear. Subsequently, dozens of
lesser-know companies will offer their interpretations of what effective social networking
should be.

By the time you read this, social networking will be as relevant to the future of web tech-
nologies as the phrase, “You’ve got mail.” Not that it will be obsolete; it will simply be so
commonplace and expected that it will no longer be the driving force of our industry.

Please do not misconstrue the previous statements: the fact that this is happening does not
mean that the web technologies industry is fickle. Rather, it reveals how quickly web tech-
nology evolves. Per Moore’s Law, every major aspect of computer hardware doubles about
every two years. This holds true for storage, speed, transistor count, and the halving of chip
size and cost. In just over a decade the average household Internet connection speed has

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

8

also gone from 56 kilobytes per second to around 16 megabytes per second. This increase
in speed is about 300 percent over 10 years. Though this growth is not actually explained
through Moore’s Law, but rather Nielsen’s Law, there is no doubt that the two are related.
It should then come as no big surprise that because hardware cost and capability is advanc-
ing so rapidly, new doors are opened everyday for what this hardware is used for.

As a professional in the realm of new media, you will need to possess some degree of
discernment when you hear the buzzwords that typically plague our industry. The truth of
the matter is that most of these terms are associated with some kind of significant revela-
tion that has occurred in the landscape. Unfortunately, many of them are completely
misunderstood and are seldom defined in a commonly acceptable manner.

Therefore, rather than have you, the reader, become lost in the thickets of what would be
the endless definitions of the terms “RIA” and “Web 2.0,” we will go ahead and break this
down . . . according to Flash.

Rich Internet Applications

What then is an RIA? Rich Internet Application refers to the process of web pages mov-
ing away from a stateless Internet. We understand that this definition probably needs
some elaboration. But in terms of clarity, this is probably the most concise and direct
definition of what the term “Rich Internet Application” means.

Functionally, however, Rich Internet Applications are commonly referred to as web appli-
cations that behave more like desktop applications, the primary difference being that a
trip to the server is no longer required for a web page to process information. In fact a
majority of the processing can and is handled by the human-computer interface itself.

Flash was instrumental in this movement because it was both capable of changing states
and possessed a native programming language capable of manipulating user information.
And, because it was popular and lightweight, it instantly became the platform of choice for
deploying Rich Internet Applications.

To gain a better understanding of how important this was to the web industry and why TT
Flash was such a tremendous component, we will take a look at the limitations of the early
Internet and what it took to break the stateless barrier.

The stateless Internet
The first thing that needs to be understood is the concept of a stateless Internet. “Stateless”
simply means that early web pages did not have “state,” or they lacked the ability to
change. If a page wanted to update or change its information, it would have to request a
new page from the server. Subsequently, all major functionality would have to be per-
formed on the server.

The term “client-server” was then adopted from post-mainframe computing to describe
the type of interaction that was occurring on the Internet. As demonstrated in Figure 1-1,
if the web page, or client, wanted a change to occur, it would need to request new infor-
mation via an HTTP request. In order for this process to be completed, the request would

HOW IT ALL BEGAN

9

1

need to traverse the Internet and make contact with a web server. The server would then
need to process the applicable request and return the response to the client machine in
the form of a new HTML page. This is also referred to as a refresh.

Figure 1-1. The request-response round trip that occurs when a web
page is requested

Because of their inability to perform any functional processing of their own, web pages
were often referred to as thin clients. The term “client” is typically used to refer to the
part of an application that allows a human to interface with its data.

Unfortunately, the web-based client-server model suffered because potentially significant
errors could occur from multiple points of failure. At any given point of this exchange, the
request or response could be dropped, and the process would not be complete. One
example you are sure to remember is the old web shopping cart checkout that failed to
process orders, leaving users wondering if they had just made a purchase or not!

Three-tiered application model
Now that you have firm grasp on the concept of the stateless Internet, it would be advan-
tageous to take a moment to look at the important components of a typical web applica-
tion. As a new developer begins to become involved with the world of web technologies,
it can certainly take a lot of mental work to gain a solid footing: “Should I use ASP or PHP?
Will I benefit from using Ajax? A Should I use a combination of multiple technologies?” For
someone first starting out, the abundance of choices can be overwhelming. The reality of
this situation is that, for the most part, web programming languages all behave in essen-
tially the same manner. And, they are definitely responsible for governing the same tasks.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

10

When building web applications, or any application for that matter, a developer needs to
focus on three main components, or layers:

Database or data layer Data represents anything that is going to be stored for future
use. This can be the storing of states, similar to the way Microsoft Word has the ability to
remember where and how you have arranged your toolbars. Likewise, data layers can also
be used for the storing of user or product information needed to run an online store.
Though the complete list of users, products, comments, reviews, and all the details that
are associated with running Amazon.com are significantly more convoluted than how you
have arranged the toolbars in Word, it is still the same basic principle.

Please keep in mind that though this is an extremely loose explanation of the data layer, it is
important for any application to have the ability to remember. Therefore, if users return to
Amazon.com, all of their credit card information is ready to go when they get there. Imagine
how annoying it would be to have to reenter this information over and over again.

The most popular technology for the development of web application databases is
Structured Query Language (SQL). Several types or brands of SQL exist, but for the scope
of this discussion it is sufficient for you to understand that web applications need data-
bases. And these databases are typically written using some form of SQL.

Middleware or logic layer The term “middleware,” as it applies to web technologies,
is commonly used to refer to the part of an application that connects the data to the pre-
sentation (or client) layer. It gets this name because it operates between or in the middle
of the other two layers.

The two most commonly used languages for handling this functionality are PHP and ASP.NET. TT
Though quite a few other options exist, most web developers are divided into these two
camps. In fact, if you were to try and register for standard web hosting, it is more than likely
that you would be asked the question, “Windows or Linux?” This is really the same as asking
you if you wanted to have the server configured to run ASP (Windows) or PHP (Linux).

More recently, the world has also become familiar with Asynchronous JavaScript and XML
(Ajax). A Though not really a language by definition, Ajax is a collection of congruent techA -
nologies that effectively use the JavaScript language to access databases directly. Most
users will be familiar with Ajax through the use of standard A Google applications like Gmail
and Google Docs.

One of the other main points of understanding for middleware technologies is that not
only can they communicate with the presentation layer, but they also have the ability to be
the presentation layer. For example, the “X” in Ajax stands for XMA L. And for sake of discus-
sion, HTML is a type of XML. Therefore, because HTML is the primary and most basic ele-
ment for web presentation, Ajax is more or less an intermingling of the presentation layer A
and the middleware. ASP is also an XML-based language. ColdFusion is another XML-based
technology. Though they, like Ajax, have intermingled processing capabilities, the basic A
language is markup. Subsequently, you could attest that most technologies used for mid-
dleware could effectively handle the presentation layer as well.

Presentation layer The presentation layer, also referred to as the client, is where the inter-rr
action between the human user and the computer takes place. In the case of the Internet, it is
the web page. Traditionally, HTML has been the primary language for rendering web pages.
And, if you are viewing web content through a browser, Flash or otherwise, HTML is required.

HOW IT ALL BEGAN

11

1

HTML is a descendant of Generalized Markup Language (GML), which was developed
almost 50 years ago by IBM. The purpose of GML was to give meaningful labels to content
for the purposes of structure and formatting. This process is similar to the writing of a
book, in which the author only needs to appropriately label a chapter heading as a header,
and the publishing company takes care of the rest. The publisher will effectively be able to
apply the appropriate font size and typeface simply by the author’s having labeled certain
text as a header. This is essentially how markup languages work. Tags are used to label TT
certain areas of a document, or certain blocks of text, and the browser knows how to
format these areas based on style guidelines. Therefore, all languages with the letters “ML”
(short for markup language) on the end are going to be concerned with giving structured
meaning to otherwise structureless content.

The intended purpose of HTML was to do exactly that. Initially the Internet was to be used
for the connecting of communication, documentation, and information. It was never
intended that the Internet be what is, quite literally, another dimension of existence. So
originally, HTML was created to “format documents” for viewing over the Internet.

The diagram shown in Figure 1-2 illustrates how these three layers communicate between
one another. The presentation layer is, again, where users interact with an application either
through mobile device, web browser, or browserless application (like iTunes). Therefore this
information, once accessed, exists on a user’s computer. When displaying information in a
browser, HTML is required. This is also the layer where Flash content exists. For basic web
applications, this layer communicates with a server using the response-request method.

Figure 1-2. A diagram of the three-tiered application model

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

12

The middleware or logic layer serves as the liaison between the presentation layer and the
data layer. This layer exists on the web server and can access information in a database
through a database query. Traditionally, all major functionality was handled by the logic
layer. As mentioned previously, though several other solutions such as Java and ColdFusion
exist, the two most common languages used for logical processing are ASP.NET and PHP.
And, though many people can list the pros and cons of either language, the primary rea-
son to choose one over the other only has to do with which language a developer feels
more comfortable with.

Finally, the data layer is a database that also resides on the web server. And just to review,
most modern databases are handled by a language called SQL. Like the solutions with the
middleware, there are several types of SQL to choose from. The two most common types
coincide with the two most popular choices for middleware technology. If you are a devel-
oper who is more comfortable with ASP.NET, you will use MTT SSQL as your brand of SQL.
This also has to do with having your web server configured to run Windows. If you are a
PHP developer, you will more than likely be communicating with MySQL on a Linux-based
web server.

We should point out that these are traditional configurations. It is possible
to have PHP communicate with MSSQL and have ASP.NET communicate
with MySQL. Most web developers and web hosting companies will operate
in accordance with the traditional approach.

Natural evolution of thin clients
As the natural evolution of the Internet occurred, the demand for client-side functionality
became more and more apparent. At this time developers could use Java Applets,
JavaScript, and VBScript to add greater flexibility. There were, however, still significant
limitations to what could be done programmatically over the Internet.

Though greater client-side functionality was rising, the Internet was still stateless. And, in
order for an information change of any kind to take place, new information would need to
be sent from the server. A web page couldn’t even add 2 plus 2 without refreshing the
page. It was within this void that Flash ultimately met a need and found its place in the
driver’s seat of where the Web is going next.

By now you should have at least a basic working understanding of how web applications
function. You should be familiar with the fact that applications need a memory (data), a
place for humans to interact (client), and a way for these two layers to communicate
(middleware). You should also be well aware of the significant limitations to the client-
server model as we have discussed it. Finally, you should also be familiar with how all of
these components came together to present a stateless Internet.

With this understanding, we will now take a look at true development of the Rich Internet
Application. In all actuality, the only thing that differentiated an RIA from everything else
on the stateless Internet was the evolution of the client.

Up to now, you have only been introduced to the client (presentation layer) as just that, a
client. It would now be appropriate for us to describe clients, as we have defined them, as

HOW IT ALL BEGAN

13

1

thin clients. The term “thin client” simply refers to a human-computer interface (client)
that is dependent on a centralized server to handle all of its processing. It is incapable of
processing any significant data on its own. We use the term “thin” to suggest a degree of
flimsiness; the client does not have the ability to stand on its own.

The evolution of the Internet is not unlike the evolution of the personal computer. This is
no doubt why terms like “client” have been derived from traditional computing to describe
web-based ideas. Figure 1-3 demonstrates the parallels between these two evolutions and
shows how they are related in the linear advance of computing.

Figure 1-3. The evolution of computing ranging from mainframe computing to the birth
of RIAs

Back in the days of mainframe computing, all files and applications for a business resided
on a central processing unit, or mainframe. If employees needed to access particulars, they
would have to log in through a terminal. Terminals, as you may have guessed, were also TT
referred to as clients.

As Bill Gates and Steve Jobs began to duke it out over global domination, the world was
gifted with the personal computer. The beauty of the personal computer was that each unit

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

14

had its own central processing capability. Therefore, each unit had the ability to effectively
manage all of its own data and processing. Additionally, the human-computer interface
began to adopt a graphics metaphor with operating systems like Windows and Mac OS.

Because of these advancements, it became necessary for the industry to differentiate
between the types of clients that were being used. Subsequently, in light of the fact that
personal computers now had the ability to store and process their own information, they
were affectionately given the labels of fat client or thin client. Similarly, as mentioned
earlier, their predecessors were officially given the label of thin client.

This change also brought some significant differences in the way clients interacted with
data. Because they could now handle most of their own processing, the only thing that
needed to be stored centrally was the data. This new relationship between client terminals
and data servers was eloquently referred to as the client-server model.

As the world moved into the Internet era, computing took a step backward. Though the
Internet was actually made functional by the client-server model, it was more accurately
performing like the mainframe model. The clients had returned to text-based representa-
tions that were dependent on a centralized source for all data and processing.

The rise of ActionScript

Enter Flash! Around the end of 2003, Macromedia released its seventh installment of the
Flash development environment, Flash MX 2004. What made this release of Flash so spe-
cial was the presence of ActionScript 2.0. This was significant because it gave Flash its first
real object-oriented capabilities.

Object-oriented programming is a style of programming that uses objects to
organize the functionality of an application. It has been debated whether or
not ActionScript 2.0 was an object-oriented programming language. We have
read many articles that have stated emphatically that it is not. The reality is
that ActionScript 2.0 is no less an object-oriented language than a three-year-
old child is a human. Admittedly some significant elements of object-oriented
languages were not present. However, the basis of the language was the for-rr
mation, manipulation, and instantiation of objects. Therefore, ActionScript 2.0
was certainly an object-oriented language. It just lacked the punch of some of
its predecessors.

It was around this time that the phrase “Rich Internet Application” began to surface into
the mainstream. As stated before, the thing that defines the Rich Internet Application as
such is the evolution of the client. Much like the change that occurred when the first thin
clients evolved into personal computers, Flash now possessed the tools to grant web pages
the ability to process all significant functionality at the presentation layer.

Further, it was already being used for complex, web-based animations. Therefore, Flash
was able to effectively break down the barriers of the stateless Internet. Users could now
be introduced to rich interactive and engaging experiences that were capable of dazzling
aesthetically and process all major functionality on the client. Users could now go to their

HOW IT ALL BEGAN

15

1

favorite web store, shop, add and subtract items from the cart, enter their personal infor-
mation, and check out without ever making a request to the server.

It was during this period (between Flash MX 2004 and Flash 8) that the development of
Flash as a platform began to emerge.

Flash Platform, open source, and Web 2.0
Now, the ability of Flash to break the barriers of statelessness was only one part of the
total equation. One of the greatest advantages to Flash as a technology is described in the
phrase “Flash Player ubiquity.” The word “ubiquity,” by definition, means omnipresence,
and that is basically what we have. The Flash Player is the most widely distributed piece of
software in the history of computing. At present, an estimated 864 million PCs worldwide
are running the Flash Player. This number approximately represents 99 percent of Internet-
enabled personal computers.

When these statistics are bridged with the technological advancements that were being
made by Flash development, it certainly becomes quite evident why and how Flash began
to move itself into the pole position of Internet technologies. In addition, the continual
upgrades to the Flash Player itself helped to deliver content that was not only engaging and
highly interactive, but also in file sizes that were more economical for Internet delivery.

The Flash Platform

Because of the many culminating factors surrounding Flash as a web solution, Macromedia
(later Adobe) began to develop what became known as the Flash Platform. The Flash
Platform is essentially a series of related technologies all built around or upon the Flash
development framework. These technologies included Flash, Flex, Breeze, and later Apollo
(now AIR) for browserless applications. The architecture for the Flash Platform effectively
outlined integration with most popular web technologies including PHP, .NET, Java, and TT
SQL. In essence, this offered Flash as the complete solution for any web-based client in any
situation including enterprise-level applications and web-based conferencing.

Web 2.0 means what you want it to

Web 2.0, like Rich Internet Applications, is the defining of an evolution of web-based tech-
nology. Web 2.0, however, is considerably more difficult to define. If you were to begin
doing research on Web 2.0 by means of the Internet, you would more than likely find
dozens of articles written on the topic. Unfortunately, most of those articles would give
you completely conflicting definitions of what Web 2.0 means.

How is this possible? Well, as stated earlier, our industry is plagued with buzzwords used to
promote self-understanding and competitive intelligence. In the case of Web 2.0, we have
seen this phenomenon explode to astronomical proportions. In fact, some definitions are
even unclear as to whether Web 2.0 is a technical advancement or an advancement of
aesthetics. We can assure you it has nothing to do with aesthetics.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

16

Web 2.0 is essentially the Internet catching up to traditional computing. Remember, we
spoke earlier of the Internet being a step backward in the world of computing. We are all
well aware that we can perform significantly more advanced processes from our desktop
computers than through the Internet. But as sure as I (Paul) am typing this, one of my
coauthors is 20 miles away making simultaneous edits and adjustments to this document.

The difficulty in diagnosis comes when we think of this evolutionary process in tandem
with what is already occurring on desktop computers. Many applications, such as Skype or
iTunes, are in fact desktop applications that communicate over the Internet. The diagnosis
becomes even more difficult when we consider applications like eBay Desktop, a program
that gives users the full functionality of eBay from the convenience of their desktop.
Applications like this are built on the Flash Platform using the browserless AIR environ-
ment. They are essentially desktop applications using Flash technology—or, more accu-
rately, web applications being run on a desktop.

Web 2.0 basically began its realization with the advent of the Rich Internet Application,
which found its mainstream exposure through the Flash Platform. Fueled by the now wide-
spread availability of broadband Internet, it is now coming into full bloom with the explo-
sion of social networks, massively multiuser environments, and ever enhanced means of
online collaboration.

In much the same fashion that personal computers stopped relying on a central processing
source and actually started being data sources, the Internet is beginning to see the same
kind of evolution. Users now have the ability to add value and contribute to the bigger
picture. They are no longer restricted to simply request-response type interaction.

Flash remains at the forefront of the Web 2.0 movement. Because of its incredible rate of
distribution and the power of the rapidly evolving ActionScript programming language,
Flash continues to redefine the landscape of web-based computing. Further, an arsenal of
third-party APIs have accelerated the way new technologies are being integrated with
Flash. Much like a snowball rolling down a mountain, the more Flash advances, the more
people want to advance it. And the more people want to advance it, the more it
advances.

The open source Flash explosion

The most wonderful thing to happen to Flash in the past couple years is the development
of an open source programming community. With the release of ActionScript 2.0, and more
recently ActionScript 3.0, Flash has had the benefit of attracting a more sophisticated com-
munity of software architects and engineers. And, as you learned earlier, Flash has always
benefited from its community. With this new insurgence of programmers, the Flash com-
munity was widely introduced to proper programming practices and theory. As a side effect,
users began to see the arrival of many third-party APIs and development libraries.

The open source Flash community is now responsible for creating several animation
engines like Fuse and Tweener; TT APE, the ActionScript physics engine; a number of 3D envi-
ronments including the popular Papervision 3D; Red5, an open source Flash server; and
many others. It is even possible to use Flash to write games that can be played on the

HOW IT ALL BEGAN

17

1

Nintendo Wii. In fact, this movement has gained so much momentum that entire books
have been devoted to the use of open source technologies in Flash, such as The Essential
Guide to Open Source Flash Development by t Aral Balkan et al. (friends of ED, 2008).

Summary
Now that you have been formally introduced to Flash, its capabilities, where it came from,
and where it is going, you are more than likely chomping at the bit to get started with
learning Flash and ActionScript. Well, we won’t hold you back any longer. We will simply
offer one final gem of understanding for those just beginning the journey. The Flash world
is immense! For many of the chapters in this book, it is possible to find several other books
on only that topic, and have a career in only that facet of the Flash world. Some people
make a good living off simply keeping tabs on what is going on in the Flash world. So find
out what kind of Flash user you are, don’t get overwhelmed, and above all other things
have fun!

We covered the following points in this chapter:

 What Flash is and what it is used for

 The three-tiered application model

Data

Middleware

Presentation

Why Flash was instrumental in breaking the stateless barrier

CHAPTER 2

THE NEW INTERFACE OF FLASH CS4

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

20

If you’ve ever watched the TV show Iron Chef, you might wonder how those chefs manff -
age to create such amazing food so quickly. Obviously they are masters in their craft,
and all of the experience and training that goes into becoming a master is important.
But at the foundation of that training is an understanding so complete of all the tools at
their disposal that knowing what tool to use for a task is second nature. Even though
some pretty amazing things come out of experimenting or “happy accidents,” your day-
to-day success depends on knowing what your tools do and how to use them.

Beyond the tool set is the kitchen itself, which has a place for storing food, a place for
preparing food to cook, a place for cooking food, and even a place to keep recipes or
other information about what the chefs need to make. And then there are the spices
and . . . well we could go on and on, but you get the idea, and since we’re not writing a
cookbook here, we’ll spare you the complete analogy. Suffice it to say that Flash works
like a kitchen in many ways, and the better you know your tools and workspace, the hap-
pier you will find yourself while making your next masterpiece with the “mystery
ingredient”—the customer.

If you’re coming to Flash CS4 from an older version of Flash, you should feel at home
right away. A few notable additions/changes include the Motion Editor, which we’ll cover
in detail in Chapter 6, a slightly new approach to the Property inspector, and a handful of
new tools.

Continue on with this chapter to get acquainted with the new interface of Flash CS4.

Welcome Screen
The first thing you will see when you launch Flash CS4 is the Welcome Screen (see
Figure 2-1). The Welcome Screen allows you to open recent documents, create new doc-
uments, or create new documents from a template. This page also has useful links to
tutorials and other product information and resources including Adobe Exchange, where
you can find hundreds of extensions built for Flash by the developer community. You
can create content for the Web, mobile devices, and even the desktop using Flash. The
Welcome Screen provides you with a number of options under Create New to help you
get started.

The Welcome Screen opens by default when you launch Flash and will reopen after clos-
ing all open documents. You can turn off the Welcome Screen by selecting the Don’t
show again check box at the lower left of the page. Alternatively, you can turn it back on
by opening the Preferences dialog (select Edit Preferences or press Ctrl+U in Windows,
or select Flash Preferences or press Cmd+U in OS X) and under the General category
setting the On launch drop-down to Welcome Screen.

THE NEW INTERFACE OF FLASH CS4

21

2

Figure 2-1. The Welcome Screen of Flash CS4

Choosing Flash File (Action Script 2.0) creates a new Flash file that targets Flash Player 10 using
ActionScript 2.0. Using ActionScript 2.0 will give you the flexibility of publishing content that
is backward-compatible with older versions of the Flash Player (back to Flash Player 6).

Selecting Flash Player 6 as your target player will now automatically optimize content
for Flash Player 6 r65 (new in CS4).

Choosing Flash File (Action Script 3.0) creates a new Flash file that targets Flash Player 10.
Content that uses ActionScript 3.0 will be compatible only with Flash Player 9 and higher.
Using ActionScript 3.0 not only brings with it a tool set geared toward object-oriented
programming similar to other important languages, but also changes the behavior of the
interface in some ways, which we’ll note throughout the book.

Choosing Flash File (Mobile) will launch Adobe Device Central, a handy utility made to help
you create content that targets the various versions of the Flash Lite player based on your
target device(s). Flash Lite is a runtime that uses a simplified set of ActionScript. Device
Central also includes a Flash Lite emulator. Nice!

Choosing Flash File (Adobe AIR) lets you create content for the desktop. AIR, which stands
for Adobe Integrated Runtime, allows you to leverage your existing Flash and other web
technology chops to create desktop applications that are first-class citizens on the user’s
computer.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

22

The Flash CS4 interface is nearly identical
between operating systems

Changes to the Flash CS4 authoring environment have made the interface behavior and
appearance consistent across operating systems. The addition of an application window par-rr
adigm has allowed the grouping of panels and document window(s) together on the Mac,
and conversely made floating document windows possible in Windows. In fact the interface
looks nearly identical between operating systems until you open a modal settings dialog.

That was a whole lot of everything in general and nothing specific. So if you haven’t done
so already, select Flash File (ActionScript 3.0) from the Welcome Screen, and you should see
the default workspace for Flash CS4 shown here in Figure 2-2.

Figure 2-2. The default workspace of Flash CS4

THE NEW INTERFACE OF FLASH CS4

23

2

Working with panels and windows
Within the application window the Flash CS4 interface is made up of one or more docu-
ment windows and several panels. Here we’ll explore the other various types of interface
elements, how to interact with and modify them in general, the basic operation of each,
and finally how to customize and arrange them to best suit your needs.

Understanding panels (color-coded panel parts—three
shades of gray)

Panels have three distinct areas that make up the header or bar that runs across the top:
the group header (dark gray), panel header (medium gray), and panel tab (light gray), as
shown in see Figure 2-3. The exception to this is the document window, which we’ll talk
about in the section “The document window” later in this chapter.

Figure 2-3.
The panel tab, panel header,
and panel group headerand panel group header

Panel tab

Clicking the panel tab gives focus to that panel, bringing it in front of any floating panels or
to the front of a panel group so that you can interact with it. (Floating panels will always
appear in front of panels that are docked to the application window.) Dragging the panel tab
allows you to move that panel in the workspace, arrange it within a panel group, add it to or
remove it from a panel group, or dock that panel to a docking point in the workspace.

Panel header

The panel header affects all the panels in a panel group as one. Clicking the panel header
will vertically collapse/expand the panel and any other panels in a group, but only after
bringing that panel or panel group into focus. Dragging the panel header allows you to
move that panel or panel group in the workspace, add it to or remove it from another
panel or panel group, or dock that panel or panel group to a docking point in the work-
space. At the upper-right corner of all panels (except for the Tools panel) is the panel
menu. This menu will have options related to the content of the panel. We discuss these in
more detail throughout the book.

Save yourself a few clicks (and master the workspace) by thinking about whether or not
the panel you are reaching for is open already. If it is open, click the tab, or you’ll waste
a click reopening it. If it’s closed, reach for the panel header bar—this will give the panel
focus, bring it to the front, and expand it, all in one click. It may sound like a silly thing
to consider, but these little things make working in Flash faster and more enjoyable.

www.allitebooks.com

http://www.allitebooks.org

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

24

Panel group header

The panel group header affects every panel group stacked under it. Clicking the panel
group header (dark gray) will reduce the panels down to icons. This collapsed-to-icons
view is a super-efficient use of space and reduces a sprawling expanse of panels into a
compact collection of buttons. As the name implies, you can group panels together in a
way that makes sense to you and the way you work. (Figure 2-4 shows a panel group col-
lapsed to icons.) When you click a panel button while collapsed to icons, the panel group
that that panel belongs to pops out. Giving focus to any other part of the interface outside
of that panel or its panel group will collapse the group automatically. (Horizontally stacked
panels or panel groups collapsed to icons do not close automatically.) The panel header
appears as two rows of dots above the panel buttons (which function as panel tabs).

Docking, grouping, stacking, and floating

We have mentioned panel groups, docking, and floating a few times, and you may be won-
dering exactly what these terms mean. See Figure 2-5 for examples of each.

Figure 2-5. Panels in groups, floating and docked

Figure 2-4.
A panel group

collapsed to icons

THE NEW INTERFACE OF FLASH CS4

25

2

Docking is attaching a panel or panel group to the inside bounds of the application win-
dow. This behavior has changed on the Mac from Flash CS3. Instead of an application
window, you could dock panels and groups to the bounds of the desktop. This is not an
option in Flash CS4 on Macs, although you can still do this on PCs. A side note: you can
expand the Tools panel to any width (very cool!).

To see how docking works, drag the timeline away from the panel group it is in. You’ll seeTT
the entire panel becomes translucent as you drag it. Dragging it close to the side of the
application window will cause a light blue line and a translucent gray bar to appear (see
Figure 2-6). Releasing the panel here will “dock” it to the application window.

Grouping is basically stacking panels on top of one another (like a deck of cards)—each
accessible by tabs running across the top of the panel group. To see how grouping works,TT
drag a panel tab into another panel or panel group. You will see a light blue line around
the outside of the panel or panel group you are about to join. In Figure 2-7 we are drag-
ging the Info panel from the bottom group up to the group with the Color and Swatches
panels. You can drag panel groups into other panel groups as well by dragging the panel
group header instead of a single panel tab.

Figure 2-7. The Info panel
being grouped with the
Color and Swatches panels

Stacking is basically docking panel groups to other panel groups. You can stack vertically
and horizontally. Using these features is a great way to organize your workspace. Study
Figures 2-7 and 2-8 to see the visual cues used in grouping and stacking. To stack a panel TT
or panel group, grab the panel tab or panel group header and drag it below, above, or in
between another panel group or groups. You will see a single light blue line appear where
your new panel or group will appear in the stack.

Figure 2-6.
The Tools panel
as it is about to
be docked to the
application window

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

26

Figure 2-8. A panel group being inserted above another panel
group in a stack

Stacking horizontally will always align the new group to the top of the stack.

By default a panel will open with the same position and the same dimensions
it had when it was closed. It will also open any other panels it was grouped
with and any other groups that its group was stacked on. This is sometimes
convenient, sometimes annoying—read the section “Customizing the inter-rr
face with workspaces” later in this chapter for more on how to make it work
for you.

The Property inspector—one panel to rule
them all

The Property inspector is a context-sensitive panel for modifying the properties of whatever
object has focus. As you change focus, say from the workspace to a frame on the timeline
to symbols on stage or to some of the tools in the Tools panel, the content of the Property
inspector changes to suit what you have selected.r We’ll cover specific settings and what
they do as we go through the book.

THE NEW INTERFACE OF FLASH CS4

27

2

Changing numeric property values (new behavior!)

You may be noticing that the numeric values in various panels are underlined with a dot-
ted line. This is known as hot text. Where older versions of Flash had pop-up slider bars
and input fields for entering property values, CS4 does away with the sliders and adds
mouse control (see Figure 2-9).

Figure 2-9.
New numeric value input
areas with dotted underlines
indicating hot text

Hovering over one of these and then scrolling your mouse wheel will increment the value
up or down by 1. If you scroll while holding the Shift key, it will increment up or down by
10. Finally, if you hold down the Ctrl (Cmd) key while scrolling, it will increment up or
down by .1. How convenient is that?! If you don’t have a scroll wheel, you can click and
drag using the same modifiers with the same result. And of course, single-clicking any of
these will allow you to input values via the keyboard but also allow you to continue to
adjust using the scroll functions described previously, the difference being that you will
not see the changes until you apply them by clicking away or pressing the Enter key.

The document window
As you can probably guess from the name, the document window reflects the output of
your work. Tangible characteristics like dimensions and frame rate as well as background TT
color are determined in the Property inspector (which we’ll explore shortly) when the doc-
ument window has focus. The document window contains your stage and work area.
Closing it will close the file. You may have more than one document window open at a
time. Opening an existing file or creating a new one will open a new document window
and group it with the currently active document window, even if it is not docked to the
application window. You can then separate it by dragging it away from the group.

Understanding the document window

Like panels, document windows can be grouped—but only with other document windows.
Also, they cannot be collapsed. And they can only dock with the application window.
Figure 2-10 shows a document window. In the upper-left corner is the window tab, and as
you can see we have open the infamous document Untitled-1. Under the window tab is a
bar called the edit bar. You can turn this on and off by selecting Window Toolbars Edit
bar from the application menu. On it is a breadcrumb of sorts that shows you what symbol
and timeline your stage belongs to and its hierarchical relationship to the stage.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

28

Figure 2-10. A single document window

On the right-hand side of the edit bar are three controls. Left to right they are the Edit
Scene, Edit Symbol, and Stage Magnification selectors. Clicking the Edit Scene button will
open a drop-down menu of available scenes to edit. Selecting one will change the stage
and timeline to reflect the scene you selected in the same state you left it in, including
playhead position and selected items, if any.

Clicking the Edit Symbol button will open a drop-down menu of every symbol in your library
while keeping folder hierarchy intact using the operating system’s style of submenus. (See
next section for discussion on the Stage Magnification selector.)

Controlling the document window

So now that you have an understanding of what the document window is and where it fits
into the Flash CS4 interface, you are probably wondering what you can actually do with it.
Beyond its showing you the stage, what can you do to determine how it shows that to you?w

Stage view options
In addition to view percentage, you have a handful of rules-based ways to look at the stage.

The Stage Magnification drop-down offers six preset levels of magnification, but you can
dial in any percentage you want between 8 percent and 2000 percent. There are also
descriptive options as well, including Fit in Window, Show Frame, and Show All.

Fit in Window: This setting does exactly what it says. It sizes the stage to fill the visi-
ble area of the document window (see Figure 2-11). This also removes the vertical
and horizontal scrollbars. (If the document window is floating, this will fill the doc-
ument window, obscured or not, and resizing it will not bring it to the front.)

THE NEW INTERFACE OF FLASH CS4

29

2

Show Frame: This setting will either zoom in or out to show you all of the contents
of the stage (see Figure 2-12).

Figure 2-12. Our stage after selecting Show Frame

Figure 2-11.
Our stage after selecting
Fit in Window

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

30

Show All: This setting will zoom in or out as far as it needs to and reposition the
stage in order to show you all of the symbols currently on the stage and paste-
board (see Figure 2-13).

Tools for using the interface

While many of the tools are used for creating and modifying objects in some way, a couple
of tools deal specifically with manipulating the workspace itself—the Hand tool and the
Zoom tool.

Hand tool
Use the Hand tool to move the stage within the document window. This comes in quite
handy while zoomed in. To access theTT Hand tool without “putting down” your current tool,
press the spacebar. When you see the hand, feel free to drag. To resume using your TT
selected tool, simply release the spacebar. This technique might seem a little awkward at
first, but it becomes a huge time-saver after just a little practice.

Figure 2-13. Our stage after selecting Show All

THE NEW INTERFACE OF FLASH CS4

31

2

Double-clicking the Hand tool in the Tools panel will set the document zoom
setting to Show Frame. (For a description of Show Frame see “Stage view
options” earlier in this chapter.

Zoom tool (Z is for bones, silly rabbit!)
To zoom in or out of the workspace, use the TT Zoom tool. Select the Zoom tool (or magnify-
ing glass) from the Tools panel by pressing M. In previous versions of Flash, you could also
press Z for the Zoom tool; however, CS4 assigns the Z shortcut to the Bone tool by default.
You can change this default behavior. Read “Customizing keyboard shortcuts” later in this
chapter to find out how.

Clicking the document window with the Zoom tool selected will zoom to two times the
current magnification (at 150 percent, a click magnifies to 300 percent, the next click mag-
nifies to 600 percent, etc.). Holding the Option key while clicking with the Zoom tool will
zoom out by half, or “pull out,” the current magnification (at 600 percent, a click decreases
the view to 300 percent, the next click decreases the view to 150 percent, etc.).

You can also drag around an area on the stage, and Flash will zoom to show only that area.

Double-clicking the Zoom tool will return the stage to 100 percent.

Rulers, guides, and snapping
Although Flash has fantastic auto-align and snapping options that go beyond rulers and
guides, the document window also includes rulers and guides to help you position items
on the stage when there may not be anything else to align with or snap to. Ruler and guide
options remain under the View menu.

Select View Rulers to toggle the rulers off and on. Rulers must be on in order to create
guides but not to view or move them.

To create a guide, drag from aTT ruler toward the stage. As you drag you will see a line
appear. When you release the mouse, this will become a guide. While you can have any
tool active to make guides, you must use the Selection tool to change their position or
remove them individually.

To move a guide, make sure you have theTT Selection tool active. When you hover over a
guide with the Selection tool, an arrow with a line will appear next to it indicating that you
can click and drag the guide to move it. To remove the guide, drag it onto the ruler.TT

To edit guides, selectTT View Guides from the menu. Here you can show, lock, edit, or clear
your guides. Choosing Edit will open the Guides dialog where you can select a color for
your guides, lock/unlock, hide/show, and even adjust snap accuracy as well as make your
selections the default for all documents.

Snapping is a standard feature of many applications where “moving things around in a
view” is part of the workflow. Flash is no exception. Snapping allows you to place objects
accurately based on some rules. You can snap to guides, which means that guides will act

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

32

like magnets when you get objects near them. Additionally, you can have objects snap to
other objects and objects snap to a grid on the stage.

Property inspector options of the document window

Property inspector options for the document are divided into two sections, Publish and
Properties, as shown in Figure 2-14.

The Publish settings are determined by what publish profile you have selected. (Using one
of the Welcome Screen options selects a publish profile for you.) To change the TT Flash
Player and ActionScript versions you wish to publish for, click the Edit button. This will
open the Publish Settings dialog where you can change your settings. If you’re chomping at
the bit to set up custom profiles or dig deep into the publishing capabilities of Flash, jump
to Chapter 18, where we cover the publish settings in detail.

The other option under Publish is the Class field. Use this to assign an ActionScript class to
the document. We’ll cover this and the Actions panel in Chapter 8.

There are three document properties that can be set in the panel: fps (frames per second,
referred to as the frame rate), size, and stage color. You can also access these properties
though the File menu by selecting Modify Document, or by pressing Ctrl+J (or Cmd+J on
a Mac).

Figure 2-14.
The Property inspector

for the document window

THE NEW INTERFACE OF FLASH CS4

33

2

Changing the document frame rate
The default frame rate is now 24 fps. To change it, use the methods described previously TT
in the section “Changing numeric property values (new behavior!)” or open the Document
Properties dialog by clicking the Edit button in the Size section under Properties.

Changing the stage size
Clicking the Edit button next to Size will open the Document Properties dialog, allowing you
to adjust the document dimensions as well as the frame rate and stage color.

Changing the default document settings
If you commonly use specific dimensions, frame rate, and stage color, you can make those
settings the default by clicking the Edit button in the Properties section of the Property
inspector. In the Document Properties dialog, adjust the settings to match your preferences
and click the Make Default button in the lower left of the dialog. Now every new document
will have these properties!

These are the “physical” characteristics of your document and will not impact
the publish profile—which player and version of ActionScript your movie will
target.

Flash has historically shipped with a default frame rate of 12 fps in order to
accommodate older, slower computers. The new default frame rate is 24 fps,
so be sure to dial it down if your audience is known to have older equipment
with slower processors.

The Timeline panel
Hated by some, revered by others—the timeline has been a point of contention in these
later years of the evolution of Flash. Coders say, “I cannot use Flash. You can put code
anywhere! And what’s with the timeline?! What is that for?” Animators and designers say,
“I cannot use ActionScript to draw and animate. I cannot see what I am doing.” And really,
we are all right. No matter what side of the fence you are on (including the middle), Flash
may have some paradigms you don’t “get” or need. But the cool thing about these para-
digms is that they are not mutually exclusive worlds. If you don’t need the timeline for
what you do, don’t use it. If you absolutely must have it, then by all means do. Somewhere
in the middle there is a place where “timeliners” and coders work together in harmony,
and it’s much closer than you might think. In fact, we’d be able to see this common ground
if we weren’t all standing on it together.

Flash programmers will be quick to point out that if you use Flash as a tool for authoring
Rich Internet Applications and take advantage of the power of ActionScript, you may need
the timeline less than ever—if at all. However, the timeline remains an integral part of

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

34

what Flash is at its core and is used extensively by a large community of Flash designers
and animators, which is why it not only remains a table stake of the Flash interface, but
also has been expanded (in a tangential way) by way of the new Motion Editor.

Even if you create an application in Flash with only code, you still need a target Flash
source (FLA) file in order to publish it, and it will contain a stage—the fundamental display
object container of every Flash movie (SWF file). The stage contains the main timeline of
your application, also a display object container.

We discuss the display list in detail later in the book, but for now let’s say that in AS 3.0,
it’s a list of things designed to help you manage the relationship of everything you see on
that list. If you can see it, it’s a display object. If it’s a display object, it is the child of a
display list container. And yes, some display objects can be display object containers at the
same time, which results in nesting.

For character and motion graphics animators, being able to see the relationship of multi-
ple events over time is critical to imparting personality into their work. The timeline does
just that. For interface designers, the timeline can be used for organizing layout elements
using layers and folders and representing view states of an application using frames.
Prototypes of transition animations or special visual effects can be created by artists in the
timeline to later be replicated and modified in code if need be.

Understanding the Timeline panel

The Timeline panel (see Figure 2-15) is the visual representation of the items on your stage
over time. It lets you arrange and organize your stage during the authoring process (when
you are building your movie or application). You can organize visual depth by using layers
and folders much the way you might in Photoshop. You can then manage your visual com-
position over time by using frames.

Figure 2-15. The Timeline panel

A significant change to the interface in this release is that when you have multiple docu-
ments open, the Timeline panel no longer holds the tabs for open documents. To switch
between documents, you must select the document tab in the document window. The
document window header displays the active document. Read “Understanding the doc-
ument window” earlier in the chapter to learn more.

THE NEW INTERFACE OF FLASH CS4

35

2

Controlling layers
Timeline layer options allow you to manage and organize your layers as well as give you
control over settings for each layer independently. Following is a detailed discussion of
each of these options.

The layer strip: The layer strip is the horizontal strip of space in the Timeline panel
to the left of the timeline that shows (from left to right) whether the layer is a
folder or not, the layer name, whether it is editable or not (if selected), hidden or
not, locked or not, and the outline color setting. Double-clicking the layer icon will
open the Layer Properties dialog and allow you to change all of the layer’s proper-
ties (see Figure 2-16).

Figure 2-16.
The Layer Properties dialog

Folders are layers in the Timeline panel. Even though you can’t put content in
them, the interface treats them the same way it treats layers. Folders are a great
way to organize your content layers into meaningful groups. You can also nest
folders in other folders.

Show/Hide layer: Clicking the eyeball icon at the top of the Timeline panel will affect
all of the layers in the following way. If some or all layers are visible, clicking this
icon will hide all layers. If all layers are hidden, clicking this icon will show all layers.
In addition to this icon, you can show and hide layers individually by clicking the
first black dot that appears beside the layer name under the eyeball icon. A red X
indicates that the layer is now hidden.

Notice the pencil with the slash through it that appears next to the layer name
when the layer is hidden. This indicates that the contents of that layer cannot be
edited. You will only see this indicator on the active layer.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

36

Lock layer: Clicking the lock icon at the top of thek Timeline panel will affect all of the
layers in the following way: If some or no layers are unlocked, clicking this will lock
all layers. If all layers are locked, clicking this icon will unlock all layers. In addition
to this icon, you can lock and unlock layers individually by clicking the second black
dot that appears beside the layer name. A lock icon appears indicating that thek
layer is now locked.

Notice the pencil with the slash through it that appears next to the layer name
when the layer is locked. This indicates that the contents of that layer cannot be
edited. You will only see this indicator on the active layer.

Outline layer: Clicking the square outline icon at the top of the Timeline panel will
affect all of the layers in the following way: If some or no layers are in outline view,
all layers will be set to outline view. If all of the layers are in outline view, all layers
will be set to normal view. When a layer is in outline view the outline indicator on
the layer strip appears as an outline of a square. The color of the outline indicates
what color outline the object on that layer will be.

Add layer: Use the Add Layer button to add a layer to your timeline above the cur-
rently selected layer or folder. Layers are named sequentially Layer 1, Layer 2, etc.

Add folder: Use the Add Folder button to add a folder to your timeline above
the currently selected layer or folder. Folders are named sequentially Folder 1,
Folder 2, etc.

Delete layer/folder: Use the Delete Layer/Folder button to remove the selected
layer(s) or folder(s) from the timeline. Deleting a folder will also delete any content
within it as well, including layers, subfolders, etc.

The timeline
The ruler or timeline header side of the Timeline panel is where “time is measured”—or
broken into equal parts we call frames.

Ruler or timeline header: Moving to the right side of the Timeline panel, you will
see at the top a row of numbers incremented by 5. These are frame numbers.
Directly below them is a row of small ticks (short vertical lines). Together they TT
make up a sort of frame ruler that gives you a visual indication of the frame num-
bers of the frames in the grid below. (You can always look at the current frame
indicator, discussed a little later in this list, to see exactly what frame the playhead
is on.)

Playhead: On the timeline is a red rectangle with a red line extending down
through the grid. This playhead indicates what frame on the timeline will be
reflected on the stage in the document window.

The grid: As you add frames to layers, you will begin to fill in the space under the
ruler. Every fifth frame is shaded gray as a visual aid, and all of the frames are delin-
eated by vertical lines (see Figure 2-17).

THE NEW INTERFACE OF FLASH CS4

37

2

igure 2-17. Many of the types of frames and keyframes you will encounter on the timeline

Frame View Options: This menu lets you adjust frame width, layer height, and frame
tinting (discussed in the upcoming section “Persistence and tinting frames”).

Center Frame: This button horizontally scrolls the timeline so that the frame that
the playhead is on appears centered in the Timeline panel.

Onion Skin: Select Onion Skin to simultaneously see multiple frames of animation.

Onion Skin Outlines: Click this button to display the onion-skinned frames as
outlines.

Current Frame: During playback of the timeline, this will show the position of the
playhead. At rest, you can click to enter a value or use your mouse wheel as
described in “Changing numeric property values (new behavior!)” earlier in the
chapter. Entering a number will immediately move the playhead to that frame.
Scrolling will move the playhead back and forth as you scroll.

Frame Rate: During playback this indicates thek actual frame rate of playback.l At rest
you can use it to set the document’s target frame rate by using the methods described
in “Changing numeric property values (new behavior!)” earlier in the chapter.

Elapsed Time: During playback this shows the calculated elapsed time of the play-
head based on frame 1.

The Add Motion Guide button has been removed from the bottom of the Timeline
panel in this version of Flash. To read more about the new approach to guiding
motion in Flash CS4, refer to Chapter 6.

Adding frames/keyframes to the timeline

A new FLA document will have a single layer and a single keyframe by default when you
open it. If you’re interested in controlling the visual state of an application from the time-
line or using it for linear animation, you’ll want to know how to add frames to your time-
line. First let’s have a look at the various types of frames. Look back at Figure 2-17 for
examples of an empty frame, empty keyframe, and keyframe.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

38

Now there’s also a sort of ready state the grid is in before it has any frames on it. The
frame-like rectangles you see under the timeline are simply individual placeholders for
where frames might eventually be. We’ll call them “unpopulated” to keep them distinct
from empty keyframes and empty frames, the difference being that you can’t do anything
to an unpopulated spot on the grid—you must have a frame of some kind there. In fact,
you can’t even move the playhead over them. (This is an easy way to tell whether you’ve
got frames.) So enough already—let’s add some frames to the timeline.

Persistence and tinting frames

Whether you use the timeline to keep things separated or for linear motion, you’ll want to
know at a glance where things exist—and how they persist—in time. One useful feature to
aid you in this is frame tinting. With frame tinting turned on, any frame that has a symbol
or shape on it will be shaded gray, distinguishing it from empty frames, which are white.
With tinting turned off, all of the frames are white, which makes it difficult to see how
content on stage persists over time.

To turn on frame tinting, use the TT Frame View Options menu at the top-right corner of the
Timeline panel and make sure the option Tinted Frames is checked.

The timeline flows like water

This section is for brand-new users of Flash or folks who are having a hard time under-
standing how the timeline behaves. Let’s imagine the keyframe is a lake or some other
small body of water. Add a single empty keyframe to the timeline (see Figure 2-18).

Figure 2-18. A single empty keyframe on the timeline

When you add a symbol or shape to the stage when that keyframe is selected, think of this
as adding water to your lake. See Figure 2-19 to see a single keyframe with content. If you
have no frames on that layer, you have no place for the water to flow.

All of the water stays in the lake. Adding frames to your layer is like adding a river to that
lake, and when you do, all of the water flows from it down the river (that is, the content
moves into every frame on that layer) until it meets another keyframe.

If there is already a keyframe on your layer, the content from your first keyframe cannot
continue into it. Each keyframe carries its own distinct set of content (see Figure 2-20).

THE NEW INTERFACE OF FLASH CS4

39

2

Figure 2-19.
A single keyframe with content

Figure 2-20.
What happens when you add
content to a keyframe on a layer
with a preexisting (empty) keyframe
further down the timeline. Note that
the frames following the second
keyframe remain empty.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

40

That being said, if you add a lake to a river (that is, you add a keyframe after a set of
frames), the lake will fill up with water from the river—or collection of symbols and shapes
that made up the original keyframe; you can then change the contents of the newly added
keyframe without changing the content of the keyframe or frames that preceded it—only
on the frames that follow (see Figure 2-21).

Figure 2-21. What happens when you insert a keyframe to a layer with content

Adding and inserting frames and keyframes to layers

The easiest way to add frames to the grid is to click anywhere under the timeline where
there is a layer (selecting where there is no layer will only give focus to the Timeline
panel) and pressing F5 (or selecting Insert Timeline Frame). This will add frames on
that layer from the point at which there is a frame to the point at which you clicked
under the timeline. For instance, if you click in the unpopulated placeholder under the
number 50 on the timeline, you’ll see that that placeholder turns a nice green, indicat-
ing that it is selected. Pressing F5 will populate every placeholder between frame 1 up
to and including frame 50 (we’re assuming that frame 1 is the closest frame—not
placeholder—to the placeholder under 50). Pressing F6 will add an empty keyframe in

THE NEW INTERFACE OF FLASH CS4

41

2

the placeholder (or last placeholder) you have selected (look for the green) on that
layer and fill the rest with empty frames.

You made frames!

If the current timeline has more than one layer, you can add frames to multiple layers by
dragging under the timeline to include all of the layers you’d like to add frames to. You will
notice the placeholders turn that lovely green to let you know they’ve been selected. Press
F5, and you’ll have frames on all of the layers you selected—from the first at which there
is a frame to the position you selected. Pressing F6 will add an empty keyframe to the
point (or points) you have selected on all of the layers you have selected (look for the
green) and fill the rest with empty frames.

Don’t worry too much about selecting more than one column of placeholders when
adding frames to empty layers. Flash will add frames up to the furthest column.

Adding and inserting frames and keyframes to all
layers

So selecting placeholders on all of the layers of a timeline can get to be a drag if you’re
working on a timeline with many layers; but there is an easy way to add or insert frames
and keyframes to every layer in the timeline.

To add frames to the end of the timeline to all layers, position the playhead at the last TT
frame of the timeline, making sure none of the grid is selected (look for the green). Now
press F5 to add a frame to the end of every layer. To add a keyframe, press TT F6 instead. To TT
remove a frame, press Shift+F5. If the last frame on any layer happens to be a keyframe, it
will also be removed.

Grid selection takes precedence, and clicking the playhead or placeholders won’t
deselect, so make sure your timeline doesn’t show any green before adding/removing
frames and keyframes from all layers. To deselect everything in the timeline, click any
dead space under the last layer or click away from the Timeline panel.

Inserting frames willy nilly

That’s right—willy nilly. It sounds better than “multiple noncontiguous selection” don’t you
think? Let’s suppose you have a timeline with three layers (each with 15 frames), and you
want to insert 5 frames into the middle of Layer 1 and add 2 frames to the end of Layer 3.
To do this, follow these steps:TT

1. Drag over 5 frames on Layer 1.

2. Press Ctrl (Cmd on a Mac) and drag over the last 2 frames of Layer 3.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

42

You should now have a selection that looks like Figure 2-22.

Figure 2-22.
Multiple discontiguous

selections

3. Press F5 to insert frames or F6 to insert keyframes.

Just remember the following:

 Green indicates a selection.

Press F5 to add/insert frames.

 Press F6 to add/insert keyframes.

 Press Shift+F5 or Shift+F6 to remove frames or keyframes.

Pressing F5 with multiple frames selected on a layer or lay-yy
ers will insert as many frames as you have selected on as
many layers as you have selected.

Copying/pasting frames

As in any creation process you will at some point want or need to duplicate or move
your work. Copying frames is a quick way to duplicate your efforts on the timeline.

To copy a frame select it on the timeline and press Ctrl+C or Cmd+C. TT This places all of
the contents of that frame (all of the symbols on the stage) on the clipboard. Pressing
Ctrl+X or Cmd+X will “cut” or remove everything from your selected frame and place all
of the contents on the clipboard. Doing this will not remove the keyframe itself, just the t
stage content.

To paste the content of your clipboard back onto the stage, select a keyframe on the TT
timeline (or create one) and press Ctrl+V (Cmd+V on a Mac). There will be times when
you might want to paste everything into its prior position on the stage. To do this press TT
Ctrl+Shift+V (Cmd+Shift+V)—or select Paste in place from the Edit menu.

These operations on a frame are executed on the closest
keyframe that precedes the frame you have selected.

THE NEW INTERFACE OF FLASH CS4

43

2

Controlling the timeline

In order to see what you have on stage at any given time (or in any given frame), you will
need to be able to move the playhead along the timeline. During authoring the playhead
can be either playing or stopped. When it is playing it will move across the screen from left
to right, and items on stage will reflect this. When it is stopped the stage will show only the
items for that frame.

When the playhead reaches the last frame of the timeline, it will stop. You can change this
by selecting Menu Control Loop playback. You can also extend playback in the author-
ing environment to multiple scenes by selecting Menu Control Play all scenes.

There are several ways to change the position of the playhead on the timeline:

Press the Enter key to toggle play/stop.

 Drag the playhead.

 Use the less than and greater than keys, scroll/drag the current frame, or use
elapsed time controls on the timeline (during authoring).

 Use the Controller.

 Use ActionScript.

The Tools panel
We think it should be required in every instructional book to say at least once, “You must
have the right tool for the job.” So there it was. And it’s true—really! The Tools panel (see
Figure 2-23) is where most of them live. We will be investigating each tool in more detail
throughout the book.

Customizing the interface
Each and every one of us is different. We will all use Flash CS4 a little differently than
everyone else. And so chances are you might want to customize this tool in some way and
make it your own. Fortunately for all of us, Flash CS4 will let us do just that. You can create
workspaces for customizing the collection and location of panels. You can modify the Tools
panel to include the tools you need—and even tools you create yourself. You can adjust
the general preferences of the software to reflect what is important to you through the
nearly 100 options in the Preferences dialog (see Figure 2-24).

Figure 2-23.
The Tools panel

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

44

Figure 2-24. The Preferences dialog of Flash CS4

Working with workspaces

Why workspaces? No matter how many monitors you can plug into the back of your
computer or how lovely that 30-inch cinema display is, there will be times when rearrang-
ing the workspace improves the pace of your work for the task at hand. For instance, you
may find that for some tasks having the Tools panel horizontal makes work much faster
than having it vertical. Setting up workspaces specific to regular work activities might
wind up saving you loads of time (not to mention an unknown number of miles in mouse
motion).

THE NEW INTERFACE OF FLASH CS4

45

2

Customizing the interface with workspaces

To create a new TT workspace, follow these steps:

1. Arrange the workspace to your liking. From the menu bar select Window
Workspaces New Workspace. (You can also open this menu by clicking the
Workspace button in the upper-right corner of the application window.) You will
see the New Workspace dialog shown in Figure 2-25.

Figure 2-25.
The New Workspace dialog

2. Enter a name for your workspace and then click OK to save or K Cancel to exit the
dialog without saving.

Switching between workspaces

To change workspaces, click the TT Workspace button in the upper right of the application
window. You should see the name of the workspace you just created in the top section
of the menu, Default in the middle section, and the options Reset [name of the current
workspace], New Workspace, and Manage Workspaces in the bottom section. To changeTT
workspaces simply select any custom workspaces from the top section or Default from
the middle section of the menu.

Managing workspaces

Managing workspaces really boils down to deleting or renaming workspaces. To delete a TT
workspace, click the Workspace button in the upper right of the application window and
select Manage Workspaces from the menu. In the dialog that opens, select the workspace
you wish to delete from the list on the left (as shown in Figure 2-26) and click Delete.

Figure 2-26.
The Manage Workspaces dialog

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

46

To rename a workspace, TT click the Workspace button in the upper right of the application
window and select Manage Workspaces from the menu. In the dialog that opens, select
the workspace you wish to rename from the list on the left (as shown in Figure 2-27),
click the Rename button, enter the new name in the Rename Workspace dialog that
appears, and click OK. You can also just double-click the workspace name to open the
Rename Workspace dialog.

Figure 2-27.
A custom workspace

selected in the Manage
Workspaces dialog

Modifying existing workspaces

There will be times when the workspace you crafted for a task just doesn’t work out the
way you intended and you want to tweak it a little bit but keep the workspace name the
same. To do this, change to the workspace you want to update (as described previously in TT
“Switching between workspaces”), make any changes you want, and then follow the steps
given earlier for creating a new workspace, being sure to keep the name the same. Clicking
Save in the New Workspace dialog will open a warning dialog telling you that a workspace
with that name already exists and asking if you want to overwrite the existing workspace.
Click Yes to update the existing workspace.

Customizing the Tools panel

To customize the toolbar selectTT Edit Customize Tools Panel (or Flash Customize Tools
Panel on a Mac). This will open the dialog shown in Figure 2-28. There are only 18 spaces on
the Tools panel, and while leaving some empty will remove the corresponding spaces from
the Tools panel, you cannot add more.

Select a square on the Tools panel diagram on the left of the dialog. You will see the tools
assigned to this space appear in the right-hand column under Current selection. To addTT
tools to that space, select a tool from the Available tools column and click the Add button.
(You can add up to ten tools per space.) To remove a tool from a space on theTT Tools panel,
select the space you wish to remove the tool from. Select the tool you wish to remove
from the Current selection column and click the Remove button.

THE NEW INTERFACE OF FLASH CS4

47

2

Figure 2-28. The Customize Tools Panel dialog

Customizing keyboard shortcuts

To customize your keyboard shortcuts, TT select Edit
Keyboard Shortcuts. A few sets are preloaded, and
as their names indicate, they are meant to be (as
close to) the default keyboard settings of the
applications that they are named after.

The first thing you need to do is to duplicate a set
of keyboard commands by clicking the Duplicate
set button. Enter the name of your new keyboard
command set and click OK. This will close the dia-
log completely. Reopen it, and your new command
set will be selected. You may now change the key-
board commands as you wish.

As you attempt to create new commands, you will
notice that the dialog will post warnings about
limitations and preexisting assignments.

Browse to a command you wish to add or change
a shortcut to by selecting the command’s category
from the Commands drop-down and then the
command itself from the tree in the list box below
(see Figure 2-29). Once selected the + button will
be enabled (next to Shortcuts). Click the + button
to add a shortcut. Press the key or key combina-
tion you wish to assign to that command. If you get
a “not” symbol (red circle with slash through it),
you cannot proceed. If you get a caution symbol,
you may go ahead and click the Change button.

Figure 2-29.
The Keyboard Shortcuts dialog

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

48

To rename a command set, click the TT Info button (circle with an “i” in it). Type in the newTT
name for the command set and click OK. To delete a command set, click the TT Trash Can
button. This will open a dialog with all of the command sets (except for Adobe Standard,
which you cannot delete). You can select one or more command sets from the list and
then click Delete to remove them.

The last option in this dialog allows you to export your keyboard commands as HTML,
which is a nice feature if you’d like to print them out.

Summary
The goal of this chapter was to give you enough of an orientation with the Flash CS4
authoring environment so that as you progress through the book you will feel comfortable
reaching for the tools you need and finding your way around. We covered a lot of ground,
including how to create new documents with the Welcome Screen. We also explored how
to use the Flash CS4 authoring environment:

 How to work with panels and windows

The timeline

 The Tools panel

 The Property inspector

Customizing the Flash CS4 interface

If you have specific questions about publishing and the publishing settings, refer to
Chapter 18 where we explore these topics in detail.

CHAPTER 3

DRAWING WITH FLASH’S
VECTOR TOOLS

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

52

Now that you have familiarized yourself with the “kitchen,” it is time to start opening up a
few drawers and taking a look at the tools you will have at your disposal to cook up the
necessary ingredients to dish up some Flash.

From the simplest of Flash advertisements to the most exquisite of all Flash applications,
all have two things in common: graphics and colors. Here you will get familiar with the
basic tools to create vector graphics, apply colors, and add a little extra flavor to your
creations by spicing things up a bit.

Understanding graphic types
One of the driving themes throughout this book is Flash’s ability to work with many differ-
ent types of data and media. Graphic elements are certainly no exception to this theme. In
order to make the best decisions about what types of graphics to use in your Flash proj-
ects, it is important to understand the two primary types of graphics and their pros and
cons. Understanding these basic fundamentals will translate into better-looking applica-
tions and smaller file sizes.

By default, Flash is a program designed to animate vector images. However, it is possible to
effectively integrate various types of bitmap graphics to enhance the user’s experience as
well. Before we get started, you need to understand the difference between bitmap and
vector images.

Bitmap graphics

Bitmap graphics are made up of tiny dots or pixels (px). Each pixel is assigned a color
value and coordinate that represents its placement within the image. You can think of
bitmaps as mosaics that use many different colored pebbles to create a larger image.
Because of the fine detail that can be achieved using this method, bitmap graphics work
best for photos and artwork with a lot of colors and/or gradients. The disadvantages of
bitmap graphics are file size, editing, and scalability. Bitmap graphics typically have a larger
file size than vector graphics. Figure 3-1 shows an example of a bitmap image and the
negative side effect of scaling this type of graphic.

Figure 3-1.
The difference in scaling

vector and bitmap images. The
vector image will maintain its

smooth edge, while the
bitmap becomes jagged.

DRAWING WITH FLASH’S VECTOR TOOLS

53

3

Vector graphics

Vector graphics are defined by points. These two points are used to create a line, which
is also called a vector, hence the term “vector graphic.” Vectors are also commonly referred
to as line segments. The points that define a line segment are also responsible for deter-
mining whether that line is curved or straight. One or more segments joined together
make up a path. Multiple segments and paths can be joined together to create shapes.

To understand the initial advantage of vector graphics, picture a 100 TT 100 px square. If
this square were a bitmap graphic, we would have a total of 10,000 px (100 by 100), each
defining a color, coordinate, and alpha value (transparency). If the square were a vector
graphic, each corner of our square would be defined by a point. These points would sub-
sequently be connected, forming segments (vectors). Therefore, our picture would be
defined by a total of 4 points, as opposed to 10,000. Further, if we increased our picture to
a size of 200 200 px, our total would be increased to 40,000 px. Our vector image, how-
ever, would still be constructed with 4 points. This as you can see lends itself to a consider-
able file size difference.

Figure 3-1, shown previously, demonstrates the effects of scaling on both a vector and
bitmap image. As you can see, vector images allow for a greater degree of scalability.

Working with vector graphics
In Adobe Flash CS4 a number of different tools are available to you for creating vector
graphics. Here you will learn what those tools are and what each one of them does. It is
important to gain familiarity and become comfortable with using these tools. As you
learned in Chapter 1, Flash is first a vector-based drawing tool, and you will be using this
tool for most of your Flash projects.

Drawing modes: Merge Drawing vs. Object
Drawing

Before we begin you have to understand a little bit about how Flash handles vector
graphics on the stage. There are two drawing modes used in Flash: Merge Drawing and
Object Drawing. If you are a veteran Flash user, the first is probably all too familiar to
you. The second, though not a new feature in CS4, was introduced in Flash 8 and is often
overlooked.

Merge Drawing

Merge Drawing is how drawing in Flash has been handled since its early years. This mode
gets its name from its behavior of overlapping shapes. If you come from other design pro-
grams such as Adobe Illustrator or Adobe Photoshop, you are aware of the concept of
arrangement, where each vector element on the stage is either in front of or behind other

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

54

elements on the stage. In Flash, when in Merge Drawing mode, there is no concept of
arrangement on a single layer. All shapes on the stage occupy the same plane of existence.

So what happens when two shapes overlap? For shapes of the same color, the shapes will
merge together as one shape. For shapes of different colors, the selected shape wins
dominance and “knocks out” its shape in the shape it is overlapping as shown in Figure 3-2.
This was a common frustration among Flash designers, who would oftentimes inadver-
tently merge shapes together or knock out portions of other shapes by dropping them on
top of each other. To avoid this, designers would draw a shape and then group it. TT Grouped
objects in Flash behave as separate objects and introduce the more familiar concept of
arrangement. Obviously somebody was listening to the Flash community and introduced
the second drawing mode to compensate for this: Object Drawing.

Figure 3-2. In Merge Drawing mode, overlapping shapes will knock out one another.

Object Drawing

When Adobe purchased Flash in 2005, it wanted its principal programs to have an inte-
grated feel. One of the first enhancements that was discussed was the concept of Object
Drawing. Because so many of the graphic elements that were used in Flash were created in
both Illustrator and Photoshop, Adobe wanted to capture some degree of cross-software
familiarity. Object Drawing was Adobe’s answer to Flash designers the world over.

When drawing in Object Drawing mode, shapes are automatically grouped and treated as
individual objects called Drawing Objects. Drawing Objects occupy space on their own
plane of existence. This means that overlapping shapes have no effect on each other. The
overlapping portions are simply hidden from view by the object in front of it as shown in
Figure 3-3.

Figure 3-3. Object overlapping

DRAWING WITH FLASH’S VECTOR TOOLS

55

3

By default, Flash is in Merge Drawing mode. To change TT drawing modes, click the Object
Drawing button that appears at the bottom of the Tools panel as shown in Figure 3-4. You can
also easily access this feature by pressing the J key when you have a drawing tool selected.

Figure 3-4.
Object Drawing button located at
the bottom of the Tools panel

Unless otherwise noted, we will be working in Merge Drawing mode for the examples
and exercises in this chapter.

Creating and manipulating lines
Lines are the simplest forms in design and the basic building blocks of shapes. To create TT
lines in Flash, you can use the Line tool and the Pencil tool. A line in Flash is nothing more
than a segment, or vector, that can have color applied to it.

The Pen tool is another tool that can be used to create lines, as well as complex paths and
shapes; we will cover this tool in the section “Advanced drawing,” which comes later in this
chapter.

The Line tool

The Line tool is used for creating straight line segments. To draw a line using the TT Line tool,
select the Line tool from the Tools panel. You should see your mouse cursor turn into a set
of crosshairs. Now click the stage and drag the mouse with your mouse button still pressed.
You will see the length and angle of the line change as you move your mouse around. As
you can see, you can create a line of any length and at any angle. To set the line, simplyTT
release the mouse button.

Now, you may or may not have tried to draw a horizontal or vertical line. If you did, you
may have noticed it required a fairly steady hand. To make things easier, you can holdTT
down the Shift key to constrain a line’s angle at 45-degree increments. Draw another line,
but this time draw it at a 45-degree angle.

Again, select the Line tool if it isn’t already selected and click the stage. Now hold down
the Shift key and drag the cursor down and away. You may notice as you are dragging that
the line will jump back and forth between horizontal, vertical, and 45-degree angles.
Release the mouse button to set the line.

The Shift key is known as a modifier key because you can use it to change the behaviory
of a tool. In general the Shift key and the Alt key (Option on the Mac) are used as modifier
keys for a lot of the drawing tools in Flash. The Alt key switches the point of origin to the

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

56

center of the shape you are dragging. We highly recommend you play around with the
modifier keys for each tool we cover to see what they do.

Although not technically considered a modifier key, the spacebar can be held down to
activate the Hand tool temporarily and navigate around the stage. This is a useful short-tt
cut when portions of the stage are offscreen. Note that the spacebar shortcut key only
works when the mouse button is not being pressed.

It is a common belief in art and design that the first line is always the hardest one to draw.
However, unless you are a pure minimalist, you may want more than just straight lines.

Selecting and manipulating lines

Now that you have your first line on the stage, let’s go over some basics about selection
tools and manipulating lines.

The most common tool used, the Selection tool, is the black cursor arrow in the Tools
panel. It is used to select objects as a whole on the stage. Select the Selection tool from the
Tools panel. You should see your mouse cursor change into a black cursor arrow. Click one
of your lines to select it. You will notice that the line will become highlighted.

You can also press the mouse button and drag to select multiple objects. When you drag,
you will see a bounding box; any object within this bounding box will be selected.

If you place the cursor over the selected line, you will see the cursor change with four-way
directional arrows appearing next to it (see Figure 3-5). This indicates that you can move
the line. To move the line, press the mouse button and drag the line to a new location.TT
Releasing the mouse button will “drop” the line at the new location. To deselect the line,TT
simply click anywhere on the stage not occupied by another object. Do this now.

Figure 3-5. The move and curve arrows, and the transform bounding area

Again, when you are moving an object using the selection tools, you can press and hold
down the Shift key to constrain the movement of the object to 45-degree increments.

With your line deselected, again place your mouse cursor over the line. Do not click the
mouse button to select it. You will notice the cursor again changes, with a small arc shape
appearing next to the cursor arrow as shown in Figure 3-5. This indicates that you can

DRAWING WITH FLASH’S VECTOR TOOLS

57

3

manipulate the curve of the line. To do this, press the mouse button and drag the line. TT You
will see the line form a curve.

The next tool that you will use quite often is the Transform tool, which allows you to scale,
rotate, and skew objects. Select the Transform tool from the Tools panel and select one of
your lines. You will notice a bounding box with eight control points appear, as shown in
Figure 3-5.

The control points at each corner of the bounding box can be used to scale both the
height and width of the object at the same time. The control points that appear on
the lines in between each corner are used to manipulate the height and width separately,
with the points along the horizontal manipulating the object’s height and the points along
the vertical controlling the width.

When placing the mouse over these control points, you should see two-way directional
arrows that indicate you can scale the object (see Figure 3-6). To scale, press the mouse TT
button and drag the control point. Release the mouse to set the new size.

Figure 3-6.
The scale cursor

If you mouse over the lines of the bounding box, you will notice the cursor change to two
arrows pointing in opposite directions, as shown in Figure 3-7. This indicates that you can
skew the object. Just like you did when scaling, press the mouse button and drag to skew
the object.

Figure 3-7.
The skew and rotate cursors

Lastly, you can use the Transform tool to rotate an object. In order to rotate the object,
place the mouse cursor close to the outside edge one of the control points on the corner
of the bounding box. You will see the cursor change to include a small circle arrow next to
the cursor arrow (see Figure 3-7). Again, press the mouse button and drag to rotate the
object.

The other tools used for selecting and manipulating objects are the Subselection tool, the
Lasso tool, and the 3D Rotation tool. We will introduce these tools where appropriate
throughout the rest of this book.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

58

The Pencil tool

The Pencil tool works, as its name suggests, in much the same way a pencil works. It allows
you to draw freeform lines using your mouse or other pointing devices such as a graphics
tablet.

The Pencil tool works in three different modes: Straighten, Smooth, and Ink (see Figure 3-8).
Each mode affects the final outcome of the shape you draw and is there to assist you in
creating cleaner lines.

 Straighten mode straightens lines and angles you draw.

 Smooth mode smoothes lines and angles you draw.

 Ink mode leaves the lines you draw unchanged.

Figure 3-8.
Straighten, Smooth, and Ink optionsk

To draw using the TT Pencil tool, select it from the Tools panel. You should see your mouse
cursor turn into a little pencil icon. Click and drag to draw your line. Try changing the Pencil
tool mode to see how the lines it creates are affected. As was the case with the Line tool,
holding down the Shift key while drawing a line with the Pencil tool will constrain the line
to either a horizontal or vertical path.

Drawing shapes
Shapes are made from closed paths. A closed path is simply a path consisting of three or
more points, where one of these points serves as both the beginning and the end of the
path. Closed paths, in addition to having a stroke, can be filled with color. This color is
known as the fill. Flash provides some tools for drawing the most common shapes: rect-
angles, ovals, polygons, and stars.

Anatomy of a shape

Shapes are comprised of two primary parts. In Flash these two parts are known as strokes
and fills. You have already been using the Line and Pencil tools to create line segments.
Ultimately these line segments can be closed to create shapes. When color is applied to
the segment, it is referred to as a stroke.

The second part of a shape is a byproduct of closing the path. When a path is closed, you
are then able to work with all of the area that exists within the path. When color is
applied to the inside of a shape, it is referred to as the fill. For example, when you create
a square, the stroke is the outline of that square and the fill is the inside of the square.

DRAWING WITH FLASH’S VECTOR TOOLS

59

3

These two elements of a shape can be colored and manipulated independently from one
another. Figure 3-9 demonstrates the concept of the stroke and the fill in terms of a total
shape.

Figure 3-9. Stroke and fill of a shape

Drawing squares and rectangles

If you want to draw a square or rectangle, the quickest way to do it is by using the
Rectangle tool. Select the Rectangle tool from the Tools panel. You should see the mouse
cursor change into a set of crosshairs. Take a look at the TT Property inspector. Notice at the
bottom a section titled Rectangle Options, as shown in Figure 3-10. You can add rounded
corners to your rectangles by changing the values in this section. If you can’t find the
Rectangle tool, press R to toggle the Oval tool to the Rectangle tool.

Figure 3-10. Rectangle options

Press the mouse button and drag out a rectangle on the stage. Now use the Selection tool
to select the rectangle you just drew. Notice that the Rectangle Options area is no longer
available to you. If you want to change the roundness of the corners of your rectangle, you
will need to delete the rectangle and start again. We will show you a way around this a
little later.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

60

Drawing ovals, donuts, and pie shapes

The Oval tool allows you to draw all things round: Ovals (circles), donuts, and pie shapes.
Select the Oval tool from the Tools panel, and again you will see the cursor change into a
set of crosshairs. In the Property inspector you will notice a section called r Oval Options. The
options in this section can be used to draw donuts and pie shapes. If you cannot find the
Oval tool, press O to toggle the Oval tool on in place of the Rectangle tool.

Just as before, press the mouse button and drag out an oval shape. Use the Selection tool
to select your oval, and again you will see that the Oval Options area is not available in the
Property inspector.

Drawing polygons and stars

What is a polygon? If you were a little distracted in geometry don’t worry—so were we. A
polygon is basically a shape with three or more sides (or a closed plane figure bound by
three or more line segments). A star is uh . . . a little bit more complicated—look it up on
Wikipedia, you’ll see what we mean. Besides—you know—it’s a star.

What then is a polystar exactly? It’s a made-up thing Adobe used to combine two similar
tools into one and it’s a lot of fun. Regardless of definition, this is the tool for drawing
them. We’ll cover the basics here but by all means experiment and have fun.

To draw a polygon, TT follow these similar steps:

1. Select the PolyStar tool from the Tools panel. You’ll notice an Options button in the
Tool Settings area of the Property inspector. Click this to launch the dialog shown in
Figure 3-11.

Figure 3-11.
Polystar Tool Settings dialog

2. Use the Style drop-down to select polygon. Choose a number of sides (three will
make a triangle, four will make a square, etc.).

The Star point size setting has no effect when the polygon style is selected.

3. Drag on the stage, and a polygon with the number of sides you selected will be
drawn there. If you chose a large number of sides, you may wind up with a shape
that resembles a circle. Experiment and have fun!

DRAWING WITH FLASH’S VECTOR TOOLS

61

3

To draw a star,TT follow these similar steps:

1. Select the PolyStar tool from the Tools panel. Again, you’ll notice an Options button
in the Tool Settings area of the Property inspector. Click this to launch the dialog
shown in Figure 3-11.

2. Use the Style drop-down to select star. Choose a number of sides. For the star style
this really means number of points, and the Star point size setting here has a huge
impact on the shape you get. Setting number of sides to 3 and point size to .01 will
render a shape resembling a modern wind turbine, whereas those same three sides
with a point size of 1 will look almost like a triangle.

3. Drag on the stage, and a star with the number of sides you selected will be drawn
there. Experiment and have fun!

The primitive tools

You may have noticed that after drawing your rectangles and ovals the options are no
longer available in the Property inspector. This is somewhat of an inconvenience if you
decide at a later time that you want to change the radius of a rounded corner or the inner
radius of your donut.

Let me introduce now the Rectangle Primitive tool and Oval Primitive tool. The primitive
tools maintain the options you set in the Property inspector and make them available for
editing after creation. The primitive tools also draw your shapes as primitive objects,
meaning they are on separate planes and can be arranged in front or behind other objects
on the stage. Other than that, they work in much the same way as objects created by the
Rectangle and Oval tools.

Selecting and manipulating shapes
Once you’ve created some shapes on the stage, you will more than likely need to select
them so you can move them around and make any necessary changes. We’ve already cov-
ered the Selection tool and Transform tool. These tools work in pretty much the same way
with shapes, except that you can select both the stroke and the fill of a shape. Two thingsTT
to make note of: Simply clicking the fill once will only select the fill. If you want to select
both the fill and the stroke, double-click the fill of the shape.

Clicking a stroke once will select all segments in between two corner points. This means
that if you click the stroke of a square, you will select only the stroke of the side you
clicked because each point in a square is a corner point. If a curve point appears between
two corner points, the two segments that make up the curve will be selected. Clicking a
circle once will select the full path because all of the points in a circle are curve points. In
order to select the full path of a square, simply double-click its stroke.

The next tool that can be used for selection is the Lasso tool. At times you may want to
make a selection that doesn’t conform to a perfect square. This might be a section of a

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

62

shape, or it could be a group of items mixed in with other items. The Lasso tool allows you
to hand-draw the bounds of your selection, as shown in Figure 3-12.

Figure 3-12.
Lasso tool selection

Early in this chapter you learned that shapes are just a collection of points. These points
can be manipulated in order to change the path that defines a shape. This is one of the
many uses of the Subselection tool, depicted as a white cursor arrow in the Tools panel.

Draw a polygon on the stage using the PolyStar tool. Click the Subselection tool in the Tools
panel to select it and place the cursor over the path of the polygon. Notice there is a small
black box that appears next to the mouse arrow, as shown in Figure 3-13. This indicates
you are selecting a path. Click the path to select it.

Figure 3-13.
Polygon with path selection

showing black square

Once the path has been selected, notice little white squares at each joint in the polygon;
these are the anchor points defining the polygon’s shape. Place the mouse arrow over one
of the points of the polygon. The mouse arrow shows a small white box next to it. This is
the indicator that you are selecting a point on a path.

When you click a point to select it, the white square changes to a solid-colored square.
The color of the square will depend upon the outline color set for the layer the polygon is
on. Press the mouse button and drag the point to move it. Notice the shape changes.

The Subselection tool works a little bit differently for the Rectangle Primitive and Oval
Primitive tools. For the Rectangle Primitive tool, dragging a point will manipulate the corner
radius of the rectangle as shown in Figure 3-14.

DRAWING WITH FLASH’S VECTOR TOOLS

63

3
Figure 3-14. Corner radius points

For the Oval Primitive tool, there are three points. One is at the center point of the circle
and controls the inner radius of the circle. The other two points, depending upon the Oval
Option settings, appear to be one point along the edge of the circle, usually at the 90 degree
or three o’clock position. These points control the start angle and end angle of the circle
and can be move to create pie shapes (see Figure 3-15).

Figure 3-15. Angle handles

Strokes and fills
Now that you know how to create and edit the paths of lines and shapes, it’s time to move
on to editing the strokes and fills of your shapes. You may remember that the stroke of a
shape is the visible outline of that shape, and the fill of a shape is the color that appears
inside of the shape.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

64

Stroke properties

At times you may require a solid hairline. At other times you may want to make a state-
ment with a nice bold dotted or dashed line. All of this can be achieved by editing a
stroke’s properties in the Property inspector (see Figure 3-16).

Figure 3-16.
Property inspector

The best way to take a look at how a stroke’s properties affect its appearance is with a star
shape. Create one on the stage by using the PolyStar tool and changing the PolyStar tool’s
Style setting to allow you to draw stars.

1. Select the PolyStar tool from the Tools panel.

2. In the Property inspector underr Tool Settings, click the Options button to bring up
the Tool Settings window.

3. Select star as the Style setting and click the OK button to close theK Tool Settings
window.

4. Drag out a star shape. You can hold down the Shift key while dragging out the star
shape to constrain the rotation.

5. Select the star’s stroke by double-clicking it. Remember, clicking once will only
select one of the line segments of the star since all of the star’s points are corner
points.

6. In the Property inspector under Fill and Stroke, change the value of the Stroke prop-
erty to 5. Notice that this changes the thickness of your star’s stroke.

7. Skip down to the bottom of the Property inspector where it says Cap, Join, and Miter.
These settings control the shape of the stroke at each point. Cap refers to the
shape of the cap that is added to the ends of an open path. Join is the shape of
the joint between two line segments.

8. Set Join to each of the three options to see how they affect the look of your star’s
points.

9. Set Join to Miter if it isn’t already set to this option.

DRAWING WITH FLASH’S VECTOR TOOLS

65

3

10. You will now see that the Miter value is editable. The Miter property controls the size
of the miter. Set this property to 0 and then set it to 8 to see its effect.

11. Click the Style drop-down and select Dotted. You will see that your stroke has
changed to a dotted line. You can click the Custom button to edit each style’s
options and further refine the look of your stroke.

The term miter, as discussedrr in the previous example, refers to the joining of two lined
segments into a single joint. Flash uses the miter settings to allow designers to create
pointed or beveled joints when two segments join at an angle.

The Scale option controls how the stroke scales when your artwork is converted into a
Library item. You can have the stroke not scale, scale horizontally only, scale vertically only,
or scale both horizontally and vertically. We will discuss the Library in more detail in
Chapter 4.

The last property is Hinting. At times when you are creating shapes with curves or odd
angles, you will notice the stroke gets a little fuzzy. This often occurs with a thin line when
it is in between pixels. By enabling Hinting, Flash will adjust the line’s anchor points to fall
on full pixels, preventing the lines from becoming fuzzy.

Color properties and fills

There are several avenues to take when setting colors in Flash. For some it can be a little
confusing. The good news is whichever route you take, the end result is the same. You may
have noticed two of the ways of changing colors as you’ve gone through this chapter:
color pickers for stroke color and fill color appear in both the Tools panel and the Property
inspector. You can use either one of these two quickly to change the color of your artwork.
The stroke color picker is depicted with a little pencil icon and the fill color picker is
depicted with a paint bucket icon (see Figure 3-17).

Figure 3-17.
Color pickers

www.allitebooks.com

http://www.allitebooks.org

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

66

Clicking either one of these color pickers will bring up a Color palette with web-safe color
swatches you can choose from. You can also use the mouse to sample any color on the
screen. Yes, if you really like the gray used for the Flash interface, you can sample that
color too. NICE!

You will also see options to enter a hex value to set color, as well as set the transparency
or alpha of the color. If you want a little more control over your color selection, you can
click the Colors icon in the Color palette, which is represented by a multicolored circle.
This will bring up the Colors dialog with a variety of different palettes, color wheels, and
color spectrums to choose from.

Lastly, if you want to clear the fill or stroke color, you can click the No Color button,
depicted by a white square with a red diagonal line going through it.

The Color panel

Another way of choosing colors is with the Color panel. If the Color panel is not already
open, you can open it by selecting Window Color in the menu bar or by pressing
Shift+F9.

Again, you will see the color pickers for the stroke and fill. If you click the pencil icon, you
will make the stroke active, and any color settings you set in the Color panel will be applied
to the stroke color. The same goes for clicking the paint bucket icon.

Under the color pickers for the stroke and fill, you will see three more icons (see
Figure 3-18). One should look familiar; it is the No Color button. The other two, which are
also available under the color pickers in the Tools panel, are the Black and White button
and the Swap Colors button.

Figure 3-18. The Color panel. r On the right, the Color panel has the gradient r
options activated.

DRAWING WITH FLASH’S VECTOR TOOLS

67

3

The Black and White button resets the fill and stroke colors to their default values, black
stroke and white fill. The Swap Colors button does just as its name suggests: it swaps the
fill and stroke colors, so the fill color becomes the stroke color, and the stroke color
becomes the fill color.

To set your colors you have several options.TT You can click the color picker, set the RGB
values for the color, set the hex value for the color, or select the color from the color
spectrum. You can also set the alpha transparency of the color by specifying a percentage,
where 100% is opaque and 0% is completely transparent.

Next, notice the Type drop-down. This is where you can specify the stroke or fill type. The
options you have here are None, Solid, Linear, Radial, and Bitmap. None and Solid are pretty
self-explanatory. Linear and Radial are types of gradients. You would use Bitmap if you need
separate pixels that can be manipulated individually. Bitmaps will be covered in more
detail in the next chapter.

Select Linear from the Type drop-down, and you will notice a gradient bar appear. You will
use this bar to define your color gradient. Under the bar you will see little arrow sliders
with colored squares in them—this is where you set the colors in your gradient.

Click one of the arrow sliders and use the color spectrum to select a new color. You can
set the color using any of the options available to you in the Color palette. You can also
double-click the arrow slider to set its color as well.

To add another color to the gradient bar,TT simply click anywhere on the bar there isn’t
already a slider arrow. You can move any of the slider arrows by dragging it. Doing this
adjusts the length of the gradient transition from one color to the next.

The Overflow drop-down gives you options for specifying how the gradient fills to the
edges of a shape. The Extend option will extend the first and last color to the edge of the
shape. The Reflect option will start another gradient using the adjacent color as the start
color (A B B A). The Repeat option will simply repeat the gradient all the way to
the edge (A B A B).

The Panel Options button, located in the top-right corner of the panel, gives you two
options. The first is the ability to change the Color Mode setting for the Color panel. The
default is RGB (red, green, blue), which most people are familiar with. The other is HSB
(hue, saturation, and brightness). The second option is Add Swatch, which allows you to
add the current color to the Swatches panel.

The Swatches panel

The Swatches panel is another tool you can use to set colors, and it consists of a collection
of color swatches called a color set. The Swatches panel makes it easy to quickly select
predefined colors. To open theTT Swatches panel, select Window Swatches or press Ctrl+F9
(Cmd+F9 on the Mac).

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

68

As shown in Figure 3-19, the default colors in the Swatches panel are web-safe colors and
a couple of gradients. The Swatches panel also allows you to add your own color swatches
and save them for use later.

Figure 3-19.
The Swatches panel

There are several ways to add colors to the Swatches panel. To add the currently selected TT
color to the Swatches panel, you can click the Color Panel Options button and select Add
Swatch.

1. Open the Color panel (Window Color).

2. Click the paint bucket icon to select the fill color.

3. Select your favorite color by editing the RGB or hex values, or select your color
from the color spectrum.

4. Click the Color Panel Options button and select Add Swatch as shown in Figure 3-20.

Figure 3-20.
Selecting the Add Swatch

option from the Color
Panel Options menu

DRAWING WITH FLASH’S VECTOR TOOLS

69

3

5. Open the Swatches panel. Notice that your color was added to the collection of
color swatches. You may need to resize the Swatches panel or scroll down to see
your newly created swatch. This swatch will also be available when using the color
pickers in the Color panel or Tools panel.

6. In the Swatches panel, notice that the far-right column is all gray. This is an empty
area of the Color panel. Position your mouse over this gray area, and your mouse
cursor should change into a paint bucket (see Figure 3-21). This indicates you can
click to add the currently selected color. Click the gray area to add another color
swatch.

Figure 3-21. How the Color panel (left) can be used to add a swatch to the Swatches
panel (right)

7. You should now have two custom color swatches in your Swatches panel. Position
the mouse cursor over one of these newly created swatches. Your mouse cursor
should change into the eyedropper icon. This indicates that you can select the color
swatch. Click the color swatch to select it.

8. To delete a color swatch, select a color swatch in the TT Swatches panel, click the
Options button at the top right of the Swatches panel, and select Delete Swatch.

9. To duplicate a color swatch, select your other color swatch in the TT Swatches panel.
Click the Swatches Panel Options button and select Duplicate Swatch.

10. If you want to set the colors back to the default set, select Load Default Colors from
the Swatches Panel Options menu.

If you add swatches to the Swatches panel, they will be lost when you close Flash. If you
want to keep your colors for use later, you can save your color set by selecting Save Colors
from the Swatches Panel Options menu. Provide a file name and location to save the file.

The next time you open Flash, you can load these colors by selecting Add Colors or Replace
Colors from the Swatches Panel Options menu. If you don’t want to have to load your col-
ors every time you open Flash, you can choose Save as Default, and your color set will load
automatically when Flash is opened.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

70

If you want to start with a clean color set, you can select Clear Colors from the Swatches
Panel Options menu. This will allow you to create a completely custom color set that
doesn’t include the swatches already included in the default set. These sets can then be
added into the Swatches panel as needed.

The Paint Bucket tool

Now that you’ve learned how to choose colors, let’s take a look at the tools for applying
those colors to your artwork. The Paint Bucket tool allows you to fill shapes with color and
can be employed to quickly fill multiple shapes with the same color. You can use it with
solid fills, gradients, and bitmap fills. (We will cover bitmap fills in Chapter 4.)

1. Click the Black and White button in the Tools panel to set your stroke and fill to the
default colors.

2. Using the Oval tool, draw three ovals on the stage. Notice that the ovals are created
with a black stroke and a white fill.

3. Select the Paint Bucket tool and using one of the fill color pickers on the toolbar, as
shown in Figure 3-22, to change the color of your fill.

Figure 3-22.
Fill color pickers
on the tool bar

4. Using the Paint Bucket tool, click the fill of each of your three ovals to apply the
new color.

5. The Paint Bucket tool can also be used to fill in empty shapes as well. Click the
Selection tool and select the fill of one of your ovals. Press Delete to delete the fill.

6. Select the Paint Bucket tool again and click inside of the oval whose fill you just
deleted. Again, you will notice your new color has been applied to your fill.

7. You can apply gradient fills to your shapes with the Paint Bucket tool as well. In the
Color panel, select Linear from the Type drop-down and set the start and end color
for your gradient, as shown in Figure 3-23.

8. Click the fill of one of your ovals. Notice that the gradient is applied horizontally
across your oval, and the gradient is evenly distributed. If you want more control
over the direction of your gradient and distribution of colors, you can press the
mouse button inside the oval where you want your gradient to start and drag in the
direction you want your gradient to run. You will notice a line that runs from your
starting point to the Paint Bucket tool. This line indicates the direction your gradi-
ent will run.

DRAWING WITH FLASH’S VECTOR TOOLS

71

3

Figure 3-23.
The Gradient Color panel
can be used to apply
gradient fills to shapes.

9. Release the mouse button to set your gradient.

10. You can drag the end point of your gradient out past the bounds of your shape.
Click inside of the oval that is in middle of your three ovals and drag out your gra-
dient to one of the other three ovals. Release the mouse button in the center of
the oval.

11. The Lock Fill modifier, depicted by a gradient bar with a lock on it, is located at the
bottom of the Tools panel (see Figure 3-24). The Lock Fill modifier locks the gradi-
ent you just dragged out and will treat your gradient as if it filled the whole stage.
This allows you to apply gradients across multiple shapes on the stage. Click each
of the ovals to set their new fill. Try this with five or more shapes on the stage to
better see the transition.

Figure 3-24. Three circles with Lock Fill applied, linking their fills

12. Click the Lock Fill modifier again to deselect it.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

72

Another modifier for the Paint Bucket tool is the Gap Size modifier (see Figure 3-25). Using
this modifier you can fill in open paths that have small gaps in them. This works well for
hand-drawn shapes that might not quite be closed.

Figure 3-25.
Gap Size

modifier button

13. Select the fill of one of your ovals and delete it, leaving just the stroke.

14. Using the Selection tool, drag out a selection to select a small portion of the stroke,
between 5 to 10 pixels. Delete this selection to create a small gap in the stroke, as
shown in Figure 3-26.

Figure 3-26.
Oval with gap in stroke

15. Using the Paint Bucket tool, click inside of the circle with the gap in its stroke.
Notice the fill color was not applied.

16. Hold down the mouse button on the Gap Size modifier button. You will see four
options pop up: Don’t Close Gaps, Close Small Gaps, Close Medium Gaps, and Close
Large Gaps, as shown in Figure 3-27. Select the Close Large Gaps option. You will
see the icon for the Gap Size modifier change from a closed circle to a circle with
a gap in it.

Figure 3-27.
Gap Size modifier options

17. Click inside of the oval from which you just you deleted a section of the stroke.
This time the color is applied.

18. Save your file (File Save) as . You will continue using this file in the
next section.

DRAWING WITH FLASH’S VECTOR TOOLS

73

3

The Ink Bottle tool

In much the same way the Paint Bucket tool works for fills, the Ink Bottle tool is used to
apply stokes to shapes. Whereas the Paint Bucket tool is strictly used for applying color, the
Ink Bottle tool can be used to apply stroke properties such as stroke weight, style, and
color.

The Ink Bottle tool is grouped with the Paint Bucket tool in the Tools panel. If you look at
the Paint Bucket tool icon, you will notice a small black triangle in the bottom-right corner.
You will also notice this same black triangle on some of the other tools in the Tools panel.
The black triangle indicates that there are tools grouped together in a fly-out. To accessTT
these tools, simply click and hold down the mouse button on the triangle icon, and the fly-
out will appear.

1. If it is not already open, open the file that you were using in the
examples in the preceding section.

2. Select the Ink Bottle tool from the Tools panel. If the icon for this tool is not show-
ing, click and hold down the mouse button on the Paint Bucket tool to access it
(see Figure 3-28).

Figure 3-28.
Ink Bottle tool fly-out

3. In the Property inspector you will see all of your stroke properties. Change the stroker
color, set the stroke width to 5 px, and select Dashed from the Style drop-down.

4. Click one of your oval shapes. You will see the stroke change for the shape.

The Gradient Transform tool

The Gradient Transform tool is used to scale and rotate the gradient fill of a shape. When
you select a gradient fill with the Gradient Transform tool, you will see a couple of trans-
form handles that allow you to edit the way your gradient looks (see Figure 3-29).

At the center is a small white circle. Dragging this circle will move the gradient center
point and shift your fill. The two lines indicate where the start and end colors of your gra-
dient are at 100%. Along one of the lines is a white square with an arrow in it. Dragging this
square will scale the transition of your gradient. At the end of the same line you will see a
circular arrow; dragging this transform handle will rotate your gradient.

Figure 3-29.
Gradient Transform
tool transform handles

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

74

The Kuler panel

If you find it hard to make it through your work day without a small dose of the social
Web, the Kuler panel (shown in Figure 3-30) is your ticket to getting that fix. As the About
section of the Kuler panel states, “kuler is an online community for colors and inspiration,
to explore, create, and share color themes.” This can be an excellent resource for you right
inside of the Flash IDE in putting Color palettes together for your projects.

The Kuler panel makes available an extensive collection of user-created Color palettes that
you can browse and search through. When you find palettes you like, you can save them
for easy access. You can also use the color wheel to create your own palettes and save
them locally or to the kuler web site.

The Kuler panel requires an Internet connection to access the kuler web site but does
allow you to save your favorite Color palettes locally and even transfer those Color palettes
to the Swatches panel.

The Kuler panel can be accessed by selecting Window Extensions Kuler.

Figure 3-30.
The Kuler panel

DRAWING WITH FLASH’S VECTOR TOOLS

75

3

Advanced drawing
Now that you are familiar with the basic tools and drawing skills in CS4 Flash, let’s look at
some more advanced topics that will let you become a Flash artist extraordinaire, or at
least put you on the right “path,” pardon the pun.

The anatomy of a path

As mentioned previously, a path is a collection of two or more points connected by lines.
The points that make up a path are referred to as anchor points. The area between two
anchor points on a path is known as a segment. The anchor point in between two seg-
ments on a path is known as a joint.

Each point within a path can be either a corner point, a curve point, or a corner-curve
point. The type of points that make up a segment determines the shape of the line between
two points and the shape of the joint between two segments.

Corner points: These create straight lines and sharp corners between segments.
The four points in a square are all examples of corner points.

Curve points: These create curved lines and curved corners between segments.
Manipulating curve points affects the segments on either side of the point. This
means that when you change the curve of one segment, it affects the curve of the
opposite segment. This creates a nice, fluid transition between the two sections.
The four points that make up a circle are all examples of curve points.

Corner-curve points: As you might guess, these are a combination of the two pre-
ceding types of points. They are used when you want to independently control the
curve of each line segment.

When you select a curve point with the Subselection tool, you get curve handles that are
used to manipulate the shape of the curve, as shown in Figure 3-31. You can manipulate the
curve handles by moving the tangent points at the end of each curve handle. Each curve
handle corresponds to one of the segments adjacent to the selected curve point. For corner-
curve points, you will see only one curve handle. Yes Martha, even curves have corners.

Figure 3-31.
This figure represents a
rounded path with
curved corner points.

The Pen tool

The Pen tool is used in Flash to create complex paths. The Pen tool gives you more control
over the shape of a path during and more notably after creation. This gives the Pen tool a
considerable advantage over the Pencil tool in creating paths, especially when “tracing” an

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

76

image for illustration. Even if you feel you have more control creating shapes using the
Pencil tool and a stylus or you don’t plan on doing much tracing, it is important to get
comfortable with the concepts we describe here, as they are the basis for working with
and manipulating points of other shapes as well.

1. Open a new Flash file (File New Flash File (ActionScript 3.0)).

2. Click the Black and White button in the Tools panel (see Figure 3-32) to change your
colors to the default colors.

Figure 3-32.
Black and

White color
defaults button

3. Select the Pen tool from the Tools panel. It is depicted as a fountain pen tip (see
Figure 3-33).

Figure 3-33.
Pen icon

4. Click the stage to set the first point of your path.

5. Create two more points on the stage by clicking to set your points. Create an open
triangle shape with your three points, as shown in Figure 3-34. Keep the Pen tool
selected—you aren’t finished creating your path just yet. You will see the shape of
the path you are creating as you add points. So far, you have just created three
corner points. Notice the joint created by the second point is sharp.

Figure 3-34.
Open path triangle shape

6. Create another point on the stage, but this time instead of simply clicking, hold
down the mouse button and drag. You will see a curved path is created. Drag out a
curve that you are happy with and release the mouse button to set the point.

7. You can edit the path while you are creating it by using modifier keys. Holding
down the Ctrl key (Cmd on Mac) will allow you to move points. The mouse cursor
will change into a black arrowhead. Do this now and move some of your points
around. Move the curve handles to change the shape of the curve you just created.
Notice that moving one curve handle also changes the curve handle on the oppo-
site side of the anchor point. You just created a curve point.

DRAWING WITH FLASH’S VECTOR TOOLS

77

3

8. Create another point on the stage and again hold down the mouse button and drag
out a curve. At times you will want to create a straight line after you create a curve.
To do this you need to create a corner-curve point. TT Place the mouse over the point
you’ve just created. A small “V” shape will appear next to the pen cursor. Clicking
the point will convert the point to a corner-curve point. Notice your anchor point
now has only one curve handle (see Figure 3-35).

Figure 3-35.
Corner-curve point

9. Click the stage to create another point. The line that you just created is straight.

10. Now let’s back up two points. Counting the point you just created, follow the path
back to the third point (it will be the curve point you created earlier). Remember
that when you moved the curve handles on this point, both curve points moved in
tandem. If you want to unlink the two curve handles so they can be moved inde-
pendently, hold down the Alt key (Option on the Mac). The cursor will change into
a “V” shape. With the Alt key held down, drag the curve handle to move it. The
curve handle now moves independent of the curve handle on the opposite side of
the point and only affects the curve on the same side of the point as the handle
you moved (see Figure 3-36).

Figure 3-36.
Independent curve handles

11. The Alt key can also be used to convert a curve point to a corner point, or a corner
point to a curve point. You do this by holding down the Alt key and clicking
the point you want to convert. Click the curve point now to convert it to a corner
point. You now have a sharp corner (see Figure 3-37).

Figure 3-37.
After conversion to a corner point

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

78

12. Back up two more points to the second point you created, the peak of your “tri-
angle.” Holding down the Alt key, click, and drag the point to drag out the curve
handles. You now have a curve point (see Figure 3-38).

Figure 3-38.
After conversion
to a curve point

13. To close off a path, place the mouse over the first point on your path. You will see TT
a small circle appear next to the Pen cursor, as shown in Figure 3-39. This indicates
that you are closing the path. Click the point to finish off your path.

Figure 3-39.
Close path cursor

Manipulating paths

So you just learned how to use the Pen tool to create a complex path and how to edit the
points and paths during creation. What if you want to edit the path after you’ve created it?
The same tools you accessed using the modifier keys during the creation of your path are
also available in the Tools panel.

The first tool is the Subselection tool, which we covered earlier in this chapter. You can use
the Subselection tool to move your anchor points and curve handles to change the shape
of your path. The same modifier keys you used earlier are available when editing paths
with the Subselection tool.

The next tool is the Convert Anchor Point tool. You can access this tool by holding down the
mouse button on the Pen tool icon to bring up the fly-out. The Convert Anchor Point tool
is used to convert your curve points to corner points, and vice versa. It works in the same
manner as the Alt modifier key used earlier.

The other two tools are the Add Anchor Point tool and Delete Anchor Point tool, accessible
in the same fly-out under the Pen tool. As their names suggest, these tools are used for
adding and deleting points on your path.

To add a point, select theTT Add Anchor Point tool and click where you want to add a point
on your path. Again, you have access to the modifier keys to edit the point using this
tool. To delete a point, select theTT Delete Anchor Point tool and click the point you want
to delete.

DRAWING WITH FLASH’S VECTOR TOOLS

79

3

Summary
In this chapter we covered an incredible amount of ground with respect to creating shapes
with vector tools in Flash. This should come as no surprise since Flash is a vector drawing
tool. You learned about the following topics:

Vector vs. bitmap

 Drawing modes

 Object drawing

 Drawing tools

 Drawing shapes

 Strokes and fills

Color properties

Manipulating lines

CHAPTER 4

EXTERNAL ASSETS AND
SYMBOL MANAGEMENT

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

82

In the previous chapter we took an in-depth look into the creation of vector-based graphics
using the Flash IDE. Though Flash is natively a vector drawing program, it is certainly not
limited to that type of asset. Depending on the need, Flash specialists may find that they
want to incorporate other types of external assets such as bitmaps, sounds, and videos.

In the first half of this chapter we will focus on how Flash works with bitmap graphics. As
discussed in Chapter 3, bitmaps offer a greater degree of visual detail over their vector
counterparts. Therefore, this type of graphic is very useful when dealing with items like
photographs or video game sprites. And, when used in tandem with vector-based images,
bitmaps will help establish a more effective user experience.

You will also learn how to create symbols from graphical elements and manage them with
the Library panel. The symbol is one of the key ingredients in any Flash project and could
be considered the cornerstone of the Flash design process. Symbols allow you to organize
and implement graphical elements with a greater degree of efficiency. With symbols you
can easily replicate graphics that not only reduce the overall file size of your SWF, but also
make it easier to update your working file.

Let’s get started with using bitmaps in Flash.

Using bitmaps in your Flash projects
Bitmaps are an integral part of any application. In fact most, professional-grade user inter-
faces such as video games, business-tier software applications, and even operating systems
all use bitmaps as the primary graphical assets for their user experience. Though Flash
does not natively possess the power to create bitmaps—as a program like Photoshop
would—it is certainly poised to work with dozens of different industry-standard bitmap
file types. In addition, the manner in which Flash does work with bitmaps is virtually seam-
less when considering the workflow of many design/development processes.

Importing external bitmaps into Flash

To begin working with bitmaps in TT Flash, all you need to do is simply import that bitmap to
either the stage or Library panel. Fortunately, Flash makes this task quite easy. As shown in
Figure 4-1, you can import an external asset by selecting File Import.

You will notice that a fly-out menu appears with the following four options:

Import to Stage

Import to Library

Open External Library

Import Video

From these four choices you have the ability to import quite a collection of external files
ranging from bitmaps, to sounds, videos, and vector graphics. Giving the complete list at
this time would probably do more harm than good. For now we will focus on importing
bitmaps. And, when you get to Part 5 of this book, we will discuss importing other types of
media such as sound and video.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

83

4

Figure 4-1. Bitmaps are easily imported using the File Import command.

Importing to the stage or library
If you select Import to Stage or Import to Library, you will get a File Open dialog that will
enable you to browse for a rather hefty number of different file types. And you can select
any graphical or audio file type that is included in the File of type drop-down menu. Once
you select the item you want to import, you can complete the import by clicking OK. The
only major difference in using Import to Stage and Import to Library is the destination of the
imported file.

If you import an external asset to the stage, you can move it around and manipulate it as
if you had drawn it within Flash. Well, this is not exactly true—the ability to manipulate an
asset depends on the type of asset. Bitmaps will initially behave like bitmaps, vector shapes
will behave like vector shapes, and so on. The point is, graphical assets that are imported
to the stage are immediately available for use in the design of your application and offer
similar functionality to those you create in Flash. Further, if an item is imported to the
stage, it is automatically placed in the Library panel. More on that in a bit.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

84

There are also some fairly intricate options used for importing other CS4 files from pro-
grams like Photoshop, Illustrator, and Fireworks. For more on CS4 integration, please
see Using Imported Artwork found on the left side of Adobe’s Using Flash CS4 compan-
ion website ((().

Importing an image sequence
When importing images to the stage, if you select a file that has a trailing number such as

and , Flash will search for other assets in that directory
with the same name. Trailing numbers are commonly used in the naming of frames in an
image sequence or animation. If Flash detects that there are other items with the same
name and an incrementing trailing number, it will open the dialog shown in Figure 4-2.

Figure 4-2. Flash automatically detects image sequences that could be animations.

Clicking Yes in this dialog will import all the images in the sequence. Again, Flash will be
assuming that these images are associated with an image sequence or animation. Because
of this it will not only import all the graphics associated with this sequence, but also place
each image in its own sequential frame of the timeline. Basically, Flash will reconstruct an
image-based animation simply by detecting a possible sequence.

More to come on animation in Chapter 6!

Opening an external library
Open External Library, the third import option available in Flash, allows you to open an
external library. You can open the library of any other FLA file without opening the FLA
itself. This becomes extremely useful for the management of reusable assets. As a Flash
designer you could create an FLA file for containing groups of assets that you can use in
future projects. For example, if you were a sprite designer in a Flash game development
shop, you may have an FLA that contains nothing but a collection of bullet images. You
might have another that contains a bunch of different spaceship graphics. Without ques-
tion, using external libraries is extremely useful for project organization.

We realize that we have not discussed Import Video, the fourth option in the Import fly-
out menu. See Chapter 17 for a discussion of the Video Import Wizard.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

85

4

Importing your first bitmap into Flash

Now, we’ll take you through the steps for importing a few external items to the stage and
Library panel. As discussed earlier, bitmaps can be an extremely valuable aid to any Flash
project. Subsequently, Flash makes importing these bitmaps a walk in the park.

1. Create a new Flash file by selecting File New and choosing w Flash File (ActionScript 3.0).

2. Select File Import Import to Stage.

3. Browse to the working directory for Chapter 4 and select the file .
Click Open.

You should immediately notice the image of a flower being placed on the stage similar to
that in Figure 4-3.

Figure 4-3.
Images imported to the stage are
immediately available for use in Flash

We’re not done yet. We need to import the counterparts for our first graphic. This time we
will import them to the Library panel.

1. Select File Import Import to Library.

2. Browse to the working directory for Chapter 4
and select the files and

. You can select both of these files
simultaneously by holding down the Shift key
and clicking both files.

3. Click Open.

You should now have one image on the stage and
three different flower images in the Library panel. In
order to view the contents of the Library panel, press
Ctrl+L (or Cmd+L on a Mac) or select Window
Library. This brings up the panel, where you will see
the three imported files, as well as the one on the
stage. Take notice how that graphic has been placedTT
not only on the stage, but also in the Library panel
(also shown in Figure 4-4).

Figure 4-4. Images imported to the stage are also placed in
the Library panel.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

86

Setting bitmap properties in the Library panel

From within the Library panel you can edit several properties of any bitmap image. ToTT
access the Bitmap Properties dialog, as shown in Figure 4-5, right-click (Windows) or Ctrl-
click (Mac) on an image from within the Library panel and select Properties from the con-
text menu. Go ahead and try this with one of the graphics in your current library.

Figure 4-5. Custom compression and rendering properties can be set for each bitmap in the
Library panel.

From within this dialog, designers have the ability to control the manner in which the bit-
map renders. This can ultimately play a significant role in how the final application per-
forms. Selecting the Allow smoothing check box improves the overall quality of bitmaps as
they are scaled. Likewise you have the ability to set the compression of the bitmap.

There are two basic types of bitmap compression in the Bitmap Properties Compression
drop-down.

Photo (JPEG) is the default setting for bitmap compression in Flash. As the name
indicates, this is the best option when working with photographic images. It offers
several options to customize the compression quality.

The following two options are available for Quality settings when the Photo (JPEG)
option is selected:

Use publish setting uses the bitmap compression settings as determined in the
Publish Settings dialog, which will be discussed in Chapter 18.

Custom allows you to select a number between 1 and 100 representing the
quality of the image as a percentage. When you select this option, the Enable
deblocking check box is made active. Selecting this will smooth the look of the
bitmap’s appearance.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

87

4

Lossless (PNG/GIF) actually does not discard any information from the image. This
option is best when working with simple shapes and a minimal number of colors.

You can test how the bitmap will render by clicking the Test button after adjusting your
settings.

From the Library panel’s context menu, it is also possible to access an external editing pro-
gram like Photoshop or Fireworks to edit bitmaps from within Flash. This is an extremely
invaluable feature for Flash to have, as it is not a native bitmap editor itself. Having the
ability to edit images in an external editor is basically like bringing all the features of that
program into Flash. Follow these steps to edit an image externally:

1. Right-click the image in the Library panel.

2. From the context menu select Edit with.

3. When the Open External Editor dialog appears, browse to your favorite bitmap edit-
ing program and click Open.

4. The image will automatically be opened in the external editor. From here edit the
image as needed and save it.

Once the image has been edited and saved in the external editor, it will automatically
update its appearance in Flash.

Breaking apart bitmaps

Breaking apart bitmaps opens up a lot of useful functionality for working with them. Recall
from earlier in this chapter that we said imported assets behave like any other asset you
created in Flash. This feature actually proves the truth in our statement. When you break
apart a bitmap, the bitmap is converted to a shape that effectively makes it editable using
the Flash drawing tools. In addition, you have the ability to select the bitmap as a fill with
the Eyedropper tool. This gives you the ability to use the bitmap as a fill for other shapes
or as the fill color for tools used to create fills.

To break apart the bitmap, first select it on the stage. TT Then select Modify Break Apart.
When the bitmap breaks apart, it will change to a hashed pattern similar to that of a
selected vector shape, as shown in Figure 4-6.

Figure 4-6. Breaking apart bitmaps allows you to treat them as
vector shapes.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

88

Once the shape has been broken apart, there are a number of options that become avail-
able for further use. What actually occurs when bitmaps are broken apart is that the bit-
map is converted to a vector shape with the bitmap’s image applied as the fill color. You
can then treat the shape itself as a vector shape, exactly as it would be had you drawn it
with the Flash drawing tools. The bitmap fill is then tiled across the face of the shape.

The ability to use bitmaps as fills made its first appearance in Flash MX 2004 and over the
years proved to be very useful. You can use bitmaps as the “color” for fills and stroke.
Flash CS4 makes this process pretty easy. There is no special procedure for getting bitmaps
ready to be applied to shapes. As soon as a bitmap is imported into Flash, it is able to be
applied as a color.

Let’s give this a whirl:

1. Select one of the Flash drawing tools (Rectangle, Oval, or Pen).

2. If it is not already accessible, open the Property inspector and select a new stroke
color, as shown in Figure 4-7.

Figure 4-7.
To apply a bitmap to TT

a stroke, you must
first select the

stroke color chip.

3. When the color picker opens, you will notice that any available bitmaps are dis-
played at the bottom, as in Figure 4-8. Select one of the imported bitmaps to use
as your stroke color.

Figure 4-8.
Bitmaps appear as color

options in the bottom of
the color pickers.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

89

4

4. Next, adjust the stroke to a value like 20. This will allow you to notice the bitmap
pattern that has been applied to the stroke.

5. Draw a shape on the stage. You should have something that resembles Figure 4-9.

Figure 4-9.
Bitmaps can easily be
applied to shapes as
fill or stroke colors.

Using the Trace Bitmap feature
The Trace Bitmap feature in Flash allows designers to convert any bitmap image into a
vector-based graphic. Though this sounds similar to breaking apart images, it is actually
different. When you break apart a bitmap image, the image is just converted into a vector
shape with the bitmap applied as a fill color. When you trace the bitmap, the bitmap is
converted into many vector shapes that are created based on color. The benefits to this
process are both decreased file size and increased vector editability.

We should point out here that tracing bitmaps that are very complex or not accurately
adjusted in the Trace Bitmap settings can create an excessive number of vector shapes,
resulting in a larger file size. You should take some time and tweak each trace to achieve
the optimal results.

Tracing bitmaps in Flash is extremely simple. Using the file we have been working with,
let’s walk through this process. You should have a couple different elements on your stage
from previous examples. We will want to get rid of this excess before we begin.

1. Select Window Select All to select all elements on the current stage. Press Delete
to delete all selected items.

2. From the Library panel select one of the bitmaps that you previously imported and
drag it to the stage.

Dragging items from the Library panel to the stage does not remove them from
the library; instead, it creates a copy of this item. This copy is known as an
instance.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

90

3. With the Selection tool, make sure that the instance of your bitmap is selected. Then
select Modify Bitmap Trace Bitmap. This will bring up the Trace Bitmap dialog, as
shown in Figure 4-10.

Figure 4-10.
The Trace Bitmap

dialog allows you to
define settings for
an accurate trace.

4. Using Table 4-1 as a guide, TT adjust the parameters of the Trace Bitmap dialog to
achieve optimal results.

5. Check your settings by clicking the Preview button. When you feel the settings are
where they need to be, click OK to complete the process.K

Table 4-1.TT The options in the Trace Bitmap dialog for tweaking the bitmap conversions settings

Parameter Effect

Color threshold This setting compares the color values of two adjacent pixels. If the
difference in these values is less than the selected threshold value,
the colors will be considered the same. Increasing the threshold
ultimately decreases the number of colors.

Minimum area This parameter sets the minimum, in pixels, of any shapes that are
created. Therefore, if this option is set to 5, there will be no shapes
created that are less han 5 pixels in size.

Curve fit In the conversion process, many tiny squares are being converted
into vectors (lines). This setting determines how closely the vector
created conforms to the original bitmap pixels.

Corner threshold This setting determines how sharp edges are treated, working in
a manner similar to that of the Curve fit option. Because Flash is
creating vectors (lines) from bitmaps (a checkerboard of square
pixels), it needs a way to discern the edge of a pixel from an edge
that exists in the graphic.

Once the bitmap is converted, it will be comprised of several vector shapes that represent
the primary groups of color. Figure 4-11 gives an excellent look at how these colors have
been grouped into independent vector shapes that can be modified like any other vector
shape created in Flash.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

91

4

Figure 4-11.
The Trace Bitmap
feature converts the
image into editable
vector shapes.

Swapping bitmap images

Finally, you have the ability to substitute any bitmap on the stage with another that exists
in the FLA’s library. When a bitmap image on the stage has been selected, the Property
inspector will change to accommodate bitmaps.r As shown in Figure 4-12, you can click the
Swap button to open the Swap Bitmap dialog.

You can also click the Edit button (Figure 4-12) to automatically open a bitmap’s default
external editor.

Figure 4-12.
The Swap button in
the Property inspector
allows you to switch
between bitmap images.

The Swap Bitmap dialog, shown in Figure 4-13, allows designers to select from any bitmap
that happens to be in the library.

Figure 4-13.
Switch between images
from within the Swap
Bitmap dialog.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

92

Through your work with bitmap images, you have been introduced to how Flash organizes
assets into the library. In addition, you were briefly exposed to the idea that library items
can be used over and over through the concept of instantiation. Now we will expand on
both of these concepts by showing you how to use symbols and further organize them
within the Library panel.

Using and organizing symbols
The concept of symbols is the cornerstone of Flash design and development. A symbol is
a type of reusable asset that can be used throughout your Flash project. Any visual asset
that is created or imported into Flash can be converted to a symbol. Once a symbol is cre-
ated, it is added to the Library panel. As with other elements in the Library panel, you can
create an unlimited number of instances of that symbol. (Instances are discussed later in
this section.) Further, some symbols can be set up to be used with ActionScript.

The primary benefit to using symbols is the efficiency that is gained by creating an asset
only once. Because all symbol instances are derived from one single symbol (also referred
to as a symbol definition), the size and performance of the Flash movie are greatly opti-
mized. Further, since symbols serve as blueprints for symbol instances, changes or updates
to the symbol will propagate through all symbol instances.

Imagine you need to create an animation that involves dozens of snowflakes falling to the
ground. By using symbols, you would only need one actual snowflake image. Once that
image was converted to a symbol and available in the Library panel, you could make tens
or hundreds of snowflakes from that single snowflake image.

Let’s take a look at the types of symbols available.

Types of symbolsTT

There are four types of symbols that are available to Flash designers, as outlined in the
following list. In this chapter we will be discussing the first three, which are associated with
graphic elements. Font symbols will be discussed in detail in Chapter 13.

Graphic symbols constitute the most basic symbol type available for use with
Flash. Graphics are used for creating simple graphic assets like background images.
Graphics cannot be used with sound, video, interactivity, or animations involving an
independent timeline. This reduced functionality is beneficial because it allows
graphic symbols to be inherently smaller than buttons and movie clips.

Button symbols are used to create simple interactive elements. This type of symbol
offers a unique four-frame timeline for establishing different graphical representa-
tions for each state of the button.

Movie clip symbols are the most widely used type of symbol. They have their own
timelines, which can run independently of the main timeline. In addition, movie
clips are capable of the full range of interactivity that is offered by the button sym-
bol. The main timeline in Flash is actually an instance of a movie clip.

Font symbols are employed to embed fonts into a Flash movie for use with
ActionScript or other SWF files.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

93

4

There is a fifth type of symbol, the sprite. Sprites can be thought of as a hybrid of the graphic
and movie clip symbols. They are also often referred to as one-framed movie clips. The ben-
efit of sprites is that the absence of a timeline reduces file size, but they still retain the inter-rr
active aspects of movie clips. Sprites are typically used only in ActionScript development.

Creating and managing symbols

Any one of the previously mentioned symbols can be created directly from the stage. The
stage is typically the most logical place to create symbols as it is usually integrated within
the workflow of the design process.

The quickest and easiest way to create a symbol is to simply convert a vector or bitmap
that is located on the main stage to a symbol. The following example will get you started
with creating various symbols:

1. Open . On the stage you should see both a vector-based red rectangle
and one of the previously imported flower bitmaps.

2. Right-click (Windows) or Ctrl-click (Mac) the image of the flower. From the context
menu select Convert to Symbol. The Convert to Symbol dialog, shown in Figure 4-14,
will display the default options for defining a symbol.

Figure 4-14. The Convert to Symbol dialog allows you to create
graphic, movie clip, and button symbols.

3. Set the fields as follows to define the symbol:

The Name field allows you to define a custom name for your symbol. It is impor-
tant to understand that there can only be one symbol in your library for any
given name. For this example, we have named this symbol Flower. Therefore,
there can be no other symbols with the name Flower.

The Type drop-down menu gives us the ability to select from the three primary
types of visual symbols. In this case, because this is a basic image and you will
not be using animation or interactivity, set this to Graphic.

The Registration point determines the location of the symbol’s (0,0) coordinates.
By default this will be set to the center point. You can change this setting to any
one of the nine points shown. These points indicate the corners, sides, and cen-
ter of the symbol. A selected registration point will be black.

The Folder option determines which folder in the library should contain the
symbol definition. Since there are no folders in the library as of yet, this symbol
will be placed in the library root, or topmost location.

4. Click OK.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

94

You have successfully created your first symbol. Check the Library panel; you should now
see the Flower symbol, in addition to the bitmaps that were imported from earlier in this
chapter.

Creating symbol instances
An instance of a symbol is basically a copy of a symbol definition that is active in the Flash
movie. The symbol definition is the actual symbol that resides in the library. You can create
as many copies (instances) of this original symbol as your application dictates. Again, the
benefit of this approach is demonstrated in both application performance and ease in the
ability to update.

Creating symbols is a fairly straightforward task. The easiest way to accomplish this is by
simply dragging an instance of the symbol from the Library panel to the stage as we did
with bitmaps. Go ahead and drag three instances of the Flower symbol to the stage.

Once you have an instance of a symbol on the stage, Flash allows you to edit various prop-
erties of each symbol instance independently of the symbol definition or other symbol
instances. Through the Property inspector and transform tools, you have the ability to edit
each symbol instance to give it some degree of uniqueness.

1. Select one of the three symbol instances you created from the last section.

2. Open the Property inspector by selectingr Window Properties. Figure 4-15 shows the
various options that are available to a designer when a symbol instance is selected.
The Position and Size options allow you to adjust the height, width, and general posi-
tion of the asset. In the Color Effect settings you have the ability to adjust the
Brightness, Tint, Advanced, and Alpha (transparency) settings. Advanced is a combina-
tion adjustment of color percentage, alpha percentage, and color offset.

Figure 4-15.
The properties of

symbol instances can
be adjusted using the

Property inspector.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

95

4

3. Select Tint from the Style drop-down menu in the Color Effect section of the Property
inspector.

4. Adjust the Tint setting to experiment with different outcomes.

5. Select another symbol instance. This time choose Alpha from the Style drop-down.

6. Change the Alpha setting to 15%.

7. Finally, select the third symbol instance.

8. Select the Free Transform tool from the Tools panel.

9. Adjust the size and rotation of the symbol instance.

As you can see from this exercise, all three symbol instances can be adjusted indepen-
dently from one another and from the symbol definition itself.

Creating button symbols
Buttons symbols allow you to quickly create interactive objects with states. All the symbol
types that we are discussing in this chapter are nothing more than movie clip symbols.
Graphics are movie clips with limited functionality. A button is also a special kind of movie
clip that contains only four frames to govern the states of the button.

1. Select the red rectangle that is on the stage.

2. Right-click (Windows) or Ctrl-click (Mac) and select Convert to Symbol.

3. Name the symbol Red Button and select Button from the Type drop-down.

Excellent, now that the button symbol has been created, we will need to set up the button
to have states. To accomplish this, we will need to edit the symbol.TT

Editing symbols
Editing symbols can take some getting used to. The best thing to do is think of each sym-
bol as its own SWF file inside of your main SWF. There are three primary methods by which
you can edit your Flash symbols:

Edit in Place allows you to edit a symbol definition directly from the instance of the
symbol on the stage. To edit a symbol through this option, you simply double-clickTT
any instance of the symbol that resides on the stage. You will then notice that all
other visual assets become dimmed.

Edit in New Window opens a new tab in the Flash IDE, allowing you to edit the sym-
bol definition in a separate window.

Symbol-Editing Mode (Edit) opens the symbol definition in the same window as the
stage.

When you edit a symbol in Flash you are actually editing the symbol definition.
As a result, editing a symbol in Flash will automatically update all instances of
that symbol that are used in your Flash project.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

96

Preparing to add states to the button
Now we can add the state to our button symbol by editing it in place. Start by double-
clicking the red rectangular button symbol. This will take you inside the red button symbol
and allow you to edit its special timeline.

Flash helps you keep track of which symbol you are actually working in through a series of
icons located on the top of the document window. These icons are arranged from left to
right to also indicate the nesting order of each symbol instance. Figure 4-16 shows icons
for Scene 1 and Red Button. Red Button is the rightmost icon, which is the current symbol
we are working on. The fact that Scene 1 is to its immediate left tells us the symbol
instance we accessed is currently nested in Scene 1. Selecting the Scene 1 icon would take
us back out of the symbol and return us to the main stage.

Figure 4-16.
The document window displays icons that

allow designers to navigate among symbols.

The next thing to notice is that the red rectangle on the stage is actually the original vec-
tor rectangle that was used to create this symbol. And because it is a vector shape, we
can edit this shape, and the changes will update in every symbol instance used in our
Flash movie.

Finally, the timeline that is used for button symbols is quite different from the timeline
used for movie clips and graphic symbols. This timeline, as shown in Figure 4-17, contains
the four following frames. Three of these frames represent the states of this button; the
last frame is the hit area.

 Up is used for when the button is in the up state.

 Over is used for when the mouse is over the button.

Down is used to define what will happen when the button is pressed.

 The hit area defines the active clickable area for the button.

Figure 4-17.
Button symbols have a

special four-frame timeline
that contains a frame for
each state of the button.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

97

4

So, what is a button without states? Adding such a button is actually your first step in cre-
ating interactivity in Flash. Although no significant reaction will occur from pressing this
button, it is no less interactive. Therefore, your application will, in a way, respond to a
user’s input.

1. First test the movie by clicking Control Test Movie.

2. Try to click the red button. You will no doubt notice that nothing happens. This is
because the button has no state and no hit area.

3. Close the test movie.

4. In the timeline, select the frame under the Over label and press F6. This will add a
new keyframe to allow us the ability to change the appearance of the button when
we select it.

5. Select the red rectangle shape on the stage and change its color to blue.

6. Now select the frame labeled Down and press F6.

7. Select the blue rectangle on the stage and change its color to green. You should
now have a red rectangle on the Up frame, a blue rectangle on the Over frame, and
a green rectangle on the Down frame.

8. Finally, select the frame under the Hit label and press F6. You will not need to
change the color here because there is no visual representation for this frame. It
simply defines the interactive area of the button.

9. Test the movie again, and now try to click the button.TT

You should now notice that the button will react to all states that have been defined in this
exercise. Later in this book, you will learn how to make buttons like this accomplish more
meaningful tasks.

Swapping symbols
In some cases a designer may need to swap symbol definitions. Doing so can give a
designer the ability to change the symbol that is linked to a specific instance. This is
often helpful when dealing with last-minute tweaks and proofing. To accomplish this, TT
select a symbol instance on the stage of a Flash movie and click the Swap button (see
Figure 4-18) from within the Property inspector. This opens the Swap Symbol dialog, as
shown in Figure 4-19, allowing you to pick the new symbol to be used with that symbol
instance.

Figure 4-18.
In the Property inspector,
click Swap to swap symbols.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

98

Figure 4-19. The Swap Symbol dialog lets you select a new symbol definition to be used for an
instance.

Breaking apart symbol instances
Similar to the way that you break apart bitmaps, you can also break apart symbols. When
you break the symbol instance apart, the link to the symbol definition is broken, and the
instance is converted back to the internal graphic of the symbol. The symbol definition
remains in the library.

To break apart a symbol, right-click (TT Windows) or Ctrl-click (Mac) the symbol and select
Break Apart from the context menu.

Duplicating symbols
When creating Flash projects, it can sometimes be necessary to create duplicates of sym-
bols. For example, if you want to create a group of buttons that all looked the same but
have different textual labels on them, you might want to make duplicate symbols. The
conundrum with symbols is that many new Flash designers often think they can change
the labels (or other internal graphical elements) from within the symbol instance. The
problem is that instances are linked to the definition. If you edit the instance, you are
really editing the symbol definition. If a symbol contains a text label inside of itself and
that label is changed, the change will be implemented across all symbol instances. For this
reason, it is necessary to create a duplicate symbol.

When you duplicate a symbol, you are taking an existing symbol definition and creating a
completely new and independent symbol definition from it. Do not confuse this with cre-
ating a symbol instance. A symbol instance is a copy of a symbol definition. A duplicate
symbol is an entirely new symbol altogether. Therefore, this process creates a new symbol
definition in the library.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

99

4

To duplicate a symbol, right-click (TT Windows) or Ctrl-click (Mac) on any symbol and select
Duplicate Symbol from the context menu. This will bring up the New Symbol dialog, allow-
ing you to set the properties for the new duplicated symbol.

The Library panel
The Library panel is probably the single most important panel used in Flash design and
development. It is used to organize all assets that are employed in a Flash project. Libraries
can also be used to store and access assets for other projects as well. From here you can
quickly access the elements of your project to make edits or change specific settings.
Nonetheless, both designers and developers alike will find the Library panel beneficial to
their efforts.

So far in this chapter you have had some minimal exposure to this panel, but it is worth
covering in more detail.

Getting familiar with the Library panel

The Library panel is not as complicated as some of the other panels used in Flash. It is actu-
ally quite intuitive to use, as it possesses some aspects common to file browsers found on
most computers. Taking a closer look at the TT Library panel, you can see that it is comprised
of two primary sections.

The first of these sections, as shown in Figure 4-20, is the preview pane. The preview pane
occupies the upper portion of the Library panel and is used to get a quick glimpse of items
as you are browsing the library. From this area you also have the ability to preview sounds
and animations as well.

The second key area of focus in the Library panel is the item browser, which occupies the
majority of the lower half of the panel. In this area you will find icons and details that
represent each symbol, sound, video, or other asset in your project. From this section you
can organize, edit, and remove the various elements of your Flash project.

Finally, there are several other elements shown in Figure 4-20 that are worth mentioning:

 The Panel menu contains options that allow you to create, edit, and remove
symbols.

 The New Library Panel button opens additional Library panels that can be used to
browse external libraries.

 The Pin Library button locks the currently selected library to the currently selected
Library panel.

 The library browser allows you to browse all libraries that are currently open in
Flash.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

100

 The Search Library field allows you to browse the library for assets.

The New Symbol button will open the New Symbol dialog and allow you to create a
new symbol.

The New Folder button creates a new folder in the Library panel.

 The Properties button opens the Properties dialog for the currently selected
library item.

 The Delete feature (represented by a trash can icon) will remove the currently
selected library item.

Examining library items
You have been working with library items from the first couple pages in this chapter. A
library item is any asset (symbol, sound, video, font, etc.) that is stored in the Library
panel. As you learned, it is very simple to import items to the Library panel or add items to
the Library panel when creating symbols. You can also add these items (and instances of
these items) to your projects by simply dragging them onto the stage.

Figure 4-20. The Library panel offers an efficient way to organize the assets used in a y Flash application.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

101

4

Organizing with folders
Folders are an invaluable resource. If you are a regular computer user (this is certainly
assumed), you will no doubt be familiar with the benefit of organizing your files in folders.
Folders in the Flash library offer this same degree of higher organization as you would
expect from folders on your computer’s hard drive.

Folders can be created using the New Folder button located at the bottom of the Library
panel. Once created, you can drag items to these folders for organization. Figure 4-21
demonstrates that items located within a folder will be indented. Folders may contain any
item located in the library including other folders. For further organization, folders may be
expanded or collapsed by pressing the gray arrow located to the left of the folder’s icon.

Figure 4-21. Folders can be used to organize the library.

Sorting and searching
Sorting and searching library items are both new to Flash CS4. Though users had the ability
to sort items by type in Flash CS3, it was nowhere nearly as effective as the sorting method
in this release. It is now possible to sort in ascending or descending order from any of the
columns in the Library panel simply by clicking on a column’s header.

Searching, on the other hand, is completely new to this version and in our opinion long
overdue. Using the Search Library field gives you the opportunity filter the library based on
an item’s name. Figure 4-22 shows that typing Bitmap into the Search Library field will
prompt the library to show only those items with “Bitmap” in their names. All other items
will be hidden.

Figure 4-22. Use the Search Library field to locate specific
items in the library.

To clear the search and restore the other library items to visibility, click the TT X located in the X
right side of the Search Library field.

Finding unused library items
Over the course of a project’s life cycle, it is possible for the project to accumulate a num-
ber of library items that are no longer used or required. Similar to cleaning out a closet or
a junk drawer, it can be useful to perform a bit of spring cleaning on your projects. For this
Flash offers the Select Unused Items feature in the Library panel menu.

Rather than have you go through every item in your Flash project and try to determine
which are in use and which are not, Flash will do all the work for you. By selecting Select

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

102

Unused Items from the Library panel menu, Flash will automatically select all library items
that are not being used or referenced in your project. It will then highlight those items in
gray as shown in Figure 4-23. From here you can simply click the Delete button at the bot-
tom of the Library panel, and all useless items will be removed from your project.

Figure 4-23.
Useless library items can be

removed using the Select
Unused Items command.

Updating imported library items
Updating library items can be particularly useful if you work from a central graphics repos-
itory or have imported items from an external library. Updating files can be useful because
it maintains the integrity of the existing library item. Therefore, rather than reimporting
(which could cause a naming conflict), you can simply update external items if their origi-
nal files have been changed.

To update a library item, select it in the TT Library panel. Then select Update from the Library
panel menu.

Summary
In this chapter we continued to lay the foundation for things to come. Bitmaps and sym-
bols are going to be inherent to the majority of Flash projects you work on. Having a
conceptual understanding of how symbols and symbol instances relate to one another will
also give you a leg up when it comes time learn ActionScript.

EXTERNAL ASSETS AND SYMBOL MANAGEMENT

103

4

In this chapter we discussed the following key topics:

Basic use of bitmap images

 Importing external graphic assets into Flash

 Using the library

 Symbol creation and management

CHAPTER 5

WORKING WITH BLENDS, FILTERS,
AND 3D TRANSFORMATIONS

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

106

Now that we have given you a tour of the kitchen and its basic tools, we need to start add-
ing some hot sauce.

In previous chapters you learned about the basic tools for creating graphics and colors.
Here you will get familiar with the basics of spicing things up a bit more using blends, fil-
ters, and 3D tools. So in this chapter we will show you the following:

Blends

 Filters

3D transformations

Blends
Blend modes let you create composite images or images with varying transparency or color
interaction of two or more overlapping objects. Blending allows you to create unique effects
by blending the colors in overlapping shapes, as well as adding a control to the transparency
of objects and images. You can use Flash blend modes to create highlights or shadows that
let details from an underlying image show through, or to colorize a grayscale image.

A blend mode contains these elements:

Blend color: The color applied in the blend mode

Opacity: The degree of transparency applied in the blend mode

Base color: The color of pixels underneath the blend color

Result color: The result of the blend’s effect in the blend

Because blend modes depend on both the underlying “base” color and the color of the
object to which you’re applying the blend, you’ll need to experiment with different colors
to see what the result will be. Try the different blend modes to achieve the effect you
want. Some samples follow.

Flash provides the following blend modes:

Normal: Applies color normally, with no interaction with the base colors.

Layer: Blends colors normally but sets the blend object at 100 percent opacity
prior to blending. This prevents internal movie clips of the blend object from bleed-
ing through one another.

Darken: Replaces only the areas that are lighter than the blend color. Areas darker
than the blend color don’t change.

Multiply: Multiplies the base color by the blend color, resulting in darker colors.

Lighten: Replaces only pixels that are darker than the blend color. Areas lighter
than the blend color don’t change (opposite of darken mode).

Screen: Multiplies the inverse of the blend color by the base color, resulting in a
bleaching effect, often similar to lighten mode.

Overlay: Multiplies or screens the colors, depending on the base colors.

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

107

5

Hard light: Multiplies or screens the colors, depending on the blend mode color.
The effect is similar to shining a spotlight on the object.

Difference: Subtracts either the blend color from the base color or the base color
from the blend color, depending on which has the greater brightness value. The
effect is similar to a color negative.

Invert: Inverts the base color.

Alpha: Applies an alpha mask.

Erase: Removes all base color pixels, including those in the background image.

Applying a blend mode

You use the Property inspector to apply blend modes to selected movie clips or shapes.

To apply a blend modeTT to a movie clip, follow these steps:

1. Select the movie clip instance (on the stage) to which you want to apply a
blend mode.

2. Adjust the color and transparency of the desired movie clip instance using the
Color pop-up menu in the Property inspector.

3. Select a blend mode from the Blend pop-up menu in the Property inspector. The
blend mode is applied to the selected movie clip instance.

4. Verify that the blend mode you’ve selected is appropriate to the effect you’re try-
ing to achieve.

Figures 5-1 through 5-5 show the results of applying various blend modes to a movie clip.

Figure 5-1.
Normal blend mode produces no effect.

Figure 5-2.
With hard light blending mode, the
shadows and light source become sharper.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

108

Figure 5-3.
With darken blend mode, the

lighter areas of overlap are replaced.

Figure 5-4.
With invert blend mode, the base

color is inverted in the overlap areas.

Figure 5-5.
With subtract blend mode, the base

color is subtracted from overlapped areas.

You will likely find you need to try varying both the color and transparency settings of the
movie clip and then try applying different blend modes to achieve the effect you want. For
information on adjusting the color of a movie clip, go to

. Select Using Flash and in the left-hand pane, expand Using symbols,
instances, and library assets, expand Working with symbol instances, and select the link Change
the color and transparency of an instance.

Working with filters
Filters let you add visual effects such as drop shadows, blurs, glows, and bevels to text,
buttons, and movie clips. You may apply these filters using motion tweens that are unique
to Flash and with which you can animate the filters. For example, if you create a ball (or

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

109

5

sphere) with a drop shadow, you can simulate the look of the light source moving from
one side of the object to another by changing the position of the drop shadow from its
beginning and ending frames in the timeline.

After you apply a filter, rearrange the order of filters or change filter options at any time
to experiment with combined effects. You can disable filters or enable or delete them in
the Property inspector. When you remove a filter, the object returns to its previous state.
You can view the filters applied to an object by selecting it, automatically updating the
filters list in the Property inspector for the selected object.

Applying filters

You can apply filters to selected objects using the Property inspector. Each time you add a
new filter to an object, it is added to the list of applied filters for that object in the Property
inspector. You can remove filters that have been previously applied, as well as apply mul-
tiple filters to an object. Applying different filters affects the appearance of a movie clip
instance (see Figure 5-6).

Figure 5-6.
A drop shadow applied
to multiple objects

For information on how using filters can affect the performance of your SWF files, see
the following sections of Flash Online Help: “Filters and Blends” (located at

under Using Flash Using Flash CS4
Professional Filters and Blends) and “Filtering Display Objects” (which you'll find at

 located to the left).

You can apply filters only to text, button, and movie clip objects. To apply a filter, followTT
these steps:

1. On the stage, select a movie clip, button, or text object to which you want to apply
a filter.

2. Select the Filters tab in the Property inspector.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

110

3. Click the Add Filter (r +) button in the lower-left corner and select a filter from the
Filters pop-up menu (see Figure 5-7). The filter you select is applied to the object, and
the controls for the filter settings appear in the Property inspector (seer Figure 5-8).

Figure 5-7.
Adding a filter to the Filter tab

in the Property inspector

Figure 5-8.
Setting your filter properties

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

111

5

Vary the filter settings until you get the look you want. For details about the settings avail-
able for each filter, see the following sections in Flash Online Help (

), all of which can be accessed by first selecting Using
Flash, expanding the Special effects node, and then expanding the About filters node:

Apply a Drop Shadow

Apply a Blur

Apply a Glow

Apply a Bevel

Apply a Gradient Glow

Apply a Gradient Bevel

Apply the Adjust Color Filter

To removeTT a filter, follow these steps:

1. Select the movie clip, button, or text object that you want to remove a filter from.

2. Select the Filter tab in ther Property inspector.

3. Select the filter you want to remove in the list of applied filters.

4. Click the Remove Filter (–) button to remove the filter.

You can create a filter settings library that allows you to easily apply the same filter or sets
of filters to an object. Flash stores the filter presets you create in the Property inspector on
the Filters tab in the Filters Presets menu. You can delete or rename any presets as
desired.

The filter configuration file stored in your Flash configuration folder can be used to share
libraries of preset filters with other developers.

For more information, go to .
Select Using Flash, expand Special effects, expand About filters, and click the link Creating
preset filter libraries.

To enable or disable a filter appliedTT to an object, click the enable or disable icon next to
the filter name in the filter list in the Property inspector. Alt-click the enable icon in the fil-
ter list to toggle the enable state of the other filters in the list. If you Alt-click the disable
icon, the selected filter is enabled and all other filters in the list are disabled.

To enable or disable all filtersTT applied to an object, click the Add Filter (+) button in the
Property inspector and then selectr Enable All or Disable All from the pop-up menu. You can
Ctrl-click (Cmd-click) the enable or disable icon in the filter list to enable or disable all the
filters in the list.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

112

At this point, you may want to try applying a basic filter effect yourself. There are many
examples in the Flash documentation, as indicated earlier. However, an easy example to
start with is applying a drop shadow, so try it out by using the following steps:

1. Select the movie clip, button, or text object that you want to apply a filter preset to.

2. Select the Filter tab in ther Property inspector.

3. Click the Add Filter (+) button and select Presets from the Filters pop-up menu.

Select the filter preset you want to apply from the list of available presets at the bottom f
of the Preset menu. When you apply a filter preset to an object, Flash replaces any filters
currently applied to the selected object(s) with the filter(s) used in the preset.

Creating a skewed drop shadow

To create a more realistic look, use the drop TT shadow filter’s Hide object option when skew-
ing the shadow of an object (see Figure 5-9). To achieve this effect, you need to create a TT
duplicate movie clip, button, or text object, apply a drop shadow to the duplicate, and use
the Free Transform tool to skew the duplicate object’s shadow. Next, hide the original
object with the skewed shadow and remove the drop shadow from the other copy.

Figure 5-9.
Skewing the drop shadow filter to

create a more realistic shadow

The effect is the original object has a shadow that is skewed to one side as if the light
source casting the shadow were offset.

Introducing 3D transformations
Flash CS4 allows you to create 3D effects by moving and rotating movie clips in 3D space
with a z axis in the properties of each movie clip instance. You add 3D perspective
effects to movie clip instances by moving or rotating them along their z axis using the 3D

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

113

5

Translation and 3D Rotation tools. In CS4, moving an object in 3D space is called a trans-
lation and rotating an object in 3D space is called a transformation. Once you have
applied either of these effects to a movie clip, you get the z axis that makes it a 3D
movie clip.

When you move an object along its z axis with the 3D Translation tool or the Property
inspector, that object will appear nearer or further away from the viewer. When you rotate
the movie clip around its z axis with the 3D Rotation tool, you give the impression of an
object that is at an angle to the viewer. Through using these tools, you get the impression
that the objects they are applied to are in 3D space, which is made even more apparent
with movement.

You can use the 3D Translation and the 3D Rotation tools to manipulate objects on the
entire stage (global) or movie clip (local) 3D space. For example, if you have a movie clip
containing three nested movie clips as shown in Figure 5-9, local 3D transforms of the
nested movie clips are relative to the drawing area inside the parent movie clip. The
default mode of the 3D Translation and 3D Rotation tools is global. To use them in local TT
mode, click the Global toggle button in the Options section of the Tools panel.

Vanishing point

The vanishing point property (see Figure 5-10) of an FLA file controls the orientation of
the z axis of 3D movie clips on the stage. The z axis of all 3D movie clips in an FLA file
recedes toward the vanishing point. By relocating the vanishing point, you change the
direction that an object moves when translated along its z axis. By adjusting the position of
the vanishing point, you can precisely control the appearance of 3D objects and animation
on the stage, as shown in Figure 5-11.

Figure 5-10.
Setting vanishing
point properties

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

114

Figure 5-11. Global 3D showing a vanishing point for all movie clips on the stage

For example, if you locate the vanishing point at the upper-left corner of the stage (0, 0),
increasing the value of the z property of a movie clip moves the movie clip away from the
viewer and toward the upper-left corner of the stage.

Because the vanishing point affects all 3D movie clips, changing it also changes the posi-
tion of all movie clips that have a z-axis translation applied.

The vanishing point is a document property that affects all movie clips that have z-axis
translation or rotation applied to them. The vanishing point does not affect other movie
clips. The default location of the vanishing point is the center of the stage.

To view or set the vanishing pointTT in the Property inspector, a 3D movie clip must be selected
on the stage. Changes to the vanishing point are visible on the stage immediately.

To set the vanishing point, follow these steps:TT

1. On the stage, select a movie clip that has 3D rotation or translation applied to it.

2. In the Property inspector, enter a new value in the Vanishing Point field, or drag the
hot text to change the value. Guides indicating the location of the vanishing point
appear on the stage while dragging the hot text.

To move the vanishing point back toTT the center of the stage, click the Reset button in the
Property inspector.

Figure 5-12 shows three balls with a vanishing point and the 3D Rotation tool’s controls
with the combined movie clip rotated slightly compared to the same three balls not
rotated in the figure. Keep in mind that you are not actually rotating 3t D objects but only
2D objects with 3D effects. See Figure 5-13 a little later in the chapter for what happens if
you rotate too far.

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

115

5

Figure 5-12.
The three balls
selected with the 3D
Rotation tool

Rotating a multiple-object selection in 3D space

To rotate a selection of multiple TT objects in 3D space, follow these steps:

1. Select the 3D Rotation tool in the Tools panel (or press W).

2. Verify that the tool is in the mode that you want by checking the Global toggle but-
ton in the Options section of the Tools panel. Click the button or press D to toggle
the mode between global and local.

3. Select multiple movie clips on the stage.

4. The 3D Rotation controls appear overlaid on the most recently selected object.
Place the pointer over one of the four rotation axis controls. The pointer changes
when over one of the four controls.

5. Drag one of the axis controls to rotate around that axis or the free rotate control
(outer orange circle) to rotate x and y simultaneously.

6. Drag the x-axis control left or right to rotate around the x axis. Drag the y-axis con-
trol up or down to rotate around the y axis. Drag the z-axis control in a circular
motion to rotate around the z axis.

The 3D center point, which appears at the center of the rotation guide, controls all of the
selected movie clips.

To relocate the 3TT D rotation control center point, do one of the following:

To move the center point to an arbitrary location, drag the center point.TT

 To move the center point to the center of one of the selected movie clips,TT Shift–
double-click the movie clip.

 To move the center point to the center of the group of selected movie clips,TT
double-click the center point.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

116

The location of the rotation control center point for the selected object appears in the
Transform panel as the 3D center point. You can modify the location of the center point in
the Transform panel.

Rotating objects in 3D space

You rotate movie clip instances in 3D space with the 3D Rotation tool. A 3D rotation con-
trol appears on top of selected objects on the stage. The x control is red, the y control is
green, and the z control is blue. Use the free rotate control to rotate around the x and y
axes at the same time.

The default mode of the 3D Rotation tool is global. Rotating an object in global 3D space is
the same as moving it relative to the stage. Rotating an object in local 3D space is the same
as moving it relative to its parent movie clip if it has one. To toggle theTT 3D Rotation tool
between global and local modes, click the Global toggle button in the Options section of
the Tools panel while the 3D Rotation tool is selected. You can temporarily toggle the mode
from global to local by pressing D while dragging with the 3D Rotation tool.

The 3D Rotation and 3D Translation tools occupy the same space in the Tools panel. Click and
hold the active 3D tool icon in the Tools panel to select the currently inactive 3D tool.

By default, selected objects that have 3D rotation applied appear with a 3D axis overlay on
the stage. You can turn off this overlay in the General section of Flash Preferences.

Rotating a single object in 3D space

Select the 3D Rotation tool in the Tools panel (or press W). You’ll get a result similar to
what you see in Figure 5-13.

Figure 5-13.
The three balls with the 3D

Rotation tool handles

But of course that may be what you wanted.y

If you need a variety of graphic effects without duplicating movie clips in the library, the
3D properties of movie clip instances in your FLA file may be sufficient. If you edit a movie
clip from the library or in edit-in-place mode, the 3D transforms and translations that have

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

117

5

been applied are not visible. When editing the contents of a movie clip, only 3D trans-
forms of nested movie clips are visible.

If you have 3D objects on the stage, you can add certain 3D effects to all of those objects
as a group by adjusting the perspective angle and vanishing point properties of your FLA
file. The perspective angle property has the effect of zooming the view of the stage. The
vanishing point property has the effect of panning the 3D objects on the stage. These set-
tings only affect the appearance of movie clips that have a 3D transform or translation
applied to them.

In the Flash authoring tool, you can control only one viewpoint, or camera. The camera
view of your FLA file is the same as the stage view. Each FLA file has only one perspective
angle and vanishing point setting.

To use the 3TT D capabilities of Flash, the publish settings of your FLA file must be set to Flash
Player 10 and ActionScript 3.0. Only movie clip instances can be rotated or translated
along the z axis. Some 3D capabilities are available through ActionScript that are not avail-
able directly in the Flash user interface, such as multiple vanishing points and separate
cameras for each movie clip.

For a video tutorial about 3D graphics, see “Working with 3D Art” at
.

3D space movement

When you want to move movie clip instances in 3D space, you do it with the 3D Translation
tool. Select a movie clip with the tool, and you will see its three axes, x, y, and z, appear on
the stage on top of the object. Figure 5-14 shows this tool; although you can’t see the col-
ors in this figure, on your screen the x axis is red, the y axis is green, and the z axis is blue.

Figure 5-14.
The three balls with the
3D Translation tool off
palette, left of the stage

The 3D Translation tool default mode is global. Moving an object in global 3D space is
the same as moving it relative to the stage. Moving an object in local 3D space is the
same as moving it relative to its parent movie clip. You can temporarily toggle the
mode from global to local by pressing D while dragging with the 3D tool or by click-
ing the Global toggle button in the Options section of the Tools panel while the 3D

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

118

Translation tool is selected. Figure 5-15 shows the three balls after changes with the
3D Translation tool.

Figure 5-15.
Use the 3D translation tool

to apply a translation
to the three balls.

As mentioned previously, the 3D Translation and 3D Rotation tools occupy the same icon.

In the Tools panel, click and hold the active 3D tool icon in the Tools panel to select the
currently inactive 3D tool.

By default, selected objects that have 3D translation applied appear with a 3D axis overlay
on the stage, which you can turn off in the General section of Flash Preferences.

Moving a single object in 3D space

The 3D effects are most effective with apparent movement; here is how to get started.
There are many ways to add spices, and the only limit is your creativity.

To move an object in 3TT D space, follow these steps:

1. Select the 3D Translation tool in the Tools panel (or press G to select it).

2. Set the tool to local or global mode. Check the Global toggle button in the Options
section of the Tools panel to be sure that the tool is in the mode you want. Click
the button or press D to toggle the mode.

3. Select a movie clip with the 3D Translation tool.

4. Move the object by dragging with the tool. Move the pointer over the x-, y-, or
z-axis controls. The pointer changes when over any of the controls.

The x- and y-axis controls are the arrow tips on each axis. Drag one of these controls in
the direction of its arrow to move the object along the selected axis. The z-axis control
is the black dot at the center of the movie clip. Drag the z-axis control up or down to
move the object on the z axis.

To move the object using the TT Property inspector, enter a value for x, y, or z in the 3D
Position and View section of the Property inspector.

Move an object on the z axis, and its apparent size changes. The apparent size appears in
the Property inspector as the Width and Height read-only values in the 3D Position and View

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

119

5

section. Note in Figures 5-14 and 5-15 that the apparent size changed from left to right as
we position on the z axis.

Moving multiple objects in 3D space

When you select multiple movie clips, you can move one of the selected objects with the
3D Translation tool, and the others move in the same way. Try it yourself:

1. Set the 3D Translation tool to global mode to move each object in the group in the
same way (in global 3D space), and then drag one of the objects with the axis
controls.

2. To move the axis controls to another object, shift–double-click one of the other TT
selected objects.

Set the 3D Translation tool to local mode to move each object separately in the group in
the same way in local 3D space, and then drag one of the objects with the axis controls.
Shift–double-click one of the selected objects to move the axis controls to that object.

You can also move the axis controls to the center of the multiple selection by double-
clicking the z-axis control. Shift–double-click one of the selected objects to move the axis
controls to that object:

1. Verify that the tool is in the mode that you want by checking the Global toggle but-
ton in the Options section of the Tools panel. Click the button or press D to toggle
the mode between global and local.

2. Select a movie clip on the stage.

3. The 3D Rotation controls appear overlaid on the selected object. If the controls
appear in a different location, double-click the control center point to move it to
the selected object.

4. Place the pointer over one of the four rotation axis controls. The pointer changes
when over one of these controls.

5. Drag one of the axis controls to rotate around that axis: Drag the x-axis control left
or right to rotate around the x axis. Drag the y-axis control up or down to rotate
around the y axis. Drag the z-axis control in a circular motion to rotate around the
z axis. Or use the free rotate control (outer orange circle) to rotate x and y simul-
taneously.

6. To relocate the rotation control center point relative to the movie clip, drag the TT
center point. This lets you control the effect of the rotation on the object and its
appearance.

7. Double-click the center point to move it back to the center of the selected
movie clip.

The location of the rotation control center point for the selected object appears in the
Transform panel as the 3D Center Point property. You can modify the location of the center
point in the Transform panel.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

120

Transform panel rotation

To use the TT Transform panel for rotation, follow these steps:

1. Open the Transform panel (Window Transform).

2. Select one or more movie clips on the stage.

In the Transform panel, enter the desired values in the 3D Rotation X, X Y, and Y Z
fields to rotate the selection (see Figure 5-16 in the next section). These fields
contain hot text, so you can drag the values to change them. The 3D rotation
takes place in global or local 3D space, depending on the current mode of the 3D
Rotation tool in the Tools panel.

3. To move the 3TT D rotation point, enter the desired values in the 3D Center Point X, Y,
and Z fields.

Perspective angle

The perspective angle property of an FLA file controls the apparent angle of view of 3D
movie clips on the stage.

The apparent size of 3D movie clips and their
location relative to the edges of the stage are
adjusted by increasing or decreasing the per-
spective angle effects. By increasing the
perspective angle, you make 3D objects
appear closer to the viewer. By decreasing
the perspective angle, you make 3D objects
appear further away. The effect is like zoom-
ing in or out with a camera lens, which
changes the angle of view through the lens.

All movie clips with 3D translation or rotation
applied to them are affected by changes to
the perspective angle property. The perspec-
tive angle does not affect other non-3D
movie clips. The default perspective angle is
55 degrees of the view, like a normal camera
lens. The range of values is from 1 degree to
180 degrees.

To view or set the perspective angleTT in the
Property inspector, as shown in Figure 5-16, a 3D movie clip must be selected on stage.
Changes to the perspective angle are visible on the stage immediately.

Figure 5-16. Setting the perspective angle in
the Property inspector

WORKING WITH BLENDS, FILTERS, AND 3D TRANSFORMATIONS

121

5

The perspective angle changes automatically when you change the stage size so that the
appearance of 3D objects does not change. You can turn off this behavior in the Document
Properties dialog box.

To set the perspective angle, follow these steps:TT

1. On the stage, select a movie clip instance that has 3D rotation or translation
applied to it.

2. In the Property inspector, enter a new value in the perspective angle field (currently
55.0 in Figure 5-16) or drag the hot text to change the value.

Figure 5-17 shows two perspectives of the same image, with Figure 5-18 showing changes
in one of those perspectives.

Figure 5-17. Showing two different perspectives of the same image

Figure 5-18. One of the two perspectives has been changed by 15 degrees.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

122

Summary
Now you should have plenty of spicy flavors to add to your Flash soup: in this chapter we
showed you how you can blend two or more objects in a number of different ways and
apply filters to get special effects. Then we demonstrated how to add another perspective,
literally, with 3D so you can make things look more like they do in the real world and less
like a flat painting.

In this chapter, we covered the following topics:

Blends

Filters

3D transformations

PART TWO

ANIMATION

CHAPTER 6

BASIC ANIMATION IN FLASH

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

126

In this chapter we’ll consider the following questions:

When is animation appropriate?

What can be animated in Flash?

What specific properties of an object can be changed over time?

What are some of the limitations of various types of symbols during animation
in Flash?

“Where” does animation happen in Flash?

 How do you control the animation by fine-tuning the tween?

We also want to talk a little about why animation is important. We’ll discuss ways to
engage users in an experience. We’d also like to explain the role of animation in the
presentation of information and how it relates to the importance of Flash as an applica-
tion platform.

Animating to convey information
It can be asserted that basic animation is at the core of why the Rich Internet Application
has taken hold of late. On the one hand, other web technologies have static page after
page of lists and lists of information. Yes, sortable, filterable, savable: all very necessary
functions for dealing with information. On the other hand you have Flash, now with its
powerful programming language and data connectivity, that can take information and
do all of that sorting, filtering, and saving as well as present it in a form with which
human beings can easily identify. Check out to see what we mean.

Human beings respond to cues about dynamic relationships between things in space and
apply meaning to them. We can use animation in the presentation of information sys-
tems to help users keep track of where they are within that information, how the infor-
mation relates to itself and the other elements, or what types of information appear in
the interface.

We can also use animation to help users keep track of where they are within the struc-
ture of our web sites and presentations as well. You’ll even find this type of animation
used on the desktop, as evidenced by the “genie” effect on the Mac and minimize ani-
mation on PCs. These effects tell users “Here I am! You didn’t close me all the way, and
if you need me, just click down here where you saw me move to, and I’ll just pop right
back up.”

Finally, we can suppose that the reasons that moving pictures were invented and trans-
lated to computers are the same. It’s a natural thing for us to want all of what we inter-
act with in the virtual world to emulate the things we interact with in the real world.

BASIC ANIMATION IN FLASH

127

6

Animation for impact and emotion
Other obvious uses of animation are impact and emotion, as devices for driving your point
home or telling a story. Combined with sound, motion is a powerful tool for creating an
“experience,” an event that people will remember and then associate with a feeling. This is
important because this feeling, as advertisers well know, is the key to selling—not just
products, but also ideas and concepts. People’s decisions are generally either supported by
emotion or dictated by it, in spite of the facts.

The disciplines of animation
A distinction should be made between types of animation, and we don’t mean from a
technology point of view, but from a craft point of view. Here are some common types of
animations:

Interface animation

Character animation

 Game-play animation

Motion graphics for video

They’re all different. Any of these disciplines of animation could be (and have been) a
book unto themselves, so keep in mind that what we’re talking about here is the Flash CS4
tool and how it applies to animation and not necessarily the craft of animation itself.

Now that we have given you some ideas about how you can use animation effectively, let’s
have a look at the nuts and bolts of animation in Flash.

Understanding animation in Flash
Some major changes have occurred to the way animation happens in Flash with CS4, so
even if you’re a seasoned Flash professional, you may want to become acquainted with the
new approach.

Motion tweening vs. frame-by-frame animation

TweensTT are mathematical interpolations of the change in a symbol (such as a movie clip
instance) over time. You tell Flash what that movie clip instance looks like on frame 1 (a
keyframe). Then you tell Flash what that movie clip instance is supposed to look like on
frame 10 (another keyframe). Finally, Flash tells you what it thinks the movie clip instance
should like on frames 2 through 9.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

128

We’ll discuss the following types of tweens:

 Shape tweens

Motion tweens

Classic tweens

The benefit of tweening has always been, and largely remains, a reduction in the file size
of your animation and an increase in speed of development. For the most part this works
great. It’s fast and easy and gets the job done; but keep in mind that what is lost is com-
plete control over the “in-betweens”—the frames between keyframes. While you can add
keyframes where you need them to tweak your animations, this quickly adds file size to
your Flash movie and just as quickly renders your animation unmaintainable. There are
times when complete control over the in-betweens is of paramount importance—in char-
acter animation, for instance.

A tween changes the properties of a single object: where it is, how big it is, its
rotation, its color, and its transparency (alpha). Frame-by-fame animation
creates many discrete shapes or objects.

The shape tween

Shape tweening is useful for applying a smooth morphing effect to shapes or other draw-
ing objects in your design that don’t warrant the creation of a symbol. You cannot apply a
shape tween to a symbol or group. You can only do so to drawing objects or shapes.
Figure 6-1 shows a shape tween on the timeline.

Figure 6-1. A shape tween

We should also point out that drawing objects and shapes cannot be motion
tweened.

Introducing the new motion tween

The motion tween has been an invaluable tool for the Flash designer and developer alike.
This version of Flash brings a significant change to how the motion tween is approached
in the authoring environment. Figure 6-2 shows the new motion tween as it appears on
the timeline.

www.allitebooks.com

http://www.allitebooks.org

BASIC ANIMATION IN FLASH

129

6

Figure 6-2. The new motion tween

Since ActionScript 2.0, the developer has been able to create tweens using code and
therefore use and reuse that code, applying it to different objects at will, even changing
the properties of that tween dynamically. This version of Flash applies that paradigm to the
stage and timeline. You can now give your motion tweens instance names, because that’s
what they are—instances of a tween object. You can then access those motion tweens via
ActionScript just like any other named instance on the stage.

Many character animators rely on the motion tween as a way to encapsulate their anima-
tion. Because their characters are actually complex collections of other movie clips or
graphics symbols, it allows them to animate each element separately without affecting the
other. For instance, an animator could change the speed at which his or her character
moves from left to right across the stage while leaving the animation of the legs (a sepa-
rate clip nested within the character clip) alone. You cannot do this using drawing objects
or shapes, which utilize the shape tween.

Classic tween

If you would rather continue on motion tweening the way Flash has done so well for so
many years, you are free to do so with the classic tween, shown here in Figure 6-3. Creating
these classic motion tweens has not changed from previous versions of Flash.

Figure 6-3. The classic tween

Now that you have an idea of the different types of tweens, let’s get to the business of
making one in real life.

Creating a motion tween—a step-by-step
primer

This demonstration might seem elementary to you, but we want to take some time to
really dig into the root of animating in Flash. For the moment, let’s forget that we can use
shape tweens and that we can continue to tween discrete instances of objects on the time-
line by using what are now called classic tweens.

Right now we want to focus on the new approach to tweening in Flash CS4, and that
is motion tweening (object-based tweening). Don’t confuse this to mean tweening of

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

130

objects—what we are talking about here is the tween as an object of its very own with t
many malleable parts. We will come back to the shape tween and classic tween methods
of creating motion in Flash, but for now we want you to brave this strange new idea, step
by step:

1. Create a new Flash file with one layer, no frames, and your document frame rate
set to 24 fps.

2. Create a symbol on the stage.

3. Right-click your symbol and select Create Motion Tween from the context menu.

4. Move the playhead to another frame.

5. Move your symbol.

You made some basic motion in Flash. Notice that your layer has been converted to a
tween layer and it now has 24 frames (see Figure 6-4). A tween layer is like a guide layer r
and a layer with a classic tween on it all rolled into one, and it is cool. Play your timeline or
test the movie (Ctrl+Enter or Cmd+Return on a Mac) to see your motion, well, in motion.

Figure 6-4. The tween layer is like a guide layer and a
layer with a classic tween combined.

Flash CS4 has a few rules about this type of tweening, but it does an excellent job of help-
ing you out. If you are trying to create a tween on a shape or drawing object, Flash displays
the dialog shown in Figure 6-5 and offers to convert your shape into a symbol. If you have
multiple symbols selected or a mix of symbols and shapes, you will get the same dialog.

Figure 6-5. Convert selection to symbol for tween dialog

Flash CS4 does a few cool things for you at this point. If you have no frames on the layer
that your symbol of interest is on, Flash will create 1 second’s worth of frames from the
keyframe where your symbol instance is. If you select a symbol instance on a layer that has
other objects on it as shown in Figure 6-6, Flash will create a tween layer for you. Flash will
then move your symbol to the new tween layer it created, as shown in Figure 6-7. Pretty
sweet!

BASIC ANIMATION IN FLASH

131

6

Figure 6-6. Two symbols on one layerTT

Figure 6-7. The motion layer created by Flash with the nontweened symbol remaining on its layer

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

132

To change the properties of your tween, TT simply select any point on the timeline on your
tween layer between the first keyframe and the last frame of the tween, and then use the
Property inspector to make changes. Next we’ll look at the many ways to modify your new
motion tween.

Modifying a motion tween
So you may be less than impressed with your moving box (or circle, or whatever you made),
but fear not, there’s more. Notice on stage that there is a line with diamonds on the ends
and small pluses (they may look like dots) distributed over the line. This is the motion
path, or the path that your symbol takes over time, and it’s illustrated in Figure 6-8. The
diamonds are the endpoints, which are keyframes in the animation, not of the timeline, and
the other dots represent each frame that your motion tween occupies on the timeline.

Figure 6-8. New animation keyframes are added to the tween span in the timeline as well as the
motion path.

Moving the playhead and then changing your symbol’s position will create a new tween
keyframe on the timeline and add a diamond to the motion path shown in Figure 6-7. Once
you do this, that value for your symbol’s position persists to the end of the motion tween.

On the timeline, keyframes are represented by circles. Animation or tween keyframes are
represented by diamonds.

BASIC ANIMATION IN FLASH

133

6

Moving a motion path

Occasionally you may want to move the location of your tween. Everything about it could
be perfect aside from where it is on stage. No problem! With the Selection tool, you select
all of it and just move it. Or just grab a segment and change the curve or change the posi-
tion of the line segment joint or endpoint. Figure 6-9 shows the entire motion path while
being moved.

Figure 6-9.
Moving the entire motion path

Changing the curve of a motion path

With the Selection tool active, hover over the motion path until you see the curve indicatorr
as shown in Figure 6-10 and modify the motion path as you would a line. With the Subselection
tool, select the motion path and modify the motion path using handles or endpoints.

Figure 6-10.
The small curve next to the cursor
indicates what will happen when you
drag the motion path. As you drag, the
original path and future path are drawn.

To rotate, scale, or skew the motion pathTT

With the Transform tool active, select the motion path. Transform it as you would any other
shape. Figures 6-11 through 6-13 show the rotate, scale, and skew of a motion guide.

Figure 6-11.
Rotating a motion guide

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

134

Figure 6-12.
Scaling a motion guide

Figure 6-13.
Skewing a motion guide

As you can see, the motion path gives us the same creative control over the path of our
symbols that the guide layer does when applied to a symbol in the classic tween, without
the extra overhead of another layer in our timeline.

There are quite a few ways to tweak your tween right on stage. Now let’s look at how you
can change the speed of your tween over time using easing.

Understanding easing
Easing is how your animation is distributed over time. In plain language, when you ease in
to an animation, you sort of take it easy to begin with, start off slow, and make up for it at
the end of the animation. Most of your time is spent at the beginning of your tween.
Easing out is the opposite. You start quickly and then change less and less as your anima-
tion slowly winds to a close. Most of your time is spent at the end of your tween.

Easing in and easing out are the very basic of eases. All of the complex types are combi-
nations of these two, and we’ll look briefly at them when we explore the Motion Editor
later in this chapter. For the most part, experimentation will serve you well in under-
standing easing.

Changing the easing of your tween

To change the easing of your tween, select TT either your motion path or the tween span in
the timeline so that the motion tween properties appear in the Property inspector, as shown
in Figure 6-14. You’ll see the motion tween symbol in the Property inspector.

BASIC ANIMATION IN FLASH

135

6

Figure 6-14.
The Property inspector for the new
motion tween. The field for inputting an
instance name for your motion tween is
new in Flash CS4.

If you have worked in Flash before, you may be asking yourself, “What happened to my
easing options in the Property inspector?” The answer is that they grew up and moved
out. They’re in the Motion Editor, which we talk about in the section “Introducing the
Motion Editor” later in this chapter.

The easing value can be anywhere between -100 and 100, and you can interpret this range
as follows:

0 means your animation is distributed evenly over time.

-100 means most of your time is spent in the beginning of the tween (easing in).

100 means most of your time is spent at the end of your tween (easing out).

Play with this value and take note of how the plus marks on the motion path change,
remembering that marks on the path represent individual frames on the timeline, and
that frames on the timeline (for purposes of our discussion here) represent equal chunks
of time.

With the ease set to 0 (shown in Figure 6-14), you’ll note that the small pluses on your
motion path (indicating individual frames on the timeline) are evenly distributed. This
means time is evenly distributed, as shown in Figure 6-15.

Figure 6-15.
The motion guide with easing set to 0

With the ease set to -100 (shown in Figure 6-16), you’ll note that the small pluses on your
motion path (indicating individual frames on the timeline) are squished at the beginning.
Much time is spent at the beginning of your tween.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

136

Figure 6-16.
The motion guide with

eas g set toeasing set to 00-100

With the ease set to 100 (shown in Figure 6-17), you’ll note that the small pluses on your
motion path (indicating individual frames on the timeline) are squished at the end. Much
time is spent at the end of your tween.

Figure 6-17.
The motion guide with

easing set to easing set to 100100

This is obviously a simplification of the complex math behind easing but is meant to
explain how you might expect your tweens to behave.

To exaggerate the effect this value has on your animation, extend the duration of your tween TT
as explained next, or better yet lower your frame rate until you see what’s going on.

Changing the duration of your motion tween

To change the duration of yourTT tween, hover over the end of the tween span in the time-
line. When you see the cursor change into the horizontal double arrow (see Figure 6-18),
you may drag the end of the tween span in or out to the desired length as shown in
Figure 6-19. Keyframes that follow the tween span on that layer are moved in or out
depending on how you changed the length (duration) of your tween.

Figure 6-18.
The horizontal double-arrow cursor

Figure 6-19.
Dragging the end of a motion

tween on the timelinetween on the timeline

It’s important to note that this is a significant difference from the classic tween where
changing the duration required adding frames between the beginning and ending key-
frames of a motion or shape tween. Because the property keyframes belong to the tween
object (and not the instances of the symbol as in the classic tween), you have more control
over their behavior as you change the duration of the tween.

If you right-click the tween span, at the bottom of the context menu, you will see the three
following options for modifying your motion path:

Switch keyframes to roving

Switch keyframes to non-roving

Reverse Path

BASIC ANIMATION IN FLASH

137

6

The third option will actually reverse the property keyframes of your tween! Figure 6-20
displays these options.

Figure 6-20.
New tween
keyframe options

Roving keyframes vs. nonroving keyframes

When you change the duration of your tween, nonroving keyframes will stay put. A key-
frame that was on frame 50 will remain on frame 50. A roving keyframe will move so that
it occurs in the same relative time. For instance, a roving keyframe placed at the halfway
point of an 80-frame tween (frame 40) will move to frame 60 when that tween is length-
ened to 120 frames.

As you can see, this approach to motion tweening gives you unprecedented control over
the path and easing of your tween. This next section goes beyond the path and easing and
looks at how to make changes to the symbol that you’re tweening in the first place.

Modifying your symbol
So far we’ve been talking about ways in which you might change the path that your symbol
takes on stage over time, but you can also, and will likely want to, change some properties
of the symbol itself as well.

Changing the position of your symbol

While the position of your symbol can be modified by manipulating the motion path, you
can also simply move your symbol to the position on stage where you’d like it to be at a
given time, and Flash will modify the motion path for you.

If your motion path is a straight line and you drag your symbol to a new place on stage,
the resulting motion path will be two straight lines, as shown in Figure 6-21. If your motion
path is a curve and you drag your symbol to a new position on stage, the resulting motion
path will be a more complex curve like the one in Figure 6-22.

Figure 6-21.
A straight motion path after
changing the position of the
symbol being tweened

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

138

Figure 6-22.
A curved motion path after
making the same change of
the position of the symbol

being tweened

Alternatively, you can select your symbol on stage and use the Property inspector to change
the value of the x and y properties of your symbol.

Changing the rotation of your symbol

Things spin, so Flash gives you the ability to change the rotation of your symbol in three
easy steps:

1. Activate the Transform tool.

2. Select your symbol on the stage.

3. Rotate your symbol as shown in Figure 6-23.

A new motion keyframe will be added to your motion tween.

Figure 6-23.
Rotating a tweened symbol

Alternatively, you can select your motion tween from the timeline and use the Property
inspector to change the value of the rotation properties of your symbol.r Figure 6-24 shows
the rotation section for the Property inspector of the motion tween.

Figure 6-24.
The rotation section for the

Property inspector of the
motion tween

This is kind of an odd bird in that you are changing the rotation of a symbol, but you do
so by changing the properties of its motion tween. Your options include the following:

Rotate tells Flash how many times to rotate your symbol over the time span of your
motion tween.

 Additional degrees tell Flash how much further than the number of rotations tor
turn your symbol. If you enter 360 as the additional degrees value, Flash will change
it to 0 and add 1 to your rotate value.

BASIC ANIMATION IN FLASH

139

6

Direction choices are CW (clockwise), CCW (counterclockwise), or None. CW is
selected by default. Selecting None will reset rotation and additional degrees to
empty values.

Orient to path negates all of the other settings and rotates your symbol to follow
your motion path.

Experiment with these options. It’s fun—seriously.

Color animation

Changing color over time can be instrumental in fine-tuning animation. The subtle change
in the intensity of a shadow to indicate changes in button state or adding a hint of red to
that reflection effect can make all the difference between “things that move” and a living
interface. To animate changes in color, follow these steps:TT

1. Create a symbol on stage.

2. Right-click (Option-click) your symbol and select Create Motion Tween.

3. You should have 1 second’s worth of frames in your timeline with the playhead
positioned at the last frame.

4. Select your symbol. Notice the Property inspector. With the exception of Blending,
any of these properties can be changed over time.y

5. In the Color Effect section of the Property inspector, choose Tint from the Style drop-
down menu.

6. Select a color from the color picker. (Click the color chip next to the drop-down
menu.)

7. Notice that an animation keyframe has been added to the timeline.

Filter animation

You can also use animation to change the following filters:

Drop shadow

Blur

 Glow

Bevel

 Gradient glow

 Gradient bevel

To adjust color filters over time, simplyTT move the playhead to a desired location in time
and select the symbol you wish to affect. For example, from the Property inspector add a
drop shadow filter, as shown in Figure 6-25.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

140

Figure 6-25.
Selecting Drop Shadow from
the Filters drop-down menu

in the Property inspector

You might observe that no animation keyframe magically appears on the timeline as it
would if you had changed your symbol’s position. While your symbol has values for its
position merely by being on stage, your symbol doesn’t automatically have values for
the filter you just added. Therefore, it can’t tween from nonexistent to some other value.
So when you add a filter to your tween, Flash applies the initial values to the first frame
of the keyframe your symbol is on.

Change some values for that filter and also change the x and y values and notice the
change on stage. If you test your movie, you will see the drop shadow changing over time
on your symbol.

You can add more than one of each type of filter as your project requires. Move the time-
line and make adjustments as needed as explained in the previous sections of this chapter.

To this point you’ve been using the TT Timeline panel and Property inspector to craft your
animation—a traditional approach to animation in Flash. Next we’re going to introduce
you to the brand new Motion Editor—a completely new way to edit motion in Flash.

BASIC ANIMATION IN FLASH

141

6

Introducing the Motion Editor
The Motion Editor is brand new in Flash CS4, and it provides you with an expanded inter-
face for changing symbol properties over time independently. The Motion Editor is broken
into five main sections, shown here in Figure 6-26.

Figure 6-26. The layer information half of the Motion Editor with
all sections collapsed

You’ll notice that each of the five sections addresses the properties that can be changed
over time. You should be familiar with them because you’ve seen them earlier in this chap-
ter. Top to bottom they are as follows:TT

Basic Motion: Holds controls for changing values of the x, y, and z properties of the
object being animated as shown in Figure 6-27.

Transformation: Manages controls for changing skew and scale values for the object
being animated, shown here in Figure 6-28.

Color Effect: Manages controls for alpha, brightness, tint, and advanced transforma-
tion values for the object being animated. (Advanced transformation gives you
independent control over RGB, RGB offset, and alpha offset values.)

Filters: Manages controls for drop shadow, blur, glow, bevel, gradient glow, gradient
bevel, and adjust color and each of their properties.

Eases: Represents a bit of a special case, as indicated visually by the darker, heavier
line that separates it from the other sections of the Motion Editor as shown at the
top of Figure 6-29. It manages the various types of eases you can apply to all of
the other sections of the editor.

Figure 6-27. The Basic Motion section of the Motion Editor.
Here, the y property layer is active as indicated by the darker
gray color.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

142

Figure 6-28. The Transformation section of the Motion Editor

Figure 6-29. The Eases section of the Motion Editor shown
with the default ease—Simple (Slow)

Each of these sections is distinguished in a manner consistent with the Property inspector
and other panels of the interface. Main sections have a slightly darker gray and an arrow
to the left for collapsing and expanding that section.

You may notice that Basic Motion, Transformation, and Eases have subsections by default
and that the Color Effect and Filters sections do not, but the latter two do have a feature
not on the other three—the plus and minus buttons for adding and removing sections of
their own, which we cover shortly.

Understanding the Motion Editor

We’ll discuss the sections of the Motion Editor in detail in a moment, but we wanted to
point something out if you have not already noticed it. Not only can you control each of
these areas independently, you can control every property of each of these independently, y
all from a single editor. Without the Motion Editor, you would have to create and make
changes to a new instance of an object on the timeline every time you wanted to change y
any of the properties, which as you can imagine gets out of hand rather quickly.y

If you don’t get how extremely cool this is right now, don’t worry about it. By the end of
this chapter, you will be wondering how you got along without the Motion Editor.

This approach is similar to that of many video editing systems, such as Adobe After
Effects and, from what we hear, the (now defunct) Adobe Live Motion. It is also the next
logical step in the custom ease editor interface from Flash CS3.

BASIC ANIMATION IN FLASH

143

6

In order to actually use the Motion Editor, you must have created a motion tween using
the new method of object tweening detailed earlier in this chapter in the section “Creating
a motion tween—a step-by-step primer.” Once you have created a tween, you can switch
to the Motion Editor view, as shown here in Figure 6-30.

Figure 6-30. The Motion Editor

You must have only one tween selected from the timeline or only one object on stage that
is being tweened in order to edit a tween with the Motion Editor. Think of it as an auxiliary
Property inspector on steroids just for animation.

The Motion Editor interface

Being a type of extension of the timeline, the Motion Editor is laid out in much the same
way, with a section on the left for the property layers and a grid on the right showing the
property curves over time. You can use both the controls found in the property layers and
the property curves to interact with the values of properties.

Under the Ease column of the Motion Editor you will notice a check box (checked by
default) and a drop-down menu with the default value No Ease on every property layer.
These controls on the section headers serve as master controls for all of the property lay-
ers that fall under that section. The check box enables and disables easing for every

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

144

property or effect within that section. The drop-down will change the method of easing
for all properties within that section at the same time.

The Color Effect and Filters section headers will not have these controls. These override
controls will appear on the header of the color effect or filter added to their section of
the Motion Editor and will manage all of the individual properties of that color effect
or filter.

To the right of the TT Ease drop-down you’ll notice an arrow turning back on itself. Clicking
this button will reset all the values of the property layers below it.

The property layers
If you expand the Basic Motion section, you will see three property layers below in a lighter
gray: one each for x, y, and rotation z values, as shown in Figure 6-31. Clicking one of these
property layers will both expand that property layer’s height and make it a darker gray,
indicating that it is the active portion of the Motion Editor. Clicking the property layer
again will minimize that layer, but it will remain selected.

The headers along the top of the Motion Editor indicate the following:

Property: The name of the property. This cannot be changed.

Value: The value of the property. This can be changed either via the numeric hot
text or property curve on the graph.

Ease: Easing controls, as described in the previous section (enable/disable check
box, easing type drop-down).

Keyframe: Previous Keyframe, Add Keyframe, and Next Keyframe buttons. Use these
buttons to jump to the next or previous keyframe on the layer or to add a new
keyframe where the playhead is when clicked.

Graph: The property curves, visual representations of the changes in value over
time of any given property.

Figure 6-31. The Basic Motion section and its property layers

BASIC ANIMATION IN FLASH

145

6

The Eases section
We’re going to talk about this section of the property layers first, even though it appears
at the bottom of the Motion Editor, because it acts as a tool that lets you determine what
eases are made available to the rest of the property layers.

This may be one of the coolest parts of the Motion Editor. Now, you can apply different
easing to various properties of your tween. You can apply a bounce ease to your color
effect while applying a fast ease in to your rotation while adding a custom ease to your
motion blur. How sweet is that?!

Here’s how it works. The Eases section of the Motion Editor shows you which eases are
available for the tween you are editing. By default only Simple (Slow) is available, shown
expanded in Figure 6-32.

Figure 6-32. The default Eases section of the Motion Editor with Simple (Slow) expanded

To make eases available to TT your motion edit, click the plus icon in the Eases header and
select from the drop-down as shown in Figure 6-33. (We’ll choose Custom.)

Figure 6-33.
All of the prebuilt
eases in the Motion
Editor and a custom
ease for you to make
your own eases with

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

146

You’ll notice in Figure 6-34 that the custom ease layer is the only one with keyframe
controls—this is because it is the only type of ease that is editable. Don’t worry, though,
you can make as many as you want.

Figure 6-34.
The custom ease has

keyframe controls. None
of the premade eases do.

You’ll notice in Figure 6-35 that any ease added to the Eases section of the Motion Editor
will be available to you in the drop-down Ease selector of the other sections of the editor.

Figure 6-35.
All of the eases added to

the Eases section are
available for use on the

properties of your tween.

Making custom eases in the Motion Editor
Even though Flash CS4 comes with a healthy number of eases, we can never tweak anima-
tion enough—so we have the custom ease. Follow these steps to create and edit a custom
ease:

1. Add a custom ease to the Motion Editor by clicking the plus icon on the Eases sec-
tion header.

2. Add a keyframe to the value line on the graph. Right-click the point of the line
where you want a new keyframe (shown in Figure 6-36). As an alternative, move
the playhead to that point and click the Add Keyframe button located at the right
side of the layer information portion of the Motion Editor.

3. Select the handles that appear when you click the line and edit your line as a
Bezier curve (see Figure 6-37). You can also click and drag any keyframe to modify
your curve.

BASIC ANIMATION IN FLASH

147

6

Figure 6-36. Adding a keyframe to a custom curve

Figure 6-37. Handles on the Bezier curve of the custom ease

The graph
The graph shown in Figure 6-38 should look a little familiar to you now. With the playhead
and frame numbers across the top, it should resemble the timeline, and for good reason.
Figure 6-38 shows frames 15 through 23, with the playhead on frame 23.

Figure 6-38. The graph appears on the right-hand side of the Motion Editor and shows the change in values of properties
over time.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

148

As you make changes to the properties of a symbol over time, those changes will be rep-
resented on the graph as a line. If there is only one keyframe for that property, the line will
be dotted. If there is more than one keyframe for that property, the line will be solid. All
properties have by default one keyframe where its symbol is instantiated on the stage.

You can change values of properties in one of the following ways by interfacing with the
graph:

Add keyframes: Adding keyframes creates discrete points in time where values
can be changed.

Move keyframes: Moving a keyframe horizontally changes when a property’s
value changes. Moving a keyframe vertically changes the value of a given property
at that time.

Move graph lines: Moving a graph line horizontally will change the time at which
the keyframes at either end occur by the same amount. Moving it vertically changes
the value of the keyframes at either end by the same amount.

If you happen to drag a keyframe vertically out of visual range of the property layer, the
graph for that portion of the layer will begin to scroll. You’ll notice the numbers on the left
of the graph begin to change with it, indicating the value range of the current view of the
property layer’s graph.

When you release that keyframe, the property layer will immediately adjust to include the
entire range of values in the visible timeline. For instance, if the x values of an object range
from 0 to 50, the property layer will indicate this with horizontal lines on the graph labeled
0 and 50. If, however the range is from 0 to 2300, the property layer would reflect this with
horizontal lines on the graph labeled 0, 500, 1000, 1500, and 2000. In both cases, the prop-
erty layer will take up the same vertical real estate in the Flash interface.

Figure 6-39 shows the value line of the x property being tweened from 0 to 2500 over a
period of five frames.

Because the property layer updates immediately, this process may take some getting used
to. A better way of making large changes in values is through the numeric hot text on the
layer information side of the Motion Editor.

Figure 6-39. The horizontal lines that make up the graph are labeled with the range of values for that property.

BASIC ANIMATION IN FLASH

149

6

To create a new keyframe on the fly, simply move the playhead where you want a change TT
to occur and then change the property’s value using the numeric hot text. A new keyframe
will be created for you.

Adding a color effect

To add a color effect to your tween by TT way of the Motion Editor, click the plus icon of the
Color Effect section. This presents the drop-down shown in Figure 6-40. You can choose to
add an alpha, brightness, tint, or advanced color effect to the tween.

Figure 6-40. Adding a color effect to the Motion Editor

Just as with adding these effects from the Property inspector, you can have only one per
motion tween. If you have one selected and change to another type, the first is replaced.

To remove the effect, click the TT minus icon (shown in Figure 6-41) from the Color Effect
section header and select your effect from the drop-down. (There will be only one to
choose from.)

Figure 6-41. Removing the color effect in the Motion Editor

Adding filters to your tween

To add a filter to your tween by way of the TT Motion Editor, click the plus icon of the Filters
section. This presents the drop-down menu shown in Figure 6-42. You can choose to add
a drop shadow, blur, glow, bevel, gradient glow, gradient bevel, or adjust color filter to
the tween.

Figure 6-42. Adding a filter to the Motion Editor

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

150

Just as with adding these filters from the Property inspector, you can have many on one
motion tween (even multiple filters of the same type). Filters are stacked on one another
under the Filters section header, and each has its own easing master controls as do the
Basic Motion and Transformation sections and operate as described previously.

As you add filters you’ll notice that each one can be expanded to reveal property layers of
its own. Each section changes to reflect the available properties of the filter you have added.
Figure 6-43 shows what the properties of the glow filter look like in the Motion Editor.

Figure 6-43.
The expanded view of

the glow filter shows all
of the properties that

can be edited in the
Motion Editor.

You can use all of the tools and methods described earlier to modify the properties of the
filters you have added to the tween. To remove a filter, click the TT minus icon from the Filters
section header and select the filter you wish to remove from the drop-down. Choose
Remove All to remove all filters at once as shown in Figure 6-44.

Figure 6-44.
Removing all

filters at once

BASIC ANIMATION IN FLASH

151

6

Something to keep in mind

The Motion Editor is a very powerful interface enhancement that provides new control
over all of the properties of your tween from a single interface. Just keep in mind that all
of the properties accessible through the Motion Editor are the very same properties that
you may already be used to accessing through the Property inspector.

The Motion Editor is a convenient and powerful way to modify many properties quickly
and with real-time feedback—but none of the properties themselves are new to Flash.

Now that you know about the many ways of creating and modifying motion in Flash, let’s
talk about making it easy get the most from your hard work by reusing it.

Reusing animation
Duplicating motion in CS4 is a pretty straightforward operation, and you have the follow-
ing methods to choose from:

Duplicating a tween from the timeline

 Saving animation as ActionScript

 Saving animation as XML

 Using motion presets

The rest of this chapter is dedicated to explaining these ways of reusing animation.

Duplicating a tween from the timeline quickly

In many cases you may want to repeat an animation but not necessarily need or want to
nest it in its own timeline. Here’s how to quickly repeat a tween from the timeline:

1. Select a tween.

2. Right-click (or Ctrl-click on a Mac) and select Copy Frames (see Figure 6-45).

Figure 6-45.
The context menu of
the motion tween

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

152

3. Select a frame on the timeline and right-click (Option-click on a Mac).

4. Select Paste Frames.

Voilà! A copy of your tween (see Figure 6-46).

You can now drag this tween around the timeline at will when selected, as shown in
Figure 6-47. Your tween will also stay on your clipboard until you replace it with some-
thing else.

Pasting a motion tween on top of already populated frames will delete the content from
those frames.

Saving animation as ActionScript

To save your motion as TT ActionScript, right-click a tween span on the timeline and select
Copy Motion as ActionScript from the menu. Now that it’s on your clipboard, you can paste
the ActionScript version of your motion into the editor of your choice—it’s just text at this
point. You could even e-mail it to a friend or post it on your blog. Of course, the real
power here is having Flash write the complex code for your animation and then using that
code over and over as you see fit without having to reanimate it every time.

Saving animation as XML

To save your motion as XMTT L, select a tween span on the timeline. From the Commands
menu select Copy Motion as XML. Now that it’s on your clipboard, you can paste the XML
version of your motion into the editor of your choice—again, it’s just text at this point, and
the real advantage to doing this is the reusability and portability.

Explaining the XML generated by this process falls outside the scope of this chapter. See
Chapter 12 for more on using XML with Flash.

Figure 6-46. Pasting frames at the playhead position

Figure 6-47. Dragging a motion tween on the timeline

BASIC ANIMATION IN FLASH

153

6

Using motion presets

Motion presets are animations stored as XML files on your computer. The motion presets
in Flash CS4 are a set of commonly requested animations put in one convenient place.
Your operating system user name and installation drive name will dictate exactly where the
motion presets are stored. Browse to the following location in your file system to find
these files. (User installation and user name values are substituted with <harddisk> and
<user>, respectively.)

Windows:

Mac:

Applying motion presets
Follow these steps to apply motion presets to a symbol:

1. Open the Motion Presets panel if it is not already open by selecting Motion Presets
from the window menu.

2. Select the symbol instance on stage you wish to apply motion to or drag one from
your library if one is not already on stage. You must have something selected on
stage in order to apply animation to it.

3. With a symbol instance selected, choose the motion preset you wish to apply, and
then click Apply.

4. If you want to apply a different animation to that symbol, simply select that symbol
or the tween span in the timeline, select a new preset from the Motion Presets
panel, and click Apply. The new preset will be applied to your symbol, replacing the
old motion.

Motion presets are a specific length. If you apply a 10-frame preset and overwrite a 20-frame
motion, the new motion will be 10 frames and everything on the layer that followed it will
shift 10 frames earlier, since 10 frames will have been removed from that layer.

Saving your animation as a custom preset
To save your motion tween as a custom preset, TT right-click your motion tween in the time-
line and select Save as Motion Preset from the menu as shown in Figure 6-48.

Figure 6-48. You can save motion presets right from the timeline.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

154

You will be prompted with a dialog (see Figure 6-49) asking you to name your new preset.
Enter the name of your new preset and click OK to save orK Cancel to stop the process.

Figure 6-49.
The Save Preset As dialog

To verify your animation has been saved, look in the TT Motion Presets panel under Custom
Presets as in Figure 6-50.

Figure 6-50.
Your custom motion

saved as a preset in the
Motion Presets panel

Managing motion presets
You can manage motion presets much in the same way you manage your symbol library.
The Motion Presets panel comes with two folders, and ,
that cannot be renamed or deleted. However, you can create your own folder hierarchy
under the folder, which might come in handy if you have some signature
animations you want to keep separated, or perhaps different clients have specific anima-
tions that they use and reuse. Figure 6-51 shows a sample custom preset folder hierarchy.

Figure 6-51.
A sample custom

preset folder hierarchy

When you save your motion as a preset, it gets placed in the folder. You
can then drag it into any folder or subfolder you have made under the
folder. You cannot drag custom presets into the folder.

BASIC ANIMATION IN FLASH

155

6

One nice feature is the search function. Below the motion preview and above the preset
folders is a search field marked by a binoculars icon, as shown in Figure 6-52. Enter text to
search on, and the presets list gets filtered as you type.

Figure 6-52.
Searching motion presets

To clear your search and restore the list, click the TT X at the right of the search field.

At the time of this writing, if you choose to consolidate animations in a subfolder but
don’t include the subfolder name as part of the preset names themselves, searching on
that name will only show you the folder and none of the presets within it.

Converting motion presets to frame-by-frame animations
You can use the motion tweens as starting points and then convert them to frame-by-
frame animations to customize if you choose to. After applying a preset, just right-click
your motion tween on the timeline and select Convert to Frame by Frame Animation from
the menu shown in Figure 6-53. This will change every frame of your motion tween to a
discrete instance of your symbol as well as change the layer to a normal layer as shown in
Figure 6-54.

Figure 6-53. Converting a motion tween to a frame-by-frame animation

Figure 6-54.
The motion tween after conversion
to frame-by-frame animation

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

156

Exporting and importing motion presets
Since motion presets are stored as XML files on your system, they are easily shared among
the people you work with and other developers and animators in the community.

Here’s how to export a motion preset:

1. Choose the preset in the Motion Presets panel that you want to export.

2. Select Export from the panel menu located in the upper-right corner of the panel or
right-click a preset to bring up the menu shown in Figure 6-55, and select Export.

Figure 6-55.
Context menu for a

motion preset

3. In the Save As dialog box (see Figure 6-56), pick a name and location for the XML
file and click Save.

Figure 6-56. Choosing a file name and location for your exported file

BASIC ANIMATION IN FLASH

157

6

Follow these steps to import a motion preset:

1. Select Import from the panel menu located in the upper-right corner of the Motion
Presets panel, as shown in Figure 6-57.

2. Browse to the preset file, select it, and click Open. The preset will appear in the
Motion Presets panel under the Custom Presets folder as shown in Figure 6-58.

Figure 6-58.
A newly imported preset in
the Motion Presets panel

It’s important to note that the XML schema used for motion presets is different from the
XML generated using the steps under “Saving animation as XML.” For that reason, XML
generated by using the Copy Motion as XML command will not be able to be imported L
as a motion preset.

Summary
In this chapter we talked about why animation is important. We discussed when it might
be appropriate to use animation in your project. You learned the following:

Basic animation with the new motion tween

How the classic motion and shape tweens work

How to use the new Motion Editor

 How to use, create, and share motion presets

Figure 6-57.
Choosing to import a file

CHAPTER 7

PLAYING WITH DOLLS:
INTRODUCING FLASH IK

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

160

One of the most highly anticipated features to be included with Flash CS4 is the addition
of inverse kinematics (IK) for aiding animation. Inverse kinematics is something that has
been eagerly awaited and widely considered long overdue for Flash designers. Up to now
it was something only achievable in Flash using advanced ActionScript. IK tools are staples
in many other 3D and animation programs used in professional multimedia development.
Typically, TT IK systems are used to animate complex anatomies such as those of humans,
animals, and machinery. Fortunately, the developers of Flash have answered the cries of
the many animators out there and added a set of tools for governing kinematics with great
ease. And the benefits of this technology can now be harnessed in the Flash design
environment.

In this chapter we will explore how this new functionality benefits Flash designers. You will
be introduced the Bone and Bind tools, which are the two primary tools used to create IK
systems. We will then use these tools to apply IK systems to symbols and shapes.

What is kinematics?
Kinematics is the area of mechanics associated with the motion of objects, without con-
sideration for that object’s own mass or the external forces acting on that object. Wow,
seems intimidating—but don’t worry, it is not. In everyday language, kinematics simply
describes how objects move.

Inverse kinematics

Though there are several types of kinematics, as far as Flash designers are concerned, we
only need to concern ourselves with inverse kinematics. As mentioned previously, kine-
matics primarily focuses on the motion of objects. Inverse kinematics is a type of kinemat-
ics that explains the motion of specific systems. A system is essentially a group of
connected parts (like a skeleton, hence the bone analogy). And, kinematics is responsible
for governing how those parts move in relation to one another.

For example, an arm, along with the hand and shoulder, is a system comprised of three
primary segments (hand, forearm, humerus) and three primary joints (wrist, elbow, shoul-
der). The movement of one of these parts affects the position of the others. It is also
important to point out that these systems also must have a base, or fixed end, like a shoul-
der is fixed to the torso. And, they must have a free end, like a hand.

Inverse kinematics is then specifically responsible for explaining how these systems move
when a change is applied to the free end. Think of this like a paper doll, marionette, or
even an action figure to some extent. When the free end of an appendage is moved or
positioned, the rest of the system needs to move as well, like pulling on a chain.

It is through these principles of IK that Flash designers are granted a greater degree of
control when working with complex systems. Once applied, the IK functionality in Flash
makes animating these complex structures as simple as positioning a paper doll.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

161

7

An arm or a leg: Experimenting with IK

Now that you are an expert in the concept of IK, it’s time to put that knowledge to good
use. First, we are going to take a look at building a basic, three-segment IK structure. Here
we will discuss the ins, outs, and subtleties of using this tool set. This example will also get
you ready to animate a more complicated humanoid system later in this chapter.

Getting started with the arm
You can start off by opening found in the folder of the
book’s source file samples. You will notice a single black rectangle on the stage. This rect-
angle is a movie clip symbol that we have created for you to use in this example. It repre-
sents one of the three segments that we will need to create our three-part IK system. What
you are going to need to do here is create two additional segments.

As shown in Figure 7-1, the best way to achieve this is to simply use the original segment
and clone or duplicate it across the stage. The easiest way of doing this is to hold down the
Alt key (Option key on a Mac) and select the original segment. While still holding the
down the left mouse button, you can then drag the new segment out on the stage. Go
ahead and repeat this to create all three segments.

Figure 7-1. Three movie clips prior to IK rigging

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

162

Now that we have all three segments on the stage, we can simply link them together using
the new Flash IK Bone tool.

The anatomy of a bone
For those of you who have never done any animation before, we cannot begin to explain
the amount of time the Flash IK Bone tool is going to save you now that it is available. In
addition to being a time saver, it also offers a cleaner and more organized approach to the
way animations are produced.

The IK bone, as illustrated in Figure 7-2, is comprised of these three primary components,
which are listed in the order of their creation:

Parent joint: The parent joint is the circle located near the larger end of the
triangle.

Bone: The bone is the triangular shape that connects the two joints.

Child joint: Subsequently, the child joint is the circle located at the smaller end of
the triangle.

Figure 7-2. IK bones are comprised of three main parts: a
parent joint, a bone, and a child joint.

Adding bones to the arm
Now, let’s take a crack at adding IK bones to the segment created earlier in this section. To TT
add bones, follow these steps:

1. Select the Bone tool, shown in Figure 7-3, from the Flash Tools panel.

Figure 7-3.
The Bone tool is used to add IK

bones to symbols and vector shapes.

2. Using Figure 7-4 as a reference, move the cursor to the center of the leftmost edge
of the left segment.

Figure 7-4. Bones can be applied by dragging the Bone tool from one
symbol to another.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

163

7

3. Press and hold the left mouse button to begin drawing the first bone of your IK
system.

4. With the left mouse button still held down, move the cursor to the center of the
leftmost side of your second segment and release the mouse button. You should
now see your first bone connecting the first two segments of your system.

By repeating the process and dragging out a second bone between the second and third
segments, you will successfully link all three of these segments into one structured IK sys-
tem. Once you have completed the linking of the three segments, try selecting each of
them with the Selection tool and moving them around the stage. You should notice that all
elements in the system move with respect to one another depending on which segment
you try to move.

You should also take particular notice of the fact that after completing the process of rig-
ging an IK system, all symbols used in that system will be moved to one new layer as shown
in Figure 7-5. This new layer—denoted by a running character in the Layers panel—is
referred to as an armature.

Figure 7-5.
IK structures are grouped together into
an armature and moved to a new layer.

The term “armature” is classically used in sculpture to refer to a wireframe pose around
which clay is applied to produce a sculpture. You will later see that keyframes used in IK
animations are also referred to as poses. Hence the reason behind this brilliantly used
metaphor.

Controlling the motion of specific bones
You have just seen how quickly and efficiently you can create a simple three-segment sys-
tem using the new Flash IK tools. And though it may not be something worthy of hanging
on the refrigerator, it certainly is your first step toward animation mastery. Before we get
into the heavy lifting, there is one more thing we would like to show you with regards to
the specific nature of individual IK bones.

Like most other elements in the Flash development environment, individual IK bones are
able to have specific parameters applied to them through the use of the Property inspector.
This functionality becomes incredibly advantageous when a designer begins to develop
more sophisticated systems—like humanoids or octopods. In order to access this function-
ality, you will need to select a specific bone within your armature. When the bone is
selected, it will turn a color that is complementary to the color of the entire system.

In this instance, the term “complementary” is used as it would be in color theory.
Essentially, this means that a selected bone will become the opposite color of the rest of
the bones in a system. For example, if the system is orange, the selected bone will be
blue. Likewise, if the system is cyan, the selected bone will be red.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

164

Upon selecting a specific bone, the Property inspector will change to reflect the specific
parameters of that particular bone. It is important to understand that the parameters
applied to a specific bone in the Property inspector directly influence that bone’s parent
joint. As noted earlier, the parent joint is the circular part of the bone located next to the
larger end of the bone’s triangular shape. Therefore, if we adjust the rotation of a bone, it
will control how the bone rotates around its parent joint.

As shown in Figure 7-6, four types of parameters can be applied to a bone through the
Property inspector once it has been selected:

Joint location: Though the Location section gives specific information relative to
the position of the selected bone, you are unable to change the position from the
Property Inspector. What can be changed here is the Speed parameter. The speed at
which a bone can move will give the bone the illusion of weight in an animation.

Joint rotation: The set of parameters under Joint: Rotation allows you to control
the rotation of a bone around its parent joint. You have the ability to enable, dis-
able, and constrain or limit the range of motion.

Joint x translation: The set of parameters under Joint: X Translation allows you to
control a parent joint’s motion along the x axis, which is horizontal or left-to-right
motion.

Joint y translation: The set of parameters under Joint: Y Translation allows you to
control a parent joint’s motion along the y axis, which is vertical or top-to-bottom
motion.

Figure 7-6. A selected bone and the subsequent Property inspector parameters

Let’s apply constraints to some specific bones.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

165

7

Applying constraints to specific bones
For starters, go ahead and select the first bone in your system from .
Remember, when a bone is selected, it will highlight with a color complementary to the
rest of the bones in that system. Now pay close attention to the parent joint. You may have
noticed a thin circle that surrounds it. This circle, as shown in Figure 7-7, indicates that
joint rotation has been applied to this particular joint.

Figure 7-7.
The constraint indicator is
used to show which contraints
have been applied to a bone.

Let’s go ahead and remove this joint’s ability to rotate.

1. In the Property inspector under the Joint: Rotation section, uncheck the check box
next to the word Enable. You should notice that the constraint indicator circle dis-
appears.

Try to move the system by dragging its various segments. You will see that arm no longer
has motion from what we will call the shoulder joint.

Next let’s change the parameters on the second bone in our system.

2. After selecting this bone, disable the joint rotation by unchecking the check box
next to Enable under Joint: Rotation in the Property inspector.

3. Enable the y translation by checking the check box next to Enable under the Joint:
Y Translation section in the Property inspector.

Again, you should notice that the circle around this joint has disappeared. You will also
notice that a small line with two arrowheads has now appeared along the parent joint’s
vertical axis. If you haven’t already guessed, this line is the constraint indicator for y
translation.

As you learned earlier, x translation and y translation parameters are responsible for con-
straining the motion of a parent joint to a linear motion in either a vertical or horizontal
direction. Try moving the system now. You’ll see that the first segment basically does noth-
ing, the second segment is now restricted to moving up and down, and the third segment
still freely spins in 360 degrees.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

166

Constraining bone movement
Finally, notice that the Joint: Rotation, Joint: X Translation, and Joint: Y Translation sections of
the Property inspector all contain a Constrain check box option. With these parameters, you
can limit the range of motion for any parent joint associated with the Constrain.

For example, the second segment in our system can move up and down with no apparent
limitation. Select the bone associated with that section. Then check the check box next to
Constrain under Joint: Y Translation in the Property inspector. You should immediately note
two specific changes. The arrowheads on the orange line that indicate y translation on the
parent joint of that bone have changed to straight lines. You should also notice that
the Min and Max values next to the Constrain check box have become active. It is now pos-
sible to edit the Min and Max values to limit the total range of motion for that joint. This is
also true for joint rotation.

The Min value can be set to any value between 0.0 and –5760. The Max value
can be set to any number between 0.0 and 5760. The Joint: X Translation
Constrain values operate in the same fashion for a horizontal direction, and
the Joint: Rotation Constrain values can be set to any number between –360
and 360 degrees.

Now that you are familiar with controlling bones and the IK system, let’s try animating
the arm.

Creating motion with an IK system

All right, we think it’s about time you saw something move on its own, don’t you? This is
where the real power of the Flash IK tools comes to light. So far in this chapter we have
primarily focused on the construction of a simple three-segment IK structure. And so far,
it probably doesn’t seem terribly difficult to work with the Flash IK tools. We hope this is
the case.

In this section we are now going to examine how IK animation is different from traditional
methods of Flash animation. Then we will apply these techniques to the arm we created in
the previous section.

Comparing IK to motion tweening
Let’s briefly examine the file , found in this chapter’s working files. This file is
more or less the same arm system you have been experimenting with. The primary differ-
ence is that it has been constructed using traditional (motion) tweening methods. And
though the tweening model in Flash CS4 is significantly easier to work with than previous
versions, it still poses a tremendous amount of difficulty when trying to articulate com-
plex systems.

When examining , you should immediately notice that it looks pretty much
exactly like the file you have been working with so far in this chapter.
There are three black rectangles that need to be animated to mimic the motions of an arm.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

167

7

The first primary difference to point out is the presence of two additional layers, as shown
in Figure 7-8. Unlike the IK system that automatically organizes all three segments on one
layer, motion tweening requires that each symbol reside on its own layer.

Figure 7-8.
Animating with traditional tweening methods
requires a more complicated layer structure.

Remember, when tweening by regular methods, each symbol needs to
reside on its own layer. So, even with a system as simple as a three-
segment arm, the efficiency of organization immediately takes a hit.

Imagine how complicated this would become if you were animating several human char-
acters. Even the simplest human character would need between five and eight parts work-kk
ing in tandem to achieve the illusion of animation. Add more characters, and the
complexity of the layer structure alone becomes a nightmare.

Next, take a moment to see how the animation works by moving the play-
head slowly from frame 1 to frame 10. You should notice that as you approach frame 3,
the three segments of this animation begin to overlap. This is definitely not very effective.
Therefore, in addition to increased layer management, a designer would also be responsi-
ble for an increased number of intermittent tweaks to get the animation to behave in the
desired manner. You may close .

Animating the arm
Fortunately, we now have the ability to control animation quickly and efficiently with the
Flash IK tools. Let’s go ahead and animate the arm in .

We realize that, through the various experimentations in this chapter,
your version of this file may not be the best starting point. If you need a
fresh start, you may use . It should look familiar to
you when you open it.

Remember that in animation we need keyframes. When dealing with IK armatures, key-
frames are referred to as poses. Therefore, we will need to pose our armature in the man-
ner in which we would like it to look. You have the option here to pose your armature in
any manner you see fit. And, if you would like, please feel free to play with the Property
inspector parameters for each bone to help you gain more familiarity. For the sake of com-
parison, the sample files and will be improving
on the throwing animation demonstrated in .

Your armature should be set in the proper starting point, as decided by you. The next
thing that you will need to do is set an end position. Animation, of course, is the change of

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

168

state over time. So we will need to add a few frames. This has been made extremely easy
in Flash CS4, as you will see by following these steps:

1. Position your mouse over frame 1 of the Armature_1 layer of your current working
file. Your mouse cursor should change from a white arrow to a short black line with
two arrowheads, which are pointing left and right.

2. Go ahead and select frame 1 by clicking your mouse. Frame 1 should now be high-
lighted in blue.

3. With the mouse button still pressed, you can drag to the right and highlight addi-
tional frames to add to your animation. We suggest highlighting to frame 10.

4. Once you have highlighted the desired number of frames, you may release the
mouse button, and additional frames will be added to the timeline.

5. Make sure the playhead is at the last frame of your animation. For example, we
have set our playhead to frame 10. Once you have done this, arrange your arma-
ture in a different pose. Move the playhead back and forth across the timeline, and
see what you get.

Not bad. Let’s add an intermittent pose. Position the timeline approximately halfway
between the beginning and end of your animation. As shown in Figure 7-9, we have posi-
tioned our playhead to frame 5. Now we can add a new pose.

Figure 7-9. Insertion of an intermittent keyframe

PLAYING WITH DOLLS: INTRODUCING FLASH IK

169

7

As you learned earlier, in order to achieve a change in an animation, you need a keyframe.
Remember, keyframes in IK animations are called poses. There are a few ways you can add
a new pose to the timeline in Flash. We will explain the two most commonly used and
efficient methods to do this.

The first method is to right-click (Ctrl-click on a Mac) a frame:

1. Move the mouse cursor over a frame in the timeline where you would like to place
a new pose.

2. Right-click (Windows) or Ctrl-click (Mac).

3. Select Insert Pose from the context menu.

As an alternative, you can also add a pose simply by adjusting the armature as follows:

1. Move the playhead to the desired position for adding a new pose.

2. Reposition the armature as needed, and a keyframe is automatically added.

Since the repositioning of the armature is required for all other methods of adding poses
to armature animations, the second option should be considered the most efficient way to
perform this task.

Using one of the aforementioned methods for including poses in an armature animation,
you may now add a second pose to your animation. Sticking with the examples from ear-
lier, demonstrates a simple throwing motion.

That’s it! You have successfully created an animation using the Flash IK tools. It may not
seem like much yet, but you will be applying these techniques to a more complicated
structure very shortly. And, though it may not be immediately evident, these techniques
will save you hours in production.

Author-time versus runtime IK animation

Before all this newfound knowledge can be brought together into something useful, there
is one more thing that is worth mentioning. Flash IK tools have the ability to be set for
either author-time use or runtime use. If you are not familiar with the terms “author time”
and “runtime,” don’t worry. Author time simply means something that happens while you
are creating or authoring your Flash projects in the Flash IDE, and runtime refers to some-
thing that happens when you play or run your Flash movies.

If you still have your file open from the previous example, you are going to use it for one
last example. If you happened to close it, don’t worry—you can simply open

.

To switch between author-time and runtime TT IK animation, all you need to do is select any
frame in the Flash timeline on the Armature_1 layer. You will notice that the entire timeline
associated with this layer is highlighted blue. When this happens, you should also notice
that the Property inspector reflects various parameters that can be applied to this specific
animation. This is demonstrated in Figure 7-10.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

170

Figure 7-10.
The timeline properties
for a pose layer in the

Property inspector

You should already be comfortable with the Ease section from Chapter 6.

For now, take a look at the Options section. The Style drop-down menu allows you to
determine the type of bones that are used in your armature:

Wire: Displays bones in the familiar triangular fashion. The primary difference is
that these triangles are represented by outlines also known as wireframes.

Solid: Serves as the default display setting for bones. It is what you should be used
to working with in this chapter. Bones are represented by filled triangular shapes of
varying color.

Line: Simply displays bones as single individual lines of varying colors.

The other drop-down menu shown in the Options section of the Property inspector is the
Type drop-down. It is here that you have the ability to set the IK animation to Authortime
or Runtime. Select Runtime from the Type drop-down.

Oops! You may have noticed the screen prompt shown in Figure 7-11 warning you of an
error with your animation. This is actually quite all right.

Figure 7-11. An alert window is triggered when runtime animation is used improperly.

The reason for this error is that IK animations that are to be set for runtime are not
allowed to have more than one pose. Why, you ask? Well, if the armature is set to be used
at runtime, you will have the ability to pose and interact with it when the Flash movie is
playing. If there are several poses defined at author time, the armature will want to ani-
mate itself. You can’t move an object and have it move itself at the same time.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

171

7

To remedy this you will need to do the following:TT

1. Delete frames 2 through 10 of the Aramture_1 layer in your movie.

You can do this by selecting frames 2 through 10, right-clicking (Ctrl-clicking on a
Mac), and then selecting Remove Frames from the context menu.

2. You may now return to the Property inspector and change the Type drop-down from
Authortime to Runtime.

3. Test this movie.TT

You are now able to move your IK armature in your published SWF files just as you were
able to on the stage. If you tried this with Authortime still selected, you would be unable to
move your armature.

Using IK with complex anatomies

There is no doubt that the true purpose of the Flash IK tools is for use with complex
anatomies such as human character animations. In the next section we are going to rig a
simple cartoon character to help you better understand this concept. When we finish, you
should have a thorough understanding of this process and how to apply IK rigs to even
more complex systems in the future.

Simple anatomy: A little help from Leonardo
Setting up a human IK rig is going to be a bit more complicated than that of an arm. After
all, the human design has two arms! Additionally, your human armature will introduce you
to the concept of branching. Though this is not a particularly difficult concept to under-
stand, it may not be obvious for those who have no prior experience with this sort of ani-
mation. Therefore, we are going to take a second to examine the anatomy of the human
IK rig before we begin.

Using the popular drawing of Leonardo da Vinci’s Vitruvian Man as our model, we have
the ability to examine just how one would begin to apply an IK system to a human being.
If you have ever spent time in a gym training for a sport or watching ESPN right before the
sun comes up, you may have heard the term “power core.” Also referred to as the core or
powerhouse in Pilates, the power core refers to the center of the body. This area is tradi-
tionally comprised of the abdomen, lower back, and often the buttocks and inner thighs.
It is referred to as the power core because it is responsible for the stabilization of the
entire body. Essentially, the human body’s mechanics are grounded in the abdomen.

We are always amazed by the apparent unintentional nature of art imitating life. You
could, for example, start constructing your IK armature from the head of a figure and get
it to work to some degree. You could also begin your armature in the chest area, and that
would probably work pretty well, too. This may, however, create a rotation problem later
in the hips of many armatures. If you plot your first bone at about the belly button, that
will give you the most efficient apparatus. Even in the designing of an IK animation, the
abdomen serves as the best center.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

172

This principle, of course, applies only to humanoids. If you were to create an octopus, for
example, the head would be the best place to start your IK system.

Subsequently, all other bones in the armature branch out from this center point. As you
can see from Figure 7-12, this armature is comprised of three primary branches. The first
of these is the parent, or root, bone, which starts at the belly button and traverses to the
chest, the neck, and finally the head. The other two primary branches are the legs. For
these, bones travel through the hips, thighs, lower legs, and joint at the ankle.

Figure 7-12.
An IK armature applied
to Leonardo da Vinci’s

Vitruvian Man

Finally, you may now be wondering the obvious question about the classification for the
arms. Well, the obvious answer is that they are secondary branches off of one of the pri-
mary branches. These systems can become quite sophisticated if necessary. Imagine that
you are going to detail the armature of a human to the finger level. Fingers are a three-
part system in their own right. Therefore, your child branches would have child branches
(grandchildren). And, the chances of getting three levels of branching are probably a little
better than you might think.

Applying IK to a human character
To begin adding an TT IK rig to a character, the first thing to do is familiarize yourself with the
assets that will be used in the file. In the real world, you will want to have this planned out
in advance. In this case, we have supplied you with a file that contains all the graphical
elements that you will need to create this animation.

For this example, we will start with the working file . Open this file and
explore the layer structure as shown in Figure 7-13. You should notice that the graphics for
this file have been organized as a head, a torso, a hip, two legs, and two arms. The layers
have also been organized with respect to the physiology of the character. That is, the front
arm pieces are in front of the torso, and the back arm pieces are behind the torso. This
stacking order also holds true for the head, legs, and so forth.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

173

7
Figure 7-13. Body parts of any character should be arranged logically.

Before we get started, it is important we point out that the most complicated part of this
process will be keeping the character organized. As you add pieces to the armature, Flash
will automatically pull pieces off of their respective layers and add them to the armature
layer. This will, without question, change the preestablished stacking order of each
graphic.

Additionally, it will also be somewhat difficult at first to get the feel for adding each new
bone. Until you have become comfortable with this process, you will probably feel that
each graphic is getting in the way of the others. Because of this, we will offer the following
suggestions.

 Utilize the outlining feature for each layer.

While you are rigging the character, we suggest that you immediately turn on out-
lines for the armature layer so you can see the pieces that have not yet been
added. This will also help you position the bones more accurately.

Move pieces out of the way.

You should notice from Figure 7-13 that several pieces overlap. For example, the
front arm overlaps the hip piece and top portion of the front leg. You will more
than likely want to move the front arm out of the way to get access to the underly-
ing pieces.

 Reorder layers as you work.

 As mentioned earlier, adding graphics to the armature will change the stacking
order of the original layout. It may be advantageous to manually change the posi-
tion of layers as you work. This will also make it easier to access certain graphics
throughout the process.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

174

 Lock and unlock layers as needed.

 To avoid confusion and inadvertent symbol selection, it is recommended that youTT
utilize the locking and unlocking of layers as you work.

Now that we are ready, let’s get started!

Setting up the core
The first thing we will want to do is establish the root of our structure. As discussed earlier,
the best place to start is in the abdomen area. In this case, our character’s midsection is
broken into two primary parts: the torso and hip symbols. Of these two pieces the most
centrally sound is going to be the hip symbol. The hip will give us direct access to both the
legs and upper body.

You can begin your armature by doing the following:

1. With the timeline open, unlock the Head, Torso, and Hip layers of the character.

2. Hide the front arm graphics by clicking the Show/Hide layer button for the
 folder’s layer.

3. Make sure the Property inspector is open to allow you to add constraints.

4. Select the Bone tool from the Tools panel and draw your first bone from the hip
graphic to the upper portion of the torso graphic.

It is recommended that you immediately switch the Armature_1 layer to outlines to help
you keep organized.

Once your first bone is added, your stage should look similar to Figure 7-14. The center of
the hip has been connected to the torso right near the center. The Armature_1 layer has
had the outline option selected so that items will become transparent as they are added to
the armature.

Figure 7-14.
The first step when creating
an IK rig is establishing the

parent, or core.

5. Draw a second bone from the child joint of your first bone to the head symbol just
at the base of the neck.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

175

7

6. Select this second bone. In the Property inspector, uncheck the box next to Enable
under the Joint: Rotation options.

7. Select the first bone. Check the box next to Enable under the Joint: X Translation
options. This will later allow you to move the character from left to right.

Adding the arms
Next we will want to add the arms for the character. The arms will be secondary systems
that originate from the joint that is located on the character’s chest. For this we will also
be adding more constraints for the shoulders, elbows, and wrist joints.

To add the arms, follow these steps:TT

1. Unlock the Back Arm layer, and drag that layer above the Armature_1 layer.

2. With the Bone tool selected, drag a bone from the chest joint to the top of the
upper portion of the back arm as shown in Figure 7-15. When the cursor changes
to a white bone with the plus sign (also shown in Figure 7-15), this signifies the abil-
ity to add a new bone.

Figure 7-15.
When the Bone tool cursor changes to a
white bone, a new bone can be added.

3. Add a bone for this arm that connects the shoulder to the elbow.

4. Add a bone from the elbow to the wrist.

5. You want to constrain the motion of the elbow. To do this, select the bone going TT
from the elbow to the wrist. In the Property inspector, check the box next to
Constrain under the Joint: Rotation options. Set the Min property to -85 and the Max
property to 0.

6. Repeat the preceding steps to add the bones to the front arm. Make sure that the
layers are unlocked and visible.

Once you have finished rigging both arms, we strongly suggest that you move them out of
the way so they don’t impede the rigging of the rest of your character. When you have
finished with the arms, you should have a character that resembles the image shown in
Figure 7-16.

Figure 7-16.
The arms of the character are
moved to help the rigging process.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

176

Adding the legs
Adding legs to the IK system is actually very similar to adding the arms. When adding the
legs, we are going to use the hip bone as the parent. Adding the legs will be a bit more
difficult, as the graphics are very close together.

To add the legs, follow these steps:TT

1. Unlock the and folders’ layers.

2. Starting with the front leg, create a new bone by dragging the Bone tool from the
hip to the upper leg. Figure 7-17 shows that a bone can be started by mousing over
any part of a symbol. Figure 7-18 shows you how to apply this bone.

Figure 7-17. The add bone icon will appear when mousing over
any symbol with a bone already applied to it.

Figure 7-18. The hip bone is connected to the leg bone. We know!

3. Create a bone that connects the upper leg joint to the lower leg at the knee.

4. Add the bone that connects the lower leg to the foot at the ankle.

5. Select the bone that connects the lower leg to the foot. In the Property inspector
check the box next to Constrain under the Joint: Rotation options. Set the Min prop-
erty to -60 and the Max property to 135.

6. Repeat these steps to add bones to the back leg.

Once you have added the bones to both legs, you should have a character like the one
shown in Figure 7-19.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

177

7

Figure 7-19.
All bones have been
added to the character.

Cleaning up your character
Before we can begin the animation process, we will need to do a bit of tidying up. The
process of adding an IK system to your character has no doubt wreaked havoc on the
general organization of things.

1. Delete all layers in your timeline except the Armature_1 layer. All of your graphics
have been moved to this layer. Therefore, none of the other layers are needed.

2. Turn off the outlines option for the Armature_1 layer. You will now see how crazy
everything has really become.

3. To fix the stacking order of the character pieces, right-click (Ctrl-click on a Mac) TT
each symbol and select Adjust from the context menu. Using a combination of
Bring to Front and Send to Back, rearrange the stacking order of each symbol so that
it is restored to its original position.

4. It may also be necessary to slightly adjust the positions of specific symbols. To TT
adjust the positions of a specific symbol, select that symbol with the Subselection
tool while holding the Alt key (Option key on a Mac). You can also use the Transform
tool to tweak the symbol’s transform point if needed.

Animating the character
Animating your Flash IK character is actually the easiest part of the whole process. All you
need to do is add some frames and position the armature in a new pose, and the character
will animate.

To animate the character, do the following:TT

1. Pose the armature in a desired starting position.

2. As shown in Figure 7-20, add frames by mousing over frame 1 of the timeline. When
the cursor becomes the double arrow, drag out more frames on the timeline.

Figure 7-20.
The double arrow allows designers to
quickly add frames to the timeline.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

178

3. To create movement, simply move the playhead to a different frame on the timeTT -
line and change the position of your character to create a new pose as shown in
Figure 7-21.

Figure 7-21.
To add a new pose, simplyTT

reposition the armature.

4. Finally, once you have created several positions for your character, test your movie.
You will see your character animate across the stage (see Figure 7-22).

Figure 7-22.
Characters will easily

animate using the IK tools.

Now that you have seen how easy it is to animate a complex structure, experiment a bit. Try
adding different constraints and new intermittent poses to see what you can come up with.

Using IK with shapes and the Bind tool
Another exciting feature of the Flash IK tools is the ability to use bones with vector shapes.
This gives designers an incredible amount of increased control over the animation of vec-
tor shapes. Unlike symbol instances, which only allow one bone per symbol, shapes allow
you to add as many bones as you need to create the animation you desire.

In addition to the ability to add multiple bones to a shape, designers also have the ability
to add bones to multiple shape fills and strokes at the same time. In fact, during our
research with this new functionality, we were able to add an IK system to a vector-based
butterfly that was comprised of over 600 individual shapes! And, in a similar fashion to the
way symbols are grouped, all shapes associated with a shaped-based IK system are grouped
together on their own new pose layer.

PLAYING WITH DOLLS: INTRODUCING FLASH IK

179

7

Working with bones and vector shapes

Creating an IK shape object is an extremely easy process that can be summed up in the
following steps:

1. Select a vector shape in Flash.

2. Select the Bone tool from the Flash Tools panel.

3. Add a bone in exactly the same manner that you would add a bone to a symbol
instance. Similarly, you can add bones to multiple shapes by simply selecting all
shapes that are required for the animation, and then applying the bones using the
Bone tool.

Selecting shapes for IK
To get some practice with this technique, TT let’s take a look at , located
in the sample files for Chapter 7. As you can clearly see, this is a very simple file comprised
of one shape, which resides on one layer, which spans one frame. To add an TT IK system to
this star, as shown in Figure 7-23, you need to make sure that the star is selected. So, go
ahead and select the star with the Selection tool found in the Flash Tools panel. You will by
now recognize that it is selected by the hash pattern that appears within the fill color.

Figure 7-23.
An IK bone being applied
to a vector star shape

For just a moment it is worth drawing attention to the fact that the star has a blue stroke.
If you were to add a bone to the star shape at our current point in this discussion, the blue
stroke would be excluded. It is important that when you are using the Flash IK tools with
vector shapes, you make sure that everything you want to animate is selected. For now,
selecting the blue stroke with the star is simply a matter of double-clicking the star with
the Selection tool. If in the future your shapes did happen to be independent from one
another, you could simply draw a selection rectangle with the Selection tool or Shift-click
all your shapes with the Selection tool.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

180

Applying bones to a vector shape
Once your shapes are selected, you may add a bone using the Bone tool in the Flash Tools
panel. In the exact same fashion as you would when adding bones to symbols, select the
Bone tool and click the selected shape where you would like the root of your armature to
be. Once you have clicked your shape, you can drag out a new bone in any direction.

One of the primary differences between shape bones and symbol bones is the fact that
when dragging out bones with shapes, you do not have to attach the bone to anything
else. Figure 7-23 shows that the child end of your IK bones can be positioned virtually
anywhere.

Now that you have bones connected to your shape, you will notice that a new pose layer
was created in Flash. You can also experiment with how the bones affect different aspects
of the shape. Try experimenting with adding more bones and seeing how they too affect
the transformation of the overall shape.

Further, you have the ability to create complex armatures with shapes. Figure 7-23 demon-
strates a couple simple bones being added to the star shape. Imagine if you were to con-
struct a human armature for the star like the one you constructed earlier for the cartoon
character. You could theoretically animate a dancing star!

Though we won’t demonstrate this here, we will include with our
example files for those curious as to how this would be done.

Regardless of what you do, it is inevitable that you will start to develop some fairly compli-
cated armatures that may require some tweaking and adjusting. In many cases you may
not have your joints in the exact place that they are needed. To adjust a joint’s position, TT
simply select that joint with the Subselection tool—also affectionately called the white
arrow—and move the joint to the desired location. Should you find yourself in the unfor-
tunate situation that a bone needs to be deleted, select the problematical appendage with
the Selection tool and simply press Delete.

Using the Bind tool

As you no doubt noticed from your experimentations over the last few pages, working
with IK and shapes sometimes delivers varying and unexpected results. To help with this TT
issue and offer designers more control over their IK shapes, the fine people at Adobe have
included a nifty little contraption known as the Bind tool. The Bind tool allows you to link
various control points on your vector shape to specific bones within your IK rig. This tool
can be used to link a bone to multiple control points or multiple bones to the same con-
trol point.

Accessing the Bind tool
To access the TT Bind tool, take a look at the Bone tool in the Flash Tools panel. You should
notice a small black triangle in the lower-right corner of the tool. This triangle signifies that
a tool is grouped with other tools or other sets of tools. In this case the Bone tool is

PLAYING WITH DOLLS: INTRODUCING FLASH IK

181

7

grouped with the Bind tool. To activate the TT Bind tool, click the Bone tool and hold down
the mouse button until a fly-out menu appears that contains both the Bone and Bind tools.
From this fly-out menu, you may select the Bind tool shown in Figure 7-24. This tool can
also be accessed by pressing Z.

Figure 7-24.
To access theTT Bind tool, hold down the mouse button
while selecting the Bone tool in the Tools panel.

Applying binds to shapes
To apply binding to your armature, TT select your IK shape object with the Bind tool. If your
armature is already visible, select a specific bone with the Bind tool. As shown in Figure 7-25,
when you select a bone, it will be signified by a red line. All applicable surrounding control
points will be highlighted yellow. By this, we mean that not all control points on the shape
will be active for each bone. Therefore, when this bone is moved during animation, only
the yellow control points and strokes associated with those control points will be affected.
This is where the Bind tool comes into play.

Figure 7-25.
The Bind towol is used to
apply multiple control
points to bones.

With the Bind tool, you can link other control points in the shape, which are not high-
lighted yellow, to a particular bone. There are two ways to add a control point to a bone:

 With the Bind tool selected, Shift-click any control point that is not highlighted yel-
low. As shown in Figure 7-25, you may also Shift-drag from the child, or tail end, of
any given bone.

 In contrast, if you would like to remove control points from bones, you may use
the Ctrl key (Cmd key on a Mac) instead of Shift. Using the Ctrl key, you may either
click or drag to remove unwanted control points.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

182

Finally, you may have noticed that some control points are squares and some control
points are triangular. This small difference is an indicator for how many bones are con-
nected to that particular control point. As we mentioned earlier, you have the option to
link multiple bones to a single control point. The square signifies that this particular con-
trol point is connected to one bone. Consequently, a triangle lets the designer know that
this control point is governed by two or more bones.

For great practice working with the Bind tool, try to bind the IK armature from
 that was discussed earlier. This file is found in the sample files direc-

tory for this chapter.

Summary
Well, you learned some pretty cool things in this chapter. And, we really only scratched the
surface of the new and powerful capabilities now available through the use of the Flash IK
tools. We trust that your creative interests have been stirred and hope you already have
many uses for this newly acquired knowledge.

In this chapter we discussed

Inverse kinematics

 Using the Bone tool to apply an IK system

Animating complex systems and characters with IK

Applying IK to vector shapes with the Bone and Bind tools

PART THREE

ACTIONSCRIPT

CHAPTER 8

THE PROGRAMMING PRIMER:
A FLASH DESIGNER’S INTRO

TO ACTIONSCRIPT 3.0

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

186

Welcome to the wonderful world of ActionScript programming. In the first two parts of
this book, you have been exposed to what is classically considered the design side of Flash
authoring. Throughout the duration of this book, you will gradually be introduced to the
versatile capabilities of ActionScript, the developer side of Flash authoring.

In terms of programming languages, ActionScript is easily the most widely used language
in new media. Its functionality is applicable in industries such as web design, game design,
courseware development, and enterprise-level application development. Developers or
graphic designers possessing a keen sense of proper ActionScript usage open a whole new
level of opportunity for their career.

In this chapter you will be introduced to the most basic elements of ActionScript program-
ming. You will gain needed insights and the proper foundation to adequately implement
the various aspects of ActionScript that will be covered in the upcoming chapters. Even if
you are an experienced programmer, this chapter will serve as your point of translation
and allow you to quickly apply programming logic you may already know to ActionScript.

If you are someone transitioning to the world of Flash, it is important that you do not
become discouraged or overwhelmed by the breadth of this topic. At any given point in
this publication, it is possible to extract a section or chapter and have an entire book
devoted to only the material covered in that section. In fact, because there are so many
directions a Flash professional could take, Adobe once offered two certification exams to
adequately represent a person’s true understanding of the software.

Additionally, you should understand that programming, in its own right, is a topic that
goes beyond the scope of Flash itself. Therefore, though you will be introduced to the
language and some basic programming concepts, we encourage you to explore and re-
inforce your learning through additional reading and research.

Some excellent online resources for learning Flash and ActionScript include
and . The benefit of online tutorials and forums is that it is very

common for other developers to be seeking answers to the same problems as you. This is
beneficial because it has a tendency to yield many solutions. We will also point out addi-
tional resources in later chapters as it becomes relevant.

Before we get started with the tools and elements of ActionScript, if you are a nonpro-
grammer or Flash designer, we would like to offer a few paragraphs to help you get in the
right frame of mind.

Dreaming in metaphors
Programming is very much like creating a new world. As the programmer, you have com-
plete control over that world. You decide what exists in that world and how things interact
with one another. And, if you happen to be a really good programmer, you have the ability
to create something that is virtually incomprehensible in the physical world we live in.
Because of this complexity, that creation can often become extremely difficult to articulate

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

187

8

using known concepts. So, it is ultimately necessary to illustrate a topic by relating it to
another. Enter the metaphor. Actually, it entered a few sentences ago!

You can think of this in much the same manner as trying to describe color to a blind per-
son. Color, in this case, would be considered something that is incomprehensible and
abstract to a person who cannot see. How would you begin to describe color to a blind
person? It would be something very hard to articulate. You would need to find a mediating
idea, or metaphor, that would not only be familiar to the blind person, but also convey the
idea of color. For example, you may try to use concepts like heat or anger to describe a
color like red.

Nonetheless, if you want to be a great programmer, you will need to become an abstract
thinker capable of dreaming in metaphors. And remember, if this book is your first step
into programming, be sure to give yourself enough time to take it all in.

Now that you are in the right frame of mind, let’s discover what ActionScript is and how it
has matured with the various releases of Flash.

Following the evolution of ActionScript 3.0
Elements of Flash-based scripts can be traced back as early as Flash 2. However, the name
“ActionScript” did not make an appearance until the release of Flash 5 in 2000 with the
release of ActionScript 1.0. ActionScript was originally a scripting language built to aid in
the navigation of the Flash animation environment. These simple scripts were nothing
more than the ability to change frames or scenes. With each new release of Flash, how-
ever, ActionScript becomes more and more adherent to the ECMA-262 standard, which
allows for an even greater degree of optimization.

Ecma International (formerly the European Computer Manufacturers Association) is
an organization responsible for the standardization of information technology and
communication. The ECMA-262 standard, also known as ECMAScript, is typically asso-
ciated with the standardization of many popular web dialects such as JavaScript and
ActionScript.

The release of ActionScript 3.0 has been no exception. This version offers an ActionScript
language that has been completely reconstructed from the ground up. Though much of
the base syntax remains, it is often said that ActionScript 3.0 should be approached as an
entirely new language, independent of previous releases of ActionScript.

The Flash-based release of ActionScript 3.0 saw many key architectural improvements such
as a true object-oriented model, enhanced low-level access, and a revamped version of
the ActionScript Virtual Machine (AVAA M2). All of these improvements combined to create
blistering fast performance and a greater degree of optimization.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

188

ActionScript 3.0 was actually formally introduced with the release of Adobe Flex 2.0 in
the late spring of 2006. Flash didn’t officially receive ActionScript 3.0 until spring 2007.

Further, programmers were introduced to complete reconstructions of many core features
including redesigns to the , , , and classes. With Flash CS4, pro-
grammers can also reap the benefit of additional enhancements like a more robust Sound
API and improvements to the Drawing API. Finally, developers are also introduced to the

data type, which allows for strict data typing of arrays.

Like many other commonly used modern languages such as C#, Java, and JavaScript,
ActionScript derives most of its syntax from C-based languages. Therefore, a programmer
moving from one of those languages should be able to get up to speed very quickly.

Now that you have an idea of what ActionScript is, it’s time to start creating ActionScript
programs. In the next section, we’ll take a look at a traditional example that will help you
get your feet wet when working with ActionScript and the Flash IDE.

Crafting your first ActionScript application
In the course of computer programming history, there have been many great traditions
passed down from programmer to programmer. One of the most famous practices of ritu-
alistic behavior comes in the form of the Hello World application. The Hello World appli-
cation is typically used as the very first example in a book or as the first computer program
written by a new programmer. It is basically nothing more than the words “Hello World”
being displayed on the screen. Though we contemplated skipping the Hello World app for
this section, we wouldn’t be honorable men if we chose to neglect such a fabled institu-
tion. We can think of no fewer than six titles we have read that have included a Hello
World app.

This example will serve as an excellent lead-in for you to get exposed to the many aspects
of this chapter. You will be introduced to some important tools like the Actions panel,
Script Assist, and statement. Later in this chapter we will discuss these tools in
greater detail. The exercise will then serve as your frame of reference. So without further
ado, it’s time for your first program to say “Hello!”

1. Open Flash CS4.

2. Create a New Flash file (ActionScript 3.0) by either choosing the Flash File
(ActionScript 3.0) option on the Flash Welcome Screen or selecting File New and
choosing Flash File (ActionScript 3.0) from the New Document window.

3. Once your new document has been created, open the Actions panel by selecting
Window Actions or by pressing F9. (F9 is definitely a shortcut you should
remember.)

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

189

8

4. Once the Actions panel is open, activate the Script Assist by clicking the Script Assist
button, located in the upper right of the Actions panel as shown in Figure 8-1. At
this point you will notice the expansion of the Script Assist above the script pane.
You should also notice that not much is happening there at the moment.

Figure 8-1.
The Script Assist button

5. In order to use the Script Assist, you will need to add a code snippet from the
Actions toolbox. The Actions toolbox is located in the upper right of the Actions
panel. Using Figure 8-2 for reference, make sure that the scrollbar in the Actions
toolbox is at the topmost position. Then select Language Elements, followed by
Global Functions.

Figure 8-2.
The available features
in the Actions toolbox

6. One of the coolest features in the Script Assist is the fact that you can see what
each function does before you use it. With Global Functions expanded, scroll down
until you see the function. Single-click the function to see what it is
used for.

7. Add a statement to your ActionScript by either double-clicking it or dragging
it to the script pane. Immediately, your script is added to the script pane and a list
of parameters is now visible in the Script Assist pane.

8. Now that the function has been added to your ActionScript, you will need to fill
out the Arguments field to get it to work properly. As you will find out shortly, the

 statement is primarily used to write information to the Output panel in Flash.
For now it will be sufficient for you to type “Hello World!” (including the quotation
marks) as shown in Figure 8-3.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

190

You may have noticed a check box at the end of the Arguments field. You will learn the
difference between expressions and literals by the end of this chapter. For now you may
leave this check box checked.

9. Test your movie by selectingTT Control Test Movie or by pressing Ctrl-Enter/Option-
Enter. This will publish your SWF file, and immediately you will see the Output panel
appear with the phrase “Hello World!,” as shown in Figure 8-3.

Congratulations! You have just written your first ActionScript program. Now we will take a
closer look at the various components that were used to create this application. In the
next section, you will be officially introduced to the statement, a tool that will help
you communicate with your program.

Figure 8-3. The statement’s output to the Output panel

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

191

8

The trace statement: Leaving breadcrumbs
In the last exercise you created the all-too-famous Hello World application. In that applica-
tion you used a popular statement known as the statement. The statement is
actually a special kind of statement known as a top-level function.

Most ActionScript functionality can only be used in certain instances. The term “top
level” is used to describe a type of functionality that is accessible from anywhere and at
anytime in your program.

The primary function of the statement is to send any expression to the Output panel
during author-time testing of your Flash movies. You may also send output to a log file
during debugging. Typically,TT statements are used to check the execution timing and
values of dynamic parts of any given program. If you’re familiar with the children’s fairy
tale “Hansel and Gretel,” the statement can be thought of as your bag of bread-
crumbs to help you find your way home if you get lost in the programming woods.

As you saw in the previous section, the statement is actually quite easy to evoke.
Simply type the keyword trace followed by a set of parentheses. Within the parentheses
you type the item you would like printed to the screen. As illustrated previously in
Figure 8-3, typing the phrase “Hello World!” between the parentheses printed “Hello
World!” to the screen.

A keyword is a special type of reserved word for which ActionScript has a specific pur-rr
pose. When using the Actions panel in the Flash IDE, keywords will by default appear as
bolded blue text.

With the statement you also have the ability to print multiple items to the screen at
one time. To do this, simply type the values you would like to trace delimited by a comma. TT
With the following example, the characters , , and would all print to the Output panel.

The statement is one of the most useful allies that any ActionScript developer can
have. It will allow you to communicate with yourself as a program executes. You will
certainly get plenty of exposure to the statement as you work through the rest of
this book.

In addition to the statement, the single most important aspect of developing
ActionScript from within Flash is the Actions panel. Let’s have a look at the many benefits
this tool has to offer.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

192

Moving into the Actions panel: Your new
home

When authoring ActionScript in Flash, all of your work will be done in one of two ways.
The first of these is the use of external ActionScript files (which have the extension).
As you become more familiar with the proper techniques of programming ActionScript,
more and more of your work will be done in external files.

At this stage in the evolution of Flash, external files are considered the best method for
programming.

The second method for writing ActionScript is to apply actions directly to keyframes using
the Actions panel (select Window Actions or press F9) in the Flash development environ-
ment. For this chapter a majority of the examples we will look at can be easily coded using
the Actions panel.

Further, you will notice when migrating to programming with external files that they are
opened in Flash using a document window that is very much like the Actions panel. Though
this is not actually the Actions panel, you probably won’t notice much difference. As a
convention, we will refer to ActionScript written in external files as external and
ActionScript placed on the timeline in Flash as embedded.

Because Flash still possesses some limitation to the way external files are organized,
many professional ActionScript programmers have turned to other programs for
advanced ActionScript development. Some software solutions that are worth mention-
ing include FlashDevelop, SEPY, Flex Builder, and Eclipse.

Looking closely at the Actions panel

The Actions panel is comprised of several important sections as shown in Figure 8-4.

The script pane is the primary section of the Actions panel positioned at the right.
Within this pane, you will enter all scripts that will be used in your ActionScript
program. As shown in Figure 8-4, the script pane currently has the script

on line 1.

The Actions toolbox isx located in the upper-left portion of the Actions panel.
Within the toolbox you have access to all core ActionScript libraries that were
included with your installation of Flash. From here you can access all objects includ-
ing their properties (variables) and methods (functions). Double-clicking an ele-
ment of the Actions toolbox will automatically add it to the script pane.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

193

8

The Script Navigator is locatedr at the bottom left of the Actions panel. This fea-
ture will allow you to browse all embedded scripts for the FLA you are currently
working on. All scripts are organized hierarchically by object and location. This
pane is available only if you are authoring ActionScipt that is embedded on the
timeline within an FLA. Therefore, if you are working on an external ActionScript
file, you will notice that this pane has disappeared.

 The Actions panel toolbar is a list of tools to aid in the organization and developr -
ment of ActionScript code. This set of tools is located directly above the script
pane. These tools are available for both embedded and external ActionScript files.

Pin Script tabs give developers the ability to quickly switch between various scripts
in their ActionScript program.

 The Script Assist button is used to open the Script Assist pane in the Actions
panel.

Figure 8-4. The main areas of the Actions panel

Though pointing out the primary sections of the Actions panel will certainly help you in
learning your way around, it is probably more helpful to discuss a few of these sections
in more detail. As you’ll see in the following three sections, the Actions panel toolbar, Pin
Script tabs, and Script Assist can all offer a greater degree of organization and efficiency
when working with ActionScript.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

194

Actions panel toolbar
The Actions panel toolbar offers developers a quick method to check, reference, and for-
mat their code. The following toolset is one that should definitely be made familiar to
every ActionScript programmer.

Add New Item to the Script is represented by the blue plus icon located at the left of
the Actions panel toolbar. It works in the same manner as the Actions toolbox.
Selecting this will open a drop-down menu containing all of the core libraries con-
tained in the Flash installation. Selecting any item from this drop-down will add it
to the script pane.

Find gives you the ability to find and replace any text located in your ActionScript.

Insert Target Path is only available for use with embedded ActionScript. This tool
allows you to locate a symbol instance in your FLA file and reference its name in
ActionScript. Paths can be either absolute or relative.

Check Syntax allows you to quickly determine whether or not your scripts contain
syntax errors.

Auto Format formats your scripts so they are syntactically correct and are more eas-
ily read. This includes the addition of indents and semicolons. You can adjust the
format setting using the Preferences window (Edit Preferences) under Auto
Format.

Show Code Hint will allow you to receive a code hint for the code you are work-
ing on.

Debug Options allows you to set breakpoints for debugging your ActionScript files
line by line. This feature is only available for embedded ActionScript files.

Collapse Between Braces collapses all code that exists between curly braces. In
addition, it will collapse all code between parentheses if that is where the cursor is
currently located.

Collapse Selection collapses all code that is currently selected.

Expand All expands all code that has been previously collapsed.

Apply Block Comment will add multiline comment markers at the beginning and
end of currently selected code.

Apply Line Comment will add a single-line comment marker at the current position
of the cursor. If multiple lines are selected, it will add a single-line comment marker
to the beginning of each selected line.

Remove Comment removes all comments from currently selected code or the line
containing the cursor.

Show/Hide Toolbox toggles the Actions toolbox as either hidden or visible.

Pinning scripts so you don’t lose them
Though it is becoming less common in ActionScript development, it is inevitable that at
some point in your Flash career you will need to have multiple scripts embedded in several
different locations of your FLA file. It is also more than likely that you are going to have to
jump back and forth between these scripts. For such an occasion, the Actions panel comes
equipped with the Pin Script feature.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

195

8

As shown in Figure 8-4, the Pin Script feature is a series of tabs located at the bottom of
the script pane in the Actions panel. The script that is currently active is always represented
by the leftmost tab. However, if you browse to other scripts located on other keyframes in
your FLA, you have the ability to pin this for easy access. Once you have navigated to the
new script, simply click the pushpin icon located next to the first tab, shown in Figure 8-4
as Layer 1:1. After clicking the pushpin icon a new tab will appear, allowing you to jump
directly back to this script at a later time.

Script Assist—taking it easy
For those professionals who are either new to ActionScript or only interested in learning
just enough to get by, Flash offers a rather helpful tool, the Script Assist. You should have
some familiarity with this from the previous Hello World example. The Script Assist is
located at the top left of the Actions panel, inline with the Actions panel toolbar. You
should notice a button labeled Script Assist with the icon of a magic wand.

The true benefit of this tool is that it allows developers to work in tandem with the Actions
toolbox to quickly develop scripts that are meaningful to their program. As shown in
Figure 8-5, once the Script Assist button is clicked, you will immediately notice that the
portion of the Actions panel above the script pane extends to reveal the Script Assist pane.
You can then browse for items in the Actions toolbox. By single-clicking items in the tool-
box, the Script Assist will display a brief description of that item. Double-clicking an item
will then add it to the script pane.

Figure 8-5. Proper use of the Script Assist

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

196

Once Script Assist has been activated, you can no longer edit scripts in
the script pane. In order to be able to edit scripts in the script pane, the
Script Assist must be deactivated.

Once an item has been added to the script pane, the Script Assist then displays a list of
fields that are relevant to properly constructing that section of code. Therefore, a begin-
ner can quickly create well-formed ActionScript with a just few clicks and filling out a
couple of fields.

Because the Script Assist is so user friendly, it is often an excellent starting point for someone
wanting to learn ActionScript without the worry or hassle of proper syntax and formatting.

The Script Assist is meant for simple scripting. Therefore, it is only avail-
able through the Actions panel while creating embedded code.

Now that you have been acquainted with the most important tools for working with
ActionScript, let’s now transition into the most basic elements of the ActionScript lan-
guage itself and how to work with them.

Basic elements of ActionScript programming
Though we will be looking at the elements of programming as they apply to Flash and
ActionScript, it is worth pointing out that most programming languages within a certain
categorization operate in pretty much the same fashion. By “categorization,” we mean the
type of language. In this book we will be speaking about object-oriented languages. In
fact, given the industry to which this book is associated, it is a pretty safe assumption to
say that you are more than likely only going to ever use markup languages and object-
oriented languages. Therefore, even though this book is directly specific to the ActionScript
language, the programming basics that you will learn here are easily transferable to many
other object-oriented languages.

Object-oriented programming is a style of programming in which
code is organized into objects, also known as classes. Programs are then
designed based on how these objects interact.

Syntax

The syntax of any given language simply x refers to the rules that govern how elements are
structured or put together to form meaningful statements. In the English language the
minimum requirements for a sentence are typically a subject and a verb as well as appro-
priate punctuation. Even in an exclamation such as “Run!,” the subject is the person being
spoken to and the verb is undoubtedly “run.”

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

197

8

A statement can be thought of as a sentence in a computer program. A t
statement is any line of code that performs an action on a variable. The
line is a simple statement.

If we were to take a closer look at a sentence like “He runs,” we can extract a few simple
rules that determine whether or not this sentence is properly structured. There are basi-
cally four things that we are going to look at. Is there a subject, is there a verb, is there a
punctuation mark, and is the first letter of the sentence capitalized? By now this stuff is
more or less inherent; you probably can’t even remember where you learned these rules.

Just like any written language, programming languages are also governed by a specific set
of rules that need to be followed in order for the statements to make sense to the com-
puter. Fortunately, this set of rules is infinitely less complicated than those applied to writ-
ten language. And, without question, they will ultimately become as second nature to you
as looking for a period at the end of a sentence.

Case sensitivity
ActionScript is classified as a case-sensitive language. The term “case sensitive” refers to
the manner in which a programming element is physically entered into the computer by a
programmer using the keyboard. The following example shows the declaration of two
variables, and . At first glance they may look the same, but the capitalization
of the letter “L” in the second variable name is enough differentiation for these to be
treated as completely different elements.

Though this may not seem like a tremendous issue, it is the small details like this that
wreak havoc on many programs. As a new programmer, case sensitivity will more than
likely be the culprit for the majority of your programs not working properly.

In Flash development it has become commonplace for Flash program-
mers to use a typing technique called camel casing, which is applied
to an element that is given a name comprised of several words not
separated by spaces. The first letter of the first word is lowercase, and
all subsequent words begin with a capital letter. For example,

is an example of camel casing.

Dot syntax
In ActionScript, dot notation is used to perform two primary functions. First, as you
become familiar with working with external class libraries, you can use the dot operator to
import these libraries into your Flash program. As you begin to break a program into man-
ageable chunks, you will want to begin to create ActionScript files externally. A library is
nothing more than a collection of external ActionScript files that is stored in a centralized
location.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

198

If you were to try to gain access to this location from your computer’s desktop, you would
use slash notation (). To access the same information from TT Flash, you would use dot nota-
tion (). The next example shows the path to an AS called . This file is being
stored in a folder called , which is stored in . The first line shows how
the file is addressed using slash notation, and the second line shows dot notation.

Flash installs with a rather robust set of core functionality that is also managed using exter-
nal libraries. The following paths determine the location of the Flash core class libraries
based on computer platform:

Windows:

Macintosh:

The second use for the dot operator is to access the members of a particular object. Again,
don’t be confused by the phraseology. As you will learn very shortly, objects used in object-
oriented programming are comprised of properties, methods, and events. These items are
known collectively as the members of the object. And, the dot operator will grant you
access to some of these members for the benefit of your program.

For sake of simplicity, we will pretend that I (Paul) am an ActionScript object called .
As an object I could contain various properties like height, weight, and whether I have hair.
Similarly, I could have a method for performing various tasks like eating, sleeping, and
working. It is bleak, I know. Additionally, I could react to an event. If someone were to
tickle my nose, I may react by saying “AH-CHOO!” In the next chapter, we’ll demonstrate
that events are nothing more than functions triggered under certain circumstances, as well
as look more closely at the differentiation between properties, methods, and events.

Now if we wanted to access one of those properties or tasks, we would do so using dot
notation. The following example shows access to various members of the object:

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

199

8

Expressions and literals
Literals refer to values in a program that are typed (keyed in) and returned verbatim. In
the following example the variable is assigned the literal value of . When the

statement is used to print this variable to the Output panel in Flash, you will notice
that it returns the value exactly as it was assigned.

Conversely, expressions are values that are resolved by the execution of a statement. The
variable in itself does not have a legitimate value. It is dependant on the value of
the variable . Therefore, the expression must resolve to a
legitimate value before any value can be assigned to . If you were to delete the
second line of the preceding program, you would notice that the expression would be
unable to resolve, and an error would appear. Fortunately, in this case, the value does
resolve to 6.

Finally, all of the items in the parentheses of the statement would also be consid-
ered an expression. Though there are several string literals present, the entire group of
elements needs to resolve to a single value before it can be passed to the Output panel.

Semicolons
In Flash the semicolon is used to indicate the end of an executable statement. You should
think of this as a period in your program. Though semicolons are not required, not using
them could cause some unexpected results while programming. For example, omitting a
hard return between two lines of code that are also not delimited by a semicolon would
cause your program to fail to execute. Further, it is considered good practice to use them.

The following two code examples look almost identical to one another. The first example
is missing the semicolon after the string . Without this semicolon, ActionScript can-
not tell that each line actually contains two statements. Therefore, an error occurs in the
first line.

Parentheses
The primary uses of parentheses are similar to the function they serve in basic arithmetic.
That is, they are responsible for changing the order of operations in any given expression.
Therefore, any expression or part of an expression that is encapsulated within parentheses
is executed first. You may also continuously nest groups of parentheses to further control
the order of operations.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

200

The following example demonstrates several examples of parentheses usage. As the math-
ematical order of operations suggests, the contents of the innermost parentheses are
executed prior to that of the outermost parentheses.

Similarly, you can use parentheses to execute a series of statements separated by a comma.
The statements are executed sequentially, and the result of the final statement is
returned.

In the following example, the first five lines of code are simplified into one statement
using comma-separated statements encapsulated within parentheses.

Finally, parentheses are used to pass parameters to a subroutine, known in Flash as a
function.

Comments
Comments are an extremely important part of any program. Though you may only be writ-
ing a program for your own benefit, chances are you are actually writing the program for
the benefit of a team or company. Regardless of the end result, it is more than likely that
someone else will eventually have to go into your code and make some kind of tweak or
edit. It is considered excellent practice and extremely courteous to properly comment
your code.

Commenting allows programmers to type additional text among their program’s code offer-rr
ing directions, instruction, or additional insights. Any line that is commented will be ignored
by the compiler and will neither interact nor interfere with any part of your program.

In Flash, there are two ways to generate comments. For a single-line comment, a program-
mer can use double () slashes. All characters to the right of the double slash will be
commented out.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

201

8

The second method of commenting is the multiline comment. This is achieved by using
the single slash and asterisk () character combination to open the comment and the
asterisk and single slash () character combination to close the comment.

As shown in the following example, both double-slash and slash-asterisk notation are used
to create a line comment and a block level, or multiline, comment.

This technique will also prove invaluable to you when testing various options while writing
your programs. As shown here, multiple statements have been created to trace dif-ff
ferent options. Commenting can be used as a way of “turning off” statements.

Variables

Variables are the most basic component of any given computer program. Technically TT
speaking, a variable is a reference to a portion of memory that has been allocated for the
storing of a particular type of data. Basically, this is a fancy way of saying it is a name given
to a location where a specific kind of information will be stored. And a computer program
is nothing more than a sophisticated way of manipulating information. In some capacity or
another, every statement in a computer program must interact with a variable. Therefore,
variables can be thought of as the subject or noun of the computer program.

To declare a variable in TT ActionScript, you must first use the keyword. For example, the
following statement declares the variable . Failing to use the keyword in
the declaration of a variable will result in an error in your program.

As a programmer you have complete control over the names you give your variables.
However, there are a few rules that need to be followed when creating a variable name:

Variable names can contain any number or letter, dollar signs ($), and under-
scores (_).

Variables names cannot begin with a number.

They cannot contain spaces.

Variable names must be unique. Two variables cannot share the same name withinTT
the same scope.

Variable names are case sensitive. It is also recommended that you avoid using the
same variable names with different case. For example, is different from

 but will probably create confusion.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

202

Though it is not absolutely necessary, it is considered best practice to strictly type your
variable by assigning it a data type. To strictly type a variable, add a colon (TT) followed by
the desired data type. As you will learn in the next section, data typing is beneficial for
more efficient programming.

In the following code, we assign the variables and the respective
data types of and .

Once a variable is declared, you can give it a value by using an assignment operator ()
followed by the value. As shown here, our previously defined variables are assigned the
values of and :

You can also assign the value to a variable when it is created as follows:

Though it is also possible to instantiate multiple variables at one time using the comma
delimiter, it is not considered best practice. In the following example, the variables ,

, and are all created in one statement using the comma delimiter.

Right now you are probably thinking of variables in terms of a name-value pair. For
example, is basically a variable for my (Paul’s) actual name. And the vari-
able has been given a name that more or less describes what the value is going to be, a
name. So, the statement is really comprised of nothing more than a variable’s name and
the variable’s value. As you become more and more familiar with using ActionScript, you
will come to realize that variables become references to extremely complex objects that
may also contain a number of additional variables.

Data types

If variables are thought of as the nouns of computer programming, data types can be
thought of as the adjectives. A data type is used to describe what type of information is
going to be stored in a variable. Though strict data typing is not required, it is considered
excellent practice.

It is important to understand that regardless of whether you define the data type for a
variable or not, Flash will. If the variable is in use, it has a data type.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

203

8

Practically speaking, data typing can serve several purposes. First, strict data typing reduces
the amount of memory needed for using any given variable. Therefore, if you data type
your variables, the variable will only accept information of a specific type. For instance, if
a variable is typed , you know the variable is going to be of the data type
and only store characters. Further, if a variable is type , you know that the variable
will only accept numbers. Subsequently, if a variable is type and you try to assign a
value to it that is a number, you will receive a type-mismatch error from the compiler.

Second, typing your variables enables inline code hinting. Inline code hinting is a feature
of the Actions panel whereby suggestions are made from the Actions panel as to what code
should come next.

In ActionScript, data types can be classified into two categories:

Primitive: Primitive data types are what you have been exposed to so far in this
chapter. They include the most basic type of data that can be used in Flash pro-
gramming. Table 8-1 gives a list and definition of the primitive data types.TT

Complex: Complex data types are every other type of data used in Flash. They
include common reference data types such as , , and . Where primi-
tive data type can only contain primitive types of data such as numbers and letters,
complex data types can contain many primitive values and other complex values at
the same time.

Table 8-1.TT Primitive data types

Data type Example Description

/ Values of this type can only be or . These are
commonly used for comparison and decision making.

This type is used for any text-based value or string of
characters.

, , This type is used for any numerical value including floating-
point or decimal values.

, , This type is used for any integer or whole number.

, , . . . Short for unsigned integer, this type can contain any whole
number that is not negative or a decimal.

This type is used if a function does not return any value.

This type is used if a variable is not of a specified type.

This type indicates untyped variables that have not been
initialized.

This type is used for variables that do not have a value at all.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

204

Operators

Adobe defines operators as special functions that take one or more operands and return
a value. An operator, though defined as a function, is usually nothing more than one, two,
or three characters used to take two or more values and evaluate them. The best way to
comprehend this is with simple arithmetic. If we were to take the math problem 2 + 2 and
turn it into a computer program, it might look very similar to what you see here:

An operand is any value to the left ord right of an operator. Operands represent ther
information that is being operated on, or manipulated. In the statement ,

, , and are all operands.

These statements are pretty simple to understand. We have declared the variable
and given it the data type because we are fairly certain the result will be a positive
number. We then assign the value of the expression . Finally, we trace out the
value of , and we are given . The operator in this series of statements is the plus
sign (), also known as the additive operator. What is happening here is that the additive
operator () is evaluating the operands (and). And because the additive operator () is
responsible for adding things together, it determines the type of data that is involved and
joins them appropriately.

Further, had we attempted to add two strings together, the result may not be as expected.
For instance, let’s change the and to and . As shown in the following code,
you would then end up with something entirely different. Keep in mind that because
strictly typed variables can only accept the data of one type, the data type will also need
to be changed from to for this to properly execute. In this case, the resulting
join of two character strings is known as concatenation. Additionally, when an operator
has the ability to change the way it reacts based on the type of operand it is dealing with,
as the additive operator () did here, it is known as operator overloading.

As you can see, even the most basic use of an operator can become extremely convo-
luted. If we were to simply list all of the ActionScript operators and descriptions in tabu-
lar format, it would probably take about three or four pages. Further, if we were to take
the time to explain them all in detail, it could easily be an entire chapter. As a general
rule, most of the time operators behave intuitively; a plus sign will add things together,
or an asterisk will multiply them. They maintain an order of operations similar to arith-
metic. Because operators are such an integral part of a programming language, it is best

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

205

8

to introduce them in the manner in which they are operating. This facilitates the best
comprehension.

Postfix operators
Postfix operators are typically used to increment and decrement one numerical operand
by 1. As shown in the following example, the variable is incremented using the increment
() operator. It is then decreased using the decrement () operator.

Table 8-2 lists the postfix operators.TT

Table 8-2.TT Increment and decrement postfix operators

Operator Nr ame Description

Increment Increments a numeric variable by 1

Decrement Decrements a numeric variable by 1

Multiplicative and additive operators
Multiplicative and additive operators perform similarly to their arithmetical counter-
parts. They are used to add, subtract, multiply, and divide various operands. The following
example demonstrates a simple mathematical operation performed using the multiplica-
tive operator ():

Table 8-3 lists the standardTT multiplicative and additive operators.

Table 8-3.TT Most commonly used multiplicative and additive operators

Operator Nr ame Description

Multiplication Multiplies numeric variables.

Division Divides any two numeric values. If the variable is type
, this will return a decimal. If the variable is type

 or , the return value is truncated at the decimal,
and only a whole number is returned.

Continued

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

206

Table 8-3.TT Continued

Operator Nr ame Description

Modulo Divides two numeric values and returns the remainder.

Addition Adds two values together. Numeric values are added
arithmetically. Strings are concatenated.

Subtraction Subtracts numeric values arithmetically.

Relational operators
Relational operators are used to compare the value of two operands. The resulting value
is Boolean, either or . The following sample checks to see whether the value of
the variable is greater than or equal to the value of the expression :

Table 8-4 lists the standard TT relational operators.

Table 8-4.TT Standard relational operators

Operator Nr ame Description

Less than Checks whether the left value is less than the
right value

 Greater than Checks whether the left value is greater than
the right value

Less than or equal to Checks whether the left value is less than or
equal to the right value

 Greater than or equal to Checks whether the left value is greater than or
equal to the right value

Equality operators
Equality operators work in much the same fashion as the relational operators in that they
compare two values and return a Boolean value of either or .

In the next example the assignment operator () is used to give a value to the variable .
The first statement can be read is equal to . Conversely, the statement uses the
equality operator () to compare the values of and the expression . Therefore,

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

207

8

relational and equality operators can be thought of in terms of questions. Is equal to
?

You can also use the NOT operator () to determine whether values are not related.

Table 8-5 lists the standardTT operators of equality.

Table 8-5.TT Most common operators of equality

Operator Nr ame Description

Equality Checks whether the left value is equal to the right value.

 Inequality Checks whether the left value is not equal to the right
value.

 Strict equality Checks for same values, as well as compares the data
types of each value. If the left value and the right value
are the same and the data types are the same, the
expression returns . Objects and arrays are
compared by reference, not data type.

 Strict inequality Checks for the same values, as well as compares the
data type of each value. If the left value and the right
value are not equal or the data types are different, the
expression returns . Objects and arrays are
compared by reference, not data type.

Logical operators
The logical operators are also similar to the relational and equality operators in that they
compare the values of two operands. The primary difference is they give programmers the
ability to compare multiple comparative statements. The following sample checks to see
whether the value of is greater than 1 and less than 3:d

Table 8-6 lists the commonTT logical operators.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

208

Table 8-6.TT The AND and OR logical operators

Operator Nr ame Description

 Logical AND Allows you to perform a comparison on one or more
expressions simultaneously.

 Logical OR Allows you to perform a comparison of several expressions
simultaneously. Only one of the expressions needs to be
true for the statement to execute.

Conditional statements

Conditional statements are one of the first logical needs in any programming language.
Quite simply they allow a programmer, or more to the point the program, to make an
intelligent decision based on a set of predetermined conditions. For instance, if it is raining
outside, wear a raincoat or else you’ll get soaked.

if . . . else statement
The statement is the simplest and most commonly used conditional statement in pro-
gramming. It can be thought of as the fork-in-the-road decision maker. As shown in the
next example, the statement is comprised of four primary parts. The keyword simply
lets the program know that it is going to be entering the statement. The second part,
characterized by parentheses, is where the actual decision is made. The third part consists
of two curly braces that signify a code block associated with the statement. Finally, all
statements within the curly braces are executed if the statement evaluates to .

The statement works by evaluating expressions that are encapsulated within these
parentheses. There are only two possible outcomes for the evaluation of any given expres-
sion with respect to an statement, or . Therefore, the preceding example
asks, “Does the value of the variable equal ?” Again, the outcome can only be

or .

The clause can be added to the end of an statement to offer a desired outcome
for the statement evaluating . Therefore, rather than having your program do
nothing, you have the ability to have it act intelligently with respect to either decision. As
shown in the following code, the clause enables the statement to have an alterna-
tive option in the event it evaluates to :

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

209

8

else . . . if clause
A third option for working with statements is the use of the clause. The fol-
lowing example shows how this option gives you the ability to break your decision making
into multiple branches.

Though technically we could refer to an clause as a statement, it is
actually a clause because it cannot be used without an statement.

Logical operators && and ||
Finally, by using the logical operators and , you have the ability to create compound
evaluations to check multiple conditions at one time. The following sample code shows
the use of both types of logical operators to evaluate compound conditions:

switch
The statement is a special kind of conditional that allows you to define a multitude
of outcomes based on the evaluation of a single statement. Unlike the statements,
which check only whether an expression is true or false, the statement checks the

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

210

actual value of the variable, compares it to the list of viable options, and determines the
appropriate code block to execute.

As shown next, the statement is defined by the keyword followed by a set
of parentheses that contain the expression to be evaluated. All execution options are then
encapsulated within the curly braces. Each subsequent option is defined by the key-
word, followed by an option value and a colon. The colon is then followed by any code
statements that are to be executed should this option be met. Each statement is then
closed with the keyword.

Loops

In addition to making decisions, it is also very common for a computer program to repeat-
edly execute a series of statements until a certain parameter is met. Loops are essentially
statements that increment a variable a given number of times until a condition is met. In
ActionScript the two most commonly used loops are the and loops.

for
The most common loop used in programming languages like ActionScript is the loop.
As shown next, the anatomy of a loop is rather unique in that unlike other functions it
uses the semicolon as the delimiter instead of the comma. The reason for this is that you
are actually sending three statements to the loop as opposed to an expressed value.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

211

8

The first of these statements, , sets the starting value for our count. The second
statement sets the ending value of our count to . Finally, the third statement uses the
incrementing postfix operator to increment the value of by 1. These statements can be
read as “For is equal to 0 and is less than 5, add 1 to .”

The loop works as follows. With the first pass through the loop, the value of is .
Therefore, the statement traces . When the loop has completed its first pass, is
incremented to . The loop compares this to the second statement. Is less than 5? Yes!
The loop runs again. The statement traces and the cycle repeats until the variable
has reached the value as predetermined in the second statement—in this case .

while
The loop works in exactly the same manner as the loop. As shown next, the first
step is to define a base starting point for the incrementing variable. In this case, will once
again begin at .

The loop is a bit less complex than the loop in that you now only need to give
the statement one conditional expression in the parentheses. Therefore, we again
want this loop to run until it is less than 5, or 4. Finally, all code that we wish to have exe-
cute is placed in between the curly braces of the function. As you can see, it is here
that we tell our variable to increment.

The loop is not used as commonly as the loop. Though it is easier to under-rr
stand, it does have a greater chance of becoming stuck in an infinite loop. For instance,
if the statement were left out of the loop, the variable would never reach ,
and the loop would never stop running.

Functions

Functions are the part of the program that makes things happen. To continue the English-TT
language metaphor we have also been using in this chapter, functions can be thought of as
the verbs of the program.

Think about the statement, which should now be very familiar to you. As you learned
earlier, the statement is a special kind of function that passes information to the
Output panel. This information comes in the form of a variable that can be either a literal
or an expression. Like the statement, other functions have the ability to accept vari-
able information in the form of arguments, also known as parameters, through the use of
parentheses.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

212

Defining your own functions
Functions are defined using a special predefined keyword, . This keyword works
in the same manner as does the keyword. Once a function is declared by using the

keyword, the function is then named under the same guidelines that govern
the naming of variables. (See the section “Variables” earlier in this chapter for an explana-
tion of these guidelines.) The function name is then always followed by a set of parenthe-
ses. These parentheses are used to pass information to the inner workings of the function
in the form of variables. These variables can also be declared in the parentheses at the
time the function is declared. The function body is then established using a pair of curly
braces. Within the function body, all statements that define the execution of the function
are placed.

The following sample shows the definition of a function called . The
function accepts one parameter, , of the data type. The function will then
pass the variable value to the statement located in the function’s body.

In order to use a function, you simply need to type the function’s name followed by the
desired parameter value encapsulated in parentheses. The following example demon-
strates how the function can be used within the program. By passing

as the parameter, the function will then trace the parameter to the
Output panel.

The term “call” is often used to describe when a function is used in a
program. It is often said that you can “call a function” or “make a func-
tion call.”

Returning values from functions
For the time being we have been working with statements. The problem with the

statement is that it always works. You put something in, you get something out.
Given any logical parameter, the statement will give you some kind of meaningful
feedback. Unfortunately, that is not indicative of how functions really work.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

213

8

Functions can be thought of as a machine that operates on data. However, you don’t
always have to give it information. Additionally, it doesn’t have to give you information
back. In some cases, it will not want anything from you or give anything back. The
statement, of course, is an elementary example of the other extreme.

You have learned how to pass information into a function. Remember, the parameters of
functions that are defined in the parentheses allow you to pass information to the func-
tion. Now let’s take a look at how to get things back. The following function performs a
basic arithmetical process on a couple of variables:

You will notice that when we try to trace the value of the function, it returns
the value of to the Output panel. This is because the function is not returning
any value. It is accepting two parameters, and . It is also, without question, adding and
 together and assigning that value to . Right now, it simply isn’t returning a value.

In order for a function to return a value, we have to use a special keyword, . The
 keyword does exactly what it says in that it returns the variable it is assigned to. ToTT

use the keyword, enter it as you would keywords like or followed by
the variable name you would like returned.

After adding our statement, you will notice that the function returns a value of ,
as expected. Did you also notice the addition of the data type? Yes, functions can be
data typed as well. The purpose of data typing functions is to make the program aware of
what type of value is going to be returned by the function. Again, it is not required but
considered extremely good practice.

Data types are discussed earlier in this chapter if you’d like more infor-rr
mation about them.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

214

Variable scope

Scope refers to what parts of a program’s code have the ability to reference a variable.
Scope is always assigned automatically based on where the variable is declared. In ActionScript
variables are defined by two different types of scope, global and local.

Global variables
A global variable is one that can be accessed by all parts of your code. Global variables are
defined independently of functions—that is, they reside outside of the body of any func-
tion. In the following example the variable is declared outside of the body of the
function . Therefore, it is accessible from any part of the program. As you can see,
both statements are able to trace the value of the variable , which is .

Local variables
Local variables, on the other hand, exist only in a small portion of your program. Local
variables are declared within a function’s body. They are only accessible directly by the
function itself. As shown next, the variable is declared inside the function’s body.
Therefore, when we try to trace the variable using a statement located outside of
the function, we receive a compiler error.

Shadowing global variables
It is also possible for a local variable to shadow a global variable. The term “shadow” is
used to describe a situation in which the same variable name is employed for two separate
variables that are defined in different scopes of the same program. In the next example

is used as the name of a variable declared outside of the function . In addi-
tion, the same name is used to describe the variable declared inside the function. As you
can see, the local statement uses the local declaration of the variable.

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

215

8

Finally, let’s take a look at the last primary component of ActionScript development,
the class.

Having a little class or a big one
The last stop in the development of an ActionScript program is going to be the construc-
tion of a class. A class is a collection of related properties (variables) and methods (func-
tions) that are grouped together in one collection. If you think of classes in the same way
you think of functions, they are a means by which you can group similar code into one
well-organized package. The idea of grouping code to make it more efficient is referred to
as modularity. To get an idea of how this is helpful, consider the following list:TT

 A variable is the most basic element in a computer program.

 Statements are used to manipulate and change the information stored in variables.

A series of repetitive statements can be organized into functions for the sake of
efficiency.

For an even greater degree of organization, functions and variables can be grouped
together into what is known as a class.

In Chapter 10, you will build a multiclass application. In this example, we are going to show
you how to construct a simple one-class application so you gain familiarity with the basic
structure of an ActionScript-based class.

Building your first application

Alright, now before we wrap up and move on to bigger and better things, let’s take a
moment and construct a simple application to give you a basic understanding of how you
create one and what the important parts are.

First thing you need to do is open Flash, if you don’t already have it open. Next, you need
to create two new files. First, create a new Flash file by either selecting the Flash file
(ActionScript 3.0) option from the Welcome Screen or by selecting File New and choosing
Flash file (ActionScript 3.0) from the document window. Save this file as in
a directory that you are comfortable with.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

216

The document class
The document class is a property of an FLA file that assigns any given class as the pri-
mary class to be used for this Flash file. Like all other document properties such as can-
vas size, background color, and frame rate, the document class can be set using the
Property inspector. For this step we will need to have as the active win-
dow in Flash.

To access theTT Property inspector, select Window Properties or press Ctrl+F3. To assign aTT
document class, simply type the name of the ActionScript file you would like to use (with-
out the extension) in the field labeled Class. In the case of this example, you will be
using the class (which you create in the next section). Therefore, type
HelloWorld in the Class field of the Property inspector, as shown in Figure 8-6.

Figure 8-6. The Document Class field in the Property inspector

Packages and import statements
Now that your files are properly set up, you can start defining your class file. You will
need to create an ActionScript file by selecting File New and choosing ActionScript File
from the document window. Save this as in the same directory as the

 file.

It is important that you save your ActionScript file in the same directory as your
FLA; otherwise, Flash will be unable to locate it. In Chapter 10, you will learn to
establish external libraries and define their locations using a source path, for-rr
merly called a classpath.

The first step in defining a class is to properly define a package. In Flash, a package is
nothing more than a collection of AS files. At this point, your AS file is located in the same
directory as your FLA file, so it will not be necessary to give your package a name. However,

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

217

8

it is a required element of any custom class, so it will need to be added. Go ahead and add
the following lines of code to :

The next thing that you will need to do is import other packages for use in Flash. Recall that
Flash installs with core functionality that is comprised of hundreds of classes. In order to use
any functionality from another class, you will need to import it. To do this, you will use the TT

statement followed by the location of the class. Because you will need to use some
of the functionality from the and packages, you will need to import those.

The preceding example uses the statement to import the classes from the display
and text packages. In the preceding code, represents the physical location of those
files on your computer’s hard drive. and represent folders in that location.
These folders are what we referred to as packages. Inside each package is a varying num-
ber of AS files. The asterisk here represents “all” of the AS files in that package. Therefore,
these two statements have imported all of the classes from both the and
packages.

Class definition
The next thing that you need to do is define your class. As you can see in the next exam-
ple, you’ll have to add quite a bit of text in the form of keywords. For now, all you really
need to be concerned with are the words and . The rest, though neces-
sary, will be explained in more detail in Chapter 10. Declaring a class is actually the same
process as declaring a variable or function. You need the reserved keyword, , to let
the compiler know that this is indeed a class. And you need an appropriate name. The
naming of a class is extremely important. It must be the exact same name as the AS file
that it resides in, case and all. Therefore, because this class is being written in the

file, it needs to be called .

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

218

Classes in Flash are typically named using standard title case with no
space. The first letter of every word is capitalized. This is not required, only
common.

Constructor functions
Constructor functions are the last absolutely necessary piece of any given class. When a
class is instantiated, or declared in the program, the constructor function is responsible
for what happens. It is the initializer of the class’s functionality. It is the first domino, so
to speak.

Like any other function in ActionScript, the constructor is declared using the
keyword and named appropriately. As with the class, the naming of the constructor is cru-
cial. It must be the same as the name of the class and the file it resides in. For this example,
the constructor must be .

Pay no attention to the word behind the curtain! At this point,
several keywords are being overlooked. The keyword, for example,
denotes permission to a class and its members. For now, it is sufficient to
learn the basics of class construction and study the details later.

Wrapping it up
To finish up your first class, you need onlyTT add the nuts and bolts to the constructor func-
tion. By now this should be a fairly simple task. What you are doing here is emulating the

function. Because the function does not render anything to your published
SWF file, you are going to need to fake it using a simple text field.

In this chapter, you worked with primitive data types such as , , and .
In the upcoming example, you will create the variable and give it a data type

THE PROGRAMMING PRIMER: A FLASH DESIGNER’S INTRO TO ACTIONSCRIPT 3.0

219

8

of . A is considered a complex data type. Complex data types are
named so because they can contain complex sets of data. This means that they can rep-
resent entire classes. As you know, classes can contain members, which can consist of
properties (variables) and methods (functions). Therefore, in direct contrast to a primi-
tive data type like , which is simply a whole number like 3, a complex data type can
contain an abundance of information ranging from primitive data types or other com-
plex data types.

When you assign a value to , you will use the keyword followed by
the function. In this process, you are instantiating an object based on the

class. So, when you use the keyword to assign a value to , you
are actually referencing the constructor function of the class to create a new
text field.

You also learned that an object, like a , can have properties. These properties
can be accessed using dot notation. In this case, text fields have a property called ,
which is nothing more than a variable that represents the text displayed in the text field.
So, the second statement in your constructor function will essentially take a
object named and set the value of its property to

Finally, to get this to display on the stage of your SWF, you need to add it to the
display list. This is accomplished using the method. Therefore, you will add
the to the stage with the statement .

The following shows the addition of the three previously mentioned statements to the
constructor function:

Go ahead and save your file and press Ctrl+Enter/Option+Enter to publish
your SWF. You should see the text “Hello World!” publish to the stage!

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

220

Summary
In this chapter you were exposed to quite a bit of information. Though it may have seemed
overwhelming, it is important to keep in mind that it was a mere overview of what is to
come. In much the same fashion that you would need to learn the alphabet before you
can write an epic, so must you learn the basics of ActionScript.

It is true that much of the syntax will become second nature as you learn other aspects of
ActionScript. However, there is no replacement for having a good understanding of the
basics. Be sure to utilize tools like the Script Assist and Actions panel, as mentioned in this
chapter.

Remember, variables are the building blocks of any ActionScript program. Variables are
references to memory that are used to store information. You can manipulate this infor-
mation using statements. Repetitive statements can be grouped into collections, called
functions. Finally, groups of related variables and functions can be grouped into even
larger collections called classes.

The following are the most important topics from this chapter:

 Using the panel

 Using Script Assist for easy ActionScript

Proper ActionScript syntax

Creating and data typing variables

 Manipulating variables through statements

 Using functions to group repetitive code

Further organizing and modularizing your code via classes

CHAPTER 9

THE BUILDING BLOCKS OF
INTERACTIVITY

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

224

In this chapter we will take a closer look at properties, methods, and events—the three
primary elements used to define how classes live and breathe in a programming world.

In ActionScript, all executable information is managed into classes that are used as tem-
plates to create objects or instances of that class. You can think of the concept of instan-
tiation as a Xerox copy machine. The class is the original document that is placed on the
glass and copied. The objects are the copies that are made. Therefore, if the Xerox machine
were making copies of a document, such as a job application, you could make as many
copies as you wanted and give them to as many people as you wanted, who would fill
them out any way they wanted, and still not destroy the integrity of the original.

It is this fundamental principle that gives the object-oriented approach to programming its
power. All functionality can be programmed once, in one location, and instantiated when
needed. Within the class exists all the required functionality needed by the object (copy)
that is created.

From a technical perspective a class is nothing more than a collection of variables and
functions grouped together for a specific purpose. Remember, classes define things. As
you might expect, things have the ability to be described, things have the ability to per-
form various tasks, and things have the ability to let other things know what they are
doing. For example, a human being has the ability to be described. It can have height,
weight, hair color, or any number of other traits that offer information about it. Human
beings can also perform acts such as running and jumping. And, human beings have the
ability to alert others of things they have done—“Honey, I’m home!”

Officially, the elements that have just been mentioned are known as properties, methods,
and events. It is through these three vessels that an object can communicate with other
objects in the programming world. Properties are used to describe an object, methods
are used to allow the object to perform an action, and events give objects the ability to
notify other objects of an action. In this chapter we will be looking more closely at these
components so you can gain a better understanding of how classes function.

First stop, properties!

Properties: I unpacked my adjectives
You know that properties are the part of the class that describes the object. Functioning
like adjectives, properties are just variables that have been defined within a class. Properties
and variables use the same syntax—in fact, both are defined using the or key-
words. The difference, however, is in the usage. Some variables, like local variables used
for counting loop iterations, will be defined in your classes without being properties of the
classes. Therefore, it is best if you think of properties as variables that have been specifi-
cally tasked with describing the object.

For example, a box may have properties like color, height, and width. These are all values
that have some kind of descriptive meaning to the box itself. They only describe the box, not
what the box can do. Properties are also typically a reference to a primitive data type such as

, , and values. A box may have a A of and a of .

THE BUILDING BLOCKS OF INTERACTIVITY

225

9

You may not have realized it, but you have actually been working with object properties
for several chapters now through the Property inspector, which is the panel used for editing
an object’s properties. And though it is not obvious to a designer at author time, the val-
ues of a symbol’s properties that are set in the Property inspector are the values of those
same properties in ActionScript. All that remains for you to do is learn to translate what
you know about the Property inspector so you can apply it to ActionScript.

Translating properties from stage to ActionScript

The easiest place to draw a correlation between items created during author time and
those same objects in ActionScript is by examining display objects. Because Flash is also a
design tool, it is common practice for most users to become familiar with the design
aspects of Flash prior to becoming involved with ActionScript, much like you have done in
this book. Therefore, you are already very familiar with adjusting the properties of display
objects by working with the design aspects of Flash in previous chapters. Because of this,
you now have a tangible point of reference for manipulating those properties in
ActionScript, while understanding how they ultimately affect the original object.

As a vernacular, most people refer to display objects in Flash as movie clips. In reality, a
movie clip is a type of display object. Display objects can actually be any visible object in
Flash, including bitmaps, movies, buttons, and a variety of others. Because movie clips
are the most widely used type of display object, it is very common to hear all types of
display objects referred to as movie clips. Try to avoid this habit. See Chapter 10 for a
discussion of display objects.

To further expand on this principle, TT consider the Property inspector along with the
Transform tool and 3D Transform tool. These three tools are the primary ones used to
adjust the size and position of display objects in Flash at author time. At any given point
during the creation of a graphical asset, a designer can use these tools to adjust an
object’s rotation, position, scale, and more. In the case of the red box shown in Figure 9-1,
a designer has the ability to adjust several properties of this object. Essentially, the tools
in the Flash design environment give the designer complete control over an object’s
properties at author time.

Figure 9-1. Display objects can be edited at author time using the Property
inspector, Transform, or 3D Transform tools.

It is, however, also possible to manipulate these same properties using ActionScript. Just as a
red box has an x property on the stage, it also has that same property within y ActionScript.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

226

Changing properties with ActionScript

Now that you are aware of the relationship between author-time graphical elements and
ActionScript, it should be no tremendous feat to try and manipulate those elements. For
this we are going to need to employ the services of . Go ahead and open

.

Upon opening this file, you should see a red square in the middle of the stage. At this
point, this box is no more than a simple movie clip. In order for us to be able to use this
in ActionScript, it will need to be given an appropriate name.

Fortunately, the naming of individual symbol instances can easily be accomplished using f
the Property inspector. There is an input field at the top of the Property inspector with the
words <Instance Name> in it. In this field you have the ability to assign a name to any sym-
bol instance on the stage by selecting that instance and typing a unique name in the field.
This instance name will serve as the variable reference for the selected display element,
giving you the ability to access your symbol via ActionScript. In Figure 9-2, the instance
name of has been assigned to a movie clip.

Figure 9-2.
An instance name entered
into the Property inspector

1. Open the Property inspector by selecting Window Properties or by pressing
Ctrl+F3.

2. As shown in Figure 9-2, add the name redBox in the <Instance Name> field of the
Property inspector.

THE BUILDING BLOCKS OF INTERACTIVITY

227

9

Now that the movie clip has a name, we can make reference to it in ActionScript. And
because of this name, we now have the ability to manipulate its properties as well. It is also
worth mentioning that the values assigned to this movie clip in the Property inspector willr
be the same starting values for these properties in ActionScript.

With that in mind, the second thing you will want to do is create a new layer for your
ActionScript. Typically, when you are writingTT ActionScript directly to the timeline of your
FLA, you will want all scripts to reside on a single layer of the FLA.

3. With the timeline open, create a new layer above the Red Box layer and label it
Actions.

For cleanliness’ sake, it is also a good idea to lock the layer containing
ActionScript so no visible elements are accidentally placed on its keyframes.

Next, we will want to add ActionScript to the Actions layer.

4. Select frame 1 of the Actions layer and open the Actions panel by pressing F9. In the
script pane, enter the following two lines of code:

I should point out that the first line of code is more or less redundant. As discussed earlier,
when you create a movie clip symbol in Flash, it is given all the functionality of a movie clip
in ActionScript as well. In addition, when you give it an instance name, you are also giving
it a reference or variable name to use in ActionScript. This item is also strictly typed as a
movie clip. In fact, if you removed the first line of code, your code would execute exactly
the same. It is more or less unnecessary.

In the real world, I have never heard the use of an instance variable being considered good
practice. I will also say that it is more common for this line to be omitted when working
with elements that have been given specific instance names. Why should we then bother
to discuss this? Well, it does offer a few advantages to professionals just becoming familiar
with ActionScript.

First it will greatly increase your understanding of working with variables in their true envi-
ronment. From a programming standpoint, the declaration of variables is required. And,
data typing is considered excellent programming practice. Much like the semicolon, just
because it is not required at this point doesn’t mean it isn’t a good thing to use.

Secondly, and more tangibly rewarding, declaring variables enables inline code hinting. As
shown in Figure 9-3, strictly typed variables are included in a drop-down menu that appears
showing all the available members of that object type. A member is a term used tor
describe all properties, methods, and events contained in a class.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

228

Figure 9-3. Code hinting while typing in ActionScript

In Chapter 8 we discussed dot notation, one of the primary purposes of which is to
access the members of objects. In the preceding example, is a property of

. Therefore, we use dot notation to access that property and change its value
to 20.

As you may have guessed, the previous two lines of code are going to rotate the
movie clip 20 degrees. Test your movie by pressing Ctrl+TT Enter (or Cmd+Enter on a Mac).
As you can see, does indeed rotate 20 degrees. You have just successfully edited an
object’s properties in ActionScript.

Incrementing ActionScript with frame loops

Still working with , we will now create a simple loop using keyframes to fur-
ther manipulate the properties of the movie clip. Creating a loop with the timeline
is simple. You only need to add more frames to the timeline. Though recent years have
seen more and more ActionScript development being done in external files, it may still be
necessary for a developer to incorporate timeline-driven actions.

Now, because this movie has a frame rate of 24 frames per second, we will add 12 frames
to the movie. This will give us a timeline that loops approximately every half second.

The fact that a movie has a specific frame rate does not mean the movie is necessar-rr
ily going to execute at that speed. Many factors such as computer processor speed
or network speed also play a role in how quickly a frame rate is executed.

Next, you can simultaneously select frame 12 of both the Actions layer and the Red Box
layer by clicking frame 12 of the Actions layer and dragging down to frame 12 of the Red
Box layer. You will notice that both frames highlight blue.

THE BUILDING BLOCKS OF INTERACTIVITY

229

9

1. With both frames selected, press F5. This will add new frames to both layers through
frame 12, as shown in Figure 9-4.

Figure 9-4.
Simultaneous addition of
frames to the timeline

2. Once the new frames are added, select frame 1 of the Actions layer and open the
Actions panel.

Right now, the ActionScript for the property of simply tells the to
rotate to 20 degrees. What we actually want to happen instead is to have rotate in
20-degree increments. This is achieved by a special incrementing operator, . This opera-
tor takes the current value of a variable and adds an amount to it. In the following code,
every time our movie passes through frame 1, the statement will take the current value of

and add 20 to it.

3. Change the code on frame 1 to the following:

This is all that is required for the creation of a simple ActionScript timeline loop. You can
test the movie by pressing Ctrl+Enter (or Cmd+Enter on a Mac). You should see the
now rotating clockwise. You can further experiment with this loop to get familiar with the
various properties of movie clips. For example, if you use the following code, your
movie clip will spin off like the Phantom Zone from Superman. You can also change the
speed by adjusting the total frames and frame rate of your movie.

Now that you are familiar with properties, what they do, and how they can be manipu-
lated, it’s time to take a look at the parts of the class that perform action. The first of
these, methods, is the real doer of any procedural or object-based application.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

230

Methods: Just do it!
Methods are functions that have been defined within a class. Like properties, they perform
specific tasks that are relevant to the instance of the class. They more or less describe what
an object can do or have done to it. For instance, if we create the class , it
might have methods like , , and .

As we progress further through this chapter, you will be introduced to a number of basic
methods that are associated with movie clips. And, by the end of the book, you should be
extremely familiar with the concept of methods and how to use them.

The final player in the functionality of class-based programming is the event. In the past
few years ActionScript has been moving toward a more event-based structure.

Events: Are we there yet?
Events are a special kind of method. Unlike regular functions and methods that are spe-
cifically called when they are needed, events actually wait for something to occur within
the program and react to it. This quality makes events a bit more complicated than other
aspects of programming. For example, they can require multiple objects to execute, includ-
ing objects that put out or broadcast events and objects that “listen” for those events.
Events are truly the magic that makes modern interactivity possible.

Event handling has always reminded me of the little kid in the back seat of a car—“Are we
there yet? Are we there yet? Are we there yet?” Without events, a computer program con-
stantly needs to check the status of an object to determine whether something has
changed. Much like that little kid in the back seat of that car, a computer program would
continually be asking, “Has it changed yet? Has it changed yet? Has it changed yet?”

Fortunately, someone in the computer world wised up and created the mother in the front
seat. You know, that lady who finally screams, “I will tell you when we get there!” Events
are similar to this. Not that they completely flip out and yell at the rest of the computer
program, rather they take charge of the notification. So instead of your program con-
stantly checking for a change in state, the event notifies the program when the change has
occurred. Kind of like mom, only nicer.

The more mature ActionScript gets, the more event-driven it becomes. The release of
ActionScript 3.0 is definitely no exception to this trend. With this version, Flash event han-
dling was completely rearchitected to offer a more streamlined approach to the way Flash
processes events. The following section outlines some of the more common event types
and the theory behind them.

EventDispatcher class and the Flash event model

The class is responsible for controlling all functionality associated with
the execution of events in Flash. Though not new to ActionScript, it has now been

THE BUILDING BLOCKS OF INTERACTIVITY

231

9

restructured into the lower-level functionality of Flash as a base class from which other
objects inherit its functionality.

The Flash event model
To better understand the way in TT which events function, let’s first take a look at the three
main components of the Flash event model:

Event listeners are special methods that are used by other objects to detect when
an event has occurred. A button would therefore be “listening” for when the mouse
click has occurred.

Event handlers are functions that are evoked by the listening object. These func-
tions are able to respond appropriately to the event that has occurred.

Event dispatchers, also commonly referred to as broadcasters, are responsible
for letting the program know that an event has occurred. For instance, when you
click a mouse button, the mouse notifies Flash the button has been clicked.

Though the construction of custom event dispatchers is a bit advanced for the scope of
this book, using event listeners and event handlers is something that is easily implemented
into everyday ActionScript programming.

Most of the events that you, as someone new to Flash, will be working with will deal
with listening for user-driven events and interactivity. Many events occur behind the
scenes, used by the application to also detect events involving the environments (brows-
ers and computer) and different forms of data.

Event listeners and handlers
Let’s talk about using event listeners with mouse events. When you run a Flash movie,
every time the mouse is clicked, it dispatches or broadcasts an event. Though you have no
idea this is taking place, it nonetheless is happening. Other objects in Flash then have the
ability to listen for that event.

Now let’s look at an example of an event listener. Figure 9-5 shows an instance of a simple
button used in the sample file. This button has also been given the instance
name of in the Property inspector.

Figure 9-5. A simple button
armed with a event

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

232

If you select frame 1 of the Actions layer and open the Actions panel, you will notice the
following code, which will be responsible for detecting and responding to the
event:

The first two lines of code demonstrate what is needed for the invocation of the event
listener. Remember, many events are automatically being dispatched from the
object. You only need to be concerned with capturing that specific mouse event and
responding to it. Therefore, in order to capture an event, it is necessary to assign an event
listener to an object that will respond to that event. In this case, is going to be the
object interested in responding to the mouse event.

To assign an object the ability to listen for events, TT we use the method.
The method serves a few purposes in the event model. It is more or
less a liaison between the event and the response to that event. As a requirement, it
accepts two parameters. The first of these defines the kind of event the object would like
to listen for. In this case, will be listening for a event.

The second parameter in the method is the name of a function that
will execute when the event is detected, in this case . This function is known as
the event handler, and it reacts to the event as dictated by the event listener. Event han-
dlers are nothing more than simple functions that require the passing of one parameter.
This parameter is the event object that contains information about the event that was
dispatched. As shown in the preceding example, the function will trace the
string whenever the event occurs.

Event objects

Event objects are objects that store information about an event when it is dispatched. In
the event model, the event object is what is passed from the event dispatcher to the event
listener and eventually the event handler. When you create an event listener, the event
object is what is defined in the first parameter. This event object is then passed to the
event handler as its parameter.

In the next example, we will take another look at the code from earlier in this chapter.
Now we are specifically looking for a object that is of the type . Once
this is detected, the event object is then passed to the event handler as the parameter .
This adjustment can be found in sample file .

THE BUILDING BLOCKS OF INTERACTIVITY

233

9

Event objects are incredibly useful in programming because they contain all relevant infor-
mation about a particular event. If you were to click the button from the preceding exam-
ple, the following information would be printed to the Output window. This output is all
the information that is associated with this particular event object.

Mouse events
Depending on the type of event, you could be presented with an assortment of different
information. Some of the more common mouse events are as follows:

: A string value indicating the type of event

: The target object of the event, typically buttons

: A horizontal reference to the mouse’s position relative to the target at the
time of the event

: A vertical reference to the mouse’s position relative to the target at the
time of the event

: A horizontal reference to the mouse’s position relative to the stage at the
time of the event

: A vertical reference to the mouse’s position relative to the stage at the
time of the event

Event targeting
The second statement in the previous example’s event handler demonstrates access
to another important property of the event object, the target. The target of an event is
the object that actually receives the event. In this case, is the target. If you hap-
pened to click the stage of the movie, the stage would be the target. You would not see
anything happen, though, because the stage is not currently listening for mouse events.

The property of an event is then a reference to the target object itself. Therefore,
this reference gives you further access to information about the target as well. If the pre-
ceding event handler was changed to something like what you see in the following example,

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

234

the statement would then print the name of the button instance, , to the
Output window.

Event propagation

In previous versions of Flash it was impossible to have an interactive object within another
interactive object. In other words, you could not have a button nested within another but-
ton. Any nested object that was located within another object would fail to receive its
events. Fortunately, ActionScript 3.0 has introduced developers to the benefits of event
propagation.

All visual elements in Flash are relationally organized in a system known as the display list.
When a targeting event such as a mouse click or keystroke is used in Flash, the event
object is not dispatched directly to the target of the event, but instead dispatched to the
display list. The event enters the display list at the topmost level and ultimately traverses
the hierarchy until it reaches the target object. Once the event object has reached the
target, it will then make its way back to the top of the display list. This process, known as
event propagation, is demonstrated in Figure 9-6. Event propagation is a rather elegant
solution to an otherwise menial task.

Figure 9-6. An event entering the display list and propagating to the target object

You will be introduced to display objects and their hierarchy in Chapter 10.

THE BUILDING BLOCKS OF INTERACTIVITY

235

9

Event phases
As mentioned earlier, when an event is dispatched to the display list, it makes its way down
through the display hierarchy until it reaches the target object. Once the target object has
been reached, the event then returns, or bubbles, back to the top of the display hierarchy.
This process is broken into the following phases to describe where the event is in the
event flow:

Capturing phase: This phase represents the event passing through all parent
objects of the target object.

At-target phaseAA : This phase represents when the event flow has reached the target
of the event.

Bubbling phase: This phase is when the event makes it way back to the topmost
object of the display list.

Welcomed side effects of event propagation
Event propagation actually creates two extremely useful situations when dealing with
ActionScript. The first, which is demonstrated in , will show you how selecting
one target will trigger events of other objects within the flow. This example contains three
event listeners and three event handlers. The elements will trace mouse clicking for the

, , and objects, respectively.

If you then test this movie and click the stage, you will see the word “Stage” traced to the
Output window. If you then click , you will see the words “Button1,” “Root,” and
“Stage” traced to the Output window. What you are seeing here is that even though you
clicked the button, the event has been dispatched to the target through the display list
and is now bubbling its way back to the top.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

236

At this point you are only seeing the events as they reach the target and bubble back. In
order to detect the capture phase of the event flow, you will need to use an optional
parameter for the event listener known as , which is a Boolean variable set to

by default. Therefore, listeners by default are not detecting the capture phase of the
event flow. If you add the two lines of code shown next in bold, you will then be detecting
the capture phase for the event flow as well. Therefore, if you now test your movie and
click the button, you will see the complete journey of the event in the Output window:
Stage, Root, Button 1, Root, Stage. You should take notice of the extra parameter in the
new event listeners, both of which are used to set to .

Assigning events to parent objects
A second useful trick when working with events and event propagation is assigning an
event to a parent object. In the sample file , also shown in Figure 9-7, four
button symbols are arranged in the parent movie clip, Container.

Figure 9-7. For more
efficient programming, you

can assign a single event
listener to a parent object.

In previous versions of Flash, you would need to define event listeners and handlers for
every button on the stage. However, because targeted events must travel to the target
before they can complete the event phase, it is possible to assign listeners to parent
objects. You can then manage the functionality for multiple targets with one event.

The following code demonstrates that rather than adding event listeners to multiple
objects on the stage, it is possible to add an event listener to a parent object instead. And,
simply by being the target, the button will receive the event. This becomes very useful
when setting up navigation schemes.

THE BUILDING BLOCKS OF INTERACTIVITY

237

9

In the preceding code we create two sets of event handlers and listeners to determine
when the mouse button is being held down and when it is released, or up. By using the

property of , our event object, we can then use the and
methods to drag and drop the buttons.

So far we have looked closely at the use of mouse events. In ActionScript we are not lim-
ited to the use of events with the mouse. The event model actually ranges across dozens
of events and event types. Two other types of event, which we will be looking at next, are TT
frame- and time-based events.

Frame and timer events
Flash, by design, is a tool used for developing products that generally require the passage
of time. As you learned in Chapter 1, Flash was first developed as a drawing and animation
tool. Therefore, at its very core, it is necessary for Flash to be able to not only set up ani-
mations and state changes, but also control those changes at runtime. For this Flash uses
the and event types.

Frame events

As you will continue to learn throughout your career with Flash, a significant amount of
functionality goes on behind the scenes. For the most part, you will never need to employ
the majority of this functionality in your day-to-day Flash development. One of these
occurrences that is worth mentioning is the execution of frame scripts. Much like the pre-
vious example where we used the frame loop to increment the properties of the red box,
ActionScript will detect the entering of frames on the timeline.

In ActionScript, you have the ability to listen for a special type of event known as the
event. The event is dispatched in conjunction with the current

frame rate for the document. Regardless of the number of frames in your document, this
event will be dispatched at a rate that is directly related to the frame rate of

the document. This will happen even if the playhead has been stopped with the
method.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

238

The following example shows code from :

As you can see, the event listener for the event has been added directly to
the stage, which is the topmost display object and itself a movie clip. The function loop
simply creates a new object from which the and properties
are used to generate a time signature that is traced to the Output panel. This function, as a
handler, is then fired every time the event is detected.

When you run this file by pressing Ctrl+Enter (or Cmd+Enter on a Mac), you will see that
the Output panel is registering a time signature for the detection of events about 12 times
per second. This, of course, is the current frame rate assigned to this file.

Because events are directly connected to the frame rate for a given docu-
ment, they serve as an excellent tool for creating ActionScript-driven animation. The file

 demonstrates how regularly updating an object’s properties, in this case ,
will grant the illusion of the object having movement.

Timer events

Because the event is directly related to the execution of the frame rate, it
may not always be the best solution for working with events that need to occur on a
regular interval. For these occasions, ActionScript offers the event. Where the

event executes with the frame rate, the event executes in terms of
milliseconds.

To use a timer you first need to create an instance of the TT class. The following line
demonstrates the instantiation of the class:

THE BUILDING BLOCKS OF INTERACTIVITY

239

9

Note that the constructor function of the class can accept two parameters. The
first of these, known as , sets the amount of time that passes between the dis-
patching of events in milliseconds. The second parameter, which is optional, allows
you to set a total number of intervals that will occur. For example, if were set to

and were set to , the timer would dispatch six events, one event
every second.

In the next example file, , the object has been declared and given a
delay value of 50. This will cause the timer to dispatch an event every 50 milliseconds. The
optional property has been omitted. Omitting this property will cause a timer
to execute infinitely.

The second line in this example is the assignment of the event listener. Because the timer
is both the dispatcher and listener for a given event, the method is
assigned to the object.

The third line of code used here adds an even greater degree of flexibility when working
with timer-based intervals. Unlike the event, which is always firing, the
event only begins when you tell it to. When using the method of the class,
you have the option of starting your timer at any given point in your program. Similarly,
the class also offers the and methods to allow complete control
over when a programmer uses the timer.

Finally, the event handler is used to execute the code that is used for the
event. In this case, the ball movie clip is having its property incremented by two every
50 milliseconds. This creates the illusion of motion.

Next, let’s learn how to give our users the ability to control our applications using the
keyboard.

Accepting keyboard input
The final type of event we will be looking at is the keyboard event. The
class in Flash makes it easy for a developer to assign events for the purpose of capturing
keystrokes.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

240

For this example, we will take a look at the :

In the first line we set up the event listener for the various keyboard events. As discussed
during the “Event propagation” section of this chapter, we can assign a single event lis-
tener to the stage that will effectively listen for all events dispatched from the keyboard.
In this case, we use to detect when a key is down.

Once the event is detected we can then call the function to efficiently handle the
event. Within the function, we can use the statement to filter through the
keys as they are pressed and determine the right response to each one. This is made pos-
sible by checking the value of the event object. In Flash all keyboard keys are
given a numeric value between 8 and 126. This value is assigned to the property
of the event object that is passed from the event listener.

Flash also offers the class, which is used to assign these values to con-
stants that are more easily recognized by humans. Therefore, we can use a state-
ment to determine whether the current is equivalent to a desired value.

When testing the movie, you will be able to move the ball about the screen with the
arrow keys.

Removing events and listeners
If you don’t remove events when you’re done using them in Flash, they will continue to
respond to interactions even if you don’t want them to. Further, events like
are processor intensive and can cause significant lag in performance. Event listeners can
also take up a decent amount of memory, which will increase the resources needed by

THE BUILDING BLOCKS OF INTERACTIVITY

241

9

your program. Needless to say, failing to properly manage event handlers can dramatically
affect the efficiency of your program.

To remove an event listener, evoke theTT method as shown here:

To properly use this method, simply apply it exactly as the TT method
was used to create the listener, reflecting the example earlier in this chapter in the section
“Event listeners and handlers.” The preceding code shows the proper evocation of the

added to the initial sample. Just as the was
used as a method of the object, so must the be used. In
addition, the method accepts the same two required parameters
as the method. The first is the event type, and the second is the
name of the event handler.

Summary
In this chapter we were able to look at the three primary components of developing
ActionScript interactivity. Regardless of the complexity of your ActionScript program,
everything will be based on what you have learned in the previous two chapters.

The following topics were covered in this chapter.

 Using properties

 Using methods and events

 Event listening and handling

 Event propagation

Mouse events

Frame and timer events

 Keyboard events

 Removing event listeners

CHAPTER 10

LEARNING THE DISPLAY MODEL AND
BRINGING IT ALL TOGETHER

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

244

Working with visual elements in ActionScript 3.0 has become incredibly more efficient.
This efficiency is due largely to the new way Flash handles visual elements at runtime. If
you ever had the pleasure of working in previous versions of Flash and ActionScript, you
would no doubt remember the complex way that Flash handled adding various objects
to the stage. This complicated process involved several methods of actually adding
elements to the stage. It was difficult to manage these graphics and keep track of layer
depths.

The new display list model makes working with visual elements a whole lot simpler. By
organizing elements in a hierarchical structure and using a few basic, streamlined meth-
ods, developers are no longer faced with the convoluted task of figuring out the best way
to add items to the stage.

In the first part of this chapter we will be examining the way in which ActionScript now
handles visual elements in Flash. Once you have learned how to manage visual elements
with ActionScript, you will then apply this new knowledge to what you have learned in
previous chapters and create the multiclass interactive game Germaphobe.

Let’s begin by gaining mastery over display objects.

Working with display objects
Display objects represent everything that is associated with visual elements in Flash.
Visual elements in Flash can be any kind of asset that has a graphical representation or is
used as a container for graphical elements. As you have learned in previous chapters,
these graphical elements can be vector shapes, bitmaps, or symbols.

Though it is possible to have visual objects that are not on the display list, the display list
is responsible for governing all elements in Flash that have the capability of either being
visible or containing visible objects. Visual objects are then organized hierarchically into
the display list for that application. In Figure 10-1, you can see various elements arranged
on the stage of a Flash movie.

When working with display lists, the stage always represents the topmost, or parent, con-
tainer for the entire application. The stage is a representation of the main Flash Player that
is responsible for displaying all other visual elements. Figure 10-2 demonstrates the display
list hierarchy for the same group of images demonstrated in Figure 10-1.

The next element in the display list is the main timeline of the application. All Flash appli-
cations must contain a timeline. Even if the application is of the sprite type (one frame), it
still contains a timeline. Therefore, if you were to publish a movie clip with nothing on the
stage, you would still have at least two objects in the display list—the stage and the main
timeline.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

245

10

Figure 10-1. The arrangement of graphics on the Flash stage

Figure 10-2. The display list hierarchy of a sample Flash file

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

246

When you begin adding items to the stage, you are adding children to the timeline of the
display list. In the examples shown in Figures 10-1 and 10-2, three children have been
added to the main timeline:

 The text field

The orange rectangular shape (Shape 1)

 The movie clip containing the photograph (bitmap)

The movie clip contains two children itself, the bitmap photograph and a blue rectangular
shape. The fact that this movie clip contains children, or child display objects, automati-
cally classifies it as a display object container.

Traversing the display list
The Flash online help documentation (

) offers an extremely helpful way of tracing out the entire display list. In
this section we will be discussing a loose adaptation of this function that we will call the

function. By using , shown in the following code, you can
get an accurate listing of all display objects that are available in the visible display list. In
addition, this function introduces the concept of display list containers. Display list con-
tainers are a type of display list object that is capable of containing other display list
objects.

The following example file, , corresponds to the graphics portrayed in
Figure 10-1:

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

247

10

On the AS layer of that file, you will also notice the preceding code segment. As men-
tioned, this function is used to trace the existing elements from the stage to the Output
window in order of their hierarchical structure.

The first line of code defines the function . This function accepts two
parameters. The parameter represents the parent container, the children of which we
will display. The second parameter () represents a string variable that will be used to
indent the list to give it better readability in terms of its structure.

Once the function is declared, we then create the variable child, which will serve as a ref-ff
erence for the child objects of the parent; in this case, the parent will be the stage. The
loop, shown next, is then used to loop through all the children contained within the par-
ent display object.

In this loop we declare an incrementing variable, , to serve as the counter and set its
initial value to . The second statement of the loop then determines the maximum count
for the loop. For this we are using the property . is a special type
of property used by all display object containers. In this case our display object container
is the object that was passed as the first parameter in the function.
Therefore, this number will resolve to the total number of child display objects that are
contained in the display object container. The variable is then incremented until the
loop has reached the predetermined maximum value, . .

The next two lines of code set the value of the child variable to the current child of the
 container using the method. Like the property, all display

object containers also have the method to reference a child container based
on its index. When children are added to display object containers, they are indexed
numerically based on when and how they were added to that container. Therefore, we
have the ability to reference these child items based on that numerical index.

As the loop iterates and cycles through the code, we can use the variable to determine
each child located at that particular index. Once the reference is established, we then
trace out information about the child object, as shown here:

In the preceding statement, we first trace out the string. Remember the
string will be used to indent the children of containers to aid in readability. Secondly, we
trace the child itself. Then we trace out the type of object the child is. Finally, we trace the
child name.

There are several elements in Flash that you can name using the Property inspector.
However, there are many objects, like shapes, that you do not have the ability to name. If
an object does not have a name when the program is instantiated, Flash will automatically

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

248

name that object. Therefore, many of your objects will have generic names such as
.

The first pass through this loop will detect the main timeline and trace out something
like this:

Here is the indent string, is the child, and is the
name of the child. So is the first child of the stage.

The remaining lines in the function are used to determine whether the
child object is a display object container itself. The keyword is a type of operator used
to determine whether an object is a specific type of object. In this case we are checking to
see if the objects are of the type. If a display object has children,
it is most certainly a display object container. Therefore, this statement will evaluate to
either or :

If the preceding statement does evaluate to , we enter a rather interesting situation.
You may have noticed that the code located in the statement is actually another call to
the function. Essentially, we have a function calling itself from within
itself. This phenomenon is known as recursion, or recursive execution. If the child object
is indeed a display object container, we would want it to list its children as well. Subsequently,
we can then call the function within itself and pass it as the con-
tainer parameter. We also add more space to the front of the indent string to create fur-
ther indenting of the child elements. This is demonstrated in the following statement:

Finally, we call the function and pass it the initial variable for the con-
tainer and the tab string. In this case, we want to determine all visual assets of the

movie, so we pass as the topmost parameter. We also pass the string
to help aid in the readability of the traced output, as shown here:

If you test the movie, you will see a list of all visible display objects being traced to the
Output window.

Examining display object containers
As you just learned, display object containers are special types of display objects that are
capable of containing other display objects. In ActionScript, there are four primary types
of display object containers:

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

249

10

 Stage

Loader

 Sprite

Movie clip

You should now be fairly familiar with all types of containers with the exception of the
loader type. You will be introduced to the loader in Chapter 11.

Display object containers give you the ability to manipulate their children in a number of
different ways, as you’ll find out shortly. Because the display model in ActionScript 3.0 has
been completely rearchitected, those migrating from earlier versions of ActionScript
should find these methods a lot more efficient to work with. Additionally, this change will
also give you a tremendous amount of control both inserting and changing the stacking
order of your visual elements.

Adding children

Adding a child object to the stage is one of the easier things that you can accomplished in
ActionScript. As demonstrated in , the only thing that is required is a variable
for reference. Using the method, you can then easily add an item to the display
list using the variable reference.

As shown next, a new shape is created and given the reference name of . We then use
the statement to add the new shape to the stage. t If you tested this movie,
you may be wondering where the shape is. Well, there are no visible aspects to the shape at
this point. However, if you were to trace the shape using its index in the display list, you
would notice that the statement does in fact return an object of the type.

In order to have a visible shape, we will now use some basic ActionScript to draw the red
rectangle as demonstrated in . At this point, these new lines of code are of no
tremendous consequence. They have simply been added to help you see what we are
doing. Testing the movie will render a red rectangle in the upper-left corner of the TT SWF.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

250

Adding shapes to the stage is just as easy. In the following example, you can see that when
adding a second green rectangle to the stage, Flash automatically stacks display elements
as they are added. Notice that is added to the stage on top of .

Inserting display objects at different depths

In many cases, you will want to insert display objects at different depths in your movie.
ActionScript gives you complete control over this functionality as well. Using the

method, you have the ability to add a child at whatever depth, or index, of
the display list you would like. Using the previous example, also found in , you
can now see that when using the method, you have the ability to place the
green rectangle below the red rectangle. Unlike the method, the
method accepts a second parameter in addition to the object name. This second parame-
ter represents the index at which you would like to insert your object.

With respect to display objects, indexes can be thought of as both the position in the
order of the display list and the depth of the display object. Think of this as floors of a
building. The second floor of a building is on top of the first floor, the third floor of the
building is on top of the second, and so on. Flash stacks and numbers display objects in
a similar fashion. This numbering is known as the index.xx

The following code demonstrates how the previous example can be changed to switch the
depths of the red and green rectangles:

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

251

10

In this example you can see now that the green rectangle is inserted below the red rect-
angle by using the index position of 0.

Removing children

In much the same manner that you add children to the display list, you have the ability to
remove them. In , you’ll find an example that is very similar to the previous
one. The primary difference is that we have changed the shapes to movie clips for the
benefit of interactivity. As shown next, there are also two sets of event listeners and han-
dlers to toggle between whether is on or off the display list. Using the
method, we can then effectively make the green rectangle disappear.

Similarly, we also have the ability remove children at certain positions using the
method. By changing the statement in the event

handler to , we can now target the child object that is located at the
0 index of this display list. When testing the movie, you should now see the blue rectangle
disappear when you mouse over the red rectangle.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

252

Swapping depths

Finally, developers have the ability to change the position of child objects by also referenc-
ing either the child name or the index position of the child. In , we again take
the previous example and alter the statements within the event handlers to control the
changing of depths between the green rectangle () and the blue rectangle ().

In the event handler, we are swapping positions based on the child names using the
method. With the method, we can reference the dis-

play list index for the same particular objects. In this case because we know is origi-
nally at index 0 and is originally at index 2, we can set this up so that these two objects
toggle positions when the red rectangle is moused over.

By now you should have the necessary understanding to begin putting together basic
ActionScript applications. What you have learned in the last three chapters has more or
less been laying the foundation for everything else that you will learn in ActionScript. You
have been exposed to the core tools for development. The rest of the book can therefore
be thought of as various extensions of this basic foundation. You will certainly learn a tre-
mendous amount of new material in the upcoming chapters, but the basic theory and
manner in which you engage these elements will remain the same.

Germaphobe
The Germaphobe application, as far as computer programs go, is relatively simple. In this
game a player will be responsible for clicking germs that appear on the stage. The game
grows increasingly difficult as more germs are added to the stage over time. The game
is over when the game board becomes overrun by germs, causing a total infestation.
Therefore, a player will need to click as many germs as possible before the game board
becomes infested. As an intended side effect, developing this game will allow you to bring
your current ActionScript knowledge together in one place. Leaning heavily on the previ-
ous three chapters, you will gain a working understanding of the total sum of ActionScript’s
basic working parts.

The Hello World application you built in Chapter 8 showed you how to construct a simple
one-class application but no doubt gave you very little insight into a real-world application

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

253

10

or its theory. In Germaphobe we will take a look at a simple two-class application that
deals with user interaction, multiple graphics, and plenty of moving parts.

Finally, we are going to leave this application a little open-ended to allow you to further
modify the game with enhancements as you learn new tricks throughout the book. It is
always good to continually remold an application to help you understand why something
is done a certain way and how you may be able to make it more efficient.

Setting up the game

It is fairly common for production houses to be split into two sides, design and develop-
ment. And as a developer, it is not uncommon to have graphical elements done for you.
Before we ever wrote one lick of code for this example, we started with an FLA file that
had four colored dots in its Library panel. Obviously, the dots were later changed to graph-
ics of germs, but there was without question a clear definition between design and devel-
opment.

To get started with the TT Germaphobe application, you will first need to open the
file from the sample files. This file is pretty bare bones. With the exception of contain-

ing four graphics in the Library panel, it has no ActionScript of any kind. In the general
scope of things, this is about where a typical developer will begin the process of coding.

In the real world, you will want to properly plan out your applications. It is also pretty
good practice to create a little mise en place. That is, after you figure out what kind of
cake you want to make, get your ingredients together, and then make the cake. You
should never try to make anything without first having your ingredients in place.

Assigning the document class

Once you have acclimated to , what is the next course of action? If you
said create a document class for the application, you are absolutely correct. The document
class is the primary class in our application, and it is responsible for managing everything
that will be used in the application. As the foundation for our application, it is the best
place to start.

To create the document class for the application, you will need to do the following:TT

1. Create a new ActionScript file by selecting File New. Then select ActionScript File
from the New Document dialog window.

2. Save the new ActionScript file as in the same directory as
.

3. In the Property inspector, assign the document class by typing Germaphobe in the
Class field as shown in Figure 10-3.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

254

Figure 10-3.
Defining the document class

in the Property inspector

Defining the Germophobe class
The proper definition of a class is pretty straightforward. Recall from Chapter 8, where you
defined your first class, that three main components are required for class definitions:

Package: A package is a collection of classes that reside in the same directory
because they share related functionality. Because this class is defined in the same
directory as , a package name is not required.

Class definition: The class definition encapsulates all functionality of the class. It
must have the exact same name as the AS file that it is defined in.

Constructor function: The constructor function is the main method of the class.
All functionality that resides within this function is executed when the class is
instantiated. The constructor function must have the exact same name as the class
it represents and the AS file it is defined in.

To define theTT class, enter the following code into the file:

An additional element to take note of in the class definition is the use of state-
ments. The statement is used to import functionality from other classes and pack-
ages. By default all document classes must import either the or class. In

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

255

10

this case, because the Germaphobe timeline will not have more than one frame, it is best
to import the class.

We then use the keyword to allow the class to behave like a .
Where the statement allows a program to access certain functionality, the

keyword makes that functionality an innate ability of the class. Therefore, all
properties, methods, and events of the class are now active members of the

class.

The ability of a class to inherit functionality from another class is known as inheritance—
go figure.

Class and property attributes
As a developer, you will often want to control the level of access other developers and
other elements in the program may have when dealing with a specific class. For this reason
ActionScript 3.0 offers several modifiers that are used to control this level of access. For
example, you may have noticed the modifying word in the class definition.
TableTT 10-1 gives the appropriate use for attributes that are employed for modifying class
declarations.

Table 10-1. TT The modifying attributes for class definition

AttributeAA Definition

 Allows a programmer to create and add custom properties to an
object at runtime

Prohibits the class from being extended

 (default) Indicates the class can be referenced by other classes within the
package

Indicates the class can be referenced anywhere in a program

It is also necessary to have the ability to modify the various members of classes. The pri-
mary function is to limit accessibility from outside programming. The best way to think of
this is to consider many modern mechanisms or appliances. For example, a television has
public functionality. The on/off button allows a person to switch the television on or off.
However, the TV also performs functions that are not directly accessible to the viewer, like
converting a signal into a picture. Rightfully so, this kind of functionality should stay out of
the hands of the average viewer. The use of class and property attributes is established for
exactly this reason.

Table 10-2 gives a list of theTT various class property definitions and their uses.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

256

Table 10-2. TT The modifying attributes of class members

AttributeAA Definition

 (default) Makes the member visible to references inside the same
package

 Indicates the member can only be referenced from within this
class

 Indicates the member can be accessed from this class and any
derived classes

Indicates the member can be accessed from anywhere

Labels the member as specific to the class and not the instance

For the most part, classes and members used in this book will only be modified using the
 and attributes where applicable. Attributes are fairly advanced pro-

gramming topics and should be researched through additional resources.

Setting up the germs

Now that the main class of the game has been created, it’s time to start to add the bits and
pieces that actually define the purpose of the game. The germs constitute the primary
component, and are thus the namesake of the game. The primary purpose of the game is
to try to stop the infestation of the game board from occurring. Before we can include our
germs in the game, they will need to be created.

Defining the class
As you may have guessed, the first thing that needs to occur for the creation of germs is
the defining of the class. Creating a class for a germ is no different from creating a
class for the Germaphobe game. It will involve all the usual suspects for class construction
and follow the same rules.

Follow these steps to create the class:

1. Create a new ActionScript file by selecting File New and choosing ActionScript File
from the New Document dialog.

2. Save the file as in the same directory as and
. Remember, naming is extremely important and so is letter case.

3. Create the class definition by entering the following code into the script pane of
the file.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

257

10

The creation of the class is going to follow the exact same procedure as the
class with the exception of a few minor tweaks.

The most obvious difference between this class and the class is the use of an
appropriate name. Therefore, because we are working in the file and defining a
new classification of object, the name of the class and the constructor function should
both be .

The second, and not so obvious, change is the use of the keyword as the
imported class and class extension. Remember, the primary difference between the movie
clip and the sprite is the existence of a multiframed timeline. The main application is only
going to reside on one frame of the main stage, so is sufficient for the document
class. However, as you will find shortly, the class is going to be linked to a library
asset. This symbol contains multiple frames, which we will need to access later. Therefore,
we will need access to timeline functionality, which will require the use of as
the parent class instead of .

Linking to a graphic symbol
In Chapter 9, we briefly discussed the concept of creating new symbols as being similar to
creating new classes. At this point, now that you’ve attained a general knowledge of inher-
itance, we are going to revisit and wrap up that concept.

When a symbol is created and added to the library, in this case the symbol , you are
basically extending the class with the new class (,
right). Though adding ActionScript to the timeline of the symbol would not really be
best practice in this case, if you were to add a function to the timeline of that symbol, you
would indeed be creating a method of .

You then have the ability to add instances of to the stage of your Flash movie at
either runtime or author time. Therefore, the concept for creating new library symbols is
similar to creating new classes. You also have the ability to link an external class to various
library symbols. In this case, the creation of the library symbol is in fact actually the same
as creating a new class.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

258

To link the TT class file to the Germ library symbol, do the following:

1. Right-click the Germ symbol in the Library panel to open the
Symbol Properties dialog.

2. Check the box next to Export for ActionScript, as shown in Figure 10-4. The Class
field should automatically fill in with the value Germ, which is based on the name
of the symbol. This also represents the name of the AS file that you want to link
to the symbol. It is required that this field and the AS file have the same name. It
is also excellent practice to plan ahead to make sure your symbol will also have
this name.

3. Select Export in frame 1 and click OK.

Figure 10-4. Class linkage for a library symbol to be used in ActionScript

Initializing the game

The initialization of your Flash application is always going to occur in the constructor func-
tion of your application’s document class. In this case, the function of the

class is going to be that point of initialization. The constructor function of
your document class can always be thought of as the first domino. Therefore, as soon as
the application is run, the document class will fire, and whatever is located in the docu-
ment class’s constructor function will fire.

A cleaner point of entry
As you will find, the first stages of an application such as a game can be a bit miscella-
neous. They typically involve the creation of a few various tidbits that are responsible for
getting the entire big picture rolling. As a personal convention, we usually don’t like a lot
of initial garbage in the constructor function of our applications. For this reason, we like to

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

259

10

create a second function right off the bat. This method will handle all the initial functional-
ity used to set up our application.

Directly below the constructor function in the next example, we will set up the
function . We set this to because we want this function to be accessible
only from our class. We then call this function in the constructor with the

statement.

Randomly adding germs to the stage
To add germs randomly to the stage, TT we simply need to instantiate the class and add
it to the stage using the method of the class. As an
added bonus, we will start scratching the surface of the class to help us further
manipulate the position of our first germ.

Add the following code to the function of the class:

The first line is the basic declaration and instantiation of the germ variable. Because the
class extends the class, which is itself a distant descendant of the

class, it has all the properties you would expect to find in a display object,

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

260

notably the and properties. With these two properties, we will have the ability to posi-
tion the germs anywhere we like on the stage.

To give the game a more organic feel, we are going to randomly position germs on the TT
stage as they are created. To do this we are going to use a simple statement involving the TT

class. The class contains methods for performing basic numeric operations
such as the elementary exponential, logarithm, square root, and trigonometric functions.
It also contains several commonly used mathematic constants such as pi and Euler’s e. In
Flash, one of the most commonly used methods of the class is the method.
The method generates a random decimal number between 0 and 1, but not
including 1.

The method is not actually random at all. The number is based on the time, in
milliseconds, that the method was called.

In the next code sample, we are taking this randomly generated number and multiplying it
by the height and width properties of the stage. We know that the property is

because we can check it in the Property inspector of the file. We know
that zero times any number is zero. We also know that one multiplied by any number is
that number. Therefore, by multiplying the stage width (550) by a randomly generated
number between 0 and .99, we can effectively position the germ at any point from 0 to
approximately 550. This holds true for the height (or y property) of the stage as well.

Finally, we use the method to place the movie clip on the stage. If you test
your movie a couple of times, you should see that the germ appears in different places
every time.

On a side note, the Target drop-down menu is used for targeting an FLA when working in
external AS files. This is used to allow you to test an FLA directly from the AS file by select-
ing the file that you would like associated with the AS file. As shown in Figure 10-5, the
target for the Germ and Germaphobe AS files is set to .

Figure 10-5.
The Target drop-down for AS files

Picking the germ’s face

You may have also noticed that when you tested the movie, the germ was changing all dif-ff
ferent shades of the color spectrum. This is because the germ image is comprised of a
four-frame movie clip. You can see from Figure 10-6 that each frame of the Germ movie
clip contains its own image of a different-colored germ. We can use these images to add a
little variety in our game.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

261

10

Figure 10-6.
The timeline of the Germ movie clip

At the moment the issue we have with the Germ movie clip is that its timeline plays and
continues to loop while the game is playing. What we need to have happen is to have the
timeline of the Germ movie clip stop on a frame to display a different-colored germ,
seemingly at random.

To accomplish this, we are going to add a simple statement to the constructor function of TT
the class. Using the method, we can tell the timeline to jump to a
specific frame in the germ’s timeline and stop at that frame. The keyword then tar-
gets the timeline of this germ.

The method accepts one parameter, the frame. It can be either a string
value that represents a frame label or a numeric value that represents the frame number.
In this case, because we are not using frame labels, we will opt for the use of a numeric
value. Once again, this puts us in the position to select the number at random.

To achieve the random number of the frame, we will again use theTT method
and multiply it by the total number of frames in the Germ timeline, , as shown here:

You may have been clever enough to pick up on the fact that this is not quite going to give
us the values we need to select frames 1 through 4. Remember that the
method returns a decimal number ranging from 0 to 1, but not equaling 1. Therefore, this
will never return a value of . The highest value we could ever hope to achieve from this
statement is .

To get around this slight technicality,TT we will introduce the following method from the
 class, (where stands for ceiling). This method rounds any given

decimal value up to the next whole number. Unlike standard mathematical rounding,
which rounds up or down, the method will round up no matter what the
decimal value is. So, if the number happens to be 3.001, will round it up to
4. Therefore, all numbers greater than zero will round to 1, all numbers greater than 1

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

262

will round to 2, all numbers greater than 2 will round to 3, and all numbers greater than
3 will round to 4.

Test the movie a couple of times. TT You should notice that now when the first germ is placed
on the stage, it is no longer flickering, but is a different color.

Making the germ scurry

Now that the germ is in our game, it is more than likely that we are going to want to get
rid of it. Germs are bad, right? The unfortunate reality is that before we can kill the germ,
we have to catch it. You’re probably wondering what the difficulty will be in catching
something that just sits in the same position. Well, before we can catch it, we have to make
it scurry.

Creating random motion with the scurry event
Well, we have a germ. And, as exciting as that is, it is often said that “The fun is in the
chase.” Therefore, we need to give the germ the ability to try to escape its impending
destruction.

Thinking back to Chapter 9, we discussed several ways to create animation using the help
of events and event listeners. To create the motionTT for the germ, we will be using the

event, which will fire based on the frame rate of the main document. Because
has a frame rate of 24 fps, we should expect this to execute approxi-

mately 24 times every second.

In the following code we add the necessary framework for including an event in the
class. To use events we first import the TT package using the
statement. By using an asterisk after the dot operator in this statement, we can import all
classes in this package.

For now, because the concept of importing packages may be new to you, it is okay to
import an entire package. As you become more familiar with using packages, you will
want to import only the classes you need. In the display import earlier in this chapter,
you specifically imported the class, and not the entire display package. You
simply don’t want to import what you don’t need.

In the constructor function, we add the event listener, setting the handler
name to . We then create the method of the class to handle the
movement of the germ.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

263

10

Having set up the framework for the handling of the scurry event, we can now define
exactly what it is for our to scurry.

In my (Paul’s) experience as an ActionScript instructor, the most common difficulty faced
by new programmers is trying to translate complex human concepts into the programming
realm. When we define a method such as , because the human thought process
is so complex, it can conjure up a million different thoughts about what it means for
something to scurry. In all actuality, scurrying in the Germaphobe world is nothing more
than the germ moving around the board, trying to elude eminent doom. Therefore, scur-
rying is simply movement. And as you learned Chapter 9, you can create the illusion of
movement simply by updating the position of an object at a regular interval. So scurrying
is nothing more than regularly updating the and property of our germ.

In the upcoming code sample, we add four new lines to the class. The first two lines
are responsible for defining variables for and properties of our germ. When
creating properties in a class, it is a common convention that all properties be defined first
in the class before the constructor function.

We first create the and properties to control how fast the germ will move in any
given direction. Speed, by definition, is the total change of distance over a certain interval
of time. For our germ, the time is going to be handled by the event. Therefore,
the change in distance will be determined by the and properties.

The variables and are commonly used for variables governing a change in dis-
tance. The in these variable names comes from the Leibniz notation of calculus, where
the letter “d” is synonymous with delta, or “change in.” Essentially, these variables can
be read as “delta-x” or “change in x” and “delta-y” or “change in y.”

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

264

We again use the method to add a more dynamic feel to the end product:
every germ that is added to the stage will have the illusion of moving at a different speeds.
We then multiply by an arbitrary number, 10, to make the movement more
significant.

The next two lines are added to the function. The function is the handler
for the event in the constructor function. So, to give the illusion of
motion, as we did in Chapter 9, we will increment the and properties of the Germ using
the and properties. Therefore, every time the event is fired, the
function will add the value of and to the current values of and , respectively.

Checking for walls
You may now notice that when you test your program, the germ does indeed move. And,
as exciting as this may be, you will also no doubt notice that the germ eventually scurries
off the screen, never to return. This of course would be the desired result if we did have
an infestation of germs. Unfortunately, it doesn’t make for a very exciting game. To avoid TT
the problem of the ever-running germ, it becomes necessary for us to check the bounds
of the stage to determine whether the germ has reached an edge.

To accomplish this, we add two very simple TT statements to the function. The first
of these will check the horizontal bound of the germ’s movement and then change the
sign of . For a beginning programmer, this may look a bit complicated at first. However,
reading it in layman’s language, it becomes a little less sinister. The first line basically says,
“If this (germ) is less than or this (germ) is greater than . . . ” Logically, this is
doing nothing more than determining whether the x position of the germ is less than zero
(off the stage to the left) or greater than 550 (off the stage to the right). The second
statement in this code block works in the same manner as the first, only it governs the
property (vertical movement) of the germ.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

265

10

Killing germs

The killing of germs is probably the most complicated part of the entire Germaphobe pro-
gram. The reason for this is that it involves the authoring of code in both the class
and the class.

Setting up the kill
The first step to eradicating germs from the game is to create the mouse event. In the
game, if you want to kill the germ, you simply need to catch it and click it. As you learned
in Chapter 9, if you have many items within a display container, you can control targeted
events to those items by applying the event listener to the parent object. In the Germaphobe
game, the stage is going to serve as the parent container. Eventually, there will be hun-
dreds of germs on the stage that you are going to have to try to catch and kill. Therefore,
if we add the listener to the stage, all of the germs will receive the event through event
propagation.

We add the listener for clicking germs in the function of the class. The
handler for this event will be the function , which is also going to be added to the

class.

The function does become a bit tricky because we must use the operator to deter-
mine the type of object that is clicked. The first thing that needs to occur here is the filter-
ing of target objects. When using event propagation, any interactive object that is a child
of the container can be the target of the click. Since we are using the stage as the parent
object, and it is the topmost container, all objects that are visible on the stage will be tar-
gets of the event and receive the event through propagation. Therefore, all s
will receive the event. Because all display objects on the stage will receive this event,
we will need to determine whether the item clicked is actually a germ.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

266

The first line of the function is an statement that is going to evaluate whether the
target of the mouse click is in fact a germ. We can accomplish this using the keyword,
which is used to check the data type of any given object. The statement then deter-
mines whether the item that was clicked is of the data type. If the event target does
happen to be a germ, or more specifically of the data type, the statement will be

. This then causes the statement to execute its code block.

Within this code block we can then call the method of , which is really calling
the method of a (the that was clicked).

Things are killed, and then they die
The function is added to the class and handles the germ being removed from
existence and the memory of the game. In this function, we first remove the event listener
for the scurry event. Good garbage collecting dictates that when events are
no longer needed, it’s best to get rid of them.

The second thing this function does is remove the visual representation of the germ from
the display list. We use to target the stage. We can then use and
pass the keyword to target the germ. Therefore, the stage can remove its child, which
is this particular germ.

Allowing germs to reproduce

Alright, you are making excellent progress. When testing the game, you will now have a
germ that scurries around the stage, is unable to escape the stage, and can be killed upon
clicking. The next thing that we’ll need to do is try to make it gradually more challenging
for players. The best way to do this is to add more germs!

Adding by intervals
In games it is natural for the progression of the game to increase in difficulty. This increas-
ing difficulty is usually managed with countdowns, new levels, or increases based on a
player’s score. Because this is your first attempt at making a Flash game, we will use a
simple timer to add additional germs to the stage on a given interval. This will continually
add germs to the stage until it becomes too much to handle.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

267

10

The first step in adding a timer to the class is to import the class from
the package.

Next, we will add three properties to the class. The first property will be a
simple reference name for the object that will be used to add more germs to the
stage. The second two properties, and , will be used to store variables
that will keep track of the number of germs that have been added to the stage.

Once the properties have been added, we can then create a new object in the
function of the class. You should notice that we have set the required param-
eter of the timer to milliseconds, or 5 seconds. We also have the event listener set to
trigger the function when the event is detected. It is then required that the
timer be started. This should give us a fresh set of germs every 5 seconds.

The addGerms function
The function is more or less the meat and potatoes of the Germaphobe game.
As stated earlier, it is what controls the leveling in terms of difficulty. For the most part,
implementing this function is not really any more complicated than when you added your
first germ to the stage.

The first two lines are going to be responsible for managing the number of germs that will
be placed on the stage. When we declared the property, we set its initial value to .
This represents the first germ added to the stage in the function. When we enter the

function, the first thing that happens is will be set to the value of

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

268

. The variable is then added to itself. Therefore, the first time the timer fires
and we enter this function, will be and will be . The second time
through will be and will be . What is happening here is that we are
defining a range that doubles every time is called by the timer listener. This will
then set up the loop to not only double every time the function is called, but also
increment the number of germs based on the previous number of germs.

Keeping score

To keep track of how many TT germs we have killed, we will add a small scorekeeping scheme
to the class. Though this is a relatively simple addition, there will be adjust-
ments in four areas of the game code.

First off, we need to add the statement to allow us to use the functionality for
displaying text.

Next, we add two properties to the class. The variable will be used
to control the actual text field that will display the text. And the variable will be
used to mathematically increment the value of the score before it is displayed.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

269

10

In the function, we then set up the text field and its properties. We first define the
appropriate position and width of the text field and add it to the stage.

Finally, in the statement of the function, we award points for killing the germ. The
first line simply takes the current value of and adds 10 to it. The second line then
sets the text value of the text field to the value of the variable. Because
the text field’s text is a string and is a , we will need to convert the values of

from a to a . To accomplish this, we use the TT method. This will
effectively convert the value of to a data type that is acceptable to the
property.

Ending the game by infestation

Finally, we need to determine when the game should end. By nature this is a casual game,
and therefore there is no definitive purpose in actually winning the game. It is basically a
situation where you play the game until the game beats you. How do we determine when
the game has won? Well, in the case of this game, the game will need to win before there
are so many germs on the stage that it causes the Flash Player to crash. We have deter-
mined that the safe number is at about 250 germs. So, we can use the prop-
erty of display list containers to evaluate when the timeline has more than 250 children. At
that point, we can say that a player has lost by infestation.

Checking for infestation
As it turns out, checking for an infestation is actually relatively simple. We can perform a
check every time new germs are added to the stage. So, in the method, at the
very end just before the closing curly brace, we will want to add a function call to the

method. We add this function call here because it will allow the
method to complete the process of adding new germs to the game. Once that process has

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

270

completed, we can check the number of germs on the stage. If there are too many, we
then end the game.

Removing leftover germs
The final method for the Germaphobe game is actually a bit simpler than it may look. In
the Germaphobe class, as the last method, you should add the following code:

The first line of this method opens with an statement that immediately determines
whether the main timeline has more than 250 children. As you know, this will evaluate to

or . If it evaluates to , nothing will happen. Should the statement evaluate
to , the end of the game is inevitable.

Immediately, the timer is stopped to prevent any more germs from being added to the
stage. Next, an incrementing variable is established and set to the value of the total num-
ber of children on the stage. We then use that variable in a loop that will decre-
ment the variable until it has reached . Within the loop, we use the

method to remove all children on the stage. Keep in mind that the
number of children in a display list is equivalent to the total number of indexes used to
assign object depths. Therefore, as the loop decrements, the display object at that
index is also removed.

The final score
One unfortunate side effect of the previous effort to remove all the children from the
timeline is that the text field used to display the score is actually a child of the timeline as
well. This means that the score is also removed during this process. There is a quick solu-
tion to this problem: simply re-add the score as a child of the stage.

LEARNING THE DISPLAY MODEL AND BRINGING IT ALL TOGETHER

271

10

In the method, just after the loop, simply add the text field
back on the stage using the method, as shown here:

Summary
A lot of ground was covered in this chapter. You are now familiar with the construction of
a working example of a multiclass application. From this basic foundation, you should now
begin to see how the creation of objects and modular organization begin to benefit the
efficiency of programming.

As mentioned at the onset of this chapter, everything you learn after this will be an
enhancement to this basic foundation. Though many of the concepts to come will seem
abstract at times, you should always revert to this foundation. Always remember to take it
one section at a time.

Following are some of the important topics covered in this chapter:

 Display objects and display object containers

 The display list

Adding and removing display objects

Multiclass interaction and simple application development

CHAPTER 11

MANAGING EXTERNAL ASSETS
AND COMMUNICATION

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

274

The original intent of Flash (not SmartSketch) was to aid in the delivery of animation over
the Internet. As its popularity grew, more and more designers and developers were using
Flash for robust deliverables. And as the applications began to grow in complexity, the
resulting SWF files began to increase in size. Once the fever spread from industry to indus-
try, Flash started being used for a multitude of applications such as web intros, entire web
sites, e-learning solutions, and later Rich Internet Applications. As a result, Flash was soon
given the ability to manage external assets, like images and data, dynamically.

One of the biggest early contributors to the popularity of Flash, in addition to its ability to
create vibrant content, was the fact that the files that it produced were so small. In addi-
tion to the need to alleviate size issues, Flash, in becoming a native web technology, was
also rapidly developing the need to communicate with various web-based data sources. As
Flash evolved from iteration to iteration, it gradually was granted more and more ability to
manage content externally, as well as communicate with several standard web-based tech-
nologies. And though the content covered in this chapter is relatively brief, it is no doubt
pivotal in the development of rich, data-driven applications.

Subsequently, this chapter will discuss the various capacities in which Flash communicates
with external pieces of data. Whether it be loading a simple JPG image or a complex con-
versation with a server-side web script, Flash handles this communication in a very similar
manner.

Working with external data
When a developer refers to external data in Flash, that data can represent any number of
information types including sound, video, text, other SWF files, images, XML data, and
much more. As you may have guessed, there are potentially a multitude of avenues for
getting this data in and out of Flash. As with many other ActionScript features covered in
this book, ActionScript 3.0 has taken the process of managing external data and stream-
lined it into a few easy-to-use classes. Therefore, unlike previous versions of Flash, all
external data can be handled in one place. In this chapter we will take a look at the follow-
ing data loaders and managers:

s

URLRequest—go get it pup!

Much like the Labrador or Golden Retriever is responsible for fetching ducks or the morn-
ing paper, ActionScript has a best friend that is responsible for going out and getting
information about a specific URL. The term “URL,” short for Uniform Resource Locator, is

MANAGING EXTERNAL ASSETS AND COMMUNICATION

275

11

nothing more than a technical way of describing the location of a piece of information
that is available over the Internet. For all intents and purposes, all external assets that are
loaded at runtime are going to be classified as URLs. Whether it is a JPEG, video, or sound
file found in a local directory or an XML file coming from halfway around the world, the
first step in bringing that information into ActionScript is to go out and get it. For this very
special task, ActionScript offers the class.

The class is used to retrieve all information about a given HTTP request and
subsequent URL. Once the has retrieved the desired URL, it can then be
passed to any of the classes responsible for loading content. It is important to understand
that depending on the kind of information that is retrieved by the , ActionScript
will use a class that has been specifically designed for handling that type of information.
If the URL happens to represent a sound, the sound is then loaded via the class. If
the information happens to be textual, the URL is loaded via an instance of the
class. Though this may seem a bit complicated at first, it is actually very efficient. There
are only a few ways in which you can load information into Flash. As you become more
familiar with the types of data that can be loaded into Flash, these methods will seem as
second nature.

In addition to capturing information to be loaded, the can be set up to pass
information to server-side programming such as PHP and ASP by packaging it with vari-
ables. This will be discussed more thoroughly later in this chapter.

By now you should be all too familiar with the way in which functionality is implemented
in ActionScript. To use the TT class, you simply create a new variable reference
and instantiate it with the keyword. The constructor of the new accepts a
single parameter. As shown in the following examples, this parameter is a literal string
value representing the URL to be captured.

The can be used to call a relative local URL, such as the name of a graphic
residing in the same folder as your SWF file, as demonstrated here:

It can also be used to call an absolute URL from a remote server:

Using the URLLoader

If the is used to retrieve the URL, the is the primary class for load-
ing URL requests that are of a textual nature. That is, the is responsible for
loading items like TXT files, XML files, and external Cascading Style Sheets. Because of this
versatility, the becomes an integral part of many Flash applications.

Loading a simple data file
In the example in this section, you will see how the is used in tandem with the

s to load information into Flash dynamically. Using as ref-ff
erence, you will notice that the stage contains a simple TextArea component with the

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

276

name ta. As you may have guessed, we will be loading a snippet of content into the text
area by way of the .

1. The first line of code, shown here, is used to instantiate the object:

Notice in the constructor function that the is accepting the string parameter
. This value represents the name of a file that is located in the same direc-

tory as the file. Therefore, we will use the to fetch the
information about this file.

2. The second line of code defines the object, .

With the we then have the ability to load the information that has been gath-
ered by the . To do this we use the TT method of the and pass it
a single parameter, which is a reference to the .

3. Finally, we can assign the property of the text area the value of
.

The data property of any , by default, is set as . Therefore, we are simply
assigning the information stored in the file to the property of the
TextArea component.

Waiting for the data to arrive
At this point, if you test the previous file, you will notice that nothing loads within the text
area, and you may also notice that an error is thrown in the Output window. The reason for
this is that the property of any loader is not set until the method has completely
finished with the loading of the . Because loading external data in ActionScript
works in the same manner as you may expect any form of data to load, it will then take an
undetermined amount of time for the computer to parse the information. Granted, even
though this example is taking nanoseconds to load, it is still loading. And because this
example is executing sequentially, the fourth line of code will more than likely execute
before the loader has finished loading. Because the computer can execute its code faster
than the data will load, the previous example is trying to assign the
information into the text area before that information has finished loading into
ActionScript.

This is more or less the method of operations for the loading of external objects in Flash.
To work around the previously mentioned execution problem,TT ActionScript allows for the
listening of events on loading content. Therefore, whenever an object has finished loading
in ActionScript, the event is dispatched. We then have the ability to assign a lis-
tener to the loader to detect this event. As shown in the following code, we can then place

MANAGING EXTERNAL ASSETS AND COMMUNICATION

277

11

the line within the event handler, allowing us to wait for the
to fully load before ActionScript tries to use its information.

Finally, when the movie is tested now, the information from the file is
displayed in the text area as shown in Figure 11-1.

Figure 11-1.
Data from an external TXT file
being loaded into a TextArea
via ActionScript

Sending data to external places

When building web applications, it would be fairly ineffective to only be able to receive
information from a given data source. Fortunately the and classes
allow a developer the ability to pass information out to external sources using popular
server-side languages like PHP, PP ASP.PPNET, and ColdTT Fusion.

GET and POST methods
If you have ever worked with front-end HTML before, you will no doubt be familiar with
the concepts of name-value pairs and the and methods of HTTP. P If you are not
yet familiar with these concepts, don’t worry—they are not very difficult to understand.

The method sends its information by way of a query string stuck on the end of a URL.
Though you may not be familiar with this, you may have noticed once upon a time infor-
mation stuck on the end of a web page request. The following web request,

, demonstrates the sending of a variable in the form of a name-value pair,
using the method.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

278

The method also sends the same type of data in the form of name-value pairs.
However, rather than send this information as part of the URL request, the method
sends its information within the body of the request. Therefore, this information is actually
hidden to the untrained eye.

It is often said that the difference between these two methods is a more secure trans-
mission of information. The reality is that neither is really more secure than the other.
And though both methods have the ability to send and receive information, it was origi-
nally intended that be used to get information from the server and be used to
post information back to the server. At this point, however, it does not make much of a
difference.

For the scope of this book it will be sufficient to know that the and methods are
the way by which standard HTML sends variable data from page to server and back again.
There are several other methods available, but these are the most commonly used.

Name-Value pairs
As mentioned previously, the standard method for passing variables from page to page on
the Internet is in the form of name-value pairs. The name value pair is nothing more than
a convention now used to describe the way variables are packaged. As the name would
suggest, variables are sent as a variable name and a variable value that are paired together.
So, name is the name of the variable and value is the value of the variable. Table 11-1 lists TT
a few possible name-value pairs.

Table 11-1. TT A Series of Name-Value Pairs

Name Value

Name John Smith

E-mail jsmith@email.com

City Annapolis

State MD

The concept may also be described using a standard contact form found on a number of
web sites. Using Table 11-1 as reference, as a person fills out information on a web form,TT
he or she is supplying the value for a number of predetermined variables, typically name,
e-mail, etc. When that person clicks a Submit button, usually found at the end of the form,
his or her information is collected and sent across the galaxy in the form of name-value
pairs. If the method was used, the values would be arranged something like this:

The page would then more than likely be set up to receive
those variables and process them in some manner.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

279

11

URLVariablesLL
For the packaging, and possible unpackaging, of variables, ActionScript 3.0 introduces the

class. Like its previously discussed counterparts, and ,
the class is incredibly intuitive and far superior to its AS2 counterpart. To TT
create variables using the class, you only need to create the object and start
assigning variables to it in the form of properties. Here’s an example:

1. The variable is created and typed as a new object (as shown in
the code example after the next step).

2. The variable is then created as a property of the object and given the
string value of .

Keep in mind the properties are arbitrary and thus able to be whatever you would like
them to be.

The previous two lines of code could have just as easily been written like the following:

It is also possible to pass the name-value variable as a parameter of the constructor func-
tion, in the form of a string.

"

Now that you are familiar with the way ActionScript packages variables, you have the abil-
ity to use this method in tandem with and to send those variables
out of Flash.

There and back again: A variable’s tale
In the file , we will take a look at how Flash has the ability to take a variable,
send it to a remote location, and have that variable returned for further use. At first this
task might seem a bit complicated. However, looking back on what you have learned so
far, it is easy to break this down into four manageable parts.

1. Define your variables.

The first step to sending out variables is to actually define the variables. For this example,
we are going to send a single variable out to an external location and hopefully get it back
again. As shown here, we use the code from earlier and instantiate the object.
We then create an arbitrary property called and assign it a value of .

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

280

2. Prepare the for its trip.

The next thing that needs to happen is the creation of the object. Remember,
the object is going to go out and collect information about a URL much like
a probe that NASA would send into outer space. In order for the request to complete its
work successfully, we need to make sure that it is properly configured.

The next four lines show you what you need to get the ready to deliver and
collect information to a specific URL. As usual, the first step is to create the object. We
then define the destination URL. In the previous example of the , we were
passing the URLs as parameters of the constructor functions. However,
objects also give us the ability to set this using the property of the object. In this
example we will be communicating with a remote script that is hosted on this book’s
companion web site.

The third line will define how the will format the sending of its variables. As
discussed earlier, the standard methods are and . For this example, we will be
using the method, which will simply add the variables as name-value pairs to the end
of the URL.

Finally, we assign, or package, information for the using the property of
the object. To this property we assign the TT object, which is the name of
the object that was created earlier.

3. Get the ready.

Once the has been properly established and has the package
with it, the next step is to create the . The used in this example is
actually not that different from the example that was discussed earlier in this chapter. An
object, , is created. An event listener is assigned to allow the information to load. And
the method of the object is used to load the . What is different is
the existence of the second line. The property of the class is used
to aid in the receiving of external information. It allows us to tell the what kind
of information to expect and how to deal with that information. In this example we are
using the property to let the loader know that the infor-
mation will be coming in via URL query string and that it should be ready to decode it.

4. Define the handler.

Finally, the handler is created to coincide with the event listener that was attached to the
object. As you previously learned, this is used to allow external data sufficient

MANAGING EXTERNAL ASSETS AND COMMUNICATION

281

11

time to load before it is used. The program is then notified using an event, and the exter-
nal data can be manipulated.

In this case, the original variable, , which was given the value of , has been
sent to an external PHP script using the method. The PHP script performed a transfor-
mation on the variable and sent it back to Flash. The then received that infor-
mation and began loading it. When the loading had completed, the handler
is triggered by the dispatching of the event. The transformed variable can
then be traced to the Output panel in Flash.

Checking for program errors
Though we would like to tell you that the loading of external information into Flash is
foolproof, we simply cannot. When dealing with the Internet, if something needs to be
fetched and returned to a client’s machine, there is still a strong possibility that many
things can go wrong in the process. Though error handling quickly crosses over into the
realm of advanced ActionScript development, it is definitely worth mentioning so that its
presence is known.

For the handling of errors Flash incorporates the statements. In the following
sample, we take the statement, as used in the previous example, and set it
up to handle possible errors. There are quite a few errors that can occur and ActionScript
lets you test for them individually. For now, however, it will be sufficient for the program
to check for all errors generically.

1. The first step in error handling is to create the statement.

The statement does exactly as its name suggests: it tries to execute a specific code
statement. In this case we will be trying to execute the statement to load
our .

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

282

2. To handle errors, we then use the TT statement.

The statement will listen for specific errors and then allow the program to reroute
or execute alternative code if an error occurs. The statement actually accepts a
parameter, which is an error object to be detected. Similar to events, you have the ability
to select different kinds of errors to handle such as I/O errors and security errors. In this
example we used , which will check for all errors.

3. Finally, if an error is detected, the code statements contained within the
statement will be executed. Therefore, if this program detects an error while trying
to load the , it will send us a notification in the Output panel:

.

Loading external display objects

In Parts 4 and 5 of this book, we will take a look at loading various types of other informa-
tion in ActionScript including the following:

XML

CSS

 Sound

Video

For this chapter, we will take a look at one final type of loader, which is used for loading
external display objects like bitmaps and SWF files. The object is actually a type of
display object container, like the , , and objects, which is used for
containing externally loaded display objects.

The file demonstrates the difference between how the and the
 classes are used to load their respective content. Actually, the file demonstrates

how similar the classes are when used to load such different content. When you first open
the file, you will no doubt notice the blank white stage. There are no images on the stage
or in the Library panel.

Here is the sequence for loading external display objects:

1. We start with the following two lines, which are virtually identical to those used
earlier to load the file:

The only significant differences are that the ’s parameter has changed to locate
a graphic file and we are now using the class instead of the class. Other
than that, the instantiation of these objects occurs the exact same way as before.

2. We then include the next two lines, which are also extremely similar to those found
in the previous file:

MANAGING EXTERNAL ASSETS AND COMMUNICATION

283

11

The first of these uses the method of the loading object, in this case . The
second is a standard event listener. The only difference here is that instead of adding
the listener directly to the loading object, the listener is added to the
of the class.

3. Finally, we use the event handler to add the image to the stage.

And though the nomenclature is a bit different from that used earlier, the concept is
exactly the same. This time, instead of using the property as we did in the previous
example, we employ the class to store the display information in the
property. Therefore, by using the content property of the , we can effectively
add the image to the stage.

When you finally test the movie, you will see a familiar image from Chapter 4 as shown in
Figure 11-2.

Figure 11-2.
An external graphic being loaded
into Flash using ActionScript

Now, let’s discuss communication between two SWF files.

Communicating: SWF to SWF
One of the most commonly overlooked aspects of ActionScript development is the ability
to have multiple independent SWF files on a client’s machine communicate with one
another. This option is so powerful that the SWF files do not even need to be located in
the same parent application. For example, if you happen to be the kind of person who
runs several different browsers on your computer, you could have two different SWF files
running in two different browsers, passing information between each other. Further, this
functionality can be extended to communicate with SWF files being run as Flash Projectors
and Adobe AIR applications.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

284

LocalConnection class

The communication between SWF instances, or SWF to SWF, is achieved through the use
of the class. To properly use the TT class, you must first
create an instance of the class in each SWF that will be used during the communication.
Typically, the connection is established as one-way between two files. TT In order to complete
the passing of data, one SWF will need to be set up to send information, and the other will
need to be set up to receive it.

Send method
The method is used to allow a SWF to send information to another SWF by means of
a local connection. To set up the sender of a local connection, you first need to define an TT
instance of the class. You can then call the method of that object
to establish the connection.

The method has the ability to accept three types of parameters:

Connection name

Method name

 Optional parameters

In the following code example, is used as the first parameter, which also
represents the name of the local connection. This name will be used by the receiving SWF as
a means of detection for this connection. The second parameter, , is the name
of a method or function that exists in the receiving SWF that will be called once the connec-
tion is received. Finally, the method can accept any number of optional parameters that
can be used in the receiving SWF. Here is an example that uses these parameters:

Connect method
The method is a type of listener that waits to hear from the sending SWF. As
demonstrated in the following example, the receiving object of the local connection is set
up in a similar fashion to the sending object. That is, both objects are instances of the

class. The receiver, however, uses the method rather than
the method. In both cases the parameter, or name of the connection, will need to
be the same.

Once the connection has been established, it is necessary for the receiver to have a func-
tion that corresponds to the second parameter of the method. Remember, the sender
is trying to execute a function that is contained within the receiver. Therefore, the second
requirement of the receiving object is to have a function.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

285

11

Finally, as a measure of security, the property of the object is
used to assign which SWF contains the executable code. In this example, since the receiver
does contain the function, the property will be set to , ultimately determining
that this SWF contains the function.

SWF to SWF

Now let’s take a look at actually getting two SWF files to communicate with one another.
Figure 11-3 illustrates the concept that two independently running SWF files have the abil-
ity to pass information back and forth to one another over a simple local connection.

Figure 11-3. Information is being sent from one SWF to another using the
 class.

Setting up the sender
First thing that we will want to take care of in the creation of a SWF-to-SWF local connec-
tion is the creation of the sender SWF. For this example, we have supplied you with a base
file, , for the benefit of focusing only on the ActionScript aspect
of this exercise.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

286

1. Open .

In this file you will find two primary elements that will be accessed via ActionScript. The
first of these is a TextField, which has been given an instance name of in the
Property inspector. As shown in Figure 11-3, we will send information entered in this field
to another SWF file. The second element is the Contact button. This button has also been
given an instance name, , so it can be referenced for use in ActionScript.

2. With frame 1 of the timeline selected, open the Actions panel by pressing F9 and
enter the following code:

You first need to create an instance of the object to be used in this
SWF. You can do this using standard protocol as demonstrated in previous examples in
this book.

3. Create an event listener and assign it to the button.

4. Create the event handler for the listener.

Within this handler you will be evoking the method of the object. As the first
parameter of this method you will pass the string , which is used as the name
of the local connection. Again, the first parameter is used as an identifier between the two
SWF files so they are able to communicate with one another.

5. Pass the name of a method contained in the receiving SWF.

Though this method is not yet created, you can plan preemptively and give it an arbitrary
name of .

6. Finally, pass a third parameter.

Now pay close attention here. This third parameter is actually going to be passed as a
parameter of the function as well. For this value, use the property of the

text field. This will allow you to send whatever text is present in the
text field as a parameter to the receiving SWF.

Setting up the receiver
Once the sending SWF file has been configured, you then need to create a file that will be
capable of receiving information. For this part of the exercise, you will be using the

. In a similar manner to the way the sender was set up, the receiv-
ing SWF file also has the needed visual components already in place.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

287

11

1. Open .

For this segment, the important element to focus on is the TextField, which has been given
the instance name .

2. Select frame 1 of the timeline.

The Actions panel should already be open from the previous example. In the event that it
is not, you can open it by pressing F9. In the Actions panel, create a new
object. Notice that the object in this example is now called .

3. Next, create a connection to the object by using the
method of the object.

For this method, you need to pass the name of an active . Since we already
defined the name of the connection as the first parameter of the method in
the file, you know that the name of this is

. Therefore, you can pass that as the parameter of the
method.

4. Define a function that will be executed. In the sending SWF file you created a refer-
ence to an undefined function . You now need to create that function in
your receiving SWF. Enter the following code into the Actions panel:

When this function is created, you also set it up to receive a single parameter, which was
also defined in the method of the file. This will
allow the ability to pass the text from the text field into the function
as the variable .

Then, you can assign the value of , which was originally the value of ,
to the property of the text field. Or, simply put, you can take the value of
one text field and assign it to the value of another.

5. Finally, you need to set the client for the . Enter the following
code in the Actions Panel:

Remember, for security purposes you have to let the know which SWF
file contains the method that will be executed. The keyword is used to let the con-
nection know that this SWF does indeed contain the method to be executed.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

288

At this point, you may now test both SWF files at the same time. Enter some text into the
text field of the sending SWF file and click the Contact button. As shown in Figure 11-3,
your text should automatically appear in the text field of the receiving SWF.

It is also possible to communicate between ActionScript 2.0 and
ActionScript 3.0 by using a . SWFBridge is set of
third-party classes developed by Grant Skinner ((()
to offer a quick-and-easy method of implementation for this type of
communication.

Now that we have discussed sending information to remote locations, let’s discuss storing
information to a user’s local machine.

Storing data to a local machine
In many web applications it becomes necessary for an application to be able to store data
about session states and user information. Similar to an application written in any standard
web technology, much of the heavy lifting can be handled by the application itself. Flash is
certainly no exception. It does have the ability to communicate with various standard web
technologies and store information in databases. But, as with other types of web program-
ming methods that utilize cookies, you may need to store small amounts of information
about applications on the user’s machine.

The in ActionScript is a special type of object that actually works in a similar
manner as the standard web cookie. If you think about the commonly used “remember
me on this machine” convention, a user has the ability to store small amounts of informa-
tion about himself or herself to be used for the next time he or she arrives at that same
web page. What the user does not typically notice is that information is stored on his or
her local machine and not in a remote database. So, when the user returns to that page,
the page automatically looks to see whether the cookie exists and uses that information to
recall the user’s information.

Similarly to the way web applications use these cookies, Flash has the ability to store vari-
ous amounts of information to the local machine for later use through s.
And because browser-based Flash applications are set up to operate within a sandbox,

s cannot directly interact with the user’s computer outside of the Flash
Player. So, there is no threat of malicious activity.

By default, shared objects are restricted to 100K. Users have the ability d
to adjust the total size of their shared objects storage from 0K to an
unlimited amount by navigating to

and using the Settings Manager feature there.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

289

11

Taking a closer look at local shared objectsTT

The file is aimed at helping you get a little familiar with the way that shared
objects work. The trick with shared objects is that they typically don’t save information
until an application is closed. So, in order to examine the use of s on your
local machine or in the Flash IDE, you will need to test your Flash movie repeatedly to see
the effects of those s. By this, we mean that you will need to test your movie,
close it, and then test it again.

As shown in Figure 11-4, the file logs the date every time the movie is tested.
Therefore, whenever the movie is opened, the date is stored in a local shared object on
the user’s machine.

Figure 11-4.
Data being stored repeatedly
over time to a

Using shared objects is actually a rather easy thing to do. As shown in the next example,
the most complicated part of the entire program is formatting the string that stores the
date. Like every other data type you have experienced in ActionScript, the first thing to do
is instantiate a variable that will store and reference your shared object.

1. In this example we start by using the variable .

In the previous example we make use of the method . The method
requires one parameter, which is the name of the shared object that is stored on the local
machine. In the current example, the parameter directly refers to the file

, which is stored on the client computer. If the file does not yet exist, such as when you
first test this sample program, the instantiation process will automatically create this file.

When using shared objects, developers have the ability to access data
both locally (on a client-side machine) or remotely (on a server).
Because remote Flash programming is a bit out of scope for this book,
our discussions will focus solely on local shared objects.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

290

2. Next we add the following line of code, which simply creates a new object,
cleverly called :

The object will be used to retrieve the current date and time to be used to store the
time in which this movie was tested.

3. We then use an statement to check and see whether the shared object exists:

This can easily be done by checking the property of the object itself. The prop-
erty will return the size of the file in terms of bytes.

Keep in mind that when we originally instantiate a shared object, it does the following:

Checks to see whether the data file exists

Creates a file if one does not exist

In either case, the file will exist by the time you try to determine its size.

4. Therefore, we check to see whether the file size is equal to zero.

If the file size is zero, we know that it contains no information. As a result we can use the
statement to either write new information or simply add to information that already exists.

5. When adding information to the shared object, if we want that information to be
saved, we always want to use the property.

Once the property is accessed, we can then create an arbitrary property name that
will be used to label the information that will be stored in the shared object. In the follow-
ing example, we use the property .

Once we have determined the existence of the shared object, we can either write the cur-
rent date or add the new date string to the information that already exists.

6. In this case, we use the method of the object to retrieve the cur-
rent date and convert it to a string that is easily recognizable by human eyes.

The UTC date is actually the absolute date at the prime meridian, so if you are following
along, don’t be alarmed if the date and time do not match your location.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

291

11

7. If the shared object does exist, we use the clause and simply add, or concat-
enate, the new date string to the old one.

As you can see, we also use the character string in the expression to add a carriage
return before adding the new date string.

8. Finally, once we have determined the existence of the shared object’s data and
properly adjusted its value, we write that value to the TextArea component ,
which is located on the stage.

The greatest thing about shared objects is that they are automatic. Though you can have
the ability to save, or flush, data to the shared object file, simply closing the program will
do this for you.

Examining the .SOL file

To help you better understand the naming thatTT is used and exactly what is involved in the
creation of the shared object, let’s take a brief sidestep and examine the inner workings of
the shared object file that is stored on a user’s local machine.

As shown in Figure 11-5, there is actually not much information stored in an SOL file. Using
the previous example, remember during the instantiation process that we used the string
value of as the parameter in the method. As you can see here,
was used to name the file that is created to store the information. We also showed you
that shared objects have many properties such as and . The property is
what is used to store and generate all the information you see in this file. This information
can be broken into the following distinct parts:

Header

 arbitrary property value

 Stored dates

Figure 11-5. How data is saved in a local

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

292

The first of these, which is of no particular consequence, is the header. The header is the
first line in this file and is used to define the file in terms of type, size, and name. You
should notice the object name , but the rest is illegible for a simple text reader.
Not to worry, these other characters are used only for formatting and processing. They are
not really meant to be read by humans.

For this example, we are using the simple text editor WordPad to view
the inner workings of this file. And, though it is highly unlikely that you
will ever want, or need, to edit a shared object directly, there are sev-vv
eral third-party applications, such as SOL Editor, that would allow you
to get a more detailed look at these files. An excellent free ActionScript
editor that also has a built-in shared object reader is FlashDevelop
((().

The second item that you should immediately notice is the word . As you may
recall, is the arbitrary property value that was created to store the date informa-
tion in the file. Shared objects automatically take that property name and
create a reference to it in the SOL file.

The final thing that should jump out at you is the list of dates that have been stored from
the continuous testing of the SWF file. Shared objects store the information with the prop-
erty names as comma-separated name-value pairs: “name” refers to the name of the prop-
erty, in this case , and “value” is the date string created in the file.

Understanding how the information is stored in SOL files is a great start in understanding
how to properly use them. You can see now that shared objects can be used to store much
information about a specific user. For example, you could create a shared object called

that could be used to store billing information about a user. You could then
store all relevant information about the user in various properties of that shared object
such as ; , ; and , . The best part about shared
objects is that all information is stored locally on the client’s machine, alleviating any con-
cern of security issues during transfer or remote storage.

Creating a simple shared object

In the following example, you are going to take a crack at creating a shared object that will
be used to store some basic form information. Storing form information is probably the
most common use for basic shared object usage.

1. First thing you’ll need to do is open .

As shown in Figure 11-6, the file contains a very simple form that will be used to store
information about an individual on his or her local machine. Once you have examined the
file and its graphical elements, you can proceed with the following steps to create the
shared object.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

293

11

Figure 11-6.
Storing of form data to
a local

2. With the timeline open, select frame 1 of the actions layer and open the Actions
panel (press F9).

3. Enter the following line of code in the script pane of the actions layer:

As you are now fully aware, this line declares the variable that will be used to reference the
shared object. The object is also instantiated using the method.
You then need to pass it the parameter, which is the name of the shared object. For the
purposes of this example we used , but this is an arbitrary value and can be what-
ever you like.

4. Next, define event listeners for the Remember Info and Clear Info buttons.

The two buttons on the stage have been prenamed for you in the file.

For the button labeled Remember Info, which is also named in the Property
inspector, you need to create an event listener for the event. This lis-
tener will also be set up to trigger the handler . Similarly, the Clear Info, or

, button will also be set to listen for the event. However, it
will trigger the handler.

5. Now define the function.

The function is the listener for the button. This function is
responsible for collecting the text data from the two text fields (and)
and writing this data to the shared objects. You use this function to create two variables to
be stored in your .

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

294

The stage contains the and text fields. You then use the prop-
erty of these fields to retrieve whatever text is currently typed in those text fields. As
demonstrated in previous examples, the text data can then be assigned to the appropriate

variable using the assignment operator ().

6. Finally, introduce the method of the object.

The method is used to force-save data to the . As mentioned earlier,
shared objects are automatically saved when a SWF file is closed. However, if need be, the

method gives developers the ability to save data instantly.

Creating the handler for the button is much simpler than that used to save the
data to the .

7. Create the function and pass it the event object, as the use of an
event handler would dictate.

This function then contains one simple statement.

8. To remove information, TT or delete it, use the method of the
class.

As its name dictates, the method is used to clear the shared object of any data. We
can use this method to remove any previously stored form information that is associated
with this application.

Lastly, you need to give the form the ability to repopulate the and
fields when a user returns to your application. Once again, reflecting on previous sections
of this chapter, you learned that it is possible to check the existence of a ’s
data by checking the size of that . You know that, no matter what, the object
exists.

9. Add the following code, the first line of which is responsible for either creating a
new shared object or retrieving the object if it already exists:

Therefore, the property of the must return a numeric value. If the size
is zero, you know that there is no information stored in the object. If it happens to be
something other than zero, you know there is information that can be retrieved.

MANAGING EXTERNAL ASSETS AND COMMUNICATION

295

11

To accomplish this check, you will need to create TT an statement that will check to see
whether the value of the property is zero. Actually, you will be using the
logical NOT operator () to determine whether the value of is not equal to
zero. You do this because you want code to execute only if is not equal
to zero. If it is equal to zero, this means you have no data. And, if there is no data, there is
nothing to load.

10. Finally, once you have determined the existence of information in the ,
load that data into the text fields.

11. In more or less a backward fashion to the event handler, take the value
of the and properties of the object and assign
those values to the properties of the and text fields.

Once everything is in place, you can go ahead and test your movie as follows:

1. Fill out the form information and click the Save Info button.

2. Now close the movie and retest it.

Your information should automatically repopulate itself to the text fields.

3. Now click the Clear Info button and close the movie again.

When you test the movie a third time, you should notice that your information has been
cleared; thus it is not loaded into the text fields.

Summary
In this chapter we took a brief look at the primary methods in which ActionScript com-
municates with the outside world. By using the and classes, you
can effectively access any asset that is externally accessible to a Flash movie. In the upcom-
ing chapters we will take a more in-depth look at specific types of data including sound,
video, and XML.

The important classes covered in this chapter were

CHAPTER 12

XML: THE BEST WAY IN AND OUT
OF FLASH

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

298

In the last chapter, we looked at several different ways Flash can incorporate various types
of external assets. For the most part, the classes talked about in the last chapter are all that
the average Flash user will need to effectively incorporate external content within the
multimedia or web development world. With this information you will have the ability to
access an abundance of data ranging from simple text files to complex imagery and web
applications.

In this chapter, we are going to look at XML (Extensible Markup Language), a specific way
of formatting data to make it more meaningful when interacting with ActionScript. The
importance of XML is universal. It is able to be read and written by most major program-
ming languages of the modern era. Much like Flash, it has the ability to be conformed to
meet the needs of the project in which it is being used. Because of this, we felt it necessary
to devote an entire chapter to the introduction of XML and ActionScript. Further, like so
many other topics covered in this book, an entire book about using XML with Flash could
easily be written. As a matter of fact, several already have.

For these reasons XML is one of the best companion technologies for working with Flash.
The relative ease in which XML can be created and the XML support offered in ActionScript 3.0
make XML the best way for sending data in and out of Flash.

What is XML?
Whenever we have a discussion with a person who is familiar with XML, but never had the
opportunity to use it firsthand, there always seems to be a degree of mystique that sur-
rounds that discussion. More often than not, XML is immediately thought of as this sophis-
ticated programming language capable of performing all of these magic tricks for the
benefit of a given application. In reality, it is not really a programming language at all.

The true magic of XML is in how eloquently simple it is by design. It is used to give mean-
ing and structure to an otherwise meaningless series of computer characters. Other than
that, it does not really do anything. It can perform no program execution of its own. It is
simply a liaison, passing a structured series of information from one program to another.
The assumption can then be made that, by design, XML was developed for the systematic
transportation of information. In addition to being more efficient, the data will always be
accessible because it will be formatted using XML. This is true regardless of the server-side
technology or primary programming language.

Though you may not realize it, you’re probably extremely familiar with several modern
uses for XML-based technology. The most common form of XML in use today is the web
service. Web services are a way for many third-party users to access a company’s infor-
mation without compromising security. About now you are probably looking for a real-
world example. Well, most online applications have some level of XML interaction that
allows outside developers access to their records. Some of the more common ones are
as follows:

XML: THE BEST WAY IN AND OUT OF FLASH

299

12

Commerce: Many popular commercial sites, such as Amazon.com and eBay, offer
the ability for developers to access their products and listings through a collection of
web-based functions known as application programming interfaces (APIs). With this
functionality developers have the ability to access many of the products, services,
and listings that are offered by these companies. The data is exchanged using XML.

Social networking: In a similar fashion, leading social networking companies such
as Facebook and Meetup.com offer the ability to access and communicate with
member and group information through a similar series of APIs. This information is
also passed from place to place in the form of XML.

News feeds: The news feed is an idea that is almost as old as the Internet itself. It
is a native feature for most blogs and community web sites. The most popular
brand of feed is RSS (Really Simple Syndication). However, because news feeds are
almost a web site staple in this day and age, they come in many forms. Additionally,
larger news firms such as CNN, MSNBC, and FOX Sports all transmit their news
through some type of news feed, usually RSS. The data sent from news feeds are
commonly formatted as XML.

While the most common use for XML is communication via web service, the purposes of
XML far exceed data transmission. XML can be used to define other markup languages
as well. It is the foundational standard for all modern markup languages. The following
web programming languages are some of the more popular languages that find their
roots in XML:

ASP.NET: Microsoft’s standard web language

XHTML: A strict XML-conformant form of HTML

MXML: A markup language developed for use with Adobe Flex

XML is used as a standard for desktop applications as well. For example, Microsoft com-
pletely rearchitected its markup model for Word 2007 to include the new XML-based file
format DOCX.

ActionScript 3.0 and E4X
E4X simply stands for ECMAScript for XML. Huge help, we know. Ecma International (for-
merly the European Computer Manufacturers Association) is a private nonprofit associa-
tion devoted to the standardization of communications and information as it relates to
technology.

Recall that ActionScript is a derivative of ECMAScript and the ECMA-262 standard. Well,
the more ActionScript matures, the more compliant it will become with ECMA standards.
The primary benefit to standards conformance is to ensure that programming is strict,
well-formed, and common among different programmers. E4X is then the current stan-
dard for working with XML data in ECMA-based languages like ActionScript. With the
addition of E4X in ActionScript 3.0, we saw a significant movement toward greater code
manageability and data access.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

300

In previous versions of Flash, a developer would need to access information through all of
an element’s parents. For example, let’s say we had information about various cities around
the world organized in an XML structure.

To access this information in early versions of TT ActionScript, you would need to use some-
thing like this:

Actually, it would look something more like this:

You can see where this would become extremely inefficient.

Fortunately, ActionScript 3.0 and E4X do offer immediate help. To access the same inforTT -
mation, as previously discussed, a developer can use a more condensed approached as
shown here:

As you delve deeper into this chapter, you will get a better understanding of how Flash
operates on XML. For now, it is sufficient to understand that Flash is now compliant with
the standard method of operating on XML: E4X.

Let’s get started examining the basics of the XML structure.

Learning to see XML
Much like any other type of computer language (markup or programming), when you first
take a look at XML, it can be a bit overwhelming. Further, the more complicated the struc-
ture, the harder it becomes to discern data from syntax. Fortunately, there is no “doing”
involved with XML as a language. Simply put, where ActionScript can perform computa-
tion and manipulation on various values, XML cannot. Therefore, there will be no added
confusion associated with the learning of theory or interactive programming. Once a per-
son learns a few very basic rules that govern the way XML is structured, developing and
reading-in complex data structures becomes almost like riding a bike.

The most important thing that any new XML user needs to understand is that XML is self-
descriptive. This simply means that the developer defines not only the data, but also the
elements that contain the data. There are not an overwhelming number of reserved key-
words or role-specific programming characters that need to be learned. With the excep-
tion of a few basic rules that we will discuss in this chapter, the entire document can be
defined by the programmer. In essence, it then becomes a matter of not what is being
organized but how.

As shown next, we have created an XML structure that organizes data relating to the mem-
bers of a popular sports team into a structure that is more easily understood by both the

XML: THE BEST WAY IN AND OUT OF FLASH

301

12

human eye and a computer program. For sake of example, the structure defines a popular
professional soccer team, the Red Devils. In the structure we are able to start defining
information about the players on the team using the tag. As you can see, this
example actually defines three players. We then begin to have the ability to add further
information about each player including , , and . This continual nesting of
information is often referred to as the XML tree.

Figure 12-1 gives an excellent graphical model to further understand what the preceding
data structure is representing.

Figure 12-1. A graphical representaion of the defined XML structure

An XML tree must always contain a top-level node, or single element, which is commonly
referred to as the root node. This element will contain everything else that exists in the
XML data structure. In this example we used as the root node, which is also
conveniently the name of the team. Because this is XML and self-descriptive, we could
have just as easily used something like , , or as the root node. This
becomes a powerful feature as the data and data structure are fully customizable.

Chapter 11 included a simple name-value pair data structure that sent data formatted as a
query string to a remote PHP script. If you compare that example to the current one, you
should see how much more powerful the XML approach becomes. Imagine trying to
streamline this information in a name-value pair. Your variable-naming scheme would have
to be pretty intricate. How would you define individual players? How would you associate

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

302

attributes to those players? What about scalability? Right now, you are only working with
three players. There are over 40 players on the Red Devils. Now imagine trying to pass
information about the entire league. There are 20 teams registered this year. That’s more
than 800 players and a lot of statistics. Not to be obnoxious about the whole thing, but
you can see where trying to organize this information into name-value pairs versus XML
would become an absolute nightmare.

Conversely, using XML would be overkill in a situation as similar to that in the Chapter 11
form. XML is definitely better to use with complex data structures or data structures that
have the potential for becoming complex.

Now, let’s look a little more closely at how to create well-formed XML.

Using proper structure and syntax
To effectively work with XMTT L, a developer only needs to become familiar with a few very
basic syntactical rules to create a well-formed structure. Those rules pertain to the following:

 Elements

Entities and escapes

 Attributes

 Empty elements

Efficiency

Comments

Elements

The element is the most basic part of the XML structure. An element is defined by an
opening and closing tag. A tag is any descriptive text that is contained within the less than
() and greater than () characters. To help you better understand this concept, go ahead TT
and open located in the folder of the working files directory.

Though it is possible to open and edit an XML file in Flash, you may feel more comfortable
in another program such as Dreamweaver or your computer’s standard text editor. When
you first open this document, you will notice that it is totally blank. This will give you the
opportunity to see how easy it is to build a complex XML file from the ground up.

First thing you will want to do within the file is enter the following code, which
will create an element. If you are familiar with working with HTML, you will no doubt feel
right at home.

XML: THE BEST WAY IN AND OUT OF FLASH

303

12

Notice that is an opening tag that would also signify the start of the ele-
ment. The closing tag, , is defined in the same manner and includes a forward
slash () directly after the less than character (). The entire element is then defined as
everything located within these two tags, including the tags themselves.

Rules for working with elements
When working with XML elements, a few simple rules need to be adhered to. The ability to
have self-descriptive items within a data structure is powerful indeed, but it is these rules
that give the structure meaning.

Closing tags: All XML elements must contain an opening and closing tag. Failure to
properly tag your elements could result in a program error. The following is an
example of an improperly tagged element. As you can see, there is an opening tag
but no subsequent closing tag.

Tags must match: It is important, when establishing your elements, to make sure
that the opening tag and the ending tag are exactly the same. Misspelling and case
insensitivity will create program errors. The following opening and closing tags are
not the same:

Proper nesting: One of the most important things associated with the XML struc-
ture is the structure itself. Improperly nested elements or broken structure will
immediately create an error when the program tries to read in an XML document.
The following example has the two closing tags out of order; this error completely
undermines the XML structure.

Proper naming: There are a few things to also understand when choosing names
for your element tags:

Element names may contain any alphanumeric character and most special char-
acters with the exception of the reserved entities, which will be discussed shortly
in the “Entities and escapes” section.

Names cannot start with numbers or special characters.

Names cannot begin with any derivative of the word “XML” (XML, xml, etc.).

Names cannot contain spaces.

Filling out the XML tree
Now that you have become familiar with creating XML elements, take a few minutes and
flesh out a structure within the file. For this example you will want to create
several members of your “family,” much like the members of the Red Devils soccer team
introduced earlier in this chapter. In addition to the members of the family, create several
more elements to use to add description to each member. In the following example, such

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

304

elements include for a name, for hair color, for eye color, and for their
relationship.

Entities and escapes

As mentioned earlier in this chapter, one of the greatest benefits to using XML is the lack
of a complicated set of reserved keywords and characters. To create XMTT L you simply need
to know what data you want to organize and start organizing it. However, there are a few
items that do have a specific meaning to the programs that digest the XML data. Take the TT
following XML code, for example:

When a program begins to examine the structure of XML data, it knows that certain char-
acters signify certain events. For instance, the less than () character lets the program
know that a tag or closing tag is about to be defined. So, in the case of the aforemen-
tioned math problem element, the character in the actual problem would make the
parsing program think that a new tag was being defined. Because this is not actually a new
tag and no other appropriate characters exist with it, the way that line is entered would
create an error in the receiving program.

Fortunately, there is a simple workaround for this problem. To use a character that has been TT
predetermined to perform a functional task in XML, you must employ the use of character
entity references. The entity reference, also commonly referred to as an escape sequence,
is a string of characters that is used in place of a specific character, or entity. There are only
five reserved characters as defined by the XML specification, as shown in Table 12-1.TT

XML: THE BEST WAY IN AND OUT OF FLASH

305

12

Table 12-1. The five primary reserved characters as dictated by the XML specification

Entity Ey scape sequence Usage

> > Greater than

< < Less than

& & Ampersand

“ " Quotation mark

‘ ' Apostrophe

The syntax of an escape sequence is actually also fairly straightforward. To initiate an escapeTT
you must use an ampersand (), followed by a character code, followed by a semicolon ().
So to solve the problem from the earlier code snippet, we implement a standard escape
sequence, using the character code for the less than (<) sign as demonstrated here:

AttributesAA

AttributesAA give you the ability to add further information that is going to be associated
with a specific element. An attribute is nothing more than a simple name-value pair that is
added to the opening tag of any given element.

See Chapter 11 for a discussion of name-value pairs.

Attributes also allow you to package, or encapsulate, information within one element for
the benefit of increased organization. As demonstrated in the following example, you can
see how adding attributes to a simple element lets you effectively associate more infor-
mation with that element. The following element defines a collection of information
about an apple:

By using attributes we have the ability to add more descriptive information about the
given element.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

306

Here’s a note of caution about attributes. As a personal approach, we try to organize our-
selves as efficiently as possible. When working with XML, we like to use attributes as much
as we can. However, there are a couple things to think about before you become too attri-
bute crazy.

Because attributes are nested within the opening tag of an element, they are limited in the
amount of information they can represent. Like the name-value pair, an attribute can only
contain one value. When using elements, however, you have the ability to have that ele-
ment contain many values, including text nodes, other elements, and attributes. This also
gives you the future flexibility to edit the structure if needed.

The best way to approach this, as a developer, is to determine what the program requires.
Remember, this is XML, so you can shape it any way you want. Therefore, don’t limit your-
self to what may or may not be considered best practice in this situation. Try to take an
objective look at the problem you are faced with and determine the best solution.

Empty elements

Another tool that can be used as a medium of efficiency is the empty element. As you
can see in the preceding code, moving all descriptive information to attributes has a ten-
dency to make the use of text nodes and subsequent closing tags unnecessary. If you know
that your elements will not require a text node, you have the ability to define them as
empty elements.

To create an empty element,TT you simply remove the closing tag and insert a slash () just
before the greater than () character in the opening tag definition. The following will be
recognized as a complete element by the parsing program:

Efficiency

For further insight into how XML can become a more efficient structure, let’s revisit the
players example from earlier in this chapter.

XML: THE BEST WAY IN AND OUT OF FLASH

307

12

If you were to take the previously mentioned structure and streamline it using only attri-
butes, you could end up with something similar to what you see next. Notice how much
more compact and efficient this information becomes while maintaining all the same
information.

Commenting XML

In XML there are two primary methods of commenting text: standard XML-style com-
menting and using CDATA tags. Standard commenting is used in a manner similar to the
way comments are employed in any other programming language. As shown next, a stan-
dard comment is exactly the type of comment found in HTML. Such comments are used
to both describe areas of your coded document and serve as a vessel of communication
between you and other developers.

Standard XML-style comment
The standard XML-style comment is initiated by the sequence of characters. It is then
closed by the sequence of characters. Whatever text is typed between these two sets
of characters will be ignored by the XML parser of the receiving program.

Here’s an example:

Flash has the ability to read in comments from XML documents and send them to the
Output window.

CDATAA ATT comments
CDATA comments are actually very similar to block-level comments used in ActionScript.
The biggest benefit to using CDATA comments is that they maintain format and allow you
to pass whatever characters you want to the parsing program as exact. Therefore you could

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

308

pass any set of characters, including reserved entities, to ActionScript, and the XML would
maintain the integrity of those characters.

Here’s an example:

Now that you are familiar with the structure of XML, you can try your hand at loading this
data into Flash via ActionScript.

Loading an XML file with ActionScript
In this section you’ll take a crack at loading XML into Flash using ActionScript. For this
example, you are going to load in the XML data you created earlier in this chapter with the

file.

Loading XML data into Flash involves all of the usual suspects that you would expect to
find when loading any other type of external data. Let’s take a quick look at the following
code used in :

URLRequest and URLLoader objects

After reading Chapter 11, you should be pretty familiar with the object and
what it is used for. In this example, it retrieves the file you created earlier. The
second line is new, however. You should recognize it as a variable declaration. And based
on its name, you have probably also assumed that this variable will be used to store your
incoming XML data. You will not be assigning value to the variable at this point because
there is nothing to assign.

XML: THE BEST WAY IN AND OUT OF FLASH

309

12

See Chapter 8 for a discussion of variables.

The next three lines should be pretty straightforward. The first line creates the loader
object that will be used to load the previously created . The second line will
be used to assign the event listener to the object and set the handler as the

function. Finally, the method is called and passed the value of the
as its parameter.

Event handler

The final piece of the puzzle is the event handler. There isn’t really much variation from
this handler and the ones we discussed in Chapter 9. Here, we assign a value to the
object. As discussed a moment ago, you needed to wait until
data was available before you could assign it to a variable.

The other question that may also arise is why the variable was
not simply declared in the event handler. Well, aside from
being a cleaner way of coding, the answer has everything to
do with the scope of the variable. Had the variable been
declared within the event handler, we would have no way to
access it outside of the event handler without creating some
other form of external reference. Ultimately, the information
loaded in from an external source will need to be used by
other parts of the program. By declaring the variable at the
root level, we make the XML data accessible to the whole
program.

Once the necessary code is in place, you can test your movie
(Ctrl+Enter or Cmd+Enter). You then see your XML data
traced out perfectly in the Output window, similarly to
Figure 12-2.

Figure 12-2. The Flash Output panel displaying XML
data stored in the file

Once you have loaded an XML file into Flash, you will need to
filter the information in the XML structure to use it in your
application. In the next section we will discuss in detail the
primary methods used to filter XML.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

310

Reading the XML data
And now the real fun begins. So far we have looked at the creation structure for simple
XML documents. We have also been able to access, load, and display an entire set of data
stored within that XML document. At this time we will take a look at several methods for
accessing that information for specific use in ActionScript.

XML and XMLList classes

For accessing the information stored in an XML tree, ActionScript offers two primary
classes: the class and the class. For the most part, these two classes operate in
a very similar fashion. Because of this, there is often some degree of confusion surround-
ing the best use of these classes.

The primary difference between the and class is that the class is used to
work with a single, well-formed XML data structure, and the is capable of working
with multiple XML objects including elements, text nodes, and attributes. Further,
the offers increased functionality for handling lists of information. Ultimately, the

 class will aid you in the management of multiple sets of information like family
members, players on a soccer team, or aggregated news feeds.

ActionScript 3.0 also offers the class as a legacy method for working with
XML data in the traditional ActionScript 2.0 manner.

In the previous example you used the XML class to create an object and load in a data
structure that was descriptive of members of your family. Because you created it from
scratch, you know that the data was both thorough and well formed. As a result your
information was loading into ActionScript with no problem.

However, if you were to remove the root element of the structure as shown next, you
would no longer have a single well-formed XML structure. Instead, you would have a list of
many XML objects.

XML: THE BEST WAY IN AND OUT OF FLASH

311

12

If you then tried to load this data, now referring to the file , using the stan-
dard XML object, you would be shown an error as demonstrated in Figure 12-3.

Figure 12-3. Output error generated by improper XML formatting

The error type is letting you know that the XML information that is being
loaded into the XML object is not properly formatted. Recall that all well-formed XML
must have a single root element or node that contains everything else in the structure. As
a result of your data no longer having a root node, the tag, ActionScript no longer
accepts it as an XML object.

This minor setback is just what you need to get a glimpse at how the differs from
the standard class. If you make a few minor edits to the code in (or jump
right to) as shown next, you should now be able to load the XML data from

with no adverse side effects. Because the is capable of handling
multiple XML objects, it simply digests this information as a list of elements rather than
one entire XML tree.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

312

Chances are, as a developer, you are not going to be dealing with malformed XML data
coming from a remote source. In addition, as professionals, it is always a good idea to
adhere to standards. Therefore, you will more than likely never have to use the
object for loading XML information. The real purpose of the class is to allow you to work
with different aspects of the information as a list. Therefore, though you may load the
information from the family XML tree as an XML object, when you ultimately access that
information it will be converted to an .

Accessing XML data

Thanks to the added benefit of E4X in ActionScript 3.0, accessing XML data has become
significantly less difficult than in ActionScript 2.0. The primary reason is that you now have
access to the various nodes (elements, attribute, and text) through the use of their names
and the dot operator (), as you would when accessing properties of ActionScript objects
like .

Accessing elements
Using the file , you will be loading and manipulating XML data from

. Upon opening this file you should notice the standard loading sequence
as used in several previous examples. The data found in the source is a
slightly adjusted version of the earlier versions of the player XML files, as shown next. You
will notice that this file contains data similar to preceding examples, the two differences
being the mixed format offering both child elements and attributes and additional players
for a more verbose data set.

XML: THE BEST WAY IN AND OUT OF FLASH

313

12

Now that you have had a quick look at the data you will be working with, you can begin to
access that data directly. In the event handler in , enter the following
line of code:

In this statement, because you know that your XML data has been loaded into your
object, you use that variable name to access the XML data. Because of the enhanced

E4X capabilities, you can then access child nodes of the XML data’s tree simply by using
the node name as you would a property. Therefore, because you know that your data
source contains a series of XML elements named , you can access that information
directly using . The statement would then send all information concern-
ing the player nodes to the Output window as shown in Figure 12-4.

Figure 12-4.
The output of a statement
referencing

Drilling down into the structure
In a similar fashion you also have the ability to drill down into the structure and access
child nodes of child nodes (think grandchildren) by continually using the dot operator ().
If you change the statement in your current working file to the following, you will
then have the ability to access information associated with the elements, or position,
of each player.

You then get an output of all nodes that match the request for the name, as shown in
Figure 12-5.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

314

Figure 12-5.
The output of the request for the

element name

Using the children() method
In the event that you are unable to access elements directly, you also have the ability to
simply load all child elements of any particular node using the method. In this
case let’s assume that you know there are players or, more to the point, player elements
within the XML data structure, but you are not sure what information, if any, is contained
within those elements. You can then edit the statement, as shown next, to simply
return all the child elements of any node that is named .

The resulting output would then contain a list of all child nodes and their values, as shown
in Figure 12-6.

Figure 12-6. The output of values returned using the
 method

Retrieving text node values
When working with XML, the node name is important in order to access your information.
However, because XML node names are typically repetitive, it is highly unlikely that you
would ever want to use the node name as a valid piece of data. What is going to ultimately
be important to the users of your application is the information stored in the text node
element.

To access text node values in TT ActionScript, use the simple method, shown next. If
you once again edit the statement of your working file, you can very easily get
access to a valid text value stored in any of the existing nodes.

XML: THE BEST WAY IN AND OUT OF FLASH

315

12

The resulting statement output, shown in Figure 12-7, is at this point probably not a
very effective piece of data, but it does demonstrate the ability to access textual data that
has been stored within an XML element.

Figure 12-7. Text node values that have been captured using theTT
 method

Double dot notation
The double dot operator () gives developers the ability to bypass a long series of node
names in the process of drilling into the XML structure. Earlier in this chapter we discussed
the dot operator () as a means to access child nodes. This access was limited to parent-
child relationships. With the double dot operator, you have the ability to jump to whichever
node you wish to access. This is an incredibly valuable and effective tool for ActionScript
programmers to now have the ability to use.

In the following example, the double dot is used to bypass the node name.

Though this particular example is a relatively small leap, imagine if you need to access a
more complex structure like the animal kingdom. To get to a dog, you would have to traTT -
verse a structure like . The
double dot operator gives you the ability to bypass complex structures and go right to

.

Accessing attribute values
As you may have guessed, because attributes have special placement within the XML struc-
ture, they do require a special method for reading their values. There are actually several
ways to access XML attribute values. We’ll discuss the following:

Attribute identifier operator ()

 method

 method

To access attributes directly by name, youTT may use the dot syntax that has been discussed
so far in this chapter. However, you will be required to use the attribute identifier operator,
, as a prefix to the attribute name. In your current XML structure, all player elements have

an attribute name that contains the last name of each player. If you then use the character
followed by the attribute name , you can directly access the value of that node just as
you would any other node.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

316

Here’s an example:

You then get an output of all attribute values as shown in Figure 12-8.

Figure 12-8. The output of the attribute values from the attributes

The second method for accessing values is using the method. The
method can be used in a similar fashion to the attribute identifier operator, where the
targeting of a specific attribute name is taking place. As shown next, this method accepts
one parameter: a string value representing the name of the attribute. When this file is
tested, you will notice exactly the same output as was achieved in Figure 12-8.

The final method for accessing attribute values works as the method did
when retrieving the information about an element’s children. This method is also used
to search for attributes of an undetermined name or quantity. The method
(note the) is used exactly like the other two attribute routines. As shown next, this
method accepts no parameter.

Though the values returned in this example are exactly as shown in Figure 12-8, be advised
that this example is only using one set of attributes. Unlike the previous two methods,
which only returned attribute values associated with the attribute name, this method will
return all attribute values associated with all child elements of the accessed XML element.

Bracket (array) notation
Having now thoroughly combed through the currently available XML data structure, it is
about time we stop returning lists of data and started pinpointing individual values. To TT
accomplish this ActionScript uses simple bracket notation (). Bracket notation is used
to access the values of a special type of data structure known as an array. Arrays are
essentially variables that are used to store multiple values, or a list.

The following example demonstrates the building of an array (list):

XML: THE BEST WAY IN AND OUT OF FLASH

317

12

The values in this list can then be accessed individually through the use a set of brackets
() containing the index position of the value. If we wanted to trace Dick’s name, we
would use this notation as follows:

We simply place the index value (position) of the item in our list inside brackets, directly
after the name of the array. You’re probably wondering why Dick’s name was second in the
list and accessed by a 1. Well, computers start counting with zeros. Therefore, the first index
value of an array is always 0, so the first element in your list is going to be at the 0 position,
not 1. So instead of thinking 1,2,3,4 . . . , start thinking 0,1,2,3 . . .

Virtually every example we have looked at over the last section has the ability to be aug-
mented with array notation. When Flash parses XML data, the elements are stored as
arrays (indexed lists), which allow us to use this same functionality.

Using the statements, you can see that the simple addition of bracket notation to
each statement will allow you to no longer trace out entire lists associated with specific
nodes but an individual value instead.

The first statement shown here will now only trace out the complete child for the first
position of the list:

You also have the ability to insert the array notation at several levels of the dot notation.
The following example also targets the first player node, but it also uses the
method to search for child elements. You can then use the array notation a second time to
select only one specific child element and return the value. The following statement then
traces 1, which is the value of the second child element of the first player:

Finally, array notation can be used with the other XML methods in an abundance of com-
binations to achieve the desired result. The following code sample demonstrates possible
outcomes when working with array notation and the previous examples:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

318

Filtering node values
One final aspect of accessing XML values that is definitely worth mentioning is the ability
to filter various values using the filtering predicate operator (). The filtering predicate
operator allows values to be filtered based on a specific node or attribute value. By comr -
paring the equality of a node and a value, we can pinpoint exact elements or groups of
elements and various extra values.

The following uses the filtering predicate operator to determine which elements
have a value of and returns the value of the node:

In a similar fashion you can use this method to compare the values of attributes. The first
example uses the filtering predicate in conjunction with an attribute identifier. This exam-
ple returns the value of the attribute that is associated with the element
whose value is equal to . You are then given the output of .

In the second example you see that you can conveniently use the attribute identifier
within the filtering predicate to achieve the almost reverse situation as the previous exam-
ple. You are now looking for the value for the element whose attribute is
equal to . The returned output is .

Summary
The chapters in Part 3 have given you access to a tremendous amount of power with
respect to ActionScript. As a Flash user, this is the material that is going to propel you into
the realm of web application development. As a designer, you now possess the basic
knowledge to begin communicating programmatically with web specialists authoring in an
abundance of different programming languages.

In this chapter, we discussed the following important topics:

 Proper XML formatting and structure.

 The class, which is used for holding and manipulating an entire single XML
object.

 The object, which is used to manipulate one or more elements or objects.
You also have access to an additional level of functionality similar to the class.

PART FOUR

ADDITIONAL USER INTERFACES

CHAPTER 13

WORKING WITH TEXT AND STRINGS

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

322

Text helped lift the popularity of FlashTT early on in its existence. Though it may not seem
like much of a reason for anyone to consider Flash the conquistador of multimedia web
development, using decorative text in the early days of web development was a luxury
that was not easily achieved. Back then, developers were limited to standard system fonts
for rendering textual data, and in some instances, this is still the case.

In order for a computer to display a certain font, the font must be installed on that com-
puter. If a design required the use of an abstract font, the common solution would be to
render special text as a bitmap graphic to be displayed as a picture on web sites. This solu-
tion was both time-consuming for the web developer and impractical when considering
the loading differential between text and images.

Furthermore, if web developers used abstract or copywritten fonts, the likelihood of that
font being installed on a visitor’s computer was not very good. Therefore, web developers
started using web-safe fonts, which are the fonts that are considered most likely to be
installed on the majority of computers accessing the Internet. In the event the font does
not exist, the browser would replace it with its own default font. You can see where this
quickly became a point of degradation for web designers. There was simply no way to
guarantee that the web site would render as designed by the web developer.

Flash, on the other hand, allowed designers to use text as they wanted. They had the ability
to use whichever font they wanted, wherever they wanted. And because fonts are embed-
ded in the Flash application, they would translate perfectly to any computer on any plat-
form, through any browser. Designers were assured that users would see the text exactly as
they designed it. And because Flash is using the actual font file and not an image generated
from the font, this proved to be more efficient in terms of the end product’s file size.

In this chapter we are going to explore the many subtleties of working with text in Flash.
Conceptually, this chapter will be a bit less complex than the most recent ones. However,
its content is no less relevant to the power of modern-day Flash design.

Let’s first take a look at implementing text at author time.

Creating text with the Text toolTT
In Flash there are three primary types of text that can be used in any given Flash project.
Each of these types of text is designed for a specific purpose, which means that they
behave in different manners. These types are as follows:

Static text is used primarily for text that does not change. This text makes it much
simpler to work with complex fonts containing decorative aspects like cursive or
handwriting. This type cannot be created or manipulated with ActionScript.

Dynamic text is presentation text that is accessible using ActionScript. Its value
can be manipulated and changed as required by the application. An excellent
example of dynamic text is a player’s score in a video game where text is constantly
updated.

WORKING WITH TEXT AND STRINGS

323

13

Input text, as its name indicates, is text that allows for user input. Though typically
used in contact forms, input text is very useful in an application’s communication
with a user. This type of text is also able to be manipulated using ActionScript.

Having a good understanding of these types of text, and when best to use them, is
extremely advantageous for any project. In the next several sections, we will be construct-
ing a simple contact form that utilizes all of the previously mentioned text types.

Revisiting the Property inspector

As you have learned in several of the preceding chapters in this book, one of the best allies
for manipulating elements at author time is the Property inspector. As it turns out, the
Property inspector is the primary method for manipulating text fields that have been cre-
ated with the Text tool. When a text field is selected on the stage, the Property inspector is
populated with an abundant amount of editable information ranging from the text para-
graph settings to how the text will be rendered at runtime. You can also change properties
like color and size.

Starting a simple contact form
In this chapter we will build a simple contact form to help you get acclimated to the vari-
ous aspects of working with the text options in Flash. Different variations of web forms are
the primary methods to capture a user’s information in Flash. To get started we will place TT
a few text fields on the stage and manipulate those using the Property inspector. Once the
interface for our form is complete, we will then manipulate these text fields further using
ActionScript.

1. Open Flash and choose Flash File (ActionScript 3) to create a new Flash file. If the
Property inspector is not yet open, open it by selecting Window Properties or by
pressing Ctrl+F3 on your keyboard.

2. Change the document properties to better suit the contact form. We suggest set-
ting the document size to 300 by 400 and the stage color to #FFFFCD.

3. Use the Text tool to add text to the stage in Flash. The unmistakable T icon, shownT
in Figure 13-1, represents the Text tool on the toolbar. You can also access this tool
by pressing T on your keyboard.

Figure 13-1.
The Text tool is used to create text in Flash.

When you select the Text tool from the Tools panel, you should notice the Property inspec-
tor changes to immediately assist in the use of text. As shown in Figure 13-2, before text is
even applied to the stage, you have the ability to edit its type as well as several other prop-
erties responsible for character and paragraph formatting.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

324

Figure 13-2.
The Text Type drop-drown box
allows a user to choose static,

dynamic, or input text.

For this example we will be creating text fields for collecting a user’s information. Therefore,
we will need several static text fields to use as labels and several input text fields to allow
users to enter their information. We will be able to come back and format text fields later
in the development cycle. For now, let’s add a couple simple text fields.

4. With the Text tool selected, change the text type in the Property inspector to Static
Text. You can then click the stage to place the text field.

5. Type the words TT First Name in the text field. Once the text is entered, you can exit
the text field by clicking the stage. This text field will serve as our label for the area
where the user will enter his or her first name.

Static text must contain characters. If you place a static text field on the stage
and do not type anything in it, the field will disappear when it is deselected.

6. Next, we need a place for the user to enter their information. The Text tool should
still be selected from the previous entry. In the Property inspector, change the Text
Type setting to Input Text.

7. Add the input text field to the stage by clicking the stage.

WORKING WITH TEXT AND STRINGS

325

13

Unlike the static text field, runtime editable text, such as input and dynamic text, does
not require the existence of any characters to remain on the stage during author time.
When the field is deselected, you will still see the empty text field represented by a dot-tt
ted line.

Ultimately, if any application uses an input text field, the information from that field is
going to be used with ActionScript. You may have noticed that when you changed the text
type from static to input that the <Instance Name> field appeared in the Property inspector
above the Text Type drop-down menu. We are going to use this field to name our input
and dynamic text fields so we can use them later in ActionScript.

8. Use the Selection tool (select the black arrow icon in the Tools panel or press V on
your keyboard) to select the input field that you just created. In the <Instance
Name> field in the Property inspector, enter a name that is descriptive of the infor-
mation that will be in that field. For this example we used as the instance
name of our input field as shown in Figure 13-3.

Figure 13-3.
The <Instance Name> field is used to give text
fields descriptive names for use in ActionScript.

At this point, it will be a good idea to begin thinking about the layout of the form we are
creating. Though it would be easy in this particular case to copy/paste (or Alt-drag on a PC,
Option-drag on a Mac) and use the Align panel to quickly arrange multiple text fields on the
stage, it is extremely important to begin seeing things the way ActionScript sees them.

When working with ActionScript, developers do not have the luxury of using a method
such as because it simply does not exist. Objects in program-
ming are typically placed on a stage using absolute coordinates like x and y. Even if the
object is placed relatively in relation to another object, the programmer will ultimately
need to know the absolute position of one of those objects. To use an analogy from footTT -
ball: if the football is 10 yards from the end zone, we still need to know exactly where the
end zone is for this statement to make sense.

Positioning text fields
For this example, we will eventually be creating multiple text fields. Some of these text
fields will be created using ActionScript. It is important that we have an understanding of
where exactly our author time text fields are positioned so we know where our runtime
text fields are supposed to go. To manage this, we will be using the TT Position and Size sec-
tion of the Property inspector.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

326

1. With the input text field selected, click the small chain icon as shown in
Figure 13-4. This icon is used to lock the aspect ratio of the height and width prop-
erties of the selected object. When this icon is showing as a broken chain, we can
change the height and width properties independently of one another.

Figure 13-4.
The Lock feature is used to
maintain the aspect ratio of
height and width properties.

2. Now change the X, Y, W, and H properties of this section as shown in Figure 13-4.
This helps us develop a framework for how the other items will be arranged on the
stage.

3. Select the static text field you have created and adjust the font family, font color,
size, and letter spacing. Experiment with several combinations until you find a look
and feel that suits your design eye. For this exercise, it would be best to keep the
font size under 20 pt, as you will be adding other text fields to the form.

There is a touch of method to this madness. Recall in Step 2 under “Starting a simple con-
tact form” that we set the document width to 300 pixels (px). We then figured it would be
a good idea for this form to have some kind of frame or margin, so we chose an arbitrary
margin width of 15 px. Because the form will need a left and right margin, our total hori-
zontal margin will be 30 px, which is 15 px on the left and 15 px on the right. If we subtract
this value from the original 300 px width of the stage, we are left with 270 px. We can then
use this value of 270 as the W, or width, property of the input text field. If we also set the
X property to 15, the text field will be positioned 15 px from the left side of the stage. X This
will also leave 15 px on the right side of the stage. The result is a perfectly centered text
field. The remaining two properties, Y andY H, were then set to give an approximate starting
point that also played into the layout aesthetically.

Once the input text field is set in its proper position, we are going to want to also do a bit
of work on the static text that will serve as the label for this input area. To accomplishTT
basic text styles, we can use the Character section of the Property inspector as demon-
strated in Figure 13-5. Within this area are located the standard formatting properties that
you would expect to find in a design-based IDE. From this area you can select the font to
be used, style if the font contains additional styles like bold and italic, font size, font color,
letter spacing, and auto-kerning.

WORKING WITH TEXT AND STRINGS

327

13

Figure 13-5.
Several basic properties can
be applied to text using the
Character section of the
Property inspector.

One common aspect of working with text in Flash that is often misconstrued is the use
of letter spacing and kerning. Letter spacing, also known formally known as tracking,
is the process of separating letters by adding the same amount of space between all let-tt
ters in a word or phrase. Kerning, on the other hand, is a method that examines the
area between every two characters to achieve a more accurate visual separation
between characters. Flash will automatically set the kerning when the Auto kern check
box is selected.

Render modes and text field modifiers
In the Character section of the Property inspector we are also presented with a few special
sets of attributes that can be modified for both text and text field rendering. Because Flash
goes beyond the basics and offers several different kinds of text, it provides you with ver-
satile enhancements. The first of these options is the ability to set the anti-aliasing proper-
ties, or render modes, of specific text fields. The anti-aliasing of text refers to how the text
is rendered. When considering anti-aliasing, emphasis is typically placed on how the edges
of text are rendered. Sharp or crisp edges tend to have a more jagged, less appealing
appearance. Conversely, fully anti-aliased fonts have a smoother, more appealing look.

Flash offers the following options to consider when creating and rendering text. Figure 13-6
demonstrates the differences in these various types of rendering. Though the differences
may seem subtle, they can have a dramatic effect on your application.

Device fonts: Best used when the purpose of the text is utilitarian, or functional. The
SWF file will look for standard texts that are stored on the machine on which the
SWF is displayed. The primary benefit to this method is that file size is not increased
because fonts are not embedded in the SWF. Quite simply, if the application does
not require the use of special fonts, this is an excellent choice.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

328

Bitmap text (no anti-alias): Used to create sharper-looking text. This option applies no
anti-aliasing to the font. As a result, text with this option applied will not scale well.
This option also increases overall file size because font outlines are embedded.

Anti-alias for animation: Best used when working with animation. It ignores informa-
tion associated with kerning and alignment to generate a smoother effect. This is
best used with fonts over 10 pt in size. This option will increase the overall file’s size
because font outlines are embedded.

Anti-alias for readability: Can be used to improve the overall legibility of text. It
should not be used on any text that is to be animated. This option will increase the
overall file’s size because font outlines are embedded.

Custom anti-alias: Does exactly what it says it will do—allows you to determine your
own custom anti-aliasing settings. This can be the most ideal setting, as it gives
designers the maximum amount of control over font rendering.

Figure 13-6.
Applying different rendering

options to text can affect
the text’s look and size in

the overall application.

The next set of text field modifiers offered in the Character portion of the Property inspec-
tor, shown in Figure 13-7, are several special behaviors that enhance the functionality of
text fields.

Figure 13-7.
Text fields can be givenTT

special properties through
the use of the text field

modifiers.

These standard modifiers are as follows:

Selectable gives you have the ability to toggle whether or not this text will be
selectable at runtime. It is often necessary during the life cycle of an application for
text to be either selectable or not. This feature makes that a simple task.

Render HTML givesL you the ability to have the text field render as HTML. This
becomes an extremely useful tool when formatting large amounts of text that can
be edited and reformatted externally without recompiling the SWF.

WORKING WITH TEXT AND STRINGS

329

13

Show Border is a feature that can be applied to input and dynamic text fields. The
benefits of this feature are an increased degree of flexibility, as you will see when
we use it later to enhance the form we created previously in the chapter. With the
addition of this feature, designers now have the option of creating custom aesthet-
ics for their input fields in Flash, Photoshop, or Illustrator and overlaying the trans-
parent input field. Designers also have the ability to quickly apply a border to text
fields by simply clicking the Show Border button.

Subscript and Superscript are not exactly behaviors for text fields, but they are wor-
thy of mention. Though these buttons made their debut with the release of Flash
CS4, this functionality was present in Flash CS3 through the Text menu.

Embedding characters
When working with dynamic or input text in Flash, it is possible that you will want to dis-
play this text with a custom font that does not exist on the end user’s machine. Perhaps
you have created a game, and the score needs to be rendered in a space-age digital font.
Or, maybe you have created a holiday e-greeting and the recipient’s name is entered at
runtime and displayed in a fancy cursive font. Often, there is no way to determine which
characters will be used, but you must hold true to the design aspect of the application.

For situations such as this, Flash allows you to embed characters or sets of characters from
custom font families that can be used at runtime. As discussed in the previous section, the
Character section of the Property inspector has some added special functionality. You may
notice when selecting either Dynamic Text or Input Text that another button, labeled
Character Embedding, appears at the bottom of this section. When you click this button,
the dialog shown in Figure 13-8 appears, allowing you to pick the characters or set of char-
acters that will be embedded.

Figure 13-8.
Using the character
embedding function lets you
embed entire fonts or specific
characters of a font.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

330

Embedding characters with this feature is actually pretty easy. With a text field selected,
type the characters in the fields just below Include these characters and click OK. You can
also use the Auto Fill button to automatically embed all characters that currently exist in
the selected text field. Finally, the Don’t Embed button will clear all characters that have
been previously embedded for the selected text field.

Formatting paragraphs
Like all good text editors in graphics programs should, Flash possesses additional function-
ality for dealing with paragraphs of text. Much like the Character section, the Paragraph
section includes many of the usual suspects you would expect to find when working with
paragraph data. Figure 13-9 displays the Paragraph section.

Figure 13-9.
The Paragraph section of
the Property inspector is

used to control paragraph
settings for text fields.

Format allows you to adjust the alignment and justification of the paragraph. Spacing
indents the first line of text as well as the spacing between lines. Margins adds extra space
on the left and right of the paragraph. The two areas to take note of in this section are the
Behavior and Orientation.

The Behavior field in the Paragraph section of the Property inspector adjusts how input and
dynamic text fields will be used. These are the options:

Single line displays runtime text in a single continuous string.

Multiline allows runtime text to wrap to multiple lines within the text field.

Multiline (no wrap) maintains multiple lines, but text will not wrap at the end of the
text field.

Password is a special case used with input text only. This behavior allows the text
typed into an input field to appear as bullets rather than letters.

WORKING WITH TEXT AND STRINGS

331

13

Finally, the Orientation button is used to adjust the orientation and direction of text. In a
nutshell, you can use this option to have text display horizontally or vertically. Using the
Rotate button, shown in Figure 13-10, allows you to change the relative orientation of the
letters contained in the text field.

Figure 13-10.
The Rotate button is used to change
the orientation of letters in text fields.

Using the Options section of the Property inspector
The Options section of the Property inspector is rather unique when working with textual
data because it completely changes its parameters depending on the kind of text that is
currently selected. Figure 13-11 outlines the options that are available for each type of
text field.

Figure 13-11. Text fields can be given special properties through theTT Options section of the Property inspector.

When Dynamic Text or Static Text is selected, designers have the ability to turn that text
into a hyperlink, allowing this text to link your Flash movie to another web page.

When working with input text, the Max chars field in the Options section allows designers
to restrict the number of characters a user can enter at runtime. This is especially helpful
when dealing with passwords.

When Input Text is selected, the Options section of the Property inspector also displays a
Variable field. This feature is considered deprecated in ActionScript 3.0. In order to utilize
this feature, the Flash file will need to be of ActionScript 2.0 type. This field can then be
bound to a specific variable reference in ActionScript.

Filtering text elements
The final section that is active in the Property inspector when text is selected is the Filters
section. Since filters were covered extensively in Chapter 5, we will not discuss them in
further detail here. Just understand that text, like movie clip and button symbols, has the

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

332

ability to have filters applied to it for enhanced visual dynamics. Therefore, any filters like
drop shadows and blurs can also be applied to text fields.

Continuing the contact form
Now that you have been fully introduced to the Property inspector as it relates to working
with text, let’s put the finishing touches on the front end of our contact form. To accomTT -
plish this you can use the file that you have been employing so far in this chapter or use

from the working files.

To wrap this up we will need to add a few more text fields and a button to trigger the TT
form’s actions. You should already have a static text field and an input text field set up for
the user’s first name on the contact form. Now you will need to add a pair of fields for the
following items:

Last name

Phone number

 Address

Comments

The reason we are looking for a pair of fields for each item is that you need to create one
static text field that serves as the label and one input field to allow users to supply infor-
mation. This coincides with the two fields created for a user’s first name from the example
earlier in this chapter.

There are several different ways to accomplish the task of adding more text fields. You
could create eight new text fields and format them. You could copy and paste (or Alt-drag
on a PC, Option-drag on a Mac) the existing fields. For this exercise, we will go with the
copy/paste method, because this method is easiest to conceptualize.

1. With or the aforementioned working file open, select the two
existing text fields that reside on the stage by drawing a selection rectangle around
them both using the Selection tool.

2. Press Ctrl+C (Cmd+C on a Mac) to copy the text fields.

3. Press Ctrl+Shift+V (Cmd+Shift+V on a Mac) to paste the fields in the exact location
from which they were copied. This is referred to as paste in place.

Now, what you should have on your stage is two identical sets of text fields on top of each
other. By using the paste-in-place command, we were able to maintain the integrity of the
text fields’ x positions. This simply means that the new text fields are in the exact position
of the ones that we copied. All that remains is to adjust the y position to move our new
text fields below the originals.

Because the approximate combined height of the two text fields is 50, we will use this
value to offset our current value for y. Looking at the Y value in the Y Position and Size por-
tion of the Property inspector, you can see that the current y value for these two sets of

WORKING WITH TEXT AND STRINGS

333

13

text fields is 20. If we then add the H, or height value, of 50 to the current y position, we
get 70. We now have a pretty good y value for our newly pasted text fields.

4. With the pasted text fields still selected, set the Y value in the Y Position and Size
section of the Property inspector to 70 and press Enter.

You should see that the text fields have changed position; the x position should be per-
fectly aligned and the y position of all four text fields should be adequately spaced. This is
also demonstrated in Figure 13-12.

Figure 13-12.
Copy and paste allows you to
quickly clone text fields.

Repeat step 4 until you have five sets of two text fields on the stage—that is, five static text
fields and five input text fields. Remember to adjust in increments of 50.

Once all the text fields are in place, it will be necessary to do a little spring cleaning.
Looking at the stage, you should have five text fields that all say First Name, similar to the
image shown in Figure 13-13. What is not as obvious is the fact that you also have five
input fields with the instance name of . This is definitely not the most efficient
contact form. What we need to do is change some of the naming used to make each field
descriptive and unique.

Figure 13-13.
All text fields have been
properly added and spaced.

5. Go through each text field and rename them appropriately. For the static text
fields, change the names starting with the second from the top to Last Name,
Phone, Address, and Comments. For the input fields, again starting at the second
from the top, change the instance name for each to , , , and

.

Now, we only need to make two more tweaks, and the contact form interface will be
completed.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

334

6. With the Character section of the Property inspector open, select each input field
and press the button for Show Border. This will ensure that your text fields are vis-
ible at runtime.

When you reach the input field for comments, you will need to make this field a bit bigger
to allow users to input their comments.

7. Select the comment input field and change its H (height) property to 100 in the
Position and Size section of the Property inspector. Then in the Paragraph section,
change the Behavior setting to Multiline to allow users to enter lengthy comments.

8. Finally, open the Components panel (Window Components) and drag a button
symbol onto the stage. With the button selected, change its X andX Y properties in Y
the Position and Size section of the Property inspector to 185 and 365, respectively.

When you are finished, save this file in a familiar place so you can access it later with
ActionScript. Your final result should look similar to the image shown in Figure 13-14.

Figure 13-14.
The form is complete

when the button is added.

Breaking apart and animating text

One of the more useful features for animators working with Flash is the ability to break
apart text. The action of breaking apart can be performed on all symbols and bitmap
assets that are used in a Flash movie. When you break apart an object, you are essentially
separating it into its most basic parts. Static text, for example, can be broken into individ-
ual letters. Each letter of the original text is actually separated out into its own new text
field. Designers then have the option to select this text again and break it apart further. In
such cases, the letters would no longer be text fields. They would be basic vector shapes
capable of being edited with Flash vector editing tools. As shown in Figure 13-15, a text

WORKING WITH TEXT AND STRINGS

335

13

field containing the phrase “Break Apart” is broken apart into its individual letters. The
letters are then broken apart again to produce a series of basic vector shapes.

Figure 13-15. Text fields can be broken apart into letters and TT
then vector shapes.

Animating text fields
Now you will see how quickly and easily you can break apart and animate text fields. In this
example, because we are going to be animating our text, it will not be necessary for us to
further break this text into its vector-based shapes. However, if you did want to convert
this text into vectors, you would simply need to select the text fields again, right-click, and
select Break Apart from the context menu.

1. Open , which is located in the source directory. You will notice
the text field on the stage containing the phrase “Break Apart.”

2. Right-click the text field and select Break Apart from the context menu. The text
field should then be broken into individual text fields. Each new text field contains
one letter from the original phrase as shown in Figure 13-15.

In order to animate these letters individually, they need to reside on their own indepen-
dent layers. To achieve this quickly, we will use theTT Distribute to Layers command.

3. Using the Selection tool, draw a selection rectangle that contains all letters located
on the stage. Using the selection rectangle will ensure that you have selected
everything.

4. Right-click any one of the selected letters and select Distribute to Layers from the
context menu.

Once the letters have been distributed, you should notice that each letter has been moved
to a layer that has been conveniently labeled with respect to the letter that that layer con-
tains. You should also take note that the Break Apart layer no longer contains any informa-
tion or visual assets.

Now that the letters are in the proper location, it is possible to animate them individually.

5. With the timeline open, select frame 9 of the layer labeled B.

6. Holding down the Shift key, select frame 9 of the layer labeled t. You should notice
that all the layers, with the exception of the Break Apart layer, are now selected.

7. Press F5 to add new frames to the selected layers. Your layer configuration should
now resemble what is shown in Figure 13-16.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

336

Figure 13-16.
Extra frames can be added to

the timeline by pressing F5.

Applying tweens to layers
The next steps to setting up the text “Break Apart” animation are going to be applying
tweens to the appropriate layers. Similar to how we added additional frames to each layer,
we will select all layers and apply motion tweens simultaneously.

1. Select frame 1 of the layer labeled B in the timeline.

2. Holding the Shift key, select frame 1 of the layer labeled t in the timeline.

3. With the layers still selected, right-click frame 1 of the layer labeled t and select
Create Motion Tween from the context menu.

4. Save this file as .

When animating phrases, there are traditionally two ways in which your text could ani-
mate: explosion and implosion. Explosion simply means that the letters of the word start
in their proper position and move away from each other, much like an explosion.
Implosion, as you may have guessed, is exactly the opposite; letters typically come in from
offstage and animate into position to reveal the word.

At this point, we will animate the letters in an exploding fashion. Because of Flash’s new
object-animation method, all you need to do is move the playhead of the timeline to
frame 9, select the various letters, and move them to where you would like them to end
up. When you test your movie, you should now see the letters of the words “Break Apart”
explode off in many directions.

Imploding letters
To create the effect of implosion, asTT demonstrated in , we will need
to add a couple more steps to this exercise. Because the animated assets were derived
from a text field that was broken apart, the inherited starting position for each letter is
where that letter appears in the word. And because this starting point represents the first
keyframe of the animation, we cannot update the position of each letter without affecting
all subsequent frames on that layer.

In order to solve this situation, we will need to manually create a second keyframe to each
layer. This will allow us to maintain the arrangement of the letters to form a word and
change the position of the letters in the first keyframe to create an implosion.

WORKING WITH TEXT AND STRINGS

337

13

1. Open .

2. With the timeline open, select frame 10 of the layer labeled B.

3. While holding down the Shift key, select frame 10 of the layer labeled t and press
F6 to insert keyframes.

Once the new keyframes are added to the animation, you can successfully return the play-
head of the timeline to frame 1 and begin changing the positions of the letters. Now when
you test the movie, it will look like the letters are flying in from all over to form the words
“Break Apart” as demonstrated in Figure 13-17.

Figure 13-17.
Broken-apart text can be
animated to look like it is
exploding or imploding.

Use the breaking apart and animating text techniques to experiment with different prop-
erties of each letter. You should be able to achieve some pretty cool effects. Try changing
the size, alpha, and filtering of each letter and see what you can come up with.

Now that you have seen the robustness of Flash’s text capabilities on the design side, let’s
jump into learning how to experiment with text and ActionScript.

Manipulating text with ActionScript
Creating text and text fields with ActionScript is something that you have already been
introduced to on a basic level. In Chapter 8, we used a text field in the final example to
display the text “Hello World!” In Chapter 10, when developing the Germaphobe game,
the score was also displayed using a dynamically created text field. In this section we will
take that exact same approach to create text fields dynamically using ActionScript. To furTT -
ther expand on this, we will now also be using ActionScript to add advanced formatting to
dynamically created text.

We will also be using ActionScript to manipulate string data. As discussed in Chapter 8,
is one of the primitive data types. And though strings are basic, they are extremely

powerful and fundamental to the development of any application.

Plucking some strings

A string by its most basic definition is nothing more than a character or a series of char-
acters encapsulated within a set of quotation marks. In fact, it is possible to assign a string
value simply by placing a set of quotation marks after the assignment operator in a decla-
ration statement as shown here:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

338

The preceding example is considered an empty string, but you could have any number of
characters contained within the quotation marks. Here’s another example:

The real power of strings comes with the ability to manipulate this information.
Concatenation and deconstruction of strings give developers the ability to either create
string data or extract certain elements from strings.

Table 13-1 lists some ofTT the more useful string functions.f

Table 13-1. TT A set of the more commonly used string methods

Function Description

 Locates and returns a character at a specific location

Concatenates two strings

 Locates and returns a string from within a string

Converts the elements of an array to a string

Extracts a substring from a string

Converts a string into an array

Converts another data type to

 Returns a substring based on a given length

 Returns a substring based on a start and end point

Converts a string to all lowercase letters

Converts a string to all uppercase letters

Concatenation
Concatenation is a process in which various pieces of information are joined together to
form a string. You have had a fair amount of exposure to concatenation throughout this
book. Concatenation takes place when a string and any other type of information is joined
together using the additive operator () as shown next. If the data type of one of the oper-
ands is not a string, it is converted to one when the join takes place.

WORKING WITH TEXT AND STRINGS

339

13

Or, in short form:

Don’t be deceived by this; the in the string has no numerical value whatsoever. When
concatenation occurs, all values are converted to text strings. Therefore, the in the
previous example is no more valuable numerically than . This is important to understand
because, as shown in the following code sample, adding a numeric to a string will always
return a string:

In the previous code we created the variable answer and typed it miscellaneous using the
untyped () data type. This will prevent a type mismatch, allowing our variable to accept
both numeric and string data. When the values and are added together, the resulting
data is the string value of . This reiterates the fact the numbers in strings have no
numerical value at all.

Filtering and deconstructing strings
There are several methods available in ActionScript to extract various parts of strings based
on character or location. This becomes extremely valuable when trying to extract informa-
tion from a set of data that is retrieved in the form of a string. Often many web applications
have a tendency to send information as encoded strings. In a situation like this, it is very
important to be able to pull only the information that you need from this data. This process
of filtering and extracting information from strings is also known as deconstruction. The
three most commonly used methods for filtering strings are as follows:

The method is used to retrieve a character at a specific location. For example,
when given the following code, if you wanted to retrieve the letters from the string, you
could do so by using their location in the string. Starting with zero and including spaces,
you would determine that the was the ninth character in the string. The function
could then return the value of based on that index or position.

We realize that logically speaking it doesn’t do much good to have to count spaces and
find a character. Compared to counting the letters in a sentence, it is actually easier to
simply type the letter you need as its own variable. The preceding example is not the
intended use of this function. The idea is that you would have a string of data in which
you know where a specific piece of information is supposed to be but not what the value
of that information is.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

340

Similarly, the and methods return a group, or substring, of characters
from a given string. These methods work in exactly the same manner with the exception of
the second parameter each one accepts. Given the string , the following
example demonstrates how these two methods operate.

The method accepts two parameters. The first of these is the starting index of the
substring you would like to return. The second is the number of characters that are to be
included with the return. Remember, the counting starts at zero.

The method also accepts two parameters. The first, like the method, is
the starting point or index of the return value. The second, however, is the ending index.
Therefore, this method simply means, “Get me the values between here and here.”

Formatting and creating text fields

The text field is the sole vessel for displaying textual data to the client in ActionScript. As
mentioned earlier in this chapter, you have already had some exposure to working with text
fields. Now we will take a closer look at how ActionScript allows us to apply various styles
to text that is displayed within text fields as well as styling the text fields themselves.

TextTT Format class
I (Paul) love the class! When I think back to when I first began learning to work
with text formats in ActionScript 2.0, I can remember thinking how much I hated them. A
contradiction, I know. I could never understand why I couldn’t simply apply formatting
style directly to text fields. The interesting thing is that now that my mindset has changed,
the class makes it a lot easier to stay organized.

So what is the class? Well, it is a special kind of object that contains all specific
types of formats that can be applied to a text field. To create a TT object, simply
declare a variable and instantiate a new class. Once the object is created, you
can set the values of the various properties of the object as shown here:

Table 13-2 is a completeTT list of properties available through the class.

WORKING WITH TEXT AND STRINGS

341

13

Table 13-2. TT Properties for the class

Property Description

Aligns text

 Indents all lines of a given paragraph

Makes text bold

Converts text to a bulleted list

Sets the color of the font

Sets the font family to be used

Indents the first letter of a paragraph

Italicizes text

Sets special character spacing

Sets the line spacing

 Sets the left margin of text

 Adds space between characters

 Sets the right margin of text

Sets the font size

Sets the tab positions for text

Sets the target for text links

Underlines text

Sets the URL of a text link

Assigning formats to text fields
Once the object is created, it is very easy to assign the format to a text field.
Flash offers two quick means for accomplishing this task. The first of these is to use the

property, which is a property of the text field itself. As shown in the
following code, you can simply set the value of as the
object itself:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

342

The second way by which you can apply the formatting is to use the
method. The method works in a similar manner to the
property, the primary difference being that instead of assigning the object as
a value, you pass it as a parameter as shown here:

There are several other properties available when working with text fields that allow you
to change the styling and format of that field directly. Table 13-3 lists a few of the more TT
popular text field properties.

Table 13-3. TT Formatable properties associated with text fields

Property Description

Resizes text fields to fit text

Determines the existence of a background

 Sets the color of the background

Determines the existence of a border

Sets the border color

 Applies a object to the text field

Sets the multiline property

Sets the number of lines used with multiline text

Sets a character limit for a text field

Determines whether text is selectable

Applies a CSS style to a text file

Sets the textual value of a text field

Sets the text color

Sets the type of text field

Determines whether text wraps

WORKING WITH TEXT AND STRINGS

343

13

Adding dynamic text fields to the contact form
The final stop we will make in this chapter will be to add some back-end functionality to
our contact form. For this section you may elect to either construct your own back-end
functionality or simply follow along with the working files that are associated with this
chapter.

To finish the form we are going to need to create a document class that manages some of TT
our additional functionality. The finished class can be found in the working files directory.
You may also choose to use the file or your saved version of the
contact form from earlier in this chapter.

1. To get started, create a new TT ActionScript file. Save this file in your personal working
directory as .

2. Begin creating the class by adding the following package definition and
statements:

For this class we will use the six imported classes just shown. Because our movie is only
one frame, it is best to use as our display container. The next two state-
ments will be used to add the various event-based functionalities to the file. We then
import the entire package to allow us to format and send information via URL.
Finally, the and classes are imported to govern our visual elements.

3. Next, enter the following code to define the class, properties, and constructor
function:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

344

The class definition is standard. We are extending ; again, this is the most efficient
choice because we are only using one frame. At this time we define one private variable,

. This variable will be employed later to reference text fields used for required
feedback.

In the constructor function, we define three event listeners. The first two are used to
determine when a display object has the stage focus. In this case, we are particularly inter-
ested in knowing when the text fields have focus. These listeners are added to the main
timeline using the keyword. Recall that we can use a single set of event listeners to
govern all display objects on the stage. The third listener is a simple event that
handles the clicking of the Submit button.

Finally, we call the method, which is responsible for clearing textual data
from the text fields.

4. Enter the following code to create the handlers for the and
events:

The function is used to change the border color of any text field when a user
focuses on it. In this function, we create the variable , which is used to cast and reference
the event’s target as a . The target in this case is any text field that has focus. We
then set the border color of the text field to red using the property of the

.

The function works in exactly the same manner as the function. We
can then use this to change the border color of our text field back to black when a user
leaves the text field.

5. Next, create the function that will be called by the Submit button’s event
listener. This method will serve a couple of different purposes.

First, the object, , is created. We will be creating required field
error feedback to let users know that certain text information is required. In the format we
set the font color to red and the font weight to bold.

WORKING WITH TEXT AND STRINGS

345

13

The next block of code in this function is used to create the text field itself. Once the field is
created, we set its textual property to read . We then apply the
format to the text field, which makes the text bold and red. Finally, we set the x position to

so we can have this text display next to the static fields we created in our form.

We then check for required fields. This is a simple task that uses an statement to deter-
mine whether or not our input fields contain text. If they do not contain any information,
the subsequent code block executes. Within this code block we set the y value of the

 text field to a position just to the right of the static text for that given input field.
We then use to place the required field on the stage. The keyword is
used as a stop or break in this sequence. When the program comes across this, it will
immediately stop executing the remaining code in this method.

In this example we are checking four of the five fields for valid information.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

346

Finally, we call the two methods and , which are both declared
next. Because we used the keyword throughout the function, these two methods
are called only if all required information is completed.

6. Create the function as shown next. The function is
used to reset the values of all the text fields.

7. The last method in this class is the function. And though it may seem a
bit complicated at first, the following code is really nothing more than a simple

like those created in Chapter 11:

WORKING WITH TEXT AND STRINGS

347

13

The first three lines in this method set up the itself. The string variable is
used to reference the location of the web script where we will be receiving the informa-
tion from our form. We declare the () and pass it the variable. We then
set the property of the object to . Recall in
Chapter 11 that we discussed the difference between sending information via or ;
the method will send information as part of the query string.

The next part of this function involves packaging the variable data for the . We
first create the object () and assign the current values of our text fields to
properties of the object. Remember, these property names are completely arbitrary.
Once the values are set, we can assign the object as the value of the property.
This will effectively package the with the .

Finally, we use the method to have our browsers navigate to the previ-
ously defined URL. We pass this function the object as its parameter. This
ensures that all information required for the request is packaged and included.

8. Once you have completed this function, save the AS file and test your FLA. Go
ahead and fill out the form and click the Submit button. If you failed to provide the
information correctly, you will get a notification as shown in Figure 13-18. If you
did fill the form out correctly, you will be taken to a page that will display your
information.

Figure 13-18.
Failing to properly fill in the
form will prompt ActionScript
to create an error message.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

348

Summary
Though often overlooked, proper use of fonts is often just what an application needs to
achieve that final look of professionalism. In mainstream development, it is not uncom-
mon for developers to simply slap a few text fields on the stage and begin passing infor-
mation to them. The reality is that text layout is as aesthetically important to a design as
the most vibrant of colors.

In addition to good looks, it should not go without mention that a mastery of string data
is essential to any great application developer’s bag of tricks.

The following are the important topics covered in this chapter:

Formatting, rendering, and modifying text fields

 Embedding characters

Breaking apart text fields

Concatenation, filtering, and deconstruction of strings

Creating and formatting text fields with the and classes

CHAPTER 14

USING COMPONENTS

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

352

Components can be though of as premade, purpose-built mini-applications, or widgets of
a sort. They come in all shapes and sizes. Some are made by Adobe and are included with
Flash, others are made by the Flash community or other companies (third parties), and still
others might possibly come from you after reading this chapter! In short, components give
you, the Flash author, a quick way of including complex functionality in your applications
quickly and consistently.

In this chapter we’re going to talk about

Compiled vs. FLA components

Flash UI components

 Adding components to your applications

Configuring components

Listening to components

Understanding components
In the context of Flash, a component is a movie clip or compiled clip that the Flash devel-
oper can drag out of the Components panel into an FLA file or add to his or her applica-
tion using ActionScript. Components expose parameters that can be set in the Parameters
tab of the Property inspector or in the Component inspector. This lets nondeveloper types
quickly and easily implement the component (whatever it may be) without having to know
any ActionScript!

SWC-based components

SWC-based components are made of an FLA file and an ActionScript class file that have
been compiled and exported together as a SWC. When you put a SWC-based component
onto your stage, a compiled clip that cannot be edited is added to your library.

If you want to have a peek at the guts of a SWC-based component, just rename the file
extension to and open the file with your archive utility of choice.

An advantage to using a SWC-based component is that it allows you to save some time and
avoid recompiling symbols and code that will not change.

The downside, of course, is that the symbols and code can’t change, so if you want to
change anything that falls outside of the parameters available in the Component inspector,
you’re out of luck.

USING COMPONENTS

353

14

FLA-based components

FLA-based components are FLA files with built-in skins that you can access for editing by
double-clicking such a component on the stage. When you put an FLA-based component
onto your stage, all of the symbols that make up the component are added to your library
and are available for you to edit.

The advantage to using FLA-based components is that you can easily manipulate the visual
appearance of the component within the Flash environment. The downside might be that
if you are using this type of component, all of your code and assets will be out there for
everyone to see.

The Adobe UI components are FLA components that include a SWC-based component
to hold all of their ActionScript, allowing you to modify the visual elements without
disrupting the code.

The component architecture reuses components by combining them with others to make
more complex components. This includes not only visual assets, but also the ActionScript
that the components use. This reuse results in a smaller file footprint when using many
types of components in your application.

Tour de ComponentsTT

Now that you have a little background info on components, let’s have a
look at the various groups of components included with Flash CS4. If you
are targeting the Flash Player using AS 2, the components available to
you will be different from those you would see if you are targeting the
Flash Player using AS 3.

You cannot mix ActionScript 2.0 components with ActionScript 3.0
components in an application.

Because this book is focused primarily on ActionScript 3.0, we will intro-
duce you to each of the AS 3 components and what its main purpose is.

You will find the components in the aptly named Components panel, shown
here in Figure 14-1. You can open the Components panel by selecting
Window Components from the application menu or by pressing Ctrl+F7
(or Cmd+F7 on a Mac).

Figure 14-1. The User Interface
group of components

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

354

User interface components
The user interface components shown in Figure 14-1 include the most common controls
required when creating an application that deals with standard forms and data, such as
text fields for entering data and buttons that can be used to let the user tell an application
to submit or retrieve data.

There are many options for each component that can be configured using either the
Components inspector orr Property inspector, or through ActionScript. While we can’t cover
all these options in one chapter, we’ll show you a few examples in the section of this chap-
ter called “Configuring components in Flash.”

The components that make up the User Interface group include the following:

Button: Represents an element a user can press that initiates an action. While it can
display a label or tooltip, it isn’t used for presenting data.

CheckBox: Represents a square that the user “checks” to indicate . Components
of this type can be grouped to provide an array of values.

ColorPicker: Lets a user select a color from a grid of color boxes called a
swatch list.

ComboBox: Presents a list of options to the user for selection and can optionally
include multiple selections.

DataGrid: Presents data to the user in a table format, with each column having a
heading that when clicked will raise an event that allows sorting on the column and
cells that can display data or even other controls for input.

Label: Presents text and can have properties to control font, size, color, and so
forth.

List: Presents a list of items. Usually this component contains text, but it can include
images or other controls.

NumericStepper: Provides an easy-to-use control for “stepping” up or down in num-
bers by a set number of “steps.” For example, clicking the up arrow on a numeric
stepper will change the input values by an increment set in the stepper for the step
value.

ProgressBar: Displays the progress of a background process that updates the com-
ponent as it goes.

RadioButton: Displays as filled when clicked, or true, and empty when false. This
round component is typically grouped, with each option being unique to the
group.

ScrollPane: Represents an area on the screen that can display a larger image or
movie/SWF file than is available by allowing scrolling.

Slider: Allows the user to select from a range of values by sliding the control bar
from one end to the other.

TextArea: Allows entry of multiple lines of text, with optional scrollbars.

TextInput: Allows entry of one line of text with input limits.

USING COMPONENTS

355

14

TileList: Allows creation of a fixed or dynamic grid of other components such as a
table of images in a “tiled” format.

UILoader: Functions like a component without a visible part and allows you to load
components and monitor the progress.

UIScrollBar: Adds scrolling to other components or new components you may
develop.

Video components
Components in the Video group of the Components panel include those that aid in the
playback of video and provide captioning, as well as custom video controls like a volume
slider or Play button. The components that make up the Video group, shown in Figure 14-2,
include the following:

FLVPlayback: Allows the Flash author to quickly and easily integrate video into his
or her application. It combines a video player with play controls. For more informa-
tion about using the FLVPlayback component, see Chapter 17.k

FLVPlaybackCaptioning: Allows you to synchronize specially formatted text docu-
ments with video playback. For more information about using the FLVPlaybackCaptioning
component, see Chapter 17.

FLV custom UI components: These components can be used to create custom
controls for the FLVPlayback component:k

BackButton: Seeks to the closest navigation cue point prior to the current play-
head location. If your video is at 6:13 and there is a navigation cue point at 5:02
(and no other navigation cue points in between), clicking the BackButton will
make the FLVPlayback component seek to 5:02 in the video.k

BufferingBar: Represents an animated clip that is triggered when the FLVPlayback
component enters the state.

CaptionButton: Toggles off and on closed captions provided by theTT
FLVCaptionComponent.

ForwardButton: Causes the FLVPlayback component to seek to the next navigak -
tion cue point in a given video.

FullScreenButton: Causes the associated FLVPlayback component to enter full-k
screen mode.

MuteButton: Changes the volume of the audio for a video playing in the
FLVPlayback component to 0.k

PauseButton: Pauses playback of the associated FLVPlayback component.k

PlayButton: Begins or resumes playback of the associated FLVPlayback
component.

PlayPauseButton: Represents a toggle that combines both the PauseButton and
PlayButton components.

SeekBar: Displays the progress of a video playing in the associated FLVPlayback
component and can be made to allow the user to seek to other parts of the
video by clicking it or dragging a handle.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

356

StopButton: Stops playback of the associate FLVPlayback component and returns k
its video to the beginning.

VolumeBar: Allows the user to control the volume of the audio of the associated
FLVPlayback component.k

Figure 14-2.
The Video group of components

Using the video components is covered in depth in Chapter 17.

Third-party components
The list of third-party components is vast, and certainly we can’t cover even a small num-
ber of the third-party components available. What we can do is tell you where to find
them and what to expect when you install them.

The best place to find third-party components is on the Adobe Flash Exchange web site.
Install third-party components at your own risk, and understand that not all third-party
components are created equally. Some are tested more thoroughly than others, and there
are varying degrees of reliability as well.

One way to distribute components is with an MXP file. While an in-depth discussion of
MXP files is beyond the scope of this book, follow these brief instructions for installing and
removing extensions.

The packaged Flash extension comes in the form of an MXP file. In order to use such files,
you will need the Adobe Extension Manager, which comes with your installation of Flash
CS4. The Adobe Extension Manager, shown here Figure 14-3, will allow you to install,
remove, and otherwise keep track all of the extensions you have applied to Flash.

USING COMPONENTS

357

14

To install a third-party extension, TT simply double-click the MXP file and follow the instruc-
tions given by the Adobe Extension Manager. To remove an extension, open the TT Adobe
Extension Manager and select Remove on the row of the extension you wish to remove.

Now that you know more about the various types of components and their uses, let’s look
at how to add them to your application.

Adding components to your application
Generally speaking, there are two ways to get components into your applications; either by
placing them on stage in Flash or through ActionScript. In this section we talk about how
to do both.

Figure 14-3. The Adobe Extension Manager allows you to manage extensions installed to all of your Adobe CS4
software. You can find this tool in your Start menu (Windows) or folder (Mac).

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

358

Adding components to your application using
ActionScript

To add a component to your applicationTT using ActionScript is pretty straightforward.
Whether you use a document class file (recommended as a best practice) or have your
code in the FLA file itself, you must have a copy of the component you wish to add to your t
application in your library. In this example of a document class file, we add a ComboBox
component and a Button component to the stage. Figure 14-5 shows the library of our file.

Adding components to your application in Flash

To add a component to your applicationTT in the Flash authoring environment, either
double-click the component in the Components panel or simply drag that component
onto the stage. Double-clicking the component will add that component to the horizontal
and vertical center of your visible document window. Figure 14-4 shows what happens
when we double-click the Button component in the Components panel.

Figure 14-4. When you double-click a component in the Components panel, it will get placed smack in the center of your
document window.

USING COMPONENTS

359

14

Figure 14-5.
Even though we only placed a ComboBox
and Button component on stage, notice
that the components used to make them,
the List and TextInput components, appear
in the Library panel as well.

Being able to add components to your application is nice; but what’s nicer is being able to
make them do stuff! So let’s talk about controlling components.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

360

Controlling components
When we talk about controlling components, we really mean two things: controlling what
they do (configuring) and controlling what they look like (skinning).

Configuring components in Flash

By now you know that every component is different and built for a specific purpose. What
they all have in common, however, is the Component inspector. When you select a compo-
nent, the Component inspector changes to reflect the properties of that component that
are configurable in Flash.

The Bindings and Schema tabs of the Component inspector serve no purpose when work-kk
ing on applications that use ActionScript 3.0.

To configure a component in TT Flash, add it to the stage and open the Component inspector
by pressing Shift+F7 or selecting Window Component Inspector. Select the component
you wish to configure. Figure 14-6 shows the Component inspector for the ComboBox
component.

Figure 14-6. The Component inspector lets the Flash author
configure a component without needing to use ActionScript.

USING COMPONENTS

361

14

Using the Component inspector
To configure a component, you’ll need to understandTT the Component inspector. Since this
book is focused primarily on ActionScript 3.0, we will limit our discussion to the Parameters
tab of the Component inspector, as the Bindings and Schema tabs do not apply to
ActionScript 3.0 projects.

The Parameters tab of the Component inspector is a panel divided into two columns, Name
and Value. The Name column lists all of the parameters available for author-time configu-
ration of the component. The Value column shows the default values for each of those
parameters. Clicking into the Value column next to a parameter name will allow you to
change the value assigned to that parameter.

Although we are talking about setting parameter values in the Parameters tab, what you
are really doing in this panel is setting values of properties of the component’s class.

It’s important to understand that the values you can assign to parameters are often lim-
ited. For instance, some can only have a value of or (Boolean), and others may
only be allowed to be numbers. In any event, the Component inspector will provide you
with an input method that best suits the type of value that can be entered—a drop-down
menu for selecting between three possible alignment options, for instance.

Some parameters, like the source parameter of the Loader component, give you a free-
form text box, while the source parameter of the FLVPlayback component will prompt youk
with a Content Path dialog. Let the Component inspector guide you.

When setting values for the dataProvider parameter, you will use yet another form of data
entry called the Values dialog (which we discuss in the upcoming exercise).

Follow these steps to configure an instance of the ComboBox parameter with the options
sometimes, always, and never:

1. Add a ComboBox component to an open FLA file by double-clicking the ComboBox
component in the Components panel or by dragging it onto the stage.

2. Open the Component inspector. Make sure the ComboBox component you put on
stage is selected.

3. Either double-click the value field of the dataProvider parameter or single click it, and r
then click the magnifying glass icon that appears next to it, as shown in Figure 14-7.
You should now see the Values dialog, as shown in Figure 14-8.

Figure 14-7.
If you single-click the dataProvider parameter, use this
magnifying glass icon to launch the Values dialog.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

362

Figure 14-8.
An empty Values dialog

shows there is no data in the
dataProvider for this component.

4. Use the Add button (plus icon) to add a new label/data pair to your ComboBox
component. The default name of the label/data pair you just added is label0. The
name of the label/data pair merely reflects the value of its label property.

5. Click the Value column next to the label property and enter the text sometimes.
Notice that the name of the label/data pair has changed to sometimes. You can col-
lapse and expand the label/data pair by clicking the small triangle next to the label/
data pair’s name.

6. Click the Value column next to the data property and enter the number 1.

Repeat steps 4 through 6 until you have three label/data pairs with the labels sometimes,
always, and never and values 1, 2, and 0, respectively, as shown in Figure 14-9.

Figure 14-9.
The Values dialog after some

data has been entered

USING COMPONENTS

363

14

7. Test your movie by selecting TT Control Test Movie or pressing Ctrl+Enter or
Cmd+Enter on a Mac.

You should see a ComboBox component on stage that, when you click it, drops down a
menu with the options sometimes, always, and never as we show in Figure 14-10.

Figure 14-10.
If you do not specify a value for the prompt parameter, the
first item in the dataProvider will be the default selection.

Clearly there is much more to be done if we want this ComboBox to do anything worth-
while, and we will as we incorporate it into the activities that follow in the chapter.

Let’s begin by making one small adjustment to it using the Component inspector before we
move to ActionScript; we’ll change the prompt—the default text that appears in the
ComboBox as a nonselectable item. Having a prompt is considered good form when mak-
ing your applications usable since it tells your users what the combo box is for.

To set the prompt of a TT ComboBox component, click the Value column of the prompt
parameter in the Component inspector. Enter some meaningful text—in this case how
often?—and test your movie again. You will notice that the ComboBox now appears with
the text how often?, as you see in Figure 14-11.

Figure 14-11.
Use the prompt parameter to tell your users what type of
data is in the drop-down menu before they have to open it.

Configuring components using ActionScript

In this section we’re going to create a form using three TextInput components (and three
Label components to label them) and a Button component. The form will be used to con-
figure our ComboBox component from the previous section of this chapter. You might use
this approach in the case where you have a multipage form for which data entered on one
page might need to be reflected in the drop-down menu options on another.

The Flash UI components follow the usual convention of making properties, methods, and
events available to the Flash developer through ActionScript, so if you want a little
refresher, refer to Chapter 8 for the ActionScript primer and Chapter 9 for more on event-
based ActionScript.

Creating an application using the document class
Throughout this book we have been encouraging you to go through the exercise of creat-
ing a document class for your FLA files and putting all of your ActionScript there, and this
example is no exception.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

364

To create an application using the document class, follow these steps:TT

1. Save your FLA (previously unnamed) from the previous section as
and set the document class to .

Set the document class in the document’s Property inspector, asr
shown in Figure 14-12.

Figure 14-12.
Creating document classes for your

Flash projects rather than putting
ActionScript on the timeline is a good

habit to get into. Use the Property
inspector to define the document class.

2. Create a new AS file by selecting File New from the application menu (or by
pressing Ctrl+N, or Cmd+N on a Mac) and then selecting New ActionScript file from
the New Document window. Add the following ActionScript to the file and save it as

:

3. Test your movie and make sure that TT menu form! appears in the Output window.

Creating the form
To simplify this example, we’ll dispense with the TT code involved in laying out a form using
ActionScript. We’re going to add our form elements to the stage in Flash, and then config-
ure them using ActionScript in our document class file.

To create the form, follow these steps:TT

USING COMPONENTS

365

14

1. Drag a TextInput component from the Components panel to the stage. Give it an
instance name of item1input.

2. Drag a Label component from the Components panel to the stage.

3. Align the Label component with the TextInput component.

4. Select the Label component and open the Component inspector. In the Value col-
umn of the text parameter, enter the text item 1, as shown in Figure 14-13.

Figure 14-13.
The Component inspector
for the Label component

Your stage should now look something like Figure 14-14.

Figure 14-14.
Our initial layout

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

366

5. Select both the Label and the TextInput components and press Ctrl+C or Cmd+C on
a Mac to copy them. Press Ctrl+Shift+V or Cmd+Shift+V to paste in place.

6. With the copies selected (they will be selected after you paste in place), press
Shift+down arrow three times. (This will move them down 30 pixels, which should
be enough to move them clear of the originals.)

7. With the copies still selected, repeat steps 5 and 6.

8. All of your labels will read item 1 at this point. Using the method from step 4,
change the labels so they read item 1, item 2, and item 3 from top to bottom.

9. All of your TextInput component instances will be named item1input. Change their
instance names so that they are item1input, item2input, and item3input from top to
bottom.

10. Make sure your ComboBox has an instance name so you can address it in code—
we named ours myCombo.

11. Finally, drag a Button component from the Component inspector to the stage, place
it under your three text input fields, and give it an instance name of submitBtn.

12. Select the Button component. In the Value column of the label parameter on the
Component inspector, change the text parameter to Submit.

Your stage should now look something like Figure 14-15.

Figure 14-15. The finished layout of our simple form

USING COMPONENTS

367

14

Well now, isn’t that lovely? Aside from setting a few parameters in the Component inspector,
though, we haven’t done anything spectacularly component-like, so let’s make this form
do something.

Making the form do something—listening to components
The goal here is to populate the ComboBox component with the values in the TextInput
components when the Button component is clicked. The first step is getting our little appli-
cation to listen for the button click. The following code shows how we import the

package, add an event listener for the event, and create a handler func-
tion for the event:

Now that we can hear the clicking of the Submit button, what are we going do about it?
With the following additions to the code (in bold), we’re going to import the

class in order to configure the component in ActionScript, import the
class to create and manipulate the ComboBox’s , and lastly,

quickly check to make sure that it’s the Submit button being clicked before we go making
any changes to our ComboBox:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

368

When you test your movie, you should be able to enter text in the three TextInput compo-
nents, click the Submit button, and see your new text in the drop-down of the
ComboBox.

Now that you have your feet wet with making some components work, let’s look at how
to change their appearance using both the Flash CS4 authoring environment and
ActionScript.

Skinning components in Flash

Skinning components should really be called modifying the skins of components. All of the
assets that make up the visual appearance of all of the states of the components in your
application are available to you in Flash as soon as you drag them onto the stage (or into
your library).

USING COMPONENTS

369

14

As an example, open a new FLA file and add a UIScrollBar component to the
stage. In the library, look in Component Assets ScrollBarSkins to see all of the
symbols that make up all of the states for that component (or just look at
Figure 14-16).

Let’s return to the FLA, , from the previous example to demon-
strate how quickly you can modify a component’s skin.

To quickly change the rolloverTT color for the ComboBox component, follow
these steps:

1. Open and save it as .

2. Double-click the ComboBox component on stage, and you will see the
ComboBox skin palette screen shown in Figure 14-17.

Figure 14-17. The skin palette for the ComboBox component.
Notice that the List and TextInput components are included.

3. Double-click the symbol on stage labeled Over Skin.

4. Select the fill shape and change the color.

5. Test your movie.TT

You’ll see that when you roll over the ComboBox on stage, the color now changes to the
one you selected; but hold on, when you open the drop-down menu and roll over the menu
items, the color has not changed. t Why not?

Figure 14-16. All of the skins that
represent the various states of all
of the parts of a scrollbar

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

370

The reason is because the drop-down menu of the ComboBox component is really a List
component, and the List component uses the cell renderer skins to control the visual
appearance of its items. Let’s look at how to change that now.

To quickly change the rollover color for the items in the drop-down menu of aTT ComboBox
component, follow these steps:

1. Open and save it as .

2. Double-click the ComboBox component on stage.

3. Double-click the symbol on stage labeled List Component.

4. Double-click the symbol on stage labeled Cell Renderer skins, and you will see the
screen shown in Figure 14-18.

Figure 14-18. The cell renderer skins

5. Double-click the symbol on stage labeled Over_Skin.

6. Select the fill shape and change the color.

7. Test your movie.TT

Now you will see that the rollover color of the drop-down menu has changed to the color
you selected in the preceding exercise. The trick is to be aware of what components are
made of other components and therefore use their visual assets.

Skinning components using ActionScript

Because components are often made by reusing other components, they share the same
visual assets—which is usually a good thing—unless of course you want the rollover color
of your ComboBox component to be different from the rollover color of your x List compo-
nent. Or what if you wanted different instances of the same component to look different?

You saw in the previous section that the ComboBox uses the List component’s cell ren-
derer skins for its drop-down menus, so how can you change one without affecting the
other? By using ActionScript, that’s how.

USING COMPONENTS

371

14

Component style definitions
Style definitions dictate not only the size and placement of elements like text within a
component, but also which skin assets to use for various states of a component.

The following code, which comes from the Flash documentation (
), creates a style browser that lets you easily

see what properties make up the style definition for many of the UI components. Paste
this code into the Actions panel on the first frame of an FLA and make sure you have a
ComboBox component and DataGrid component in your library. This collection of code
will save you some time trying to track down what properties can be changed using the

method of the UI components. Figure 14-19 shows the style browser that
the following code generates.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

372

Figure 14-19. The style browser created with the code found at

USING COMPONENTS

373

14

Component styles work at three different levels. Using or ,
you can

Change the style of all Adobe UI components used in your application.

Change the style of all of one type of component in your application—all of your
Button instances, for example.

Change the style of an instance of a component in your application.

To change the style of all componentsTT used in your application, use the following convention:

What you do not see in this example is that you need to import the class in
your code (which we show how to do in the next exercise) and that a object
named has been created.

To change the style of all of one type of component in your application,TT use the following
convention:

What you do not see in this example is that you need to have the class for the component
you’re trying to change imported in your code and that a object named

has been created. You also need to have the class imported
(which, again, we will show how to do in the next exercise).

To change the style of an instance of a component in TT your application, use the following
convention:

Let’s look at one last example to demonstrate the flexibility we have with skinning compo-
nents. We’re going to build on the simple form we made earlier in the chapter and change
the text formatting of our TextInput components (component-wide style change). Then
we’ll change the focus rectangle color of each TextInput component to be different from
the others (instance-level style change).

To make component-wide style changes as TT well as instance-level style changes, follow
these steps:

1. Open and save it as . Change its document
class to .

2. Open and save it as . Change the class name and
constructor function to match as shown here in bold:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

374

3. In Styles import the class, class, and the
class using the following code:

4. Add the following code to the constructor function of Styles to apply
a component-wide change to the text formatting of the TextInput component:

5. Add the following code to the constructor function to change the skin clip that’s
used for each TextInput component’s instance in the focus state. The parameters

, , and , shown in bold, refer to clips in
the library of , which we have not created yet. What we’re
doing here is telling each instance of the TextInput component individually what
skin clip (e.g., for) to use when it enters the focus state.

Now let’s create the custom focus clips in .

6. Open , in the library browse to Component Assets Shared,
and find the focusRectSkin movie clip.

7. Right-click (or Ctrl-click on a Mac) the focusRectSkin movie clip and select Duplicate
from the menu. Name the new clip customFocus1.

8. In the Linkage section of the Duplicate Symbol dialog, select the Export for ActionScript
option. The class should auto-populate with the name of the symbol.

9. Repeat steps 7 and 8 to create customFocus2 and customFocus3.

10. Edit each of the new symbols so that the color of the border shape shown in
Figure 14-20 is different for each symbol.

Figure 14-20.
Changing the color of
the border graphic for

the customFocus2 skin

11. Test your movie.TT

USING COMPONENTS

375

14

Click into each TextInput component and notice that the focus rectangle for each is a dif-ff
ferent color. You might also notice that the text of the ComboBox is now blue instead of
black. Why do you think that is? If you guessed that it’s blue because the ComboBox com-
ponent uses the TextInput component for the prompt, you would be correct!

If you wanted the TextInput components to have a different text style from that of the
ComboBox prompt text, you’d need to set the style at the instance level for
each TextInput component.

Summary
Many components are available for Flash, and there are many, many things you can do
with them. It is our hope that you are now comfortable enough with components to use
them effectively in your work.

In this chapter we talked about

The types of component architectures

The array of UI and video components available in Flash CS4

 How to add components to your application using Flash or ActionScript

How to control the configuration, behavior, and appearance of the components
you use through the Flash authoring environment and through ActionScript

PART FIVE

ENHANCED MEDIA DEVELOPMENT

CHAPTER 15

USING THE ADOBE MEDIA
ENCODER—A CRASH COURSE

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

380

The new Adobe Media Encoder CS4 combines the most useful functions of the Flash Video
Encoder, the Flash CS3 Video Import Wizard, and the Adobe Media Encoder found in
Adobe Premiere CS3 into one stand-alone tool.

It will output files compatible with devices such as an iPod PSP and many others and has a
handy list of presets to help get you started. You no longer have the option of using Flash
to convert video using the Flash CS4 Video Import Wizard. If you try to import video that
is not in a format that the Flash Player can play back, Flash will let you know that the
player cannot play back media in that format and direct you to try using the Media Encoder
to convert the video to a format the Flash Player can play and/or add cue points to the
video file.

In this chapter we’ll tour the interface of the Adobe Media Encoder and show you how to
encode your video using presets as well as using some custom settings. We’ll also talk
briefly about what the advanced settings mean and show you how to add cue points and
metadata directly to the video. Let’s begin with the interface.

Introduction to the interface
The Media Encoder interface is deceptively simple when you open it (see Figure 15-1). It
looks a lot like the Flash CS3 Video Encoder—but there’s plenty more under the hood.

Figure 15-1. The Queue window of the Adobe Media Encoder

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

381

15

The top half is the queue—it’s a list of all the media you have waiting to be encoded. It
shows you the source file path, the video format you’ve chosen to encode to, the preset
(or custom settings) being used, the output file path, and the status of that file.

To the right of the queue are the five following buttons, which manage the items in the TT
queue and whether the queue is running or not:

Add

Duplicate

Remove

Pause

Start Queue

We’ll use these buttons later in this chapter.

Figure 15-2 displays the bottom half of this screen of the interface, which shows you infor-
mation about what is being encoded at any given moment. Below that section is a sliver of
the interface reserved for showing you how long the queue has been running in total.

Figure 15-2. Basic information about the status of the queue

So with that very brief description of the interface, let’s encode some video! (Hey, it’s a
crash course, right?)

Encoding your first video using presets

Most of us will just need to pull out the old encoder to convert a video or two for a proj-
ect. Nothing fancy, just turning that professionally polished AVI (or MAA OV) file into some-
thing for that Flash microsite you may have just finished to play back. Doing this is as easy
as dragging your source file into the queue and clicking the Start Queue button to the bot-
tom right of the queue. You could also use the Add button to the right of the queue and
browse to your file. Figure 15-3 shows the queue with one item waiting to be encoded. It’s
true—that’s all you have to do—although many of us might want just a tad more control.d

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

382

For instance, you may need to resize the video, add cue points for navigation, or perhaps
tweak the bitrate settings to meet your particular needs.

Figure 15-3. The queue shown with a single file to be encoded. The preset and output file
names are links to the Save As and Export Settings windows.

Choosing a preset
After dropping your source file into the queue, you’ll notice that under the Preset column
a default preset has been selected for you. You will also notice a small arrow button to the
left of that (still under the Preset column). Click this arrow to see a drop-down of available
presets, as shown in Figure 15-4. The Media Encoder will default to the last-used preset, but
you can choose from any preset listed. You can also select Edit Export Settings from the bot-
tom of the list, which will open the Export Settings window. You’ll learn about the options in
this window later in the chapter.

Figure 15-4. The Presets drop-down menu in the queue

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

383

15

The names of the presets are fairly descriptive and include (in parentheses) the version
number of the oldest Flash Player that will support playback of video made with that
preset. Refer to the section “Advanced mode encoding features” later in this chapter and
Chapter 17 for a more in-depth explanation of video compression options.

Now that you’ve selected a preset for encoding your video, let’s make sure that the file is
named the way you need it and that it gets saved to a location of your choosing.

Choosing your output file name and location
To change the file name and location of the TT output file, click the text under the output file
column of the queue. This will open the Save As dialog (see Figure 15-5). Proceed through
this dialog as you would with any other type of file.

Figure 15-5. Choosing a file name and location should be a familiar task.

After selecting the file name and location for your output file, click the Start Queue button.
You will see a small version of your video as it is being encoded along with information
about its progress as shown previously in Figure 15-2. Once the encoding is complete,
browse to your file and play it back to see the result.

Adobe Bridge CS4, which comes with Flash CS4, will play back Flash video files as will
the Adobe Media Player, which comes as an installation option with Flash CS4.

Congratulations! Now that you’ve successfully encoded your file, let’s look at how to
encode many files at once.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

384

Encoding multiple files

It’s as easy to encode multiple files as it is to encode a single file. Simply select multiple
files and drop them into the queue or browse to them individually using the Add button.
Once you have adjusted the encoding and output settings for each file, press the Start
Queue button, and all of the files in the queue will be encoded in turn.

In the cases where you need to encode the same file for different audiences (broadband,
dial-up, DVD-ROM, etc.), the Duplicate button is an easy way to add another encoding job
to the queue. Since you would be using the same source file, this button saves you the
trouble of browsing for it or dragging it into the queue again.

Adobe Media Encoder will auto-increment the output file name by default. For instance, if
your first item in the queue is set to output a file named , pressing the
Duplicate button will duplicate all of the settings but change the output file name to

. You can change this behavior in the Preferences dialog by unselecting
Increment output file name if file with same name exists (see Figure 15-6). So by using the
Presets drop-down menu (shown earlier in Figure 15-4) and the Duplicate button, you can
very quickly and easily encode video for multiple audiences.

Figure 15-6. The Preferences dialog of the Adobe Media Encoder. The first option allows
the Media Encoder to auto-increment file names for you.

Now that you can add multiple files to the queue, you might also need to remove an item
from the queue. To do this, simply select the item in the queue and click TT Remove. The
Media Encoder will pop up a confirmation dialog to make sure you really want to remove

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

385

15

this item from the queue. In the event that you need to stop encoding temporarily, you
can do so by clicking the Pause button.

Next we’ll take a closer look at the Export Settings window.

Taking a close look at the ExportTT Settings
window

There’s more to the interface than the Queue and Progress windows. You can choose to
customize your encoding by selecting Edit Export Settings from the bottom of the Presets
drop-down menu or clicking the name of the preset as it appears in the queue. Doing so
will open the Export Settings window shown in Figure 15-7.

Figure 15-7. The Export Settings window shown here with the Video tab in advanced mode

The Export Settings window is divided into two main sections and has two main view
options: Simple Mode and Advanced Mode. To switch between these modes, click the round TT
arrow toggle button shown in Figure 15-8.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

386

Figure 15-8. The button shown here toggles between simple
and advanced mode.

On the left side in simple mode you can see the video as it is before encoding and a pre-
view of the video as it will appear after encoding. You can select the portion of the original
video clip you want encoded, set cropping of the original video, select the pixel mode of
your video, and adjust the size of the video playback window.

Switching to advanced mode allows you to add cue points to the output file.

On the right side of the interface in simple mode you can select a preset (this is useful for
getting to a starting point quickly for custom encode settings), manage custom presets,
and choose to include or exclude audio or video from the encoding process.

Switching to advanced mode adds the ability to apply filters to the video, choose a video
format, select a video codec, change the output size of the video, modify bitrate settings,
modify the audio format, modify audio bitrate and quality settings, configure FTP settings
for uploading the queue, as well as modify and include/exclude XMP data.

Simple mode encoding features

Simple mode offers quite a bit of control over your output but generally speaking leaves
out the more technical decisions where video, audio, and ActionScript are concerned.
Simple mode provides the following features:

Cropping video

 Setting in and out points

Managing custom presets

Cropping your video
The user experience in cropping video is much improved over the Flash CS3 Video Encoder.
If you’re one of those who have used the disassociated slider method of cropping video in
previous versions of the Flash Video Import Wizard and Flash CS3 Video Encoder, you will
appreciate being able to drag the cropping bounds to size and then move the crop area
around on the video preview window. In order to crop your videos, you must first enable
cropping by clicking the Crop button in the upper-left corner of the interface, as shown in
Figure 15-9.

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

387

15

Figure 15-9. The source preview of the Export Settings window
with cropping enabled

After cropping is enabled you’ll notice that the text above the video preview is now
active. You can modify the cropping values using the hot text for each value, which is
handy when you know the exact cropping you need. The values you can change here are
as follows:

Left: How many pixels from the left edge of the video to cut off

Right: How many pixels from the right edge of the video to cut off

Top: How many pixels from the left top of the video to cut off

Bottom: How many pixels from the bottom edge of the video to cut off

Figure 15-10 shows 140 pixels from the left edge of the video will be cropped out of the
video during encoding.

Figure 15-10. The numeric controls for cropping video

To the right of these values is a drop-down menu of fixed-aspect ratios. TT Selecting one of
these aspect ratios from the drop-down will resize your current crop settings to satisfy the
ratio and also make sure that the aspect ratio of the cropping bounds is maintained
through further adjustments.

The cropping proportions drop-down is populated with standard aspect ratios used in
traditional video production as well as some aimed at portable devices.

You can also resize the cropping bounds (the white box that now appears over the video
preview) by clicking and dragging any of the corner handles to change the height and
width at the same time or by grabbing and dragging any of the sides of the cropping

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

388

bounds shown here in Figure 15-11. You can then go back to the numeric entry and fine-
tune if needed. You can also move the cropping bounds around on the video by clicking
and dragging anywhere inside the cropping bounds.

Figure 15-11.
The cropping bounds can be

resized using the handles.

Now that you have a crop area, you need to tell the Media Encoder how you want your
cropping to impact the final video dimensions. You have three options, listed here:

Scale to Fit: The Media Encoder will scale your crop area until it matches the height
or width of your output size, whichever comes first.

Black Borders: The Media Encoder will simply replace any video falling outside of
your crop area with black but maintain the original output dimensions of your
video.

Resize Video: The Media Encoder will change the output dimensions of your video to
match that of your crop area. It’s important to note that after selecting Resize Video,
selecting one of the other two crop settings will not resize the video. You’ll need to
uncheck the Resize Video option to return your output to its original dimensions.

Setting in and out points
Setting an in point and an out point for your video allows you to encode and output
smaller portions of a larger source file without having to edit it first. Let’s suppose you
have been handed a video file of a professional conference that includes four different
speakers. You might consider the following workflow to output a separate video file for
each of them:

1. Open the Adobe Media Encoder.

2. Locate the source video file and drag it into the queue.

3. With your video selected in the queue, open the Export Settings window.

4. Drag the playhead until you locate the point in the larger video where you’d like
your shorter video to begin.

5. Click the Set In Point button above the playhead (see Figure 15-12).

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

389

15

Figure 15-12.
The Set In Point button

6. Drag the playhead until you locate the point in the larger video where you’d like
your shorter video to end.

7. Click the Set Out Point button above the playhead (see Figure 15-13).

Figure 15-13.
The Set Out Point button

8. Use the output name link to open the Save As dialog and choose a file name and
location for the output file.

9. Click the OK button at the bottom-right corner of the window.K

10. With the video you just modified active in the queue, click Duplicate on the side of
the queue. Doing this will create a new item in the queue with identical settings,
with the file name automatically incremented for you. (You may select any file
name and location you wish at any time until the file has been exported.)

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

390

11. Repeat steps 3 through 10 until you have set up four items in the queue with the in
and out points marked. You’ll notice that duplicating a queue item also duplicates
the in and out point settings.

12. Click the Start Queue button and let the Media Encoder do its thing.

You should wind up with four separate files trimmed to show only the portions of the
larger video that you want.

Managing custom presets
Finally, in simple mode you can manage your presets in the Export Settings area of the
Export Settings window. We highly recommend using one of the many presets as a starting
point for creating your own presets. The dimensions, codecs, and bitrates in the presets
are based on commonly used settings and will save you time and effort. After selecting a
preset, making any change to the settings will change the preset selection to Custom.
Figure 15-14 shows the three following preset management buttons:

Save: Select this button (disk icon) to save the current settings as a preset.k

Load: Select this button (folder icon) to load an existing preset.

Delete: Select this button (trash can icon) to delete a preset.

Figure 15-14.
The buttons used for managing

your custom presets

When you are done making your adjustments, simply click the disk icon next to the k Presets
drop-down. You will be presented with a dialog where you name and save your preset. The
next time you use the Presets drop-down menu, your custom preset will appear at the top
of the list under Custom.

To delete a custom preset, select it from theTT Presets menu, and then click the trash can
icon. Read the confirmation dialog and click OK toK delete or Cancel to cancel.

Advanced mode encoding features

The advanced mode gives you an opportunity to make technical decisions about your set-
tings at a deeper level. These settings are geared toward the user who deals with encoding
and distributing media on a regular basis. That being said, it is not outside the realm of
possibility that your customers will have you reaching for the advanced mode as you try to
balance the priorities between quality, bitrate, and file size. Nothing tells you more about
what these settings do than trying out a lot of things in a systematic fashion and paying
close attention to the result. Hint: test small portions of video to avoid the long wait
between comparisons.

Advanced mode encoding features consist of the following:

Cue points

Advanced encoding options

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

391

15

Filters tab

Format tab

Video tab

 Audio tab

 Others tab

Let’s start with a discussion of cue points.

Cue points
In short, a cue point is a special event triggered at a specified point in time during video
playback. Although you can add cue points using ActionScript, you can also embed them
into the video stream itself during the encoding process, which is what we’ll cover in this
section.

To learn more about using these cue points in your Flash applica-
tion, read Chapter 17.

Adding cue points Generally speaking, you add a cue point to video because you want
something to happen in your Flash application when the video reaches a particular moment
during playback or you want to leave a marker in the video that can be used as a naviga-
tion point. Here’s how to add a cue point to your video:

1. Make sure you are in advanced mode.

2. Drag the playhead to the desired point in your video.

3. Click the plus icon.

Voilà! You have added a cue point to your video—well, technically it will be added during
the encoding, but you get the idea. Figure 15-15 shows the cue point listing with one cue
point added to it.

Figure 15-15.
One cue point has been
added to the video.

Two types of cue points can be added as metadata to your video stream, event and navigaTT -
tion. Another type, an ActionScript cue point, can be added via ActionScript. (Bet you

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

392

didn’t see that coming.) To select either the event or the navigation type, use the drop-TT
down menu under the Type column of the cue points table below the video preview.

Adding parameters to cue points Parameters are passed to the event handler for a
cue point as an object comprised of name-value pairs. To add parameters to your cueTT
points, first select a cue point. This will make the Parameters section below it active. If you
selected Cue Point from the list of cue points, you should now see Parameter names for:
“Cue Point” as the parameter names column header of the parameters grid, indicating that
this is the cue point you will be adding parameters to.

Add a parameter by clicking the plus button. By default the first parameter is named Name_0
and the value for it is Value_0, as shown here in Figure 15-16. To change these to somethingTT
more useful, click a name or value and tailor the parameter to your own needs.

Figure 15-16.
A parameter has been added
to the cue point. Shown here

are the default names for both.

Remember, the parameters are passed to the event handler for a cue point as an object,
so the names will be properties of that object, and the values will be the values of those
properties. For this reason, parameter names must be unique within each cue point.

See the “Understanding Cue Points” section in Chapter 17 for more details.

Saving cue points Click the Save Cue Points button (disk icon) shownk in Figure 15-16
to save your cue points as an XML file. This can come in handy if you need to pass the cue
points from, say, a producer’s workstation where cue points are entered, to a developer
who adds parameters to cue points, or perhaps to a compression workstation where the
files are actually compressed.

Saving a preset does not save cue point data!

Importing cue points The other half of saving cue points is being able to import them.
If you’re the developer or the person running the compression, and you receive a cue point
file from the producer via e-mail, you can import this file by clicking the Import Cue Points
button (folder icon) shown in Figure 15-17. Importing cue points might also come in handy r
in a situation where you have created a custom tool that creates cue points dynamically.yy

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

393

15

Figure 15-17. The buttons used for managing your cue point parameters

Removing cue points and parameters Of course, nothing is ever set in stone, so you
have the ability to manage your cue points. Figure 15-17 shows the following cue point
management buttons, from left to right:

Add Cue Point

Delete Cue Point

Import Cue Points

Save Cue Points

To delete a cue point, just select it and then click the TT Delete Cue Point button (minus
icon) above the cue point grid. Confirm and that’s it. It works the same way for removing
parameters.

Advanced encoding options
If you’re not already using advanced mode, you can switch to it by clicking the advanced/
simple mode toggle show previously in Figure 15-8. In advanced mode you will see the
following row of tabs under the Export Settings area of the Export Settings window, further
expanding your options:

Filters

Format

Video

Audio

Others

Read on for the skinny, starting with the Filters tab.

Filters tab
At the moment you have one choice for applying filters to your output and that is Gaussian
Blur. To apply this filter, first select theTT Filters tab. You have three parameters:

On/Off: You can include/exclude the filter (handy for quick comparisons using the
preview window) using this check box option.

Blurriness: You can enter the size of the blur using the Blurriness control. A value
between 0 and 50 is valid.

Blur Dimension: This control lets you determine which direction the blur is applied—
horizontally, vertically, or both.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

394

Format tab
The Format tab lets you select the file format of your output. Your decision here will be
based on your audience and what player versions and computer systems you assume them
to have. You can choose from FLV or F4V. LL Depending on which file format you choose,
your options under the Video and Audio tabs will change.

The FLV format The FLV format (which standsLL for Flash Video) uses either the Sorenson
Spark codec or the On2 VP6 codec. While the On2 VP6 codec produces higher-quality
video at lower bitrates, keep in mind that it is more computationally expensive—so for
audiences with older, slower processors, you will want to consider using the Sorenson
Spark codec.

It’s important to know that the amount of math a computer needs to execute (computa-
tional expense) in order to make sense of your video file (decompress it) will impact the
computer’s processor and is not related to the connection speed your user has to the
Internet (and therefore your video file).

The F4V format The F4V format, which uses the MainConcept H.264 video codec, pro-
vides an even better quality-to-bitrate value but it is even more computationally expensive
than the On2 VP6 codec.

Notice that choosing a format in the Export Settings window of the Media Encoder will
not let you choose H.264 for the MP4 format. To choose H.264 for the MP4 format,
you’ll need to select it from the Format column of the Queue window, as shown in
Figure 15-18.

Figure 15-18. Selecting the H.264 codec for the MP4 file format has to be done from the queue.

Video tab and bitrate settings
The video tab is where you make all of your decisions around how the video is handled.
Prior to this most of your selections have been around what the video will be—not how it
will be transformed. Figure 15-19 shows the three following areas of the Video tab in
advance mode:

Basic Video Settings

Bitrate Settings

Advanced Settings

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

395

15

Figure 15-19.
Advanced encoding options
with the Video tab selected

Basic video settings If you chose to export to the FLVLL format under the Format tab,
your first choice will be whether to use the Sorenson Spark or On2 VP6 codec for com-
pression as discussed in the previous section. Additionally, choosing the On2 VP6 format
adds the ability to take advantage of any alpha channel in the source video as well as using
variable bitrate (VBR) encoding and multipass encoding (explained in the “Passes” sec-
tion). If you chose to export to the F4V format, you can only use the MainConcept H.264
codec for compression.

Bitrate settings “Bitrate” here is the amount of data (usually kilobits) per amount of
time (usually seconds) needed to “feed” the playback software so that the video plays
back smoothly. And to be clear, it’s the video stream itself that dictates how much data
per second is needed in order to play back, and that need is what we’re talking about setd -
ting here.

So you have some real flexibility when it comes to bitrate. Even though there are only a
few choices to make, the number of combinations and range of quality you can achieve
here (or not) is vast. In order to get the most out of the bitrate settings, you should under-
stand what bitrate means and how it impacts the transmission of video online.

Imagine that you are a waiter or waitress at a famous beverage shop. You can serve one
gallon of liquid (data) every second, and you have a tap that happens to spit out one gal-
lon of water every second. You can get every drop of that water to your customer, and you

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

396

can keep on serving for as long as the water comes out of the tap without ever keeping
your customer waiting for water (assuming that your customer will drink no more than
one gallon of water per second).

Now let’s imagine that you have another tap that spits out only a half gallon of water per
second. Again, you will have no problems serving that half gallon of water to your cus-
tomer every second.

Finally, let’s bring out the big tap. This thing spits out a whopping two gallons of water
every second. NO WAY can you serve it all AA at the same speed it comes out of the tap. You’d
have to store enough at the table (where the customer can get to it) before you start serv-
ing so you could let the customer drink while you try to keep up.

This is what buffering is all about. Buffering essentially means collecting and “setting aside”
enough video before playback so that the video does not get interrupted during playback.
Since you don’t want your viewer to experience hiccups in the video, you just let it collect
until you’re sure that you can keep up with “two gallons per second” until the “water” runs
out. Of course, this only works when you know how much video there is to serve.

In the transmission of video (or audio), you have to deliver it at the minimum amount per
second in order for the viewer to see the video without stuttering or buffering.

Bitrate encoding It would be nice if video were as simple as water, but it’s not. Some
frames of video are a lot more complicated than others, whereas one sip of water is pretty
much the same as the next. They’re pictures after all, and if you consider the simplicity of
a picture of a box versus the complexity of a picture of a tree, you sort of get the idea.

You can select CBR, or constant bitrate encoding, and treat your video so that the picture
of the tree takes as much bandwidth to deliver as the picture of the box, but you don’t
have to. The good news is that the very smart people who created these codecs under-
stand that video is not the same on every frame, and they actually let you use this to your
advantage by giving you something called VBR, or variable bitrate encoding. They basically
rob from the data used for the picture of the box and give it to the picture of the tree.

Passes Since this is a pretty complicated bit of data juggling, the software can do it only so
well if it gets one chance. So, there’s an additional option for the number of passes the
encoder takes over the video—one or two. The benefit is that you have a ton of flexibility in
how the encoder distributes the data in that you can set constraints on how high (Maximum
Bitrate setting) and how low (Minimum Bitrate setting) as a percentage the bitrate will go as
well as control the overall variability of the target bitrate, as shown here in Figure 15-20.

Figure 15-20.
The multipass VBR options for F4V

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

397

15

Experiment with these settings to get a feel for what produces the quality bandwidth com-
promise you can live with. Can you live with a slightly blocky video in order to maintain the
feeling of fluid motion and still keep the video within your required bandwidth? Or is it
more important to have a crystal-clear image with a lower frame rate? The answer will dif-ff
fer from one situation to the next.

Depending on the nature of the video you are encoding—a talking head vs. a roller derby,
for example—different compression settings will be required for each to produce an
acceptable result.

The drawback to multipass encoding is that it takes longer than one-pass encoding, which
can be a small price to pay for the quality. One thing that you do want to consider is that
the multipass VBR encoded video is a lot more complicated than a CBR encoded video and
requires more processing power on your end user’s computer in order to decode and
watch.

Bitrate Finally! The bitrate settings should now be fairly meaningful and straightforward
for you. Using what you know about your target audience and the connection speed you
assume them to have to your video, select a bitrate.

Remember that the lower your bitrate is, the less data per second can be given to your
video—and with that sacrifice in “amount of data” per second comes a sacrifice in the
quality of the images that can be created.

Advanced settings The advanced settings vary depending on what video format is
selected for output, but in general include the following:

Keyframe Distance: The term “keyframes” in video compression refers to frames
where a complete set of the image data is stored in the video stream.

Encoding Profile: Setting this to Simple eliminates the ability for the resulting video
to use frames that come after it for encoding, resulting in a less-compressed file.

Compression Quality: Setting this higher will result in better image quality but
requires more time to encode. A lower setting will encode faster but sacrifice some
quality.

The advanced video settings give you tremendous control over how your video is com-
pressed and enter into topics about video compression that fall outside the scope of this
book. Refer to for a tech-
nical introduction to the various profiles and levels included in the H.264 specification.

Audio tab
The video format you choose has an impact on how audio is handled during compression.
Audio that accompanies video of the FLV format is MP3. LL Audio that accompanies the
video of the F4V format is AAC.

The preceding discussion of bitrate applies to audio as it does to video—the main differ-
ence being that you can get a lot more bang for your buck from a few Kbps more of audio
than you can for video. Little changes make more perceivable differences in audio than
they do with video. Furthermore, changing your audio setting has a very small impact on

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

398

your overall output file size. To illustrate this point, we want to point out the TT Estimated File
Size indicator at the bottom of the encoder screen.

Change all of the audio settings to the lowest quality for its format. Figure 15-21 shows the
Audio tab of the Export Settings window. Make it mono if it is an option, set the frequency
as low as it will go, and do the same for the bitrate all the while keeping your eye on that
estimated file size. You can run the gamut from worst possible audio quality to best pos-
sible quality and see little to no change whatsoever in the overall file size. Add this to the
fact that you get big gains in perceived quality for little increases in file size, and you see
that cheating a few Kbps from audio for the benefit of the video stream is a bad bet. Play
with these settings and pay close attention to your results.

Figure 15-21. The audio options. You get a lot of bang for
your buck with audio. Using a little more bandwidth for audio
will make the user experience much more enjoyable.

Audio that isn’t being given enough bandwidth can sound crackly, watery, or fuzzy depend-
ing on the nature of the source audio. Speech will generally require less bandwidth than
music to produce acceptable results; however, if that speech audio content contains a lot
of reflective secondary audio (reverb), you may find that you have to bump the audio
bitrate in order to achieve an intelligible result.

The Others tab
One very exciting addition to the Media Encoder is the Others tab, which at this time
allows you to set up an FTP destination for your output file (see Figure 15-22). How sweet
is that?! It gets a little better in that you can have different settings for each file. The down-
side is that you can’t save FTP locations (although the Media Encoder remembers the last
settings used), nor do the settings get saved with a custom profile.

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

399

15

Figure 15-22. The Others tab lets you designate an FTP account
to upload your files to after encoding is complete.

XMP metadata
XMP, which stands for Extensible Metadata Platform, is an open standards–based labeling
technology that allows you to embed data about a file into the file itself. You can choose
to include or exclude XMP metadata by clicking the menu icon of the Advanced Settings
area (shown in Figure 15-23) and selecting or deselecting Include Source XMP Metadata.

Figure 15-23. Launching the XMP info inspector

To modify the XMP metadata in your videoTT or audio file, select File Info. This will open the
XMP window shown in Figure 15-24. As you can see, the categories of information are exten-
sive, but because XMP is open and therefore allows for the possibility of being extended
rather than replaced, it can be made to include more information as more people adopt it
without making older metadata obsolete.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

400

To find out more aboutTT XMP, visit .

Summary
Like most topics covered in this book, the discussion of video compression could be a
book in and of itself, as could the operation of the Adobe Media Encoder, but we hope
that with what we covered here, you have enough background to produce quality work
while you are getting to know this evolving tool. In this chapter, we talked about

 The basic operation of the Adobe Media Encoder including how to encode one or
more files and the various file formats the Media Encoder can output

 Using the Adobe Media Encoder for common tasks like cropping, resizing, and
trimming the beginning and end of your video

 Bitrate and the basics of video transmission over the Internet

Audio compression and its impact on video

 The advanced video settings for compression and format, as well as embedding cue
points and parameters in your video

Figure 15-24. The XMP info inspector

USING THE ADOBE MEDIA ENCODER—A CRASH COURSE

401

15

Things to consider when preparing video for your audience such as connection
speed and computer performance and how to adjust encoding settings to match
the needs of your audience

 Using the Adobe Media Encoder to automatically post your encoded video to an
FTP site

CHAPTER 16

WORKING WITH AUDIO IN FLASH

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

404

When I (Chris) was thanking my first video customer for hiring me to add sound and music
to his video, he said, “No, thank you. Without audio, video is just surveillance.” Ironically,
good audio is almost never heard—or maybe we should say never noticed. In order to
effectively add audio to your Flash projects, you’ll need to have an understanding of the
various ways audio can be included in those projects as well as all of the things you can do
with it once it’s in there.

In this chapter we’ll talk about

 Thinking about audio

Importing audio into the Flash authoring environment

 Using audio in the authoring environment

 Using library audio assets at runtime

The Sound API

 Loading audio at runtime

Manipulating audio at runtime

Let’s begin this chapter by thinking about how you might approach using audio for your
project. Is your audio going to be design or content? Roll-over sounds for buttons or full-
length songs for playback? Perhaps both? Once you know what your sound is going to be
used for, you can create a plan for successful integration.

Thinking about audio
If a tree falls in the woods and no one is there to hear it, does it make a sound? If you’re
a sound designer, your response would likely be “What kind of tree was it, soft wood or
hard wood? They sound different.”

In sound design you paint pictures with sound. You give weight to objects, add speed to
animation, add comedy to animated characters, and a whole lot more. Your job is to use
sounds that are the result of something happening. Within the world of Flash, that could
be most anything: a button click, a moving panel, a morphing shape, a change in the state
of an application, a color transformation. The bottom line is that there is a wealth of
opportunity for sound design in Flash.

As it happens, Flash is also a tremendous platform for presenting linear media, which
could be anything that plays from beginning to end without opportunity for the user to
interact with it, like cartoons or movies or songs or audio books.

Flash is a great choice for a custom media player with the usual capabilities: select a track,
play, stop, select another track. Not only can you use Flash to load and play back audio
files at the implicit request of the user, you can also programmatically respond to the
audio itself, offering you the opportunity to create a responsive interface.

WORKING WITH AUDIO IN FLASH

405

16

Understanding audio in the Flash authoring
environment

Even though a vast majority of the control you have over audio comes through ActionScript,
you may never have a need to use ActionScript for audio if you use the timeline for sound
design. Even if you do, you may choose to import your audio resources into your FLA or
perhaps create a SWF made entirely of sounds to be used as a library for shared use
among many other SWFs. In short, there are many reasons you may need to import audio
into the Flash authoring environment.

To import audio into the TT Flash authoring environment, do the following:

1. Choose Import or Import to library from the file menu.

2. Browse to your file or files.

3. Click Import.

This will add audio assets to your library bearing the file name of the source files. Once
you’ve imported some audio into the authoring environment, you can put audio on your
timeline by selecting a keyframe and then either dragging the audio file from your library
onto the stage or using the Sound panel, explained next. While audio can span many
frames, it must begin on a keyframe.

Using the Sound panel

The Sound panel, shown here in Figure 16-1, is your primary tool for dealing with audio in
the interface. This panel is an extension of the frame Property inspector so the changes you
make here deal with instances of audio files that are actually on the timeline.

Figure 16-1.
The Property inspector when a
keyframe with audio has been
selected. Here you can select which
library asset to apply to the keyframe,
effect, sync type, and repeat settings.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

406

Applying audio to a keyframe
Use the Name drop-down menu in the Sound panel section of the Property inspector (see
Figure 16-1) to select an audio file to put on the currently selected keyframe. You can also
select a number of keyframes to add sound to all of those keyframes at once.

Quickly applying effects
The Effect drop-down menu lets you quickly add fades and pans and other effects to your
audio. You have the following options for volume presets:

Left Channel plays only the left channel of audio by turning the volume of the right
channel all the way down.

Right Channel plays only the right channel of audio by turning the volume of the
left channel all the way down.

Fade to Right is actually fade from left to right: it turns the volume of the left chan-
nel from all the way up to all the way down while at the same time turning the
volume of the right channel from all the way down to all the way up over the dura-
tion of the audio.

Fade to Left works in the opposite manner as Fade to Right.

Fade In does just what it sounds like. At the beginning of the audio, on both chan-
nels it will change the volume from all the way down to all the way up over time.

Fade Out also does just what it sounds like. On both channels it will change the
volume from all the way up to all the way down so that the volume is off at the end
of the audio.

Custom will open the Envelope Editor discussed later in this chapter in the section
“Fine-tuning audio with the Envelope Editor.”

Selecting a synchronization type for your audio instance
Audio can be treated in two ways when working on the timeline: it can be event audio or
streamed audio. Both have their pros and cons and behave differently both at author time
and runtime.

Event audio just happens. When the playhead reaches a frame with event audio on it, the
audio plays with complete disregard for the rest of the movie. “Complete disregard” may
sound like a negative; however, it could be just what you need. Consider a sound effect that
needs to continue, even if the visual event it’s associated with stops or gets interrupted.

It is important to know that event audio must be completely downloaded to the end user’s
player before it will play at all, so if you plan to use event audio, be sure to preload your
sound library. Also, you cannot trigger playback of the audio at author time by dragging
the playhead over it; you must play the timeline.

Event audio has the benefit of needing to be downloaded only once, regardless of how
many times it’s used in your file as event audio.

WORKING WITH AUDIO IN FLASH

407

16

Audio designated as streaming behaves much differently. When the playhead reaches a
frame with streaming audio on it, the Flash Player will only play back the portion of audio
on that frame. Using streaming audio will ensure that the playhead keeps up with the
audio at runtime; however, it’s important to know that it accomplishes this by dropping
frames of animation if the host computer cannot keep up. It’s also important to note that
each instance of streaming audio needs to be downloaded, so using the same sound
repeatedly would add significantly to file size.

Streaming audio instances are commonly used if you are working on animation tasks like
lip syncing where keeping the visual contents of each frame synchronized with the audio
is crucial. If you drag the playhead on a timeline that has an audio instance set to stream-
ing, the audio will scrub, or play back, at the speed at which you drag the playhead, for-
ward and backward. You can use this feature to find the approximate frame where an
event in the sound happens (a loud crash or a big empty space, for instance) so you can
synchronize your visuals to it or even use it as a reference for editing using the Envelope
Editor (explained in detail later in this chapter in the section “Fine-tuning audio with the
Envelope Editor”).

Streaming also refers to cases where sound is being loaded from external sources (a web
server for instance) but begins playback while downloading is still in progress. Don’t be
confused!

To understand the difference betweenTT these sync types, set up a file as shown in Figure 16-2.
In this example, both audio files are much longer than the timeline of the movie. The
sound on the event layer is set to sync type event and the sound on the stream layer is set
to stream. If you position the playhead on frame 1 and play the timeline, you’ll notice that
when the playhead reaches the end (assuming Control Loop playback is unselected), the k
event audio continues to play, while the audio on the stream layer stops when the play-
head does.

Figure 16-2. The top sound set to event will continue to play even after the playhead reaches the end of
the timeline.

Also in the Sync section of the Sound panel is where you can set how many times to
repeat an instance of a sound, if at all, or to designate it as a loop, which will repeat it
indefinitely.

Info
The bottommost section of the Sound panel is the Info section. This unlabeled area shows
you abbreviated information about the source audio file being referenced by Flash during
author time including the sample rate, channels, bit depth, duration, and file size. For
more complete information about the source file, double-click the sound icon in the

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

408

library next to the sound you want to find out about. This will open the Sound Properties
dialog.

Export settings in the Sound Properties dialog
The Sound Properties dialog, shown in Figure 16-3, is where you manage an individual
sound asset’s properties and export settings, including its library name, compression type,
bitrate, and quality. You can also use this dialog to test output settings and update or
import over sound assets (just as you can with bitmaps).

Figure 16-3. The Sound Properties dialog is where you manage a sound
asset’s properties, including its library name and compression settings. You
can also use this dialog to test output settings and update or import over
sound assets.

WORKING WITH AUDIO IN FLASH

409

16

Basic operation of the panel is as follows:

To save any changes made in theTT Sound panel, click the OK button.K

 To close the panel without making any changes, click theTT Cancel button.

 To update your audio file with a newer version, click theTT Update button.

To replace your audio file with a different one, click theTT Import button, browse to
the new file, and click open.

To hear what your audio will sound like after compression, click theTT Test button.

 To stop hearing what your audio will sound like while testing, click theTT Stop button.

To change the compression typeTT of your audio, use the Compression drop-down to select
from the following options:

Default, which will use the compression settings of the document

ADPCM (Adaptive Pulse Code Modulation)

MP3 (MPEG-1 Audio Layer 3)

RAW, which will not compress the audio at all

Speech, which applies an aggressive compression tailored for the spoken word

To find out more about compression and bandwidth considerations, see Chapter 15.

You’ll notice as you change your selection from one codec to the next that your compres-
sion options change as well, including the availability of preprocessing (converting a stereo
file into a mono file) and the range of options in the Bit rate and Quality drop-down menus.
As a general rule, the larger the bitrate, the better the audio will sound—but the larger the
resulting file. Make adjustments to your settings and then use the Test button to listen
until you have a quality-to-file-size compromise that suits you. Use the information just
beneath the Quality drop-down menu to determine the final file size of the audio you are
compressing.

To replace audio with files intended for mobile devices, TT use the Device sound text input
field. Using this will replace the file used during authoring with a file that is meant for use
on a mobile device and cannot be played back within the Flash authoring environment.

To make a sound file available for use inTT ActionScript or assign a custom class to a sound,
make sure the Export for ActionScript check box in the Linkage area is selected.

To make a sound available for runtime sharing,TT select the Export for runtime sharing check
box in the Sharing area and then enter the URL where your SWF will be posted. The author
of other SWF files can then use the sound object by referencing that URL or by dragging
the library symbol of that sound into his or her FLA.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

410

Fine-tuning audio with the Envelope Editor

You can use the Envelope Editor to fine-tune the volume and duration of your instances of
audio assets. Fine-tuning in the editor will only affect the instance of the audio that is on
the keyframe selected when the editor is opened.

Open the editor by clicking the Edit button (the button with a pencil icon) next to the
Effect drop-down box or by selecting Custom from that same drop-down box. Refer to
Figure 16-4 as you read through the following sections.

Figure 16-4. The Envelope Editor consists of these elements.

Trimming your audio
To change the point in your audio where thisTT instance of audio will begin playback, use the
in-point handle. Simply drag it to the point of the waveform that you want to be the
beginning of that instance.

WORKING WITH AUDIO IN FLASH

411

16

Setting the point in the audio source where you want your instance to end is almost iden-
tical except that instead of moving the in-point handle, you will drag the out-point handle
back to the point in the audio source where you want your instance to end. If your source
audio file is long, you may need to zoom out so you can see more of the waveform in the
editor or scroll to the end.

Using a combination of zooming and scrolling should help you place the in and out
points with a reasonable degree of accuracy.

Custom effects
A custom effect is any volume envelope that does not conform to the preset effects dis-
cussed earlier in this section.

The Envelope Editor is by no means a fully featured audio editor, but it will let you add up
to seven handles in the amplitude (volume) envelope, allowing you to adjust the volume.
Click anywhere on the amplitude envelope to add a handle. When you add a handle on
one channel, a handle is added on the other channel as well. These handles are locked
together, and the pair only count as one of the seven permitted.

Certainly there are more comprehensive tools geared toward audio work, but it’s quite
likely that you will receive audio from a customer that needs some minor tweaking even if
you are working without the benefit of these tools—and for this purpose the Envelope
Editor will serve you well.

We’ve also seen it used quite effectively for breaking up longer files of dialog into separate
instances for each character so that different animators can use the same finished source
audio to work with during lip syncing.

Changing the view
As you work through trimming and adding custom effects to your audio, you might find it
helpful to be able to manipulate the view of your audio. The Envelope Editor offers you a
few different ways of looking at your source waveform.

The most fundamental is zooming (mentioned before). You can use the Zoom In/Zoom Out
buttons (Figure 16-4) to zoom in to the waveform to help make trimming more accurate
or to show more of the waveform to help you quickly move from point to point in longer
audio.

You can also choose to change the ruler from time increments to frame numbers in the
event that you either know the time or frame number of an event in your audio by clicking
the Frame View or Time View buttons.

Adding audio to a button

Now that you know how to bring audio into the workspace and understand the basics of
how sound is handled, let’s look at a practical application of audio in the timeline as it is
added to the over state of a button.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

412

Buttons can help set the tone of your interface with audio on them. Let’s see how it’s done
when you want your audio embedded in the movie.

To add audio to a button in the timeline, follow these steps:TT

1. Import the audio.

2. Add the audio to the Over state frame of your button as shown in Figure 16-5.

3. Trim the audio if needed.

4. Adjust the volume if needed.

5. Address export settings.

6. Test your movie.TT

So that was a very straightforward process, but what if you want to choose from different
sounds depending on what was going on in your Flash movie at the moment? For instance,
what if you want the roll-over sound of your navigation to be different for each area of
your site? You could create a set of buttons for each area of your site, but maintenance
could get out of hand in a hurry! A more dynamic approach might be to create a button
that, on roll-over, asks the application what area the user is currently viewing and then
plays the appropriate sound. If you’re interested in using Flash to control audio in the way
we just described, then read on!

Using library audio assets at runtime
We’re now going to walk through our earlier scenario in which the button asks the appli-
cation where our user is and changes sounds accordingly. Rather than create a full-on
application with navigation, we’re going to scale it back a wee bit, but leave in enough
to show you what you need to know.

This is a long example, so for clarity here are the major steps we’re going to cover:

1. Create the application and document class files.

2. Establish application state.

3. Create the user interface and add code to handle user input to change applica-
tion state.

4. Add sounds to the library and make them available to ActionScript.

5. Create the sound objects and change sounds at runtime.

Figure 16-5.
The timeline of a button

with audio in the over state.
Whenever this button is rolled

over, the audio will play.

WORKING WITH AUDIO IN FLASH

413

16

We’ll cover the following Flash concepts and skills in this example on using audio assets at
runtime:

 Using the document class (which we covered in detail in Chapter 8)

 Using variables (also covered previously in Chapter 8)

Making library assets available to ActionScript (this chapter)

 Using the class (this chapter)

Handling events (this chapter)

You can see that they are not all sound related, but they are covered elsewhere in this book.
The purpose of this section is to provide examples that are relevant in the real world.

First things first—let’s create our application

It’s a good idea to get into the practice of setting up applications in Flash that use the
document class. Even though this example could be done with code in the FLA, it’s more
and more likely that you will need to know how to do it from an external ActionScript
class file.

To create the dynamic button audio application, start with these steps:TT

1. Create a new FLA and save it as .

2. In the field of the document’s Property inspector type DyanmicButtonAudioApp.
Now you must make a class with that name for your FLA to use when it compiles
the SWF, or it will create its own. Since you don’t want that, move on to step 3.

3. Create a new AS file named and save it in the same
directory as .

4. Add the code shown here to :

5. Test your TT FLA by pressing Ctrl+Enter (PC) or Cmd+Enter (Mac).

You should be rewarded with the text You have a working document class! in your Output
window.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

414

Application states made simple

In order for your application to have an answer when your button asks what state it’s in,
you’ll need to establish and keep track of its state. And what’s good for storing informa-
tion? Variables, that’s what!

See Chapter 8 for more on variables.

Let’s create a property in the application class that represents the state of the application.
Add the following code in bold to :

When you test the movie, you should be rewarded with the text You have a working
document class! My app state is: Home in the Output window.

Buttons please—changing states

In this section you’ll add to your interface a text field that will help you observe the state
of your application as well as two buttons.

To add two buttons and a dynamic text field to the stage for changing and displaying the TT
application state, follow these steps:

1. Add a dynamic text field to your stage and name it state_txt.

2. Add two Button components to the stage as well. Give one an instance name of
 and the other .

3. Label the two buttons Home and About Us, respectively.

WORKING WITH AUDIO IN FLASH

415

16

4. Add the following bold lines of code to :

We have had you add quite a bit there, so check out the comments for brief explanations
of the code. In a nutshell what you want to happen is when you click either button, the
application state will be changed and displayed in the text field.

If you have any questions about the preceding code or steps, refer to Chapter 8 and
Chapter 9.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

416

Making library audio assets available to ActionScript

For this example you’re going to need two different sounds: one for the roll-over sound in
the Home state and the other for the roll-over sound in the About Us state. After you have
these assets in your document, you’ll need to make them available to ActionScript at
runtime.

If you don’t happen to have any sounds handy, fear not. With Flash CS4 comes a new com-
mon library with just audio in it. From the Window menu select Common libraries Sound.
This will open the SOUNDS.FLA library.A

Since this is an exercise in Flash and not in sound design, pick any two short but dis-
tinctly different sounds from the SOUNDS.FLA library. We chose

for the Home state and for the
About Us state. To add them to our TT FLA, just drag them from the common library onto
the document library. We renamed them in the document library to sound_Home and
sound_aboutUs, respectively.

To make a sound available to TT ActionScript at runtime, right-click (or Ctrl-click on Mac) the
sound in the library and select Properties to open the Sound Properties window shown
earlier in Figure 16-3. Make sure the advanced options are visible and select Export for
ActionScript. The Class field will auto-populate with the name of the library symbol and
the Base Class field with .

Creating sound objects and changing sounds at runtime

Now that the audio symbols are available to you via ActionScript, you need to import the
classes that let you work with sounds. You’ll also create a sound object for each of your
sounds and events to the buttons by adding the following code in bold to

:

WORKING WITH AUDIO IN FLASH

417

16

You should now have a good idea how to use sounds in your library at runtime using
ActionScript; however, there may be times when you won’t want to or be able to store all
of your audio assets in the source file library to reference. In these cases you’ll need to
load them in at runtime.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

418

Loading audio at runtime
There are a lot of things to consider when loading audio into your application at runtime.
You want to consider giving your sounds time to load, what happens if the sound file can’t
be found, and what will be the impact on your UI if a sound fails to load prior to the UI
being used.

The first step in learning to load audio at runtime is understanding the audio-related
classes in the package.

Understanding the Flash.media package

Before you start creating a media player that loads audio at runtime, let’s discuss some of
the basic elements of the package as it pertains to audio in Flash, namely
these three classes:

The class lets you create objects that can load an external file into them and then
access data about that file such as the number of bytes in the file and ID3 metadata like
artist and album information, which we talk about later in this chapter.

Once you have that object, you’ll want some control over it. This is performed
through the and classes. As the sound comes into a real
audio mixer channel, you can adjust the volume, EQ (equalization), and PAN position (left-
to-right balance) of the sound on that channel strip. You can think of the
class as the channel strip on an audio mixer and the class properties as all
of the things (like volume, EQ, and PAN) you can adjust that change the sound as it is sent
to the speakers.

While it’s possible you may need to load sounds at runtime for sound design, it’s much
more likely to be the case when making a media player application (or adding narrations
to a slide show); so we’ll use that example as a basis for the next section of this chapter.

You’re going to create a very simple media player that allows the user to cycle through a
set of songs that you define using XML. To do this you’ll need toTT

1. Create a playlist (in an XML file).

2. Write ActionScript that loads the playlist into Flash.

3. Create buttons the user can click to load the audio files referenced in the playlist
for playback.

WORKING WITH AUDIO IN FLASH

419

16

Creating a playlist with XML

Let’s begin by creating a list of audio for the user to choose from by using this very basic
XML as the basis for your playlist and saving it as :

Loading the playlist into the media player application

Next you need an application to load the playlist into—call your authoring document
and the document class file . Save them in the same location as
.

See Chapter 8 or the previous section in this chapter for how to create an application in
Flash.

In start with the code shown here:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

420

Creating the user interface

So now that you have some data in your application and a general understanding of the
basic ActionScript classes involved with sound, you’ll create a very simple interface that
will allow a user to click through all of the tracks in your playlist. (Later you’ll add some
text feedback that shows the volume, artist, song name, and album information.)

Even though this example will only consist of a Next and Previous button, keep in mind
that the process for loading the audio file and creating the and
objects would be the same if you were selecting tracks from a track listing or some other
UI control.

For convenience, use flat blue back andk flat blue forward from the Buttons common library.
(Window Common Libraries Buttons) Open , drag an instance of each
onto the stage, and name them and .

WORKING WITH AUDIO IN FLASH

421

16

Next, open and add the bold code shown in the next example. As you go through
the code in the following sections, keep in mind the following things that need to happen
(the STEP numbers correspond to comments in the code in this and the next section):

 STEP #1 Import related classes and instantiate a object.

 STEP #2 Determine which track to load.

 STEP #3 Request the audio file on UI click.

 STEP #4 Instantiate a object to load your audio data into.

 STEP #5 Load the file into the object.

 STEP #6 Assign the sound to the object.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

422

Wiring the UI and making it play

Believe it or not, it’s time to wire up your (two-button) user interface and make this thing
play. (Remember—you’ll need to have audio files with the names indicated in your

in order for this to work.) This next stretch of code covers steps 2 through 6,
which continue from the previous example.

WORKING WITH AUDIO IN FLASH

423

16

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

424

Manipulating audio at runtime
At this point you should have a working, albeit limited, little media player application; and
it’s the “limited” part of it that brings about the need for this section. In order to impart
control to your user, you need to know the basics of manipulating audio at runtime.

In practice, most of the control you exercise over audio at runtime is at the request of the
user—change the volume, pause, stop, play, etc.; but other times you may want to do
these things to audio as a result of your own intention—slowly fading a background track
as a user visits a section of your site, and then bringing it back up again as that user navi-
gates to another, for instance.

Of the many things you will no doubt be asked to do when integrating audio into a Flash
project, allowing the user to control the volume will top the list. In this example you’re
going to accomplish this by using a volume strip, which is essentially a volume bar with-
out the slider; the mouse’s position over the bar will dictate the volume.

The first thing you’re going to do is create a dynamic text box named vol_txt and a rectan-
gular movie clip named volumeStrip to the user interface. vol_txt will show us what the
volume is and volumeStrip will act as our control. Add the following code in bold to

:

WORKING WITH AUDIO IN FLASH

425

16

Now that you have given the user a little bit more control over the sound, let’s have a look
at how the sound can in turn influence the user interface.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

426

When the music stops—handling audio
events

Your little playback application is starting to take shape, but it’s still missing the feedback
that your users need in order to connect with the content. In this section you’ll add some
text to the UI that shows users some information about what they are hearing by listening
for the event of the Sound class.

ID3 is arguably the most popular audio file data tagging format in use. ID3 is a data con-
tainer within an MP3 file that usually carries information about the MP3 file such as artist,
album, etc.

The event is broadcast when ID3 data from a object becomes available. You
listen for it in ActionScript by adding an event listener to your object. To include thisTT
functionality in your player, put a dynamic text field on the stage called id3_txt and add the
following bold code to :

WORKING WITH AUDIO IN FLASH

427

16

It’s important to note the difference between the event of the class, which
lets you know when the sound data has finished loading, and the event of the

, which lets you know when a object has finished playing.

Summary
In this chapter we talked about some different approaches to audio and the impact they
have on how you might bring audio into Flash and work with it. No doubt the
package holds much more than we can cover in one chapter, but this foundation should
serve you well as you work with audio in your Flash projects. We talked about

Importing audio in the Flash authoring environment

 Using the Sound panel

Choosing export settings for audio

 Using the Envelope Editor

Changing sounds dynamically

Choosing and loading sounds dynamically

Modifying audio at runtime

 Handling audio events

CHAPTER 17

WORKING WITH VIDEO IN FLASH

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

430

This chapter aims to provide you with the skills needed to handle common requests related
to using video in Flash. We’ll discuss

 Using the Video Import Wizard

 Understanding the FLVPlayback componentk

 Skinning the FLVPlayback componentk

How to create an interface that can play back user-selected video clips from a
menu or list of videos

Customizing the playback controls of the FLVPlayback component to match the k
rest of a custom design

 Using cue points to synchronize text and other media, like images and animations,
with video

When two of the largest viewer-supplied video web sites got together, our lives as Flash
developers changed forever. Everyone suddenly knew for sure that Flash could do video
on a large scale, and since Google was doing it, then maybe it was good enough for them
too. As a result, skill in integrating video with Flash is now a table stake of the Flash
designer and developer resume.

While popularity and high adoption rates for the Flash Player are good reasons to use
Flash for video, there are some other reasons.

Flash offers a unique environment for video in that the Flash Player can respond to and
interact with video content in ways that other technologies cannot. Bidirectional commu-
nication between the Flash Player and the Flash Media Servers offers even more possibili-
ties in connecting many users around video content in meaningful ways.

Consider a training simulation where participants in geographically disparate locations
all contribute to the outcome. Each of their decisions, or perhaps all of the decisions,
made during the simulation can contribute to what pieces of video are shown and in
what order during the simulation; and because it’s Flash, everything will happen within a
single interface.

Before you can run, though, you have to walk, so let’s put one foot in front of the other
and get some video playing in Flash using the Video Import Wizard.

Using the Video Import Wizard
Using Flash for the delivery of video has become so popular that you will at least want to
know the very basics of putting video into your Flash applications. Fortunately, Flash comes
with a wizard to help you quickly and easily integrate video with Flash. In order to use the
Video Import Wizard, you will need to use video files that can be played back via Flash
such as FLV or LL F4V files. To open this wizard, select TT File import Import Video. The Video
Import Wizard is shown in Figure 17-1.

WORKING WITH VIDEO IN FLASH

431

17

Figure 17-1. Select the location of your video and how you want to use it in your movie.

First, you will need to tell the wizard where your file is located. It is either on your com-
puter (or local network) or it has been deployed to a web server, Flash Video Streaming
Service (FVSS), or Flash Media Server (FMS) of your own. The wizard provides handy links
to learn more about FVSSs and the family of Flash Media Servers shown at the bottom of
Figure 17-1.

If the file resides on your computer or local network, you have two options. The first
option is to have the wizard create an FLA file that uses the FLVPlayback component tok
play back your video. The second option is to import the video into your FLA for use on
the timeline. If the file resides with an FVSS or on an FMS, you will need to provide the
wizard with a URL for the video.

Click Next (or Continue on a Mac) to proceed.

If you elected to have the wizard use an instance of the FLVPlayback component or if thek
video resides on a server, you will be given an opportunity to select a skin for your
FLVPlayback component on thek Skinning screen shown in Figure 17-2. The skin is an exter-
nal SWF file that, as stated in the dialog, “determines the appearance and position of the
play controls.”

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

432

Figure 17-2. Select a skin from the drop-down menu. Then choose your skin color with the color
chip. Flash will copy the required skin file to your project directory automatically.

See “Customizing the FLVPlayback component skin” later in this chapter for details
on skins.

If you elected to embed the FLV file into the timeline, you’ll get the LL Embedding screen
displayed in Figure 17-3. On this screen you select the type of symbol—embedded video,
movie clip, or graphic—your video is put into. Other options include whether or not you
want an instance of that symbol placed on stage automatically, and if so, whether you
would like the timeline to expand to the duration of your video. You can also choose to
exclude the audio content of the video at this time.

The next screen is the Finish Video Import screen, as shown in Figure 17-4. This screen gives
you detailed instructions for what to do next and what you can expect to see depending
on the selections you made during import. If you try to import video that cannot be
played back by Flash, you will be prompted to open the Adobe Media Encoder and con-
vert your video.

WORKING WITH VIDEO IN FLASH

433

17

Figure 17-3.
Options for embedding a Flash
video file within your FLA

Figure 17-4. The finish screen when importing a local video file where Flash will create an instance
of the FLVPlayback component on the stage.k This screen gives you information about what you will
see next and where to find your assets.

See Chapter 15 for a discussion of the Adobe Media Encoder.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

434

The Video Import Wizard provides a step-by-step guided method for including video in
Flash. If you need more control over how your video is implemented in your project, read
on to explore the FLVPlayback component.k

Understanding the FLVPlayback componentLL
The FLVPlayback component is designedk to let you easily add video to Flash. It enables
video playback and includes play controls that provide the user with all of the standard
capabilities found on a media player, such as play, pause, seek, and volume controls.

The FLVPlayback component can be added to your movie by using the Videok Import
Wizard or dragging an instance of the component onto the stage of your movie, or through
ActionScript.

Using the component in the Flash authoring environment provides you with an easy-to-
use component inspector for controlling, among other things, what file to play and what
the playback controls should look like.

Hello World

The “Hello World” example of the FLVPlayback component involves the following steps:k

1. Drag an instance of the component to the stage.

2. Open the Component inspector (discussed next).

3. Enter name and path to a video file for the source parameter.

4. Test the movie.TT

Many quickly find themselves needing to know how to say more than just “Hello,” so next
let’s learn how to say “Nice to meet you. Where is the bathroom?”

FLVPlayback Component inspectorLL

The FLVPlayback component consists of thek video player and its play controls, which you can
manipulate through the Component inspector. After you drag an instance onto the stage, you
can launch the Component inspector from the r Property panel of they FLVPlayback component.k
The Parameters tab of the FLVPlayback Component inspector is shown in r Figure 17-5.

The Component inspector shows a subset of parameters of the component that can help
with some general behaviors such as how the player adjusts its size to accommodate
different-sized video (scaleMode), whether or not the player plays its video as soon as the
source is set (autoPlay), and the playback skin along with some of the skin’s properties.
We’ll discuss the following parameters:

scaleMode

skin

source

WORKING WITH VIDEO IN FLASH

435

17

Figure 17-5.
The FLVPlayback Component
inspector shows the basic parameters
of the component, but even these
few parameters offer you ample
control. Further control over the
component can be achieved through
ActionScript.

Understanding and setting the scaleMode parameter
The scaleMode property determines how the video will resize after loading. This property
can be confusing, and it might not behave the way you first expect. For instance you might
assume that the noScale property set to true would prevent the video from changing dimen-
sions. Instead, what it does is force the FLVPlayback component to take on the size of thek
source file. So if your component on stage is 320 240 but your source video is 640 480,
the component will resize to 640 480 when the noScale property is set to true.

You have the following three options for the scaleMode parameter:

maintainAspectRatio: Adjusts the video aspect ratio and dimensions to fit within the
rectangle defined by the size and location of your FLVPlayback instance on stage ork
its registrationX, registrationY, registrationWidth, and registrationHeight properties.

noScale: Causes the video to size automatically to the dimensions of the source FLVLL
file. This parameter refers to the control of the video—not the playback compo-
nent instance.

exactFit: Causes the dimensions of the source FLV file to be ignored, and the video LL
is stretched to fit the rectangle defined by the size and location of your FLVPlayback
instance on stage or the registrationX, registrationY, registrationWidth, and registra-
tionHeight properties. If this is set after an FLV file has been loaded, an automatic LL
layout will start immediately.

To set the TT scaleMode parameter in the Component inspector, click in the Value column next
to the scaleMode parameter. Use the drop-down menu to select one of the three options.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

436

Setting the skin parameters
Another key parameter is the skin parameter. What you are doing when you select a skin
here is telling Flash to load an external SWF file at runtime that handles the layout and
configurations of the play controls. There are essentially 34 configurations of the same
skin to choose from. For instance, you might choose to have only a play button and a full
screen button on your controls. That would be one configuration. Another configuration
might include the play button, the stop button, and the caption button. That would be
another. Further, you might want those controls overlaid on the video. That would be yet
another configuration. Add the multiple arrangements of controls to the color variations
and alpha control, and most of us will have all the variety we need.

To select a skin, click in theTT Value column next to the skin parameter and then select a
configuration from the drop-down menu shown in Figure 17-6 that meets your needs. You
can also select the background color for your skin at this time using the color chip next to
the drop-down menu. You can select and reselect as many times as you need before leav-
ing the Select Skin dialog.

Figure 17-6. The Select Skin dialog

When you return to the Component inspector, you can choose to adjust the color further
without having to reopen the Select Skin dialog by clicking in the Value column next to
skinBackgroundColor. You can also adjust the skin’s transparency by clicking in the Value

WORKING WITH VIDEO IN FLASH

437

17

column next to skinBackgroundAlpha and entering a value between 0 (for transparent)
and 1 (for solid).

Setting the source parameter
Flash Player can play FLV and LL F4V formats, but with Flash Player 9 update 3, Adobe added
the ability to play back MPEG 4 formats that use H.264 encoding. These formats include
MP4, M4A, MOV, MP4V, 3GP, and 3PP G2.

To set the TT source parameter for your instance, click in the Value column next to the source
parameter of the Component inspector. Then browse to the file you wish to play back and
select it or enter the URL to your video. When setting the source parameter in this way, Flash
will read the metadata of the file you have selected and can therefore give you the option of
sizing your playback component to match. If you weren’t involved in production of the video
and weren’t told the dimensions of the video, this can eliminate some guesswork for you.

Menu-driven video playback
As mentioned at the beginning of this chapter, creating an interface that can play back
user-selected video clips from a menu tops our list of requests when it comes to using
video in Flash.

Following are the steps for creating a menu-driven video playback application. This exam-
ple shows how to load and playback video from a combo box component.

1. Create an FLA and make its document class .

2. Drag an instance of the FLVPlayback component from the k Components panel to the
stage of the FLA. Name it myVideoPlayer.

3. Drag an instance of the ComboBox component from thex Component panel to the
stage and name it selector_cb. Load your combo box with titles and file names of
videos you have encoded for playback in Flash using the Component inspector. Please
refer to Chapter 14 for more information about the ComboBox component.

4. Create a dynamic text field on stage and call it feedback_txt.

5. Create the file and insert into it the following code:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

438

Here’s what this code does (please read through the comments for specific details):

1. Import the necessary classes.

2. Add event listeners for the combo box event and the FLVPlayback
event.

3. Load the selected video file into the player and update the feedback text.

4. When the player broadcasts the event, you reposition the player. If the
loaded video’s size is different from the player’s size, its position will change
depending on the scaleMode setting. After the auto layout process, you can safely
reposition the video display.

See “Synchronizing video, text, and other media using events” later in this chapter for
more information about events.

As you can see, creating this functionality can be very straightforward. So now that you are
able to select and play back video from a menu, let’s move on to making the component
look the way we want it to by creating a custom skin.

Customizing the FLVPlayback component skinLL
One very common request you might get is to make the video player controls match the
carefully crafted design elements that surround it. Another might be to apply design ele-
ments provided to you by the designer to the playback controls. In this section we’re going
to take a closer look at the FLVPlayback component’s skin and how you can use the prebuilt k

WORKING WITH VIDEO IN FLASH

439

17

skins as a starting point to create your own custom skins. We’re also going to show you how
to use ActionScript with your own custom assets to control the FLVPlayback component.k

As mentioned before, you can make some color and alpha (and control configuration)
selections using the Component inspector; however, what we’re talking about here is a
complete departure from the skins that are included with Flash CS4.

Understanding the FLVPlayback component skinLL

In order to customize the FLVPlayback component skin, you need to understand how it’s
put together. You can find the source files where Flash was installed on your computer.

On a Mac, you can find the source FLA files for skins here:d

.

On a Windows XP PC, you can find the source FLA files for skins here:

.

When you first open the FLA for an FLVPlayback skin, the first thing you should do is savek
it with a new name. This will prevent you from overwriting any of the original files from
the installation of Flash.

In the FLA you will see two distinct areas labeled Layout Layer (Exported to SWF) and Sample
Controls Layers (NOT Exported to SWF) on stage as shown in Figure 17-7. In the Layout Layer
area you see the skin as it will appear applied to your FLVPlayback component. k In the
Sample Controls Layers area you can see all of the states (normal, over, down, and dis-
abled) for each of the skin elements.

Figure 17-7. The FLVPlayback skin source filek

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

440

If you look at the Timeline panel, you’ll see that the symbols on stage are arranged nicely
into two folders of layers, and each element resides on its own layer within that folder. The
layers in the folder are set as guide layers and will not export
with the layout layers.

Guide layers can be used to guide a symbol’s path during a classic tween,
but it is common practice to use them to put elements on stage that
should not be published. An image provided by a designer to be used as
a guide for layout is one example.

There is a third (topmost) layer in the timeline called All Scripts. Have a look if you like, but
it’s not necessary to make any changes in the ActionScript in order to modify the skin.

Since you’ve saved this FLA as a new file with a new name, you can go ahead and play
around in the library. As you can see here in Figure 17-8, the library is organized into fold-
ers that contain the unique parts of each respective control.

Figure 17-8.
The library of the

FLVPlayback skin source k
file is organized into a

useful folder hierarchy.

You want to drill into each folder until you see a folder called (see Figure 17-9). It’s
the elements in these folders that you should modify to make visual changes to
individual controls.

WORKING WITH VIDEO IN FLASH

441

17

Figure 17-9.
Exploring the structure
of the library to reveal
the folder of the
Caption Button control

So now that you have your bearings, let’s make a custom skin by replacing some of the
graphic elements. The goal is to quickly convert the square buttons in this skin into round
buttons with different colors for each button state.

1. Open and then save the source FLA as A
.

2. With the source FLA open, browse to the folder in
the library. You should see three MovieClip symbols in this folder,
SquareBgDown, SquareBgNormal, and SquareBgOver, as shown in
Figure 17-10.

3. Double-click SquareBgDown to open it in edit mode. Add a layer to
the timeline and move it to the topmost layer. Draw a circle on this
layer that covers the existing artwork. Your screen should look sim-
ilar to Figure 17-11. You can delete the other layers if you wish.

Figure 17-10. The three movie clips
used for the down, normal, and over
state backgrounds

Figure 17-11. Adding graphic elements to a preexisting background graphic

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

442

4. Select and copy the circle you drew to your clipboard by pressing Ctrl+C or
Cmd+C.

5. Repeat step 3 with SquareBgNormal and SquareBgDown, in turn changing the color
of the circle in each clip. (Paste the circle from your clipboard to the new layer in
each symbol using paste-in-place by pressing Ctrl+Shift+V or Cmd+Shift+V on a
Mac to ensure consistent placement from clip to clip.)

6. Return to the main timeline. Your stage should look similar to Figure 17-12.

7. Export the skin, and then move the resulting SWF to the
directory.

On a Windows XP PC, you can find the skins here:

.

On a Mac OS X system, you can find the skins here:

.

Figure 17-12. The stage after modifying the three button state movie clips

WORKING WITH VIDEO IN FLASH

443

17

8. Create a new FLA and drag an instance of the FLVPlayback component to the stage.k
Open the FLVPlayback Component inspector and skin the component with your
custom skin. (See “Setting the skin parameters” earlier in this chapter to see how.)

9. Set the source parameter in the Component inspector and then test your movie so
you can see your custom skin in action! Your SWF might look something like the
one in Figure 17-13.

Figure 17-13. The custom skin on the FLVPlayback componentk

The easiest way to modify a given button is to drill into it from the stage, keeping track of
what symbol you’re in and making the changes you want.

You should not replace a clip that is set to export for ActionScript. If you want to change
the way one of these clips looks, then put your new design elements in that clip—do not
replace it. The reason for this is that the skin uses those classes to control how the skin lays
out, how it controls its video player, and how it responds to user input (like rollover or
click events). If you want to replace the whole thing altogether, simply give it the same
class name when you set it to export for ActionScript.

Figure 17-14 shows the symbol properties of the down state of the caption button when
captions are turned off. Notice in the Linkage section that Export for ActionScript is selected
and the class is , the fully qualified class name being

. To open theTT Symbol Properties dialog, right-click (or Ctrl+click
on a Mac) any symbol and select Properties from the context menu.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

444

Figure 17-14.
It is critical that the class
remains the same while
modifying or replacing

elements of the
FLVPlayback skin.k

One benefit of customizing the FLVPlayback component this way is that you don’t need tok
write any code to make it work. You can also easily distribute the new skin SWF to other
members of your team or the Flash developer community. Also, if your custom skin SWF is
placed in the skins directory, it will appear in the list of available skins while setting the skin
property in the Component inspector, allowing you to use it right away like the one we just
made, , show in Figure 17-15.

Figure 17-15.
The Select Skin dialog
shows the custom skin

SWF after it is published
to the directory with all of
the built-in skin SWF files.

WORKING WITH VIDEO IN FLASH

445

17

On the downside, using the prebuilt skins as a starting point restricts you to using one of
the predetermined configurations of controls and its layout. Fortunately, the controls
come as separate components, and you can customize and use these individual compo-
nents to configure your own custom play controls and layouts.

Creating custom play controls
In order to successfully customize and use the play control components (see Figure 17-16),
you’ll need an understanding of how they are put together so you know which pieces to
replace and which ones to keep intact. We’ll use the PlayButton as an example; you can
find it in the Components panel.

Figure 17-16.
The play control
components available in
the Components panel

Understanding play control components

When you assign a movie clip to be the play button (or any other control) for an instance
of the FLVPlayback component, that clip needs to define the class for each of its button k
states. If you look at the ActionScript in frame 1 of the script layer of an instance of the
PlayButton component, you’ll find the code that does just that:

The values defined for each state’s linkage ID corresponds to the class name (or linkage
ID) of the movie clips found on frame 2 of the PlayButton component. Your linkage IDs can
change, but not the property they are being assigned to. For instance, the following code
will work just fine as long as you have a clip in your library with a linkage ID or class name
of :

More to the point, the following code will not work because there is no reference tot
 in the FLVPlayback component:k

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

446

So when you customize or replace the visual elements of these components, it is critical
that you maintain the script in frame 1 of your new control.

Keep in mind that some of the buttons are toggles and are made up of two sets of but-
tons. If you drag an instance of the PlayButton to your stage and double-click it to enter
edit mode, you’ll see that it is comprised of two layers and two frames. The top layer is for
ActionScript; the second layer, named contents, contains the visual contents of the compo-
nent. The first frame of the contents layer represents the normal state of the component.
The second frame has an instance of all four states of the button, which are as follows:

 Normal

 Over

Down

 Disabled

Notice that none of these clips have instance names; however, if you find them in the
library, you’ll see that their class names (or linkage IDs) are, respectively, as follows:

It is within these MovieClip symbols where you will put custom graphics, animations, sound,
and so forth because it is the class name that links the clip to the control component.
Figure 17-17 shows these clips in the library.

Figure 17-17.
The PlayButton components that

are used for the four button states

WORKING WITH VIDEO IN FLASH

447

17

Assigning custom play controls to an FLVPlayback LL
component

Whether or not you replace the visual elements of a play control component, you will
need to associate the component with an instance of the FLVPlayback component. Doing
this is incredibly straightforward. Assuming you have an instance of the FLVPlayback
component named and an instance of the PlayButton control named

on stage (or instantiated through code), you can assign a play button to
with the following line of code:

There are a number of controls you can assign to the FLVPlayback comk -
ponent. Refer to the FLVPlayback definition in the documentationk
(((

) to see a list of public properties that can be set via
ActionScript.

At this point you should be familiar with the FLVPlayback skins, their source files, and howk
to customize them. You should also understand how the play control components work as
stand-alone components in Flash and how to assign them to an instance of the FLVPlayback
component.

Now that we have explored how to customize the FLVPlayback component using skins and k
play control components, let’s look at how to get your interface and related media to
respond to the video.

Synchronizing video, text, and other media
using events

In order to understand how to synchronize text and other media like images and anima-
tion to video playback, you need to understand how to handle events and, more specifi-
cally, how to handle the event.

Responding to events allows you to do things like apply cue points to video dynamically
and react to changes in the player’s state. You saw in the previous example of menu-driven
video playback that we waited until the playback component was ready before we
attempted to reposition it by listening for the event. If we had tried to change its
position prior to the player going through its layout process, it would not have worked.
Either the properties needed to position the player would not have been available to us or
the component would have overwritten them as part of another process.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

448

You can also use cue points to load and display text, images, animations, or other media at
specific points during a video’s playback. If you know how to use cue points and events,
you can sync anything to your video—except maybe the kitchen sink.

If you’re unfamiliar with handling events in ActionScript, refer to Chapter 9.

Beyond the Ready event—other key video events

The FLVPlayback component inherits a long listk of events but also adds its own. Here’s a
brief introduction to a few events we’ve found to be key when integrating video with Flash
using the FLVPlayback component:k

: This event is dispatched when the FLVPlayback instancek
enters the buffering state. This event comes in handy for assessing the quality of
your user’s experience. You can also use it to have your interface respond while
video buffers.

: This event is dispatched when playing completes because the player
reached the end of the FLV file.LL The most obvious use of this event is to auto-
advance to another video in a playlist, but you could just as easily switch to another
view state or send a message to a server-side application; whatever you need to do
when the video reaches the end, do it with this event.

: This event is dispatched when a cue point is reached. For us, this is the
mother of all video events. It’s the key to synchronizing associated content with
your video, and we cover it detail in the next section.

: This event is dispatched when the video player is resized or laid out.

: This event is dispatched the first time the FLV file’s metadata isLL
reached. If you need to display information about the video or use it for layout
purposes, you won’t be able to access it until this event is dispatched.

: This event is dispatched while the FLV file is playing or whenLL
rewinding starts. This event is essential for repetitive actions tied to playback such
as runtime indicators.

: This event is dispatched when an FLV file is loaded and ready to display.LL This
is one of our favorite events. There’s little you can’t do to the FLVPlayback compok -
nent or its video source after this event is dispatched.

: This event is dispatched when the playback state changes—which is
indispensable for troubleshooting.

Regardless of how you choose to use these events, implementing listeners for them is the
same. Consider this excerpt from our preceding example:

WORKING WITH VIDEO IN FLASH

449

17Be sure to include the necessary packages in your code. The preceding excerpt will not
work on its own. See the full example for working code.

Mastering the handling of events and understanding when and in what order these events
occur will open new possibilities for working with video. The most obvious event for creat-
ing synchronized content is the event.

Understanding cue points

In this section we’ll talk about the general categories of cue points, what specific types of
cue points fall into each category, and how you create them.

Generally speaking, there are two ways to create cue points. The method you use deter-
mines what type of cue point you can make as well as how that cue point can be refer-
enced via ActionScript. The two categories of cue points are embedded and ActionScript.

Embedded: Of the three types of cue points available, two can be created during
encoding: and . These can be referred to as embedded.

ActionScript: The third type of cue point is the cue point. It can be
added only through ActionScript.

To create embedded cue points during encoding, refer to Chapter 15 where we cover
adding and editing embedded cue points and parameters.

The secret to understanding cue points is that they are not just events dispatched by the
FLVPlayback component.k They are also a special type of object, and furthermore not all
cue points are the same.

All of the cue points are similar in that each has a , a , and a object.
Name and time values are required when creating a cue point. Event cue points can be
thought of as baked-in ActionScript cue points. Both are intended to trigger the
event during playback and can carry additional information via the property
of the event, which we cover later in this chapter. Navigation cue points come with the
built-in ability to allow your user to skip from cue point to cue point using the forward and
back buttons of thek FLVPlayback skin.k

As you can imagine, each category comes with its own pros and cons. While embedded
cue points are more accurate, they can only be enabled or disabled at runtime and cannot

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

450

be changed unless the file is reencoded—sometimes a lengthy process. ActionScript cue
points, on the other hand, can be created at runtime but lack the accuracy of embedded
cue points.

Creating ActionScript cue points
To create TT ActionScript cue points you can use the Cue Points inspector in Flash shown in
Figure 17-18, or use ActionScript as explained in the next section. To open theTT Cue Points
inspector, double-click the cuePoints property in the FLVPlayback Component inspector.
Using the Cue Points inspector has the advantage of simplicity and speed when you are
only concerned with the playback of a single video.

It is important to know that while you can see and disable embedded cue points (those
added during encoding), you cannot edit them.

Figure 17-18. Embedded cue points of an FLV file. LL The first cue point (selected) has two parameters.

To add a cue point to your video,TT click the plus icon at the top of the dialog and name it
myCuePoint. Note that you cannot change the cue point’s type. Creating it here precludes
it from being an event or navigation cue point—it will be an ActionScript cue point.

To add parameters to the cue point,TT select the cue point and then use the plus icon under
Parameters for “myCuePoint”: as shown here in Figure 17-19. Each parameter must have a
unique name.

Use ActionScript if you want to apply your cue points at runtime; doing so will give you
great flexibility. You can change your mind about just when an event occurs, and what
happens as a result of it, based on other data in your application.

WORKING WITH VIDEO IN FLASH

451

17

Figure 17-19.
Cue point parameters
must have unique names
for any given cue point.

To apply a cue point at runtime, TT call the method of the FLVPlayback comk -
ponent shown here:

The method can be a little confusing at first. How can it be expecting a
cue point as the first parameter if we are now making the cue point?! Don’t worry. What
it means is that there are two ways to call this method. The following examples show
both ways:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

452

So that covers the minimum requirements for using ActionScript to create a cue point, but
don’t forget about parameters. They are the secret to storing information related to that
point in time for use at runtime. Consider the following bold code:

So now not only can you direct an event to be dispatched at a given time in video, you’re
also able to store information related to that event as well. Next we’ll look at handling
those events and accessing the related information.

Handling the CUE_POINT event and reading cue point
parameters

So now you know how to create cue points, but how do you use them exactly? In this sec-
tion we look at how to listen for the event and access the object.

Listening for events is similar to listening for video events, but keep in mind
that the event is a , so in order to listen for such events, you
need to import the into your class, like this:

and add an event listener like so:

WORKING WITH VIDEO IN FLASH

453

17

With this code, every time a cue point is reached during the playback of the video, the
function will be called, passing with it an object.

When an event of any type is broadcast in Flash, the event handler receives an
object as a parameter. In the case of the event, we are interested in the
property of that object. Here’s an example of :

The property of the object is where you find the cue point’s , ,
, and properties.

The property of the object is where you access the parameter values of
your , as shown here:

The important thing to keep in mind is the object hierarchy:

.

With the ability to respond to events of the FLVPlayback component and an understanding k
of the class, you could create a whole range of interactivity tied to the playback

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

454

of video—including a framework for closed captioning; on the other hand, you could use
the built-in FLVPlaybackCaptioning component, which we introduce next.

Adding captions to the FLVPlayback LL
component

More and more, captioning video is becoming a requirement in the development of video
for the Web. Fortunately, the requirement to caption video is not a secret, and now Flash
comes with a component to do just that: the FLVPlaybackCaptioning component.

Use of the FLVPlaybackCaptioning component itself is fairly straightforward and is covered
shortly; however, preparing the caption file itself is a nontrivial task at best. Adobe Premiere
and Adobe Soundbooth both have speech-to-text transcription services that come with
the software and allow you to export the transcripts to XML, but do not use the XML
Schema the FLVPlaybackCaptioning component requires.

We’ll look at how to apply the FLVPlaybackCaptioning component to an FLVPlayback comk -
ponent and explore the Timed Text XMTT L Schema that the FLVPlaybackCaptioning compo-
nent uses. We’ll also show you how to use the FLVPlaybackCaptioning component.

Adobe provides two files to help you learn the FLVPlaybackCaptioning
component quickly: (an FLVPlayback sample)k
and (a captioning sample). Access these files
at and

.

Timed Text XMTT L Schema for the FLVPlaybackCaptioningLL
component

The FLVPlaybackCaptioning component needs XML source files that use the W3C Timed
Text (TT TT) Authoring Format 1.0—Distribution Format Exchange Profile (DFXP) for the
source file for captioning. This standard provides a robust set of options for styling your
captions but goes far beyond the scope of this chapter and this book. We will create a
sample file as part of showing you how to use the FLVPlaybackCaptioning component,
however.

The W3C Timed Text (TT) Authoring Format 1.0—Distribution Format t
Exchange Profile (DFXP) can be found at

. (Warning—it’s long and detailed but
chock-full of standards goodness!)

WORKING WITH VIDEO IN FLASH

455

17

The root node of the Timed Text XMTT L Schema used by the FLVPlayback captioning is the k
element, with two required child nodes, the and elements, like so:

Within the element you can add the element for setting CSS 2 styles using
elements as shown here in bold:

This is all well and good, but let’s get into the timed part of “timed text,” shall we? Consider
the following XML added into the body elements of our XML:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

456

Within the body we added a element. This is considered a logical collection of con-
tent by the Timed Text standard. TT Within the element are the elements; these
contain text information used as the actual caption but also use the and attri-
butes, which ultimately tell Flash when to show text and how long to leave it on screen.

As you might imagine, creating an XML file for captioning video of any length would be
quite a task, so if this is your bread and butter, we highly recommend building yourself a
tool that lets you record the start time and duration of captions and that then writes the
XML for you.

Now that you have a basic understanding of the XML required to power the
FLVPlaybackCaptioning component, you’ll next put it together with the component. Save
the preceding code as . In the same location, save a new FLA called

.

Understanding the FLVPlaybackCaptioning componentLL

The FLVPlaybackCaptioning component allows you to apply the external Timed Text XMTT L
Schema file as captions on an instance of the FLVPlayback component.k In order to use the
FLVPlaybackCaptioning component, you have to tell it which FLVPlayback component it k
belongs to. If you don’t tell it which playback component to apply captions to, the
FLVPlaybackCaptioning component will look in its own display object to find one. If it finds
more than one FLVPlayback component, it will assume it belongs to the first one it finds.k
You also need to tell it where to find the captioning information—the file we created in
the previous section.

To add theTT FLVPlaybackCaptioning component to an FLVPlayback component, open k
and follow these steps:

1. Open (created earlier in this chapter) and drag
an instance of the FLVPlayback component to the stage.k Name the instance
myVideoPlayer.

2. Create a new layer (optional) named caption component (or name of your choos-
ing) and drag an instance of the FLVPlaybackCaptioning component from the
Components panel to the new layer. The FLVPlaybackCaptioning component will
look as it does in Figure 17-20 when you drop it on stage; this component has no
physical appearance when the movie is published, so it doesn’t matter where you
drop it.

WORKING WITH VIDEO IN FLASH

457

17

3. Name your FLVPlaybackCaptioning instance. What you name it is up to you—we
used myCaption for this example.

4. With your FLVPlaybackCaptioning component selected, open the Component
inspector and set ther source property to .

5. With myVideoPlayer (the instance of our FLVPlayback component) selected, set thek
source property in the Component inspector.

6. Test the movie and enjoy the captioned goodness.TT

Figure 17-20.
What the placeholder FLVPlaybackCaptioning
component looks like on stage. Once the FLA is
published, the component is not visible at all.

The component class comes with a healthy API for use at runtime for
more control over your application. As with everything, we encourage you to explore it
further.

Summary
Even though we covered a lot of ground in this chapter, we assure you that this was just
the tip of the iceberg that is video in Flash. Our goal in this chapter was to teach you the
core concepts integral to the day-to-day integration of video into Flash. We talked about

 Using the Video Import Wizard

 Understanding the FLVPlayback componentk

 Understanding and customizing the FLVPlayback component skinsk

Customizing the play control components

The core concepts behind synchronizing text and other media with your video
playback

The types of cue points in Flash and how to handle them when they occur

 Adding captions to the FLVPlayback component using thek FLVPlaybackCaptioning
component

PART SIX

PREPARING YOUR PROJECT FOR
DEPLOYMENT

CHAPTER 18

PUBLISHING, EXPORTING, AND
DEBUGGING YOUR FLASH PROJECT

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

462

This chapter is all about the things you need to do with your project before you present it
to the world. While debugging happens throughout the various stages of development,
exporting and publishing usually happen at or near completion. In this chapter we’ll talk
about the following:

Publishing your project

 Exporting your content to various file formats

Identifying types of errors

 Using the debugger

Let’s begin with the various ways you can prepare your work for the world with the Publish
Settings window.

Understanding the Publish Settings window
Publishing your work means turning it into file formats that can be consumed by your
users. Whether they are watching through a web browser or a stand-alone projector or
mobile device, your source files must be compiled into something the playback environ-
ment understands.

Flash has to know as much about the environment your users will be viewing your work in
as possible in order to create a compatible file or set of files for them. To do this you will TT
need to understand the publish settings of Flash. The Publish Settings window’s Formats
tab, shown in Figure 18-1, is where you decide what types of files Flash needs to create
when you publish. You can also adjust format-specific options that impact the file’s quality
and behavior as well as its name and where it will be created on your computer.

There are three main functions of the Publish Settings window:

Create and manage publish profiles using the profile management area.

Select output file formats to be created during publishing.

Choose settings for each format.

At the top of the Publish Settings window is the profile management area. It contains a
drop-down menu for selecting profiles and a series of buttons for managing them. Please
see Chapter 2 and later in this chapter for further discussion of publish profiles.

Below the profile management area is a row of tabs that will change to reflect the file
types you have selected for publishing. The order of these tabs is determined by the order
in which you select the file type to be published.

Beneath that is the Type area where you will find check boxes to select or deselect formats
to be created during publishing. The File area lets you select the location and file name for
your published files.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

463

18

Figure 18-1. The Publish Settings window’s Formats tab

To select the file name and location of a published file, either enter the path and file name TT
into the text input box directly or click the folder icon to the right of the text input field
and browse to the location where you would like your published file to be written on your
computer. Enter a file name of your choosing and click OK. If things change (and they
always do) and you need to reset all of the file names and paths, click the Use Default
Names button under the format selection list.

To leave the TT Publish Settings dialog without saving any changes, click the Cancel button. ToTT
begin publishing with the current settings, click the Publish button.

Selecting publish formats

While the primary output file format of Flash is SWF, Flash will let you output your work in
a variety of additional formats including

 HTML

 GIF

 JPEG

PNG

Projectors for Mac (APP) and PC (EXE)

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

464

Most of these formats stand alone. However, it important to know that the HTML and SWF
formats are closely intertwined during publishing because the choices you make about the
options for SWF impact the HTML that gets written when you add the HTML format.

Setting Flash publishing options

Each format comes with a laundry list of options. To change the options for a given file TT
type, make sure the check box for the file type is selected for publishing, and then click
the tab above the list for that format. This will take you to a screen with the file type’s
publish options. Figure 18-2 shows the publish options for the Flash format.

Figure 18-2. The Flash settings tab

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

465

18

The Flash output settings window is broken into four main sections:

An area showing the player version and ActionScript version

Images and Sounds

SWF Settings

Advanced

There’s a lot here so let’s just work our way down from top to bottom.

Targeting player version andTT ActionScript version
This is where you decide which version of the Flash Player and ActionScript to target. If you
are building an application for a customer that is slower to adopt new versions of technol-
ogy, you may not be able to develop and publish for the latest version player. Making
changes here has an impact on which ActionScript settings options are available to you.

Targeting player versionsTT On the Flash tab, use the Player drop-down menu to target r
Flash Player versions 1 through 10—you can only target one player version, so choose the
version that supports all of the code and other features you plan to use in your project. You
also use the Player drop-down to target ther Adobe Integrated Runtime (AIR) version 1.1 as
well as Flash Lite players 1 through 3.

If you target AIR 1.1 using the Player drop-down, the Settings button to the right of the
drop-down will become active. Clicking the Settings button will open the AIR—Application
& Installer Settings window.

If you target any of the Flash Lite players using the Player drop-down, the Info button will
become active, and clicking it will open an information dialog that tells you the subset of
ActionScript that the selected Flash Lite player supports.

The Player and Script settings are chosen for you when you use the Welcome Screen
profiles to create new FLA files. See Chapter 2 for more about choosing profiles from the
Welcome Screen. For more about publishing for AIR, see Chapter 19.

Targeting TT ActionScript versions Use the Script drop-down menu to select a version of
ActionScript to target. The script versions available for selection are dictated by the player
version selection. Table 18-1 shows TT ActionScript support for player versions.

Table 18-1. TT ActionScript support for player versions

Player version ActionScript support

1–5 ActionScript 1.0

6–8 ActionScript 1.0–2.0

9–10 ActionScript 1.0–3.0

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

466

Images and Sounds area
As the name suggests, the Images and Sounds area is where you control output settings of
images and sounds in the SWF. While you can also control the compression and quality
settings of image and audio assets in the library individually, the settings here give you the
option to override those settings with a global setting.

To adjust the amount of image compression used when publishing TT Flash files, use the
JPEG quality slider in the Images and Sounds section of the Flash Publish Settings window.
This setting dictates compression of bitmap assets in the library for use in the finished file
and has a range of 1 to 100, with 1 being the lowest quality and 100 being the best quality;
80 is the default. Checking Enable JPEG deblocking will reduce compression artifacts on
images using low-quality settings.

While authoring, you can direct audio assets in the timeline to be either event audio or
stream audio. When publishing your SWF, you can apply different compression settings to
each. This allows you the flexibility of exporting your shorter sounds—usually set as event
sounds—at a higher quality and exporting your longer sounds—generally set as stream
sounds—at a lower quality to reduce bandwidth requirements.

Click the Set button next to Audio stream to choose compression settings for audio in your
FLA that is set to sync type Stream. Figure 18-3 shows the Sound Settings dialog. Click the
Set button next to Audio event to choose compression settings for audio in your FLA that
is set to sync type Event.

Figure 18-3. The Sound Settings dialog lets you set audio compression
settings globally.

To override any export settings made to individual TT audio assets in the library, check the
Override sound settings check box.

See Chapter 16 for information on audio compression settings, sync
types, and device sounds.

SWF Settings area
The SWF Settings area shown in Figure 18-2 allows you to decide whether or not to com-
press your movie, include hidden layers, and include XMP metadata about your movie as
well as indicate whether or not to publish your file as a SWC.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

467

18

While hiding layers in the workspace can be useful when authoring, you need to be
aware of whether the Include hidden layers option is enabled, as it may cause headaches
when trying to figure out why some of your content didn’t make it into the movie!

Whether you have selected Include XMP metadata in your SWF publish settings or not, the
File Info button will be active so that you may add information about your file such as when
the file was created, who created it, or what content may be found within it. See Chapter 15
for more information about XMP metadata.

Advanced area
The Advanced settings section comes last and includes a variety of options. The Trace and
debug options allow you to do the following:

Generate a size report for your movie: Choose the Generate size report option
for a text file that lists the size of each frame, shape, text, sound, video, and
ActionScript script by frame. This will let you see how the total file size is distrib-
uted over frames of your movie.

Protect your movie from being imported into Flash: Choose the Protect from
import option to require a password when importing your SWF into Flash. This will
help prevent other folks from reusing your SWF files within their own FLAs. When
you check this option, the Password field below will become active. Enter the pass-
word you will require for importing your SWF into Flash.

Omit trace actions: Choose the Omit trace actions option to have the compiler skip
over any trace actions in your application. This can reduce the amount of work the
Flash Player has to do while running your program.

Permit debugging: Choose the Permit debugging option if you wish to publish a
SWF that can be debugged remotely.

The next setting in the Advanced area, Local playback, is an either/or proposition. By
default, SWF files can access local files and networks but cannot communicate with or
send files or information to remote networks. Choose Access network only to reverse this
and give the SWF file the ability to communicate and send files but not the ability to t
access local files or the local network.

The Hardware Acceleration menu dictates whether or not the published SWF takes advan-
tage of any graphics processing power of the computer it is being played on. You can
choose from these three options:

None: Select this option if you do not wish for your published SWF to take advan-
tage of the host computer’s graphics hardware.

Level 1 Direct: Select this option if you want the Flash Player to use the most direct
method available on the host machine to render—bypassing the browser’s render-
ing for instance.

Level 2 GPU: Take special care when selecting this option, as there are specific hardTT -
ware requirements involved, and if your user’s computer has an incompatible
graphics card, you may run into performance issues. Content should be designed
specifically to take advantage of GPU acceleration such as full-screen refreshes.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

468

The final publish setting in the Flash options page is the Script time limit option. Enter a
value in this input box to set a time limit on how long your published SWF is permitted to
run a script before a timeout alert is shown to the user.

Setting HTML publishing options

The options on the HTML tab are used toL determine what HTML and JavaScript need to be
written to the published HTML document in order to display your SWF and support the
functionality you need. Refer to Figure 18-4 as you read through the settings presented in
this section.

Figure 18-4. The HTML settings tabL

Choosing a template
HTML templates are used to quickly generate HTML that properly supports Flash for various
purposes, each specific to a particular template as outlined in the template’s description, like
adding support for AICC tracking or for use with HTTPS. To read a template’s description, TT
select the template from the Template drop-down menu, and then click the Info button that
appears to the right of it. The Flash Only template, for instance, creates HTML that supplies
only the necessary elements to include SWF content on an HTML document.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

469

18

To create code in your published TT HTML that compares the version of the Flash plug-in ver-
sion of your user’s system against a version of your choosing, check the Detect Flash Version
check box.

Once the Detect Flash Version check box is checked, you may enter major revision and
minor revision numbers in the available text input boxes, but you cannot change the
player version. The player version is set on the Flash tab of the Publish Settings window.

The Flash Player has been released in 10 versions. These versions of the player represent
major changes in how the player operates, and they usually, but not always, coincide
with new releases of the Flash authoring software. Sometimes Adobe will make signifi-
cant changes to the player, such as adding support for new additions to ActionScript,
that do not warrant a new release. These releases are called major revisions. Between
major revisions may come some small tweaks to the player that include things like secu-
rity patches; these releases are called minor revisions.

Setting dimensions
The Dimensions setting changes the dimensions of your SWF as it is embedded in the
HTML document. It does not change the stage dimensions of your FLA or your published
SWF. Change the dimensions of the stage of your document itself by using the Document
Properties dialog. To do so, select TT Modify Document.

Using the Dimensions setting is akin to setting dimensions of an image in HTML. Your
options are as follows:

Match Movie uses the document dimensions to dictate the size reflected in the
HTML as shown in Figure 18-4.

Pixels lets you manually enter the dimensions you want your published SWF to
have in the HTML as shown in Figure 18-4.

Percent makes the dimensions of your Flash movie a percentage of the available
area in the HTML document.

The Dimensions setting works together with the Scale setting discussed
later in this section.

Changing Playback options
Use the Playback options to determine how your Sk WF will behave once it is downloaded
into the browser. Your options are as follows:

Paused at start will stop the main timeline of your SWF on the first frame. This is
unchecked by default.

Display menu will allow the user to right-click (Ctrl+click on a Mac) anywhere over
the embedded Flash movie to see the extended shortcut menu. This menu gives
the user the ability to zoom in and out as well as control playback of the timeline.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

470

Loop will cause the SWF to repeat. This is checked by default.

Device font allows the Flash Player to replace any fonts used in the SWF that are not
installed on the user’s computer with a font that is on the user’s system. This
option applies only to the Windows version of the Flash Player.

Changing quality
Use the Quality drop-down menu to determine how the Flash Player prioritizes the render-
ing quality of its visual assets. The default value is High, but your options are as follows:

Low turns off all anti-aliasing, making it easier for slower computers to render the
SWF but at a much lower quality.

Auto Low starts with low-quality rendering but will switch to higher quality if the
user’s system is powerful enough to maintain playback using high-quality
processing.

Auto High starts with high-quality rendering but will switch to low quality if the
user’s system cannot keep up with the high-quality processing requirements.

Medium uses anti-aliasing when rendering vector graphics but at a lower resolution
than the High quality setting.

High uses a higher-resolution anti-aliasing when rendering vector graphics than the
Medium quality setting. If the SWF contains animation, bitmaps are not smoothed.
Otherwise, bitmaps are smoothed.

Best is the same as High with the exception that bitmap graphics are smoothed
whether there is animation or not.

Changing window mode
The Window Mode setting determines how the SWF interacts visually with its container in
the HTML document. You have the following options:

In Window mode, which is the default, the HTML cannot render on top (in front) of
or under (behind) the SWF, and the SWF will use the HTML background color.

In Opaque Windowless mode, the background of the SWF will be opaque (hiding
anything behind it on the page) but will allow HTML to render on top of it.

In Transparent Windowless mode, the background of the SWF will be transparent.
This is the mode for those “appear anywhere” ads that move around on your
browser.

Turning on Hardware Acceleration in the Flash tab of the Publish
Settings window will cause the Window Mode setting to be ignored
when deployed. In this case, the Window setting will be used instead.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

471

18

Changing HTML alignment
The HTML alignment setting positions the SWF file window in the browser window. You
have the following options:

Default will center the SWF in the browser window. This will crop the edges if the
browser window is smaller than the SWF dimensions.

Left, Right, Top, or Bottom options will align the SWF file along the selected edge of
the browser window. This will crop the other sides of the SWF as needed.

Changing scale behavior
The Scale setting places the SWF within certain boundaries if you’ve changed the SWF’s
original width and height. Your options here are as follows:

Default (Show all) will show the entire SWF in the HTML with the original aspect ratio
of the SWF.

No Border will scale the SWF to the specified area while maintaining the SWF file’s
original aspect ratio.

Exact Fit resizes the SWF; however, if it needs to stretch or compress the SWF hori-
zontally and vertically in order to fill the available area, it may cause distortion.

No Scale prevents the SWF from scaling when the Flash Player window is resized.

Changing Flash alignment
The Flash alignment setting works with the Dimensions and Scale settings. If cropping occurs
due to the other settings, the Flash alignment setting determines how the Flash content will
be cropped. You can control the vertical and horizontal options for this setting indepen-
dently according to the following options:

Horizontal

Left aligns Flash content left in the player, cropping the right side.

Center horizontally centers Flash content in the player, cropping the left and
right sides.

Right aligns Flash content right in the player, cropping the left side.

Vertical

Top top-aligns Flash content in the player, cropping the bottom.

Center vertically centers Flash content in the player, cropping the top and
bottom.

Bottom bottom-aligns Flash content in the player, cropping the top.

Setting GIF publishing options

Flash offers you the full range of settings for outputting the GIF file format as part of pub-
lishing your movie. Use Figure 18-5 as reference as we go over these options. Usually this
image would be used in place of your SWF in an HTML document if the user does not have
the Flash Player.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

472

Figure 18-5. The GIF settings tab

Setting image dimensions
Use the Dimensions options to determine the dimensions of the GIF file. The Match movie
check box is selected by default and will create a GIF that has the same dimensions as your
FLA document. To change the dimensions, uncheck theTT Match movie check box and manu-
ally enter the dimensions you want.

Changing playback behavior
Flash can generate a static or animated GIF. A static GIF is a single image created from the
first frame of your FLA. If you wish to publish an animated GIF, click the Animated radio
button. This will enable the Loop continuously and Repeat options. Leaving Loop continu-
ously (the default) selected will obviously create an animated GIF that loops over and over

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

473

18

without end. Alternatively, you could select the Repeat radio button and enter the number
of times you wish the animation to loop.

Other options
The Options settings control a variety of appearance settings for the published GIF. You
have the following choices:

Optimize colors will remove any unused colors from a GIF file’s color table.

Dither solids will apply dithering (the process of using pixels of two or more different
colors to approximate an in-between color) to solid colors of the published GIF.

Interlace shows the published GIF incrementally as it downloads.

Remove gradients will convert all gradient fills in the published SWF to solid colors
using the first color in the gradient. This option is disabled by default.

Smooth will apply anti-aliasing to a published GIF. This will produce a higher-quality
image and may improve the readability of text. Beware of artifacts around the edge
of your image.

Changing transparency
The Transparent settings determine if and how transparency will be applied to your pub-
lished GIF. These are your options:

Opaque will create a GIF with a solid background.

Transparent will make the background of the Flash document transparent.

Alpha will make everything in your Flash document whose alpha value is below the
threshold in the Threshold setting completely transparent. For instance, if your
Threshold is set to 128, anything in your Flash document with an alpha of 50 per-
cent or lower will be 100 percent transparent in the published GIF. This is the only
transparency option to which the threshold can be applied.

Changing dither
The Dither option determines how pixels in the GIF’s color table are combined to simulate
colors that are not in the color table. Your options for dithering are as follows:

None turns off dithering and replaces colors not in the basic color table with the
solid color from the table closest to it.

Ordered is good-quality dithering with little increase in file size.

Diffusion will give you the highest-quality results. This option only works if the Web
216 color palette (discussed next) is selected.

Dithering increases file size and processing time.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

474

Changing palette type and other color settings
The Palette Type setting determines the GIF file’s color palette. You can choose from one
of the following palette types:

Web 216 will use the standard 216-color, web-safe palette to create the GIF image.

Adaptive will have Flash analyze the colors in the image and create a color table
based on the content in your movie. This creates the best palette for your image
but increases file size.

Web Snap Adaptive will also have Flash analyze your image but will replace colors
that are not in the Web 216 color palette with similar colors of the Web 216 color
palette.

Custom lets you determine the palette for your image. To select a custom palette,TT
click the folder icon next to the Palette text field at the bottom of the GIF tab, and
then select a palette file.

If you selected the Adaptive or Web Snap Adaptive palette options, you can enter a value
for Max colors to set the number of colors actually used in the GIF image. Reducing the
number of colors can produce a smaller file but, of course, may cost you in quality.

Setting PNG publishing options

The PNG file format is another image format available for publishing from your Flash file.

Many of the settings for PNG (shown in Figure 18-6) behave in a similar fashion to the set-
tings for the GIF file format, which we just discussed.
Please refer to the publishing options for the GIF file for-
mat for explanations of the following settings:

Dimensions

Options

Dither

Palette Type

Bit depth
PNG files can be published at two different bit depths
from Flash, 8 bit and 24 bit. There is a third option, 24 bit
with alpha, which is technically 32 bits per channel (bpc).
Use the Bit depth drop-down menu to set the number of
bits per pixel and colors to use while publishing the PNG.
(The higher the bit depth, the larger the file.) These are
your options:

8-bit will create a 256-color image.

24-bit will create an image with thousands of colors.

24-bit with Alpha will create an image with thousands
of colors and transparency (32 bpc).

Figure 18-6. The PNG settings tab

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

475

18

Filter options
The Filter options settings for publishing a PNG file determine what type of algorithm and/
or processing is applied to your image. Select from the following options:

None turns off filtering. Files with this setting might be larger than they need to be.

Sub uses information from comparing one pixel to the previous pixel (horizontally).

Up uses information from comparing one pixel to the pixel that is immediately
above it.

Average uses information from comparing one pixel to two neighboring pixels (left
and above).

Path uses information from the three neighboring pixels (left, above, upper left) to
help predict a pixel’s color.

Adaptive analyzes all of the colors in an image and creates a unique color table. This
will create the most accurate result but generate the largest file size.

Setting JPEG publishing options

Another option for publishing a bitmap from your movie is the JPEG file format. The JPEG
settings tab is shown in Figure 18-7.

Dimensions
Use the Dimensions options to determine the dimensions
of the JPEG file. The Match movie check box is selected by
default and will create a JPEG that has the same dimen-
sions as your FLA document. To change the dimensions, TT
uncheck the Match movie check box and manually enter
the dimensions you want.

Quality
To adjust the amount of compression applied TT to the pub-
lished JPEG, drag the slider or enter a value. Select the
Progressive check box to publish a JPEG that shows incre-
mentally in a web browser. This can make your image
appear faster when loading with a slow network connec-
tion (but at a lower quality at first). This option has a simi-
lar effect to that of interlacing in GIF and PNG images.

Managing publish profiles

Flash will let you save a selection of output formats and
their settings as a single profile. Publish profiles are a
great way to repeatedly and consistently generate files
for specific situations or clients. Figure 18-7. The JPEG settings tab

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

476

The five controls across the top of the Publish Settings window help you manage publish
profiles. These controls are shown in Figure 18-8.

Figure 18-8. You can save and manage sets of selections and settings as publish profiles.

Importing and exporting profiles
Importing and exporting profiles can be useful when trying to maintain standards while
working on a team. Taking advantage of this capability allows a standard to be created and TT
exported to a file, which can then be imported by other members of the team.

To import your current selections and settings as a publish profile, click the TT Import/Export
Profile button and select Import. Browse to the publish profile file and click OK. To exportTT
your current selections and settings as a publish profile, click the Import/Export Profile but-
ton and select Export. Browse to the location where you wish to save your publish profile,
name the file, and save.

Creating publish profiles
After carefully selecting all the right settings for all of your output formats, you’ll want to
create a publish profile for yourself that you can use quickly and easily. To add a publish TT
profile to your drop-down list of available profiles, click the Create New Profile button
shown in Figure 18-8. Name your profile and click OK. The current set of selections and
settings will be immediately available as a profile in the Current profile drop-down menu.

Duplicating publish profiles
Duplicating publish profiles might be a handy feature if you decide you need to create
slight variations on a profile. Simply select a profile from the Current profile drop-down
menu and click the Duplicate Profile button (shown in Figure 18-8).

Use the Rename Profile button shown in Figure 18-8 to quickly rename the currently selected
profile.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

477

18

Deleting publish profiles
Of course, you don’t want to have a bunch of old stale profiles stinking up the joint, so to
delete a publish profile, select a profile from the Current profile drop-down menu and click
the Delete Profile button (shown in Figure 18-8).

While the Publish Settings window offers many options for preparing your content for the
world to see, there may be times when you need less control and more convenience or
perhaps a format or two not supported under the Publish Settings window. For this we
have the ability to quickly export various files from Flash, which we’ll cover next.

Exporting file formats
To export a single file format from TT Flash without having to publish it, you can use the
Export menu from the File menu (File Export). You can choose to either export an image
file or a movie file and image sequence. Although the movie file and image sequence
options are listed together, exporting your FLA as a movie file creates a single video or
SWF file, while exporting your FLA as an image sequence will create many image files.

Exporting an image

To export an image from your TT Flash file, select File Export Export Image. This will open
the Export Image dialog, shown in Figure 18-9. This dialog works just like a standard Save
As dialog, with a Save as type drop-down menu from which to select a file format to
export to. Use this dialog to choose a file name and location. Then from the Save as type
drop-down menu, select what image format you want to create.

Figure 18-9. Exporting an image begins with a Save as type dialog

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

478

Exporting your FLA as a movie or image sequence

To export your TT FLA as a movie or image sequence, select File Export Export Movie. This
will open the Export Movie dialog shown in Figure 18-10. Again, this dialog works just like a
standard Save As dialog, with a Save as type drop-down menu from which to select a file
format to export to. Use this dialog to choose a file name and location. Then from the
Save as type drop-down menu, select a movie format or image sequence format.

Figure 18-10. You can choose from many image sequence or video formats using Export Movie.

QuickTime
Selecting QuickTime (*.mov) from the Save as type drop-down menu will open the QuickTime
Export Settings dialog shown in Figure 18-11. This dialog has some options for controlling
the disk process of exporting such as the following:

Stop exporting allows you to choose to stop exporting at the last frame of the FLA
or at a specified time.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

479

18

Store temp data allows you to choose between storing temporary data to memory
or to a specified place on your system’s hard disk.

Figure 18-11. The QuickTime Export Settings dialog

At the bottom of the QuickTime Export Settings dialog is a button labeled QuickTime
Settings. Click this button for extended control over the QuickTime video settings used to
export your FLA as a video. The options and dialogs brought up by QuickTime Settings fall
outside the scope of this book. We recommend you refer to the documentation provided
with Apple QuickTime Pro for detailed information.

Windows AVAA I
If you are on a Windows system, you will have the additional capability of selecting
Windows AVI (*.avi) from the Save as type drop-down menu. If you select this format, click-kk
ing Save will open the Export Windows AVI dialog box, which you see in Figure 18-12.

Figure 18-12. The Export Windows AVI dialog

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

480

Your options are as follows:

Dimensions changes the dimensions of the video file. Uncheck the Maintain aspect
ratio check box to control the height and width values independently.

Video format controls the bit depth of the AVI.AA

Compress video, if unchecked, will cause Flash to export the AVI when you click AA
the OK button. Checking this option will open theK Video Compression dialog
shown in Figure 18-13 when you click the OK button. Some of CK ODECs listed in
the Compressor drop-down list box are configurable; further discussion of this
falls outside the scope of this book.

Smooth will apply anti-aliasing to the frames of the video.

Sound format lets you select a format for the audio of your video.

Figure 18-13.
If you choose to compress
your AVI, you can chooseAA
what compressor to use.

Long before you are ready to publish or export your work for the world, you will no doubt
encounter some issues in getting your project to work as intended. To help exterminate TT
the errors in your application, continue on for some strategies for debugging in Flash.

Debugging in Flash
Whether you are just writing your first few lines of code or wrapping up a project, there
are usually some things that don’t work in the way that you expect them to. Technically TT
speaking, that’s what a bug is. In order to find the bugs, you need to be able to determine
what kinds of errors are happening. We’re concerned with the three following types of
errors:

Compile-time errors

 Runtime errors

Syntax errors

Compile-time errors occur as the code in your application is compiled.

Technically speaking,TT syntax errors are a type of compiler error. Syntax errors result when
the text that makes up the code in your project does not follow the rules of the program-
ming language—just as if we were to leave the period off of the end of this sentence.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

481

18

Syntax errors are usually the easiest type of bug to find and fix—and not that hard to
make either! Runtime errors are errors that happen as your application is running.

Here is one example of a syntax error since the variable declaration is missing:

The code should be as follows:

You can check the syntax of your code in the Actions panel as you work by pressing Ctrl+T
(or Cmd+T on the Mac) at any time. If there are syntax errors in your code, you will see the
alert window shown in Figure 18-14.

Figure 18-14. You’ll see this alert if you check the syntax of a script and have errors.

Finding other types of compiler errors is almost as easy as finding syntax errors, the differ-
ence being that you will need to test your movie to expose them. To do so, press Ctrl+TT Enter
(or Cmd+Enter on a Mac). If there are compiler errors, you will not necessarily receive an
alert. You will need to check the Compiler Errors panel to see if there were any errors. Let’s
take a closer look at that panel right now.

Using the Compiler Errors panel

It’s important to understand that although Flash tries really hard to tell you what errors are
occurring, you will need to understand ActionScript in order to properly interpret the
errors. Consider the following code:

Type the preceding code in the TT Actions panel and then press Ctrl+T (Cmd+T on the Mac)
to check the syntax. Click OK to close the alert and look at the K Compiler Errors panel, which
should appear similar to what you see in Figure 18-15.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

482

Figure 18-15. Most of your debugging happens in the Compiler
errors panel (shown) and the Output panel (tabbed).

The columns in the Compiler Errors panel show the following information:

Location will indicate what file, layer (if in an FLA), and line of code the error is on.

Description will show you the error code and a prescribed text description of your
error.

Source shows the actual source code where the error is occurring.

The only one thing missing from the script is a right brace () to close the class definition
code block. However, there are five errors, because those errors are created with that one
thing missing.

If you look at the bold line of code in the preceding example, you’ll see that there’s noth-
ing wrong with it by itself; however, it violates the rule stated in error 1013, part of which
is shown in Figure 18-15. The entire rule is as follows:

The error is generated because of how that line of code (in bold) appears within the rest of
the code. Therefore, since the line by itself is good, you would have to interpret the error
description to mean that the code you have written does not properly define a class.

Adding the right brace () as shown next completes the class definition and eliminates all
of the errors.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

483

18

You can navigate directly to the source code that is indicated in an error by clicking the Go
to Source button on the bottom-right corner of the panel.

It’s possible for your Flash application to run—or appear to run—while it has compile-
time errors. So be sure to check the Compiler Errors panel if things don’t seem to be
working properly.

Using the Output window—strategies for tracing

In our experience, 90 percent of bugs in ActionScript come from programming the follow-
ing kinds of errors:

Scope errors

TyposTT

 Timing errors

Because Flash can only tell you the errors that result from your code and not necessarily
how to fix them, you may need to get creative in looking for what’s causing the problem.

Hunting scope errors
As we defined in Chapter 8, the term scope refers to what parts of a program’s code have
the ability to reference a variable. To find an error in scope using the TT statement,
simply try to trace the variable in question where you are trying reference it, and then look
in the Output window to see if it has the value you expect it to have—or any value at all. If
it has an unexpected value, you can move on to finding out why; if it has no value, most
likely you are attempting to use a variable that does not exist within the scope of the code
block where it is being referenced.

Running the following code will result in an error:

The error description simply means that
the compiler does not know about an object (variable) called within the context of
the function that’s trying to use it. To correct the error, you would need to declare the TT

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

484

variable in a place where the function would have access to it as shown in the
following code:

Finding typos
Typos are usually exposed when checking TT syntax but can sometimes result in a scope error
or the code not compiling at all. The following code will result in an error because
(shown in bold) does not exist. These are easy mistakes to make but can cause a significant
amount of hair loss.

Tracking timing errors
Timing errors occur when trying to reference objects or values that don’t exist yet. If we
continue with our previous example (correcting our typo) and switch the last two lines of
code as shown next, we will see in our Output window because the value of the vari-
able has not been set yet.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

485

18

This is an extremely simplified example, as you can plainly see the functions being called
in the wrong order. Most timing errors occur because Flash executes your code in a way
that you may not expect. In these cases, tracing to the Output window may not give you
enough information to track down exactly where or when the error is occurring. To trackTT
down this type of issue, you will want to use the Flash debugger. You might want to pay
particular attention to the discussion of the call stack in the section “Understanding the
call stack” later in this chapter.

Using the debugger

It may not seem like it on the surface, but as you use ActionScript to create your applica-
tions, you are actually taking advantage of a lot of ActionScript written as part of the lan-
guage itself. Because of this, you may not always be aware of how Flash is executing your
part of the code in turn with its own internal processes.

Additionally, you may find yourself on a project where you lack the benefit of having writ-
ten the application code yourself and therefore may not know exactly where to start when
attempting to fix bugs. Flash debugger helps give you this insight.

To use the TT Flash debugger, select Debug Debug Movie from the application menu. This
will compile your application for debugging and change your workspace to the Debug
workspace shown in Figure 18-16. You can also enter the Debug workspace by using the
workspace menu explained in Chapter 2.

Figure 18-16. The Flash Debug workspace includes the Debug Console panel, Variables panel, script
pane, and Output panel.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

486

Setting and removing breakpoints
A breakpoint is a point you set during authoring where the debugger will stop executing
code normally and wait for you to advance the program. To set a breakpoint, click in the TT
margin of the Actions panel to the left of the line numbers. If the line numbers are not
visible, click to the left of the hairline to add a breakpoint. Figure 18-17 shows a break-kk
point that has been set at line 7.

Figure 18-17.
The dot (which appears red onscreen)
to the left of the code line numbers is

a breakpoint. The debugger will stop
here during a debug session.

To turn line numbers off and on in an ActionScript document, click View Line Numbers.
If you’re using the Actions panel of an FLA, click Line Numbers in the panel menu.

To remove all of the breakpoints in a given script at once, click TT Debug Remove Breakpoints
in This File in an ActionScript document or select Debug Remove All Breakpoints when
working in the Actions panel of an FLA. Now when you debug your movie, you’ll notice
that the execution of code has been stopped at your breakpoint. Figure 18-18 shows the
script pane with an arrow next to the line of code where the Flash Player is paused.

Figure 18-18.
The script pane with an arrow (which

appears yellow onscreen) next to the line
of code where the Flash Player is paused.

Understanding the call stack
While the player has stopped executing code temporarily is when you can look around and
see what’s going on in your program. The call stack is a list, or “stack,” of all the function k
calls that have been made but not yet completed. This list is key in identifying timing

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

487

18

errors, as in the example in “Tracking timing errors” earlier in this chapter, and shows what
functions are being called and in what order.

You’ll find the call stack in the Debug Console panel, which is shown in Figure 18-19. The
topmost item in the stack is the function executed most recently.

Figure 18-19.
The call stack during a debug session

Now, consider the following code:

Figure 18-19 shows the call stack as in the preceding code (highlighted in
the call stack) is executed. Notice that after it begins execution, takes a
second spot on the call stack while it waits for to complete.

This example is much easier to understand as you step through the code. So do just that.
What we have are three function declarations followed by two function calls. The func-
tions are executed in the order in which they are called. Use the call stack and breakpoints
to observe the execution order.

Navigating code while debugging
At this point you want to carefully go through the execution of code one line at a time. To TT
execute one line of code at a time, click the Step In button at the top of the Debug Console
panel shown in Figure 18-20. As you step through the code, the arrow that you saw in
Figure 18-18 will point to the line of code that will execute when you click the Step In
button.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

488

Figure 18-20. The Debug Console panel controls

As you go through the code, you may wish to skip a line altogether. To do this click the TT
Step Over button at the top of the Debug Console panel. You can also choose to step out
of the current function by clicking the Step Out button. This will take you to the line of
code that would have executed after that function.

Resuming normal code execution
When you want the application to run normally until the next breakpoint is reached, click
the Continue button (see Figure 18-20). And of course when you are done debugging,
click the End Debug Session button (also shown in Figure 18-20).

Using the Variables panel
Understanding the call stack and knowing how to step in and out of code will only get you
so far unless you can inspect the value of the variables in your code. For this we have the
Variables panel. Figure 18-21 shows the Variables panel during debugging.

Figure 18-21.
The Variables panel shown with main

timeline (this) variables expanded. These
are really the properties of the display

container that is the main timeline.

To change the value of a variable during debugging, simply click the TT Value column next to
the variable you wish to change, type in the new value, and press Enter. Changing the value
of a variable as the application is running is a good way to test theories about what might
be broken or to deliberately make some code function by changing the outcome of a
conditional evaluation (). To see the values of variables in a given function,TT
select the function in the call stack and look in the Variables panel.

PUBLISHING, EXPORTING, AND DEBUGGING YOUR FLASH PROJECT

489

18

A nice feature of the AS3 debugger is that you can change the value
of a variable as you debug.

Summary
There’s a lot to do before you can set your creations free on the Web, CD, DVD, or mobile
device; and with so many possibilities come many, many options to consider and bugs to
look out for. In this chapter we talked about the following:

Choosing options in the Publish Settings window

Managing publish profiles as well as importing and exporting profiles

Exporting images, image sequences, and video from Flash

Finding different types of errors in our code

 Using the Compiler Errors panel, Output panel, and debugger to track down and
correct errors

CHAPTER 19

BUILDING AIR APPLICATIONS WITH
FLASH CS4

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

492

The Adobe Integrated Runtime (AIR) is to the desktop what the Flash Player is to the
browser. You could say that Adobe AIR is a like a plug-in for your operating system, but
what it really does is give you the benefits of being connected to the Internet while at the
same time being a first-class citizen on the host computer, breaking the constraints of liv-
ing within the web browser!

So what does the runtime integrate exactly? At the heart of AIR are three big pillars:

The WebKit Hypertext Markup Language (HTML) rendering engine

 The Flash Player

 SQLite as a database engine

Because of these three core parts, you can build desktop applications with web technolo-
gies like JavaScript, HTML, and Flash or Flex. Unlike in Silverlight (which is limited to the
web browser and more akin to the Flash Player plug-in), building applications in AIR gives
you the ability to add real desktop functionality like file system access and drag-and-drop
while using the web technologies you may already be familiar with.

In this chapter we’re going to talk about

 Using AIR application programming interfaces (APIs)

The Windowing API

The Menu API

The Network Detection API

The File System API

Configuring the application using the AIR – Application & Installer Settings dialog

 Deploying and packaging the application for distribution

Later in this chapter, we’ll show you how to build a working AIR application, but before we
do that, it is important that you learn about some of the AIR APIs.

If you want to learn more about AIR, go to , or check
out the title The Essential Guide to Flash CS4 AIR Development by Marco
Casario (friends of ED, 2008).

Using AIR APIs
In order to create applications that behave like first-class citizens, AIR provides extra APIs
for you to call and use. Before you start building your first application, it may be a good
idea to learn about these APIs as you will need them in most of your applications. In this
section, we’ll cover the Windowing API, Menu API, Network Detection API, and File System
API. These are the APIs you’ll use in the sample application.

BUILDING AIR APPLICATIONS WITH FLASH CS4

493

19

Windowing API

Your first application window is created automatically, but in some cases one window is
not enough. In a chat application, for instance, you may want to open up the conversation
in a different window or pop up a small window when one of your friends signs on. The
AIR Windowing API allows you to do just that.

The normal window
The normal window, as shown in Figure 19-1, looks and behaves just like a typical applica-
tion window on your operating system. It has all the standard features like Close, Minimize,
and Maximize buttons, a title bar, and a status bar. The status bar is shown by default. You
can remove the status bar by setting the property to . The title bar in
the main application window will display the application name if no other title is specified.
You can specify a different title by setting the property for your window.

Figure 19-1.
A normal window

The utility window
The utility window, as shown in Figure 19-2, almost looks the same as the normal window
with the exception of a smaller title bar and no status bar. This type of window is typically
used to display notifications—for example, when a friend logs on to an instant messaging
server or when you received a new e-mail.

Figure 19-2.
The utility window

For both these windows, the resize gripper is optional. When you set the window’s
property to , the resize gripper will not appear. Alternatively, you can set

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

494

the property to , which results in the default resize gripper not being
shown. This can be used to create your own resize icon.

The lightweight window
The last option is the lightweight window, as shown in Figure 19-3. This option does not
have any system chrome and is perfect for creating your own custom chrome. Because no
chrome is available, you must create the standard window functionality, such as closing
and resizing, yourself. When creating a new window, you can also set the chrome options
that are shown in Figure 19-4.

Figure 19-3.
A lightweight window

does not have any
system chrome.

The System Chrome option will add the system chrome to your window regardless of the
operating system your application runs on. So if you run this application on Windows,
your application’s windows will look like any other application’s windows. The same
goes for OS X and Linux operating systems.

If you want to create custom chrome, you have two options available to you—Custom
Chrome (opaque) and Custom Chrome (transparent). With Custom Chrome (transparent), your
window chrome can be a free-form shape. If you want your custom chrome to have an

Figure 19-4. Chrome options available in the AIR Windowing API

BUILDING AIR APPLICATIONS WITH FLASH CS4

495

19

irregular shape (as is the chrome on the far right in Figure 19-4), this option allows you to
do that. A click anywhere in the black area shown in Figure 19-4 will register in the appli-
cation. A click anywhere outside this black area will register on the desktop or the applica-
tion behind your application.

Creating windows with the NativeWindow class
The class allows you to create new windows with ActionScript. The options
for this window are declared in an instance of the class, as
shown here:

In this case we created a utility window that has standard system chrome, is 200 by
100 pixels big, and has the title set to My Utility Window, as shown in Figure 19-5.

Figure 19-5.
The result from the

class code example

Windowing API methods
Since you are working with windows, you obviously also need a number of methods to inter-rr
act with those windows. Here are a few examples of methods that you might find useful:

and : Opens and closes the
newly created window

 and : Maximizes and mini-
mizes your window

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

496

 and
: Sends the window directly in the back or the front of the speci-

fied window

and : Sends your
window behind or in front of any other visible windows

Windowing API events
When your users interact with your application windows, you also need to be able to listen
to specific events. These are the event listeners available in the class:

: Dispatches after the window has been activated

: Dispatches when the window has been deactivated

: Dispatches immediately before the window is about to be closed
(for instance, when your user clicks the Close button of your window

: Dispatches after the window has been closed

The following event listeners are available in the class:

: Dispatches immediately before the window is about
to be moved

: Dispatches after the window has been moved

: Dispatches immediately before the window is about
to be resized

: Dispatches after the window has been resized

Finally, here are the event listeners in the
class:

: Dispatches immedi-
ately before the window changes its display state (for instance, from regular view
to full-screen mode)

: Dispatches after the
window’s property is changed

Using these events is as simple as adding an event listener to your window. For instance:

Menu API

Various operating systems have very different menu options. For this reason, you
need to add some OS-specific code to make sure that your menus work across all the

BUILDING AIR APPLICATIONS WITH FLASH CS4

497

19

operating systems supported by AIR. This section will discuss the following types
of menus:

Window menu

Application menu

 System tray menu

Dock menu

Window menu
The window menu, shown in Figure 19-6, is always associated with a single window and is
always displayed below the title bar. Different windows can also have different menus. The
window menu is only available on Windows operating systems, not on OS X systems. You
create a window menu by using the following code:

Figure 19-6.
Example of a window menu

Application menu
An application menu (see Figure 19-7) applies to the whole application. Application menus
are supported on OS X but not on Windows systems. On OS X, the application is always in
the global menu bar. To create an application menu, TT use this code:

Figure 19-7.
Example of an application menu

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

498

Handling menu events
Handling menu events is as easy as listening for a specific event. The select event will
be dispatched every time the user clicks one of your menu items. All you have to do
is add an event listener to your menu that fires off the correct function as shown in
this code:

In most cases your application will have only one global menu. Since your AIR application
can run on a variety of Windows, OS X, or Linux operating systems, you need to perform a
quick check to see whether window menus or application menus are supported on the
system the user is running your application on. The following code should be all you need
to do this:

This code snippet will check whether the operating system supports application menus
() or window menus () and
set up your menu accordingly.

System tray menu
An AIR application can run in the background. On a Windows machine, you can opt to
show an icon in the system tray to let the user know that this application is still running.
When the user right-clicks a system tray icon, a menu can appear, as shown in Figure 19-8.
To add a system tray menu, you use this code:TT

Dock menu
OS X doesn’t have a system tray but does have a dock. The Mac operating system allows
you to add menus to dock icons. They appear when the user right-clicks the dock icon
(see Figure 19-9). To add a menu to the dock icon, use this code:TTFigure 19-8. Example of

a system tray menu

Figure 19-9. Example of
a dock menu

BUILDING AIR APPLICATIONS WITH FLASH CS4

499

19

Network Detection API

As AIR applications can run both on- or offline, it may be a good idea to check whether or
not a network connection is available. You may also check to see whether a certain service
is available or not, such as the Flash Media Server your application uses. When your appli-
cation does not have access to the network or service, your application can display a mes-
sage to the user and/or behave differently. Your application can, for instance, have a
limited feature set when it is not connected to the network.

There are two ways of detecting whether or not a network and service is available: you can
use either a or a .

URLMonitor
The allows you to check whether or not a specific URL is available. In this code
snippet, we set up a that checks for the URL :

The triggers events that will tell you the availability of the specified URL. Just
add an event listener to listen to the event. In the following code, we
added the event listener that will trigger the function. After we added the
event listener, we also start the monitor by calling .

SocketMonitor
The is almost identical to the . The only difference is that
instead of specifying a URL to check, you check for a specific server (either by URL or IP
address) and a specific network port. The following code will check whether port 1935 on
IP address 127.0.0.1 is accepting connections:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

500

The also triggers events in exactly the same way as the . So lis-
tening to these events and firing off the correct function is exactly the same as for the

:

File System API

Your AIR application behaves just like any other desktop application and therefore also has
access to the file system to read files from and write files to.

Common file paths
File paths are very different across platforms. On Mac OS X, the path for my document
folder is , while on Windows XP the paths are

and . This is exactly why
these common file paths can be called using a method of the class in AIR so you
don’t have to worry about this. The following file paths exist on all the platforms that AIR
supports—Mac, Windows, and Linux. These methods are available to point to the associ-
ated directories:

: The folder containing the application’s installed files

: The private storage available to this applica-
tion

: The user’s desktop directory

: The user’s document folder

: The user’s personal directory

Reading and writing files
Reading files from and writing files to the file system is actually pretty straightforward.
First, you create a object, which represents the path to a file or a directory. The
class has all the properties and methods for interacting with the object. The

class can be used to read and write files. Before you can use these classes,
you’ll need to import them to your project by adding the following statement:

Before you can read or write a file, you need to create a reference to its file path. You do
this by creating a new object. In this case, you create a object that points to a
particular file, named in this example:

BUILDING AIR APPLICATIONS WITH FLASH CS4

501

19

Now, to read the content of this file, you create a new object and open up the
file you just specified in the object:

Next, you read the content of that file. Since this is a simple text file, you know that what-
ever comes back is going to be a string. The following code reads the content of the text
file and assigns it to a string variable:

Writing files is almost identical. Instead of using , you use ,
and instead of reading bytes, you are writing them. In this example, we will be writing a
text file in the directory.

The only difference with reading a file is that the file specified here does not exist. The file
will be automatically created once we write to it. You do this in mostly the same way as
when you’re reading files.

The result from this code is a text file in the directory with the file name
. The contents of the file is the text “Hello World!”

The Windowing, Menu, Network Detection, and File System APIs are the most commonly
used APIs in AIR applications. If you want to find out more about all available APIs, a lot of
information is available in Flash’s documentation. Alternatively, you should check out The
Essential Guide to Flash CS4 AIR Development (friends of t ED, 2008), which provides more
details on the APIs and how to use them.

Now that you’ve learned about these common APIs, it’s time to build your first
application.

Building your first AIR application with
Flash CS4

When you launch Flash CS4, you will see that the splash screen now allows you to create a
new Flash file with the Adobe AIR profile (see Figure 19-10). As soon as you select this

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

502

option, Flash CS4 will open up a new document and automatically make sure that all the
settings are correct.

Figure 19-10. The Flash CS4 Professional splash screen

In previous versions of Flash, you had to download a separate extension for
Flash in order to build applications targeted at AIR. When you install Adobe
Flash CS4 Professional, everything you need is installed and ready to go. The
first time you launch Flash CS4 Professional, you’ll immediately notice that
Flash File (Adobe AIR) is now an option on the splash screen, as shown in
Figure 19-10.

When you create a new Flash file using the Adobe AIR profile, the targeted player in the
document’s Property inspector (see Figure 19-11) is set to Adobe AIR 1.5 and the script is
set to ActionScript 3.0. Since all AIR APIs are written in ActionScript 3.0, this is the only
option if you want to use these APIs.

Because the targeted player is now the Adobe AIR runtime, the AIR Debug Launcher (ADL)
will automatically be used when you test your project. ADL is exactly the same as AIR, but
it is only used to test and debug your applications without having to install them. So
instead of launching your application in the browser, it will open it in ADL.

BUILDING AIR APPLICATIONS WITH FLASH CS4

503

19
Figure 19-11.
The Property inspector

Creating your AIR application

Right, now that you have the basics down, go ahead and create your AIR application. We’ll
quickly write a simple program to show you all the fundamentals of creating AIR applica-
tions in Flash CS4.

1. Set up your document so that it’s 200 pixels wide and 200 pixels tall.

2. Draw what is going to be your main application window. You can choose the
Rectangle Primitive tool to draw this background shape that uses the total available
application size (see Figure 19-12).

Figure 19-12.
The shape of the
application window

3. Set the stroke to 2 pixels.

4. Set the fill color to 80% black.

5. Convert this shape into a movie clip and name it windowbackground.

6. Test your application by clicking the TT Test Movie option in the Control menu. The
application will launch in the ADL.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

504

Note that your AIR application now runs as a separate application. Your application
now has its own icon in your OS X dock or Windows taskbar. You should also see
that your application is now surrounded by system chrome. It looks exactly like any
other application window (see Figure 19-13).

Figure 19-13.
Your application
running in ADL

7. Select the transparent window chrome by clicking the Edit button next to AIR
Settings in the Property inspector. This pops up the AIR – Application & Installer
Settings dialog, as shown in Figure 19-14.

Figure 19-14.
AIR – Application &

Installer Settings dialog

BUILDING AIR APPLICATIONS WITH FLASH CS4

505

19

The AIR – Application & Installer Settings dialog

The AIR – Application & Installer Settings dialog is where you specify items like the name of
your application, what is displayed in the installer window, the application icon, and also
the chrome settings for your application window. The settings are as follows:

File name: This is the name of the AIR file you are going to create once your appli-
cation is ready.

Name: This is the name that will be shown in the installer and in the title bar of
your initial window.

Version: This setting is used to determine which version of your application you
have installed on your system.

ID: The value for this setting needs to be unique. It is used to detect whether or not
the application is already installed and then launch it from the browser or another
AIR application.

Description: The text specified here will be used to give a more detailed description
of the application in the installer window.

Copyright: This text is used to add an application’s copyright information in the
installer window.

Window style: Here you set the window type of
your application.

Icon: This option allows you to specify your
application icon. Note that the icon does not
show up in ADL. You have to install the applica-
tion to see the application icon.

Advanced: This pops up an additional dialog
(see Figure 19-15) that allows you to set even
more options for your application and your ini-
tial window.

Use custom application descriptor file: Instead of
filling out this dialog box, you could also write
an XML file with all these settings. This is where
you specify the application descriptor file you
want to use.

Digital signature: All AIR applications must be
signed with a code signing certificate. Here you
can specify the location of your certificate.

Destination: This is the destination where you
want to save your AIR file once you publish it.

Included files: Here you can specify additional
files that will be included in your AIR package.
These files will be installed in the application
directory. You can use this to add any files your
application depends on.

Figure 19-15. Advanced settings

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

506

The Advanced Settings dialog

When you click the Settings button next to Advanced in the AIR – Application & Installer
Settings dialog, the Advanced Settings dialog pops up. This dialog box allows you to associ-
ate a file type with your application and set the position, width, and height for your initial
window. You can also define whether or not your initial window is maximizable, minimiz-
able, resizable, and visible. You can even define in which folder you want to install your
application and specify a name for the program menu folder. The settings are as follows:

Associated file types: Your AIR application can be associated with a specific file type.
For instance, if you want your application to accept SERGE files, this is where you
specify that file type.

Width and Height: This is where you specify the width and height of your initial win-
dow. These will override the document’s width and height. If these are not speci-
fied, the application will use the document’s width and height.

X and X Y: These fields allow you to specify the x and y coordinates of your initial
window.

Maximum width and Maximum height: If your application is resizable, this is where
you specify the maximum width and height.

Minimum width and Minimum height: If your application is resizable, this is where you
set the minimum values for width and height.

Maximizable: If selected, your initial application window is maximizable.

Minimizable: If selected, your initial application window is minimizable.

Resizable: If selected, your initial application window is resizable.

Visible: if selected, your initial application window is visible.

Install folder: Here you specify the folder where you would like to install the applica-
tion on the user’s machine. Note that the user can still select a different folder to
install your application to.

Program menu folder: If this is specified, the AIR Application Installer will create a
folder in Windows’ Program menu.

Creating applications with custom chrome

Now, for our demo application, setting the window type to Custom Chrome (transparent) in
the AIR – Application & Installer Settings dialog (as shown earlier in Figure 19-14) is all you
have to do. Then click OK and test your application again. You should now see the sameK
application without the system chrome, as shown in Figure 19-16.

You’ll immediately notice that because you didn’t add any window functionality, you can’t
close, resize, or move the window. When you create applications with custom chrome, you
need to add that functionality yourself. When you’ve verified that your application looks
like Figure 19-16, you can close the application by pressing Alt+F4 or Cmd+Q on a Mac.

BUILDING AIR APPLICATIONS WITH FLASH CS4

507

19

Figure 19-16.
Your application is no
longer surrounded by
system chrome.

Enabling dragging

The first thing you want to add is a little bit of code that will enable you to drag your win-
dow around the screen. In your Actions panel, add the following code:

This will listen for the event and call the method of the main
window, allowing you to move the window around your screen. You can also draw a title
bar and add the event listener to that instead of adding it to the entire stage.

Adding Close and Minimize buttons

Next we want to add the Close and Minimize buttons shown in Figure 19-17. Just create two
simple buttons like the ones in the figure and give them instance names of for
the red one and for the yellow one.

Figure 19-17.
Creating Close and Minimize buttons

In your Actions panel, add the following lines to the code that is already there. This bit of
code will listen for the event on both your Minimize and Close buttons and will fire
off the associated code.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

508

Go ahead and test your application. Try dragging the application around your screen. Then
press the Minimize button, and try the Close button last.

Adding functionality

Now that we created the application chrome, it’s time to add some functionality. We want
this application to periodically check whether a certain server is available or not and alert
us when it’s not.

Creating a three-state icon
We’ll need some sort of easy-to-understand icon to tell the user when there’s something
wrong or when everything is fine. We’ll create a very simple three-state icon with a gray,
red, and green oval. We’ll use the gray icon when the application is launching, the red
icon when the specified server is not available, and the green icon when the server is
available.

First, create a new symbol and draw a gray oval on the first keyframe. Now create a new
keyframe on the second and third frame and draw a red and green oval on each of those
(see Figure 19-18).

Figure 19-18. Timeline for our icon

Next, give each keyframe a different name. Name the keyframe with the gray icon default,
the keyframe with the red icon error, and the keyframe with the green icon ok. Put a

 action on the first frame so the icon stays in the first frame (the gray icon) when it
launches.

Checking server and service availability
In order to check whether or not a server is available, we’re going to use the service
monitoring API we discussed earlier.

Before you can use the service monitoring API, you need to add the
file to your library. Follow these steps to do so:

1. In the Property inspector, click the Edit button in the Profile area.

2. Click the Settings button for ActionScript 3.0 and select the Library Path tab.

BUILDING AIR APPLICATIONS WITH FLASH CS4

509

19

3. Click the Browse to SWC button and browse to your Flash CS4
(see Figure 19-19).

4. Click the OK button.K

Figure 19-19. Adding the file

Now go back to your Actions panel and add the following statements to your code.
You need to import these to actually use the classes in your project.

Using the URLMonitor class
For this example, we will be using the class to check whether an HTTP request
can be made to the specified address, which is also why the class needs to be
added. Whenever the ’s status changes, it’s going to fire off a ,
which is why we also need to import that class.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

510

See Chapter 11 for a discussion of the class.

Add the by including the following code in your Actions panel:

After making a new instance of the , we specify which address it should check.
In this case, we’re going to check whether is available or not. By adding an
event listener to the instance of the , we can check when the network status
has changed and call a function to warn the user of this change.

If you test this application, your Output panel should show the message, “URLMonitor sta-
tus change. Current status: true.”

When returns , we want to display the green icon. When it
returns , we should display the red icon. In order to display the correct icon, you’ll
need to change the function by adding this simple statement:

Now, whenever the network status changes, it will display the correct icon. Go ahead and
test your application again. It should now show the green icon when you launch it. It may
take a few seconds to get the response back from the server. To test the red icon, you canTT
simply disable or unplug your network.

Saving the last server
While this is already pretty cool, we actually want to be able to save the last server we
checked. If we add that functionality, the application will read the last saved address when
we launch the application.

BUILDING AIR APPLICATIONS WITH FLASH CS4

511

19

Let’s change the code a little bit so it starts the on demand. We’ll just wrap
that code in a new function called and pass the address to check as a
variable for this function:

It’s important to keep the declaration outside of this function. The
will be out of scope if you add it to this function.

On a new layer, add a TextInput and a Button component from your component library to the
stage (see Figure 19-20). This will enable the user of this application to simply enter an
address and start the monitor when he or she wants to. Remember to set the instance names
for these components— for the TextInput component and for the Button
component. Also add http:// as the default text for the / TextInput component to easily show
the user that a URL is expected here. You can specify that in the Component inspector.

Figure 19-20.
Adding a TextInput and
a Button component

Whenever the user clicks the GO button, the should start checking the specified
address. Add the following code to the code you already have to enable this functionality:

Whenever the user clicks the GO button now, it’s going to trigger the func-
tion. When that function is called, the status icon is reset, and then the
function we created earlier is called. The will now check the URL we entered
in the TextInput component.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

512

The user may want to use this little application to check whether his or her web server is
still running or not. To increase the user experience, we’re going to save the last address TT
the user entered. Whenever the user launches the application, we’re going to automati-
cally show the last entered address.

The first thing we need to add is a function to write the last entered address to a text file.

Writing and reading files
Because the user doesn’t really need to open the saved file in another application,
we’re going to save the last entered address in a text file located in the

. The is a private storage
directory for your application.

Like we discussed in the section “Using AIR APIs,” you first need to import the file system
classes to your project before you can start using them. So the first thing you need to add
is this statement:

To save the last entered address to a text file in the TT , add
the following code to the function we created earlier:

Like we discussed before, you first create a new object. The object points to the
path of a file or a directory. The object can also be a file or directory that doesn’t
exist yet. In this case we are writing the file and thus we use . Next we save
the address the user entered in the TextInput component in Unicode Transform Format
(UTF), after which we close the . We then write the address typed into the
TextInput field in UTF and close off the after that. To make it easier to test your TT
application, you could temporarily change the file path to

. By saving the file on your desktop, it’s very easy to quickly
check whether your function is working.

When we launch the application, we’ll also need to read the value we saved in the text file.
To do that, we are going to add anTT function that will be launched when we start
the application.

BUILDING AIR APPLICATIONS WITH FLASH CS4

513

19
First of all, we declare the variable outside the function to make it a pub-
lic variable. In the function, we create a file object that points to the location we
saved our text file to. If the file exists, it is going to read it by creating a new
object. That allows us to open the file (in this case with) and read the text
in this file. We then set the text of our input field and call the func-
tion, passing the address we just read from our text file. You shouldn’t forget to also call
the function somewhere. If you forget to call the function, the last saved
value will not be read and thus will not be shown in your application.

This is what the completed code should look like:

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

514

Your application is now ready. When you’ve thoroughly tested and verified the application,
the next thing to do is build an AIR package to distribute to your users.

BUILDING AIR APPLICATIONS WITH FLASH CS4

515

19

Creating your AIR package
Before you can create your AIR package, you need to sign the application with a digital
certificate. AIR applications can be signed either by linking a certificate from an external
certificate authority (CA) such as Thawte or Chosen Security or by creating your own cer-
tificate. It is important to note that self-signed certificates do not provide any assurance to
the end user that the named publisher has genuinely created the application, and as such
self-signed applications represent a security risk. The AIR installer will also tell the user that
the publisher’s identity is unknown (see Figure 19-21).

Figure 19-21. Self-signed AIR applications will alert the user that
the publisher’s identity is unknown.

While developing and testing your application, it is no problem to use a
self-signed certificate. However, you should plan on using a certificate
from an external certificate authority when you publicly release your
application so your users can be certain this application and its source
can be trusted.

When you want to use a self-signed certificate during testing and development, you only
need to create it once. Follow these steps to do so:

1. Click the Edit button next to AIR Settings in your Property inspector. This will open
up the AIR – Application & Installer Settings dialog we discussed earlier.

2. Click the Change button to create a new self-signed certificate or select an existing
certificate (see Figure 19-22).

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

516

Figure 19-22. Browse to an existing certificate or create a new certificate to sign your
application.

3. Click the Create button.

4. Enter information for the publisher name, organization unit, and organization name.

5. Select your country and then enter a password of your choice.

6. Select a location on your system to save the certificate.

7. Click OK to create the self-signed digital certificate (see K Figure 19-23).

Figure 19-23. Creating a new self-signed certificate. Note that all
fields are required!

8. Save the certificate to the specified location.

BUILDING AIR APPLICATIONS WITH FLASH CS4

517

19

9. Enter the password you selected and press OK.

10. Finally, specify the location where you want to save your AIR file and click the
Publish AIR File button.

Now that we created our AIR file, we’ll also need to distribute it. In the next section, you’ll
see how to this.

Deploying your AIR application
The easiest thing to do with your application at this point would be to upload the AIR file
to your server and put a link to it on your web site. But this is not very user friendly for
whomever is going to download and install your application. In some cases, when your
server isn’t configured to handle AIR files, it may even fail altogether. That’s why Adobe
created the concept of install badges. Install badges are basically a small Flash application
that handles download and installation in such a way that it becomes very easy for the end
user to install your application.

The install badge (see Figure 19-24) is part of the AIR SDK. You can download the AIR SDK
from the Adobe web site at . If you download
and extract that ZIP file, there’s a folder called that includes a ready-to-go exam-
ple. Just change the parameters in the source of the HTML, upload the files and your AIR
file to your server, and you’re done.

Figure 19-24.
An install badge

This install badge also has a bunch of extra features that need a bit of extra coding. For
one, the install badge can determine whether the application is already installed and then
prompt the user to launch the application right from within the browser. It also detects
whether the user has the correct version of the runtime installed; if not, it will offer to
download it. This badge also allows you to add a little bit of support information when the
user clicks the question mark icon.k

The second option would be to build your own install badge. Don’t worry . . . you don’t
have to start from scratch. The source files for the install badge are available in the SDK
downloads so you can use these as the basis for your own. You could literally just change
the graphics and publish it. It’s as simple as that. The great thing is that this can be any-
thing you want to it to be and can have all the features you want it to have because, well,
you are building it. If you want to ping your server whenever someone starts the install of
your application, for instance, that is absolutely possible.

THE ESSENTIAL GUIDE TO FLASH CS4 WITH ACTIONSCRIPT

518

Summary
AIR is not just another runtime; it combines the rich interactive capabilities of Flash with
the power of the desktop and freedom from the web browser to allow us to create rich,
connected, desktop applications using the web-centric languages we already know like
ActionScript, HTML, and JavaScript.

Building applications for AIR can be very fulfilling and rewarding, and if you build a useful
application, you might even see some financial appreciation for your efforts! To see what TT
other people are building with AIR, have a look at the AIR marketplace (

) where you will find a broad variety of AIR applications.

You’ve now been introduced to all of the basics needed to start building your own AIR
applications. In this chapter we talked about the following:

 Understanding what makes AIR different from the Flash Player and Silverlight
runtimes

 Understanding the most common APIs and how to use them

Customizing and configuring the installer for an AIR application

 Reading files from, and writing files to, the host system with an AIR application

Publishing and deploying your AIR application

INDEX

INDEX

522

/* (slash asterisk) combination, opening comments with in
Flash, 201

/ (slash) notation, using in ActionScript, 198

A
abdomen area, setting up, 174–175
ActionScript

adding components to application in, 358–359
changing properties with, 226–228
creating sound objects in, 416–417
deciding which version to target, 462–465
E4X and, 299–300
filtering and deconstructing strings in, 339–340
incrementing with frame loops, 228–229
loading an XML file with, 308–309
making library audio assets available to, 416
manipulating text with, 337–347
saving animation as, 152
skinning components in, 370–375
the rise of, 14–15
translating properties from stage to, 225
working with strings in, 337–338
XMLList and XML classes, 310–312

ActionScript 3.0
as object-oriented language, 196
case-sensitivity of, 197
creating your first application in, 188–190
data types in, 203
Flash designer’s intro to, 186–220
following the evolution of, 187–188
web site address for learning, 186

ActionScript cue points, 449
creating, 450–452

ActionScript editor, web site address for, 292
ActionScript programming, basic elements of, 196–215
ActionScript Virtual Machine (AVM2), revamped in latest

ActionScript version, 187
Actions panel

keywords in, 191
looking closely at, 192–193
moving into, 192–196
Pin Script feature in, 194–195
Script Assist button in, 195–196
sections in, 192–193
toolbar, 193–194

Actions toolbox, in Actions panel, 189, 192
Add Anchor Point tool, manipulating paths with, 78
addASCuePoint method, 451
addChildAt() method, adding child at whatever depth

with, 250
addChild method, adding children with, 249
addChild() method, placing required field on stage

with, 345

Numbers and Symbols
3D Center Point property, in Transform panel, 119
3D rotation control, relocating center point of, 115
3D Rotation tool, 57

manipulating objects with, 113
rotating movie clip instances with, 116

3D space
moving a movie clip in, 117–118
moving a single object in, 118–119
moving multiple objects in, 119
rotating a multiple-object selection in, 115–116
rotating a single object in, 116–117
rotating objects in, 116

3D transformations 5
introduction to, 112
vanishing point property, 113–114

3D Translation tool
moving a single object in 3D space with, 118–119
moving movie clip instances with, 117–118
moving multiple objects in 3D space with, 119
moving object on z-axis with, 113

& (ampersand), using in XML, 305
= (assignment operator), 202

using, 206
*/ (asterisk slash) combination, closing comments with

in Flash, 201
[] (bracket (array)) notation, 316–318
--> character sequence, for standard XML style

comments, 307
<!-- character sequence, for standard XML style

comments, 307
-- (decrement) operator, 205
/ (division) operator, 205
. (dot) operator, 312
.. (double dot) notation, 315
// (double slash), generating comments in Flash with, 200
> (greater than) operator, 206

using in elements, 302
>= (greater than or equal to) operator, 206
++ (increment operator), 205
|---- indent string, 248
< (less than) operator, 206

using in elements, 302
<= (less than or equal to) operator, 206
&& (logical AND) operator, 208, 209
!= (logical NOT) operator, using, 295
|| (logical OR) operator, 208, 209
% (modulo) operator, 206
* (multiplicative) operator, 205
! (NOT) operator, 207
() (parentheses), use of in programming, 199–200
; (semicolons)

used in Flash programming, 199
using in XML, 305

INDEX

523

AIR marketplace, web site address, 518
AIR package, creating, 515–517
AIR SDK, web site address, 517
Ajax, 10
All Scripts layer, in timeline, 440
ampersand (&), using in XML, 305
anatomy, help from da Vinci for simple, 171–172
animating, to convey information, 126
animation

basic in Flash, 126–157
common types of, 127
disciplines of, 127
for impact and emotion, 127
reusing, 151–157
saving as ActionScript, 152
saving as XML, 152

animation and images, synchronizing to playback using
events, 447–454

anti-alias for animation, option when creating and
rendering text, 328

anti-alias for readability, option when creating and
rendering text, 328

application menu
creating, 497
in menu API, 497, 498

applications, creating using document class, 363–364
applicationStorageDirectory, for storing your

application, 512
Apress, web site address, 492
arm

adding bones to, 162–163
animating, 167–169
getting started with, 161–162

armature, defined, 163
armature animation, adding poses in, 168–169
arms, adding to characters, 175
array list, building of, 318
.as filename extension, 192
Assets folder, in FLVPlayback skin source file, 440
assignment operator (=), 202

using, 206
attribute identifier operator (@), 315
attribute() method, 315–316
attributes

accessing directly by name, 315
in XML, 305–306

attributes() method, 315–316
audio

adding to a button in the timeline, 411–412
applying effects to, 406
applying to a keyframe, 406
changing compression type of, 409
event handling when music stops, 426–427
in Flash authoring environment, 405–412

addChild(shape 1) statement, adding new shape to stage
with, 249

addEventListener() method, using, 232
Add Folder button, in Timeline panel, 36
addGerms() function, 267–268

triggering, 267
addition operator (+), 204
additive operators, table of, 205
Add Layer button, in Timeline panel, 36
Add Motion Guide button, in Timeline panel, 37
Adobe Bridge CS4, 383
Adobe Extension Manager, installing and removing MXP

files with, 356–357
Adobe Flash Exchange web site, for third-party

components, 356
Adobe Integrated Runtime (AIR). See AIR (Adobe

Integrated Runtime)
Adobe Media Encoder

a crash course in using, 380–401
introduction to the interface, 380–381
queue buttons on interface, 380
Queue window of, 380

Adobe UI components, 353
advanced mode

cue points, 391–393
encoding features, 390–398
encoding options, 393–398

Advanced settings dialog, in AIR - Application & Installer
Settings dialog, 506

Advanced settings section, Publish Settings window,
467–468

AIR (Adobe Integrated Runtime), 492
AIR APIs

file system API, 500–501
menu API, 496–498
network detection API, 499–500
using, 492–501
Windowing API, 493–501

AIR - Application & Installer Settings dialog, 492
Advanced settings dialog in, 506
creating applications with custom chrome, 506
settings in, 505

AIR applications
adding functionality to, 508–514
building with Flash CS4, 492–518
building your first with Flash CS4, 501–514
checking server and service availability, 508–509
completed code for, 513
creating, 503–504
creating a three-state icon, 508
creating with custom chrome, 506
deploying, 517
enabling dragging in, 507
signing with digital certificate, 515

INDEX

524

constraining movement of, 166
controlling motion of specific, 163–164
determining type of used in armature, 170
fixing runtime animation errors, 170–171
in IK bone, 162
line with colors, 170
setting type to Authortime or Runtime, 170
solid, 170
wireframe, 170
working with vector shapes and, 179–180

Bone tool, primary components of, 162
bracket (array) notation, 316–318
branching, 171
Break Apart animation

applying tweens to layers in, 336
imploding letters, 336–337

breakpoints, setting and removing when debugging, 486
broadcasters. See event dispatchers (broadcasters)
buffering, video, 396
bufferingStateEntered event, FLVPlayback component, 448
Button and TextInput component, adding on a new layer,

511
button audio application, creating, 413
buttons

adding audio to in timeline, 411–412
changing state of, 414–415

button symbols, 92
adding states to, 96–97
creating, 95

C
call stack, understanding, 486–487
camel casing, used in Flash, 197
Casario, Marco, 492
CBR (constant bitrate encoding), 396
CDATA comments, 307–308
Center Frame, in Timeline panel, 37
certificate authority (CA), signing application with, 515
ch10_01.fla file, 246
ch12_01.fla file, 308
character embedding function, using, 329–330
characters, animating, 177–178
character sequences, for standard XML style comments

(--> and <!--), 307
charAt method, 339
child joint, in IK bone, 162
child objects

adding to the stage, 249–250
changing position of, 252

children() method, using, 314
Chosen Security certificate authority, 515
circle, selecting stroke of, 61
class and property attributes, 255–256

loading at runtime, 418–424
manipulating at runtime, 424–425
replacing with files for mobile devices, 409
selecting synchronization type for, 406–407
thinking about, 404
trimming, 410–411
using library audio assets at runtime, 412–417
volume preset options for, 406
working with in Flash, 404–427

audio tab, in Export Settings window, 397–398
author-time

defined, 169
vs. runtime IK animation, 169–171

B
Balkan, Aral, et al., 17
Behavior field, options in Property inspector, 330
binds, applying to shapes, 181–182
Bind tool

accessing, 180
applying binds to shapes with, 181–182
applying multiple control points to bones with, 181–182
using, 180–182
using IK with shapes and, 178–182

bit depth, setting with PNG publishing options, 474
bitmap graphics, 52
bitmap images, swapping, 91–92
Bitmap Properties Compression drop-down, types of

bitmap compression in, 86–87
bitmaps

breaking apart, 87–90
converting to vector-based graphics, 89–90
editing images externally, 87
importing external into Flash, 82–84
importing your first into Flash, 85
using in Flash projects, 82–92

bitmap text (no anti-alias), option when creating and
rendering text, 328

bitrate, 397
encoding for video, 396
settings for video, 395–396

Black and White button, 66
blend modes

applying, 107–108
elements of, 106
provided by Flash, 106

blends, working with, 106–108
bones

adding to arm, 162–163
applying constraints to, 165
applying parameters to, 163–164
applying to vector shape, 180

INDEX

525

for Label component, 365
using, 361–363

components
adding to application, 357–359
changing style of all in application, 373
changing style of all of one type in application, 373
changing style of instance of in application, 373
configuring in ActionScript, 363–368
configuring in Flash, 360–363
controlling, 360–375
distributing, 356
FLA-based, 353
skinning in ActionScript, 370–375
skinning in Flash, 368–370
steps for making style changes to, 373–375
style definitions for, 371–375
SWC-based, 352
third-party, 356–357
understanding, 352–357
used in Flash CS4, 353–357
User Interface group of, 353, 354–355
using, 352–375
Video group, 355–356

Components panel, opening, 353
concatenation, 204, 338–339
conditional statements, 208–210
connect method, for SWF to SWF communication,

284–285
const keyword, properties and variables defined using, 224
constructor function, for Germaphobe class, 254
constructor functions, for HelloWorld.fla file, 218
contact form

adding dynamic text fields to, 343–347
embedding characters in, 329–330
filtering text elements, 331
formatting paragraphs, 330–331
options when creating and rendering text, 327–328
positioning text fields, 325–326
putting finishing touches on front end of, 332–334
render modes and text field modifiers, 327–329
standard modifiers, 328–329
starting simple, 323–325
using Property inspector Options section, 331

cont.numChildren, 247
cont parameter, of listchildren() function, 247
Convert Anchor Point tool, manipulating paths with, 78
core, setting up, 174–175
count and prevCount properties, 267
cropping bounds, resizing, 387
cropping proportions drop-down, 387
cropping video, 386–388
Ctrl-Enter/Option-Enter, testing your movie with, 190
cuePoint event, FLVPlayback component, 448

class definition
for Germaphobe class, 254
for HelloWorld.fla file, 217
main components required for, 254
modifying attributes for, 255

classes, constructing, 215–219
classic tween, 129
class members, modifying attributes of, 255
clearFields() method, 346

clearing textual data from text fields with, 344
clearInfo method, creating handler for, 294
clear() method, removing or deleting information with, 294
clicked() function, 232
CLICK event, simple button armed with, 231
client-server, adoption of, 8
Close and Minimize buttons, adding to AIR applications,

507–508
closed path, 58
code, navigating while debugging, 487
code execution, resuming normal when debugging, 488
ColdFusion, 10
color animation, steps for animating changes in color, 139
color effect, adding in Motion Editor, 149
color filters, adjusting over time, 139
Color palette, opening, 66
Color panel, using, 66–67
color properties and fills, 65–66
colors, options for setting, 67
Colors dialog, opening, 66
ComboBox component

changing rollover color for, 369–370
populating with values, 367–368
setting the prompt of, 363

ComboBox parameter, configuring an instance of, 361–363
commenting, XML, 307–308
comments

in programming, 200–201
standard XML style, 307

commercial sites, XML used for, 299
common file paths

in file system API, 500
methods to point to associated directories, 500

communication, SWF to SWF, 283–288, 295
communications and external assets, managing, 274–295
Compiler Errors panel

columns in, 482
using, 481–483

Complete event, FLVPlayback component, 448
complex data types, in ActionScript, 203
Component inspector. See also FLVPlayback Component

inspector
changing prompt in, 363
for ComboBox component, 360

INDEX

526

display list
adding children to, 249–250
removing children from, 251
traversing, 246–248

display list containers, 246
display object containers, examining, 248
display objects. See movie clips

in Flash, 225
inserting at different depths, 250–251
loading external, 282–283
tools for adjusting, 225
working with, 244–246

dither, changing for GIF, 473
division (/) operator, 205
docking, panels or panel groups, 25
dock menu, in menu API, 498
document class

creating application using, 363–364
for HelloWorld.fla file, 216

document frame rate, changing, 33
document settings, changing default, 33
document window, 27

controlling, 28
Property inspector options of, 32–33
selectors in, 27
stage view options, 28
tools for using the interface, 30
understanding, 27

DOCX format, used in Word 2007, 299
donuts, ovals, and pie shapes, drawing, 60
dot notation, using in ActionScript, 197–198
dot (.) operator, 312
double dot (..) notation, 315
dragging, enabling in AIR applications, 507
drawing, advanced, 75–78
drawing modes

changing, 55
in Flash CS4, 53–55

drop shadow, creating skewed, 112
duration, changing a motion tween’s, 136–137
DynamicButtonAudioApp.as

creating, 413
creating application state in, 414
creating sound objects in, 416–417

dynamic text, 322
dynamic text fields, adding to contact form, 343–347

E
E4X (ECMAScript for XML), and ActionScript, 299–300
easing

changing a tween’s, 134–136
making available to motion edit, 145

CUE_POINT event
handling and reading parameters, 452–454
synchronizing video, text, and media using, 447

cue points
adding in advanced mode, 391
adding parameters to, 392, 450
adding to video, 450
advanced mode, 391–393
applying at runtime, 451
categories of, 449
creating ActionScript, 450–452
importing, 392
reading parameters, 452–454
removing parameters and, 393
saving, 392
understanding, 449–452

Current Frame, in Timeline panel, 37
custom anti-alias, option when creating and rendering text,

328
Custom Chrome (opaque), 494
Custom Chrome (transparent), 494
custom eases, making in Motion Editor, 146
custom play controls

assigning to FLVPlayback component, 447
creating, 445–447

custom presets, managing in simple mode, 390

D
data

sending to external places, 277–282
storing to a local machine, 288–295
waiting for it to arrive, 276–277

database or data layer, 10
dataProvider parameter, setting values for, 361
data types, in computer programming, 202–204
date object, using, 290
da Vinci, Leonardo, using his Vitruvian Man as model,

171–172
debugging

in Flash, 480–488
navigating code while debugging, 487
using the debugger, 485–488

deconstruction, of strings, 339
decrement (--) operator, 205
defaultTextFormat property, using, 341
Delete Anchor Point tool, manipulating paths with, 78
deleteInfo function, creating, 294
Delete Layer/Folder button, in Timeline panel, 36
device fonts, option when creating and rendering text, 327
Device sound text input field, using, 409
die() function, handling removal of killed germs with, 266
Dimension options, JPEG publishing options, 475

INDEX

527

key video, 448–449
synchronizing video, text, and media using, 447–454

events and listeners, removing, 240–241
event targeting, 233–234
exporting

FLA as a movie or image sequence, 478–480
images, 477

Export Movie dialog, for exporting as a movie or image
sequence, 478–480

Export Settings window
advanced settings in, 397
audio tab, 397–398
Filters tab in, 393
Format tab in, 394
main sections of, 385
taking a close look at, 385–386
video tab and bitrate settings in, 394–397

Export Windows AVI dialog box, for exporting as a movie
or image sequence, 479–480

expressions, in programs, 199
expressions and literals, using in programming, 199
extends keyword, using, 255
Extensible Metadata Platform (XMP). See XMP info

inspector; XMP metadata
external assets

and communications, managing, 274–295
and symbol management, 82–103

external data, working with, 274–282
external display objects, loading, 282–283
external library, opening comments with in Flash, 84

F
F4V format, in Format tab, 394
Facebook, 7
family.xml file, 303

displaying XML data stored in, 309
fat client, 14
file formats, exporting, 477–480
file names, autoincrementing, 384
file paths, common in file system API, 500
files

encoding multiple, 384–385
writing and reading, 512–514

FileStream object, creating new, 501
file system API

FileStream class for reading and writing files, 500
reading and writing files to, 500–501

fill, in Flash, 58
fill color picker, depiction of, 65
Fill Lock modifier, location of on Tools panel, 71
fills and color properties, 65–66
fills and strokes, 63–74

selecting both, 61

understanding, 134–137
value range of, 135

ECMA-262 standard, 299
Ecma International, 187
ECMAScript, 187. See E4X (ECMAScript for XML)
editing, symbols, 95
effects

adding with Envelope Editor, 411
applying to audio, 406

Elapsed Time, in Timeline panel, 37
elements

accessing, 312–313
opening and closing tags in, 302–303
rules for working with, 303

else...if clause, 209
embedded cue points, 449
empty elements, using in XML, 306
encoding

multiple files, 384–385
options in advanced mode, 393–398
video with presets, 381–383

ENTER_FRAME event
creating motion for germ using, 262
listening for in ActionScript, 237

entities and escapes, 304–305
Envelope Editor

changing the view with, 411
custom effects with, 411
fine-tuning audio with, 410–411

equality operators, 206–207
Error #1088, 311
errorFormat TextFormat object, creating, 344
errors, checking for in programs, 281–282
event audio, 406

vs. streaming audio, 407
event dispatchers (broadcasters), 231
EventDispatcher class, and the Flash event model, 230–237
event handler, for assigning a value to xml object, 309
event handlers, and listeners, 231–232
event listeners, 231

adding to window, 496
and handlers, 231–232
available in flash.events.Event class, 496
available in flash.events.NativeBoundsEvent class, 496
available in flash.events.NativeWindowDisplayStateEvent

class, 496
useCapture parameter for, 236

event objects, information storage in, 232
event phases, 235
event propagation, 234–237
events

assigning to parent objects, 236–237
as special kind of method, 230–237

INDEX

528

web site address for learning, 186
Welcome Screen, 20–21
who it is for, 4
working with panels and windows, 23–25

Flash documentation, web site address, 371
Flash event model

EventDispatcher class and, 230–237
main components of, 231

flash.events.Event class, event listeners available in, 496
flash.events.NativeBoundsEvent class, event listeners

available in, 496
flash.events.NativeWindowDisplayStateEvent class, event

listeners available in, 496
Flash file

creating new, 188–190
display list hierarchy of sample, 244

Flash IK (inverse kinematics), 160
adding arms to character, 175
adding legs to character, 176
animating the character, 177–178
applying to a human character, 172–178
cleaning up your character, 177
establishing the parent or core, 174
experimenting with an arm or a leg, 161–166
getting started with the arm, 161–162
introducing, 160–182
selecting shapes for, 179
tools used to create, 160
using with complex anatomies, 171–178
using with shapes and the Bind tool, 178–182
vs. motion tweening, 166–167

Flash IK Bone tool. See Bone tool
Flash.media package, understanding, 418
Flash MX 2004, release of, 14
Flash output settings window, main sections of, 465
Flash platform, open source and Web 2.0, 15–17
Flash Player, 492

deciding which version to target, 465
Flash projects

publishing, exporting, and debugging, 462–489
using bitmaps in, 82–92

Flash publishing options, setting, 464
flush() method, of shared object, 294
FLV custom UI components, 355–356
FLV format, in Format tab, 394
FLVPlaybackCaptioning component

adding to an FLVPlayback component, 456–457
Timed Text XML Schema for, 454–457
understanding, 456–457
web site for learning about, 454

FLVPlayback component
adding captions to, 454–457
adding FLVPlaybackCaptioning component to, 456–457

filter animation, 139–140
filtering

node values, 318
using predicate operator, 318

filter options, setting with PNG publishing options, 475
filters

adding to your tweens, 149–150
applying, 109
applying basic filter effect, 112
applying to text, button, and movie clip objects, 109
creating a filter settings library, 111
enabling or disabling, 111
removing, 111
working with, 108–112

Filters section, adding filters to tweens in, 149–150
Filters tab, in Export Settings window, 393
FLA, exporting as a movie or image sequence, 478–480
FLA-based components, 353
Flash. See Macromedia Flash

adding components to application in, 358
basics, 4–17
configuring components in, 360–363
debugging in, 480–488
generating comments in, 200
generating multiline comments in, 201
how it all began, 4
importing external bitmaps into, 82–84
importing your first bitmap into, 85
Jonathan Gay and the origins of, 5–7
skinning components in, 368–370
understanding animation in, 127–129
using Trace Bitmap feature in, 89–90
what it is, 4–5
working with audio in, 404–427
working with video in, 430–457
XML as best way in and out of, 298–318

Flash alignment setting, changing in HTML publishing
options, 471

Flash authoring environment, understanding audio in,
405–412

Flash core class libraries, based on computer platform,
198

Flash CS4
animating to convey information, 126
basic animation in, 126–157
building AIR applications with, 492–518
creating a motion tween in, 129–132
customizing the interface, 43–48
drawing with vector tools in, 52–79
interface, 22
Motion Editor new to, 141–142
new interface of, 20–48
new motion tween in, 128–129

INDEX

529

Gay, Jonathan
gaming software written by, 6
origins of Flash and, 5–7
work on Superpaint 2 by, 6

Germ, linking to a graphic symbol, 257–258
Germaphobe application, 252–271

a cleaner point of entry, 258–259
assigning the document class, 253
checking for infestation, 269
checking the walls, 264–265
ending game by infestation, 269–271
initializing the game, 258–260
removing leftover germs, 270
setting up the game, 253
setting up the germs, 256

Germaphobe class
adding scorekeeping scheme to, 268–269
defining, 254–255

Germ class
creating scurry method of, 262
defining, 254
steps for creating, 256–257

Germ library symbol, linking Germ.as class file to, 258
Germ movie clip, timeline of, 260
germs

adding by intervals, 266–267
adding randomly to the stage, 259–260
allowing to reproduce, 266–268
are killed and then they die, 266
killing, 265–266
making them scurry, 262–265
picking the face for, 260–262
randomly adding to the stage, 259–260
setting up the kill, 265–266

GET and POST methods, 277–278
getChildAt method, 247
getLocal method, 289
GET method, 277
GIF publishing options

changing dither, 473
changing palette type and color settings, 474
changing playback behavior, 472
changing transparency, 473
Options settings choices, 473
setting, 471–474
setting image dimension, 472

Global functions, in Actions toolbox, 189
global variables, shadowing, 214
GO Corporation, PenPoint operating system, 6
gotoAndStop() method, using, 261
gradient bar, adding another color to, 67
Gradient Transform tool, using, 73
graph, in Motion Editor, 147–149
graphic symbol, linking Germ to, 257–258

assigning custom play controls to, 447
benefit of customizing, 444
bufferingStateEntered event, 448
Complete event, 448
cuePoint event, 448
Layout event, 448
metadataReceived event, 448
modifying buttons, 443
parameters of, 434
playheadUpdate event, 448
Ready event, 448
stateChange event, 448
understanding, 434–437

FLVPlayback Component inspector, 434–437
FLVPlayback component skin, customizing, 438–445
FLVPlayback skin source file, library of, 440
focus_in function, 344
focus_out function, 344
folders, organizing Library panel with, 101
font symbols, 92
for loop, 210–211

looping through children with, 247
form

creating in Flash, 364–367
making it do something, 367–368

Format tab, in Export Settings window, 394
Formats tab, Publish Settings window, 462
formatting, paragraphs, 330–331
frame and timer events, 237–239
frame-by-frame animation vs. motion tweening, 127–128
frame events, 237–238
frame loops, incrementing ActionScript with, 228–229
Frame Rate, in Timeline panel, 37
frames, selecting in Actions and Red Box layers

simultaneously, 228
frames and keyframes

adding to layers, 40–41
adding to timeline, 37
copying and pasting, 42
inserting willy-nilly, 41–42
persistence and tinting, 38

Frame View Options, in Timeline panel, 37
FTP, setting up destination for, 398
functions, 211–213

defining your own, 212
returning values from, 212–213

FutureSplash Animator, release of, 6
FutureWave Software, start of by Gay and Jackson, 6

G
gaming software, by Jonathan Gay, 6
Gap Size modifier, for Paint Bucket tool, 72
Gaussian Blur, 393

INDEX

530

image dimension, setting for GIF, 472
images, exporting, 477
images and animation, synchronizing to playback using

events, 447–454
Images and Sounds area, in Publish Settings window, 466
image sequence, importing, 84
import flash.events.* statement, importing events package

with, 262
importing

an image sequence, 84
to stage or library, 83
your first bitmap into Flash, 85

importing and exporting
motion presets, 156–157
publish profiles, 476

in and out points, setting for video, 388–390
increment (++) operator, 205
indexes, for display objects, 250
infoLoader, URLLoader object, 276
Info section, of Sound panel, 407
inheritance, 255
init() function

adding code to launch at application start, 512
setting up, 259

init()\; statement, calling init() function in constructor
with, 259

Ink Bottle tool, using, 73
Ink mode, for Pencil tool, 58
input text, 323
install badges, created by Adobe, 517
IntelliDraw, Jonathan Gay work on, 6
interactivity, building blocks of, 224–241
interface, customizing Flash CS4’s, 43–48
Internet, stateless, 8–9
inverse kinematic. See Flash IK (inverse kinematics)
is keyword, 248
i variable, declaring in for loop, 247

J
Jackson, Charlie, 5
joint location parameter, applying to IK bones, 164
joint rotation parameter, applying to IK bones, 164
joint x translation parameter, applying to IK bones, 164
joint y translation parameter, applying to IK bones, 164
JPEG publishing options, setting, 475
Jukebox.as file, 419–420

K
kerning, in Flash, 327
keyboard event, accepting keyboard input with, 239–240
KeyboardEvent class, 239
KeyboardEvent.KEY_DOWN, 240

graphic symbols, 92
graphic types

bitmap graphics, 52
understanding, 52–53
vector graphics, 53

greater than (>) operator, 206
using in elements, 303

greater than or equal to (>=) operator, 206
grid, in Timeline panel, 36
grouping, panels, 25
guide layers, 440
guides, creating, moving, and editing, 31

H
Hand tool, 30

activating temporarily, 56
Hardware Acceleration menu, options in Publish Settings

window, 467
Head, Torso, and Hip layers, setting up, 174–175
Hello World, example of FLVPlayback component, 434
Hello World application, creating in ActionScript 3.0,

188–190
HelloWorld.fla file

building, 215–219
document class, 216
packages and import statements, 216–217

Hinting property, 65
hot text, defined, 27
HTML alignment setting, changing in HTML publishing

options, 471
HTML publishing options

changing Flash alignment setting, 471
changing HTML alignment setting, 471
changing Playback options, 469–470
changing rendering quality, 470
changing scale behavior, 471
changing Window mode, 470
choosing a template, 468–469
setting, 468–471
setting dimensions, 469

human characters, applying IK to, 172–178

I
id3 event, handling when music stops, 426–427
if...else statement, 208
if statement, creating, 295
IK animation, author-time vs. runtime, 169–171
IK armature, applied to da Vinci’s Vitruvian Man, 172
IK bones. See bones
IK system, creating motion with, 166–169
image compression, adjusting with JPEG publishing options,

475

INDEX

531

LocalConnection class
connect method, 284–285
send method, 284
SWF to SWF communication, 284–285

Local playback setting, in Publish Settings window, 467
local shared objects, a closer look at, 289–291
local variables, using to shadow global variables, 214
Lock layer, in Timeline panel, 36
logical AND (&&) operator, 208
logical operators, 207–209
logical OR (||) operator, 208
logic layer, middleware or, 10
loops, 210–211
Lossless (PNG/GIF) bitmap compression, 87

M
Mac OS X system skins, web site address, 442
Macromedia, FutureWave acquired by, 7
Macromedia Flash, birth of, 7
MAC source FLA files for skins, web site address for, 439
magic wand icon, for Script Assist feature, 195
main timeline, in display list, 244
Math.ceil() method, 261
Media Encoder. See Adobe Media Encoder
media player, creating simple, 418
menu API, 496–498

application menu in, 497–498
dock menu in, 498
handling menu events in, 498
system tray menu in, 498
window menu in, 497

menu-driven video playback application, creating, 437–438
Merge Drawing

in Flash CS4, 53–54
vs. Object Drawing, 53–55

Merge Drawing mode, creating and manipulating lines in,
55–58

metadataReceived event, FLVPlayback component, 448
methods, 230
middleware or logic layer, 10
Min and Max values, constraining movement of bones

with, 166–166
Minimize and Close buttons, adding to AIR applications,

507
miter, defined, 65
modifier keys, Shift and Alt keys as, 55
modularity, 215
modulo (%) operator, 206
Moore’s Law, 7
motion

creating with an IK system, 166–169
duplicating in CS4, 151–152

keyboard shortcuts, customizing, 47–48
Keyboard Shortcuts dialog box, 47
keyCode value, assigned to keyCode property of event

object, 240
keyframes

applying audio to, 406
representation of on timeline, 132
roving vs. nonroving, 137

keyword, in ActionScript, 191
kinematics, 160
Kuler panel, using, 74

L
Label component, Component inspector for, 365
Lasso tool, 57

using for selection, 61
Layer Properties dialog box, 35
layers

adding and inserting frames and keyframes to all, 41
adding frames and keyframes to, 40–41
controlling in Timeline panel, 35
understanding in Timeline panel, 34

layer strip, in Timeline panel, 35
Layout event, FLVPlayback component, 448
legs, adding to character, 176
less than (<) operator, 206

using in elements, 303
less than or equal to (<=) operator, 206
letters, imploding in Break Apart animation, 336–337
letter spacing, in Flash, 327
library audio assets

making available to ActionScript, 416
using at runtime, 412–417

library items
examining, 100
finding unused, 101–102
sorting and searching, 101
updating imported, 102

Library panel, 99–102
examining items in, 100
getting familiar with, 99–100
importing graphics into, 85
organizing with folders, 101
setting bitmap properties in, 86–87

lightweight window, Windowing API, 494–495
lines, selecting and manipulating, 56–57
line segments. See vector graphics
Line tool, creating and manipulating lines with, 55–56
listChildren() function, 246

parameters accepted by, 247
listeners and events, removing, 240–241
literals, in programs, 199

INDEX

532

NativeWindow.close() method, 495
NativeWindowInitOptions class, options declared in, 495
NativeWindow.maximize() method, 495
NativeWindow.minimize() method, 495
NativeWindow.orderInBackOf(NativeWindow) method, 496
NativeWindow.orderInFrontOf(NativeWindow) method,

496
NativeWindow.orderToBack() method, 496
NativeWindow.orderToFront() method, 496
network detection API, 499–500

SocketMonitor in, 499
URLMonitor in, 499

New Document dialog window, selecting ActionScript File
from, 253

new keyword, instantiating new variable with, 275
news feeds, XML used for, 299
Nielsen’s Law, 8
No Color button, 66
node values, filtering, 318
nonroving keyframes vs. roving keyframes, 137
normal window, Windowing API, 493
NOT operator (!), 207
numChildren property, 247
numeric controls, for cropping video, 387
numeric property values, changing, 27

O
Object Drawing

in Flash CS4, 54–55
vs. Merge Drawing, 53–55

Object Drawing button, location on Tools panel, 55
[object MainTimeline], 248
object-oriented programming (OOP), 14
objects

rotating in 3D space, 116
rotating multiple selection of in 3D space, 115
rotating single in 3D space, 116–117

Onion Skin, in Timeline panel, 37
Open External Library option, in Flash, 84
open source, Flash explosion, 16–17
operand, 204
operator overloading, 204
operators

in Flash, 204–208
postfix operators, 205

Orientation button, in Property inspector, 331
Others tab, in Adobe Media Encoder, 398
Outline layer, in Timeline panel, 36
output file, choosing name and location for, 383
Output panel, trace statement output to, 189
Output window, using, 483
Oval Primitive tool, 61
Oval tool, drawing ovals, donuts, and pie shapes with, 60
Overflow drop-down, options in, 67

Motion Editor
adding a color effect to tween by way of, 149
adding color effect to, 149
adding filters to tweens in, 149–150
Eases section, 145–146
graph, 147–149
headers along top of, 144
interface, 143–151
making eases in, 146
new in Flash CS4, 141–142
property layers, 144
something to keep in mind, 151
understanding, 142–143

motion path
changing curve of, 133
moving, 133
options for modifying, 136
scaling, skewing, or rotating, 133–134

motion presets
applying, 153
converting to frame-by-frame animations, 155
importing and exporting, 156–157
managing, 154
saving animation as custom, 153
saving from the timeline, 154
using, 153–157

motion tween
changing duration of, 136–137
changing properties of, 132
creating, 129–132
introduction to new, 128–129
modifying, 132
options for changing properties of, 138

motion tweening
IK vs., 166–167
vs. frame-by-frame animation, 127–128

MouseEvent.CLICK event, 232
mouse events, most common, 233
mover function, calling, 240
movie clip, applying a blend mode to, 107–108
MovieClip class, importing, 254
movie clips. See display objects

warning about changing if set to export, 443
movie clip symbols, 92
MovieClip symbols, in _SquareButton folder in library, 443
multiplicative (*) operator, 205
MXP files, installing and removing, 356–357
mySavedAddress variable, 513
MySpace, 7

N
name-value pairs, 278
NativeWindow.activate() method, 495
NativeWindow class, creating windows with, 495

INDEX

533

playlist.xml, creating, 420–422
PNG publishing options, setting, 474–475
polygons, drawing, 60
polygons and stars, drawing, 60
PolyStar tool

drawing stars with, 64–65
for drawing polygons, 60

PolyStar Tool Settings dialog, 60
pose, adding intermittent to arm, 168–169
postfix operators, increment and decrement, 205
POST method, 278
power core, 171
presentation layer, 10–12
presets

choosing, 382–383
encoding your first video with, 381–383
management buttons for, 390
managing custom in simple mode, 390

Presets menu, in the queue, 382
primitive data types

in ActionScript, 203
table of in ActionScript, 203

primitive objects, 61
primitive tools, 61–63
program errors, checking for, 281–282
programming, dreaming in metaphors, 186–187
prompt, changing, 363
properties

changing with ActionScript, 226–228
formatable associated with text fields, 342
functioning like adjectives, 224–229
TextFormat class, 340
translating from stage to ActionScript, 225

Property inspector, 26–27
applying blend modes with, 107–108
applying parameters to IK bones in, 163–164
defining document class in, 253
enabling or disabling all object filters in, 111
enabling or disabling filters in, 111
moving object on z-axis with, 113
naming symbol instances using, 226–228
options of document window, 32–33
revisiting for creating contact form, 323–337
setting perspective angle property in, 120
text field modifiers offered in Character portion of, 328
using Options section in for contact form, 331
viewing or setting vanishing point in, 114
working with filters in, 108–112

property values, changing numeric, 27
publish formats, selecting, 463
publishing options, setting in Flash, 464
publish profiles

creating, 476
deleting, 477
duplicating, 476

P
package component, for Germaphobe class, 254
packages and import statements, for HelloWorld.fla file,

216–217
Paint Bucket tool

black triangle on icon, 73
using, 70–72

palette type and color settings, changing for GIF, 474
panel group header, 24
panel header, 23
Panel Options button, options in, 67
panels

grouping, docking, stacking, and floating, 24–25
stacking horizontally, 26
understanding, 23

panels and windows, working with in Flash CS4, 23–25
panel tab, 23
paragraphs, formatting, 330–331
parameters

adding to cue points, 392
for Filters tab, 393

Parameters tab, of Component inspector, 361–363
parentheses [()], use of in programming, 199–200
parent joint, in IK bone, 162
parent objects, assigning events to, 236–237
passes, for video, 396–397
paths

anatomy of, 75
creating complex, 75–78
manipulating, 78
points in, 75

Pencil tool, drawing with, 58
PenPoint operating system, GO Corporation’s, 6
Pen tool, creating complex paths with, 75–78
persistence, and tinting frames, 38
personal computers, evolution of, 13–14
perspective angle, viewing or setting, 120
perspective angle property, of FLA file controls, 120
Photo (JPEG) bitmap compression, 86
pie shapes, ovals, and donuts, drawing, 60
Pin Script feature, in Actions panel, 194–195
Pin Script tabs

in Actions panel, 193
using, 194–195

playback behavior, setting for GIF, 472
PlayButton, states of, 446
play controls

assigning custom to FLVPlayback component, 447
creating custom, 445–447
understanding components of, 445–446

playhead, in Timeline panel, 36
playheadUpdate event, FLVPlayback component, 448
playlist

creating with XML, 419
loading into media player application, 419–420

INDEX

534

scaleMode property. See scaleMode parameter
scope. See variable scope
scope errors, hunting, 483
scorekeeping

adding to Germaphobe class, 268–269
the final score, 270–271

Script Assist, using, 189
Script Assist button

in Actions panel, 193, 195–196
Script Navigator, in Actions panel, 193
script pane, in Actions panel, 192
Script time limit option, in Publish Settings window, 468
scurry event, creating random motion with, 262–264
selectable modifier, in Property inspector, 328
Selection tool

moving a motion path with, 133
using, 56–57

Select Skin dialog, 436
self-signed certificates

creating, 515–517
security risks of, 515

semicolons (;)
used in Flash programming, 199
using in XML, 305

sendInfo() function, 346
send method, for SWF to SWF communication, 284
server, saving the last checked, 510–512
server and service availability, checking for AIR

applications, 508–509
setComponentStyle(), using, 373
Set In Point button, 388
Set Out Point button, 389
setStyle() method, using, 373
setTextFormat method, using, 342
Settings Manager feature, web site address, 288
shapes

anatomy of, 58
drawing in Flash, 58–61
selecting and manipulating, 61–63

shape tween, 128
shared objects. See local shared objects

creating simple, 292–295
using, 289–291

Show Border feature, in Property inspector, 329
Show/Hide layer, in Timeline panel, 35
Silicon Beach Software, formed by Charlie Jackson, 6
simple mode

encoding features, 386–390
managing custom presets in, 390

size property, returning size of file with, 290
skew and rotate cursors, 57
Skinner, Grant, SWFBridge by, 288
skinning

components in ActionScript, 370–375
components in Flash, 368–370

importing and exporting, 476
managing, 475–477

Publish Settings window
Advanced settings section, 467–468
Formats tab, 462
functions of, 462
Images and Sounds area in, 466
Local playback setting in, 467
Script time limit option in, 468
SWF Settings area, 466
Trace and debug options, 467
understanding, 462–477

Q
Queue window, of Adobe Media Encoder, 380
QuickTime Export Settings dialog, for controlling disk

process of exporting, 478

R
random() method, 260
Ready event, FLVPlayback component, 448
Rectangle Primitive tool, 61
Rectangle tool, drawing squares and rectangles with, 59
recursion, 248
recursive execution, 248
relational operators, table of standard, 206
removeChildAt() method, removing children at certain

levels with, 251
removeChild() method, removing children with, 251
removeEventListener() method, 241
render HTML modifier, in Property inspector, 328
Required Field, setting textual property to, 345
Rich Internet Applications (RIAs), 8–14
root node, 301
rotate and skew cursors, 57
Rotation button, in Property inspector, 331
roving keyframes vs. nonroving keyframes, 137
ruler or timeline header, in Timeline panel, 36
rulers, guides, and snapping options, 31–32
runtime, defined, 169
runtime errors, when debugging in Flash, 481
runtime IK animation vs. author-time, 169–171

S
saveAndStart function

saving last entered address to a text file with, 512
triggering, 511

Save Preset As dialog box, 154
scale behavior, changing in HTML publishing options, 471
scale cursor, 57
scaleMode parameter, understanding and setting, 435

INDEX

535

strings
filtering and deconstructing, 339–340
working with in ActionScript, 337–338

strings and text, working with, 322
stroke, in Flash, 58
stroke color picker, depiction of, 65
Stroke properties, affect on appearance of star shape,

64–65
strokes and fills, 63–74

selecting both, 61
Structured Query Language (SQL), for web application

databases, 10
style browser, code for, 371–373
style definitions, for components, 371–375
<styling> element, adding to a button in the

timeline, 455
submit function, creating, 344
Subscript/Superscript modifiers, in Property

inspector, 329
Subselection tool, 57

changing motion path curve with, 133
manipulating paths with, 78
using, 62–63

substr and substring methods, 340
substring method, parameters accepted by, 340
substr method, parameters accepted by, 340
Superpaint 2, Jonathan Gay work on, 6
Swap Bitmap dialog, opening, 91
swapChildrenAt() method, 252
swapChildren() method, 252
Swap Colors button, 66
Swatches panel

adding colors to, 68–70
using, 67–70

SWC-based components, 352
SWFBridge, by Grant Skinner, 288
SWF Settings area, Publish Settings window, 466
SWF to SWF, 285–288

communication, 283–288
setting up the receiver, 286–288
setting up the sender, 285–286

switch() statement, 209
filtering through keys with, 240

symbol
changing position of, 137
changing rotation of, 138–139
modifying yours, 137–140

symbol definition, 92
symbol management, external assets and, 82–103
symbols

breaking apart instances of, 98
creating and managing, 93–99
creating button, 95
creating instances of, 94–95

skin parameters, setting, 436–437
skins

creating custom, 441–443
selecting, 436

slash asterisk (/*) combination, opening comments with in
Flash, 201

slash (/) notation, used in ActionScript, 198
SmartSketch, development of, 6
Smooth mode, for Pencil tool, 58
social networking

the future of, 7–8
XML used for, 299

SocketMonitor, in network detection API, 499
.SOL file, examining, 291–292
solid bones. See bones, solid
SoundChannel class, in Flash.media package, 418
Sound class, in Flash.media package, 418
sound files

making available for runtime sharing, 409
making available for use in ActionScript, 409

sound objects, creating and changing sounds at runtime,
416–417

Sound panel
basic operation of, 409
Info section of, 407
using, 405–409

Sound Properties dialog, export settings in, 408–409
SoundTransform class, in Flash.media package, 418
source parameter, setting, 437
Sprite class, importing, 255
sprite symbols, 93
SQLite, database engine, 492
square, selecting stroke of, 61
SquareBgDown symbol, in _SquareButton folder in

library, 441
SquareBgNormal symbol, in _SquareButton folder in

library, 441
SquareBgOver symbol, in _SquareButton folder in

library, 441
squares and triangles, drawing, 59
stacking, panel groups to other panel groups, 25
stage size, changing, 33
star, drawing, 61
Star point size setting, 60
stars and polygons, drawing, 60
startDrag() method, 237
startMonitoring function, 511, 513
stateChange event, FLVPlayback component, 448
stateless Internet, 8–9
static text, 322
stopDrag() method, 237
Straighten mode, for Pencil tool, 58
streaming audio vs. event audio, 407
string methods, list of more useful, 338

INDEX

536

third-party extensions, installing, 357
three-state icon, creating in AIR applications, 508
three-tiered application model, 9–12

diagram of, 11
Timed Text XML Schema

for FLVPlaybackCaptioning component, 454–456
getting into timed text part of, 455–456
root node of, 455

timeline
adding frames/keyframes to, 37
behavior of, 38–40
controlling, 43
in Timeline panel, 36–37

Timeline panel, 33–43
folders as layers in, 35
understanding, 34

timer and frame events, 237–239
timer events, 238–239
timing errors, tracking, 484–485
Tools panel, 43

customizing, 46
top-level function, trace statement as, 191
toUTCString method, of date object, 290
Trace and debug options, in Publish Settings window, 467
Trace Bitmap dialog, options in, 90
Trace Bitmap feature, using in Flash, 89–90
trace statement, 191

adding to your ActionScript, 189
output of referencing xml.properties, 313
primary function of, 191
printing multiple items to screen with, 191
tracing out the tab string in, 247

tracing, strategies for, 483
tracking, in Flash, 327
transformation, in Flash CS4, 113
Transform panel, using for rotation, 120
Transform tool

changing rotation of symbol with, 138–139
scaling, skewing, or rotating motion guide with, 133–134
using, 57

translation, in Flash CS4, 113
transparency, setting for GIF, 473
triangles and squares, drawing, 59
try...catch statements, for handling errors, 281–282
<tt> element, and child nodes for, 455
tween keyframes, representation of on timeline, 132
tweens

adding color effect to, 149
adding filters to, 149–150
changing easing of, 134–136
duplicating from timeline quickly, 151–152
what they do, 128

Type drop-down, specifying stroke or fill type in, 67
typos, finding, 484

duplicating, 98–99
editing, 95
methods for editing, 95
setting fields to define, 93–94
swapping, 97
types of, 92–93
using and organizing, 92–99

syntax, defined, 196
syntax errors

example of, 481
when debugging in Flash, 480

system, in inverse kinematics, 160
System Chrome option, lightweight window, 494
system tray menu, in menu API, 498

T
(tab) parameter, of listchildren() function, 247
Target drop-down menu, for AS files, 260
target property, of event object, 233
text

breaking apart and animating, 334–337
creating with Text tool, 322–337
manipulating with ActionScript, 337–347
synchronizing to playback using events, 447–454

text and strings, working with, 322–348
TextArea component, in ch11_01_start.fla file, 275
text field modifiers, offered in Property inspector, 328
text fields. See dynamic text fields

animating, 335
assigning formats to, 341–343
formatable properties associated with, 342
formatting and creating, 340–341
ways to add, 332–334

TextFormat class, 340–341
properties for, 340

TextFormat object, setting property values of, 340
TextInput and Button component, adding on a new

layer, 511
text node values, retrieving, 314–315
Text tool, creating text with, 322–337
Thawte certificate authority, 515

The Essential Guide to Flash CS4 AIR Development, by
Marco Casario, 492

for details about APIs and how to use them, 501
The Essential Guide to Open Source Flash Development, by

Aral Balkan, et al., 17
thin clients, 14

evolution of, 12–14
web pages as, 9

third-party components, 356–357
Adobe Flash Exchange web site for, 356

INDEX

537

bitrate settings, 395–396
buffering, 396
cropping, 386–388
cropping options to impact final dimensions, 388
encoding using presets, 381–383
menu-driven playback, 437–438
passes, 396
setting in and out points, 388–390
synchronizing to playback using events, 447–454
working with in Flash, 430–457

video components, in Video group, 355–356
Video Import Wizard, opening and using, 430–434
Video tab, areas of, 394
video tab and bitrate settings, in Export Settings window,

394–397
view, changing with Envelope Editor, 411
volume presets, options for, 406

W
W3C Timed Text (TT) Authoring Format 1.0—Distribution

Format Exchange Profile (DFXP), web site address,
454

walls, checking for, 264–265
Web 2.0, 15–16
WebKit Hypertext Markup Language (HTML) rendering

engine, 492
web programming languages, XML used in, 299
web server, 8
web services, XML used for, 298–299
web site address

ActionScript editor, 292
advanced video settings information, 397
AIR marketplace, 518
AIR SDK, 517
files for learning FLVPlaybackCaptioning, 454
Flash documentation, 371
FLVPlayback public properties list, 447
gapminder.org, 126
information for adjusting movie clip color, 108
learning ActionScript and Flash, 186
Mac OS X system skins, 442
MAC source FLA files for skins, 439
Settings Manager feature, 288
video tutorial about 3D graphics, 117
W3C Timed Text (TT) Authoring Format 1.0—Distribution

Format Exchange Profile (DFXP), 454
Windows XP skins, 442
Windows XP source FLA files for skins, 439

Welcome Screen
Flash CS4, 20–21
turning off, 20

while loop, 211

U
URLLoader class

loading a simple data file, 275–276
loading URL requests with, 275
using, 275–277
waiting for data to arrive, 276–277

URLLoader object, 308
URLLoaderDataFormat.VARIABLES property, using, 280
URLMonitor

adding in Actions panel, 510
in network detection API, 499
starting on demand, 511

URLMonitor class, using, 509–510
URLRequest class

calling an absolute URL from remote server, 275
calling a relative local URL, 275
getting information with, 274–275

URLRequest object, 308
URL variables, 279
useCapture parameter, for event listener, 236
user interface

creating for playlist, 420–422
wiring and making it play, 422–424

User Interface group
components in, 354–355
of components, 353

utility window, Windowing API, 493

V
Values dialog, launching, 361
vanishing point

moving back to center of stage, 114
properties, setting, 113–114

variables
creating using URLVariables class, 279
declaring in ActionScript, 201–202
sending and returning for further use, 279–281

variable scope, 214–215
Variables panel, using during debugging, 488
var keyword, properties and variables defined using, 224
VBR (variable bitrate encoding), 396
vector-based graphics, converting bitmaps to, 89–90
vector graphics, working with, 53
vector shapes

applying binds to, 181–182
applying bones to, 180
selecting for IK, 179
working with bones and, 179–180

video
basic setting in Export Setting window, 395
bitrate encoding, 396

INDEX

538

graphical representation of defined structure, 301
learning to see, 300–302
most common use of, 298
reserved characters, 304–305
saving animation as, 152
what it is, 298–299

XML attribute values, accessing, 315–316
XML class

and XMLList classes, 310–312
vs. XMLList class, 310

XML data
accessing, 312–318
drilling down into the structure, 313
reading, 310–318

XMLDocument class, offered by ActionScript 3.0, 310
XML (Extensible Markup Language). See XML
XML file, loading with ActionScript, 308–309
XMLList class, and XML class, 310–312
XML tree, 301

filling out, 303
structure of, 301

XMP, web site address for information about, 400
XMP files, 356
XMP info inspector, launching, 399
XMP metadata, 399–400

modifying in video or audio files, 399
Zoom tool, 31

Windowing API
normal window, 493
utility window, 493–494

windowing API events, 496
windowing API methods, 495
window menu, in menu API, 497
Window mode, changing in HTML publishing options, 470
windows, creating with the NativeWindow class, 495
Windows XP skins, web site address for, 442
Windows XP source FLA files for skins, web site address

for, 439
wire bones, 170
workspaces

customizing the interface with, 45
managing, 45–46
working with in Flash CS4, 44

writing and reading files, 512–514

XYZ
XML

as best way in and out of Flash, 298–318
commenting, 307–308
creating well-formed, 302–308
efficiency of, 306–307
elements in, 302–303
examining basics of structure, 300–302

	CONTENTS
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	PART ONE: BASICS
	Chapter 1: How It All Began
	Animators, coders, designers, oh my…
	What is this thing called Flash?
	How did we get here?
	The world today—addicted to change
	Flash Platform, open source, and Web 2.0
	Summary

	Chapter 2: The New Interface of Flash CS4
	Welcome Screen
	The Flash CS4 interface is nearly identical between operating systems
	Working with panels and windows
	The Property inspector—one panel to rule them all
	The document window
	The Timeline panel
	The Tools panel
	Customizing the interface
	Summary

	Chapter 3: Drawing with Flash's Vector Tools
	Understanding graphic types
	Working with vector graphics
	Drawing modes: Merge Drawing vs. Object Drawing
	Creating and manipulating lines
	Drawing shapes
	Selecting and manipulating shapes
	Strokes and fills
	Advanced drawing
	Summary

	Chapter 4: External Assets and Symbol Management
	Using bitmaps in your Flash projects
	Using and organizing symbols
	The Library panel
	Summary

	Chapter 5: Working with Blends, Filters, and 3D Transformations
	Blends
	Working with filters
	Introducing 3D transformations
	Summary

	PART TWO: ANIMATION
	Chapter 6: Basic Animation in Flash
	Animating to convey information
	Animation for impact and emotion
	The disciplines of animation
	Understanding animation in Flash
	Creating a motion tween—a step-by-step primer
	Modifying a motion tween
	Understanding easing
	Modifying your symbol
	Introducing the Motion Editor
	Reusing animation
	Summary

	Chapter 7: Playing with Dolls: Introducing Flash IK
	What is kinematics?
	Using IK with shapes and the Bind tool
	Summary

	PART THREE: ACTIONSCRIPT
	Chapter 8: The Programming Primer: A Flash Designer's Intro to ActionScript 3.0
	Dreaming in metaphors
	Following the evolution of ActionScript 3.0
	Crafting your first ActionScript application
	The trace statement: Leaving breadcrumbs
	Moving into the Actions panel: Your new home
	Basic elements of ActionScript programming
	Having a little class or a big one
	Summary

	Chapter 9: The Building Blocks of Interactivity
	Properties: I unpacked my adjectives
	Methods: Just do it!
	Events: Are we there yet?
	Frame and timer events
	Accepting keyboard input
	Removing events and listeners
	Summary

	Chapter 10: Learning the Display Model and Bringing It All Together
	Working with display objects
	Traversing the display list
	Examining display object containers
	Germaphobe
	Summary

	Chapter 11: Managing External Assets and Communication
	Working with external data
	Communicating: SWF to SWF
	Storing data to a local machine
	Summary

	Chapter 12: XML: The Best Way In and Out of Flash
	What is XML?
	ActionScript 3.0 and E4X
	Learning to see XML
	Using proper structure and syntax
	Loading an XML file with ActionScript
	Reading the XML data
	Summary

	PART FOUR: ADDITIONAL USER INTERFACES
	Chapter 13: Working with Text and Strings
	Creating text with the Text tool
	Manipulating text with ActionScript
	Summary

	Chapter 14: Using Components
	Understanding components
	Adding components to your application
	Controlling components
	Summary

	PART FIVE: ENHANCED MEDIA DEVELOPMENT
	Chapter 15: Using the Adobe Media Encoder—A Crash Course
	Introduction to the interface
	Taking a close look at the Export Settings window
	XMP metadata
	Summary

	Chapter 16: Working with Audio in Flash
	Thinking about audio
	Understanding audio in the Flash authoring environment
	Using library audio assets at runtime
	Loading audio at runtime
	Manipulating audio at runtime
	When the music stops—handling audio events
	Summary

	Chapter 17: Working with Video in Flash
	Using the Video Import Wizard
	Understanding the FLVPlayback component
	Menu-driven video playback
	Customizing the FLVPlayback component skin
	Creating custom play controls
	Synchronizing video, text, and other media using events
	Adding captions to the FLVPlayback component
	Summary

	PART SIX: PREPARING YOUR PROJECT FOR DEPLOYMENT
	Chapter 18: Publishing, Exporting, and Debugging Your Flash Project
	Understanding the Publish Settings window
	Exporting file formats
	Debugging in Flash
	Summary

	Chapter 19: Building AIR Applications with Flash CS4
	Using AIR APIs
	Building your first AIR application with Flash CS4
	Creating your AIR package
	Deploying your AIR application
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.03333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [7200.000 7200.000]
>> setpagedevice

