
www.allitebooks.com

http://www.allitebooks.org

Tkinter GUI Application
Development Blueprints

Master GUI programming in Tkinter as you design,
implement, and deliver ten real-world applications
from start to finish

Bhaskar Chaudhary

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Tkinter GUI Application Development Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-973-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Bhaskar Chaudhary

Reviewers
Panagiota Katsikouli

Erik S. Rapert

Raphaël Seban

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Kirk D'costa

Content Development Editor
Susmita Sabat

Technical Editor
Gaurav Suri

Copy Editor
Vedangi Narvekar

Jonathan Todd

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bhaskar Chaudhary is a professional programmer and information architect.
He has an experience of almost 9 years in consulting, contracting, and educating in
the field of software development. He has worked with a large set of programming
languages on various platforms over the years.

He is an electronics hobbyist and a musician in his free time.

I would like to thank my parents for everything that I am. Thanks
to my wife Sangita, son Chaitanya, sisters Priyanki and Shambhavi,
niece Akanksha, nephew Praneet, and friend Souvik for being around.
Anurag you are always remembered.

I would also like to thank Erik S. Rapert, Panagiota Katsikouli,
and Raphaël Seban for reviewing the book and offering countless
suggestions to improve it. The book would not have been half as
good without their contributions.

Thanks to Susmita Sabat and Kirk D'Costa for providing suggestions
to improve the quality of the book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Panagiota Katsikouli is a PhD researcher in the School of Informatics, University
of Edinburgh, UK. Her work is related to developing techniques for the compact
representation of location and signal data recorded in mobile sensing devices, such
as smartphones or standalone sensors, in order to design and implement lightweight
online and/or distributed algorithms to perform various analysis tasks, such as
detecting popular paths and indoor localization, on the data. She has received her
undergraduate diploma from the Polytechnic School of Patras, Greece, Department
of Computer Engineering and Informatics, and her master's degree of computer
technology from the same department. Panagiota, in her free time, enjoys writing
Python games using the Tkinter library.

Erik S. Rapert is a pale, slim programmer and a twin who loves Linux and video
games. He lives in Dallas with his wife, who is also a software engineer. Erik has a
wide range of experience, which includes creating blinking LEDs using Arduino,
building small desktop apps using Python and Tkinter, web development with PHP
or Ruby, and developing cutting-edge virtual reality using C++. He has used a very
broad range of programming languages, but Python is one of his favorites.

Thank you William C. Slater for teaching me how to write software.
Thank you Andrew Closson for being a teacher. Thank you Ashley
for being you.

www.allitebooks.com

http://www.allitebooks.org

Raphaël Seban is a French man who is self-trained in computer science since 1981.
He obtained a science degree of mathematics and physics in 1986 and then entered
active life directly. A computer geek, he never stopped learning new concepts and
is learning even today. He worked for two years with IA's R&D department as a
software developer and research assistant. After that, in 2000, he decided to create
his own company, RAF'INFO, where he worked until 2008.

Since May 2008, Raphaël has mainly contributed to the open source community
by developing free software on GitHub (https://github.com/tarball69) and
providing help on technical forums.

His famous free software, tkRAD (https://github.com/tarball69/tkRAD/wiki),
still remains one of the leading Tkinter Rapid Application Development libraries in
Python's community, providing helpful services such as XML widget GUI building
and a powerful event manager.

I would like to thank the Packt Publishing team for trusting my
Python/Tkinter expertise, especially Bhaskar Chaudhary, the author,
who made an actual effort to give his knowledge an educational
purpose; Judie Jose, the project coordinator, for her kindness; and
Dinesh Rathe, the reviewer acquisition executive who recruited me.

www.allitebooks.com

https://github.com/tarball69
https://github.com/tarball69/tkRAD/wiki
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Meet Tkinter 1

Objectives of this chapter 2
Installing Python and Tkinter 3
Importing Tkinter 4
GUI programming – the big picture 5
The root window – your drawing board 6
Widgets – the building blocks of GUI programs 7

Some important widget features 9
Ways to create widgets 9
Getting to know the core Tkinter widgets 10
Adding widgets to a parent window 11

The Tkinter geometry manager 13
The pack geometry manager 13
The grid geometry manager 17
The place geometry manager 21

Events and callbacks – adding life to programs 23
Command binding 24
Passing arguments to callbacks 24
Limitations of the command option 25
Event binding 25
Event patterns 27
The levels of binding 29

Handling widget-specific variables 30
Event unbinding and virtual events 32
Doing it in style 32

Specifying styles 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Some common root window options 37
Getting interactive help 38

Summary 39
Chapter 2: Making a Text Editor 41

Objectives of the chapter 41
An overview of the chapter 42
Setting up the editor skeleton 43
Adding a menu and menu items 44

Adding menu items 45
Implementing the View menu 48
Adding a built-in functionality 49
Indexing and tagging 51

Index 51
Tags 53

Implementing the Select All feature 54
Implementing the Find Text feature 54
Types of Toplevel windows 58
Working with forms and dialogs 59
Working with message boxes 65
The icons toolbar and View menu functions 68
Displaying the line number 69
Adding the cursor information bar 73
Adding themes 74
Creating the context/pop-up menu 75
Summary 76

Chapter 3: Programmable Drum Machine 77
An overview of the chapter 78
Module requirements for the chapter 79
Setting up the GUI in OOP 80
Finalizing the data structure 81
Creating broader visual elements 83

Defining getter and setter methods 88
The number of units and beats per unit features 90

Loading drum samples 91
Playing the drum machine 94

Initializing pygame 94
Playing complete patterns 95
Determining the tempo of a rhythm 96

Tkinter and threading 98
Tkinter and thread safety 100

Table of Contents

[iii]

Support for multiple beat patterns 102
Saving beat patterns 103
Working with ttk-themed widgets 108
Summary 115

Chapter 4: A Game of Chess 117
An overview of the chapter 118

Module requirements for this chapter 118
Structuring our program 119
Modeling the data structures 124

Convention on naming chess pieces 125
Convention for naming locations on the chessboard 125

Creating a Piece class 128
Displaying chess pieces on the chessboard 130
Defining rules for the chess pieces 133
Rules for the King, Queen, Rook, and Bishop 133
Rules for a Knight 136
Rules for a Pawn 137
The movement validation of chess pieces 139
Tracking all the available moves 140
Finding out the current position of the King 140

Checking whether the King is in check 141
Making the game functional 141

Getting the source and destination position 143
Collecting a list of the moves that need to be highlighted 143
Highlighting allowed moves 144
Pre move validation 145
Recording a move in the data structure 146

Keep game statistics 147
Managing user preferences 148
Summary 151

Chapter 5: Building an Audio Player 153
An overview of the chapter 153
External library requirements 154

The pyglet module 155
PMW Tkinter extension 155

Program structure and broadview skeleton 156
Deciding the data structure 160
Creating the Player class 161
Adding and removing items from a playlist 165

Adding a single audio file 167

Table of Contents

[iv]

Removing the selected files from a playlist 167
Adding all files from a directory 168
Emptying the playlist 168

Playing audio and adding audio controls 169
Adding the play/stop function 169
Adding the pause/unpause function 171
Adding the mute/unmute function 171
Fast forward/rewind function 172
Adding the next track/previous track function 172
Adding the volume change function 173

Creating a seek bar 173
One-time updates during audio playback 177
Managing continuous updates 178
Looping over tracks 180
Adding a tooltip 182

PMW list of extensions 183
Widgets 183
Dialogs 183
Miscellaneous 183

Summary 185
Chapter 6: Paint Application 187

Creating a tiny framework 188
Setting up a broad GUI structure 192
Dealing with mouse events 194
Adding toolbar buttons 196
Drawing items on the canvas 199
Adding a color palette 205
Adding top bar options for draw methods 208
Drawing irregular lines and super shapes 212

Drawing irregular lines 212
Drawing super shapes 213

Adding functionality to the remaining buttons 216
Adding functionality to menu items 222
Summary 224

Chapter 7: Multiple Fun Projects 225
Chapter objectives 225
Building a screen saver 226
Building a Snake game 229
Creating a Weather Reporter 239

A simple socket demo 244
Building a port scanner 246

Table of Contents

[v]

Building a chat application 249
Creating a phone book application 255

Creating a new record 259
Reading from the database 259
Updating records 259
Deleting records 259

Graphing with Tkinter 260
3D graphics with Tkinter 264
Summary 271

Chapter 8: Miscellaneous Tips 273
Chapter objectives 273
Tracing Tkinter variables 274
Widget traversal 275
Validating user input 277

Key validation mode demo 280
Focus out validation mode demo 282

Formatting widget data 284
More on fonts 286

Finer control over font 287
Building a font selector 288

Redirecting the command-line output to Tkinter 289
The class hierarchy of Tkinter 291
Tips for program design 295

The model-first policy versus the code-first policy 295
Separating the model from the view 295
Selecting the right data structure 296
Naming variables and methods 296
The Single Responsibility Principle 296
Loose coupling 296
Handling errors and exceptions 297

Tips for program optimization 297
Using filter and map 297
Optimize variables 298
Profiling your program 298
Other optimization tips 300

Distributing a Tkinter application 300
py2exe 301
py2app 301
PyInstaller 301
Other freezing tools 301

Table of Contents

[vi]

The limitations of Tkinter 302
A limited number of core widgets 302
Non-Python objects 302
No support for printing 302
No support for newer image formats 303
Inactive development community 303
Alternatives to Tkinter 303
wxPython 303
PyQt 304
PySide 304
PyGTK 305
Other options 305

Tkinter in Python 2.x 305
Summary 307

Index 309

Preface

[vii]

Preface
Tkinter GUI Application Development Blueprints will walk you through the process
of developing real-world graphical applications using Python and Tkinter, the
built-in GUI module of Python.

This book attempts to highlight the features and capabilities of Tkinter while
demonstrating best practices involved in writing GUI programs, irrespective of the
library that you choose to build your application with. Here, you will learn how
to use Tkinter to develop exciting, fun, and useful GUI applications with Tkinter
and Python.

We hope to take you on a fun journey through more than 10 projects from
different problem domains. As we develop new applications in each project,
the book also builds up a catalog of some commonly used strategies to develop
real-world applications.

What this book covers
Chapter 1, Meet Tkinter, begins from scratch, providing an overview of Tkinter and
covering details of how to create root windows, add widgets to a root window,
handle layout with geometry managers, and work with events.

Chapter 2, Make a Text Editor, develops a text editor in the procedural style of
programming. It gives readers their first taste of several features of Tkinter and
what it is like to develop a real application.

Preface

[viii]

Chapter 3, Programmable Drum Machine, uses object-oriented programming to develop
a drum machine that is capable of playing user-composed rhythms. The application
can also save compositions and later edit or replay them. Here, you will learn the
techniques of designing a GUI application using a model-first philosophy and how
to write multithreaded GUI applications.

Chapter 4, A Game of Chess, introduces key aspects of structuring a GUI application
using the model-view-controller (MVC) architecture. It also teaches the art of taking
a real-world object (chess) and modeling it in the notations that your program can
manipulate. It also introduces readers to the power of the Tkinter Canvas widget.

Chapter 5, Building an Audio Player, introduces the concepts of working with external
libraries while showing you how to work with many different Tkinter widgets. Most
importantly, it shows how to make your own Tkinter widgets, thereby extending the
capabilities of the Tkinter manifold.

Chapter 6, Paint Application, looks at the Tkinter Canvas widget in detail. As you will
see, the Canvas widget is truly a highlight of Tkinter. The chapter also introduces
the concept of the GUI framework, thereby creating reusable code for all your future
programs.

Chapter 7, Multiple Fun Projects, works through a series of small but functional
projects, demonstrating problems from different domains such as animation,
network programming, socket programming, database programming, making
graphs, and multithreaded programming.

Chapter 8, Miscellaneous Tips, discusses some vital aspects of GUI programming
that, though not covered in the previous chapters, form a common theme in many
GUI programs.

What you need for this book
The programs discussed in this book have been developed on the Ubuntu platform.
However, given the multiplatform abilities of Tkinter, you can easily work along on
other platforms such as Windows, Mac OS, and other distributions of Linux.

For this book, you will require Python version 3.4 with Tkinter 8.6 in most parts of
the distribution. The links to download and install other project-specific modules
and software are mentioned in the respective chapters.

Preface

[ix]

Who this book is for
Software developers, scientists, researchers, engineers, students, and programming
hobbyists with a basic familiarity with Python will find this book interesting and
informative. A motivated Python newbie with a background in writing programs
can fill in the gaps of knowledge with a little outside research.

People familiar with basic programming constructs in other programming languages
can also catch up with some brief reading on Python. No GUI programming
experience is expected.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The reset_to_initial_locations() method initializes all the chess piece
locations to reflect the starting position of the game."

A block of code is set as follows:

def toggle_play_button_state(self):
 if self.now_playing:
 self.play_button.config(state="disabled")
 else:
 self.play_button.config(state="normal")

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def on_loop_button_toggled(self):
 self.loop = self.to_loop.get()
 self.keep_playing = self.loop
 if self.now_playing:
 self.now_playing = self.loop
 self.toggle_play_button_state()

Any command-line input on the Python interactive shell is written as follows:

>>> import pyglet

>>> help(pyglet.media)

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When a
user clicks on the Cancel button, we simply want the settings window to close."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/9738OS_ColoredImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/9738OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9738OS_ColoredImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Meet Tkinter
Welcome to the exciting world of GUI programming with Tkinter. This chapter aims
at getting you acquainted with Tkinter, the built-in graphical user interface (GUI)
library for all standard Python distributions.

Tkinter (pronounced tea-kay-inter) is the Python interface to Tk, the GUI toolkit
for Tcl/Tk.

Tcl (short for Tool Command Language and pronounced as tickle) is a popular
scripting language in the domains of embedded applications, testing, prototyping,
and GUI development. On the other hand, Tk is an open source, multi-platform
widget toolkit that is used by many different languages to build GUI programs.

The Tkinter interface is implemented as a Python module—Tkinter.py in
Python 2.x versions and tkinter/__init__.py in Python 3.x versions. If you
look at the source code, Tkinter is just a wrapper around a C extension that uses
the Tcl/Tk libraries.

Tkinter is suitable for application to a wide variety of areas, ranging from small
desktop applications to use in scientific modeling and research endeavors across
various disciplines.

When a person learning Python needs to graduate to GUI programming, Tkinter
seems to be the easiest and fastest way to get the work done.

Tkinter is a great tool for the programming of GUI applications in Python.

The features that make Tkinter a great choice for GUI programming include
the following:

• It is simple to learn (simpler than any other GUI package for Python)
• Relatively little code can produce powerful GUI applications
• Layered design ensures that it is easy to grasp

Meet Tkinter

[2]

• It is portable across all operating systems
• It is easily accessible, as it comes pre-installed with the standard

Python distribution

None of the other Python GUI toolkits have all of these features at the same time.

Objectives of this chapter
The purpose of this chapter is to make you comfortable with Tkinter. It aims at
introducing you to the various components of GUI programming with Tkinter.

By the end of this chapter, you will have developed several partly-functional dummy
applications, such as the one shown in the following screenshot:

We believe that the concepts that you will develop here will enable you to apply and
develop GUI applications in your area of interest.

The key aspects that we want you to learn from this chapter include the following:

• Understanding the concept of a root window and a main loop
• Understanding widgets—the building blocks of programs
• Getting acquainted with a list of available widgets

Chapter 1

[3]

• Developing layouts by using different geometry managers
• Applying events and callbacks to make a program functional
• Styling widgets by using styling options and configuring the root widget

Installing Python and Tkinter
To work on the projects in this chapter, you must have a working copy of Python
3.4.0 installed on your computer.

The Python download package and instructions for downloading for different
platforms are available at https://www.python.org/downloads/release/
python-340/.

The installer binaries for Mac OS X and the Windows platform are available
at the aforementioned link. Python 3.4 is installed by default on Ubuntu 14.04.
Unfortunately, Ubuntu 14.04 does not ship with Tkinter. You have to install it
manually. Other Linux users can also install the Python Interpreter (v3.4) package
from the official repository or build it directly from the source link provided in the
aforementioned link.

We will develop our application on the Ubuntu platform. However, since Tkinter is
cross-platform, you can follow along with the instructions in this book on Windows,
Mac, or any other Linux distribution, without making any modifications to the code.

After installing Python, open the Python 3.4 interactive shell and type in the
following command:

>>> import tkinter

This shell command should be executed without an error.

If there are no error messages, the Tkinter module is installed on your Python
distribution. When working with examples from this book, we do not support any
Python version except for Python 3.4.0, which comes bundled with Tkinter Tcl/Tk
Version 8.6. However, most of the examples should work out-of-the-box on other
minor Python 3 versions.

To check whether you have the correct Tkinter version on your Python installation,
type the following commands in your IDLE or interactive shell:

>>> import tkinter

>>> tkinter._test()

https://www.python.org/downloads/release/python-340/
https://www.python.org/downloads/release/python-340/

Meet Tkinter

[4]

This should make a window pop up. The first line in the window reads This is
Tcl/Tk version 8.6. Make sure that it is not 8.5 or any earlier version, as Version 8.6
is a vast improvement over its previous versions.

You are ready to code Tkinter GUI applications if your version test confirms it as
Tcl/Tk version 8.6.

Let's get started!

Importing Tkinter
This section describes the different styles of importing Tkinter modules. In the
preceding example, we imported Tkinter by using the following command:

from tkinter import *

This method of importing eases the handling of methods defined in the module.
That is to say, you can simply access the methods directly. Generally, it is considered
bad practice to import all (*) the methods of a module like we did here. This is so
because this style of importing leads to memory flooding, namespace confusion,
and difficulty in bug tracking and/or reviewing code. Importing into the global
namespace can also lead to an accidental overwriting of methods from other
libraries in the global namespace.

There are several ways to import Tkinter in which this overlapping can be avoided,
with a common way being the following one:

import tkinter

This style of importing does not pollute the namespace with a list of all the methods
defined within Tkinter. However, every method within Tkinter will now have
to be called by using the tkinter.some_method format instead of directly calling
the method.

Another commonly used import style is as follows:

import tkinter as tk

Here too, you do not pollute the current namespace with all the Tkinter methods.
Now, you can access methods such as tk.some_method. The tk alias is convenient
and easy to type. It is commonly used by many developers to import Tkinter.

Chapter 1

[5]

GUI programming – the big picture
As a GUI programmer, you will generally be responsible for deciding the following
three aspects of your program:

• Which components should appear on the screen? This involves choosing the
components that make the user interface. Typical components include things
such as buttons, entry fields, checkboxes, radio buttons, scroll bars, and the
like. In Tkinter, the components that you add to your GUI are called widgets.
Widgets (short for window gadgets) are the graphical components that make
up your application's frontend.

• Where should the components go? This includes deciding the position and
the structural layout of various components. In Tkinter, this is referred to as
geometry management.

• How do components interact and behave? This involves adding functionality
to each component. Each component or widget does some work. For example,
a button, when clicked on, does something in response. A scrollbar handles
scrolling, and checkboxes and radio buttons enable users to make some
choices. In Tkinter, the functionality of various widgets is managed by the
command binding or the event binding using callback functions.

The following figure shows the three components of GUI programming:

Let's delve deeper into each of these three components in the context of Tkinter.

Meet Tkinter

[6]

The root window – your drawing board
GUI programming is an art, and like all art, you need a drawing board to capture
your ideas. The drawing board that you will use is called the root window. Our first
goal is to get the root window ready.

The following screenshot depicts the root window that we are going to create:

Drawing the root window is easy. You just need the following three lines of code:

from tkinter import *
root = Tk()
root.mainloop()

Save this with the .py file extension or check out the 1.01.py code. Open it in the
IDLE window and run the program from the Run menu (F5 in IDLE). Running
this program should generate a blank root window, as shown in the preceding
screenshot. This window is equipped with the functional minimize, maximize,
and close buttons, and a blank frame.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[7]

The following is a description of the preceding code:

• The first line imported all (*) the classes, attributes, and methods of Tkinter
into the current workspace.

• The second line created an instance of the tkinter.Tk class. This created
what is called the "root" window, which is shown in the preceding
screenshot. According to the conventions, the root window in Tkinter is
usually called "root", but you are free to call it by any other name.

• The third line executed the mainloop (that is, the event loop) method of the
root object. The mainloop method is what keeps the root window visible.
If you remove the third line, the window created in line 2 will disappear
immediately as soon as the script stops running. This will happen so fast that
you will not even see the window appearing on your screen. Keeping the
mainloop method running also lets you keep the program running until you
press the close button, which exits the main loop.

• Tkinter also exposed the mainloop method as tkinter.mainloop(). So, you
can even call mainloop() directly instead of calling root.mainloop().

Congratulations! You have completed your first objective, which was to draw the
root window. You have now prepared your drawing board (root window). Now, get
ready to paint it with your imagination!

Commit the three lines of code (shown in code 1.01.py) to memory.
These three lines generate your root window, which will accommodate
all the other graphical components. These lines form the skeleton of any
GUI application that you will develop in Tkinter. The entire code that will
make your GUI application functional will go between line 2 (new object
creation) and line 3 (mainloop) of this code.

Widgets – the building blocks of GUI
programs
Now that we have our top level or the root window ready, it is time to think over a
question—which components should appear in the window? In Tkinter jargon, these
components are called widgets.

Meet Tkinter

[8]

The syntax that is used to add a widget is as follows:

my_widget = Widget-name (its container window, ** its
 configuration options)

In the following example (1.02.py), we will add two widgets, a label, and a button
to the root frame. Note how all the widgets are added between the skeleton code that
we defined in the first example:

from tkinter import *
root = Tk()
label = Label(root, text="I am a label widget")
button = Button(root, text="I am a button")
label.pack()
button.pack()
root.mainloop()

The following is a description of the preceding code:

• This code added a new instance named label for the Label widget. The first
parameter defined root as its parent or container. The second parameter
configured its text option as I am a label widget.

• Similarly, we defined an instance of a Button widget. This is also bound
to the root window as its parent.

• We used the pack() method, which is essentially required to position the label
and button widgets within the window. We will discuss the pack() method
and several other related concepts when exploring the geometry management
task. However, you must note that some sort of geometry specification is
essential for the widgets to be displayed within the top-level window.

Running the preceding code will generate a window with a label and a button
widget, as shown in the following screenshot:

Chapter 1

[9]

Some important widget features
Note the following few important features that are common to all widgets:

• All widgets are actually objects derived from their respective widget classes.
So, a statement such as button = Button(its_parent) actually creates a
button instance from the Button class.

• Each widget has a set of options that decides its behavior and appearance.
This includes attributes such as text labels, colors, and font size. For example,
the Button widget has attributes to manage its label, control its size, change
its foreground and background colors, change the size of the border, and
so on.

• To set these attributes, you can set the values directly at the time of creating
the widget, as demonstrated in the preceding example. Alternatively, you
can later set or change the options of the widget by using the .config()
or .configure() method. Note that the .config() or .configure()
methods are interchangeable and provide the same functionality. In fact,
the .config() method is simply an alias of the .configure() method.

Ways to create widgets
There are two ways to create widgets in Tkinter.

The first way involves creating a widget in one line and then adding the pack()
method (or other geometry managers) in the next line, as follows:

my_label = Label(root, text="I am a label widget")
my_label.pack()

Alternatively, you can write both the lines together, as follows:

Label(root, text="I am a label widget").pack()

You can either save a reference to the widget created (my_label, as in the first
example), or create a widget without keeping any reference to it (as demonstrated
in the second example).

You should ideally keep a reference to the widget in case the widget has to be accessed
later on in the program. For instance, this is useful in case you need to call one of its
internal methods or for its content modification. If the widget state is supposed to
remain static after its creation, you need not keep a reference to the widget.

www.allitebooks.com

http://www.allitebooks.org

Meet Tkinter

[10]

Note that calls to pack() (or other geometry managers) always return
None. So, consider a situation where you create a widget, save a reference
to it, and add a geometry manager (say, pack()) on the same line, as
follows:

my_label = Label(...).pack()

In this case, you are actually not creating a reference to the widget.
Instead, you are creating a None type object for the my_label variable.
So, when you later try to modify the widget through the reference, you
get an error because you are actually trying to work on a None type
object.
If you need a reference to a widget, you must create it on one line and
then specify its geometry (like pack()) on the second line, as follows:

my_label = Label(...)

my_label.pack()

This is one of the most common errors committed by beginners.

Getting to know the core Tkinter widgets
Now, you will get to know all the core Tkinter widgets. You have already seen two
of them in the previous example—the Label and Button widgets. Now, let's see all
the other core Tkinter widgets.

Tkinter includes 21 core widgets, which are as follows:

Toplevel widget Label widget Button widget
Canvas widget Checkbutton widget Entry widget
Frame widget LabelFrame widget Listbox widget
Menu widget Menubutton widget Message widget
OptionMenu widget PanedWindow widget Radiobutton widget
Scale widget Scrollbar widget Spinbox widget
Text widget Bitmap Class widget Image Class widget

Let's write a program to display all of these widgets in the root window.

Chapter 1

[11]

Adding widgets to a parent window
The format used to add widgets is the same as the one that we discussed in the
previous task. To give you an idea about how it's done, here's some sample code
that adds some common widgets:

Label(parent, text="Enter your Password:")
Button(parent, text="Search")
Checkbutton(parent, text="Remember Me", variable=v, value=True)
Entry(parent, width=30)
Radiobutton(parent, text="Male", variable=v, value=1)
Radiobutton(parent, text="Female", variable=v, value=2)
OptionMenu(parent, var, "Select Country", "USA", "UK", "India",
 "Others")
Scrollbar(parent, orient=VERTICAL, command= text.yview)

Can you spot the pattern that is common to each widget? Can you spot the
differences?

As a reminder, the syntax for adding a widget is as follows:

Widget-name(its_parent, **its_configuration_options)

Using the same pattern, let's add all the 21 core Tkinter widgets into a dummy
application (the 1.03.py code). We do not produce the entire code here. A
summarized code description for 1.03.py is as follows:

• We create a top-level window and a main loop, as shown in the earlier
examples.

• We add a Frame widget and name it menu_bar. Note that Frame widgets
are just holder widgets that hold other widgets. Frame widgets are great for
grouping widgets together. The syntax for adding a frame is the same as that
of all the other widgets:
frame = Frame(root)
frame.pack()

• Keeping the menu_bar frame as the container, we add two widgets to it:
 ° Menubutton
 ° Menu

Meet Tkinter

[12]

• We create another Frame widget and name it frame. Keeping frame as the
container/parent widget, we add the following seven widgets to it:

 ° Label
 ° Entry
 ° Button
 ° Checkbutton
 ° Radiobutton
 ° OptionMenu
 ° Bitmap Class

• We then proceed to create another Frame widget. We add six more widgets
to the frame:

 ° Image Class
 ° Listbox
 ° Spinbox
 ° Scale
 ° LabelFrame
 ° Message

• We then create another Frame widget. We add two more widgets to
the frame:

 ° Text
 ° Scrollbar

• We create another Frame widget and add two more widgets to it:
 ° Canvas
 ° PanedWindow

All of these widgets constitute the 21 core widgets of Tkinter.

Now that you have had a glimpse of all the widgets, let's discuss how to specify the
location of these widgets using geometry managers.

Chapter 1

[13]

The Tkinter geometry manager
You may recall that we used the pack() method to add widgets to the dummy
application that we developed in the previous section. The pack() method is an
example of geometry management in Tkinter.

The pack() method is not the only way of managing the geometry in your interface.

In fact, there are three geometry managers in Tkinter that let you specify the position
of widgets inside a top-level or parent window.

The three geometry managers are as follows:

• pack: This is the one that we have used so far. It is simple to use for simpler
layouts, but it may get very complex for slightly complex layouts.

• grid: This is the most commonly used geometry manager that provides a
table-like layout of management features for easy layout management.

• place: This is the least popular, but it provides the best control for the
absolute positioning of widgets.

Now, let's have a look at some examples of all the three geometry managers
in action.

The pack geometry manager
The pack manager can be a bit tricky to explain in words, and it can best be
understood by playing with the code base. Fredrik Lundh, the author of Tkinter, asks
us to imagine the root as an elastic sheet with a small opening at the center. The pack
geometry manager makes a hole in the elastic sheet that is just large enough to hold
the widget. The widget is placed along a given inner edge of the gap (the default
is the top edge). It then repeats the process till all the widgets are accommodated.
Finally, when all the widgets have been packed in the elastic sheet, the geometry
manager calculates the bounding box for all the widgets. It then makes the parent
widget large enough to hold all the child widgets.

When packing the child widgets, the pack manager distinguishes between the
following three kinds of space:

• The unclaimed space
• The claimed but unused space
• The claimed and used space

Meet Tkinter

[14]

The most commonly used options in pack include the following:

• side: LEFT, TOP, RIGHT, and BOTTOM (these decide the alignment of
the widget)

• fill: X, Y, BOTH, and NONE (these decide whether the widget can grow in size)
• expand: Boolean values such as tkinter.YES/tkinter.NO, 1/0, True/

False

• anchor: NW, N, NE, E, SE, S, SW, W, and CENTER (corresponding to the
cardinal directions)

• Internal padding (ipadx and ipady) for the padding inside widgets and
external padding (padx and pady), which all default to a value of zero

Let's take a look at a demo code that illustrates some of the pack features.

Two of the most commonly used pack options are fill and expand.

Here's the code snippet (code 1.04.py) that will generate a GUI like the one shown
in following screenshot:

The following is the code (1.04.py) that generates the preceding GUI:

from tkinter import *
root = Tk()

frame = Frame(root)
demo of side and fill options
Label(frame, text="Pack Demo of side and fill").pack()
Button(frame, text="A").pack(side=LEFT, fill=Y)
Button(frame, text="B").pack(side=TOP, fill=X)
Button(frame, text="C").pack(side=RIGHT, fill=NONE)
Button(frame, text="D").pack(side=TOP, fill=BOTH)

Chapter 1

[15]

frame.pack()
note the top frame does not expand nor does it fill in

X or Y directions
demo of expand options - best understood by expanding the root
 widget and seeing the effect on all the three buttons below.
Label (root, text="Pack Demo of expand").pack()
Button(root, text="I do not expand").pack()
Button(root, text="I do not fill x but I expand").pack(expand = 1)
Button(root, text="I fill x and expand").pack(fill=X, expand=1)
root.mainloop()

The following is a description of the preceding code:

• When you insert the A button in the root frame, it captures the leftmost area
of the frame, expands, and fills the Y dimension. Because the fill option
is specified as fill=Y, it claims all the area that it wants and fills the Y
dimension of its frame container frame.

• Because frame is itself packed with a plain pack() method with no mention
of a pack option, it takes the minimum space required to accommodate all of
its child widgets.

• If you increase the size of the root window by pulling it down or sideways,
you will see that the all the buttons within frame do not fill or expand with
the root window.

• The positioning of the B, C, and D buttons occurs on the basis of the side
and fill options specified for each of them.

• The next three buttons (after B, C, and D) demonstrate the use of the expand
option. A value of expand=1 means that the button moves its place on
resizing the window. Buttons with no explicit expand options stay at their
place and do not respond to changes in the size of their parent container
(the root window in this case).

• The best way to study this piece of code would be to resize the root window
to see the effect that it has on various buttons.

• The anchor attribute (not used in the preceding code) provides a means to
position a widget relative to a reference point. If the anchor attribute is not
specified, the pack manager places the widget at the center of the available
space or the packing box. The other options that are allowed include the four
cardinal directions (N, S, E, and W) and a combination of any two directions.
Therefore, valid values for the anchor attribute are CENTER (the default
value), N, S, E, W, NW, NE, SW, and SE.

Meet Tkinter

[16]

The value for most of the Tkinter geometry manager attributes can
either be specified in capital letters without quotes (such as side=TOP,
anchor=SE) or in small letters within quotes (such as side='top',
anchor='se').

We will use the pack geometry manager in some of our projects. Therefore, it will be
worthwhile to get acquainted with pack and its options.

The pack manager is ideally suited for the following two kinds of situation:

• Placing widgets in a top-down manner
• Placing widgets side by side

Code 1.05.py shows an example of both of these scenarios:

parent = Frame(root)
placing widgets top-down
Button(parent, text='ALL IS WELL').pack(fill=X)
Button(parent, text='BACK TO BASICS').pack(fill=X)
Button(parent, text='CATCH ME IF U CAN').pack(fill=X)
placing widgets side by side
Button(parent, text='LEFT').pack(side=LEFT)
Button(parent, text='CENTER').pack(side=LEFT)
Button(parent, text='RIGHT').pack(side=LEFT)
parent.pack()

The preceding code produces a GUI, as shown in the following screenshot:

For a complete pack reference, type the following command in the Python shell:

>>> import tkinter

>>> help(tkinter.Pack)

Chapter 1

[17]

Where should you use the pack() geometry manager ?
Using the pack manager is somewhat complicated as compared to the
grid method, which will be discussed next, but it is a great choice in
situations such as the following ones:

• Having a widget fill the complete container frame.
• Placing several widgets on top of each other or side by side (as

shown in the preceding screenshot). See code 1.05.py.

Although you can create complicated layouts by nesting widgets in multiple
frames, you will find the grid geometry manager more suitable for most of
the complex layouts.

The grid geometry manager
The grid geometry manager is easy to understand and perhaps the most useful
geometry manager in Tkinter. The central idea of the grid geometry manager is to
organize the container frame into a two-dimensional table, which is divided into a
number of rows and columns. Each cell in the table can then be targeted to hold a
widget. In this context, a cell is an intersection of imaginary rows and columns. Note
that in the grid method, each cell can hold only one widget. However, widgets can
be made to span multiple cells.

Within each cell, you can further align the position of the widget using the sticky
option. The sticky option decides how the widget is expanded. If its container cell is
larger than the size of the widget that it contains, the sticky option can be specified
using one or more of the N, S, E, and W options or the NW, NE, SW, and SE options.

Not specifying stickiness defaults to stickiness to the center of the widget in the cell.

Let's have a look at a demo code that illustrates some of the features of the grid
geometry manager. The code in 1.06.py generates a GUI, as shown in the
following screenshot:

Meet Tkinter

[18]

The following is the code (1.06.py) that generates the preceding GUI:

from tkinter import *
root = Tk()
Label(root, text="Username").grid(row=0, sticky=W)
Label(root, text="Password").grid(row=1, sticky=W)
Entry(root).grid(row=0, column=1, sticky=E)
Entry(root).grid(row=1, column=1, sticky=E)
Button(root, text="Login").grid(row=2, column=1, sticky=E)
root.mainloop()

The following is a description of the preceding code:

• Take a look at the grid position defined in terms of the row and column
positions for an imaginary grid table spanning the entire frame. See how the
use of sticky=W on both the labels makes them stick on the left-hand side,
thus resulting in a clean layout.

• The width of each column (or the height of each row) is automatically
decided by the height or width of the widgets in the cell. Therefore, you
need not worry about specifying the row or column width as equal. You can
specify the width for widgets if you need that extra bit of control.

• You can use the sticky=NSEW argument to make the widget expandable and
fill the entire cell of the grid.

In a more complex scenario, your widgets may span across multiple cells in the grid.
To make a grid to span multiple cells, the grid method offers handy options such as
rowspan and columnspan.

Furthermore, you may often need to provide some padding between cells in the
grid. The grid manager provides the padx and pady options to provide padding
that needs to be placed around a widget.

Similarly, the ipadx and ipady options are used for internal padding. These options
add padding within the widget itself. The default value of an external and internal
padding is 0.

Let's have a look at an example of the grid manager, where we use most of the
common arguments to the grid method, such as row, column, padx, pady, rowspan,
and columnspan.

Chapter 1

[19]

Code 1.07.py produces a GUI, as shown in the following screenshot, to demonstrate
how to use the grid geometry manager options:

The following is the code (1.07.py) that generates the preceding GUI:

from tkinter import *
parent = Tk()
parent.title('Find & Replace')

Label(parent, text="Find:").grid(row=0, column=0, sticky='e')
Entry(parent, width=60).grid(row=0, column=1,
 padx=2, pady=2, sticky='we', columnspan=9)

Label(parent, text="Replace:").grid(row=1, column=0, sticky='e')
Entry(parent).grid(row=1, column=1, padx=2, pady=2, sticky='we',
 columnspan=9)

Button(parent, text="Find").grid(
 row=0, column=10, sticky='e' + 'w', padx=2, pady=2)
Button(parent, text="Find All").grid(
 row=1, column=10, sticky='e' + 'w', padx=2)
Button(parent, text="Replace").grid(row=2, column=10, sticky='e' +
 'w', padx=2)
Button(parent, text="Replace All").grid(
 row=3, column=10, sticky='e' + 'w', padx=2)
Checkbutton(parent, text='Match whole word only').grid(
 row=2, column=1, columnspan=4, sticky='w')
Checkbutton(parent, text='Match Case').grid(
 row=3, column=1, columnspan=4, sticky='w')
Checkbutton(parent, text='Wrap around').grid(
 row=4, column=1, columnspan=4, sticky='w')
Label(parent, text="Direction:").grid(row=2, column=6, sticky='w')
Radiobutton(parent, text='Up', value=1).grid(
 row=3, column=6, columnspan=6, sticky='w')
Radiobutton(parent, text='Down', value=2).grid(
 row=3, column=7, columnspan=2, sticky='e')
parent.mainloop()

www.allitebooks.com

http://www.allitebooks.org

Meet Tkinter

[20]

Note how just 14 lines of the core grid manager code generate a complex layout
such as the one shown in the preceding screenshot. On the contrary, developing
this with the pack manager would have been much more tedious.

Another grid option that you can sometimes use is the widget.grid_forget()
method. This method can be used to hide a widget from the screen. When you use
this option, the widget still exists at its former location, but it becomes invisible.
The hidden widget may be made visible again, but the grid options that you had
originally assigned to the widget will be lost.

Similarly, there is a widget.grid_remove() method that removes the widget, except
that in this case, when you make the widget visible again, all of its grid options will
be restored.

For a complete grid reference, type the following command in the Python shell:

>>> import tkinter

>>> help(tkinter.Grid)

Where should you use the grid geometry manager?
The grid manager is a great tool for the development of complex layouts.
Complex structures can be easily achieved by breaking the container
widget into grids of rows and columns and then placing the widgets
in grids where they are wanted. It is also commonly used to develop
different kinds of dialog boxes.

Now, we will delve into configuring a grid's column and row sizes.

Different widgets have different heights and widths. So, when you specify the
position of a widget in terms of rows and columns, the cell automatically expands
to accommodate the widget.

Normally, the height of all the grid rows is automatically adjusted to be the height of
its tallest cell. Similarly, the width of all the grid columns is adjusted to be equal to
the width of the widest widget cell.

If you then want a smaller widget to fill a larger cell or to stay at any one side of the
cell, you can use the sticky attribute on the widget to control this aspect.

However, you can override this automatic sizing of columns and rows by using the
following code:

w.columnconfigure(n, option=value, ...) AND
w.rowconfigure(N, option=value, ...)

Chapter 1

[21]

Use these to configure the options for a given widget, w, in either the nth column or
the nth row, specifying values for the options, minsize, pad, and weight. Note that
the numbering of rows begins from 0 and not 1.

The options available are as follows:

Options Description
minsize This is the minimum size of a column or row in pixels. If there is no

widget in a given column or row, the cell does not appear in spite of this
minsize specification.

pad This is the external padding in pixels that will be added to the specified
column or row over the size of the largest cell.

weight This specifies the relative weight of a row or column and then
distributes the extra space. This enables making the row or column
stretchable.
For example, the following code distributes two-fifths of the extra space
to the first column and three-fifths to the second column:

w.columnconfigure(0, weight=2)
w.columnconfigure(1, weight=3)

The columnconfigure() and rowconfigure() methods are often used to implement
the dynamic resizing of widgets, especially on resizing the root window.

You cannot use the grid and pack methods together in the same
container window. If you try doing that, your program will raise
a _tkinter.TclError error.

The place geometry manager
The place geometry manager is the most rarely used geometry manager in Tkinter.
Nevertheless, it has its uses in that it lets you precisely position widgets within its
parent frame by using the (x,y) coordinate system.

The place manager can be accessed by using the place() method on all the
standard widgets.

The important options for place geometry include the following:

• Absolute positioning (specified in terms of x=N or y=N)
• Relative positioning (the key options include relx, rely, relwidth,

and relheight)

Meet Tkinter

[22]

The other options that are commonly used with place include width and anchor
(the default is NW). Refer to the code in 1.08.py for a demonstration of the common
place options:

from tkinter import *
root = Tk()
Absolute positioning
Button(root, text="Absolute Placement").place(x=20, y=10)
Relative positioning
Button(root, text="Relative").place(
 relx=0.8, rely=0.2, relwidth=0.5, width=10, anchor=NE)
root.mainloop()

You may not see much of a difference between the absolute and relative positions
simply by looking at the code or the window frame. However, if you try resizing the
window, you will observe that the button placed does not change its coordinates,
while the relative button changes its coordinates and size to accommodate the new
size of the root window.

For a complete place reference, type the following command in the Python shell:

>>> import tkinter

>>> help(tkinter.Place)

When should you use the place manager?
The place manager is useful in situations where you have to implement
the custom geometry managers, where the widget placement is decided
by the end user.
While the pack and grid managers cannot be used together in the same
frame, the place manager can be used with any geometry manager
within the same container frame.

Chapter 1

[23]

The place manager is rarely used because, if you use it, you have to worry about
the exact coordinates. If you make a minor change to a widget, it is very likely that
you will have to change the X-Y values for other widgets as well, which can be
very cumbersome.

We will not use the place manager in our projects. However, knowing that options
for coordinate-based placement exist can be helpful in certain situations.

This concludes our discussion on geometry management in Tkinter.

In this section, you had a look at how to implement the pack, grid, and place
geometry managers. You also understood the strengths and weaknesses of each
geometry manager.

You learned that pack is suitable for a simple side-wise or top-down widget
placement. You also learned that the grid manager is best suited for the handling of
complex layouts. You saw examples of the place geometry manager and explored
the reasons behind why it is rarely used.

You should now be able to plan and execute different layouts for your programs
using these Tkinter geometry managers.

Events and callbacks – adding life to
programs
Now that you have learned how to add widgets to a screen and position them where
you want, let's turn our attention to the third component of GUI programming.

This addresses the question of how to make widgets functional.

Making widgets functional involves making them responsive to events such as the
pressing of buttons, the pressing of keys on a keyboard, mouse clicks, and the like.
This requires associating callbacks with specific events.

Callbacks are normally associated with specific widget events using the command
binding rules, which is discussed in the following section.

Meet Tkinter

[24]

Command binding
The simplest way to add functionality to a button is called command binding,
whereby a callback function is mentioned in the form of command = some_callback
in the widget option. Note that the command option is available only for a few
selected widgets.

Take a look at the following sample code:

def my_callback ():
 # do something when button is clicked

After defining the above callback we can connect it to, say, a button with the command
option referring to the callback, as follows:

 Button(root, text="Click me", command=my_callback)

A callback is a function memory reference (my_callback in the preceding example)
that is called by another function (which is Button in the preceding example), which
takes the first function as a parameter. Put simply, a callback is a function that you
provide to another function so that it can call it.

Note that my_callback is passed without parentheses () from within the widget
command option, because when the callback functions are set, it is necessary to pass
a reference to a function rather than actually call it.

If you add parentheses () like you do for any normal function, it would be called
as soon as the program runs. In contrast, the callback is called only when an event
occurs (the pressing of a button in this case).

Passing arguments to callbacks
If a callback does not take any argument, it can be handled with a simple function,
such as the one shown in the preceding code. However, if a callback needs to take
arguments, we can use the lambda function, as shown in the following code snippet:

def my_callback (argument)
 #do something with argument

Then, somewhere else in the code, we define a button with a command callback
that takes some arguments, as follows:

 Button(root,text="Click", command=lambda: my_callback
 ('some argument'))

Chapter 1

[25]

Python borrows syntax from functional programming called the lambda function.
The lambda function lets you define a single-line, nameless function on the fly.

The format for using lambda is as follows:

lambda arg: #do something with arg in a single line

Here's an example:

square = lambda x: x**2

Now, we can call the square method, as follows:

>>> print(square(5)) ## prints 25 to the console

Limitations of the command option
The command option that is available with the Button widget and a few other widgets
is a function that can make the programming of a click-of-a-button event easy. Many
other widgets do not provide an equivalent command binding option.

By default, the command button binds to the left-click and the space bar. It does not
bind to the return key. Therefore, if you bind a button by using the command function,
it will react to the space bar and not the return key. This is counter-intuitive for many
users. What's worse is that you cannot change the binding of the command function
easily. The moral is that the command binding, though a very handy tool,
is not flexible enough when it comes to deciding your own bindings.

Event binding
Fortunately, Tkinter provides an alternative form of an event binding mechanism
called bind() to let you deal with different events. The standard syntax used to
bind an event is as follows:

widget.bind(event, handler, add=None)

When an event corresponding to the event description occurs in the widget, it calls
not only the associated handler that passes an instance of the event object as the
argument, but also the details of the event. If there already exists a binding for that
event for this widget, the old callback is usually replaced with the new handler, but
you can trigger both the callbacks by passing add='+' as the last argument.

Meet Tkinter

[26]

Let's look at an example of the bind() method (refer to the 1.09.py code file):

from tkinter import *
root = Tk()
Label(root, text='Click at different\n locations in the frame
 below').pack()
def callback(event):
 print dir(event)
 print "you clicked at", event.x, event.y
frame = Frame(root, bg='khaki', width=130, height=80)
frame.bind("<Button-1>", callback)
frame.pack()
root.mainloop()

The following is a description of the preceding code:

• We bind the Frame widget to the <Button-1> event, which corresponds to
the left-click. When this event occurs, it calls the callback function, passing
an object instance as its argument.

• We define the callback(event) function. Note that it takes the event object
generated by the event as an argument.

• We inspect the event object by using dir(event), which returns a sorted
list of attribute names for the event object passed to it. This prints the
following list:
['__doc__', '__module__', 'char', 'delta', 'height', 'keycode',
'keysym', 'keysym_num', 'num', 'send_event', 'serial', 'state',
'time', 'type', 'widget', 'width', 'x', 'x_root', 'y', 'y_root']

• From the attributes list generated by the object, we use two attributes,
event.x and event.y, to print the coordinates of the point of click.

When you run the preceding code (code 1.09.py), it produces a window, as shown
in following screenshot:

Chapter 1

[27]

When you left-click anywhere in the yellow-colored frame within the root window,
it outputs messages to the console. A sample message passed to the console is
as follows:

['__doc__', '__module__', 'char', 'delta', 'height', 'keycode',
'keysym', 'keysym_num', 'num', 'send_event', 'serial', 'state',
'time', 'type', 'widget', 'width', 'x', 'x_root', 'y', 'y_root']
You clicked at 63 36.

Event patterns
In the previous example, you learned how to use the <Button-1> event to denote a
left-click. This is a built-in pattern in Tkinter that maps it to a left-click event. Tkinter
has an exhaustive mapping scheme that perfectly identifies events such as this one.

Here are some examples to give you an idea of event patterns:

The event pattern The associated event
<Button-1> Left-click of the mouse
<KeyPress-B> A keyboard press of the B key
<Alt-Control-KeyPress- KP_Delete> A keyboard press of Alt + Ctrl + Delete

In general, the mapping pattern takes the following form:

<[event modifier-]...event type [-event detail]>

Typically, an event pattern will comprise the following:

• An event type: Some common event types include Button, ButtonRelease,
KeyRelease, Keypress, FocusIn, FocusOut, Leave (when the mouse leaves
the widget), and MouseWheel. For a complete list of event types, refer to the
The event types section at http://www.tcl.tk/man/tcl8.6/TkCmd/bind.
htm#M7.

• An event modifier (optional): Some common event modifiers include Alt,
Any (used like <Any-KeyPress>), Control, Double (used like <Double-
Button-1> to denote a double-click of the left mouse button), Lock, and
Shift. For a complete list of event modifiers, refer to the The event modifiers
section at http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6.

http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6

Meet Tkinter

[28]

• The event detail (optional): The mouse event detail is captured by the
number 1 for a left-click and the number 2 for a right-click. Similarly,
each key press on the keyboard is either represented by the key letter itself
(say, B in <KeyPress-B>) or by using a key symbol abbreviated as keysym.
For example, the up arrow key on the keyboard is represented by the keysym
value of KP_Up. For a complete keysym mapping, refer to https://www.tcl.
tk/man/tcl8.6/TkCmd/bind.htm.

Let's take a look at a practical example of the event binding on widgets (refer to code
1.10.py for the complete working example).

The following is a modified snippet of code; it will give you an idea of the commonly
used event bindings:

widget.bind("<Button-1>", callback) #bind widget to left mouse
 click
widget.bind("<Button-2>", callback) # bind to right mouse click
widget.bind("<Return>", callback)# bind to Return(Enter) Key
widget.bind("<FocusIn>", callback) #bind to Focus in Event
widget.bind("<KeyPress-A>", callback)# bind to keypress A
widget.bind("<KeyPress-Caps_Lock>", callback)# bind to CapsLock
 keysym
widget.bind("<KeyPress-F1>", callback)# bind widget to F1 keysym
widget.bind("<KeyPress-KP_5>", callback)# bind to keypad number 5
widget.bind("<Motion>", callback) # bind to motion over widget
widget.bind("<Any-KeyPress>", callback) # bind to any keypress

https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm

Chapter 1

[29]

Rather than binding an event to a particular widget, you can also bind it to the top,
level window. The syntax remains the same except that now you call it on the root
instance of the root window like root.bind().

The levels of binding
In the previous section, you had a look at how to bind an event to an instance of a
widget. This can be called an instance-level binding.

However, there may be times when you need to bind events to an entire application.
At times, you may want to bind an event to a particular class of widget. Tkinter
provides the following levels of binding options for this:

• Application-level binding: Application-level bindings let you use the same
binding across all windows and widgets of an application as long as any one
window of the application is in focus.
The syntax for application-level bindings is as follows:
widget.bind(event, callback, add=None)

The typical usage pattern is as follows:
root.bind_all('<F1>', show_help)

An application-level binding here means that irrespective of the widget
that is currently under focus, pressing the F1 key will always trigger the
show_help callback as long as the application is in focus.

• Class-level binding: You can also bind events at a particular class level.
This is normally used to set the same behavior for all instances of a particular
widget class.
The syntax for class-level binding is as follows:
w.bind_class(class_name, event, callback, add=None)

The typical usage pattern is as follows:

my_entry.bind_class('Entry', '<Control-V>', paste)

In the preceding example, all the entry widgets will be bound to the <Control-V>
event, which will call a method named paste (event).

www.allitebooks.com

http://www.allitebooks.org

Meet Tkinter

[30]

Event propagation
Most keyboard and mouse events occur at the operating system level.
It propagates hierarchically upwards from the source of the event
until it finds a window that has the corresponding binding. The event
propagation does not stop there. It propagates itself upwards, looking for
other bindings from other widgets, until it reaches the root window. If
it does reach the root window and no bindings are discovered by it, the
event is disregarded.

Handling widget-specific variables
You need variables with a wide variety of widgets. You likely need a string variable
to track what the user enters into the entry widget or text widget. You most probably
need Boolean variables to track whether the user has checked off the Checkbox
widget. You need integer variables to track the value entered in a Spinbox or
Slider widget.

In order to respond to changes in widget-specific variables, Tkinter offers its own
variable class. The variable that you can use to track widget-specific values must
be subclassed from this Tkinter variable class. Tkinter offers some commonly used
predefined variables. They are StringVar, IntVar, BooleanVar, and DoubleVar.

You can use these variables to capture and play with the changes in the values of
variables from within your callback functions. You can also define your own variable
type, if required.

Creating a Tkinter variable is simple. You simply have to call the constructor:

my_string = StringVar()
ticked_yes = BooleanVar()
group_choice = IntVar()
volume = DoubleVar()

Once the variable is created, you can use it as a widget option, as follows:

Entry(root, textvariable=my_string)
Checkbutton(root, text="Remember Me", variable=ticked_yes)
Radiobutton(root, text="Option1", variable=group_choice,
 value="option1") #radiobutton
Scale(root, label="Volume Control", variable=volume, from =0,
 to=10) # slider

Chapter 1

[31]

Additionally, Tkinter provides access to the values of variables via the set() and
get() methods, as follows:

my_var.set("FooBar") # setting value of variable
my_var.get() # Assessing the value of variable from say a callback

A demonstration of the Tkinter variable class is available in the 1.11.py code file.
The code generates a window, as shown in the following screenshot:

This concludes our brief discussion on events and callbacks. Here's a brief summary
of the things that we discussed:

• The command binding, which is used to bind simple widgets to
certain functions

• The use of the lambda function in case you need to process arguments
• Event binding using the widget.bind(event, callback, add=None)

method to bind keyboard and mouse events to your widgets and invoke
callbacks when certain events occur

• The passing of extra arguments to a callback
• The binding of events to an entire application or to a particular class of

widget by using bind_all() and bind_class()
• Using the Tkinter variable class to set and get the values of widget-specific

variables

In short, you now know how to make your GUI program responsive to
end-user requests!

Meet Tkinter

[32]

Event unbinding and virtual events
In addition to the bind method that you previously saw, you might find the
following two event-related options useful in certain cases:

• unbind: Tkinter provides the unbind option to undo the effect of an earlier
binding. The syntax is as follows:
widget.unbind(event)

The following are some examples of its usage:

entry.unbind('<Alt-Shift-5>')
root.unbind_all('<F1>')
root.unbind_class('Entry', '<KeyPress-Del>')

• Virtual events: Tkinter also lets you create your own events. You can give
these virtual events any name that you want.
For example, let's suppose that you want to create a new event called
<<commit>>, which is triggered by the F9 key. To create this virtual
event on a given widget, use the following syntax:

widget.event_add('<<commit>>', '<KeyRelease-F9>')

• You can then bind <<commit>> to a callback by using a normal bind()
method, as follows:
widget.bind('<<commit>>', callback)

Other event-related methods can be accessed by typing the following line in the
Python terminal:

>>> import tkinter

>>> help(tkinter.Event)

Now that you are ready to dive into real application development with Tkinter, let's
spend some time exploring a few custom styling options that Tkinter offers. We will
also have a look at some of the configuration options that are commonly used with
the root window.

Doing it in style
So far, we have relied on Tkinter to provide specific platform-based styling for our
widgets. However, you can specify your own styling of widgets, such as their color,
font size, border width, and relief. A brief introduction of styling features that are
available in Tkinter is covered in the following section.

Chapter 1

[33]

You may recall that we can specify the widget options at the time of its instantiation,
as follows:

my_button = Button(parent, **configuration options)

Alternatively, you can specify the widget options by using configure () in the
following way:

my_button.configure(**options)

The styling options are also specified as options to the widgets either at the time of
creating the widgets, or later by using the configure option.

Specifying styles
Under the purview of styling, we will cover how to apply different colors, fonts,
border widths, reliefs, cursors, and bitmap icons to widgets.

First, let's see how to specify the color options for a widget. You can specify the
following two types of color for most widgets:

• The background color
• The foreground color

You can specify the color by using hexadecimal color codes for the proportion of red,
green, and blue. The commonly used representations are #rgb (4 bits), #rrggbb (8
bits), and #rrrgggbbb (12 bits).

For example, #fff is white, #000000 is black, #f00 is red (R=0xf, G=0x0, B=0x0),
#00ff00 is green (R=0x00, G=0xff, B=0x00), and #000000fff is blue (R=0x000,
G=0x000, B=0xfff).

Alternatively, Tkinter provides mapping for standard color names. For a list of
predefined named colors, visit http://wiki.tcl.tk/37701 or http://wiki.tcl.
tk/16166.

Next, let's have a look at how to specify fonts for our widgets. A font can be
represented as a string by using the following string signature:

{font family} fontsize fontstyle

http://wiki.tcl.tk/37701
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166

Meet Tkinter

[34]

The elements of the preceding syntax can be explained as follows:

• font family: This is the complete font family long name. It should
preferably be in lowercase, such as font="{nimbus roman} 36 bold
italic".

• fontsize: This is in a printer's point unit (pt) or pixel unit (px).
• fontstyle: This is a mix of normal/bold/italic and underline/

overstrike.

The following are the examples that illustrate the method of specifying fonts:

widget.configure (font='Times 8')
widget.configure(font='Helvetica 24 bold italic')

If you set a Tkinter dimension in a plain integer, the measurements take place in
pixel units. Alternatively, Tkinter accepts four other measurement units, which are
m (millimeters), c (centimeters), i (inches), and p (printer's points, which are about
1/72").

For instance, if you want to specify the wrap length of a button in terms of a printer's
point, you can specify it as follows:

button.configure(wraplength="36p")

The default border width for most Tkinter widgets is 2 px. You can change the border
width of the widgets by specifying it explicitly, as shown in the following line:

button.configure(borderwidth=5)

The relief style of a widget refers to the difference between the highest and lowest
elevations in a widget. Tkinter offers six possible relief styles—flat, raised, sunken,
groove, solid, and ridge:

button.configure(relief='raised')

Tkinter lets you change the style of the mouse cursor when you hover over a
particular widget. This is done by using the option cursor, as follows:

button.configure(cursor='cross')

For a complete list of available cursors, refer to https://www.tcl.tk/man/tcl8.6/
TkCmd/cursors.htm.

https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm

Chapter 1

[35]

Though you can specify the styling options at each widget level, sometimes it may
be cumbersome to do so individually for each widget. Widget-specific styling has
the following disadvantages:

• It mixes logic and presentation into one file, making the code bulky and
difficult to manage

• Any change in styling has to be applied to each widget individually
• It violates the don't repeat yourself (DRY) principle of effective coding,

as you keep specifying the same style for a large number of widgets

Fortunately, Tkinter now offers a way to separate presentation from logic and specify
styles in what is called the external option database. This is nothing but a text file
where you can specify the common styling options.

A typical option database text file looks like this:

*background: AntiqueWhite1
*Text*background: #454545
*Button*foreground: gray55
*Button*relief: raised
*Button*width: 3

In its simplest use, the asterisk (*) symbol here means that the particular style is
applied to all the instances of the given widget. For a more complex usage of the
asterisk in styling, refer to http://infohost.nmt.edu/tcc/help/pubs/tkinter/
web/resource-lines.html.

These entries are placed in an external text (.txt) file. To apply this styling to a
particular piece of code, you can simply call it by using the option_readfile()
call early in your code, as shown here:

root.option_readfile('optionDB.txt')

Let's have a look at an example (see code 1.12.py) of using this external styling text
file in a program:

from tkinter import *
root = Tk()
root.configure(background='#4D4D4D')#top level styling

connecting to the external styling optionDB.txt
root.option_readfile('optionDB.txt')

#widget specific styling
mytext = Text(root, background='#101010', foreground="#D6D6D6",
 borderwidth=18, relief='sunken',width=17, height=5)

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html

Meet Tkinter

[36]

mytext.insert(END, "Style is knowing who you are, what you want to
 say, and not giving a damn.")
mytext.grid(row=0, column=0, columnspan=6, padx=5, pady=5)

all the below widgets derive their styling from optionDB.txt
 file
Button(root, text='*').grid(row=1, column=1)
Button(root, text='^').grid(row=1, column=2)
Button(root, text='#').grid(row=1, column=3)
Button(root, text='<').grid(row=2, column=1)
Button(root, text='OK', cursor='target').grid(row=2,
 column=2)#changing cursor style
Button(root, text='>').grid(row=2, column=3)
Button(root, text='+').grid(row=3, column=1)
Button(root, text='v').grid(row=3, column=2)
Button(root, text='-').grid(row=3, column=3)
for i in range(9):
 Button(root, text=str(i+1)).grid(row=4+i//3, column=1+i%3)

root.mainloop()

The following is a description of the preceding code:

• The code connects to an external styling file called optionDB.txt that
defines common styling for the widgets.

• The next segment of code creates a Text widget and specifies styling on the
widget level.

• The next segment of code has several buttons, all of which derive their
styling from the centralized optionDB.txt file. One of the buttons also
defines a custom cursor.

Specifying attributes such as font sizes, the border width, the widget width, the
widget height, and padding in absolute numbers, as we have done in the preceding
example, can cause some display variations between different operating systems such
as Ubuntu, Windows, and Mac respectively, as shown in the following screenshot.
This is due to differences in the rendering engines of different operating systems.

Chapter 1

[37]

Left: Ubuntu, Middle: Microsoft Windows, Right: Mac OS X

When deploying cross-platform, it is better to avoid specifying attribute
sizes in absolute numbers. It is often the best choice to let the platform
handle the attribute sizes.

Some common root window options
Now that we are done discussing styling options, let's wrap up with a discussion on
some commonly used options for the root window:

Method Description
*root.
geometry('142x280+150+200')

You can specify the size and location of
a root window by using a string of the
widthxheight + xoffset + yoffset form.

** self.root.wm_
iconbitmap('mynewicon.ico')

or
self.root.
iconbitmap('mynewicon.ico ')

This changes the title bar icon to something
that is different from the default Tk icon.

Meet Tkinter

[38]

Method Description
root.overrideredirect(1) This removes the root border frame. It

hides the frame that contains the minimize,
maximize, and close buttons.

Let's explain these styling options in more detail:

• root.geometry('142x280+150+200'): Specifying the geometry of the root
window limits the launch size of the root window. If the widgets do not fit in
the specified size, the widgets get clipped from the window. It is often better
not to specify this and let Tkinter decide this for you.

• self.root.wm_iconbitmap('my_icon.ico') or self.root.
iconbitmap('my_icon.ico '): This option is only applicable to Windows.
Unix-based operating systems do not display the title bar icon.

Getting interactive help
This section is true not only for Tkinter, but also for a Python object for which you
may need help.

Let's say that you need a reference to the Tkinter pack geometry manager. You can
get interactive help in your Python interactive shell by using the help command,
as shown in the following command lines:

>>> import tkinter

>>> help(tkinter.Pack)

This provides a detailed help documentation of all the methods defined under the
Pack class in Tkinter.

You can similarly receive help for all the other individual widgets. For instance, you
can check the comprehensive and authoritative help documentation for the Label
widget in the interactive shell by typing the following command:

>>>help(tkinter.Label)

This provides a list of the following:

• All the methods defined in the Label class
• All the standard and widget-specific options for the Label widget
• All the methods inherited from other classes

Chapter 1

[39]

Finally, when in doubt regarding a method, look into the source code of Tkinter,
which is located at <location-of-python-installation>\lib\ directory. For
instance, the Tkinter source code is located in the /usr/lib/python3.4/tkinter
directory on my Ubuntu 14.04 operating system.

You might also find it useful to look at the source code implementation of
various other modules, such as the color chooser, file dialogs, ttk module,
and the other modules located in the aforementioned directory.

You can also find an excellent documentation of Tkinter at http://infohost.nmt.
edu/tcc/help/pubs/tkinter/web/index.html.

Summary
This brings us to end of Chapter 1, Meet Tkinter. This chapter is aimed to provide
a high-level overview of Tkinter. We worked our way through all the important
concepts that drive a Tkinter program.

You now know what a root window is and how to set it up. You also know the
21 core Tkinter widgets and how to set them up. We also had a look at how to lay
out our programs by using the pack, grid, and place geometry managers, and make
our programs functional by using events and callbacks. Finally, you saw how to
apply custom styles to GUI programs.

To summarize, we can now start thinking of making interesting, functional, and
stylish GUI programs with Tkinter!

www.allitebooks.com

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://www.allitebooks.org

[41]

Making a Text Editor
We got a fairly high-level overview of Tkinter in Chapter 1, Meet Tkinter. Now that
we know some things about Tkinter's core widgets, geometry management, and the
binding of commands and events to callbacks, let's use our skills in this project to
create a text editor.

Objectives of the chapter
We will, in the process of creating a text editor, take a closer look at some widgets
and learn how to tweak them to meet our specific needs.

The following are the key objectives for this project:

• Delving into some commonly used widgets, such as the Menu, Menubutton,
Text, Entry, Checkbutton, and Button widgets

• Exploring the filedialog and messagebox modules of Tkinter
• Learning the vital concepts of indexing and tagging, as applied to Tkinter
• Identifying the different types of Toplevel windows

Making a Text Editor

[42]

An overview of the chapter
The goal here is to build a text editor with some cool nifty features. Let's call it the
Footprint Editor.

We intend to include the following features in the text editor:

• Creating new documents, opening and editing the existing documents,
and saving documents

• Implementing common editing options such as cut, copy, paste, undo,
and redo

• Searching within a file for a given search term
• Implementing line numbering and the ability to show/hide line numbers
• Implementing theme selection to let a user choose custom color themes for

the editor
• Implementing the about and help windows

Chapter 2

[43]

Setting up the editor skeleton
Our first goal is to implement the broad visual elements of the text editor. As
programmers, we have all used text editors to edit code. We are mostly aware of
the common GUI elements of a text editor. So, without much of an introduction,
let's get started.

The first phase implements the Menu, Menubutton, Label, Button, Text and Scrollbar
widgets. Although we'll cover all of these in detail, you might find it helpful to look
at the widget-specific options in the documentation of Tkinter maintained by its
author Frederick Lundh at http://effbot.org/tkinterbook/. You can also use
the interactive shell, as discussed in Chapter 1, Meet Tkinter.

You might also want to bookmark the official documentation page of Tcl/Tk at
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm. This site includes the
original Tcl/Tk reference. While it does not relate to Python, it provides a detailed
overview of each widget and is a useful reference. Remember that Tkinter is just
a wrapper around Tk.

In this iteration, we will complete the implementation of broader visual elements of
the editor.

We will use the pack() geometry manager to place all the widgets. We have chosen
the pack manager because it is ideally suited for the placing of widgets side by side
or in a top-down position. Fortunately, in a text editor, we have all the widgets
placed either side-by-side or in top-down locations. Thus, it is beneficial to use
the pack manager. We can do the same thing with the grid manager as well.

A note on code styling
One of the key insights of the Python community is that code is read
much more often than it is written. Following good naming conventions
and consistency in code styling are keys to maintaining readable and
scalable programs.
We will try to stick to the official Python styling guide, which is specified
in the PEP8 documentation at https://www.python.org/dev/peps/
pep-0008.
Some important styling conventions that we will stick to include the
following:

• Use 4 spaces per indentation level
• The variable and function names will be lowercase, with words

separated by underscores
• The class names will use the CapWords convention

http://effbot.org/tkinterbook/
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Making a Text Editor

[44]

Lets start by adding the Toplevel window by using the following code:

from tkinter import *
root = Tk()
all our code goes here
root.mainloop()

Adding a menu and menu items
Menus offer a very compact way of presenting a large number of choices to the
user without cluttering the interface. Tkinter offers the following two widgets
to handle menus:

• The Menu widget: This appears at the top of applications, which is always
visible to end users

• The menu Items: This shows up when a user clicks on a menu

We will use the following code to add Toplevel menu buttons:

my_menu = Menu(parent, **options)

For example, to add a File menu, we will use the following code:

Adding Menubar in the widget
menu_bar = Menu(root)

file_menu = Menu(menu_bar, tearoff=0)
all file menu-items will be added here next
menu_bar.add_cascade(label='File', menu=file_menu)
root.config(menu=menu_bar)

The following screenshot is the result of the preceding code:

Chapter 2

[45]

Similarly, we will add the Edit, View, and About menus. See 2.01.py.

We will also define a constant, as follows:

PROGRAM_NAME = " Footprint Editor "

Then, we'll set the root window tile as follows:

root.title(PROGRAM_NAME)

Most Linux platforms support tear-off menus. When tearoff is set to 1 (enabled),
the menu appears with a dotted line above the menu options. Clicking on the dotted
line enables the user to literally tear off or separate the menu from the top. However,
as this is not a cross-platform feature, we have decided to disable tear-off, marking it
as tearoff = 0.

Adding menu items
Next, we will add menu items in every individual menu. Not surprisingly, the code
for the menu items needs to be added in the respective menu instance, as shown in
the following screenshot:

In our example, we will add the following menu items (see the 2.02.py code in the
code bundle).

The View menu has certain menu item variations, which will be tackled in the
following section and is therefore not dealt with here.

Making a Text Editor

[46]

Menu items are added by using the add_command() method. The format used to add
menu items is as follows:

my_menu.add_command(label="Menu Item Label", accelerator='KeyBoard
 Shortcut', compound='left', image=my_image, underline=0,
 command=callback)

For example, you can create the Undo menu item by using the following syntax:

edit_menu.add_command(label="Undo", accelerator='Ctrl + Z',
 compound='left', image=undo_icon, command=undo_callback)

Some new menu-specific options that are introduced in the preceding code are
as follows:

• accelerator: This option is used to specify a string, typically the keyboard
shortcut, which can be used to invoke a menu. The string specified as an
accelerator appears next to the text of the menu item. Please note that this
does not automatically create bindings for the keyboard shortcut. We will
have to manually set them up. This will be discussed later.

• compound: Specifying a compound option for a menu item lets you add
images beside a menu label. A specification such as compound='left',
label= 'Cut', image=cut_icon means that the cut icon will appear to
the left of the Cut menu label. The icons that we will use here are stored and
referenced from a separate folder called icons.

• underline: The underline option lets you specify the index of a character
in the menu text that needs to be underlined. The indexing starts at 0, which
means that specifying underline=1 underlines the second character of the
text. Besides underlining, Tkinter also uses it to define the default bindings
for the keyboard traversal of menus. This means that we can select the
menu either with the mouse pointer, or with the Alt + <character_at_the_
underlined_index> shortcut.

To add the New menu item in the File menu, use the following code:

file_menu.add_command(label="New", accelerator='Ctrl+N',
 compound='left', image=new_file_icon, underline=0,
 command=new_file)

Menu separators
Occasionally, in menu items, you will come across code such as
my_menu.add_separator(). This widget displays a separator bar
and is solely used to organize similar menu items in groups, separating
groups by horizontal bars.

Chapter 2

[47]

Next, we will add a Frame widget to hold the shortcut icons. We will also add
a Text widget to the left to display line numbers, as shown in the following
screenshot (refer to the 2.02.py code in the code bundle):

When working with the pack geometry manager, it is important to
add widgets in the order in which they will appear because pack()
uses the concept of available space to fit the widgets. This is why
the text content widget will appear lower in the code as compared
to the two label widgets.

Having reserved the space, we can later add shortcut icons or line numbers and keep
the Frame widget as the parent widget. Adding frames is easy; we have done that in
the past. The code is as follows (refer to 2.02.py):

shortcut_bar = Frame(root, height=25, background='light sea
 green')
shortcut_bar.pack(expand='no', fill='x')

line_number_bar = Text(root, width=4, padx=3, takefocus=0,
 border=0,
background='khaki', state='disabled', wrap='none')
line_number_bar.pack(side='left', fill='y')

We applied a background color to these two widgets for now to discern them from
the body of the Toplevel window.

Making a Text Editor

[48]

Lastly, let's add the main Text widget and Scrollbar widget, as follows (refer to the
2.02.py code in the code bundle):

content_text = Text(root, wrap='word')
content_text.pack(expand='yes', fill='both')
scroll_bar = Scrollbar(content_text)
content_text.configure(yscrollcommand=scroll_bar.set)
scroll_bar.config(command=content_text.yview)
scroll_bar.pack(side='right', fill='y')

The code is similar to how we instantiated all the other widgets so far. However,
note that the scrollbar is configured to yview of the Text widget and the Text widget
is configured to connect to the Scrollbar widget. This way, we cross-connected both
the widgets to each other.

Now, when you scroll down the Text widget, the scrollbar reacts to it. Alternatively,
when you move the scrollbar, the Text widget reacts in return.

Implementing the View menu
Tkinter offers the following three varieties of menu items:

• Checkbutton menu items: These let you make a yes/no choice by
checking/unchecking the menu item

• Radiobutton menu items: These let you choose an option from many
different options

• Cascade menu items: These menu items only opens up to show another
list of choices

The following View menu shows all of these three types of menu items in action:

Chapter 2

[49]

The first three menu items in the View menu let users make a definite yes or no choice
by checking or unchecking them. These are examples of the Checkbutton menu.

The Themes menu item in the preceding screenshot is an example of a Cascade
menu. Hovering over this cascade menu simply opens another list of menu items.
However, we can also bind a menu item by using the postcommand=callback
option. This can be used to manage something just before bringing up the cascading
menu item's contents and is often used for dynamic list creation.

Within the cascade menu, you are presented with a list of choices for your editor's
theme. However, you can only select one theme. Selecting one theme unselects the
previous selection, if any exists. This is an example of the Radiobutton menu.

We will not present the entire code here (refer to the 2.03.py code in the code
bundle). However, the example code used to add these three types of menu
items is as follows:

view_menu.add_checkbutton(label="Show Line Number",
 variable=show_line_no)
view_menu.add_cascade(label="Themes", menu=themes_menu)
themes_menu.add_radiobutton(label="Default", variable=theme_name)

Now, we need to track whether a selection has been made by adding a variable,
which can be BooleanVar(), IntVar(), or Stringvar(), as discussed in Chapter 1,
Meet Tkinter.

This concludes our first iteration. In this iteration, we laid down the majorities of
the visual elements of the text editor. Now, it's time to add some functionality
to the editor.

Adding a built-in functionality
Tkinter's Text widget comes with some handy built-in functionality to handle
common text-related functions. Let's leverage these functionalities to implement
some common features in the text editor.

Let's start by implementing the cut, copy, and paste features. We now have the editor
GUI ready. If you open the program and play with the Text widget, you will see that
you can perform basic functions such as cut, copy, and paste in the text area by using
Ctrl + X, Ctrl + C, and Ctrl + V respectively. All of these functions exist without us
having to add a single line of code toward these functionalities.

www.allitebooks.com

http://www.allitebooks.org

Making a Text Editor

[50]

The text widget clearly comes with these built-in events. Now, we simply want to
connect these events to their respective menu items.

The documentation of Tcl/Tk Universal widget methods tells us that we can trigger
events without an external stimulus by using the following command:

widget.event_generate(sequence, **kw)

To trigger the cut event, all we need is the following line in the code:

content_text.event_generate("<<Cut>>")

Let's call it by using a cut function and associate it with the cut menu by using the
command callback (refer to the 2.04.py code in the code bundle):

def cut():
 content_text.event_generate("<<Cut>>")

Then, define a command callback from the existing cut menu, as follows:

edit_menu.add_command(label='Cut', accelerator='Ctrl+X',
 compound='left', image=cut_icon, command=cut)

Similarly, trigger the copy and paste functions from their respective menu items.

Next, we will move on to the implementation of the undo and redo features. The
Tcl/Tk text documentation tells us that the Text widget has an unlimited undo and
redo mechanism provided we set the undo option to true or 1. To leverage this option,
let's first set the Text widget's undo option to true or 1, as shown in the following code:

content_text = Text(root, wrap='word', undo=1)

Now, if you open the text editor and try out the undo feature by using Ctrl + Z , it
should work fine. Now, we only have to associate the events to functions and call
back the functions from the Undo menu. This is similar to what we did for cut,
copy, and paste. Refer to the code in 2.03.py.

However, redo has a little quirk that needs to be addressed. By default, redo is not
bound to the Ctrl + Y key. Instead Ctrl + Y is bound to the paste functionality. This is
not how we expect the binding to behave, but it exists due to some historical reasons
related to Tcl/Tk.

Fortunately, it is easy to override this functionality by adding an event binding,
as follows:

content_text.bind('<Control-y>', redo) # handling Ctrl + small-
 case y
content_text.bind('<Control-Y>', redo) # handling Ctrl + upper-
 case y

Chapter 2

[51]

Since an event binding like the one in the preceding code sends an event argument,
the undo function must be able to handle this incoming parameter. Therefore, we'll
add the event=none optional parameter to the redo function, as follows (refer to
the 2.04.py code in the code bundle):

def redo(event=None):
 content_text.event_generate("<<Redo>>")
 return 'break'

Events propagate from the operating system level and are accessible to the window
that subscribes to the event or wants to make use of it. The return 'break'
expression in the preceding function tells the system that it has performed the
event and that it should not be propagated further.

This prevents the same event from firing the paste event even though it is the
default behavior in Tkinter. Now, Ctrl + Y fires the redo event instead of firing
the paste event.

In fact, once we have performed an event, we do not want it to propagate further.
Thus, we will add return 'break' to all event-driven functions.

Indexing and tagging
Though we managed to leverage some built-in functionality to gain a quick
advantage, we need more control over the text area so that we can bend it to our
will. This will require the ability to target each character or location of the text
with precision.

We will need to know the exact position of each character, the cursor, or the selected
area in order to do anything with the contents of the editor.

The Text widget offers us the ability to manipulate its content using index, tags, and
mark, which let us target a position or place within the text area for manipulation.

Index
Indexing helps you target a particular place within a piece of text. For example, if
you want to mark a particular word in bold, red, or in a different font size, you can
do so if you know the index of the starting point and the index of the end point that
needs to be targeted.

Making a Text Editor

[52]

The index must be specified in one of the following formats:

The index format Description
x.y This refers to the character at row x and column y.
@x,y This refers to the character that covers the x,y coordinate within

the text's window.
end This refers to the end of the text.
mark This refers to the character after a named mark.
tag.first This refers to the first character in the text that has been tagged

with a given tag.
tag.last This refers to the last character in the text that has been tagged

with a given tag.
selection (SEL_
FIRST, SEL_LAST)

This corresponds to the current selection. The SEL_FIRST and
SEL_LAST constants refer to the start position and end position
in the selection. Tkinter raises a TclError exception if there is no
selection.

window_name This refers to the position of the embedded window named
window_name.

image_name This refers to the position of the embedded image named image_
name.

INSERT This refers to the position of the insertion cursor.
CURRENT This refers to the position of the character that is closest to the

mouse pointer.

Note a small quirk here. The counting of rows in a Text widget starts at 1, while the
counting of columns starts at 0. Therefore, the index for the starting position of the
Text widget is 1.0 (that is, row number 1 and column number 0).

An index can be further manipulated by using modifiers and submodifiers. Some
examples of modifiers and submodifers are as follows:

• end - 1 chars or end - 1 c: This refers to the index of the character
before the one at the end

• insert +5lines: This refers to the index of five lines ahead of the insertion
cursor

• insertwordstart - 1 c: This refers to the character just before the first one
in a word containing the insertion cursor

• end linestart: This refers to the index of the line start of the end line

Chapter 2

[53]

Indexes are often used as arguments to functions. Refer to the following list to have
a look at some examples:

• my_text.delete(1.0,END): This means that you can delete from line 1,
column 0 until the end

• my_text.get(1.0, END): This gets the content from 1.0 (beginning)
until the end

• my_text.delete('insert-1c', INSERT): This deletes a character at the
insertion cursor

Tags
Tags are used to annotate text with an identification string that can then be used
to manipulate the tagged text. Tkinter has a built-in tag called SEL, which is
automatically applied to the selected text. In addition to SEL, you can define your
own tags. A text range can be associated with multiple tags, and the same tag
can be used for many different text ranges.

Some examples of tagging are as follows:

my_text.tag_add('sel', '1.0', 'end') # add SEL tag from start(1.0)
 to end
my_text.tag_add('danger', "insert linestart", "insert lineend+1c")
my_text.tag_remove('danger', 1.0, "end")
my_text.tag_config('danger', background=red)
my_text.tag_config('outdated', overstrike=1)

You can specify the visual style for a given tag with tag_config using options
such as background(color), bgstipple (bitmap), borderwidth (distance),
fgstipple (bitmap), font (font), foreground (color), justify (constant),
lmargin1 (distance), lmargin2 (distance), offset (distance), overstrike
(flag), relief (constant), rmargin (distance), spacing1 (distance), tabs
(string), underline (flag), and wrap (constant).

For a complete reference of text indexing and tagging, type the following command
into the Python interactive shell:

>>> import Tkinter

>>> help(Tkinter.Text)

Equipped with a basic understanding of indexing and tagging, let's implement some
more features in the code editor.

Making a Text Editor

[54]

Implementing the Select All feature
We know that Tkinter has a built-in sel tag that applies a selection to a given text
range. We want to apply this tag to the entire text in the widget.

We can simply define a function to handle this, as follows (refer to 2.05.py in the
code bundle):

def select_all(event=None):
 content_text.tag_add('sel', '1.0', 'end')
 return "break"

After doing this, add a callback to the Select All menu item:

edit_menu.add_command(label='Select All', underline=7,
 accelerator='Ctrl+A', command=select_all)

We also need to bind the function to the Ctrl + A keyboard shortcut. We do this by
using the following key bindings (refer to 2.05.py in the code bundle):

content_text.bind('<Control-A>', select_all)
content_text.bind('<Control-a>', select_all)

The coding of the Select All feature is complete. To try it out, add some text
to the text widget and then click on the menu item, Select All or use the Ctrl + A
(accelerator shortcut key).

Implementing the Find Text feature
Next, let's code the Find Text feature (refer to 2.05.py in the code bundle). The
following screenshot shows an example of the Find Text feature:

Chapter 2

[55]

Here's a quick summary of the desired functionality. When a user clicks on the Find
menu item, a new Toplevel window opens up. The user enters a search keyword and
specifies whether the search needs to be case-sensitive. When the user clicks on the
Find All button, all matches are highlighted.

To search through the document, we will rely on the text_widget.search()
method. The search method takes in the following arguments:

search(pattern, startindex, stopindex=None, forwards=None,
 backwards=None, exact=None, regexp=None, nocase=None,
 count=None)

For the editor, define a function called find_text and attach it as a callback to the
Find menu (refer to 2.05.py in the code bundle):

edit_menu.add_command(label='Find',underline= 0,
 accelerator='Ctrl+F', command=find_text)

Also, bind it to the Ctrl + F shortcut, as follows:

content_text.bind('<Control-f>', find_text)
content_text.bind('<Control-F>', find_text)

Then, define the find_text function, as follows (refer to 2.05.py in the
code bundle):

def find_text(event=None):
 search_toplevel = Toplevel(root)
 search_toplevel.title('Find Text')
 search_toplevel.transient(root)
 search_toplevel.resizable(False, False)
 Label(search_toplevel, text="Find All:").grid(row=0, column=0,
 sticky='e')
 search_entry_widget = Entry(search_toplevel, width=25)
 search_entry_widget.grid(row=0, column=1, padx=2, pady=2,
 sticky='we')
 search_entry_widget.focus_set()
 ignore_case_value = IntVar()
 Checkbutton(search_toplevel, text='Ignore
 Case',variable=ignore_case_value).grid(
 row=1, column=1, sticky='e', padx=2, pady=2)
 Button(search_toplevel, text="Find All", underline=0,
 command=lambda: search_output(search_entry_widget.get(),
 ignore_case_value.get(), content_text, search_toplevel,
 search_entry_widget)).grid(row=0, column=2, sticky='e' +
 'w', padx=2, pady=2)

Making a Text Editor

[56]

 def close_search_window():
 content_text.tag_remove('match', '1.0', END)
 search_toplevel.destroy()
 search_toplevel.protocol('WM_DELETE_WINDOW',
 close_search_window)
 return "break"

The following is a description of the preceding code:

• When a user clicks on the Find menu item, it invokes a find_text callback.
• The first four lines of the find_text() function creates a new Toplevel

window, adds a window title, specifies its geometry (size, shape, and
location), and sets it as a transient window. Setting it as a transient
means that it is always drawn on top of its parent or root window. If you
uncomment this line and click on the root editor window, the Find window
will go behind the root window.

• The next eight lines of code are pretty self-explanatory in that they
set the widgets of the Find window. They add the Label, Entry, Button,
and Checkbutton widgets and provide for the search_string and
ignore_case_value variables to track the value a user enters into the Entry
widget and whether the user has checked off the Checkbutton. The widgets are
arranged by using the grid geometry manager to fit into the Find window.

• The Find All button has a command option that calls a search_output
function, passing the search string as the first argument and whether the
search needs to be case-sensitive as its second argument. The third, fourth,
and fifth arguments pass the Toplevel window, the Text widget, and the
Entry widget as parameters.

• Prior to the search_output method, we override the Close button of the
Find window and redirect it to a callback named close_search(). The
close_search function is defined within the find_text function. This
function takes care of removing the match tag that was added during the
search. If we do not override the Close button and remove these tags, the
matched string will continue to be marked in red and yellow even after
the search has ended.

Next, we define the search_output function that does the actual searching and adds
the match tag to the matching text. The code for this is as follows:

def search_output(needle, if_ignore_case, content_text,
 search_toplevel, search_box):
 content_text.tag_remove('match', '1.0', END)
 matches_found = 0
 if needle:

Chapter 2

[57]

 start_pos = '1.0'
 while True:
 start_pos = content_text.search(needle, start_pos,
 nocase=if_ignore_case, stopindex=END)
 if not start_pos:
 break
 end_pos = '{}+{}c'.format(start_pos, len(needle))
 content_text.tag_add('match', start_pos, end_pos)
 matches_found += 1
 start_pos = end_pos
 content_text.tag_config(
 'match', foreground='red', background='yellow')
 search_box.focus_set()
 search_toplevel.title('{} matches
 found'.format(matches_found))

The following is a description of the preceding code:

• This part of the code is the heart of the search function. It searches through
the entire document by using the while True loop, breaking out of the loop
only if no more text items remain to be searched.

• The code first removes the previous search-related match tags, if they do
exist, as we do not want to append the results of the new search to the
previous search results. The function uses the search() method, which
is provided in Tkinter in the Text widget. The search method takes the
following arguments:
search(pattern, index, stopindex=None, forwards=None,
 backwards=None, exact=None, regexp=None, nocase=None,
 count=None)

• The search method returns the starting position of the first match. We store
it in a variable named start_pos, calculate the position of the last character
in the matched word, and store it in the end_pos variable.

• For every search match that it finds, it adds the match tag to the text ranging
from the first position to the last position. After every match, we set the value
of start_pos to be equal to end_pos. This ensures that the next search starts
after end_pos.

• The loop also keeps a track of the number of matches by using the
count variable.

• Outside the loop, the tag match is configured to have a red font and yellow
background. The last line of this function updates the title of the Find
window with the number of matches that were found.

Making a Text Editor

[58]

In case of event bindings, interaction occurs between input devices
(keyboard/mouse) and your application. In addition to event binding,
Tkinter also supports protocol handling.
The term protocol refers to the interaction between your application and
the window manager. An example of a protocol is WM_DELETE_WINDOW,
which handles the close window event for your window manager.
Tkinter lets you override these protocol handlers by mentioning your
own handler for the root or Toplevel widget. To override the window exit
protocol, we use the following command:
root.protocol("WM_DELETE_WINDOW", callback)

Once you add this command, Tkinter bypasses protocol handling to the
specified callback/handler.

Types of Toplevel windows
In a code previously in this chapter, we used the following line:

search_toplevel.transient(root)

Let's understand what it means here. Tkinter supports the following four types of
Toplevel windows:

• The main Toplevel window: These are the ones that we have constructed
so far.

• The child Toplevel window: These are the ones that are independent of
the root. The Toplevel child behaves independent of its root, but it gets
destroyed if its parent is destroyed.

• The transient Toplevel window: This always appears at the top of its parent,
but it does not entirely grab the focus. Clicking again on the parent window
allows you to interact with it. The transient window is hidden when the
parent is minimized, and it is destroyed if the parent is destroyed. Compare
this to what is called a modal window. A modal window grabs all the focus
from the parent window and asks a user to first close the modal window
before getting access back to the parent window.

• The undecorated Toplevel window: A Toplevel window is undecorated
if it does not have a window manager decoration around it. It is created by
setting the overrideredirect flag to 1. An undecorated window cannot
be resized or moved.

Chapter 2

[59]

Refer to the 2.06.py code for a demonstration of all of these four types of
Toplevel windows.

This concludes our second iteration. Congratulations! We have completed coding the
Select All and Find Text functionality into our program.

More importantly, you have been introduced to indexing and tagging—two very
powerful concepts associated with many Tkinter widgets. You will find yourself
using these two concepts all the time in your projects.

We also saw the four types of Toplevel windows and the use case for each of them.

Working with forms and dialogs
The goal for this iteration is to implement the functionality of the File menu options
of Open, Save, and Save As.

We can implement these dialogs by using the standard Tkinter widgets. However,
since these are so commonly used, a specific Tkinter module called filedialog has
been included in the standard Tkinter distribution.

The source code of the filedialog module can be found within the Tkinter source
code in a separate file named filedialog.py.

Example of filedialog

www.allitebooks.com

http://www.allitebooks.org

Making a Text Editor

[60]

A quick look at the source code shows the following functions for our use:

Functions Description

askopenfile This returns the opened file object

askopenfilename This returns the filename string, not the opened file object
askopenfilenames This returns a list of filenames
askopenfiles This returns a list of open file objects or an empty list if

cancel is selected
asksaveasfile This asks for a filename to save as and returns the opened

file object
asksaveasfilename This asks for a filename to save as and returns the filename
askdirectory This asks for a directory and returns the directory name

The usage is simple. Import the filedialog module and call the required function.
Here's an example:

import tkinter.filedialog

We then call the required function using the following code:

file_object = tkinter.filedialog.askopenfile(mode='r')

Or we use this code:

my_file_name = tkinter.filedialog.askopenfilename()

The mode ='r' option specified in the preceding code is one of the many
configurable options that are available for the dialogs.

You can specify the following additional options for filedialog:

File dialog Configurable options
askopenfile
(mode='r', **options)

parent, title, message, defaultextension,
filetypes, initialdir, initialfile, and
multiple

askopenfilename
(**options)

parent, title, message, defaultextension,
filetypes, initialdir, initialfile, and
multiple

asksaveasfile
(mode='w', **options)

parent, title, message, defaultextension,
filetypes, initialdir, initialfile, and
multiple

Chapter 2

[61]

File dialog Configurable options
asksaveasfilename
(**options)

parent, title, message, defaultextension,
filetypes, initialdir, initialfile, and
multiple

askdirectory
(**options)

parent, title, initialdir, and must exist

Equipped with a basic understanding of the filedialog module, let's now have a
look at its practical usage. We'll begin by implementing the File | Open feature.

Let's start by importing the required modules, as follows:

import tkinter.filedialog
import os # for handling file operations

Next, let's create a global variable, which will store the name of the currently opened
file, as follows:

file_name = None

The use of global variables is generally considered bad programming
practice because it is very difficult to understand a program that uses lots
of global variables.
A global variable can be modified or accessed from many different places
in the program. Therefore, it becomes difficult to remember or work out
every possible use of the variable.
A global variable is not subject to access control, which may pose security
hazards in certain situations, say when this program needs to interact
with third-party code.
However, when you work on programs in the procedural style like this
one, global variables are sometimes unavoidable.
An alternative approach to programming involves writing code in a class
structure (also called object-oriented programming), where a variable
can only be accessed by members of predefined classes. We will see a lot
of examples of object-oriented programming in the chapters that follow.

The following code is present in open_file (refer to 2.07.py in the code bundle):

def open_file(event=None):
 input_file_name =
 tkinter.filedialog.askopenfilename(defaultextension=".txt",
 filetypes=[("All Files", "*.*"), ("Text Documents",
 "*.txt")])

Making a Text Editor

[62]

 if input_file_name:
 global file_name
 file_name = input_file_name
 root.title('{} - {}'.format(os.path.basename(file_name),
 PROGRAM_NAME))
 content_text.delete(1.0, END)
 with open(file_name) as _file:
 content_text.insert(1.0, _file.read())

Modify the Open menu to add a command callback to this newly-defined method,
as follows:

file_menu.add_command(label='Open', accelerator='Ctrl+O',
 compound='left', image=open_file_icon, underline =0, command=
 open_file)

The following is a description of the preceding code:

• We declared a file_name variable in the global scope to keep a track of the
filename of the opened file. This is required to keep a track of whether a file
has been opened. We need this variable in the global scope as we want this
variable to be available to other methods such as save() and save_as().
Not specifying it as global would mean that it is only available within the
function. So, the save() and save_as() functions would not be able to
check whether a file is already open in the editor.

• We use askopenfilename to fetch the filename of the opened file. In case a
user cancels opening the file or no file is chosen, the file_name returned is
None. In that case, we do nothing.

• However, in case filedialog returns a valid filename, we isolate the
filename using the os module and add it as the title of the root window.

• If the Text widget already contains some text, we delete it all.
• We then open the given file in the read mode and insert its content into the

Content widget. We use the context manager (the with command), which
takes care of closing the file properly for us, even in case of an exception.

• Finally, we add a command callback to the File | Open menu item.

This completes the coding of File | Open. If you now go and navigate to
File | Open, select a text file, and click on Open, the content area will be
populated with the content of the text file.

Chapter 2

[63]

Next, we will have a look at how to save a file. There are two components that are
needed to save a file:

• Save
• Save As

If the Content text widget already contains a file, we do not prompt the user for a
filename. We simply overwrite the contents of the existing file. If there is no filename
associated with the current content of the text area, we prompt the user with a Save
As dialog. Moreover, if the text area has an open file and the user clicks on Save As,
we still prompt them with a Save As dialog to allow them to write the contents to
a different filename.

The code for save and save_as is as follows (refer to 2.07.py in the code bundle):

def save(event=None):
 global file_name
 if not file_name:
 save_as()
 else:
 write_to_file(file_name)
 return "break"

def save_as(event=None):
 input_file_name = tkinter.filedialog.asksaveasfilename
 (defaultextension=".txt", filetypes=[("All Files", "*.*"),
 ("Text Documents", "*.txt")])
 if input_file_name:
 global file_name
 file_name = input_file_name
 write_to_file(file_name)
 root.title('{} - {}'.format(os.path.basename(file_name),
 PROGRAM_NAME))
 return "break"

def write_to_file(file_name):
 try:
 content = content_text.get(1.0, 'end')
 with open(file_name, 'w') as the_file:
 the_file.write(content)
 except IOError:
 pass
 # pass for now but we show some warning - we do this in
 next iteration

Making a Text Editor

[64]

Having defined the save and save_as function, let's connect them to the respective
menu callback:

file_menu.add_command(label='Save', accelerator='Ctrl+S',
 compound='left',image=save_file_icon,underline=0, command= save)
file_menu.add_command(label='Save as', accelerator='Shift+Ctrl+S',
 command= save_as)

The following is a description of the preceding code:

• The save function first tries to check whether a file is open. If a file is open, it
simply overwrites the contents of the file with the current contents of the text
area. If no file is open, it simply passes the work to the save_as function.

• The save_as function opens a dialog by using asksaveasfilename and tries
to get the filename provided by the user for the given file. If it succeeds, it
opens the new file in the write mode and writes the contents of the text in
this new filename. After writing, it closes the current file object and changes
the title of the window to reflect the new filename.

• In case the user does not specify a filename or the user cancels the save_as
operation, it simply ignores the process by using a pass command.

• We added a write_to_file(file_name) helper function to do the actual
writing to the file.

While we are at it, let's complete the functionality of File | New. The code is simple
(refer to 2.07.py in the code bundle):

def new_file(event=None):
 root.title("Untitled")
 global file_name
 file_name = None
 content_text.delete(1.0,END)

Now, add a command callback to this new function to the File | New menu item:

file_menu.add_command(label='New', accelerator='Ctrl+N',
 compound='left', image=new_file_icon, underline=0, command=
 new_file)

Chapter 2

[65]

The following is a description for the preceding code:

• The new_file function begins by changing the title attribute of the root
window to Untitled.

• It then sets the value of the filename global variable to None. This is
important because the save and save_as functionalities use this global
variable name to track whether the file exists or if it's new.

• The function then deletes all the contents of the Text widget, creating a fresh
document in its place.

Let's wrap up this iteration by adding keyboard shortcuts for the newly created
features (refer to 2.07.py in the code bundle):

content_text.bind('<Control-N>', new_file)
content_text.bind('<Control-n>', new_file)
content_text.bind('<Control-O>', open_file)
content_text.bind('<Control-o>', open_file)
content_text.bind('<Control-S>', save)
content_text.bind('<Control-s>', save)

In this iteration, we implemented the coding functionality for the New, Open, Save,
and Save As menu items.

More importantly, we saw how to use the filedialog module to achieve certain
commonly used file features in the program. We also had a look at how to use
indexing to achieve a wide variety of tasks for programs.

Working with message boxes
Now, let's complete the code for the About and Help menus. The functionality is
simple. When a user clicks on the Help or About menu, a message window pops up
and waits for the user to respond by clicking on a button. Though we can easily code
new Toplevel windows to show the About and Help messages, we will instead use
a module called messagebox to achieve this functionality.

Making a Text Editor

[66]

The messagebox module provides ready-made message boxes to display a wide
variety of messages in applications. The functions available through this module
include showinfo, showwarning, showerror, askquestion, askokcancel, askyesno,
askyesnocancel, and askretrycancel, as shown in the following screenshot:

To use this module, we simply import it into the current namespace by using the
following command:

import tkinter.messagebox

A demonstration of the commonly used functions of messagebox is illustrated in
2.08.py in the code bundle. The following are some common usage patterns:

import tkinter.messagebox as tmb

tmb.showinfo(title="Show Info", message="This is FYI")

tmb.showwarning(title="Show Warning", message="Don't be silly")
tmb.showerror(title="Show Error", message="It leaked")
tmb.askquestion(title="Ask Question", message="Can you read this
 ?")
tmb.askokcancel(title="Ask OK Cancel", message="Say Ok or Cancel?")
tmb.askyesno(title="Ask Yes-No", message="Say yes or no?")
tmb.askyesnocancel(title="Yes-No-Cancel", message="Say yes no
 cancel")
tmb.askretrycancel(title="Ask Retry Cancel", message="Retry or
 what?")

Chapter 2

[67]

Equipped with an understanding of the messagebox module, let's code the about
and help functions for the code editor. The functionality is simple. When a user
clicks on the About or Help menu item, a showinfo messagebox pops up.

To achieve this, include the following code in the editor (refer to 2.09.py in the
code bundle):

def display_about_messagebox(event=None):
 tkinter.messagebox.showinfo(
 "About", "{}{}".format(PROGRAM_NAME, "\nTkinter GUI
 Application\n Development Blueprints"))

def display_help_messagebox(event=None):
 tkinter.messagebox.showinfo(
 "Help", "Help Book: \nTkinter GUI Application\n Development
 Blueprints", icon='question')

Then, attach these functions to the respective menu items, as follows:

about_menu.add_command(label='About',
 command=display_about_messagebox)
about_menu.add_command(label='Help', command
 =display_help_messagebox)

Next, we will add the Quit Confirmation feature. Ideally, we should have asked for
file saving in case the text content has been modified, but for the sake of simplicity,
I am not putting in that logic here and instead simply displaying a prompt for the
user to determine whether the program should be closed or kept open. Accordingly,
when the user clicks on File | Exit, it prompts an Ok-Cancel dialog to confirm the
quit action.

def exit_editor(event=None):
 if tkinter.messagebox.askokcancel("Quit?", "Really quit?"):
 root.destroy()

Then, override the Close button and redirect it to the exit_editor function that we
previously defined, as follows:

root.protocol('WM_DELETE_WINDOW', exit_editor)

Then, add a command callback for all the individual menu items, as follows:

file_menu.add_command(label='Exit', accelerator='Alt+F4',
 command= exit_editor)
about_menu.add_command(label='About',
 command = display_about_messagebox)
about_menu.add_command(label='Help',
 command = display_help_messagebox)

Making a Text Editor

[68]

Finally, add the bindings for the keyboard shortcut to display help:

content_text.bind('<KeyPress-F1>', display_help_messagebox)

This completes the iteration.

The icons toolbar and View menu
functions
In this iteration, we will add the following functionalities to the text editor:

• Showing the shortcut icons on the toolbar
• Displaying line numbers
• Highlighting the current line
• Changing the color theme of the editor

Let's start with a simple task first. In this step, we will add shortcut icons to the
toolbar as shown in the following screenshot:

You may recall that we have already created a frame to hold these icons. Let's add
these icons now.

While adding these icons, we have followed a convention. The icons have been
named exactly the same as the corresponding function that handles them. Following
this convention has enabled us to loop through a list, simultaneously apply the icon
image to each button, and add the command callback from within the loop. All the
icons have been placed in the icons folder.

The following code adds an icon (refer to 2.10.py in the code bundle):

icons = ('new_file', 'open_file', 'save', 'cut', 'copy', 'paste',
 'undo', 'redo', 'find_text')
for i, icon in enumerate(icons):
 tool_bar_icon = PhotoImage(file='icons/{}.gif'.format(icon))

Chapter 2

[69]

 cmd = eval(icon)
 tool_bar = Button(shortcut_bar, image=tool_bar_icon,
 command=cmd)
 tool_bar.image = tool_bar_icon
 tool_bar.pack(side='left')

The following is a description of the preceding code:

• We have already created a shortcut bar in the first iteration. Now, we will
simply add buttons with images in the frame.

• We create a list of icons, taking care to name them exactly as the name
of the icons.

• We then loop through the list by creating a Button widget, adding an image
to the button, and adding the respective command callback.

• Before adding the command callback, we have to convert the string to an
equivalent expression by using the eval command. If we do not apply eval,
it cannot be applied as an expression to the command callback.

Thus, we've added shortcut icons to the shortcut bar. Now, if you run the code (refer
to 2.10.py in the code bundle), it should show all of the shortcut icons. Moreover, as
we have linked each button to its callback, all of these shortcut icons should work.

Displaying the line number
Let's work towards showing the line numbers to the left of the Text widget. This will
require us to tweak the code at various places. So, before we start coding, let's look at
what we are trying to achieve here.

The View menu has a menu item that allows users to choose whether to show line
numbers. We only want to show the line numbers if the option is selected, as shown
in the following screenshot:

If the option is selected, we need to display the line numbers in the left frame that we
created earlier.

www.allitebooks.com

http://www.allitebooks.org

Making a Text Editor

[70]

The line number should update every time a user enters a new line, deletes a line,
cuts or pastes text from the line, performs an undo or a redo operation, opens an
existing file, or clicks on the new menu item. In short, the line number should be
updated after every activity results in change of content.

Therefore, we need to define a function called on_content_changed(). This function
should be called after the definitions of every key press, cut, paste, undo, redo, new,
and open, to check whether lines have been added or removed from the text area and
accordingly update the line numbers. We achieve this by using the following two
strategies (refer to 2.10.py in the code bundle):

def on_content_changed(event=None):
 update_line_numbers()

Bind a key press event to the update_line_number() function, as follows:

content_text.bind('<Any-KeyPress>', on_content_changed)

Next, add a call to the on_content_changed() function in each of the definitions of
cut, paste, undo, redo, new, and open.

Next, define a get_line_numbers() function that returns a string containing all the
numbers until the last row, separated by line breaks.

So for instance, if the last nonempty row in the content widget is 5, this function
returns us a string of the ' 1 /n 2 /n 3 /n 4/n 5 /n' form.

The following is the function definition:

def get_line_numbers():
 output = ''
 if show_line_number.get():
 row, col = content_text.index("end").split('.')
 for i in range(1, int(row)):
 output += str(i)+ '\n'
 return output

Now, let's define the update_line_numbers() function, which simply updates the
text widget that displays the line using the string output from the previous function:

def update_line_numbers(event = None):
 line_numbers = get_line_numbers()
 line_number_bar.config(state='normal')
 line_number_bar.delete('1.0', 'end')
 line_number_bar.insert('1.0', line_numbers)
 line_number_bar.config(state='disabled')

Chapter 2

[71]

The following is a description of the preceding code:

• You may recall that we have assigned a show_line_number variable to the
menu item earlier:
show_line_number = IntVar()
show_line_number.set(1)
view_menu.add_checkbutton(label="Show Line Number",
 variable=show_line_number)

• If the show_line_number option is set to 1 (that is to say, it has been checked
off in the menu item), we calculate the last line and last column in the text.

• We then create a text string consisting of numbers from 1 to the number
of the last line, with each number separated by a line break (\n). This
string is then added to the left label by using the line_number_bar.
config() method.

• If Show Line Number is unchecked in the menu, the variable text remains
blank, thereby displaying no line numbers.

• Finally, we update each of the previously defined cut, paste, undo, redo,
new, and open functions to invoke the on_content_changed() function
at their end.

We are now done adding the line number functionality to the text editor.

Lastly, in this iteration, we will implement a feature where a user can choose to
highlight the current line (refer to 2.10.py in the code bundle).

The idea is simple. We need to locate the line of the cursor and add a tag to the
line. Finally, we need to configure the tag so that it appears with a different color
background to highlight it.

You may recall that we have already provided a menu choice to users to decide
whether to highlight the current line. We will now add a command callback from
this menu item to a function that we will define as toggle_highlight:

to_highlight_line = BooleanVar()
view_menu.add_checkbutton(label='Highlight Current Line',
 onvalue=1, offvalue=0, variable=to_highlight_line,
 command=toggle_highlight)

Now, define three functions to handle this for us:

def highlight_line(interval=100):
 content_text.tag_remove("active_line", 1.0, "end")
 content_text.tag_add("active_line", "insert linestart",
 "insert lineend+1c")

Making a Text Editor

[72]

 content_text.after(interval, toggle_highlight)

def undo_highlight():
 content_text.tag_remove("active_line", 1.0, "end")

def toggle_highlight(event=None):
 if to_highlight_line.get():
 highlight_line()
 else:
 undo_highlight()

The following is a description of the preceding code:

• Every time a user checks/unchecks View | Highlight Current Line, it
invokes the toggle_highlight function. This function checks whether
the menu item is checked. If it is checked, it invokes the highlight_line
function. Otherwise, if the menu item is unchecked, it invokes the
undo_highlight function.

• The highlight_line function simply adds a tag called active_line to the
current line, and after every 100 milliseconds, it calls the toggle_highlight
function to check whether the current line should still be highlighted.

• The undo_highlight function is invoked when the user unchecks
highlighting in the View menu. Once invoked, it simply removes the
active_line tag from the entire text area.

Finally, we can configure the tag named active_line so that it is displayed with
a different background color, as follows:

content_text.tag_configure('active_line', background='ivory2')

We used the .widget.after(ms, callback) handler in the code.
Methods that let us perform some periodic actions are called alarm
handlers. The following are some commonly used Tkinter alarm handlers:

• after(delay_ms, callback, args...): This registers
an alarm callback which can be called after a given number of
milliseconds

• after_cancel(id): This cancels the given alarm callback
• after_idle(callback, args...): This calls back only when

there are no more events to process in mainloop, that is, after the
system becomes idle

Chapter 2

[73]

Adding the cursor information bar
The cursor information bar is simply a small label at the bottom-right corner of
the Text widget, which displays the current position of the cursor, as shown in
the following screenshot:

The user can choose to show/hide this info bar from the View menu (refer to the
code in 2.11.py in the code bundle). Begin by creating a Label widget within the
Text widget and pack it in the bottom-right corner, as follows:

cursor_info_bar = Label(content_text, text='Line: 1 | Column: 1')
cursor_info_bar.pack(expand=NO, fill=None, side=RIGHT,
 anchor='se')

In many ways, this is similar to displaying the line numbers. Here too, the positions
must be calculated after every key press, after events such as cut, paste, undo, redo,
new, and open, or activities that lead to a change in cursor positions. Because this too
needs to be updated for all the changed content, for every key press, we will update
on_content_changed to update this, as follows:

def on_content_changed(event=None):
 update_line_numbers()
 update_cursor_info_bar()

def show_cursor_info_bar():
 show_cursor_info_checked = show_cursor_info.get()
 if show_cursor_info_checked:
 cursor_info_bar.pack(expand='no', fill=None, side='right',
 anchor='se')
 else:
 cursor_info_bar.pack_forget()

Making a Text Editor

[74]

def update_cursor_info_bar(event=None):
 row, col = content_text.index(INSERT).split('.')
 line_num, col_num = str(int(row)), str(int(col)+1) # col
 starts at 0
 infotext = "Line: {0} | Column: {1}".format(line_num, col_num)
 cursor_info_bar.config(text=infotext)

The code is simple. We get the row and column for the current cursor position by
using the index(INSERT) method and update the labels with the latest row and
column of the cursor.

Finally, the function is connected to the existing menu item by using a command
callback:

view_menu.add_checkbutton(label='Show Cursor Location at Bottom',
 variable=show_cursor_info, command=show_cursor_info_bar)

Adding themes
You may recall that while defining the Themes menu, we defined a color scheme
dictionary containing the name and hexadecimal color codes as a key-value pair,
as follows:

color_schemes = {
'Default': '#000000.#FFFFFF',
'Greygarious':'#83406A.#D1D4D1',
'Aquamarine': '#5B8340.#D1E7E0',
'Bold Beige': '#4B4620.#FFF0E1',
'Cobalt Blue':'#ffffBB.#3333aa',
'Olive Green': '#D1E7E0.#5B8340',
'Night Mode': '#FFFFFF.#000000',
}

The theme choice menu has already been defined. Let's add a command callback to
handle the selected menu (refer to 2.12.py in the code bundle):

themes_menu.add_radiobutton(label=k, variable=theme_choice,
 command=change_theme)

Finally, let's define the change_theme function to handle the changing of themes,
as follows:

def change_theme(event=None):
 selected_theme = theme_choice.get()
 fg_bg_colors = color_schemes.get(selected_theme)

Chapter 2

[75]

 foreground_color, background_color = fg_bg_colors.split('.')
 content_text.config(background=background_color,
 fg=foreground_color)

The function is simple. It picks up the key-value pair from the defined color scheme
dictionary. It splits the color into its two components and applies one color each to
the Text widget foreground and background using widget.config().

Now, if you select a different color from the Themes menu, the background and
foreground colors change accordingly.

This completes the iteration. We completed coding the shortcut icon toolbar and the
functionality of the View menu in this iteration. In the process, we learned how to
handle the Checkbutton and Radiobutton menu items. We also had a look at how
to create compound buttons while reinforcing several Tkinter options that were
covered in the previous sections.

Creating the context/pop-up menu
Let's complete the editor in this final iteration by adding a contextual menu to the
editor (refer to 2.12.py in the code bundle), as shown in the following screenshot:

The menu that pops up on the right-mouse-button click at the location of the mouse
cursor is called the context menu or the pop-up menu.

Making a Text Editor

[76]

Let's code this feature in the text editor. First define the context menu, as follows:

popup_menu = Menu(content_text)
for i in ('cut', 'copy', 'paste', 'undo', 'redo'):
 cmd = eval(i)
 popup_menu.add_command(label=i, compound='left', command=cmd)
popup_menu.add_separator()
popup_menu.add_command(label='Select All', underline=7,
 command=select_all)

Then, bind the right-click of a mouse with a callback named show_popup_menu,
as follows:

content_text.bind('<Button-3>', show_popup_menu)

Finally, define the show_popup_menu function in the following way:

def show_popup_menu(event):
 popup_menu.tk_popup(event.x_root, event.y_root)

You can now right-click anywhere on the Text widget of the editor to open the
contextual menu.

This concludes the iteration as well as the chapter.

Summary
In this chapter we covered the following points:

• We completed coding the editor in twelve iterations. We started by placing
all the widgets on the Toplevel window. We then leveraged some built-in
features of the Text widget to code some functionality. We learned some very
important concepts of indexing and tagging, which you will find yourself
using frequently in Tkinter projects.

• We also saw how to use the filedialog and messagebox modules to quickly
code some common features in programs.

• If you are feeling adventurous and want to further explore the Text Editor
program, I encourage you to have a look at the source code of Python's
built-in editor named IDLE, which is written in Tkinter. The source code of
IDLE can be found in your local Python library directory in a folder called
idlelib. On my Ubuntu, this is located at /usr/lib/python3.4/idlelib.

• Congratulations! You completed coding your text editor.

[77]

Programmable Drum
Machine

We looked at several common Tkinter widgets like Menu, Buttons, Label, and Text
in Chapter 2, Making a Text Editor. Let us now expand our experience with Tkinter to
make some music. Let us build a cross-platform drum machine using Tkinter and
some other Python modules.

Some of the key objectives for this chapter are:

• To learn to structure Tkinter programs in the object oriented style of
programming

• To delve deeper into a few more Tkinter widgets such as Spinbox,
Button, Entry, and Checkbutton

• To apply the grid geometry manager in a practical project
• To understand the importance of choosing the right data structure for

our programs
• To learn to bind higher-order callback functions to widgets
• To learn to use Tkinter in conjunction with some standard and

third-party modules
• To understand the need for multithreading and how to write multithreaded

applications
• To learn about object serialization or pickling
• To learn about ttk widgets

Programmable Drum Machine

[78]

An overview of the chapter
Our goal here is to build a programmable drum machine. Let's call it the
Explosion Drum Machine.

The drum machine will let the user create an unlimited number of beat patterns
using an unlimited number of drum samples. You can then store multiple riffs
in a project and playback or edit the project later on.

To create your own drum beat patterns, simply load some drum samples (which can
be any audio file with a .wav or .ogg extension) using the buttons on the left. You
can design your beat patterns by clicking on the buttons on the right.

You can decide the number of beats per unit (BPUs). Most Western beats have four
beats per unit, waltz would have three beats per unit, and some Indian and Arabic
rhythms that I composed on this machine had 3 to 16 beats per unit!

You can also change the beats per minute, which in turn decides the tempo of
the rhythm.

A single pattern like the preceding one constitutes a single beat pattern. You can
design multiple beat patterns by changing the Pattern Number Spinbox widget
in the top-left section.

Once you have made some beat patterns, you can even save the pattern and later
replay or modify it. The saving and reloading of files is done from the File menu
at the top.

Chapter 3

[79]

A few drum samples are provided in the Loops subdirectory; however, you can load
any other drum sample. You can download a large number of samples for free from
the Internet.

Module requirements for the chapter
We will use some more built-in libraries from the standard Python distribution for
this chapter. This includes Tkinter, os, math, threading, and pickle modules.

To verify that these modules do exist, simply run the following statement in your
Python3 IDLE interactive prompt:

>>> import tkinter, os, math, time, threading, pickle

This should not cause an error as Python3 comes with these modules built into
the distribution.

Other than this, you need to add an extra Python module called pygame.

We will be using the version named 1.9.1 Package, which can be downloaded at:
http://www.pygame.org/download.shtml.

Linux users may additionally want to take a look at the following page for
instructions on getting pygame to work with Python 3.x:

http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation

Pygame is a cross-platform package normally used for making games with
Python. However, we will just be using a small module from the package
named pygame.mixer, which is used for loading and playing sounds. The API
documentation for this module can be found at: http://www.pygame.org/docs/
ref/mixer.html.

After you have installed the module, you can verify it by importing it:

>>> import pygame

>>> pygame.version.ver

If no errors are reported and the version output is a string starting with 1.9, you are
ready to program the drum machine. Let's start!

http://www.pygame.org/download.shtml
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html

Programmable Drum Machine

[80]

Setting up the GUI in OOP
The text editor we developed in the previous chapter was implemented in
procedural code. Although it offered some benefits for quick coding, it had
some typical limitations:

• We started encountering global variables
• The function definitions needed to
• be defined above the code that called them
• Most importantly the code
• was not reusable.

Therefore, we need some way to ensure that our code is more reusable. This is why
programmers prefer to use Object Oriented Programming (OOP) to organize their
code into classes.

OOP is a programming paradigm that shifts the focus onto the objects we want
to manipulate rather than the logic required to manipulate them.

This is in contrast to procedural programming that views a program as a logical
procedure that takes input, processes it, and produces some output.

OOP provides several benefits such as data abstraction, encapsulation, inheritance,
and polymorphism. In addition, OOP provides a clear modular structure for
programs. Code modification and maintenance is easy as new objects can be
created without modifying the existing ones.

Let us build our drum program using OOP to illustrate some of these features.

An indicative OOP structure for our drum program could be as follows
(see code 3.01.py):

from tkinter import *
PROGRAM_NAME = ' Explosion Drum Machine '

class DrumMachine:
 def __init__(self, root):
 self.root = root
 root.title(PROGRAM_NAME)

if __name__ == '__main__':
 root = Tk()
 DrumMachine(root)
 root.mainloop()

Chapter 3

[81]

The description of the code is as follows:

• We create a class structure called DrumMachine and initialize the Toplevel
window passed as an argument to it.

• If the script is run as a standalone program, that is if __name__ == "__
main__", a new Tk() root object is created and the root window is passed
as an argument to the DrumMachine object.

• We then initiate an object from the class DrumMachine to get a
Toplevel window.

Now that we have our Toplevel window ready, let's stop adding any more visual
elements and think about something that is critical to how well our program will
eventually turn out to be. Let's spend some time finalizing the data structure for
our program.

Finalizing the data structure
As Linus Torvalds, the developer of Linux, once said:

"Bad programmers worry about the code. Good programmers worry about data
structures and their relationships."

What he means is that well-designed data structures make the code very easy to
design, maintain, and scale up. In contrast, if you start with a poor data structure,
you can't make up for that, even with the best of code.

Start with a good data structure and your code will naturally be more simple,
elegant, and easy to maintain.

With that in mind, let us try to decide on a suitable data structure for our program.
Go back and take a look at the previous figure (under the An overview of the chapter
section).

What kind of data structure do you think would be needed to capture all the
necessary fields of information?

Well, first of all our Drum Machine needs to keep information about beat patterns.
So let us start by creating list named all_patterns = [].

Now, each of the patterns within the list needs to capture information about the
drum files related to the pattern, the number of units in the pattern, the beats per
unit for the pattern, the beats per minute, and the buttons clicked to form the pattern.

Programmable Drum Machine

[82]

Accordingly, we came up with a data structure where all_patterns is a list where
each item in the list represents a single pattern. Each pattern is then denoted by a
dictionary as follows:

{
'list_of_drum_files': a list of location of audio drum files,
 'number_of_units': an integer, 'bpu': an integer,
 'beats_per_minute' : an integer,'button_clicked_list' : a 2
 dimensional list of boolean values where True means button is
 clicked and false means button is not clicked in the pattern
}

It is very important that you get familiar with the preceding data structure definition
for our drum machine. Notice that with just this data in hand, we can define the logic
to display everything that you see in the finalized drum machine.

Also notice that this data structure does not contain information about any GUI
elements such as widget information or widget states. As far as possible, we should
always strive to cleanly separate the data of the backend (program logic) from
the data related to the frontend (user interfaces). Our data structure here merely
represents the backend but is sufficient enough to allow us to lay out the logic to
determine our frontend.

The preceding data structure was what I found to be a good
representation of the data at hand. There could have been an equally valid
but altogether different representation of the data. There is no one "correct
answer" to the question of data representation.
However, building the representation around built-in collections of a
language allows us to work with highly optimized code and is generally a
good idea.
The choice of data structure directly affects the performance of an
application – sometimes trivially but at other times very severely.

Accordingly, we modify our code (see code 3.02.py) to initialize this data structure:

 def init_all_patterns(self):
 self.all_patterns = [
 {
 'list_of_drum_files':
 [None]*MAX_NUMBER_OF_DRUM_SAMPLES,
 'number_of_units': INITIAL_NUMBER_OF_UNITS,
 'bpu': INITIAL_BPU,
 'beats_per_minute' : INITIAL_BEATS_PER_MINUTE,
 'is_button_clicked_list' :
 self.init_is_button_clicked_list(

Chapter 3

[83]

 MAX_NUMBER_OF_DRUM_SAMPLES,
 INITIAL_NUMBER_OF_UNITS * INITIAL_BPU
)
 }
 for k in range(MAX_NUMBER_OF_PATTERNS)]

We also initialize the is_button_clicked_list with all values set as False
as follows:

 def init_is_button_clicked_list(self, num_of_rows,
 num_of_columns):
 return [[False]*num_of_columns for x in
 range(num_of_rows)]

And to support this structure, we define a few constants (see code 3.02.py):

MAX_NUMBER_OF_PATTERNS = 10
MAX_NUMBER_OF_DRUM_SAMPLES = 5
INITIAL_NUMBER_OF_UNITS = 4
INITIAL_BPU = 4
INITIAL_BEATS_PER_MINUTE = 240

Now, if you run this program, you simply see a root window – nothing different
from the previous code but internally our code is reserving memory for all the
data we will need to construct our logic. We have laid a strong foundation for our
program to run. Believe it or not, we have done half the job.

Creating broader visual elements
Next, let us lay out the broader visual elements of our program. For the sake of
modularity, we divide the program into four broad visual sections as shown in
the following figure:

Programmable Drum Machine

[84]

Let us define a method called init_gui() that is called from within the __init__
method as follows (see code 3.03.py):

 def init_gui(self):
 self.create_top_bar()
 self.create_left_drum_loader()
 self.create_right_button_matrix()
 self.create_play_bar()

We then proceed to define all four of these methods (3.03.py). The code is not
discussed here as we have done similar coding in previous chapters. Further,
we need five more attributes to handle the five new widgets:

 self.current_pattern = IntVar()
 self.number_of_units = IntVar()
 self.bpu = IntVar()
 self.to_loop = BooleanVar()
 self.beats_per_minute = IntVar()

We begin with the Top Bar section. The Top Bar is simple. It has a few labels,
three Spinboxes, and an Entry widget. We will not reproduce the entire code
here (see code 3.03.py) as we have already seen examples of creating Labels and
Entry widgets several times in the previous chapters. For the Spinbox, the options
are specified as follows:

 self.bpu.set(0)
 Spinbox(frame, from_=1, to=MAX_BPU, width=5,
 textvariable=self.bpu,
 command=self.on_bpu_changed).grid(row=0, column=7)

Next, let us code the create_left_drum_loader() method. This again is pretty
self-explanatory. We create a loop (see code 3.03.py):

for i in range (MAX_NUMBER_OF_DRUM_SAMPLES):
 # create compound button here
 # create entry widgets here and keep reference to each entry
 widget in a list
 # for future update of values

Before we proceed to code the create_right_button_matrix() method, let's finish
coding the create_play_bar() method as it is the simpler of the two. All it contains is
two buttons, a checkbutton, a spinbox, and an image. We have coded similar widgets
earlier and so I will leave it for you to explore on your own (see code 3.03.py).

Next, let's code the create_right_button_matrix() method. This is the most
complex of all.

Chapter 3

[85]

The right-button matrix comprises a two-dimensional array of rows and columns. The
number of rows in the matrix equals the constant MAX_NUMBER_OF_DRUM_SAMPLES,
and the number of columns represents the number of beat units per cycle and is
calculated by multiplying the number of units and the number of beats per unit.

Accordingly, the code that creates the button matrix looks like this (see code 3.03.py):

self.buttons = [[None for x in range(
 self.find_number_of_columns())] for x in
 range(MAX_NUMBER_OF_DRUM_SAMPLES)]
 for row in range(MAX_NUMBER_OF_DRUM_SAMPLES):
 for col in range(self.find_number_of_columns()):
 self.buttons[row][col] = Button(
 right_frame, command=self.on_button_clicked
 (row, col))
 self.buttons[row][col].grid(row=row, column=col)
 self.display_button_color(row, col)

The associated code for the find_number_of_columns() method is:

 def find_number_of_columns(self):
 return self.number_of_units.get() * self.bpu.get()

We have already created the buttons matrix, but we want the buttons to be colored
in two alternating shades. Therefore, we define two constants:

COLOR_1 = 'grey55'
COLOR_2 = 'khaki'

This can be any hexadecimal color code or any color from Tkinter's predefined list
of colors. We also require a third color to represent the button in a pressed state.
The constant BUTTON_CLICKED_COLOR = 'green' takes care of that.

We then define two methods:

 def display_button_color(self, row, col):
 bpu = self.bpu.get()
 original_color = COLOR_1 if ((col//bpu)%2) else COLOR_2
 button_color = BUTTON_CLICKED_COLOR if
 self.get_button_value(row, col) else original_color
 self.buttons[row][col].config(background=button_color)

 def display_all_button_colors(self):
 number_of_columns = self.find_number_of_columns()
 for r in range(MAX_NUMBER_OF_DRUM_SAMPLES):
 for c in range(number_of_columns):
 self.display_button_color(r, c)

Programmable Drum Machine

[86]

The idea is simple. A button is to be colored green if the value of the button is found
to be True in our data structure, or else the button is to be shaded in patterns of
COLOR_1 and COLOR_2 for each alternating unit of beats.

This alternating color is obtained by using this mathematical formula:

 original_color = COLOR_1 if (col//bpu)%2) else COLOR_2

Recall that we had created a two-dimensional boolean list called is_button_
clicked_list as a dictionary item in our original data structure to hold this value.
We change the color of the button to BUTTON_CLICKED_COLOR if that value is found to
be True. Accordingly, we define a getter method to get the value of the button:

 def get_button_value(self, row, col):
 return self.all_patterns[self.current_pattern.get()]
 ['is_button_clicked_list'][row][col]

Now each button is attached to the command callback named on_button_clicked,
which is coded as (see code 3.03.py):

def on_button_clicked(self, row, col):
 def event_handler():
 self.process_button_clicked(row, col)
 return event_handler

Notice something fancy with this piece of code? This method defines a function
within the function. It does not return a value as is typical of functions. Instead, it
returns a function that can be executed at a later stage. These are called higher-order
functions or, more precisely, function closures.

Why did we need to do this? We had to do this because each button is identified by
its unique row and column-based indexes. The value row and column values are
only available when the loop runs at the time of creating the buttons. The variables
row and col are lost after that. We therefore need some way to keep these variables
alive if we have to identify which button was clicked later on.

These callback functions come to our rescue as they encapsulate the row and column
values in the function that they return at the time of creation.

Chapter 3

[87]

Functions are first-class objects in Python. This means that you can
pass a function to another function as a parameter and you can return
a function from another function. In short, you can treat a function as
any other object.
You can bind a method object to a particular context as we did in
the previous code, by nested scoping of a method within a method.
Higher-order functions like these are a common way of associating
functions with widgets in GUI programming.

You can find more information about function closures at:

https://en.wikipedia.org/wiki/Closure_(computer_programming)

We then define a method called process_button_clicked:

 def process_button_clicked(self, row, col):
 self.set_button_value(row, col, not
 self.get_button_value(row, col))
 self.display_button_color(row, col)

 def set_button_value(self, row, col, bool_value):
 self.all_patterns[self.current_pattern.get()][
 'is_button_clicked_list'][row][col] = bool_value

The key section in the preceding code is the line that sets the button value opposite
to its current value using the not operator. Once the value is toggled, the method
calls the display_button_color method to recolor the buttons.

Finally, let's complete this iteration by defining some dummy methods for now and
attach them as command callbacks to the respective widgets:

on_pattern_changed()
on_number_of_units_changed()
on_bpu_changed()
on_open_file_button_clicked()
on_button_clicked()
on_play_button_clicked()
on_stop_button_clicked()
on_loop_button_toggled()
on_beats_per_minute_changed()

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Programmable Drum Machine

[88]

That completes the iteration. Now if you run the program (see code 3.03.py), it
should display all the broad visual elements.

The buttons matrix should be colored in two alternating shades and pressing the
buttons should toggle its color between green and its previous color.

All other widgets remain non-functional at this stage as we have attached them to
non-functional command callbacks. We will soon make them functional but, before we
do that, let's do something to make all our future coding simple, clean, and elegant.

Defining getter and setter methods
In our previous section, we needed to know the value of a button in a given row and
column of the button matrix for a given pattern. If the value was True, we colored
the button green. If the value was False, we colored it in alternating shades.

We can get the value of the button by calling this line of code:

self.all_patterns[self.current_pattern.get()]['is_button_clicked_
 list'][row][col]

Notice how this line has four sets of square brackets []. Since this nested
superscripting business can soon get ugly, we encapsulated this logic in a method
named get_button_value(row, col). Now, whenever we need to get a buttons
value, we can simply call this method with the right parameters.

Chapter 3

[89]

Now our code will not be littered with those ugly nested superscripts. Whenever we
want to get the value of a button, we can call the method get_button_value(row,
col), which has a nice indicative name for the work it does. Isn't this much more
readable and comprehensible than its rather ugly counterpart?

One thing is for sure – all logic that we build from now onward will heavily rely on
data we get from or set to our data structure. Given that we will need all this data all
the time in our program, let's write its getter and setter methods in advance. This
will certainly make our life a lot easier.

The goal for this part of the iteration is simple – to define getter and setter methods
for all the data that we have decided to store in our data structure.

The code is as follows (see code 3.04.py):

 def get_current_pattern_dict(self):
 return self.all_patterns[self.current_pattern.get()]

 def get_bpu(self):
 return self.get_current_pattern_dict()['bpu']

 def set_bpu(self):
 self.get_current_pattern_dict()['bpu'] = self.bpu.get()

 def get_number_of_units(self):
 return self.get_current_pattern_dict()['number_of_units']

 def set_number_of_units(self):
 self.get_current_pattern_dict(
)['number_of_units'] = self.number_of_units.get()

 def get_list_of_drum_files(self):
 return self.get_current_pattern_dict()
 ['list_of_drum_files']

 def get_drum_file_path(self, drum_index):
 return self.get_list_of_drum_files()[drum_index]

 def set_drum_file_path(self, drum_index, file_path):
 self.get_list_of_drum_files()[drum_index] = file_path

 def get_is_button_clicked_list(self):
 return self.get_current_pattern_dict()
 ['is_button_clicked_list']

Programmable Drum Machine

[90]

 def set_is_button_clicked_list(self, num_of_rows,
 num_of_columns):
 self.get_current_pattern_dict()['is_button_clicked_list']
 = [
 [False] * num_of_columns for x in range(num_of_rows)]

 def get_beats_per_minute(self):
 return self.get_current_pattern_dict()['beats_per_minute']

 def set_beats_per_minute(self):
 self.get_current_pattern_dict(
)['beats_per_minute'] = self.beats_per_minute.get()

That is all there is to coding the getter and setter methods. The code should be
self-explanatory if you have understood the underlying data structure, as all that we
do here is to either get the value or set a value for various items in the data structure.
With these methods now handy, let us complete coding the functionality of widgets
we had earlier left uncoded.

The number of units and beats per
unit features
We earlier coded the create_right_button_matrix, which creates a two-dimensional
matrix with the number of rows equal to MAX_NUMBER_OF_DRUM_SAMPLES. The number
of columns would be decided by multiplying the number of units by the beats per unit
values selected by the end user. Its formula can be given as follows:

Number of columns of buttons = Number of units x BPU

Chapter 3

[91]

This means that every time the user changes the number of units or the beats per
unit, the button matrix should be redrawn to change the number of columns. This
change should also be reflected in our underlying data structure. Let us add this
feature to our drum machine.

We had earlier defined two dummy methods: on_number_of_units_changed() and
on_bpu_changed(). We modify them now as follows (see code 3.04.py):

 def on_number_of_units_changed(self):
 self.set_number_of_units()
 self.set_is_button_clicked_list
 (MAX_NUMBER_OF_DRUM_SAMPLES,
 self.find_number_of_columns())
 self.create_right_button_matrix()

 def on_bpu_changed(self):
 self.set_bpu()
 self.set_is_button_clicked_list
 (MAX_NUMBER_OF_DRUM_SAMPLES,
 self.find_number_of_columns())
 self.create_right_button_matrix()

Both preceding methods do two things:

• Modify the data structure to reflect the changes in BPU or number of units.
• Call the create_right_button_matrix() method to recreate the

button matrix.

Now if you go and run the code (see code 3.04.py) and change either the values of
number of units or BPU, the button matrix should redraw itself to reflect the change.

Loading drum samples
Our main objective is to play sound files, in the order of a beat pattern decided by
the user. To do this, we need to add sound files to the drum machine.

Our program does not have any preloaded drum files. Instead, we want to let the
user select from a wide variety of drum files.

Programmable Drum Machine

[92]

Thus, besides the normal drum, you can play a Japanese tsuzumi, an Indian tabla,
Latin American bongo drums, or just about any other sound that you want to add to
your rhythm. All you need is a small .wav or .ogg file containing that sound's sample.

Let us code the ability to add drum samples to our program.

The drum sample is to be loaded on the left bar, as shown in Figure 3.5. We have
already created buttons with folder icons on the left-hand side of our drum pad.

The desired functionality is simple.

When a user clicks on any of the left buttons, they should open a file dialog letting
the user choose a .wav or .ogg file. When the user selects the file and clicks on Open,
the Entry widget next to that button should be populated with the name of the file.
Further, the location of the drum sample file should be added to our data structure
at the appropriate place.

First, we will import the required modules.

We will use the filedialog module to ask the user to select drum files. We
have already used the file dialog module in Chapter 2, Making a Text Editor. The
functionality here is very similar. We will also need to extract the filename of
the given sound sample using the os module. Let us begin by importing the two
modules (see code 3.05.py):

import os
from tkinter import filedialog

Chapter 3

[93]

The buttons we created for uploading drum files are attached to the on_open_file_
button_clicked method through a command callback. We had earlier created a
dummy method by that name. We now modify that method to add the required
functionality (see code 3.05.py):

 def on_open_file_button_clicked(self, drum_index):
 def event_handler():
 file_path = filedialog.askopenfilename
 (defaultextension=".wav", filetypes=[("Wave Files",
 "*.wav"), ("OGG Files", "*.ogg")])
 if not file_path:
 return
 self.set_drum_file_path(drum_index, file_path)
 self.display_all_drum_file_names()
 return event_handler

The preceding method again returns a function as we need to track which of the
drum files was actually selected from all the rows of drum files.

The preceding code does three things:

• Asks the user for the file path using Tkinter's filedialog
• Modifies the underlying data structure to save the provided file path
• Calls another method to display the filename in the adjacent entry widget

The next two methods are then responsible for displaying all drum names in the
frontend (see code 3.05.py):

 def display_all_drum_file_names(self):
 for i, drum_name in enumerate
 (self.get_list_of_drum_files()):
 self.display_drum_name(i, drum_name)

 def display_drum_name(self, text_widget_num, file_path):
 if file_path is None: return
 drum_name = os.path.basename(file_path)
 self.drum_load_entry_widget [text_widget_num].delete(0,
 END)
 self.drum_load_entry_widget[text_widget_num].insert(0,
 drum_name)

The preceding method above uses os.path.basename from the os module to obtain
the filename from the file path.

Programmable Drum Machine

[94]

This completes the section. Our code is now capable of loading drum samples and
storing records of all file paths in the data structure. Go ahead and try loading some
drum samples (see code 3.05.py) and the program should display the name of the
drum file in the adjacent entry widget.

Playing the drum machine
Now that we have a mechanism to load drum samples and a mechanism to define
beat patterns in place, let us add the ability to play these beat patterns. In many
ways, this is the core of our program.

Let us first understand the functionality that we want to achieve here.

Once the user has loaded one or more drum samples and has defined a beat pattern
using the toggle buttons, we need to scan each column of the pattern to see if it finds
a green button (a True value in our data structure).

If the value is True for a given location in the matrix, our code should play the
corresponding drum sample before moving ahead. If two or more drum samples are
selected in the same column, all the samples should play almost simultaneously.

Moreover, there should be a fixed time gap between the playing of each successive
column, which will define the tempo of the music.

To achieve this functionality, we need to import the pygame module, to play the
sounds, and the time module, to define the temporal gap between them.

Initializing pygame
Pygame is a set of highly portable modules that runs on most operating systems.
We will use pygame's mixer module to play the sound files.

Assuming that you have installed the package, let's begin by importing pygame
(see code 3.06.py):

import pygame

According to the official API documentation of the mixer module at http://www.
pygame.org/docs/ref/mixer.html, we need to initialize pygame before we can
play back the audio files.

http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html

Chapter 3

[95]

We initialize pygame in a new method called init_pygame (see code 3.06.py):

 def init_pygame(self):
 pygame.mixer.pre_init(44100, -16, 1, 512)
 pygame.init()

The mixer.pre_init method is a special requirement for our drum machine,
because the lack of it causes a lot of sound lagging. We will not get into the details
of audio programming here, but suffice to say that the arguments to the pre_init
method are as follows:

pre_init(frequency=22050, size=-16, channels=2, buffersize=512)

After pygame is initialized like this, the documentation suggests the following code
to play the sound. Le's add this to our code as well (see code 3.06.py):

 def play_sound(self, sound_filename):
 if sound_filename is not None:
 pygame.mixer.Sound(sound_filename).play()

Playing complete patterns
Now our program has the ability to play any sound. But we don't just need to play a
single sound. We need to play a pattern. Let's define a method called play_pattern
that reads our internal data structure and plays files accordingly (see code 3.06.py):

import time
 def play_pattern(self):
 self.keep_playing = True
 while self.keep_playing:
 self.now_playing = True
 play_list = self.get_is_button_clicked_list()
 num_columns = len(play_list[0])
 for column_index in range(num_columns):
 column_to_play = self.get_column_from_matrix
 (play_list, column_index)
 for i, item in enumerate(column_to_play):
 if item:
 sound_filename =
 self.get_drum_file_path(i)
 self.play_sound(sound_filename)
 time.sleep(self.time_to_play_each_column())
 if not self.keep_playing:
 break
 if not self.loop:
 self.keep_playing = self.loop
 self.now_playing = False

Programmable Drum Machine

[96]

We also add an associated method that returns the ith column from a matrix:

def get_column_from_matrix(self, matrix, i):
 return [row[i] for row in matrix]

The description of the code is as follows:

• We create a class attribute called self.keep_playing to decide if the pattern
is to be played just once or continuously in a loop.

• We create another class attribute called self.now_playing to track if a beat
is currently playing. This will help us to make some decisions on how to
handle a sudden close of program or change of pattern by the user.

• We then fetch the two-dimensional boolean list from our data structure and
scan each column of the list to look for True values. We get the column data
from the matrix by defining a separate method called get_column_from_
matrix(self, matrix, I).

• For every column, if a True value in encountered, we fetch the corresponding
drum file path and call the self.play_sound() method to play the file.

• The code sleeps for a fixed duration of time before reading the second column.
This sleep duration defines the tempo of the drum beat. If the code does not
sleep for some time between each column, all the patterns would play almost
immediately and would not even sound like a rhythm. We accordingly need
to import the time module to use the time.sleep() method.

• The amount of time the code sleeps between scanning each column is
decided by another method called self.time_to_play_each_column(),
which we define next.

Determining the tempo of a rhythm
The mathematics of defining the tempo of a rhythm is simple. We get the value
associated with the beats_per_minute() Spinbox widget and divide it by 60 to get
the beats per second. Then the time to play each beat (or group of beats simultaneously
for a given column) is the reciprocal of beats_per_second.

The code is as follows (see code 3.06.py):

 def time_to_play_each_column(self):
 beats_per_minute = self.get_beats_per_minute()
 beats_per_second = beats_per_minute/60
 time_to_play_each_column = 1/beats_per_second
 return time_to_play_each_column

Chapter 3

[97]

While we are handling the tempo for the pattern, let's also complete coding
the command callback attached to our beats per minute Spinbox widget
(see code 3.06.py):

def on_beats_per_minute_changed(self):
 self.set_beats_per_minute()

Now let's code the functionality related to the loop checkbox. We have already
factored in the looping issue in our play_pattern method using the self.loop
variable. We simply need to set the value of the self.loop attribute by reading
the value of the Spinbox widget (see code 3.06.py):

 def on_loop_button_toggled(self):
 self.loop = self.to_loop.get()
 self.keep_playing = self.loop

With that out of the way, let's code the command callback attached to our Play
button and the Stop button (see code 3.06.py):

 def on_play_button_clicked(self):
 self.start_play()

 def start_play(self):
 self.init_pygame()
 self.play_pattern()

 def on_stop_button_clicked(self):
 self.stop_play()

 def stop_play(self):
 self.keep_playing = False

Our drum machine is now operational (see code 3.06.py). You can load drum
samples, define beat patterns, and when you click on the Play button, the drum
machine plays that beat pattern!

However, there is a small problem. The play_sound method blocks the main loop
of our Tkinter program. It does not relinquish control back to the main loop until
it is done playing the sound sample.

Programmable Drum Machine

[98]

Since our self.loop variable is set to True, this means that pygame never returns
back control to Tkinter's main loop and our program is stuck!

This means that if you now want to click on the Stop button or change some
other widget, or even close the window, you will have to wait for the play loop
to complete, which never happens in our case.

This is clearly a glitch. We need some method to confer back the control to the
Tkinter main loop while the play is still in progress.

That brings us to the next iteration where we discuss and implement multithreading
in our application.

Tkinter and threading
One of the simplest ways that we can make our root window responsive is to
use the root.update() method within our play_pattern loop. This updates
the root.mainloop() method after each sound sample is played.

However, this is an inelegant method because the control is passed to the main loop
with some staggering experienced in the GUI. Thus, you may experience a slight
delay in the responses of other widgets in the Toplevel.

Further, if some other event causes the method to be called, it could result in a
nested event loop.

Chapter 3

[99]

A better solution would be to run the play_pattern method from a separate thread.
Let us use the threading module of Python to play the pattern in a separate thread.
This way, pygame will not interfere with Tkinter's main loop.

A thread is a coding construct that can advance two or more separate sets of
logical workflow together within an instance of a running program (process),
context-switching between the workflows. Each thread in a running program
gets its own stack and its own program counter, but all threads in a process
share the same memory.

In contrast to threads, processes are independent execution instances of programs,
each maintaining its own state information and address space. Processes can only
interact with other processes using interprocess communication mechanisms.

Threading is a topic for a book in itself. However, we will not get into the details
and instead use the threading module from the Python standard library. The
threading module provides a higher-level threading interface to hide away the
inner complexities of implementing a multithreaded program. To use the module,
let's first import the threading module into our namespace (see code 3.07.py):

import threading

Now, let us create a method, play_in_thread(), as follows (3.07.py):

def play_in_thread(self):
 self.thread = threading.Thread(target = self.play_pattern)
 self.thread.start()

Finally, change the start_play method to call the play_in thread rather than
calling the play_pattern directly:

 def start_play(self):
 self.init_pygame()
 self.play_in_thread() # deleted direct call to
 self.play_pattern()

Now if you load some drum samples, define the beat patterns, and hit the Play
button, the sound will play in a separate thread without causing other widgets
to become unresponsive (see code 3.07.py).

However, this poses a new problem. What happens if the user clicks the Play button
multiple times? That would spawn multiple threads of beat patterns all playing
simultaneously.

Programmable Drum Machine

[100]

We can overcome this problem by disabling the Play button when the audio
is playing. This can be achieved by defining a toggle_play_button_state()
(see code 3.07.py):

 def toggle_play_button_state(self):
 if self.now_playing:
 self.play_button.config(state="disabled")
 else:
 self.play_button.config(state="normal")

We then attach this state toggling method onto the Play, Stop, and Loop widget
command callbacks as follows (3.07.py):

 def on_play_button_clicked(self):
 self.start_play()
 self.toggle_play_button_state()

 def on_stop_button_clicked(self):
 self.stop_play()
 self.toggle_play_button_state()

 def on_loop_button_toggled(self):
 self.loop = self.to_loop.get()
 self.keep_playing = self.loop
 if self.now_playing:
 self.now_playing = self.loop
 self.toggle_play_button_state()

We also modify our play_pattern() method to include a call to toggle_play_
button_state() at the end (see code 3.07.py). This will ensure that when the
pattern has ended playing, the Play button returns to its normal state.

The Play button now remains in a disabled state as long as some audio is playing.
It returns to a normal state when audio isn't playing.

Tkinter and thread safety
Tkinter is not thread safe. The Tkinter interpreter is valid only in the thread that runs
the main loop. Any call to widgets must ideally be done from the thread that created
the main loop. Invoking widget-specific commands from other threads is possible,
but is not reliable.

Chapter 3

[101]

When you call a widget from another thread, the events get queued for the
interpreter thread, which executes the command and passes the result back to the
calling thread. If the main loop is running but not processing events, it sometimes
results in unpredictable exceptions.

In fact, if you find yourself calling a widget from a thread other than the main loop,
chances are, you have not separated the visual elements from the underlying data
structure. You are possibly doing it wrong.

Before we complete this iteration, let's take care of a small detail. What happens if
a beat is currently playing and the user hits the Close button on the window? The
main loop will die and our audio-playing thread will be left in an orphaned state.
This can lead to ugly error messages thrown at the user.

Let us therefore override the Close button and stop the audio play before we quit
the window.

To override the Close button, we add a small line to our class __init__ method
as follows (see code 3.07.py):

self.root.protocol('WM_DELETE_WINDOW', self.exit_app)

And then we define a method called exit_app() as follows (see code 3.07.py):

 def exit_app(self):
 self.keep_playing = False
 if messagebox.askokcancel("Quit", "Really quit?"):
 self.root.destroy()

This completes the project iteration.

To summarize, we refined our start_play() method to play the audio files on a
separate thread. We also made sure to disable the Play button as long as the audio
plays. Finally, we overrode the Close button to handle exiting when some audio is
currently playing.

We used Python's built-in threading module to play the loops in a separate thread.
We also looked at some of the threading-related limitations of Tkinter. However,
threading is a vast topic in itself and we have just scratched the surface here.

You can find more details about the threading module at https://docs.python.
org/3/library/threading.html.

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html

Programmable Drum Machine

[102]

Support for multiple beat patterns
Our drum program is now functional. You can load drum samples and define a beat
pattern and our drum machine will play it.

Let us now extend our drum machine to create more than one pattern in the same
program. This will provide us with the ability to play different patterns simply by
changing the pattern number. This gives the user the ability to make different
beats for the intro, verse, chorus, bridge, and other parts of a song.

At the very outset, we have an entry widget adjacent to the Pattern Number Spinbox
widget. We want to display the current pattern number in that entry widget.

We accordingly create a method, display_pattern_name(), which does this task
(see code 3.08.py):

 def display_pattern_name(self):
 self.current_pattern_name_widget.config(state='normal')
 self.current_pattern_name_widget.delete(0, 'end')
 self.current_pattern_name_widget.insert(0,
 'Pattern {}'.format(self.current_pattern.get()))
 self.current_pattern_name_widget.config(state='readonly')

We want the pattern name to display in the text widget when the program initially
launches initially. Therefore, we modify our create_top_bar() method to include
a call to this newly defined method (see code 3.08.py).

A change of pattern requires several changes. First of all, let's modify the
on_pattern_changed() command callback to call a new method,
change_pattern(), as follows (see code 3.08.py):

def on_pattern_changed(self):
 self.change_pattern()

Next, let us define the change_pattern() method:

 def change_pattern(self):
 if self.now_playing:
 self.stop_play()

Chapter 3

[103]

 self.now_playing = True
 self.display_pattern_name()
 self.create_left_drum_loader()
 self.display_all_drum_file_names()
 self.number_of_units.set(self.get_number_of_units())
 self.bpu.set(self.get_bpu())
 self.beats_per_minute.set(self.get_beats_per_minute())
 self.create_right_button_matrix()
 self.display_all_button_colors()
 if self.now_playing:
 self.restart_play_of_new_pattern()

The preceding code should almost read like plain English and should be
self-descriptive of the steps involved in a change of pattern.

If a certain pattern is already playing, we want to gracefully stop that pattern before
the new pattern is played. We do not want our player to be caught up in some
inconsistent data state as the pattern changes. Therefore, the preceding method
starts with a call to stop_play().

Once all the requisite changes have been made, the code checks if any beat pattern
was playing at the time of the pattern change. If yes, it restarts playing the new
pattern using the method defined next (see code 3.08.py):

 def restart_play_of_new_pattern(self):
 self.start_play()

This completes coding our drum machine to support multiple beat patterns. Go
ahead and run code 3.08.py. Load some drum files and define the first beat pattern
and play it. Change the beat pattern using the Spinbox widget at the top left,
load new drums, and define a new pattern. Now go and play this pattern. While
it is playing, try switching to your first beat pattern. The change should happen
seamlessly.

Saving beat patterns
In the preceding iteration, we added the capability to define multiple beat patterns.
However, the beat patterns can be played only on a single script run. When the
program is closed and restarted, all previous pattern data is lost.

We need a way to persist or store the beat patterns beyond a single program run.
We need the ability to store values in some form of file storage and reload, play,
and even edit the patterns. We need some form of object persistence.

Programmable Drum Machine

[104]

Python provides several modules for object persistence. The module that we will use
for persistence is called the pickle module.

Pickle is a standard library of Python.

An object represented as a string of bytes is called a pickle in Python. Pickling, also
known as object serialization, lets us convert our object into a string of bytes. The
process of reconstructing the object back from the string of bytes is called unpickling
or deserialization.

More information about the pickle module is available at http://docs.python.
org/3/library/pickle.html.

Let us illustrate it with a simple example:

import pickle
party_menu= ['Bread', 'Salad', 'Bordelaise', 'Wine', 'Truffles']
pickle.dump(party_menu, open("my_menu", "wb"))

First, we serialize or pickle our list, party_menu, using pickle.dump and save it in
an external file, my_menu.

We later retrieve the object using pickle.load:

import pickle
menu= pickle.load(open("my_menu", "rb"))
print(menu) # prints - ['Bread', 'Salad', 'Bordelaise', 'Wine',
 'Truffles']

Coming back to our drum machine – if we need to store and reuse the beat patterns,
we only need to pickle our data structure list named self.all_patterns. Having
saved the object, we can later easily unpickle the file to reconstruct our beat patterns.

We first need to add three top-menu items to our program, as shown in the
following figure:

http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html

Chapter 3

[105]

The three top-menu are:

• File | Load Project
• File | Save Project
• File | Exit

While we are creating our menu items, let us also add an About menu item.

Here, we are particularly interested in saving the project (pickling), and loading the
project back (unpickling). The code for menu items is defined in a separate method
called create_top_menu, as shown in the following code (see code 3.09.py):

 def create_top_menu(self):
 self.menu_bar = Menu(self.root)
 self.file_menu = Menu(self.menu_bar, tearoff=0)
 self.file_menu.add_command(
 label="Load Project", command=self.load_project)
 self.file_menu.add_command(
 label="Save Project", command=self.save_project)
 self.file_menu.add_separator()
 self.file_menu.add_command(label="Exit",
 command=self.exit_app)
 self.menu_bar.add_cascade(label="File",
 menu=self.file_menu)
 self.about_menu = Menu(self.menu_bar, tearoff=0)
 self.about_menu.add_command(label="About",
 command=self.show_about)
 self.menu_bar.add_cascade(label="About",
 menu=self.about_menu)
 self.root.config(menu=self.menu_bar)

The code is self-explanatory. We have created similar menu items in our last two
projects. Finally, to display this menu, we call this method from our init_gui()
method.

To pickle our object, we first import the pickle module into the current namespace
as follows (see code 3.09.py):

import pickle

The Save Project menu has a command callback attached to self.save_project,
which is where we define the pickling process:

 def save_project(self):
 saveas_file_name = filedialog.asksaveasfilename
 (filetypes = [('Explosion Beat File','*.ebt')],
 title="Save project as...")

Programmable Drum Machine

[106]

 if saveas_file_name is None: return
 pickle.dump(self.all_patterns, open(saveas_file_name,
 "wb"))
 self.root.title(os.path.basename(saveas_file_name) +
 PROGRAM_NAME)

The description of the code is as follows:

• The save_project method is called when the user clicks on the Save Project
menu, hence, we need to give the user an option to save the project in a file.
We have chosen to define a new file extension (.ebt) to keep track of our
beat patterns.

• When the user specifies the filename, it is saved with a .ebt extension. The
file contains the serialized list self.all_patterns, which is dumped into
the file using pickle.dump.

• Lastly, the title of the Toplevel window is changed to reflect the filename.

We are done pickling the object. Let us now code the unpickling process. The
unpickling process is handled by a method, load_project, which is called
from the Load Project menu as follows:

 def load_project(self):
 file_path = filedialog.askopenfilename(filetypes =
 [('Explosion Beat File','*.ebt')], title='Load Project')
 if not file_path:return
 pickled_file_object = open(file_path,"rb")
 try:
 self.all_patterns = pickle.load(pickled_file_object)
 except EOFError:
 messagebox.showerror("Error", "Explosion Beat file
 seems corrupted or invalid !")
 pickled_file_object.close()
 try:
 self.reconstruct_first_pattern()
 self.root.title(os.path.basename(file_path) +
 PROGRAM_NAME)
 except:messagebox.showerror("Error", "An unexpected error
 occurred trying to process the beat file")

Chapter 3

[107]

The description of the code is as follows:

• When a user clicks on the Load Project menu, it triggers a command callback
connected to this load_project method.

• The first line of the method prompts the user with an Open File window.
When the user specifies a previously pickled file with a .ebt extension,
the filename is stored in a variable called pickled_file_object.

• If the filename returned is none because the user cancels the Open File
dialog, nothing is done. The file is then opened in read mode, and the
contents of the file are read into self.all_patterns using pickle.load.

• self.all_patterns now contains the list of beat patterns defined in the
previous pickle.

• The file is closed and the first pattern of self.all_patterns is reconstructed
by calling the method reconstruct_first_pattern(), which is a simple
wrapper around our previously defined change_pattern() method,
as follows:
def reconstruct_first_pattern(self):
 self.change_pattern()

This should load the first pattern on our drum machine. Try playing any of the
patterns, and you should be able to replay the pattern exactly as it was defined
at the time of pickling.

Note, however, that the pickled .ebt files are not portable from one computer to
another. This is because we have just pickled the file path for our drum files. We
have not pickled the actual audio files. So if you try to run the .ebt file on another
machine or if the file path to the audio files has changed since the pickling, our code
will not be able to load the audio files and will report an error.

The process of pickling uncompressed audio files like those in .wav files, .ogg files,
or PCM data is the same as the preceding. After all, these uncompressed audio files
are nothing but a list of numbers.

However, trying to pickle audio files here would require us to deviate a lot from our
current topic. Therefore, we have not implemented it here.

Pickling, though great for serialization, is vulnerable to malicious or
erroneous data. You may want to use pickle only if the data is from
a trusted source, or if proper validation mechanisms are in place.

You may also find the json module useful for serializing objects in JSON and the
ElementTree, or xml.minidom libraries relevant for parsing XML data.

Programmable Drum Machine

[108]

To end this section, let us complete coding the response to clicking on the About
menu item:

 def show_about(self):
 messagebox.showinfo(PROGRAM_NAME, "Tkinter GUI
 Application\n Development Blueprints")

This is self-explanatory. We have done similar coding in our previous project.

To summarize this iteration, we used Python's built-in pickle module to pickle and
unpickle the beat patterns defined by the user.

This now lets us save our beat patterns. We can later load, replay, and edit these
saved patterns in our drum machine (see code 3.09.py).

Working with ttk-themed widgets
We are almost done programming our drum machine. However, we would like
to end this chapter by introducing you to the ttk-themed widgets.

Tkinter does not bind to the native platform widgets on many platforms such as
Microsoft Windows and X11.

The Tk toolkit (and Tkinter) originally appeared on X-Window systems, hence,
it adopted the motif, look, and feel, which was the de facto standard for GUI
development on X-Window systems.

When Tk was ported to other platforms, such as Windows and Mac OS, this motif
style started appearing out of place with the look of these platforms.

Due to this, some even argue that Tkinter widgets are rather ugly and do not
integrate well with such desktop environments.

Another criticism of Tkinter is based on the fact that Tkinter mixes logic and styling
by allowing both to be changed as widget options.

Tkinter was also criticized for lacking any kind of theming support. Although we
saw an example of centralized styling via the option database, the method required
styling to be done at the widget level. It does not allow for selective styling of two
button widgets differently, as an example. This made it difficult for developers to
implement visual consistency for similar groups of widgets while differentiating
them from other groups of widgets.

As a result of this, many GUI developers moved to Tkinter alternatives such as
wxPython, PySide, PyQT, and others.

Chapter 3

[109]

With Tkinter 8.5, the makers of Tkinter have tried to address all these concerns by
introducing the ttk module, which may be considered as an advance to the original
Tkinter module.

Let us take a look at some of the features offered by the ttk-themed widgets module.

One of the first things that ttk does is that it provides a set of built-in themes
that allows Tk widgets to look like the native desktop environment in which the
application is running.

Additionally, it introduces six new widgets: Combobox, Notebook, Progressbar,
Separator, Sizegrip, and Treeview to the list of widgets, in addition to supporting
11 core Tkinter widgets, which are Button, Checkbutton, Entry, Frame, Label,
LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale, and Scrollbar.

To use the ttk module, we first import it into the current namespace:

from tkinter import ttk

You can display the ttk widgets as follows (see code 3.10.py):

ttk.Button(root, text='ttk Button').grid(row=1, column=1)
ttk.Checkbutton(root, text='tkCheckButton').grid(row=2, column=1)

Code 3.10.py provides a comparison of displays between the normal Tkinter
widgets and the counterpart ttk widgets and produces an output as shown
in the following screenshot:

Programmable Drum Machine

[110]

Notice that the preceding screenshot is taken on a Microsoft Windows platform as
the differences are more marked on systems that do not explicitly use the X-Window
system. Notice how Tkinter widgets (on the left) look out of place on Microsoft
Windows as compared to ttk widgets (on the right), which is the native Microsoft
Windows look and feel (see code 3.10.py).

You can even override the basic Tkinter widgets by importing ttk after
Tkinter as follows:

from tkinter import *
from tkinter.ttk import *

This causes all widgets common to Tk and ttk to be replaced by ttk
widgets.
This has the direct benefit of using the new widgets, which gives a better
look and feel across platforms.
However, the disadvantage of this kind of import is that you cannot
distinguish the module from which the widget classes are imported.
This is important because the Tkinter and ttk widget classes are not
completely interchangeable. In this case, an unambiguous solution is to
import them, as shown in the following code:

import tkinter as tk
from tkinter import ttk

Although most of the configuration options for Tkinter and ttk widgets are common,
ttk-themed widgets do not support styling options such as fg, bg, relief, border,
and others. This is purposefully removed from ttk in an attempt to keep logic and
styling in different controls.

Instead, all styling-related options are handled by the respective style names. In a
standard ttk module, each widget has an associated style name. You can retrieve
the default style name of a widget using the widget.winfo_class() method.

For instance, consider a ttk button:

>>> my_button = ttk.Button()

>>> my_button.winfo_class()

This prints Tbutton, which is the default style name for ttk.Button. For a list of
default ttk style names for different widgets, refer to: http://infohost.nmt.edu/
tcc/help/pubs/tkinter/web/ttk-style-layer.html

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html

Chapter 3

[111]

In addition to the default style, you can assign a custom style class to a widget or
group of widgets. To set up a new style, you use:

style = ttk.Style()

To configure the style options for a default style, you use the command:

style.configure('style.Defaultstyle', **styling options)

To create a new style from the built-in styles, define a style name of the form
newName.oldName. For instance, to create an Entry widget to hold a date, you
can call it Date.Tentry.

To use the new style on a widget, you use the command:

ttk.Widget(root, style='style.Defaultstyle')

Next, we will discuss ttk theming.

Style is used to control the appearance for individual widgets. Themes, on the
other hand, control the appearance of the entire GUI. More simply put, a theme is a
collection of styles. Grouping styles into themes lets the user switch designs for the
entire GUI all at once. Like styles, all themes are uniquely identified by their name.
The list of available themes can be obtained as follows:

>>> from tkinter.ttk import *

>>> style = Style()

>>> style.theme_names()

('winnative', 'clam', 'alt', 'default', 'classic', 'xpnative')

To obtain the name of the currently active theme:

>>> style.theme_use()

'default'

You can change to another theme from the list style.theme_names(); use:

style.theme_use('your_new_theme_name')

To explore various styling and theming-related options of ttk, refer to the dummy
example (see code 3.11.py):

from tkinter import *
from tkinter import ttk
root = Tk()

Programmable Drum Machine

[112]

style = ttk.Style()
defining the global style - applied when no other style is
 defined
style.configure('.', font='Arial 14', foreground='brown',
 background='yellow')
this label inherits the global style as style option not
 specified for it
ttk.Label(root, text='I have no style of my own').pack()
defining a new style named danger and configuring its style only
 for the
button widget
style.configure('danger.TButton', font='Times 12',
 foreground='red', padding=1)
ttk.Button(root, text='Styled Dangerously',
 style='danger.TButton').pack()
Different styling for different widget states
style.map("new_state_new_style.TButton", foreground=[
 ('pressed', 'red'), ('active', 'blue')])
ttk.Button(text="Different Style for different states",
 style="new_state_new_style.TButton").pack()
Overriding current theme styles for the Entry widget
current_theme = style.theme_use()
style.theme_settings(
 current_theme,
 {"TEntry":
 {"configure":
 {"padding": 10},
 "map": {
 "foreground": [("focus", "red")]
 }
 }
 }
)
print(style.theme_names())
print(style.theme_use())
this is effected by change of themes even though no style
 specified
ttk.Entry().pack()
root.mainloop()

Chapter 3

[113]

The description of the code is as follows:

• The first three lines of code import Tkinter and ttk, and set up a new
root window.

• The next line, style = ttk.Style(), defines a new style.
• The next line configures a program-wide style configuration using

style.configure. The dot character (.), which is the first argument of
configure, means that this style would apply to the Toplevel window and to
all its child elements. This is the reason why all of our widgets get to have a
yellow background.

• The next line creates an extension (danger) to the default style (TButton).
This is how you create custom styles, which are variations on a base
default style.

• The next line creates a ttk.Label widget. Since we have not specified any
style for this widget, it inherits the global style specified for the Toplevel
window.

• The next line creates a ttk.button widget and specifies it to be styled using
our custom style definition of danger.TButton. This is why the foreground
color of this button turns red. Notice how it still inherits the background
color, yellow, from the global Toplevel style that we defined earlier.

• The next two lines of code demonstrate how ttk allows for styling different
widget states. In this example, we styled different states for a ttk.Button
widget to display in different colors. Go ahead and click on this second
button to see how different styles apply to different states of a button. Here,
we use map(style, query_options, **kw) to specify dynamic values of
style for changes in state of the widget.

• The next line fetches the current applicable theme. It then overrides some
of the options for the theme's Entry widget using:
style.theme_settings('themename', ***options)

• The next line defines an Entry widget but does not specify any style to it. It
therefore inherits its properties from the theme we configured earlier. If you
now type anything in this entry widget, you will notice that it gets a padding
of 10 px and the foreground text color is red inside the entry widget.

Now that we know how to make our widgets look more like native platform
widgets, let us change the Play and Stop buttons for our drum machine to
ttk.button. Let us also change the Loop Checkbutton from Tkinter Checkbutton
to ttk Checkbutton and add a few separators in the Play Bar section.

Programmable Drum Machine

[114]

The following screenshots show the Play Bar before and after making the changes:

We first import ttk into our namespace and append ttk to the Play and Stop
buttons as follows (see code 3.12.py):

from tkinter import ttk

We then simply modify the buttons and checkbutton in the create_play_bar,
replacing button with ttk.Button and loopbutton with ttk.Checkbutton:

button = ttk.Button()
loopbutton = ttk.Checkbutton(**options)

Note that these changes make button and checkbutton look closer to the native
widgets of your working platform.

Finally, let's add ttk.separators to our Play Bar (see code 3.12.py). The format for
adding separators is as follows:

ttk.Separator(playbar_frame,
 orient='vertical').grid(row=start_row, column = 5, sticky="ns",
 padx=5)

Note that we cannot change the buttons in the right-button matrix from button
to ttk.Button. This is because ttk buttons do not support specifying options like
background color.

This concludes the last iteration of this project. In this iteration, we first saw how and
why to use ttk-themed widgets to improve the look and feel of our programs.

We then used ttk buttons and ttk checkbuttons in our drum program to improve its
look. We also saw the reasons why certain Tkinter buttons in our program could not
be replaced by ttk buttons.

That brings us to the end of this chapter.

Chapter 3

[115]

Summary
To summarize, we started by learning how to structure the Tkinter program as
classes and objects.

We then decided the data structure for our program. This enabled us to set the
ground for writing the rest of the program logic, maintaining a clean separation
between data, logic, and its visual representation. We saw the vital benefits of
deciding the data structure in advance.

We also worked with more Tkinter widgets such as Spinbox, Button, Entry, and
Checkbutton. We also saw the grid geometry manager in action in the chapter.

We then saw how to bind widgets to higher-order functions using command
callbacks. This is a very common technique used in GUI programming.

We then understood multithreaded programming in the context of Tkinter. We
moved the audio playback onto a separate thread. This enabled us to keep the
audio playing without hampering Tkinter's main loop in any way.

We then understood how to persist an object's state with the pickle module and
then how to unpickle it later to retrieve the state of the object.

Finally, we saw how to use ttk-themed widgets to ensure that our GUI feels native
on the platform where it is run.

Congratulations! You have now completed coding your drum machine.

[117]

A Game of Chess
Let's build a game of chess in Tkinter. If you already know the basic rules of chess,
you are ready to write this program. However, in case you do not know the rules,
you should read them before you start programming this application.

Some of the key objectives of this chapter are as follows:

•	 Learning how to structure a program in a Model-View-Controller
architecture

•	 Learning how to tame complexity by implementing programs in
a modular structure

•	 Taking a look at the versatility and power of the Tkinter Canvas widget
•	 Learning the basic usage of canvas coordinates, object IDs, and tags
•	 Learning the recommended error handling practices
•	 Learning how to extend Python's built-in data types
•	 Using object inheritance to code classes with similar attributes

and behavior
•	 Using Python's built-in configparser module to store program

preferences
•	 Getting acquainted with several Python modules that you will often use

in a variety of application development projects

A Game of Chess

[118]

An overview of the chapter
Our chess game will enforce all the standard rules that are applicable to a game of
chess. Some advanced rules and features are left as an exercise for you.

In its final form, our chess program will look like this:

Module requirements for this chapter
We will not use any external third-party modules in this chapter. However, we will
use several built-in modules of Python. To check whether all the required libraries
are indeed provided by your Python distribution, type the following command in
your Python command line:

>>> import tkinter, copy, sys, configparser

This should be executed without an error message. If no errors are thrown back, you
are ready to build the chess application. Let's get started!

Chapter 4

[119]

Structuring our program
In this section, we decide an overall structure for our program.

The development of large applications generally starts with recording the
Software Requirement Specifications (SRS). This is generally followed by a graphical
representation of constructs, such as the class, composition, inheritance, and the
hiding of information using several modeling tools. These tools can be flow charts,
unified modeling language (UML) tools, data flow diagrams, Venn diagrams (for
database modeling), and so on.

These tools are very useful when the problem domain is not very clear. However,
if you have ever played the game of chess, you should be very well acquainted
with the problem domain. Furthermore, our chess program can be classified as
a medium-sized program spanning a few hundred lines of code. Therefore, let's
bypass these visual tools and get to the actual program design.

All of our previous projects have been structured as a single file. However, as
programs grow in complexity, we need to break programs into modules and
class structures.

One of the key objectives of this chapter is to learn to write programs in the
Model-View-Controller (MVC) architecture. Some of the central aspects of the
MVC architecture are as follows:

•	 A model handles backend data and logic
•	 A view handles the frontend presentation
•	 The model and view never interact directly
•	 Whenever the view needs to access backend data, it requests the

controller to intervene with the model and fetch the required data

Given these aspects, let's create three files for our chess program—model.py, view.
py, and controller.py (see code 4.01.py).

Now, let's create an empty Model class, an empty View class, and a Controller class
in their respective files, as follows:

class Model(): #in model.py
 def __init__(self):
 pass

class View(): #in view.py
 def __init__(self):
 pass

A Game of Chess

[120]

class Controller(): # in controller.py
 def __init__(self):
 self.init_model()
 def init_model(self):
 self.model = model.Model()

Note that since the Controller class needs to fetch data from the Model class,
we instantiated a new Model class from within the Controller class. This now
provides us a way to fetch data from the Model class as and when needed.

Let's also add a separate file called exceptions.py. This will be our central place
for the handling of all the errors and exceptions. Within this file, add the following
single line of code:

class ChessError(Exception): pass

We created a custom ChessError class that was inherited from the standard
Exception class. This simple line of code now allows the ChessError class and all
of its children to raise errors, which can then be handled by using the try-except
block. All the new error classes that will be defined in our code from now on will
derive from this ChessError base class.

With this boilerplate code out of the way, let's create another blank file called
configurations.py (4.01) We will use this file to store all the constants and
configurable values at one place.

Let's define some constants right away, as follows (see code
4.01 – configurations.py):

NUMBER_OF_ROWS = 8
NUMBER_OF_COLUMNS = 8
DIMENSION_OF_EACH_SQUARE = 64 # denoting 64 pixels
BOARD_COLOR_1 = "#DDB88C"
BOARD_COLOR_2 = "#A66D4F"

To make these constant values available to all the files, let's import it in model.py,
view.py, and controller.py folder (see code 4.01).

from configurations import *

As per the tenets of the MVC architecture, the View class is never supposed to
interact directly with the Model class. It should always interact with the Controller
class, and the Controller class is then responsible for the fetching of data from the
Model class. Accordingly, let's import the controller in the View class and the model
in the Controller class, as follows:

import controller # in view.py

import model # in controller.py

Chapter 4

[121]

Let's start by editing the view.py file to display a chessboard (see code 4.01 – view.
py). Our goal for this iteration is to display the content in the following screenshot
when view.py is run:

Take a look at the code implementation in view.py (see code 4.01).

The __init__ method of the View class calls a method called create_chess_base,
which is defined as follows:

def create_chess_base(self):
 self.create_top_menu()
 self.create_canvas()
 self.draw_board()
 self.create_bottom_frame()

A Game of Chess

[122]

We will not reproduce the code responsible for the creation of the root window, the
menu at the top, or the frame at the bottom. We have implemented similar widgets
in previous chapters (see code 4.01 – view.py for the complete reference).

However, we will discuss the code that creates the chessboard:

 def create_canvas(self):
 canvas_width = NUMBER_OF_COLUMNS *
 DIMENSION_OF_EACH_SQUARE
 canvas_height = NUMBER_OF_ROWS * DIMENSION_OF_EACH_SQUARE
 self.canvas = Canvas(
 self.parent, width=canvas_width, height=canvas_height)
 self.canvas.pack(padx=8, pady=8)

Nothing fancy here. Creating a Canvas widget is similar to creating other widgets in
Tkinter. The Canvas widget takes the width and height as two configurable options.

Next, paint the Canvas widget in alternating shades to form the chessboard
(code view.py):

 def draw_board(self):
 current_color = BOARD_COLOR_2
 for row in range(NUMBER_OF_ROWS):
 current_color =
 self.get_alternate_color(current_color)
 for col in range(NUMBER_OF_COLUMNS):
 x1, y1 = self.get_x_y_coordinate(row, col)
 x2, y2 = x1 + DIMENSION_OF_EACH_SQUARE, y1 +
 DIMENSION_OF_EACH_SQUARE
 self.canvas.create_rectangle(
 x1, y1, x2, y2, fill=current_color)
 current_color =
 self.get_alternate_color(current_color)

 def get_x_y_coordinate(self, row, col):
 x = (col * DIMENSION_OF_EACH_SQUARE)
 y = ((7 - row) * DIMENSION_OF_EACH_SQUARE)
 return (x, y)

 def get_alternate_color(self, current_color):
 if current_color == self.board_color_2:
 next_color = self.board_color_1
 else:
 next_color = self.board_color_2
 return next_color

Chapter 4

[123]

The following is the description of the code:

•	 We used the Canvas widget's create_rectangle() method to draw
alternating shades of squares to resemble a chessboard.

•	 The rectangles are drawn from point x1, y1, and they extend to x2, y2.
These values correspond to two diagonally opposite corners of the
rectangle (coordinates of the upper-left and lower-right edges).

•	 The x and y values are calculated by using a newly defined method called
get_x_y_coordinate(), which performs simple mathematics depending
on the dimensions of each square that was defined in pixel units earlier.
The y value is calculated by first subtracting row from (7-row) because
the Canvas widget measures the coordinates starting from the top left.
The top-left corner of the canvas has the coordinates (0,0).

•	 The get_alternate_color method is a helper method that, not
surprisingly, returns the alternate color.

The Tkinter Canvas widget lets you draw a line, an oval, a rectangle,
an arc, and polygon shapes at a given coordinate. You can also specify
various configuration options, such as fill, outline, width, and so on, for
each of these shapes.
The Canvas widget uses a coordinate system to specify the position of
objects on the widget. Coordinates are measured in pixels. The top-left
corner of the canvas has the coordinates (0,0).
The objects drawn on the Canvas widget are usually handled by assigning
them an ID or a tag. We will see an example of this later in the chapter.
If an object on the Canvas widget is tagged to multiple tags, the options
defined for tags at the top of the stack have a greater precedence.
However, you can change the precedence of tags by using
tag_raise(name) or tag_lower(name).
For a complete list of Canvas widget-related options, refer to the
interactive help for the Canvas widget using help(Tkinter.Canvas)
in the command line, as follows:

>>> import tkinter

>>> help(tkinter.Canvas)

Next, let's bind the mouse click to the Canvas widget from the __init__ method of
the View class (see code 4.01 – view.py), as follows:

self.canvas.bind("<Button-1>", self.on_square_clicked)

A Game of Chess

[124]

The bound method calls another method called get_clicked_row_column() and for
now, it prints the result on the console, as follows:

 def on_square_clicked(self, event):
 clicked_row, clicked_column =
 self.get_clicked_row_column(event)
 print("Hey you clicked on", clicked_row, clicked_column)

The get_clicked_row_column() method is defined as follows:

 def get_clicked_row_column(self, event):
 col_size = row_size = DIMENSION_OF_EACH_SQUARE
 clicked_column = event.x // col_size
 clicked_row = 7 - (event.y // row_size)
 return (clicked_row, clicked_column)

Now, if you run the code (see code 4.01 – view.py) and click on different squares, it
should output a message like this to the console:

Hey you clicked on 0 7
Hey you clicked on 3 3

This completes our first iteration. In this iteration, we determined the broader file
structure for the chess program. We created the model, view, and controller
classes. We also decided to keep all the constants and configuration values in a
separate file called configurations.py.

We got the first taste of the Canvas widget. We created a blank canvas and then
added square areas using the canvas.create_rectangle method to create
a chessboard.

Now, if you run 4.01 – view.py, you will see an empty chessboard. You will also
find out that the File menu and the Edit menu dropdowns are nonfunctional. The
About menu should show a standard messagebox widget.

Before you proceed to the next section, you are encouraged to go and explore the
code in the 4.01 folder in its entirety.

Modeling the data structures
Coming back to the old adage, data structures, not algorithms, are central to writing
good programs. Therefore, it is important that we spend some time defining the
data structure.

Chapter 4

[125]

The key data that the model needs to record is the position of the chess pieces on the
chessboard. Accordingly, we first need a way to define these locations and a unique
way to identify the chess pieces. Let's first agree to the naming conventions that we
will stick to in the program.

Convention on naming chess pieces
Every chess piece is identified by a single letter (pawn = p, knight = n (yes knight
with n!), bishop = b, rook = r, queen = q and king = k).

The white chess pieces are represented by uppercase letters (PNBRQK), and the black
chess pieces are represented by lowercase letters (pnbrqk).

Convention for naming locations on the
chessboard
In order to assign unique identifiers to every square on the chessboard, we will mark
the squares along the x axis by using the letters A to H. We will mark the y axis by
using the numbers 1 to 8 respectively.

Accordingly, the squares on the chessboard will be identified as follows:

Thus, A1 denotes the left-most square at the bottom of the chessboard. Currently, it
is occupied by a white rook. The C3 position is currently empty, E8 has a black king,
and A8 has a black rook.

Let's add this to the configurations.py file. (see code 4.02):

X_AXIS_LABELS = ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H')
Y_AXIS_LABELS = (1, 2, 3, 4, 5, 6, 7, 8)

A Game of Chess

[126]

Now, if you want to represent the chessboard at any point of time, all you need is
a mapping of the location to the chess piece at that location. Looks like a perfect
candidate for storing as a Python dictionary.

Thus, the initial position of all the chess pieces on the chessboard can be represented
as follows:

START_PIECES_POSITION = {
 "A8": "r", "B8": "n", "C8": "b", "D8": "q", "E8": "k", "F8":
 "b", "G8": "n", "H8": "r",
 "A7": "p", "B7": "p", "C7": "p", "D7": "p", "E7": "p", "F7":
 "p", "G7": "p", "H7": "p",
 "A2": "P", "B2": "P", "C2": "P", "D2": "P", "E2": "P", "F2":
 "P", "G2": "P", "H2": "P",
 "A1": "R", "B1": "N", "C1": "B", "D1": "Q", "E1": "K", "F1":
 "B", "G1": "N", "H1": "R"
}

We need this data to get started. So, let's add this as a constant to the
configurations.py file (see code 4.02).

Now, let's move on to code the Model class for our program. We have already
decided that we will use a Python dictionary to store the position of chess pieces
on the chessboard. We can go ahead and add a dictionary attribute to the class.
However, we will take a slightly different approach.

Let's make Model a child class of the built-in dictionary class, as follows:

class Model(dict):

Thus, the self variable that refers to the current class object instance will also have
all the properties and methods that are available to the dictionary. All the methods
that are available to the standard dictionary class can now be called on the Model
object (self).

So now, we can define a method which returns the short name of the chess
piece at that position when it's given a position on the chessboard, as follows:
(see code 4.02 – model.py)

 def get_piece_at(self, position):
 return self.get(position)

If there is no chess piece at the position, this traps out rather than giving a KeyError
exception.

Chapter 4

[127]

Next, let's add some more important attributes to the Model class, as follows:
(see code 4.02 – model.py)

 captured_pieces = { 'white': [], 'black': [] }
 player_turn = None
 halfmove_clock = 0
 fullmove_number = 1
 history = []

The half-move clock keeps a track of the number of turns played since the last
pawn's advance or the last capture. This is used to determine whether a draw
can be claimed under the fifty-move rule.

The full-move number is a count that is incremented by 1 after every move of
a black piece. This is used to track the overall length of a game:

Finally let us add another method that, given the row-column tuple for a square,
returns its alphanumeric position (for example, an input of (1,2) returns B3):

 def get_alphanumeric_position(self, rowcol):
 if self.is_on_board(rowcol):
 row, col = rowcol
 return "{}{}".format(X_AXIS_LABELS[col],
 Y_AXIS_LABELS[row])

Next, let's define an associated helper method to ensure that we only process mouse
clicks that occur on the Canvas widget and not anywhere else on the root window,
as follows:

def is_on_board(self, rowcol):
 row, col = rowcol
 return 0 <= row <= 7 and 0 <= col <= 7

There is not much that can be added to the Model class for now until we lay down
the code logic to handle the chess pieces.

We can define the rules for all the chess pieces within the Model class, but that would
make the Model class too bulky. Therefore, let's define the chess piece-related logic
in a new file named piece.py. Since this is inherently a part of the Model class but
it is defined in a new file, let's add a reference to the Model class within this file.
(see code 4.02 – piece.py)

Let's do this next.

A Game of Chess

[128]

Creating a Piece class
Think about it. We need to define rules for all the different chess pieces. Some
attributes and methods such as color will be common to all the chess pieces, while
other attributes/methods such as rules for movement will vary for each chess piece.

First, we'll define a new Piece class. This class will have the attributes and methods
that are common to all the chess pieces. Then, we will define classes for every
individual piece as a subclass of this parent Piece class. We can then override
all the attributes and methods in these individual classes.

The code will look like this (see code 4.02 – piece.py):

from configurations import *

class Piece():

 def __init__(self, color):
 self.name = self.__class__.__name__.lower()
 if color == 'black':
 self.name = self.name.lower()
 elif color == 'white':
 self.name = self.name.upper()
 self.color = color

 def keep_reference(self, model):
 self.model = model

class King(Piece):
 pass
class Queen(Piece):
 pass
class Rook(Piece):
 pass
class Bishop(Piece):
 pass
class Knight(Piece):
 pass
class Pawn(Piece):

 pass

Note that the Piece class needs color as an argument for object creation. We create
two attributes named self.name and self.color in the class.

Chapter 4

[129]

Also note the keep_reference(self, model) method definition. Since the Piece
class is nothing but an extension of the Model class, we need to get a reference to the
Model class in this method to communicate with it.

Similarly, the Model class needs a reference to the new Piece class. Accordingly, we
add this as an import to the Model class, as follows (see code 4.02 – model.py):

import piece

Finally, we need a method that takes a string pertaining to the name of a given piece
object and creates a new piece object. For example, we need a method that, given
the arguments (Pawn, black) or simply ("p"), dynamically creates a new Pawn
object with the color attribute defined as black.

Accordingly, let's define a helper method in the piece.py file but outside the Piece
class, as follows (see code 4.02 – piece.py):

def create_piece (piece, color='white'):
 if isinstance(piece, str):
 if piece.upper() in SHORT_NAME.keys():
 color = "white" if piece.isupper() else "black"
 piece = SHORT_NAME[piece.upper()]
 piece = piece.capitalize()
 if piece in SHORT_NAME.values():
 return eval("{classname}
 (color)".format(classname=piece))
 raise exceptions.ChessError("invalid piece name:
 '{}'".format(piece))

To support the preceding method, add the following constant to the
configurations.py file (see code 4.02):

SHORT_NAME = {
'R':'Rook', 'N':'Knight', 'B':'Bishop',
'Q':'Queen', 'K':'King', 'P':'Pawn'
}

The preceding code simply takes a single character as an input. It then gets the full
name for the corresponding piece class (for example, if a p is given, it gets the full
name, which is Pawn). It then checks the case of the character and defines the color
variable as white if the input character is uppercase. Otherwise, the color is set to
black. It then dynamically creates a corresponding piece object.

This concludes the iteration. We have created the Piece class and all of its subclasses,
and we have the ability to create piece objects dynamically from a given input
character. This class is simply an extension of the Model class, and each of the two
classes can access each other's methods by keeping a reference to each other.

A Game of Chess

[130]

Displaying chess pieces on the chessboard
Now, let's turn our attention to displaying all the chess pieces on the chessboard.
First, we'll define a method named draw_single_piece, which draws a chess piece
at the given position when it's given a position and the character representing the
chess piece, as follows (see code 4.03 – view.py):

 def draw_single_piece(self, position, piece):
 x, y = self.controller.get_numeric_notation(position)
 if piece:
 filename = "../pieces_image/{}_{}.png".format(
 piece.name.lower(), piece.color)
 if filename not in self.images:
 self.images[filename] = PhotoImage(file=filename)
 x0, y0 = self.calculate_piece_coordinate(x, y)
 self.canvas.create_image(x0, y0, image=self.images[
 filename], tags=("occupied"), anchor="c")

The following is a description of the preceding code:

•	 The images of the chess pieces are stored in a folder named pieces_
image and are named in the chess piece name in lowercase + _ + color.
png format. So for instance, the black queen is saved by the name queen_
black.png.

•	 The images are added to the chessboard by using the canvas.create_
image() method, which takes the x, y coordinates and a PhotoImage()
object that relies on the location of the image file as its argument.

•	 We used Tkinter's PhotoImage class to reference the .png files.
•	 In addition to creating and displaying a chess piece on the chessboard,

we also tagged them with a custom tag called occupied. Tagging is an
important feature of the Canvas widget, which lets us uniquely identify
items placed on the canvas widget.

We also used the following two helper methods in the preceding code:

(see code 4.03 – view.py)

 def calculate_piece_coordinate(self, row, col):
 x0 = (col * DIMENSION_OF_EACH_SQUARE) + \
 int(DIMENSION_OF_EACH_SQUARE / 2)
 y0 = ((7 - row) * DIMENSION_OF_EACH_SQUARE) + \
 int(DIMENSION_OF_EACH_SQUARE / 2)
 return (x0, y0)

Chapter 4

[131]

(see code 4.03 – controller.py)

 def get_numeric_notation(self, position):
 return piece.get_numeric_notation(position)

This is just a wrapper around the following code from 4.03 – piece.py:

def get_numeric_notation(rowcol):
 row, col = rowcol
 return int(col)-1, X_AXIS_LABELS.index(row)

Now, it's time to simply call the preceding draw_single_piece method to all the
chess pieces: (4.03 – view.py)

 def draw_all_pieces(self):
 self.canvas.delete("occupied")
 for position, piece in
 self.controller.get_all_peices_on_chess_board():
 self.draw_single_piece(position, piece)

A key aspect that you need to note here is that when we needed some data from the
Model class, say, a dictionary containing all the chess pieces on the chessboard, we
did not directly call the Model class for the data. Instead, we requested the controller
to get us the data from the model. The get_all_pieces_on_chess_board()
controller method is simply a wrapper around the actual method from the Model
class (see code 4.03 – controller.py):

 def get_all_peices_on_chess_board(self):
 return self.model.items()

Great! We now have the methods required to draw all the chess pieces on the
chessboard. But mere defining does not help. These methods need to be called from
somewhere. Therefore, let's define a new method named start_new_game() and call
it from the __init__ method of the View class, as follows (see code 4.03 – view.py):

 def start_new_game(self):
 self.controller.reset_game_data()
 self.controller.reset_to_initial_locations()
 self.draw_all_pieces()

In addition to calling the draw_all pieces() method, this method also resets the
Model via calls to two wrapper controller methods (see code 4.03 – controller.py):

 def reset_game_data(self):
 self.model.reset_game_data()

 def reset_to_initial_locations(self):
 self.model.reset_to_initial_locations()

A Game of Chess

[132]

The actual methods are defined in the Model class, as follows:

 def reset_game_data(self):
 captured_pieces = {'white': [], 'black': []}
 player_turn = None
 halfmove_clock = 0
 fullmove_number = 1
 history = []

 def reset_to_initial_locations(self):
 self.clear()
 for position, value in START_PIECES_POSITION.items():
 self[position] = piece.create_piece(value)
 self[position].keep_reference(self)
 self.player_turn = 'white'

The reset_game_data() method is simple. It just resets all the attributes of the
Model class to their initial states.

The reset_to_initial_locations() method initializes all the chess piece locations
to reflect the starting position of the game. This too should be self-explanatory if you
are aware of the data structure that we discussed earlier.

Now, when you go ahead and run the code (see code 4.03 – view.py), the
chessboard should display all the chess pieces at the starting position of the
game, as shown in the following screenshot:

Chapter 4

[133]

This completes the current iteration. The next iteration will define the rules for the
movement of the chess pieces on the chessboard. We need this part done before
we can think of moving the chess pieces around.

Defining rules for the chess pieces
Different chess pieces have different rules of movement. Let's try to tabulate
the rules:

Name of the
chess piece

Orthogonal

movement

Diagonal
movement

The maximum number
of places the chess piece
is allowed to move

King Yes Yes 1
Queen Yes Yes 8
Rook Yes No 8
Bishop No Yes 8
Knight N/A N/A N/A
Pawn Yes, but it captures

diagonally
No 1 or 2

As evident from the table, the rules for all the chess pieces except for Knight and Pawn
are pretty straightforward.

Knights are different from the others. They must move two squares in one direction,
and then one more move at a 90 degree angle, following the shape of L. Knights are
also the only chess pieces that can jump over other chess pieces.

Pawns move forward, but they capture diagonally. Pawns can only move forward
one square at a time, except for their very first move, where they can move forward
by two squares. Pawns can only capture one square diagonally in front of them.

Rules for the King, Queen, Rook, and Bishop
Let's first take a look at simple cases of orthogonally and diagonally moving chess
pieces, which are the King, Queen, Rook, and Bishop. We need to somehow figure
out a way to change the position of these chess pieces by using a mathematical rule.

A Game of Chess

[134]

The following diagram shows what it takes to move a chess piece from its current
position (say x,y) both orthogonally and diagonally:

If you look at the preceding diagram, x represents the column number and y
represents the row number. It is clear that we can represent the orthogonal
movements by adding to the current position the items from the tuples (-1,0)(0,1)
(1,0)(0,-1). Similarly, diagonal movements can be represented by adding to the
tuples (-1,1)(1,1)(1,-1)(-1,-1).

Let's add these two tuples to configurations.py (see code 4.04), as follows:

ORTHOGONAL_POSITIONS = ((-1,0),(0,1),(1,0),(0, -1))
DIAGONAL_POSITIONS = ((-1,-1),(-1,1),(1,-1),(1,1))

If a chess piece can move both orthogonally and diagonally, such as the Queen, the
representative tuple is simply an addition of the preceding two tuples.

If a chess piece can be moved by more than one square, it's simply a matter of
multiplying the representative tuple by an integer to get all the other allowed
positions on the chessboard.

With this information in mind, let's code a moves_available method that, given the
current position of the chess piece, the directions tuple relevant to the chess piece
and the maximum distance that the chess piece can move, returns a list of all the
allowed_moves, as follows (see code 4.04 – piece.py):

 def moves_available(self, current_position, directions,
 distance):
 model = self.model
 allowed_moves = []
 piece = self
 start_row, start_column =
 get_numeric_notation(current_position)
 for x, y in directions:

Chapter 4

[135]

 collision = False
 for step in range(1, distance + 1):
 if collision:
 break
 destination = start_row + step * x, start_column +
 step * y
 if self.possible_position(destination) not in
 model.all_occupied_positions():
 allowed_moves.append(destination)
 elif self.possible_position(destination) in
 model.all_positions_occupied_by_color
 (piece.color):
 collision = True
 else:
 allowed_moves.append(destination)
 collision = True
 allowed_moves = filter(model.is_on_board, allowed_moves)
 return map(model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

•	 Depending on the arguments, the method collects all the allowed moves
for a given chess piece in a list named allowed_moves.

•	 The code iterates through all the locations to detect a possible collision.
If a collision is detected, it breaks out of the loop. Otherwise, it appends
the coordinate to the allowed_moves list.

•	 The second to last line filters out the moves that fall outside the
chessboard, and the last line returns the equivalent position in
alphanumeric notations for all the allowed moves.

We can also define a few helper methods to support the preceding method,
as follows:

def possible_position(self, destination): #4.04 piece.py
 return self.model.get_alphanumeric_position(destination)

def all_positions_occupied_by_color(self, color): #4.04 model.py
 result = []
 for position in self.keys():
 piece = self.get_piece_at(position)
 if piece.color == color:
 result.append(position)
 return result

A Game of Chess

[136]

def all_occupied_positions(self): #4.04 model.py
 return self.all_positions_occupied_by_color('white') +
 self.all_positions_occupied_by_color('black')

Next, let's modify the Piece child classes of King, Queen, Rook, and Bishop as
follows (see code 4.04 – piece.py):

class King(Piece):
 directions = ORTHOGONAL_POSITIONS + DIAGONAL_POSITIONS
 max_distance = 1
 def moves_available(self,current_position):
 return super().moves_available(current_position,
 self.directions, self.max_distance)

class Queen(Piece):
 directions = ORTHOGONAL_POSITIONS + DIAGONAL_POSITIONS
 max_distance = 8
 def moves_available(self,current_position):
 return super(Queen, self).moves_available
 (current_position, self.directions, self.max_distance)

class Rook(Piece):
 directions = ORTHOGONAL_POSITIONS
 max_distance = 8
 def moves_available(self,current_position):
 return super(Rook, self).moves_available(current_position,
 self.directions, self.max_distance)

class Bishop(Piece):
 directions = DIAGONAL_POSITIONS
 max_distance = 8
 def moves_available(self,current_position):
 return super(Bishop, self).moves_available
 (current_position, self.directions, self.max_distance)

Rules for a Knight
The Knight is a different beast because it does not move orthogonally or diagonally.
It can also jump over chess pieces.

Like the rules that we followed earlier to arrive at ORTHOGONAL_POSITIONS
and DIAGONAL_POSITIONS, we can similarly arrive at the rules that are
required to determine the KNIGHT_POSITIONS tuple. This is defined in
4.04 – configurations.py, as follows:

KNIGHT_POSITIONS = ((-2,-1),(-2,1),(-1,-2),(-1,2),(1,-
 2),(1,2),(2,-1),(2,1))

Chapter 4

[137]

Next, let's override the moves_available method from the Knight class
(see code 4.04 – piece.py):

class Knight(Piece):

 def moves_available(self, current_position):
 model = self.model
 allowed_moves = []
 start_position = get_numeric_notation
 (current_position.upper())
 piece = model.get(pos.upper())
 for x, y in KNIGHT_POSITIONS:
 destination = start_position[0] + x,
 start_position[1] + y
 if(model.get_alphanumeric_position(destination) not in
 model.all_positions_occupied_by_color(piece.color)):
 allowed_moves.append(destination)
 allowed_moves = filter(model.is_on_board, allowed_moves)
 return map(model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

•	 The method is quite similar to the previous super class method.
However, unlike the super class method, the changes are represented
to capture moves using the KNIGHT_POSITIONS tuple.

•	 Unlike the super class, we do not need to track collisions, because
Knights can jump over other chess pieces.

Rules for a Pawn
A Pawn has a unique movement too in that it moves forward, but it captures
diagonally. Let's similarly override the moves_available class from within
the Pawn class, as follows (see code 4.04 – piece.py):

class Pawn(Piece):

 def moves_available(self, current_position):
 model = self.model
 piece = self
 if self.color == 'white':
 initial_position, direction, enemy = 1, 1, 'black'
 else:
 initial_position, direction, enemy = 6, -1, 'white'
 allowed_moves = []

A Game of Chess

[138]

 # Moving
 prohibited = model.all_occupied_positions()
 start_position = get_numeric_notation
 (current_position.upper())
 forward = start_position[0] + direction, start_position[1]
 if model.get_alphanumeric_position(forward) not in
 prohibited:
 allowed_moves.append(forward)
 if start_position[0] == initial_position:
 # If pawn is in starting position allow double
 moves
 double_forward = (forward[0] + direction,
 forward[1])
 if model.get_alphanumeric_position(double_forward)
 not in prohibited:
 allowed_moves.append(double_forward)
 # Attacking
 for a in range(-1, 2, 2):
 attack = start_position[0] + direction,
 start_position[1] + a
 if model.get_alphanumeric_position(attack) in
 model.all_positions_occupied_by_color(enemy):
 allowed_moves.append(attack)
 allowed_moves = filter(model.is_on_board, allowed_moves)
 return map(model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

•	 We first assigned the initial_row_position, direction, and enemy
variables depending on whether the Pawn is black or white.

•	 Similar to the previous moves_allowed methods, this method collects all
the allowed moves in a blank list named allowed_moves.

•	 Then, we collected a list of all the prohibited moves by concatenating two
lists of squares occupied by all the black and white chess pieces.

•	 We defined a variable named forward which holds the position of the
square immediately ahead of the current position of the Pawn.

•	 A Pawn cannot move forward if there is a chess piece in front of it. If
the forward position is not prohibited, the position is appended to the
allowed_moves list.

Chapter 4

[139]

•	 A Pawn can move two places forward from its starting position. We
check whether the current position is the starting position, and if it is the
starting position, we append the double move to the allowed_moves list.

•	 A Pawn can capture only the diagonally adjacent chess pieces in front
of it. Therefore, we assigned a variable attack to track the diagonally
adjacent positions on the chessboard. If the diagonally adjacent square
is occupied by an enemy, that position qualifies to be appended to the
allowed_moves list.

•	 Then, we filtered the list to remove all the positions that may fall outside
the chessboard. The last line returns all the allowed moves as a list of
corresponding alphanumeric notations, as we did in all the previous
definitions.

This completes the current iteration. We coded the logic needed to enforce the rules
related to the movement of chess pieces on the chessboard.

The movement validation of chess pieces
Before we allow chess pieces to move, we must have a record of all the possible
movement options on the chessboard. At every move, we also need to check whether
it is a legitimate turn for a given player and the proposed move should not cause
a check on the current player's king.

Now, a check may occur on the King not only from a chess piece that was moved,
but from any other chess piece on the chessboard as a consequence of such
movement. Thus, after every move, we need to calculate the possible moves
for all the chess pieces of the opponent.

Accordingly, we will need two methods to do the following:

•	 Keep a track of all the available moves for a player
•	 Check whether there is a check on the King

Let's add two new methods in the Model class (see code 4.05 – model.py).

A Game of Chess

[140]

Tracking all the available moves
The code needed to keep track of all the available moves for a player is as follows:

 def get_all_available_moves(self, color):
 result = []
 for position in self.keys():
 piece = self.get_piece_at(position)

 if piece and piece.color == color:
 moves = piece.moves_available(position)
 if moves:
 result.extend(moves)
 return result

The description of the code is listed as follows:

•	 We have already coded the moves_available method in the
previous iteration.

•	 The preceding method simply iterates through every item in the
dictionary and appends the moves_available result for every
chess piece of a given color in a list named result.

Finding out the current position of the King
Before we code the method that checks whether a King is in check, we first need to
know the exact position of the King. Let's define a method to find out the current
position of the King, as follows (see code 4.05 – model.py):

 def get_alphanumeric_position_of_king(self, color):
 for position in self.keys():
 this_piece = self.get_piece_at(position)
 if isinstance(this_piece, piece.King) and
 this_piece.color == color:
 return position

The preceding code simply iterates through all the items in the dictionary. If a given
position is an instance of the King class, it simply returns its position.

Chapter 4

[141]

Checking whether the King is in check
Let's define a method to check whether the King is in check from the opponent,
as follows:

 def is_king_under_check(self, color):
 position_of_king =
 self.get_alphanumeric_position_of_king(color)
 opponent = 'black' if color =='white' else 'white'
 return position_of_king in
 self.get_all_available_moves(opponent)

The following is a description of the preceding code:

•	 First, we obtained the current position of the King and the color of
the opponent.

•	 We then found out all the possible moves for all the chess pieces of the
opponent. If the position of the King coincides with any position from all
the possible moves, the King is in check and we return True. Otherwise,
we return False.

This accomplishes the objectives for the iteration. We are now in a position to check
all the available moves for a player at a given point in the game. We can also check
whether a King is in check from the opponent.

Making the game functional
Now that we have all the chess pieces and chessboard-related validation rules in
place, let's now add life to our chess program. In this iteration, we will make our
chess game fully functional.

The objective of this iteration is to move the chess pieces with a click of the left
mouse button. When a player clicks on a chess piece, the code should first check
whether it is a legitimate turn for that chess piece.

On the first click, the chess piece that needs to be moved is selected, and all the
allowed moves for that chess piece are highlighted on the chessboard. The second
click should be performed on the destination square. If the second click is done on a
valid destination square, the chess piece should move from the source square to the
destination square.

We also need to code the events of capturing chess pieces and the King being in
check. The other attributes that need to be tracked include a list of the captured chess
pieces, the half-move clock count, the full-move number count, and the history of all
the previous moves.

A Game of Chess

[142]

You may recall that we created a dummy method which is bound to the left click
event. The method for now simply prints the row and column value on the console.
Let's modify this method, as follows (see code 4.06 – view.py):

 def on_square_clicked(self, event):
 clicked_row, clicked_column =
 self.get_clicked_row_column(event)
 position_of_click =
 self.controller.get_alphanumeric_position
 ((clicked_row, clicked_column))
 if self.selected_piece_position: # on second click
 self.shift(self.selected_piece_position,
 position_of_click)
 self.selected_piece_position = None
 self.update_highlight_list(position_of_click)
 self.draw_board()
 self.draw_all_pieces()

The following is a description of the preceding code:

•	 The first part of the code calculates the coordinates for the chess piece
on which you clicked. Based on the calculated coordinates, it stores the
corresponding letter notation in a variable named position_of_click.

•	 It then tries to assign the piece variable to the corresponding piece
instance. If there is no piece instance on the clicked square, it simply
ignores the click.

•	 The second part of the method checks whether this is the second click
that was intended to move a chess piece to a destination square. If this
is the second click, it calls the shift method, passing the source and
destination coordinates as its two arguments.

•	 If shift succeeds, it sets all the previously set attributes to their original
empty values and calls the draw_board and draw_pieces methods to
redraw the chessboard and chess pieces.

While coding the desired functionality for the on_square_clicked method, we
called several new methods from within it. We need to define these new methods.

Keep an eye on this method. This is the central method around which all the
other methods will evolve over the course of our attempts to make the chess
game functional.

Chapter 4

[143]

Getting the source and destination position
We have called the shift method from the on_square_clicked method. The code
for the shift method is responsible for the collection of the necessary arguments
that are required for the shift operation.

The code for the shift method is as follows:

 def shift(self, start_pos, end_pos):
 selected_piece = self.controller.get_piece_at(start_pos)
 piece_at_destination =
 self.controller.get_piece_at(end_pos)
 if not piece_at_destination or piece_at_destination.color
 != selected_piece.color:
 try:
 self.controller.pre_move_validation(start_pos,
 end_pos)
 except exceptions.ChessError as error:
 self.info_label["text"] = error.__class__.__name__
 else:
 self.update_label(selected_piece, start_pos,
 end_pos)

The code first checks whether a chess piece exists at the destination. If a chess
piece does not exist at the destination square, it calls on a method, shift, from the
controller, which is a wrapper around the actual shift method from the Model class.

Collecting a list of the moves that need to be
highlighted
We also called the update_highlight_list(position) method from the
on_square_clicked method. The purpose of this method is to collect all the possible
moves for a given chess piece in a list named all_squares_to_be_highlighted.
The actual focusing of the available moves takes place in the draw_board method
of the GUI class. The code for this is as follows (see code 4.06 – view.py):

 def update_highlight_list(self, position):
 self.all_squares_to_be_highlighted = None
 try:
 piece = self.controller.get_piece_at(position)
 except:
 piece = None
 if piece and (piece.color ==
 self.controller.player_turn()):

A Game of Chess

[144]

 self.selected_piece_position = position
 self.all_squares_to_be_highlighted = list(map(
 self.controller.get_numeric_notation,
 self.controller.get_piece_at
 (position).moves_available(position)))

Highlighting allowed moves
In the on_square_clicked method, we called the draw_board method to take
care of the redrawing or changing of the chess pieces' coordinates. The current
draw_board method is not equipped to handle this because we only designed
it in the first iteration to provide us with a blank chessboard.

First, let's add a HIGHLIGHT_COLOR constant to the configurations.py file,
as follows:

HIGHLIGHT_COLOR = "#2EF70D"

Then, modify the draw_board method to handle this, as follows (see code
4.06 – view.py):

 def draw_board(self):
 current_color = BOARD_COLOR_2
 for row in range(NUMBER_OF_ROWS):
 current_color =
 self.get_alternate_color(current_color)
 for col in range(NUMBER_OF_COLUMNS):
 x1, y1 = self.get_x_y_coordinate(row, col)
 x2, y2 = x1 + DIMENSION_OF_EACH_SQUARE, y1 +
 DIMENSION_OF_EACH_SQUARE
 if(self.all_squares_to_be_highlighted and (row,
 col) in self.all_squares_to_be_highlighted):
 self.canvas.create_rectangle(
 x1, y1, x2, y2, fill=HIGHLIGHT_COLOR)
 else:
 self.canvas.create_rectangle(
 x1, y1, x2, y2, fill=current_color)
 current_color = self.get_alternate_color
 (current_color)

Chapter 4

[145]

Pre move validation
The chess piece must only be moved if it does not violate the rules of the game.
This pre_move_validation method is responsible for checking all the rules.
If all validations pass, it calls the move method to update the move, as follows
(see code 4.06 – model.py):

def pre_move_validation(self, initial_pos, final_pos):
 initial_pos, final_pos = initial_pos.upper(),
 final_pos.upper()
 piece = self.get_piece_at(initial_pos)
 try:
 piece_at_destination = self.get_piece_at(final_pos)
 except:
 piece_at_destination = None
 if self.player_turn != piece.color:
 raise exceptions.NotYourTurn("Not " + piece.color +
 "'s turn!")
 enemy = ('white' if piece.color == 'black' else 'black')
 moves_available = piece.moves_available(initial_pos)
 if final_pos not in moves_available:
 raise exceptions.InvalidMove
 if self.get_all_available_moves(enemy):
 if self.will_move_cause_check(initial_pos, final_pos):
 raise exceptions.Check
 if not moves_available and
 self.is_king_under_check(piece.color):
 raise exceptions.CheckMate
 elif not moves_available:
 raise exceptions.Draw
 else:
 self.move(initial_pos, final_pos)
 self.update_game_statistics(
 piece, piece_at_destination, initial_pos,
 final_pos)
 self.change_player_turn(piece.color)

If the rules are not being followed, this code raises several exceptions, which are
defined in the exceptions class, as follows (see code 4.06 – exceptions.py):

class Check(ChessError): pass
class InvalidMove(ChessError): pass
class CheckMate(ChessError): pass
class Draw(ChessError): pass
class NotYourTurn(ChessError): pas

A Game of Chess

[146]

We could have further coded the error classes, but we chose not to because we
simply updated the name of the error class to the bottom label, which is sufficient
for our current purpose. The error message is displayed from the shift method of
the View class, as follows (see code 4.06 – view.py):

self.info_label["text"] = error.__class__.__name__Check if a move
 will cause check on the king

Though a major part of the validation check done in the preceding lines is simple,
one of the validation steps needs to check whether a movement will cause the King
to be in check. This is a tricky situation. We can only find this out after we have
done the actual move. However, we cannot allow that movement to happen on
the chessboard.

To do this, the pre_move_validation method calls a method named will_move_
cause_check, which creates a copy of the Model class. Then, it performs a move on
the new temporary copy to check whether it does cause a King to be in check. The
code for this is as follows:(4.06 – model.py)

 def will_move_cause_check(self, start_position, end_position):
 tmp = deepcopy(self)
 tmp.move(start_position, end_position)
 return tmp.is_king_under_check(self[start_position].color)

Note that when you create a copy by simple assignment, Python creates
a shallow copy. In a shallow copy, the two variables now share the same
data. So, a modification in one place affects the other as well.
In contrast to this, deep copies create a copy of everything—the structure
as well as the elements. We need to create a deep copy of the chessboard
because we want to check whether the king makes a valid move before
it actually moves and we want to do this without modifying the original
object's state in any way.

Recording a move in the data structure
The shift method defined in view.py is responsible for the actual moving of a chess
piece on the chessboard. However, this brings about a change in the underlying
data structure. The move method of the Model class is then responsible for updating
the data structure. This move method is called from the previously defined
pre_move_validation() method if and only if no errors are raised, as follows
(4.06 – model.py)

 def move(self, start_pos, final_pos):
 self[final_pos] = self.pop(start_pos, None)

Chapter 4

[147]

Note that as soon as this update is complete, the control returns to the
on_square_clicked() method in view.py. The method then calls
the draw_all_pieces() method, which updates the view.

Keep game statistics
The pre_move_validation() method also calls another method called
update_game_statistics() on successfully recording a move (see code
4.06 – model.py):

 def update_game_statistics(self, piece, dest, start_pos,
 end_pos):
 if piece.color == 'black':
 self.fullmove_number += 1
 self.halfmove_clock +=1
 abbr = piece.name
 if abbr == 'pawn':
 abbr = ''
 self.halfmove_clock = 0
 if dest is None:
 move_text = abbr + end_pos.lower()
 else:
 move_text = abbr + 'x' + end_pos.lower()
 self.halfmove_clock = 0
 self.history.append(move_text)

Finally, let's define the change_player_turn method, which was called from the
pre_move_validation method:

 def change_player_turn(self, color):
 enemy = ('white' if color == 'black' else 'black')
 self.player_turn = enemy

Congratulations, our chess game is now functional!

Let's complete the iteration by binding the File | New Game menu item to start a
new game. Earlier, we defined the start_new_game() method. Now, it's simply
a matter of calling it from the on_new_game_menu_clicked() method, as follows:
(4.06 – view.py)

 def on_new_game_menu_clicked(self):
 self.start_new_game()

A Game of Chess

[148]

Managing user preferences
A very common theme in several GUI programs involves letting the user set the
program's preferences.

For example, what if we want users to be able to customize the chessboard colors?
What if we want users to select colors and once selected, it is saved as a user
preference and it is loaded the next time the program is run? Let's implement
this as a feature.

Python offers a standard module called configparser that lets us save user
preferences. Let's see the configparser module in action.

To begin with, import the ConfigParser class from the configparser module
in the configurations.py file, as follows (see code 4.07):

from configparser import ConfigParser

The configparser module uses the .ini files to store and read the configuration
values. The file consists of one or more named sections. These sections contain
individual options with names and values.

To illustrate this, let's create a file called chess_options.ini in the project's root
folder (see code 4.07). The file looks like this:

[chess_colors]
board_color_1 = #DDB88C
board_color_2 = #A66D4F
highlight_color = #2EF70D

The first line of the file enclosed in square brackets ([chess_colors] in our example)
is called a section. An .ini file can have multiple sections. This file has a single
section. Each section can have multiple key-value options, as specified in the example.

We can read these values in our program by using the getter methods, as follows
(see code 4.07 – configurations.py):

config = ConfigParser()
config.read('chess_options.ini')
BOARD_COLOR_1 = config.get('chess_colors', 'board_color_1',
 fallback="#DDB88C")
BOARD_COLOR_2 = config.get('chess_colors', 'board_color_2',
 fallback = "#A66D4F")
HIGHLIGHT_COLOR =config.get('chess_colors', 'highlight_color',
 fallback = "#2EF70D")

Chapter 4

[149]

The preceding code replaces the three color constants that we defined earlier in
the code.

Now, if you change the options in the .ini file, the color of the chessboard changes
accordingly. However, we cannot expect end users to be conversant with editing
the .ini files. Therefore, we will let them choose the colors using the color chooser
module of Tkinter. A color that a user chooses gets reflected in the c file and
consequently, on the chessboard.

When a user clicks on the Edit | Preference menu item, we want to open a transient
window with three different buttons to choose two chessboard colors and one
highlight color. Clicking on a single button opens a color choose window, as shown
in the following screenshot:

We created this transient window in a new file called preferenceswindow.py
(see code 4.07.py). We will not discuss the code that creates this window, as this
should be an easy task for you now.

Note that this window is converted into a transient window with respect to the
top-level window by using the following code:

 self.pref_window.transient(self.parent)

A Game of Chess

[150]

As a reminder, a transient window is the one that always stays at the top of its
parent window. It gets minimized when its parent window is minimized. For a quick
refresher on transient windows, refer to Chapter 2, Making a Text Editor, – 2.06.py.

As we have created the window in preferencewindow.py, we'll import it into the
View class, as follows (see code 2.07 – view.py):

 import preferenceswindow

Then, command bind the preference menu by using the following two methods:

 def on_preference_menu_clicked(self):
 self.show_prefereces_window()

 def show_prefereces_window(self):
 preferenceswindow.PreferencesWindow(self)

When a user clicks on the Cancel button, we simply want the settings window to
close. To do this, use the following code (see code 4.07 – preferencewindow.py):

 def on_cancel_button_clicked(self):
 self.pref_window.destroy()

When a user changes the colors and clicks on the Save button, the method calls the
set_new_values() method, which first writes the new values to the .ini file and
then returns the values to the View class to immediately update the chessboard:

 def set_new_values(self):
 color_1 = self.board_color_1.get()
 color_2 = self.board_color_2.get()
 highlight_color = self.highlight_color.get()
 config = ConfigParser()
 config.read('chess_options.ini')
 config.set('chess_colors', 'board_color_1',color_1)
 config.set('chess_colors', 'board_color_2',color_2)
 config.set('chess_colors', 'highlight_color',
 highlight_color)
 configurations.BOARD_COLOR_1 = self.board_color_1.get()
 configurations.BOARD_COLOR_2 = self.board_color_2.get()
 configurations.HIGHLIGHT_COLOR =
 self.highlight_color.get()
 with open('chess_options.ini', 'w') as config_file:
 config.write(config_file)

Chapter 4

[151]

When the preceding code writes the nsw values to the .ini file, call the
reload_colors() method from the View class to immediately update the
chessboard's color. If you do not do this, the color change will take place
the next time the chess program is run (see code 4.07 – view.py):

 def reload_colors(self, color_1, color_2, highlight_color):
 self.board_color_1 = color_1
 self.board_color_2 = color_2
 self.highlight_color = highlight_color
 self.draw_board()
 self.draw_all_pieces()

Having changed these attributes, we call draw_board() and draw_all_pieces()
to repaint the chessboard in the newly defined colors. (see code 4.07 – view.py)

This concludes the iteration. Thus, the users of the program can change the colors
to match their preferences, and the program will remember the chosen values.

Summary
We have come to the end of this chapter. So, what is it that we achieved here? Let's
have a look at all the key things that we learned from the chapter.

We learned how to structure programs using the MVC architecture. We took a peek
at the versatility and power of the Tkinter Canvas widget. This included a tour
through the basic usage of the Canvas coordinates, object IDs, and tags.

We discussed how to handle complexity by implementing programs in a modular
structure. We achieved this modularity by breaking down the code into several
smaller files. We handled the entire configuration from a single file and all the errors
in another file.

We explored how to extend Python's built-in error class to define a custom error and
exceptions. We also had a look at how we can extend Python's built-in data types like
in the case of the Model class, which directly extended the dict class.

We studied how to use object inheritance to code classes with similar attributes and
behavior when building the Piece class and all its subclasses. Finally, you learned
how to use Python's built-in configparser module to store user preferences.

We will create an audio player in the next chapter. In addition to this, we'll work
with several new widgets. We will also take a look at how to create our own widgets!

[153]

Building an Audio Player
Let's build an audio player! Our application should have the features offered by
typical audio players, such as play, pause, fast forward, rewind, next, mute, volume
scale, time seek, and more. It should let listeners easily access media files or a media
library on their local drive. The audio player should do all this and more. Let's begin!

The following are the key objectives of this chapter:

• Exploring Tkinter widgets, namely Slider, Listbox, Radiobutton, and Canvas
• Creating new widgets in Tkinter by extending the existing widgets
• Understanding virtual events and their usage
• Learning the most common coding pattern used in Tkinter-based animations
• Learning some common Tkinter extensions such as PMW, WCK, and TIX

An overview of the chapter
Let's call our audio player Achtung Baby.

The audio player will be capable of playing audio files in AU, MP2, MP3, OGG/
Vorbis, WAV, and WMA formats. It will have all the controls that you would
expect of a small media player.

We will use cross-platform modules to write the code. This will ensure that the
player can play audio files on the Windows, Mac OS X, and Linux platforms.

Building an Audio Player

[154]

On completion, the audio player will look like this:

Perhaps the most important takeaway from this chapter is to learn how to create
your own widgets in Tkinter.

The seek bar in the preceding screenshot is an example of a custom-made widget that
was not natively available in Tkinter but was handcrafted for this particular use case.

After you learn how to create custom widgets, what you can then create will only be
limited by what you can imagine.

External library requirements
In addition to the several built-in modules of Python, we will use the following two
external modules in this project:

• The pyglet library for audio manipulation
• PMW (short for Python Megawidget) for the widgets that are not available

in core Tkinter

Chapter 5

[155]

The pyglet module
Pyglet is a cross-platform windowing and multimedia library for Python. It can be
downloaded at https://bitbucket.org/pyglet/pyglet/wiki/Download.

Pyglet can be installed using the PIP installer by using the following command:

pip3 install pyglet

Windows users can also download and install binary packages for pyglet from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet.

Pyglet needs another module called AVbin to support playback of file formats such
as MP2 and MP3. AVbin can be obtained for Windows, Linux, and Mac OS X from
the download section at http://avbin.github.io.

PMW Tkinter extension
We will use the PMW Tkinter extension to code some widget features that are not
available in core Tkinter.

Pmw can be installed by using the PIP command-line tool, as follows:

pip3 install pmw

PMW can also be installed from the source package for all the platforms. The
package can be downloaded from http://sourceforge.net/projects/pmw/.

After installing pyglet, AVbin, and PMW, execute the following command from
the Python shell:

>>> import pyglet, Pmw

>>> pyglet.version

'1.2.3'

>>> Pmw.version()

'2.0.1'

If the commands executes without an error message and the version of pyglet and
PMW are the same as what's shown in the preceding code, you are ready to code
your audio player.

https://bitbucket.org/pyglet/pyglet/wiki/Download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://avbin.github.io
http://sourceforge.net/projects/pmw/

Building an Audio Player

[156]

Program structure and broadview
skeleton
Our first goal is to build the broad modular structure for the program. As usual,
we will keep the data structure, audio-related logic, and the presentation logic in
three separate files. Therefore, we will create three separate files named model.py,
player.py, and view.py (see code 5.01).

Let's create an empty Model class and an empty Player class in their respective files.

The following is the code for 5.01 – model.py:

 class Model:
 def __init__(self):
 pass

Here's the code for 5.01 – player.py:

import pyglet
class Player():
 def __init__(self):
 pass

Next, let's create the View class. We will leave the Model and Player classes empty
for now. However, we will complete this iteration by coding the majority of the view
elements for the player.

Let's begin by importing the required modules in the View class, as follows:

import tkinter as tk
import tkinter.filedialog
import tkinter.messagebox
import tkinter.ttk

Also, import the blank Model and Player classes in the View namespace (see code
5.01 – view.py):

import model
import player

However, since we do not want to mix the logic with its representation, we do not
import View in the Model class. In short, the Model class knows nothing about how
its data will be presented to the frontend user.

Chapter 5

[157]

Note that we are not using the Controller class in this
program. We saw how to use controllers in Chapter 4, A Game
of Chess. While controllers are a great way to avoid direct
coupling between the Model and View class, they can be an
overkill for small programs like this one.

Now, let's create the top-level window. Also, we'll create instances of the Model
and Player classes and pass them as arguments to the View class, as follows
(see code 5.01 – view.py):

if __name__ == '__main__':
 root = Tk()
 root.resizable(width=False, height=False)

 player = player.Player()
 model = model.Model()
 app = View(root, model, player)
 root.mainloop()

Now that the boilerplate code is written, let's start coding the actual View class, as
follows (see code 5.01 – view.py):

class View:
 def __init__(self,root, model, player):
 self.root = root
 self.model = model
 self.player = player
 self.create_gui()

 def create_gui(self):
 self.root.title(AUDIO_PLAYER_NAME)
 self.create_top_display()
 self.create_button_frame()
 self.create_list_box()
 self.create_bottom_frame()
 self.create_context_menu()

The __init__ method should look familiar to you by now. The final line of the
__init__ calls a method called create_gui, which is responsible for the creation of
the entire GUI. The create_gui method in turn simply calls five different methods,
where each method is responsible for the creation of different sections of the GUI.

Building an Audio Player

[158]

We also made the root window nonresizable by adding root.resizable
(width=False, height=False) to the code. We will not reproduce the entire code
that creates the GUI, since we have coded similar widgets in the past. But all of these
five methods, when combined, create the GUI shown in the following screenshot:

For the sake of separation, we have also marked the four sections differently in the
preceding screenshot. The fifth method creates the right-click context menu and is
not visible here.

The code used to create all of these GUI elements should be familiar to you by now.
However, note a few things about the code (see code 5.01 – view.py):

• All the images used in the preceding code have been stored in a separate
folder named icons.

• We have used the grid geometry manager to place all the elements on the
top-level window.

Chapter 5

[159]

• The Top Display section creates a Canvas widget and places an overlay
image using the canvas.create_image() method. The currently playing
text and the timer displayed in the top display have been created by using
the canvas.create_text() method. The coordinates used to place these
elements have been decided on a trial-and-error basis. As a reminder, the
Canvas coordinates are measured from the top-left corner.

• The Button Frame section simply creates buttons and uses images instead of
text, using the following code:
button=tk.Button(parent, image=previous_track_icon)

• The Button Frame section also uses a ttk Scale widget, which can be used
as a volume slider. This has been created by using the following code:
self.volume_scale = tkinter.ttk.Scale(frame, from_=0.0,
 to=1.0, command=self.on_volume_scale_changed)

• The from and to values for the Scale widget have been chosen as 0.0 and
1.0 because these are the numbers that the pyglet library uses to denote the
minimum and maximum volume, which will be seen in the following section.

• The Listbox section creates a playlist by using the Tkinter Listbox widget,
which uses the following code:
self.list_box = tk.Listbox(frame, activestyle='none',
 cursor='hand2', bg='#1C3D7D', fg='#A0B9E9',
 selectmode=tk.EXTENDED, height=10)

• The select mode=EXTENDED option in the preceding code means that this list
box will allow multiple list items to be selected at once. If this line is omitted,
the default behavior of the Listbox widget is to allow only a single selection
at a time.

• The activestyle='none' option means that we do not want to underline
the selected item.

• The Listbox section is attached to the Scrollbar widget, which is similar to
what we have done in the earlier chapters.

• The Bottom Frame section adds a few image buttons as we did earlier. It also
creates three Radiobutton widgets using a for loop.

• Finally, note that we have completely skipped the creation of the seek bar, as
it is a custom widget that is not natively defined in Tkinter. This is something
that we will create in a dedicated section of its own.

Building an Audio Player

[160]

The Listbox widget offers the following four selection modes via the
selectmode option:

• SINGLE: This allows only a single row to be selected at a time
• BROWSE (the Default mode): This is similar to SINGLE, but it

allows you to move a selection by dragging the mouse
• MULTIPLE: This allows for multiple selections by clicking on

items one at a time
• EXTENDED: This allows for the selection of multiple range of items

using the Shift and Ctrl keys

In addition to creating all of these widgets, we have also added a command callback
to most of these widgets. These command callbacks currently point to the following
empty, nonfunctional methods (see code 5.01 – view.py):

on_previous_track_button_clicked()
on_rewind_button_clicked()
on_play_stop_button_clicked()
on_pause_unpause_button_clicked()
on_mute_unmute_button_clicked()
on_fast_forward_button_clicked()
on_next_track_button_clicked()
on_volume_scale_changed(, value)
on_add_file_button_clicked()
on_remove_selected_button_clicked()
on_add_directory_button_clicked()
on_empty_play_list_button_clicked()
on_remove_selected_context_menu_clicked()
on_play_list_double_clicked(event=None)

None of these methods are functional now. We will end the iteration here, as
there are a few other things that we need to do before we can think of making
the widgets functional.

Deciding the data structure
Sticking to the model first philosophy, let's spend some time on deciding the
appropriate data structure or model for the program.

The data structure of the audio player is fairly simple. All that we expect of the
model is to keep a track of playlists. The main data then is a list called play_list,
and the Model class is then simply responsible for the addition and removal of items
to and from the playlist.

Chapter 5

[161]

We accordingly came up with the following Model class for the program (see code
5.02 – model.py):

class Model:

 def __init__(self):
 self.__play_list = []

 @property
 def play_list(self):
 return self.__play_list

 def get_file_to_play(self, file_index):
 return self.__play_list[file_index]

 def clear_play_list(self):
 self.__play_list.clear()

 def add_to_play_list(self, file_name):
 self.__play_list.append(file_name)

 def remove_item_from_play_list_at_index(self, index):
 del self.__play_list[index]

Nothing fancy in the preceding code. The object simply consists of a Python list with
various utility methods that can be used to add and remove items from the list.

The play_list method has been declared as a property so that we need not
write the getter method for the playlist. This is definitely more Pythonic because
a statement such as play_list = self.play_list is more readable than
play_list = self.get_play_list().

Creating the Player class
Now, let's write the code for the Player class. This class will be responsible for the
handling of audio playback and its related functions, such as pause, stop, seek, fast
forward, rewind, change of volume, mute, and so on.

We will use the pyglet library to handle these functions. Pyglet is a cross-platform
library that uses the AVbin module to support a large variety of audio files.

You might want to look at the API documentation of the pyglet player, which is
available at https://bitbucket.org/pyglet/pyglet/wiki/Home.

https://bitbucket.org/pyglet/pyglet/wiki/Home

Building an Audio Player

[162]

You can also access the documentation for the pyglet media player class by typing
the following two lines in the Python interactive shell:

>>> import pyglet

>>> help(pyglet.media)

The online documentation at https://pyglet.readthedocs.org/en/pyglet-1.2-
maintenance/programming_guide/media.html tells us that we can play an audio
file by using the following code:

player= pyglet.media.Player()
source = pyglet.media.load(<<audio file to be played>>)
player.queue(source)
player.play()

Accordingly, the code for the Player class is as follows (see code 5.02 – player.py):

import pyglet

FORWARD_REWIND_JUMP_TIME = 20

class Player:

 def __init__(self):
 self.player = pyglet.media.Player()
 self.player.volume = 0.6

 def play_media(self, audio_file):
 self.reset_player()
 self.player = pyglet.media.Player()
 self.source = pyglet.media.load(audio_file)
 self.player.queue(self.source)
 self.player.play()

 def reset_player(self):
 self.player.pause()
 self.player.delete()

 def is_playing(self):
 try:
 elapsed_time = int(self.player.time)
 is_playing = elapsed_time < int(self.track_length)
 except:
 is_playing = False

https://pyglet.readthedocs.org/en/pyglet-1.2-maintenance/programming_guide/media.html
https://pyglet.readthedocs.org/en/pyglet-1.2-maintenance/programming_guide/media.html

Chapter 5

[163]

 return is_playing

 def seek(self, time):
 try:
 self.player.seek(time)
 except AttributeError:
 pass

 @property
 def track_length(self):
 try:
 return self.source.duration
 except AttributeError:
 return 0

 @property
 def volume(self):
 return self.player.volume

 @property
 def elapsed_play_duration(self):
 return self.player.time

 @volume.setter
 def volume(self, volume):
 self.player.volume = volume

 def unpause(self):
 self.player.play()

 def pause(self):
 self.player.pause()

 def stop(self):
 self.reset_player()

 def mute(self):
 self.player.volume = 0.0

 def unmute(self, newvolume_level):
 self.player.volume = newvolume_level

 def fast_forward(self):
 time = self.player.time + FORWARD_REWIND_JUMP_TIME

Building an Audio Player

[164]

 try:
 if self.source.duration > time:
 self.seek(time)
 else:
 self.seek(self.source.duration)
 except AttributeError:
 pass

 def rewind(self):
 time = self.player.time - FORWARD_REWIND_JUMP_TIME
 try:
 self.seek(time)
 except:
 self.seek(0)

The preceding code is built on the pyglet API, which is quite intuitive. We will not
get into the details of audio programming here and trust the pyglet library as a
black box that delivers what it says, namely, to be able to play and control audio.

The following are the important things that you should note about the
preceding code:

• We defined the play_media method, which is responsible for the playing
of audio. All the other methods support other functions related to playback,
such as pause, stop, rewind, forward, mute, and so on.

• Note that the code defines a new pyglet Player class every time it wants to
play an audio file. Though we could have used the same player instance to
play multiple audio files, it turns out that the pyglet library does not have
a stop method. The only way we can stop an audio file from playing is by
killing the player object and creating a fresh Player object for the next
audio file playback.

When it came to choosing an external implementation as we did for the audio
API here, we first searched through the Python standard library at
https://docs.python.org/3.4/library/.

Because the Standard Library does not have a suitable package for us, we turned
our attention to the Python package index to check whether there exists another
high-level audio interface implementation. The Python package index can be
found at http://pypi.python.org/.

Fortunately, we came across several audio packages. After comparing the packages
against our needs and seeing how active their community was, we settled for pyglet.
The same program could have been implemented with several other packages,
though this would be done with varying levels of complexity.

https://docs.python.org/3.4/library/
http://pypi.python.org/

Chapter 5

[165]

In general, the lower you go down the protocol stack, the more
complex your programs will get.
However, at the lower layers of the protocol, you will get a
finer control over the implementation at the cost of increasing
learning curves.
Also note that most of the audio libraries change over a
period of time. While this current audio library may become
nonfunctional over the time, you can easily modify the Player
class to use some other audio library and still be able to use
this program as long as you keep the interface defined in the
Player class.

This concludes the iteration. We now have a functional Player class that can
manipulate audio files. We have a data structure that consists of a play_list with
various methods to add and remove files from a playlist. We will next look at how
to add and remove files from a playlist from the frontend of the program.

Adding and removing items from a
playlist
Let's write some code for a feature that allows us to add and remove items from
a playlist. To be more specific, we will write the code for a function for the four
buttons marked in the following screenshot:

The four buttons, from left to right, perform the following functions:

• The first button from the left adds individual audio files to a playlist
• The second button deletes all the selected items from the playlist
• The third button scans a directory for audio files and adds all the found

audio files to the playlist
• The last button empties the playlist

Building an Audio Player

[166]

Since adding these features requires us to interact with the Listbox widget of Tkinter,
let's spend some time getting to know the Listbox widget:

• Create a Listbox widget like we'd create any other widget, as follows:
play_list = tk.ListBox(parent, **configurable options)

• When you initially create a Listbox widget, it is empty. To insert one or
more lines of text into the Listbox, use the insert() method, which takes
two arguments, namely an index of the position where the text needs to be
inserted and the actual string that needs to be inserted, as follows:
play_list.insert(0, "First Item")
play_list.insert(1, "Second Item")
play_list.insert(END, "Last Item")

• The curselection() method returns the index of all the items selected in the
list, and the get() method returns the list item for a given index, as follows:
play_list.curselection() # returns a tuple of all selected
 items
play_list.curselection()[0] # returns first selected item
play_list.get(1) # returns second item from the list
play_list.get(0, END) # returns all items from the list

• In addition to this, the Listbox widget has several other configurable options.
For a complete Listbox widget reference, type the following into the Python
interactive shell:
>>> import tkinter

>>> help(tkinter.Listbox)

Now that we know how to add and remove items from the Listbox widget, let's code
these functions into the player.

Let's begin by modifying the command callback attached to the four buttons, as
follows (see code 5.03 – view.py):

 def on_add_file_button_clicked(self):
 self.add_audio_file()

 def on_remove_selected_button_clicked(self):
 self.remove_selected_file()

 def on_add_directory_button_clicked(self):
 self.add_all_audio_files_from_directory()

Chapter 5

[167]

 def on_clear_play_list_button_clicked(self):
 self.clear_play_list()

 def on_remove_selected_context_menu_clicked(self):
 self.remove_selected_file()

All that these four methods do is call four other methods that do the actual task
of adding or removing items to the playlist. All the methods will update the
play_list items at the following two places:

• In the visible Listbox widget
• In the backend data structure playlist maintained by the Model class

Let's define the four new methods.

Adding a single audio file
Adding a file involves asking for the location using Tkinter filedialog and updating
the frontend and backend, as follows (see code 5.03 – view.py):

 def add_audio_file(self):
 audio_file = tkinter.filedialog.askopenfilename
 (filetypes=[(
 'All supported', '.mp3 .wav'), ('.mp3 files', '.mp3'),
 ('.wav files', '.wav')])
 if audio_file:
 self.model.add_to_play_list(audio_file)
 file_path, file_name = os.path.split(audio_file)
 self.list_box.insert(tk.END, file_name)

Removing the selected files from a playlist
Since the Listbox allows for multiple selections, we iterate through all the selected
items, removing them from the frontend Listbox widget as well as from the model
play_list, as follows (see code 5.03 – view.py):

 def remove_selected_files(self):
 try:
 selected_indexes = self.list_box.curselection()
 for index in reversed(selected_indexes):
 self.list_box.delete(index)
 self.model.remove_item_from_play_list_at_index
 (index)
 except IndexError:
 pass

Building an Audio Player

[168]

Note that we reverse the tuple before removing items from the playlist because we
want to start removing items from the end, as a removal causes a change in the index
of playlist items. If we do not remove items from the end, we may end up removing
the wrong items from the list, as its index gets modified in each iteration.

Since we have defined this method here, let's add it as a command callback to the
right-click delete menu, as follows:

 def on_remove_selected_context_menu_clicked(self):
 self.remove_selected_files()

Adding all files from a directory
The following code uses the os.walk() method to recursively walk through all the
files looking for the .wav and .mp3 files, as follows (see code 5.03 – view.py):

 def add_all_audio_files_from_directory(self):
 directory_path = tkinter.filedialog.askdirectory()
 if not directory_path:
 return
 audio_files_in_directory =
 self.get_all_audio_file_from_directory(
 directory_path)
 for audio_file in audio_files_in_directory:
 self.model.add_to_play_list(audio_file)
 file_path, file_name = os.path.split(audio_file)
 self.list_box.insert(tk.END, file_name)

 def get_all_audio_file_from_directory(self, directory_path):
 audio_files_in_directory = []
 for (dirpath, dirnames, filenames) in
 os.walk(directory_path):
 for audio_file in filenames:
 if audio_file.endswith(".mp3") or
 audio_file.endswith(".wav"):
 audio_files_in_directory.append(dirpath + "/"
 + audio_file)
 return audio_files_in_directory

Emptying the playlist
The code is as follows (see code 5.03 – view.py):

 def empty_play_list(self):
 self.model.empty_play_list()
 self.list_box.delete(0, END)

Chapter 5

[169]

This completes our third iteration. In this iteration, we saw how to work with the
Listbox widget. In particular, we saw how to add items to the Listbox widget, select
a particular item from the Listbox widget, and delete one or more items from it.

You now have a playlist where you can add and delete items using the four buttons
at the bottom-left corner of the audio player.

Playing audio and adding audio controls
In this iteration, we will code the features marked in the following screenshot:

This includes the play/stop, pause/unpause, next track, previous track, fast forward,
rewind, volume change, and mute/unmute features.

Adding the play/stop function
Now that we have a playlist and a Player class that can play audio, playing audio is
simply about updating the current track index and calling the play method.

Accordingly, let's add an attribute, as follows (see code 5.04 – view.py):

current_track_index = 0

Furthermore, the Play button should act as a toggle between the play and stop
functions. The Python itertools module provides the cycle method, which is
a very convenient way to toggle between two or more values.

Accordingly, import the itertools module and define a new attribute, as follows
(see code 5.04 – view.py):

toggle_play_stop = itertools.cycle(["play","stop"])

Now, every time we call next(toggle_play_stop), the value returned toggles
between the play and stop strings.

Building an Audio Player

[170]

Next, modify the on_play_stop_button_clicked() method so that it looks like this
(see code 5.04 – view.py):

 def on_play_stop_button_clicked(self):
 action = next(self.toggle_play_stop)
 if action == 'play':
 try:
 self.current_track_index =
 self.list_box.curselection()[0]
 except IndexError:
 self.current_track_index = 0
 self.start_play()
 elif action == 'stop':
 self.stop_play()

The preceding method simply toggles between calling the start_play() and
stop_play() methods, which are defined in the following way:

 def start_play(self):
 try:
 audio_file = self.model.get_file_to_play
 (self.current_track_index)
 except IndexError:
 return
 self.play_stop_button.config(image=self.stop_icon)
 self.player.play_media(audio_file)

 def stop_play(self):
 self.play_stop_button.config(image=self.play_icon)
 self.player.stop()

The preceding code calls the play- and stop-related methods defined in the Player
class. It also changes the button image from the play icon to the stop icon by using
the widget.config(image=new_image_icon) method.

While we are handling the play function, let's modify the command callback so that
a user can play a track simply by double-clicking on it. We have already defined a
method named on_play_list_double_clicked earlier, which is currently empty.
Simply modify it, as follows:

 def on_play_list_double_clicked(self, event=None):
 self.current_track_index =
 int(self.list_box.curselection()[0])
 self.start_play()

Chapter 5

[171]

Adding the pause/unpause function
Since we need a single button to toggle between pause and unpause, we will again
use the cycle() method from the itertools module. Define an attribute, as follows
(see code 5.04 – view.py):

toggle_pause_unpause = itertools.cycle(["pause","unpause"])

Then, modify the command callback attached to the button, as follows:

 def on_pause_unpause_button_clicked(self):
 action = next(self.toggle_pause_unpause)
 if action == 'pause':
 self.player.pause()
 elif action == 'unpause':
 self.player.unpause()

This takes care of the pause and unpause feature of the program.

Adding the mute/unmute function
This is similar to coding the pause/unpause feature. We need an attribute that
can toggle between the mute and unmute string. Accordingly, add an attribute,
as follows (see code 5.04 – view.py):

toggle_mute_unmute = itertools.cycle(["mute","unmute"])

Then, modify the command callback to call the mute or unmute function from the
player class, change the button icon to the mute or unmute image, and shift the
volume scale accordingly, as follows (see code 5.04 – view.py):

 def on_mute_unmute_button_clicked(self):
 action = next(self.toggle_mute_unmute)
 if action == 'mute':
 self.volume_at_time_of_mute = self.player.volume
 self.player.mute()
 self.volume_scale.set(0)
 self.mute_unmute_button.config(image=self.mute_icon)
 elif action == 'unmute':
 self.player.unmute(self.volume_at_time_of_mute)
 self.volume_scale.set(self.volume_at_time_of_mute)
 self.mute_unmute_button.config
 (image=self.unmute_icon)

Building an Audio Player

[172]

Fast forward/rewind function
The code for fast forward and rewind are the simplest. We have already defined the
methods to handle this in the player class. Now, its only a matter of connecting them
to the concerned command callback, as follows:

def on_fast_forward_button_clicked(self):
 self.player.fast_forward()

def on_rewind_button_clicked(self):
 self.player.rewind()

Adding the next track/previous track function
While we had defined the code for fast forward and rewind in the Player class,
we did not define the method related to next track and previous track there, because
this can be handled by the existing play method. All that you need to do is simply
increment or decrement the value of current_track and then call the play method.

Accordingly, define two methods in the View class, as follows (see code
5.04 – view.py):

 def play_previous_track(self):
 self.current_track_index = max(0, self.current_track_index
 - 1)
 self.start_play()

 def play_next_track(self):
 self.current_track_index = min(self.list_box.size() - 1,
 self.current_track_index + 1)
 self.start_play()

Then, simply attach these two methods to the respective command callback,
as follows (see code 5.04 – view.py):

 def on_previous_track_button_clicked(self):
 self.play_previous_track()

 def on_next_track_button_clicked(self):
 self.play_next_track()

Chapter 5

[173]

Adding the volume change function
We have already defined the volume method in the Player class. Now, all that you
need to do is simply get the value of the Volume Scale widget and set the volume in
the player class.

Also, ensure that in case the volume becomes zero, we change the volume button
icon to the mute image (see code 5.04 – view.py):

 def on_volume_scale_changed(self, value):
 self.player.volume = self.volume_scale.get()
 if self.volume_scale.get() == 0.0:
 self.mute_unmute_button.config(image=self.mute_icon)
 else:
 self.mute_unmute_button.config(image=self.unmute_icon)

This concludes the iteration. The player is now functional enough to be called an
audio player. Go ahead and add some music files to the player. Press the play button
and enjoy the music! Try out other player controls that we defined in this iteration
and they should work as expected.

Creating a seek bar
Now, let's add a seek bar to the audio player. Tkinter offers the Scale widget that we
used for the volume scale. The Scale widget could have functioned as a seek bar.
But we want something more fancy.

Moreover, the Scale widget would look different on different platforms. Instead, we
want the seek bar to look uniform on all platforms. This is where we can create our
own widget to meet the custom needs for the audio player.

Let's create our own Seekbar widget, as shown in the following image:

The simplest way to create our own widget is to inherit from an existing widget or
the Widget class.

Building an Audio Player

[174]

When you look at the source code of Tkinter, you will find that all the widgets inherit
from a class named Widget. The Widget class in turn inherits from another class
called BaseWidget. The BaseWidget class contains the code that is used to handle
the widget's destroy() method, but it is not aware of a geometry manager.

Therefore, if we want our custom widget to be aware of and use geometry managers
such as pack, grid, or place, we need to inherit from the Widget class or another
Tkinter widget.

Let's assume that we want to create a widget named Wonderwidget. We can do so
simply by inheriting from the Widget class, as follows:

from tkinter import *
class Wonderwidget(Widget):
 def __init__(self, parent, **options):
 Widget.__init__(self, parent, options)

These four lines of code create a widget named Wonderwidget, which can be
positioned with geometry managers such as pack, place, or grid.

However, for more practical use cases, we generally inherit from the existing Tkinter
widgets, such as Text, Button, Scale, Canvas, and so on. In our case, we will create
the Seekbar widget by inheriting from the Canvas class.

Create a new file called seekbar.py (see code 5.05.py). Then, create a new class
named Seekbar that inherits from the Canvas widget, as follows:

from tkinter import *

class Seekbar(Canvas):

 def __init__(self, parent, called_from, **options):
 Canvas.__init__(self, parent, options)
 self.parent = parent
 self.width = options['width']
 self.red_rectangle = self.create_rectangle(0, 0, 0,
 0,fill="red")
 self.seekbar_knob_image = PhotoImage
 (file="../icons/seekbar_knob.gif")
 self.seekbar_knob = self.create_image(0, 0,
 image=self.seekbar_knob_image)

The preceding code calls the __init__ method of the parent Canvas class to
initialize the underlying Canvas with all the Canvas-related options that are
passed as an argument.

Chapter 5

[175]

With as little code as that, let's go back and modify the create_top_display()
method in the View class to add this new widget, as follows:

self.seek_bar = Seekbar(frame, background="blue",
 width=SEEKBAR_WIDTH, height=10)
self.seek_bar.grid(row=2, columnspan=10, sticky='ew', padx=5)

Here, SEEKBAR_WIDTH is a constant that we defined as equal to 360 pixels in
the program.

If you now run view.py, you will see the Seekbar widget at its place.

The seek bar is not functional, as it does not move when the seek bar knob is clicked.
In order to make the seek bar slide along, we will bind the mouse buttons by
defining a new method and calling it from the __init__ method, as follows
(see code 5.05 – seekbar.py):

 def bind_mouse_button(self):
 self.bind('<Button-1>', self.on_seekbar_clicked)
 self.bind('<B1-Motion>', self.on_seekbar_clicked)
 self.tag_bind(self.red_rectangle, '<B1-Motion>',
 self.on_seekbar_clicked)
 self.tag_bind(self.seekbar_knob, '<B1-Motion>',
 self.on_seekbar_clicked)

We bind the entire canvas, the red rectangle, and the seek bar knob to a single
method named on_seekbar_clicked, which can be defined as follows
(see code 5.05 – seekbar.py):

 def on_seekbar_clicked(self, event=None):
 self.slide_to_position(event.x)

The preceding method simply calls another method named slide_to_position,
which is responsible for changing the position of the knob and the size of the red
rectangle (see code 5.05 – seekbar.py):

 def slide_to_position(self, new_position):
 if 0 <= new_position <= self.width:
 self.coords(self.red_rectangle, 0, 0, new_position,
 new_position)
 self.coords(self.seekbar_knob, new_position, 0)
 self.event_generate("<<SeekbarPositionChanged>>",
 x=new_position)

The preceding code slides the knob to the new position. More importantly, the last
line creates a custom event named SeekbarPositionChanged. This event will let
any code that uses this custom widget handle the event appropriately.

Building an Audio Player

[176]

The second argument, x=new_position, adds the value of x to event.x, making it
available to the event handler.

So far, we have only been handling events. Tkinter also lets us create
our own events, which are called virtual events.
We can specify any name for the event by enclosing the name in
double pairs of <<…>>.
In the preceding code, we generated a virtual event named
<<SeekbarPositionChanged>>.
We then bound it to the appropriate event handler in the View class,
as follows:

self.root.bind("<<SeekbarPositionChanged>>",
 self.seek_new_position)

That's all that there is to the custom Seekbar widget. We can write a small test
in seekbar.py that will check whether the Seekbar widget works as expected
(class TestSeekBar):

 def __init__(self):
 root = tk.Tk()
 root.bind("<<SeekbarPositionChanged>>",
 self.seek_new_position)
 frame = tk.Frame(root)
 frame.grid(row=1, pady=10, padx=10)
 c = Seekbar(
 frame, background="blue", width=360, height=10)
 c.grid(row=2, columnspan=10, sticky='ew', padx=5)
 root.mainloop()

 def seek_new_position(self, event):
 print("Dragged to x:", event.x)

if __name__ == '__main__':
 TestSeekBar()

Go ahead and run the 5.05 – seekbar.py program; it should produce a seek bar.
The seek bar should slide when you drag the seek bar knob or click at various
places on the canvas.

This concludes the iteration. We will make the audio player's seek bar functional in
the next iteration.

Chapter 5

[177]

One-time updates during audio playback
The audio program must update some information as soon as an audio track starts
playing. Broadly speaking, there are two kinds of updates that the program needs
to monitor and update:

• One-time updates: Examples of this include the name of the track and the
total length of the track.

• Continuous updates: Examples of this include the position of the seek bar
knob and the elapsed play duration. We also need to continuously check
whether a track has ended to either play the next track, play the current track
again, or stop playing, depending on the loop choice made by the user.

These two kinds of updates will affect sections of the audio player, as shown in the
following screenshot:

Let's start with the one-time updates, as they are relatively simple to implement.
Since these updates must occur when the playback starts, let's define a method
named manage_one_time_updates() and call it from within the start_play()
method of the View class, as follows (see code 5.06 – view.py):

 def manage_one_time_track_updates_on_play_start(self):
 self.update_now_playing_text()
 self.display_track_duration()

Next, define all the methods called from within the preceding method, as follows:

 def update_now_playing_text(self):
 current_track = self.model.play_list
 [self.current_track_index]
 file_path, file_name = os.path.split(current_track)
 truncated_track_name = truncate_text(file_name, 40)
 self.canvas.itemconfig(self.track_name,
 text=truncated_track_name)

Building an Audio Player

[178]

 def display_track_duration(self):
 self.track_length = self.player.track_length
 minutes, seconds = get_time_in_minute_seconds
 (self.track_length)
 track_length_string = 'of {0:02d}:{1:02d}'.format(minutes,
 seconds)
 self.canvas.itemconfig(self.track_length_text,
 text=track_length_string)

These two methods simply find out the track name and track duration and update
the related canvas text by using a call to canvas.itemconfig.

Just like we use config to change the value of widget-related options,
the Canvas widget uses itemconfig to change the options for individual
items within the canvas.
The format for itemconfig is itemconfig(itemid, **options).

Let's define two helper methods in a new file named helpers.py and import
the methods in the view namespace. The two methods are truncate_text
and get_time_in_minutes_seconds. The code for this can be found in the
5.06 – helpers.py file.

That takes care of one-time updates. Now, when you run 5.06 – view.py and play
some audio file, the player should update the track name and the total track duration
in the top console, as shown in the following screenshot:

We will take care of periodic updates in the next iteration.

Managing continuous updates
Next, we will update the position of the seek bar knob and the elapsed play duration,
as shown in the following screenshot:

Chapter 5

[179]

This is nothing but a simple form of Tkinter-based animation.

The most common pattern of animating with Tkinter involves drawing a single
frame and then calling the same method using the after method of Tkinter,
as follows:

 def animate(self):
 self.draw_frame()
 self.after(500, self.animate)

Once called, this function will keep updating frames once every 500
milliseconds. You can also add some conditions to break out of the
animation loop.

Now that we know how to manage animations in Tkinter, let's use the pattern
to define a method that takes care of these periodic updates.

Define a method named manage_periodic_updates_during_play, which calls
itself every one second to update the timer and the seek bar, as follows (see code
5.07 – view.py):

def manage_periodic_updates_during_play(self):
 self.update_clock()
 self.update_seek_bar()
 self.root.after(1000, self.manage_periodic_updates_during_play)

Then, define two methods named update_clock and update_seek_bar, which
update the sections highlighted in the following screenshot.

The update_clock method gets the elapsed duration in seconds from the Player
class, converts it into minutes and seconds, and updates the canvas text using
canvas.itemconfig, as follows (see code 5.07 – view.py):

 def update_clock(self):
 self.elapsed_play_duration =
 self.player.elapsed_play_duration
 minutes, seconds = get_time_in_minute_seconds
 (self.elapsed_play_duration)
 current_time_string = '{0:02d}:{1:02d}'.format(minutes,
 seconds)
 self.canvas.itemconfig(self.clock,
 text=current_time_string)

Building an Audio Player

[180]

You may recall that we had previously defined a slide_to_position method in the
Seekbar class. The update_seek_bar method simply calculates the proportionate
position of the seek bar and then calls the slide_to_position method to slide the
knob of the seekbar, as follows (see code 5.07 – view.py):

 def update_seek_bar(self):
 seek_bar_position = SEEKBAR_WIDTH *
 self.player.elapsed_play_duration /self.track_length
 self.seek_bar.slide_to_position(seek_bar_position)

Now, if you run 5.07 – view.py, add an audio file, and play it, the elapsed duration
should continuously be updated in the top display. The seek bar should also move
forward as the play progresses.

That's great, but there is still one small detail missing. We want that when a user
clicks somewhere on the seek bar, the playing audio seeks the new position. The
code for seeking a new position is simple (see code 5.07 – view.py):

 def seek_new_position(self, event=None):
 time = self.player.track_length * event.x /SEEKBAR_WIDTH
 self.player.seek(time)

However, the preceding method needs to be called whenever the seek bar position
is changed. Let's do this by adding a binding to the virtual event from within
5.07 – view.py, as follows:

 self.root.bind("<<SeekbarPositionChanged>>",
 self.seek_new_position)

Now, when you run 5.07 – view.py, play an audio file and click on the seek bar;
the audio should start playing from the new position.

This concludes the iteration. We will look at how to loop over tracks in the
next iteration.

Looping over tracks
Let's add the feature that allows users to loop over tracks. We have already defined
radio buttons to allow three choices, as shown in the following screenshot:

Chapter 5

[181]

In essence, the player should provide a choice from the following three options:

• No Loop: Play a track and end there
• Loop Current: Play a single track repeatedly
• Loop All: Looping through the entire playlist, one after another

The decision to follow one of these three options needs to be taken immediately after
a particular track ends playing. The best place to judge whether a track has come
to its end is from within the periodic updates loop that we created earlier.

Therefore, modify the manage_periodic_updates_during_play() method to add
the following two lines of highlighted code (see code 5.08 – view.py):

 def manage_periodic_updates_during_play(self):
 self.update_clock()
 self.update_seek_bar()
 if not self.player.is_playing():
 if self.not_to_loop(): return
 self.root.after(1000,
 self.manage_periodic_updates_during_play)

This in effect means that the looping decision is checked only when the currently
playing track ends. Then, define the not_to_loop() method, as follows (see code
5.09 – view.py):

 def not_to_loop(self):
 selected_loop_choice = self.loop_value.get()
 if selected_loop_choice == 1: # no loop
 return True
 elif selected_loop_choice == 2: # loop current
 self.start_play()
 return False
 elif selected_loop_choice == 3: #loop all
 self.play_next_track()
 return True

The code first checks the value of the selected radio button and, based on the selected
choice, makes the looping choice:

• If the selected loop value is 1 (No Loop), it does nothing and returns True,
breaking out of the continuous update loop.

• If the selected loop value is 2 (loop over the current song), it again calls the
start_play method and returns False. Thus, we do not break out of the
update loop.

Building an Audio Player

[182]

• If the loop value is 3 (Loop All), it calls the play_next_track method and
returns True. Thus, we break out of the previous update loop.

The audio player can now loop over the playlist based on the looping preference set
by the user.

Let's conclude this iteration by overriding the close button so that the audio player
properly deletes the player object when the user decides to close the player while
it is playing.

To override the destroy method, first add a protocol override command to the
View __init__ method, as follows (see code 5.08 – view.py):

self.root.protocol('WM_DELETE_WINDOW', self.close_player)

Finally, define the close_player method, as follows:

 def close_player(self):
 self.player.stop()
 self.root.destroy()

This concludes the iteration. We coded the logic required to loop over tracks and
then overrode the close button to ensure that a playing track is stopped before we
exit the player.

Adding a tooltip
In this final iteration, we will add a tooltip named the Balloon widget to all the
buttons in our player.

A tooltip is a small popup that shows up when you hover your mouse over the
Bound widget (buttons, in our case). A typical tooltip for the application will
look like this:

Although core Tkinter has many useful widgets, it is far from complete. For us, the
tooltip or Balloon widget is not provided as a core Tkinter widget. Therefore, we
look for these widgets in what are called Tkinter extensions.

Chapter 5

[183]

These extensions are nothing but a collection of extended Tkinter widgets, just like
the custom seek bar that we created.

There are literally hundreds of Tkinter extensions. In fact, we just wrote our own
Tkinter extension in this chapter. However, the following are some of the popular
Tkinter extensions:

• PMW: (http://pmw.sourceforge.net)
• Tix: (http://wiki.Python.org/moin/Tix)
• TkZinc: (http://wiki.Python.org/moin/TkZinc)
• Widget Construction Kit(WCK): (http://effbot.org/zone/wck.htm)

PMW list of extensions
Talking about PMW, here is a quick list of widget extensions and dialogs from
the package.

Widgets
The following table shows a list of widget extensions:

ButtonBox ComboBox Counter EntryField
Group HistoryText LabeledWidget MainMenuBar
MenuBar MessageBar NoteBook OptionMenu
 PanedWidget RadioSelect ScrolledCanvas ScrolledField
 ScrolledFrame ScrolledListBox ScrolledText TimeCounter

Dialogs
The following table shows a list of widget dialogs:

AboutDialog ComboBoxDialog CounterDialog Dialog
MessageDialog PromptDialog SelectionDialog TextDialog

Miscellaneous
The following is a miscellaneous quick list for PMW:

• Balloon
• Blt (used for graph generation)
• The Color Module functions

http://pmw.sourceforge.net
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/TkZinc
http://effbot.org/zone/wck.htm

Building an Audio Player

[184]

PMW offers a large list of extended widgets. For a demonstration of
all these widgets, browse the Pmw package that you installed earlier
and look for a directory named demo. Within demo, look for a file
named All.py, which demonstrates all of these PMW extensions
with a sample working code.

PMW provides the Balloon widget implementation, which will be used in the
current example. Begin by importing Pmw into the namespace, as follows (see code
5.09 – view.py):

import Pmw

Next, instantiate the Balloon widget within the create_gui method, as follows:

 self.balloon = Pmw.Balloon(self.root)

Finally, bind the Balloon widget to each button widget in the audio player. We will
not reproduce the code for each button. However, the format is as follows:

balloon.bind(name of widget, 'Description for the balloon')

Thus, the Add File button will have a balloon binding, as follows:

self.balloon.bind(add_file_button, 'Add New File')

Add similar code for each button in 5.09 – view.py.

This completes the iteration. We added Balloon tooltips to the audio player's buttons
using the PMW Tkinter extension. Most importantly, we got to know about the
Tkinter extensions and when to use them.

When you need a widget implementation that is not available as a
core widget, try looking for its implementations in PMW or TIX. If you
don't find one that suits your need, search the Internet for some other
Tkinter extension.
If you still don't find your desired implementation, it's time to build
one.

This brings us to the end of this chapter. The audio player is ready!

Chapter 5

[185]

Summary
Let's recap the things that we touched upon in this chapter.

In addition to reinforcing a lot of GUI programming techniques that we discussed in
the previous chapters, you learned how to work with more widgets such as Listbox,
ttk Scale, and Radiobutton. We looked deeper into the features of the Canvas widget.

Most importantly, we learned how to create our custom widgets, thereby extending
Tkinter's core widgets. This is a really powerful technique that can be applied to
build all sorts of features into programs.

We saw how to generate and handle virtual events. We understood the most
common technique for applying animation in Tkinter programs. This technique
can also be used to build all sorts of interesting video games.

Finally, we got to know about some common Tkinter extensions, such as PMW,
WCK, TIX, and so on.

Now, let's lose ourselves in some music.

[187]

Paint Application
We used the Canvas widget to define a custom widget in Chapter 5, Building an Audio
Player. The Canvas widget is truly one of Tkinter's highlights. It is an incredibly
powerful and flexible widget. Let's therefore devote most of this chapter to looking
at the Canvas widget in detail.

We will now develop a paint application. The application will let the user draw
freehand lines, straight lines, circles, rectangles, arcs, and other polygons. It will
also let the user define new complex shapes.

In addition to exploring the Canvas widget, we will also develop a tiny GUI
framework on top of the Tkinter interface. As you will see, frameworks are a
great way to maximize code reuse. This makes them a powerful tool for rapid
application development (RAD).

Some of the key learning objectives for this chapter are as follows:

• Master the Canvas widget API
• Learn to build and use custom GUI frameworks for maximum

code reuse and rapid application development
• Learn to use the colorchooser module of Tkinter
• Learn to use the ttk ComboBox widget
• Get to know about the available widget methods
• Reinforcing things that we have learned in previous projects

Paint Application

[188]

In its final form, our paint application would look as follows:

There are no external library requirements for this chapter. So let's dive into the code.

Creating a tiny framework
So why do we need another framework on top of Tkinter? If we need to build just
a single program, we need not build a framework. However, if we find ourselves
writing the same boilerplate code over and over again, a framework is what we need.
That is, a framework is a tool that lets us easily generate generic and often-used
patterns with ease.

Chapter 6

[189]

Consider, for example, the menu used in programs. It is such a common element in
most programs. Yet we need to handcraft each menu item every time we sit down
to write a program. What if we could further abstract to simplify menu generation?
This is where frameworks come in handy.

Say you have a program that has 10 different top-level menus. Say each of the top-
level menus has five menu items. We will have to then write 50 lines of code simply
to display these 50 menu items. You have to link each of them manually to other
commands besides having to set tons of options for each of them.

If we keep doing this for all our widgets, our GUI programming becomes an exercise
in typing. Every extra line of code that you write adds to the program complexity,
making it more difficult for someone else to read, maintain, modify, and/or debug
the code.

This is where using a custom framework comes to our aid. Let's develop a tiny
framework that makes menu generation easy for us.

We create a file, framework.py, and create a new class, Framework, to the file.

Every class that uses this framework must inherit from this class and should pass the
root window as an argument to this class by calling the super method as follows:

 super().__init__(root)

This will make all methods defined in the Framework class available to the
inheriting class.

We will now define a method, build_menu, which takes a tuple in an expected
format as input and automatically creates the menu for us. Let's define an arbitrary
rule that each group of menu items must be represented by a single entry in a tuple.

Further, we come up with a rule that each item in the tuple must be presented in the
following format:

 'Top Level Menu Name – Menu Item Name / Accelrator /
 Commandcallback/Underlinenumber'
 MenuSeparator is denoted by a string 'sep'.

For instance, passing this tuple as an argument to the build_menu method:

menu_items = (
 'File - &New/Ctrl+N/self.new_file,
 &Open/Ctrl+O/self.open_file',
 'Edit - Undo/Ctrl+Z/self.undo, sep,
 Options/Ctrl+T/self.options',
 'About - About//self.about'
)

Paint Application

[190]

The preceding code will generate three menus as shown in the following image:

The first item of the string (before dash (-)) represents the top-level menu
button. Each subsequent part of the string separated by a forward slash (/)
represents one menu item, its accelerator key, and the attached command callback.
The position of the ampersand symbol (&) represents the position of the shortcut key
to be underlined. If we encounter the string sep, we add a menu separator.

Now that we have defined the rules, the code for build_menu is as follows:

(see code framework.py)

 def build_menu(self, menu_definitions):
 menu_bar = tk.Menu(self.root)
 for definition in menu_definitions:
 menu = tk.Menu(menu_bar, tearoff=0)
 top_level_menu, pull_down_menus = definition.split('-
 ')
 menu_items = map(str.strip,
 pull_down_menus.split(','))
 for item in menu_items:
 self._add_menu_command(menu, item)
 menu_bar.add_cascade(label=top_level_menu, menu=menu)
 self.root.config(menu=menu_bar)

 def _add_menu_command(self, menu, item):
 if item == 'sep':
 menu.add_separator()
 else:
 menu_label, accelrator_key, command_callback =
 item.split('/')
 try:
 underline = menu_label.index('&')
 menu_label = menu_label.replace('&', '', 1)
 except ValueError:
 underline = None
 menu.add_command(label=menu_label,
 underline=underline, accelerator=accelrator_key,
 command=eval(command_callback))

Chapter 6

[191]

The description of the code is as follows:

• The method, build_menu, operates on a tuple by the name menu_definition,
which must specify all desired menu and menu items in the exact format,
as previously discussed.

• It iterates through each item in the tuple, splitting the item based on the
dash (–) delimiter, building the top-menu button for each item left to the
dash (-) delimiter.

• It then splits the second part of the string based on the comma (,) delimiter.
• It then iterates through this second part, creating menu items for each of

the parts, adding the accelerator key, command callback, and underline
key using another method, _add_menu_command.

• The _add_menu_command method iterates through the string and adds a
separator if it finds the string sep. If not, it next searches for an ampersand
(&) in the string. If it finds one, it calculates its index position and assigns it to
the underline variable. It then replaces the ampersand value with an empty
string, because we do not want to display the ampersand in our menu item.

• If an ampersand is not found in a string, the code assigns None to the
underline variable.

• Finally, the code adds a command callback, accelerator key, and underline
value to the menu item. Note that our framework adds only the accelerator
key label. It is the developer's responsibility to bind events to the bound keys.

Our demonstration of making GUI frameworks ends here. We can now use this
method to define literally hundreds of menus simply by adding one new line for
each group of menus.

However, this is a rather rudimentary framework. The rules for defining items are
completely arbitrary. The choice of delimiters means that we can no longer use the
characters dash (-), slash (/), and ampersand (&) that we have used as delimiters in
any menus that we define using this framework.

Our framework does not lay rules for any other widgets. In fact, this definition is
not even sufficient to generate other types of menus like the cascading menu, check
button menu, or radio button menu. We will, however, not extend the framework
further, as it is sufficient to hit home the concept behind framework design and
usage and that is all we need to use in our paint application.

Paint Application

[192]

We have also included a small test in the framework.py file. If you execute the
file as a standalone program, it should pop up a window and define some menus
for testing.

Full-fledged frameworks use more structured markup languages to
represent the rules. XML is one of the most popular choices for writing
GUI frameworks.
You can find an example of a full-blown XML-based Tkinter RAD
(tkRAD) framework here:
https://github.com/tarball69/tkRAD

A simple menu implementation using the preceding framework can be
seen here:
https://github.com/tarball69/tkRAD/wiki/en%3Axml_menu_
example

Using a framework for smaller programs may be overkill, but they are invaluable
assets for large programs. Hopefully, you should now be able to appreciate the
benefits of using frameworks for larger programs.

Now that we have the code for build_menu, we can extend it to add as many menu
items as required without having to write repetitive and similar code for each
of them.

This ends our first iteration. We will use this tiny framework in defining the menu
for our drawing program in the next step.

Setting up a broad GUI structure
Let's now set up the broad GUI elements of our program. We create a
PaintApplication class in 6.01.py. Since we want to draw the menu using our
framework, we import the framework into our file and inherit from the Framework
class as follows:

import framework

class PaintApplication(framework.Framework):

 def __init__(self, root):
 super().__init__(root)
 self.create_gui()

https://github.com/tarball69/tkRAD
https://github.com/tarball69/tkRAD/wiki/en%3Axml_menu_example
https://github.com/tarball69/tkRAD/wiki/en%3Axml_menu_example

Chapter 6

[193]

The __init__ method calls another method, create_gui, which is responsible for
creating the basic GUI structure for our program.

The create_gui method simply delegates the task to five separate methods, each
being responsible for creating one section of the GUI as follows (see code 6.01.py):

 def create_gui(self):
 self.create_menu()
 self.create_top_bar()
 self.create_tool_bar()
 self.create_drawing_canvas()
 self.bind_menu_accelrator_keys()

These five methods together build a structure as shown in the following figure (see
code 6.01.py):

We have written similar code in all previous chapters. Hence we will not reproduce
the code for these five methods here. Note, however, a few things about the code in
6.01.py:

• Since we want to use the framework, we inherit from the Framework class
and call its __init__ method using super().

• The create_menu method specifies the tuple for our menu definition and
calls the build_menu method defined earlier in our framework.

Paint Application

[194]

• We define a lot of empty methods that will be implemented later. Each
empty method is added as a command callback to individual menu items.
The empty methods defined here are:

 ° on_new_file_menu_clicked()

 ° on_save_menu_clicked()

 ° on_save_as_menu_clicked()

 ° on_close_menu_clicked()

 ° on_canvas_zoom_out_menu_clicked()

 ° on_canvas_zoom_in_menu_clicked()

 ° on_undo_menu_clicked()

 ° on_about_menu_clicked()

This gives us a broad GUI structure for our program. Next we look at interacting
with the drawing canvas.

Dealing with mouse events
When we draw in a paint program, we use a mouse as the primary input device.
There are primarily two kinds of mouse events that cause changes on the drawing
canvas and are therefore of main interest:

• Click and release
• Click, drag, and release

There is also a third event in which we have limited interest—the mouse motion with
no buttons clicked. Our interest is limited there since an unclicked motion normally
does not cause any changes on the canvas.

We ignore right-click and wheel-scroll as we will not be using them in our program.

In both the preceding cases, we need to know where the mouse was first clicked and
where it was released. For click and release this could be the same location. For click,
drag, and release this will normally be different locations.

Accordingly, we define four attributes to keep track of the coordinates for these two
locations (see code 6.02.py):

 start_x, start_y = 0, 0
 end_x, end_y = 0, 0

Chapter 6

[195]

Our immediate goal then is to bind our mouse events in such a way that any click or
drag gives us the value of these four start and end coordinates.

The coordinates of the Canvas widget begin at the top-left corner ((0, 0) is
the top -corner).
Further, the Canvas widget uses two coordinate systems:

• The window coordinate system that is always 0,0 for the leftmost
corner, no matter where you scroll down or up the canvas

• The canvas coordinate system that specifies where the items are
actually drawn on the canvas

We will mostly be interested in the canvas coordinate system, but mouse
events emit data on the window coordinate system. To convert from the
window coordinate system to the canvas coordinate system we can use
the following methods:

canvas_x = canvas.canvasx(event.x)

canvas_y = canvas.canvasy(event.y)

Let's now modify our __init__ method to also call a method, bind_mouse. We
define the bind_mouse method as follows (see code 6.02.py):

 def bind_mouse(self):
 self.canvas.bind("<Button-1>",
 self.on_mouse_button_pressed)
 self.canvas.bind(
 "<Button1-Motion>",
 self.on_mouse_button_pressed_motion)
 self.canvas.bind(
 "<Button1-ButtonRelease>",
 self.on_mouse_button_released)
 self.canvas.bind("<Motion>",
 self.on_mouse_unpressed_motion)

We then define the first three methods binded just now. We ignore the unpressed
motion for now by making an empty method. Remember that we are interested
in getting the start and end coordinates, which are acquired as follows (see code
6.02.py):

 def on_mouse_button_pressed(self, event):
 self.start_x = self.end_x = self.canvas.canvasx(event.x)
 self.start_y = self.end_y = self.canvas.canvasy(event.y)
 print("start_x, start_y = ", self.start_x, self.start_y)

Paint Application

[196]

 def on_mouse_button_pressed_motion(self, event):
 self.end_x = self.canvas.canvasx(event.x)
 self.end_y = self.canvas.canvasy(event.y)

 def on_mouse_button_released(self, event):
 self.end_x = self.canvas.canvasx(event.x)
 self.end_y = self.canvas.canvasy(event.y)
 print("end_x, end_y = ", self.end_x, self.end_y)

We have temporarily added two print statements to show these four values on the
console (see code 6.02.py). Now that we have the location of the start and end mouse
events, we can act upon those events to do all kinds of activities on the canvas.

Adding toolbar buttons
Next, we need to add 16 buttons to the left toolbar. Further, depending on which
button is clicked, different options would show up in the top bar as shown here:

We do not want our code structure to be bloated by conditional logic to switch
among these 16 functions. Therefore, we will call these methods dynamically.

We first begin by defining a tuple of all 16 function names (see code 6.01.py):

 tool_bar_functions = (
 "draw_line", "draw_oval", "draw_rectangle", "draw_arc",
 "draw_triangle", "draw_star", "draw_irregular_line",
 "draw_super_shape", "draw_text", "delete_item",
 "fill_item", "duplicate_item", "move_to_top",
 "drag_item", "enlarge_item_size", "reduce_item_size"
)

Chapter 6

[197]

Doing so ensures that we do not have to call each method explicitly from our code.
We can instead use the index of the tuple to retrieve the method name and call it
dynamically using:

getattr(self, self.toolbar_functions[index])

This makes sense here, because we would eventually add more features to our
drawing program by simply extending the toolbar_functions tuple.

We further define an attribute, selected_tool_bar_function, which will keep
track of which button was last clicked. We initialize it to the first button (draw_line)
as follows:

selected_tool_bar_function = tool_bar_functions[0]

Next, we create a folder named icons and add icons for all these 16 toolbar
buttons. The icons have been named the same as the corresponding function name.
Maintaining this consistency allows us to use the same tuple to loop over and build
our toolbar buttons.

This style of programming is what you could call programming using conventions over
configuration.

We next create the method that makes the actual buttons (see code 6.03.py):

 def create_tool_bar_buttons(self):
 for index, name in enumerate(self.tool_bar_functions):
 icon = tk.PhotoImage(file='icons/' + name + '.gif')
 self.button = tk.Button(
 self.tool_bar, image=icon, command=lambda
 index=index: self.on_tool_bar_button_clicked
 (index))
 self.button.grid(
 row=index // 2, column=1 + index % 2,
 sticky='nsew')
 self.button.image = icon

The preceding code creates all buttons and adds command callbacks to the buttons
as highlighted. We accordingly define the command callback as follows (see code
6.03.py):

 def on_tool_bar_button_clicked(self, button_index):
 self.selected_tool_bar_function =
 self.tool_bar_functions[button_index]
 self.remove_options_from_top_bar()
 self.display_options_in_the_top_bar()

Paint Application

[198]

The preceding method sets the value of selected_tool_bar_function. Next, it calls
two methods that are defined as follows (see code 6.03.py):

 def remove_options_from_top_bar(self):
 for child in self.top_bar.winfo_children():
 child.destroy()

We need to remove any existing options currently displaying in the top bar before
we can display options for the newly selected button. The winfo_children method
used just now returns a list of all widgets that are children of this widget.

Now that we have removed all items from the top bar, we define the selected tool
icon on the top bar:

 def display_options_in_the_top_bar(self):
 self.show_selected_tool_icon_in_top_bar(
 self.selected_tool_bar_function)

Currently, this method only calls one other method to display the selected tool icon
in the top bar. We will, however, use this method as the central place for adding
options to the top bar later in the chapter.

We do not discuss the show_selected_tool_icon_in_top_bar method here as it
simply adds a label with an icon to the top bar (see code 6.03.py):

Now, if you go and run the code 6.03.py, it should display all 16 buttons in the
left toolbar. Further, clicking on any one of the buttons should display the selected
button in the top bar as shown in the preceding screenshot.

Chapter 6

[199]

The winfo_children() method used earlier is an example of widget
methods that are available to be called on all widgets. Several useful
widget methods are defined in Tkinter.
In addition to the widget methods that are available on all widgets, some
methods are only available on the top-level window.
You can get a list of all such available methods and their descriptions by
typing the following in your Python 3 console:

>>> import tkinter

>>> help(tkinter.Misc)
>>> help (tkinter.Wm)

Available online at http://effbot.org/tkinterbook/widget.htm
and at http://effbot.org/tkinterbook/wm.htm.
You are encouraged to take a look at all these available methods.

Next, we extend our program to actually draw items on the canvas.

Drawing items on the canvas
Objects added to the canvas are called items. New items are added to the canvas
using different create methods like create_line, create_arc, create_oval,
create_rectangle, create_polygon, create_text, create_bitmap, and
create_image.

Items added to the canvas are placed in a stack. New items are added on top of
items already on the canvas. Every time you add an item using one of the various
create methods, it returns a unique item handle or an item id that is a unique
integer. This item handle can be used to refer to and manipulate the added item.
In addition to an item handle, items can have the following item specifiers:

• tags are specifiers that we can add to one or more items
• ALL (or the string all) matches all items on the canvas
• CURRENT (or current) matches the item under the mouse pointer, if any

We can use any of the preceding item specifiers for methods that act on canvas items.

To add a tag to an item, you specify the tag (which is a string) as its configurable
option either at the time of creating the object or later using the itemconfig method
or the addtag_withtag method, as follows:

canvas.create_rectangle(10, 10, 50, 50, tags="foo")
canvas.itemconfig(item_specifier, tags="spam")
canvas.addtag_withtag("spam", "baz")

http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/wm.htm

Paint Application

[200]

You can add multiple tags to an item at once by passing in the tags as a tuple of
strings, as follows:

canvas.itemconfig(item_specifier, tags=("tag_A", "tag_B"))

To get all tags associated with an item handle, use gettags as follows:

canvas.gettags(item_handle)

This returns a tuple of all tags associated with that item handle.

To get the item handles for all items which have a given tag, use find_withtag:

canvas.find_withtag("spam")

This returns a tuple of item handles for all items with a tag of spam.

Given this information, let's code functionality for the first six buttons as shown in
the following screenshot:

More specifically, we will code the functionality for the following function names
we have already defined earlier in the tuple tool_bar_functions:

"draw_line", "draw_oval", "draw_rectangle", "draw_arc",
 "draw_triangle", "draw_star"

Here's the code for draw_line (see code 6.04.py):

 def draw_line(self):
 self.current_item = self.canvas.create_line(
 self.start_x, self.start_y, self.end_x, self.end_y,
 ill=self.fill, width=self.width, arrow=self.arrow,
 dash=self.dash)

Chapter 6

[201]

This uses the create_line method and draws a line from the start x, y coordinates
to the end x, y coordinates. We have defined four new attributes for handling four
different properties of the line:

• fill: Line color. Default is black, initialized as red in our program.
• width: Default is 1, initialized as 2 in our program.
• arrow: Default is None. The available choices are: None, First, Last, Both.
• dash: A dash pattern, which is a list of segment lengths. Only the odd

segments are drawn.

We will later provide options for changing these four values from the top bar and
hence these have been added as class attributes.

Also note that since create_line (and all create methods) returns the item handle
for the created item, we store it in an attribute named current_item. This gives us
access to the last created item, which we will soon put to good use.

Next, here's the code for draw_oval (see code 6.04.py):

 def draw_oval(self):
 self.current_item = self.canvas.create_oval(
 self.start_x, self.start_y, self.end_x, self.end_y,
 outline=self.outline, fill=self.fill,
 width=self.width)

This is identical to the code for draw_line, except that we added a new attribute
named outline that takes care of the outline color.

We will not discuss the code for create_rectangle and create_arc, which are
almost identical to the code of draw_oval discussed here (see code 6.04.py):

Let's now discuss the create_polygon method. This method can be used to create
all sorts of interesting shapes. Let's begin with the simple case of drawing an
equilateral triangle: (see code 6.04.py)

 def draw_triangle(self):
 dx = self.end_x - self.start_x
 dy = self.end_y - self.start_y
 z = complex(dx, dy)
 radius, angle0 = cmath.polar(z)
 edges = 3
 points = list()
 for edge in range(edges):
 angle = angle0 + edge * (2 * math.pi) / edges

Paint Application

[202]

 points.append(self.start_x + radius * math.cos(angle))
 points.append(self.start_y + radius * math.sin(angle))
 self.current_item = self.canvas.create_polygon(
 points, outline=self.outline, fill=self.fill,
 width=self.width)

The preceding code first converts the changes in the x and y coordinates from the
Cartesian coordinate system to the polar coordinates represented by an angle and a
radius. It then calculates the x, y coordinates for all three edges of the triangle using
the formula:

x = r*cosσ and y = r*sinσ

Once we have the x, y coordinates for all three vertices of the triangle, we call the
create_polygon method to draw the triangle.

Let's now use the create_polygon method to make stars. A star (and many other
polygons) can be thought of as a collection of points or spokes on two concentric
circles as shown in the following screenshot:

The star shown in the preceding screenshot has five spokes. We will later allow
the user to change the number of spokes. Therefore, let's start by defining a class
attribute as follows:

number_of_spokes = 5

Chapter 6

[203]

The shape of the star is also determined by the ratio of the radius of the inner circle to
the radius of the outer circle as in the preceding screenshot. This is called the spoke
ratio. This ratio is 2 for a standard star. Changing this ratio can also produce all sorts
of interesting star shapes. However, we will keep it at 2 for our example. Given these
rules, the code for draw_star is defined as follows (see code 6.04.py):

 def draw_star(self):
 dx = self.end_x - self.start_x
 dy = self.end_y - self.start_y
 z = complex(dx, dy)
 radius_out, angle0 = cmath.polar(z)
 radius_in = radius_out / 2 # this is the spoke ratio
 points = list()
 for edge in range(self.number_of_spokes):
 # outer circle angle
 angle = angle0 + edge * (2 * math.pi) /
 self.number_of_spokes
 # x coordinate (outer circle)
 points.append(self.start_x + radius_out *
 math.cos(angle))
 # y coordinate (outer circle)
 points.append(self.start_y + radius_out *
 math.sin(angle))
 # inner circle angle
 angle += math.pi / self.number_of_spokes
 # x coordinate (inner circle)
 points.append(self.start_x + radius_in *
 math.cos(angle))
 # y coordinate (inner circle)
 points.append(self.start_y + radius_in *
 math.sin(angle))
 self.current_item = self.canvas.create_polygon(
 points, outline=self.outline, fill=self.fill,
 width=self.width)

The preceding code is heavily commented for you to understand. This is very similar
to the code we used to draw triangles. Now instead of having points on one circle
(as for triangles), we have points on two circles. We again use the same technique
to first convert the x,y coordinates from mouse events to the polar coordinates. Once
we have the polar coordinates, it is easy to move the points in the circle. We then
move the points by a given angle and change back to Cartesian coordinates. We
keep appending all the points to an empty list called points.

Paint Application

[204]

Once we have all the points, the last line calls the create_polygon method of the
canvas object to draw the star.

Now we have all the methods to create these six shapes. But they need to be
called from somewhere for the drawing to happen. And we have already decided
that they would be called dynamically. Accordingly, we define a method,
execute_selected_method, which takes the string for the selected toolbar
function, converts the string into a callable function, and executes it dynamically.
The code is as follows (see code 6.04.py):

 def execute_selected_method(self):
 self.current_item = None
 func = getattr(self, self.selected_tool_bar_function,
 self.function_not_defined)
 func()

This method, getattr, provides a reference to a method from the given string at
runtime. A second argument provides a fallback mechanism whereby if the method
object from the first argument is not found, a reference to the second method is
provided. This helps us gracefully handle situations where a dynamically created
method does not exist. We simply define the fallback method as an empty method
to handle those cases (see code 6.04.py):

 def function_not_defined(self):
 pass

So now we have a method to execute the selected method dynamically. Where do
we plug in this method?

Since the drawing must begin when the mouse is clicked down, we call the method
execute_selected_method once from the on_mouse_button_pressed method.

The drawing must continue while the mouse is dragged in a clicked position. So
we call this method again from the on_mouse_button_pressed_motion method.
However, although we want to keep the last drawn object during the mouse motion,
we want to remove all other items except for the last drawn item. We therefore
modify on_mouse_button_pressed_motion as follows (see code 6.04.py):

 def on_mouse_button_pressed_motion(self, event):
 self.end_x = self.canvas.canvasx(event.x)
 self.end_y = self.canvas.canvasy(event.y)
 self.canvas.delete(self.current_item)
 self.execute_selected_method()

Chapter 6

[205]

Now, if you run 6.04.py the top six buttons on the toolbar should function as shown
in the following screenshot:

Adding a color palette
We can now draw basic shapes in our paint program. However, we still cannot
change the colors of these shapes. Before we allow users to change colors, we
must provide a way for them to select colors.

We will therefore provide for a color chooser, letting the user select two different
colors: the foreground color and the background color.

While we are at it, let's also add a label showing the x,y coordinate of the mouse over
the canvas as highlighted in the preceding image.

Paint Application

[206]

Let's begin with the color palette. The two color palettes are nothing but two small
rectangle items placed on a canvas. To show these two rectangles, we define a
method, create_color_palette, and call it from the existing create_gui method.
The code for create_color_palette is as follows (see code 6.05.py):

 def create_color_palette(self):
 self.color_palette = Canvas(self.tool_bar, height=55,
 width=55)
 self.color_palette.grid(row=10, column=1, columnspan=2,
 pady=5, padx=3)
 self.background_palette =
 self.color_palette.create_rectangle(
 15, 15, 48, 48, outline=self.background,
 fill=self.background)
 self.foreground_palette =
 self.color_palette.create_rectangle(
 1, 1, 33, 33, outline=self.foreground,
 fill=self.foreground)
 self.bind_color_palette()

The method ends by calling a method named bind_color_palette, which is
defined as follows (see code 6.05.py):

 def bind_color_palette(self):
 self.color_palette.tag_bind(
 self.background_palette, "<Button-1>",
 self.set_background_color)
 self.color_palette.tag_bind(
 self.foreground_palette, "<Button-1>",
 self.set_foreground_color)

The preceding code simply binds the mouse click to two not yet defined methods,
set_background_color and set_foreground_color, using the tag_bind method
of the Canvas widget.

Here's the signature of the tag_bind method:
tag_bind(item, event=None, callback, add=None)

The method adds an event binding to all matching items. Note that the
bindings apply to the items, not the tag. For example, if you add the
existing tag to new items after a call to tag_bind, the new items will not
automatically bind to the event.

Next, let's define the method that actually opens a color picker and sets the
foreground and background colors based on user-selected colors.

Chapter 6

[207]

Tkinter comes with a built-in color chooser module that we import into our
namespace as follows (see code 6.06.py):

from tkinter import colorchooser

To open a color chooser, we need to call its askcolor method as shown here:

 def get_color_from_chooser(self, initial_color,
 color_type="a"):
 color = colorchooser.askcolor(
 color=initial_color,
 title="select {} color".format(color_type)
)[-1]
 if color:
 return color
 # dialog has been cancelled
 else:
 return initial_color

Upon clicking OK, the color chooser returns a tuple of the form:

((217.84765625, 12.046875, 217.84765625), '#d90cd9')

where the first item of the tuple is another tuple comprising the RGB values of the
chosen color and the last item of the tuple represents the hexadecimal color code of
the chosen color. If the Cancel button is clicked, it returns None.

We then use the preceding method to set the foreground and background colors
as follows:

 def set_foreground_color(self, event=None):
 self.foreground = self.get_color_from_chooser(
 self.foreground, "foreground")
 self.color_palette.itemconfig(
 self.foreground_palette, width=0,
 fill=self.foreground)

 def set_background_color(self, event=None):
 self.background = self.get_color_from_chooser(
 self.background, "background")
 self.color_palette.itemconfig(
 self.background_palette, width=0,
 fill=self.background)

Paint Application

[208]

This concludes coding the color chooser for our paint program. However, note that
the colors you choose will simply change the value of the attributes foreground and
background. It will not change the color of items drawn on the canvas. We will do
that in a separate iteration.

Finally, let's define the methods that show the current mouse position in a label.
We create two new methods (see code 6.05.py):

 def create_current_coordinate_label(self):
 self.current_coordinate_label = Label(self.tool_bar,
 text='x:0\ny: 0 ')
 self.current_coordinate_label.grid(
 row=13, column=1, columnspan=2, pady=5, padx=1,
 sticky='w')

 def show_current_coordinates(self, event=None):
 x_coordinate = event.x
 y_coordinate = event.y
 coordinate_string = "x:{0}\ny:{1}".format(x_coordinate,
 y_coordinate)
 self.current_coordinate_label.config
 (text=coordinate_string)

And we call the show_current_coordinates from our existing
on_mouse_unpressed_motion method as follows (see code 6.05.py):

 def on_mouse_unpressed_motion(self, event):
 self.show_current_coordinates(event)

Adding top bar options for draw methods
Each of the 16 toolbar buttons can have their own option. Just like we called the
functions related to the toolbar buttons dynamically, we will again call methods
to display options for the top bar dynamically.

So we decide that the method name for handling the top bar options would be
named by appending the string _options to the existing method.

So suppose we want to display the options for the draw_line method, it would
be called draw_line_options. Similarly, we have to define methods like
draw_arc_options, draw_star_options, and others.

Chapter 6

[209]

We achieve this dynamic call in the method display_options_in_the_top_bar as
follows (see code 6.06.py):

 def display_options_in_the_top_bar(self):
 self.show_selected_tool_icon_in_top_bar
 (self.selected_tool_bar_function)
 options_function_name =
 "{}_options".format(self.selected_tool_bar_function)
 func = getattr(self, options_function_name,
 self.function_not_defined)
 func()

Now with that code in place, every time a toolbar button is clicked, the program will
look for a method named by appending the string _options to the current method
related to the button. If it finds one, it will be executed. If not found, the fallback
function function_not_defined will be called, which is an empty method to
silently ignore the absence of a method.

The Canvas widget lets you specify the fill color, outline color, and border width for
most of the shapes as their configurable options.

In addition to these, the Canvas widget also has several other configurable options
for many of these basic shapes. For instance, for a line, you can specify if it will have
an arrowhead shape at the end or if it will be dashed.

We need to display the following top options for the first six buttons:

As can be seen, we need to create Combobox widgets for fill, outline, width, arrow,
and dash. We first import the ttk module into our namespace and then create the
Combobox widget as shown in the following code (see code 6.06.py):

 def create_fill_options_combobox(self):
 Label(self.top_bar, text='Fill:').pack(side="left")
 self.fill_combobox = ttk.Combobox(

Paint Application

[210]

 self.top_bar, state='readonly', width=5)
 self.fill_combobox.pack(side="left")
 self.fill_combobox['values'] = ('none', 'fg', 'bg',
 'black', 'white')
 self.fill_combobox.bind('<<ComboboxSelected>>',
 self.set_fill)
 self.fill_combobox.set(self.fill)

The ttk Combobox widget binds to another method called set_fill, which is
defined as follows: 6.06.py

 def set_fill(self, event=None):
 fill_color = self.fill_combobox.get()
 if fill_color == 'none':
 self.fill = '' # transparent
 elif fill_color == 'fg':
 self.fill = self.foreground
 elif fill_color == 'bg':
 self.fill = self.background
 else:
 self.fill = fill_color

We define a similar combobox for the width, outline, arrow, and dash properties. We
also define a combobox to allow the user to change the number of spokes in the star.

Since the code for all these methods is pretty similar to the one just discussed,
we do not discuss it here. 6.06.py

Finally, we add the required comboboxes to each of the six options methods
as follows:

 def draw_line_options(self):
 self.create_fill_options_combobox()
 self.create_width_options_combobox()
 self.create_arrow_options_combobox()
 self.create_dash_options_combobox()

There's similar code for all the other five toolbar buttons (see code 6.06.py).

Now, if you run code 6.06.py, it should display options for the first six buttons.
When you change the options, the change is reflected on all subsequent drawing
on the canvas.

Chapter 6

[211]

However, there is a small bug in our code. What if someone has chosen the fill
color as the foreground color? And then he changes the foreground color from
the color palette. Although this changes the value of the foreground attribute,
it does not change the value of the fill attribute. Our program will keep using the
old foreground value for fill.

In order to fix this bug, we modify the code for set_background_color and
set_foreground_color to call two new methods:

 def try_to_set_fill_after_palette_change(self):
 try:
 self.set_fill()
 except:
 pass

 def try_to_set_outline_after_palette_change(self):
 try:
 self.set_outline()
 except:
 pass

The two methods are kept in a try-except block because not every toolbar button
will have fill and outline option combobox. Even if a toolbar button has the fill or
outline combobox, it may not be selected to use the foreground or background color.

Lastly, since we want the draw_line options to populate the top bar immediately
when the program starts, we add the following two lines to the create_gui
method (see code 6.06.py):

 self.show_selected_tool_icon_in_top_bar("draw_line")
 self.draw_line_options()

This concludes the iteration. We will add functionality to a few other toolbar buttons
in the next iteration.

Paint Application

[212]

Drawing irregular lines and super shapes
Let's now add the feature to draw irregular or continuous free-flowing lines. We will
also add the ability to draw a variety of interesting shapes on the drawing canvas as
shown here:

As a reminder, all our buttons are linked to dynamically call functions defined in
our tool_bar_functions tuple. Further, we can specify unique options for a given
function by adding the string _options to the function name.

Drawing irregular lines
To add the capability to draw irregular lines, we just need to define the method
named draw_irregular_line. To specify options that appear in the top bar, we
need to define the method named draw_irregular_line_options.

We define the draw_irregular_line method as follows (see code 6.07.py):

 def draw_irregular_line(self):
 self.current_item = self.canvas.create_line(
 self.start_x, self.start_y, self.end_x, self.end_y,
 fill=self.fill, width=self.width)
 self.canvas.bind("<B1-Motion>",
 self.draw_irregular_line_update_x_y)

 def draw_irregular_line_update_x_y(self, event=None):
 self.start_x, self.start_y = self.end_x, self.end_y
 self.end_x, self.end_y = event.x, event.y
 self.draw_irregular_line()

Chapter 6

[213]

The preceding code is similar to the code of draw_line, except that it adds an
extra line which binds mouse-clicked motion to a new method that replaces
the start x,y coordinates with the end x,y coordinates and again calls back the
draw_irregular_line method, thereby drawing in a continuous manner.

The options that show in the top bar are defined using the following method
(see code 6.07.py):

def draw_irregular_line_options(self):
 self.create_fill_options_combobox()
 self.create_width_options_combobox()

Now we can draw irregular lines on the canvas. However, since we have modified
the mouse binding, all other methods will also start to draw in a continuous manner.
We therefore need to rebind the buttons back to their original bindings. We do
that by modifying on_tool_bar_button_clicked to call bind_mouse, which
then restores the mouse binding to its original behavior.

Adding an event binding to more than one method wipes away
the previous binding, whereby the new binding replaces any
existing binding.
Alternatively, you can use add="+" as an additional argument to
keep more than one binding to the same event, as follows:

mywidget.bind("<SomeEvent>", method1, add="+")
mywidget.bind("<SameEvent>", method2, add="+")

This will bind the same event to method1 and method2.

Drawing super shapes
We call these shapes super shapes, because we can build many interesting
shapes using a single mathematical formula called Super Formula. See
https://en.wikipedia.org/wiki/Superformula for more details on the formula.

The super formula takes five input arguments: a, b, m, n1, n2, and n3. Varying these
five arguments produces varied shapes found in nature such as the shapes of shells,
starfish, flowers, and more.

https://en.wikipedia.org/wiki/Superformula

Paint Application

[214]

We do not get into why or how this formula works. All we do is write a method
that, given these five arguments, returns the coordinates for unique shapes. We then
pass these coordinates to our create_polygon method to create these shapes on the
canvas. The method that returns these points is defined as folows (see code 6.07.py):

 def get_super_shape_points(self, a, b, m, n1, n2, n3):
 # https://en.wikipedia.org/wiki/Superformula
 points = []
 for i in self.float_range(0, 2 * math.pi, 0.01):
 raux = (abs(1 / a * abs(math.cos(m * i / 4))) ** n2 + \
 abs(1 / b * abs(math.sin(m * i / 4))) ** n3)
 r = abs(raux) ** (-1 / n1)
 x = self.end_x + r * math.cos(i)
 y = self.end_y + r * math.sin(i)
 points.extend((x, y))
 return points

The method uses a custom-defined float_range method, since Python's built-in
range method does not allow for float step sizes. The float_range generator
method is defined as:

def float_range(self, x, y, step):
 while x < y:
 yield
 x += step

Next, we define the draw_super_shape method, which creates a polygon with the
calculated points (see code 6.07.py):

 def draw_super_shape(self):
 points = self.get_super_shape_points (*super_shapes
 [self.selected_super_shape])
 self.current_item = self.canvas.create_polygon(points,
 outline=self.outline, fill=self.fill, width=self.width)

Now we want to provide a different set of five parameters to the super formula. We
define a new file named supershapes.py with a dictionary named super_shapes
with different shapes represented by a shape name and five parameters as follows:

super_shapes = {
"shape A": (1.5, 1.5, 5, 2, 7, 7),
"shape B": (1.5, 1.5, 3, 5, 18, 18),
"shape C": (1.4, 1.4, 4, 2, 4, 13),
"shape D": (1.6, 1.6, 7, 3, 4, 17)
}

Chapter 6

[215]

We also define an attribute (see code 6.07.py):

selected_super_shape = "shape A"

Next, we define combobox to let the user select from among the shapes defined
previously: 6.07.py

 def create_super_shapes_options_combobox(self):
 Label(self.top_bar, text='Select
 shape:').pack(side="left")
 self.super_shape_combobox = ttk.Combobox(
 self.top_bar, state='readonly', width=8)
 self.super_shape_combobox.pack(side="left")
 self.super_shape_combobox['values'] = sorted(tuple(
 shape for shape in super_shapes.keys()))
 self.super_shape_combobox.bind(
 '<<ComboboxSelected>>',
 self.set_selected_super_shape)
 self.super_shape_combobox.set(self.selected_super_shape)

And a method that sets the selected shape for the value of selected_super_shape
(see code 6.07.py):

 def set_selected_super_shape(self, event=None):
 self.selected_super_shape =
 self.super_shape_combobox.get()

Finally, we define the draw_super_shapes_options that shows all of the options we
want to show in the top option bar (see code 6.07.py):

 def draw_super_shape_options(self):
 self.create_super_shapes_options_combobox()
 self.create_fill_options_combobox()
 self.create_outline_options_combobox()
 self.create_width_options_combobox()

This concludes the iteration. You can now run 6.07.py and draw irregular lines as
well as all of the super shapes that we have defined in the supershapes.py file.

In fact, you can extend the super_shapes dictionary to add many more
shapes simply by changing the values for the five parameters. You can look
at https://en.wikipedia.org/wiki/Superformula for values of parameters
that create interesting shapes.

https://en.wikipedia.org/wiki/Superformula

Paint Application

[216]

Adding functionality to the remaining
buttons
We will now code the features related to the remaining toolbar buttons.

Specifically, we will code the following functions: draw_text, delete_item,
fill_item, duplicate_item, move_to_top, drag_item, enlarge_item_size,
and reduce_item_size.

Let's start with the code for draw_text. When a user clicks on the draw_text button,
we want to show the following options in the top bar:

The user can enter text in the textbox and specify its font size and fill color. Once the
user presses the Go button, the text appears on the center of the canvas.

Let us therefore define the draw_text_options method as follows (see code 6.08.py):

 def draw_text_options(self):
 Label(self.top_bar, text='Text:').pack(side="left")
 self.text_entry_widget = Entry(self.top_bar, width=20)
 self.text_entry_widget.pack(side="left")
 Label(self.top_bar, text='Font size:').pack(side="left")
 self.font_size_spinbox = Spinbox(self.top_bar, from_=14,
 to=100, width=3)
 self.font_size_spinbox.pack(side="left")
 self.create_fill_options_combobox()
 self.create_text_button = Button(self.top_bar, text="Go",
 command=self.on_create_text_button_clicked)
 self.create_text_button.pack(side="left", padx=5)

Chapter 6

[217]

The preceding code is self-explanatory. The Go button is attached to a command
callback named on_create_text_button_clicked, which is defined as follows:
6.08.py

 def on_create_text_button_clicked(self):
 entered_text = self.text_entry_widget.get()
 center_x = self.canvas.winfo_width()/2
 center_y = self.canvas.winfo_height()/2
 font_size = self.font_size_spinbox.get()
 self.canvas.create_text(center_x, center_y, font=("",
 font_size), text=entered_text, fill=self.fill)

Our draw_text method is now functional. Next, let's code the delete_item method.

The operations that we want to do now are slightly different from their predecessors.
Earlier, we were creating items on the canvas. Now we have to target items already
present on the canvas.

The item that needs to be targeted is the one on which the user clicks with his or her
mouse. Fortunately, getting the item handle for the item under the mouse is very
easy using the current tag.

Accordingly, the code for delete_item is as follows (see code 6.08.py):

 def delete_item(self):
 self.current_item = None
 self.canvas.delete("current")

Now, if you select the delete button from the toolbar and click on any item on the
canvas, that item is deleted.

Next, let's code the fill_item and fill_item_options methods (see code 6.08.py):

 def fill_item(self):
 try:
 self.canvas.itemconfig("current", fill=self.fill,
 outline=self.outline)
 except TclError:
 self.canvas.itemconfig("current", fill=self.fill)

We had to use a try-except block above because some canvas items like lines and
text do not have an outline option:

 def fill_item_options(self):
 self.create_fill_options_combobox()
 self.create_outline_options_combobox()

Paint Application

[218]

Next, we code the duplicate_item method. In order to duplicate an item we need to
know three things:

• Type of item – if the item is a line, oval, rectangle, arc, or polygon
• The coordinates for the item
• The configurations of the item

We can get the type of item as a string using the type method as follows:

canvas.type(item_specifier)

This returns a string like line, oval, arc, rectangle, or polygon. In order to
recreate the item of the same type, we need to append the string create_ to the
returned type and call the method.

The coordinates of a given item can be obtained by calling the coordinates method
as follows:

coordinates = canvas.coords("item_specifier")

The configurations for an item can be obtained as a dictionary using the command:

canvas.itemconfig(item_specifier)

This returns all the configurations for an item, whether specified or not specified. For
example, here's a sample of a dictionary returned by calling the preceding method
on a canvas item:

{'outline': ('outline', '', '', 'black', 'red'), 'outlinestipple':
 ('outlinestipple', '', '', '', ''), 'activestipple':
 ('activestipple', '', '', '', ''), 'state': ('state', '', '',
 '', ''), 'offset': ('offset', '', '', '0,0', '0,0'),
 'activefill': ('activefill', '', '', '', ''), 'disabledwidth':
 ('disabledwidth', '', '', '0.0', '0'), 'disabledoutlinestipple':
 ('disabledoutlinestipple', '', '', '', ''), 'outlineoffset':
 ('outlineoffset', '', '', '0,0', '0,0'), 'width': ('width', '',
 '', '1.0', '2.0'), 'disabledfill': ('disabledfill', '', '', '',
 ''), 'disabledoutline': ('disabledoutline', '', '', '', ''),
 'dash': ('dash', '', '', '', ''), 'disableddash':
 ('disableddash', '', '', '', ''), 'disabledstipple':
 ('disabledstipple', '', '', '', ''), 'tags': ('tags', '', '',
 '', 'current'), 'stipple': ('stipple', '', '', '', ''),
 'activewidth': ('activewidth', '', '', '0.0', '0.0'),
 'activedash': ('activedash', '', '', '', ''), 'dashoffset':
 ('dashoffset', '', '', '0', '0'), 'activeoutlinestipple':
 ('activeoutlinestipple', '', '', '', ''), 'activeoutline':
 ('activeoutline', '', '', '', ''), 'fill': ('fill', '', '', '',
 'red')}

Chapter 6

[219]

Clearly, we do not require those configuration values that are empty or zero. We
therefore write a method that filters out all the necessary configurations:

 def get_all_configurations_for_item(self:
 configuration_dict = {}
 for key, value in
 self.canvas.itemconfig("current").items():
 if value[-1] and value[-1] not in ["0", "0.0", "0,0",
 "current"]:
 configuration_dict[key] = value[-1]
 return configuration_dict

Now that we know how to fetch all required elements to duplicate a canvas item,
here's the code for duplicate_item (see code 6.08.py):

 def duplicate_item(self):
 try:
 function_name = "create_" +
 self.canvas.type("current")
 except TypeError:
 return coordinates = tuple(map(lambda i: i+10,
 self.canvas.coords("current")))
 configurations = self.get_all_configurations_for_item()
 self.canvas_function_wrapper(function_name, coordinates,
 configurations)

Finally, the last line calls a function wrapper that actually runs the function that
duplicates the canvas item (see code 6.08.py):

 def canvas_function_wrapper(self, function_name, *arg,
 **kwargs):
 func = getattr(self.canvas, function_name)
 func(*arg, **kwargs)

Now, if you create an item, select the duplicate item button, and click on the item,
a duplicate item is created. However, since we do not want the duplicate item to be
created exactly on top of the existing item, we offset its coordinates by 10 pixels from
the coordinates of the item being duplicated. This offsetting is done in the line:

coordinates = tuple(map(lambda i: i+10,
 self.canvas.coords("current")))

Now, if you create an item on the canvas, select the duplicate item button, and click
on the item, its duplicate is created at an offset of 10 pixels from the original item.

Paint Application

[220]

Next, we code the move_to_top method. We have already discussed that items
added to the canvas are added on top of each other. What if we want to move an
item previously added to the canvas? The following image shows what it means
to move an item on top of the other:

We use the tag_raise and tag_lower method to move items higher and lower
in the stack. We use tag_raise to define the move_to_top method as follows
(see code 6.08.py):

 def move_to_top(self):
 self.current_item = None
 self.canvas.tag_raise("current")

The preceding code raises the clicked item highest up in the item's stack.

When you draw multiple items on the canvas, the items are placed in a
stack. By default, new items get added on top of items previously drawn
on the canvas. You can, however, change the stacking order using:
canvas.tag_raise(item).
If multiple items match, they are all moved, with their relative order
preserved.
However, this method will not change the stacking order for any new
window item that you draw within the canvas.
Then there are the find_above and find_below methods that you can
use to find items above or below an item in the canvas stacking order.

Next, we define the drag_item method. This method uses the move method to
change the coordinates of a given item (see code 6.08.py):

 def drag_item(self):
 self.canvas.move(
 "current", self.end_x - self.start_x, self.end_y -
 self.start_y)
 self.canvas.bind("<B1-Motion>", self.drag_item_update_x_y)

 def drag_item_update_x_y(self, event):

Chapter 6

[221]

 self.start_x, self.start_y = self.end_x, self.end_y
 self.end_x, self.end_y = event.x, event.y
 self.drag_item()

Since we want the drag to occur continuously and not as a jump from one place
to another, we temporarily bind the mouse binding to update the start and end
coordinates like we did when we defined the draw_irregular_line method.

Finally, we define two methods to enlarge and reduce item size. We use the
canvas.scale method to increase and reduce item size by 20%:

 def enlarge_item_size(self):
 self.current_item = None
 if self.canvas.find_withtag("current"):
 self.canvas.scale("current", self.end_x, self.end_y,
 1.2, 1.2)
 self.canvas.config
 (scrollregion=self.canvas.bbox(tk.ALL))

 def reduce_item_size(self):
 self.current_item = None
 if self.canvas.find_withtag("current"):
 self.canvas.scale("current", self.end_x, self.end_y,
 .8, .8)
 self.canvas.config
 (scrollregion=self.canvas.bbox(tk.ALL))

Note that immediately upon item resize, we reconfigure the scroll region option to
update the scroll bar.

The bbox method returns the bounding box for an item. The syntax is:
.canvas.bbox(item_specifier)

This returns the bounding box as a tuple of length 4. If the item-specifier is omitted,
the bounding box for all items is returned. Note that the bounding box values is
approximate and may differ from the real value by a few pixels.

This concludes the iteration. All the buttons in the left toolbar are now functional
(see code 6.08.py).

Paint Application

[222]

Adding functionality to menu items
Recall that, at the time of creating our menu using the Framework class, we created
empty methods that were linked to our menu items. We now modify those empty
methods to make them functional (see code 6.09.py)

File | New Menu: The canvas delete method can be used to delete an item, given
an item-specifier. Here we use ALL to delete all items from the canvas:

 def on_new_file_menu_clicked(self, event=None):
 self.start_new_project()

 def start_new_project(self):
 self.canvas.delete(ALL)
 self.canvas.config(bg="#ffffff")
 self.root.title('untitled')

File | Save, File | Save As: Tkinter lets you save canvas objects as a postscript file
using the command postscript(). Note, however, that the resulting postscript file
cannot save images or any widgets embedded on the canvas. Further, note that the
pickling of Tkinter widgets or saving to .jpg or .png formats is not possible. This is
one of the major limitations of Tkinter.

Here's the code for the save and save as features: 6.09.py

 def actual_save(self):
 self.canvas.postscript(file=self.file_name,
 colormode='color')
 self.root.title(self.file_name)

We do not discuss the Close and About menu as we have coded similar menus in all
our previous projects. 6.09.py

Edit | Undo: Recall that all items added to the canvas are stored in a stack. We can
access the stack using the canvas command:

canvas.find("all")

Using this, we implement a very basic undo operation, which lets us delete the last
drawn item on the canvas.

Accordingly, the code for adding the undo feature is as follows (see code 6.09.py):

 def on_undo_menu_clicked(self, event=None):
 self.undo()

Chapter 6

[223]

 def undo(self):
 items_stack = list(self.canvas.find("all"))
 try:
 last_item_id = items_stack.pop()
 except IndexError:
 return
 self.canvas.delete(last_item_id)

Note that this will not undo any styling changes like changes in color, width, outline,
and so on. In fact, it will only be able to delete the last item from the stack.

We can implement a fully-fledged undo stack by saving all actions in a suitable data
structure, but that would be an exercise worth its own chapter.

In addition to the find method we used here, the canvas widget
has a method named:

find_closest(x, y, halo=None, start=None)

It returns the item handle for the item closest to the given position
on the canvas. This means that if there is only one item on the
canvas, it will be selected regardless of how near or how far you
click from it.
If, on the other hand, you want objects only within a certain area,
you can use:

find_overlapping(x1, y1, x2, y2)

This returns all items that overlap the given rectangle, or that are completely
enclosed by it.

Now that we have a hold on the item to be manipulated, we can proceed to do
whatever we want to do with the item.

For a complete list of canvas' methods, please see: http://infohost.
nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html

View | Zoom in, View | Zoom out: Finally, we define these two methods using the
canvas.scale method. We have already used the scale methods earlier to enlarge
and reduce individual items. Here, we simply use the method on the ALL item-
specifier as in the following code: 6.09.py

 def canvas_zoom_in(self):
 self.canvas.scale("all", 0, 0, 1.2, 1.2)
 self.canvas.config(scrollregion=self.canvas.bbox(ALL))

That concludes the iteration and the chapter.

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html

Paint Application

[224]

Summary
To summarize, we began by creating a custom GUI framework on top of Tkinter.
We saw how GUI frameworks can be used to generate boiler plate codes for
our programs, thereby ensuring maximum code reuse and rapid application
development.

Next, we explored the Canvas widget in detail. We saw how to create various canvas
items. Then, we saw how we could manipulate the attributes of these canvas items
using tag or id. We saw the colorchooser module of Tkinter in action. We worked
with the ttk Combobox widget. We also looked at the common methods that are
available on all Tkinter widgets.

We also saw the benefits of writing programs that use conventions over
configurations to ease the logical flow of the program.

We will further expand on these ideas in the next chapter as we build multiple
fun projects and explore related domains like socket programming, network
programming, database programming, 3D animation, and much more.

[225]

Multiple Fun Projects
By now, we have explored most of the important features of Tkinter. Let's use this
chapter to explore aspects of programming that, though not core to Tkinter, are often
encountered while writing GUI applications.

In this chapter, we will develop several small applications from different domains.
The applications we will build here include:

• Screen saver (to explore basic animation in Tkinter)
• Snake game (to learn to use Queue to avoid race conditions and other

synchronization issues involved in writing multithreaded programs)
• Weather Reporter (to understand the basics of data mining over the network)
• Port scanner (to see socket programming in action)
• Chat application (to master socket programming and to learn the basics of

server-client architecture)
• Phone book application (to learn database programming)
• Graphing with Tkinter (to understand the basic graphing abilities of Tkinter)
• 3D graphics with Tkinter (to see how Tkinter can be used for generating

3D graphics)

Chapter objectives
The key objectives for this chapter are:

• To learn to animate with the Tkinter canvas
• To learn to use Queue implementation to avoid a race condition
• To fetch data over the network and use it in our GUI programs

Multiple Fun Projects

[226]

• To learn about data interchange formats like JSON and XML
• To learn database programming and basic CRUD operations on a database
• To learn socket programming to effectively communicate over the network
• To learn the basics of server-client architecture
• To learn the basics of 3D drawing with Tkinter
• To learn about various 3D transformations

Let's get started!

Building a screen saver
We will start by building a screen saver. The program will consist of several
random-colored and random-sized balls bouncing all over the screen at random
velocity, as shown in the following screenshot:

Let's create a class to generate balls with random attributes. Accordingly, we define
a new class named RandomBall. 7.01_screensaver.py:

class RandomBall:

 def __init__(self, canvas):
 self.canvas = canvas
 self.screen_width = canvas.winfo_screenwidth()
 self.screen_height = canvas.winfo_screenheight()
 self.create_ball()

 def create_ball(self):
 self.generate_random_attributes()

Chapter 7

[227]

 self.create_oval()

 def generate_random_attributes(self):
 self.radius = r = randint(40, 70)
 self.x_coordinate = randint(r, self.screen_width - r)
 self.y_coordinate = randint(r, self.screen_height - r)
 self.x_velocity = randint(6, 12)
 self.y_velocity = randint(6, 12)
 self.color = self.generate_random_color()

 def generate_random_color(self):
 r = lambda:
 randint(0, 0xffff)
 return '#{:04x}{:04x}{:04x}'.format(r(), r(), r()0)

 def create_oval(self):
 x1 = self.x_coordinate - self.radius
 y1 = self.y_coordinate - self.radius
 x2 = self.x_coordinate + self.radius
 y2 = self.y_coordinate + self.radius
 self.ball = self.canvas.create_oval(x1, y1, x2, y2,
 fill=self.color,outline=self.color)

 def move_ball(self):
 self.check_screen_bounds()
 self.x_coordinate += self.x_velocity
 self.y_coordinate += self.y_velocity
 self.canvas.move(self.ball, self.x_velocity,
 self.y_velocity)
 def check_screen_bounds(self):
 r = self.radius
 if not r < self.y_coordinate < self.screen_height - r:
 self.y_velocity = -self.y_velocity
 if not r < self.x_coordinate < self.screen_width - r:
 self.x_velocity = -self.x_velocity

A few notes on the code:

• Two key methods here are create_ball and move_ball. All other methods
are helpers to these two methods. The __init__ method takes a canvas as
a parameter and then calls the create_ball method to draw the ball on the
given canvas. To move the ball around we will explicitly need to call the
move_ball method.

Multiple Fun Projects

[228]

• The create_ball method uses the canvas.create_oval() method and
move_ball uses the canvas.move(item, dx, dy) method, where dx
and dy are x and y offsets for the canvas item.

• Also note how we create a random color for the ball. Because the
hexadecimal color coding system uses up to four hexadecimal digits for
each of red, green, and blue colors, there are up to 0xffff possibilities for
each color. We therefore create a lambda function that generates a random
number from 0-0xffff, and use this function to generate three random
numbers. We convert this decimal number to its two-digit equivalent
hexadecimal notation using the format specifier #{:04x}{:04x}{:04x}
to get a random color code for the ball.

That is all there is to the RandomBall class. We can use this class to create as many
ball objects as we want to display in our screen saver.

Next, let's create the ScreenSaver class that will show the actual screen saver:

class ScreenSaver:

 balls = []

 def __init__(self, number_of_balls):
 self.root = Tk()
 self.number_of_balls = number_of_balls
 self.root.attributes('-fullscreen', True)
 self.quit_on_interaction()
 self.create_screensaver()
 self.root.mainloop()

 def create_screensaver(self):
 self.create_canvas()
 self.add_balls_to_canvas()
 self.animate_balls()

 def create_canvas(self):
 self.canvas = Canvas(self.root)
 self.canvas.pack(expand=1, fill=BOTH)

 def add_balls_to_canvas(self):
 for i in range(self.number_of_balls):
 self.balls.append(RandomBall(self.canvas))

 def quit_on_interaction(self):
 for seq in ('<Any-KeyPress>', '<Any-Button>', '<Motion>'):
 self.root.bind(seq, self.quit_screensaver)

Chapter 7

[229]

The description of the code is as follows:

• The __init__ method of the ScreenSaver class takes the number of balls
(number_of_balls) as its argument.

• We use root.attributes(-fullscreen, True) to remove the enclosing
frame from the parent window and make it a full-screen window.

• The quit_on_interaction method binds the root to call our
quit_screensaver method in case of any interactions from the user's end.

• We then create a canvas to cover the entire screen with Canvas (self.root)
with pack (expand=1, fill=BOTH) options to fill the entire screen.

• We create several random ball objects as the RandomBall class, passing along
the Canvas widget instance as its arguments.

• We finally make a call to the animate_balls method, which uses the
standard widget.after() method to keep running the animation in a loop
at a regular interval of 30 milliseconds.

• To run the screen saver, we instantiate an object from our ScreenSaver
class, passing the number of balls as its argument as follows:
ScreenSaver(number_of_balls=18)

Our screen saver is now ready! In fact, if you are working on the Windows platform,
and when you learn to create an executable program from Python programs
(discussed in the next chapter), you can create an executable file with a .exe
extension for this screen saver. You can then change its extension from .exe to
.scr and right-click, and select Install to add it to your list of screen savers.

Building a Snake game
Let's now build a simple Snake game. As usual, we will be making use of the Canvas
widget to provide the platform for our Snake program.

We will use canvas.create_line to draw our snake, and canvas.create_rectangle
to draw the snake food.

The primary objective for this project is to learn how to use Queue as a
synchronization technique in a multithreaded application.

Writing a multithreaded application poses the challenge of synchronization between
different threads. When multiple threads try to access shared data simultaneously,
the data is likely to get corrupted or modified in ways that were not intended in the
program. This is called a race condition.

Multiple Fun Projects

[230]

7.02_race_condition.py demonstrates a race condition. The program is as follows:

import threading

class RaceConditionDemo:

 def __init__(self):
 self.shared_var = 0
 self.total_count = 100000
 self.demo_of_race_condition()

 def increment(self):
 for i in range(self.total_count):
 self.shared_var += 1

 def decrement(self):
 for i in range(self.total_count):
 self.shared_var -= 1

 def demo_of_race_condition(self):
 t1 = threading.Thread(target=self.increment)
 t2 = threading.Thread(target=self.decrement)
 t1.start()
 t2.start()
 t1.join()
 t2.join()
 print("value of shared_var after all increments &
 decrements :", self.shared_var)
if __name__ == "__main__":
 for i in range(100):
 RaceConditionDemo()

The preceding code consists of two methods named increment and decrement that
both operate on a single shared variable named shared_var. These two methods are
called from separate threads.

One would expect that an equal number of increments and decrements on a shared
variable would produce no change in its value at the end. However, when you run
this program, say 100 number of times as before, it produces a different value for
the shared variable in each consecutive run. This is a classic example for how a race
condition can make the output of a program non-deterministic.

Race conditions occur because we cannot predict the thread execution order at all.
The operating system does it very randomly and so the execution order of threads
varies each time the program is run.

Chapter 7

[231]

To handle this complexity, the threading module provides some synchronization
primitives, such as locks, joins, semaphores, events, and condition variables.

Code 7.03_lock_demo.py slightly modifies the preceding code by introducing
a lock using the line:

self.lock = threading.Lock()

Next, every time shared_variable is to be modified, it is done after acquiring a
lock. The lock is released when the variable has been modified, as shown in the
following code:

 self.lock.acquire()
 self.shared_var += 1
 self.lock.release()

This enables us to avoid a race condition. Since this code operates with a lock, it
produces no change in the shared variable after an equal number of increments
and decrements.

It seemed easy to use the lock mechanism to avoid a race condition. However, as
the complexity of a program grows, there are many places where a variable may be
modified. Tracking large code bases for places where a variable may be changed
is often a difficult task.

In most cases it is safer and simpler to use queues. Simply put, a queue is a
compound memory structure that is thread-safe; queues effectively channel access
to a resource to multiple threads in a sequential order, and are a recommended
design pattern that uses threads for most of the scenarios that require concurrency.

The Queue module provides a way to implement different kinds of queuing, such
as FIFO (default implementation), LIFO queue, and Priority queue, and this module
comes with a built-in implementation of all locking semantics required for running
multithreaded programs.

Here's a quick roundup of the basic usage of the Queue module:

my_queue = Queue() #create empty queue
my_queue.put(data)# put items into queue
task = my_queue.get () #get the next item in the queue
my_queue.task_done() # called when a queued task has completed
my_queue.join() # awaits for all tasks in queue to get completed

Multiple Fun Projects

[232]

Let's see a simple demonstration of using a queue to implement a multithreaded
application:(see code 7.04_threading_with_queue.py)

import queue
import threading

class Consumer(threading.Thread):
 def __init__(self, queue):
 threading.Thread.__init__(self)
 self.queue = queue

 def run(self):
 while True:
 task = self.queue.get()
 self.do_task(task)

 def do_task(self, task):
 print ('doing task{}'.format(task))
 self.queue.task_done()

 def producer(tasks):
 mqueue = queue.Queue()
 # populate queue with tasks
 for task in tasks:
 mqueue.put(task)
 # create 6 threads and pass the queue as its argument
 for i in range(6):
 mythread = Consumer(mqueue)
 mythread.daemon = True
 mythread.start()

 # wait for the queue to finish
 mqueue.join()
 print ('all tasks completed')

if __name__ == "__main__":
 tasks = 'A B C D E F'.split()
 producer(tasks)

Chapter 7

[233]

The description of the code is as follows:

• We first create a Consumer class, which inherits from the threading module
of Python. The __init__ method takes in a queue as its argument.

• We then override the run method of the threading module to get each
item from the queue using queue.get(), which is then passed on to the
task_handler method, which actually executes the task specified in the
current queue item. In our example, it does nothing useful but print the
name of the task.

• After the work is done on a particular thread by our task_handler method,
it sends a signal to the queue telling it that the task has been completed using
the queue.task_done() method.

• Outside our Consumer class, we create an empty queue in our producer()
module function. This queue is populated with a list of tasks using
queue.put(task).

• We then create six different threads and pass this populated queue as
its argument. Now that the tasks are handled by the queue, all threads
automatically ensure that the tasks are completed in the sequence in which
they are encountered by the threads, without causing any deadlocks or two
different threads trying to work on the same queued task.

• At the time of creating each thread, we also create a pool of daemon threads
using mythread.daemon = True. Doing this passes control to our main
program once all threads have completed execution. If you comment out the
line, the program would still run, but would fail to exit after all threads have
completed executing the tasks in the queue. Without the daemon threads,
you'd have to keep track of all the threads and tell them to exit before your
program could completely quit.

• Finally, the queue.join() method ensures that the program flow waits there
until all queued tasks are actually done and the queue is empty.

With that background information about using a queue to handle multithreaded
applications, let's build our Snake game.

Multiple Fun Projects

[234]

Upon completion, the game would look as follows:

Let's start coding our game, by first creating a basic View class. This class will
be responsible for creating the GUI, checking for "game over" logic and most
importantly acting as the consumer, taking items from the queue and processing
them to update the view. (see code 7.05_game_of_snake.py)

class View(Tk):

 def __init__(self, queue):
 Tk.__init__(self)
 self.queue = queue
 self.create_gui()

 def create_gui(self):
 self.canvas = Canvas(self, width=495, height=305,
 bg='#FF75A0')
 self.canvas.pack()
 self.snake = self.canvas.create_line((0, 0), (0,0),
 fill='#FFCC4C', width=10)
 self.food = self.canvas.create_rectangle(0, 0, 0, 0,
 fill='#FFCC4C', outline='#FFCC4C')
 self.points_earned = self.canvas.create_text(455, 15,
 fill='white', text='Score:0')

Chapter 7

[235]

This preceding code should be mostly familiar to you by now as we have written
similar code in the past. Note, however, that rather than passing the root instance
as an argument to its __init__ method, our View class now inherits from the Tk
class. The line Tk.__init__(self) ensures that the root window is available to all
methods of this class. This way we can avoid writing a root attribute on every line
by referencing root simply as self.

This class will also have code to process items put in the queue. We will code the rest
of this class after we have coded the classes that put items in the queue. Next, we will
create the Food class: (see code 7.05_game_of_snake.py)

class Food:
 def __init__(self, queue):
 self.queue = queue
 self.generate_food()

 def generate_food(self):
 x = random.randrange(5, 480, 10)
 y = random.randrange(5, 295, 10)
 self.position = (x, y)
 rectangle_position = (x - 5, y - 5, x + 5, y + 5)
 self.queue.put({'food': rectangle_position})

The description of the code is as follows:

• Because we want to process all data centrally from within a queue, we pass
the queue as an argument to the __init__ method of the Food class.

• The __init__ method calls another method called generate_food, which is
responsible for generating the snake food at random positions on the canvas.

• The generate_food method generates a random (x, y) position on the
canvas. However, because the place where the coordinates coincide is
just a small point on the canvas, it would be barely visible. We therefore
generate an expanded coordinate (rectangle_position) ranging from five
values less than the (x, y) coordinate up to five values higher than the same
coordinate. Using this range, we can create a small rectangle on the canvas
that would be easily visible and would represent our food.

• However, we do not create the rectangle here. Instead, we pass the
coordinates for the food (rectangle) into our queue using queue.put.

Multiple Fun Projects

[236]

Let's now create the Snake class. We have already passed a task to generate our food
to the central queue. However, no additional thread was involved in the task. We
could also generate our Snake class without using threads. However, because we are
talking about ways to implement multithreaded applications, let's implement our
Snake class to work from a separate thread (see code 7.05_game_of_snake.py):

class Snake(threading.Thread)
 is_game_over = False

 def __init__(self, queue):
 threading.Thread.__init__(self)
 self.queue = queue
 self.daemon = True
 self.points_earned = 0
 self.snake_points = [(495, 55), (485, 55), (475, 55),
 (465, 55), (455, 55)]
 self.food = Food(queue)
 self.direction = 'Left'
 self.start()

 def run(self):
 while not self.is_game_over:
 self.queue.put({'move': self.snake_points})
 time.sleep(0.1)
 self.move()

 def on_keypress(self, e):
 self.direction = e.keysym

 def move(self):
 new_snake_point = self.calculate_new_coordinates()
 if self.food.position == new_snake_point:
 self.points_earned += 1
 self.queue.put({'points_earned': self.points_earned })
 self.food.generate_food()
 else:
 self.snake_points.pop(0)
 self.check_game_over(new_snake_point)
 self.snake_points.append(new_snake_point)

 def calculate_new_coordinates(self):
 last_x, last_y = self.snake_points[-1]
 if self.direction == 'Up':
 new_snake_point = (last_x, last_y - 10)

Chapter 7

[237]

 elif self.direction == 'Down':
 new_snake_point = (last_x, last_y + 10)
 elif self.direction == 'Left':
 new_snake_point = (last_x - 10, last_y)
 elif self.direction == 'Right':
 new_snake_point = (last_x + 10, last_y)
 return new_snake_point

 def check_game_over(self, snake_point):
 x,y = snake_point
 if not -5 < x < 505 or not -5 < y < 315 or snake_point in
 self.snake_points:
 self.is_game_over = True
 self.queue.put({'game_over': True})

The description of the code is as follows:

• We create a class named Snake to run from a separate thread. This class takes
the queue as its input arguments.

• We initialize the points earned by the player from zero and set the initial
location of the snake using the attribute self.snake_points.

• Finally, we start the thread and create an infinite loop to call the move()
method at small intervals. During every run of the loop, the method populates
the queue with a dictionary having the key as move and the value equal to the
updated position of the snake through the self.snake_points attribute.

• First, the move method obtains the latest coordinates for the snake
depending on the keyboard event. It uses a separate method called
calculate_new_coordinates to get the latest coordinates.

• It then checks if the location of the new coordinates coincide with the location
of the food. If they match, it increases the score of the player by one and
calls the Food class generate_food method to generate a new food at a
new location.

• If the current point does not coincide with the food coordinates, it deletes the
first item from the snake coordinates using self.snake_points.pop(0).

• Then, it calls another method named check_game_over to check if the snake
collides against the wall or against itself. If the snake does collide, it appends
a new dictionary item in the queue with the value game_over':True.

• Finally, if the game is not over, it appends the new position of the snake to the
list self.snake_points. This is automatically added to the queue, because we
have defined self.queue.put({'move': self.snake_points }) in the
Snake class' run() method to update every 0.1 seconds as long as the game is
not over.

Multiple Fun Projects

[238]

Now that the queue is getting populated with various actionables, let's create the
queue_handler method to process the items in the queue and update the view
accordingly.

We accordingly define the queue_handler() method in our View class as follows:

 def queue_handler(self):
 try:
 while True:
 task = self.queue.get_nowait()
 if 'game_over' in task:
 self.game_over()
 elif 'move' in task:
 points = [x for point in task['move'] for x in
 point]
 self.canvas.coords(self.snake, *points)
 elif 'food' in task:
 self.canvas.coords(self.food, *task['food'])
 elif 'points_earned' in task:
 self.canvas.itemconfigure(self.points_earned,
 text='Score: {}'.format
 (task['points_earned']))
 self.queue.task_done()
 except queue.Empty:
 self.after(100, self.queue_handler)

The description for the code is as follows:

• The queue_handler method gets into an infinite loop looking for tasks in
the queue using task = self.queue.get_nowait(). If the queue becomes
empty, the loop is restarted using canvas.after.

When we use queue_get_nowait(), the call does not
block the calling thread until an item is available. It removes
and returns an item from the queue, if available. If the queue
is empty, it raises Queue.Empty.

• Once a task is fetched from the queue, the method checks its key.
• If the key is game_over, it calls another method named game_over() that

we define next.
• If the key of the task is move, it uses canvas.coords to move the line to its

new position.
• If the key is points_earned, it updates the score on the canvas.

Chapter 7

[239]

When the execution of a task completes, it signals the thread with the task_done()
method.

Finally, we create the main loop as follows:

def main():
 q = queue.Queue()
 gui = View(q)
 snake = Snake(q)
 for key in ("Left", "Right", "Up", "Down"):
 gui.bind("<Key-{}>".format(key), snake.on_keypress)
 gui.mainloop()

if __name__ == '__main__':
 main()

Our game is now functional. Go and try controlling the snake while keeping its
stomach filled.

Creating a Weather Reporter
Let's now build a simple Weather Reporter application. The Weather data for any
given location will be fetched from the network, suitably formatted and presented
to the user.

We will use a higher-level module named urllib to fetch Weather data from the
web. The urllib module is part of Python's standard library and it provides an
easy to use API to work with URLs. It has four submodules:

• urllib.request – for opening and reading URLs
• urllib.error – for handling exceptions raised by urllib.request
• urllib.parse – for parsing URLs
• urllib.robotparser – for parsing robots.txt files

With urllib.request, fetching the contents of a web page turns into a three-line
code (see code 7.06_urllib_demo.py):

import urllib.request
with urllib.request.urlopen('http://www.packtpub.com/') as f:
 print(f.read())

This prints the entire HTML source code or whatever is the response from the web
page http://www.packtpub.com. This is, in essence, the core of mining the web for
data and information.

http://www.packtpub.com

Multiple Fun Projects

[240]

Now that we know how to get data from a URL, let's apply it to build our Weather
Reporter application. This application should take the location as an input from the
user, and fetch relevant weather-related data as shown in the following screenshot:

We create a class, WeatherReporter, and call it from outside the class within the
main loop. See the code of 7.07_weather_reporter.py:

def main():
 root=Tk()
 WeatherReporter(root)
 root.mainloop()

if __name__ == '__main__':
 main()

We do not discuss the code for creating this GUI as we have done similar coding
in the previous chapters. The weather data is displayed on a canvas. (see code
7.07_weather_reporter.py)

Chapter 7

[241]

When you specify a location and click on the Go button, it calls a command callback
named on_show_weather_button_clicked.

We then fetch the weather data from a website.

There are two ways to fetch data from a website. The first method involves getting
an HTML response from a website, and then parsing the received HTML response
for data that is relevant to us. This type of data extraction is called site scraping.

Scrapy and Beautiful Soup are two popular site-scraping frameworks for extracting
data from websites. You can find the official documentation of the two libraries at:

http://scrapy.org/ and http://www.crummy.com/software/BeautifulSoup/

Site scraping is a rather crude method that is employed only when a given website
does not provide a structured way to retrieve data. On the other hand, some websites
are willing to share data through a set of APIs, provided you query it for data using
the specified URL structure. This is clearly more elegant than site scraping, because
data is interchanged in a reliable and "mutually agreed" format.

For our Weather Reporter application, we want to query some weather channels
for a given location, and in turn retrieve and display the data on our canvas.
Fortunately, there are several weather APIs that we can use.

In our example, we will use the weather data provided by the following website:
http://openweathermap.org/

In order to use the API, you need to sign up for a free API key at:

http://home.openweathermap.org/users/sign_up

The OpenWeatherMap service provides free weather data and forecast APIs. This site
collates weather data from more than 40,000 weather stations across the globe, and
the data can be assessed by city name and geographic coordinates or their internal
city ID.

The website provides weather data in two data formats:

• JSON (short for JavaScript Object Notation)
• XML

XML and JSON are two popular interchangeable data serialization formats widely
used for data interchanging among different applications, which may be running on
different platforms and using different programming languages, thus providing the
benefit of interoperability.

http://scrapy.org/
http://www.crummy.com/software/BeautifulSoup/
http://openweathermap.org/
http://home.openweathermap.org/users/sign_up

Multiple Fun Projects

[242]

JSON is simpler than XML, because its grammar is simpler and it maps more directly
onto the data structures used in modern programming languages. JSON is better
suited for data exchanging, but XML is good for document exchanging.

The API documentation tells us that a query such as:

api.openweathermap.org/data/2.5/weather?q=London,uk&APPID={APIKEY}

The preceding code returns weather data for London in a JSON format as follows:

{"coord":{"lon":-0.12574,"lat":51.50853},"sys":{"country":"GB","sunris
e":1377147503,"sunset":1377198481},"weather":[{"id":500,"main":"Rain",
"description":"light rain","icon":"10d"}],"base":"gdps stations","main
":{"temp":294.2,"pressure":1020,"humidity":88,"temp_min":292.04,"temp_
max":296.48},"wind":{"speed":1,"deg":0},"rain":{"1h":0.25},"clouds":{"
all":40},"dt":1377178327,"id":2643743,"name":"London","cod":200}

The syntax of JSON is simple. Any JSON data is a name/value pair where each
piece of data is separated from the others by commas. JSON uses curly braces {}
to hold objects and square brackets [] to hold arrays. We accordingly define a
method to get the weather data in JSON format in our application (see code
7.07_weather_reporter.py):

 def get_data_from_url(self):
 try:
 params = urllib.parse.urlencode(
 {'q': self.location.get(), 'APPID': self.APIKEY},
 encoding="utf-8")
 api_url = (
 'http://api.openweathermap.org/data/2.5/weather?
 {}'
 .format(params)
)
 with urllib.request.urlopen(api_url) as f:
 json_data = f.read()
 return json_data
 except IOError as e:
 messagebox.showerror(
 'Unable to connect', 'Unable to connect %s' % e)
 sys.exit(1)

Chapter 7

[243]

The description for the code is as follows:

• This method uses urllib to retrieve responses from the website. It returns
the response in JSON format.

• Now, we'll start processing the JSON data. The weather data returned
using the API is encoded in JSON format. We need to convert this data into
the Python data type. Python provides a built-in json module that eases
the process of encoding/decoding JSON data. We therefore import the json
module into our current namespace.

• Then, we'll use this module to convert the retrieved JSON data into the
Python dictionary format (see code 7.07_weather_reporter.py):

 def json_to_dict(self, json_data):
 decoder = json.JSONDecoder()
 decoded_json_data =
 decoder.decode(json_data.decode("utf-8"))
 flattened_dict = {}
 for key, value in decoded_json_data.items():
 if key == 'weather':
 for ke, va in value[0].items():
 flattened_dict[str(ke)] =
 str(va).upper()
 continue
 try:
 for k, v in value.items():
 flattened_dict[str(k)] = str(v).upper()
 except:
 flattened_dict[str(key)] =
 str(value).upper()
 return flattened_dict

Now that we have a dictionary of all weather-related information provided by the
API, we simply display the retrieved weather data using canvas.create_text and
canvas.create_image. The code for displaying the weather data is self-explanatory.
(see code 7.07_weather_reporter.py)

Our Weather Reporter application is now functional.

Multiple Fun Projects

[244]

When you access a server from your Python program, it is very important
to send requests after small time gaps.
A typical Python program is capable of running several million
instructions per second. However, the server that sends you the data at
the other end is not equipped to work at that speed.
If you knowingly or unknowingly send a large number of requests to a
server within a short time-span, you may hamper it from servicing its
routine requests from normal web users. This constitutes what is called a
denial of service (DOS) attack on the server. You may be banned or, in a
worse case, sued for disrupting a server, if your program does not make a
limited number of well-behaved requests.

To summarize the code for the Weather Reporter, we use the urllib module to
query the weather API provided by our data provider. The data is fetched in JSON
format. The JSON data is then decoded into a Python-readable format (dictionary).
The converted data is then displayed on the canvas using the create_text and
create_image methods.

A simple socket demo
The goal of this project is to introduce you to the basics of network programming
and how to use it in your GUI application.

Python has great support for network programming. At the lowest level, Python
provides a socket module that lets you connect and interact with the network
using a simple-to-use object-oriented interface.

For those new to socket programming, sockets are the fundamental concept behind
any kind of network communications done by your computer.

For instance, when you type www.packtpub.com in your browser, the operating
system on your computer opens a socket and connects to packtpub.com to fetch the
web page and show it to you. The same happens with any application that needs
to connect to the network.

More specifically, sockets refer to a communications endpoint that is characterized
by a five-element tuple which contains the following information:

(protocol, local address, local port, remote address, remote port)

This tuple must be unique for a communication on a channel between a local
machine and a remote machine.

packtpub.com

Chapter 7

[245]

Sockets may be connection-oriented or connectionless. Connection-oriented
sockets allow for the flow of data to and fro as required. Connectionless sockets
(or datagram sockets) allow only one message at a time to be transmitted, without
an open connection.

Sockets can be classified into different types or families. The two most common
socket families are AF_INET (for internet connection) and AF_UNIX for interprocess
communication on a Unix machine. We will use AF_INET in our chat program.

This is the lowest level at which a programmer can access the network. Underneath
the socket layer lie raw UDP and TCP connections, which are handled by your
computer's operating system with no direct access points for programmers.

Let's take a brief look at some of the APIs available in the socket module:

API Description
socket.socket
(addressfamily=AF_INET,
type=SOCK_STREAM, proto=0,
fileno=None)

Creates a socket. Addressfamily represents
the format for providing the address, normally
IP address.
type is usually SOCK_STREAM for TCP or
SOCK_DGRAM for UDP connection protocol.
The protocol number is usually zero and may
be omitted. Returns a socket object.

socket.bind(address) Associate a local address with a socket. The
socket must not already be bound. (The format
of address depends on the address family
defined when creating the socket.)

socket.listen(backlog) Announce willingness to accept connections.
The backlog argument specifies the
maximum number of queued connections and
should be at least 0; the maximum value is
system-dependent.

socket.accept() Passively establish an incoming connection.
Before accept, the socket must be bound to an
address and listening for connections. Returns
a (conn, address) pair, where conn is a
new socket object usable to send and receive
data on the connection, and address is the
address bound to the socket on the other end of
the connection.

socket.connect() Actively attempt to establish a connection to a
remote socket at address.

Multiple Fun Projects

[246]

API Description
socket.send(bytes)/socket.
sendall(bytes)

Send some data over the connection. Unlike
send(), sendall() continues to send data
from bytes until either all data has been sent or
an error occurs. Returns None on success.

socket.recv(bufsize) Receive some data over the connection.
Returns a bytes object representing the data
received. The maximum amount of data to be
received at once is specified by bufsize.

socket.close() Release the connection. The underlying system
resource (for example, a file descriptor) is
also closed.

If you look at the 7.08_socket_demo.py Python file in the code bundle of this
project, you'll find that it sends a very obscure-looking GET request to fetch the
contents from the URL in the following line of code:

message = "GET / HTTP/1.1\r\n\r\n"

The data received from the server is also sent in packets, and it is our task to collect
all the data and assemble it at our end.

Building a port scanner
Now that we know the basics of socket programming, let's build a port scanner.

Ports are to computers what entrances are to houses. A computer has 65,535 ports
through which the computer can communicate with the outside world. Most of the
ports are closed by default. However, typically computers need to keep certain ports
open for other computers on the network to connect and communicate.

A port scanner then is software that scans all the ports of a computer to find out
what ports of the computer are open and listen for incoming communications. Port
scanning is used by network administrators to strengthen their security regime, but
it is also used by hackers to look for entry points to break into a computer.

Chapter 7

[247]

Before you get into scanning random website servers with this tool, it is
important to know that port scanning without proper authorization is
illegal in a few jurisdictions. Many ISPs ban port scanning. Further, many
websites have explicit policies banning any attempts at port scanning.
There have been cases of conviction for unauthorized scans.
You may even want to consult a lawyer if you are scanning third-party
websites with this tool.
Even if a website is silent about port scanning, it's always better to get
authorization from a website before you scan its ports. Repeated scan
attempts on a single target may also cause your IP address to be blocked
by the administrators.
We recommend that you use this tool to analyze security vulnerabilities
only on computers that you are authorized to scan or on websites that
have a liberal policy allowing for limited and non-disruptive scans.

With that disclaimer out of the way, let's get into building the port scanner. On
completion our port scanner would look as follows:

Multiple Fun Projects

[248]

We do not discuss the code that creates the preceding GUI as this should be easy for
you. See code 7.09_port_scanner.py for the complete code. We instead discuss
the code related to port scanning.

There are several techniques used for port scanning.

TCP SYN scan is the most commonly used technique. It exploits the three-way
handshake protocol employed by TCP that involves sending and receiving SYN,
SYN-ACK, and ACK messages. Here, SYN stands for synchronize and ACK stands
for acknowledge. Visit here https://en.wikipedia.org/wiki/Transmission_
Control_Protocol for more details on this three-way handshake protocol.

TCP SYN scan involves sending a SYN packet as if you will make a real connection
and then waiting for the response. A SYN/ACK response from the target means
that the port is open. A RST (reset) response suggests that the port is closed. If no
response is received, the port is considered to be filtered.

Another common technique, and the one we will use for port scan, is called the
TCP connect scanner. This involves requesting a connection to the target operating
system using the connect system call. This is exactly how web browsers and other
high-level clients make a connection.

The connect command establishes an actual connection to the target as opposed
to the half-open scan that TCP SYN scan does. Since a complete connection is
established, connect scan is slower and requires more transmission than SYN scan
to find out if a port is open. Further, the target machine is more likely to log the
connection and it is therefore not as stealthy as the SYN scan.

Accordingly, the code that checks if a port is open is defined as follows: (see code
7.09_port_scanner.py)

 def is_port_open(self,url, port):
 try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(1)
 s.connect((socket.gethostbyname(url), port))
 s.close()
 return True
 except:
 return False

Note that the preceding code simply uses socket.connect to make a connection
to probe the port.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Chapter 7

[249]

We call the preceding method from another method, start_scan, which simply
loops over each of the ports in the range provided by the user.

 def start_scan(self, url, start_port, end_port):
 for port in range (start_port, end_port+1):
 if not self.stop:
 self.output_to_console("Scanning port
 {}".format(port))
 if self.is_port_open(url, port):
 self.output_to_console(" -- Port {} open
 \n".format(port))
 else:
 self.output_to_console("-- Port {} closed
 \n".format(port))

Finally, we do not want a call to this method to block our Tkinter main loop.
Therefore, we call the preceding method in a new thread as follows:

 def scan_in_a_new_thread(self):
 url = self.host_entry.get()
 start_port = int(self.start_port_entry.get())
 end_port = int(self.end_port_entry.get())
 thread = Thread(target=self.start_scan, args=(url,
 start_port, end_port))
 thread.start()

The preceding method gets the values entered by the user and passes them as
arguments to the start_scan method in a new thread.

The rest of the code simply creates and updates the GUI with the result and should
be self-explanatory.

This concludes the port scanner project.

Building a chat application
Next, let's build a multiclient chat room. The goal of this program is to explore socket
programming in further detail. It also attempts to implement and discuss the client
server architecture that is so common in all network programs.

Our chat program would consists of a chat server, which listens for and receives all
incoming messages on a given port.

It also maintains a list of chat clients that connect to the server. It then broadcasts
any incoming message to all the connected clients.

Multiple Fun Projects

[250]

In order to run the chat program, start a chat server by running the code
7.10_chat_server.py. Next, start two or more instances of 7.11_chat_client.py.

Type a message into any one of the chat clients and it should be broadcast to all other
chat clients.

For our demo purposes, the chat server and all the chat clients would run on a local
host with an IP of 127.0.0.1.

However, the server can easily be hosted on a remote host. And clients can then
connect from different locations simply by changing the IP address from 127.0.0.1
to the IP address of the host of the server.

In its final form, the chat client would look as follows:

Let's then start with the code for the chat server.

A server runs on a remote host and has a socket bound to a specific port number. The
server just waits, listening to the socket for a client to make a connection request.

Here's the code for a chat server: server (see code 7.10_chat_server.py):

class ChatServer:

 clients_list = []
 last_received_message = ""

Chapter 7

[251]

 def __init__(self):
 self.create_listening_server()

 def create_listening_server(self):
 self.server_socket = socket(AF_INET, SOCK_STREAM)
 local_ip = '127.0.0.1'
 local_port = 10319
 self.server_socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
 self.server_socket.bind((local_ip, local_port))
 print("Listening for incoming messages..")
 self.server_socket.listen(5)
 self.receive_messages_in_a_new_thread()

 def receive_messages_in_a_new_thread(self):
 while 1:
 client = so, (ip, port) = self.server_socket.accept()
 self.add_to_clients_list(client)
 print ('Connected to ', ip , ':' , str(port))
 t = Thread(target=self.receive_messages, args=(so,))
 t.start()

 def receive_messages(self, so):
 while True:
 incoming_buffer = so.recv(256)
 if not incoming_buffer:
 break
 self.last_received_message =
 incoming_buffer.decode('utf-8')
 self.broadcast_to_all_clients(so)
 so.close()

 def broadcast_to_all_clients(self, senders_socket):
 for client in self.clients_list:
 socket, (ip, port) = client
 if socket is not senders_socket:
 socket.sendall(self.last_received_message.encode
 ('utf-8'))

 def add_to_clients_list(self, client):
 if client not in self.clients_list:
 self.clients_list.append(client)

if __name__ == "__main__":
 ChatServer()

Multiple Fun Projects

[252]

The description of the preceding code is as follows:

• We create a TCP socket with an address family of IPV4 using the line
self.server_socket = socket(AF_INET, SOCK_STREAM). The IPV4 socket
uses a 32-bit number to represent the address size. It is the most popular
addressing scheme and accounts for most current Internet traffic. IPv6 is a
newer numbering system with a 128-bit address size, thereby providing a
much larger pool of addresses. IPV6 has seen some adaption but it has not
yet become the mainstream standard.

• The parameter SOCK_STREAM means that we will be using a TCP connection
for the communication. Another less popular option is to use SOCK_DGRAM,
which refers to the UDP mode of transmission.

• TCP is a more reliable protocol for communication than UDP as it offers a
guarantee against packet loss. It also takes care of the proper ordering of
bytes at the receiving end. If we use a UDP protocol, we will have to take
care of handling packet loss, duplication, and the ordering of packets at the
receiving end.

• We used socket.bind(('127.0.01', 10319)) in the preceding
code to bind the socket. We could have alternatively used
socket.bind ((socket.gethostname() , 10319) so that the socket
would have been visible to the outside world. Alternatively, we could have
specified an empty string such as socket.bind((' ', 10319)) to make
the socket reachable by any address the machine could have.

• The line of code socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
allows other sockets to bind() to this local port, unless there is an active
socket already bound to the port. This lets us get around the Address
already in use error message when a server is restarted a after a crash.

• The line self.server_socket.accept() returns a value of the form
(socket, (ip, port)) as soon as a remote client connects to the server.
Each client is then uniquely identified by the data (socket, (ip, port)).

• The line Thread(target=self.receive_messages, args=(so,)) receives
each new message on a new thread.

• Finally, the line socket.sendall(self.last_received_message.
encode('utf-8')) sends the message to individual clients.

• The method receive_messages receives messages using the socket.recv
method. The socket.recv method receives messages in buffers. It is your
responsibility to call the method again and again until the entire message has
been dealt with. When the socket.recv method returns 0 bytes, it means
that the sender has closed the connection. We then break out of the infinite
loop and get the complete message from the buffer.

Chapter 7

[253]

• Also note that message transmission over the network occurs in bytes.
Any message that we send must be converted to byte form using
outgoing_message.encode('utf-8'). Similarly, any message that we receive
from the network must be converted from bytes to a string or any other format.
To convert bytes to a string, we use incoming_bytes.decode('utf-8').

Our chat server is now ready. Let's next build the chat client.

Our chat client should connect to the remote server and send a message to the server.
It should also be listening for any incoming messages from the central chat server.

We do not reproduce the entire code for our chat client. Specifically, we omit the
code that produces the GUI for our chat client as we have coded similar widgets
in the past.

The partial code that sends and receives messages to and from the chat server in our
chat client is as follows (see code 7.11_chat_server.py):

class ChatClient:

 client_socket = None
 last_received_message = None

 def __init__(self, root):
 self.root = root
 self.initialize_socket()
 self.initialize_gui()
 self.listen_for_incoming_messages_in_a_thread()

 def initialize_socket(self):
 self.client_socket = socket(AF_INET, SOCK_STREAM)
 remote_ip = '127.0.0.1'
 remote_port = 10319
 self.client_socket.connect((remote_ip, remote_port))

 def listen_for_incoming_messages_in_a_thread(self):
 t = Thread(target=self.recieve_message_from_server,
 args=(self.client_socket,))
 t.start()

 def recieve_message_from_server(self, so):
 while True:
 buf = so.recv(256)
 if not buf:
 break

Multiple Fun Projects

[254]

 self.chat_transcript_area.insert('end',
 buf.decode('utf-8') + '\n')
 self.chat_transcript_area.yview(END)
 so.close()

 def send_chat(self):
 senders_name = self.name_widget.get().strip() + ":"
 data = self.enter_text_widget.get(1.0, 'end').strip()
 message = (senders_name + data).encode('utf-8')
 self.chat_transcript_area.insert('end',
 message.decode('utf-8') + '\n')
 self.chat_transcript_area.yview(END)
 self.client_socket.send(message)
 self.enter_text_widget.delete(1.0, 'end')
 return 'break'

The code is very similar to the code of our chat server. Here's a short description of
the code:

• We first create a socket using socket(AF_INET, SOCK_STREAM).
• We then connect the socket to the remote IP and the remote port of our chat

server using socket.connect().
• We receive messages from the server using socket.recv().
• We send messages to the server using socket.send().

Note that when a client attempts to connect to the server using the socket.connect
method, the operating system will assign a unique but random port to identify the
client when a message is returned by the server.

The port numbers from 0 to 1023 are referred to as the well-known ports,
reserved ports, or system ports. They are used by the operating system to
provide widely used network services. For example, port 21 is reserved
for FTP services, port 80 is reserved for HTTP services, and port 443 is
reserved for a secure HTTP service (HTTPS) over TLS/SSL.
This random port that the operating system assigns to our client is
selected from a pool of ports that are above the system-reserved ports.
The list of all reserved ports can be found at:
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_
port_numbers

The full code of the chat client can be found at 7.11_chat_client.py. That
concludes the chat application project.

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Chapter 7

[255]

Creating a phone book application
Let's now build a simple phone book application that allows the user to store names
and phone numbers.

The main learning objective for this project relates to being able to use a relational
database with Tkinter to store and manipulate records.

We have already seen some basic examples of object persistence with serialization.
Relational databases extend this persistence using rules of relational algebra to store
data into tables.

Python provides database interfaces for a wide range of database engines. Some
of the commonly used database engines include MySQL, SQLite, PostgreSQL,
Oracle, Ingres, SAP DB, Informix, Sybase, Firebird, IBM DB2, Microsoft SQL
Server, Microsoft Access, and so on.

We will use SQLite to store data for our phone book application.

SQLite is a server-less, zero-configuration, self-contained SQL database engine
suitable for developing embedded applications. The source code for SQLite is in
the public domain, which makes it freely available for use in all sorts of commercial
and non-commercial projects.

Unlike many other SQL databases, SQLite does not require running a separate server
process. Instead, SQLite stores all the data directly onto flat files that get stored on a
computer disk. These files are easily portable across different platforms, making it a
very popular choice for smaller and simpler database implementation requirements.

Python comes with a built-in standard library for sqlite3 support. However, we need
to download the sqlite3 command-line tool that lets us create, modify, and access
the database using a command-line. The command-line shell for Windows, Linux, and
Mac OS X can be downloaded from http://sqlite.org/download.html.

Following the instructions on the website, install the SQLite command shell into any
location of your choice.

http://sqlite.org/download.html

Multiple Fun Projects

[256]

Let us now implement our phone book application. The application will look
as follows:

The application will demonstrate some of the common operations involved in
database programming. The user should be able to create new records, read existing
records, update existing records, and delete records from the database using this
application. Together, these activities constitute what is known as CRUD (Create,
Read, Update, and Delete) operations on a database.

In order to create the database, we open the command-line tool of our operating
system. Within the command line, we first navigate to the directory where we
need to create the new database file. In order to create the database, we simply
use this command:

sqlite3 phonebook.db

This creates a database file named phonebook.db in the folder from which we
execute the command. It also displays a message similar to the following:

SQLite version 3.7.17 2015-09-13 00:56:22

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Chapter 7

[257]

We have now created a database named phonebook.db. However, the database file
is currently empty. It does not contain any tables or any data. So, we get no results if
we run the command:

sqlite> .tables

Let's for now exit the command-line tool by typing:

sqlite> .exit

We want to store contacts in our database, and that is why we will create the contacts
table. Our database table should store a person's name and phone number. In
addition, it is good practice to keep a unique identification number for each person
or each entry in the table. This is because multiple people might have the same name
or same contact number.

To create a table within our phonebook.db database, we again open the command-
line tool and navigate to the directory where we had created the database. We again
get into the sqlite3 terminal by typing:

sqlite3 phonebook.db

This time a new database is not created. Rather, the command now opens the
existing phonebook.db database, because it is already present on the disk.

Next, we create a table named contacts, and add three columns to the table
from the command line:

sqlite> CREATE TABLE contacts

(

contactid INTEGER PRIMARY KEY AUTOINCREMENT,

name STRING NOT NULL,

contactnumber INTEGER NOT NULL

);

You can verify if the contacts table was created by typing the following command:

sqlite>.table

This prints the name of all the tables present in the currently open database. You will
get the following output:

sqlite>.table

contacts

Multiple Fun Projects

[258]

Let's first create a basic GUI that will let us add, view, delete, and modify the records.
We create a class named phoneBook and create all GUI
widgets within it.

We do not discuss the entire code that creates the GUI as we have coded similar
structures in the past. However, we use a new ttk widget named Treeview. The
code for creating Treeview is as follows: (7.12_phonebook.py)

 def create_tree_view(self):
 self.tree = ttk.Treeview(height=5, columns=2)
 self.tree.grid(row=4, column=0, columnspan=2)
 self.tree.heading('#0', text='Name', anchor=W)
 self.tree.heading(2, text='Phone Number', anchor=W)

To add items to Treeview, we use the following code:

self.tree.insert('', 0, text=row[1], values=row[2])

To get all items in Treeview, we use the code:

items = self.tree.get_children()

To delete items from Treeview, we use the code:

self.tree.delete(item)

Next, let's prepare the code to query our database:

 db_filename = 'phonebook.db'

def execute_db_query(self, query, parameters=()):
 with sqlite3.connect(self.db_filename) as conn:
 cursor = conn.cursor()
 query_result = cursor.execute(query, parameters)
 conn.commit()
 return query_result

The code description is as follows:

• The method establishes a connection to the phonebook.db database we had
created earlier.

• The next line, cursor = conn.cursor(), creates a cursor object. The cursor
is a control structure that is required as per SQL standards, and it enables us
to traverse the records in a database.

Chapter 7

[259]

• The next line, cursor.execute(query), executes the query against
the database.

• The line conn.commit() actually commits/saves these changes to
the database.

We can now use the preceding method to execute CRUD queries on the database.

Creating a new record
A new record needs to be created every time a user enters a new name and a phone
number in the entry widgets provided, and clicks on the Add Record button.
The database query for adding a new record is as follows:

 query = 'INSERT INTO contacts VALUES(NULL,?, ?)'
 parameters = (self.namefield.get(), self.numfield.get())
 self.execute_db_query(query, parameters)

Reading from the database
The database query for reading all records from the database is as follows:

query = 'SELECT * FROM contacts ORDER BY name desc'
phone_book_entries = self.execute_db_query(query)

The preceding variable, phone_book_entries, contains a list of all the records from
the database.

Updating records
To update the phone number of an existing contact, we use the following code:

query = 'UPDATE contacts SET contactnumber=? WHERE contactnumber=? AND
name=?'
parameters = (newphone, old_phone_number, name)
self.execute_db_query(query, parameters)

Deleting records
To delete the phone number of an existing contact, we use the following code:

query = 'DELETE FROM contacts WHERE name = ?'
 self.execute_db_query(query, (name,))

The rest of the code is the supporting GUI. See 7.12_phonebook.py for the complete
code. We have now completed coding a basic phone book application.

Multiple Fun Projects

[260]

We have seen how to create a database, add tables to the database, and query the
database to add, modify, delete, and view items in the database.

Our phone book application has demonstrated how to execute basic CRUD
operations on a database.

Furthermore, due to the similarity of basic database operations, you can now
consider working with other database systems, such as MySQL, PostgreSQL, Oracle,
Ingres, SAP DB, Informix, Sybase, Firebird, IBM DB2, Microsoft SQL Server, and
Microsoft Access.

Graphing with Tkinter
Tkinter is not a graphing tool. However, should you need to draw graphs with
Tkinter, you can use the Canvas widget to draw graphs.

In this iteration, we will draw the following graphs:

• Pie chart (7.13_pie_chart.py)
• Bar graph (7.14_bar_graph.py)
• Scatter plot (7.15_scatter_plot.py)

The three graphs show up as follows:

Let's look at the pie chart first. You can easily create a pie chart in Tkinter using the
Canvas widget's create_arc method.

The create_arc method has the following signature:

item_id = canvas.create_arc(x1, y1, x2, y2, option, ...)

Chapter 7

[261]

Point (x1, y1) is the top-left corner and point (x2, y2) is the bottom-right corner of
the rectangle into which the arc fits. If the bounding rectangle is a square, it makes a
circle. The method also takes two arguments named start and extent that we will
use to create the pie chart.

The start option specifies the start angle for the arc, measured in degrees from
the +x direction. When omitted, you get the complete ellipse. The extent option
specifies the width of the arc in degrees.

The arc begins at the angle given by the start option and draws counterclockwise
up to the degrees specified by the extent option.

To create the pie chart, let's define a method that, given a number n, divides the
circle into, say, 1,000 equal parts and then, given a number less than 1,000, returns
the equivalent angle in the arc. Since there are 360 degrees in a circle, the method is
defined as follows:

total_value_to_represent_by_pie_chart = 1000

def angle(n):
 return 360.0 * n / total_value_to_represent_by_pie_chart

Next, we plot the various sections of the pie chart using code like:

canvas.create_arc((2,2,152,152), fill="#FAF402",
 outline="#FAF402", start=angle(0), extent = angle(200))

You can check out an example of a pie chart in 7.13_pie_chart.py.

Next, the bar graph. This is very simple. We use create_rectangle to draw
a bar graph:

plot_data= [random.randint(75,200) for r in range(12)]

for x, y in enumerate(plot_data):
 x1 = x + x * bar_width
 y1 = canvas_height - y
 x2 = x + x * bar_width + bar_width
 y2 = canvas_height
 canv.create_rectangle(x1, y1, x2, y2, fill="blue")
 canv.create_text(x1+3, y1, font=("", 6),
 text=str(y),anchor='sw')

One important thing to note here. Since the Canvas widget represents the y
coordinate starting from the top-left corner, we need to subtract the y position from
the canvas height to get the y coordinate for the graphs.

Multiple Fun Projects

[262]

You can check out the complete code of the bar graph in 7.14_bar_graph.py.

Similarly, we use the create_oval method to draw the scatter plot. Check out the
code for the scatter plot in 7.15_scatter_plot.py.

Next, we see how to embed matplotlib graphs in Tkinter.

Using the Tkinter canvas to draw graphs may work fine for trivial cases. However,
Tkinter is not the best choice when it comes to drawing more sophisticated and
interactive graphs.

Several Python modules have been developed for making graphs. However,
matplotlib stands out as a clear winner for producing professional-quality interactive
graphs with Python.

Although a detailed discussion on matplotlib is beyond the scope of this book, we
will take a brief look at embedding matplotlib-generated graphs on a Tkinter canvas.

If you are interested in exploring advanced graphing with Python, you can install
matplotlib and NumPy (a dependency for matplotlib) with the help of the installation
instructions available at http://matplotlib.org/users/installing.html.

Matplotlib targets many types of use cases and output formats. Some of the different
use cases for matplotlib are to:

• Make interactive graphs from the Python shell
• Embed matplotlib in GUI modules like tkinter, wxpython or pygtk
• Generate postscript images from simulations
• Serve on web pages from backend web servers

In order to target all these use cases, matplotlib uses the concept of backend. In order
to display a matplotlib graph on Tkinter, we use a backend called TkAgg.

We import the backend into matplotlib as follows:

import tkinter as tk
from numpy import arange, sin, pi
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,
 NavigationToolbar2TkAgg
from matplotlib.figure import Figure

http://matplotlib.org/users/installing.html

Chapter 7

[263]

We then create the matplotlib graph as we would normally do in the matplotlib API:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)
t = arange(-1.0, 1.0, 0.001)
s = t*sin(1/t)
a.plot(t, s)

Finally, we embed the generated graph in the tkinter main loop using the TkAgg
backend as follows:

canvas = FigureCanvasTkAgg(f, master=root)
canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)

We can also embed the navigation toolbar of matplotlib using the command:

toolbar = NavigationToolbar2TkAgg(canvas, root)
toolbar.update()

The preceding code (7.16_matplotlib_embedding_graphs.py) generates a graph
as shown in the following image:

This completes our brief discussion on graphing with Tkinter.

Multiple Fun Projects

[264]

3D graphics with Tkinter
Tkinter's Canvas widget provides for drawing with exact coordinate specifications.
Therefore, it can be used to create all sorts of 3D graphics.

Further, we have already seen the animation abilities of Tkinter. We can apply this
ability to also animate 3D.

Let's create a simple application where we create a cube in the center. We add event
listeners to rotate the cube on mouse events. We also do a small animation whereby
the cube keeps rotating by itself when no mouse intervention occurs.

In its final form, the application would look as follows: 7.17_3D_graphics.py

Any point in a 3D space can be represented by x, y, and z coordinates. This is usually
represented by a vector of the form:

[]Point x y z=

Chapter 7

[265]

This is an example of a row vector as all three points are written in a single row.
This is convenient for humans to read. However, as per convention and for some
mathematical advantage that we will see later, positions are taken as a column
vector. So it is written in a column as follows:

x
Point y

z

 =

Since a shape is a collection of points, it is therefore a collection of column vectors. A
collection of column vectors is a matrix, where each individual column of the matrix
represents a single point in the 3D space.

1 2 3

1 2 3

1 2 3

..
/ ..

..

n

n

n

x x x x
Shape Object y y y y

z z z z

 =

Let's take the example of a cube. A cube has eight defining vertices. A representative
cube could have the following eight points with its center located at [0,0,0]:

Vertex 1: [-100,-100,-100],
Vertex 2: [-100, 100,-100],
Vertex 3: [-100,-100,100],
Vertex 4: [-100,100,100],
Vertex 5: [100,-100,-100],
Vertex 6: [100,100,-100],
Vertex 7: [100,-100,100],
Vertex 8: [100,100,100]

However, here the vertices are represented as row vectors. To represent the vectors
as column vectors, we need to transpose the preceding matrix. Since transposition
will be a common operation, let's start by building a class called MatrixHelpers and
defining a method named transpose_matrix. 7.17_3D_graphics.py

class MatrixHelpers():

 def transpose_matrix(self,matrix):
 return list(zip(*matrix))

Transpose or unzip can be done in Python by using the special * operator, which
makes zip its own inverse.

Multiple Fun Projects

[266]

Another issue with the preceding coordinates is that it centers at (0,0,0). This means
that if we try to plot the preceding points on a canvas, it will show up only partly,
centered at the top-left corner of the canvas something like this:

We need to move all the points to the center of the screen. We can achieve this by
adding x and y offset values to the original matrix.

We accordingly define a new method named translate_matrix as follows:

 def translate_vector(self, x,y,dx,dy):
 return x+dx, y+dy

Now let's draw the actual cube. We define a new class named Cube that inherits
from the MatrixHelper class because we want to use the transpose_matrix
and translate_vector methods defined in the MatrixHelper class. (see code
7.17_3D_graphics.py)

class Cube(MatrixHelpers):

 def __init__(self, root):
 self.root = root
 self.init_data()
 self.create_canvas()
 self.draw_cube()

The __init__ method simply calls four new methods. The init_data method sets
the coordinate values for all the eight vertices of the cube. 7.17_3D_graphics.py

 def init_data(self):
 self.cube = self.transpose_matrix([
 [-100,-100,-100],
 [-100, 100,-100],

Chapter 7

[267]

 [-100,-100,100],
 [-100,100,100],
 [100,-100,-100],
 [100,100,-100],
 [100,-100,100],
 [100,100,100]
])

The create_canvas method creates a 400x400-sized canvas on top of the root
window and assigns a background and fill color to the canvas.

 def create_canvas(self):
 self.canvas = Canvas(self.root, width=400, height=400,
 background=self.bg_color)
 self.canvas.pack(fill=BOTH,expand=YES)

Lastly, we define the method draw_cube, which uses canvas.create_line to draw
lines between selected points. We do not want lines between all the points but rather
lines between some selected vertices so as to create a cube. We accordingly define the
method as follows: 7.17_3D_graphics.py

 def draw_cube(self):
 cube_points_to_draw_line = [[0, 1, 2, 4],
 [3, 1, 2, 7],
 [5, 1, 4, 7],
 [6, 2, 4, 7]]
 w = self.canvas.winfo_width()/2
 h = self.canvas.winfo_height()/2
 self.canvas.delete(ALL)
 for i in cube_points_to_draw_line:
 for j in i:
 self.canvas.create_line(self.translate_vector
 (self.cube[0][i[0]], self.cube[1][i[0]], w, h),
 self.translate_vector(self.cube[0][j],
 self.cube[1][j], w, h), fill = self.fg_color)

This code draws a cube on the canvas. However, since the cube draws upfront, all we
see is a square from the front. In order to see the cube, we need to rotate the cube to a
different angle. That brings us to the topic of 3D transformations.

A wide variety of 3D transformations like scaling, rotation, shearing, reflection, and
orthogonal projections can be accomplished by multiplying the shape matrix with
some other matrix known as a transformation matrix.

Multiple Fun Projects

[268]

For example, the transformation matrix for scaling a shape is:

0 0 0
0 0 0
0 0 0
0 0 0 1

x

y

z

S
S

S
S

 =

where Sx, Sy, and Sz are scaling factors in x, y, and z directions. Multiply any shape
matrix with this matrices and you get the matrices for the scaled shape.

Let's therefore add a new method named matrix_multiply to our MatrixHelper
class. 7.17_3D_graphics.py

 def matrix_multiply(self, matrix_a, matrix_b):
 zip_b = list(zip(*matrix_b))
 return [[sum(ele_a*ele_b for ele_a, ele_b in zip(row_a,
 col_b))
 for col_b in zip_b] for row_a in matrix_a]

Next, let's add the capability to rotate the cube.

We will be using the rotation transformation matrix. Further, since rotation
can happen along any of the x, y, or z axes, there are actually three different
transformation matrix. The three rotation matrix are as follows:

1 0 0 cos 0 sin cos sin 0
0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

X y z

a a a a
R a a R R a a

a a a a

−
 = − = =
 −

Multiply the shape coordinates with the first preceding matrix for a given value
of a and you get the shape rotated by angle a, about the x axis in a counterclockwise
direction. Similarly, the other two matrices rotate along the y axis and z axis
respectively.

To rotate in a clockwise direction, we simply need to flip the sign of all sin values in
the preceding matrix.

Note, however, that the order of rotation matters. So if you first rotate along the x
axis and then rotate along the y axis, it is not the same as first rotating along y and
then along the x axis.

Chapter 7

[269]

More details on rotation matrices can be found at: https://en.wikipedia.org/
wiki/Rotation_matrix

So now that we know the three rotation matrices, let's define the following three
methods in our MatrixHelper class: 7.17_3D_graphics.py

 def rotate_along_x(self, x, shape):
 return self.matrix_multiply([[1, 0, 0],[0, cos(x), -
 sin(x)], [0, sin(x), cos(x)]], shape)

 def rotate_along_y(self, y, shape):
 return self.matrix_multiply([[cos(y), 0, sin(y)], [0, 1,
 0], [-sin(y), 0, cos(y)]], shape)

 def rotate_along_z(self, z, shape):
 return self.matrix_multiply([[cos(z), sin(z), 0],[-sin(z),
 cos(z), 0], [0, 0, 1]], shape)

Next, we define a method named continually_rotate and call this method from
the __init__ method of our Cube class:

 def continually_rotate(self):
 self.cube = self.rotate_along_x(0.01, self.cube)
 self.cube = self.rotate_along_y(0.01, self.cube)
 self.cube = self.rotate_along_z(0.01, self.cube)
 self.draw_cube()
 self.root.after(15, self.continually_rotate)

The method uses root.after to call itself back every 15 milliseconds. At each loop,
the coordinates of the cube are rotated by 0.01 degrees along all three axes. This is
followed by a call to draw the cube with a fresh set of coordinates. Now, if you run
this code, the cube rotates continually.

Next, let's bind the rotation of the cube to mouse button click and mouse motion.
This will let the user rotate the cube by clicking and dragging the mouse over
the cube.

Accordingly, we define the following method and call it from the __init__ method
of the Cube class:

 def bind_mouse_buttons(self):
 self.canvas.bind("<Button-1>", self.on_mouse_clicked)
 self.canvas.bind("<B1-Motion>", self.on_mouse_motion)

https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix

Multiple Fun Projects

[270]

The methods linked from the preceding event binding are defined as follows:

 def on_mouse_clicked(self, event):
 self.last_x = event.x
 self.last_y = event.y

 def on_mouse_motion(self, event):
 dx = self.last_y - event.y
 self.cube = self.rotate_along_x(self.epsilon(-dx),
 self.cube)
 dy = self.last_x - event.x
 self.cube = self.rotate_along_y(self.epsilon(dy),
 self.cube)
 self.draw_cube()
 self.on_mouse_clicked(event)

Note that the preceding method maps mouse displacements along the y axis to
rotations along the x axis and vice versa.

Also note that the last line of the code calls on_mouse_clicked() to update the value
of last_x and last_y. If you skip that line, the rotation becomes exceedingly fast as
you increase the displacement from the last clicked position.

The method also refers to another method named epsilon, which translates the
distance into an equivalent angle for rotation. The epsilon method is defined
as follows:

self.epsilon = lambda d: d * 0.01

The epsilon here is obtained by multiplying the displacement d with an arbitrary
value of 0.01. You can increase or decrease the sensitivity of rotation to mouse
displacement by changing this value.

Now the cube becomes responsive to mouse click and drag over the canvas.

This concludes the last project of this chapter.

Here we have just scratched the surface of 3D graphics. A much more detailed
discussion on 3D programming with Tkinter can be found at:

https://sites.google.com/site/3dprogramminginpython/

There have also been attempts to further abstract and build 3D programming
frameworks for Tkinter. You can find an example of a 3D framework for
Tkinter at: https://github.com/calroc/Tkinter3D

https://sites.google.com/site/3dprogramminginpython/
https://github.com/calroc/Tkinter3D

Chapter 7

[271]

Summary
Let's summarize the concepts we discussed in this chapter.

We built a screen saver and in the process saw how to implement animations on the
Tkinter canvas.

We also learned how to use the queue data structure to program a multithreaded
application, without having to worry about synchronization between multiple
threads trying to access the same memory, and without using complicated
synchronization primitives.

The Weather Reporter application introduced us to the basics of network
programming and how to tap into the internet to get data. We discussed
two popular structures used for data exchange, namely XML and JSON.

The port scanner and the chat program discussed the basics of socket programming
for interprocess and remote communication.

We used the TCP/IP protocol to send and receive messages in our chat program.

We saw a basic example of a server-client architecture.

We also saw how all forms of communication over a network occurs in bytes and
how we can convert data to bytes and back from bytes to data in the required format.

The phone book application showed us how to work with databases. We saw how
to perform basic CRUD operations on a database.

Next, we looked at the basic graphing abilities of Tkinter. We also looked at ways
of embedding matplotlib graphs in Tkinter.

Finally, we saw how to create 3D graphics on a Tkinter canvas. We looked at ways
of representing 3D shapes using a matrix (a collection of column vectors).

We also looked at a way of doing 3D transformations using matrix multiplication
with a rotation transformation matrix. Different kinds of 3D transformations like
shearing, scale, and orthogonal projections can be applied using the same technique.

[273]

Miscellaneous Tips
We have reached the final chapter of the book. Let's end our discussion on Tkinter by
looking at some concepts that, though very common in many GUI programs, did not
appear in the previous chapters.

Chapter objectives
The following are the key objectives of this chapter:

• Tracing Tkinter variables and attaching callbacks that are triggered when
the value of a variable changes

• Understanding the default keyboard widget traversal rules to provide a
consistent user experience

• Validating user input using built-in Tkinter mechanisms
• Formatting a widget's content as the user interacts with the widget
• Understanding how Tkinter handles fonts and the best practices involved in

using custom fonts in Tkinter
• Redirecting the command-line output to Tkinter, thereby integrating and

using command-line programs written in other programming languages
with a Tkinter program

• Taking a look at the source code of Tkinter to understand class hierarchy
• Highlighting some current best practices involved in program design

and implementation
• Getting an insight into code cleanup and program optimization
• Distributing Tkinter applications as standalone programs to end users

Miscellaneous Tips

[274]

• Understanding the limitations of Tkinter
• Exploring alternatives to Tkinter and understanding when it is better to use

them instead of Tkinter and the tradeoffs involved
• Backporting Tkinter programs written in Python 3.x versions to older Python

2.x versions

Let's begin!

Tracing Tkinter variables
When you specify a Tkinter variable as textvariable for a widget
(textvariable = myvar), the widget automatically gets updated whenever the
value of the variable changes. However, there might be times when, in addition to
updating the widget, you need to do some extra processing at the time of reading
or writing (or modifying) the variable.

Tkinter provides a method to attach a callback method that will be triggered every
time the value of a variable is accessed. Thus, the callback acts as a variable observer.
The callback method is named trace_variable(self, mode, callback),
or simply trace(self, mode, callback).

The mode argument can take a value of r, w, or u, which stand for read, write, or
undefined. Depending upon the mode specifications, the callback method is
triggered when the variable is read or written.

By default, the callback method gets three arguments. The arguments, in order
of their position, are as follows:

• Name of the Tkinter variable
• The index of the variable in case the Tkinter variable is an array; otherwise,

it's an empty string
• The access modes (r, w, or u)

Note that the triggered callback function may also modify the value of the variable.
However, this modification does not trigger additional callbacks.

Let's look at an example of variable tracing in Tkinter. Take a look at how a
change in a traced Tkinter variable in turn triggers a callback (see code
8.01_trace_variable.py):

from tkinter import *
root = Tk()
my_variable = StringVar()

Chapter 8

[275]

def trace_when_my_variable_written(var,indx, mode):
 print ("Traced variable {}".format(my_variable.get()))

my_variable.trace_variable("w", trace_when_my_variable_written)

Label(root, textvariable = my_variable).pack(padx=5, pady=5)
Entry(root, textvariable = my_variable).pack(padx=5, pady=5)

root.mainloop()

The following relevant line of code attaches a callback to trace the variable:

my_variable.trace_variable("w", trace_when_my_variable_written)

Now, every time you write in the entry widget, it modifies the value of my_variable.
Because we have set a trace on my_variable, it triggers the callback method that,
in our example, simply prints the new value into the console, as shown in the
following screenshot:

The trace on a variable is active until it is explicitly deleted. You can delete a trace
using the following command:

trace_vdelete(self, mode, callback_to_be_deleted)

The trace method returns the name of the callback method. This can be used to get
the name of the callback method that needs to be deleted.

Widget traversal
If a GUI has more than one widget, a given widget can come under focus when you
explicitly click on the widget. Alternatively, the focus can be shifted to other widgets
in the order that the widgets were created in the program by pressing the Tab key on
the keyboard.

Miscellaneous Tips

[276]

Therefore, it is vital to create widgets in the order that we want the user to traverse
through them. Otherwise, the user will have a tough time navigating between the
widgets by using the keyboard.

Different widgets are designed to behave differently to different keyboard strokes.
Therefore, let's spend some time trying to understand the rules of traversing through
widgets using the keyboard.

Have a look at the 8.02_widget_traversal.py file to understand the keyboard
traversal behavior for different widgets. The code displays a window like the one
shown in the following screenshot:

The code will not be given here as it is very simple (see code 8.02_widget_
traversal.py). It simply adds an entry widget, a few buttons, a few radio buttons,
a text widget, a label widget, and a scale widget.

The code demonstrates the default keyboard traversal behaviors for these widgets
in Tkinter.

The following are a few important points that you should note:

• The Tab key can be used to traverse forward, and Shift + Tab can be used to
traverse backwards.

• A user can traverse through the widgets in the order that they were created.
A parent widget is visited first (unless it is excluded using takefocus = 0),
followed by all of its children widgets.

• You can use widget.focus_force() to force the input focus on a widget.

Chapter 8

[277]

• You cannot traverse a text widget by using the Tab key, because the text
widget can contain tab characters as its content. Instead, the text widget can
be traversed by using Ctrl + Tab.

• Buttons on the widget can be pressed by using the spacebar. Similarly, check
buttons and radio buttons can also be traversed by using the spacebar.

• You can go up and down the items in a Listbox widget by using the up and
down arrows.

• The Scale widget responds to the left and right arrow keys and the up and
down arrow keys. Similarly, the Scrollbar widget responds to the left/right
or up/down arrow keys, depending on their orientation.

• By default, most of the widgets (except Frame, Label, and Menus)
get an outline when they have the focus set on them. This outline is
normally displayed as a thin black border around the widget. You can
even set the Frame and Label widgets to show this outline by setting the
highlightthickness option to a nonzero Integer value for these widgets.

• We can change the color of the outline by using highlightcolor= 'red'
in the code.

• Frame, Label, and Menu are not included in the tab's navigation path.
However, they can be included in the navigation path by using the
takefocus = 1 option. You can explicitly exclude a widget from the
tab's navigation path by using the takefocus = 0 option.

Validating user input
Let's discuss input data validation in Tkinter.

Most of the applications that we have developed in our book are point and click-
based (the drum machine, game of chess, and drawing application), where a
validation of user input is not required.

However, data validation is a must in programs such as the phonebook application,
where a user enters some data and we store it in a database.

Ignoring user input validation can be dangerous in such applications because input
data can be misused for SQL injection. In general, an application in which a user can
enter textual data is a good candidate for the validation of user input. In fact, not
trusting user inputs is almost considered a maxim.

Miscellaneous Tips

[278]

Wrong user input may be intentional or accidental. In either case, if you fail to
validate or sanitize data, unexpected errors may occur in your program. In a worst-
case scenario, user input can be used to inject harmful code that may be capable of
crashing a program or wiping out an entire database.

Widgets such as Listbox, Combobox, and Radiobuttons allow limited input options
and hence, they normally cannot be misused to input wrong data. On the other hand,
widgets such as the Entry widget, the Spinbox widget, and the Text widget allow a
large possibility of user inputs, and hence, they need to be validated for correctness.

To enable validation on a widget, you need to specify an additional option of the
validate = 'validationmode' form to the widget.

For example, if you want to enable validation on an Entry widget, you begin by
specifying the validate option, as follows:

Entry(root, validate="all", validatecommand=vcmd)

Validation can occur in one of the following validation modes:

Validation mode Explanation

none This is the default mode. No validation occurs if validate is set to
none.

focus
When validate is set to focus, the validate command is called
twice—once when the widget receives focus, and once when the
focus is lost.

focusin The validate command is called when the widget receives focus.

focusout The validate command is called when the widget loses focus.

key The validate command is called when the entry is edited.

all The validate command is called in all the aforementioned cases.

The 8.03_validation_mode_demo.py code file demonstrates all of these validation
modes by attaching them to a single validation method. Note the different ways in
which different Entry widgets respond to different events.

Some Entry widgets call the validation method on the focus events, others call the
validation method at the time of entering key strokes into a widget, and still others
use a combination of the focus and key events.

Chapter 8

[279]

Although we did set the validation mode to trigger the validate method, we need
some data to validate against the rules. This is passed to the validate method
using percent substitution. For instance, we passed the mode as an argument to the
validate method by performing a percent substitution on the validate command,
as demonstrated in the following command:

vcmd = (self.root.register(self.validate_data), '%V')

This was followed by passing the value of v as an argument to the validate method:

def validate_data(self, v)

In addition to %V, Tkinter recognizes the following percent substitutions:

Percent
substitutions

Explanation

%d The type of action that is performed on a widget (1 for insert, 0 for
delete, and -1 for a focus, forced, or textvariable validation).

%i The index of the char string that is inserted or deleted, if any.
Otherwise, it will be -1.

%P The value of the entry in case the edit is allowed. If you are configuring
the Entry widget to have a new textvariable, this will be the value
of that textvariable.

%s The current value of entry prior to editing.

%S The text string being inserted or deleted, if any. Otherwise, {}.

%v The type of validation that has been currently set.

%V The type of validation that triggers the callback method (key, focusin,
focusout, and forced).

%W The name of the Entry widget.

These substitution values provide us with the necessary data that we can use to
validate the input.

Let's pass all of these values and just print them through a dummy validate method
just to see the kind of data that we can expect to get on carrying out the validations
(see code 8.04_percent_substitutions_demo.py):

class PercentSubstitutionsDemo():

 def __init__(self):
 self.root = tk.Tk()
 tk.Label(text='Type Something Below').pack()

Miscellaneous Tips

[280]

 vcmd = (self.root.register(self.validate), '%d',
 '%i', '%P', '%s', '%S', '%v', '%V', '%W')
 tk.Entry(self.root, validate="all",
 validatecommand=vcmd).pack()
 self.root.mainloop()

 def validate(self, d, i, P, s, S, v, V, W):
 print("Following Data is received for running our
 validation checks:")
 print("d:{}".format(d))
 print("i:{}".format(i))
 print("P:{}".format(P))
 print("s:{}".format(s))
 print("S:{}".format(S))
 print("v:{}".format(v))
 print("V:{}".format(V))
 print("W:{}".format(W))
 # returning true for now
 # in actual validation you return true if data is valid
 else return
 # false
 return True

Note the line where we register a validate method by passing all the possible
percent substitutions to the callback.

Take particular note of the data returned by %P and %s because they pertain to
the actual data entered by the user in the Entry widget. In most cases, you will be
checking either of these two sources of data against the validation rules.

Now that we have a background of rules for data validation, let's have a look at two
practical examples that demonstrate input validation.

Key validation mode demo
Let's assume that we have a form that asks for a username. We want users to input
only alphabets or space characters in the name. Thus, a number of special characters
should not be allowed, as shown in the following screenshot of the widget:

Chapter 8

[281]

This is clearly a case of the key validation mode because we want to check
whether an entry is valid after every key press. The percent substitution that we
need to check is %S because it yields the text string being inserted or deleted in
the Entry widget. Therefore, the code that validates the entry widget is as follows
(see code 8.05_key_validation.py):

import tkinter as tk

class KeyValidationDemo():

 def __init__(self):
 root = tk.Tk()
 tk.Label(
 root, text='Enter your name / only alpabets & space
 allowed').pack()
 vcmd = (root.register(self.validate_data), '%S')
 invcmd = (root.register(self.invalid_name), '%S')
 tk.Entry(root, validate="key", validatecommand=vcmd,
 invalidcommand=invcmd).pack(pady=5, padx=5)
 self.error_message = tk.Label(root, text='', fg='red')
 self.error_message.pack()
 root.mainloop()

 def validate_data(self, S):
 print("S={}".format(S))
 self.error_message.config(text='')
 return (S.isalpha() or S == ' ')

 def invalid_name(self, S):
 self.error_message.config(
 text='Invalid character %s \n name can only have
 alphabets and spaces' % S)

app = KeyValidationDemo()

The description of the preceding code is as follows:

• We first register two options, namely validatecommand (vcmd) and
invalidcommand (invcmd).

• In the example, validatecommand is registered to call the validate_data
method, and the invalidcommand option is registered to call another method
named invalid_name.

Miscellaneous Tips

[282]

• The validatecommand option specifies a method that needs to be evaluated,
which will validate the input. The validation method must return a Boolean
value, where True signifies that the data entered is valid, and a False return
value signifies that the data is invalid.

• In case the validate method returns False (invalid data), no data is
added to the Entry widget and the script registered for invalidcommand
is evaluated. In our case, a False validation will call the invalid_name
method. The invalidcommand method is generally responsible for
displaying error messages or setting back the focus to the Entry widget.

Focus out validation mode demo
The previous example demonstrated validation in the key mode. This means that
the validation method was called after every key press to check whether an entry
was valid.

However, there are situations where you might want to check the entire string
entered into the widget rather than checking individual key stroke entries.

For example, when an Entry widget accepts a valid e-mail address, we would ideally
like to check the validity after the user has entered the entire e-mail address and not
after every key stroke entry. This will qualify for a validation in the focusout mode.

Check out 8.06_focus_out_validation.py for a demonstration of e-mail
validation in the focusout mode, which gives us the following GUI:

The code for the aforementioned demo is as follows:

import tkinter as tk
import re
class FocusOutValidationDemo():
 def __init__(self):
 self.master = tk.Tk()
 self.error_message = tk.Label(text='', fg='red')

Chapter 8

[283]

 self.error_message.pack()
 tk.Label(text='Enter Email Address').pack()
 vcmd = (self.master.register(self.validate_email), '%P')
 invcmd = (self.master.register(self.invalid_email), '%P')
 self.email_entry = tk.Entry(self.master,
 validate="focusout", validatecommand=vcmd,
 invalidcommand=invcmd)
 self.email_entry.pack()
 tk.Button(self.master, text="Login").pack()
 tk.mainloop()

 def validate_email(self, P):
 self.error_message.config(text='')
 x = re.match(r"[^@]+@[^@]+\.[^@]+", P)
 return (x != None)

 def invalid_email(self, P):
 self.error_message.config(text='Invalid Email Address')
 self.email_entry.focus_set()

app = FocusOutValidationDemo()

The description of the preceding code is as follows:

The code has a lot of similarities to the previous validation example. However, note
the following differences:

• The validate mode is set to focusout in contrast to the key mode in the
previous example. This means that the validation will be done only when
the Entry widget loses focus. The validation occurs when you hit the Tab key.
Thus, the input box does not lose its focus in case the input is invalid.

• This program uses data provided by the %P percentage substitution, while
the previous example used %S. This is understandable because %P provides
the value entered in the Entry widget, but %S provides the value of the last
key stroke.

• This program uses regular expressions to check whether the entered value
corresponds to a valid e-mail format. Validation usually relies on regular
expressions. A whole lot of explanation is required to cover this topic, but this
is beyond the scope of this book. For more information on regular expression
modules, visit http://docs.python.org/3.1/library/re.html.

This concludes our discussion on input validation in Tkinter. Hopefully, you should
now be able to implement input validation to suit your custom needs.

http://docs.python.org/3.1/library/re.html

Miscellaneous Tips

[284]

Formatting widget data
Input data such as date, time, phone number, credit card number, website URL,
IP number, and so on, have an associated display format. For instance, date can be
better represented in an MM/DD/YYYY format.

Fortunately, it is easy to format data in the required format as the user enters it in the
widget, as shown in the following screenshot:

The 8.07_formatting_entry_widget_to_display_date.py code automatically
formats user input to insert forward slashes at the required places to display the
date entered by a user in the MM/DD/YYYY format:

from tkinter import *

class FormatEntryWidgetDemo:

 def __init__(self, root):
 Label(root, text='Date(MM/DD/YYYY)').pack()
 self.entered_date = StringVar()
 self.date_entry = Entry(textvariable=self.entered_date)
 self.date_entry.pack(padx=5, pady=5)
 self.date_entry.focus_set()
 self.slash_positions = [2, 5]
 root.bind('<Key>', self.format_date_entry_widget)

 def format_date_entry_widget(self, event):
 entry_list = [c for c in self.entered_date.get() if c !=
 '/']
 for pos in self.slash_positions:
 if len(entry_list) > pos:
 entry_list.insert(pos, '/')
 self.entered_date.set(''.join(entry_list))
 # Controlling cursor
 cursor_position = self.date_entry.index(
 INSERT) # current cursor position
 for pos in self.slash_positions:

Chapter 8

[285]

 if cursor_position == (pos + 1): # if cursor position
 is on slash
 cursor_position += 1
 if event.keysym not in ['BackSpace', 'Right', 'Left',
 'Up', 'Down']:
 self.date_entry.icursor(cursor_position)

root = Tk()
FormatEntryWidgetDemo(root)
root.mainloop()

The description of the preceding code is as follows:

• The Entry widget is bound to the key press event, where every new key press
calls the related format_date_entry_widget callback method.

• First, the format_date_entry_widget method breaks down the entered text
into an equivalent list named entry_list and ignores the slash / symbol
that may have been entered by a user.

• It then iterates through the self.slash_positions list and inserts the slash
symbol at all the required positions in entry_list. The net result of this is
a list that has slashes inserted at all the right places.

• The next line converts this list into an equivalent string using join() and
then sets the value of the Entry widget to this string. This ensures that the
Entry widget text is formatted into the aforementioned date format.

• The remaining pieces of code simply control the cursor to ensure that the
cursor advances by one position whenever it encounters the slash symbol. It
also ensures that key presses, such as BackSpace, Right, Left, Up, and Down,
are handled properly.

Note that this method does not validate the date value, and users may add an invalid
date. The method defined here will simply format it by adding a forward slash at the
third and sixth positions. Adding date validation to this example is left as an exercise
for you to complete.

This concludes our brief discussion on formatting data within widgets. Hopefully,
you should now be able to create formatted widgets for a wide variety of input
data that can be better displayed in a given format.

Miscellaneous Tips

[286]

More on fonts
Many Tkinter widgets let you specify custom font specifications either at the time
of widget creation, or later by using the configure() option. For most cases,
default fonts provide a standard look and feel. However, if you want to change
font specifications, Tkinter lets you do so. There is one caveat though.

When you specify your own font, you need to make sure that it looks good on all the
platforms where your program is intended to be deployed because a font might look
good on a particular platform, but it may look awful on another platform. Unless you
know what you are doing, it is always advisable to stick to Tkinter's default fonts.

Most platforms have their own set of standard fonts that are used by the platform's
native widgets. So, rather than trying to reinvent the wheel on what looks good on
a given platform or what would be available for a given platform, Tkinter assigns
these standard platform-specific fonts to its widget, thus providing a native look
and feel on every platform.

Tkinter assigns nine fonts to nine different names; you can use these fonts in your
programs. The font names are as follows:

• TkDefaultFont

• TkTextFont

• TkFixedFont

• TkMenuFont

• TkHeadingFont

• TkCaptionFont

• TkSmallCaptionFont

• TkIconFont

• TkTooltipFont

Accordingly, you can use them in your programs in the following way:

Label(text="Sale Up to 50% Off !", font="TkHeadingFont 20")
Label(text="**Conditions Apply", font="TkSmallCaptionFont 8")

Using these kinds of fonts mark-up. You can rest assured that your font will look
native across all platforms.

Chapter 8

[287]

Finer control over font
In addition to the aforementioned method of handling fonts, Tkinter provides a
separate Font class implementation. The source code of this class is located in the
same folder where the source code of Tkinter is kept.

On my Ubuntu machine, the source code is located in
/usr/lib/python3.4/tkinter/font.py.

To use this module, you need to import fonts into your namespace, as follows
(see code 8.08_font_demo.py):

from tkinter import Tk, Label, Pack
from tkinter import font

root = Tk()
label = Label(root, text="Humpty Dumpty was pushed")
label.pack()
current_font = font.Font(font=label['font'])
print ('Actual :', str(current_font.actual()))
print ('Family : ', current_font.cget("family"))
print ('Weight : ', current_font.cget("weight"))
print ('Text width of Dumpty : {}'.format(current_font.
measure("Dumpty")))
print ('Metrics:', str(current_font.metrics()))
current_font.config(size=14)
label.config(font=current_font)
print ('New Actual :', str(current_font.actual()))
root.mainloop()

The console output of this program on my terminal is as follows:

• Actual: {'slant': 'roman', 'underline': 0, 'family': 'DejaVu
Sans', 'weight': 'normal', 'size': -12, 'overstrike': 0}

• Family: DejaVu Sans
• Weight: normal
• Text width of Dumpty: 49
• Metrics: {'fixed': 0, 'descent': 3, 'ascent': 12, 'linespace':

15}

• New actual: {'slant': 'roman', 'underline': 0, 'family': 'DejaVu
Sans', 'weight': 'normal', 'size': 14, 'overstrike': 0}

As you can see, the font module provides a much better fine-grained control over
various aspects of fonts, which are otherwise inaccessible.

Miscellaneous Tips

[288]

Building a font selector
Now that we have seen the basic features that are available in Tkinter's font module,
let's implement a font selector like the one shown in the following screenshot:

The key to building the font selector shown in the preceding screenshot is to fetch
a list of all the fonts installed on a system. A call to the families() method from
the font module fetches a tuple of all the fonts available on a system. Accordingly,
when you run the following code, a tuple of all the fonts available on the system
gets printed (see code 8.09_all_fonts_on_a_system.py):

from tkinter import *
from tkinter import font
root = Tk()
all_fonts = font.families()
print(all_fonts) # this prints the tuple containing all fonts on a
system.

Note that since font is a submodule of Tkinter, it needs an instance of Tk(), which
loads the Tcl interpreter, before it can fetch the tuple.

Now that we have a tuple of all the fonts available on a system, we just need to
create the GUI shown in the preceding screenshot and attach relevant callbacks
to all the widgets.

We will not discuss the code that creates the GUI shown in the preceding screenshot.
Check out 8.10_font_selector.py for the complete code. However, note that the
code attaches the following callback to all the widgets:

 def on_value_change(self, event=None):
 self.current_font.config(family=self.family.get(),
 size=self.size.get(), weight=self.weight.get(),
 slant=self.slant.get(), underline=self.underline.get(),
 overstrike=self.overstrike.get())
 self.text.tag_config('fontspecs', font=self.current_font)

Chapter 8

[289]

Here, fontspecs is a custom tag that we attached to the sample text in the text
widget, as follows:

 self.text.insert(INSERT, '{}\n{}'.format(
 self.sample_text, self.sample_text.upper()),
 'fontspecs')

This concludes our brief discussion on playing with fonts in Tkinter.

Redirecting the command-line output
to Tkinter
You may occasionally need to redirect the output of a command line to a graphical
user interface such as Tkinter. The ability to pass output from the command line to
Tkinter opens a large pool of possibilities for using the inherent powers of the shell on
Unix and Linux operating systems and the Windows shell on a windows machine.

We will demonstrate this by using the subprocess Python module, which lets us
spawn new processes, connect to the input, output, and error pipes of this new
process, and obtain the return codes from the programs.

A detailed discussion on the subprocess module can be found at
https://docs.python.org/3/library/subprocess.html.

We will use the Popen class from the subprocess module to create a new process.
The Popen class provides a cross-platform way to create new processes, and it has
the following long signature to handle most of the common and esoteric use cases:

subprocess.Popen(args, bufsize=-1, executable=None, stdin=None,
 stdout=None, stderr=None, preexec_fn=None, close_fds=True,
 shell=False, cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0, restore_signals=True,
 start_new_session=False, pass_fds=())

Here's a simple program that shows how we can redirect the output of the ls
Bash shell command to Tkinter's text widget. As a reminder, the ls command
in the Bash scripting language returns a list of all files and directories (see code
8.11_reading_from_command_line.py):

from tkinter import *
from subprocess import Popen, PIPE
root = Tk()
text = Text(root)
text.pack()

https://docs.python.org/3/library/subprocess.html

Miscellaneous Tips

[290]

#replace "ls" with "dir" in the next line on windows platform
with Popen(["ls"], stdout=PIPE, bufsize=1,
 universal_newlines=True) as p:
 for line in p.stdout:
 text.insert(END, line)
root.mainloop()

Windows users should note that you will have to replace ls with dir in the
highlighted part of the preceding code to get an equivalent result.

Furthermore, note that you can pass extra arguments to Popen by using the
following format:

Popen(['your command', arg0, arg1, …])

Even better, you can pass the name of the script file that needs to be executed in
the new process. The code used to run a script file is as follows:

Popen('path/toexecutable/script',stdout=sub.PIPE,stderr=sub.PIPE)

However, the script file that needs to be executed must include a proper shebang
declaration to let the program choose a proper executing environment for your
script. For instance, if you intend to run a Python script, your script must begin with
the shebang of the #!/usr/bin/env python3 form. Similarly, you need to include
#!/bin/sh to run a Bourne-compatible shell script. A shebang isn't necessary on
Windows. It is also not required for binary executables.

Running the preceding program produces a window, and a listing of all the
files from the current directory are added to the text widget, as shown in the
following screenshot:

Chapter 8

[291]

While the preceding program is simple, this technique can have a lot of practical
uses. For instance, you may recall that we built a chat server in the previous chapter.
Every time a new client connected to the server, it printed the client details to the
terminal. We could have easily redirected that output into a new Tkinter app. This
would enable us to create a dashboard for the server; from there, we could have
monitored all the incoming connections to the server.

This literally opens the door for us to reuse any command line script written in
Python or any other programming language, such as Perl or Bash, and directly
integrate it with a Tkinter program.

This concludes the brief section on the redirection of command-line outputs into
Tkinter programs.

The class hierarchy of Tkinter
As programmers, we hardly need to understand the class hierarchy of Tkinter. After
all, we have been able to code all the applications so far without bothering about the
overall class hierarchy. However, knowing the class hierarchy enables us to trace the
origin of a method within the source code or source documentation of a method.

In order to understand the class hierarchy of Tkinter, let's take a look at the source
code of Tkinter. On Windows installation, the source code of Tkinter is located at
path\of\Python\Installation\Lib\tkinter\. On my Ubuntu machine, the
source code is located at /usr/lib/python3.4/tkinter/.

When you open the __init__.py file from this folder in a code editor and look at
its list of class definitions in Tkinter, you will see the following structure:

Miscellaneous Tips

[292]

So, what can you see here? We have class definitions for each core Tkinter widget.
In addition to this, we have class definitions for different geometry managers and
variable types defined within Tkinter. These class definitions are what you would
normally expect to be there.

However, in addition to these, you will see some more class names, such as
BaseWidget, Misc, Tk, Toplevel, Widget, and Wm. All of these classes are circled in
the preceding screenshot. So, what services do these classes provide, and where do
they fit in the larger scheme of things?

Let's use the inspect module to look at the class hierarchy of Tkinter. We will
first inspect the class hierarchy of the Frame widget as a representation of class
hierarchies for all the other widgets. We will also look at the class hierarchy of
the Tk and Toplevel classes to estimate their role in the overall class hierarchy
of Tkinter (see code 8.12_tkinter_class_hierarchy.py):

import tkinter
import inspect

print ('Class Hierarchy for Frame Widget')
for i, classname in enumerate(inspect.getmro(tkinter.Frame)):
 print('{}: {}'.format(i, classname))

print ('Class Hierarchy for Toplevel')
for i, classname in enumerate(inspect.getmro(tkinter.Toplevel)):
 print ('{}:{}'.format(i, classname))

print ('Class Hierarchy for Tk')
for i, classname in enumerate(inspect.getmro(tkinter.Tk)):
 print ('{}: {}'.format(i, classname))

The output of the preceding program is as follows:

Class Hierarchy for Frame Widget
0: Tkinter.Frame
1: Tkinter.Widget
2: Tkinter.BaseWidget
3: Tkinter.Misc
4: Tkinter.Pack
5: Tkinter.Place
6: Tkinter.Grid
Class Hierarchy for Toplevel
0: Tkinter.Toplevel
1: Tkinter.BaseWidget
2: Tkinter.Misc

Chapter 8

[293]

3: Tkinter.Wm
Class Hierarchy for Tk
0: Tkinter.Tk
1: Tkinter.Misc
2: Tkinter.Wm

The description of the preceding code is as follows:

• The getmro(classname) function from the inspect module returns a tuple
consisting of all the ancestors of classname in the order specified by the
Method Resolution Order (MRO). MRO refers to the order in which base
classes are searched when looking for a given method.

• By inspecting the MRO and the source code, you will come to know that
the Frame class inherits from the Widget class, which in turn inherits from
the BaseWidget class.

• The Widget class is an empty class with the following class definition:
class Widget(BaseWidget, Pack, Place, Grid)

• As you can see, this is how methods defined in the geometry manager
(the pack, place and grid mixins) are made available to all the widgets.

• The BaseWidget class has the following class definition:
class BaseWidget(Misc).

• This class exposes the destroy method that can be used by programmers.
In addition to this, all the utility methods defined in the Misc class are made
available to the widgets at this level of hierarchy.

• The Misc class is a generic mixin that provides a lot of functionality that we
have used in our applications. Some of the methods that we have used in our
programs, as defined within the Misc class, are after(), bbox(), bind_all(),
bind_tag(), focus_set(), mainloop(), update(), update_idletask(), and
winfo_children().

• For a complete list of functionalities provided by the Misc class, run the
following commands in the Python interactive shell:

>>> import tkinter

>>> help(tkinter.Misc)

Miscellaneous Tips

[294]

Now, let's take a look at the Tk and Toplevel classes:

• The Tk class returns a new Toplevel widget on the screen. The __init__
method of the Tk class is responsible for the creation of a new Tcl interpreter
by calling a method named loadtk(). The lass class defines a method
named report_callback_exception(), which is responsible for the
reporting of errors and exceptions on sys.stderr.

• The __init__ method of the Toplevel class of Tkinter is responsible for
the creation of the main window of an application. The constructor of
the class takes various optional arguments such as bg, background, bd,
borderwidth, class, height, highlightbackground, highlightcolor,
highlightthickness, menu, and relief.

• To obtain a list of all the methods provided by the Toplevel and Tk classes,
run the following commands in the Python interactive shell:
>>>help(tkinter.Toplevel)

>>>help(tkinter.Tk)

• In addition to inheriting from the Misc mixin class, the Toplevel and Tk
classes also inherit methods from the Wm mixin class.

• The Wm (short for window manager) mixin class provides a lot of methods
to let us communicate with the window manager. Some commonly
used methods from this class include wm_iconify, wm_deiconify,
wm_overrideredirect, title, wm_withdraw, wm_transient, and
wm_resizable. For a complete list of functions provided by the Wm
class, run the following command in the Python interactive shell:

>>>help(tkinter.Wm)

After translating the class hierarchy, as obtained from the previous program and by
inspecting the source code, we get a hierarchy structure of Tkinter, as shown in the
following diagram:

Chapter 8

[295]

In addition to the normal inheritance relation, which is shown in the preceding
diagram with the help of unspotted lines, Tkinter provides a list of mixins (or helper
classes). A mixin is a class that is designed not to be used directly, but to be combined
with other classes using multiple inheritances.

Tkinter mixins can be broadly classified into the following two categories:

• Geometry mixins: These include the Grid, Pack, and Place classes
• Implementation mixins: These include the following classes:

 ° The Misc class, which is used by the root window and widget classes,
provides several Tk and window-related services

 ° The Wm class, which is used by the root window and the Toplevel
widget, provides several window manager services

This concludes our brief under-the-hood tour of Tkinter. Hopefully, this should give
you some insight into the inner workings of Tkinter. If you ever have a doubt about
the documentation of any given method, you can directly take a peek into the actual
implementation of the method.

Tips for program design
Let's take a look at a few generic tips for program design.

The model-first policy versus the code-first
policy
A well-designed model is half the work done. That said, the model is not very
evident sometimes when you start writing the program. In such cases, you can break
the rules and try out the code-first philosophy. The idea is to incrementally build
your program from the ground up, refactor your code, and model, as your clarity
about the program gets better.

Separating the model from the view
The need to separate the model or data structure from the view is the key to building
scalable applications. While it is possible to intermix the two components, you will
soon find your program getting messy and difficult to maintain.

Miscellaneous Tips

[296]

Selecting the right data structure
Selecting the right data structure can have a profound impact on the performance of
a program. If your program requires you to spend considerable time on lookups, use
a dictionary, if feasible. When all that you need is to traverse over a collection, prefer
lists over dictionaries because dictionaries take up more space.

When your data is immutable, prefer tuples over lists because tuples can be
traversed faster than lists.

Naming variables and methods
Use meaningful and self-documenting names for your variables and methods. The
name should leave no scope for confusion about the intent of the variable or the
method. Use plural names for collections and singular names otherwise. Methods
that return Boolean values should be appended with words such as is or has. Stick
to the style guidelines, but you should also know when to break them.

The Single Responsibility Principle
The Single Responsibility Principle suggests that a function/class/method should
do only one thing and that it should do it all and do it well. This means that we
should not try to handle multiple things from within a function.

Loose coupling
Whenever possible, reduce coupling or dependence in your program. The following
is a famous quote on this subject:

"All problems in computer science can be solved by another level of indirection."

 – David Wheeler

Let's suppose that your program has a play button. An immediate impulse may be to
link it to the play method of your program. However, you can further break it up into
two methods. You could probably link the play button to a method named
on_play_button_clicked, which in turn calls the actual play method. The advantage
of this is that you may want to handle additional things when the play button is
clicked, such as displaying the current track information somewhere in your program.
Thus, you can now use the on_play_button_clicked method to decouple the click
event from the actual play method and then handle calls to multiple methods.

However, you must resist the temptation of adding too many levels of indirection, as
your program may quickly start getting messy and it may get out of control.

Chapter 8

[297]

Handling errors and exceptions
Python follows the EAFP (short for easier to ask for forgiveness than permission)
style of coding as opposed to the LBYL (look before you leap) style that is followed
by most programming languages.

Therefore, handling exceptions in a way that is similar to the following one is
normally cleaner in Python than checking conditions using the if-then block:

try:
 doSomethingNormal()
except SomethingWrong:
 doSomethingElse()

An example of an if-then block is shown in the following code snippet:

if SomethingWrong:
 doSomethingElse()
else:
 doSomethingNormal()

Tips for program optimization
Next, let's take a look at some generic tips to optimize your programs.

Using filter and map
Python provides two built-in functions named filter and map to manipulate
collections directly rather than having to iterate over each item in the collection. The
filter, map, and reduce functions are faster than loops because a lot of the work
is done by the underlying code written in C. The filter and map functions can be
explained as follows:

• The filter(function, list) function returns a list (iterators in Python 3.x)
that contains all the items for which the function returns a true value. The
following command is an example:
print filter(lambda num: num>6, range(1,10))# prints [7, 8,
 9]

This is faster than running a conditional if-then check against the list.

Miscellaneous Tips

[298]

• The map(func, list) function applies func to each item in the list and
returns the values in a new list (returns iterators instead of lists in Python
3.x). The following command is an example:
print map(lambda num: num+5, range(1,5)) #prints [6, 7, 8,
 9]

This is faster than running the list through a loop and adding 5 to each
element.

Optimize variables
The way you select variables in your program can considerably affect the speed
of the execution of your program. For instance, if you do not need to change the
content or attributes of a widget after its instantiation, do not create a class-wide
instance of the widget.

For example, if a Label widget needs to remain static, use
Label(root, text='Name').pack(side=LEFT) instead of using the
following snippet:

self.mylabel = Label(root, text='Name')
self.mylabel.pack(side=LEFT)

Similarly, do not create local variables if you are not going to use them more than
once. For example, use mylabel.config (text= event.keysym) instead of first
creating a local variable named key and then using it only once:

key = event.keysym
mylabel.config (text=key)

If the local variable needs to be used more than once, it may make sense to create
a local variable.

Profiling your program
Profiling involves generating detailed statistics to show how often and for how long
various routines of a program execute. This helps you isolate the offending parts of
a program, and those parts probably need redesigning.

Python provides a built-in module named cProfile, which enables the generation of
detailed statistics pertaining to a program. The module gives details such as the total
program running time, time taken to run each function, and the number of times
each function is called. These statistics make it easy to determine the parts of code
that need optimization.

Chapter 8

[299]

In particular, cProfile provides the following data for a function or script:

• ncalls: This indicates the number of times a function is called
• tottime: This indicates the time spent on a function, which excludes the time

spent on calling other functions
• percall: This is tottime divided by ncalls
• cumtime: This indicates the time spent on a function, including calls to

other functions
• percall: This is cumtime divided by tottime

To profile a function named spam(), use the following code:

import cProfile
cProfile.run('spam()','spam.profile')

You can then view the results of profiling by using another module called pstats,
as follows:

import pstats
stats = pstats.Stats('spam.profile')
stats.strip_dirs().sort_stats('time').print_stats()

More importantly, you can profile an entire script. Let's assume that you want to
profile a script named myscript.py. You can simply navigate to the directory of the
script using a command-line tool and then type and run the following command:

python -m cProfile myscript.py

This produces an output similar to the following:

1014 function calls in 0.093 CPU seconds

Ordered by: standard name

ncallstottimepercallcumtimepercallfilename:lineno(function)

1 0.000 0.000 0.000 0.000 Tkinter.py:3686(Studbutton)

1 0.000 0.000 0.000 0.000 Tkinter.py:3694(Tributton)

416 0.001 0.000 0.002 0.000 Tkinter.py:74(_cnfmerge)

1 0.011 0.011 0.028 0.028 myscript.py:19(<module>)

2 0.058 0.029 0.086 0.043 myscript.py:20(setAge)

7520.105 0.0000.257 0.129 myscript.py:23(findAudio)

10.001 0.001 0.013 0.013 myscript.py:25(createGUI)

1 40.004 0.000 0.005 0.005 myscript.py:4(saveAudio)

1 0.000 0.000 0.000 0.000 myscript.py:49(<module>)

Miscellaneous Tips

[300]

After this, you can analyze the code to see the functions that take more time
to execute. In our hypothetical example in the preceding output, note that the
findAudio and saveAudio functions take the most time to be executed. We
can then analyze these two functions to check whether they can be optimized.

In addition to the cProfile module, there are other modules such as PyCallGraph
and objgraph, and they provide visual graphs for the profile data.

Other optimization tips
Optimization is a vast topic, and there is a lot that you can do. If you are interested
in knowing more about code optimization, you can start with the official Python
optimization tips that are available at http://wiki.python.org/moin/PythonSpeed/
PerformanceTips.

Distributing a Tkinter application
So, you have your new application ready and want to share it with the rest of the
world. How do you do that?

You of course need Python installation for your program to run. Windows does not
have Python preinstalled. Most modern Linux distributions and Mac OS X have
Python preinstalled, but you don't just need any version of Python. You need a
version of Python that is compatible with the version on which the program was
originally written.

Furthermore, if your program uses third-party modules, you need the appropriate
module installed for the required Python version. This surely is too much diversity
to handle.

Fortunately, we have tools, such as Freeze tools, which allow us to distribute Python
programs as standalone applications.

Given the diversity of platforms that need to be handled, there are a large number of
Freeze tool options from which you can choose. Therefore, a detailed discussion on
any one of these tools is beyond the scope of this book.

We will list some of the most evolved freezing tools in the following sections. If
you find a tool that fits into your distribution requirements, you can look at its
documentation for more information.

http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

Chapter 8

[301]

py2exe
If you only need to distribute your Python application on Windows, py2exe is
perhaps the most hardened tool. It converts Python programs into executable
Windows programs that can run without requiring a Python installation.
More information, a download link, and tutorials on this are available at
http://www.py2exe.org/.

py2app
py2app performs the same tasks in Mac OS X that py2exe does for Windows. If you
just need to distribute your Python application on Mac OS X, py2app is a time-tested
tool. More information is available at https://pythonhosted.org/py2app/.

PyInstaller
PyInstaller has gained popularity as a freezing tool in the last few years because it
supports a wide variety of platforms, such as Windows, Linux, Mac OS X, Solaris,
and AIX.

In addition, executables created using PyInstaller are claimed to take up less space
than other freezing tools because it uses transparent compression. Another important
feature of PyInstaller is its out-of-the-box compatibility with a large number of
third-party packages.

The full list of features, downloads, and documentation can be viewed by visiting
http://www.pyinstaller.org/.

Other freezing tools
The following are a few other freezing tools:

•	 Freeze: This tool is shipped with the standard Python distribution.
Freeze can be used to compile executables only on Unix systems.
However, the program is overly simplistic, as it fails to handle even the
common third-party libraries. More information on this is available at
http://wiki.python.org/moin/Freeze.

•	 cx_Freeze: This tool is similar to py2exe and py2app, but it claims to be
portable across all platforms on which Python works. More information on
this is available at http://cx-freeze.sourceforge.net/index.html.

http://www.py2exe.org/
http://svn.pythonmac.org/py2app/py2app/trunk/doc/index.html
http://www.pyinstaller.org/
http://wiki.python.org/moin/Freeze
http://cx-freeze.sourceforge.net/index.html

Miscellaneous Tips

[302]

If you're distributing a small program, a freeze tool might be just what you need.
However, in case you have a large program, say, with lots of external third-party
library dependencies or dependencies that are not supported by any existing
freezing tool, your application might be the right candidate for bundling the
Python interpreter with your application.

The limitations of Tkinter
We have already explored the power of Tkinter. Perhaps the greatest power of
Tkinter lies in its ease of use and a lightweight footprint. Tkinter exposes a very
powerful API, specially with the Text widget and the Canvas widget.

However, ease of use and the quality of being lightweight that are offered by Tkinter
also result in some limitations.

A limited number of core widgets
Tkinter provides only a small number of basic widgets and lacks a collection of
modern widgets. It needs Ttk, PMW, TIX, and other extensions to provide some really
useful widgets. Even with these extensions, Tkinter fails to match the range of widgets
provided by other GUI tools, such as the advanced wxPython widget set and PyQt.

For instance, wxPython's HtmlWindow widget lets users display HTML content
with ease. There have been attempts to provide similar extensions in Tkinter, but
they are far from satisfactory. Similarly, there are other widgets from the Advanced
User Interface Library and mixins in wxPython, such as floating/docking frames and
perspective loading and saving; Tkinter users can only hope that these widgets will
be included in future releases.

Non-Python objects
Tkinter widgets are not first class Python objects. Thus, we have to use workarounds
such as Intvar, StringVar, and BooleanVar to handle variables in Tkinter. This
adds a small layer of complexity, as error messages returned by the Tcl interpreter
are not very Python-friendly, which makes it harder to debug.

No support for printing
Tkinter is rightfully criticized for not providing any support for printing features.
The Canvas widget allows for limited printing support in the postscript format. The
postscript format is too limited in what it can be used for. Compare this to wxPython,
which provides a complete printing solution in the form of a printing framework.

Chapter 8

[303]

No support for newer image formats
Tkinter does not natively support image formats such as JPEG and PNG. The
PhotoImage class of Tkinter can read images only in the GIF and PGM/PPM formats.

Although there are workarounds, such as using ImageTk and Image submodules
from the PIL module, it would have been better if Tkinter natively supported
popular image formats.

Inactive development community
Tkinter is often criticized for having a relatively inactive development community.
This is true to a large extent. The documentation for Tkinter has remained a work in
progress for many years now.

A large number of Tkinter extensions have appeared over the years, but most of
them have not been under active development for a long time.

Tkinter supporters refute this with the lo argument gic that Tkinter is a stable and
mature technology that does not need frequent revisions, like some other GUI
modules that are still being developed.

Alternatives to Tkinter
If a program can be written in Tkinter, this is probably the best way to go in terms of
simplicity and maintainability. However, in case the aforementioned limitations get
in your way, you can explore some other alternatives to Tkinter.

In addition to Tkinter, there are several other popular Python GUI toolkits. The most
popular ones include wxPython, PyQt, PySide, and PyGTK. Here's a brief discussion
on these toolkits.

wxPython
wxPython is an aPython interface for wxWidgets, a popular open source GUI
library. The code written in wxPython is portable across most major platforms
such as Windows, Linux, and Mac OS X.

The wxPython interface is generally considered better than Tkinter at building
complex GUIs, primarily because it has a large base of natively supported widgets.
However, Tkinter supporters do contest this claim.

Miscellaneous Tips

[304]

The wxWidgets interface was originally written in the C++ programming language.
Hence, wxPython inherits a large portion of the complexity that is typical of C++
programs. wxPython provides a very large base of classes, and it often takes more
code to produce the same interface than it would take in Tkinter. However, in
exchange for this complexity, wxPython provides a larger base of built-in widgets
than Tkinter offers. Moreover, some people prefer the appearance of the wxPython
widgets over the ones rendered by Tkinter.

Owing to its inherent complexity, wxPython has seen the emergence of several GUI
builder toolkits, such as wxGlade, wxFormBuilder, and wxDesigner. The wxPython
installation comes with demo programs that can help you quickly get started with
the toolkit. To download the toolkit or for more information on wxPython, visit
http://wxpython.org/.

PyQt
PyQt is a Python interface for a cross-platform GUI toolkit named Qt, a project
currently developed and maintained by a British firm named Riverbank Computing.

PyQt, with several hundred classes and thousands of functions, is perhaps the
most fully featured GUI library that is currently available for GUI programming
in Python. However, this feature load brings in a lot of complexity and a steep
learning curve.

Qt, and hence pyQt, has a very rich set of supported widgets. In addition to this,
it includes built-in support for network programming, SQL databases, threads,
multimedia frameworks, regular expressions, XML, SVG, and much more. The
designer feature of Qtletsus generates GUI code from a WYSIWYG (short for
What You See Is What You Get) interface.

PyQt is available under a variety of licenses, including GNU, General Public License
(GPL), and commercial license. However, its greatest disadvantage is that unlike Qt,
it is unavailable under the LGPL.

PySide
If you are looking for an LGPL version of Qt bindings for Python, you may want to
explore PySide. PySide was originally released under the LGPL in August 2009 by
Nokia, the former owners of the Qttoolkit. It is now owned by Digia. More information
on PySide can be obtained by visiting http://qt-project.org/wiki/PySide.

http://wxpython.org/
http://qt-project.org/wiki/PySide

Chapter 8

[305]

PyGTK
PyGTK is a collection of Python bindings for the GTK + GUI library. PyGTK
applications are cross-platform and can run on Windows, Linux, Mac OS X,
and others. PyGTK is a free software and is licensed under the LGPL. Therefore,
you can use, modify, and distribute it with very few restrictions.

More information about PyGTK can be obtained by visiting http://www.pygtk.org/.

Other options
Besides these popular toolkits, there are a range of toolkits available for GUI
programming in Python.

Java programmers who are comfortable with Java GUI libraries, such as swing
and AWT, can seamlessly access these libraries by using Jython. Similarly, C#
programmers can use IronPython to access GUI construction features from
the .NET framework.

For a comprehensive list of other GUI tools that are available to a Python developer,
visit http://wiki.python.org/moin/GuiProgramming.

Tkinter in Python 2.x
In 2008, Guido van Rossum, the author of Python, forked the language into two
branches—2.x and 3.x. This was done to clean up and make the language more
consistent.

Python 3.x broke backward compatibility with Python 2.x. For example, the print
statement in Python 2.x was replaced by the print() function that would now take
arguments as parameters.

We coded all the Tkinter programs in Python version 3.x. However, in case you need
to maintain or write new Tkinter programs in Python 2.x, the transition should not
be very difficult.

The core functionality of Tkinter remains the same between 2.x and 3.x. The only
significant change to Tkinter when moving from Python 2.x to Python 3.x involves
changing the way the Tkinter modules are imported.

Tkinter has been renamed to tkinter in Python 3.x (capitalization has been removed).
Note that in 3.x, the lib-tk directory was renamed to tkinter. Inside this directory,
the Tkinter.py file was renamed to __init__.py, thus making tkinter an
importable module.

http://www.pygtk.org/
http://wiki.python.org/moin/GuiProgramming

Miscellaneous Tips

[306]

Accordingly, the biggest difference lies in the way you import the tkinter module
into your current namespace:

from Tkinter import * # for Python2
from tkinter import * # for Python3

Furthermore, note the following changes. Note how the Python 3 version is more
clean, elegant, and systematic in its naming conventions regarding the use of
lowercase names for its modules:

Python 3 Python 2.x

import tkinter.ttk OR

from tkinter import ttk

import ttk

import tkinter.messagebox import tkMessageBox

import tkinter.colorchooser import tkColorChooser

import tkinter.filedialog import tkFileDialog

import tkinter.simpledialog import tkSimpleDialog

import tkinter.commondialog import tkCommonDialog

import tkinter.font import tkFont

import tkinter.scrolledtext import ScrolledText

import tkinter.tix import Tix

The following version will work for both the cases:

try:
 import tkinter as tk
except ImportError:
 import Tkinter as tk

try:
 import tkinter.messagebox
except:
 import tkMessageBox

Chapter 8

[307]

Summary
To conclude, let's summarize some of the key steps involved in designing an
application. Depending on what you want to design, choose a suitable data structure
to represent your needs logically. If required, combine primitive data structures to
form complex structures such as, say, a list or a tuple of dictionaries. Create classes for
objects that constitute your application. Add attributes that need to be manipulated
and methods to manipulate these attributes. Manipulate attributes by using a
different API provided by a rich set of Python standard and external libraries.

We tried to build several applications in this book. Then, we had a look at an
explanation for the code. However, when you try to explain a software development
process in a sequential text, you sometimes mislead your readers by implying that
the development of software programs is a linear process. This is hardly true.

Actual programming doesn't usually work this way. In fact, small- to medium-sized
programs are normally written in an incremental trial-and-error process, where
assumptions get changed and structures are modified throughout the course of
application development.

Here is how you would develop a small- to medium-sized application:

1. Start with a simple script.
2. Set a small achievable goal, implement it, and then think of adding the next

feature to your program in an incremental fashion.
3. You may or may not introduce a class structure initially. If you are clear

about the problem domain, you may introduce the class structure from
the very beginning.

4. If you are not initially sure about the class structure, start with simple
procedural code. As your program starts to grow, you will probably start
getting a lot of global variables. It is here that you will start getting a glimpse
of the structural dimensions of your program. It is now time to refactor and
restructure your program to introduce a class structure.

5. Harden your program against unanticipated runtime failures and edge cases
to make it ready for production use.

[309]

Index
Symbols
3D framework, for Tkinter

URL 270
3D graphics

defining, with Tkinter 264-270
3D programming, with Tkinter

URL 270

A
APIs

defining, in socket module 245
audio

controls, adding 169
fast forward function, adding 172
mute function, adding 171
next track function, adding 172
pause function, adding 171
playing 169
play function, adding 169, 170
previous track function, adding 172
rewind function, adding 172
stop function, adding 169, 170
unmute function, adding 171
unpause function, adding 171
volume change function, adding 173

audio player
about 153, 154
broadview skeleton 156-160
building 153
continuous updates, managing 178
data structure, deciding 160
external library requisites 154
items, adding 165, 166
items, removing 165, 166

looping over tracks feature, adding 180, 181
one-time updates, providing 177
Player class, creating 161-165
program structure 157-160
program structure, building 156
recording capability formats 153
seek bar, creating 173, 174
tooltip, adding 182, 183

AVbin
about 155
URL 155

B
beat patterns

saving 103-107
beats per unit (BPUs) 78
broader visual elements

creating 83-88
getter and setter methods, defining 88-90
number of units and beats per

unit feature 90, 91
broad GUI structure

setting up 192-194
broadview skeleton

building 156-160
built-in functionality

adding 49-51
buttons

functionality, adding to 216-221

C
callbacks

about 23, 24
arguments, passing to 24, 25

[310]

canvas
items, drawing on 199-204

Canvas widget
canvas coordinate system 195
window coordinate system 195

chat clients 249
chat server 249
chess program

allowed moves, highlighting 144
functioning 141, 142
game statistics, maintaining 147
list of moves, collecting 143
move, recording in data structure 146, 147
pre move validation 145, 146
source and destination position,

obtaining 143
code styling 43
color palette

adding 205-208
command binding 24
command-line output

redirecting, to Tkinter 289-291
command option

limitations 25
context/pop-up menu

creating 75, 76
continuous updates

monitoring, during audio playback 177-180
CRUD (Create, Read, Update,

and Delete) 256
cursor information bar

adding 73
cx_Freeze tool

about 301
URL 301

D
data structure

convention, for naming location on
chessboard 125-127

convention, on naming chess pieces 125
deciding 160, 161
finalizing 81, 82
modeling 124, 125

denial of service (DOS) 244
deserialization 104

dialogs
working with 59-65

don't repeat yourself (DRY) 35
draw methods

top bar options, adding for 208-211
drum machine

complete patterns, playing 95, 96
playing 94
pygame, initializing 94
rhythm tempo, determining 96, 97

drum samples
loading 91-93

E
event binding, options

application-level binding 29
class-level binding 29

events
about 23
binding 25, 26
binding, level 29
patterns 27
propagation 30
unbinding 32
unbind option 32
virtual events 32

events patterns
about 27-29
event detail 28
event modifier 27
event type 27

external library, requisites
about 154
PMW Tkinter extension 155
pyglet library 154
pyglet module 155
Python Megawidget (PMW) 154

F
fast forward

adding 172
filter functions 297
Find Text feature

implementing 54-57

[311]

fonts
about 286
finer control 287
font selector, building 288
names 286

Footprint Editor 42
forms

working with 59-65
framework

creating 188-192
freezing tools

cx_Freeze 301
Freeze 301

function closures
about 86
URL 87

G
game of chess

defining 118
module requirements 118
program, structuring 119-124

General Public License (GPL) 304
geometry manager

about 12
grid 13
pack 13
place 13

global variables 61
grid geometry manager

about 13-21
cell 17
minsize option 21
pad option 21
using 20
weight option 21

GUI
setting up, in OOP 80

GUI programming
about 5
aspects 5
callback functions 5
geometry management 5
widgets 5

GUI programs
building blocks, widgets 7, 8

H
HtmlWindow widget 302

I
icons toolbar 68, 69
IDLE 3
index format

@x,y 52
CURRENT 52
end 52
image_name 52
INSERT 52
mark 52
selection (SEL_FIRST, SEL_LAST) 52
tag.first 52
tag.last 52
window_name 52
x.y 52

indexing 51
installation

Python 3, 4
Tkinter 3, 4

instance-level binding 29
IronPython 305
irregular line and shapes feature

drawing 212
irregular lines

drawing 212, 213
items

about 199
drawing, on canvas 199-204

items, playlist
adding 165-167
files, adding from directory 168
removing 165-167
selected files, removing 167, 168
single audio file, adding 167

J
JSON (JavaScript Object Notation) 241
Jython 305

[312]

K
keysym mapping

about 28
URL 28

L
limitations, Tkinter

about 302
alternatives 303
inactive development community 303
limited number of core widgets 302
non-Python objects 302
no support for newer image formats 303
no support for printing 302
other options 305
pyGTK 305
pyQt 304
PySide 304
wxPython 304

line number
displaying 69-72

looping over tracks feature
adding 180-182

M
mainloop method 7
map functions 298
matplotlib

URL 262
menu

adding 44, 45
menu implementation

URL 192
menu items

adding 44-47
functionality, adding to 222, 223
options 46

menu separators 46
message boxes

working with 65-67
Method Resolution Order (MRO) 293
mixer module

URL 94

mixin
about 295
geometry mixins 295
implementation mixins 295

mod 53
modal window 58
model first philosophy 160
Model-View-Controller (MVC) 119
modifiers 52
module requirements

defining 79
mouse events

defining 194-196
multiple beat patterns

support 102, 103
mute function

adding 171

N
next track function

adding 172
NumPy 262

O
one-time updates

monitoring, during audio
playback 177, 178

OOP (Object Oriented Programming)
data abstraction 80
encapsulation 80
GUI, setting up 80
inheritance 80
polymorphism 80

option database 35

P
pack geometry manager

about 13-17
anchor option 14
expand option 14
fill option 14
internal padding option 14
side option 14
spaces, distinguishing 13
using 17

[313]

packing box 15
pack() method 8, 13
Pattern Number Spinbox widget 78
pause function

adding 171
percent substitution 279
phone book application

creating 255-258
new record, creating 259
reading, from database 259
records, deleting 259, 260
records, updating 259

pickle module
about 104
URL 104

Piece class
available moves, tracking 140
chess pieces, displaying on

chessboard 130-133
creating 128, 129
current position of King, finding 140
King in check, checking 141
movement validation, of chess pieces 139
rules, defining for chess pieces 133
rules, for Bishop 133-136
rules, for King 133-136
rules, for Knight 136, 137
rules, for Pawn 137-139
rules, for Queen 133-136
rules, for Rook 133-136

pixel unit (px) 34
place geometry manager

about 13, 21-23
using 22

Player class
creating 161-165

play function
adding 169, 170

playlist
emptying 168, 169
files, adding from directory 168
items, adding 165-167
items, removing 165-167
selected files, removing 167, 168
single audio file, adding 167

play_media method 164
PMW list of extensions

about 183
dialogs 183
miscellaneous 183, 184
widgets 183

point unit (pt) 34
previous track function

adding 172
print() function 305
programmable drum machine

building 78
program structure

building 156-160
protocol 58
py2app

about 301
URL 301

py2exe
about 301
URL 301

pygame
references 79

pyglet
about 155
download link 155

PyGTK
about 305
URL 305

pyInstaller
about 301
URL 301

PyQt 304
PySide

about 304
URL 304

Python
installing 3, 4
download link 3

Python 2.x, in Tkinter 305
Python Megawidget (PMW)

about 154
URL 155

[314]

R
race condition 229
rewind function

adding 172
root window

about 6, 7
options 37

rotation matrix
URL 269

S
Scrapy

URL 241
screen saver

building 226-229
seek bar

creating 173-176
SEL 53
Select All feature

implementing 54
selection modes, Listbox widget

BROWSE 160
EXTENDED 160
MULTIPLE 160
SINGLE 160

Single Responsibility Principle 296
skeleton, text editor

setting up 43
Snake game

building 229-239
Software Requirement

Specifications (SRS) 119
source code, functions

askdirectory 60
askopenfile 60
askopenfilename 60
askopenfilenames 60
askopenfiles 60
asksaveasfile 60
asksaveasfilename 60

spoke ratio 203
sqlite3

URL 255
stop function

adding 169, 170

submodifiers 52, 53
subprocess Python module

about 289
URL 289

Super Formula
about 213
URL 213

super shapes
about 213
drawing 213-215

T
tagging 51
tags 53
TCP connect scanner 248
TCP SYN scan

about 248
URL 248

tear-off menus 45
text editor

built-in functionality, adding 49, 50
context/pop-up menu, creating 75, 76
creating 41
cursor information bar, adding 73, 74
dialogs, working with 59
features, including 42
Find Text feature, implementing 54, 55
forms, working with 59
icons toolbar 68
indexing 51
line number, displaying 69
menu, adding 44
menu items, adding 44, 45
message boxes, working with 66
Select All feature, implementing 54
skeleton, setting up 43
tagging 51
themes, adding 74, 75
Toplevel windows 58
View menu functions 68
View menu, implementing 48, 49

themes
adding 74

tips, program design
about 295
errors and exceptions, handling 297

[315]

loose coupling 296
model-first policy, versus code-first

policy 295
model, separating from view 295
right data structure, selecting 296
Single Responsibility Principle 296
variables and methods, naming 296

tips, program optimization
about 297, 300
filter, using 297
map, using 297
program, profiling 298, 299
URL 300
variables, optimizing 298

Tkinter
3D graphics, defining with 264-270
about 1, 2
and threading 98-100
and thread safety 100, 101
class hierarchy 291-295
command-line output, redirecting 289-291
defining 260-263
documentation, URL 39
geometry manager 13
importing 4
in Python 2.x 305
installing 3, 4
interactive help 38
limitations 302
menu items 44
Menu widget 44
miscellaneous tips 273

Tkinter application, distributing
freezing tools 301
py2app 301
py2exe 301
pyInstaller 301

Tkinter extensions
about 182
PMW 183
Tix 183
TkZinc 183
Widget Construction Kit(WCK) 183

Tkinter RAD (tkRAD) framework
URL 192

Tkinter variables
tracking 274, 275

Tkinter widgets 10
tk.some_method 4
toolbar buttons

adding 196-199
tooltip

adding 182
PMW list of extensions 183

top bar options
adding, for draw methods 208-211

Toplevel window
about 58
adding 44
types 58

Toplevel windows, types
child 58
main 58
transient 58
undecorated 58

ttk-themed widgets
about 108
URL 110
working with 108-114

U
unified modeling language (UML) 119
unmute function

adding 171
unpause function

adding 171
unpickling 104
user input validation

about 277
enabling 278-280
focus out validation mode demo 282, 283
key validation mode demo 280-282
performing 277-280

user preferences
managing 148-151

[316]

V
validation modes

all 278
focus 278
focusin 278
focusout 278
key 278
none 278

View menu
Cascade menu items 48
Checkbutton menu items 48
functions 68, 69
Radiobutton menu items 48

virtual events 176
volume change function

adding 173

W
Weather Reporter application

chat application, building 249-254
creating 239-244
port scanner, building 246-249
socket demo 244-246
URL 241

widget.grid_remove() method 20
widget methods

about 199
reference 199

widgets
about 5-8
adding, to parent window 11, 12
Button widget 8
color options, specifying 33, 34
creating, ways 9, 10
data, formatting 284, 285
features 9
functioning 23
Label widget 8
platform-based styling 32-36
Tkinter widgets 10
traversing 275-277
widget class 9

widget-specific variables
handling 30, 31

window manager (Wm) 294
wxPython

about 108, 303, 304
URL 304

Thank you for buying
Tkinter GUI Application Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Tkinter GUI Application
Development HOTSHOT
ISBN: 978-1-84969-794-1 Paperback: 362 pages

Develop exciting and engaging GUI applications in
Python and Tkinter by working on 10 real-world
applications

1. Develop 10 real GUI applications using
procedural and object-oriented styles.

2. Write network programs, database-driven
programs, multi-threaded programs and more
with Tkinter.

3. A practical guide to discover the best practices
involved in writing GUI applications.

Python 2.6 Graphics Cookbook
ISBN: 978-1-84951-384-5 Paperback: 260 pages

Develop amazing games, visual charts, plots, and
graphics for your iPhone

1. Create captivating graphics with ease and bring
them to life using Python.

2. Apply effects to your graphics using powerful
Python methods.

3. Develop vector as well as raster graphics
and combine them to create wonders in the
animation world.

4. Create interactive GUIs to make your creation
of graphics simpler.

Please check www.PacktPub.com for information on our titles

Python Geospatial Development
Essentials
ISBN: 978-1-78217-540-7 Paperback: 192 pages

Utilize Python with open source libraries to build a
lightweight, portable, and customizable GIS desktop
application

1. Develop a GIS application that you can easily
modify and customize.

2. Optimize your GIS application for user
productivity and efficiency.

3. Discover Python's many geospatial libraries
and learn how they can work together.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1. Install your first operating system, share files
over the network, and run programs remotely.

2. Unleash the hidden potential of the Raspberry
Pi's powerful Video Core IV graphics processor
with your own hardware accelerated 3D
graphics.

3. Discover how to create your own electronic
circuits to interact with the Raspberry Pi.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meet Tkinter
	Objectives of this chapter
	Installing Python and Tkinter
	Importing Tkinter
	GUI programming – the big picture
	The root window – your drawing board
	Widgets – the building blocks of GUI programs
	Some important widget features
	Ways to create widgets
	Getting to know the core Tkinter widgets
	Adding widgets to a parent window

	The Tkinter geometry manager
	The pack geometry manager
	The grid geometry manager
	The place geometry manager

	Events and callbacks – adding life to programs
	Command binding
	Passing arguments to callbacks
	Limitations of the command option
	Event binding
	Event patterns
	The levels of binding

	Handling widget-specific variables
	Event unbinding and virtual events
	Doing it in style
	Specifying styles

	Some common root window options
	Getting interactive help

	Summary

	Chapter 2: Making a Text Editor
	Objectives of the chapter
	An overview of the chapter
	Setting up the editor skeleton
	Adding a menu and menu items
	Adding menu items

	Implementing the View menu
	Adding a built-in functionality
	Indexing and tagging
	Index
	Tags

	Implementing the Select All feature
	Implementing the Find Text feature
	Types of Toplevel windows
	Working with forms and dialogs
	Working with message boxes
	The icons toolbar and View menu functions
	Displaying the line number
	Adding the cursor information bar
	Adding themes
	Creating the context/pop-up menu
	Summary

	Chapter 3: Programmable Drum Machine
	An overview of the chapter
	Module requirements for the chapter
	Setting up the GUI in OOP
	Finalizing the data structure
	Creating broader visual elements
	Defining getter and setter methods
	The number of units and beats per
unit features

	Loading drum samples
	Playing the drum machine
	Initializing pygame
	Playing complete patterns
	Determining the tempo of a rhythm

	Tkinter and threading
	Tkinter and thread safety

	Support for multiple beat patterns
	Saving beat patterns
	Working with ttk-themed widgets
	Summary

	Chapter 4: A Game of Chess
	An overview of the chapter
	Module requirements for this chapter

	Structuring our program
	Modeling the data structures
	Convention on naming chess pieces
	Convention for naming locations on the chessboard

	Creating a Piece class
	Displaying chess pieces on the chessboard
	Defining rules for the chess pieces
	Rules for the King, Queen, Rook, and Bishop
	Rules for a Knight
	Rules for a Pawn
	The movement validation of chess pieces
	Tracking all the available moves
	Finding out the current position of the King
	Checking whether the King is in check

	Making the game functional
	Getting the source and destination position
	Collecting a list of the moves that need to be highlighted
	Highlighting allowed moves
	Pre move validation
	Recording a move in the data structure
	Keep game statistics

	Managing user preferences
	Summary

	Chapter 5: Building an Audio Player
	An overview of the chapter
	External library requirements
	The pyglet module
	PMW Tkinter extension

	Program structure and broadview skeleton
	Deciding the data structure
	Creating the Player class
	Adding and removing items from a playlist
	Adding a single audio file
	Removing the selected files from a playlist
	Adding all files from a directory
	Emptying the playlist

	Playing audio and adding audio controls
	Adding the play/stop function
	Adding the pause/unpause function
	Adding the mute/unmute function
	Fast forward/rewind function
	Adding the next track/previous track function
	Adding the volume change function

	Creating a seek bar
	One-time updates during audio playback
	Managing continuous updates
	Looping over tracks
	Adding a tooltip
	PMW list of extensions
	Widgets
	Dialogs
	Miscellaneous

	Summary

	Chapter 6: Paint Application
	Creating a tiny framework
	Setting up a broad GUI structure
	Dealing with mouse events
	Adding toolbar buttons
	Drawing items on the canvas
	Adding a color palette
	Adding top bar options for draw methods
	Drawing irregular lines and super shapes
	Drawing irregular lines
	Drawing super shapes

	Adding functionality to the remaining buttons
	Adding functionality to menu items
	Summary

	Chapter 7: Multiple Fun Projects
	Chapter objectives
	Building a screen saver
	Building a Snake game
	Creating a Weather Reporter
	A simple socket demo
	Building a port scanner
	Building a chat application

	Creating a phone book application
	Creating a new record
	Reading from the database
	Updating records
	Deleting records

	Graphing with Tkinter
	3D graphics with Tkinter
	Summary

	Chapter 8: Miscellaneous Tips
	Chapter objectives
	Tracing Tkinter variables
	Widget traversal
	Validating user input
	Key validation mode demo
	Focus out validation mode demo

	Formatting widget data
	More on fonts
	Finer control over font
	Building a font selector

	Redirecting the command-line output
to Tkinter
	The class hierarchy of Tkinter
	Tips for program design
	The model-first policy versus the code-first policy
	Separating the model from the view
	Selecting the right data structure
	Naming variables and methods
	The Single Responsibility Principle
	Loose coupling
	Handling errors and exceptions

	Tips for program optimization
	Using filter and map
	Optimize variables
	Profiling your program
	Other optimization tips

	Distributing a Tkinter application
	py2exe
	py2app
	PyInstaller
	Other freezing tools

	The limitations of Tkinter
	A limited number of core widgets
	Non-Python objects
	No support for printing
	No support for newer image formats
	Inactive development community
	Alternatives to Tkinter
	wxPython
	PyQt
	PySide
	PyGTK
	Other options

	Tkinter in Python 2.x
	Summary

	Index

