

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and
its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or	app
settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize	often
include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and	figures
that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings	and
features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Sams	Teach	Yourself	Unix	in	24	Hours
FIFTH	EDITION

Dave	Taylor

			800	East	96th	Street,	Indianapolis,	Indiana,	46240	USA

Sams	Teach	Yourself	Unix	in	24	Hours,	Fifth	Edtion
Copyright	©	2016	by	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or
otherwise,	without	written	permission	from	the	publisher.	No	patent	liability	is	assumed
with	respect	to	the	use	of	the	information	contained	herein.	Although	every	precaution	has
been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages	resulting
from	the	use	of	the	information	contained	herein.

ISBN-13:	978-0-672-33730-7
ISBN-10:	0-672-33730-4

Library	of	Congress	Control	Number:	2015913255

Printed	in	the	United	States	of	America

First	Printing	October	2015

Acquisitions	Editor
Mark	Taber

Managing	Editor
Sandra	Schroeder

Senior	Project	Editor
Tonya	Simpson

Copy	Editor
Kitty	Wilson

Indexer
WordWise	Publishing	Services,	LLC

Proofreader
Laura	Hernandez

Technical	Editors
Siddhartha	Singh	Brian	Tiemann

Editorial	Assistant
Vanessa	Evans

Cover	Designer
Mark	Shirar

Compositor
codeMantra

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have
been	appropriately	capitalized.	Sams	Publishing	cannot	attest	to	the	accuracy	of	this
information.	Use	of	a	term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of

any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The
author	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or
entity	with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this
book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents	at	a	Glance

Introduction

HOUR	1	What	Is	This	Unix	Stuff?

2	Getting	onto	the	System	and	Using	the	Command	Line

3	Moving	About	the	File	System

4	Listing	Files	and	Managing	Disk	Usage

5	Ownership	and	Permissions

6	Creating,	Moving,	Renaming,	and	Deleting	Files	and	Directories

7	Looking	into	Files

8	Filters,	Pipes,	and	Wildcards!

9	Slicing	and	Dicing	Command-Pipe	Data

10	An	Introduction	to	the	vi	Editor

11	Advanced	vi	Tricks,	Tools,	and	Techniques

12	An	Overview	of	the	emacs	Editor

13	Introduction	to	Command	Shells

14	Advanced	Shell	Interaction

15	Job	Control

16	Shell	Programming	Overview

17	Advanced	Shell	Programming

18	Printing	in	the	Unix	Environment

19	Archives	and	Backups

20	Using	Email	to	Communicate

21	Connecting	to	Remote	Systems	Using	SSH	and	SFTP

22	Searching	for	Information	and	Files

23	Perl	Programming	in	Unix

24	GNOME	and	the	GUI	Environment

Appendix	A	Common	Unix	Questions	and	Answers

Index

Table	of	Contents

Introduction

HOUR	1:	What	Is	This	Unix	Stuff?

What	Is	Unix?

A	Brief	History	of	Unix

What’s	All	This	About	Multiuser	Systems?

Cracking	Open	the	Shell

Getting	Help

HOUR	2:	Getting	onto	the	System	and	Using	the	Command	Line

Beginning	Your	Session

Seeing	What’s	Going	On	Around	You

HOUR	3:	Moving	About	the	File	System

What	a	Hierarchical	File	System	Is	All	About

Directory	Separator	Characters

The	Difference	Between	Relative	and	Absolute	Filenames

HOUR	4:	Listing	Files	and	Managing	Disk	Usage

The	ls	Command

Special	ls	Command	Flags

Permissions	Strings

HOUR	5:	Ownership	and	Permissions

Working	with	File	Permissions

HOUR	6:	Creating,	Moving,	Renaming,	and	Deleting	Files	and	Directories

Manipulating	the	Unix	File	System

HOUR	7:	Looking	into	Files

Looking	Inside	Files

HOUR	8:	Filters,	Pipes,	and	Wildcards!

Maximizing	the	Command	Line

HOUR	9:	Slicing	and	Dicing	Command-Pipe	Data

The	awk	Programming	System

How	to	Use	cut	in	Pipes

Inline	Editing	with	sed	and	tr

HOUR	10:	An	Introduction	to	the	vi	Editor

Editing	the	Unix	Way

HOUR	11:	Advanced	vi	Tricks,	Tools,	and	Techniques

Advanced	Editing	with	vi

Summary	of	vi	Commands

HOUR	12:	An	Overview	of	the	emacs	Editor

The	Other	Popular	Editor:	emacs

HOUR	13:	Introduction	to	Command	Shells

The	(Command)	Shell	Game

HOUR	14:	Advanced	Shell	Interaction

Which	Shell	Is	Which?

HOUR	15:	Job	Control

Wrestling	with	Your	Jobs

HOUR	16:	Shell	Programming	Overview

Building	Your	Own	Commands

HOUR	17:	Advanced	Shell	Programming

Searching	a	Database	of	Filenames	with	mylocate

HOUR	18:	Printing	in	the	Unix	Environment

Making	a	Printed	Copy

HOUR	19:	Archives	and	Backups

The	tar	Tape	Archive	Utility

The	zip	Archive	Utility

Shrinking	Your	Files	with	compress

Exploring	the	Unix	Tape	Command:	cpio

Personal	Backup	Solutions

Working	with	Linux	Package	Managers

HOUR	20:	Using	Email	to	Communicate

Interacting	with	the	World

HOUR	21:	Connecting	to	Remote	Systems	Using	SSH	and	SFTP

Stepping	Beyond	Your	Own	System

HOUR	22:	Searching	for	Information	and	Files

Finding	What’s	Where

HOUR	23:	Perl	Programming	in	Unix

Flexible	and	Powerful:	Perl

HOUR	24:	GNOME	and	the	GUI	Environment

Tweaking	Your	Inner	GNOME

Working	with	GNOME	Applications

APPENDIX	A:	Common	Unix	Questions	and	Answers

How	do	I	use	find|xargs	with	filenames	that	contain	spaces?

How	do	I	find	large	files	on	my	system?

How	do	I	run	a	program	on	a	schedule?

How	do	I	fix	file	permission	problems?

How	do	I	list	files	that	don’t	match	a	given	pattern?

How	do	I	view	lines	X–Y	in	a	text	file?

How	do	I	add	a	new	directory	to	my	PATH?

How	do	I	recover	deleted	files?

How	can	I	set	my	shell	to	protect	me	from	accidental	deletions?

What	do	the	shell	errors	arg	list	too	long	and	broken	pipe	mean?

Why	use	ssh	instead	of	telnet?	Or	sftp	instead	of	ftp?

Index

About	the	Author

Dave	Taylor	is	president	of	Intuitive	Systems,	LLC,	a	consulting	firm	focused	on	online
communications	and	marketing	strategies.	Founder	of	four	Internet	startups,	he	has	been
involved	with	Unix	and	the	Internet	since	1980,	having	created	the	popular	Elm	Mail
System	and	Embot	mail	autoresponder.	A	prolific	author,	he	has	been	published	more	than
1,000	times,	and	his	most	recent	books	include	the	best-selling	Wicked	Cool	Shell	Scripts
and	Learning	Unix	for	Mac	OS	X.

A	popular	columnist	for	Linux	Journal	,	he	also	writes	a	tech	Q&A	column	for	the	Boulder
Colorado	Daily	Camera	newspaper.	Previously,	he	was	a	research	scientist	at	HP	Palo
Alto	Laboratories.	He	has	contributed	software	to	the	4.4	release	of	Berkeley	Unix	(BSD),
and	his	programs	are	found	in	all	versions	of	Linux	and	other	popular	Unix	variants.

Dave	has	a	bachelor’s	degree	in	computer	science	(University	of	California	at	San	Diego),
a	master’s	degree	in	educational	computing	(Purdue	University),	and	an	MBA	(University
of	Baltimore),	and	he	is	a	top-rated	public	speaker	who	frequently	offers	workshops	on
online	marketing,	blogging,	and	various	technical	topics.	His	official	home	page	on	the
Web	is	http://www.DaveTaylorOnline.com,	and	his	email	address	is	d1taylor@gmail.com.

Dave	also	maintains	three	weblogs	online,	Ask	Dave	Taylor	(at	www.askdavetaylor.com),
where	he	fields	questions	from	readers	on	a	wide	variety	of	topics;	GoFatherhood	(at
www.GoFatherhood.com),	where	he	talks	about	the	challenges	and	joys	of	parenting;	and
Dave	On	Film	(www.DaveOnFilm.com),	where	he	shares	his	reviews	of	the	latest	movies.
You’re	invited	to	get	involved	at	all	three!

http://www.DaveTaylorOnline.com
mailto:d1taylor@gmail.com
http://www.askdavetaylor.com
http://www.GoFatherhood.com
http://www.DaveOnFilm.com

Dedication

To	the	lights	of	my	life:	Ashley,	Gareth,	and	Kiana.

Acknowledgments

However	you	slice	it,	you	can’t	write	a	book	locked	in	a	cave	(even	if	there’s	a	high-speed
Internet	connection	and	fancy	computer	therein),	and	this	book	has	evolved	over	many,
many	years,	starting	its	life	as	an	Interactive	Unix	tutorial	I	was	writing	for	Sun
Microsystems.	In	the	interim,	a	number	of	people	have	added	their	spices	to	the	stew,	most
notably	my	co-author	for	the	first	and	second	editions	of	Teach	Yourself	Unix	in	24	Hours
,	James	C.	Armstrong,	Jr.

In	this	new	fifth	edition,	I’ve	been	delighted	by	the	cooperative	and	talented	team	at	Sams
Publishing,	again,	and	would	like	to	specifically	thank	Mark	Taber	and	Tonya	Simpson,
and	my	tech	editors	Brian	Tiemann	and	Siddhartha	Singh	for	all	their	ideas	and
commentary	on	how	to	make	this	book	really	superb.	Any	technical	errors	remaining	are
my	own	responsibility.

Finally,	I	would	like	to	acknowledge	and	thank	my	kids	for	letting	me	focus	on	updating
this	book,	chapter	by	chapter,	even	when	there	were	games	and	other	activities	that	could
have	proven	more	fun.	I	wouldn’t	trade	them	in,	even	for	a	1THz	PC!	:-)

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value
your	opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what
areas	you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to
pass	our	way.

We	welcome	your	comments.	You	can	email	or	write	to	let	us	know	what	you	did	or	didn’t
like	about	this	book—as	well	as	what	we	can	do	to	make	our	books	better.

Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this
book.

When	you	write,	please	be	sure	to	include	this	book’s	title	and	author	as	well	as	your	name
and	email	address.	We	will	carefully	review	your	comments	and	share	them	with	the
author	and	editors	who	worked	on	the	book.

Email:					feedback@samspublishing.com

Mail:							Sams	Publishing
																800	East	96th	Street
																Indianapolis,	IN	46240	USA

mailto:feedback@samspublishing.com

Reader	Services

Visit	our	website	and	register	this	book	at	informit.com/register	for	convenient	access	to
any	updates,	downloads,	or	errata	that	might	be	available	for	this	book.

http://informit.com/register

Introduction

Welcome	to	the	fifth	edition	of	Sams	Teach	Yourself	Unix	in	24	Hours!	This	book	has	been
designed	to	be	helpful	as	a	guide	as	well	as	a	tutorial	for	both	beginning	users	and	those
with	previous	Unix	or	Linux	experience.	The	reader	of	this	book	is	assumed	to	be
intelligent,	but	no	familiarity	with	Unix	is	expected	or	required.

Does	Each	Chapter	Take	an	Hour?
You	can	learn	the	concepts	in	each	of	the	24	lessons	in	one	hour.	If	you	want	to
experiment	with	what	you	learn	in	each	lesson,	you	might	take	longer	than	an	hour.
However,	all	the	concepts	presented	here	are	straightforward.	If	you	are	familiar	with
Windows	applications	or	the	Macintosh,	you	will	be	able	to	progress	more	quickly
through	the	lessons.

What	if	I	Take	Longer	Than	24	Hours?
Since	the	publication	of	the	first	edition	of	this	book,	I’ve	received	a	considerable	amount
of	praise	and	positive	feedback,	but	the	one	message	that	has	always	been	a	surprise	is	“I
finished	your	book,	but	it	took	me	a	lot	longer	than	24	hours.”	Now	you	can	read	here,
directly	from	the	author:	That’s	okay!	Take	your	time	and	make	sure	you	try	everything	as
you	go	along.	Learning	and	remembering	are	more	important	than	speed.	And	if	you	do
finish	it	all	in	24	hours,	let	me	know!

How	to	Use	This	Book
This	book	is	designed	to	teach	you	topics	in	one-hour	lessons.	All	the	books	in	the	Sams
Teach	Yourself	series	enable	you	to	start	working	and	become	productive	with	a	topic	as
quickly	as	possible.	This	book	will	do	that	for	you!

Each	hour,	or	lesson,	starts	with	an	overview	of	the	topic	to	inform	you	of	what	to	expect
in	that	lesson.	The	overview	helps	you	determine	the	nature	of	the	lesson	and	whether	the
lesson	is	relevant	to	your	needs.

Main	Section
Each	lesson	has	a	main	section	that	discusses	the	lesson	topic	in	a	clear,	concise	manner
by	breaking	the	topic	down	into	logical	components	and	explaining	each	component
clearly.

Interspersed	throughout	each	lesson	are	special	elements,	called	tips,	notes,	and	cautions,
which	provide	additional	information.

Note

Notes	are	designed	to	clarify	the	concept	that	is	being	discussed	or	elaborate	on	the
subject.	If	you	are	comfortable	with	your	understanding	of	the	subject,	you	can
bypass	them	without	danger.

Tip

Tips	inform	you	of	tricks	or	elements	that	are	easily	missed	by	most	computer
users.	You	can	skip	them,	but	often	tips	show	you	an	easier	way	to	do	a	task.

Caution

A	caution	deserves	at	least	as	much	attention	as	a	tip	because	cautions	point	out
problematic	elements	of	the	topic	being	discussed.	Ignoring	the	information
contained	in	a	caution	could	have	adverse	effects	on	the	task	at	hand.	These	are	the
most	important	special	elements	in	this	book.

Tasks
This	book	offers	another	special	element	called	tasks.	These	step-by-step	exercises	are
designed	to	walk	you	quickly	through	the	most	important	skills	you	can	learn	in	Unix.

Workshops
The	Workshop	section	at	the	end	of	each	lesson	provides	lists	of	key	terms	and	exercises
that	reinforce	concepts	you	learned	in	the	lesson	and	help	you	apply	them	in	new
situations.	You	can	skip	the	Workshop	section,	but	we	recommend	that	you	go	through	the
exercises	to	see	how	the	concepts	can	be	applied	to	other	common	tasks.	The	key	terms
also	are	compiled	in	one	alphabetized	list	in	the	Glossary	at	the	end	of	the	book.

Hour	1.	What	Is	This	Unix	Stuff?

Goals	for	This	Hour

In	the	first	hour,	you	will	learn

	The	history	of	Unix

	Why	it’s	called	Unix

	What	multiuser	systems	are	all	about

	The	difference	between	Unix	and	other	operating	systems

	About	command-line	interpreters	and	how	users	interact	with	Unix

	How	to	use	man	pages,	Unix’s	online	reference	material

	Other	ways	to	find	help	in	Unix

Welcome	to	Sams	Teach	Yourself	Unix	in	24	Hours,	Fifth	Edition!	This	hour	starts	you
toward	becoming	a	Unix	(or,	shhh,	Linux)	expert.	Our	goal	for	the	first	hour	is	to
introduce	you	to	some	history	of	the	operating	system	and	teach	you	where	to	find	help
online.

What	Is	Unix?
Unix	is	a	computer	operating	system,	a	control	program	that	works	with	users	to	run
programs,	manage	resources,	and	communicate	with	other	computer	systems.	Several
people	can	use	a	Unix	computer	at	the	same	time;	hence	Unix	is	called	a	multiuser	system.
Any	of	these	users	can	also	run	multiple	programs	at	the	same	time;	hence	Unix	is	called
multitasking.	Because	Unix	is	such	a	pastiche—a	patchwork	of	development—it’s	a	lot
more	than	just	an	operating	system.	Unix	has	more	than	500	individual	commands.	These
range	from	simple	utilities	for	viewing	or	copying	files	to	the	quite	complex:	those	used	in
high-speed	networking,	file-revision	management,	and	software	development.

Most	notably,	Unix	is	a	multichoice	system.	As	an	example,	Unix	has	three	different
primary	command-line–based	user	interfaces	(in	Unix,	the	command-line	user	interface	is
called	a	shell):	the	Bash	shell,	the	C	shell,	and	the	Korn	shell.	In	addition,	a	number	of
graphical	interfaces	exist,	too,	including	KDE,	Unity,	and	Gnome.	Often,	soon	after	you
learn	to	accomplish	a	task	with	a	particular	command,	you	discover	a	second	or	third	way
to	do	that	task.	This	is	simultaneously	the	greatest	strength	of	Unix	and	a	source	of
frustration	for	both	new	and	longtime	users.

Why	are	all	these	choices	such	a	big	deal?	Think	about	why	Microsoft	Windows	and
Apple	Macintosh	interfaces	are	so	easy	to	use:	Both	are	designed	to	give	the	user	less
power.	Both	have	dramatically	fewer	commands	and	precious	little	overlap	in	commands:
You	can’t	click	a	button	and	find	out	how	many	of	your	Windows	files	are	over	a	certain
size,	and	you	can’t	drag	a	Mac	file	icon	around	to	duplicate	it	in	its	own	directory.	The
advantage	to	these	interfaces	is	that,	in	either	system,	you	can	learn	the	one-and-only	way
to	do	a	task	and	be	confident	that	you’re	as	sophisticated	in	doing	that	task	as	the	next

person	is.	It’s	easy.	It’s	quick	to	learn.	It’s	exactly	how	the	experts	do	it,	too.

Unix,	by	contrast,	is	much	more	like	a	spoken	language,	with	commands	acting	as	verbs,
command	options	(which	you’ll	learn	about	later	in	this	lesson)	acting	as	adjectives,	file
and	directory	names	as	nouns,	and	the	more	complex	command	sequences	acting	akin	to
sentences.	How	you	do	a	specific	task	can,	therefore,	be	completely	different	from	how
your	Unix-expert	friend	does	the	same	task.	Worse,	some	specific	commands	in	Unix	have
many	different	versions,	partly	because	of	the	variations	from	different	Unix	vendors.
(You’ve	heard	of	these	variations	and	vendors,	I’ll	bet:	Linux	from	Red	Hat	[and	many
others],	Solaris	from	Oracle,	System	V	Release	4	[pronounce	that	“system	five	release
four”	or,	to	sound	like	an	ace,	“ess-vee-are-four”],	BSD	[pronounced	“bee-ess-dee”]	Unix
from	the	University	of	California	at	Berkeley,	HP-UX	from	Hewlett-Packard,	and	AIX
from	International	Business	Machines,	are	some	of	the	primary	players.	Each	is	a	little
different	from	the	others.)	Another	contributor	to	the	sprawl	of	modern	Unix	is	the	energy
of	the	Unix	programming	community;	a	Unix	user	can	decide	to	write	a	new	version	of	a
command	to	solve	slightly	different	problems,	thus	many	users	spawn	many	versions	of	a
command.

And	then	there’s	the	complicated	world	of	Linux.	Originally,	Linux	was	developed	as	a
license-free	alternative	to	Unix,	but	it	has	since	very	much	taken	on	a	life	of	its	own	across
the	intervening	years	and	now	accounts	for	most	of	the	servers	on	the	Internet,	many	of
the	systems	developers	use,	and	in	some	cases	a	splendid	alternative	operating	system	for
laptop	users.	Fortunately	for	you,	Linux	has	retained	its	Unix	soul,	and	this	book	will	also
get	you	up	to	speed	and	comfortable	with	the	command-line	interface	on	Linux	systems,
too.

Given	the	multichoice	nature	of	the	Unix	OS,	I	promise	to	teach	you	the	most	popular
commands,	and,	if	alternatives	exist,	I	will	teach	you	about	those,	too.	The	goal	of	this
book	is	for	you	to	learn	Unix	and	to	be	able	to	work	alongside	longtime	Unix	folk	as	a
peer,	sharing	your	expertise	with	them	and	continuing	to	learn	about	the	system	and	its
commands	from	them	and	from	other	sources.

Note

I	must	admit	that	I	too	am	guilty	of	re-creating	various	Unix	commands,	including
those	for	an	electronic	mail	system,	a	simple	line-oriented	editor,	a	text	formatter,	a
programming	language	interpreter,	a	calendar	manager,	and	even	slightly	different
versions	of	the	file-listing	command	ls	and	the	remove-files	command	rm.	As	a
programmer,	I	found	that	trying	to	duplicate	the	functionality	of	a	particular
command	or	utility	was	a	wonderful	way	to	learn	more	about	both	Unix	and
programming.

A	Brief	History	of	Unix
To	understand	why	the	Unix	operating	system	has	so	many	commands	and	why	it’s	still
one	of	the	premier	multiuser,	multitasking	operating	systems	available,	but	also	the	most
successful	and	the	most	powerful	multichoice	system	for	computers,	you’ll	have	to	travel
back	in	time.	You’ll	need	to	learn	where	Unix	was	designed,	the	goals	of	the	original
programmers,	and	what	has	happened	to	Unix	in	the	subsequent	decades.

Unlike	DOS,	Windows,	OS/2,	Mac	OS	X,	Linux,	NT,	VMS,	and	just	about	any	other
operating	system,	Unix	was	created	by	a	couple	of	programmers	as	a	fun	project.	It
evolved	through	the	efforts	of	hundreds	of	programmers,	each	of	whom	was	exploring
unique	ideas	of	particular	aspects	of	OS	design	and	user	interaction.	In	this	regard,	Unix	is
not	like	other	operating	systems,	needless	to	say!

It	all	started	back	in	the	late	1960s,	in	a	dark	and	stormy	laboratory,	deep	in	the	recesses	of
the	American	Telephone	and	Telegraph	(AT&T)	corporate	facility	in	New	Jersey.	Working
with	the	Massachusetts	Institute	of	Technology,	AT&T	Bell	Labs	was	co-developing	a
massive,	monolithic	operating	system	called	Multics.	On	the	Bell	Labs	team	were	Ken
Thompson,	Dennis	Ritchie,	Brian	Kernighan,	and	other	members	of	the	Computer	Science
Research	Group	who	would	prove	to	be	key	contributors	to	the	new	Unix	operating
system.

When	1969	rolled	around,	Bell	Labs	was	becoming	increasingly	disillusioned	with
Multics,	an	overly	slow	and	expensive	system	that	ran	on	General	Electric	mainframe
computers	that	themselves	were	expensive	to	run	and	rapidly	becoming	obsolete.	The
problem	was	that	Thompson	and	the	group	really	liked	the	capabilities	that	Multics
offered,	particularly	the	individual-user	environment	implemented	within	a	multiple-user
system.

In	that	same	year,	Thompson	wrote	a	computer	game	called	Space	Travel,	first	on	Multics
and	then	on	the	GECOS	(GE	computer	operating	system).	The	game	was	a	simulation	of
the	movement	of	the	major	bodies	of	the	solar	system,	with	the	player	guiding	a	ship,
observing	the	scenery,	and	attempting	to	land	on	the	various	planets	and	moons.	The	game
wasn’t	much	fun	on	the	GE	computer,	however,	because	performance	was	jerky	and
irregular,	and,	more	importantly,	it	cost	almost	$100	in	computing	time	for	each	game.

In	his	quest	to	improve	the	game,	Thompson	found	a	little-used	Digital	Equipment
Corporation	PDP-7,	and	with	some	help	from	colleague	Dennis	Ritchie,	he	rewrote	the
game	for	the	PDP-7.	Development	was	done	on	the	GE	mainframe	and	hand-carried	to	the
PDP-7	on	paper	tape.

After	he’d	explored	some	of	the	capabilities	of	the	PDP-7,	Thompson	couldn’t	resist
building	onto	the	game,	creating	an	underlying	development	and	computing	environment.
This	started	with	an	implementation	of	an	earlier	file	system	he’d	designed	and	then	grew
as	Thompson	added	processes,	simple	file	utilities	(cp,	mv),	and	a	command	interpreter
that	he	called	a	shell.	It	wasn’t	until	the	following	year	that	the	newly	created	system
acquired	its	name,	Unix,	which	Brian	Kernighan	suggested	as	a	pun	on	Multics.

The	Thompson	file	system	was	built	around	the	low-level	concept	of	i-nodes,	linked
blocks	of	information	that	together	compose	the	contents	of	a	file	or	program.	These	i-

nodes	were	kept	in	a	list	called	the	i-list,	subdirectories,	and	special	types	of	files	that
described	devices	and	acted	as	the	actual	device	driver	for	user	interaction.	What	was
missing	in	this	earliest	form	of	Unix	were	pathnames.	No	slash	(/)	was	present,	and
subdirectories	were	referenced	through	a	confusing	combination	of	file	links	that	proved
too	complex,	causing	users	to	stop	using	subdirectories.	Another	limitation	in	this	early
version	was	that	directories	couldn’t	be	added	while	the	system	was	running	but	had	to	be
added	to	the	preload	configuration.

In	1970,	Thompson’s	group	requested	and	received	a	Digital	PDP-11	system	for	the
purpose	of	creating	a	system	for	editing	and	formatting	text.	It	was	such	an	early	unit	that
the	first	disk	did	not	arrive	at	Bell	Labs	until	four	months	after	the	CPU	showed	up.	The
first	important	program	on	Unix	was	the	text-formatting	program	roff,	which—stay	with
me	now—was	inspired	by	Doug	McIlroy’s	BCPL	program	on	Multics,	which	in	turn	had
been	inspired	by	an	earlier	program	called	runoff	on	the	CTSS	operating	system.

The	initial	customer	was	the	Patent	Department	inside	Bell	Labs,	a	group	that	needed	a
system	for	preparing	patent	applications.	The	new	“Unix”	system	was	a	dramatic	success,
and	it	didn’t	take	long	for	other	folks	inside	Bell	Labs	to	begin	clamoring	for	their	own
Unix	computer	systems.

The	C	Programming	Language
Now	that	you’ve	learned	some	Unix	history,	let’s	talk	a	bit	about	the	C	programming
language,	the	programming	language	that	is	integral	to	the	Unix	system.

In	1969,	the	original	Unix	had	a	very	low-level	assembly	language	compiler	available	for
writing	programs;	all	the	PDP-7	work	was	done	in	this	primitive	language.	Just	before	the
PDP-11	arrived,	McIlroy	ported	a	language	called	TMG	to	the	PDP-7,	which	Thompson
then	tried	to	use	to	write	a	FORTRAN	compiler.	That	didn’t	work,	and	instead	he
produced	a	language	called	B.	Two	years	later,	in	1971,	Ritchie	created	the	first	version	of
a	new	programming	language	based	on	B,	a	language	he	called	C.	By	1973,	the	entire
Unix	system	had	been	rewritten	in	C	for	portability	and	speed.

Today	C	continues	to	be	a	popular	programming	language,	available	for	just	about	any
computer	(and	just	about	any	handheld	device,	game	system,	or	telephone)	you	can	name.
Variations	of	C	known	as	C++	and	C#	(pronounced	“c-plus-plus”	and	“c-sharp,”
respectively)	power	much	of	the	modern	Windows	and	Mac	OS	X	systems	environments,
too.

Unix	Becomes	Popular
In	the	1970s,	AT&T	hadn’t	yet	been	split	up	into	the	many	regional	operating	companies
known	today,	and	the	company	was	prohibited	from	selling	the	new	Unix	system.	Hoping
for	the	best,	Bell	Labs	distributed	Unix	to	colleges	and	universities	for	a	nominal	charge.
These	institutions	also	were	happily	buying	the	inexpensive	and	powerful	PDP-11
computer	systems—a	perfect	match.	Before	long,	Unix	was	the	research	and	software-
development	operating	system	of	choice.

The	Unix	of	today	is	not,	however,	the	product	of	a	couple	of	inspired	programmers	at
Bell	Labs.	Many	other	organizations	and	institutions	contributed	significant	additions	to

the	system	as	it	evolved	from	its	early	beginnings	and	grew	into	the	monster	it	is	today.
Most	important	were	the	C	shell,	TCP/IP	networking,	vi	editor,	Berkeley	Fast	File	System,
and	sendmail	electronic	mail–routing	software	from	the	Computer	Science	Research
Group	of	the	University	of	California	at	Berkeley.	Also	important	were	the	early	versions
of	UUCP	and	Usenet	from	the	University	of	Maryland,	University	of	Delaware,	and	Duke
University.	After	dropping	Multics	development	completely,	MIT	didn’t	come	into	the
Unix	picture	until	the	early	1980s,	when	it	developed	the	X	Window	System	as	part	of	its
successful	Athena	project.	Fifteen	years	and	five	releases	later,	X	(more	formally,	X11R6)
is	the	predominant	windowing	system	standard	on	all	Unix	systems,	and	it	is	the	basis	of
Gnome,	KDE,	Unity,	and	Open	Desktop.

Gradually,	large	corporations	have	become	directly	involved	with	the	evolutionary
process,	notably	Hewlett-Packard,	Sun	Microsystems,	and	IBM.	Smaller	companies	have
started	to	get	into	the	action,	too,	with	Unix	available	from	Apple	for	the	Macintosh	(it’s
the	underpinning	of	Mac	OS	X)	and	Linux	systems	built	upon	the	concepts	of	Unix	from
Red	Hat,	Debian,	and	many	other	vendors	for	PCs.

Today,	Unix	runs	on	all	sizes	of	computers,	from	humble	PC	laptops	to	powerful	desktop-
visualization	workstations,	and	even	to	supercomputers	that	require	special	cooling	fluids
to	prevent	them	from	burning	up	while	working.	It’s	a	long	way	from	Space	Travel,	a
game	that,	sadly,	isn’t	part	of	Unix	anymore.

What’s	All	This	About	Multiuser	Systems?
Among	the	many	multi	words	you	learned	earlier	was	one	that	directly	concerns	how	you
interact	with	the	computer:	multiuser.	The	goal	of	a	multiuser	system	is	for	all	users	to	feel
as	though	they’ve	been	given	their	own	personal	computer,	their	own	individual	Unix
system,	although	they	actually	are	working	within	a	large	system.	To	accomplish	this,	each
user	is	given	an	account—usually	based	on	the	person’s	last	name	or	initials	or	another
unique	naming	scheme—and	a	home	directory,	the	default	place	where	the	user’s	files	are
saved.	This	leads	to	a	bit	of	a	puzzle:	When	you’re	working	on	the	system,	how	does	the
system	know	that	you’re	you?	What’s	to	stop	someone	else	from	masquerading	as	you,
going	into	your	files,	prying	into	private	letters,	altering	memos,	or	worse?

In	the	early	days,	anyone	could	walk	up	to	your	Macintosh	or	PC	when	you	weren’t
around,	flip	the	power	switch,	and	pry,	and	you	couldn’t	do	much	about	it.	For	a	computer
sitting	on	your	desk	in	your	office,	that’s	okay;	the	system	is	not	a	shared	multiuser
system,	so	verifying	who	you	are	when	you	turn	on	the	computer	isn’t	critical.

But	Unix	is	designed	for	multiple	users,	so	it	is	very	important	that	the	system	can	confirm
your	identity	in	a	manner	that	precludes	others	from	masquerading	as	you.	As	a	result,	all
accounts	have	passwords	associated	with	them—as	with	a	PIN	for	a	bank	card,	keep	it	a
secret!—and	when	you	use	your	password	in	combination	with	your	account,	the
computer	can	be	pretty	sure	that	you	are	who	you’re	claiming	to	be.	For	obvious	reasons,
when	you’re	finished	using	the	computer,	you	should	always	remember	to	exit	your
session,	or,	in	effect,	to	turn	off	your	virtual	personal	computer	when	you’re	done.

Next	hour,	you’ll	learn	your	first	Unix	commands.	At	the	top	of	the	list	are	commands	to
log	in	to	the	system,	enter	your	password,	and	change	your	password	to	be	memorable	and

highly	secure.

Cracking	Open	the	Shell
Another	unusual	feature	of	Unix	systems,	especially	for	those	of	you	who	come	from
either	the	Macintosh	or	Windows	environments,	is	that	Unix	is	primarily	designed	to	be	a
command-line–based	system	rather	than	a	more	graphically	based	system.	That’s	a	mixed
blessing.	It	makes	Unix	harder	to	learn,	but	the	system	is	considerably	more	powerful	than
one	that	asks	you	to	fiddle	with	a	mouse	to	drag	little	pictures	about	on	the	screen.	In	Unix
parlance,	a	command-line	interpreter	is	called	a	shell,	and	you’ll	see	that	various	shells	are
available,	differing	in	both	syntax	and	capabilities.

Graphical	interfaces	to	Unix	are	built	within	the	X	Window	System	environment.	Notable
ones	are	KDE,	OpenWindows,	Gnome,	and	Unity.	Even	with	the	best	of	these,	however,
the	command-line	heart	of	Unix	still	shines	through,	and	in	my	experience,	it’s	impossible
to	use	all	the	power	that	Unix	offers	without	turning	to	a	shell.

If	you’re	used	to	writing	letters	to	your	friends	and	family	or	even	just	producing	simple
grocery	lists,	you	won’t	have	any	problem	with	a	command-line	interface:	It’s	a	command
program	that	you	tell	what	to	do.	When	you	type	specific	instructions	and	press	the	Return
key,	the	computer	leaps	into	action	and	immediately	performs	whatever	command	you’ve
specified,	even	if	it’s	dangerous,	such	as	the	command	sequence	that	requests	the	system
to	“remove	all	my	files.”

Note

Throughout	this	book,	I	refer	to	pressing	the	Return	key,	but	your	keyboard	might
have	this	key	labeled	as	“Enter”	or	marked	with	a	left-pointing,	specially	shaped
arrow.	These	all	mean	the	same	thing.

In	Windows,	you	might	move	a	file	from	one	folder	to	another	by	opening	the	folder,
opening	the	destination	folder,	fiddling	around	for	a	while	to	be	sure	that	you	can	see	both
folders	onscreen	at	the	same	time,	and	then	clicking	and	dragging	the	specific	file	from
one	place	to	the	other.	In	Unix	it’s	much	easier:	Typing	the	following	simple	command
does	the	trick:

mv	folder1/file	folder2

This	command	automatically	also	ensures	that	the	file	has	the	same	name	in	the
destination	directory.

This	might	not	seem	like	much	of	a	boon,	but	imagine	that	you	want	to	move	all	files	with
names	that	start	with	the	word	project	or	end	with	the	suffix	.c	(C	program	files).	This
task	could	be	quite	tricky	and	could	take	a	lot	of	patience	with	a	graphical	interface.	Unix,
however,	makes	it	easy:

mv	project*	*.c	folder2

Soon	you	will	not	only	understand	this	command	but	also	be	able	to	compose	your	own
examples!

Getting	Help
Throughout	this	book,	the	focus	is	on	the	most	important	and	valuable	flags	and	options
for	the	commands	covered.	That’s	all	well	and	good,	but	how	do	you	find	out	about	the
other	alternatives	that	might	actually	work	better	for	your	use?	That’s	where	the	Unix	man
pages	come	in.	You	will	learn	how	to	browse	them	to	find	the	information	desired.

Task	1.1:	Man	Pages,	Unix	Online	Reference
It’s	not	news	to	you	that	Unix	is	a	very	complex	operating	system,	with	hundreds	of
commands	that	can	be	combined	to	execute	thousands	of	possible	actions.	Most
commands	have	a	considerable	number	of	options,	and	all	seem	to	have	some	subtlety	or
other	that	it’s	important	to	know.	But	how	do	you	figure	all	this	out?	You	need	to	look	up
commands	in	the	Unix	online	documentation	set.	Containing	purely	reference	materials,
the	Unix	man	pages	(man	is	short	for	manual)	cover	every	command	available.

To	search	for	a	man	page,	enter	man	followed	by	the	name	of	the	command	about	which
you	seek	additional	information.	Many	sites	also	have	a	table	of	contents	for	the	man
pages	(it’s	called	a	whatis	database,	for	obscure	historical	reasons).	You	can	use	the	all-
important	-k	flag	for	keyword	searches	to	find	the	name	of	a	command	if	you	know	what
it	should	do	but	you	just	can’t	remember	what	it’s	called.	The	-k	option	will	give	you	a
list	of	manual	pages	that	refer	to	the	keyword	you	specify.

A	flag	or	switch	is	a	command-line	option,	an	option	that	changes	the	behavior	of	the
command	you’re	using.	In	this	instance,	man	displays	the	man	page	for	the	specified
command,	but	if	you	modify	its	behavior	with	the	-k	flag,	it	instead	searches	the
command	documentation	database	to	identify	which	subsets	relate	to	the	keyword	you’ve
specified.

Note

A	command	performs	a	basic	task,	which	can	be	modified	by	adding	flags	to	the
end	of	the	command	when	you	enter	it	on	the	command	line.	These	flags	are
described	in	the	man	pages.	For	example,	to	use	the	-k	flag	for	man,	enter	this:

%	man	-k

Note

The	command	apropos	is	available	on	most	Unix	systems	and	is	often	just	an
alias	to	man	-k.	If	it’s	not	on	your	system,	you	can	create	it	by	adding	the	line
alias	apropos=’man	-k	\!’	to	your	.profile	file.

The	Unix	man	pages	are	organized	into	nine	sections,	as	shown	in	Table	1.1.	This	table	is
organized	for	System	V,	but	it	generally	holds	true	for	Linux	and	Berkeley	systems,	too,
with	these	few	changes:	BSD	has	I/O	and	special	files	in	Section	4,	administrative	files	in
Section	5,	and	miscellaneous	files	in	Section	7.	Some	BSD	systems	also	split	user
commands	into	further	categories:	Section	1C	for	intersystem	communications	and
Section	1G	for	commands	used	primarily	for	graphics	and	computer-aided	design.	Solaris,

too,	has	its	own	unique	layout,	such	as	sections	9E,	9F,	and	9S,	which	deal	with	device
drivers,	and	a	complete	lack	of	Section	6	(games).	On	any	Unix	system,	the	command
man	man	(get	it?	The	manual	for	the	manual)	will	give	you	the	complete	synopsis.

TABLE	1.1	System	V	Unix	Man	Page	Organization

Man	pages	in	different	sections	might	have	the	same	name,	so	you	might	need	to	specify
in	which	section	to	find	the	page.	In	addition,	sometimes	you’ll	be	looking	for	a	user-level
command	and	find	a	match	in	Section	2	or	3.	Those	aren’t	what	you	seek;	they’re
specifically	for	Unix	programmers,	as	you	can	see	in	the	table.

1.	The	mkdir	man	page	is	succinct	and	exemplary.	Here’s	what	you’ll	see	when	you
enter	the	man	mkdir	command:

Click	here	to	view	code	image

%	man	mkdir

MKDIR(1)																FreeBSD	General	Commands
Manual															MKDIR(1)

NAME
					mkdir	-	make	directories

SYNOPSIS
					mkdir	[-p]	[-m	mode]	directory_name	…

DESCRIPTION
					Mkdir	creates	the	directories	named	as	operands,	in	the	order
specified,
					using	mode	rwxrwxrwx	(0777)	as	modified	by	the	current	umask(2).

					The	options	are	as	follows:

					-m						Set	the	file	permission	bits	of	the	final	created	directory
to
													the	specified	mode.		The	mode	argument	can	be	in	any	of	the
													formats	specified	to	the	chmod(1)	command.		If	a	symbolic
mode	is
													specified,	the	operation	characters	“+”	and	“-”	are
													interpreted	relative	to	an	initial	mode	of	“a=rwx”.

					-p						Create	intermediate	directories	as	required.		If	this	option
is
													not	specified,	the	full	path	prefix	of	each	operand	must
already
													exist.		Intermediate	directories	are	created	with	permission
bits
													of	rwxrwxrwx	(0777)	as	modified	by	the	current	umask,	plus
write
													and	search	permission	for	the	owner.

					The	user	must	have	write	permission	in	the	parent	directory.

DIAGNOSTICS
					The	mkdir	utility	exits	0	on	success,	and	>0	if	an	error	occurs.

SEE	ALSO
					rmdir(1)

STANDARDS
					The	mkdir	utility	is	expected	to	be	IEEE	Std1003.2	(“POSIX.2”)
					compatible.

HISTORY
					A	mkdir	command	appeared	in	Version	1	AT&T	UNIX.

BSD																																																											1
%

Note

Notice	in	the	example	that	in	the	first	line,	the	command	itself	is	in	boldface	type,
but	everything	else	is	not	bold.	Throughout	this	book,	whenever	an	example
contains	both	user	input	and	Unix	output,	the	user	input	is	bold	so	that	you	can
easily	spot	what	you	are	supposed	to	enter.

The	very	first	line	of	the	output	tells	me	that	it’s	found	the	mkdir	command	in
Section	1	(user	commands)	of	the	man	pages,	with	the	middle	phrase,	FreeBSD
General	Commands	Manual,	indicating	that	I’m	running	on	a	version	of	Unix
called	FreeBSD.	The	NAME	section	always	details	the	name	of	the	command	and	a
one-line	summary	of	what	it	does.	SYNOPSIS	explains	how	to	use	the	command,
including	all	possible	command	flags	and	options.

DESCRIPTION	is	where	all	the	meaningful	information	is,	and	it	can	run	on	for
dozens	of	pages,	explaining	how	complex	commands	such	as	csh	or	vi	work.	SEE
ALSO	suggests	other	commands	that	are	related	in	some	way.	The	Revision	line	at
the	bottom	is	different	on	each	version	of	man,	and	it	indicates	the	last	time,
presumably,	that	this	document	was	revised.

2.	The	same	man	page	from	an	Oracle	Solaris	workstation	is	quite	different,	as	shown
in	Figure	1.1.

FIGURE	1.1	mkdir	man	page	on	an	Oracle	Solaris	system.

3.	Not	sure	of	a	specific	command?	That’s	where	man	-k	or	its	alias	apropos
comes	in	handy:

Click	here	to	view	code	image

%	man	-k	date	|	head	-18

1.	date(1)	/usr/share/man/man1/date.1
date	-	write	the	date	and	time

2.	gdate(1)	/usr/share/man/man1/gdate.1
date	-	print	or	set	the	system	date	and	time

3.	strptime(3c)	/usr/share/man/man3c/strptime.3c
strptime	-	date	and	time	conversion

4.	ftime(3c)	/usr/share/man/man3c/ftime.3c
ftime	-	get	date	and	time

5.	clock(1t)	/usr/share/man/man1t/clock.1t
clock	-	Obtain	and	manipulate	dates	and	times

6.	stime(2)	/usr/share/man/man2/stime.2
stime	-	set	system	time	and	date
%

See	that	|	head	-18?	That	limits	the	output	of	the	man	command	to	just	the	first
18	lines.	Omit	that,	and	you’ll	get	a	lot	more	information	scrolling	across	your
screen.	We’ll	go	far	deeper	into	these	multicommand	sequences	called	pipes	as	we
travel	through	the	book!

4.	To	learn	a	succinct	snippet	of	information	about	a	Unix	command,	you	can	check	to
see	whether	your	system	has	the	whatis	utility.	You	can	even	ask	it	to	describe
itself	(a	bit	of	a	philosophical	conundrum):

Click	here	to	view	code	image

%	whatis

whatis(1)		NAME		/usr/share/man/man1/whatis.1
whatis	-	display	a	one-line	summary	about	a	keyword
%

In	fact,	this	is	the	line	from	the	NAME	field	of	the	relevant	man	page.	The	whatis
command	is	different	from	the	apropos	command	because	it	considers	only
command	names	rather	than	all	words	in	the	command	description	line:

Click	here	to	view	code	image
%	whatis	cd

No	LSB	modules	are	available.
Distributor	ID:				Ubuntu
Description:				Ubuntu	15.04
Release:				15.04
Codename:				vivid

Now	see	what	apropos	does:
Click	here	to	view	code	image

%	apropos	cd

1.	cd(1t)	/usr/share/man/man1t/cd.1t
cd	-	Change	working	directory

2.	cd(1)	/usr/share/man/man1/cd.1
cd,	chdir,	pushd,	popd,	dirs	-	change	working	directory

3.	cdrw(1)	/usr/share/man/man1/cdrw.1
cdrw	-	CD	read	and	write

4.	sound-juicer(1)	/usr/share/man/man1/sound-juicer.1
sound-juicer,	gnome-cd	-	GNOME	CD	ripper	and	player

5.	cdio(7i)	/usr/share/man/man7i/cdio.7i
cdio	-	CD-ROM	control	operations

6.	eject(1)	/usr/share/man/man1/eject.1
eject	-	eject	media	such	as	CD-ROM	from	drive

7.	cdrecord(1)	/usr/share/man/man1/cdrecord.1
cdrecord	-	record	audio	or	data	CD,	DVD	or	BluRay

8.	hsfs(7fs)	/usr/share/man/man7fs/hsfs.7fs
hsfs	-	High	Sierra	&	ISO	9660	CD-ROM	file	system

9.	sd(7d)	/usr/share/man/man7d/sd.7d
sd	-	SCSI	disk	and	ATAPI/SCSI	CD-ROM	device	driver

10.	cdda2wav(1)	/usr/share/man/man1/cdda2wav.1
cdda2wav	-	dumps	CD	audio	data	into	sound	files	with	extra	data
verification

11.	brasero(1)	/usr/share/man/man1/brasero.1
brasero	-	Simple	and	easy	to	use	CD/DVD	burning	application	for	the	Gnome
Desktop

12.	rmmount(1m)	/usr/share/man/man1m/rmmount.1m
rmmount	-	removable	media	mounter	for	CD-ROM,	Jaz	drive,	and	others
others	%

5.	One	problem	with	man	is	that	it	really	isn’t	too	sophisticated.	As	you	can	see	in	the
example	in	step	4,	apropos	(which,	recall,	is	man	-k)	lists	everything	it
encounters,	whether	it’s	intended	for	a	programmer	or	a	user.	I	don’t	care	much
about	file	formats,	games,	or	miscellaneous	commands	when	I’m	looking	for	a
command.	I’ll	try	this:

Click	here	to	view	code	image

%	alias	apropos=“man	-k	\!*	|	uniq	|	grep	1”

%	apropos	cd

1.	cd(1t)	/usr/share/man/man1t/cd.1t
2.	cd(1)	/usr/share/man/man1/cd.1
3.	cdrw(1)	/usr/share/man/man1/cdrw.1
4.	sound-juicer(1)	/usr/share/man/man1/sound-juicer.1
6.	eject(1)	/usr/share/man/man1/eject.1
7.	cdrecord(1)	/usr/share/man/man1/cdrecord.1
10.	cdda2wav(1)	/usr/share/man/man1/cdda2wav.1
11.	brasero(1)	/usr/share/man/man1/brasero.1
12.	rmmount(1m)	/usr/share/man/man1m/rmmount.1m
%

That’s	much	better.

6.	I’d	like	to	look	up	one	more	command—sort—before	I’m	done	here:
Click	here	to	view	code	image

%	man	sort

SORT(1)																																																			SORT(1)

NAME
							sort	-	sort	lines	of	text	files

SYNOPSIS
							sort		[-cmus]	[-t	separator]	[-o	output-file]	[-T	tempdir]
							[-bdfiMnr]	[+POS1	[-POS2]]	[-k	POS1[,POS2]]	[file…]
							sort	{—help,—version}

DESCRIPTION
							This	manual	page	documents	the	GNU	version	of	sort.			sort
							sorts,		merges,		or		compares	all	the	lines	from	the	given
							files,	or	the	standard	input	if	no		files		are		given.			A
							file		name		of	`-‘	means	standard	input.		By	default,	sort
							writes	the	results	to	the	standard	output.

							sort	has	three	modes	of		operation:		sort		(the		default),
							merge,		and		check		for	sortedness.		The	following	options
							change	the	operation	mode:

							-c					Check	whether	the	given	files	are		already		sorted:
														if		they	are	not	all	sorted,	print	an	error	message
														and	exit	with	a	status	of	1.

							-m					Merge	the	given	files	by	sorting	them	as		a		group.
														Each		input		file		should		already		be	individually
														sorted.		It	always	works	to	sort	instead	of		merge;
														merging		is		provided		because	it	is	faster,	in	the
														case	where	it	works.

							A	pair	of	lines	is	compared	as	follows:	if	any	key		fields
							have	been	specified,	sort	compares	each	pair	of	fields,	in
							the	order	specified	on	the	command	line,	according	to		the
							associated		ordering		options,	until	a	difference	is	found
							or	no	fields	are	left.
—More—

On	almost	every	system,	the	man	command	feeds	output	through	a	so-called	pager
program	so	that	information	won’t	scroll	by	faster	than	you	can	read	it.	You	also	can	save
the	output	of	a	man	command	to	a	file	if	you’d	like	to	study	the	information	in	detail:	man
mkdir	>	mkdir.manpage.	We’ll	talk	more	about	file	redirection	a	bit	later	in	the
book.

Notice	in	the	sort	man	page	that	many	options	exist	for	the	sort	command	(certainly
more	than	discussed	in	this	book).	As	you	learn	Unix,	if	you	find	areas	about	which	you’d
like	more	information,	or	if	you	need	a	capability	that	doesn’t	seem	to	be	available,	check
the	man	pages.	There	just	might	be	a	flag	for	what	you	seek.

Note

You	can	obtain	lots	of	valuable	information	by	reading	the	introduction	to	each
section	of	the	man	pages.	Use	man	1	intro	to	read	the	introduction	to	Section	1,
for	example.

If	your	version	of	man	doesn’t	stop	at	the	bottom	of	each	page,	you	can	remedy	the
situation	by	using	alias	man=’man	\!*	|	more’.

Unix	was	one	of	the	very	first	operating	systems	to	include	online	documentation.	The
man	pages	are	an	invaluable	reference.	Most	of	them	are	poorly	written,	unfortunately,
and	precious	few	include	examples	of	actual	usage.	However,	for	quick	reminders	of	flags

and	options,	or	as	an	easy	way	to	find	out	the	capabilities	of	a	command,	man	is	great.	I
encourage	you	to	explore	the	man	pages	and	perhaps	even	read	the	man	page	on	the	man
command	itself.

Task	1.2:	Other	Ways	to	Find	Help	in	Unix
Reading	the	man	pages	is	really	the	best	way	to	learn	about	what’s	going	on	with	Unix
commands,	but	some	alternatives	also	can	prove	helpful.	Some	systems	have	a	help
command.	Many	Unix	utilities	make	information	available	with	the	`h,	-help,	or	-?
flag,	too.	Finally,	one	trick	you	can	try	is	to	feed	a	set	of	gibberish	flags	to	a	command,
which	sometimes	generates	an	error	and	a	helpful	message	reminding	you	of	what
possible	options	the	command	accepts.

1.	At	the	University	Tech	Computing	Center,	the	support	team	has	installed	a	help
command:

Click	here	to	view	code	image

%	help

Look	in	a	printed	manual,	if	you	can,	for	general	help.	You	should	have
someone	show	you	some	things	and	then	read	one	of	the	tutorial	papers
(e.g.,	UNIX	for	Beginners	or	An	Introduction	to	the	C	Shell)	to	get
started.	Printed	manuals	covering	all	aspects	of	Unix	are	on	sale	at	the
bookstore.

Most	of	the	material	in	the	printed	manuals	is	also	available	online
via	“man”	and	similar	commands;	for	instance:

apropos	keyword	-	lists	commands	relevant	to	keyword
whatis	filename	-	lists	commands	involving	filename
man	command	-	prints	out	the	manual	entry	for	a	command
help	command	-	prints	out	the	pocket	guide	entry	for	a	command	are
helpful;	other	basic	commands	are:
cat	-	display	a	file	on	the	screen
date	-	print	the	date	and	time
du	-	summarize	disk	space	usage
edit	-	text	editor	(beginner)
ex	-	text	editor	(intermediate)
finger	-	user	information	lookup	program
learn	-	interactive	self-paced	tutorial	on	Unix
—More(40%)—

Your	system	might	have	something	similar.	However,	be	careful	if	you’re	running	on
an	HP-UX	system,	as	its	help	command	isn’t	intended	to	enlighten	shell	users	but
to	do	something	else	entirely.	Type	man	help	to	find	out	more.

2.	Some	versions	of	commands	offer	helpful	output	if	you	specify	the	-h	flag:
Click	here	to	view	code	image

%	ls	-h

usage:	ls	[-acdfgilqrstu1ACLFR]	name	…
%

Then	again,	others	don’t:
Click	here	to	view	code	image

%	ls	-h

Global.Software			Mail/										Src/														history.usenet.Z

Interactive.Unix		News/										bin/														testme
%

In	that	case,	try	--help	and	keep	your	fingers	crossed.

A	few	commands	offer	lots	of	output	when	you	use	the	-h	flag:
Click	here	to	view	code	image

%	elm	-h

Possible	Starting	Arguments	for	ELM	program:
arg					Meaning
-a					Arrow	-	use	the	arrow	pointer	regardless
-c					Checkalias	-	check	the	given	aliases	only
-dn					Debug	-	set	debug	level	to	‘n’
-fx					Folder	-	read	folder	‘x’	rather	than	incoming	mailbox
-h					Help	-	give	this	list	of	options
-k					Keypad	-	enable	HP	2622	terminal	keyboard
-K					Keypad&softkeys	-	enable	use	of	softkeys	+	“-k”
-m					Menu	-	Turn	off	menu,	using	more	of	the	screen
-sx					Subject	‘x’	-	for	batchmailing
-V					Enable	sendmail	voyeur	mode.
-v					Print	out	ELM	version	information.
-w					Supress	warning	messages…
-z					Zero	-	don’t	enter	ELM	if	no	mail	is	pending
%

Unfortunately,	there	isn’t	a	command	flag	common	to	all	Unix	utilities	that	lists	the
possible	command	flags.

3.	Sometimes	you	can	obtain	help	from	a	program	by	incurring	its	wrath.	You	can
specify	a	set	of	flags	that	are	impossible,	unavailable,	or	just	plain	puzzling.	I	always
use	-xyz	because	they’re	uncommon	flags:

Click	here	to	view	code	image
%		man	-xyz

usage:							man	[-]	[-adFlprt]	[-M	path]	[-T	macro-package]	[-s	section
]	name	…
				man	[-M	path]	[-s	section]	-k	keyword	…
				man	[-M	path]	-f	file	…
				man	[-M	path]	[-s	section]	-K	keyword	…
$

For	every	command	that	does	something	marginally	helpful,	there	are	a	half-dozen
commands	that	give	useless,	and	amusingly	different,	output	for	these	flags:

Click	here	to	view	code	image

$	bc	-xyz

bc:	illegal	option	—	x
usage:	bc	[-c]	[-l]	[file	…]
$	file	-xyz
file:	illegal	option	—	x
file:	illegal	option	—	y
file:	illegal	option	—	z
usage:	file	[-dh]	[-M	mfile]	[-m	mfile]	[-f	ffile]	file	…
							file	[-dh]	[-M	mfile]	[-m	mfile]	-f	ffile
							file	-i	[-h]	[-f	ffile]	file	…
							file	-i	[-h]	-f	ffile
							file	-c	[-d]	[-M	mfile]	[-m	mfile]
$	grep	-xyz
grep:	illegal	option	—	x

grep:	illegal	option	—	z
Usage:	grep	[-c|-l|-q]	-bhinsvw	pattern	file	…
$
%

You	can’t	rely	on	programs	being	helpful	about	them,	but	you	can	rely	on	the	man
page	being	available	for	just	about	everything	on	the	system.

As	much	as	I’d	like	to	tell	you	that	a	wide	variety	of	useful	and	interesting	information	is
available	within	Unix	on	the	commands	therein,	in	reality,	Unix	has	man	pages	but
precious	little	else.	Furthermore,	some	commands	installed	locally	might	not	even	have
man	page	entries,	which	leaves	you	to	puzzle	out	how	they	work.	If	you	encounter
commands	that	are	undocumented,	I	recommend	that	you	ask	your	system	administrator	or
vendor	what’s	going	on	and	why	there’s	no	further	information	on	the	program.

Summary
In	this	first	hour,	the	goal	was	for	you	to	learn	a	bit	about	Unix,	where	it	came	from,	and
how	it	differs	from	other	operating	systems	that	you	might	have	used	in	the	past.	You	also
learned	about	the	need	for	security	on	a	multiuser	system	and	how	a	password	helps
maintain	that	security,	so	that	your	files	aren’t	easily	read,	altered,	or	removed	by	anyone
but	you.

You	also	learned	what	a	command	shell,	or	command-line	interpreter,	is	all	about,	how	it
differs	from	graphically	oriented	interface	systems	such	as	Macintosh	and	Windows,	and
how	it’s	not	only	easy	to	use	but	considerably	more	powerful	than	systems	that	have	you
drag	and	drop	little	pictures.

Finally,	you	learned	about	getting	help	on	Unix.	Although	there	aren’t	many	options,	you
do	have	the	manual	pages	available,	as	well	as	the	command-line	arguments	and
apropos.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
account	This	is	the	official	one-word	name	by	which	the	Unix	system	knows	you.	Mine	is
taylor.

arguments	Not	any	type	of	domestic	dispute,	arguments	are	the	set	of	options,
parameters,	and	filenames	specified	to	Unix	commands.	When	you	use	a	command	such
as	vi	test.c,	all	words	other	than	the	command	name	itself	(vi)	are	arguments	to	the
program.

command	Each	program	in	Unix	is	also	known	as	a	command:	The	two	words	are
interchangeable.

i-node	The	Unix	file	system	is	like	a	huge	notebook	full	of	sheets	of	information.	Each

file	is	like	an	index	tab,	indicating	where	the	file	starts	in	the	notebook	and	how	many
sheets	are	used.	The	tabs	are	called	i-nodes.

man	page	Each	standard	Unix	command	comes	with	some	basic	online	documentation
that	describes	its	function.	This	online	documentation	for	a	command	is	called	a	man
page.	Usually,	the	man	page	lists	the	command-line	flags	and	some	error	conditions.

multitasking	A	multitasking	computer	is	one	that	can	run	more	than	one	program,	or	task,
at	a	time.

multiuser	Computers	intended	to	have	more	than	a	single	person	working	on	them
simultaneously	are	designed	to	support	multiple	users,	hence	the	term	multiuser.	By
contrast,	personal	computers	are	almost	always	single-user	because	someone	else	can’t	be
running	a	program	or	editing	a	file	while	you	are	using	the	computer	for	your	own	work.

pathname	Unix	is	split	into	a	wide	variety	of	different	directories	and	subdirectories,
often	across	multiple	hard	disks	and	even	multiple	computers.	So	that	the	system	needn’t
search	laboriously	through	the	entire	mess	each	time	you	request	a	program,	the
directories	you	reference	are	stored	as	your	search	path,	and	the	location	of	any	specific
command	is	known	as	its	pathname.

shell	To	interact	with	Unix,	you	type	in	commands	to	the	command-line	interpreter,	which
is	known	in	Unix	as	the	shell,	or	command	shell.	It’s	the	underlying	environment	in	which
you	work	with	the	Unix	system.

Exercises
Each	hour	concludes	with	a	set	of	questions	for	you	to	contemplate.	Here’s	a	warning	up
front:	Not	every	question	has	a	definitive	answer.	After	all,	you	are	learning	about	a
multichoice	operating	system!

1.	Name	the	three	multi	concepts	that	are	at	the	heart	of	Unix’s	power.

2.	Is	Unix	more	like	a	grid	of	streets,	letting	you	pick	your	route	from	point	A	to	point
B,	or	more	like	a	directed	highway	with	only	one	option?	How	does	this	compare
with	other	systems	you’ve	used?

3.	Systems	that	support	multiple	users	always	ask	you	to	say	who	you	are	when	you
begin	using	the	system.	What’s	the	most	important	thing	to	remember	when	you’re
finished	using	the	system?

4.	If	you’re	used	to	graphical	interfaces,	try	to	think	of	a	few	tasks	that	you	feel	are
more	easily	accomplished	by	moving	icons	than	by	typing	commands.	Write	those
tasks	on	a	separate	piece	of	paper,	and	in	a	few	days,	pull	that	paper	out	and	see
whether	you	still	feel	that	way.

5.	Think	of	a	few	instances	in	which	you	needed	to	give	a	person	written	instructions.
Was	that	easier	than	giving	spoken	instructions	or	drawing	a	picture?	Was	it	harder?

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	how	to	log	in	to	the	system	at	the	login	prompt	and	how	to
log	out	of	the	system.	You’ll	learn	how	to	use	the	passwd	command	to	change	your
password,	how	to	use	the	id	command	to	find	out	who	the	computer	thinks	you	are,	and
lots	more!

Hour	2.	Getting	onto	the	System	and	Using	the	Command
Line

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	log	in	to	and	log	out	of	the	system

	How	to	change	your	password	with	the	passwd	command

	About	choosing	a	memorable	and	secure	password

	How	to	find	out	who	the	computer	thinks	you	are

	How	to	find	out	who	else	is	on	the	system

	How	to	find	out	what	everyone	is	doing	on	the	system

	About	checking	the	current	date	and	time

In	this	second	Unix	lesson,	it’s	time	for	you	to	log	in	to	the	system	and	try	some
commands.	This	hour	focuses	on	learning	the	basics	of	interacting	with	your	Unix
machine.

This	hour	introduces	many	commands,	so	it’s	very	important	that	you	have	a	Unix	system
available	on	which	you	can	work	through	all	the	examples.	Most	examples	have	been
taken	from	a	PC	running	Solaris	11,	a	variant	of	Unix	System	V	Release	4,	and	have	been
double-checked	on	both	a	BSD-based	system	and	a	Mac	OS	X	command	line.	Any
variance	between	the	three	is	noted.	If	you	have	a	Unix	system	available,	odds	are	good
that	it’s	based	on	either	AT&T	System	V	or	Berkeley	Unix.

Beginning	Your	Session
Before	you	can	start	interacting	with	the	Unix	command	shell	of	your	choice,	you	need	to
learn	how	to	log	in	to	your	account.	The	good	news	is	that	it’s	easy!	Let’s	have	a	look.

Task	2.1:	Logging	In	to	and	Out	of	the	System
Because	Unix	is	a	multiuser	system,	user	authentication	is	always	enforced:	You	always
need	to	provide	credentials	(generally	a	username	and	a	password)	to	the	system	so	that	it
knows	who	you	are.	Some	modern	user-friendly	flavors	of	Unix	(such	as	Mac	OS	X)
allow	you	to	bypass	this	requirement	by	always	booting	into	a	single	user’s	desktop
session,	but	this	is	just	a	convenience	feature;	under	the	hood,	all	Unix	flavors	are	the
same,	and	all	require	that	you	authenticate	yourself	at	some	stage	of	the	process.

Old-school	hardware	terminals	do	still	exist,	or	you	might	choose	to	boot	a	Linux	or
FreeBSD	box	directly	to	the	textual	console;	but	if	you’re	new	to	Unix,	you’ll	most	likely
need	an	application	known	as	a	terminal	to	access	the	command	line.	Most	graphical
operating	systems	include	one.	I	use	the	Terminal	app	included	with	Mac	OS	X	(in	the
Utilities	folder)	whether	I’m	accessing	my	local	system	or	just	opening	an	environment	in

which	to	connect	to	a	remote	system	via	ssh.

Tip

Most	Linux	flavors	have	a	prominently	available	terminal	program	for	your	use;	on
a	Windows	PC,	your	best	bet	is	the	freeware	program	PuTTY,	available	at
http://www.putty.org.

If	you	need	to	actually	log	in,	the	first	thing	you’ll	see	on	the	screen	will	look	something
like	this:
Click	here	to	view	code	image

GNU/Linux	ado.aplonis.net	5:38pm	on	Tue,	8	Jul	2014
login:

The	first	line	of	this	challenge	prompt	indicates	what	variant	of	Unix	the	system	is	running
(GNU/Linux	in	this	case),	the	hostname	of	the	computer	system,	and	the	current	time	and
date.	The	second	line	asks	for	your	login,	also	known	as	your	username	or	account	name.

Note

If	you	connect	to	a	Unix	server	via	the	network,	using	either	telnet	or	ssh,
you’ll	see	the	same	login	prompt,	though	I	strongly	recommend	that	you	always	use
ssh	for	security	reasons.	If	you	use	a	terminal	program	within	a	graphical
environment,	you	won’t	need	to	log	in	because	you’ve	already	logged	in	to	your
GUI	session.

1.	Know	your	account	name.	It	would	be	nice	if	computers	could	keep	track	of	users
by	simply	using	full	names	so	that	I	could	enter	Dave	Taylor	at	the	login	prompt.
Alas,	like	the	Internal	Revenue	Service,	the	Department	of	Motor	Vehicles,	and
many	other	agencies,	Unix	does	not	use	names	but	instead	assigns	each	user	a
unique	identifier.	This	identifier,	called	an	account	name,	has	eight	characters	or
fewer	and	is	usually	based	on	the	user’s	first	or	last	name,	although	it	can	be	any
combination	of	letters	and	numbers.	I	have	two	account	names,	or	logins,	on	the
systems	I	use:	taylor	and,	on	another	machine	where	someone	already	had	that
account	name,	d1taylor.

2.	Know	your	password.	Perhaps	your	account	name	is	on	a	piece	of	paper	with	your
initial	password,	both	assigned	by	the	Unix	system	administrator.	If	you	do	not	have
this	information,	you	need	to	track	it	down	before	you	can	go	further.	Some	accounts
might	not	have	an	initial	password;	in	that	case,	you	won’t	have	to	enter	one	the	first
time	you	log	in	to	the	system.	If	that’s	the	case,	create	a	password	for	your	own
security.	In	a	few	minutes,	you	will	learn	how	you	can	give	yourself	the	password	of
your	choice	by	using	the	Unix	command	passwd.

Note	that	a	lot	of	systems	are	accessible	only	through	the	ssh	function,	and	so	a
common	way	to	connect	to	a	modern	system	is	to	open	up	a	local	terminal	app	on
your	Mac	or	PC	and	type	in	something	like:
$	ssh	taylor@intuitive.com

http://www.putty.org

where	taylor	is	the	account	name	and	intuitive.com	is	the	name	of	the
remote	host.	If	that’s	how	you	need	to	access	your	Unix	system	remotely,	it’s
actually	easier	than	using	the	login/password	sequence;	you	just	need	to	make	extra
sure	that	you	type	in	everything	exactly	as	prompted.

3.	At	the	login	prompt,	enter	your	account	name	if	needed:
login:	taylor
Password:

Be	particularly	careful	to	use	exactly	what	your	administrator	tells	you	to	use	(for
example,	the	accounts	taylor,	Taylor,	and	TAYLOR	are	all	different	to	Unix).
After	you’ve	entered	your	account	name,	the	system	moves	the	cursor	to	the	next
line	and	prompts	you	for	your	password.	If	you’re	using	the	ssh	sequence,	then	the
prompt	will	include	your	account	name,	as	shown	here:

Click	here	to	view	code	image
taylor@intuitive.com’s	password:

Either	way,	when	you	enter	your	password,	the	system	won’t	echo	it	(that	is,	won’t
display	it)	on	the	screen.	That’s	okay.	Lack	of	an	echo	doesn’t	mean	anything	is
broken;	instead,	this	is	a	security	measure	to	ensure	that	even	if	people	are	looking
over	your	shoulder,	they	can’t	learn	your	secret	password	by	watching	your	screen.
Be	certain	to	type	your	password	correctly	because	you	won’t	see	what	you’ve	typed
and	have	a	chance	to	correct	it.

Note

If	you	enter	either	your	login	or	your	password	incorrectly,	the	system	complains
with	an	error	message:

login:	taylor
Password:
Login	incorrect
login:

Most	systems	give	you	three	or	four	attempts	to	get	both	your	login	and	password
correct,	so	try	again.	Don’t	forget	to	enter	your	account	name	at	the	login	prompt
each	time,	as	required.	Be	careful,	though:	Too	many	failed	login	attempts,	and	you
might	lock	out	your	account	and	have	to	contact	the	administrator	for	help.

4.	After	you’ve	successfully	entered	your	account	name	and	password,	you	are	shown
some	information	about	the	system,	some	news	for	users,	perhaps	a	fortune,	and	an
indication	of	whether	you	have	electronic	mail.	The	specifics	will	vary,	but	here’s	an
example	of	what	I	see	when	I	log	in	to	my	account:

Click	here	to	view	code	image
login:	taylor
Password:
Last	login:	Thu	Jul	7	17:00:23	on	ttyAe
You	have	mail.
$

Note

The	dollar	sign	prompt	is	Unix’s	way	of	telling	you	that	it’s	ready	for	you	to	enter
some	commands.	It	is	the	equivalent	of	a	soldier	saluting	and	saying,	“Ready	for
duty!”	or	an	employee	saying,	“What	shall	I	do	now,	boss?”

Your	system	might	be	configured	so	that	you	have	a	slightly	different	prompt	here.
The	possibilities	include	a	%	for	the	C	shell,	your	current	location	in	the	file	system,
the	current	time,	the	command-index	number	(which	you’ll	learn	about	when	you
learn	how	to	teach	the	Unix	command-line	interpreter	to	adapt	to	your	work	style
rather	than	vice	versa),	and	the	name	of	the	computer	system	itself.	Here	are	some
examples:
[/users/taylor]	:
(mentor)	33	:
taylor@mentor	%

Your	prompt	might	not	look	exactly	like	any	of	these,	but	you	know	you’re	looking
at	a	prompt	because	it’s	at	the	beginning	of	the	line	on	which	your	cursor	sits,	and	it
reappears	each	time	you’ve	completed	working	with	any	Unix	program.	That’s	how
you	know	the	program	has	completed	its	task.

5.	At	this	point,	you’re	ready	to	enter	your	first	Unix	command,	exit,	to	sign	off
from	the	computer	system.	Try	it.	On	my	system,	entering	exit	shuts	down	all	my
programs	and	quits	the	terminal	app.	On	other	systems,	it	returns	you	to	the	login
prompt.	Many	Unix	systems	offer	a	pithy	quote	as	you	leave,	too.
%	exit
He	who	hesitates	is	lost.
login:

Note

You	might	be	able	to	end	your	session	by	pressing	Ctrl-D.	Some	shells	will	catch
this	and	prompt	you	to	determine	whether	you	want	to	end	your	session;	others	will
exit.	Ctrl-D	is	actually	an	end-of-file	character;	it	may	be	different	on	your	system.

6.	If	you	have	a	direct	connection	to	the	computer	because	you’re	using	a	shared
system	in	a	computer	center,	library,	or	similar,	odds	are	very	good	that	logging	out
causes	the	system	to	prompt	for	another	account	name,	enabling	the	next	person	to
use	the	system.	If	you	manually	connected	to	the	system	via	the	Internet,	you
probably	will	see	something	more	like	the	following	example.	After	being
disconnected	from	the	remote	system,	you’ll	then	be	able	to	safely	shut	down	your
local	computer:

Click	here	to	view	code	image

%	exit
Did	you	lose	your	keys	again?

Connection	to	154.23.11.140	closed.

Note

Unix	is	case	sensitive,	so	the	exit	command	is	not	the	same	as	EXIT.	If	you	enter
a	command	all	in	uppercase,	the	system	won’t	find	any	such	program	or	command
and	instead	will	respond	with	the	complaint	command	not	found.	Get	in	the
habit	of	using	all	lowercase	for	commands	and	Unix	input.	Lowercase	is	the	natural
Unix	style.

At	this	point,	you’ve	stepped	through	the	toughest	parts	of	getting	started	with	Unix.	You
have	an	account,	know	the	password,	have	logged	in	to	the	system,	and	have	entered	a
simple	command	telling	the	computer	what	you	want	to	do,	and	the	computer	has	done	it!

Task	2.2:	Changing	Passwords	with	passwd
Having	logged	in	to	a	Unix	system,	you	can	clearly	see	that	many	differences	exist
between	Unix	and	a	PC	or	Macintosh	personal	computer.	Certainly	the	style	of	interaction
is	different.	With	Unix	command	lines,	the	keyboard	becomes	the	exclusive	method	of
instructing	the	computer	what	to	do,	and	the	mouse	sits	idle.	One	of	the	greatest
differences	is	that	Unix	is	a	multiuser	system,	as	you	learned	in	the	preceding	hour.	As	you
learn	more	about	Unix,	you’ll	find	that	this	characteristic	has	an	impact	on	various	tasks
and	commands.	The	next	Unix	command	you’ll	learn	about	is	one	that	exists	because	of
the	multiuser	nature	of	Unix:	passwd.

With	the	passwd	command,	you	can	change	the	password	associated	with	your
individual	account	name.	As	with	your	personal	identification	number	(PIN)	for
automated-teller	machines,	the	value	of	your	password	is	directly	related	to	how	secret	it
remains.

Note

Unix	is	careful	about	the	whole	process	of	changing	passwords.	It	requires	you	to
enter	your	current	password	to	prove	you’re	really	you.	Imagine	that	you	are	at	a
computer	center	and	have	to	leave	the	room	to	make	a	quick	phone	call.	Without
much	effort,	a	prankster	could	lean	over	and	quickly	change	your	environment	or
even	delete	some	critical	files!	That’s	why	you	should	log	out	if	you’re	not	going	to
be	near	your	system,	and	that’s	also	why	passwords	are	never	echoed	in	Unix.

1.	Consider	what	happens	when	I	use	the	passwd	command	to	change	the	password
associated	with	my	account:
%	passwd
Changing	password	for	taylor.
Old	password:
New	passwd:
Retype	new	passwd:
%

2.	Notice	that	I	never	received	any	visual	confirmation	that	the	password	I	actually
entered	was	the	same	as	the	password	I	thought	I	entered.	This	is	not	as	dangerous	as
it	seems,	though,	because	if	I	had	made	any	typographical	errors,	the	password	I

entered	the	second	time	(when	the	system	said	Retype	new	passwd:)	wouldn’t
have	matched	the	first.	In	a	no-match	situation,	the	system	would	have	warned	me
that	the	information	I	supplied	was	inconsistent:

Click	here	to	view	code	image

%	passwd
Changing	password	for	taylor.
Old	password:
New	passwd:
Retype	new	passwd:
Mismatch	-	password	unchanged.
%

3.	Smart	systems	will	complain	if	you	pick	a	really	bad	password	or	one	that’s	just
obviously	too	short.	I	tried	cat	on	my	Oracle	Solaris	system,	and	the	passwd
command	complained:

Click	here	to	view	code	image
passwd:	Password	too	short	-	must	be	at	least	6	characters.

Oops.	In	the	next	section	you’ll	learn	about	how	to	pick	good,	hard-to-guess	but
easy-to-remember	passwords.

After	you	change	the	password,	don’t	forget	it.	Resetting	it	to	a	known	value	if	you	don’t
know	the	current	password	requires	the	assistance	of	a	system	administrator	or	other
operator.	Using	a	trick	to	remember	your	password	can	be	a	Catch-22,	though:	You	don’t
want	to	write	down	the	password	because	that	reduces	its	secrecy	and	you	don’t	want	to
make	it	too	easy	to	remember	because	someone	else	can	then	guess	it,	but	you	don’t	want
to	forget	it,	because	that	can	be	all	sorts	of	hassle.	You	want	to	be	sure	that	you	pick	a
good	password,	too,	as	described	in	Task	2.3.

Task	2.3:	Picking	a	Secure	Password
If	you’re	an	aficionado	of	old	movies,	you	are	familiar	with	the	thrillers	in	which	the
hoods	break	into	an	office	and	spin	the	dial	on	the	safe	a	few	times,	snicker	a	bit	about
how	the	boss	shouldn’t	have	chosen	his	daughter’s	birthday	as	the	combination,	and	crank
open	the	safe.	(If	you’re	really	familiar	with	the	genre,	you	recall	films	in	which	the
criminals	rifle	the	desk	drawers	and	find	the	combination	of	the	safe	taped	to	the	underside
of	a	drawer	as	a	fail-safe,	or	a	failed	safe,	as	the	case	may	be.	Hitchcock’s	great	film
Marnie	has	just	such	a	scene.)	The	moral	is	that	even	the	best	secret	password	is	useful
only	if	you	keep	it	secret.

For	computers,	security	is	tougher	because	a	fast	computer	system	can	test	all	the	words	in
an	English	dictionary	against	your	account	password	faster	than	you	can	say	“don’t	hack
me,	bro.”	If	your	password	is	kitten	or,	worse	yet,	your	account	name,	any	semicompetent
bad	guy	could	be	in	your	account	and	messing	with	your	files	in	no	time.	This	is	called	a
dictionary	attack.

Most	modern	Unix	systems	have	some	heuristics,	or	smarts,	built	in	to	the	passwd
command;	the	heuristics	check	to	determine	whether	what	you’ve	entered	is	reasonably
secure.

The	tests	performed	typically	answer	these	questions:

	Is	the	proposed	password	at	least	six	characters	long?	(A	longer	password	is	more
secure.)

	Does	it	have	both	digits	and	letters?	(A	mix	of	both	is	best.)

	Does	it	mix	upper-	and	lowercase	letters?	(A	mix	is	best.)

	Does	it	include	at	least	one	punctuation	character?	(adding	a	%,	!,	@,	or	even	.	is
best)

	Is	it	in	the	online	dictionary?	(You	should	avoid	common	words.)

	Is	it	a	name	or	word	associated	with	the	account?	(Dave	would	be	a	bad	password
for	my	account	taylor	because	my	full	name	on	the	system	is	Dave	Taylor).

Some	versions	of	the	passwd	program	are	more	sophisticated,	and	some	less,	but
generally	the	following	are	good	guidelines	for	picking	a	secure	password:

1.	An	easy	way	to	choose	memorable	and	secure	passwords	is	to	think	of	them	as
small	sentences	rather	than	as	a	single	word	with	some	characters	surrounding	it.	If
you’re	a	fan	of	Alexander	Dumas	and	The	Three	Musketeers,	then	“All	for	one	and
one	for	all!”	is	a	familiar	cry,	but	it’s	also	the	basis	for	a	couple	of	great	passwords.
Easily	remembered	derivations	might	be	the	punnish	awl4ONE?	or	a41&14A!.

2.	If	you’ve	been	in	the	service,	you	might	have	the	old	U.S.	Army	jingle	stuck	in	your
head:	“Be	All	You	Can	Be.”	Try	thinking	of	that	phrase	as	a	series	of	abbreviations
and	letters:	ballucanb.	Turn	that	into	a	good	password	with	a	few	additional
tweaks:	4ballu@canb.	You	might	have	a	self-referential	password:	account4me	or
MySekrit	would	work.	If	you’re	ex-Vice	President	Dan	Quayle,	1Potatoe
could	be	a	memorable	choice.	(potatoe	by	itself	wouldn’t	be	particularly	secure
because	it	lacks	digits	and	lacks	uppercase	letters	and	because	it’s	a	simple	variation
on	a	word	in	the	online	dictionary.)

3.	Another	way	to	choose	passwords	is	to	find	acronyms	that	have	special	meaning	to
you.	Don’t	choose	simple	ones.	Remember,	short	ones	aren’t	going	to	be	secure.	But
if	you	have	always	heard	that	“Real	programmers	don’t	eat	quiche!”	then	Rpdeq!
could	be	a	complex	password	that	you’ll	easily	remember.

4.	Many	systems	you	use	every	day	require	numeric	passwords	to	verify	your	identity,
including	the	automated-teller	machine	(with	its	PIN),	government	agencies	(with
the	Social	Security	number),	and	the	Department	of	Motor	Vehicles	(your	driver’s
license	number	or	vehicle	license).	Each	of	these	actually	is	a	poor	Unix	password
because	it’s	too	easy	for	someone	to	find	out	your	license	number	or	Social	Security
number.	And	a	series	of	nothing	but	numbers	is	a	terrible	password	anyway!

Note

The	important	thing	is	to	come	up	with	a	strategy	of	your	own	for	choosing	a
password	that	is	both	memorable	and	secure.	Then	keep	the	password	in	your	head
rather	than	write	it	down.

Why	be	so	paranoid?	For	a	small	Unix	system	that	will	sit	on	your	desk	and	won’t	have
any	other	users,	a	high	level	of	concern	for	security	is,	to	be	honest,	unnecessary.	As	with
driving	a	car,	though,	it’s	never	too	early	to	learn	good	habits.	Any	system	that	has
Internet	access	means	that	it’s	probably	accessible	from	the	Internet,	too,	and	that	means
it’s	at	risk	of	hackers	trying	to	break	in,	a	target	for	delinquents	who	relish	the	intellectual
challenge	of	breaking	into	an	account	and	then	altering	and	destroying	files	and	programs
purely	for	amusement.

The	best	way	to	avoid	trouble	is	to	develop	good	security	habits	now,	when	you’re	first
learning	about	Unix.	Learn	how	to	recognize	what	makes	a	good,	secure	password,	pick
one	for	your	account,	and	keep	it	a	secret.	Don’t	write	it	down,	or,	if	you	must,	keep	that
note	secure	too	and	notify	your	admin	if	it	gets	lost.	A	little	prevention	can	be	a	lot	easier
than	mopping	up	after	a	security	breech.

With	that	in	mind,	log	in	again	to	your	Unix	system	and	try	changing	your	password.	First,
change	it	to	easy	and	see	whether	the	program	warns	you	that	easy	is	too	short	or
otherwise	a	poor	choice.	Then	try	entering	two	different	secret	passwords	to	see	whether
the	program	notices	the	difference.	Finally,	pick	a	good	password,	using	the	preceding
guidelines	and	suggestions,	and	change	your	account	password	to	be	more	secure.

Seeing	What’s	Going	On	Around	You
You’re	logged	in,	looking	at	the	command	prompt,	and	ready	to	delve	into	this	Unix	thing.
Great!	Let’s	have	a	look.

Task	2.4:	Who	Are	You?
While	you’re	logged	in	to	the	system,	you	can	learn	a	few	more	Unix	commands,
including	a	couple	that	can	answer	a	philosophical	conundrum	that	has	bothered	men	and
women	of	thought	for	thousands	of	years:	Who	am	I?

1.	The	easiest	way	to	find	out	“who	you	are”	is	to	enter	the	whoami	command:
%	whoami
taylor
%

Try	it	on	your	system.	The	command	lists	the	account	name	associated	with	the
current	login.

2.	Ninety-nine	percent	of	the	commands	you	type	with	Unix	have	a	single	specific
spelling	and	will	fail	if	you	get	creative.	With	whoami,	however,	adding	spaces	to
transform	the	statement	into	proper	English—that	is,	entering	who	am	I—
dramatically	changes	the	result.	On	my	system,	I	get	the	following	results:

Click	here	to	view	code	image

%	who	am	i
taylor					pts/2								Oct	27	10:11				(:0.0)
%

On	a	Mac	system,	it	doesn’t	show	(:0.0)	otherwise	things	work	well.

This	tells	me	quite	a	bit	about	my	identity	on	the	computer,	including	my	account

name	and	where	and	when	I	logged	in.	Try	the	command	on	your	system	to	see	what
results	you	get.
In	this	example,	my	account	name	is	taylor.	The	pts/2	is	the	current
communication	line	I’m	using	to	access	the	system,	and	you	can	see	that	I	logged	in
at	10:11	using	a	regular	communications	socket.	(The	:0.0	is	relevant	under	the	X
Window	System,	something	we	won’t	cover	for	quite	a	while	in	this	book.)

Note

Unix	is	full	of	oddities	that	are	based	on	historical	precedent.	One	is	tty	or	pty	to
describe	a	computer	or	terminal	line.	This	comes	from	the	earliest	Unix	systems,	in
which	Digital	Equipment	Corporation	teletypewriters	were	hooked	up	as	interactive
devices.	The	teletypewriters	quickly	received	the	nickname	tty,	and	all	these	years
later,	when	people	wouldn’t	dream	of	hooking	up	a	teletypewriter,	the	line	is	still
known	as	a	tty	(or	pty,	for	“pseudo	terminal”)	line.

3.	One	of	the	most	dramatic	influences	Unix	systems	have	had	on	the	computing
community	is	the	propensity	for	users	to	work	together	on	a	network,	hooked	up	by
telephone	lines	and	modems	(the	predominant	method	until	the	middle	to	late	1980s)
or	by	high-speed	network	connections	to	the	Internet	(a	more	common	type	of
connection	today).	Regardless	of	the	connection,	however,	you	can	see	that	each
computer	needs	a	unique	identifier	to	distinguish	it	from	others	on	the	network.	In
the	early	days	of	Unix,	systems	had	unique	hostnames,	but	as	hundreds	of	systems
have	grown	into	millions,	this	has	proved	to	be	an	unworkable	solution.

4.	The	alternative	was	what’s	called	a	domain-based	naming	scheme,	where	systems
are	assigned	unique	names	within	specific	subsets	of	the	overall	network.	Here’s	an
example:
mentor.utech.edu

The	computer	I	use	is	within	the	.edu	domain	(read	the	hostname	and	domain
—mentor.utech.edu—from	right	to	left),	meaning	that	the	computer	is	located
at	an	educational	institution.	Then,	within	the	educational	institution	subset	of	the
network,	utech	is	a	unique	descriptor,	and,	therefore,	if	other	UTech	universities
existed,	they	couldn’t	use	the	same	top-level	domain	name.	Finally,	mentor	is	the
name	of	the	computer	itself.

5.	As	with	learning	to	read	addresses	on	envelopes,	learning	to	read	domain	names	can
unlock	much	information	about	a	computer	and	its	location.	For	example,
lib.stanford.edu	is	the	library	computer	at	Stanford	University,	and
ccgate.infoworld.com	tells	you	that	the	computer	is	at	InfoWorld,	a
commercial	computer	site,	and	that	its	hostname	is	ccgate.	You’ll	learn	more
about	this	later	when	you	learn	how	to	use	electronic	mail	to	communicate	with
people	throughout	the	Internet.

6.	Another	way	to	find	out	who	you	are	in	Unix	is	to	use	the	id	command.	The
purpose	of	this	command	is	to	tell	you	what	group	or	groups	you’re	in	and	the

numeric	identifier	for	your	account	name	(known	as	your	user	ID	number	or	user
ID).	Enter	id	and	see	what	you	get.	I	get	the	following	result:
%	id
uid=100(taylor)	gid=10(staff)
%

Note

If	you	enter	id	and	the	computer	returns	a	different	result	or	indicates	that	you
need	to	specify	a	filename,	don’t	panic.	On	many	Berkeley-derived	systems,	the	id
command	is	used	to	obtain	low-level	information	about	files.

7.	In	this	example,	you	can	see	that	my	account	name	is	taylor	and	that	the	numeric
equivalent,	the	user	ID,	is	100.	(Here	it’s	abbreviated	as	uid—pronounce	it	“you-
eye-dee”	to	sound	like	a	Unix	expert).	Just	as	the	account	name	is	unique	on	a
system,	so	also	is	the	user	ID.	Fortunately,	you	rarely,	if	ever,	need	to	know	these
numbers	since	they’re	used	by	the	OS	internally,	so	focus	on	the	account	name	and
group	name.

8.	Next,	you	can	see	that	my	group	ID	(or	gid)	is	10	and	that	group	number	10	is
known	as	the	staff	group.	It’s	the	only	group	to	which	I	belong.

On	another	system,	I	am	a	member	of	two	different	groups:
Click	here	to	view	code	image

%	id
uid=103(taylor)	gid=10(staff)	groups=10(staff),44(ftp)
%

Although	I	have	the	same	account	name	on	this	system	(taylor),	you	can	see	that
my	user	ID	and	group	ID	are	both	different	from	those	in	the	earlier	example.	Note
also	that	I’m	a	member	of	two	groups:	the	staff	group,	with	a	group	ID	of	10,	and
the	ftp	group,	with	a	group	ID	of	44.

You’ve	now	learned	a	couple	different	ways	to	have	Unix	give	you	some	information
about	your	account.	Later,	you’ll	learn	how	to	set	protection	modes	on	your	files	so	that
people	in	your	group	can	read	your	files	but	so	those	not	in	your	group	are	barred	from
access.

Task	2.5:	Finding	Out	What	Other	Users	Are	Logged	In	to	the	System
The	next	philosophical	puzzle	that	you	can	solve	with	Unix	is	“Who	else	is	there?”	The
answer,	however,	is	rather	restricted,	limited	to	only	those	people	currently	logged	in	to
the	same	computer	at	the	same	time.	Three	commands	are	available	to	get	you	this
information,	and	the	one	you	choose	depends	on	how	much	you’d	like	to	learn	about	the
other	users:	users,	who,	and	w.

1.	The	simplest	of	the	commands	is	the	users	command,	which	lists	the	account
names	of	all	people	using	the	system:
%	users

david	mark	taylor
%

In	this	example,	david	and	mark	are	also	logged	in	to	the	system	with	me.	Try	this
on	your	computer	and	see	what	other	users—if	any—are	logged	in	to	your	computer
system.

2.	A	command	that	you’ve	encountered	earlier	in	this	hour	can	be	used	to	find	out	who
is	logged	on	to	the	system,	what	line	they’re	on,	and	how	long	they’ve	been	logged
in.	That	command	is	who:

Click	here	to	view	code	image

%	who
taylor					vt/7									Oct	27	14:10				(:0)
david						pts/1								Dec	27	15:54				(:0.0)
mark							pts/2								Oct	27	11:51				(:0.0)
%

Here,	you	can	see	that	three	people	are	logged	in:	taylor	(me),	david,	and
mark.	Furthermore,	you	can	now	see	that	david	is	logged	in	by	connection
pts/1	and	has	been	connected	since	December	27	at	3:54	p.m.	You	can	see	that
mark	has	been	connected	since	just	before	noon	on	October	27	on	line	pts/2.
Note	that	I	have	been	logged	in	since	14:10,	which	is	24-hour	time	for	2:10	p.m.
Unix	doesn’t	always	indicate	a.m.	or	p.m.

The	user	and	who	commands	can	tell	you	who	is	using	the	system	at	any	particular
moment,	but	how	do	you	find	out	what	they’re	doing?

Task	2.6:	What	Is	Everyone	Doing	on	the	Computer?
To	find	out	what	everyone	else	is	doing,	there’s	a	third	command,	w,	that	serves	as	a
combination	of	“Who	are	they?”	and	“What	are	they	doing?”

1.	Consider	the	following	output	from	the	w	command:
Click	here	to	view	code	image

%	w
2:12pm		up	7	days,		5:28,		3	users,	load	average:	0.33,	0.33,	0.02
User					tty											login@		idle			JCPU			PCPU		what
taylor			vt/7									27Oct14									2:35			2:07		python2.6
/usr/lib/system-config
david				pts/1									3:54pm			2:04				15					33		bash
mark					pts/2								27Oct14					43															-csh
%

This	is	a	much	more	complex	command	than	users	or	who,	and	it	offers	more
information.	Notice	that	the	output	is	broken	into	different	areas.	The	first	line
summarizes	the	status	of	the	system	and,	rather	cryptically,	the	number	of	programs
that	the	computer	is	running	at	one	time.	Finally,	for	each	user,	the	output	indicates
the	username,	the	tty,	when	the	user	logged	in	to	the	system,	how	long	it’s	been	since
the	user	has	done	anything	(in	minutes	and	seconds),	the	combined	CPU	time	of	all
jobs	the	user	has	run,	and	the	amount	of	CPU	time	taken	by	the	current	job.	The	last
field	tells	you	what	you	wanted	to	know	in	the	first	place:	What	are	the	users	doing?

In	this	example,	the	current	time	is	2:12	p.m.,	and	the	system	has	been	up	for	7	days,
5	hours,	and	28	minutes.	Currently	three	users	are	logged	in,	and	the	system	is	very
quiet,	with	an	average	of	0.33	jobs	submitted	(or	programs	started)	in	the	last
minute;	0.33	jobs,	on	average,	in	the	last	5	minutes;	and	0.02	jobs	in	the	last	15
minutes.

taylor	is	the	only	user	actively	using	the	computer	(that	is,	who	has	no	idle	time)
and	is	using	the	python	command.	User	david	is	sitting	in	the	bash	shell,	which
has	gone	for	quite	awhile	without	any	input	from	the	user	(2	hours	and	11	minutes	of
idle	time).	The	program	already	has	used	15	seconds	of	CPU	time	and,	overall,
david	has	used	33	seconds	of	CPU	time.	User	mark	has	a	C	shell	running,	as
indicated	by	-csh.	(The	leading	dash	indicates	that	this	is	the	program	that	the
computer	launched	automatically	when	mark	logged	in.	This	is	akin	to	how	the
system	automatically	launches	the	Finder	on	a	Macintosh.)	User	mark	hasn’t
actually	done	anything	yet:	Notice	that	there	is	no	accumulated	computer	time	for
that	account.

2.	Now	it’s	your	turn.	Try	the	w	command	on	your	system	and	see	what	kind	of	output
you	get.	Try	to	interpret	all	the	information	based	on	the	explanation	here.	One	thing
is	certain:	Your	account	should	have	the	w	command	listed	as	what	you’re	doing.

On	a	multiuser	Unix	system,	the	w	command	gives	you	a	quick	and	easy	way	to	see	what’s
going	on.

Task	2.7:	Checking	the	Current	Date	and	Time
You’ve	learned	how	to	orient	yourself	on	a	Unix	system,	and	you	are	now	able	to	figure
out	who	you	are,	who	else	is	on	the	system,	and	what	everyone	is	doing.	What	about	the
current	time	and	date?

1.	Logic	suggests	that	time	shows	the	current	time	and	date	the	current	date;	but
this	is	Unix,	and	logic	doesn’t	always	apply.	In	fact,	consider	what	happens	when	I
enter	time	on	my	system:
%	time

real				0m0.000s
user				0m0.000s
sys				0m0.000s
%

The	output	is	cryptic	to	the	extreme	and	definitely	not	what	you’re	interested	in
finding	out.	The	program	is	showing	how	much	user	time,	system	time,	and	CPU
time	has	been	used	by	the	command	interpreter	itself,	broken	down	by	input/output
operations	and	more.	(The	time	command	is	more	useful	than	it	looks,	particularly
if	you’re	a	programmer.)

On	other	Unixes,	you	might	find	time	to	be	a	missing	command,	a	built-in	shell
function,	or	something	completely	different.	In	all	cases,	it	won’t	tell	you	the	current
time.

2.	Well,	time	didn’t	work,	so	what	about	date?
%	date
Sat	Jun		617:05:32	MST	2015
%

That’s	more	like	it!

Try	the	date	command	on	your	computer	and	see	whether	the	output	agrees	with
your	watch.

How	do	you	think	date	keeps	track	of	the	time	and	date	when	you’ve	turned	off	the
computer?	Does	the	computer	know	the	correct	time	if	you	unplug	it	for	a	few	hours?	(I
hope	so.	Almost	all	computers	today	have	little	batteries	inside	for	just	this	situation.)

Summary
This	hour	focuses	on	giving	you	the	skills	required	to	log	in	to	a	Unix	system,	figure	out
who	you	are	and	what	groups	you’re	in,	change	your	password,	and	log	out	again.	You
also	learned	how	to	list	the	other	users	of	the	system,	find	out	what	Unix	commands
they’re	using,	and	check	the	date	and	time.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
account	name	This	is	the	official	one-word	name	by	which	the	Unix	system	knows	you;
mine	is	taylor.	(See	also	account	in	Hour	1,	“What	Is	This	Unix	Stuff?”)

domain	name	Unix	systems	on	the	Internet,	or	any	other	network,	are	assigned	a	domain
within	which	they	exist.	This	is	typically	the	company	(for	example,	microsoft.com
for	Microsoft	Corporation)	or	institution	(for	example,	lsu.edu	for	Louisiana	State
University).	The	domain	name	is	always	the	entire	host	address,	except	the	hostname
itself.	(See	also	hostname.)

heuristic	An	approach	or	a	procedure	for	accomplishing	a	specific	task,	not	guaranteed	of
success	but	widely	accepted	as	providing	good	results	for	relatively	little	effort.	Think
“rule	of	thumb.”

hostname	Unix	computers	all	have	unique	names	assigned	by	the	local	administration
team.	The	computers	I	use	are	limbo,	well,	netcom,	and	mentor,	for	example.	Enter
hostname	to	see	what	your	system	is	called.

login	A	synonym	for	account	name,	this	also	can	be	a	verb	(when	it’s	two	words:	log	in)
that	refers	to	the	process	of	connecting	to	the	Unix	system	and	entering	your	account	name
and	password	for	your	account.

user	ID	(uid)	This	is	the	numeric	equivalent	of	the	account	name,	which	the	system	uses
for	internal	bookkeeping.

Exercises
1.	Why	can’t	you	have	the	same	account	name	as	another	user?	How	about	user	ID?
Can	you	have	the	same	uid	as	someone	else	on	the	system?

2.	Which	of	the	following	are	good	passwords,	based	on	the	guidelines	you’ve	learned
in	this	hour?

Click	here	to	view	code	image
foobar					4myMUM					Blk&Blu
234334					Laurie					Hi!
2cool.					rolyat					j	j	kim

3.	Are	the	results	of	the	two	commands	who	am	i	and	whoami	different?	If	so,
explain	how.	Which	do	you	think	you’d	rather	use	when	you’re	on	a	new	computer?

4.	List	the	three	Unix	commands	for	finding	out	who	is	logged	in	to	the	system.
Describe	about	the	differences	between	the	commands.

5.	One	of	the	commands	in	the	answer	to	question	4	indicates	how	long	the	system	has
been	running.	(In	the	example,	it	had	been	running	for	seven	days.)	What	value	do
you	think	there	is	for	keeping	track	of	this	information?

6.	If	you	can	figure	out	what	other	people	are	doing	on	the	computer,	they	can	figure
out	what	you’re	doing,	too.	Does	that	bother	you?	Why	or	why	not?

Preview	of	the	Next	Hour
The	next	hour	focuses	on	the	Unix	hierarchical	file	system.	You’ll	learn	about	how	the
system	is	organized,	how	it	differs	from	Windows	and	Macintosh	hierarchical	file	systems,
the	difference	between	relative	and	absolute	filenames,	and	the	mysterious	.	and	..
directories.	You’ll	also	learn	about	the	env,	pwd,	and	cd	commands,	as	well	as	the	HOME
and	PATH	environment	variables.

Hour	3.	Moving	About	the	File	System

Goals	for	This	Hour

In	this	hour,	you	will	learn

	What	a	hierarchical	file	system	is	all	about

	How	the	Unix	file	system	is	organized

	How	Mac	and	PC	file	systems	differ	from	Unix

	The	difference	between	relative	and	absolute	filenames

	About	hidden	files	in	Unix

	About	the	special	directories	.	and	..

	About	the	env	command

	About	the	user	environment	variables	PATH	and	HOME

	How	to	find	where	you	are	with	pwd

	How	to	move	to	another	location	with	cd

This	third	hour	focuses	on	the	Unix	hierarchical	file	system.	You’ll	learn	how	the	system
is	organized,	how	it	differs	from	the	Macintosh	and	Windows	hierarchical	file	systems,	the
difference	between	relative	and	absolute	filenames,	and	the	mysterious	.	and	..
directories.	You’ll	also	learn	about	the	env,	pwd,	and	cd	commands	and	the	HOME	and
PATH	environment	variables.

The	preceding	hour	introduced	many	Unix	commands,	but	this	hour	takes	a	more
theoretical	approach,	focusing	on	the	Unix	file	system,	how	it’s	organized,	and	how	you
can	navigate	it.	This	hour	focuses	on	the	environment	that	tags	along	with	you	as	you
move	about,	particularly	the	HOME	and	PATH	variables.	After	that	is	explained,	you’ll
learn	about	using	the	env	command	as	an	easy	way	to	show	environment	variables,	and
you’ll	learn	how	to	use	the	pwd	and	cd	pair	of	commands	for	moving	about	directly.

What	a	Hierarchical	File	System	Is	All	About
In	a	nutshell,	a	hierarchy	is	a	system	organized	by	graded	categorization.	A	familiar
example	is	the	organizational	structure	of	a	company,	where	workers	report	to	supervisors
and	supervisors	report	to	middle	managers.	Middle	managers,	in	turn,	report	to	senior
managers,	and	senior	managers	report	to	vice-presidents,	who	report	to	the	president	of	the
company.	Graphically,	this	hierarchy	looks	as	shown	in	Figure	3.1.

FIGURE	3.1	A	typical	organizational	hierarchy.

You’ve	doubtless	seen	this	type	of	illustration	before,	and	you	know	that	a	higher	position
indicates	more	control.	Each	position	is	controlled	by	the	next	highest	position	or	row.	The
president	is	top	dog	in	the	organization,	but	each	subsequent	manager	is	also	in	control	of
his	or	her	own	small	fiefdom.

A	file	system	is	similar	to	an	organizational	chart.	Imagine	each	of	the	managers	in	the
illustration	as	a	file	folder	and	each	of	the	employees	as	a	piece	of	paper,	filed	in	a
particular	folder.	Open	any	file	cabinet,	and	you	probably	see	things	organized	this	way:
Filed	papers	are	placed	in	labeled	folders,	and	often	these	folders	are	filed	in	groups	under
specific	topics.	The	drawer	might	then	have	a	specific	label	to	distinguish	it	from	other
drawers	in	the	cabinet,	and	so	on.

That’s	exactly	what	a	hierarchical	file	system	is	all	about.	You	want	to	have	your	files
located	in	the	most	appropriate	place	in	the	file	system,	whether	at	the	very	top,	in	a
folder,	or	in	a	nested	series	of	folders.	With	careful	use,	a	hierarchical	file	system	can
contain	thousands	of	files	and	still	allow	users	to	find	any	individual	file	quickly.

On	my	computer,	the	lessons	of	this	book	are	organized	in	a	hierarchical	fashion,	as	shown
in	Figure	3.2.

FIGURE	3.2	File	organization	for	the	lessons	of	Sams	Teach	Yourself	Unix	in	24
Hours,	Fifth	Edition.

Task	3.1:	The	Unix	File	System	Organization
A	key	reason	the	Unix	hierarchical	file	system	is	so	effective	is	that	anything	that	is	not	a
folder	is	a	file.	Programs	are	files	in	Unix,	device	drivers	are	files,	documents	and
spreadsheets	are	files,	your	keyboard	is	represented	as	a	file,	your	display	is	a	file,	and
even	your	tty	line	and	mouse	are	files.	This	is	one	of	the	chief	factors	in	the	flexibility	of
Unix	and	what	has	made	it	such	a	popular	tool	for	programmers,	who	tend	to	seek	well-
understood,	consistent	access	to	system	resources	rather	than	having	to	use	different	tools
for	every	situation.

The	top	level	of	the	Unix	file	structure	(/)	is	known	as	the	root	directory	or	slash
directory,	and	it	always	has	a	certain	set	of	subdirectories,	including	bin,	dev,	etc,	lib,
mnt,	tmp,	and	usr.	There	can	be	a	lot	more,	however.

You	can	obtain	a	listing	of	the	files	and	directories	in	your	own	top-level	directory	by
using	the	ls	-F	/	command.	(You’ll	learn	all	about	the	ls	command	in	the	next	hour.
For	now,	just	be	sure	that	you	enter	exactly	what’s	shown	in	the	example.)

On	a	different	computer	system,	here’s	what	I	see	when	I	enter	that	command:
Click	here	to	view	code	image

%	ls	-F	/
Mail/								export/								public/
News/								home/										reviews/
add_swap/				kadb*										sbin/
apps/								layout									sys@
archives/				lib@											tftpboot/
bin@									lost+found/				tmp/
boot									mnt/											usr/
cdrom/							net/											utilities/
chess/							news/										var/
dev/									nntpserver					vmunix*
etc/									pcfs/

In	this	example,	any	filename	that	ends	with	a	slash	(/)	is	a	folder	(Unix	calls	these
directories).	Any	filename	that	ends	with	an	asterisk	(*)	is	a	program.	Anything	ending

with	the	at	sign	(@)	is	a	symbolic	link	(a	pointer	to	another	file	or	directory	elsewhere	in
the	file	system),	and	everything	else	is	a	normal,	plain	file.
As	you	can	see	from	this	example,	and	as	you’ll	immediately	find	when	you	try	the
command	yourself,	there	is	much	variation	in	how	different	Unix	systems	organize	the
top-level	directory.	There	are	some	directories	and	files	in	common,	and	once	you	start
examining	the	contents	of	specific	directories,	you’ll	find	that	hundreds	of	programs	and
files	always	show	up	in	the	same	place	from	one	Unix	to	another.

It’s	as	if	you’re	a	new	file	clerk	at	a	law	firm.	Although	this	firm	might	have	a	specific
approach	to	filing	information,	the	approach	may	be	similar	to	the	filing	system	of	other
firms	where	you	have	worked	in	the	past.	If	you	know	the	underlying	organization,	you
can	quickly	pick	up	the	specifics	of	a	particular	organization.

Try	the	command	ls	-F	/	on	your	computer	system	and	try	to	identify,	as	previously
explained,	each	of	the	directories	in	the	listing	you	get.

The	output	of	the	previous	ls	command	shows	the	files	and	directories	in	the	top	level	of
your	system.	Next,	you’ll	learn	about	the	commonly	found	directories.

The	bin	Directory
In	Unix	parlance,	programs	are	considered	executables	because	users	can	execute	them.
(In	this	case,	execute	is	a	synonym	for	run,	not	an	indication	that	you	get	to	wander	about
murdering	innocent	applications!)	When	the	program	has	been	compiled,	it	is	translated
from	source	code—what	a	programmer	might	write	in	C++	or	Java—into	what’s	called	a
binary	format.	Add	the	two	together,	and	you	have	a	common	Unix	description	for	an
application—an	executable	binary.

It’s	no	surprise	that	the	original	Unix	developers	decided	to	have	a	directory	labeled
binaries	to	store	all	the	executable	programs	on	the	system.	Remember	the	primitive
teletypewriter	discussed	earlier?	Having	a	slow	system	to	talk	with	the	computer	had
many	ramifications	you	might	not	expect.	The	single	most	obvious	one	was	that
everything	became	quite	concise.	There	were	no	lengthy	words	like	binaries	or
listfiles,	but	rather	there	were	succinct	abbreviations;	bin	and	ls	are,	respectively,
the	Unix	equivalents.

The	bin	directory	(pronounce	it	to	rhyme	with	“tin”)	is	where	all	the	executable	binaries
were	kept	in	early	Unix.	Over	time,	as	more	and	more	executables	were	added	to	Unix,
having	all	the	executables	in	one	place	proved	unmanageable,	and	the	bin	directory	split
into	multiple	parts	with	different	purposes	(/bin,	/sbin,	/usr/bin).

The	dev	Directory
Among	the	most	important	portions	of	any	computer	are	its	device	drivers.	Without	them,
you	wouldn’t	have	any	information	on	your	screen	(because	the	information	arrives
courtesy	of	the	display	device	driver),	you	wouldn’t	be	able	to	enter	information	(because
the	information	is	read	and	given	to	the	system	by	the	keyboard	device	driver),	and	you
wouldn’t	be	able	to	use	your	hard	drive	(which	is	managed	by	the	disk	device	driver).

Remember,	everything	in	Unix	is	a	file.	Every	component	of	the	system,	from	the
keyboard	driver	to	the	hard	disk,	is	a	file.

Earlier,	you	learned	how	almost	anything	in	Unix	is	considered	a	file	in	the	file	system,
and	the	dev	directory	is	an	example.	All	device	drivers—often	numbering	into	the
hundreds—are	stored	as	separate	files	in	the	standard	Unix	dev	(devices)	directory.
Pronounce	this	directory	name	“dev,”	not	“dee-ee-vee.”

The	etc	Directory
Unix	administration	can	be	quite	complex,	involving	management	of	user	accounts,	the
file	system,	security,	device	drivers,	hardware	configurations,	and	more.	To	help,	Unix
designates	the	etc	directory	as	the	storage	place	for	all	administrative	files	and
information.

Pronounce	the	directory	name	“ee-tea-sea,”	“et-sea,”	or	“etcetera.”	All	three
pronunciations	are	common.

The	lib	Directory
Like	your	own	community,	Unix	has	a	central	storage	place	for	function	and	procedural
libraries.	These	specific	executables	are	included	with	specific	programs	and	allow
programs	to	offer	features	and	capabilities	that	are	otherwise	unavailable.	The	idea	is	that
if	programs	want	to	include	certain	features,	they	can	reference	only	the	shared	copy	in	the
Unix	library	rather	than	having	a	new,	unique	copy.

Pronounce	the	directory	name	“libe”	or	“lib”	(to	rhyme	with	the	word	bib).

The	lost+found	Directory
With	multiple	users	running	many	different	programs	simultaneously,	it’s	been	a	challenge
over	the	years	to	develop	a	file	system	that	can	remain	synchronized	with	the	activity	of
the	computer.	Various	parts	of	the	Unix	kernel—the	brains	of	the	system—help	with	this
problem.	When	files	are	recovered	after	any	sort	of	problem	or	failure,	they	are	placed
here,	in	the	lost+found	directory,	if	the	kernel	cannot	ascertain	the	proper	location	in
the	file	system.	This	directory	should	be	empty	almost	all	the	time.

This	directory	is	commonly	pronounced	“lost	and	found”	rather	than	“lost	plus	found.”

The	mnt	and	sys	Directories
The	mnt	(pronounced	“em-en-tea”)	and	sys	(pronounced	“sis”)	directories	are	safely
ignored	by	everyday	Unix	users.	The	mnt	directory	is	intended	to	be	a	common	place	to
mount	external	media—hard	disks,	removable	cartridge	drives,	and	so	on—in	Unix.	On
many	systems,	though	not	all,	sys	contains	files	indicating	the	system	configuration.

The	tmp	Directory
A	directory	that	you	can’t	ignore,	the	tmp	directory	(pronounced	“temp”)	is	used	by	many
of	the	programs	in	Unix	as	a	temporary	file-storage	space.	If	you’re	editing	a	file,	for
example,	the	editor	makes	a	copy	of	the	file,	saves	it	in	tmp,	and	you	work	directly	with
that,	saving	the	new	file	back	to	your	original	only	when	you’ve	completed	your	work.

On	most	systems,	tmp	ends	up	littered	with	various	files	and	executables	left	by	programs
that	don’t	remove	their	own	temporary	files.	On	one	system	I	use,	it’s	not	uncommon	to
find	10–30	megabytes	of	files	wasting	space.

Even	so,	if	you’re	manipulating	files	or	working	with	copies	of	files,	tmp	is	the	best	place
to	keep	the	temporary	copies.	Indeed,	on	some	Unix	workstations,	tmp	actually	can	be	the
fastest	device	on	the	computer,	allowing	for	dramatic	performance	improvements	over
working	with	files	directly	in	your	home	directory.

The	usr	Directory
The	last	of	the	standard	directories	at	the	top	level	of	the	Unix	file	system	hierarchy	is	the
usr—pronounced	“user”—directory.	Originally,	this	directory	was	intended	to	be	the
central	storage	place	for	all	user-related	commands	and	data—the	stuff	directly	relevant	to
users,	as	opposed	to	the	system.	After	decades	of	evolution,	however,	/usr	has	come	to
encompass	everything	from	Python	libraries	to	system-wide	applications,	just	because	its
boundaries	have	always	been	ill	defined.	Many	companies	have	their	own	interpretations
of	what	should	go	here,	and	there’s	no	telling	what	you’ll	find	in	this	directory	anymore.

Other	Miscellaneous	Stuff	at	the	Top	Level
In	addition	to	all	the	directories	previously	listed,	various	other	directories	and	files
commonly	occur	in	Unix	systems.	Some	files	might	have	slight	variations	in	name	on	your
computer,	so	when	you	compare	your	listing	to	the	following	files	and	directories,	be	alert
for	possible	alternative	spellings.

A	file	you	must	have	in	order	for	Unix	to	exist	at	all	is	one	usually	called	unix	or
vmunix,	or	named	after	the	specific	version	of	Unix	on	the	computer.	The	file	contains
the	actual	Unix	operating	system.	The	file	must	have	a	specific	name	and	must	be	found	at
the	top	level	of	the	file	system.	Hand-in-hand	with	the	operating	system	is	another	file
called	boot,	which	helps	during	initial	startup	of	the	hardware.

Notice	in	some	of	the	output	earlier	in	this	lesson	that	the	Linux-specific	files	boot	and
vmunix	appear.	By	comparison,	a	listing	from	a	Solaris	workstation	shows	boot	and
zvboot	as	the	two	relevant	files	(plus	a	kernel	directory	containing	plugin	modules).
Mac	OS	X,	by	contrast,	hides	its	boot	files	and	kernel	much	deeper	in	the	system	than	the
root	level.

The	home	directory,	/home	(or,	on	Mac	OS	X,	/Users),	is	a	central	place	for	organizing
all	files	owned	by	specific	users.	Listing	this	directory	is	usually	an	easy	way	to	find	out
what	accounts	are	on	the	system,	too,	because	by	convention	each	individual	account
directory	is	named	after	the	user’s	account	name.	On	one	system	I	use,	my	account	is

taylor,	and	my	individual	account	directory	is	also	called	taylor.	Home	directories
are	always	created	by	the	system	administrator.

The	net	directory,	if	set	up	correctly,	is	a	handy	shortcut	for	accessing	other	computers	on
your	network.

The	tftpboot	directory	is	a	relatively	new	feature	of	Unix.	The	letters	stand	for	“Trivial
File	Transfer	Protocol	boot.”	Don’t	let	the	name	confuse	you,	though;	this	directory
contains	versions	of	the	kernel	suitable	for	X	Window	System–based	terminals	and
diskless	workstations	to	run	Unix.	The	upshot	is	that	it’s	what	allows	your	computer	to
boot	off	an	operating	system	that’s	hosted	somewhere	else	in	the	network,	without	even
being	installed	locally.

Some	Unix	systems	have	directories	named	for	specific	types	of	peripherals	that	can	be
attached.	On	a	Solaris	workstation,	you	can	see	an	examples	with	the	directory	cdrom,
which	is	used	for	CD-ROMs	and	other	optical	discs.

Another	Solaris	feature	is	the	opt	directory,	which	stores	add-on	programs	and
components	from	Oracle	and	from	third	parties	(and	can	also	be	used	in	much	the	same
way	as	var	is	used	in	Linux—to	store	data	such	as	Web	content).	The	opt	directory
doesn’t	generally	exist	in	Linux	or	FreeBSD,	but	whereas	Linux	tends	to	use	both	var
and	usr	for	vague	and	sometimes	overlapping	purposes,	FreeBSD	attempts	to	enforce	a
strict	conceptual	division	between	variable	files	(that	is,	files	that	change	naturally	with
the	system’s	operation,	such	as	mailboxes,	log	files,	and	database	contents)	and	static,
permanently	installed	fixtures	of	direct	relevance	to	users.	As	you	can	tell,	the
philosophical	distinctions	that	separate	the	many	flavors	of	Unix	continue	to	contribute	to
their	widely	varying	characters	to	the	present	day.

Many	more	directories	are	present	in	Unix,	but	this	lesson	gives	you	an	idea	of	how	things
are	organized.

Directory	Separator	Characters
If	you	look	at	the	organizational	chart	presented	earlier	in	this	hour	(refer	to	Figure	3.1),
you	see	that	employees	are	identified	simply	as	“employee”	where	possible.	Because	each
has	a	unique	path	upward	to	the	president,	each	has	a	unique	identifier	if	all	components
of	the	path	upward	are	specified.

For	example,	the	rightmost	of	the	four	employees	could	be	described	as	“Employee
managed	by	Jr.	Manager	4,	managed	by	Senior	Manager	3,	managed	by	Vice-President	2,
managed	by	the	President.”	Using	a	single	character,	instead	of	“managed	by,”	can
considerably	shorten	the	description:	Employee/Jr.	Manager	4/Senior	Manager	3/Vice-
President	2/President.	Now	consider	the	same	path	specified	from	the	very	top	of	the
organization	downward:	President/Vice-President	2/Senior	Manager	3/Jr.	Manager
4/Employee.

Because	only	one	person	is	at	the	top,	that	person	can	be	safely	dropped	from	the	path
without	losing	the	uniqueness	of	the	descriptor:	/Vice-President	2/Senior	Manager	3/Jr.
Manager	4/Employee.

In	this	example,	the	/	(pronounce	it	“slash”)	is	serving	as	a	directory	separator	character,
a	convenient	shorthand	to	indicate	different	directories	in	a	path.

The	idea	of	using	a	single	character	to	separate	hierarchical	levels	isn’t	unique	to	Unix,	but
using	the	forward	slash	is	historically	unusual.	On	the	classic	Macintosh,	the	system	uses	a
colon	to	separate	directories	in	a	pathname.	(Next	time	you’re	on	a	Mac,	try	saving	a	file
called	test:file	and	see	what	happens.)	DOS	uses	a	backslash;	for	example,	\DOS
indicates	the	DOS	directory	at	the	top	level.	The	characters	/tmp	indicate	the	tmp
directory	at	the	top	level	of	the	Unix	file	system,	and	:Apps	is	a	folder	called	Apps	at	the
top	of	an	old-school	Macintosh	file	system.

Note

Ever	since	Mac	OS	X	came	onto	the	scene,	the	conventions	of	the	classic	Mac	OS
have	gradually	been	phased	out,	including	the	use	of	colons	as	directory	separators.
As	a	true	Unix,	Mac	OS	X	uses	forward	slashes	pervasively,	and	has	contributed
greatly	(along	with	the	standard	URL	format	now	made	ubiquitous	by	the	Web)	to
making	the	slash	the	de	facto	standard	across	all	operating	systems.	However,	one
vestige	of	the	old	Mac	OS	remains:	Unlike	in	any	other	Unix,	you’re	allowed	to	use
slashes	in	filenames,	but	you	can’t	use	colons	(the	idea	being	that	you’re	probably
more	likely	to	want	to	use	a	slash	than	a	colon	in	a	typical	filename).	But	look
again:	This	is	only	for	show	at	the	GUI	level.	Try	creating	a	file	in	TextEdit	called
test/file.txt,	and	then	look	at	it	in	Terminal	with	the	ls	command.	You’ll
see	that	the	file	you	created	is	actually	called	test:file.txt.	Tricky,	huh?

On	the	Macintosh,	you	rarely	encounter	the	directory	separator	because	almost	all	users
live	in	the	graphical	interface	and	don’t	even	know	that	there’s	a	Unix	system—and
command-line	interface—lurking	beneath	the	GUI	environment.	Windows	also	offers	a
similar	level	of	freedom	from	having	to	worry	about	much	of	this	complexity,	although
you’ll	still	need	to	remember	whether	A:	is	your	floppy	disk	(if	you	even	have	one	in	this
day	and	age)	or	hard	disk	drive.

The	Difference	Between	Relative	and	Absolute	Filenames
Specifying	the	exact	location	of	a	file	in	a	hierarchy	to	ensure	that	the	filename	is	unique
is	known	in	Unix	parlance	as	specifying	its	absolute	filename	(or	absolute	pathname).
That	is,	regardless	of	where	you	are	within	the	file	system,	the	absolute	filename	always
specifies	a	particular	file.	By	contrast,	relative	filenames	are	not	unique	descriptors	and
can	refer	to	many	different	files,	depending	on	where	you	are	when	you	refer	to	the	file.

To	understand	this,	consider	the	files	shown	in	Figure	3.3.

FIGURE	3.3	A	simple	hierarchy	of	files.

If	you	are	currently	looking	at	the	information	in	the	Indiana	directory,	Bldgs
uniquely	describes	one	file:	the	Bldgs	file	in	the	Indiana	directory.	That	same	name,
however,	refers	to	a	different	file	if	you	are	in	the	California	directory	or	the
Washington	directory.	Similarly,	the	directory	Personnel	leaves	you	with	three
possible	choices	until	you	also	specify	which	state	you’re	interested	in.

As	a	possible	scenario,	imagine	that	you’re	reading	through	the	Bldgs	file	for
Washington	and	some	people	come	into	your	office	and	interrupt	your	work.	After	a
few	minutes	of	talk,	they	comment	about	an	entry	in	the	Bldgs	file	in	California.
You	turn	to	your	Unix	system	and	bring	up	the	Bldgs	file,	and	it’s	the	wrong	file.	Why?
You’re	still	in	the	Washington	directory.

These	problems	arise	because	of	the	lack	of	specificity	of	relative	filenames.	Relative
filenames	describe	files	that	are	referenced	relative	to	an	assumed	position	in	the	file
system.	In	Figure	3.3,	even	Personnel/Taylor,D.	isn’t	unique	because	it	can	be
found	in	both	Indiana	and	Washington.

To	avoid	these	problems,	you	can	apply	the	technique	you	learned	earlier:	specifying	all
elements	of	the	directory	path	from	the	top	down.	To	look	at	the	Bldgs	file	for
California,	you	could	simply	specify	/California/Bldgs.	To	check	the
Taylor,D.	employee	in	Indiana,	you’d	use
/Indiana/Personnel/Taylor,D.,	which	is	different,	you’ll	notice,	from
/Washington/Personnel/Taylor,D..

Learning	the	difference	between	these	two	notations	is	crucial	to	surviving	the	complexity
of	the	hierarchical	file	system	in	Unix.	Without	it,	you’ll	spend	half	your	time	verifying
that	you	are	where	you	think	you	are	or,	worse,	not	moving	about	at	all	and	not	taking
advantage	of	the	organizational	capabilities.

If	you’re	ever	in	doubt	as	to	where	you	are	or	what	file	you’re	working	with	in	Unix,
simply	specify	its	absolute	filename.	You	always	can	differentiate	between	relative	and
absolute	filenames	by	looking	at	the	very	first	character:	If	it’s	a	slash,	you’ve	got	an
absolute	filename	(because	the	filename	is	rooted	to	the	very	top	level	of	the	file	system).

If	you	don’t	have	a	slash	as	the	first	character,	the	filename’s	a	relative	filename.

Earlier	I	told	you	that	in	the	/home	directory	at	the	top	level	of	Unix,	I	have	a	home
directory	called	taylor.	In	absolute	filename	terms,	I’d	properly	say	that	I	have
/home/taylor	as	a	unique	directory.

Note

To	add	to	the	confusion,	most	Unix	people	don’t	pronounce	the	slashes,	particularly
if	the	first	component	of	the	filename	is	a	well-known	directory.	I	would	pronounce
/home/taylor	as	“home	taylor,”	but	I	would	usually	pronounce
/newt/awk/test	as	“slash	newt	awk	test.”	When	in	doubt,	pronounce	the	slash.

As	you	learn	more	about	Unix,	particularly	about	how	to	navigate	the	file	system,	you’ll
find	that	having	a	clear	understanding	of	the	difference	between	relative	and	absolute
filenames	proves	invaluable.	Remember	that	the	rule	of	thumb	is	that	if	a	filename	begins
with	/,	it’s	absolute.

Task	3.2:	Hidden	Files	in	Unix
One	of	the	best	aspects	of	living	in	an	area	for	a	long	time,	frequenting	the	same	shops,
and	visiting	the	same	restaurants,	is	that	the	people	who	work	at	each	place	learn	your
name	and	preferences.	Many	Unix	applications	can	perform	the	same	trick,	remembering
your	preferred	style	of	interaction,	what	files	you	last	worked	with,	which	lines	you’ve
edited,	and	more,	through	preference	files.

On	the	Macintosh,	there’s	a	folder	within	each	user’s	home	directory	called	Library.
Within	that	there’s	another	folder	called	Preferences,	which	is	a	central	storage	place
for	preference	files,	organized	by	application.	On	my	Macintosh,	for	example,	I	have
about	75	different	preference	files	in	this	directory,	so	I	can	have	all	my	programs
remember	the	defaults	I	prefer.

Unix	must	support	many	users	at	once,	so	Unix	preference	files	can’t	be	stored	in	a	central
spot	in	the	file	system.	Otherwise,	how	would	the	system	distinguish	between	your
preferences	and	those	of	your	colleagues?	To	avoid	this	problem,	all	Unix	applications
store	their	preference	files	in	your	home	directory.

Programs	want	to	be	able	to	keep	their	own	internal	preferences	and	status	stored	in	your
directory,	but	these	aren’t	for	you	to	work	with	or	alter.	If	you	use	DOS,	you’re	probably
familiar	with	how	Windows	solves	this	problem:	Certain	files	are	hidden	and	do	not	show
up	when	you	use	DIR,	in	DOS,	or	in	the	File	Manager	to	list	files	in	a	directory.

Macintosh	people	don’t	realize	it,	but	the	Macintosh	also	has	lots	of	hidden	files.	On	the
topmost	level	of	the	Macintosh	file	system,	for	example,	the	following	files	are	present,
albeit	hidden	from	normal	display:	.DS_Store,	Desktop	DB,
.VolumeIcon.icns,	NavMac8000QSFile,	and	my	personal	favorite,
.symSchedScanLockxz.	Displaying	hidden	files	on	the	Macintosh	is	very	difficult,	as
it	is	with	Windows.

Fortunately,	the	Unix	rule	for	hiding	files	is	much	easier	than	that	for	either	the	Mac	or
PC.	No	secret	status	flag	reminds	the	system	not	to	display	the	file	when	listing
directories.	Instead,	the	rule	is	simple:	Any	filename	that	starts	with	a	dot	(.)	is	a	hidden
file.

Note

A	hidden	file	is	any	file	with	a	dot	as	the	first	character	of	the	filename.

If	the	filename	or	directory	name	begins	with	a	dot,	it	won’t	show	up	in	normal	listings	of
that	directory.	If	the	filename	or	directory	name	has	any	other	character	as	the	first
character	of	the	name,	it	lists	normally.

1.	Turn	to	your	computer	and	enter	the	ls	command	to	list	all	the	files	and	directories
in	your	home	directory:

Click	here	to	view	code	image

%	ls	-F
Archives/						Mail/										RUMORS.18Sept		mailing.lists
InfoWorld/					News/										bin/											newlists
LISTS										OWL/											iecc.list						src/
%

You	can	see	that	I	have	12	items	in	my	own	directory,	7	directories	(the	directory
names	have	a	slash	as	the	last	character	because	of	the	-F,	remember),	and	5	files.
Files	have	minimal	rules	for	naming,	too.	Avoid	slashes,	spaces,	and	tabs,	and	you’ll
be	fine.

2.	Without	an	explicit	direction	to	the	contrary,	Unix	is	going	to	let	the	hidden	files
remain	hidden.	To	add	the	hidden	files	to	the	listing,	you	just	need	to	add	a	-a	flag
to	the	command.	Turn	to	your	computer	and	try	the	ls	-aF	command	to	see	what
hidden	files	are	present	in	your	directory.	These	are	my	results:

Click	here	to	view	code	image
%	ls	-aF
./													.gopherrc						.oldnewsrc					.sig								RUMORS.18Sep
../												.history*						.plan										Archives/			bin/
.Agenda								.info										.pnewsexpert			InfoWorld/		iecc.list
.aconfigrc					.letter								.report								LISTS							mail.lists
.article							.login									.rm-timestamp		Mail/							newlists
.cshrc									.mailrc								.rnlast								News/							src/
.elm/										.newsrc								.rnsoft								OWL/
%

Many	dot	files	tend	to	follow	the	format	of	a	dot,	followed	by	the	name	of	the
program	that	owns	the	file,	with	rc	as	the	suffix.	In	my	directory,	you	can	see	six
dot	files	that	follow	this	convention:	.aconfigrc,	.cshrc,	.gopherrc,
.mailrc,	.newsrc,	and	.oldnewsrc.

Because	of	the	particular	rules	of	hidden	files	in	Unix,	they	are	often	called	dot	files,	and
you	can	see	that	I	have	23	dot	files	and	directories	in	my	directory.

Note

The	rc	suffix	(meaning	“resource	config”)	tells	you	that	this	file	is	a	configuration
file	for	a	particular	utility.	For	instance,	.cshrc	is	the	configuration	file	for	the	C
shell	and	is	executed	every	time	the	C	shell	(/bin/csh)	is	executed.	You	can
define	aliases	for	C	shell	commands	and	a	special	search	path,	for	example.

Note

Because	it’s	important	to	convey	the	specific	filename	of	a	dot	file,	pronunciation	is
a	little	different	from	elsewhere	in	Unix.	The	name	.lynxrc	would	be	spoken	as
“dot-lynx-are-sea,”	and	.mailrc	would	be	“dot	mail	are	sea.”	If	you	can’t
pronounce	the	program	name,	odds	are	good	that	no	one	else	can	either,	so
.cshrc	is	“dot-sea-ess-aitch-are-sea.”

Other	programs	create	many	different	dot	files	and	try	to	retain	a	consistent	naming
scheme.	You	can	see	that	.rnlast	and	.rnsoft	are	both	from	the	rn	program,	but	it’s
difficult	to	know	simply	from	the	filenames	that	.article,	.letter,	.newsrc,
.oldnewsrc,	and	.pnewsexpert	are	all	also	referenced	by	the	rn	program.
Recognizing	this	problem,	some	application	authors	designed	their	applications	to	create	a
dot	directory,	with	all	preference	files	neatly	tucked	into	that	one	spot.	The	elm	program
does	that	with	its	.elm	hidden	directory.

Some	files	are	directly	named	after	the	programs	that	use	them:	The	.Agenda	file	is	used
by	the	agenda	program,	and	.info	is	used	by	the	info	program.	Those	almost	have	a
rule	of	their	own,	but	it’s	impossible	to	distinguish	them	from	.login,	from	the	sh
program;	.plan	for	the	finger	program;	.rm-timestamp	from	a	custom	program
of	my	own;	and	I	frankly	have	no	idea	what	program	created	the	.report	file!

This	should	give	you	an	idea	of	the	various	ways	that	Unix	programs	name	and	use	hidden
files.	As	an	exercise,	list	all	the	dot	files	in	your	home	directory	and	try	to	figure	out
which	program	created	each	file.	Check	by	looking	in	the	index	of	this	book	to	see
whether	a	program	by	that	name	exists,	if	it’s	a	.xxx	file.	If	you	can’t	figure	out	which
programs	created	which	files,	you’re	not	alone.	Keep	the	list	handy;	refer	to	it	as	you	learn
more	about	Unix	while	exploring	this	book,	and	by	the	time	you’re	done,	you’ll	know
exactly	how	to	find	out	which	programs	created	which	dot	files.

Task	3.3:	The	Special	Directories	.	and	..
I	haven’t	mentioned	two	dot	directories,	although	they	show	up	in	my	listing	and	most
certainly	show	up	in	your	listing,	too.	They	are	dot	and	dot-dot	(.	and	..),	and	they’re
shorthand	directory	names	that	can	be	terrifically	convenient.

The	dot	directory	is	shorthand	for	the	current	location	in	the	directory	hierarchy;	the	dot-
dot	directory	moves	you	up	one	level,	to	the	parent	directory.

Consider	again	the	list	of	files	shown	in	Figure	3.3.	If	you	were	looking	at	the	files	in	the

California	Personnel	directory	(best	specified	as	/California/Personnel)
and	wanted	to	check	quickly	an	entry	in	the	Bldgs	file	for	California,	either	you’d
have	to	use	the	absolute	filename	and	enter	the	lengthy	ls	/California/Bldgs,	or,
with	the	new	shorthand	directories,	you	could	enter	ls	../Bldgs.

As	directories	move	ever	deeper	into	the	directory	hierarchy,	the	dot-dot	notation	can	save
you	much	typing	time.	For	example,	what	if	the	different	states	and	related	files	were	all
located	in	my	home	directory	/home/taylor,	in	a	new	directory	called	business?	In
that	case,	the	absolute	filename	for	employee	Raab,M.	in	California	would	be
/home/taylor/business/California/Personnel/Raab,M.,	which	is
unwieldy	and	a	great	deal	to	type	if	you	want	to	hop	up	one	level	and	check	on	the
buildings	database	in	Indiana!

You	can	use	more	than	one	dot-dot	notation	in	a	filename,	too,	so	if	you’re	looking	at	the
Raab,M.	file	and	want	to	check	on	Dunlap,L.,	you	could	save	typing	in	the	full
filename	by	instead	using	../../../Washington/Personnel/Dunlap,L..
Look	at	Figure	3.3	to	see	how	that	would	work;	trace	back	one	level	for	each	dot-dot	in
the	filename.

So	you	know	why	the	dot-dot	shorthand	is	helpful,	but	what	about	the	single-dot	notation
that	simply	specifies	the	current	directory?

I	haven’t	stated	it	explicitly	yet,	but	you’ve	probably	figured	out	that	one	ramification	of
the	Unix	file	system	organization,	with	its	capability	to	place	applications	anywhere	in	the
file	system,	is	that	the	system	needs	some	way	to	know	where	to	look	for	particular
applications.	Just	as	if	you	were	looking	for	something	in	a	public	library,	in	Unix,	having
an	understanding	of	its	organization	and	a	strategy	for	searching	is	imperative	for	success
and	speed.

Unix	uses	an	ordered	list	of	directories	called	a	search	path	for	this	purpose.	The	search
path	typically	lists	five	or	six	different	directories	on	the	system	where	the	computer
checks	for	any	application	you	request.

The	question	that	arises	is,	“What	happens	if	your	own	personal	copy	of	an	application	has
the	same	name	as	a	standard	system	application?”	The	answer	is	that	the	system	always
finds	the	standard	application	first,	if	its	directory	is	listed	earlier	in	the	search	path.

To	avoid	this	pitfall,	use	the	dot	notation,	which	forces	the	system	to	look	in	the	current
directory	rather	than	search	for	the	application.	If	you	wanted	your	own	version	of	the	ls
command,	for	example,	you’d	need	to	be	in	the	same	directory	as	the	command	and	enter
./ls	to	ensure	that	Unix	would	use	your	version	rather	than	the	standard	version.

1.	Enter	./ls	on	your	computer	and	watch	what	happens.

2.	Enter	ls	without	the	dot	notation,	and	you’ll	instantly	see	how	the	computer
searches	through	various	directories	in	the	search	path,	finds	the	ls	program,	and
executes	it—automatically.

When	you	learn	about	cd	(change	directory)	later	in	this	hour,	you	also	will	learn	other
uses	of	the	dot-dot	directory,	but	the	greatest	value	of	the	dot	directory	is	that	you	can	use

it	to	force	the	system	to	look	in	the	current	directory	and	nowhere	else	for	any	file
specified.

Task	3.4:	The	env	Command
You’ve	learned	much	about	the	foundations	of	the	Unix	file	system	and	how	applications
remember	your	preferences	through	hidden	dot	files.	There’s	another	way,	however,	that
the	system	remembers	specifics	about	you,	and	that’s	through	your	user	environment.	The
user	environment	is	a	collection	of	specially	named	variables	(mnemonically	named
values)	that	have	specific	values.

1.	To	view	your	environment,	you	can	use	the	env	command.	Here’s	what	I	see	when
I	enter	the	env	command	on	my	system:

Click	here	to	view	code	image

%	env
HOME=/home/taylor
SHELL=/bin/csh
TERM=vt100
PATH=/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/unsup/bin:.
MAIL=/usr/spool/mail/taylor
LOGNAME=taylor
TZ=EST5
%

2.	Try	it	yourself	and	compare	your	values	with	mine.	You	might	find	that	you	have
more	defined	in	your	environment	than	I	do	because	your	Unix	system	uses	your
environment	to	keep	track	of	more	information.

The	output	of	the	env	command	shows	some	of	the	standard	environment	variables.	Table
3.1	describes	what	they	do.

TABLE	3.1	Common	Shell	Environment	Variables	and	What	They	Do

Note

Many	Unix	systems	offer	the	printenv	command	instead	of	env.	If	you	enter
env	and	the	system	complains	that	it	can’t	find	the	env	command,	try	using
printenv	instead.	All	examples	here	work	with	either	env	or	printenv.

Task	3.5:	PATH	and	HOME
The	two	most	important	values	in	your	environment	are	the	name	of	your	home	directory
(HOME)	and	your	search	path	(PATH).	Your	home	directory	(as	it’s	known)	is	the	name	of
the	directory	in	which	you	always	begin	your	Unix	session.

The	PATH	environment	variable	lists	the	set	of	directories,	in	left-to-right	order,	that	the
system	searches	to	find	commands	and	applications	you	request.	You	can	see	from	the
example	that	my	search	path	tells	the	computer	to	start	looking	in	the
/home/taylor/bin	directory,	and	then	sequentially	try	/bin,	/usr/bin,
/usr/ucb,	/usr/local/bin,	/usr/unsup/bin,	and	.	before	concluding	that	it
can’t	find	the	requested	command.	Without	a	PATH,	the	shell	wouldn’t	be	able	to	find	any
of	the	many,	many	Unix	commands.	At	a	minimum,	you	always	should	have	/bin	and
/usr/bin.

1.	You	can	use	the	echo	command	to	list	specific	environment	variables,	too.	Enter
echo	$PATH	and	echo	$HOME.	If	you	forget	the	$,	then	the	shell	doesn’t	know
you	are	specifying	that	you	want	to	know	the	value	of	the	named	variable.	Try	it;
you’ll	see	what	I	mean.

When	I	enter	the	two	echo	statements	as	shown	above,	I	get	the	following	results:
Click	here	to	view	code	image

%	echo	$PATH
/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/unsup/bin:.
%	echo	$HOME
/home/taylor
%

2.	Your	PATH	value	is	probably	similar,	although	certainly	not	identical,	to	mine,	and
your	HOME	is	/home/accountname	or	something	similar	(where	accountname	is
your	account	name).

Try	it	for	yourself.	Any	surprises	in	your	PATH?

Task	3.6:	Find	Where	You	Are	with	pwd
So	far	you’ve	learned	a	lot	about	how	the	file	system	works	but	not	much	about	how	to
move	around	in	the	file	system.	With	any	trip,	the	first	and	most	important	step	is	to	find
out	your	current	location—that	is,	the	directory	in	which	you	are	currently	working.	In
Unix,	the	command	pwd	tells	you	the	present	working	directory.

1.	Enter	pwd:
%	echo	$HOME
/home/taylor
%	pwd
/home/taylor
%

The	output	should	be	identical	to	the	output	you	saw	when	you	entered	env	HOME
because	you’re	still	in	your	home	directory.

Think	of	pwd	as	a	compass	that’s	always	capable	of	telling	you	where	you	are.	It	also	tells
you	the	names	of	all	directories	above	you	because	it	always	lists	your	current	location	as
an	absolute	directory	name.

Task	3.7:	Moving	to	Another	Location	with	cd
The	other	half	of	the	dynamic	duo	is	the	cd	command,	which	is	used	to	change
directories.	The	format	of	this	command	is	simple,	too:	cd	new-directory	(where	new-
directory	is	the	name	of	the	new	directory	you	want).

1.	Try	moving	to	the	very	top	level	of	the	file	system	and	entering	pwd	to	see	whether
the	computer	agrees	that	you’ve	moved:
%	cd	/
%	pwd
/
%

2.	Notice	that	cd	doesn’t	produce	any	output.	Many	Unix	commands	operate	silently
like	this,	unless	an	error	is	encountered.	The	system	then	indicates	the	problem.	You
can	see	what	an	error	looks	like	by	trying	to	change	your	location	to	a	nonexistent
directory.	Try	the	/taylor	directory	to	see	what	happens:

Click	here	to	view	code	image

%	cd	/taylor
/taylor:	No	such	file	or	directory
%

3.	Enter	cd	without	specifying	a	directory.	What	happens?	I	get	the	following	result:
%	cd
%	pwd
/home/taylor
%

4.	Here’s	where	the	HOME	environment	variable	comes	into	play.	Without	any
directory	specified,	cd	moves	you	back	to	your	home	directory	automatically.	If	you
get	lost,	it’s	a	fast	shorthand	way	to	move	to	a	known	location	without	fuss.

Remember	the	dot-dot	notation	for	moving	up	a	level	in	the	directory	hierarchy?
Here’s	where	it	also	proves	exceptionally	useful.	Use	the	cd	command	without	any
arguments	to	move	to	your	home	directory,	and	then	use	pwd	to	ensure	that’s	where
you’ve	ended	up.

5.	Now,	move	up	one	level	by	using	cd	..	and	check	the	results	with	pwd:
%	cd
%	pwd
/home/taylor
%	cd	..
%	pwd
/home
%

6.	Use	the	ls	-C	-F	command	to	list	all	the	directories	contained	at	this	point	in	the
file	system:

Click	here	to	view	code	image

%	ls	-C	-F
armstrong/		christine/		guest/			laura/			matthewm/	shane/
bruce/						david/						higgins/	mac/					rank/					taylor/
cedric/					green/						kane/				mark/				shalini/		vicki/
%

Beware,	though;	on	large	systems,	this	directory	could	easily	have	hundreds	of
different	directories.	On	one	system	I	use,	almost	550	different	directories	are	on	one
level	above	my	home	directory	in	the	file	system!

Try	using	a	combination	of	cd	and	pwd	to	move	about	your	file	system.	Remember	that
without	any	arguments,	cd	always	zips	you	right	back	to	your	home	directory.

Summary
This	hour	focused	on	the	Unix	hierarchical	file	system.	You’ve	learned	the	organization	of
a	hierarchical	file	system,	how	Unix	differs	from	traditional	Macintosh	and	DOS	systems,
and	how	Unix	remembers	preferences	with	its	hidden	dot	files.	This	hour	also	explained
the	difference	between	relative	and	absolute	filenames,	and	you’ve	learned	about	the	.
and	..	directories.	You’ve	learned	four	new	commands:	env	to	list	your	current
environment,	echo	to	show	a	particular	value,	cd	to	change	directories,	and	pwd	to	find
your	present	working	directory	location.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
absolute	filename	Any	filename	that	begins	with	a	leading	slash	(/);	it	uniquely	describes
a	single	file	in	the	file	system.

binary	A	binary	is	a	file	format	that	is	intended	for	the	computer	to	work	with	directly
rather	than	for	humans	to	peruse.	See	also	executable.

device	driver	All	peripherals	attached	to	the	computer	are	called	devices	in	Unix,	and
each	has	a	control	program	always	associated	with	it,	called	a	device	driver.	Examples	are
the	device	drivers	for	the	display,	keyboard,	mouse,	and	all	hard	disks.

directory	This	type	of	Unix	file	is	used	to	group	other	files,	equivalent	to	a	folder.	Files
and	directories	can	be	placed	inside	other	directories,	to	build	a	hierarchical	system.

directory	separator	character	On	a	hierarchical	file	system,	there	must	be	some	way	to
specify	which	parts	of	a	full	filename	are	directories	and	which	part	is	the	actual	filename.
This	is	particularly	important	when	you’re	working	with	absolute	filenames.	In	Unix,	the
directory	separator	character	is	the	slash	(/),	so	a	filename	like	/tmp/testme	is	easily
interpreted	as	a	file	called	testme	in	a	directory	called	tmp.

dot	This	is	shorthand	notation	for	the	current	directory.

dot-dot	This	is	shorthand	notation	for	the	directory	one	level	higher	up	in	the	hierarchical
file	system	from	the	current	location.

dot	file	A	dot	file	is	a	configuration	file	used	by	one	or	more	programs.	These	files	are
called	dot	files	because	the	first	letter	of	the	filename	is	a	dot,	as	in	.profile	or
.login.	By	default,	the	ls	command	doesn’t	list	dot	files,	making	them	also	hidden	files
in	Unix.	See	also	hidden	file.

executable	An	executable	is	a	file	that	has	been	set	up	so	that	Unix	can	run	it	as	a
program.	This	is	also	shorthand	for	a	binary	file.	You	also	sometimes	see	the	phrase
binary	executable,	which	is	the	same	thing.	See	also	binary.

hidden	file	By	default,	the	Unix	file-listing	command	ls	shows	only	files	whose	first
letter	isn’t	a	dot	(that	is,	files	that	aren’t	dot	files).	All	dot	files,	therefore,	are	hidden	files,
and	you	can	safely	ignore	them	without	any	problems.	See	also	dot	file.

home	directory	This	is	your	private	directory	and	is	also	where	you	start	out	when	you
log	in	to	the	system.

kernel	The	kernel	is	the	underlying	core	of	the	Unix	operating	system	itself.	This	is	akin
to	the	concrete	foundation	under	a	modern	skyscraper.

preference	file	These	are	what	dot	files	(hidden	files)	really	are:	They	contain	your
individual	preferences	for	many	of	the	Unix	commands	you	use.

relative	filename	Any	filename	that	does	not	begin	with	a	slash	(/)	is	a	relative	filename,
a	filename	whose	exact	meaning	depends	on	where	you	are	in	the	file	system.	For
example,	the	file	test	might	exist	in	both	your	home	directory	and	the	root	directory:
/test	is	an	absolute	filename	and	leaves	no	question	about	which	version	is	being	used,
but	test	could	refer	to	either	copy,	depending	on	your	current	directory.

root	directory	The	directory	at	the	very	top	of	the	file	system	hierarchy	is	known	as	the
root,	or	slash,	directory.

search	path	A	search	path	is	a	list	of	directories	used	to	find	a	command.	When	a	user
enters	the	command	ls,	the	shell	looks	in	each	directory	in	the	search	path	to	find	a	file
ls,	either	until	it	is	found	or	until	the	list	is	exhausted.

slash	The	directory	at	the	very	top	of	the	file	system	hierarchy	is	known	as	the	root,	or
slash,	directory.

symbolic	link	A	file	that	contains	a	pointer	to	another	file	rather	than	contents	of	its	own.
This	can	also	be	a	directory	that	points	to	another	directory	rather	than	having	files	of	its
own.	It	is	a	useful	way	to	have	multiple	names	for	a	single	program	or	to	allow	multiple
people	to	share	a	single	copy	of	a	file.

user	environment	This	is	a	set	of	values	that	describe	the	user’s	current	location	and
modify	the	behavior	of	commands.

working	directory	This	is	the	directory	where	the	user	is	working.

Exercises
1.	Can	you	think	of	information	you	work	with	daily	that’s	organized	in	a	hierarchical
fashion?	Is	a	public	library	organized	hierarchically?

2.	Which	of	the	following	files	are	hidden	files	and	directories,	according	to	Unix?
Click	here	to	view	code	image

.test			hide-me			,test			.cshrc

../					.dot.					dot					.HiMom

3.	What	programs	most	likely	created	the	following	dot	files	and	dot	directories?
Click	here	to	view	code	image

.cshrc				.rnsoft					.exrc						.print

.tmp334			.excel/					.letter				.vi-expert

4.	In	the	following	list,	identify	the	items	that	are	absolute	filenames:
Click	here	to	view	code	image

/Personnel/Taylor,D.
/home/taylor/business/California
../..
Recipe:Gazpacho

5.	Remember	the	list	of	directories	found	on	all	Unix	systems	(/bin,	/dev,	/etc,
/lib,	/lost+found,	/mnt,	/sys,	/tmp,	/usr)?	Use	cd	and	pwd	to	double-
check	that	they	are	all	present	on	your	own	Unix	machine.

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	all	about	the	ls	command	that	you’ve	been	using,	including
an	extensive	discussion	of	command	flags.	The	command	touch	enables	you	to	create
your	own	files,	and	du	and	df	help	you	learn	how	much	disk	space	is	used	and	how	much
is	available,	respectively.	You’ll	also	learn	how	to	use	the	valuable	gzip	command,
which	helps	you	minimize	your	disk-space	usage.

Hour	4.	Listing	Files	and	Managing	Disk	Usage

Goals	for	This	Hour

In	this	hour,	you	will	learn

	All	about	the	ls	command

	About	special	ls	command	flags

	How	to	create	files	with	touch

	How	to	check	disk	space	usage	with	du

	How	to	check	available	disk	space	with	df

	How	to	shrink	big	files	with	gzip

This	hour	introduces	you	to	the	ls	command,	one	of	the	most	commonly	used	commands
in	Unix.	The	discussion	includes	more	than	a	dozen	different	command	options,	or	flags.
You’ll	also	learn	how	to	use	the	touch	command	to	create	files,	how	to	use	the	du
command	to	see	how	much	disk	space	you’re	using,	and	how	to	use	the	df	command	to
see	how	much	disk	space	is	available.	Finally,	you’ll	learn	how	the	gzip	command	can
help	you	minimize	your	disk	space	usage,	particularly	on	files	you	do	not	use	very	often.

This	first	hours	focused	on	some	basic	Unix	commands,	particularly	those	for	interacting
with	the	system	to	accomplish	common	tasks.	In	this	hour,	you’ll	expand	you	knowledge
by	analyzing	characteristics	of	the	system	you’re	using,	and	you’ll	learn	a	raft	of
commands	for	creating	your	own	Unix	workspace.	You’ll	also	learn	more	about	the	Unix
file	system	and	how	Unix	interprets	command	lines.	In	addition	to	the	cd	and	pwd
commands	that	you	learned	about	in	the	preceding	hour,	here	you’ll	learn	how	to	use	ls
to	wander	in	the	file	system	and	see	what	files	are	kept	where.

Unlike	with	the	Windows	and	Macintosh	operating	systems,	information	about	the	Unix
system	itself	is	often	difficult	to	obtain.	In	this	hour,	you’ll	learn	easy	ways	to	ascertain
how	much	disk	space	you’re	using	with	the	du	command.	You’ll	also	learn	how	to
interpret	the	oft-confusing	output	of	the	df	command,	which	enables	you	to	see	instantly
how	much	total	disk	space	is	available	on	your	Unix	system.

This	hour	concludes	with	a	discussion	of	the	gzip	command,	which	enables	you	to
shrink	the	size	of	any	file	or	set	of	files.	You’ll	see	that	modern	Unixes	actually	include
four	different	compression	programs,	and	you’ll	learn	how	they	compare.

The	ls	Command
This	section	introduces	you	to	the	ls	command,	which	enables	you	to	examine	the	file
system	and	see	what	files	are	kept	where.

Task	4.1:	All	About	the	ls	Command
From	the	examples	in	the	preceding	hour,	you’ve	already	figured	out	that	the	command
used	to	list	files	and	directories	in	Unix	is	the	ls	command.

All	operating	systems	have	a	similar	command,	a	way	to	see	what’s	in	the	current	location.
If	you	used	the	ancient	precursor	to	Windows,	DOS,	for	example,	you	would	be	familiar
with	the	DIR	command.	DOS	also	has	command	flags,	which	are	denoted	by	a	leading
slash	before	the	specific	option.	For	example,	DIR	/W	produces	a	directory	listing	in
wide-display	format.	The	DIR	command	has	quite	a	few	other	options	and	capabilities.

Listing	the	files	in	a	directory	is	a	pretty	simple	task,	so	why	all	the	different	options?
You’ve	already	seen	some	examples,	including	ls	-a,	which	lists	hidden	dot	files.	The
answer	is	that	there	are	many	different	ways	to	look	at	files	and	directories,	as	you	will
learn.

1.	The	best	way	to	learn	what	ls	can	do	is	to	go	ahead	and	use	it.	Turn	to	your
computer,	log	in	to	your	account	or	bring	up	your	Terminal	application,	and	try	each
command	as	it’s	explained.

2.	The	most	basic	use	of	ls	is	to	list	files.	The	command	ls	lists	all	the	files	and
directories	in	the	present	working	directory	(recall	that	you	can	check	what	directory
you’re	in	with	the	pwd	command	at	any	time):

Click	here	to	view	code	image

%	ls
Archives							Mail											RUMORS.18Sept		mailing.lists
InfoWorld						News											bin												newels
LISTS										OWL												iecc.list						src

Notice	that	the	files	are	sorted	alphabetically	from	top	to	bottom,	left	to	right.	This	is
the	default,	known	as	column-first	order	because	it	sorts	downward,	then	across.
You	should	also	note	how	things	are	sorted	in	Unix:	The	system	differentiates
between	uppercase	and	lowercase	letters,	unlike	Windows.	(The	Macintosh
remembers	whether	you	use	uppercase	or	lowercase	letters	for	naming	files,	but	it
doesn’t	distinguish	between	them	internally.	Try	it.	The	next	time	you	use	a
Macintosh,	name	one	file	TEST	and	then	try	creating	another	file	called	test.)

Note

Some	of	the	Unix	and	Linux	versions	available	for	the	PC	have	an	ls	that	behaves
slightly	differently	and	can	list	all	files	in	a	single	column	rather	than	in	multiple
columns.	If	your	PC	does	this,	use	the	-C	flag	to	ls	to	force	multiple	columns.

It’s	important	that	you	always	remember	to	type	Unix	commands	in	lowercase	letters,
unless	you	know	that	the	particular	command	is	actually	uppercase;	remember	that	Unix
treats	Archives	and	archives	as	different	filenames,	so	it	should	be	no	surprise	that
it	also	treats	LS	and	ls	as	different	commands.	Also,	avoid	entering	your	account	name	in
uppercase	when	you	log	in.	Unix	has	some	old	compatibility	features	that	make	using	the
system	much	more	difficult	if	you	use	an	all-uppercase	login.	If	you	ever	accidentally	log

in	with	all	uppercase,	log	out	and	try	again	in	lowercase.

Task	4.2:	Having	ls	Tell	You	More
Without	options,	the	ls	command	offers	relatively	little	information.	Questions	you	might
still	have	about	your	directory	include	these:	How	big	are	the	files?	Which	are	files,	and
which	are	directories?	How	old	are	they?	What	hidden	files	do	you	have?

1.	Enter	ls	-s	to	find	out	file	sizes:
Click	here	to	view	code	image

%	ls	-s
total	563
		1	Archives					1	Mail						5	RUMORS.18Sept		280	mailing.lists
		1	InfoWorld				1	News						1	bin														2	newels
261	LISTS								1	OWL							4	iecc.list								1	src

2.	To	ascertain	the	size	of	each	file	or	directory	listed,	you	can	use	the	-s	flag	with
ls.	The	size	indicated	is	the	number	of	kilobytes,	rounded	upward,	for	each	file.
The	first	line	of	the	output	also	indicates	the	total	amount	of	disk	space	used,	in
kilobytes,	for	the	contents	of	this	directory	(563	in	this	case).	The	summary	number
does	not,	however,	include	the	contents	of	any	subdirectories,	so	it’s	deceptively
small.

Note

A	kilobyte	is	1,024	bytes	of	information,	and	a	byte	is	a	single	character.	The
preceding	paragraph,	for	example,	contains	slightly	more	than	400	characters.	Unix
works	in	units	of	a	block	of	information,	which,	depending	on	which	version	of
Unix	you’re	using,	is	either	1	kilobyte	or	512	bytes.	(Solaris,	for	example,	uses	512-
byte	blocks.)	Most	Unix	systems	work	with	a	1-kilobyte	block,	however.	When	you
use	the	-s	flag,	you’re	shown	how	many	of	these	blocks	each	file	contains.

3.	Here	is	a	further	definition	of	what	occurs	when	you	use	the	-s	flag:	ls	-s
indicates	the	number	of	blocks	each	file	or	directory	occupies.	You	then	can	use
simple	calculations	to	convert	blocks	into	bytes.	For	example,	the	ls	command
indicates	that	the	LISTS	file	in	my	home	directory	occupies	261	blocks.	A	quick
calculation	of	block	size	×	number	of	blocks	reveals	that	the	maximum	file	size	of
LISTS	is	133,632	bytes.

You	can	always	estimate	size	by	multiplying	the	number	of	blocks	by	1,000.	Be
aware,	however,	that	in	large	files,	the	difference	between	1,000	and	1,024	is
significant	enough	to	introduce	an	error	into	your	calculation.	As	an	example,
bigfile	is	more	than	3	megabytes	in	size	(a	megabyte	is	1,024	kilobytes,	which	is
1,024	bytes,	so	a	megabyte	is	1,024×1,024,	or	1,048,576	bytes):
%	ls	-s	bigfile
3648	bigfile

4.	The	file	actually	occupies	3,727,360	bytes.	If	I	estimated	its	size	by	multiplying	the
number	of	blocks	(3,648,	as	seen	in	the	output	of	the	preceding	command)	by	1,000

(which	equals	3,648,000	bytes),	I’d	have	underestimated	its	size	by	79,360	bytes.
(Remember,	blocks	×	1,000	is	simply	an	easy	estimate!)

Note

The	preceding	example	reveals	something	else	about	the	ls	command:	You	can
specify	individual	files	or	directories	you’re	interested	in	viewing	and	avoid	having
to	see	all	files	and	directories	in	your	current	location.

Note

Depending	on	what	shell	you’re	using	and	what	version	of	Unix	you	have,	you
might	be	able	to	press	the	Tab	key	while	typing	in	a	filename	and	have	it
automatically	completed	if	it’s	unambiguous.	Try	it;	if	you	have	this	shortcut,	it’s
great!

5.	You	can	specify	as	many	files	or	directories	as	you	like,	and	you	separate	them	with
spaces:

Click	here	to	view	code	image

%	ls	-s	LISTS	iecc.list	newels
261	LISTS									4	iecc.list					2	newels

In	the	preceding	hour,	you	learned	that	Unix	identifies	each	file	that	begins	with	a
dot	(.)	as	a	hidden	file.	Your	home	directory	is	probably	littered	with	dot	files,
which	retain	preferences,	status	information,	and	other	data.	To	list	these	hidden
files,	use	the	-a	flag	to	ls:

Click	here	to	view	code	image
%	ls	-a
.													gopherrc			.oldnewsrc					.sig									RUMORS.18Sept
..											.history				.plan										Archives					bin
.Agenda						.info							.pnewsexpert			InfoWorld				iecc.list
.aconfigrc			.letter					.report								LISTS								mailing.lists
.article					.login						.rm-timestamp		Mail									newels
.cshrc							.mailrc					.rnlast								News									src
.elm									.newsrc					.rnsoft								OWL

You	can	see	that	this	directory	contains	more	dot	files	than	regular	files	and
directories.	This	is	not	uncommon	in	a	Unix	home	directory.	However,	it’s	rare	to
find	any	dot	files	other	than	the	standard	dot	and	dot-dot	directories	(which	are	in
every	directory	in	the	entire	file	system)	in	directories	other	than	your	home
directory.	(These	dot	files	are	typically	created	by	applications	you	use,	and	they
should	be	edited	only	with	care.)

6.	You	used	another	flag	to	the	ls	command—the	-F	flag—in	the	preceding	hour.	Do
you	remember	what	it	does?

Click	here	to	view	code	image

%	ls	-F
Archives/						Mail/										RUMORS.18Sept		mailing.lists
InfoWorld@					News/										bin/											newels
LISTS										OWL/											iecc.list						src/

Adding	the	-F	flag	to	ls	appends	suffixes	to	certain	filenames	so	that	you	can
ascertain	more	easily	what	types	of	files	they	are.	Three	different	suffixes	can	be
added,	as	shown	in	Table	4.1.

TABLE	4.1	Filename	Suffixes	Appended	by	ls	-F

7.	Mac	and	Windows	users	can	both	create	aliases,	separate	files	that	do	not	contain
information	but	act	instead	as	pointers	to	the	actual	target	files.	Aliases	can	exist
either	for	specific	files	or	for	folders.	Windows	folk	might	also	know	such	a	file	as	a
“shortcut”	file.

Unix	has	offered	a	similar	feature	forever,	which	in	Unix	jargon	is	called	a	symbolic
link.	A	symbolic	link,	such	as	bin	in	Table	4.1,	contains	the	name	of	another	file	or
directory	rather	than	any	contents	of	its	own.	If	you	could	peek	inside,	it	might	look
like	bin	=	@/usr/bin.	Every	time	someone	tries	to	look	at	bin,	the	system
shows	the	contents	of	/usr/bin	instead.

You’ll	learn	more	about	symbolic	links	and	how	they	help	you	organize	your	files	in
Hour	6,	“Creating,	Moving,	Renaming,	and	Deleting	Files	and	Directories.”	For
now,	just	remember	that	if	you	see	an	@	after	a	filename,	it’s	a	link	to	another	spot	in
the	file	system.

8.	A	useful	flag	for	ls	(one	that	might	not	be	available	in	your	version	of	Unix)	is	the
-m	flag.	This	flag	outputs	the	files	as	a	comma-separated	list.	If	there	are	many	files,
using	-m	can	be	a	quick	and	easy	way	to	see	what’s	available:

Click	here	to	view	code	image

%	ls	-m
Archives,	InfoWorld,	LISTS,	Mail,	News,	OWL,	RUMORS.18Sept,
bin,	iecc.list,	mailing.lists,	newels,	src

Sometimes	you	might	want	to	list	each	of	your	files	on	a	separate	line,	perhaps	for	a
printout	you	want	to	annotate.	You’ve	learned	that	the	-C	flag	forces	recalcitrant	versions
of	ls	to	output	in	multiple	columns.	Unfortunately,	the	opposite	behavior	isn’t	obtained
by	use	of	a	lowercase	c.	(Unix	should	be	so	consistent!)	Instead,	use	the	-1	flag	to
indicate	that	you	want	one	column	of	output.	Try	it.

Task	4.3:	Combining	Flags
The	different	flags	you’ve	learned	so	far	are	summarized	in	Table	4.2.

TABLE	4.2	Some	Useful	Flags	to	ls

What	if	you	want	a	list,	generated	with	the	-F	conventions,	that	simultaneously	shows	you
all	files	and	indicates	their	types?

1.	Combining	flags	in	Unix	is	easy.	All	you	have	to	do	is	run	them	together	in	a
sequence	of	characters	and	prefix	the	whole	thing	with	a	dash:

Click	here	to	view	code	image

%	ls	-aF
./													.gopherrc						.oldnewsrc					.sig
../												.history*						.plan										Archives/
.Agenda								.info										.pnewsexpert			InfoWorld/
.aconfigrc					.letter								.report								LISTS
.article							.login									.rm-timestamp		Mail/
.cshrc									.mailrc								.rnlast								News/
.elm/										.newsrc								.rnsoft								OWL/

2.	Sometimes	it’s	more	convenient	to	keep	all	the	flags	separate.	This	is	fine,	as	long
as	each	flag	is	prefixed	by	its	own	dash:

Click	here	to	view	code	image
%	ls	-s	-F
total	403
			1	Archives/				1	Mail/						5	RUMORS.18Sept			280	mailing.lists
			1	InfoWorld/			1	News/						1	bin/														2	newels
	261	LISTS								1	OWL/							4	iecc.list									1	src/

3.	Try	some	of	these	combinations	on	your	own	computer.	Also	try	to	list	a	flag	more
than	once	(for	example,	ls	-sss	-s)	or	list	flags	in	different	orders.

Very	few	Unix	commands	care	about	the	order	in	which	flags	are	listed.	Because	it’s	the
presence	or	absence	of	a	flag	that’s	important,	listing	a	flag	more	than	once	also	doesn’t
make	any	difference.

Task	4.4:	Listing	Other	Directories	Without	Changing	Location
Every	time	I	try	to	do	any	research	in	the	library,	I	find	myself	spending	hours	and	hours
there,	but	it	seems	to	me	that	I	do	less	research	than	I	think	I	should.	That’s	because	most
of	my	time	is	for	the	tasks	between	the	specifics	of	my	research:	finding	the	location	of	the
next	book	and	finding	the	book	itself.

If	ls	constrained	you	to	listing	only	the	directory	you	were	in,	it	would	hobble	you	in	a

similar	way.	Using	only	ls	would	slow	you	down	dramatically	and	force	you	to	use	cd	to
move	around	each	time.

Instead,	just	as	you	can	specify	certain	files	by	using	ls,	you	can	specify	certain
directories	you’re	interested	in	viewing.

1.	List	/usr	on	your	system:
Click	here	to	view	code	image

%	ls	-F	/usr
5bin/									diag/									lddrv/								share/								ucbinclude@
5include/					dict/									lib/										source/							ucblib@
5lib/									etc/										local/								spool@								xpg2bin/
acc/										export/							lost+found/			src@										xpg2include/
acctlog*						games/								man@										stand@								xpg2lib/
adm@										hack/									mdec@									sys@
bin/										hosts/								old/										system/
boot@									include/						pub@										tmp@
demo/									kvm/										sccs/									ucb/

Try	this	yourself.	You	probably	have	different	files	and	directories	listed	in	your	own
/usr	directory.	Remember,	@	files	are	symbolic	links	in	the	listing,	too.

2.	You	can	also	specify	more	than	one	directory:
Click	here	to	view	code	image

%	ls	/usr/local	/home/taylor
/home/taylor:
Global.Software			Mail/													Src/													history.usenet.Z
Interactive.Unix		News/													bin/
/usr/local/:
T/												emacs/								ftp/										lists/								motd~
admin/								emacs-18.59/		gnubin/							lost+found/			netcom/
bin/										etc/										include/						man/										policy/
cat/										faq/										info/									menu/									src/
doc/										forms/								lib/										motd										tmp/

In	this	example,	the	ls	command	also	sorted	the	directories	before	listing	them.	I
specified	that	I	wanted	to	see	/usr/local	and	then	/home/taylor,	but	it
presented	the	directories	in	opposite	order.

Note

I’ve	never	been	able	to	figure	out	how	ls	sorts	directories	when	you	ask	for	more
than	one	to	be	listed;	it’s	not	an	alphabetical	listing.	Consider	it	a	mystery.
Remember	that	if	you	must	have	the	output	in	a	specific	order,	you	can	use	the	ls
command	twice	in	a	row.

3.	Here’s	where	the	dot-dot	shorthand	for	the	parent	directory	can	come	in	handy.	Try
it	yourself:

Click	here	to	view	code	image

%	ls	-m	..
ashley,	bruce,	cedric,	christine,	david,	gareth,
guest,	higgins,	james,	kiana,	linda,	mac,	mark,
rank,	shalini,	shane,	taylor,	Vicki

If	you	were	down	one	branch	of	the	file	system	and	wanted	to	look	at	some	files
down	another	branch,	you	could	easily	find	yourself	using	the	command	ls
../Indiana/Personnel	or	ls	-s	../../source.

4.	There’s	a	problem	here,	however.	You’ve	seen	that	you	can	specify	filenames	to
look	at	those	files	and	directory	names	to	look	at	the	contents	of	those	directories,
but	what	if	you’re	interested	in	a	directory	itself,	not	in	its	contents?	You	might	want
to	list	just	two	directories—not	the	contents,	just	the	directory	names	themselves,	as
shown	here:

Click	here	to	view	code	image

%	ls	-F
Archives/						Mail/											RUMORS.18Sept		mailing.lists
InfoWorld/					News/											bin/											newlists
LISTS										OWL/												iecc.list						src/
%	ls	-s	LISTS	Mail	newlists
	261	LISTS									2	newlists
Mail:
total	705
	8	cennamo				27	ean_houts						4	kcs				21	mark				7	sartin
28	dan_sommer		2	gordon_haight	34	lehman		5	raf					3	shelf
14	decc							48	harrism							64	mac					7	rock			20	steve
	3	druby						14	james									92	mailbox	5	rustle	18	tai

5.	The	problem	is	that	ls	doesn’t	know	that	you	want	to	look	at	Mail	unless	you	tell
it	not	to	look	inside	the	directories	specified.	The	command	flag	needed	is	-d,	which
forces	ls	to	list	directories	rather	than	their	contents.	The	same	ls	command,	but
with	the	-d	flag,	has	dramatically	different	output:

Click	here	to	view	code	image
%	ls	-sd	LISTS	Mail	newlists
	261	LISTS								1	Mail/								2	newlists

Try	some	of	these	flags	on	your	own	system	and	watch	how	they	work	together.

To	list	a	file	or	directory,	you	can	specify	it	to	ls.	Directories,	however,	reveal	their
contents	unless	you	also	include	the	-d	flag.

Special	ls	Command	Flags
It	should	be	clear	to	you	that	Unix	is	the	Swiss	Army	knife	of	operating	systems.	Even	the
simplest	commands	have	dozens	of	different	options.	On	Mac	OS	X,	for	example,	ls	has
more	than	33	different	flags.	Like	nearly	any	other	command	in	Unix,	it’s	a	tool	with	a
million	uses—most	of	which	come	from	your	own	creativity	and	personal	taste,	and	its
real	power	comes	from	how	it’s	used	in	conjunction	with	other	tools	and	commands,	as
you	will	see	later.

Task	4.5:	Changing	the	Sort	Order	in	ls
What	if	you	wanted	to	look	at	files	but	wanted	them	to	show	up	in	a	directory	sorting
order	different	from	the	default	(such	as	column-first	order)?	How	could	you	change	the
sort	order	in	ls?

1.	The	-x	flag	sorts	across,	listing	the	output	in	columns,	or	row-first	order	(where
entries	are	sorted	across,	then	down):

Click	here	to	view	code	image

%	ls	-a
.															.elm														.plan													Global.Software
..														.forward										.pnewsexpert						Interactive.Unix
.Pnews.header			.ircmotd										.rnlast											Mail
.accinfo								.login												.rnlock											News
.article								.logout											.rnsoft											Src
.cshrc										.newsrc											.sig														bin
.delgroups						.oldnewsrc								.tin														history.usenet.Z
%	ls	-x	-a
.															..																.Pnews.header					.accinfo
.article								.cshrc												.delgroups								.elm
.forward								.ircmotd										.login												.logout
.newsrc									.oldnewsrc								.plan													.pnewsexpert
.rnlast									.rnlock											.rnsoft											.sig
.tin												Global.Software			Interactive.Unix		Mail
News												Src															bin															history.usenet.Z

2.	Even	more	ways	exist	to	sort	files	in	ls.	If	you	want	to	sort	by	most	recently
accessed	to	least	recently	accessed,	you	use	the	-t	flag:

Click	here	to	view	code	image
%	ls	-a	-t
./																	../													.rnlock												.cshrc
.newsrc												News/											.rnlast												.sig
.oldnewsrc									.tin/											.rnsoft												.plan
.article											.ircmotd								Interactive.Unix				Mail/
.elm/														.delgroups						.accinfo*										.Pnews.header*
.forward											.login										Src/															.pnewsexpert
history.usenet.Z			bin/												Global.Software				.logout

From	this	output,	you	can	see	that	the	most	recently	accessed	files	are	.newsrc
and	.oldnewsrc	and	that	it’s	been	quite	a	while	since	.logout	was	touched.
Try	using	the	-t	flag	on	your	system	to	see	which	files	you’ve	been	accessing	and
which	you	haven’t.

3.	So	far,	you	know	three	different	approaches	to	sorting	files	within	the	ls	command:
column-first	order,	row-first	order,	and	most	recently	accessed-first	order.	But	more
options	exist	in	ls	than	just	these	three.	For	example,	the	-r	flag	reverses	any
sorting	order:

Click	here	to	view	code	image

%	ls
Global.Software				Mail/								Src/														history.usenet.Z
Interactive.Unix			News/								bin/
%	ls	-r
history.usenet.Z			Src/									Mail/													Global.Software
bin/															News/								Interactive.Unix

4.	Things	can	become	confusing	when	you	combine	some	of	these	flags.	Try	to	list	the
contents	of	the	directory	that	is	one	level	above	the	current	directory,	sorted	so	the
most	recently	accessed	file	is	last	in	the	list.	At	the	same	time,	you	want	to	know
which	items	are	directories	and	the	size	of	each	file.	Use	this:

Click	here	to	view	code	image

%	ls	-r	-t	-F	-s	..
total	150
			2	bruce/				2	rank/							2	kiana/						14	higgins/
			2	linda/				2	christine/		2	shane/						6	mac/
			2	cedric				2	peggy/						4	paul/						10	mark/
			2	james@				4	taylor/					4	gareth/					6	ashley/
			2	vicki/				2	guest/						6	shalini/				4	david/

A	better	and	easier	way	to	type	the	preceding	command	would	be	to	bundle	flags
into	the	single	argument	ls	-rtFs	..,	which	would	work	just	as	well,	and	you’d
look	like	an	expert!

Task	4.6:	Listing	Directory	Trees	Recursively	in	ls
In	case	things	aren’t	yet	complicated	enough	with	ls,	two	more	important	valuable	flags
are	available.	One	is	the	-R	flag,	which	causes	ls	to	recursively	list	directories	below	the
current	or	specified	directory.	(If	you	are	familiar	with	DOS,	you	can	think	of	using	the	-R
flag	with	ls	as	equivalent	to	the	DOS	tree	command.)	If	you	think	of	listing	files	as	a
numbered	set	of	steps,	recursion	is	simply	adding	a	step—if	this	file	is	a	directory,	list	its
contents	too—to	the	list.

1.	When	I	use	the	-R	flag,	here’s	what	I	see:
Click	here	to	view	code	image

%	ls	-R
Global.Software				Mail/						Src/					history.usenet.Z
Interactive.Unix			News/						bin/
Mail:
Folders/		Netnews/
Mail/Folders:
mail.sent		mailbox				steinman			tucker
Mail/Netnews:
postings
News:
uptodate		volts
Src:
sum-up.c
bin:
Pnews*			punt*				submit*

2.	Try	it	yourself.	Notice	that	ls	lists	the	current	directory	and	then	alphabetically	lists
the	contents	of	all	subdirectories.	Notice	also	that	the	Mail	directory	has	two
directories	within	it	and	that	those	are	also	listed	here.

Viewing	all	files	and	directories	below	a	certain	point	in	the	file	system	can	be	a	valuable
way	to	look	for	files	(although	you’ll	soon	learn	better	tools	for	finding	files).	If	you	aren’t
careful,	though,	you	can	get	hundreds	or	thousands	of	lines	of	information	streaming
across	your	screen.	Do	not	enter	a	command	such	as	ls	-R	/	unless	you	have	time	to	sit
and	watch	a	lot	of	information	fly	past.

Tip

You	can	usually	interrupt	a	long-running	command	by	pressing	Ctrl-C.

If	you	try	to	list	the	contents	of	a	directory	when	you	don’t	have	permission	to	access	the
information,	ls	warns	you	with	an	error	message:

%	ls	../marv
../marv	unreadable

Now	ask	for	a	recursive	listing,	with	indications	of	file	type	and	size,	of	the	directory
/etc,	and	see	what’s	there.	The	listing	will	include	many	files	and	subdirectories,	but
they	should	be	easy	to	wade	through	due	to	all	the	notations	ls	uses	to	indicate	files	and
directories.

Task	4.7:	Long	Listing	Format	in	ls
You’ve	seen	how	to	estimate	the	size	of	a	file	by	using	the	-s	flag	to	find	the	number	of
blocks	it	occupies.	To	find	the	exact	size	of	a	file	in	bytes,	use	the	-l	flag.	(Use	a
lowercase	letter	L.	The	numeral	1	produces	single-column	output,	as	you’ve	already
learned.)

1.	The	first	long	listing	shows	information	for	the	LISTS	file:
Click	here	to	view	code	image

%	ls	-l	LISTS
-rw––-		1	taylor					106020	Oct		8	15:17	LISTS

The	output	is	explained	in	Figure	4.1.

FIGURE	4.1	The	meaning	of	the	-l	output	for	a	file.

For	each	file	and	directory	in	the	Unix	file	system,	the	owner,	size,	name,	number	of	other
files	pointing	to	it	(links),	and	access	permissions	are	recorded.	The	creation,
modification,	and	access	times	and	dates	are	also	recorded	for	each	file.	The	modification
time	is	the	default	time	used	for	the	-t	sorting	option	and	listed	by	the	ls	long	format.

Permissions	Strings
Interpreting	permissions	strings	is	a	complex	issue	because	Unix	has	a	sophisticated
security	model.	Security	revolves	around	three	different	types	of	user:	the	owner	of	the
file,	the	group	of	which	that	the	file	is	a	part,	and	everyone	else.

The	first	character	of	the	permissions	string,	identified	in	Figure	4.1	as	access
permissions,	indicates	the	kind	of	file.	The	two	most	common	values	are	d	for	directories
and	-	for	regular	files.	Be	aware	that	there	are	many	other	file	types	that	you’ll	rarely,	if

ever,	see.

The	following	nine	characters	in	the	permissions	string	indicate	what	type	of	access	is
allowed	for	different	users.	From	left	to	right,	these	characters	show	what	access	is
allowed	for	the	owner	of	the	file,	the	group	that	owns	the	file,	and	everyone	else.

Figure	4.2	shows	how	to	break	down	the	permissions	string	for	the	LISTS	file	into
individual	components.

FIGURE	4.2	Reading	access	permissions	for	LISTS.

Each	permissions	string	is	identically	composed	of	three	components—permission	for
reading,	writing,	and	execution—as	shown	in	Figure	4.3.

FIGURE	4.3	Elements	of	a	permissions	string.

Armed	with	this	information—specifically,	knowing	that	a	-	character	means	that	the
specific	permission	is	denied—you	can	see	that	ls	shows	that	the	owner	of	the	file,
taylor,	as	illustrated	in	Figure	4.1,	has	read	and	write	permission.	Nobody	else	either	in
taylor’s	group	or	in	any	other	group	has	permission	to	view,	edit,	or	run	the	file.
There’s	lots	more	on	this	subject	in	the	next	hour!

Earlier	you	learned	that	just	about	everything	in	Unix	ends	up	as	a	file	in	the	file	system,
whether	it’s	an	application,	a	device	driver,	or	a	directory.	The	system	keeps	track	of
whether	a	file	is	executable	because	that’s	one	way	it	knows	whether	LISTS	is	the	name
of	a	file	or	the	name	of	an	application.

Task	4.8:	Long	Listing	Format	for	Directories	in	ls
The	long	form	of	a	directory	listing	is	almost	identical	to	a	file	listing,	but	the	permissions
string	is	interpreted	in	a	very	different	manner.

1.	Here	is	an	example	of	a	long	directory	listing:
Click	here	to	view	code	image

%	ls	-l	-d	Example
drwxr-x–		2	taylor							1024	Sep	30	10:50	Example/

Remember	that	you	must	have	both	read	and	execute	permissions	for	a	directory.	If
you	have	either	read	or	execute	permission	but	not	both,	the	directory	will	not	be
usable	(as	though	you	had	neither	permission).	Write	permission,	of	course,	enables
the	user	to	alter	the	contents	of	the	directory	or	add	new	files	to	the	directory.

2.	The	Example	directory	can	be	interpreted	as	shown	in	Figure	4.4.

FIGURE	4.4	Elements	of	directory	permissions.

Note

I’ve	never	understood	the	nuances	of	a	directory	with	read	but	not	execute
permission,	or	vice	versa,	and	explanations	from	other	people	have	never	proven	to
be	correct.	It’s	okay,	though,	because	I’ve	never	seen	a	directory	on	a	Unix	system
that	was	anything	other	than	---,	r-x,	rw-,	or	rwx.

3.	Now	try	using	the	-l	flag	yourself.	Move	to	your	home	directory	and	enter	ls	-l
as	shown	here:

Click	here	to	view	code	image

%	ls	-l
total	403
drwx––		2	taylor								512	Sep	30	10:38	Archives/
drwx––		3	taylor								512	Oct		1	08:23	InfoWorld/
-rw––-		1	taylor					46901	Oct		8	15:17	LISTS

drwx––		2	taylor							1024	Sep	30	10:50	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		2	taylor								512	Sep	30	10:51	OWL/
-rw––-		1	taylor							4643	Sep	20	10:49	RUMORS.18Sept
drwx––		2	taylor								512	Oct		1	09:53	bin/
-rw––-		1	taylor							3843	Oct		6	18:02	iecc.list
-rw-rw–-		1	taylor					280232	Oct		6	09:57	mailing.lists
-rw-rw–-		1	taylor							1031	Oct		7	15:44	newlists
drwx––		2	taylor								512	Sep	14	22:14	src/

The	size	of	a	directory	is	usually	in	increments	of	512	bytes,	though	some	Unixes
show	exactly	how	big	the	directory	of	filenames	therein	is.	(Unix	doesn’t	indicate
how	big	the	files	in	a	directory	are,	just	the	sum	size	of	all	the	filenames
themselves.)	The	second	field,	the	“link,”	is	an	interesting	and	little-known	value
when	a	directory	is	being	listed.	Instead	of	counting	up	the	number	of	other	files	that
point	to	the	file	(that	is,	the	number	of	files	that	have	a	link	to	the	current	file),	the
second	field	indicates	the	number	of	directories	that	are	contained	in	that	specific
directory.	Remember	that	all	directories	have	dot	and	dot-dot,	so	the	minimum	value
is	always	2.

4.	Consider	the	following	example	of	a	directory	listing:
Click	here	to	view	code	image

%	ls	-Fa
./											.gopherrc					.oldnewsrc						.sig												OWL/
../										.history*					.plan											Archives/							RUMORS.18Sept
.Agenda						.info									.pnewsexpert				Cancelled.mail		bin/
.aconfigrc			.letter							.report									InfoWorld/						iecc.list
.article					.login								.rm-timestamp			LISTS											mailing.lists
.cshrc							.mailrc							.rnlast									Mail/											newlists
.elm/								.newsrc							.rnsoft									News/											src/
%	ls	-ld	.
drwx––	10	taylor							1024	Oct	10	16:00	./

5.	Try	entering	ls	-ld	.	and	see	whether	it	correctly	identifies	the	number	of
directories	in	your	home	directory.	Move	to	other	directories	and	see	whether	the
listing	agrees	with	your	own	count	of	directories.

The	output	from	the	ls	-l	command	is	unquestionably	complex	and	packed	with
information.	Interpretation	of	permissions	strings	is	an	important	part	of	understanding
and	being	able	to	use	Unix,	and	more	explanation	is	offered	in	subsequent	hours.

Table	4.3	summarizes	the	many	different	command	flags	for	ls	that	you	have	learned	in
this	hour.

TABLE	4.3	Summary	of	Command	Flags	for	ls

Without	a	doubt,	ls	is	one	of	the	most	powerful	and,	therefore,	confusing	commands	in
Unix.	The	best	way	for	you	to	learn	how	all	the	flags	work	together	is	to	experiment	with
different	combinations.

Task	4.9:	Creating	Files	with	the	touch	Command
At	this	point,	you	know	about	various	Unix	tools	that	help	you	move	through	the	file
system	and	learn	about	specific	files.	Now	it’s	time	to	use	the	touch	command,	which
helps	you	create	new	files	on	the	system,	independent	of	any	program	other	than	the	shell
itself.	This	can	prove	very	helpful	for	organizing	a	new	collection	of	files,	for	example.

The	main	reason	that	touch	is	used	in	Unix	is	to	force	the	last-modified	time	of	a	file	to
be	updated,	as	the	following	example	demonstrates:
Click	here	to	view	code	image

%	ls	-l	iecc.list
-rw––-		1	taylor							3843	Oct		6	18:02	iecc.list
%	touch	iecc.list
%	ls	-l	iecc.list
-rw––-		1	taylor							3843	Oct	10	16:22	iecc.list

Because	the	touch	command	changes	modification	times	of	files,	anything	that	sorts
files	based	on	modification	time	will,	of	course,	alter	the	position	of	that	file	when	the	file
is	altered	by	touch.

1.	Consider	the	following	output:
Click	here	to	view	code	image

%	ls	-t
mailing.lists			LISTS											News/											OWL/												src/
Cancelled.mail		newlists								bin/												Mail/
RUMORS.18Sept			iecc.list							InfoWorld/						Archives/

%	touch	iecc.list
%	ls	-t
iecc.list							RUMORS.18Sept			News/											OWL/												src/
mailing.lists			LISTS											bin/												Mail/
Cancelled.mail		newlists								InfoWorld/						Archives/

You	probably	will	not	use	touch	for	this	purpose	very	often.

2.	If	you	try	to	use	the	touch	command	on	a	file	that	doesn’t	exist,	the	program
creates	the	file:

Click	here	to	view	code	image

%	ls
Archives/							LISTS											OWL/												iecc.list							src/
Cancelled.mail		Mail/											RUMORS.18Sept			mailing.lists
InfoWorld/						News/											bin/												newlists
%	touch	new.file
%	ls
Archives/							LISTS											OWL/												iecc.list							newlists
Cancelled.mail		Mail/											RUMORS.18Sept			mailing.lists			src/
InfoWorld/						News/											bin/												new.file
%	ls	-l	new.file
-rw-rw–-		1	taylor										0	Oct	10	16:28	new.file

The	new	file	has	zero	bytes,	as	can	be	seen	in	the	ls	-l	output.	Notice	that	by
default	the	files	are	created	with	read	and	write	permission	for	the	user	and	anyone
in	the	user’s	group.	You’ll	learn	in	the	next	hour	how	to	specify,	by	using	the	umask
command,	your	own	default	permission	for	files.

You	won’t	need	touch	very	often,	but	it’s	valuable	to	know.

Task	4.10:	Checking	Disk	Space	Usage	with	du
One	advantage	that	Windows	and	Macintosh	systems	have	over	Unix	is	that	they	make	it
easy	to	find	out	how	much	disk	space	you’re	using	and	how	much	remains	available.	On	a
Mac,	viewing	folders	by	size	shows	disk	space	used,	and	the	bottom	of	any	Finder
window	shows	available	space.

Like	a	close-mouthed	police	informant,	Unix	never	volunteers	any	information,	so	you
need	to	learn	two	new	commands.	The	du	(disk	usage)	command	is	used	to	find	out	how
much	disk	space	is	used;	the	df	(disk	free)	command	is	used	to	find	out	how	much	space
is	available.

1.	The	du	command	lists	the	size,	in	kilobytes,	of	all	directories	at	or	below	the
current	point	in	the	file	system.
%	du
11						./OWL
38						./.elm
20						./Archives
14						./InfoWorld/PIMS
28						./InfoWorld
710					./Mail
191					./News
25						./bin
35						./src
1627				.

Notice	that	du	goes	two	levels	deep	to	find	the	InfoWorld/PIMS	subdirectory,
adding	its	size	to	the	size	indicated	for	the	InfoWorld	directory.	At	the	very	end,	it
lists	1,627	kilobytes	as	the	size	of	the	dot	directory—the	current	directory.	As	you
know,	1,024	kilobytes	is	a	megabyte.	Through	division,	you’ll	find	that	this
directory	is	taking	up	1.5MB	of	disk	space.

Note

As	with	ls,	Solaris	uses	its	default	block	size	of	512	bytes	to	indicate	file	sizes,	so
you’ll	need	to	divide	by	2	to	get	kilobyte-based	sizes.	Alternatively,	use	the	-h
option	to	display	the	sizes	in	human-readable	format,	with	K	and	M	suffixes.	This
option	is	available	in	all	modern	Unix	flavors.

2.	If	you	are	interested	in	only	the	grand	total,	you	can	use	the	-s	flag	to	output	just	a
summary	of	the	information.
%	du	–s
1627				.

Of	course,	you	can	look	anywhere	on	the	file	system,	but	the	more	subdirectories
there	are,	the	longer	it	takes.

3.	It	is	possible	to	get	error	messages	with	du:
Click	here	to	view	code	image

%	du	-s	/etc
/etc/shadow:	Permission	denied
307932				/etc

In	this	example,	one	of	the	directories	within	the	/etc	directory	has	a	permissions
set	that	denies	access:

Click	here	to	view	code	image
%	ls	-ld	/etc/shadow
-r––—		2	root										683	Oct	10	16:34	/etc/shadow/

The	du	command	summarizes	disk	usage	only	for	the	files	and	directories	it	can
read,	so	regardless	of	the	size	of	the	shadow	file,	I’d	still	have	the	same	size
indicated.

4.	Although	by	default	du	lists	only	the	sizes	of	directories,	it	also	computes	the	size
of	all	files.	If	you’re	interested	in	that	information,	you	can,	by	adding	the	-a	flag,
have	the	program	list	it	for	all	files:

Click	here	to	view	code	image

%	cd	InfoWorld
%	du	-a
9							./PIM.review.Z
5							./Expert.opinion.Z
4							./PIMS/proposal.txt.Z
1							./PIMS/task1.txt.Z
2							./PIMS/task2.txt.Z
2							./PIMS/task3.txt.Z
2							./PIMS/task4.txt.Z
2							./PIMS/task5.txt.Z

2							./PIMS/task6.txt.Z
1							./PIMS/contact.info.Z
14						./PIMS
28						.

The	problems	of	the	-a	flag	for	du	are	similar	to	those	for	the	-R	flag	for	ls.	That
is,	there	might	be	more	files	in	a	directory	than	you	care	to	view.

Task	4.11:	Checking	Available	Disk	Space	with	df
Disks	in	Unix	are	typically	partitioned	into	several	volumes,	each	with	its	own	purpose
and	segregated	from	the	rest	of	the	system.	Even	on	a	personal	computer	system	like	Mac
OS	X,	the	single	volume	occupying	the	entire	disk	is	accompanied	by	several	much
smaller	special-purpose	ones,	and	the	tools	used	for	examining	them	are	designed	to	look
at	volumes	individually.	This	means	that	figuring	out	how	much	disk	space	is	available	on
the	overall	Unix	system	is	difficult	for	everyone	except	experts.	The	df	command	is	used
for	this	task,	but	it	doesn’t	summarize	its	results;	the	user	must	add	the	column	of
numbers.

1.	This	is	the	system’s	response	to	the	df	command	on	a	thoroughly	partitioned	Unix
server:

Click	here	to	view	code	image

%		df
Filesystem												kbytes				used			avail	capacity		Mounted
/dev/zd0a														17259			14514				1019				93%				/
/dev/zd8d													185379		143995			22846				86%				/userf
/dev/zd7d													185379			12984		153857					8%				/tmp
/dev/zd3f													385689		307148			39971				88%				/users
/dev/zd3g													367635		232468			98403				70%				/userc
/dev/zd2f													385689		306189			40931				88%				/usere
/dev/zd2g													367635		207234		123637				63%				/userb
/dev/zd1g													301823		223027			48613				82%				/usera
/dev/zd5c													371507		314532			19824				94%				/usr
/dev/zd0h													236820		159641			53497				75%				/usr/src
/dev/zd0g													254987			36844		192644				16%				/var

You	end	up	with	lots	of	information,	but	it’s	not	easily	added	quickly	to	find	the	total
space	available.	Nonetheless,	the	output	offers	quite	a	bit	of	information.

2.	Because	I	know	that	my	home	directory	is	on	the	disk	/users,	I	can	simply	look
for	that	directory	in	the	rightmost	column	to	find	out	that	I’m	using	the	hard	disk
/dev/zd3f.	I	can	see	that	385,689	kilobytes	are	on	the	disk,	and	88%	of	the	disk
is	used,	which	means	that	307,148	kilobytes	are	used	and	39,971	kilobytes,	or	only
about	38MB,	are	unused.

3.	Some	Unix	systems	have	relatively	few	separate	computer	disks	hooked	up	or
volumes	partitioned,	making	the	df	output	more	readable.	The	df	output	is	shown
below	and	explained	in	Figure	4.5.

FIGURE	4.5	Understanding	df	output.
Click	here	to	view	code	image

%	df
Filesystem												kbytes				used			avail	capacity		Mounted
/dev/sd0a														55735			37414			12748				75%				/
/dev/sd2b													187195		153569			14907				91%				/usr
/dev/sd1a														55688			43089				7031				86%				/utils

You	can	add	the	columns	to	find	that	the	system	has	a	total	of	about	300MB	of	disk
space	(55,735	+	187,195	+	55,688),	of	which	230MB	are	used.	The	remaining	space
is	therefore	33MB,	or	16%,	of	the	total	disk	size.

4.	Many	modern	Unix	systems	enable	you	to	use	du	with	the	-h	flag.	(Some	man
pages	refer	to	this	as	the	human	readable	output	flag!)	This	offers	a	much	more
useful	output	format.	Here’s	an	example	from	yet	another	computer	system:

Click	here	to	view	code	image
%	df	-h
Filesystem				Size			Used		Avail	Capacity		Mounted	on
/dev/sd0a						15G			2.1G				13G				14%				/
/dev/sd1a						15G			157M				15G					1%				/web

5.	Mac	OS	X	is	one	of	the	more	modern	Unixes,	and	it	has	all	sorts	of	nondisk	devices
included	in	df	output,	as	you	can	see	in	this	example:

Click	here	to	view	code	image

$	df	-h
Filesystem																Size			Used		Avail	Capacity		Mounted	on
/dev/disk0s8															49G				43G			6.1G				88%				/
devfs																						94K				94K					0B			100%				/dev
fdesc																					1.0K			1.0K					0B			100%				/dev
<volfs>																			512K			512K					0B			100%				/.vol
automount	-nsl	[335]								0B					0B					0B			100%				/Network
automount	-fstab	[338]						0B					0B					0B			100%				/automount/Servers
automount	-static	[338]					0B					0B					0B			100%				/automount/static

With	all	this	output,	there’s	actually	only	one	disk	on	the	system,	/dev/disk0s8,
which	is	a	49GB	hard	drive	that’s	88%	full.

6.	Try	using	the	du	and	df	commands	on	your	system	to	determine	how	much	disk
space	is	available	on	both	the	overall	system	and	the	disk	you’re	using	for	your
home	directory.	Then	use	du	to	identify	how	much	space	your	files	and	directories

are	occupying.

Task	4.12:	Shrinking	Big	Files	with	the	gzip	Program
Now	that	you	can	determine	how	much	space	you’re	using	with	the	files	in	your	directory,
you’re	ready	to	learn	how	to	save	space	without	removing	any	files.	Unix	has	a	built-in
program—the	gzip	program—that	offers	this	capability.

The	original	compression	program	built	into	Unix	is	called	compress,	but	there	are	now
two	other	tools	you	can	use	to	compress	files	that	tend	to	do	a	better	job:	gzip	and
bzip2.

1.	In	this	simple	example,	the	gzip	program	is	given	a	list	of	filenames	and	then
compresses	each	of	the	files	and	renames	them	with	a	.gz	suffix,	which	indicates
that	they	are	compressed:

Click	here	to	view	code	image

%	ls	-l	LISTDATA2
-rw-r—r—		1	taylor		taylor		24064	23	Apr	22:41	LISTDATA2
%	gzip	LISTDATA2
%	ls	-l	LIST*
-rw-r—r—		1	taylor		taylor		3682	23	Apr	22:41	LISTDATA2.gz

Compressing	the	LISTDATA2	file	has	reduced	its	size	from	24	kilobytes	to	a	little
more	than	3	kilobytes	(a	savings	of	almost	85%	in	disk	space).	If	you	expect	to	have
large	files	on	your	system	that	you	won’t	access	very	often,	using	the	gzip	program
can	save	lots	of	disk	space.

2.	Using	gzip	on	bigger	files	can	show	even	greater	savings	(note	that	I’m	also
adding	the	-v	flag,	which	shows	how	much	savings	I’ve	gained	by	using	gzip	on	the
file	in	question):

Click	here	to	view	code	image
%	ls	-l	big.file
-rwx––		1	taylor		taylor		3198588	23	Apr	22:48	big.file
%	gzip	-v	big.file
big.file:																72.7%	—	replaced	with	big.file.gz
%	ls	-l	big.file*
-rwx––		1	taylor		taylor		871440	23	Apr	22:48	big.file.gz

This	single	command	is	able	to	free	almost	3MB	of	disk	space.	If	you’re	using	a	PC
to	run	Unix,	or	if	you	are	on	a	system	with	many	users	(which	you	can	easily
ascertain	by	using	the	w	command),	it	might	take	a	significant	amount	of	time	to
compress	files.

3.	To	reverse	the	operation,	use	the	companion	command	gunzip	and	specify	either
the	current	name	of	the	file	(that	is,	with	the	.gz	suffix)	or	the	name	of	the	file
before	it	was	compressed	(that	is,	without	the	.gz	suffix):

Click	here	to	view	code	image

%	gunzip	LISTDATA2
%	ls	-l	LISTDATA2
-rw-r—r—		1	taylor		taylor		24064	23	Apr	22:41	LISTDATA2

Note

Why	would	you	compress	files?	You	would	do	so	to	save	file	space.	Before	you	use
any	of	the	compressed	files,	though,	you	must	uncompress	them,	so	the	gzip
utility	is	best	used	with	large	files	you	won’t	need	for	a	while.

4.	Before	we	leave	this	topic,	let’s	take	a	quick	peek	at	how	the	other	two	compression
programs	compare	with	both	LISTDATA2	and	big.file:

Click	here	to	view	code	image

%	ls	-l	LISTDATA2	big.file
-rw-r—r—			1	taylor		taylor				24064	23	Apr	22:41	LISTDATA2
-rwx––			1	taylor		taylor		3198588	23	Apr	22:48	big.file
%	compress	-v	LISTDATA2	big.file
LISTDATA2.Z:	25%	compression
big.file.Z:	33%	compression
%	ls	-l	LISTDATA*	big.file*
-rw-r—r—		1	taylor		taylor					5962	23	Apr	22:41	LISTDATA2.Z
-rwx––		1	taylor		taylor		1068457	23	Apr	22:48	big.file.Z*
%	uncompress	LISTDATA2*	big.file*
%	bzip2	-v	LISTDATA2	big.file
		LISTDATA2:		5.979:1,		1.338	bits/byte,	83.27%	saved,	24064	in,	4025	out.
		big.file:		5.305:1,		1.508	bits/byte,	81.15%	saved,	3198588	in,	602958
out.
%	bunzip2	LISTDATA*	big.file*
%	ls	-l	LISTDATA	big.file
-rw-r—r—		1	taylor		taylor				24064	23	Apr	22:41	LISTDATA2
-rwx––		1	taylor		taylor		3198588	23	Apr	22:48	big.file

Different	compression	programs	have	different	results	because	of	the	format	of	a
given	file.	Sometimes	the	compression	programs	can’t	save	any	disk	space	at	all.	If
you	are	having	disk	space	issues,	experiment	with	the	different	programs	on	your
largest	file	or	two	to	see	which	is	doing	the	best	job	with	the	kind	of	files	you	have.

Try	using	the	gzip	program	on	some	of	the	files	in	your	directory,	being	careful	not	to
compress	any	files	(particularly	preference	or	dot	files)	that	might	be	required	to	run
programs.

Summary
You’ve	spent	most	of	this	hour	learning	about	the	powerful	and	complex	ls	command
and	its	many	ways	of	listing	files	and	directories.	You’ve	also	learned	how	to	combine
command	flags	to	reduce	typing.	You’ve	learned	how	to	use	the	touch	command	to
create	new	files	and	update	the	modification	time	on	older	files,	if	needed.	The	hour
continued	with	a	discussion	of	how	to	ascertain	the	amount	of	disk	space	you’re	using	and
how	much	space	is	left,	using	the	du	and	df	commands,	respectively.	You’ve	also	learned
how	the	gzip	command	can	keep	you	from	running	out	of	space	by	ensuring	that
infrequently	used	files	are	stored	in	the	minimum	space	needed.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
access	permissions	This	is	the	set	of	accesses	(read,	write,	and	execute)	allowed	for	each
of	the	three	classes	of	users	(owner,	group,	and	everyone	else)	for	each	file	or	directory	on
the	system.

block	At	its	most	fundamental,	a	block	is	like	a	sheet	of	information	in	the	virtual
notebook	that	represents	the	disk:	A	disk	is	typically	composed	of	many	tens,	or	hundreds,
of	thousands	of	blocks	of	information,	each	512	bytes	in	size.	You	also	might	read	the
explanation	of	inode	in	the	glossary	at	the	back	of	the	book	to	learn	more	about	how	disks
are	structured	in	Unix.

column-first	order	When	you	have	a	list	of	items	that	are	listed	in	columns	and	span
multiple	lines,	column-first	order	is	a	sorting	strategy	in	which	items	are	sorted	so	that	the
items	are	in	alphabetical	order	down	the	first	column.	The	sorting	continues	at	the	top	of
the	second	column,	then	the	third	column,	and	so	on.	The	alternative	strategy	is	row-first
order.

permissions	string	This	string	represents	the	access	permissions,	encoding	the	various
privileges	symbolically	for	easy	reading.

row-first	order	This	is	a	sorting	order	in	which	items	are	sorted	in	rows	so	that	the	first
item	of	each	column	in	a	row	is	in	alphabetical	order	from	left	to	right,	then	the	second
line	contains	the	next	set	of	items,	and	so	on.	The	alternative	strategy	is	column-first
order.

Exercises
1.	Try	using	the	du	command	on	different	directories	to	see	how	much	disk	space	each
requires.	If	you	encounter	errors	with	file	permissions,	use	ls	-ld	to	list	the
permissions	of	the	directory	in	question.

2.	Why	would	you	want	all	the	different	types	of	sorting	alternatives	available	with
ls?	Can	you	think	of	situations	in	which	each	would	be	useful?

3.	Use	a	combination	of	the	ls	-t	and	touch	commands	to	create	a	few	new	files.
Then	update	their	modification	times	so	that	in	a	most	recently	modified	listing	of
files,	the	first	file	you	created	shows	up	ahead	of	the	second	file	you	created.

4.	Try	using	the	du	-s	..	command	from	your	home	directory.	Before	you	try	it,
however,	what	do	you	think	will	happen?

5.	Use	df	and	bc	or	dc	to	figure	out	the	amounts	of	disk	space	used	and	available	on
your	system.

6.	Use	the	gzip	command	to	shrink	a	file	in	/tmp	or	your	home	directory.	Use	the	-

v	flag	to	learn	how	much	the	file	was	compressed	and	then	restore	the	file	to	its
original	condition	by	using	gunzip.

Preview	of	the	Next	Hour
The	next	hour	is	a	bit	easier.	It	offers	further	explanation	of	the	various	information	given
by	the	ls	command	and	a	discussion	of	file	ownership,	including	how	to	change	the
owner	and	group	of	any	file	or	directory.	You	will	learn	about	the	chmod	command,
which	can	change	the	specific	set	of	permissions	associated	with	any	file	or	directory,	and
the	umask	command,	which	can	control	the	modes	that	new	files	are	given	upon	creation.

Hour	5.	Ownership	and	Permissions

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	file	permissions	settings

	About	directory	permissions	settings

	How	to	modify	file	and	directory	permissions	with	chmod

	About	working	with	chmod	numeric	permissions	strings

	How	to	establish	default	file	and	directory	permissions	with	umask

	How	to	identify	the	owner	and	group	for	any	file	or	directory

This	hour	focuses	on	teaching	the	basics	of	Unix	file	permissions.	Topics	include	setting
and	modifying	file	permissions	with	chmod,	analyzing	file	permissions	as	shown	by	the
ls	-l	command,	and	setting	up	default	file	permissions	with	the	umask	command.
Permission	is	only	half	the	puzzle,	however,	and	you’ll	also	learn	about	file	ownership	and
group	ownership,	and	how	to	change	either	for	any	file	or	directory.

The	preceding	hour	contained	the	first	tutorial	dealing	with	the	permissions	of	a	file	or
directory	using	the	-l	option	with	ls.	If	you	haven’t	read	that	material	recently,	it	would
help	to	review	it.	In	this	hour,	you’ll	learn	about	another	option	to	ls	that	tells	Unix	to
show	the	group	and	owner	of	files	or	directories.	Two	more	commands	are	introduced	and
discussed	in	detail:	chmod	for	changing	the	permissions	of	a	file	and	umask	for	defining
default	permissions.

Working	with	File	Permissions
As	you	have	seen	in	examples	throughout	the	book,	Unix	treats	all	directories	as	files;
each	has	its	own	size	(sometimes	independent	of	its	contents),	its	own	permissions	strings,
and	more.	As	a	result,	unless	it’s	an	important	difference,	from	here	on	when	I	talk	about
files,	I’m	referring	to	both	files	and	directories.	Logic	will	confirm	whether	commands	can
apply	to	both,	or	to	files	only,	or	to	directories	only.	(For	example,	you	can’t	edit	a
directory,	and	you	can’t	store	files	inside	other	files.)

Task	5.1:	Understanding	File	Permissions	Settings
In	the	past	hour	you	learned	a	bit	about	how	to	interpret	the	information	that	ls	offers	on
file	permissions	when	it	is	used	with	the	-l	flag.	Consider	the	following	example:
Click	here	to	view	code	image

%	ls	-l
total	403
drwx––		2	taylor								512	Sep	30	10:38	Archives/
drwx––		3	taylor								512	Oct		1	08:23	InfoWorld/
-rw––-		1	taylor					106020	Oct	10	13:47	LISTS

drwx––		2	taylor							1024	Sep	30	10:50	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		2	taylor								512	Sep	30	10:51	OWL/
-rw––-		1	taylor							4643	Oct	10	14:01	RUMORS.18Sept
drwx––		2	taylor								512	Oct	10	19:09	bin/
-rw––-		1	taylor							3843	Oct	10	16:22	iecc.list
-rw-rw-r—		1	taylor					280232	Oct	10	16:22	mailing.lists
-rw-rw–-		1	taylor							1031	Oct		7	15:44	newlists
drwx––		2	taylor								512	Oct	10	19:09	src/

The	first	item	of	information	on	each	line	is	what	we’re	focused	on	here.	You	learned	in
the	preceding	hour	that	the	first	item	is	called	the	permissions	string	or,	more	succinctly,
permissions.	It	also	is	sometimes	referred	to	as	the	mode	or	permissions	mode	of	the	file,	a
mnemonic	that	can	be	valuable	for	remembering	how	to	change	permissions.

The	permissions	can	be	broken	into	four	parts:	type,	owner,	group,	and	world	permissions.
The	first	character	indicates	the	file	type:	d	is	a	directory	and	-	is	a	regular	file.	Unix	has
various	other	types	of	files,	each	indicated	by	the	first	letter	of	its	permissions	string,	as
summarized	in	Table	5.1.	You	can	safely	ignore	any	file	that	isn’t	either	a	regular	file	or	a
directory.

TABLE	5.1	The	ls	File	Type	Indicators

The	next	nine	letters	in	the	permissions	string	are	broken	into	three	groups	of	three	each—
representing	the	owner,	group,	and	everyone	else—as	shown	in	Figure	5.1.

FIGURE	5.1	Interpreting	file	permissions.

To	understand	what	the	permissions	actually	mean	to	the	computer	system,	remember	that
Unix	treats	everything	as	a	file.	If	you	install	an	application,	it’s	just	like	everything	else,
with	one	exception:	The	system	knows	that	an	application	is	executable.	A	letter	to	your

Mum	is	a	regular	file,	but	if	you	were	to	tell	Unix	that	it	was	executable,	the	system	would
merrily	try	to	run	it	as	a	program	(and	fail).

Three	primary	types	of	permission	exist	for	files:	read,	write,	and	execute.	Read
permission	enables	users	to	examine	the	contents	of	the	file	with	various	programs,	but
they	cannot	alter,	modify,	or	delete	any	information.	They	can	copy	the	file	to	a	directory
where	they	have	write	permission	and	then	edit	the	new	version.

Write	permission	is	the	next	step	up.	Users	with	write	access	to	a	file	can	add	information
to	the	file.	If	you	have	write	permission	and	read	permission	for	a	file,	you	can	edit	the
file:	The	read	permission	enables	you	to	view	the	contents,	and	the	write	permission
enables	you	to	alter	the	contents.	With	write	permission	only,	you’d	be	able	to	add
information	to	the	file,	but	you	wouldn’t	be	able	to	view	the	contents	of	the	file	at	any
time.	Admittedly,	write-only	permission	is	unusual	in	Unix,	but	you	might	see	it	for	log
files,	which	are	files	that	track	activity	on	the	system.

So	far	you’ve	learned	that	you	can	have	files	with	read-only	permission,	read-write
permission,	and	write-only	permission.	The	third	type	of	access	permission	is	execute,
noted	by	ls	with	an	x	in	the	third	slot	of	the	permissions	string.	You	can	set	any	file	to	be
executable;	shell	scripts,	Perl,	Ruby	and	other	interpreted	languages	are	text	files	that	are
executed.	For	example,	here	are	some	programs—and	shell	scripts—that	are	executable	in
my	own	“bin”	directory:
Click	here	to	view	code	image

%	ls	-l	bin
total	57
-rwx––		1	taylor							1507	Aug	17	13:27	bounce.msg
-rwxrwx–		1	taylor						32916	Oct	10	19:09	calc
-rwx––		1	taylor						18567	Sep	14	22:14	fixit
-rw––-		1	taylor								334	Oct		1	09:53	punt
-rwx––		1	taylor							3424	Sep	10	22:27	rumor.mill.sh

1.	Try	listing	the	files	in	the	directory	/etc	on	your	system	and	see	whether	you	can
identify	which	are	executable	files	or	programs,	which	are	directories,	which	are
symbolic	links	(denoted	with	an	l	as	the	first	character	of	the	permissions	string;
they’re	files	that	point	to	other	files,	or	directories	that	point	to	other	directories),
and	which	are	regular	files.

2.	Execute	permission	is	slightly	different	from	either	read	or	write	permission.	Any
file	with	execute	permission	can	be	treated	like	a	program.	You	enter	the	name	of	the
file	on	the	command	line,	and	if	the	directory	is	in	your	PATH,	the	file	is	executed:

Click	here	to	view	code	image
%	pwd
/home/taylor
%	echo	$PATH
/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local:/usr/local/bin:
%	ls	-l	bin/say.hi
-rwxrwx–		1	taylor										9	Oct	11	13:32	bin/say.hi
%	say.hi
hi

You	can	now	see	the	importance	of	your	search	path.	Without	a	search	path,	the
system	wouldn’t	be	able	to	find	any	commands,	and	you’d	be	left	with	a	barely

functional	system.	You	can	also	see	the	purpose	of	checking	the	executable
permission	status.	I’m	going	to	jump	ahead	a	bit	to	show	you	one	use	of	the	chmod
(change	mode/permission)	program	so	that	you	can	see	what	happens	if	I	remove	the
execute	permission	from	the	say.hi	program	with	the	-x	flag:

Click	here	to	view	code	image

%	chmod	-x	bin/say.hi
%	ls	-l	bin/say.hi
-rw-rw–-		1	taylor										9	Oct	11	13:32	bin/say.hi
%	say.hi
/home/taylor/bin/say.hi:	Permission	denied.

This	time	Unix	searched	through	my	search	path,	found	a	file	that	matched	the	name
of	the	program	I	requested,	and	then	ascertained	that	it	wasn’t	executable.	The
resultant	error	message	was	Permission	denied.

3.	Now	try	entering	say.hi	on	your	computer	system.	You’ll	get	a	different	error
message,	Command	not	found,	which	tells	you	that	Unix	checked	all	the
directories	in	your	search	path	but	couldn’t	find	a	match	anywhere.

4.	Check	your	PATH	and	find	a	directory	that	you	can	add	files	in.	You’ll	probably
have	a	bin	directory	in	your	HOME	directory	(for	example,	I	have
/home/taylor/bin	in	my	search	path).	If	you	don’t,	use	mkdir	bin	to	create
one.	It’s	a	good	place	to	add	a	file	using	the	touch	command:

Click	here	to	view	code	image
%	echo	$PATH
/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local:/usr/local/bin:
%	touch	bin/my.new.cmd
%	ls	-l	bin
-rw-rw–-		1	taylor										0	Oct	11	15:07	my.new.cmd

5.	Now	try	to	actually	execute	the	command	by	entering	its	name	directly:
Click	here	to	view	code	image

%	my.new.cmd
/home/taylor/bin/my.new.cmd:	Permission	denied.

Note

If	you’re	using	the	C	shell	(instead	of	bash)	as	your	command	interpreter,	as	might
be	the	case	on	FreeBSD,	it	probably	won’t	find	the	new	command	you	just	created.
This	is	because,	to	speed	things	up,	it	keeps	an	internal	table	of	where	different
commands	are	found	in	your	search	path.	You	need	to	force	the	program	to	rebuild
its	table,	and	you	can	do	that	with	the	simple	command	rehash.	If,	when	you
enter	the	filename,	you	don’t	get	a	permission	denied	error	but	instead	see
Command	not	found,	enter	rehash	and	try	again.

6.	Finally,	use	chmod	to	add	execute	permission	to	the	file	and	try	executing	it	one
more	time:

Click	here	to	view	code	image
%	chmod	+x	bin/my.new.cmd

%	ls	-l	bin/my.new.cmd
-rwxrw–-		1	taylor										0	Oct	11	15:07	bin/my.new.cmd
%	my.new.cmd
%

Voilà!	You’ve	created	your	first	Unix	command,	which	is	an	achievement	even
though	it	doesn’t	do	much.	You	can	now	see	how	the	search	path	and	the	Unix
philosophy	of	having	applications	be	identical	to	regular	files,	except	for	the
permission	can	be	invaluable	as	you	learn	how	to	customize	your	environment.

Execute	permission	enables	the	user	to	run	a	file	as	if	it	were	a	program.	Execute
permission	is	independent	of	other	permissions	granted—or	denied—so	it’s	perfectly
feasible	to	have	a	program	with	read	and	execute	permission	but	no	write	permission.
(After	all,	you	wouldn’t	want	others	altering	the	program	itself.)	You	also	can	have
programs	with	execute	permission	only.	This	means	that	users	can	run	the	application,	but
they	can’t	examine	it	to	see	how	it	works	or	copy	it.	(Copying	requires	the	ability	to	read
the	file	contents,	of	course.)

Note

Though	actual	programs	with	execute-only	permission	work	fine,	a	special	class	of
programs	called	shell	scripts	fail.	Shell	scripts	act	like	a	Unix	command-line	macro
facility,	which	enables	you	to	easily	save	a	series	of	commands	in	a	file	and	then
run	them	as	a	single	program.	To	work,	however,	the	shell	must	be	able	to	read	the
file	and	execute	it,	too,	so	shell	scripts	always	require	both	read	and	execute
permission.

There	are	clearly	quite	a	few	permutations	on	the	three	different	permissions:	read,	write,
and	execute.	In	practice,	a	few	occur	most	commonly,	as	listed	in	Table	5.2.

TABLE	5.2	The	Most	Common	File	Permissions

These	permissions	have	different	meanings	when	applied	to	directories,	but	---	always
indicates	that	no	one	can	access	the	file	in	question.

Interpretation	of	the	following	few	examples	should	help:
Click	here	to	view	code	image

-rw––-		1	taylor							3843	Oct	10	16:22	iecc.list
-rw-rw-r—		1	taylor					280232	Oct	10	16:22	mailing.lists
-rw-rw–-		1	taylor							1031	Oct		7	15:44	newlists
-rwxr-x–		1	taylor									64	Oct		9	09:31	the.script

The	first	file,	iecc.list,	has	read	and	write	permission	for	the	owner	(taylor)	and	is

off-limits	to	all	other	users.	The	file	mailing.lists	offers	similar	access	to	the	file
owner	(taylor)	and	to	the	group,	but	it	offers	read-only	access	to	everyone	else	on	the
system.	The	third	file,	newlists,	provides	read	and	write	access	to	both	the	file	owner
and	group	but	no	access	to	anyone	not	in	the	group.
The	fourth	file	on	the	list,	the.script,	is	a	program	that	can	be	run	by	both	the	owner
and	group	members,	read	(or	copied)	by	both	the	owner	and	the	group,	and	written
(altered)	by	the	owner.	In	practice,	this	probably	would	be	a	shell	script,	as	described
earlier,	and	these	permissions	would	enable	the	owner	(taylor)	to	use	an	editor	to
modify	the	commands	therein.	Other	members	of	the	group	could	read	and	use	the	shell
script	but	would	be	denied	access	to	change	it.

Task	5.2:	Directory	Permissions	Settings
Directories	are	similar	to	files	in	how	you	interpret	the	permissions	strings.	The
differences	occur	because	of	the	unique	purpose	of	directories—namely,	to	store	other
files	or	directories.	I	always	think	of	directories	as	bins	or	boxes.	You	can	examine	the	box
itself,	or	you	can	look	at	what’s	inside.

In	many	ways,	Unix	treats	directories	simply	as	files	in	the	file	system,	where	the	content
of	the	file	is	a	list	of	the	files	and	directories	stored	within	rather	than	a	letter,	program,	or
shopping	list.

The	difference,	of	course,	is	that	when	you	operate	with	directories,	you’re	operating	both
with	the	directory	itself	and,	implicitly,	with	its	contents.	By	analogy,	when	you	fiddle
with	a	box	full	of	toys,	you’re	not	altering	just	the	state	of	the	box	itself	but	also
potentially	the	toys	within.

Three	permissions	are	possible	for	a	directory,	just	as	for	a	file:	read,	write,	and	execute.
The	easiest	is	write	permission.	If	a	directory	has	write	permission	enabled,	you	can	add
new	items	to	and	remove	items	from	the	directory.	It’s	like	owning	the	box;	you	can	do
what	you	like	with	the	toys	inside.

The	interaction	between	read	and	execute	permission	with	a	directory	is	confusing.	There
are	two	types	of	operations	you	perform	on	a	directory:	listing	the	contents	of	the	directory
(usually	with	ls)	and	examining	specific	known	files	within	the	directory.

1.	Start	by	listing	a	directory,	using	the	-d	flag:
Click	here	to	view	code	image

%	ls	-ld	testme
dr-x––		2	taylor								512	Oct	11	17:03	testme/
%	ls	-l	testme
total	0
-rw-rw–-		1	taylor										0	Oct	11	17:03	file
%	ls	-l	testme/file
-rw-rw–-		1	taylor										0	Oct	11	17:03	testme/file

For	a	directory	with	both	read	and	execute	permission,	you	can	see	that	it’s	easy	to
list	the	directory,	find	out	the	files	therein,	and	list	specific	files	within	the	directory.

2.	Read	permission	on	a	directory	enables	you	to	read	the	“table	of	contents”	of	the
directory	but,	by	itself,	does	not	allow	you	to	examine	any	of	the	files	therein.	By

itself,	read	permission	is	rather	bizarre:
Click	here	to	view	code	image

%	ls	-ld	testme
dr––—		2	taylor								512	Oct	11	17:03	testme/
%	ls	-l	testme
testme/file	not	found
total	0
%	ls	-l	testme/file
testme/file	not	found

Notice	that	the	system	indicated	the	name	of	the	file	contained	in	the	testme
directory.	When	I	tried	to	list	the	file	explicitly,	however,	the	system	couldn’t	find
the	file.	Weird.

3.	Compare	this	with	the	situation	when	you	have	execute	permission—which	enables
you	to	examine	the	files	within	the	directory—but	you	don’t	have	read	permission,
and	you	are	prevented	from	viewing	the	table	of	contents	of	the	directory	itself:

Click	here	to	view	code	image
%	ls	-ld	testme
d—x––		2	taylor								512	Oct	11	17:03	testme/
%	ls	-l	testme
testme	unreadable
%	ls	-l	testme/file
-rw-rw–-		1	taylor										0	Oct	11	17:03	testme/file

With	execute-only	permission,	you	can	set	up	directories	so	that	people	who	know
the	names	of	files	contained	in	the	directories	can	access	those	files,	but	people
without	that	knowledge	cannot	list	the	directory	to	learn	the	filenames.

4.	I’ve	actually	never	seen	anyone	have	a	directory	in	Unix	with	execute-only
permission,	and	certainly	you	would	never	expect	to	see	one	set	to	read-only.	It
would	be	nice	if	Unix	would	warn	you	if	you	set	a	directory	to	have	one	permission
and	not	the	other.	However,	as	a	general	rule	in	Unix,	all	combinations	of	parameters
are	possible,	even	the	ones	that	don’t	make	sense	in	practice;	it’s	up	to	you	to	use	the
tools	smartly.	So,	for	directories	remember	always	to	be	sure	that	you	have	both	read
and	execute	permissions	set.	Table	5.3	summarizes	the	most	common	directory
permissions.

TABLE	5.3	The	Most	Common	Directory	Permissions

5.	One	interesting	permutation	of	directory	permissions	is	for	a	directory	that’s	write-
only.	Unfortunately,	the	write-only	permission	doesn’t	do	what	you’d	hope—that	is,
enable	people	to	add	files	to	the	directory	without	being	able	to	see	what	the
directory	already	contains.	Instead,	it	is	functionally	identical	to	having	it	set	for	no
access	permission	at	all.

At	the	beginning	of	this	hour,	I	used	ls	to	list	various	files	and	directories	in	my
home	directory:

Click	here	to	view	code	image

%	ls	-l
total	403
drwx––		2	taylor								512	Sep	30	10:38	Archives/
drwx––		3	taylor								512	Oct		1	08:23	InfoWorld/
-rw––-		1	taylor					106020	Oct	10	13:47	LISTS
drwx––		2	taylor							1024	Sep	30	10:50	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		2	taylor								512	Sep	30	10:51	OWL/
-rw––-		1	taylor							4643	Oct	10	14:01	RUMORS.18Sept
drwx––		2	taylor								512	Oct	10	19:09	bin/
-rw––-		1	taylor							3843	Oct	10	16:22	iecc.list
-rw-rw-r—		1	taylor					280232	Oct	10	16:22	mailing.lists
-rw-rw–-		1	taylor							1031	Oct		7	15:44	newlists
drwx––		2	taylor								512	Oct	10	19:09	src/

Now	you	can	see	that	all	my	directories	are	set	so	that	I	have	list,	examine,	and
modify	(read,	execute,	and	write,	respectively)	capability	for	myself	and	no	access
allowed	for	anyone	else.

6.	The	very	top-level	directory	is	more	interesting,	with	various	directories	and
permissions:

Click	here	to	view	code	image
%	ls	-l	/
-rw-r—r—			1	root								61440	Nov	29		1991	boot
drwxr-xr-x			4	root								23552	Sep	27	11:31	dev
drwxr-xr-x			6	root									3072	Oct	11	16:30	etc
drwxr-xr-x			2	root									8192	Apr	12		1991	lost+found
lrwxr-xr-x			1	root												7	Jul	28		1988	sys	->	usr/sys
drwxrwxrwx		65	root								12800	Oct	11	17:33	tmp
drwxr-xr-x	753	root								14848	Oct		5	10:07	usera
drwxr-xr-x	317	root								13312	Oct		5	10:17	userb
drwxr-xr-x	626	root								13312	Oct		8	13:02	userc
drwxr-xr-x	534	root								10752	Sep	30	13:06	users
drwxr-xr-x		34	root									1024	Oct		1	09:10	usr
drwxr-xr-x			5	root									1024	Oct		1	09:20	var

Clearly,	this	machine	has	a	lot	of	users.	Notice	that	the	link	counts	for	usera,
userb,	userc,	and	users	are	each	in	the	hundreds.	The	dev	directory	has	read
and	execute	permissions	for	everyone	and	write	permission	for	the	owner	(root).
Indeed,	all	the	directories	at	this	level	are	identical	except	for	tmp,	which	has	read,
write,	and	execute	permission	for	all	users	on	the	system.

7.	Did	you	notice	the	listing	for	the	sys	directory	buried	in	that	output?
Click	here	to	view	code	image

lrwxr-xr-x		1	root												7	Jul	28		1988	sys	->	usr/sys

From	the	information	in	Table	5.1,	you	know	that	because	the	first	letter	of	the
permissions	string	is	l,	the	directory	is	a	symbolic	link.	The	filename	shows	just	the
specifics	of	the	link,	indicating	that	sys	points	to	the	directory	usr/sys.	In	fact,	if
you	count	the	number	of	letters	in	the	name	usr/sys,	you’ll	find	that	it	exactly
matches	the	size	of	the	sys	link	entry,	too.

8.	Try	using	ls	-l	/	yourself.	You	should	be	able	to	understand	the	permissions	of
any	file	or	directory	that	you	encounter.

Permissions	of	files	and	directories	will	become	easier	to	understand	as	you	work	with
Unix	more.

Task	5.3:	Modifying	File	and	Directory	Permissions	with	chmod
Now	that	you	can	list	directory	permissions	and	understand	what	they	mean,	how	about
learning	a	Unix	command	that	lets	you	change	them	to	meet	your	needs?	You’ve	already
had	a	sneak	preview	of	the	command	for	this:	chmod.	The	mnemonic	is	“change	mode,”
and	it	derives	from	early	Unix	folk	talking	about	permission	modes	of	files.	You	can
remember	it	by	thinking	of	it	as	a	shortened	form	of	“change	permission	modes.”

Note

To	sound	like	a	Unix	expert,	pronounce	chmod	as	“ch-mod,”	“ch”	like	the
beginning	of	child,	and	“mod”	to	rhyme	with	cod.

The	chmod	command	enables	you	to	specify	permissions	in	two	different	ways:
symbolically	or	numerically.	Symbolic	notation	is	most	commonly	used	to	modify
existing	permissions,	whereas	numeric	format	always	replaces	any	existing	permission
with	the	new	value	specified.	In	this	task,	you’ll	learn	about	symbolic	notation,	and	the
next	task	focuses	on	the	powerful	numeric	format.

Symbolic	notation	for	chmod	is	a	bit	like	having	a	menu	of	different	choices,	enabling
you	to	pick	the	combination	that	best	fits	your	requirements.	Figure	5.2	shows	the	menus.

FIGURE	5.2	The	menu	of	symbolic	chmod	values.

The	command	chmod	is	like	a	smorgasbord	where	you	can	choose	any	combination	of
items	from	either	the	first	or	last	boxes,	and	you	place	the	appropriate	operator	from	the
center	box	between	them.

For	example,	if	you	wanted	to	add	write	permission	to	the	file	test	for	everyone	in	your
group,	you	would,	working	backward	from	that	description,	choose	g	for	group,	+	for	add,
and	w	for	write.	The	finished	Unix	command	would	be	chmod	g+w	test.

I	think	before	we	show	an	example	of	usage	we	should	first	list	each	u,	g,	o,	and	a.

Note

When	you	have	an	account	assigned	to	you,	you	have	a	unique	username,	but	you
are	also	included	in	one	or	more	groups.	Group	permissions	let	other	people
working	on	the	same	project	share	information	without	opening	up	the	information
to	the	rest	of	the	world.

If	you	decided	to	take	away	read	and	execute	permission	for	everyone	not	in	your	group,
you	could	use	chmod	o-rx	test	to	accomplish	the	task.

1.	Turn	to	your	computer	and,	using	touch	and	ls,	try	changing	permissions	and	see
what	happens.	I’ll	do	the	same:

Click	here	to	view	code	image

%	touch	test
%	ls	-l	test
-rw-r—r—		1	taylor										0	Oct	11	18:29	test

2.	The	first	modification	I	want	to	make	is	that	people	in	my	group	should	be	able	to
read	and	write	to	the	file.	I’ll	add	write	permission	for	group	members:

Click	here	to	view	code	image
%	chmod	g+w	test
%	ls	-l	test
-rw-rw-r—		1	taylor										0	Oct	11	18:29	test

3.	But	then	my	boss	reminds	me	that	everyone	in	the	group	should	have	all	access
permissions.	Okay,	I’ll	make	it	so:

Click	here	to	view	code	image

%	chmod	g+x	test
%	ls	-l	test
-rw-rwxr—		1	taylor										0	Oct	11	18:29	test

I	also	could	do	this	with	chmod	g=rwx,	of	course.

4.	Wait	a	second.	This	test	file	is	just	for	my	own	use,	and	nobody	in	my	group
should	be	looking	at	it	anyway.	I’ll	change	it	back:

Click	here	to	view	code	image
%	chmod	o-r	test
%	chmod	g-rwx	test
%	ls	-l	test
-rw––-		1	taylor										0	Oct	11	18:29	test

Great.	Now	the	file	is	set	so	that	I	can	read	and	write	it,	but	nobody	else	can	touch	it,
read	it,	modify	it,	or	anything	else.

5.	If	I	relented	a	bit,	I	could	easily	add,	with	one	last	chmod	command,	read-only
permission	for	everyone:

Click	here	to	view	code	image

%	chmod	a+r	test
%	ls	-l	test
-rw-r—r—		1	taylor										0	Oct	11	18:29	test

Permissions	in	Unix	are	based	on	a	concentric	access	model	from	Multics.	(In	Hour	1,
“What	Is	This	Unix	Stuff?”	you	learned	that	the	name	Unix	is	also	a	pun	on	Multics.)
Figure	5.3	illustrates	this	concept.

FIGURE	5.3	The	concentric	circles	of	access.

As	a	result,	it’s	incredibly	rare	to	see	a	file	where	the	owner	doesn’t	have	the	most	access
to	a	file.	It’d	be	like	buying	a	car	and	allowing	everyone	but	you	to	drive	it—rather	silly.
Similarly,	members	of	the	group	are	given	better	or	equal	permission	to	everyone	else	on
the	machine.	You	would	never	see	r----rwx	as	a	permissions	string.

Experiment	a	bit	more	with	the	various	combinations	possible	with	the	chmod	symbolic
notation.	How	would	you	change	permission	on	a	directory	to	enable	all	users	to	use	ls	to
examine	it	but	to	deny	them	the	ability	to	add	or	remove	files?	How	about	adding	write
access	for	the	owner	but	removing	it	for	everyone	else?

Task	5.4:	Setting	New	File	Permissions	with	chmod
The	second	form	of	input	that	chmod	accepts	is	absolute	numeric	values	for	permissions.
Before	you	can	learn	how	to	use	this	notation,	you	have	to	learn	a	bit	about	different
numbering	systems.

The	numbering	system	you’re	familiar	with,	the	one	you	use	to	balance	your	checkbook
and	check	the	receipt	from	the	market,	is	in	decimal	form,	or	base	10.	This	means	that
each	digit—from	right	to	left—has	the	value	of	the	digit	raised	by	a	power	of	10,	based	on
the	digit’s	location	in	the	number.	Figure	5.4	shows	what	the	number	5,783	is	in	decimal
form.

FIGURE	5.4	Interpreting	decimal	numbers.

You	can	see	that	in	a	base-10	numbering	system,	the	value	of	a	number	is	the	sum	of	the
value	of	each	digit	multiplied	by	the	numeric	base	raised	to	the	nth	power.	The	n	is	the
number	of	spaces	the	digit	is	away	from	the	rightmost	digit.	That	is,	in	the	number	5,783,
you	know	that	the	7	is	worth	more	than	just	7	because	it’s	two	spaces	away	from	the
rightmost	digit	(the	3).	Therefore,	its	value	is	the	numeric	base	(10)	raised	to	the	nth
power,	where	n	is	2	(it’s	two	spaces	away).	Ten	to	the	second	power	equals	100	(102	=
100),	and	when	you	multiply	that	by	7,	sure	enough,	you	find	that	the	7	is	worth	700	in
this	number.

What	does	all	this	have	to	do	with	the	chmod	command?	Fundamentally,	Unix
permissions	are	a	series	of	on/off	switches.	Does	the	group	have	write	permission?	One
equals	yes,	zero	equals	no.	A	binary	system	is	one	in	which	each	digit	can	have	only	two
values:	on	or	off,	1	or	0,	yes	or	no.	Therefore,	you	can	easily	and	uniquely	describe	any
permissions	string	as	a	series	of	zeros	and	ones,	as	a	binary	number.	Figure	5.5
demonstrates	this.

FIGURE	5.5	Permissions	as	binary	numbers.

The	convention	is	that	if	a	letter	is	present,	the	binary	digit	is	a	1—that	permission	is
permitted—and	if	no	letter	is	present,	the	digit	is	a	zero.	Thus,	r-xr-----	can	be
described	as	101100000,	and	r--r--r--	can	be	described	in	binary	as	100100100.

You’ve	already	learned	that	the	nine-character	permissions	string	is	really	just	a	three-
character	permissions	string	duplicated	thrice	for	the	three	different	types	of	user	(the
owner,	group,	and	everyone	else).	This	means	you	can	focus	on	learning	how	to	translate	a
single	tri-character	permissions	substring	into	binary	and	extrapolate	for	more	than	one
permission.	Table	5.4	lists	all	possible	permissions	and	their	binary	equivalents.

TABLE	5.4	Permissions	and	Binary	Equivalents

Knowing	how	to	interpret	decimal	numbers	using	the	rather	complex	formula	presented
earlier,	you	should	not	be	surprised	that	the	decimal	equivalent	of	any	binary	number	can
be	obtained	by	using	the	same	technique.	Figure	5.6	shows	how,	with	the	binary
equivalent	of	the	r-x	permission.

FIGURE	5.6	Expressing	r-x	as	a	single	digit.

If	r-x	is	equal	to	5,	it	stands	to	reason	that	each	of	the	possible	three-character
permissions	has	a	single-digit	equivalent,	and	Table	5.5	expands	Table	5.4	to	include	the

single-digit	equivalents

TABLE	5.5	Permissions	and	Numeric	Equivalents

The	value	of	having	a	single	digit	to	describe	any	of	the	seven	different	permission	states
should	be	obvious.	Using	only	three	digits,	you	can	fully	express	any	possible
combination	of	permissions	for	any	file	or	directory	in	Unix—one	digit	for	the	owner
permission,	one	for	group,	and	one	for	everyone	else.	Figure	5.7	shows	how	to	translate	a
full	permissions	string	into	its	three-digit	numeric	equivalent.

FIGURE	5.7	Translating	a	full	permissions	string	into	its	numeric	equivalent.

Note

If	this	math	is	a	bit	intimidating,	remember	that	r	=	4,	w	=	2,	and	x	=	1,	so,	for
example,	rwx	=	4	+	2	+	1	=	7	and	r-x	=	4	+	1	=	5.

From	this	illustration,	you	can	see	how	the	permissions	string	rw-r-----	(read	and
write	permission	for	the	owner,	read	permission	for	the	group,	and	no	access	allowed	for
everyone	else)	is	exactly	equivalent	to	the	numeric	string	640.

1.	Try	to	create	numeric	strings	on	your	own,	using	Table	5.4	to	help.	Turn	to	your
computer	and	use	ls	to	display	some	listings.	Break	each	permissions	string	into
three	groups	of	three	letters	and	figure	out	the	numeric	equivalents.	Following	are
some	examples	from	the	ls	-F	listing	of	my	home	directory:

Click	here	to	view	code	image
drwx––		2	taylor								512	Sep	30	10:38	Archives/
-rw––-		1	taylor					106020	Oct	10	13:47	LISTS
-rw-rw-r—		1	taylor					280232	Oct	10	16:22	mailing.lists
-rw-rw–-		1	taylor							1031	Oct		7	15:44	newlists

Now,	what	are	the	numeric	equivalents	of	each?	The	first	is	700.

One	last	step	is	required	before	you	can	try	using	the	numeric	permissions	strings	with
chmod.	You	need	to	be	able	to	work	backward	to	determine	a	permission	that	you’d	like
to	set	and	determine	the	numeric	equivalent	for	that	permission.

Task	5.5:	Calculating	Numeric	Permissions	Strings
Say	that	you	want	to	have	a	directory	set	so	that	you	have	all	access,	people	in	your	group
can	look	at	the	contents	but	not	modify	anything,	and	everyone	else	is	shut	out.	How
would	you	do	this?

All	permissions	for	yourself	means	you	want	read+write+execute	for	owner	(or	numeric
permission	7);	read	and	listing	permission	for	others	in	the	group	means	read+execute	for
group	(numeric	permission	5);	and	no	permission	for	everyone	else	is	numeric	permission
0.	Put	the	three	together,	and	you	have	the	answer:	750.

That’s	the	trick	of	working	with	chmod	in	numeric	mode.	You	specify	the	absolute
permissions	you	want	as	a	three-digit	number,	and	the	system	sets	the	permissions	on	the
file	or	directory	appropriately.

The	absolute	concept	is	important	with	this	form	of	chmod.	You	cannot	use	the	chmod
numeric	form	to	add	or	remove	permissions	from	a	file	or	directory.	It	is	usable	only	for
reassigning	the	permissions	string	of	a	file	or	directory.

The	good	news	is	that,	as	you	learned	earlier	in	this	hour,	there	are	a	relatively	small
number	of	commonly	used	file	permissions,	summarized	in	Table	5.6.

TABLE	5.6	Common	Permissions	and	Their	Numeric	Equivalents

1.	Turn	to	your	computer	and	try	using	the	numeric	mode	of	chmod,	along	with	ls,	to
display	the	actual	permissions	to	learn	for	yourself	how	this	works:

Click	here	to	view	code	image

%	touch	example
%	ls	-l	example
-rw-rw–-		1	taylor										0	Oct	12	10:16	example

By	default,	files	are	created	in	my	directory	with	mode	660.	This	is	determined	by
the	umask	setting,	as	we’ll	explore	shortly.

2.	To	take	away	read	and	write	permission	for	people	in	my	group,	I’d	replace	the	660
permission	with	what	numeric	permissions	string?	I’d	use	600:

Click	here	to	view	code	image
%	chmod	600	example
%	ls	-l	example
-rw––-		1	taylor										0	Oct	12	10:16	example

3.	What	if	I	change	my	mind	and	want	to	open	up	the	file	for	everyone	to	read	or
write?	I’d	use	666:

Click	here	to	view	code	image

%	chmod	666	example
%	ls	-l	example
-rw-rw-rw-		1	taylor										0	Oct	12	10:16	example

4.	Finally,	pretend	that	the	example	is	actually	a	directory.	What	numeric	mode	would
I	specify	to	enable	everyone	to	use	ls	in	the	directory	and	enable	only	the	owner	to
add	or	delete	files?	I’d	use	755:

Click	here	to	view	code	image
%	chmod	755	example
%	ls	-l	example
-rwxr-xr-x		1	taylor										0	Oct	12	10:16	example

You’ve	looked	at	both	the	numeric	mode	and	the	symbolic	mode	for	defining	permissions.
Having	learned	both,	which	do	you	prefer?

Note

Somehow	I’ve	never	gotten	the	hang	of	symbolic	mode,	so	I	almost	always	use	the
numeric	mode	for	chmod.	The	only	exception	is	when	I	want	to	add	or	delete
simple	permissions.	Then,	I	use	something	like	chmod	+r	test	to	add	read
permission.	Part	of	the	problem	is	that	I	don’t	think	of	the	user	of	the	file	but	rather
the	owner,	which	puts	me	in	mind	of	“o”—and	specifying	o+r	causes	chmod	to
change	permission	for	others,	not	the	owner.	It’s	important,	therefore,	that	you
remember	that	files	have	users	so	you	remember	u	for	user,	and	that	everyone	not
in	the	group	is	other	so	you	remember	o.	Otherwise,	learn	the	numeric	shortcut!

File	permissions	and	modes	are	one	of	the	most	complex	aspects	of	Unix.	You	can	tell	this
because	it’s	taken	two	hours	to	explain	it	fully.	It’s	important	that	you	spend	the	time	to
understand	how	the	permissions	strings	relate	to	directory	permissions,	how	to	read	the

output	of	ls,	and	how	to	change	modes	using	both	styles	of	the	chmod	command.	It	will
be	time	well	spent.

Task	5.6:	Establishing	Default	File	and	Directory	Permissions	with	the
umask	Command
When	I’ve	created	files,	they’ve	had	read+write	permission	for	the	owner	and	group	but
no	access	allowed	for	anyone	else.	When	you	create	files	on	your	system,	you	might	find
that	the	default	permissions	are	different.

Note

Different	systems	have	different	default	permissions.	The	default	mode	on	most
Linux	flavors	is	664,	whereas	on	other	platforms	644	is	more	common.

The	controlling	variable	behind	the	default	permissions	is	called	the	file	creation	mask,	or
umask	for	short.

Inexplicably,	umask	doesn’t	always	list	its	value	as	a	three-digit	number,	but	you	can	find
its	value	in	the	same	way	you	figured	out	the	numeric	permissions	strings	for	chmod.	For
example,	when	I	enter	umask,	the	system	indicates	that	my	umask	setting	is	07.	A
leading	zero	has	been	dropped,	so	the	actual	value	is	007,	a	value	that	British	MI6	could
no	doubt	appreciate!

Note

Some	systems,	such	as	Solaris	and	Linux,	use	a	four-digit	umask	string	rather	than	a
two-digit	one.	The	first	digit	in	this	case	indicates	any	special	modes	(such	as	the
“sticky	bit”	or	the	setGID	option).

But	007	doesn’t	mean	that	the	default	file	is	created	with	read+write+execute	for	everyone
else	and	no	permissions	for	the	owner	or	group.	It	means	quite	the	opposite—literally.

The	umask	command	is	a	filter	through	which	permissions	are	pushed	to	ascertain	what
remains.	Figure	5.8	demonstrates	how	this	works.

FIGURE	5.8	Interpreting	the	umask	value.

Think	of	your	mask	as	a	series	of	filters:	If	the	value	is	true,	the	information	can’t	exude
through	the	filter.	If	the	value	is	false,	it	can.	Your	mask	is	therefore	the	direct	opposite	to
how	you	want	your	permissions	to	be	set.	In	Figure	5.8,	I	want	to	have	770	as	the	default
permission	for	any	new	file	or	directory	I	create,	so	I	want	to	specify	the	opposite	of	that,
007.	Sure	enough,	with	this	umask	value,	when	I	create	new	files,	the	default	permission
allows	read	and	write	access	to	the	owner	and	group	but	no	access	to	anyone	else.

Things	are	actually	a	bit	trickier	still.	You’ve	probably	already	asked	yourself,	Why,	if	I
have	007	as	my	mask	(which	results	in	770	as	the	default	permissions),	do	my	files	have
660	as	the	actual	default	permission?

The	reason	is	that	Unix	tries	to	be	smart	about	the	execute	permission	setting.	If	I	create	a

directory,	Unix	knows	that	execute	permission	is	important,	and	so	it	grants	it.	However,
for	data	files	(particularly	text	files),	execute	permission	doesn’t	make	sense,	so	the
particular	program	creating	the	file	(the	shell,	an	editor,	the	email	system,	etc.)	actually
skips	it,	regardless	of	the	umask	setting.

Another	way	to	look	at	this	is	that	any	time	you	create	a	file	containing	information,	the
original	mask	that	the	system	uses	to	compare	against	your	umask	is	not	777	(not
rwxrwxrwx,	to	put	it	another	way)	but	rather	666	(rw-rw-rw-).	This	is	in	recognition
of	the	unlikely	case	that	you’ll	want	to	mark	the	new	file	as	executable.

The	good	news	is	that	you	now	know	an	easy	way	to	set	the	execute	permission	for	a	file
if	the	system	gets	it	wrong:	chmod	+x	filename	does	the	trick.

1.	Turn	to	your	computer	and	check	your	umask	setting	and	then	alternate	between
changing	its	values	and	creating	new	files	with	touch:

Click	here	to	view	code	image

%	umask
0007
%	touch	test.07
%	ls	-l	test.07
-rw-rw–-		1	taylor										0	Oct	12	14:38	test.07

2.	To	change	the	value	of	your	umask,	add	the	numeric	value	of	the	desired	mask	to
the	command	line:
%	umask	077

This	changes	my	umask	value	from	007	(------rwx,	which	produces	a	770
default	permission:	rwxrwx---)	to	077	(---rwxrwx,	which	produces	a	700
default	permission:	rwx------).	Before	you	look	at	the	following	output,	what
would	you	expect	this	modification	to	mean?	Remember	that	you	should	read	it	as
exactly	the	opposite	of	how	you	want	the	default	permissions:

Click	here	to	view	code	image
%	touch	test.077
%	ls	-l	test.077
-rw––-		1	taylor										0	Oct	12	14:38	test.077

Is	that	what	you	expected?

3.	What	would	you	have	as	your	umask	if	you	want	to	have	the	default	permission
keep	files	private	to	just	the	owner	and	make	them	read-only?

You	can	work	through	this	problem	in	reverse.	If	you	want	r-x------	as	the
default	permission	(because	the	system	takes	care	of	whether	execute	permission	is
needed,	based	on	file	type),	write	down	the	opposite	permission,	which	is	-w-
rwxrwx.	Translate	that	to	a	binary	number,	010	111	111,	and	then	to	a	three-digit
value,	277	(010	=	2,	111	=	7,	111	=	7).	That’s	the	answer.	The	value	277	is	the
correct	umask	value	to	ensure	that	files	you	create	are	read-only	for	yourself	and
off-limits	to	everyone	else:

Click	here	to	view	code	image

%	umask	277

%	touch	test.277
%	ls	-l	test.277
-r––—		1	taylor										0	Oct	12	14:39	test.277

4.	What	if	you	want	to	have	files	created	with	the	default	permission	being	read-only
for	everyone,	read-write	for	the	group,	but	read-only	for	the	owner?	Again,	work
backward.	The	desired	permission	is	r-xrwxr-x,	so	create	the	opposite	value	(-
w-----w-),	translate	it	into	binary	(010	000	010),	and	then	translate	that	into	a
three-digit	value:	202	(010	=	2,	000	=	0,	010	=	2).

Note

As	a	rule	of	thumb,	it’s	best	to	leave	the	execute	permission	enabled	when	building
umask	values	so	the	system	doesn’t	err	when	creating	directories.

umask	is	something	set	once	and	left	alone	or	just	left	to	its	default	value	for	your	system,
which	is	typically	what	you	want	anyway.	If	you’ve	tried	various	experiments	on	your
computer,	remember	to	restore	your	umask	back	to	a	sensible	value	to	avoid	future
problems	(though	each	time	you	log	in	to	the	system,	it’s	reset).

In	the	next	hour,	you’ll	learn	how	to	use	the	mkdir	command	to	create	new	directories,
and	you’ll	see	how	the	umask	value	affects	default	directory	access	permissions.

Task	5.7:	Identifying	Owner	and	Group	for	Any	File	or	Directory
One	of	the	many	items	of	information	that	the	ls	command	displays	when	used	with	the
-l	flag	is	the	owner	of	the	file	or	directory.	So	far,	all	the	files	and	directories	in	your
home	directory	have	been	owned	by	you,	with	the	probable	exception	of	the	..	directory,
which	is	owned	by	whoever	owns	the	directory	above	your	home.

In	other	words,	when	you	enter	ls	-l,	you	should	see	your	account	name	as	the	owner
for	every	file	in	the	listing.

If	you’re	collaborating	with	another	user,	however,	there	might	well	be	times	when	you’ll
want	to	change	the	owner	of	a	file	or	directory	after	you’ve	created	and	modified	it.	The
first	step	in	accomplishing	this	is	to	identify	the	owner	and	group.

Identifying	the	owner	is	easy:	ls	lists	that	by	default.	But	how	do	you	identify	the	group
of	which	the	file	or	directory	is	a	part?

1.	With	the	addition	of	a	new	command	flag,	-g,	the	ls	command	can	show	the	group
membership	of	any	file	or	directory.	By	itself,	-g	doesn’t	alter	the	output	of	ls,	but
when	used	with	the	-l	flag,	it	adds	a	column	of	information	to	the	listing.	Try	it	on
your	system.	Here	is	an	example:

Click	here	to	view	code	image

%	ls	-lg	/tmp
-rw-r—r—		1	root					root												0	Oct	12	14:52	sh145
drwxr-xr-x		2	shakes			root										512	Oct	12	07:23	shakes/
-rw––-		1	meademd		com435										0	Oct	12	14:46	snd.12
-rw––-		1	dessy				stuprsac					1191	Oct	12	14:57	snd.15
-rw––-		1	steen				utech											1	Oct	12	10:28	snd.17

-rw-r–—		1	jsmith			utech						258908	Oct	12	12:37	sol2

Note

On	some	System	V–based	systems,	the	output	of	ls	-l	always	shows	user	and
group.	The	–g	flag	actually	turns	off	this	display!

Both	owners	and	groups	vary	for	each	of	the	files	and	directories	in	this	small
listing.	Notice	that	files	can	have	different	owners	while	having	the	same	group.
(There	are	two	examples	here:	sh145	and	the	shakes	directory	and	snd.17	and
sol2.)

2.	Directories	where	there	are	often	a	wide	variety	of	owners	for	directories	are	the
directories	above	your	own	home	directory	and	the	tmp	directory,	as	you	can	see	in
step	1.	Examine	both	on	your	system	and	identify	both	the	owner	and	group	of	every
file.	For	files	in	the	same	group	you’re	in	(with	the	id	command,	you	can	find
which	group	or	groups	you	are	in)	but	not	owned	by	you,	you’ll	need	to	check	which
of	the	three	permission	values	to	identify	your	own	access	privileges.

Files	and	directories	have	both	owners	and	groups,	although	the	group	is	ultimately	less
important	than	the	owner,	particularly	where	permissions	and	access	are	involved.

Summary
In	this	hour,	you’ve	learned	the	basics	of	Unix	file	permissions,	including	how	to	set	and
modify	file	permissions	with	chmod	and	how	to	analyze	file	permissions	as	shown	by	the
ls	-l	command.	You’ve	also	learned	about	translating	between	numeric	bases	(binary
and	decimal)	and	how	to	convert	permissions	strings	into	numeric	values.	Both	are
foundations	for	the	umask	command,	which	you’ve	learned	to	interpret	and	alter	as
desired.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
file	creation	mask	When	files	are	created	in	Unix,	they	inherit	a	default	set	of	access
permissions.	These	defaults	are	under	the	control	of	the	user	and	are	known	as	the	file
creation	mask.

mode	This	is	a	shorthand	way	of	saying	permissions	mode.

permissions	mode	This	is	the	set	of	accesses	(read,	write,	and	execute)	allowed	for	each
of	the	three	classes	of	users	(owner,	group,	and	everyone	else)	for	each	file	or	directory	on
the	system.	This	is	a	synonym	for	access	permission.

shell	script	This	is	a	collection	of	shell	commands	in	a	file.

umask	This	predetermined	default	file	and	directory	permission	set	is	used	as	a	reference
when	new	files	or	directories	are	created	in	the	file	system.

Exercises
1.	In	what	situations	might	the	following	file	permissions	be	useful?

Click	here	to	view	code	image
r—rw-r—															r—r—rw-
rw—w—w-															-w—w—w-
rwxr-xr-x															r-x—x—x

2.	Translate	the	six	file	permissions	strings	in	question	1	into	their	binary	and	numeric
equivalents.

3.	Explain	what	the	following	umask	values	would	make	the	default	permissions	for
newly	created	files:

4.	Count	the	number	of	groups	that	are	represented	by	group	membership	of	files	in
the	tmp	directory	on	your	system.	Use	id	to	see	whether	you’re	a	member	of	any	of
them.

5.	Which	of	the	following	directories	could	you	modify	if	the	id	command	listed	the
following	information?	Which	could	you	view	using	the	ls	command?

Click	here	to	view	code	image
%	id
uid=19(smith)	gid=50(users)	groups=50(users)
%	ls	-lgF
drw-r—r—		2	root					users									512	Oct	12	14:52	sh/
drwxr-xr-x		2	shakes			root										512	Oct	12	07:23	shakes/
drw––-		2	meademd		com435							1024	Oct	12	14:46	tmp/
drwxr-x–		3	smith				users									512	Oct	12	12:37	viewer/
drwx––		3	jin						users									512	Oct	12	12:37	Zot!/

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	the	various	Unix	file-manipulation	commands,	including
how	to	copy	files,	how	to	move	them	to	new	directories,	and	how	to	create	new
directories.	You’ll	also	learn	how	to	remove	files	and	directories	as	well	as	about	the
dangers	of	file	removal	on	Unix.

Hour	6.	Creating,	Moving,	Renaming,	and	Deleting	Files	and
Directories

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	create	new	directories	using	mkdir

	How	to	copy	files	to	new	locations	using	cp

	How	to	move	files	to	new	locations	using	mv

	About	renaming	files	using	mv

	How	to	remove	directories	using	rmdir

	How	to	remove	files	using	rm

	About	minimizing	the	danger	of	using	the	rm	command

In	this	hour,	you’ll	learn	the	basic	Unix	file-manipulation	commands.	You’ll	learn	how	to
create	directories	with	mkdir,	remove	directories	with	rmdir,	use	cp	and	mv	to	move
files	about	in	the	file	system,	and	use	rm	to	remove	files.	The	rm	command	can	be
dangerous;	this	hour	you’ll	learn	that	there	isn’t	an	“unremove”	command	in	Unix,	and
you’ll	also	learn	how	to	circumvent	the	possible	dangers	that	lurk	in	the	program.

This	hour	introduces	several	tremendously	powerful	commands	that	enable	you	to	create	a
custom	file-system	hierarchy	(or	wreak	unintentional	havoc	on	your	files).	As	you	learn
these	commands,	you’ll	also	read	hints	and	ideas	on	how	best	to	use	the	Unix	file	system
to	keep	your	files	neat	and	organized.

Manipulating	the	Unix	File	System
You	know	how	to	find	out	what	files	are	where	in	the	file	system,	using	ls,	but	there	are
also	some	incredibly	useful	commands	that	let	you	manipulate	and	modify	files,
directories,	and	the	file	system	itself.	That’s	what	we’ll	focus	on	here.

Task	6.1:	Creating	New	Directories	Using	mkdir
One	important	aspect	of	Unix	that	has	been	emphasized	continually	in	this	book	is	that,	as
in	all	other	modern	operating	systems,	in	Unix	the	file	system	is	hierarchical.	The	Unix
file	system	includes	directories	containing	files	and	directories,	and	each	of	those
directories	can	contain	yet	more	files	and	directories.	Your	own	home	directory,	however,
probably	doesn’t	yet	contain	any	directories	(except	.	and	..	of	course,	because	they’re
built-in	shortcuts	to	the	current	and	parent	directory,	respectively),	which	prevents	you
from	exploiting	what	I	call	the	virtual	file	cabinet	of	the	file	system.

Working	with	cloud	storage?	Me	too.	Turns	out,	though,	that	what	you	have	stored	in	the
cloud	shows	up	on	a	Unix	system	as	just	more	files	and	directories,	with	more	files	and

directories	within	those.	This	is	true	with	Dropbox,	OneDrive,	iCloud,	and	any	other
Unix-compatible	cloud	storage	system	you	might	have	configured,	even	those	internal	to
your	corporation.	I’ll	show	you	what	I	mean	later	in	the	lesson!

The	command	for	creating	directories	is	actually	one	of	the	least	complex	and	most
mnemonic	(for	Unix,	anyway)	in	this	book:	mkdir,	for	“make	directory.”

Note

Pronounce	the	mkdir	command	as	“make-drrr.”

1.	Move	to	your	home	directory	and	examine	the	files	and	directories	there.	Here’s	an
example:

Click	here	to	view	code	image

%	cd
%	ls	-F
Archives/															OWL/																				rumors.26Oct.Z
InfoWorld/														PubAccessLists.Z								rumors.5Nov.Z
LISTS																			bin/																				src/
Mail/																			educ
News/																			mailing.lists.bitnet.Z

2.	To	create	a	directory,	specify	what	you’d	like	to	name	the	directory	and	where	you’d
like	to	locate	it	in	the	file	system	(the	default	location	is	your	current	working
directory):

Click	here	to	view	code	image
%	mkdir	NEWDIR
%	ls	-F
Archives/															News/																mailing.lists.bitnet.Z
InfoWorld/														OWL/																	rumors.26Oct.Z
LISTS																			PubAccessLists.Z					rumors.5Nov.Z
Mail/																			bin/																	src/
NEWDIR/																	educ

Note

Although	Unix	is	very	flexible	about	file	and	directory	names,	as	a	general	rule,
you’ll	want	to	avoid	spaces,	tabs,	control	characters,	and	the	/	character	because
they’ll	make	things	more	difficult	later	on.

3.	That’s	all	there	is	to	it.	You’ve	created	your	first	Unix	directory,	and	you	can	now
list	it	with	ls	to	see	what	it	looks	like:

Click	here	to	view	code	image

%	ls	-ld	NEWDIR
drwxrwx–		2	taylor									24	Nov		5	10:48	NEWDIR
%	ls	-la	NEWDIR
total	2
drwxrwx–		2	taylor									24	Nov		5	10:48	.
drwx––	11	taylor							1024	Nov		5	10:48	..

Remember	that	the	-d	flag	to	ls	specifies	that	it	should	show	the	directory	itself,
not	the	contents	of	the	directory.	Try	it	both	ways,	and	you’ll	immediately	see	the

difference.

Not	surprisingly,	the	directory	is	empty	except	for	the	two	default	entries.	(the
directory	itself)	and	..	(the	parent	directory,	your	home	directory).

4.	Look	closely	at	the	permissions	of	the	directory.	Remember	that	the	default
directory	permissions	are	a	result	of	your	umask	setting.	As	you	learned	in	the
preceding	hour,	changing	the	umask	setting	changes	the	default	directory
permissions.	Then,	when	you	create	a	new	directory,	the	new	permissions	will	be	in
place:

Click	here	to	view	code	image

%	umask
07
%	umask	0
%	mkdir	NEWDIR2
%	ls	-ld	NEWDIR2
drwxrwxrwx		2	taylor									24	Nov		5	10:53	NEWDIR2
%	umask	222
%	mkdir	NEWDIR3
%	ls	-ld	NEWDIR3
dr-xr-xr-x		2	taylor									24	Nov		5	10:54	NEWDIR3

5.	What	happens	if	you	try	to	create	a	directory	with	a	name	that	has	already	been
used?
%	mkdir	NEWDIR
mkdir:	NEWDIR:	File	exists

6.	To	create	a	directory	someplace	other	than	your	current	location,	prefix	the	new
directory	name	with	a	location:

Click	here	to	view	code	image
%	mkdir	/tmp/testme
%	ls	-l	/tmp
-rwx––		1	zhongqi					22724	Nov		4	21:33	/tmp/a.out
-rw––-		1	xujia							95594	Nov		4	23:10	/tmp/active.10122
-rw-r—r—		1	beast									572	Nov		5	05:59	/tmp/anon1
-rw-rw–-		1	root												0	Nov		5	10:30	/tmp/bar.report
-rw––-		1	qsc													0	Nov		5	00:18	/tmp/lh013813
-rwx––		1	steen							24953	Nov		5	10:40	/tmp/mbox.steen
-rwx––		1	techman						3711	Nov		5	10:45	/tmp/mbox.techman
-rw-r—r—		1	root							997536	Nov		5	10:58	/tmp/quotas
-rw––-		1	zhongqi				163579	Nov		4	20:16	/tmp/sp500.1
drwxrwx–		2	taylor									24	Nov		5	10:56	testme
-rw-r—r—		1	aru												90	Nov		5	02:55	/tmp/trouble21972

Most	variations	of	Unix	have	no	arguments	for	mkdir,	so	it	is	quite	easy	to	use.	Some
variants,	like	Oracle	Solaris,	offer	one	or	more	flags,	most	commonly	-m	mode	to
explicitly	specify	permissions	rather	than	leave	it	to	whatever’s	set	with	the	umask,	and	-
p	to	have	mkdir	create	any	intermediate	directories	required	as	part	of	its	action.	Keep	in
mind	two	things:	You	must	have	write	permission	to	the	current	directory	if	you’re
creating	a	new	directory,	and	you	should	ensure	that	the	name	of	the	directory	is	not	the
same	as	(or,	to	avoid	confusion,	similar	to)	a	directory	name	that	already	exists.

Task	6.2:	Copying	Files	to	New	Locations	Using	cp
One	of	the	most	basic	operations	in	any	system	is	moving	files,	the	modern-office
computer	equivalent	of	paper	shuffling.	On	a	computer,	moving	files	is	a	simple	matter	of
using	one	or	two	commands:	You	can	move	a	file	to	a	different	location,	or	you	can	create
a	copy	of	the	file	and	move	the	copy	to	a	different	location.

Both	Windows	and	the	Mac	OS	X	GUI	have	an	interesting	strategy	for	differentiating
between	moving	and	copying.	If	you	drag	a	file	to	another	location	on	the	same	device	(a
hard	disk,	for	example),	by	default	the	computer	moves	the	file	to	that	location.	If	you
drag	the	file	to	a	location	on	a	different	device	(from	a	USB	stick	to	a	hard	disk,	for
instance),	the	computer	automatically	copies	the	file,	placing	the	new,	identically	named
copy	on	the	new	device	while	leaving	the	old	copy	intact.

Unix	lacks	this	subtlety	(or,	depending	on	your	perspective,	behavioral	inconsistency).
Instead,	Unix	lets	you	choose	which	of	the	two	operations	you’d	like	to	perform.	The	two
commands	are	typically	succinct	Unix	mnemonics:	mv	to	move	files	and	cp	to	copy	files.
The	mv	command	also	serves	the	dual	purpose	of	enabling	you	to	rename	files.

Note

Pronounce	cp	as	“sea-pea.”	When	you	talk	about	copying	a	file,	however,	say
“copy.”	Similarly,	pronounce	mv	as	“em-vee,”	but	when	you	speak	of	moving	a	file,
say	“move.”

I	find	myself	using	cp	more	than	mv	because	it	offers	a	slightly	safer	way	to	organize
files:	If	I	get	confused	and	rename	a	file	such	that	it	steps	on	another	file	(you’ll	see	what	I
mean	in	a	moment),	I	still	have	original	copies	of	all	the	files.

1.	For	a	cp	command,	specify	first	the	name	of	the	file	you	want	to	copy	and	then	the
new	filename.	Both	names	can	be	either	relative	filenames	(that	is,	without	a	leading
slash	or	other	indication	of	the	directory)	or	absolute	filenames.	Start	out	by	making
a	copy	of	your	.login	file	and	name	the	new	copy	login.copy,	or,	if	you	don’t
have	a	.login,	do	the	same	but	with	your	.profile	file	instead:

Click	here	to	view	code	image

%	cp	.login	login.copy
%	ls	-ld	.login	login.copy
-rw––-		1	taylor							1858	Oct	12	21:20	.login
-rw––-		1	taylor							1858	Nov		5	12:08	login.copy

You	can	see	that	the	new	file	is	identical	in	size	and	permissions	but	that	it	has	a
more	recent	creation	date,	which	certainly	makes	sense.

2.	What	happens	if	you	try	to	copy	a	directory?
Click	here	to	view	code	image

%	cp	olddir	newdir
cp:	olddir:	Is	a	directory	(not	copied).

Generally,	Unix	won’t	permit	you	to	use	the	cp	command	to	copy	directories.

Note

I	found	that	this	command	worked—sort	of—on	one	machine	I	have	used.	The
system’s	response	to	the	cp	command	indicated	that	something	peculiar	was
happening	with	the	following	message:

Click	here	to	view	code	image
cp:	.:	Is	a	directory	(copying	as	plain	file)

But	the	system	also	created	newdir	as	a	regular,	executable	file.	You	may	find	that
your	system	reacts	in	this	manner,	but	you	probably	do	not	have	any	use	for	it.	On
the	other	hand,	you	might	find	that	your	version	of	cp	includes	the	useful	-R
command,	which	instructs	it	to	recursively	copy	all	files	and	directories	below	the
specified	location.

3.	The	cp	command	is	quite	powerful,	and	it	can	copy	many	files	at	once	if	you
specify	a	directory	as	the	destination	rather	than	specifying	a	new	filename.	Further,
if	you	specify	a	directory	destination,	the	program	automatically	will	create	new
files	and	assign	them	the	same	names	as	the	original	files.

You	need	to	create	a	second	file	to	work	with:
%	cp	.profile	profile.copy

Now	try	it	yourself.	Here	is	what	I	did:
Click	here	to	view	code	image

%	cp	login.copy	profile.copy	NEWDIR
%	ls	-l	NEWDIR
total	4
-rw––-		1	taylor							1178	Nov		5	12:18	profile.copy
-rw––-		1	taylor							1858	Nov		5	12:18	login.copy

You	can	use	the	cp	command	to	copy	an	original	file	as	a	new	file	or	to	a	specific
directory	(the	format	being	cp	original-file	new-file-or-directory),	and
you	can	copy	many	files	to	a	directory	(cp	file1	file2	file3	new-
directory).	With	the	-R	flag	that	many	versions	of	cp	offer,	you	can	recursively	copy
all	files	and	directories	below	the	specified	directory.	Experiment	with	creating	new
directories	using	mkdir	and	copying	the	files	into	the	new	locations.	Use	ls	to	confirm
that	the	originals	aren’t	removed	as	you	go	along.

On	many	Unix	systems,	a	lowercase	r	gives	you	a	recursive	copy.	You	can	check	your
Unix’s	capabilities	with	the	man	cp	command.

Task	6.3:	Moving	Files	to	New	Locations	Using	mv
Whereas	cp	leaves	the	original	file	intact,	making	a	sort	of	electronic	equivalent	of	a
photocopy,	mv	functions	like	a	more	traditional	desk:	Papers	are	moved	from	one	location
to	another.	Rather	than	create	multiple	copies	of	the	files	you’re	copying,	mv	physically
relocates	them	from	the	old	directory	to	the	new.

1.	You	use	mv	almost	the	same	way	that	you	use	cp:

Click	here	to	view	code	image

%	ls	-l	login.copy
-rw––-		1	taylor							1858	Nov		5	12:08	login.copy
%	mv	login.copy	new.login
%	ls	-l	login.copy	new.login
login.copy	not	found
-rw––-		1	taylor							1858	Nov		5	12:08	new.login

2.	Also,	you	move	a	group	of	files	together	using	mv	almost	the	same	way	you	do	it
using	cp:

Click	here	to	view	code	image
%	cd	NEWDIR
%	ls
profile.copy		login.copy
%	mv	profile.copy	login.copy	..
%	ls	-l
total	0
%	ls	–F	..
Archives/															OWL/																				mailing.lists.bitnet.Z
InfoWorld/														PubAccessLists.Z								new.login
LISTS																			bin/																				rumors.26Oct.Z
Mail/																			profile.copy												rumors.5Nov.Z
NEWDIR/																	educ																				src/
News/																			login.copy

3.	Because	you	can	use	mv	to	rename	files	or	directories,	you	can	relocate	the	new
directory	NEWDIR.	However,	you	cannot	use	mv	to	relocate	the	dot	directory
because	you’re	inside	it:

Click	here	to	view	code	image

%	mv	.	new.dot
mv:	.:	rename:	Invalid	argument

4.	Both	mv	and	cp	can	be	dangerous.	Carefully	consider	the	following	example	before
trying	either	mv	or	cp	on	your	own	computer:

Click	here	to	view	code	image
%	ls	-l	login.copy	profile.copy
-rw––-		1	taylor							1178	Nov		5	12:38	profile.copy
-rw––-		1	taylor							1858	Nov		5	12:37	login.copy
%	cp	profile.copy	login.copy
%	ls	-l	login.copy	profile.copy
-rw––-		1	taylor							1178	Nov		5	12:38	profile.copy
-rw––-		1	taylor							1178	Nov		5	12:38	login.copy

Without	bothering	to	warn	me,	Unix	copied	the	file	profile.copy	over	the
existing	file	login.copy.	Notice	that	after	the	cp	operation	occurred,	both	files
had	the	same	size	and	modification	dates.

The	mv	command	will	cause	the	same	problem:
Click	here	to	view	code	image

%	ls	-l	profile.copy	login.copy
-rw––-		1	taylor							1178	Nov		5	12:42	profile.copy
-rw––-		1	taylor							1858	Nov		5	12:42	login.copy
%	mv	profile.copy	login.copy
%	ls	-l	profile.copy	login.copy

profile.copy	not	found
-rw––-		1	taylor							1178	Nov		5	12:42	login.copy

Note

The	good	news	is	that	you	can	set	up	Unix	so	it	won’t	overwrite	files.	The	bad	news
is	that	for	some	reason,	many	systems	don’t	default	to	this	behavior.	If	your	system
is	configured	reasonably,	when	you	try	either	of	the	two	preceding	dangerous
examples,	the	system’s	response	is	remove	login.copy?.	You	can	either	press
the	Y	key	to	replace	the	old	file	or	press	Enter	to	change	your	mind.	If	your	system
cannot	be	set	up	to	respond	this	way,	you	can	use	the	-i	flag	to	both	cp	and	mv	to
avoid	this	problem.	Later,	you	learn	how	to	permanently	fix	this	problem	with	a
shell	alias.

Together,	mv	and	cp	are	the	dynamic	duo	of	Unix	file	organization.	These	commands
enable	you	to	put	the	information	you	want	where	you	want	it,	leaving	duplicates	behind	if
desired.

Task	6.4:	Renaming	Files	with	mv
Both	Windows	and	Macintosh	systems	have	easy	ways	to	rename	files.	On	the	Mac,	you
can	select	the	name	under	the	file	icon	and	enter	a	new	filename.	On	Windows,	you	right-
click	the	icon	and	choose	Rename	from	the	pop-up	menu.

Unix	has	neither	of	these	options.	To	rename	files,	you	use	the	mv	command,	which,	in
essence,	moves	the	old	name	to	the	new	name.	It’s	a	bit	counterintuitive,	but	it	works.

1.	Rename	the	file	profile.copy	with	your	own	first	name.	Here’s	an	example:
Click	here	to	view	code	image

%	ls	-l	profile.copy
-rw––-		1	taylor							1178	Nov		5	13:00	profile.copy
%	mv	profile.copy	dave
%	ls	-l	dave
-rw––-		1	taylor							1178	Nov		5	13:00	dave

2.	Rename	a	directory,	too:
Click	here	to	view	code	image

%	ls	-ld	NEWDIR
drwxrwx–		2	taylor								512	Nov		5	12:32	NEWDIR
%	mv	NEWDIR	New.Sample.Directory
%	ls	-ld	New.Sample.Directory
drwxrwx–		2	taylor								512	Nov		5	12:32	New.Sample.Directory

3.	Be	careful!	Just	as	moving	files	with	cp	and	mv	can	carelessly	overwrite	existing
files,	renaming	files	using	mv	can	overwrite	existing	files:
%	mv	dave	login.copy
%

If	you	try	to	use	mv	to	rename	a	directory	with	a	name	that	already	has	been
assigned	to	a	file,	the	command	fails:

Click	here	to	view	code	image

%	mv	New.Sample.Directory	dave
mv:	New.Sample.Directory:	rename:	Not	a	directory

The	reverse	situation	works	fine	because	the	file	is	moved	into	the	directory	as
expected.	This	is	the	subtlety	of	using	the	mv	command	to	rename	files.

4.	If	you	assign	a	new	directory	a	name	that	belongs	to	an	existing	directory,	some
versions	of	mv	will	happily	overwrite	the	existing	directory	and	name	the	new	one	as
requested:

Click	here	to	view	code	image

%	mkdir	testdir
%	mv	New.Sample.Directory	testdir

Being	able	to	rename	files	is	another	important	part	of	building	a	useful	Unix	virtual	file
cabinet	for	you.	Some	major	dangers	are	involved,	however,	so	tread	carefully	and	always
use	ls	in	conjunction	with	cp	and	mv	to	ensure	that	in	the	process	you	don’t	overwrite	or
replace	an	existing	file.

Task	6.5:	Removing	Directories	with	rmdir
Now	that	you	can	create	directories	with	the	mkdir	command,	it’s	time	to	learn	how	to
remove	directories	using	the	rmdir	command.

1.	With	rmdir,	you	can	remove	any	directory	for	which	you	have	appropriate
permissions:
%	mkdir	test
%	ls	-l	test
total	0
%	rmdir	test

Note	that	the	output	of	ls	shows	that	there	are	no	files	in	the	test	directory.

2.	By	default,	the	rmdir	command	removes	only	directories	that	are	empty:
Click	here	to	view	code	image

%	mkdir	test
%	touch	test/sample.file
%	ls	-l	test
total	0
-rw-rw–-		1	taylor										0	Nov		5	14:00	sample.file
%	rmdir	test
rmdir:	test:	Directory	not	empty

To	remove	a	directory,	you	must	first	remove	all	files	therein	using	the	rm
command.	In	this	example,	test	still	has	files	in	it.	Note	that	some	versions	of
rmdir	offer	the	-p	flag,	which	will	recursively	remove	all	directories	and
subdirectories	from	right	to	left	until	it	encounters	a	non-empty	directory.	Other
versions	include	the	-f	flag,	which	will	let	you	forcibly	remove	any	files	or
subdirectories	contained	within	the	specified	directory.	As	you	imagine,	rmdir	-f
/	could	destroy	your	system,	so	be	careful!

3.	Permissions	are	important,	too.	Consider	what	happens	when	I	try	to	remove	a
directory	that	I	don’t	have	permission	to	touch:

Click	here	to	view	code	image

%	rmdir	/tmp
rmdir:	/tmp:	Permission	denied
%	ls	-l	/tmp
drwxrwxrwt	81	root								15872	Nov		5	14:07	/tmp

The	permissions	of	the	parent	directory,	rather	than	the	directory	you’re	trying	to
remove,	are	the	important	consideration.

There’s	no	way	to	restore	a	directory	you’ve	removed,	so	be	careful	and	think	through
what	you’re	doing.	The	good	news	is	that,	because	with	rmdir	you	can’t	remove	a
directory	that	has	anything	in	it	(a	second	reason	the	attempt	in	the	preceding	example	to
remove	/tmp	would	have	failed),	you’re	reasonably	safe	from	major	gaffes.	You	are	not
safe,	however,	with	the	next	command,	rm,	because	it	will	remove	anything.

Task	6.6:	Removing	Files	Using	rm
The	rm	command	is	probably	the	most	dangerous	command	in	Unix.	Lacking	any	sort	of
archival	or	restoration	feature,	the	rm	command	removes	files	permanently.	It’s	like
throwing	a	document	into	a	shredder	instead	of	into	a	dustbin.

Caution

On	some	Unixes,	including	Solaris,	there’s	a	command	called	shred	that	removes
files	but	also	overwrites	the	spot	on	the	disk	where	the	file	information	was
previously	stored.	It’s	even	more	ruthless	than	rm	and	should	be	used	with	extreme
caution,	if	at	all.

1.	Removing	a	file	using	rm	is	easy.	Here’s	an	example:
Click	here	to	view	code	image

%	ls	-l	login.copy
-rw––-		1	taylor							1178	Nov		5	13:00	login.copy
%	rm	login.copy
%	ls	-l	login.copy
login.copy	not	found

If	you	decide	that	you	removed	the	wrong	file	and	actually	wanted	to	keep	the
login.copy	file,	it’s	too	late.	You’re	out	of	luck.

Note

There’s	no	“recycle	bin”	or	“trashcan”	from	which	you	can	recover	accidentally
deleted	files	in	Unix	if	you’re	working	on	the	command	line.	Be	careful!

2.	You	can	remove	more	than	one	file	at	a	time	by	specifying	each	of	the	files	to	the
rm	command:

Click	here	to	view	code	image

%	ls	-F
Archives/															PubAccessLists.Z								new.login
InfoWorld/														bin/																				rumors.26Oct.Z

LISTS																			profile.copy														rumors.5Nov.Z
Mail/																			educ																				src/
News/																			login.copy														test/
OWL/																				mailing.lists.bitnet.Z		testdir/
%	rm	profile.copy	login.copy	new.login
%	ls	-F
Archives/															OWL/																				rumors.26Oct.Z
InfoWorld/														PubAccessLists.Z								rumors.5Nov.Z
LISTS																			bin/																				src/
Mail/																			educ																				test/
News/																			mailing.lists.bitnet.Z		testdir/

3.	Fortunately,	rm	does	have	a	command	flag	that	to	some	degree	helps	avoid
accidental	file	removal.	When	you	use	the	-i	flag	to	rm	(the	i	stands	for	interactive
in	this	case),	the	system	will	ask	you	whether	you’re	sure	you	want	to	remove	the
file:
%	touch	testme
%	rm	-i	testme
rm:	remove	testme?	n
%	ls	testme
testme
%	rm	-i	testme
rm:	remove	testme?	y
%	ls	testme
testme	not	found

Note	that	n	is	no	and	y	is	yes.

4.	Another	flag	that	is	often	useful	for	rm	but	is	very	dangerous	is	the	-r	flag	for
recursive	deletion	of	files.	(A	recursive	command	repeatedly	invokes	itself.)	When
the	-r	flag	to	rm	is	used,	Unix	will	remove	any	specified	directory	along	with	all	its
contents:

Click	here	to	view	code	image

%	ls	-ld	test	;	ls	-lR	test
drwxrwxrwx		3	taylor								512	Nov		5	15:32	test
total	1
-rw-rw–-		1	taylor										0	Nov		5	15:32	alpha
drwxrwx–		2	taylor								512	Nov		5	15:32	test2

test/test2:
total	0
-rw-rw–-		1	taylor										0	Nov		5	15:32	file1
%	rm	-r	test
%	ls	-ld	test
test	not	found

Without	any	warning	or	indication	that	it	was	going	to	do	something	so	drastic,	rm
-r	test	caused	not	just	the	test	directory	but	all	files	and	directories	inside	it	as
well	to	be	removed.

Note

This	latest	example	demonstrates	that	you	can	give	several	commands	on	a	single
Unix	command	line.	To	do	this,	separate	the	commands	with	a	semicolon.	Instead
of	giving	the	commands	ls	-ld	test	and	ls	-lR	test	on	separate	lines,	I
opted	for	the	more	efficient	ls	-ld	test;	ls	-lR	test,	which	executes
the	commands	one	after	the	other.

The	Unix	equivalent	of	the	paper	shredder,	the	rm	command	allows	for	easy	removal	of
files.	With	the	-r	flag,	you	can	clean	out	an	entire	directory,	even	if	it	contains
subdirectories	and	files	within	those	subdirectories.	With	the	-f	flag,	any	warning
messages	or	other	permission	issues	will	be	ignored,	making	the	command	even	more
dangerous.	The	one	command	you	never	want	to	run	on	a	Unix	system	is	rm	-rf	/,	for
what	I	hope	are	obvious	reasons!

Again,	remember	that	nothing	can	be	retrieved	after	the	fact,	however,	so	use	great	caution
any	time	you	invoke	rm.

Task	6.7:	Minimizing	the	Danger	of	the	rm	Command
At	this	point,	you	might	be	wondering	why	I	am	making	such	a	big	deal	of	the	rm
command	and	the	fact	that	it	does	what	it	is	advertised	to	do—that	is,	remove	files.	The
answer	is	that	learning	a	bit	of	paranoia	now	can	save	you	immense	grief	in	the	future.	It
can	prevent	you	from	destroying	a	file	full	of	information	that	you	really	needed	to	save.

For	Windows,	commercial	programs	(Norton	Utilities,	for	instance)	exist	that	can	retrieve
accidentally	removed	files.	As	with	the	Mac,	the	Windows	recycle	bin	is	a	folder	that	you
can	open	and	extract	files	from	until	it’s	“emptied.”	Programs	such	as	Norton	Utilities	for
the	Macintosh	can	be	used	to	recover	files	that	have	been	deleted	by	emptying	the	trash
can.	Unix	just	doesn’t	have	that	capability	if	you’re	working	on	the	command	line,	though,
and	files	that	are	removed	are	gone	forever.

The	only	exception	is	if	you	work	on	a	Unix	system	that	has	an	automatic,	reliable	backup
schedule	onto	the	cloud	or	a	local	device.	In	such	a	case,	you	might	be	able	to	retrieve	an
older	version	of	your	file	(maybe).

That	said,	you	can	do	a	few	things	to	lessen	the	danger	of	using	rm	and	yet	give	yourself
the	ability	to	remove	unwanted	files.

1.	You	can	use	a	shorthand,	a	shell	alias,	to	attach	the	-i	flag	automatically	to	each
use	of	rm.	To	do	this,	ascertain	what	type	of	login	shell	you’re	running,	which	you
can	do	most	easily	by	using	the	following	command:

Click	here	to	view	code	image

%	grep	taylor	/etc/passwd
taylor:x:19989:1412:Dave	Taylor:/users/taylor:/bin/csh

(Don’t	worry	about	what	all	of	what	this	does	right	now.	You’ll	learn	about	the
grep	command	a	few	hours	from	now.)	The	last	word	on	the	line	is	what’s
important.	The	/etc/passwd	file	is	one	of	the	database	files	Unix	uses	to	track

accounts.	Each	line	in	the	file	is	called	a	password	entry	or	password	file	entry.	On
my	password	entry,	you	can	see	that	the	login	shell	specified	is	/bin/csh.	If	you
try	this	and	don’t	have	an	identical	entry,	you	should	have	/bin/sh	or	/bin/ksh.

2.	If	your	entry	is	/bin/csh	or	/bin/tcsh,	enter	exactly	what	is	shown	here:
Click	here	to	view	code	image

%	echo	“alias	rm	/bin/rm	-i”	>>	~/.cshrc
%	source	~/.cshrc

Now	rm	includes	the	-i	flag	each	time	it’s	used:
%	touch	testme
%	rm	testme
rm:	remove	testme?	N

3.	If	your	entry	is	/bin/bash,	enter	exactly	what	is	shown	here,	paying	particular
attention	to	the	two	different	quotation-mark	characters	used	in	the	example:

Click	here	to	view	code	image
$	echo	‘alias	rm=”/bin/rm	-i”’	>>	~/.profile
$.	~/.profile

Now	rm	includes	the	-i	flag	each	time	it’s	used.

Note

One	thing	to	pay	special	attention	to	is	the	difference	between	the	single	quote	(‘),
the	double	quote	(“),	and	the	backquote	(`).	Unix	interprets	each	differently,
although	single	and	double	quotes	are	often	interchangeable.	The	backquotes,	also
known	as	backticks,	are	less	common	and	delineate	commands	within	other
commands.

4.	If	your	entry	is	/bin/sh,	you	cannot	program	your	system	to	include	the	-i	flag
each	time	rm	is	used.	The	Bourne	shell	(sh)	is	the	original	command	shell	of	Unix.
The	Bourne	shell	lacks	an	alias	feature,	a	feature	that	both	the	Bash	shell	(bash)
and	the	C	shell	(csh/tcsh)	include.	As	a	result,	I	recommend	that	you	change	your
login	shell	to	one	of	these	alternatives,	if	available.

To	see	what’s	available,	look	in	the	/bin	directory	on	your	machine	for	the	specific
shells:

Click	here	to	view	code	image

%	ls	-lF	/bin/*sh
-rwxr-xr-x		1	root		wheel		603488		3	Nov	22:35	/bin/bash*
-r-xr-xr-x		1	root		wheel		348068		3	Nov	22:35	/bin/csh*
-r-xr-xr-x		1	root		wheel		603488		3	Nov	22:35	/bin/sh*
-r-xr-xr-x		1	root		wheel		348068		3	Nov	22:35	/bin/tcsh*
-rwxr-xr-x		1	root		wheel		479120		3	Nov	22:35	/bin/zsh*

Most	of	the	examples	in	this	book	focus	on	the	Bash	shell	because	I	think	it’s	the
easiest	of	the	shells	to	use,	and	it’s	certainly	in	the	most	widespread	use.	To	change
your	login	shell,	you	need	to	e-mail	your	system	administrator	with	the	request,
though	some	versions	of	Unix	offer	the	chsh	(change	shell)	or,	in	Solaris,

usermod	commands	for	just	this	purpose.	If	yours	has	one	of	these	commands,
check	the	man	page	to	learn	more	about	how	to	use	it.	Now	you	can	go	back	to	step
2	and	set	up	a	Bash	shell	alias.	This	will	help	you	avoid	mischief	with	the	rm
command.

The	best	way	to	avoid	trouble	with	any	of	these	commands	is	to	learn	to	be	just	a	bit
paranoid	about	them.	Before	you	remove	a	file,	make	sure	it’s	the	one	you	want	to
remove.	Before	you	remove	a	directory,	make	doubly	sure	that	it	doesn’t	contain	any	files
you	might	want.	Before	you	rename	a	file	or	directory,	double-check	to	see	whether
renaming	it	is	going	to	cause	any	trouble.	Before	you	press	Enter,	make	sure	the	command
is	exactly	what	you	want	to	invoke.

Take	your	time	with	the	commands	you	learned	in	this	hour,	and	you	should	be	fine.	Even
in	the	worst	case,	you	will	hopefully	have	the	safety	net	of	a	backup	performed	by	a
system	administrator—though	you	shouldn’t	rely	on	it.

Summary
You	now	have	completed	six	hours	of	Unix	instruction,	and	you	are	armed	with	enough
commands	to	make	Unix	do	what	you	want	it	to	do—as	well	as	cause	some	trouble.	In	this
hour,	you	learned	the	differences	between	cp	and	mv	for	moving	files	and	how	to	use	mv
to	rename	both	files	and	directories.	You	also	learned	how	to	create	directories	with	the
mkdir	command	and	how	to	remove	them	with	the	rmdir	command.	And	you	learned
about	the	rm	command	for	removing	files	and	directories,	as	well	as	how	to	avoid	getting
into	too	much	trouble	with	it.

Finally,	if	you	were	really	paying	attention,	you	learned	how	to	identify	which	login	shell
you’re	using	(csh,	ksh,	bash,	or	sh).

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
recursive	command	This	type	of	command	repeatedly	invokes	itself	while	operating	on	a
hierarchy	of	files.

shell	alias	Most	Unix	shells	have	a	convenient	way	for	you	to	create	abbreviations	for
commonly	used	commands	or	series	of	commands,	known	as	shell	aliases.	For	example,	if
I	always	found	myself	typing	ls	-F,	an	alias	can	let	me	type	just	ls	and	have	the	shell
automatically	add	the	-F	flag	each	time.

Exercises
1.	What	are	the	differences	between	cp	and	mv?

2.	If	you	were	installing	a	program	from	a	USB	stick	onto	a	hard	disk,	would	you	use

cp	or	mv?

3.	If	you	know	DOS,	this	question	is	for	you.	Although	DOS	has	a	RENAME
command,	it	doesn’t	have	both	COPY	and	MOVE.	Which	of	these	two	do	you	think
DOS	includes?	Why?

4.	Try	using	mkdir	to	create	a	directory.	What	happens,	and	why?

5.	You’ve	noticed	that	both	rmdir	and	rm	-r	can	be	used	to	remove	directories.
Which	is	safer	to	use?

6.	The	rm	command	has	another	flag	that	wasn’t	discussed	in	this	hour.	The	-f	flag
forces	removal	of	files	regardless	of	permission	(assuming	that	you’re	the	owner,
that	is).	In	combination	with	the	-r	flag,	this	can	be	amazingly	destructive.	Why?

Preview	of	the	Next	Hour
The	seventh	hour	introduces	the	useful	file	command,	which	indicates	the	contents	of
any	file	in	the	Unix	file	system.	With	file,	you	will	explore	various	directories	in	the
Unix	file	system	to	see	what	the	command	reveals	about	different	system	and	personal
files.	Then,	when	you’ve	found	some	files	worth	reading,	you	will	learn	about	cat,
more,	and	pg,	which	give	you	different	ways	of	looking	at	the	contents	of	a	file.

Hour	7.	Looking	into	Files

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	use	file	to	identify	file	types

	How	to	explore	Unix	directories	with	file

	About	peeking	at	the	first	few	lines	with	head

	How	to	view	the	last	few	lines	with	tail

	How	to	view	the	contents	of	files	with	cat

	How	to	view	larger	files	with	more

By	this	point,	you’ve	learned	a	considerable	number	of	Unix	commands	and	a	lot	about
the	operating	and	file	systems.	This	hour	focuses	on	Unix	tools	to	help	you	ascertain	what
types	of	files	you’ve	been	seeing	in	all	the	different	directories.	It	then	introduces	five
powerful	tools	for	examining	the	content	of	files.

This	hour	begins	with	a	tool	to	help	ensure	that	the	files	you’re	about	to	view	are	intended
for	human	perusal	and	then	explores	many	of	the	commands	available	to	view	the	contents
of	the	file	in	various	ways.

Looking	Inside	Files
You’ve	learned	how	to	manipulate	files	and	directories,	and	now	it’s	time	to	find	out	what
kind	of	information	is	contained	within	these	files	and	to	look	inside	the	files.

Task	7.1:	Using	file	to	Identify	File	Types
One	of	the	most	undervalued	commands	in	Unix	is	file,	which	is	often	neglected	and
collecting	dust	in	an	unused	virtual	corner	of	the	system.	Unix	does	not	rely	on	the
filename	extension	for	determining	the	type	of	file,	like	.txt	or	.jpg,	the	way	Windows	or
Mac	OS	does,	so	you	might	not	always	be	able	to	tell	what	kind	of	files	you’ve	got	in	a
directory	or	what	you	can	do	with	them.	Using	the	file	command,	which	examines	a	file
and	makes	an	educated	guess	about	its	contents,	is	a	handy	way	to	give	you	that	missing
information.

Unfortunately,	a	problem	exists	with	the	file	command:	It	isn’t	100%	accurate.	The
program	relies	on	a	combination	of	the	permissions	of	a	file,	the	filename,	and	an	analysis
of	the	first	few	lines	of	the	text.	If	you	had	a	text	file	that	started	out	looking	like	a	C
program	or	that	had	execute	permission	enabled,	file	might	well	identify	it	as	an
executable	program	rather	than	an	English	text	file.

Note

You	can	determine	how	accurate	your	version	of	file	is	by	checking	the	size	of	its
database	of	file	types.	You	can	do	this	with	the	Unix	command	wc	-l
/etc/magic	(Mac	OS	X	calls	this	/usr/share/file/magic).
The	number	of	entries	in	the	database	should	be	at	least	100	and	ideally	over	1,000.
If	you	have	fewer	than	this	number,	you’re	probably	going	to	have	trouble.	If	you
have	considerably	more,	you	might	have	a	very	accurate	version	of	file	at	your
fingertips!	Remember,	however,	that	even	if	it’s	relatively	small,	file	can	still
offer	invaluable	suggestions	regarding	file	content.

1.	Start	by	logging	in	to	your	account	and	using	the	ls	command	to	find	a	file	or	two
to	check:

Click	here	to	view	code	image

%	ls	-F
Archives/															OWL/																				rumors.26Oct.Z
InfoWorld/														PubAccessLists.Z								rumors.5Nov.Z
LISTS																			bin/																				src/
Mail/																			educ																				temp/
News/																			mailing.lists.bitnet.Z

Next,	enter	the	file	command	and	list	each	of	the	files	you’d	like	the	program	to
analyze:

Click	here	to	view	code	image
%	file	LISTS	educ	rumors.26Oct.Z	src
LISTS:		ascii	text
educ:			ascii	text
rumors.26Oct.Z:	block	compressed	16	bit	code	data
src:				directory

From	this	example,	you	can	see	that	file	correctly	identifies	src	as	a	directory,
offers	considerable	information	on	the	compressed	file	rumors.26Oct.Z,	and
tags	both	LISTS	and	educ	as	plain	ASCII	text	files.

Note

ASCII	is	the	American	Standard	Code	for	Information	Interchange,	and	it	means
that	the	file	contains	the	letters	of	the	English	alphabet,	punctuation,	and	numbers
but	not	much	else.	There	are	no	multiple	typefaces,	italics,	or	underlined	passages,
and	there	are	no	graphics.	It’s	the	lowest	common	denominator	of	text	in	Unix.

2.	Now	try	using	the	asterisk	(*),	a	Unix	wildcard	(wildcards	are	explained	in	Hour	8,
“Filters,	Pipes,	and	Wildcards!”),	to	have	the	program	analyze	all	files	in	your	home
directory:

Click	here	to	view	code	image

%	file	*
Global.Software:								English	text
Interactive.Unix:							mail	folder
Mail:											directory

News:											directory
Src:												directory
bin:												directory
history.usenet.Z:							compressed	data	block	compressed	16	bits

The	asterisk	(*)	is	a	special	character	in	Unix.	Used	by	itself,	it	tells	the	shell	to
substitute	the	names	of	all	the	files	in	the	current	directory.	Add	letters	before	or
after	the	asterisk	(as	in	/bin/*sh	earlier),	and	it	matches	all	filenames	that	match
the	specified	pattern.	You’ll	learn	a	lot	more	about	wildcards	and	patterns	in
subsequent	lessons.

Now	you	can	begin	to	see	how	file	can	help	differentiate	files.	Using	this
command,	I	am	now	reminded	that	the	file	Global.Software	is	English	text,
but	Interactive.Unix	is	actually	an	old	electronic	mail	message.	(file	can’t
differentiate	between	a	single	mail	message	and	a	multiple-message	folder,	so	it
always	errs	on	the	side	of	saying	that	the	file	is	a	mail	folder.)

3.	Mail	folders	are	actually	problematic	for	the	file	command.	On	one	of	the
systems	I	use,	the	file	command	doesn’t	know	what	mail	messages	are,	so	asking
it	to	analyze	mail	folders	results	in	a	demonstration	of	how	accuracy	is	related	to	the
size	of	the	file	database.

On	a	Solaris	system,	I	asked	file	to	analyze	two	mail	folders	and	got	the	following
results:
%	file	Mail/mailbox	Mail/sent
Mail/mailbox:			mail	folder
Mail/sent:	mail	folder

Almost	identical	files	on	a	Berkeley	Unix	system,	however,	have	very	different
results	when	analyzed:

Click	here	to	view	code	image

%	file	Mail/mailbox	Mail/sent	Mail/netnews
Mail/mailbox:								ascii	text
Mail/sent:							shell	commands
Mail/netnews:							English	text

Not	only	does	the	Berkeley	version	of	Unix	not	identify	the	files	correctly,	it	doesn’t
even	misidentify	them	consistently.

4.	Another	example	of	the	file	command’s	limitations	is	how	it	interacts	with	file
permissions.	Use	cp	to	create	a	new	file	and	work	through	this	example	to	see	how
your	file	command	interprets	the	various	changes:
%	cp	.cshrc	test
%	file	test
test:	shell	commands
%	chmod	+x	test
%	file	test
test:	shell	script

Adding	execute	permission	to	this	file	caused	this	version	of	file	to	identify	it	as	a
shell	script	rather	than	shell	commands.

Don’t	misinterpret	the	results	of	these	examples	as	proof	that	the	file	command	is

useless	and	that	you	shouldn’t	use	it.	Quite	the	opposite	is	true.	Unix	has	neither	a	specific
file-naming	convention	(Windows	has	its	three-letter	filename	suffixes)	nor	indication	of
file	ownership	by	icon	(Mac	OS	X	does	this	with	type	and	opener	information	added	by
each	program).	As	a	result,	it’s	vital	that	you	have	a	tool	for	helping	ascertain	file	types
without	actually	opening	the	file.
Why	not	just	look	at	the	contents?	The	best	way	to	figure	out	the	answer	to	this	question	is
to	accidentally	display	the	contents	of	an	executable	file	on	the	screen.	You’ll	see	that	it’s
quite	a	mess,	loaded	with	special	control	characters	that	can	make	your	screen	go	berserk.

Task	7.2:	Exploring	Unix	Directories	with	file
Now	that	you	know	how	to	work	with	the	file	command,	it’s	time	to	wander	through
the	Unix	file	system,	learning	more	about	types	of	files	that	tend	to	be	found	in	specific
directories.	Your	system	might	vary	slightly;	it’ll	certainly	have	more	files	in	some
directories	than	what	I	show	here	in	the	examples,	but	you’ll	quickly	see	that	file	can
offer	some	valuable	insight	into	the	contents	of	files.

1.	First	things	first.	Take	a	look	at	the	files	at	the	very	top	level	of	the	file	system,	in	/
(slash):

Click	here	to	view	code	image

%	cd	/
%	ls	-F
bin@							etc/							media/					platform/		system/
boot/						export/				mnt/							proc/						tmp/
cdrom/					home/						net/							root/						usr/
dev/							kernel/				nfs4/						rpool/					var/
devices/			lib/							opt/							sbin@						zvboot
%	ls	-l	bin
lrwxrwxrwx			1	root					root											9	Jun	25		2014	bin	->	./usr/bin
%	file	bin	boot	sbin	zvboot
bin:								directory
boot:							directory
sbin:							directory
zvboot:					ELF	64-bit	LSB	executable	AMD64	Version	1,	statically	linked,
not	stripped,	no	debugging	information	available

This	example	is	from	an	Oracle	Solaris	system	running	Solaris	11.2.

Executable	binaries	are	explained	in	detail	by	the	file	command	on	this	computer:
zvboot	is	listed	as	ELF	64-bit	LSB	executable	AMD64	Version	1,
statically	linked,	not	stripped,	no	debugging
information	available.	The	specifics	aren’t	vital	to	understand:	The	most
important	word	to	see	in	this	output	is	executable,	which	indicates	that	the	file	is
the	result	of	compiling	a	program.

Note

Notice	that	zvboot	is	“not	stripped.”	This	doesn’t	mean	that	other	files	are	naked
but	rather	that	various	information	included	in	most	executables	to	help	identify	and
isolate	problems	(in	other	words,	debugging	code)	has	not	been	removed	to	save
space	in	this	particular	executable.

Notice	the	information	shown	for	the	bin	directory.	It’s	actually	a	symbolic	link,	as
shown	in	the	ls	–l	output,	but	file	shows	it	as	just	another	directory.	Sometimes
other	tools	reveal	more	information;	it’s	up	to	you	to	be	a	detective.

2.	There	are	differences	in	output	formats	on	different	machines.	The	following
example	shows	what	the	same	command	as	in	step	1	would	generate	on	an	older	Sun
Microsystems	workstation,	examining	analogous	files:

Click	here	to	view	code	image

%	file	boot	core	kadb	tmp
boot:											sparc	executable
core:											core	file	from	‘popper’
kadb:											sparc	executable	not	stripped
tmp:												symbolic	link	to	/var/tmp

The	older	Sun	computer	offers	the	same	information	but	fewer	specifics	about
executable	binaries.	Sun	workstations	are	built	around	SPARC	chips	(just	as	PCs	are
built	around	Intel	chips),	so	these	programs	are	identified	as	sparc
executable.

3.	Are	you	ready	for	another	directory	of	weird	files?	It’s	time	to	move	into	the	/lib
directory	to	see	what’s	there.	Entering	ls	will	demonstrate	that	there	are	many	files
in	this	directory!	The	file	command	can	tell	you	about	any	of	them.	On	my	Solaris
computer,	I	asked	for	information	on	a	few	select	files,	many	of	which	you	might
also	have	on	yours:

Click	here	to	view	code	image
%	file	llib-lc	llib-lssl	mpxio	nss_nis.so.1
llib-lc:								ascii	text
llib-lssl:						ascii	text
mpxio:										directory
nss_nis.so.1:			ELF	32-bit	LSB	dynamic	lib	80386	Version	1,	dynamically
linked,	not	stripped,	no	debugging	information	available

The	first	file,	llib-lc,	demonstrates	that	the	file	command	works	regardless	of
the	name	of	a	file	or	whether	it	has	an	extension,	and	the	second	file,	of	course,	has	a
similar	name	(though	it’s	actually	a	symbolic	link).	As	we	saw	earlier,	the	version	of
file	in	Oracle	Solaris	doesn’t	differentiate	between	a	file/directory	and	a	symbolic
link	to	a	file	or	directory.

The	third	file	is	an	executable,	demonstrating	another	way	that	file	can	indicate
programs.	The	fourth	entry,	nss_nis.so.1,	looks	like	it	would	be	a	man	page
source	file	(the	.1	suffix	is	the	clue)	but	is	still	identified	as	an	executable	file.
There’s	clearly	quite	a	bit	of	uncertainty	here.

The	good	news	is	that	you	don’t	have	to	worry	about	what	files	are	in	/lib,	/etc,	or
any	other	directory	other	than	your	own	home	directory.	Thousands	of	happy	Unix	folk
busily	work	each	day	without	ever	realizing	that	these	other	directories	exist,	let	alone
knowing	what’s	in	them.

What’s	important	here	is	that	you	have	learned	that	the	file	command	identifies	special
Unix	system	files	of	various	types.	It	can	be	a	very	helpful	tool	when	you	are	looking
around	in	the	file	system	and	even	when	you	are	trying	to	determine	what’s	what	in	your
own	directory.

Task	7.3:	Peeking	at	the	First	Few	Lines	with	head
Now	that	you	have	the	tools	needed	to	move	about	in	the	file	system,	to	double-check
where	you	are,	and	to	identify	the	different	types	of	files,	it’s	time	to	learn	about	some	of
the	many	tools	Unix	offers	for	viewing	the	contents	of	files.	The	first	on	the	list	is	head,	a
simple	program	for	viewing	the	first	10	lines	of	any	file.

The	head	program	is	more	versatile	than	it	sounds:	You	can	use	it	to	view	as	much	of	a
file	as	you’d	like,	actually.	To	specify	the	number	of	lines	you	want	to	see,	you	need	to
indicate	how	many	as	a	starting	argument	and	prefix	the	number	of	lines	desired	with	a
dash.	By	default,	head	shows	the	first	10	lines	of	the	file.

Note

The	head	command	is	the	first	of	a	number	of	Unix	commands	that	tend	to	work
with	their	own	variation	on	the	regular	rules	of	starting	arguments.	Instead	of	using
a	typical	Unix	command	argument	of	-l33	to	specify	33	lines,	for	example,	head
uses	-33	to	specify	the	same	information.	Even	after	all	these	years,	Unix	is	less
standardized	in	its	interface	than	it	should	be.

1.	Move	back	into	your	home	directory	and	view	the	first	few	lines	of	your	.cshrc
file	(or	.profile	if	you	don’t	have	a	.cshrc	file):

Click	here	to	view	code	image

%	cd
%	head	.cshrc
#
#	Default	user	.cshrc	file	(/bin/csh	initialization).

set	host=limbo

set	path=(.	~/bin	/bin	/usr/bin	/usr/ucb	/usr/local	/etc
/usr/etc/usr/local/bin	/usr/unsup/bin)

#	Set	up	C	shell	environment:

alias		diff					’/usr/bin/diff	-c	–w’

The	contents	of	your	own	.cshrc	file	will	doubtless	be	different,	but	notice	that
the	program	lists	only	the	first	few	lines	of	the	file.

2.	To	specify	a	different	number	of	lines,	use	the	-n	format	(where	n	is	the	number	of

lines).	I’ll	look	at	just	the	first	four	lines	of	the	.login	file:
%	head	-4	.login
#
#	@(#)	$Revision:	62.2	$

setenv	TERM	vt100

3.	You	also	can	easily	check	multiple	files	by	listing	them	one	by	one	on	the	command
line:

Click	here	to	view	code	image

%	head	-3	.newsrc	/etc/passwd
==>	.newsrc	<==
misc.forsale.computers.mac:	1-14536
utech.student-orgs!	1
general!	1-546

==>	/etc/passwd	<==
root:?:0:0:	root,,,,:/:/bin/csh
news:?:6:11:USENET	News,,,,:/usr/spool/news:/bin/ksh
ingres:*?:7:519:INGRES	Manager,,,,:/usr/ingres:/bin/csh

4.	More	importantly,	head	and	other	Unix	commands	can	work	also	as	part	of	a
pipeline,	where	the	output	of	one	program	is	the	input	of	the	next.	The	special
symbol	for	creating	Unix	pipelines	is	the	pipe	character	(|).	Pipelines	are	read	left	to
right,	so	you	can	easily	have	the	output	of	who,	for	example,	feed	into	head;	this
offers	powerful	new	possibilities.	If	you	want	to	see	just	the	first	five	people	logged
in	to	the	computer	right	now,	try	this:

Click	here	to	view	code	image
%	who	|	head	-5
root					console	Nov		9	07:31
mccool			ttyaO			Nov	10	14:25
millekl2	ttyaP			Nov	10	14:58
paulwhit	ttyaR			Nov	10	14:50
bobweir		ttyaS			Nov	10	14:49
Broken	pipe

Pipelines	are	one	of	the	most	powerful	features	of	Unix,	and	I	have	many	examples
of	how	to	use	them	to	great	effect	throughout	the	remainder	of	this	book.	Stay	tuned!

5.	Here	is	one	last	thing.	Find	an	executable—/bin/ls	will	do	fine—and	enter
head	-1	/bin/ls.	Watch	what	happens.	Or,	if	you’d	like	to	preserve	your
sanity,	take	it	from	me	that	the	random	junk	thrown	on	your	screen	is	enough	to
cause	your	shell	or	terminal	program	to	get	quite	confused	and	possibly	even	crash.

The	point	isn’t	to	have	that	happen	to	your	system	but	rather	to	remind	you	that
using	file	to	confirm	the	file	type	for	unfamiliar	files	can	save	you	lots	of	grief
and	frustration!

head	is	the	simplest	of	programs	for	viewing	the	contents	of	a	file;	it’s	easy	to	use,	it’s
efficient,	and	it	works	as	part	of	a	pipeline,	too.	The	remainder	of	this	hour	focuses	on
other	tools	in	Unix	that	offer	other	ways	to	view	the	contents	of	text	and	ASCII	files.

Task	7.4:	Viewing	the	Last	Few	Lines	with	tail
The	head	program	shows	you	the	first	10	lines	of	the	file	you	specify.	What	would	you
expect	tail	to	do,	then?	I	hope	you	guessed	the	right	answer:	It	shows	the	last	10	lines	of
a	file.	Like	head,	tail	also	understands	the	same	format	for	specifying	the	number	of
lines	to	view.

1.	Start	out	viewing	the	last	12	lines	of	your	.cshrc	(or	.profile)	file:
Click	here	to	view	code	image

%	tail	-12	.cshrc

		set	noclobber	history=100	system=filec
		umask	007

		setprompt
endif

#	special	aliases:

alias	info						ssinfo
alias	ssinfo				‘echo	“connecting…”	;	rlogin	oasis’

2.	Next,	the	last	four	lines	of	the	file	LISTS	in	my	home	directory	can	be	shown	with
the	following	command	line:

Click	here	to	view	code	image
%	tail	-5	LISTS
										College	of	Education
										Arizona	State	University
										Tempe,	AZ	85287-2411
										602-965-2692

Tip

Don’t	get	too	hung	up	trying	to	figure	out	what’s	inside	my	files;	I’m	not	even	sure
myself	sometimes.

3.	Here’s	one	to	think	about.	You	can	use	head	to	view	the	first	n	lines	of	a	file	and
tail	to	view	the	last	n	lines	of	a	file.	Can	you	figure	out	a	way	to	combine	the	two
so	that	you	can	see	just	the	10th,	11th,	and	12th	lines	of	a	file?

Click	here	to	view	code	image

%	head	-12	.cshrc	|	tail	-3
alias		diff					’/usr/bin/diff	-c	-w’
alias		from					‘frm	-n’
alias		ll							‘ls	-l’

It’s	easy	with	Unix	command	pipelines!

Combining	the	two	commands	head	and	tail	can	give	you	considerable	power	in
viewing	specific	slices	of	a	file	on	the	Unix	system.	Try	combining	them	in	different	ways
for	different	results.

Task	7.5:	Viewing	the	Contents	of	Files	with	cat
Both	head	and	tail	offer	the	capability	to	view	a	piece	of	a	file,	either	the	top	or	the
bottom,	but	neither	lets	you	conveniently	see	the	entire	file,	regardless	of	length.	For	this
job,	the	cat	program	is	the	right	choice.

Note

The	cat	program	got	its	name	from	its	function	in	the	early	versions	of	Unix:
concatenating	(or	join	together)	multiple	files.	It	isn’t,	unfortunately,	an	homage	to
felines	or	anything	so	exotic!

The	cat	program	also	has	a	valuable	secret	capability:	Through	use	of	the	-v	flag,	you
can	use	cat	to	display	any	file	on	the	system,	executable	or	otherwise,	with	all	characters
that	normally	would	not	be	printed	(or	would	drive	your	screen	bonkers)	displayed	in	a
special	format	I	call	control	key	notation.	In	control	key	notation,	each	nonprinting
character	is	represented	as	^n,	where	n	is	a	printable	letter	or	symbol.	A	character	with	the
value	0	(also	referred	to	as	a	null	or	null	character)	is	displayed	as	^@,	a	character	with
the	value	1	is	^A,	a	character	with	the	value	2	is	^B,	and	so	on.

Another	cat	flag	that	can	be	useful	for	certain	files	is	-s,	which	suppresses	multiple
blank	lines	from	a	file.	Not	all	Unixes	include	a	version	of	cat	that	has	the	–s	flag,	so
check	with	man	cat	before	you	give	it	a	try.	Also,	I	admit,	it	isn’t	immediately	obvious
how	this	feature	can	help,	but	some	files	(particularly	log	files	from	system	programs)	can
have	a	screenful	(or	more)	of	blank	lines.	To	avoid	having	to	watch	them	all	fly	past,	you
can	use	cat	-s	to	chop	‘em	down	to	a	single	blank	line.	Don’t	have	this	flag,	but	need
it?	cat	|	uniq	is	a	simple	alternative.

Finally,	a	third	flag	that’s	tremendously	useful	is	-n,	which	adds	line	numbers	to	the
output,	though	not	to	the	file	itself,	of	course.

1.	Move	back	to	your	home	directory	and	use	cat	to	display	the	complete	contents	of
your	.cshrc	file:

Click	here	to	view	code	image

%	cd
%	cat	.cshrc
#
#	Default	user	.cshrc	file	(/bin/csh	initialization).

set	path=(.	~/bin	/bin	/usr/bin	/usr/ucb	/usr/local	/etc
/usr/etc/usr/local/bin	/usr/unsup/bin)

#	Set	up	C	shell	environment:

alias		diff					’/usr/bin/diff	-c	-w’
alias		from					‘frm	-n’
alias		ll							‘ls	-l’
alias		ls							’/bin/ls	-F’
alias		mail					Mail
alias		mailq				’/usr/lib/sendmail	-bp’

alias		newaliases	‘echo	you	mean	newalias…	‘

alias		rd							‘readmsg	$	|	page’
alias		rn							’/usr/local/bin/rn	-d$HOME	-L	-M	-m	-e	-S	-/’

#	and	some	special	stuff	if	we’re	in	an	interactive	shell

if	($?prompt)	then												#	shell	is	interactive.

		alias		cd													‘chdir	\!*	;	setprompt’
		alias		env												‘printenv’
		alias		setprompt						‘set	prompt=”$system	($cwd:t)	\!	:	”’

		set	noclobber	history=100	system=limbo	filec
		umask	007

		setprompt
endif

#	special	aliases:

alias	info						ssinfo
alias	ssinfo				‘echo	“connecting…”	;	rlogin	oasis’

Don’t	be	too	concerned	if	the	contents	of	your	.cshrc	file	(or	mine)	don’t	make
any	sense	to	you.	You	are	slated	to	learn	about	the	contents	of	this	file	within	a	few
hours,	and,	yes,	it	is	complex.

You	can	see	that	cat	is	pretty	simple	to	use.	If	you	specify	more	than	one	filename
to	the	program,	it	lists	the	filenames	in	the	order	you	specify.	You	can	even	list	the
contents	of	a	file	multiple	times	by	specifying	the	same	filename	on	the	command
line	multiple	times.

2.	The	cat	program	also	can	be	used	as	part	of	a	pipeline.	Compare	the	following
command	with	my	earlier	usage	of	head	and	tail:

Click	here	to	view	code	image

%	cat	LISTS	|	tail	-5
										College	of	Education
										Arizona	State	University
										Tempe,	AZ	85287-2411
										602-965-2692

3.	Now	find	an	executable	file	and	try	cat	-v	in	combination	with	head	to	get	a
glimpse	of	the	contents	therein:

Click	here	to	view	code	image
%	cat	-v	/bin/ls	|	head	-1
^?ELF^B^A^A^F^A^@^@^@^@^@^@^@^B^@>^@^A^@^@^@`4@^@^@^@^@^@@^@^@^@^@^@^@^@M-
^XM-
\^@^@^@^@^@^@^@^@^@^@@^@8^@^H^@@^@^]^@^[^@^F^@^@^@^E^@^@^@@^@^@^@^@^@^@^
@@^@@^@^@^@^@^@^@^@^@^@^@^@^@^@M-@^A^@^@^@^@^@^@M-
@^A^@^@^@^@^@^@^@^@^@^@^@^@
^@^@^C^@^@^@^D^@^@^@^@^B^@^@^@^@^@^@^@^B@^@^@^@^@^@^@^@^@^@^@^@^@^@^W^@^@^@^@
^@^@^@^W^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@M-}M-^?M-^?
o^D^@^@^@^X^B^@^@^@^@^@^@^X^B@
^@^@^@^@^@^@^@^@^@^@^@^@^@	^@^@^@^@^@^@^@
^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^A^@^@
^@^E^@^@^@^@^@^@^@^@^@^@^@^@^@@^@^@^@^@^@^@^@^@^@^@^@^@^@^RM-“^@^@^@^@^@^@^RM-

“^@^@^@^@^@^@^@^@^A^@^@^@^@^@^A^@^@^@^F^@^@^@^@M-0^@^@^@^@^@^@^@M-
0A^@^@^@^@^@^@
^@^@^@^@^@^@^@M-
^P^G^@^@^@^@^@^@^\2^@^@^@^@^@^@^@^@^A^@^@^@^@^@^B^@^@^@^F^@^@
^@M-^HM-2^@^@^@^@^@^@M-^HM-
2A^@^@^@^@^@^@^@^@^@^@^@^@^@@^C^@^@^@^@^@^@^@^@^@^@
^@^@^@^@^@^@^@^@^@^@^@^@PM-
edd^D^@^@^@8^B^@^@^@^@^@^@8^B@^@^@^@^@^@^@^@^@^@^@
^@^@^@<^A^@^@^@^@^@^@<^A^@^@^@^@^@^@^H^@^@^@^@^@^@^@M-{M-^?M-^?
o^F^@^@^@^@^@^@
^@
^@^@^@^@^@^@/usr/lib/amd64/ld.so.1^@^@^A^@^@^@^@^@^@^@!^\^@^@^@^@^@^@^@^@^@^@
^@^@Broken	pipe

This	is	complex	and	confusing,	indeed!	What’s	worse,	this	isn’t	the	entire	first	line
of	the	executable.	You	can	see	this	because	the	data	ends	with	Broken	pipe.	This
indicates	that	a	lot	more	was	being	fed	to	head	than	the	system	could	process,	due
to	the	constraint	of	having	only	the	first	line	listed—a	line	that	head	typically
defines	as	no	more	than	512	characters	long.

The	cat	command	is	useful	for	viewing	files	and	is	quite	easy	to	work	with	for	even	a
neophyte.	The	problem	with	it	is	that	if	the	file	you	choose	to	view	has	more	lines	than	can
be	displayed	on	your	screen,	it	will	fly	past	without	any	way	to	slow	it	down.	That’s	where
the	next	command,	the	more	command,	comes	in	handy	for	stepping	through	files.

Task	7.6:	Viewing	Larger	Files	with	more
You	can	now	wander	about	the	file	system,	find	files	that	might	be	of	interest,	check	their
type	with	file,	and	even	view	them	with	the	cat	command,	but	what	if	files	are	longer
than	your	screen?	That’s	the	job	of	the	more	program,	a	program	that	knows	how	big
your	screen	or	terminal	window	is	and	displays	the	information	properly	paginated.

There	are	two	primary	flags	in	more:

The	program	also	allows	you	to	start	at	a	specific	line	in	the	file	by	using	the	curious	+n
notation,	where	n	is	a	specific	number.	Finally,	you	can	start	also	at	the	first	occurrence	of
a	specific	pattern	by	specifying	that	pattern	to	the	program	in	a	format	similar	to
+/pattern.	(Patterns	are	defined	in	Hour	8.)

1.	View	the	.cshrc	file	using	more:
Click	here	to	view	code	image

%	more	~/.cshrc
#
#	Default	user	.cshrc	file	(/bin/csh	initialization).

set	host=limbo

set	path=(.	~/bin	/bin	/usr/bin	/usr/ucb	/usr/local	/etc
/usr/etc	/usr/local/bin	/usr/unsup/bin)

#	Set	up	C	shell	environment:

alias		diff					’/usr/bin/diff	-c	-w’
alias		from					‘frm	-n’
alias		ll							‘ls	-l’
alias		ls							’/bin/ls	-F’
alias		mail					Mail
alias		mailq				’/usr/lib/sendmail	-bp’

alias		newaliases	‘echo	you	mean	newalias…’

alias		rd							‘readmsg	$	|	page’
—More—(51%)

Unlike	previous	examples,	where	the	program	has	run	until	completed	and	left	you
back	on	the	command	line,	more	is	the	first	interactive	program	you’ve
encountered.	When	you	see	the	--More--(51%)	prompt,	the	cursor	sits	at	the	end
of	that	line,	waiting	for	you	to	tell	the	program	what	to	do.	The	more	program	lets
you	know	how	far	into	the	file	you’ve	viewed;	in	this	example,	you’ve	seen	about
half	of	the	file	(51%).

At	this	point,	quite	a	variety	of	commands	are	available.	Press	the	spacebar	to	see
the	next	screen	of	information,	and	keep	doing	this	until	you	have	seen	the	entire
file.

2.	Try	starting	the	program	with	the	12th	line	of	the	file:
Click	here	to	view	code	image

%	more	+12	~/.cshrc
alias		mailq				’/usr/lib/sendmail	-bp’

alias		newaliases	‘echo	you	mean	newalias…’

alias		rd							‘readmsg	$	|	page’
alias		rn							’/usr/local/bin/rn	-d$HOME	-L	-M	-m	-e	-S	-/’

#	and	some	special	stuff	if	we’re	in	an	interactive	shell

if	($?prompt)	then												#	shell	is	interactive.

		alias		cd													‘chdir	\!*	;	setprompt’
		alias		env												‘printenv’
		alias		setprompt						‘set	prompt=”$system	($cwd:t)	\!	:	”’

		set	noclobber	history=100	filec
		umask	007

		setprompt
endif
—More—(82%)

3.	You	can	see	that	about	halfway	through	the	.cshrc	file	there	is	a	line	that	contains
the	word	newaliases.	I	can	start	more	so	that	the	line	with	this	pattern	is
displayed	on	the	top	of	the	first	screenful:

Click	here	to	view	code	image
%	more	+/newaliases	~/.cshrc
…skipping
alias		mailq				’/usr/lib/sendmail	-bp’

alias		newaliases	‘echo	you	mean	newalias…’

alias		rd							‘readmsg	$	|	page’
alias		rn							’/usr/local/bin/rn	-d$HOME	-L	-M	-m	-e	-S	-/’

#	and	some	special	stuff	if	we’re	in	an	interactive	shell

if	($?prompt)	then												#	shell	is	interactive.

		alias		cd													‘chdir	\!*	;	setprompt’
		alias		env												‘printenv’
		alias		setprompt						‘set	prompt=”$system	($cwd:t)	\!	:	”’

		set	noclobber	history=100	filec
		umask	007

		setprompt
endif

#	special	aliases:

alias	info						ssinfo
—More—(86%)

Notice	that	the	line	containing	the	pattern	newaliases	shows	up	as	the	third	line
of	the	first	screen,	not	the	first	line.	That’s	so	you	have	a	bit	of	context	to	the
matched	line,	but	it	can	take	some	getting	used	to.	Also	note	that	more	says—with
the	message	...skipping	as	the	first	line—that	it’s	skipping	some	lines	to	find
the	pattern.

4.	The	list	of	commands	available	at	the	--More--	prompt	is	quite	extensive,	as
shown	in	Table	7.1.	The	sidebar	following	the	table	explains	what	the	conventions
used	in	the	table	mean	and	how	to	enter	the	commands.

TABLE	7.1	Commands	Available	Within	the	more	Program

Entering	Commands	in	the	more	Program

In	this	table	and	in	the	following	text,	[Space]	(the	word	space	enclosed	in	brackets)
refers	to	pressing	the	spacebar	as	a	command.	Likewise,	[Return]	means	you	should
press	the	Return	key	as	part	of	the	command.

A	hyphen	in	a	command—for	example,	Ctrl-b—means	that	you	should	hold	down
the	first	indicated	key	while	you	press	the	second	key.	The	lowercase-letter
commands	in	the	table	indicate	that	you	should	press	the	corresponding	key,	the	B
key	for	the	b	command,	for	example.

Two	characters	together,	but	without	a	hyphen	(:f),	mean	that	you	should	press	the
appropriate	keys	in	sequence,	as	you	would	when	typing	text.

Finally,	entries	that	have	an	n	before	the	command	mean	that	you	can	prefix	the
command	with	a	number,	which	will	let	it	use	that	value	to	modify	its	action.	For
example,	3[Return]	displays	the	next	three	lines	of	the	file,	and	250s	skips	the
next	250	lines.	Typically,	pressing	Return	or	Enter	after	typing	a	command	within
more	is	not	necessary.

Try	some	commands	on	a	file	of	your	own.	A	good	file	that	will	have	enough	lines
to	make	this	interesting	is	/etc/passwd:

Click	here	to	view	code	image

%	more	/etc/passwd
root:?:0:0:	root:/:/bin/csh
news:?:6:11:USENET	News:/usr/spool/news:/bin/ksh

ingres:*?:7:519:INGRES	Manager:/usr/ingres:/bin/csh
usrlimit:?:8:800:(1000	user	system):/mnt:/bin/false
vanilla:*?:20:805:Vanilla	Account:/mnt:/bin/sh
charon:*?:21:807:The	Ferryman:/users/tomb:
actmaint:?:23:809:	Maintenance:/usr/adm/actmaint:/bin/ksh
pop:*?:26:819:,,,,:/usr/spool/pop:/bin/csh
lp:*?:70:10:System	V	Lp	Admin:/usr/spool/lp:
trouble:*?:97:501:Trouble	Report	Facility:/usr/trouble:/usr/msh
postmaster:?:98:504:Mail:/usr/local/adm:/bin/csh
aab:?:513:1233:Robert	Townsend:/users/aab:/bin/ksh
billing:?:516:1233:Accounting:/users/billing:/bin/csh
aai:?:520:1233:Pete	Cheeseman:/users/aai:/bin/csh
—More—(1%)	60s

…skipping	60	lines

cq:?:843:1233:Rob	Tillot:/users/cq:/usr/local/bin/tcsh
robb:?:969:1233:Robb:/users/robb:/usr/local/lib/msh
aok:?:970:1233:B	Jacobs:/users/aok:/usr/local/lib/msh
went:?:1040:1233:David	Math:/users/went:/bin/csh
aru:?:1076:1233:Raffie:/users/aru:/bin/ksh
varney:?:1094:1233:/users/varney:/bin/csh
brandt:?:1096:1233:Eric	Brand:/users/brand:/usr/local/bin/tcsh
ask:?:1098:1233:/users/ask:/bin/csh
asn:?:1101:1233:Ketter	Wesley:/users/asn:/usr/local/lib/msh
—More—(2%)

This	example	isn’t	exactly	what	you’ll	see	on	your	screen	because	each	time	you
type	a	command	to	more,	it	erases	its	own	prompt	and	replaces	the	prompt	with	the
appropriate	line	of	the	file.	Try	pressing	[Return]	to	move	down	one	line,	and	you’ll
see	what	I	mean.

Quit	more	in	the	middle	of	viewing	this	file	by	typing	q.

Note

Many	Unixes	have	a	program	called	less	that	offers	the	same	functionality	as
more	but	also	allows	you	to	move	backward	in	a	file,	so	if	you’re	on	page	three
and	decide	you	want	to	go	back	to	page	two,	you	can	do	so.	Use	man	less	to
learn	more	about	it.

The	more	program	is	one	of	the	best	general-purpose	programs	in	Unix,	offering	an	easy
and	powerful	tool	for	perusing	files.

Summary
You’ve	learned	about	file	to	ascertain	type,	head	and	tail	for	seeing	snippets	of	files,
and	cat	and	more	to	help	easily	view	files	of	any	size	on	your	screen.	Now	that	you
have	this	new	set	of	commands	added	to	your	Unix	expertise,	you	are	most	certainly	ready
to	wander	about	your	own	computer	system	and	understand	what	files	are	what,	where
they	are,	and	how	to	peer	inside.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
control	key	notation	This	notational	convention	in	Unix	denotes	the	use	of	a	Control	key.
There	are	three	common	conventions	(Ctrl-C,	^c,	and	C-C)	that	all	denote	the	Control-c
character,	produced	by	pressing	the	Control	key	(labeled	Control	or	Ctrl	on	your
keyboard)	and,	while	holding	it	down,	pressing	the	c	key.

interactive	program	An	interactive	Unix	application	is	one	that	expects	the	user	to	enter
information	and	then	responds	as	appropriate.	The	ls	command	is	not	interactive,	but	the
more	program,	which	displays	text	a	screenful	at	a	time,	is	interactive.

null	character	Each	character	in	Unix	has	a	specific	value,	and	any	character	with	a
numeric	value	of	zero	is	known	as	a	null	or	null	character.

pipeline	A	pipeline	is	a	series	of	Unix	commands	chained	by	|,	the	pipe	character.

Exercises
1.	Many	people	who	use	Unix	systems	tend	to	stick	with	file-naming	conventions.
Indeed,	Unix	has	many	of	its	own,	including	.c	for	C	source	files,	.gz	for	gzip
compressed	files,	and	a	single	dot	prefix	for	dot	files.	Yet	file	often	ignores
filenames	when	it	ascertains	what	type	of	content	is	within.	(Test	it	yourself.)	Why?

2.	Do	you	remember	the	television	game	show	“Name	That	Tune?”	If	so,	you’ll	recall
that	contestants	had	to	identify	a	popular	song	by	hearing	just	the	first	few	notes.
The	file	command	is	similar;	the	program	must	guess	at	the	type	of	the	file	by
checking	only	the	first	few	characters.	Do	you	think	it	would	be	more	accurate	or
less	accurate	if	it	checked	more	of	the	file?	Why	should	or	shouldn’t	it	do	so?	(Think
about	this	one.)

3.	Use	more	to	check	some	possible	file	types	that	can	be	recognized	with	the	file
command	by	peeking	in	the	configuration	file	/etc/magic.

4.	How	did	the	cat	command	get	its	name?	Do	you	find	that	to	be	a	helpful
mnemonic?

5.	Here’s	an	oddity:
cat	LISTS	|	more

What	will	this	command	do?

6.	If	you	were	looking	at	an	absolutely	huge	file,	and	you	were	pretty	sure	that	what
you	wanted	was	near	the	bottom,	what	command	would	you	use,	and	why?

7.	What	if	the	information	were	near	the	top?

Preview	of	the	Next	Hour
Many	non-alphanumeric	characters	have	special	functions	in	Unix,	as	you	have	doubtless
learned	by	accidentally	typing	a	slash,	an	asterisk,	a	question	mark,	a	quotation	mark,	or
just	about	any	other	punctuation	character.	What	might	surprise	you	is	that	they	all	have
different	specific	meanings	that	are	more	or	less	consistent	throughout	the	system.	The
next	hour	explains	considerably	more	about	how	pipelines	work	and	how	programs	are
used	as	filters.	Among	the	new	commands	you	will	learn	are	sort,	wc,	nl,	uniq,	and
spell.	You	also	will	learn	how	to	work	with	filename	wildcards	on	the	command	line	to
refer	to	groups	of	files	all	at	once.

Hour	8.	Filters,	Pipes,	and	Wildcards!

Goals	for	This	Hour

In	this	hour,	you	will	learn

	The	secrets	of	file	redirection

	How	to	count	words	and	lines	using	wc

	How	to	sort	information	in	a	file	using	sort

	Working	with	wildcards

	Searching	files	with	grep

	Creating	regular	expressions

	The	rest	of	the	grep	family

If	you’ve	ever	learned	a	foreign	language,	you	know	that	the	most	common	approach	is	to
start	by	building	your	vocabulary	(which	always	includes	the	names	of	the	months,	for
some	inexplicable	reason)	and	then	learning	about	the	rules	of	sentence	construction.	The
Unix	command	line	is	much	like	a	language	in	this	regard.	Now	that	you’ve	learned	many
Unix	“words,”	it’s	time	to	learn	how	to	put	them	together	as	“sentences,”	using	file
redirection,	filters,	and	pipes.

One	of	the	trickiest	aspects	of	Unix	is	the	concept	of	wildcards	and	regular	expressions.	A
wildcard	allows	you	to	“guess”	at	a	filename	or	to	specify	a	group	of	filenames.	Regular
expressions	match	patterns	and	are	different	from,	and	more	powerful	than,	wildcards.

In	this	important	lesson,	you’ll	also	meet	the	wonderful	command	grep,	which	is	based
on	regular	expressions,	along	with	the	commands	wc,	sort,	and	uniq.

This	hour	begins	by	focusing	on	one	aspect	of	constructing	powerful	custom	commands	in
Unix	by	using	file	redirection.	The	introduction	of	some	filters—programs	intended	to	be
used	as	part	of	command	pipes—follows.	Next	you’ll	learn	another	aspect	of	creating	your
own	Unix	commands:	using	pipelines.

Maximizing	the	Command	Line
Now	that	you’ve	learned	some	of	the	individual	words	of	the	Unix	command	vocabulary,
it’s	time	to	get	into	some	of	the	fun	and	power	of	the	Unix	system:	combining	individual
commands	into	pipes	or	filters	to	perform	complex	and	sophisticated	tasks.

Task	8.1:	The	Secrets	of	File	Redirection
So	far,	all	the	commands	you’ve	learned	while	teaching	yourself	Unix	have	required	you
to	enter	information	at	the	command	line,	and	all	have	produced	output	on	the	screen.	But,
as	Gershwin	said	in	Porgy	and	Bess,	“it	ain’t	necessarily	so.”	In	fact,	one	of	the	most
powerful	features	of	Unix	is	the	capability	for	the	input	to	come	from	a	file	as	easily	as	it
can	come	from	the	keyboard,	and	for	the	output	to	be	saved	to	a	file	as	easily	as	it	can	be
displayed	on	your	screen.

The	secret	is	file	redirection,	the	use	of	special	operators	in	Unix	command-line	syntax
that	instruct	the	computer	to	read	from	a	file,	write	to	a	file,	or	even	append	information	to
an	existing	file.	Each	of	these	acts	can	be	accomplished	with	a	file-redirection	operation	in
a	regular	command	line:	<	redirects	input,	>	redirects	output,	and	>>	redirects	output	and
appends	the	information	to	the	end	of	an	existing	file.

A	mnemonic	for	remembering	which	is	which	is	to	remember	that,	just	as	in	English,	Unix
works	from	left	to	right,	so	a	redirect	that	points	to	the	left	(<)	changes	the	input,	whereas
a	redirect	that	points	right	(>)	changes	the	output.

1.	Log	in	to	your	account	and	create	an	empty	file	by	using	the	touch	command:
%	touch	testme

You’ll	use	this	empty	file	to	learn	how	to	redirect	output.

2.	Use	ls	to	list	the	files	in	your	directory	and	save	them	all	to	the	newly	created	file:
Click	here	to	view	code	image

%	ls	-l	testme
-rw-rw-r—		1	taylor							0	Nov	15	09:11	testme
%	ls	-l	>	testme
%	ls	-l	testme
-rw-rw-r—		1	taylor							120	Nov	15	09:12	testme

Notice	that	when	you	redirect	the	output,	nothing	is	displayed	on	the	screen;	no
visual	confirmation	indicates	that	it	has	worked.	But	it	has,	as	you	can	see	by	the
increased	size	of	the	new	file.

3.	Instead	of	using	more	to	view	this	file,	try	using	file	redirection:
Click	here	to	view	code	image

%	cat	<	testme
total	127
drwx––		2	taylor								512	Nov		6	14:20	Archives/
drwx––		3	taylor								512	Nov	16	21:55	InfoWorld/
drwx––		2	taylor							1024	Nov	19	14:14	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		3	taylor								512	Nov	11	10:48	OWL/
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor						57683	Nov	20	20:10	bitnet.lists.Z
-rw-rw–-		1	taylor						46195	Nov	20	06:19	drop.text.hqx
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/
-rw-rw–-		1	taylor										0	Nov	20	20:21	testme

The	results	are	the	same	as	if	you	had	used	the	ls	command	directly,	but	the	output

has	been	saved.	You	now	can	easily	print	the	file	or	go	back	to	it	later	to	compare	it
to	your	file	listings	in	the	future.

4.	Use	the	ls	command	to	add	some	further	information	at	the	bottom	of	the	testme
file	by	using	>>,	the	append	double-arrow	notation:
%	ls	-FC	>>	testme

The	-C	flag	to	ls	forces	the	system	to	list	output	in	multicolumn	mode.	Try
redirecting	the	output	of	ls	-F	to	a	file	to	see	what	happens	without	the	-C	flag.

You	can	combine	the	various	forms	of	file	redirection	to	create	custom	commands	and	to
process	files	in	various	ways.	This	hour	just	scratches	the	surface.	Next,	you’ll	learn	about
some	popular	Unix	filters	and	how	they	can	be	combined	with	file	redirection	to	create
new	versions	of	existing	files.	These	examples	also	show	the	basic	steps	in	all	Unix	file-
redirection	operations:	Specify	the	input	to	the	command,	specify	the	command,	and
specify	where	the	output	should	go.

Task	8.2:	Counting	Words	and	Lines	Using	wc
Writers	generally	talk	about	the	length	of	their	work	in	terms	of	number	of	words	rather
than	number	of	pages.	In	fact,	most	magazines	and	newspapers	are	laid	out	according	to
formulas	based	on	multiplying	an	average-length	word	by	the	number	of	words	in	an
article.

These	people	are	obsessed	with	counting	the	words	in	their	articles,	but	how	do	they	do	it?
You	can	bet	that	they	don’t	count	each	word	by	hand.	If	they’re	using	Unix,	they	simply
use	the	Unix	wc	program,	which	computes	a	word	count	for	the	file.	It	also	can	indicate
the	number	of	characters	and	the	number	of	lines	in	the	file.

1.	Count	the	lines,	words,	and	characters	in	the	testme	file	you	created	earlier	in	this
hour:
%	wc	testme
							4						12					121
%	wc	<	testme
							4						12					121
%	cat	testme	|	wc
							4						12					121

All	three	of	these	commands	offer	the	same	result	(which	probably	seems	a	bit
cryptic).	Why	do	you	need	to	have	three	ways	of	doing	the	same	thing?	Later,	you’ll
learn	why	this	flexibility	is	so	helpful.	For	now,	stick	to	using	the	first	form	of	the
command.

The	output	is	three	numbers,	which	reveal	how	many	lines,	words,	and	characters,
respectively,	are	in	the	file.	You	can	see	that	there	are	4	lines,	12	words,	and	121
characters	in	testme.

2.	You	can	have	wc	list	any	one	of	these	counts,	or	a	combination	of	two,	by	using
different	command	flags:	-w	counts	words,	-c	counts	characters,	and	-l	counts
lines:
%	wc	-w	testme

			12	testme
%	wc	-l	testme
			4	testme
%	wc	-wl	testme
						12							4	testme
%	wc	-lw	testme
						4								12	testme

3.	Now	the	fun	begins.	Here’s	an	easy	way	to	find	out	how	many	files	you	have	in
your	home	directory:
%	ls	|	wc	-l
37

The	ls	command	lists	each	file,	one	per	line	(because	you	didn’t	use	the	-C	flag).
The	output	of	that	command	is	fed	to	wc,	which	counts	the	number	of	lines	it’s	fed.
The	result	is	that	you	can	find	out	how	many	files	you	have	(37)	in	your	home
directory.

4.	How	about	a	quick	gauge	of	how	many	users	are	on	the	system?
%	who	|	wc	-l
			12

Notice	here	that	I	used	the	|	to	create	a	pipeline.	Why	not	just	use	file	redirection?
Because	by	creating	a	pipeline,	I	can	feed	the	output	of	the	first	command	to	a
second	command	rather	than	just	save	it	to	disk.	You’ll	see	that	this	capability	is	the
essence	of	pipelines,	and	that	they	are,	in	turn,	the	core	of	the	powerful	command-
line	capabilities	of	Unix	itself.

The	wc	command	is	a	great	example	of	how	the	simplest	of	commands,	when	used	in	a
sophisticated	pipeline,	can	be	very	powerful.

Task	8.3:	Sorting	Information	Using	sort
Whereas	wc	is	useful	at	the	end	of	a	pipeline	of	commands,	the	uniq	and	sort
commands	are	filters,	programs	that	are	really	designed	to	be	tucked	in	the	middle	of	a
pipeline.	Filters	can	be	placed	anywhere	in	a	command	line,	anywhere	that	enables	them
to	help	direct	Unix	to	do	what	you	want	it	to	do.

The	common	characteristic	of	all	Unix	filters	is	that	they	can	read	input	from	standard
input,	process	it	in	some	manner,	and	list	the	results	in	standard	output.	With	file
redirection,	standard	input	and	output	can	also	be	files.	You	can	either	specify	the
filenames	to	the	command	(usually	input	only)	or	use	the	file-redirection	symbols	you
learned	earlier	in	this	hour	(<,	>,	and	>>).

Note

Standard	input	and	standard	output	are	two	very	common	expressions	in	Unix.
When	a	program	is	run,	the	default	location	for	receiving	input	is	called	standard
input.	The	default	location	for	output	is	standard	output.	If	you	are	running	Unix
from	a	terminal,	standard	input	is	your	keyboard,	and	standard	output	is	your
computer	screen.

A	third	I/O	location,	standard	error,	also	exists	in	Unix.	By	default,	this	is	the	same
as	standard	output,	but	you	can	redirect	standard	error	to	a	different	location	than
standard	output.	You’ll	learn	more	about	I/O	redirection	later	in	the	book.

One	of	the	most	useful	filters	is	sort,	a	program	that	reads	information	and	sorts	it
alphabetically.	You	can	customize	the	behavior	of	this	program,	as	with	all	other	Unix
programs,	to	ignore	the	case	of	words	(for	example,	to	sort	Big	between	apple	and	cat
rather	than	before	apple,	even	though	most	sorts	put	uppercase	letters	before	the
lowercase	letters)	and	to	reverse	the	order	of	a	sort	(z	to	a).	The	program	sort	also
enables	you	to	sort	lists	of	numbers	properly.

Few	flags	are	available	for	sort,	but	the	ones	that	exist	are	powerful,	as	shown	in	Table
8.1.

TABLE	8.1	Flags	for	the	sort	Command

1.	By	default,	the	ls	command	sorts	files	in	a	case-sensitive	manner,	first	listing	files
that	begin	with	uppercase	letters	and	then	those	that	begin	with	lowercase	letters:
%	ls	-1F
Archives/
InfoWorld/
Mail/
News/
OWL/
bin/
bitnet.mailing-lists.Z
drop.text.hqx
keylime.pie
src/
temp/
testme

Did	you	notice	the	-1	(number	1)	flag?	It	forces	one-line-per-file	output,	which	is
useful	for	filters	and	pipes.

To	sort	filenames	alphabetically,	regardless	of	case,	you	can	use	sort	-f:
%	ls	-1	|	sort	-f
Archives/
bin/
bitnet.mailing-lists.Z
drop.text.hqx
InfoWorld/
keylime.pie
Mail/
News/
OWL/
src/
temp/
testme

2.	How	about	sorting	the	lines	of	a	file?	You	can	use	the	testme	file	you	created
earlier:

Click	here	to	view	code	image

%	sort	<	testme
Archives/															OWL/																				keylime.pie
InfoWorld/														bin/																				src/
Mail/																			bitnet.mailing-lists.Z		temp/
News/																			drop.text.hqx											testme

3.	Here’s	a	real-life	Unix	example.	Of	the	files	in	your	home	directory,	which	are	the
largest?	The	ls	-s	command	indicates	the	size	of	each	file,	in	blocks,	and	sort
-n	sorts	numerically:
%	ls	-s	|	sort	-n
total	127
			1	Archives/
			1	InfoWorld/
			1	Mail/
			1	News/
			1	OWL/
			1	bin/
			1	src/
			1	temp/
			1	testme
		13	keylime.pie
		46	drop.text.hqx
		64	bitnet.mailing-lists.Z

It	would	be	more	convenient	if	the	largest	files	were	listed	first	in	the	output.	The	-r
flag	reverses	the	sort	order,	which	is	quite	useful:

Click	here	to	view	code	image
%	ls	-s	|	sort	-nr
		64	bitnet.mailing-lists.Z
		46	drop.text.hqx
		13	keylime.pie
			1	testme
			1	temp/
			1	src/
			1	bin/
			1	OWL/
			1	News/
			1	Mail/
			1	InfoWorld/

			1	Archives/
total	127

4.	One	more	refinement	is	available	to	you.	Instead	of	listing	all	the	files,	use	the
head	command	and	specify	that	you	want	to	see	only	the	top	five	entries:
%	ls	-s	|	sort	-nr	|	head	-5
		64	bitnet.mailing-lists.Z
		46	drop.text.hqx
		13	keylime.pie
			1	testme
			1	temp/

This	is	a	powerful	and	complex	Unix	command,	yet	it	is	composed	of	simple	and
easy-to-understand	components.

5.	One	helpful	filter	that	works	with	sort	is	the	uniq	command.	In	particular,	uniq
-c	removes	duplicate	lines	but	also	shows	you	how	many	dupes	were	removed.	This
is	particularly	helpful	when	you’re	analyzing	large	data	files	with	recurring	data.

For	example,	you	can	quickly	duplicate	the	last	line	of	a	file	by	pulling	it	into	a
second	file	and	then	using	cat	to	create	a	new	test	file:

Click	here	to	view	code	image

%	tail	-1	testme	>	lastline
%	cat	lastline	lastline	lastline	lastline	>	newtest2
%	cat	newtest2
News/																			drop.text.hqx											testme
News/																			drop.text.hqx											testme
News/																			drop.text.hqx											testme
News/																			drop.text.hqx											testme

Now	you	can	see	what	uniq	does:
Click	here	to	view	code	image

%	uniq	newtest2
News/																			drop.text.hqx											testme

And	you	can	see	how	the	-c	flag	removes	duplicate	lines	and	shows	the	count:
Click	here	to	view	code	image

%	uniq	-c	newtest2
			4	News/																						drop.text.hqx											testme

You	can	see	that	this	line	occurs	four	times	in	the	file.	Lines	that	are	unique	have	no
numerical	preface.

Like	many	of	the	other	filters,	sort	and	uniq	aren’t	too	exciting	by	themselves.	As	you
explore	Unix	further	and	learn	more	about	how	to	combine	these	simple	commands	to
build	sophisticated	instructions,	you	will	begin	to	see	their	true	value.

Task	8.4:	Filename	Wildcards
By	now	you	are	doubtless	tired	of	typing	every	letter	of	each	filename	into	your	system
for	each	example.	A	better	and	easier	way	exists!	Just	as	with	the	special	cards	in	poker
that	can	have	any	value,	Unix	has	special	characters	that	the	various	shells	(the	command-
line	interpreter	programs)	interpret	as	wildcards.

You	need	to	learn	two	basic	wildcards:	*	acts	as	a	match	for	any	number	and	sequence	of
characters,	and	?	acts	as	a	match	for	any	single	character.	In	the	broadest	sense,	a	lone	*
acts	as	a	match	for	all	files	in	the	current	directory	(in	other	words,	ls	*	is	identical	to
ls),	whereas	a	single	?	acts	as	a	match	for	all	one-character-long	filenames	in	a	directory
(for	instance,	ls	?,	which	will	list	only	those	filenames	that	are	one	character	long).

1.	To	experiment	with	wildcards,	it’s	easiest	to	use	the	echo	command.	Recall	that
echo	repeats	anything	given	to	it,	but—and	here’s	the	secret	to	its	value—the	shell
interprets	anything	that	is	entered	before	echo	sees	it.	That	is,	the	*	is	expanded
before	the	shell	hands	the	arguments	over	to	the	command:

Click	here	to	view	code	image

%	echo	*
Archives	InfoWorld	Mail	News	OWL	bin	bitnet.mailing-lists.Z
drop.text.hqx	keylime.pie	src	temp	testme

Using	the	*	wildcard	enables	you	to	easily	reference	all	files	in	the	directory.

2.	A	wildcard	is	even	more	helpful	than	the	example	suggests	because	it	can	be
embedded	in	the	middle	of	a	word	or	otherwise	used	to	limit	the	number	of	matches.
To	see	all	files	that	began	with	the	letter	t,	use	t*:
%	echo	t*
temp	testme

3.	Variations	are	possible,	too.	You	could	use	wildcards	to	list	all	files	or	directories
that	end	with	the	letter	s:
%	echo	*s
Archives	News

Watch	what	happens	if	I	try	the	same	command	using	the	ls	command	rather	than
the	echo	command:

Click	here	to	view	code	image
%	ls	-F	*s
Archives:
Interleaf.story			Tartan.story.Z								nextstep.txt.Z
Opus.story								interactive.txt.Z					rae.assist.infoworld.Z

News:
mailing.lists.usenet		usenet.1														usenet.alt

Using	the	ls	command	here	makes	the	shell	think	I	want	to	list	the	contents	of	the
two	directories,	not	just	the	directory	entries	themselves.	This	is	where	I	need	to	use
the	-d	flag	to	ls	to	force	a	listing	of	the	directories	rather	than	of	their	contents.

4.	Notice	that,	in	the	News	directory,	I	have	three	files	with	the	word	usenet
somewhere	in	their	names.	The	wildcard	pattern	usenet*	would	match	two	of	the
files,	and	*usenet	would	match	one.	A	valuable	aspect	of	the	*	wildcard	is	that	it
can	match	zero	or	more	characters,	so	the	pattern	*usenet*	will	match	all	three
filenames:

Click	here	to	view	code	image

%	echo	News/*usenet*

News/mailing.lists.usenet	News/usenet.1	News/usenet.alt

Also	notice	that	wildcards	can	be	embedded	in	a	filename	or	pathname.	In	this
example,	I	specified	that	I	was	only	interested	in	files	in	the	News	directory.

5.	Can	you	match	a	single	character?	To	see	how	this	can	be	helpful,	it’s	time	to	move
into	a	different	directory,	such	as	OWL	on	my	system:

Click	here	to	view	code	image

%	cd	OWL
%	ls	-F
Student.config			owl.c												owl.o
WordMap/									owl.data									simple.editor.c
owl*													owl.h												simple.editor.o

If	I	request	owl*,	which	files	will	be	listed?
Click	here	to	view	code	image

%	echo	owl*
owl	owl.c	owl.data	owl.h	owl.o

What	do	I	do	if	I	am	interested	only	in	the	source,	header,	and	object	files,	which	are
here	indicated	by	a	.c,	.h,	or	.o	suffix?	Using	a	wildcard	that	matches	zero	or
more	letters	won’t	work;	I	don’t	want	to	see	owl	or	owl.data.	One	possibility
would	be	to	use	the	pattern	owl.*	(because	by	adding	the	period,	I	can	eliminate
the	owl	file	itself).	What	I	really	want,	however,	is	to	be	able	to	specify	all	files	that
start	with	the	four	characters	owl.	and	have	exactly	one	more	character.	This	is	a
situation	in	which	the	?	wildcard	works:
%	echo	owl.?
owl.c	owl.h	owl.o

Because	no	files	have	exactly	one	letter	following	the	three	letters	owl,	watch	what
happens	when	I	specify	owl?	as	the	pattern:
%	echo	owl?
echo:	No	match.

6.	You	can	use	even	more	sophisticated	wildcards.	Next	you’ll	learn	about	some	of
them	so	you	can	get	a	sense	of	what	can	be	accomplished	on	the	command	line.

A	pair	of	square	brackets	denotes	a	range	of	characters,	which	can	be	either
explicitly	listed	or	indicated	as	a	range	with	a	dash	between	them	I	can	explicitly	list
the	letters	of	interest	by	listing	them	all	tucked	neatly	into	a	pair	of	square	brackets,
as	shown	here:

Click	here	to	view	code	image

%	ls	-ld	[abkost]*
-rw-rw–-		1	taylor								126	Dec		3	16:34	awkscript
-rw-rw–-		1	taylor								165	Dec		3	16:42	bigfiles
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
-rw-rw–-		1	taylor							8729	Dec		2	21:19	owl.c
-rw-rw–-		1	taylor								199	Dec		3	16:11	sample
-rw-rw–-		1	taylor								207	Dec		3	16:11	sample2
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/

-rw-rw–-		1	taylor								582	Nov	27	18:29	testme

In	this	case,	the	shell	matches	all	files	that	start	with	a,	b,	k,	o,	s,	or	t.	This	notation	is
still	a	bit	clunky	and	would	be	even	more	so	if	more	files	were	involved.

7.	You	can	specify	a	range	of	characters	by	putting	a	hyphen	in	the	middle:
Click	here	to	view	code	image

%	ls	-ld	[a-z]*
-rw-rw–-		1	taylor								126	Dec		3	16:34	awkscript
-rw-rw–-		1	taylor								165	Dec		3	16:42	bigfiles
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
-rw-rw–-		1	taylor							8729	Dec		2	21:19	owl.c
-rw-rw–-		1	taylor								199	Dec		3	16:11	sample
-rw-rw–-		1	taylor								207	Dec		3	16:11	sample2
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/
-rw-rw–-		1	taylor								582	Nov	27	18:29	testme

In	this	example,	the	shell	will	match	any	file	that	begins	with	a	lowercase	letter	from
a	to	z,	as	specified.

8.	The	combination	of	character	ranges,	single-character	wildcards,	and	multicharacter
wildcards	can	be	tremendously	helpful.	If	I	move	to	another	directory,	I	can	easily
search	for	all	files	that	contain	a	single	digit,	a	dot,	or	an	underscore	in	the	name:

Click	here	to	view	code	image
%	ls	*[0-9._]*
71075.446									ean_huts										matt_ruby					xd1f
72303.2166								gordon_hat								netnews.postings
bob_gull										john_welcher						siob_n
dan_some										john_prage								v892127

I	think	that	the	best	way	to	learn	about	pervasive	features	of	Unix	such	as	shell	filename
wildcards	is	to	use	them.	As	you’ve	no	doubt	noticed	so	far	in	this	book,	examples	build
on	earlier	information.	This	will	continue	to	be	the	case,	and	the	wildcard	notations	shown
here	are	used	again	and	again	to	specify	groups	of	files	or	directories.

If	you	want	to	experiment	with	filename	wildcards,	you	can	most	easily	use	the	echo
command	because	it	safely	prints	the	expanded	version	of	any	pattern	you	specify	without
otherwise	doing	anything	with	those	files.	Lots	of	Unix	experts	use	echo	to	develop	and
fine-tune	a	pattern	and	then	use	the	pattern	with	a	different	command.

Task	8.5:	Searching	Files	with	grep
Two	commonly	used	commands	are	important	stepping	stones	in	becoming	a	power	user
comfortable	with	the	capabilities	of	the	system:	the	ls	command	and	the	grep
command.	We’ve	already	looked	at	the	ls	command,	so	let’s	turn	our	attention	to	the
oddly	named	grep	command,	which	makes	it	easy	to	find	files	that	contain	specified	text
patterns.

The	grep	command	not	only	has	a	ton	of	command	options	but	has	two	variations	in
Unix	systems,	too.	These	variations	are	egrep,	for	specifying	more	complex	patterns
(regular	expressions),	and	fgrep,	for	using	file-based	lists	of	words	as	search	patterns.

Note

Before	grep	existed,	Unix	users	would	use	a	crude	line-based	editor	called	ed	to
find	matching	text.	To	search	through	a	file	with	a	regular	expression,	the	user
prefixed	the	command	with	global	and	had	only	the	matches	shown	with	print.
Putting	it	all	together,	the	operation	was	global/regular
expression/print.	This	was	shortened	to	g/re/p	and	eventually	reinvented
as	grep.

You	could	spend	the	next	100	pages	learning	all	the	obscure	and	weird	options	to	the
grep	family	of	commands.	When	you	boil	it	down,	however,	you’re	probably	going	to
use	only	the	simplest	patterns	and	maybe	a	flag	or	two.	Think	of	it	this	way:	The	English
language	contains	more	than	500,000	words	(according	to	the	Oxford	English	Dictionary),
but	you	don’t	have	to	learn	them	all	to	communicate	effectively.

With	this	in	mind,	you’ll	learn	the	basics	of	grep	this	hour,	but	you’ll	pick	up	more
insight	into	the	program’s	capabilities	and	options	during	the	next	few	hours.

A	few	of	the	most	important	grep	command	flags	are	listed	in	Table	8.2.

TABLE	8.2	The	Most	Helpful	grep	Flags

1.	The	general	form	of	grep	is	to	specify	the	command,	any	flags	you	want	to	add,
the	pattern,	and	a	filename:

Click	here	to	view	code	image

%	grep	bitnet	testme
Mail/																			bitnet.mailing-lists.Z		temp/

As	you	can	see,	grep	easily	pulled	out	the	line	in	the	testme	file	that	contained
the	pattern	bitnet.

2.	Be	aware	that	grep	finds	patterns	in	a	case-sensitive	manner:
Click	here	to	view	code	image

%	grep	owl	testme
%
%	grep	OWL	testme
Archives/															OWL/																				keylime.pie

Note	that	OWL	was	not	found	in	the	first	example	because	the	pattern	specified	with
the	grep	command	was	all	lowercase,	owl.

That’s	where	the	-i	(ignore	case)	flag	can	be	helpful:
Click	here	to	view	code	image

%	grep	-i	owl	testme
Archives/															OWL/																				keylime.pie

3.	For	the	next	few	examples,	I’ll	move	into	the	/etc	directory	because	the	files	there
have	lots	of	lines.	On	one	of	the	systems	I	use,	the	file	/etc/passwd	has	almost
4,000	lines:
%	cd	/etc
%	wc	-l	/etc/passwd
			3877

My	account	is	taylor.	I’ll	use	grep	to	see	my	account	entry	in	the	password	file:
Click	here	to	view	code	image

%	grep	taylor	/etc/passwd
taylorj:?:1048:1375:James	Taylor:/users/taylorj:/bin/csh
mtaylor:?:760:1375:Mary	Taylor:/users/mtaylor:/usr/local/bin/tcsh
dataylor:?:375:518:David	Taylor:/users/dataylor:/usr/local/lib/msh
taylorjr:?:203:1022:James	Taylor:/users/taylorjr:/bin/csh
taylorrj:?:668:1042:Robert	Taylor:/users/taylorrj:/bin/csh
taylorm:?:862:1508:Melanie	Taylor:/users/taylormx:/bin/csh
taylor:?:1989:1412:Dave	Taylor:/users/taylor:/bin/csh

4.	As	you	can	see,	many	accounts	contain	the	pattern	taylor.

You	could	figure	out	how	many	accounts	there	are	with	the	pipeline	grep	taylor
/etc/passwd	|	wc	–l,	right?

A	smarter	way	to	see	how	often	the	taylor	pattern	appears	is	to	use	the	-c	flag	to
grep,	which	will	tell	you	how	many	matches	are	in	the	file:
%	grep	-c	taylor	/etc/passwd
7

The	command	located	seven	matches.	Count	the	matches	in	the	listing	in	the	step	3
output	to	confirm	this.

5.	With	3,877	lines	in	the	password	file,	an	administrative	file	that	records	basic
account	information	for	everyone	on	the	Unix	system,	it	could	be	interesting	to	see
whether	all	the	Taylors	started	their	accounts	at	about	the	same	time.	(This
presumably	would	mean	that	they	all	appear	in	the	file	at	about	the	same	point.)	To
do	this,	I’ll	use	the	-n	flag	to	number	the	output	lines:

Click	here	to	view	code	image

%	grep	-n	taylor	/etc/passwd
319:taylorj:?:1048:1375:James	Taylor:/users/taylorj:/bin/csh
1314:mtaylor:?:760:1375:Mary	Taylor:/users/mtaylor:/usr/local/_bin/tcsh
1419:dataylor:?:375:518:Dave	Taylor:/users/dataylor:/usr/local/_lib/msh
1547:taylorjr:?:203:1022:James	Taylor:/users/taylorjr:/bin/csh
1988:taylorrj:?:668:1042:Robert	Taylor:/users/taylorrj:/bin/csh
2133:taylorm:?:8692:1508:Melanie	Taylor:/users/taylorm:/bin/csh
3405:taylor:?:1989:1412:Dave	Taylor:/users/taylor:/bin/csh

The	grep	command	adds	the	line	number,	a	colon,	and	the	actual	content	of	that
line,	which	in	this	case	proves	to	be	quite	confusing	because	the	matching	lines	also

use	colons	to	separate	information	on	the	line.	Normally,	a	line	number	followed	by
a	colon	would	be	no	problem,	but	in	the	passwd	file	(which	is	already	littered	with
colons),	it’s	befuddling.
You	can	see	that	my	theory	about	when	the	Taylors	started	their	accounts	was
wrong.	If	proximity	in	the	passwd	file	is	an	indicator	that	accounts	are	assigned	at
similar	times,	then	no	Taylors	started	their	accounts	even	within	the	same	week.

These	examples	of	how	to	use	grep	barely	scratch	the	surface	of	how	this	powerful	and
sophisticated	command	can	be	used.	Explore	your	own	file	system	by	using	grep	to
search	files	for	specific	patterns.

Note

Armed	with	wildcards,	you	now	can	try	the	-l	flag	to	grep,	which,	as	you	recall,
indicates	the	names	of	the	files	that	contain	a	specified	pattern	rather	than	printing
the	lines	that	match	the	pattern.	If	I	go	into	my	email	archive	directory—Mail—I
can	easily,	using	the	command	grep	-l	-i	chicago	Mail/*,	produces	a
list	of	folders	that	contain	the	case-insensitive	pattern	chicago.	Try	using	grep
-l	to	search	across	all	files	in	your	home	directory	for	words	or	patterns.

Task	8.6:	Creating	Regular	Expressions
A	regular	expression	can	be	as	simple	as	a	word	to	be	matched	letter	for	letter,	such	as
acme,	or	as	complex	as	(^[a-zA-Z]|:wi),	which	matches	all	lines	that	begin	with	an
upper-	or	lowercase	letter	or	that	contain	:wi.

The	language	of	regular	expressions	is	full	of	punctuation	characters	and	letters	used	in
unusual	ways.	It	is	important	to	remember	that	regular	expressions	are	different	from	shell
wildcard	patterns.	It’s	unfortunate,	but	it’s	true.	In	the	C	shell,	for	example,	a*	lists	any
file	that	starts	with	the	letter	a.	Regular	expressions	aren’t	left-rooted,	which	means	that
you	need	to	specify	^a	if	you	want	to	match	only	lines	that	begin	with	the	letter	a.	The
shell	pattern	a*	matches	only	filenames	that	start	with	the	letter	a,	and	the	*	has	a
different	interpretation	completely	when	used	as	part	of	a	regular	expression:	a*	is	a
pattern	that	matches	zero	or	more	occurrences	of	the	letter	a.	The	notation	for	regular
expressions	is	shown	in	Table	8.3.	The	egrep	command	has	additional	notation,	which
you	will	learn	shortly.

TABLE	8.3	Summary	of	Regular	Expression	Notation

The	notation	isn’t	as	complex	as	it	looks	in	this	table.	The	most	important	things	to
remember	about	regular	expressions	are	that	the	*	denotes	zero	or	more	occurrences	of	the
preceding	character,	and	.	is	any	single	character.	Remember	that	shell	patterns	use	*	to
match	any	set	of	zero	or	more	characters,	independent	of	the	preceding	character,	and	?	to
match	a	single	character.

1.	Earlier,	when	I	searched	for	taylor	in	the	/etc/passwd	file,	I	found	more
matches	than	I	wanted.	If	I’m	looking	for	my	own	account,	I	don’t	want	to	see	all
these	alternatives.	Using	the	^	character	before	the	pattern	left-roots	the	pattern:

Click	here	to	view	code	image

%	grep	‘^taylor”	/etc/passwd
taylorj:?:1048:1375:James	Taylor:/users/taylorj:/bin/csh
taylorjr:?:203:1022:James	Taylor:/users/taylorjr:/bin/csh
taylorrj:?:662:1042:Robert	Taylor:/users/taylorrj:/bin/csh
taylorm:?:869:1508:Melanie	Taylor:/users/taylorm:/bin/csh
taylor:?:1989:1412:Dave	Taylor:/users/taylor:/bin/cshx

2.	Now	I	want	to	narrow	the	search	further.	I	want	to	specify	a	pattern	that	says	“show
me	all	lines	that	start	with	taylor,	followed	by	a	character	that	is	not	a	lowercase
letter.”	To	accomplish	this,	I	use	the	[^xy]	notation,	which	indicates	an	exclusion
set,	or	a	set	of	characters	that	cannot	match	the	pattern:

Click	here	to	view	code	image
%	grep	‘^taylor[^a-z]’	/etc/passwd
taylor:?:1989:1412:Dave	Taylor:/users/taylor:/bin/csh

It	worked!	You	can	specify	a	set	in	two	ways:	You	can	either	list	each	character	or
use	a	hyphen	to	specify	a	range	starting	with	the	character	to	the	left	of	the	hyphen
and	ending	with	the	character	to	the	right	of	the	hyphen.	That	is,	a-z	is	the	range
beginning	with	a	and	ending	with	z,	and	0-9	includes	all	digits.

3.	To	see	which	accounts	were	excluded,	remove	the	^	to	search	for	an	inclusion	range
—a	set	of	characters	in	which	one	must	match	the	pattern:

Click	here	to	view	code	image

%	grep	‘^taylor[a-z]’	/etc/passwd
taylorj:?:1048:1375:James	Taylor:/users/taylorj:/bin/csh
taylorjr:?:203:1022:James	Taylor:/users/taylorjr:/bin/csh
taylorrj:?:668:1042:Robert	Taylor:/users/taylorrj:/bin/csh
taylormx:?:869:1508:Melanie	Taylor:/users/taylorm:/bin/csh

4.	Let’s	look	at	some	other	examples.	Here	I	use	head	to	view	the	first	five	lines	of
the	password	file:

Click	here	to	view	code	image
%	head	-5	/etc/passwd
root:?:0:0:root:/:/bin/csh
news:?:6:11:USENET	News:/usr/spool/news:/bin/ksh
ingres:*?:7:519:INGRES	Manager:/usr/ingres:/bin/csh
usrlimit:?:8:800:(1000	user	system):/mnt:/bin/false
vanilla:*?:20:805:Vanilla	Account:/mnt:/bin/sh

Now	I’ll	specify	a	pattern	that	tells	grep	to	search	for	all	lines	that	contain	zero	or
more	occurrences	of	the	letter	z:

Click	here	to	view	code	image

%	grep	‘z*’	/etc/passwd	|	head	-5
root:?:0:0:root:/:/bin/csh
news:?:6:11:USENET	News:/usr/spool/news:/bin/ksh
ingres:*?:7:519:INGRES	Manager:/usr/ingres:/bin/csh
usrlimit:?:8:800:(1000	user	system):/mnt:/bin/false
vanilla:*?:20:805:Vanilla	Account:/mnt:/bin/sh

The	result	is	identical	to	the	result	of	the	preceding	command,	but	that	shouldn’t	be	a
surprise.	Specifying	a	pattern	that	matches	zero	or	more	occurrences	will	match
every	line!	Specifying	only	the	lines	that	have	one	or	more	z’s	is	accomplished	with
this	odd-looking	pattern:

Click	here	to	view	code	image
%	grep	‘zz*’	/etc/passwd	|	head	-5
marg:?:724:1233:Guyzee:/users/marg:/bin/ksh
axy:?:1272:1233:martinez:/users/axy:/bin/csh
wizard:?:1560:1375:Oz:/users/wizard:/bin/ksh
zhq:?:2377:1318:Zihong:/users/zhq:/bin/csh
mm:?:7152:1233:Michael	Kenzie:/users/mm:/bin/ksh

5.	Earlier	I	found	that	a	couple	of	lines	in	the	/etc/passwd	file	were	for	accounts
that	didn’t	specify	a	login	shell.	Each	line	in	the	password	file	must	have	a	certain
number	of	colons,	and	the	last	character	on	the	line	for	these	accounts	will	be	a
colon,	which	is	an	easy	grep	pattern	when	you	remember	that	as	the	last	character
in	a	pattern,	a	$	represents	the	end	of	line.	And	don’t	forget	that	^	as	the	very	first
character	in	a	pattern	represents	the	beginning	of	the	line	(versus	within	a	set
notation,	where	it	indicates	a	“not,”	or	reverse,	of	the	pattern	subsequently
specified).

Here’s	how	the	$	notation	might	look	in	this	context:
Click	here	to	view	code	image

%	grep	‘:$’	/etc/passwd
charon:*?:21:807:The	Ferryman:/users/tomb:
lp:*?:70:10:System	V	Lp	Adminuniverse(att):/usr/spool/lp:

6.	Say	that	I	get	a	call	from	my	accountant,	and	I	need	to	find	a	file	that	contains	a
message	about	a	$100	outlay	of	cash	to	buy	some	software.	Turns	out	that	to	find	the
message,	I	can	use	grep	to	search	for	all	files	that	contain	a	dollar	sign,	followed	by
a	1,	followed	by	one	or	more	0s:

Click	here	to	view	code	image

%	grep	‘$100*’	*	*/*
Mail/bob_gale:					Unfortunately,	our	fees	are	currently	$100	per	test
drive,	budgets
Mail/dan_sommer:We	also	pay	$100	for	Test	Drives,	our	very	short	“First
Looks”	section.	We	often
Mail/james:has	been	dropped,	so	if	I	ask	for	$1000	is	that	way	outta	line
Mail/john_spragens:time	testing	things	since	it’s	a	$100	test	drive:	I’m
willing	to
Mail/john_spragens:					Finally,	I’d	like	to	request	$200	rather	than	$100
for
Mail/mac:again:	expected	pricing	will	be	$10,000	-	$16,000	and	the
BriteLite	LX	with
Mail/mark:I’m	promised	$1000	/	month	for	a	first
Mail/netnews.postings:		Win	Lose	or	Die,	John	Gardner	(hardback)	$10
Mail/netnews.postings:I’d	be	willing	to	pay,	I	dunno,	$100	/	year	for	the
space?	I	would
Mail/sent:to	panic	that	they’d	want	their	$10K	advance	back,	but	the	good
news	is
Mail/sent:That	would	be	fine.		How	about	$100	USD	for	both,	to	include	any
Mail/sent:						Amount:	$100.00

That’s	quite	a	few	matches.	Notice	that	among	the	matches	are	$1000,	$10K,	and
$10.	To	match	the	specific	value	$100,	of	course,	I	can	use	$100	as	the	search
pattern	followed	by	an	exclusion	set:	$100[^0].

Note

You	can	use	the	shell	to	expand	files	not	just	in	the	current	directory	but	one	level
deeper	into	subdirectories,	too:	*	expands	your	search	beyond	files	in	the	current
directory,	and	*/*	expands	your	search	to	all	files	contained	one	directory	below
the	current	point.	If	you	have	lots	of	files,	you	might	occasionally	see	the	error	arg
list	too	long;	that’s	where	wildcards	reach	the	end	of	their	usefulness	and	the
find	command	(covered	in	Hour	22,	“Searching	for	Information	and	Files”)	takes
over.

This	pattern	demonstrates	the	sophistication	and	potential	confusion	surrounding
Unix	regular	expressions.	For	example,	the	$	is	a	special	character	that	can	be	used
to	denote	the	end	of	a	line,	but	only	if	it	is	placed	at	the	end	of	the	pattern.	Because	I
did	not	place	it	at	the	end	of	the	pattern,	the	grep	program	correctly	interpreted	it	as
the	$	character	itself.

With	the	relatively	small	number	of	notations	available	in	regular	expressions,	you	can
create	quite	a	variety	of	sophisticated	patterns	to	find	information	in	a	file.	Use	man
grep	to	learn	more.

Task	8.7:	The	Rest	of	the	grep	Family
Sometimes	a	single	regular	expression	can’t	locate	what	you	seek.	For	example,	perhaps
you’re	looking	for	lines	that	match	either	of	two	patterns.	That’s	where	the	egrep
command	proves	helpful.	The	command	gets	its	name	from	“expression	grep,”	and	it	has
a	notational	scheme	more	powerful	than	that	of	grep,	as	shown	in	Table	8.4.

TABLE	8.4	Regular	Expression	Notation	for	egrep

For	example,	you	might	want	to	have	a	file	of	patterns	and	invoke	a	Unix	command	that
searches	for	lines	that	contain	any	of	the	patterns	in	that	file.	That’s	where	the	fgrep,	or
file-based	grep,	command	comes	into	play.	A	file	of	patterns	can	contain	any	pattern	that
grep	would	understand	(which	means,	unfortunately,	that	you	can’t	use	the	additional
notation	available	in	egrep)	and	is	specified	with	the	-f	file	option.

1.	I’ll	search	the	password	file	to	demonstrate	egrep.	A	pattern	that	seemed	a	bit
weird	was	the	one	I	used	earlier	with	grep	to	search	for	lines	containing	one	or
more	occurrences	of	the	letter	z:	‘zz*’.	With	egrep,	this	search	is	much	easier:

Click	here	to	view	code	image

%	egrep	‘z+’	/etc/passwd	|	head	-5
marg:?:724:1233:Guyzee:/users/marg:/bin/ksh
axy:?:1272:1233:martinez:/users/axy:/bin/csh
wizard:?:1560:1375:Oz:/users/wizard:/bin/ksh
zhq:?:2377:1318:Zihong:/users/zhq:/bin/csh
mm:?:7152:1233:Michael	Kenzie:/users/mm:/bin/ksh
Broken	pipe

2.	To	search	for	lines	that	have	either	a	z	or	a	q,	I	can	use	the	following:
Click	here	to	view	code	image

%	egrep	‘(z|q)’	/etc/passwd	|	head	-5
aaq:?:528:1233:Don	Kid:/users/aaq:/bin/csh
abq:?:560:1233:K	Laws:/users/abq:/bin/csh
marg:?:724:1233:Guyzee:/users/marg:/bin/ksh
ahq:?:752:1233:Andy	Smith:/users/ahq:/bin/csh
cq:?:843:1233:Rob	Till:/users/cq:/usr/local/bin/tcsh
Broken	pipe

3.	Now	this	complicated	egrep	pattern	should	make	sense	to	you:
Click	here	to	view	code	image

%	egrep	‘(^[a-zA-Z]|:wi)’	/etc/printcap	|	head
aglw:\
								:wi=AG	23:wk=multiple	Apple	LaserWriter	IINT:
aglw1:\
								:wi=AG	23:wk=Apple	LaserWriter	IINT:
aglw2:\
								:wi=AG	23:wk=Apple	LaserWriter	IINT:
aglw3:\
								:wi=AG	23:wk=Apple	LaserWriter	IINT:
aglw4:\
								:wi=AG	23:wk=Apple	LaserWriter	IINT:
Broken	pipe

The	pattern	specified	looks	either	for	lines	that	begin	(^)with	an	upper-	or	lowercase
letter	([a-zA-Z])	or	for	lines	that	contain	the	pattern	:wi.	Remember	that	when
used	within	a	set,	^	reverses	the	meaning	of	the	set,	but	when	used	at	the	very
beginning	of	a	pattern,	^	left-roots	the	search,	having	it	match	the	very	beginning	of
lines.

4.	I	use	fgrep	with	wrongwords,	an	alias,	and	.wrongwords,	a	file	that	contains
a	list	of	words	I	commonly	misuse:

Click	here	to	view	code	image
%	alias	wrongwords	=‘fgrep	-i	-f	.wrongwords’
%	cat	.wrongwords
effect
affect
insure
ensure
idea
thought

Any	time	I	want	to	check	a	file,	such	as	dickens.note,	to	see	whether	it	has	any
of	these	commonly	misused	words,	I	simply	enter	the	following:

Click	here	to	view	code	image

%	wrongwords	dickens.note
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its

I	need	to	determine	whether	these	are	ideas	or	thoughts.	It’s	a	subtle	distinction	I
often	forget	in	my	writing.	To	be	fair,	Charles	Dickens	probably	got	the	usage
correct	in	his	great	work	A	Tale	of	Two	Cities,	so	we	should	probably	cut	the	guy
some	slack,	right?

5.	Here’s	another	sample	file	that	contains	a	couple	of	words	from	wrongwords:
Click	here	to	view	code	image

%	cat	sample3
At	the	time	I	was	hoping	to	insure	that	the	cold	weather
would	avoid	our	home,	so	I,	perhaps	foolishly,	stapled	the
weatherstripping	along	the	inside	of	the	sliding	glass
door	in	the	back	room.	I	was	surprised	how	much	affect	it
had	on	our	enjoyment	of	the	room,	actually.

Can	you	see	the	two	incorrectly	used	words	in	that	sentence?	The	spell	program
can’t:
%	spell	sample3

(Use	man	spell	to	learn	more	about	the	Unix	spell	command.	But	be	aware
that	many	modern	Unixes	no	longer	include	spell	for	reasons	I	find	inexplicable.)

The	wrongwords	alias,	on	the	other	hand,	can	detect	these	words:
Click	here	to	view	code	image

%	wrongwords	sample3
At	the	time	I	was	hoping	to	insure	that	the	cold	weather
door	in	the	back	room.	I	was	surprised	how	much	affect	it

You	have	now	met	the	entire	family	of	grep	commands.	For	most	of	your	searches	for
information,	you	can	use	the	grep	command	itself.	Sometimes,	though,	it’s	nice	to	have
options!

Summary
In	this	hour,	you	have	had	a	chance	to	build	on	the	knowledge	you’re	picking	up	about
Unix	with	your	introduction	to	an	exciting	and	powerful	Unix	utility:	grep.	Finally,
what’s	a	poker	hand	without	some	new	wildcards?	Because	suicide	kings	and	one-eyed
jacks	don’t	make	much	sense	in	Unix,	you	instead	learned	how	to	specify	ranges	of
characters	in	filename	patterns,	further	ensuring	that	you	can	type	the	minimum	number	of
keys	for	maximum	effect.

You	have	learned	quite	a	bit	in	this	hour	as	you’ve	continued	down	the	road	to	Unix
expertise.	You’ve	learned	about	file	redirection.	You	can’t	go	wrong	by	spending	time
studying	this	information	closely.	The	concept	of	using	filters	and	building	complex
commands	by	combining	simple	commands	with	pipes	has	been	more	fully	demonstrated
here,	too.	This	higher	level	of	Unix	command	language	is	makes	Unix	powerful	and	easy
to	mold.

This	hour	hasn’t	skimped	on	commands,	either.	You’ve	learned	about	wc	for	counting
lines,	words,	and	characters	in	a	file,	and	you’ve	met	uniq,	sort,	and	the	super-useful
grep	command	family.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
exclusion	set	This	is	a	set	of	characters	that	a	pattern	must	not	contain.

file	redirection	Most	Unix	programs	expect	to	read	their	input	from	the	user	(standard
input)	and	write	their	output	to	the	screen	(standard	output).	By	use	of	file	redirection,
however,	input	can	come	from	a	previously	created	file,	and	output	can	be	saved	to	a	file

instead	of	being	displayed	on	the	screen.

filter	Filters	are	a	particular	type	of	Unix	program	that	expects	to	work	either	with	file
redirection	or	as	part	of	a	pipeline.	These	programs	read	input	from	standard	input,	write
output	to	standard	output,	and	often	don’t	have	any	starting	arguments.

inclusion	range	This	is	a	range	of	characters	that	a	pattern	must	include.

left-rooted	Patterns	that	must	occur	at	the	beginning	of	a	line	are	said	to	be	left-rooted.

regular	expression	This	is	a	convenient	notation	for	specifying	complex	patterns.	Notable
special	characters	are	^	to	match	the	beginning	of	the	line	and	$	to	match	the	end	of	the
line.

standard	error	This	is	the	same	as	standard	output,	but	you	can	redirect	standard	error	to
a	different	location	than	standard	output.

standard	input	Unix	programs	always	default	to	reading	information	from	the	user	by
reading	the	keyboard	and	watching	what’s	typed.	With	file	redirection,	input	can	come
from	a	file,	and	with	pipelines,	input	can	be	the	result	of	a	previous	Unix	command.

standard	output	When	processing	information,	Unix	programs	default	to	displaying	the
output	on	the	screen,	also	known	as	standard	output.	With	file	redirection,	output	can
easily	be	saved	to	a	file;	with	pipelines,	output	can	be	sent	to	other	programs.

wildcards	Wildcards	are	special	characters	that	are	interpreted	by	the	Unix	shell	or	other
programs	to	have	meanings	other	than	the	characters	themselves.	For	example,	*	is	a	shell
wildcard	and	creates	a	pattern	that	matches	zero	or	more	characters.	When	prefaced,	for
example,	with	the	letter	X	(X*),	this	shell	pattern	will	match	all	files	beginning	with	X.

Exercises
1.	The	placement	of	file-redirection	characters	is	important	to	ensure	that	a	command
works	correctly.	Which	of	the	following	do	you	think	will	work,	and	why?

Click	here	to	view	code	image
<	file	wc														wc	file	<											wc	<	file
cat	file	|	wc										cat	<	file	|	wc					wc	|	cat

Now	try	them	and	see	whether	you’re	correct.

2.	Does	the	file	size	listed	by	wc	-c	always	agree	with	the	file	size	listed	by	the	ls
command?	With	the	size	indicated	by	ls	-s?	If	there	is	any	difference,	why?

3.	What	do	you	think	would	happen	if	you	tried	to	sort	a	list	of	words	by	pretending
they’re	all	numbers?	Try	it	with	the	command	ls	-1	|	sort	-n	to	see	what
happens.	Experiment	with	the	variations.

4.	What	wildcard	expression	would	you	use	to	find	the	following?

	All	files	in	the	/tmp	directory

	All	files	that	contain	a	w	in	that	directory

	All	files	that	start	with	a	b,	contain	an	e,	and	end	with	.c

	All	files	that	either	start	with	test	or	contain	the	pattern	hi	(notice	that	it	can
be	more	than	one	pattern)

5.	Create	regular	expressions	to	match	the	following:

	Lines	that	contain	the	words	hot	and	cold	(tricky!)

	Lines	that	contain	the	word	cat	but	not	cats

	Lines	that	begin	with	a	numeral

6.	Use	the	-v	flag	with	various	grep	commands	and	show	the	command	and	pattern
needed	to	match	lines	that:

	Don’t	contain	cabana

	Don’t	contain	either	jazz	or	funk

	Don’t	contain	jazz,	funk,	disco,	blues,	or	ska

Preview	of	the	Next	Hour
The	next	hour	introduces	you	to	many	more	commands	that	are	ideal	for	working	with
pipelines	and	filters—commands	that	will	help	you	move	from	being	a	Unix	amateur	to
being	a	true	expert,	a	wizard	at	the	command	line!

Hour	9.	Slicing	and	Dicing	Command-Pipe	Data

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	the	awk	programming	system

	How	to	use	cut	in	pipes

	About	using	sed	and	tr	for	in-line	transformations

By	this	point,	you’ve	learned	enough	about	Unix	to	be	able	to	build	quite	sophisticated
command-line	pipes,	sequences	of	standard	commands	that	offer	flexibility	and	power.
You	need	to	add	a	couple	of	key	tools	to	your	toolkit	to	keep	moving	forward,	however,
and	they’re	the	focus	of	this	lesson.

The	first	and	most	powerful	of	the	tools	is	awk,	a	programming	system	built	specifically
to	work	with	data	streams.	You	can	build	very	complex	processing	systems	in	awk,	but	in
fact	the	most	common	awk	programs	are	typically	just	a	line	or	two	long.

Many	modern	Unix	folk	prefer	Perl,	but	I	find	that	Perl	isn’t	as	pervasive	across	Unix,
Linux,	and	other	*nix	platforms,	so	I’ll	stick	with	awk	for	this	lesson.	I	do	cover	Perl	later
in	the	book,	though,	in	case	you’re	curious.	If	you’d	prefer	to	just	learn	Perl,	you	can	find
a	lot	of	really	good	tutorials	on	this	sophisticated—and	confusing—programming
language.

In	addition	to	explaining	awk,	this	hour	also	talks	about	three	additional	pipeline
commands	that	you	will	doubtless	find	essential	for	your	toolbox:	sed,	a	stream	editor;
tr,	a	character	mapping	facility;	and	cut,	a	utility	that	makes	it	remarkably	easy	to	slice
individual	columns	of	data	out	of	a	pipeline	of	information.

There’s	one	interesting	characteristic	of	awk	that’s	worth	mentioning	before	we	go
further:	It’s	a	powerful	programming	language,	and	you	can	use	it	to	duplicate	many	of	the
actual	utilities	that	are	an	essential	part	of	the	Unix	operating	system.	In	a	moment,	I’ll
show	you	how	to	duplicate	the	wc	command	with	a	few	lines	of	awk.

Later	in	the	book,	in	Hour	23,	“Perl	Programming	in	Unix,”	we’ll	explore	the	Perl
programming	language	and	how	it’s	integrated	into	modern	Unix	systems.	Like	awk,	Perl
has	the	ability	to	duplicate	many	of	the	most	common	Unix	commands.	Perl	is	also
considerably	more	powerful	and	sophisticated	than	awk.

Okay,	true	confession:	I	don’t	recommend	actually	rewriting	existing	commands,	but	it	is
good	to	know	which	of	the	tools	in	the	Unix	toolbox	are	actually	all-purpose	utilities
rather	than	just	focused	on	a	single,	specific	task.

The	awk	Programming	System
Whether	it’s	C,	Pascal,	BASIC,	Java,	or	even	Swift,	every	programming	language	has	its
forte,	the	area	where	it	really	shines.	If	it’s	BASIC,	it’s	simple	introductory	programming.
If	it’s	Java,	it’s	platform-independent	software.	Ruby,	Python,	C++,	LISP,	and	all	other
programming	languages	have	a	specific	type	of	programming	for	which	they’re	designed.
awk	is	different,	though,	living	somewhere	in	between	simple	shell	scripts	and	these
sophisticated	languages.	It	doesn’t	have	many	of	the	features	and	characteristics	of	a
formal	programming	environment,	but	in	its	own	way,	awk	is	powerful,	and	it’s	definitely
ideal	for	lightweight,	in-line	data	processing.

Task	9.1:	Learning	to	Use	awk
The	basic	structure	of	every	awk	script	is	a	pattern	followed	by	a	command.	If	you	skip
the	pattern,	the	command	applies	to	all	lines	in	the	data	stream.	If	you	skip	the	command
section,	all	matching	lines	are	printed	(sent	to	the	output	data	stream).

As	a	very	simple	example,	the	program	NF	==	3	(yep,	that’s	all	you’d	need	for	this
program!)	will	print	all	lines	of	input	that	have	exactly	three	fields	(NF	is	a	shortcut
meaning	number	of	fields	in	the	input	line).	The	program	$1	>	3	{	print	$1	}	will
print	the	first	field	of	all	lines	where	that	field	has	a	numeric	value	greater	than	three.

Let’s	take	a	closer	look	at	awk.

1.	I	want	to	figure	out	the	average	size	of	all	the	email	files	on	a	new	system	I’ve	been
building.	To	accomplish	this,	I’ll	start	with	ls	to	get	the	file	sizes:

Click	here	to	view	code	image

$	ls	–l
total	8474
-rw-r—r—		1	taylor		taylor					3111	Dec	14	16:09	baby-responses
-rw-r—r—		1	taylor		taylor				19930	Dec	14	16:09	barbara
-rw-r—r—		1	taylor		taylor			298719	Dec	14	16:09	dunlap
-rw-r—r—		1	taylor		taylor					5758	Dec	14	16:09	evan
-rw-r—r—		1	taylor		taylor				14577	Dec	14	16:09	glee
-rw-r—r—		1	taylor		taylor					1610	Dec	14	16:09	hbrayman
-rw-r—r—		1	taylor		taylor				10788	Dec	14	16:09	jwickert
-rw-r—r—		1	taylor		taylor		2746614	Dec	14	16:09	mail.sent
-rw-r—r—		1	taylor		taylor				18106	Dec	14	16:09	mbeaudoin
-rw-r—r—		1	taylor		taylor					6753	Dec	14	16:09	pennyln
-rw-r—r—		1	taylor		taylor			128815	Dec	14	16:09	permission
-rw-r—r—		1	taylor		taylor		1011092	Dec	14	16:09	taylor
-rw-r—r—		1	taylor		taylor				17549	Dec	14	16:09	wellnitz
$

As	you	can	see,	the	lines	of	output	from	ls	are	very	consistent,	and	if	you	assume
that	“one	or	more	spaces	without	any	other	characters	between	them”	is	the
separator	between	fields	and	that	the	fifth	field	in	the	output	is	always	the	size	of	the
file,	you	have	a	recipe	for	finding	and	processing	the	necessary	data	for	a	file	size
total	within	a	directory.

2.	Let’s	use	awk	to	extract	the	fifth	field:
$	ls	–l	|	awk	‘{print	$5}’

3111
19930
298719
5758
14577
1610
10788
2746614
18106
6753
128815
1011092
17549
$

$1	matches	the	first	field,	$2	the	second,	and	so	on.	$0	matches	the	entire	input
line.	Pretty	simple,	isn’t	it?

It’s	not	quite	what	I	want,	however,	because	the	very	first	line	of	output	from	ls	is	a
summary	of	the	blocks	taken	up	by	the	entire	directory	(the	total	8474	line),	and
the	awk	script	sees	that	and	counts	it	as	a	line,	even	though	it	doesn’t	have	a	fifth
field.	If	we	leave	this	as-is,	the	eventual	average	mailbox	size	will	be	wrong	because
it’ll	be	taking	“n+1”	files	into	account	due	to	this	erroneous	match.

3.	The	standard	Unix	way	to	solve	this	would	be	to	drop	something	else	into	the
pipeline	that’ll	extract	that	line,	or	filter	just	the	lines	of	valid	data.	It	might	look	like
this:

Click	here	to	view	code	image

$	ls	–l	|	grep	taylor	|	awk	‘{print	$5}’
3111
19930
298719
5758
14577
1610
10788
2746614
18106
6753
128815
1011092
17549
$

This	works,	but	it’s	not	very	elegant,	particularly	because	awk	can	do	the	job	itself.

4.	The	awk	solution	is	to	apply	a	pattern	that	uses	the	special	NF	(number	of	fields)
variable:

Click	here	to	view	code	image
$	ls	–l	|	awk	‘NF	>	2	{	print	$5	}’
3111
19930
298719
5758
14577
1610

10788
2746614
18106
6753
128815
1011092
17549
$

Great.	Here	you	can	see	a	pattern	(NF	>	2)	and	a	statement	(print	$5)
combined	to	make	a	very	powerful	and	simple	addition	to	the	pipeline.	This	succinct
awk	program	prints	the	fifth	field	of	input	lines,	but	only	when	there	are	more	than
two	fields	on	the	line.	Notice	that	when	this	notation	is	used,	there’s	no	explicit	if
in	the	if	statement,	unlike	in	most	other	programming	languages.

5.	Now	let’s	make	our	script	a	bit	more	sophisticated.	It	needs	to	total	all	the	sizes	and
count	how	many	files	it	counted,	too.	Those	statements	are	added	within	the	curly
brackets,	but	before	I	get	to	that	point,	I’m	going	to	simplify	things	by	putting	the
growing	awk	script	in	its	own	file.

Here’s	how	it	looks	once	I’ve	added	the	two	counting	variables:
Click	here	to	view	code	image

$	cat	average.awk
NF	>	2	{	count	+=	1
									totalsize	+=	$5
							}
$

There’s	no	point	in	running	this	yet	because	there	isn’t	any	output.	Try	it	yourself	by
typing	awk	-f	average.awk,	and	you’ll	see	what	I	mean.

Note

The	+=	notation	is	a	shorthand	way	of	saying	“add	the	following	value	to	the
current	value	of	the	variable,”	and	it	saves	having	to	type	count	=	count	+	1
and	totalsize	=	totalsize	+	1.

6.	To	add	output,	I	need	to	add	an	END	block.	END	is	a	special	pattern	that	is	matched
once	after	every	line	of	input	is	processed:

Click	here	to	view	code	image
$	cat	average.awk
NF	>	2	{	count	+=	1
									totalsize	+=	$5
							}

END	{	print	“Counted	”	count	”	mailboxes”
						print	“average	size	=	”	totalsize/count
				}
$

This	is	all	that’s	needed	to	compute	the	average	file	size.	It’s	invoked	with	the	-f
flag	to	awk:

Click	here	to	view	code	image

$	ls	–l	|	awk	–f	average.awk
Counted	14	mailboxes
average	size	=	305969
$

Where	there’s	an	END,	there’s	also	a	BEGIN,	if	you	need	to	initialize	variables	prior
to	the	script	being	run.	Though	it’s	not	a	great	programming	practice,	you	can	be
lazy	as	I	have	been	and	assume	that	a	new	variable	that	hasn’t	been	used	before
starts	with	a	value	of	zero.	In	fact,	better	programming	style	would	be	to	have	a
block	like	the	following	at	the	very	beginning	of	the	script:
BEGIN	{
						count	=	0
		totalsize	=	0
}

This	script	demonstrates	a	very	typical	use	of	the	awk	command	and	also	shows
how	most	sophisticated	pipelines	are	built	one	step	at	a	time.

Next	let’s	look	at	some	of	the	common	one-liner	programs	for	which	you’ll	find
awk	particularly	useful.

Note

You’ve	already	seen	two	special	variables	in	this	simple	awk	script:	NF	is	the
number	of	fields	in	a	line	of	input,	and	$5	is	the	fifth	field	in	each	line.	It	turns	out
that	there’s	also	NR,	which	contains	the	current	record	number,	and,	in	the	END
block,	the	total	number	of	records	(lines)	encountered.

The	$5	variable	is	also	an	instance	of	a	general	naming	scheme:	$n	will	give	you
the	nth	field,	and	$0	is	the	entire	line.

7.	How	many	lines	are	in	the	input	stream?
‘END	{print	NR}’

8.	Print	the	eighth	line	of	input	only?
‘NR	==	8’

9.	Print	just	the	last	field	of	each	line?
‘{	print	$NF	}’

This	one	requires	a	wee	bit	of	explanation:	Because	NF	is	the	number	of	fields,	the
reference	$NF	is	evaluated	as	the	last	field.	If	the	input	line	has	five	fields,	NF=5
and	$NF	is	the	contents	of	the	fifth	field.

10.	Print	the	maximum	number	of	fields	in	any	line?
Click	here	to	view	code	image

‘NF	>	maxnf	{	maxnf	=	NF	}		END	{	print	maxnf	}’

Notice	that	you	can	compress	scripts	onto	a	single	line	if	that’s	easier	to	type.

11.	One	more	example:	You	learned	about	the	wc	(word	count)	command	in	the	last
hour,	and	you	know	that	it	returns	the	number	of	characters,	words,	and	lines	in	its

input	stream.	It	turns	out	that	duplicating	this	with	an	awk	script	is	remarkably	easy:
Click	here	to	view	code	image

$	cat	wc.awk
{	chars	+=	length($0)	+	1				#	1	for	the	carriage	return
		words	+=	NF;
}

END	{
		print	chars	”	characters,	”	words	”	words,	and	”	NR	”	lines.”
}
$

It	can	be	used	very	much	like	the	earlier	script:
Click	here	to	view	code	image

$	ls	–l	|	awk	–f	wc.awk
908	characters,	137	words,	and	16	lines.

To	make	sure	that	the	results	are	accurate,	here’s	the	same	ls	output	run	through	the
official	wc	command:
$	ls	–l	|	wc
						16					137					908

They	are	indeed	the	same!

With	a	programming	tool	as	sophisticated	as	awk,	we	can	only	scratch	the	surface	in	this
book.	It’s	frustrating	that	there	are	remarkably	few	resources	for	learning	more	about	the
helpful	awk	programming	language.	About	the	only	one	I	can	recommend	is	the	dry	The
AWK	Programming	Language,	written	by	the	authors	of	the	program,	Alfred	Aho,	Peter
Weinberger,	and	Brian	Kernighan.

Whether	you	choose	to	get	a	copy	of	that	book	or	simply	explore	and	poke	around	by
yourself,	my	experience	suggests	that	a	good	grasp	of	awk	is	a	valuable	addition	to	your
Unix	knowledgebase.

Alternatively,	many	Perl	fanatics	will	tell	you	that	it	can	do	absolutely	everything	that	awk
can	do	and	much,	much	more.	They’re	right,	but	the	price	is	complexity:	I	find	awk	to	be
much	more	simple	and	straightforward	for	tasks	like	those	shown	above.	You’ll	need	to
decide	for	yourself	whether	you	want	to	stick	with	Perl	for	all	programmatic	tasks	or
explore	the	other	tools	in	your	Unix	toolbox.

Perl	is	covered	in	some	detail	later	in	the	book,	too,	so	you	are	welcome	to	flip	forward
and	get	a	taste	of	the	Perl	programming	language	and	decide	for	yourself.

How	to	Use	cut	in	Pipes
While	awk	is	a	general-purpose	tool	that	you	can	bend	to	your	needs	(sort	of	like	a	geek
Swiss	army	knife),	there	are	specific	tasks	for	which	other	Unix	tools	are	better	suited.

Earlier	you	saw	how	to	use	the	simple	‘{print	$5}’	to	extract	the	fifth	column	of	the
data	stream,	but	in	fact	there’s	a	faster	way	to	do	that—with	the	simple	cut	command.

Action	9.2:	Slicing	and	Dicing	with	cut
In	the	earlier	example,	the	fields	are	all	neatly	separated	by	white	space.	What	happens	if
you	need	to	get	a	specific	set	of	characters,	regardless	of	spaces,	however?	This	is	one
great	example	of	where	cut	can	be	your	friend.	More	typically,	however,	you	work	with	a
database-like	file,	and	there’s	a	specific	delimiter	that	separates	each	of	the	fields.	This	is
also	a	good	place	to	use	cut.

1.	An	interesting	data	file	to	explore	is	the	/etc/passwd	file,	which	contains
account	record	information	for	each	login	account	on	the	system.

Here’s	the	tail	of	one	on	a	busy	system	I	use:
Click	here	to	view	code	image

$	tail	/etc/passwd
djk:*:23678:100:Doug	King:/home/djk:/	bin/csh
voxroom:*:24108:100:Gregory	Smith:/home/voxroom:/bin/csh
allied:*:24138:100:Gordon	Wilkinson:/home/allied:/	bin/csh
rottn1:*:24173:100:The	Rott’n	One:/home/rottn1:/bin/tcsh
effugas:*:24263:100:Dan	Kaminsky:/home/effugas:/bin/tcsh
stinkbug:*:24331:100:Edward	Fuller:/home/stinkbug:/	bin/bash
hrweb:*:24434:100:Human	Rights	Web:/home/hrweb:/	bin/tcsh
lcamag:*:24522:100:David	Heller:/home/lcamag:/bin/csh
kodachen:*:24547:100:Jaimie	Mc	Curry:home/kodachen:/bin/tcsh
nobody:*:65534:65534:Unprivileged	user:/nonexistent:/nonexistent

If	we	isolate	one	line,	it’s	a	bit	less	overwhelming:
Click	here	to	view	code	image

$	grep	‘taylor:’	/etc/passwd
taylor:*:101:99:Dave	Taylor:/home/taylor:/bin/bash

Fields	in	this	file	are	separated	by	the	colon	character	(:).	Without	going	into
exhaustive	detail,	the	first	field	is	the	account	name,	the	fifth	field	is	the	username,
the	sixth	field	is	the	home	directory,	and	the	seventh	field	is	the	login	shell.

Now,	let’s	see	how	cut	can	make	the	analysis	of	this	file	a	bit	more	interesting.	-d
is	an	important	flag	to	know	because	it	lets	you	specify	the	field	delimiter	(the
default	is	a	tab).

2.	First,	let’s	get	a	list	of	usernames:
Click	here	to	view	code	image

$	cut	–d:	-f5	/etc/passwd
Charlie	&
Bourne-again	Superuser
Owner	of	many	system	processes
Administrative	Sandbox
Binaries	Commands	and	Source
Administrative	Sandbox

lots	and	lots	of	output	removed

Edward	Fuller
Human	Rights	Web
David	Heller
Jaimie	Mc	Curry
Unprivileged	user

$

3.	Let’s	do	a	quick	analysis	of	what	shells	people	are	using	by	pulling	out	the	seventh
field	with	cut	and	then	piping	it	to	sort	and	uniq	with	the	important	-c	flag	to
have	uniq	show	a	count	of	matching	results:

Click	here	to	view	code	image

$	cut	–d:	-f7	/etc/passwd	|	sort	|	uniq	–c
		51	/bin/bash
	857	/bin/csh
		40	/bin/ksh
			1	/bin/sh
	382	/bin/tcsh
			9	/bin/zsh
			8	/noshell
			5	/usr/local/bin/bash
			7	/usr/local/bin/tcsh
$

Note

If	you	want	to	have	the	output	sorted	from	most	popular	to	least	popular,	you	can
use	another	sort	on	the	end	of	the	pipe:	sort-rn	will	sort	in	reverse	numerical
order.	This	means	that	the	line	prefaced	with	the	largest	number	(/bin/csh)	will
appear	first,	and	the	line	prefaced	with	the	smallest	number	(/bin/sh)	will	appear
last.

4.	One	more	interesting	example	of	cut	before	we	go:	You	might	have	noticed	that
the	first	character	of	the	ls	–l	output	is	a	d	when	it’s	a	directory	and	a	-	when	it’s
just	a	regular	file.

Another	useful	flag	for	cut	is	-c,	which	lets	you	indicate	specific	character
locations	to	use	as	the	start	location	(or	the	start	and	end	locations).	For	Western
languages	(which	internationalization	folk	call	this	“Latin-1”	languages,	including
Spanish,	German,	and	Italian),	one	character	=	one	letter,	but	in	other,	so	called
double-byte	languages	(Chinese,	Arabic),	a	character	doesn’t	have	quite	the	same
meaning.	For	now	you	can	ignore	this	nuance.

If	we	put	those	two	flags	together,	we	can	use	cut	to	answer	the	question	“How
many	files	and	how	many	directories	are	in	the	current	location?”	This	is	a	relatively
complex	pipe	that	summarizes	how	many	of	each	suffix	are	found	in	a	given	ls	–l
output:

Click	here	to	view	code	image
$	ls	-l	|	awk	‘NF	>	2’	|	cut	-c1	|	sort	|	uniq	-c
		15	-
		12	d
$

The	awk	weeds	out	all	lines	that	don’t	have	at	least	three	fields.	(Remember	the
“Total”	line	we	had	to	deal	with	earlier?	Yeah,	it’s	again	something	we	need	to	omit
from	our	analysis.)	Then	cut	slices	just	the	first	character	of	output,	and	then	we
simply	sort	and	uniq	it,	and	voilà!	We	see	that	we	have	15	plain	files	and	12

directories	in	the	test	directory.

The	cut	command	has	a	very	narrow	set	of	capabilities,	but	when	you’re	extracting
specific	columns	of	information,	either	by	field	value	or	by	counting	characters,	it’s	a
winner	and	worth	knowing.

Don’t	stop	here,	though.	Read	man	cut	for	more	details	on	how	to	work	with	this	useful
program.

Inline	Editing	with	sed	and	tr
Before	we	leave	the	topic	of	UNIX	pipeline	power	tools,	you	need	to	learn	about	two
more	programs	that	are	designed	to	change	information	as	it	goes	through	the	data	stream.
The	sed	command,	the	more	common	of	the	two,	is	used	primarily	to	substitute	one
pattern	for	another	as	information	goes	past.	The	tr	command	is	even	more	limited:	It
translates	one	set	of	characters	to	another	(but	there	are	some	surprising	capabilities
hidden	in	this	otherwise	dull	utility).

Action	9.3:	Inline	Editing	with	sed	and	tr
To	more	fully	understand	how	each	of	these	commands	work,	it’s	useful	to	see	them	in
action.

1.	A	common	task	for	a	pipeline	is	to	change	all	uppercase	letters	into	lowercase	or
vice	versa.	There	are	a	number	of	ways	to	accomplish	this	within	the	Unix	world,
but	the	tr	command	makes	it	very	easy:

Click	here	to	view	code	image

$	cut	–d:	-f5	/etc/passwd	|	tr	‘[a-z]’	‘[A-Z]’	|	tail
GREGORY	SMITH
GORDON	WILKINSON
THE	ROTT’N	ONE
DAN	KAMINSKY
EDWARD	FULLER
HUMAN	RIGHTS	WEB
DAVID	HELLER
JAIMIE	MC	CURRY
UNPRIVILEGED	USER
$

The	tr	command	does	a	1:1	matching	of	what’s	specified	in	the	first	argument	with
what’s	specified	in	the	second	argument.	In	this	case,	you	can	see	two	ranges
specified	(tr	‘[a-z]’	‘[A-Z]’):	all	lowercase	letters	and	then	all	uppercase
letters.

If	you’re	working	in	multiple	languages,	a	more	sophisticated	approach	is	to
reference	one	of	tr’s	built-in	character	sets.	Instead	of	using	‘[a-z]’,	for
example,	use	‘[[:lower:]]’,	which	will	work	with	Spanish,	German,	or
whatever	other	language	you	or	another	user	might	be	working	with	on	the	system.

Table	9.1	lists	of	the	character	sets	that	tr	knows.	It’s	worth	dog-earing	this
particular	page	so	you	can	find	it	again	later.

TABLE	9.1	Character	Set	Class	Name	Reference

Using	this	information,	the	proper	and	better	way	to	translate	all	lowercase
characters	into	uppercase	characters	is	therefore:

Click	here	to	view	code	image
tr	‘[[:lower:]]’	‘[[:upper:]]’

2.	To	translate	all	vowels	into	a	dash,	you	can	again	use	tr	to	accomplish	the	task:
Click	here	to	view	code	image

$	cut	–d:	-f5	/etc/passwd	|	tr	‘aeiou’	‘–—’	|	tail
Gr-g-ry	Sm-th
G-rd-n	W-lk-ns-n
Th-	R-tt’n	On-
D-n	K-m-nsky
Edw-rd	F-ll-r
H-m-n	R-ghts	W-b
D-v-d	H-ll-r
J—m—	Mc	C-rry
Unpr-v-l-g-d	-s-r
$

Looks	like	some	sort	of	code,	doesn’t	it?	Or	maybe	you’re	just	partway	through	a
game	of	hangman?

3.	A	more	common	use	of	tr	is	for	simple	rotation	ciphers.	Back	in	the	day,	Usenet
discussion	groups	used	to	use	a	simple	one	called	ROT13	to	apply	rudimentary
encryption	to	text	messages.	It’s	a	simple	13-character	rotation	of	the	text.	This
means	that	a	becomes	n,	b	becomes	o,	and	so	on.	Get	it?	n	is	13	characters	further
along	in	the	alphabet	than	a,	o	is	13	characters	from	b,	etc.	Sound	complex?	It’s	very
easy	with	tr	on	the	job:

Click	here	to	view	code	image

$	cat	badjoke	|	tr	‘[a-zA-Z]’	‘[n-za-mN-ZA-M]’
Jul	qvq	gur	puvpxra	pebff	gur	ebnq?
Gb	purpx	uvf	rznvy!

$

The	reverse	translation	can	be	most	easily	done	by	switching	the	first	and	second
arguments	to	the	tr	command:

Click	here	to	view	code	image

$	cat	badjoke.rot13	|	tr	‘[n-za-mN-ZA-M]’	‘[a-zA-Z]’
Why	did	the	chicken	cross	the	road?
To	check	his	email!
$

4.	This	would	actually	be	a	perfect	place	for	a	shell	alias,	something	like:
Click	here	to	view	code	image

alias	rot13=“tr	‘[a-zA-Z]’	‘[n-za-mN-ZA-M]’”
alias	unrot13=“tr	‘[n-za-mN-ZA-M]’	‘[a-zA-Z]’”

You	can	then	encode	things	with	rot13	filename	and	decode	things	with
unrot13	filename.

5.	The	sed	command	is	considerably	more	powerful	than	tr,	and	it	doesn’t	need	any
sort	of	1:1	matching	on	the	patterns	specified.	For	example,	here’s	a	smarter	way	to
translate	all	vowels	into	dashes:

Click	here	to	view	code	image

$	cat	badjoke	|	sed	‘s/[aeiouAEIOU]/-/g’
Why	d-d	th-	ch-ck-n	cr-ss	th-	r—d?
T-	ch-ck	h-s	-m—l!
$

Unlike	the	earlier	version	with	tr,	this	works	with	upper-	and	lowercase	vowels.

6.	A	more	common	usage	would	be	to	change	words,	rather	than	letters,	however.
Perhaps	I’d	like	to	change	the	punch	line	a	wee	bit:

Click	here	to	view	code	image
$	cat	badjoke	|	sed	‘s/email/portfolio/’
Why	did	the	chicken	cross	the	road?
To	check	his	portfolio!
$

7.	sed	is	actually	a	powerful	programming	environment	in	its	own	right,	even	though
we’ve	only	looked	at	the	substitute	capability.	The	general	form	of	sed	commands
is

Click	here	to	view	code	image

{address{,address}}command{arguments}

where	the	{}	denote	optional	information.	The	previous	use	of	sed	had	s	as	the
command	and	the	old	and	new	patterns	as	the	argument.

Table	9.2	shows	a	summary	of	a	few	of	the	capabilities	of	sed.

TABLE	9.2	The	Most	Useful	sed	Commands

8.	Addresses	can	be	individual	numbers,	as	shown	in	Table	9.2,	or	$	to	match	the	last
line	in	the	stream,	but	they	can	also	be	regular	expressions.	Want	to	delete	all	the
lines	that	contain	the	word	road?	You	can	use	/road/d	for	the	task.

9.	Regular	expressions	can	have	special	characters	too:	^	is	the	beginning	of	the	line,
and	$	is	the	end	of	the	line,	for	example.	Want	to	quickly	preface	all	lines	with	a	>
sequence	to	indicate	quoting?	Use	s/^/>	/	to	do	the	job.

10.	Finally,	using	sed	and	its	-n	(don’t	echo	lines	by	default)	flag,	we	now	have	yet
another	way	to	list	a	subset	of	lines	to	the	output.	To	see	only	lines	8–13	of	the	sed
man	page,	for	example:

Click	here	to	view	code	image

$	man	sed	|	sed	-n	‘8,13p’
						[-an]	[-e	command]	[-f	command_file]	[file	…]

DESCRIPTION
					The	sed	utility	reads	the	specified	files,	or	the	standard	input	if
no
					files	are	specified,	modifying	the	input	as	specified	by	a	list	of
com-
					mands.		The	input	is	then	written	to	the	standard	output.

As	with	awk,	we’ve	only	scratched	the	surface	of	the	sed	command	in	this	hour.	If	your
interest	is	piqued,	I	strongly	encourage	you	to	learn	more	about	it,	either	by	reading	the
man	page	or	seeking	out	some	useful	online	resources	that	can	expand	your	knowledge.

Summary
The	more	you	learn	about	the	tools	in	Unix,	the	more	you	realize	that	there’s	really	almost
nothing	you	can’t	do	with	a	combination	of	two	or	three	commands.	That’s	what	I	really
like	about	Unix,	frankly,	and	why	I	still	use	its	command	line	even	on	my	beloved	Mac
OS	X	system	through	the	Terminal	app.

In	the	pantheon	of	Unix	commands,	two	powerful	utilities—awk	and	sed—have	earned
special	spots.

Workshop
The	Workshop	poses	some	questions	about	the	topics	presented	in	this	lesson.

Exercises
1.	How	did	awk	get	its	name?	(Perhaps	the	man	page	answers	this	question?)

2.	The	-f	flag	in	awk	lets	you	change	field	delimiters.	How	would	you	use	awk	to
extract	all	the	home	directories	out	of	the	/etc/passwd	file?

3.	ROT13	is	useful,	but	ROT7	could	be	even	better.	How	would	you	write	aliases	for
both	encoding	and	decoding	a	ROT7	system?

4.	The	output	of	ls	–l	has	the	file	permission	shown	as	a	character	sequence:	rwx,
r-x,	and	so	on.	Can	you	come	up	with	a	combination	of	cut	and	grep	to	identify
whether	you	have	any	files	that	have	only	write	or	execute	permission?

5.	Using	tr’s	class	identifiers	and	its	-d	flag	(read	the	man	page	to	find	out	what	it
does),	how	would	you	remove	all	punctuation	characters	from	your	input	stream?

Preview	of	the	Next	Hour
In	the	next	hour	you’ll	learn	about	the	powerful	and	phenomenally	useful	vi	editor,	which
will	doubtless	seem	weird	and	puzzling	when	you	get	started.	But	vi	is	a	mainstay	in	any
good	Unix	user’s	repertoire	and	can	make	editing	quite	a	bit	faster	than	even	the	best
graphically	based	application.

Hour	10.	An	Introduction	to	the	vi	Editor

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	start	and	quit	vi

	Simple	cursor	motion	in	vi

	How	to	move	by	words	and	pages

	How	to	insert	text	into	a	file

	How	to	delete	text

The	next	few	hours	focus	on	full-screen	editing	tools	for	Unix.	First	you’ll	learn	how	to
use	vi	to	create	and	modify	files.	This	hour	covers	the	basics,	including	how	to	move
around	in	a	file	and	how	to	insert	and	delete	characters,	words,	and	lines.	The	next	hour
shows	how	to	search	for	specific	patterns	in	the	text	and	how	to	replace	them	with	other
information,	as	desired.	In	Hour	12,	“An	Overview	of	the	emacs	Editor,”	you’ll	learn	to
use	an	alternative	Unix	editor	called	emacs.	As	you	work	with	emacs	and	vi,	you’re
likely	to	develop	a	preference	for	one	or	the	other.

In	some	ways,	an	editor	is	like	another	operating	system	living	within	Unix;	we’ll	need
two	hours	just	to	cover	the	basics	of	vi.	If	you’re	used	to	Windows	or	Macintosh	editors,
you’ll	be	unhappy	to	find	that	vi	doesn’t	know	anything	about	your	mouse.	After	you
spend	some	time	working	with	vi,	however,	I	promise	it	will	grow	on	you	because	it’s	so
super-efficient	to	work	without	ever	lifting	your	hands	off	the	keyboard	to	use	the	mouse!
By	the	end	of	this	hour,	you	will	be	able	to	create	and	modify	files	on	your	Unix	system	to
your	heart’s	content.

Tip

I	pronounce	the	editors	as	“vee-eye”	and	“e-max.”

Editing	the	Unix	Way
You’ve	learned	about	how	to	manipulate	your	files	and	even	peek	inside	them	from	the
command	line,	and	now	it’s	time	to	learn	the	key	Unix	tool	for	creating	and	editing	files:
vi.

Task	10.1:	Starting	and	Quitting	vi
You	might	have	noticed	that	many	Unix	commands	covered	so	far	have	one	characteristic
in	common:	They	all	do	their	work,	display	their	results,	and	quit.	Among	the	few
exceptions	is	more,	in	which	you	work	within	the	specific	program	environment	until	you
have	viewed	the	entire	contents	of	the	file	being	shown	or	until	you	quit.	The	vi	editor	is
another	program	in	this	small	category	that	you	move	in	and	use	until	you	explicitly	tell
the	program	to	quit.

Note

Where	did	vi	get	its	name?	It’s	not	quite	as	interesting	as	some	of	the	earlier,	more
colorful	commands.	The	vi	command	is	so	named	because	it’s	the	visual	interface
to	the	ex	editor.	It	was	written	by	Bill	Joy	while	he	was	at	the	University	of
California	at	Berkeley.

Before	you	start	vi	for	the	first	time,	you	must	learn	about	two	aspects	of	its	behavior.
The	first	is	that	vi	is	a	modal	editor.	A	mode	is	like	an	environment.	Different	modes	in
vi	interpret	the	same	key	differently.	For	example,	if	you’re	in	insert	mode,	typing	a	adds
an	a	to	the	text,	whereas	in	command	mode,	typing	a	puts	you	in	insert	mode	because	a	is
the	key	abbreviation	for	the	append	command.	If	you	ever	get	confused	about	what
mode	you’re	in,	press	the	Escape	(or	Esc)	key	on	your	keyboard.	Pressing	Escape	always
returns	you	to	the	command	mode	(and	if	you’re	already	in	command	mode,	it	simply
beeps	to	remind	you	of	that	fact).

When	you	are	in	command	mode,	you	can	manage	your	document;	this	includes	the
capability	to	change	text,	rearrange	it,	and	delete	it.	In	insert	mode,	you	add	text	directly	to
your	document	from	the	keyboard.

Note

In	vi,	the	Return	key	is	a	specific	command	(meaning	to	move	to	the	beginning	of
the	next	line).	As	a	result,	you	never	need	to	press	Return	to	have	vi	process	a
command.

By	contrast,	the	other	popular	UNIX	editor,	emacs,	is	a	modeless	editor.	In
emacs,	the	A	key	always	adds	the	letter	a	to	the	file.	You	indicate	all	commands	in
emacs	by	holding	down	the	Control	(Ctrl)	key	while	pressing	the	command	key;
for	example,	Ctrl-C	deletes	a	character.	We’ll	have	a	close	look	at	emacs	in	Hour
12.

The	second	important	characteristic	of	vi	is	that	it’s	a	screen-oriented	program.	It	must
know	what	kind	of	terminal,	computer,	or	system	you	are	using	to	work	with	Unix.	This
probably	won’t	be	a	problem	for	you	because	most	systems	are	set	up	so	that	the	default
terminal	type	matches	the	terminal	app	you’re	using.	In	this	hour,	you’ll	learn	how	to
recognize	when	vi	cannot	figure	out	what	terminal	you’re	using	and	how	to	fix	it.

You	can	start	vi	in	various	ways,	and	you’ll	learn	about	lots	of	helpful	alternatives	later
this	hour.	Right	now,	let’s	look	at	the	basics.	The	vi	command,	by	itself,	starts	the	editor,
ready	for	you	to	create	a	new	file.	The	vi	command	with	a	filename	starts	vi	with	the
specified	file	loaded	and	ready	to	edit.

Let’s	get	started!

1.	To	begin,	enter	vi	at	the	prompt.	If	all	is	working	well,	the	screen	will	clear,	the
first	character	on	each	line	will	become	a	tilde	(~),	and	the	cursor	will	be	sitting	at
the	upper-left	corner	of	the	screen:

%	vi

_
~
~
~
~
~
~
~
~
~
~

Note

In	the	interest	of	efficiency,	I	will	only	show	the	portion	of	the	screen	that	is
relevant	to	the	command	being	discussed	for	vi	rather	than	show	the	entire	screen
each	time.	When	the	full	screen	is	required	to	explain	something,	however,	I’ll	use
that	instead.	A	smooth	edge	will	indicate	the	edge	of	the	screen,	and	a	jagged	edge
will	indicate	that	the	rest	of	the	display	has	been	omitted.

Type	a	colon.	Doing	so	moves	the	cursor	to	the	bottom	of	the	screen	and	replaces	the
last	tilde	with	the	colon:
~
~
~
~
~
~
~
~
:_

Type	q	and	press	the	Return	key,	and	you	should	be	back	at	the	shell	prompt:
~
~
~
~
~
~
~
~
:q
%

2.	If	that	operation	worked	without	a	problem,	skip	to	step	3.	If	the	operation	did	not
work,	you	received	the	unknown-terminal-type	error	message.	You	might	see	this	on
your	screen:

Click	here	to	view	code	image

%	vi
“unknown”:	Unknown	terminal	type
I	don’t	know	what	type	of	terminal	you	are	on.	All	I	have	is	“unknown”
[using	open	mode]
_

Alternatively,	you	might	see	this:
Click	here	to	view	code	image

%	vi
Visual	needs	addressible	cursor	or	upline	capability
:

Don’t	panic.	You	can	fix	this	problem!

To	fix	this,	you	need	to	get	back	to	the	shell	prompt,	so	do	exactly	what	you	did	in
step	1:	Type	:q	followed	by	the	Return	key.	You	should	then	see	this:

Click	here	to	view	code	image

%	vi
“unknown”:	Unknown	terminal	type
I	don’t	know	what	type	of	terminal	you	are	on.	All	I	have	is	“unknown”
[using	open	mode]
:q

%

The	problem	here	is	that	vi	needs	to	know	the	type	of	terminal	you’re	using,	but	it
can’t	figure	that	out	on	its	own.	Therefore,	you	need	to	tell	the	operating	system	by
setting	the	TERM	environment	variable.	If	you	know	what	kind	of	terminal	you	have
(something	determined	by	the	terminal	or	telnet	application),	use	the	value
associated	with	the	terminal;	otherwise,	try	the	default	of	vt100:
%	setenv	TERM	vt100

If	you	have	the	$	prompt,	which	means	you’re	using	the	Bourne	shell	(sh/bash)	or
Korn	shell	(ksh),	rather	than	the	C	shell	(csh),	try	this:
$	export	TERM=vt100

Either	way,	you	can	now	try	entering	vi	again,	and	it	should	work.

If	it	does	work,	append	the	command	(whichever	of	these	two	was	successful)	to
your	.profile	file	if	you	use	ksh	or	sh	or	your	.login	file	if	you	use	csh.
You	can	do	this	by	entering	whichever	of	the	following	commands	is	appropriate	for
your	system:

Click	here	to	view	code	image
%	echo	“setenv	TERM	vt100”	>>	~/.login

or
Click	here	to	view	code	image

$	echo	“export	TERM=vt100”	>>	~/.profile

This	way,	the	next	time	you	log	in,	the	system	will	remember	what	kind	of	terminal
you’re	using,	and	you	won’t	have	to	fuss	with	setting	the	TERM	variable	ever	again.

Caution

Be	careful	to	use	>>	to	add	to	your	file,	not	>,	which	will	replace	the	contents	of
your	.login	or	.profile	file!

Note

vi	and	other	screen	commands	use	a	Unix	package	called	curses	to	control	the
screen.	Like	most	other	Unix	applications,	curses	is	not	designed	for	a	specific
configuration;	instead,	it	is	designed	to	be	device	independent.	Therefore,	to	work
on	a	specific	device,	you	need	to	give	it	some	additional	information—in	this	case,
the	terminal	type.

If	vt100	didn’t	work,	it’s	time	to	talk	with	your	system	administrator	about	the
problem	or	call	your	Unix	vendor	to	find	out	what	the	specific	value	should	be.	If
you	are	connected	through	the	Internet	and	you	actually	are	using	a	terminal
emulator	or	communications	app,	try	using	ansi	as	a	TERM	setting.	If	that	fails,
call	the	company	that	makes	your	software	to	find	out	what	terminal	type	the
program	is	emulating.

3.	Great!	You	have	successfully	launched	vi,	seen	what	it	looks	like,	and	even	entered
the	most	important	command:	the	quit	command.	Now	create	a	simple	file	and
start	vi	so	that	it	shows	you	the	contents	of	the	file:

Click	here	to	view	code	image

%	ls	-lF	>	demo
%	vi	demo

total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		4	taylor								512	Dec		2	22:08	OWL/
-rw-rw–-		1	taylor								126	Dec		3	16:34	awkscript
-rw-rw–-		1	taylor								165	Dec		3	16:42	bigfiles
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor										0	Dec		3	22:26	demo
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
-rw-rw–-		1	taylor							8729	Dec		2	21:19	owl.c
-rw-rw–-		1	taylor								199	Dec		3	16:11	sample
-rw-rw–-		1	taylor								207	Dec		3	16:11	sample2
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/
-rw-rw–-		1	taylor								582	Nov	27	18:29	testme
~
~
~
~
~
~

~
“demo”	17	lines,	846	characters

You	can	see	that	vi	reads	the	file	specified	on	the	command	line.	In	this	example,
my	file	is	17	lines	long,	but	my	screen	can	hold	25	lines.	To	show	that	some	lines
lack	any	text,	vi	uses	the	tilde	on	a	line	by	itself.	Finally,	note	that,	at	the	bottom,
the	program	shows	the	name	of	the	file,	the	number	of	lines	it	found	in	the	file,	and
the	total	number	of	characters.

Type	:q	again	to	quit	vi	and	return	to	the	command	line	for	now.	When	you	type
the	colon,	the	cursor	will	jump	down	to	the	bottom	line	and	wait	for	the	q,	as	it	did
before.

You	have	learned	the	most	basic	command	in	vi—the	:q	command—and	survived	the
experience.	It’s	all	easy	going	from	here.

Tip

If	you	really	get	used	to	the	vi	way	of	thinking,	you	should	explore	using	set	–o
vi	when	you	start	up	your	interactive	shell.	It’ll	set	things	up	to	let	you	work	with
those	familiar	vi	keystrokes	when	editing	commands	at	the	command	line	and
make	your	life	just	a	bit	simpler!

Task	10.2:	Simple	Cursor	Motion	in	vi
Getting	to	a	file	isn’t	much	good	if	you	can’t	actually	move	around	in	it.	So	let’s	learn	how
to	use	the	cursor-control	keys	in	vi.	To	move	left	one	character,	type	h.	To	move	up,	type
k.	To	move	down,	type	j,	and	to	move	right	a	single	character,	type	l	(lowercase	L).	You
can	also	move	left	one	character	by	pressing	the	Backspace	key,	and	you	can	move	to	the
beginning	of	the	next	line	with	the	Return	key.

In	most	modern	Unix	systems,	you	can	also	use	the	arrow	keys,	but	as	you’ll	learn,	there’s
much	benefit	to	knowing	the	basic	vi	commands	so	that	you	never	have	to	move	your
hands	off	the	standard	“ready”	position	on	the	keyboard.	As	a	result,	try	your	best	to	stick
with	h,	j,	k,	and	l	for	moving	around	in	files.

1.	Launch	vi	again	and	specify	the	demo	file:
Click	here	to	view	code	image

%	vi	demo

total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		4	taylor								512	Dec		2	22:08	OWL/
-rw-rw–-		1	taylor								126	Dec		3	16:34	awkscript
-rw-rw–-		1	taylor								165	Dec		3	16:42	bigfiles
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor										0	Dec		3	22:26	demo
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
-rw-rw–-		1	taylor							8729	Dec		2	21:19	owl.c

-rw-rw–-		1	taylor								199	Dec		3	16:11	sample
-rw-rw–-		1	taylor								207	Dec		3	16:11	sample2
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/
-rw-rw–-		1	taylor								582	Nov	27	18:29	testme
~
~
~
~
~
~
~
“demo”	17	lines,	846	characters

You	should	see	the	cursor	sitting	on	top	of	the	t	in	total	on	the	first	line	or
perhaps	flashing	underneath	the	t	character.	Perhaps	you	have	a	flashing-box	cursor
or	one	that	shows	up	in	a	different	color.	In	any	case,	that’s	your	starting	spot	in	the
file.

2.	Type	h	once	to	try	to	move	left.	The	cursor	stays	in	the	same	spot,	and	vi	beeps	to
remind	you	that	you	can’t	move	left	any	farther	on	the	line.	Try	the	k	key	to	try	to
move	up;	the	same	thing	will	happen.

Now	try	typing	j	to	move	down	a	character:
Click	here	to	view	code	image

total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/

Now	the	cursor	is	on	the	d	directory	indicator	of	the	second	line	of	the	file.

Type	k	to	move	back	up	to	the	original	starting	spot.

3.	Using	the	four	cursor-control	keys—h,	j,	k,	and	l—move	around	in	the	file	for	a
little	bit	until	you	are	comfortable	with	what’s	happening	on	the	screen.	Now	try
using	the	Backspace	and	Return	keys	to	see	how	they	help	you	move	around.
Remember	that	since	you’re	in	command	mode,	they	won’t	delete	a	character	or	add
a	new	line	to	the	file.

4.	Move	to	the	middle	of	a	line:
Click	here	to	view	code	image

total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/

I’m	at	the	middle	digit	in	the	file	size	of	the	second	file	in	the	listing.	Here	are	a
couple	of	new	cursor	motion	keys:	the	0	(zero)	key	moves	the	cursor	to	the
beginning	of	the	line,	and	$	moves	it	to	the	end	of	the	line.	First,	I	type	0:

Click	here	to	view	code	image
total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/

Now	I	type	$	to	move	to	the	end	of	the	line:
Click	here	to	view	code	image

total	29
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/

5.	If	you	have	arrow	keys	on	your	keyboard,	try	using	them	to	see	whether	they	work
the	same	way	that	the	h,	j,	k,	and	l	keys	work.	If	the	arrow	keys	don’t	move	you
about,	they	might	have	shifted	you	into	insert	mode.	If	you	type	characters	and
they’re	added	to	the	file,	press	the	Escape	key	(or	Esc,	depending	on	your	keyboard)
to	return	to	command	mode.

6.	Let’s	wrap	this	up	by	leaving	this	edit	session.	Because	vi	now	knows	that	you
have	modified	the	file,	it	will	try	to	ensure	that	you	don’t	quit	without	saving	the
changes:

Click	here	to	view	code	image
~
~
:q

No	write	since	last	change	(:quit!	overrides)

Use	:q!	(shorthand	for	:quit,	throwing	away	any	changes	you’ve	made,	which	is	what
the	!	means)	to	quit	without	saving	the	changes.

Note

In	general,	if	you	try	to	use	a	colon	command	in	vi	and	the	program	complains	that
it	might	do	something	bad,	stop	and	make	sure	it’s	really	what	you	want	to	do.	If	it
is,	then	type	in	the	command	again,	followed	by	an	exclamation	point.	I	like	to
think	of	this	as	saying,	“Do	it	anyway!”

Stay	in	this	file	for	the	next	task	if	you’d	like	or	use	:q	to	quit.

Moving	about	a	file	using	these	six	simple	key	commands	is,	on	a	small	scale,	much	like
the	entire	process	of	using	the	vi	editor	when	working	with	files.	Stick	with	these	simple
commands	until	you’re	comfortable	moving	around,	and	you’ll	be	well	on	your	way	to
becoming	proficient	using	vi.

Task	10.3:	Moving	by	Words	and	Pages
Earlier,	in	the	description	of	the	emacs	editor,	I	commented	that	because	emacs	is
always	in	insert	mode,	all	commands	must	include	the	Control	key.	Well,	it	turns	out	that
vi	has	its	share	of	Control-key	commands,	too—commands	that	require	you	to	hold	down
the	Control	key	and	press	another	key.	In	this	section,	you’ll	learn	about	Ctrl-f,	Ctrl-b,
Ctrl-u,	and	Ctrl-d.	These	move	you	forward	or	backward	a	screen	and	up	or	down	half	a
screen	of	text,	respectively.

I’ll	toss	a	few	more	commands	into	the	pot,	too:	w	moves	you	forward	word	by	word,	b
moves	you	backward	word	by	word,	and	the	uppercase	versions	of	these	two	commands

have	very	similar,	but	not	identical,	functions.	(That’s	right—vi	distinguishes	between
whether	or	not	you’re	holding	Shift	when	you	enter	a	keyboard	command.	So	the	A
command	is	different	from	a.)

1.	To	see	how	this	works,	you	need	to	create	a	file	that	is	longer	than	the	size	of	your
screen.	An	easy	way	to	do	this	is	to	save	the	output	of	a	common	command	to	a	file
over	and	over	until	the	file	is	long	enough.	The	system	I	use	has	many	users,	so	I	can
create	the	file	just	by	using	the	who	command	once.	You	might	have	to	append	the
output	of	who	to	the	big.output	file	a	couple	of	times	before	the	file	is	longer
than	24	lines.	(You	can	check	using	wc,	of	course.)

Click	here	to	view	code	image

%	who	>	big.output;	wc	-l	big.output
			40
%	vi	big.output

leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc115)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
“big.output”	40	lines,	1659	characters

Because	I	have	only	a	25-line	display	and	the	output	is	40	lines	long	(you	can	see
that	on	the	status	line	at	the	bottom),	there	is	more	information	in	this	file	than	the
screen	can	display	at	once.

2.	To	see	the	next	screenful,	press	Ctrl-f.	When	I	do	this,	I	get	the	following	output:
Click	here	to	view	code	image

eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
wellman		ttysd			Dec		3	23:01			(dov)
tuttleno	ttyse			Dec		3	23:03			(indyvax)
wu							ttysf			Dec		3	23:10			(term01)
daurismj	ttysg			Dec		3	23:10			(dov)
cs414				ttysh			Dec		3	23:12			(xds)
cq							ttysi			Dec		3	23:13			(expert)
cdemmert	ttysk			Dec		3	22:37			(xsun22)
jrlee				ttysn			Dec		3	22:53			(mac1)
fitzgejs	ttyso			Dec		3	23:18			(dov)

doerrhb		ttysp			Dec		3	23:20			(dov)
cdemmert	ttysq			Dec		3	23:00			(xsun22)
frazierw	ttysr			Dec		3	23:01			(dov)
buckeye		ttyss			Dec		3	23:20			(mac2)
mtaylor		ttyst			Dec		3	23:22			(dov)
look					ttysu			Dec		3	23:12			(age)
janitor		ttysw			Dec		3	18:29			(age)
ajones			ttysx			Dec		3	23:23			(rass)
~
~
~
~

Notice	that	the	entire	screen	was	rewritten	and	that	the	familiar	tilde	characters	have
appeared	again	to	let	me	know	that	I	have	reached	the	end	of	the	file.

By	default,	vi	has	a	two-line	overlap	when	you	move	from	screen	to	screen.	If	you
look	carefully,	you	can	see	that	both	eichsted	and	sweett	show	up	on	both
screens	of	data.	This	doesn’t	mean	that	they	appear	twice	in	the	file;	rather,	vi	is
trying	to	help	me	not	get	lost	while	I	wander	through	the	file.

3.	Now,	what	do	you	think	will	happen	if	I	press	Ctrl-u?
Click	here	to	view	code	image

leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
wellman		ttysd			Dec		3	23:01			(dov)
tuttleno	ttyse			Dec		3	23:03			(indyvax)
wu							ttysf			Dec		3	23:10			(term01)
daurismj	ttysg			Dec		3	23:10			(dov)
cs414				ttysh			Dec		3	23:12			(xds)
cq							ttysi			Dec		3	23:13			(expert)
cdemmert	ttysk			Dec		3	22:37			(xsun22)
jrlee				ttysn			Dec		3	22:53			(mac1)
fitzgejs	ttyso			Dec		3	23:18			(dov)

The	command	has	moved	me	up	half	a	screen.	Notice	the	location	of	eichsted
and	sweett	now.	Instead	of	the	text	being	replaced	at	once,	as	when	I	used	Ctrl-f,
the	text	was	scrolled	downward	a	line	at	a	time,	each	new	line	being	added	as	the
program	went	along.	The	Ctrl-u	command	might	work	either	way—one	line	at	a
time	or	an	entire	screen	at	a	time—for	you.

4.	Now	it’s	time	to	try	moving	around	in	this	file	word	by	word.	Type	the	w	key	once
to	see	what	happens:

Click	here	to	view	code	image
leungtc		ttys0			Nov	28	15:11			(gold)

chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)

Now	type	w	six	times	more,	noting	that	the	cursor	stops	three	times	in	the	field	to
indicate	what	time	the	user	logged	in	to	the	system	(15:11	in	this	listing).	Now
your	cursor	should	be	sitting	on	the	parenthesized	field:

Click	here	to	view	code	image
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)

5.	It’s	time	to	move	backward.	Type	b	a	few	times;	your	cursor	moves	backward,	to
the	beginning	of	each	word.

What	happens	if	you	try	to	move	backward,	and	you’re	already	on	the	first	word,	or
if	you	try	to	move	forward	with	the	w	command,	and	you’re	already	on	the	last	word
of	the	line?	Let’s	find	out.

6.	Using	the	various	motion	keys	you’ve	learned,	move	back	to	the	beginning	of	the
line	that	starts	with	leungtc,	which	you	used	in	instruction	4:

Click	here	to	view	code	image
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)

This	time,	type	W	(uppercase	W,	not	lowercase	w)	to	move	through	this	line.	Can	you
see	the	difference?	Notice	what	happens	when	you	hit	the	time	field	and	the
parenthesized	words.	Instead	of	typing	w	seven	times	to	move	to	the	left	parenthesis
before	gold,	you	can	type	W	only	five	times.

7.	Try	moving	backward	using	the	B	command.	Notice	that	the	B	command	differs
from	the	b	command	the	same	way	in	which	the	W	command	differs	from	the	w
command.

Moving	about	by	words,	both	forward	and	backward,	being	able	to	zip	through	half
screens	or	full	screens	at	a	time,	and	being	able	to	zero	in	on	specific	spots	with	the	h,	j,
k,	and	l	cursor-motion	keys	give	you	quite	a	range	of	motion.	Practice	using	these
commands	in	various	combinations	to	get	your	cursor	to	specific	characters	in	your
sample	file.

Task	10.4:	Inserting	Text	Using	i,	a,	o,	and	O
Being	able	to	move	around	in	a	file	is	useful.	The	real	function	of	an	editor,	however,	is	to
enable	you	to	easily	add	and	remove—in	editor	parlance,	insert	and	delete—information.
The	vi	editor	has	a	special	insert	mode,	which	you	must	use	to	add	to	the	contents	of	a
file.	Four	possible	ways	exist	to	switch	into	insert	mode	from	command	mode,	and	you’ll
learn	about	all	of	them	in	this	task.

The	first	way	to	switch	to	insert	mode	is	to	type	the	letter	i,	which,	mnemonically	enough,
inserts	text	into	the	file.	The	other	commands	that	accomplish	more	or	less	the	same	thing
are	a,	to	append	text	to	the	file;	o,	to	open	a	line	below	the	current	line;	and	O,	to	open	a

line	above	the	current	line.

1.	For	this	task,	you	need	to	start	with	a	clean	file,	so	quit	from	the	big.output
editing	session	and	start	vi	again,	this	time	specifying	a	nonexistent	file	called
buckaroo:
%	vi	buckaroo

_

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“buckaroo”	[New	file]

Notice	that	vi	reminds	you	that	this	file	doesn’t	exist;	the	bottom	of	the	screen	says
New	file	instead	of	indicating	the	number	of	lines	and	characters.

2.	Now	it’s	time	to	try	using	insert	mode.	Try	to	insert	a	k	into	the	file	by	typing	k
once:
_

~
~
~

The	system	beeps	at	you	because	you	haven’t	moved	into	insert	mode	yet,	and	the	k
still	has	its	command	meaning	of	moving	down	a	line	(and,	of	course,	there	isn’t
another	line	yet).

Type	i	to	move	into	insert	mode	and	then	type	k	again:
k_
~
~
~

There	you	go!	You’ve	added	a	character	to	the	file.

3.	Press	the	Backspace	key	to	move	the	cursor	over	the	letter	k:
k
~

~
~

Now	see	what	happens	when	you	press	Escape	to	leave	insert	mode	and	return	to	the
vi	command	mode:
_

~
~
~

Notice	that	the	k	vanished	when	you	pressed	Escape.	That’s	because	vi	only	saves
text	you’ve	entered	to	the	left	of	or	above	the	cursor,	not	the	letter	the	cursor	is
resting	on.

4.	Now	move	back	into	insert	mode	by	typing	i	and	enter	a	few	sentences	from	a
favorite	book	of	mine:

Note

Movie	buffs	perhaps	will	recognize	that	the	text	used	in	this	hour	comes	from	the
Earl	Mac	Rauch	book	Buckaroo	Banzai.	The	cult	film	The	Adventures	of	Buckaroo
Banzai	Across	the	Eighth	Dimension	is	based	on	this	very	fun	book.

Click	here	to	view	code	image

“He’s	not	even	here,”	went	the	conservation.

“Banzai.”

“Where	is	he?”

“At	a	hotpsial	in	El	paso.”

“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”_
~
~

I’ve	deliberately	introduced	some	typing	errors	in	the	text	here.	Fixing	them	will
demonstrate	some	important	features	of	the	vi	editor.	If	you	fixed	them	as	you	went
along,	that’s	okay,	and	if	you	added	errors	of	your	own,	that’s	even	better!

Press	Escape	to	leave	insert	mode.	Press	Escape	a	second	time	to	ensure	that	it
worked;	remember	that	vi	beeps	to	remind	you	that	you’re	already	in	command
mode.

5.	Use	the	cursor	motion	keys	(h,	j,	k,	and	l)	to	move	the	cursor	to	any	point	on	the
first	line:

Click	here	to	view	code	image
“He’s	not	even	here,”	went	the	conservation.
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

It	turns	out	that	I	forgot	a	line	of	dialog	between	the	line	I’m	on	and	the	word
Banzai.	One	way	to	enter	the	line	would	be	to	move	to	the	beginning	of	the	line
“Banzai.”,	insert	the	new	text,	and	press	Return	before	pressing	Escape	to	quit

insert	mode.	But	vi	has	a	special	command,	o,	to	open	a	line	immediately	below	the
current	line	for	inserting	text.

Type	o	and	follow	along:
Click	here	to	view	code	image

“He’s	not	even	here,”	went	the	conservation.
_
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Now	type	the	missing	text:
Click	here	to	view	code	image

“He’s	not	even	here,”	went	the	conservation.
“Who?”_
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

That’s	it.	Press	Escape	to	return	to	command	mode.

6.	The	problem	with	the	snippet	of	dialog	we’re	using	is	that	there’s	no	way	to	figure
out	who	is	talking.	Adding	a	line	above	this	dialog	helps	identify	the	speakers.
Again,	use	cursor	motion	keys	to	place	the	cursor	on	the	top	line:

Click	here	to	view	code	image
“He’s	not_even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Now	you	face	a	dilemma.	You	want	to	open	a	line	for	new	text,	but	you	want	the
line	to	be	above	the	current	line,	not	below	it.	It	happens	that	vi	can	do	that,	too.
Instead	of	using	the	o	command,	use	its	big	brother	O	(that’s	an	uppercase	letter	O,
not	a	zero).	When	I	type	O,	here’s	what	I	see:

Click	here	to	view	code	image
_
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Type	the	new	sentence	and	then	press	Escape.
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard

General	Catbird’s
aide	give	him	the	latest._
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Now	the	dialog	makes	a	bit	more	sense.	The	conversation	overheard	by	the	narrator
takes	place	between	the	general	and	his	aide.

7.	I	missed	a	couple	of	words	in	one	of	the	lines,	so	the	next	task	is	to	insert	them.	Use
the	cursor	keys	to	move	the	cursor	to	the	seventh	line,	just	after	the	word	Where:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where_is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

At	this	juncture,	I	need	to	add	the	words	the	hell	to	make	the	sentence	a	bit
stronger	(and	correct).	I	can	use	i	to	insert	the	text,	but	then	I	end	up	with	a	trailing
space.	Instead,	I	can	add	text	immediately	after	the	current	cursor	location	by	using
the	a	command	to	append,	or	insert,	the	information.	When	I	type	a,	the	cursor
moves	one	character	to	the	right:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Here’s	where	vi	can	be	difficult	to	use.	I’m	in	insert	mode,	but	there’s	no	way	for
me	to	know	that.	When	I	type	the	letters	I	want	to	add,	the	screen	shows	that	they
are	appended,	but	what	if	I	thought	I	was	in	insert	mode	when	I	actually	was	in
command	mode?	One	trick	I	could	use	to	ensure	that	I’m	in	insert	mode	is	to	type
the	command	a	second	time.	If	the	letter	a	shows	up	in	the	text,	I	simply	would

backspace	over	it;	now	I	would	know	that	I’m	in	append	mode.

When	I’m	done	entering	the	new	characters,	and	I’m	still	in	insert	mode,	here’s	what
my	screen	looks	like:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~
~

Notice	that	the	cursor	always	stayed	on	the	i	in	is	throughout	this	operation.	Press
Escape	to	return	to	command	mode.	Notice	that	the	cursor	finally	hops	off	the	i	and
moves	left	one	character.

Note

To	differentiate	between	the	i	and	a	commands,	remember	that	the	insert	command
always	adds	the	new	information	immediately	before	the	character	that	the	cursor	is
sitting	on,	whereas	the	append	command	adds	the	information	immediately	to	the
right	of	the	current	cursor	position.

8.	With	this	in	mind,	try	to	fix	the	apostrophe	problem	in	the	word	werent’	on	the
last	line.	Move	the	cursor	to	the	n	in	that	word:

Click	here	to	view	code	image
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent’	we	informed?	What’s	wrong	with	him?”
~

To	add	the	apostrophe	immediately	after	the	current	character,	do	you	want	to	use
the	insert	command	(i)	or	the	append	(a)	command?	If	you	said	append,	give
yourself	a	pat	on	the	back!	Type	a	to	append	the	apostrophe:

Click	here	to	view	code	image
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	werent‘	we	informed?	What’s	wrong	with	him?”
~

Type	‘	once	and	then	press	Escape.

9.	Quit	vi	using	:q,	and	the	program	reminds	you	that	you	haven’t	saved	your
changes	to	this	new	file	at	the	very	bottom	of	the	screen:

Click	here	to	view	code	image
~
~

No	write	since	last	change	(:quit!	overrides)

To	write	the	changes,	you	need	a	new	command,	so	I’ll	give	you	a	preview	of	a	set
of	colon	commands	you’ll	learn	later	in	this	hour.	Type	:	(the	colon	character),
which	moves	the	cursor	to	the	bottom	of	the	screen:
~
~
:_

Now	type	w	to	write	out	(save)	the	file	and	then	press	the	Return	key:
Click	here	to	view	code	image

~
~
“buckaroo”	9	lines,	277	characters

It’s	okay	to	leave	vi	now.	I’ll	use	:q	to	quit,	and	I’m	safely	back	at	the	command
prompt.	A	quick	cat	confirms	that	the	tildes	were	not	included	in	the	file	itself:

Click	here	to	view	code	image
%	cat	buckaroo
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
%

As	you	can	tell,	the	vi	editor	is	quite	powerful	and	has	a	plethora	of	commands.	Just
moving	about	and	inserting	text,	you	have	learned	24	commands,	as	summarized	in	Table
10.1.

TABLE	10.1	Summary	of	vi	Motion	and	Insertion	Commands

Note

In	this	table,	I	use	the	simple	shorthand	notation	introduced	in	Hour	7,	“Looking
into	Files.”	Unix	users	often	use	a	caret	(^)	followed	by	a	character	instead	of	the
awkward	Ctrl-	notation.	Therefore,	^f	has	the	same	meaning	as	Ctrl-f.	Expressing
this	operation	as	^f	does	not	change	the	way	it’s	performed:	You	still	press	and
hold	down	the	Control	key	and	then	type	f.	It’s	just	a	more	succinct	notation.

You’ve	already	learned	quite	a	few	commands,	but	we	have	barely	scratched	the	surface	of
the	powerful	vi	command!

Task	10.5:	Deleting	Text
You	now	have	many	of	the	pieces	you	need	to	work	efficiently	with	the	vi	editor,	to	zip	to
any	point	in	the	file,	and	to	add	text	wherever	you’d	like.	Now	you	need	to	learn	how	to
delete	characters,	words,	and	lines.

The	simplest	form	of	deletion	is	to	use	the	x	command,	which	functions	as	though	you
were	writing	an	X	over	a	letter	you	don’t	want	on	a	printed	page:	It	deletes	the	character
under	the	cursor.	Type	x	five	times,	and	you	delete	five	characters.	Deleting	a	line	of	text
this	way	can	be	quite	tedious,	so	vi	has	some	alternative	commands.	(Are	you	surprised?)

One	command	that	many	vi	users	don’t	know	about	is	D	(for	“delete	through	the	end	of
the	line”).	Wherever	you	are	on	a	line,	if	you	type	D,	you	immediately	delete	everything
after	the	cursor	to	the	end	of	that	line	of	text.

If	there’s	an	uppercase	D	command,	you	can	bet	there’s	a	lowercase	d	command,	too.	The
d	delete	command	is	the	first	of	a	set	of	more	sophisticated	vi	commands	that	require	a
second	command	that	indicates	the	range	to	which	it’s	applied.	You	already	know	that	w
and	W	move	you	forward	a	word	in	the	file;	they’re	known	as	addressing	commands	in	vi.
You	can	follow	d	with	one	of	these	addressing	commands	to	specify	what	you	want	to
delete.	For	example,	to	delete	a	word,	simply	use	the	delete	command	and	the	move	word
command	together:	dw.

Note

Sometimes	you	might	get	a	bit	overzealous	and	delete	more	than	you	anticipated.
That’s	not	a	problem—well,	not	too	much	of	a	problem—because	vi	remembers
the	state	of	the	file	prior	to	the	most	recent	action	taken.	To	undo	a	deletion	(or	an
insertion,	for	that	matter),	use	the	u	command.	To	undo	a	line	of	changes,	use	the	U
command.	Be	aware	that	once	you’ve	moved	off	the	line	in	question,	the	U
command	is	unable	to	restore	it!

1.	Start	vi	again	with	the	big.output	file	you	used	earlier:
Click	here	to	view	code	image

leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)

janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
“big.output”	40	lines,	1659	characters

Type	x	a	few	times	to	delete	a	few	characters	from	the	beginning	of	the	file:
Click	here	to	view	code	image

gtc						ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

Now	type	u	to	undo	the	last	deletion:
Click	here	to	view	code	image

ngtc					ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

If	you	type	u	again,	what	do	you	think	will	happen?
Click	here	to	view	code	image

gtc						ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

The	undo	command	alternates	between	the	last	command	having	happened	and	not
having	happened.	To	explain	it	a	bit	better,	the	undo	command	is	an	action	unto
itself,	so	the	second	time	you	type	u,	you’re	undoing	the	undo	command.	Type	u	a
few	more	times	to	convince	yourself	that	this	is	the	case.

Note

Caveat:	Some	versions	of	vi	have	a	considerably	more	sophisticated	undo
capability,	and	the	u	key	goes	back,	and	back,	and	back	until	you’re	looking	at	an
empty	file	or	the	file	in	its	original	pre-edit	form.	If	you	have	that	version	of	vi,
you’ll	want	to	use	the	:redo	command	(type	in	the	colon	first)	to	go	“forward	in
time”	if	you	undo	too	far.

2.	It’s	time	to	make	some	bigger	changes	to	the	file.	Type	dw	twice	to	delete	the
current	word	and	the	next	word	in	the	file.	It	should	look	something	like	this	after
the	first	dw:

Click	here	to	view	code	image

ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

Then	it	should	look	like	this	after	the	second	dw:
Click	here	to	view	code	image

Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

Type	u.	You	see	that	you	can	undo	only	the	most	recent	command.	At	this	point,
though,	because	I	haven’t	moved	from	the	line	I’m	editing,	the	U,	or	restore-this-line
command,	will	restore	the	line	to	its	original	state:

Click	here	to	view	code	image
leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

3.	I	really	don’t	want	to	see	some	of	these	folks	in	the	output	file,	however.
Fortunately,	I	can	change	the	contents	of	this	file	by	using	the	dd	command	to	delete
lines.	When	you’re	using	one	of	these	two-letter	commands,	repeating	the	letter
means	to	apply	the	command	to	the	entire	line.	What	if	I	want	to	delete	the	entries
for	chinese	and	janitor,	both	of	which	are	visible	on	this	screen?

The	first	step	is	to	use	the	cursor	keys	to	move	down	to	any	place	on	the	line	for	the
chinese	account,	about	halfway	down	the	screen:

Click	here	to	view	code	image
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)

If	your	cursor	isn’t	somewhere	in	the	middle	of	this	line,	move	it	so	that	you	aren’t
at	an	edge.

I	had	planned	to	remove	this	line	completely,	but	perhaps	I’d	rather	just	remove	the
date,	time,	and	name	of	the	system	(in	parentheses)	instead.	To	accomplish	this,	I
don’t	need	to	type	dw	many	times,	or	even	x	many	times	but	rather	D	to	delete
through	the	end	of	the	line:

Click	here	to	view	code	image
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			_
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)

janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)

Oh,	that’s	not	quite	what	I	wanted	to	do.	No	problem.	The	undo	command	can	fix
it.	Simply	typing	u	restores	the	text	I	deleted:

Click	here	to	view	code	image
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)

4.	The	problem	is	that	I	wanted	to	delete	the	two	entries	chinese	and	janitor
from	the	file,	but	I	used	the	wrong	command.	Instead	of	using	the	D	command,	I
should	use	dd.	Typing	dd	has	these	results:

Click	here	to	view	code	image
Dec		1	18:27				(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
wellman		ttysd			Dec		3	23:01			(dov)

Notice	that	a	new	line	of	information	has	been	pulled	onto	the	screen	at	the	bottom
to	replace	the	blank	line	removed.

If	you	try	using	the	u	command	now,	what	happens?

I’m	almost	finished.	A	few	presses	of	the	Return	key,	and	I’m	down	to	the	entry	for
the	janitor	account.	Using	dd	removes	that	line,	too:

Click	here	to	view	code	image
Dec		1	18:27				(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)

labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
wellman		ttysd			Dec		3	23:01			(dov)
tuttleno	ttyse			Dec		3	23:03			(indyvax)

Each	line	below	the	one	deleted	moves	up	a	line	to	fill	in	the	blank	space,	and	a	new
line,	for	tuttleno,	moves	into	view.

5.	Now	I	want	to	return	to	the	buckaroo	file	to	remedy	some	of	the	horrendous
typographical	errors!	I	don’t	really	care	whether	I	save	the	changes	I’ve	just	made	to
this	file,	so	I’m	going	to	use	:q!	to	quit	and	discard	the	modifications	to	the
big.output	file.

Entering	vi	buckaroo	starts	vi	again:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“buckaroo”	9	lines,	277	characters

You	can	make	a	couple	of	fixes	in	short	order.	The	first	is	to	change
conservation	to	conversation	on	the	third	line.	To	move	there,	press	the
Return	key	twice	and	then	use	W	to	zip	forward	until	the	cursor	is	at	the	first	letter	of
the	word	you’re	editing:

Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conservation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”

Then	use	the	dw	command:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”

Now	enter	insert	mode	by	typing	i,	type	the	correct	spelling	of	the	word
conversation,	and	then	press	Escape:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation	.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”

6.	That’s	one	fix.	Now	move	down	a	couple	of	lines	to	fix	the	atrocious	misspelling	of
hospital:

Click	here	to	view	code	image
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hotpsial	in	El	paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~

Again,	use	dw	to	delete	the	word,	type	i	to	enter	insert	mode,	type	hospital,	and
then	press	Escape.	Now	all	is	well	on	the	line:

Click	here	to	view	code	image
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~

Well,	almost	all	is	well.	The	first	letter	of	Paso	needs	to	be	capitalized.	Move	to	it
by	typing	w	to	move	forward	a	few	words:

Click	here	to	view	code	image
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~

7.	It’s	time	for	a	secret	vi	expert	command!	Instead	of	typing	x	to	delete	the	letter,	i
to	enter	insert	mode,	P	as	the	correct	letter,	and	then	Escape	to	return	to	command
mode,	you	can	use	a	much	faster	method	to	transpose	case:	the	~	(tilde)	command.
Type	~	once,	and	here’s	what	happens:

Click	here	to	view	code	image
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~

Cool,	isn’t	it?	Back	up	to	the	beginning	of	the	word	again	and	type	~	a	few	times	to
see	what	happens.	Notice	that	each	time	you	type	~,	the	character’s	case	switches—
transposes—and	the	cursor	moves	to	the	next	character.	Type	~	four	times,	and	you
should	end	up	with	this:

Click	here	to	view	code	image
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	pASO.”
“What?	Why	weren’t’	we	informed?	What’s	wrong	with	him?”
~

Return	to	the	beginning	of	the	word	and	press	~	until	the	word	is	correct.

8.	One	more	slight	change,	and	the	file	will	be	fixed.	Move	to	the	last	line	of	the	file,
to	the	extra	apostrophe	in	the	word	weren’t’,	and	type	x	to	delete	the	offending
character.	The	screen	should	now	look	like	this:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t_we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

This	looks	great!	It’s	time	to	save	it	for	posterity.	Use	:wq,	a	shortcut	that	has	vi
write	out	the	changes	and	immediately	quit	the	program:

Click	here	to	view	code	image
~
~
~
“buckaroo”	9	lines,	276	characters
%

Not	only	have	you	learned	about	the	variety	of	deletion	options	in	vi,	but	you	also	have
learned	a	few	simple	shortcut	commands:	~	to	transpose	case	and	:wq	to	write	out	the
changes	and	quit	the	program	all	in	one	step.

You	should	feel	pleased;	you’re	now	a	productive	and	knowledgeable	vi	user,	and	you
can	modify	files,	making	easy	or	tough	changes.	Go	back	to	your	system	and	experiment
further	by	modifying	some	of	the	other	files.	Be	careful,	though,	not	to	make	changes	in
any	of	your	dot	files	(for	example,	.profile)	lest	you	cause	trouble	that	would	be
difficult	to	fix.

Summary
Table	10.2	summarizes	the	basic	vi	commands	you	learned	in	this	hour.

TABLE	10.2	Basic	vi	Commands

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
addressing	commands	These	vi	commands	enable	you	to	specify	what	type	of	object
you	want	to	work	with.	The	d	commands	serve	as	an	example:	dw	means	delete	word,	and
db	means	delete	preceding	word.

command	mode	This	is	the	mode	in	which	you	can	manage	your	document;	it	allows	you
to	change	text,	rearrange	it,	and	delete	it.

insert	mode	This	is	the	vi	mode	that	allows	you	to	enter	text	directly	into	a	file.	The	i
command	starts	insert	mode,	and	Escape	exits	it.

modal	A	modal	program	has	multiple	environments,	or	modes,	that	offer	different
capabilities.	In	a	modal	program,	the	Return	key,	for	example,	might	do	different	things	in
different	modes.

modeless	A	modeless	program	always	interprets	a	key	the	same	way,	regardless	of	what
the	user	is	doing.

transpose	case	Transposing	case	means	switching	uppercase	letters	to	lowercase	or
lowercase	to	uppercase.

Exercises
1.	What	happens	if	you	try	to	quit	vi	by	using	:qw?	Before	you	try	it,	do	you	expect
it	to	work?

2.	If	you’re	familiar	with	word	processing	programs	in	the	Mac	or	Windows
environments,	would	you	describe	them	as	modal	or	modeless?

3.	The	d	command	is	an	example	of	a	command	that	understands	addressing
commands.	You	know	of	quite	a	few.	Test	them	to	see	whether	they	will	all	work
following	d.	Make	sure	you	see	whether	you	can	figure	out	the	command	that	has
the	opposite	action	to	the	D	command.

4.	Do	all	the	following	three	commands	give	the	same	result?
D
d$
dG

5.	Imagine	that	you’re	in	command	mode	in	the	middle	of	a	line	that’s	in	the	middle	of
the	screen.	Describe	what	would	happen	if	you	were	to	type	each	of	the	following:
Badluck
Window
blad$

Preview	of	the	Next	Hour
The	next	hour	expands	your	knowledge	of	the	vi	editor.	It	introduces	you	to	the
sophisticated	search	and	replace	capability,	explores	the	useful	colon	commands,	and
details	the	command-line	options	you’ll	want	to	know.

Hour	11.	Advanced	vi	Tricks,	Tools,	and	Techniques

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	search	within	a	file

	How	to	search	and	replace

	How	to	have	vi	start	correctly

	The	key	colon	commands	in	vi

	The	change	and	replace	commands

	How	to	use	the	:!	command	to	access	Unix	commands

In	the	preceding	hour,	you	learned	what	probably	seems	like	a	ton	of	vi	commands	to
enable	you	to	easily	move	about	in	files,	insert	text,	delete	other	text,	and	move	from	file
to	file	without	leaving	the	program.	This	hour	expands	your	expertise	by	showing	you
some	more	powerful	vi	commands.	Before	you	begin	this	hour,	I	strongly	recommend
that	you	use	vi	to	work	with	a	few	files	to	ensure	that	you’re	comfortable	with	the
different	modes	of	the	program.

This	might	seem	like	a	small	list,	but	there’s	a	lot	packed	into	this	hour.	I’ll	be	totally
honest:	You	can	do	fine	in	vi	without	ever	reading	this	particular	lesson.	You	already
know	how	to	move	around,	how	to	insert	and	delete	text,	and	how	to	save	your	changes	or
quit	the	program	without	saving!	But	vi	is	like	any	other	complex	topic:	The	more	you’re
willing	to	study	and	learn,	the	more	the	program	will	bow	to	your	needs.	This	means	you
can	accomplish	a	wider	variety	of	daily	tasks	more	efficiently.

Advanced	Editing	with	vi
The	preceding	hour	focused	on	the	basics	of	inserting	and	deleting	text	and	moving
around	within	a	file.	This	hour	adds	a	critical	capability:	searching	and	replacing	text
within	a	file.

Task	11.1:	Searching	Within	a	File
With	the	addition	of	two	more	capabilities,	you’ll	be	ready	to	face	down	any	vi	expert,
demonstrating	your	skill	and	knowledge	of	the	editor,	and,	much	more	importantly,	you
will	be	able	to	really	fly	through	files,	moving	immediately	to	the	information	you	desire
for	further	edits.

The	two	new	capabilities	we’re	going	to	explore	are	for	finding	specific	words	or	phrases
in	a	file	and	for	moving	to	specific	lines	in	a	file.	Similar	to	searching	for	patterns	in
less,	the	/pattern	command	searches	forward	in	the	file	for	a	specified	pattern,	and	?
pattern	searches	backward	for	the	specified	pattern.	To	repeat	the	preceding	search,	use
the	n	command	to	tell	vi	to	search	again,	in	the	same	direction,	for	the	next	instance	of

the	same	pattern.

You	can	move	easily	to	any	specific	line	in	a	file	by	using	the	G,	or	go-to-line,	command.
If	you	type	a	number	before	you	type	G,	the	cursor	will	move	to	that	line	in	the	file.	If	you
type	G	without	a	line	number,	the	cursor	will	zip	you	to	the	last	line	of	the	file	(by	default).

1.	Start	vi	again	with	the	big.output	file	with	the	command	vi	big.output:
Click	here	to	view	code	image

leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
“big.output”	40	lines,	1659	characters

Remember	that	I	used	:q!	to	quit	earlier,	so	my	changes	were	not	retained.	(I	know
you’re	paying	super-close	attention	to	these	examples!)

To	move	to	the	last	line	of	the	file,	I	type	G	once,	and	I	see	this:
Click	here	to	view	code	image

cdemmert	ttysk			Dec		3	22:37			(xsun)
jrlee				ttysn			Dec		3	22:53			(mac1)
fitzgejs	ttyso			Dec		3	23:18			(dov)
doerrhb		ttysp			Dec		3	23:20			(dov)
cdemmert	ttysq			Dec		3	23:00			(xsun)
frazierw	ttysr			Dec		3	23:01			(dov)
buckeye		ttyss			Dec		3	23:20			(mac2)
mtaylor		ttyst			Dec		3	23:22			(dov)
look					ttysu			Dec		3	23:12			(age)
janitor		ttysw			Dec		3	18:29			(age)
ajones			ttysx			Dec		3	23:23			(rassilon)
~
~
~
~
~
~
~
~
~

~
~
~

To	move	to	the	third	line	of	the	file,	I	type	3	followed	by	G:
Click	here	to	view	code	image

leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)

Notice	that	the	cursor	is	on	the	third	line	of	the	file.

2.	Now	it’s	time	to	search.	From	my	previous	travels	in	this	file,	I	know	that	the	very
last	line	is	for	the	account	ajones,	but	instead	of	using	G	to	move	there	directly,	I
can	search	for	the	specified	pattern	by	using	the	/	search	command.

Typing	/	immediately	moves	the	cursor	to	the	bottom	of	the	screen:
Click	here	to	view	code	image

md							ttysU			Dec		2	08:45			(mueller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
/_

Now	I	can	type	in	the	pattern	ajones:
Click	here	to	view	code	image

md							ttysU			Dec		2	08:45			(mueller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
/ajones_

When	I	press	Return,	vi	spins	through	the	file	and	moves	me	to	the	first	line
following	the	line	that	the	cursor	was	sitting	on	that	contains	the	specified	pattern:

Click	here	to	view	code	image
cdemmert	ttysk			Dec		3	22:37			(xsun)
jrlee				ttysn			Dec		3	22:53			(mac1)

fitzgejs	ttyso			Dec		3	23:18			(dov)
doerrhb		ttysp			Dec		3	23:20			(dov)
cdemmert	ttysq			Dec		3	23:00			(xsun)
frazierw	ttysr			Dec		3	23:01			(dov)
buckeye		ttyss			Dec		3	23:20			(mac2)
mtaylor		ttyst			Dec		3	23:22			(dov)
look					ttysu			Dec		3	23:12			(age)
janitor		ttysw			Dec		3	18:29			(age)
ajones			ttysx			Dec		3	23:23			(rassilon)
~
~
~
~
~
~
~
~
~
~
~
~

3.	If	I	type	n	to	search	for	this	pattern	again,	a	slash	appears	at	the	bottom	to	show	that
vi	understood	my	request.	But	the	cursor	stays	exactly	where	it	is,	which	means	that
this	is	the	only	occurrence	of	the	pattern	in	this	file.

4.	Looking	at	this	file,	I	noticed	that	the	account	janitor	has	all	sorts	of	sessions
running.	To	search	backward	for	occurrences	of	the	account,	I	can	use	the	?
command:
~
~
?janitor_

The	first	search	moves	the	cursor	up	one	line,	which	leaves	the	screen	looking
almost	the	same:

Click	here	to	view	code	image
cdemmert	ttysk			Dec		3	22:37			(xsun)
jrlee				ttysn			Dec		3	22:53			(mac1)
fitzgejs	ttyso			Dec		3	23:18			(dov)
doerrhb		ttysp			Dec		3	23:20			(dov)
cdemmert	ttysq			Dec		3	23:00			(xsun)
frazierw	ttysr			Dec		3	23:01			(dov)
buckeye		ttyss			Dec		3	23:20			(mac2)
mtaylor		ttyst			Dec		3	23:22			(dov)
look					ttysu			Dec		3	23:12			(age)
janitor		ttysw			Dec		3	18:29			(age)
ajones			ttysx			Dec		3	23:23			(rassilon)
~
~
~
~
~
~
~
~
~
~
~
~

?janitor

Here’s	where	the	n,	or	next	match,	can	come	in	handy.	If	I	type	n	this	time	and
another	occurrence	of	the	pattern	is	in	the	file,	vi	moves	me	directly	to	the	match:

Click	here	to	view	code	image
yuxi							ttyrn			Dec		1	14:19			(pc)
frodo						ttyro			Dec		3	22:01			(mentor)
labeck					ttyrt			Dec		3	22:02			(dov)
chenlx2				ttyru			Dec		3	21:53			(mentor)
leungtc				ttys0			Nov	28	15:11			(gold)
chinese				ttys2			Dec		3	22:53			(excalibur)
cdemmert			ttys5			Dec		3	23:00			(mentor)
yuenca					ttys6			Dec		3	23:00			(mentor)
janitor				ttys7			Dec		3	18:18			(age)
mathisbp			ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541						ttysC			Dec		2	15:16			(solaria)
yansong				ttysL			Dec		1	14:44			(math)
mdps							ttysO			Nov	30	19:39			(localhost)
md									ttysU			Dec		2	08:45			(muller)
jac								ttysa			Dec		3	18:18			(localhost)
eichsted			ttysb			Dec		3	23:21			(pc1)
sweett					ttysc			Dec		3	22:40			(dov)
wellman				ttysd			Dec		3	23:01			(dov)
tuttleno			ttyse			Dec		3	23:03			(indyvax)
wu									ttysf			Dec		3	23:10			(term01)
daurismj			ttysg			Dec		3	23:10			(dov)
cs414						ttysh			Dec		3	23:12			(xds)

Try	it	with	a	pattern	that	occurs	multiple	times	in	your	own	file.	When	you’re	done,
quit	vi	by	using	:q.

vi	has	not	dozens	but	hundreds	of	commands.	Rather	than	overwhelm	you	with	all	of
them,	I	have	opted	to	show	you	the	most	important	ones.	In	fact,	that’s	how	this	entire
book	is	organized;	after	all,	if	you	wanted	a	huge	command	reference,	you’d	be	reading
the	man	pages,	right?	By	the	time	you’re	done	with	this	hour,	your	knowledge	of	vi
commands	will	be	substantial,	and	you	will	be	able	to	use	the	editor	with	little	difficulty.

This	task	focused	on	searching	for	patterns,	which	is	a	common	requirement	and	helpful
feature	of	any	editor.	In	addition,	you	learned	how	to	move	to	the	top	of	the	file	(1G)	and
to	the	bottom	of	the	file	(G),	as	well	as	anywhere	in	between.

Task	11.2:	The	Colon	Commands	in	vi
Without	too	much	explanation,	you	have	learned	a	couple	of	colon	commands—that	is,
commands	that	have	a	colon	as	the	first	character.	The	colon	immediately	zooms	the
cursor	to	the	bottom	of	the	screen	for	further	input.	These	commands	are	actually	a	subset
of	quite	a	large	range	of	commands,	all	part	of	the	ex	editor	on	which	vi	is	based.
Remember	what	I	told	you	at	the	beginning	of	the	last	hour	about	how	vi	is	the	visual
shell	to	the	ex	editor?	Turns	out	that	ex	is	still	a	part	of	the	system	after	all.

Note

One	difference	to	note	with	colon	commands	is	that	unlike	with	vi	commands	that
you	type	in	command	mode,	the	commands	you	type	at	the	colon	prompt	must	be
followed	by	a	Return	for	the	editor	to	process	them.	This	is	a	typical	confusion	in
vi,	but	you’ll	get	used	to	it	once	you	try	it.

Table	11.1	lists	the	most	helpful	colon	commands.

TABLE	11.1	Most	Helpful	Colon	Commands

1.	Start	vi	again,	this	time	specifying	a	list	of	files	to	edit;	vi	indicates	that	you	have
specified	more	than	one	file:
%	vi	buckaroo	big.output
2	files	to	edit.

Then	it	clears	the	screen	and	shows	you	the	first	file:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
“buckaroo”	9	lines,	276	characters

Typing	the	command	sequence	:w	and	pressing	Return	results	in	the	file	being
written	to	disk	with	the	current	name.	There’s	not	much	to	see	in	that	case.

Click	here	to	view	code	image
~
~
~
“buckaroo”	9	lines,	276	characters

2.	Instead,	try	writing	to	a	different	file,	using	:w	newfile:
~
~
:w	newfile_

When	you	press	Return,	you	see	this:
Click	here	to	view	code	image

~
~
“newfile”	[New	file]	9	lines,	276	characters

3.	Now	pay	attention	to	where	the	cursor	is	in	the	file.	The	:r,	or	read-file,	command
always	includes	the	contents	of	the	file	below	the	current	line.	Just	before	I	press
Return,	then,	here’s	what	my	screen	looks	like:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:r	newfile_

Pressing	Return	yields	this:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~

This	can	be	a	helpful	way	to	include	files	within	one	another	or	to	build	a	file	that
contains	lots	of	other	files.

4.	Now	that	I’ve	garbled	the	file,	I	want	to	save	it	to	a	new	file,
buckaroo.confused:
~
~
:w	buckaroo.confused_

When	I	press	Return,	I	see	this:
Click	here	to	view	code	image

~
~
“buckaroo.confused”	[New	file]	17	lines,	546	characters

5.	Now	it’s	time	to	move	to	the	second	file	in	the	list	of	files	given	to	vi	at	startup.	To
do	this,	I	use	the	:n,	or	next-file,	command:
~
~
:n_

Pressing	Return	results	in	the	next	file	being	brought	into	the	editor	to	replace	the
first:

Click	here	to	view	code	image
leungtc		ttyrV			Dec		1	18:27			(magenta)
tuyinhwa	ttyrX			Dec		3	22:38			(expert)
hollenst	ttyrZ			Dec		3	22:14			(dov)
brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)

yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
“big.output”	40	lines,	1659	characters

6.	In	the	middle	of	working	on	this,	I	suddenly	realize	that	I	need	to	make	a	slight
change	to	the	recently	saved	buckaroo.confused	file.	That’s	where	the	:e
command	comes	in	handy.	Using	it,	I	can	edit	any	other	file:
~
~
:e	buckaroo.confused_

I	press	Return	and	see	this:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
“buckaroo.confused”	17	lines,	546	characters

That’s	it!	You	now	know	a	considerable	amount	about	one	of	the	most	important,	and
certainly	most	used,	commands	in	Unix.	There’s	more	to	learn	(isn’t	there	always?),	but

you	now	can	edit	your	files	with	aplomb!

Task	11.3:	Starting	vi	Correctly
The	vi	command	wouldn’t	be	part	of	Unix	if	it	didn’t	have	some	startup	options
available,	but	there	really	are	only	two	worth	mentioning.	The	-R	flag	sets	up	vi	to	show
you	the	specified	files	in	read-only	mode,	to	ensure	that	you	don’t	accidentally	modify
them.	The	second	option	doesn’t	start	with	a	dash	but	with	a	plus	sign:	Any	command
following	the	plus	sign	is	used	as	an	initial	command	to	the	program.	This	is	more	useful
than	it	might	sound.	The	command	vi	+$	sample,	for	example,	starts	the	editor	at	the
bottom	of	the	file	sample,	and	vi	+17	sample	starts	the	editor	on	the	17th	line	of
sample.

1.	Try	the	read-only	format:
Click	here	to	view	code	image

%	vi	-R	buckaroo

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“buckaroo”	[Read	only]	9	lines,	276	characters

Notice	the	addition	of	the	[Read	only]	message	on	the	status	line	at	the	bottom
of	the	screen.	You	can	edit	the	file,	but	if	you	try	to	save	the	edits	with	:w,	you	see
this:
~
~
“buckaroo”	File	is	read	only

Quit	vi	with	:q!.

2.	Recall	that	janitor	occurs	in	many	places	in	the	big.output	file.	Start	vi	on
the	file	line	that	contains	the	pattern	janitor	in	the	file:

Click	here	to	view	code	image

%	vi	+/janitor	big.output

brandt			ttyrb			Nov	28	23:03			(age)
holmes			ttyrj			Dec		3	21:59			(age)
yuxi					ttyrn			Dec		1	14:19			(pc)
frodo				ttyro			Dec		3	22:01			(mentor)
labeck			ttyrt			Dec		3	22:02			(dov)
chenlx2		ttyru			Dec		3	21:53			(mentor)
leungtc		ttys0			Nov	28	15:11			(gold)
chinese		ttys2			Dec		3	22:53			(excalibur)
cdemmert	ttys5			Dec		3	23:00			(mentor)
yuenca			ttys6			Dec		3	23:00			(mentor)
janitor		ttys7			Dec		3	18:18			(age)
mathisbp	ttys8			Dec		3	23:17			(dov)
janitor		ttys9			Dec		3	18:18			(age)
cs541				ttysC			Dec		2	15:16			(solaria)
yansong		ttysL			Dec		1	14:44			(math)
mdps					ttysO			Nov	30	19:39			(localhost)
md							ttysU			Dec		2	08:45			(muller)
jac						ttysa			Dec		3	18:18			(localhost)
eichsted	ttysb			Dec		3	23:21			(pc1)
sweett			ttysc			Dec		3	22:40			(dov)
wellman		ttysd			Dec		3	23:01			(dov)
tuttleno	ttyse			Dec		3	23:03			(indyvax)
wu							ttysf			Dec		3	23:10			(term01)
“big.output”	40	lines,	1659	characters

This	time,	notice	where	the	cursor	is	sitting.	Quit	again,	with	:q.

3.	Finally,	launch	vi	with	the	cursor	on	the	third	line	of	the	file	buckaroo:
Click	here	to	view	code	image

%	vi	+3	buckaroo

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“buckaroo”	9	lines,	276	characters

Again,	notice	where	the	cursor	rests.

It	can	be	helpful	to	know	these	two	starting	options.	In	particular,	I	often	use	+/pattern

to	start	the	editor	at	the	first	occurrence	of	a	specific	pattern,	but	you	can	use	vi	for	years
without	ever	knowing	more	than	just	the	name	of	the	command	itself.

Task	11.4:	Searching	and	Replacing
Though	most	of	vi	is	easy	to	learn	and	use,	one	command	that	always	causes	great
trouble	for	users	is	search-and-replace.	The	key	to	understanding	this	command	is	to
remember	that	vi	is	built	atop	the	line	editor	(ex).	Instead	of	trying	to	figure	out	some
arcane	vi	sequence,	in	this	case	it’s	far	easier	to	just	drop	into	the	line	editor	and	use	a
simple	colon	command	to	replace	the	old	pattern	with	a	new	one.	To	replace	an	existing
word	on	the	current	line	with	a	new	word	(the	simplest	case),	use	:s/old/new/.	If	you
want	to	have	all	occurrences	on	the	current	line	matched,	add	the	g	(global)	suffix:
:s/old/new/g.	You’ll	know	if	you’ve	forgotten	the	g	suffix	because	you’ll	only
change	the	first	occurrence	of	the	pattern	on	each	line	of	the	file	rather	than	all
occurrences.

To	change	all	occurrences	of	one	word	or	phrase	to	another	across	the	entire	file,	the
command	is	identical	to	the	preceding,	except	that	you	must	add	a	range	specifier.	Recall
that	$	is	the	vi	notation	for	the	last	line	in	the	file	(invoking	vi	as	vi	+$	filename
starts	out	on	the	last	line,	for	example).	Also	recall	that	ranges	are	specified	by	two
numbers	separated	by	a	comma.	It	should	be	no	surprise	that	the	full,	all-file	global	search
and	replace	command	is	:1,$	s/old/new/g.

1.	Start	vi	again	with	the	buckaroo	file,	add	the	additional	text	on	the	first	and	last
lines	using	the	existing	vi	commands	you	know,	and	then	use	1G	to	jump	to	the	top
of	the	file:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

Go	Team	Banzai!	Go	Team	Banzai!	Go	Team	Banzai!

~
~
~
~
~
~
~
~
~
~
~
~
~

~

The	cursor	is	on	the	first	line.	I’m	going	to	rename	Earl.	I	type	:,	the	cursor
immediately	moves	to	the	bottom,	and	then	I	type	s/Earl/Duke/.	Pressing
Return	produces	this:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	by	Duke	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s	aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

As	you	can	see,	this	search	and	replace	was	simple	and	effective.

2.	Say	that	you	decide	that	developmental	psychology	is	your	bag.	Now,	instead	of
having	this	Banzai	character,	you	want	my	fictional	character	to	be	called	Bandura.
You	could	use	the	preceding	command	to	change	the	occurrence	on	the	current	line,
but	you	really	want	to	change	all	occurrences	within	the	file.

This	is	no	problem.	Type	:1,$	s/Banzai/Bandura/	and	press	Return.	Here’s
the	result:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Bandura”	by	Duke	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Bandura.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

Go	Team	Bandura!	Go	Team	Banzai!	Go	Team	Banzai!

~
~
~
~
~
~
~
~
~
~
~
~
~

The	result	is	not	quite	right.	Because	you	forgot	the	trailing	g	in	the	substitute
command,	vi	changed	only	the	very	first	occurrence	on	each	line,	leaving	the	“go
team”	exhortation	on	the	last	line	rather	confusing.

To	try	again,	type	:1,$	s/Banzai/Bandura/g	and	press	Return.	This	time	the
file	changes	as	you	wanted	it	to:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Bandura”	by	Duke	MacRauch

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Bandura.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

Go	Team	Bandura!	Go	Team	Bandura!	Go	Team	Bandura!

~
~
~
~
~
~
~
~
~
~
~
7	substitutions

Notice	that	vi	also	indicates	the	total	number	of	substitutions	on	the	very	bottom
line	of	the	screen	(7,	in	this	case).

3.	Press	u	to	undo	the	last	change.

I	have	to	admit,	search	and	replace	is	one	area	where	a	graphical	user	interface	comes	in
handy.	A	windowing	system	offers	different	text	input	fields	for	the	old	and	new	patterns;
it	shows	each	change	and	a	dialog	box	that	asks	“Should	I	change	this	one?”	We’re
focused	on	the	Unix	command	line,	so	that’s	just	not	an	option	within	vi.	Later	in	the
book,	we’ll	have	a	look	at	the	X	window	system	and	the	GNOME	interface,	however,	so
don’t	despair!

Task	11.5:	Using	the	Change	and	Replace	Commands
In	the	preceding	sections,	you	learned	how	to	fix	various	problems	by	deleting	words	and
then	replacing	them	with	new	words.	There	is,	in	fact,	a	much	smarter	way	to	do	this,	and
that	is	by	using	either	the	change	or	replace	command.

Both	of	these	commands	have	a	lowercase	version	and	an	uppercase	version,	and	each	is
quite	different	from	the	other.	The	r	command	replaces	the	character	that	the	cursor	is
sitting	on	with	the	next	character	you	type,	whereas	the	R	command	puts	you	into	replace
mode	so	that	anything	you	type	overwrites	whatever	is	already	on	the	line	until	you	press
Esc.	By	contrast,	C	replaces	everything	on	the	line	with	whatever	you	type,	regardless	of
whether	you	match	the	number	of	characters.	(It’s	a	subtle	difference—but	I	demonstrate
it,	so	don’t	fear.)	The	c	command	is	the	most	powerful	of	the	four.	The	change	command,
c,	works	just	like	the	d	command,	described	in	the	preceding	hour.	You	can	use	the	c
command	with	any	address	reference,	and	it	will	enable	you	to	change	text	through	to	that
address,	whether	it’s	a	word,	a	line,	or	even	the	rest	of	the	document.

This	will	all	make	more	sense	with	a	few	examples.

1.	Start	vi	with	the	buckaroo.confused	file:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

~
~
~
~
~
~
~
“buckaroo.confused”	17	lines,	546	characters

Without	moving	the	cursor	at	all,	type	R.	Nothing	happens,	or	so	it	seems.	Now	type
the	words	Excerpt	from	“Buckaroo	Banzai”,	and	watch	what	occurs:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	at	my	own	watch	and	overheard
General	Catbird’s
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
”He’s	not	even	here,”	went	the	conversation.

Now	press	Escape	and	notice	that	what	you	see	on	the	screen	is	exactly	what’s	in	the
file.

2.	This	isn’t,	however,	quite	what	you	want.	You	could	use	either	D	or	d$	to	delete
through	the	end	of	the	line,	but	that’s	a	bit	awkward.	Instead,	use	0	to	move	back	to
the	beginning	of	the	line:

Click	here	to	view	code	image

Excerpt	from	“Buckaroo	Banzai”	at	my	own	watch	and	overheard
General	Catbird’s
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
”He’s	not	even	here,”	went	the	conversation.

This	time,	type	C	to	change	the	contents	of	the	line.	Before	you	even	type	a	single

character	of	the	new	text,	notice	what	the	line	now	looks	like:
Click	here	to	view	code	image

Excerpt	from	“Buckaroo	Banzai”	at	my	own	watch	and	overheard
General	Catbird’$
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

Here’s	where	a	subtle	difference	comes	into	play.	Look	at	the	last	character	on	the
current	line.	When	you	pressed	C,	the	program	replaced	the	last	character	of	the	line
with	a	$	to	show	the	range	of	the	text	that’ll	be	changed.	Press	the	Tab	key	once	and
then	type	Excerpt	from	“Buckaroo	Bansai”	by	Earl	MacRauch.

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Bansai”	by	Earl	MacRauchheard	General	Catbird’$
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

This	time,	watch	what	happens	when	you	press	Escape:
Click	here	to	view	code	image

Excerpt	from	“Buckaroo	Bansai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

3.	Here’s	another	mistake.	The	actual	title	of	the	book	is	Buckaroo	Banzai	with	a	z,	but
it’s	been	spelled	it	with	an	s	instead.	This	is	a	chance	to	try	the	new	r	command.

Use	cursor-control	keys	to	move	the	cursor	to	the	offending	letter.	Use	b	to	back	up
words	and	then	h	a	few	times	to	move	into	the	middle	of	the	word.	The	screen	now
looks	like	this:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Bansai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

Now	type	r.	Again,	nothing	happens;	the	cursor	doesn’t	move.	Type	r	again	to
make	sure	it	worked:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banrai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

That’s	no	good.	It	replaced	the	s	with	an	r,	which	definitely	isn’t	correct.	Fix	it	with
rz,	and	you	should	have	the	following:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.

4.	Okay,	those	are	the	easy	ones.	Now	it’s	time	to	see	what	the	c	command	can	do.	In
fact,	it’s	incredibly	powerful.	You	can	change	just	about	any	range	of	information
from	the	current	point	in	the	file	in	either	direction!

To	start,	move	to	the	middle	of	the	file,	where	the	second	copy	of	the	passage	is
located:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

~
~
~
~
~
~
~
“buckaroo.confused”	17	lines,	546	characters

Say	that	you	want	to	change	the	word	aide	that	the	cursor	is	sitting	on	to	The
tall	beige	wall	clock	opted	to	instead.	Type	c	and	note	that,	as	with
many	other	commands	in	vi,	nothing	happens.	Now	type	w	to	change	just	the
current	word.	The	screen	should	look	like	this:

Click	here	to	view	code	image
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

aid$	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”

The	editor	has	replaced	the	last	character	in	the	affected	range	to	a	$	so	that	you	can
see	what’s	going	to	be	changed	when	you’re	done.	Now	type	The	tall	beige

wall	clock	opted	to.	Once	you	reach	the	$,	the	editor	stops	overwriting
characters	and	starts	inserting	them	instead;	the	screen	now	looks	like	this:

Click	here	to	view	code	image
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

The	tall	beige	wall	clock	opted	to_give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”

Press	Escape,	and	you’re	done	(though	you	can	undo	the	change	with	the	u	or	U
commands,	of	course).

5.	Tall	and	beige	or	not,	this	section	makes	no	sense	now,	so	change	this	entire	line	by
using	the	$	motion	command	you	learned	in	the	preceding	hour.	First,	use	0	to	move
to	the	beginning	of	the	line	and	then	type	c$:

Click	here	to	view	code	image
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

The	tall	beige	wall	clock	opted	to	give	him	the	latest$
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”

Note	that	the	last	character	changed	to	$.	Press	Escape	without	typing	in	any
replacement	text,	and	the	entire	line	is	deleted:

Click	here	to	view	code	image
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

_
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”

6.	Six	lines	are	still	below	the	current	line.	I	could	delete	them	and	then	type	the
information	I	want,	but	that’s	rather	crude.	Instead,	the	c	command	comes	to	the
rescue.	Move	down	one	line,	type	c6,	and	press	Return.	Watch	what	happens:

Click	here	to	view	code	image
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
~
~
~
~
~
~
~
~
~
~
~
~

7	lines	changed

In	general,	you	can	change	the	current	and	next	line	by	using	c	followed	by	a	Return
(because	the	Return	key	is	a	motion	key,	too,	remember).	By	prefacing	the	command
with	a	number	above,	you	changed	the	range	of	the	command	from	two	lines	to	six.

Note

You	might	be	asking,	“Why	two	lines?”	The	answer	is	subtle.	In	essence,	whenever
you	use	the	c	command,	you	change	the	current	line	plus	any	additional	lines	that
might	be	touched	by	the	command.	Pressing	Return	moves	the	cursor	to	the
following	line;	therefore,	the	current	line	(starting	at	the	cursor	location)	through
the	following	lines	are	changed.	The	command	probably	should	change	just	to	the
beginning	of	the	following	line,	but	that’s	beyond	even	my	control!

Now	press	Tab	four	times,	type	(page	8)	and	then	press	the	Escape	key.	The
screen	should	look	like	this:

Click	here	to	view	code	image
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

																																(page	8)
~
~
~

7.	What	if	you	change	your	mind?	That’s	where	the	u	command	comes	in	handy.
Typing	u	once	undoes	the	last	command:

Click	here	to	view	code	image
Excerpt	from	“Buckaroo	Banzai”	by	Earl	MacRauch
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

”He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

~
~
~
~
~

~
~
6	more	lines

The	combination	of	replace	and	change	commands	adds	a	level	of	sophistication	to	an
editor	that	you	might	have	suspected	could	only	insert	or	delete.	But	wait,	there’s	more	to
cover	in	this	hour!

Task	11.6:	Accessing	Unix	with	!
This	final	task	on	vi	introduces	you	to	one	of	the	most	powerful,	and	least-known,
commands	in	the	editor:	the	!	escape-to-Unix	command.	When	prefaced	with	a	colon
(:!,	for	example),	it	enables	you	to	run	Unix	commands	without	leaving	the	editor.	More
powerfully,	the	!	command	in	vi	itself	accepts	address	specifications,	feeds	that	block	of
text	to	the	command	as	input,	and	replaces	it	with	the	results	of	having	run	that	command
on	the	text.

All	this	might	be	a	bit	confusing,	so	let’s	have	a	look.

1.	Let’s	leave	Buckaroo	Banzai	alone	for	a	bit	to	switch	to	another	classic,	Charles
Dickens’s	A	Tale	of	Two	Cities.	I’ve	created	a	file	called	dickens.note	for	this
exercise,	and	you	can	either	type	it	yourself	or	grab	a	copy	of	the	file	from	our
website,	http://www.intuitive.com/tyu24/.	The	file	is	shown	here:

Click	here	to	view	code	image

%	cat	dickens.note

																								A	Tale	of	Two	Cities
																													Preface

		When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
		Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main
		idea	of	this	story.	A	strong	desire	was	upon	me	then,	to
		embody	it	in	my	own	person;
		and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
		necessitate	the	presentation
		to	an	observant	spectator,	with	particular
		care	and	interest.

		As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
		its	present	form.	Throughout	its	execution,	it	has	had	complete
		possession	of	me;	I	have	so	far	verified	what
		is	done	and	suffered	on	these	pages,
		as	that	I	have	certainly	done	and	suffered	it	all	myself.

		Whenever	any	reference	(however	slight)	is	made	here	to	the
		condition	of	the	French	people	before	or	during
		the	Revolution,	it	is	truly
		made	on	the	faith	of	the	most	trustworthy
		witnesses.	It	has	been	one	of	my	hopes	to	add
		something	to	the	popular	and	picturesque	means	of
		understanding	that	terrible	time,	though	no	one	can	hope	to
		add	anything	to	the	philosophy	of	Mr	Carlyle’s	wonderful	book._

		Tavistock	House
		November	1859

http://www.intuitive.com/tyu24/

With	this	file	on	my	system,	I’ll	start	by	invoking	vi	with	the	filename	and	then	use
a	command	escape	to	double-check	what	files	I	have	in	my	home	directory.	To	do
this,	I	type	:!,	which	moves	the	cursor	to	the	bottom	line:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made	on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
:!_

Then	I	type	ls	-F	and	press	Return,	as	if	I	were	at	the	prompt	of	the	command	line
itself:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made	on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
:!ls	-F
Archives/										big.output									dickens.note							src/
InfoWorld/									bigfiles											keylime.pie								temp/
Mail/														bin/															newfile												tetme
News/														buckaroo											owl.c
OWL/															buckaroo.confused		sample
awkscript										demo															sample2
[Hit	any	key	to	continue]	_

If	I	press	Return,	I’m	back	in	the	editor,	and	nothing’s	been	changed.

2.	Now	for	some	real	fun,	I	move	to	the	beginning	of	the	first	paragraph	and	add	the
text	Chuck,	here	are	my	current	files:.	Then	I	press	Return	twice
before	using	the	Escape	key	to	return	to	command	mode.	The	screen	now	looks	like
this:

Click	here	to	view	code	image
A	Tale	of	Two	Cities

																																						Preface

Chuck,	here	are	my	current	files:

_

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main
idea	of	this	story.		A	strong	desire	was	upon	me	then,	to

Notice	that	the	cursor	was	moved	up	a	line.	(Caveat:	Some	Unix	implementations
have	a	version	of	vi	that	leaves	you	at	the	original	insertion	point.)	I’m	now	on	a
blank	line,	and	the	line	following	is	also	blank.

To	feed	the	current	line	to	the	Unix	system	and	replace	it	with	the	output	of	the
command,	vi	offers	an	easy	shortcut:	!!.	When	I	type	the	second	!	(or,	more
precisely,	after	vi	figures	out	the	desired	range	specified	for	this	command),	the
cursor	moves	to	the	bottom	of	the	screen	and	prompts	with	a	single	!	character:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is	truly

made	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
:!_

To	list	all	the	files	in	my	directory,	I	can	type	ls	-F	and	press	Return.	After	a
moment	or	two,	vi	adds	the	output	of	that	command	to	the	file	itself:

Click	here	to	view	code	image
A	Tale	of	Two	Cities

																																						Preface

Chuck,	here	are	my	current	files:
Archives/															bigfiles																newfile
InfoWorld/														bin/																				owl.c
Mail/																			buckaroo																sample
News/																			buckaroo.confused							sample2
OWL/																				demo																				src/
awkscript															dickens.note												temp/
big.output														keylime.pie													tetme

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main
idea	of	this	story.		A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.		Throughout	its	execution,	it	has	had	complete
6	more	lines

Notice	that	this	time	the	status	on	the	bottom	indicates	how	many	lines	were	added
to	the	file:	6	more	lines.

Type	u	to	undo	this	change.	Notice	that	the	vi	status	indicator	on	the	bottom	line
says	there	are	now	six	fewer	lines.

3.	Move	back	to	the	W	in	When.	You	are	now	ready	to	learn	one	of	my	favorite	vi
commands,	one	that	lets	you	filter	text	through	an	arbitrary	Unix	command	or
sequence	of	commands.

This	time	I’m	going	to	use	the	Unix	stream	editor,	sed,	to	perform	a	neat	trick:
prefacing	each	selected	line	with	>.	The	actual	command	I’ll	use	is	sed	‘s/^/>
/’.	Ready?

This	is	where	the	}	motion	command	comes	in	handy,	too:	It	selects	from	the	current
point	to	the	end	of	the	paragraph.	To	accomplish	this,	I	type	!},	moving	the	cursor
to	the	bottom	of	the	screen,	then	type	in	the	sed	command	shown	earlier:	sed
‘s/^/>	/’.	Pressing	Return	feeds	the	affected	lines—the	current	paragraph—to
sed.	The	sed	command	then	applies	the	substitution	indicated	and	replaces	those
lines	in	the	file	with	the	output	of	the	sed	command.	Voilà!	Here’s	what	I	get:

Note

The	sed	editor	is	one	of	your	best	friends	in	Unix	because	you	can	use	it	in	any
command	pipe	to	modify	the	data	as	it	passes	through.	A	quick	read	of	the	sed
man	page	will	be	time	well	spent.

Click	here	to	view	code	image
A	Tale	of	Two	Cities

																																						Preface

Chuck,	here	are	my	current	files:

>	When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
>	Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main
>	idea	of	this	story.		A	strong	desire	was	upon	me	then,	to
>	embody	it	in	my	own	person;
>	and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
>	necessitate	the	presentation
>	to	an	observant	spectator,	with	particular
>	care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.		Throughout	its	execution,	it	has	had	complete
possession	of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
!sed	‘s/^/>	/’

I	hope	you’re	excited	to	see	this	command	in	action!	It’s	a	powerful	way	to	interact
with	Unix	while	within	vi.

4.	I’ll	provide	a	few	more	examples	of	ways	to	interact	with	Unix	while	within	vi.
First,	I	don’t	really	want	the	prefix	to	each	line,	so	I’m	going	to	type	u	to	undo	the
change.

Instead,	I	would	rather	have	the	system	actually	tighten	up	the	lines	and	ensure	that	a
reasonable	number	of	words	occur	on	each	line	and	that	no	lines	are	so	long	that
they	wrap	around	onto	the	next	line	on	my	screen.	On	most	systems,	there	is	a
command	called	either	fmt	or	adjust	to	accomplish	this.	To	figure	out	which
works	on	your	system,	simply	use	the	:!	command	and	feed	a	word	or	two	to	the
fmt	command	to	see	what	happens:

Click	here	to	view	code	image
Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
:!echo	hi	|	fmt
[No	write	since	last	change]
hi
[Hit	any	key	to	continue]	_

In	this	case,	fmt	did	what	I	hoped,	so	I	can	be	sure	that	the	command	exists	on	my

system.	If	your	response	was	command	unknown,	adjust	is	a	likely	alternative.
If	neither	exists,	complain	to	your	vendor!

Armed	with	this	new	command,	you	can	try	another	variant	of	!},	this	time	by
feeding	the	current	paragraph	to	the	fmt	command.	I’m	still	at	the	beginning	of	the
word	When	in	the	text,	so	when	I	type	the	sequence	!}fmt,	the	paragraph	is
cleaned	up,	and	the	screen	changes	to	this:

Click	here	to	view	code	image
A	Tale	of	Two	Cities

																																						Preface

Chuck,	here	are	my	current	files:

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main
idea	of	this	story.		A	strong	desire	was	upon	me	then,	to	embody	it	in	my
own
person;	and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it
would	necessitate	the	presentation	to	an	observant	spectator,	with
particular	care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.		Throughout	its	execution,	it	has	had	complete
possession	of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made	on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
2	fewer	lines

Again,	vi	tells	us	that	the	number	of	lines	in	the	file	has	changed	as	a	result	of	the
command.	In	this	situation,	tightening	up	the	paragraph	actually	reduced	it	by	two
lines.

This	command	is	so	helpful	that	I	often	have	it	bound	to	a	specific	key	with	the	map
command.	A	typical	way	to	do	this	in	an	.exrc,	the	preferences/config	file
for	vi,	might	be	this:
:map	^P	!}fmt^M

The	^M	is	what	vi	uses	to	record	a	Return.	(You	need	to	use	^v	beforehand	to	have
vi	save	a	control	sequence.)	With	this	defined	in	the	.exrc	file	in	my	home
directory,	I	can	then	press	^P	to	format	the	current	paragraph.	Fast	and	darn	handy.

Clearly,	the	!	command	opens	up	vi	to	work	with	the	rest	of	the	Unix	system.	There’s
almost	nothing	you	can’t	now	do	within	the	editor,	whether	it’s	add	or	remove	prefixes,
clean	up	text,	or	even	show	what	happens	when	you	try	to	run	a	command	or	reformat	a
passage	within	the	current	file.

Summary	of	vi	Commands
A	summary	of	the	commands	you	learned	in	this	hour	is	shown	in	Table	11.2.

TABLE	11.2	Advanced	vi	Commands

Summary
Clearly,	vi	is	a	very	complex	and	sophisticated	tool	that	enables	you	not	only	to	modify
your	text	files	but	also	to	customize	the	editor	for	your	keyboard.	Just	as	importantly,	you
can	access	all	the	power	of	Unix	while	within	vi.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
colon	commands	The	vi	commands	that	begin	with	a	colon	are	usually	used	for	file
manipulation.

replace	mode	In	this	mode	of	vi,	any	characters	you	type	replace	those	that	are	already
in	the	file.

Exercises
1.	What	does	the	following	command	do?

:1,5	s/kitten/puppy

2.	What	do	these	commands	do?
15i?ESCh
i15?ESCh
i?ESC15h

3.	What	would	happen	if	you	were	to	use	the	following	startup	flags?
vi	+O	test
vi	+/joe/	names
vi	+hhjjhh
vi	+:q	testme

4.	Try	^G	on	the	first	and	last	lines	of	a	file.	Explain	why	the	percentage	indicator
might	not	be	what	you	expected.

5.	What’s	the	difference	between	the	following	four	strings?
rr
RrESC
cwrESC
CrESC

6.	What	key	mappings	do	you	have	in	your	version	of	vi?	Do	you	have	labeled	keys
on	your	keyboard	that	could	be	helpful	in	vi	but	aren’t	defined?	If	so,	define	them
in	your	.exrc	file	using	the	:map	command.

7.	What	do	you	think	the	following	command	will	do?	Try	it	and	see	whether	you’re
right.
!}ls

Preview	of	the	Next	Hour
Now	that	you’ve	read	this	hour	and	the	preceding	one,	you	know	more	about	vi	than	the
vast	majority	of	people	using	Unix	and	Linux.	There’s	a	second	popular	editor,	however—
one	that	is	modeless	and	offers	its	own	interesting	possibilities	for	working	with	files	and
the	Unix	system.	It’s	called	emacs,	and	if	you	have	it	on	your	system,	it’s	definitely
worth	a	look.	We’ll	spend	the	next	hour	getting	acquainted	with	it.

Hour	12.	An	Overview	of	the	emacs	Editor

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	launch	emacs	and	insert	text

	About	moving	around	in	a	file

	How	to	delete	characters	and	words

	How	to	search	and	replace	in	emacs

	About	using	the	emacs	tutorial	and	help	system

	About	working	with	other	files

The	only	screen-oriented	editor	that’s	guaranteed	to	be	included	with	the	Unix	system	is
vi,	but	that	doesn’t	mean	it’s	the	only	good	editor	available	in	Unix!	An	alternative	editor
that	has	become	quite	popular	in	the	computer	science	world	is	called	emacs.	This	hour
teaches	you	the	fundamentals	of	this	very	different	and	quite	powerful	editing	tool	and
environment.

Remember	what	I	said	in	the	preceding	hour,	when	I	mentioned	the	emacs	editor:	emacs
is	modeless.	So	this	hour,	be	prepared	for	an	editor	that	is	quite	unlike	vi.	And	because
it’s	modeless,	there’s	no	insert	or	command	mode.	As	a	result,	you	will	have	ample
opportunity	to	use	the	Control	key.	And	then	some.

Note

Over	the	years,	I	have	tried	to	become	an	emacs	enthusiast,	once	even	forcing
myself	to	use	it	for	an	entire	month.	I	had	crib	sheets	of	commands	taped	up	all
over	my	office.	At	the	end	of	the	month,	I	had	attained	an	editing	speed	that	was
about	half	of	my	speed	in	vi,	an	editor	I’ve	used	thousands	of	times	in	the	past	30+
years	that	I’ve	worked	in	Unix.	I	think	emacs	has	a	lot	going	for	it,	and	generally	I
think	that	modeless	software	is	better	than	modal	software.	The	main	obstacle	I	see
for	emacs,	however,	is	that	it’s	begging	for	pull-down	menus	like	you’d	get	in	a
Mac	or	Windows	program.	Using	Control,	Meta,	Shift-Meta,	and	other	weird	key
combinations	just	isn’t	as	easy.	On	the	other	hand,	your	approach	to	editing	might
be	different,	and	you	might	not	have	years	of	vi	experience	affecting	your
preference	of	editing	environments.	I	encourage	you	to	give	emacs	a	fair	shake	by
working	through	all	the	examples	I	have	included.	You	might	find	that	it	matches
your	working	style	better	than	vi.

The	Other	Popular	Editor:	emacs
Computer	folk	are	passionate	about	their	tools,	so	it’s	no	surprise	that	when	it	comes	to
terminal-based	editors,	that’s	a	“religious”	war,	too.	When	it	comes	to	Unix,	the	main
combatants	are	vi	and	emacs,	and	the	fact	is	that	both	are	very	competent	editors,	and
you	can	be	highly	productive	with	either.	It’s	kind	of	your	call	on	which	is	going	to	work
better	for	you.

One	wrinkle,	though:	I’ve	never	seen	a	Unix	or	Linux	system	without	some	version	of	the
vi	editor	installed,	but	plenty	ship	without	emacs.	If	yours	is	missing	emacs	and	you
really	want	to	try	it,	check	out	your	system	package	manager	or	window	GUI-based
package	management	tool.	It	should	just	be	a	few	mouse	clicks	away.

Task	12.1:	Launching	emacs	and	Inserting	Text
Starting	emacs	is	as	simple	as	starting	any	other	Unix	program:	Type	the	name	of	the
program,	followed	by	any	file	or	files	you’d	like	to	work	with.	The	puzzle	with	emacs	is
figuring	out	what	it’s	actually	called	on	your	system,	if	you	have	it.	There	are	a	couple	of
ways	to	try	to	identify	emacs;	I’ll	demonstrate	these	methods	in	action	2	of	this	task.

Take	a	look	at	your	computer	keyboard.	emacs	requires	you	to	use	not	just	the	Control
key	but	another	key,	known	as	the	Meta	key,	a	sort	of	alternative	Control	key.	If	you	have
a	key	labeled	Meta	or	Alt	(for	Alternative)	on	your	keyboard,	that’s	the	one.	If,	like	me,
you	don’t,	simply	press	Escape	every	time	a	Meta	key	is	indicated.

Because	both	Control	and	Meta	keys	are	used	in	emacs,	the	notation	for	indicating
commands	is	unique.	Throughout	this	book,	a	Control-key	sequence	has	been	shown
either	as	Ctrl-F	or	as	^F.	emacs	people	write	this	differently,	to	allow	for	the	difference
between	Control	and	Meta	keys.	In	emacs	notation,	^F	is	shown	as	C-f,	where	C-
always	means	Control.	Similarly,	M-x	is	the	Meta	key	plus	the	character	specified	by	x.	If
you	don’t	have	a	Meta	key,	the	sequence	is	Escape	followed	by	x.	Finally,	some	arcane
commands	involve	both	the	Control	and	the	Meta	keys	being	pressed	(simultaneously	with
the	other	key	involved).	This	notation	is	C-M-x	and	indicates	that	you	need	either	to	press
and	hold	down	both	the	Control	and	the	Meta	keys	while	typing	x,	or,	if	you	don’t	have	a
Meta	(or	Alt)	key,	press	Escape	followed	by	C-x.	(I	did	warn	you	that	it’s	a	bit	more
complicated,	right?)

With	this	notation	in	mind,	you	leave	emacs	by	pressing	C-x	C-c	(Ctrl-X,	followed	by
Ctrl-C).

1.	Check	whether	your	system	has	emacs	available.	The	easiest	way	to	find	out	is	to
type	emacs	at	the	command	line	and	see	what	happens:
%	emacs
emacs:	Command	not	found.
%

This	is	a	good	indication	that	emacs	isn’t	available.	If	your	command	worked	and
you	now	are	in	the	emacs	editor,	move	down	to	step	2	in	this	task.

A	popular	version	of	emacs	is	from	the	Free	Software	Foundation,	and	it’s	called

GNU	emacs.	To	see	whether	you	have	this	version,	type	gnuemacs	or	gnumacs
at	the	command	line.

Still	can’t	find	emacs	on	your	system?	Check	with	your	system	administrator	or	do	a
Google	search	for	the	name	of	your	particular	OS	and	the	word	emacs	and	see	what
you	can	find	out.	At	worst,	you	can	go	to	the	GNU	Project	site	and	download	a
copy:	http://www.gnu.org/software/emacs/.

2.	Rather	than	start	with	a	blank	screen,	quit	the	program	(C-x	C-c)	and	restart	emacs
with	one	of	the	earlier	test	files,	dickens.note:

Click	here	to	view	code	image

%	gnuemacs	dickens.note

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of
this	story.	A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.	Throughout	its	execution,	it	has	had	complete
possession	of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
–—Emacs:	dickens.note											(Fundamental)–-Top––––—

As	you	can	see,	it’s	quite	different	from	the	display	shown	when	vi	starts	up.	The
status	line	at	the	bottom	of	the	display	offers	useful	information	as	you	edit	the	file
at	different	points,	and	it	also	reminds	you	at	all	times	of	the	name	of	the	file,	which
can	be	surprisingly	helpful.	emacs	can	work	with	different	kinds	of	files,	and	here
you	see	by	the	word	Fundamental	in	the	status	line	that	emacs	is	prepared	for	a
regular	text	file.	If	you’re	programming,	emacs	can	offer	special	features
customized	for	your	particular	language.

3.	Quit	emacs	by	using	the	C-x	C-c	sequence	but	let	a	few	seconds	pass	after	you
press	C-x	to	watch	what	happens.	When	I	press	C-x,	the	bottom	of	the	screen
suddenly	changes	to	this:

Click	here	to	view	code	image
on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
–—Emacs:	dickens.note											(Fundamental)–-Top––––—
C-x-

http://www.gnu.org/software/emacs/

Note

Confusingly,	the	cursor	remains	at	the	top	of	the	file,	but	emacs	reminds	me	that
I’ve	pressed	C-x	and	that	I	need	to	enter	a	second	command	after	I’ve	decided	what
to	do.	I	now	press	C-c	and	immediately	exit	emacs.

Already	you	can	see	some	dramatic	differences	between	emacs	and	vi.	If	you’re
comfortable	with	multiple	key	sequences	such	as	C-x	C-c	to	quit,	I	think	you’re	going	to
enjoy	learning	emacs.	If	not,	stick	with	it	anyway.	Even	if	you	never	use	emacs	after
trying	the	examples	in	this	lesson,	it’s	still	good	to	know	a	little	bit	about	it.

Note

Why	learn	about	a	tool	you’re	not	going	to	use?	Because	as	you	go	from	system	to
system,	you	never	really	know	what	graphical	interface,	what	window	manager,	and
even	what	editor	packages	might	be	available.	Being	competent	at	emacs	or	vi
means	that	even	in	a	worst-case	scenario	with	a	very	rustic	install,	you	can	edit	files
and	proceed	with	your	project.	So	the	answer	really	is	that	it’s	smart	to	learn
because	it’s	smart	to	have	options.

Task	12.2:	Moving	Around	in	a	File
Files	are	composed	of	characters,	words,	lines,	sentences,	and	paragraphs,	and	emacs	has
commands	to	help	you	move	about	among	them.	Most	systems	have	the	arrow	keys
enabled,	which	helps	you	avoid	worrying	about	some	of	the	key	sequences,	but	it’s	best	to
know	them	all	anyway.

The	most	basic	motions	are	C-f	and	C-b,	which	are	used	to	move	the	cursor	forward	and
backward	one	character,	respectively.	Switch	those	to	the	Meta	command	equivalents,	and
the	cursor	will	move	by	words:	M-f	moves	the	cursor	forward	a	word,	and	M-b	moves	it
back	a	word.	Pressing	C-n	moves	the	cursor	to	the	next	line,	C-p	to	the	previous	line,	C-a
to	the	beginning	of	the	line,	and	C-e	to	the	end	of	the	line.	(The	vi	equivalents	for	all	of
these	are	l,	h,	w,	and	b	for	moving	forward	and	backward	a	character	or	word;	j	and	k
for	moving	up	or	down	a	line;	and	0	or	$	to	move	to	the	beginning	or	end	of	the	current
line.	Which	makes	more	sense	to	you?)

To	move	forward	a	sentence,	you	can	use	M-e,	which	actually	moves	the	cursor	to	the	end
of	the	sentence.	Pressing	M-a	moves	it	to	the	beginning	of	a	sentence.	Notice	the	parallels
between	Control	and	Meta	commands:	C-a	moves	the	cursor	to	the	beginning	of	the	line,
and	M-a	moves	it	to	the	beginning	of	the	sentence.

To	scroll	within	the	document,	you	use	C-v	to	move	forward	a	screen	and	M-v	to	move
back	a	screen.	To	move	forward	a	page	(usually	60	lines	of	text;	this	is	based	on	a	printed
page	of	information),	you	can	use	either	C-x]	or	C-x	[for	forward	motion	or	backward
motion,	respectively.

Finally,	to	move	to	the	top	of	the	file,	use	M-<,	and	to	move	to	the	bottom,	use	the	M->

command.

1.	Go	back	into	emacs	and	locate	the	cursor.	It	should	be	at	the	top	of	the	screen:
Click	here	to	view	code	image

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.	Throughout	its	execution,	it	has	had	complete
possession	of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
–—Emacs:	dickens.note											(Fundamental)–-Top––––—

Move	down	four	lines	by	using	C-n	four	times.	Your	cursor	should	now	be	sitting	on
the	d	of	drama:

Click	here	to	view	code	image
Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would

2.	Next,	move	to	the	end	of	this	sentence	by	using	the	M-e	command	(emacs	expects
two	spaces	to	separate	sentences):

Click	here	to	view	code	image
When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story._	A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would

Now	type	the	following	text:	I	fought	the	impulse	to	write	this
novel	vociferously,	but,	dear	reader,	I	felt	the
injustice	of	the	situation	too	strongly	in	my	breast	to
deny.	Don’t	press	Return	or	Escape	when	you’re	done.	The	screen	should	now
look	similar	to	this:

Click	here	to	view	code	image
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this

story.	I	fought	the	impulse	to	write	this	novel	vociferously,	but,	dear
reader,\

	I	felt
the	injustice	of	the	situation	too	strongly	in	my	breast	to	deny_		A
strong
des\
ire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation

You	can	see	that	emacs	wrapped	the	line	when	it	became	too	long	(between	the
words	felt	and	the),	and	because	the	lines	are	still	too	long	to	display,	a	few	of
them	end	with	a	backslash.	The	backslash	isn’t	actually	a	part	of	the	file;	with	it,
emacs	is	saying	that	those	lines	are	longer	than	can	be	displayed.

3.	Now	try	to	move	back	a	few	characters	by	pressing	Backspace.

Uh	oh!	If	your	system	is	like	mine,	the	Backspace	key	doesn’t	move	the	cursor	back
up	a	character	at	all.	Instead,	it	starts	the	emacs	help	system,	where	you’re	suddenly
confronted	with	a	screen	that	looks	like	this:

Click	here	to	view	code	image
You	have	typed	C-h,	the	help	character.	Type	a	Help	option:

A		command-apropos.		Give	a	substring,	and	see	a	list	of	commands
														(functions	interactively	callable)	that	contain
														that	substring.	See	also	the		apropos		command.
B		describe-bindings.	Display	table	of	all	key	bindings.
C		describe-key-briefly.	Type	a	command	key	sequence;
														it	prints	the	function	name	that	sequence	runs.
F		describe-function.	Type	a	function	name	and	get	documentation	of	it.
I		info.	The		info		documentation	reader.
K		describe-key.	Type	a	command	key	sequence;
														it	displays	the	full	documentation.
L		view-lossage.	Shows	last	100	characters	you	typed.
M		describe-mode.	Print	documentation	of	current	major	mode,
														which	describes	the	commands	peculiar	to	it.
N		view-emacs-news.	Shows	emacs	news	file.
S		describe-syntax.	Display	contents	of	syntax	table,	plus	explanations
T		help-with-tutorial.	Select	the	Emacs	learn-by-doing	tutorial.
V		describe-variable.	Type	name	of	a	variable;
														it	displays	the	variable’s	documentation	and	value.
W		where-is.	Type	command	name;	it	prints	which	keystrokes
														invoke	that	command.
—**-Emacs:	*Help*																	(Fundamental)–-Top––––—
A	B	C	F	I	K	L	M	N	S	T	V	W	C-h	C-h	C-h	C-d	C-n	C-w	or	Space	to	scroll:	_

To	escape	the	help	screen	(you’ll	learn	more	about	it	later	in	this	hour),	press
Escape,	and	your	screen	should	be	restored.	The	status	line	shows	what	file	you’re
viewing.	But	beware:	You	aren’t	always	viewing	the	file	you	want	to	work	with.

The	correct	key	to	move	the	cursor	back	a	few	characters	is	C-b.	Use	that	to	back	up
and	then	use	C-f	to	move	forward	again	to	the	original	cursor	location.

4.	Check	that	the	last	few	lines	of	the	file	haven’t	changed	by	using	the	emacs	move-
to-end-of-file	command,	M->.	(Think	of	file	redirection	to	remember	the	file	motion
commands.)	Now	the	screen	looks	like	this:

Click	here	to	view	code	image
Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
understanding	that	terrible	time,	though	no	one	can	hope
to	add	anything	to	the	philosophy	of	Mr	Carlyle’s	wonderful	book.

Tavistock	House
November	1859
_

—**-Emacs:	dickens.note											(Fundamental)–-Bot––––—

5.	Changing	the	words	of	Charles	Dickens	was	fun,	so	save	these	changes	and	quit.	If
you	try	to	quit	the	program	with	C-x	C-c,	emacs	reminds	you	that	there	are
unsaved	changes:

Click	here	to	view	code	image
—**-Emacs:	dickens.note											(Fundamental)–-Bot––––—
Save	file	/users/taylor/dickens.note?	(y	or	n)		_

Typing	y	saves	the	changes;	n	quits	without	saving	the	changes;	and	if	you	instead
decide	to	return	to	the	edit	session,	Escape	will	cancel	the	action	entirely.	Typing	n
gets	you	a	second	reminder	that	the	changes	will	be	lost	if	you	don’t	save	them:

Click	here	to	view	code	image
—**-Emacs:	dickens.note											(Fundamental)–-Bot––––—
Modified	buffers	exist;	exit	anyway?	(yes	or	no)		_

This	time	type	yes	(emacs	will	complain	if	you	just	type	y!)	and,	finally,	you’re
back	on	the	command	line.

Entering	text	in	emacs	is	incredibly	easy.	It’s	as	though	the	editor	is	always	in	insert
mode.	The	price	you	pay	for	this,	however,	is	that	just	about	anything	else	you	do	requires
Control	or	Meta	sequences.	Even	the	Backspace	key	did	something	other	than	what	you
wanted.

The	motion	commands	are	summarized	in	Table	12.1.

TABLE	12.1	emacs	Motion	Commands

Task	12.3:	Deleting	Characters	and	Words
Inserting	text	into	an	emacs	buffer	is	simple,	and	after	you	get	the	hang	of	it,	moving
about	in	the	file	isn’t	too	bad,	either.	How	about	deleting	text?	The	series	of	Control	and
Meta	commands	that	enable	you	to	insert	text	are	a	precursor	to	all	commands	in	emacs,
and	it	should	come	as	no	surprise	that	C-d	deletes	the	current	character,	M-d	deletes	the
next	word,	M-k	deletes	the	rest	of	the	current	sentence,	and	C-k	deletes	the	rest	of	the
current	line.	If	you	have	a	key	on	your	keyboard	labeled	DEL,	RUBOUT,	or	Delete,
you’re	in	luck	because	Delete	deletes	the	previous	character,	M-Delete	deletes	the
previous	word,	and	C-x	Delete	deletes	the	previous	sentence.

Unfortunately,	although	I	have	a	Delete	key,	it’s	tied	to	the	Backspace	function	on	my
system,	so	every	time	I	press	it,	it	actually	sends	a	C-h	sequence,	not	the	DEL	sequence,	to
the	system.	The	result	is	that	I	cannot	use	any	of	these	backward	deletion	commands.

1.	Restart	emacs	with	the	dickens.note	file	and	move	the	cursor	to	the	middle	of
the	fifth	line.	(Remember	that	C-n	moves	to	the	next	line,	and	C-f	moves	forward	a
character.)	It	should	look	like	this:

Click	here	to	view	code	image
Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this

story.	A	strong	desire	was	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular

Notice	that	my	cursor	is	on	the	w	in	was	on	the	fifth	line	here.

2.	Press	C-d	C-d	C-d	to	remove	the	word	was.	Now	type	came	to	revise	the	sentence
slightly.	The	screen	should	now	look	like	this:

Click	here	to	view	code	image
Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular

Now	press	Delete	once	to	remove	the	last	letter	of	the	new	word,	and	then	type	e	to
reinsert	it.	Instead	of	backing	up	a	character	at	a	time,	I	am	going	to	use	M-Delete
(Meta	plus	the	Delete	key)	to	delete	the	word	just	added.	The	word	is	deleted,	but
the	spaces	on	either	side	of	the	word	are	retained:

Click	here	to	view	code	image
Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	_upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular

Try	another	word	to	see	whether	you	can	get	this	sentence	to	sound	interesting.	Type
crept	to	see	how	it	reads.

3.	Of	course,	it’s	probably	not	good	writing	karma	to	revise	classic	stories	such	as	A
Tale	of	Two	Cities,	so	delete	this	entire	sentence.	If	you	press	C-x	Delete,	which	is
an	example	of	a	multi-keystroke	command	in	emacs,	will	it	do	the	right	thing?
Recall	that	C-x	Delete	deletes	the	previous	sentence.	When	you	press	C-x	Delete,
the	results	are	helpful,	if	not	completely	what	you	want	to	accomplish:

Note

emacs	also	requires	some	multi-keystroke	commands,	where	you	might	press	a
Control	sequence	and	follow	it	with	a	second	keystroke.	Although	this	allows	you
to	have	many	commands	to	control	your	text,	it	also	means	you	need	to	know	many
commands.

Click	here	to	view	code	image
Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	_upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular

That’s	okay.	Now	you	can	delete	the	second	part	of	the	sentence	by	using	the	M-k
command.	Now	the	screen	looks	like	what	you	want:

Click	here	to	view	code	image
When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	_

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.	Throughout	its	execution,	it	has	had	complete	possession
of	me;	I	have	so	far	verified	what

4.	Let’s	look	at	a	great	feature	of	emacs.	Deleting	sentences	is	just	as	wildly
inappropriate	as	changing	words,	so	you	might	want	to	undo	the	last	two	changes.	If
you	were	using	vi,	you’d	be	stuck	because	vi	remembers	only	the	last	change,
while	some	versions	of	vi	have	more	sophisticated	undo	features	that	let	you	move
back	and	forth	in	the	entire	edit	stream;	but	emacs	has	that	beat.	With	emacs,	you
can	back	up	as	many	changes	as	you’d	like,	usually	until	you	restore	the	original
file.	To	step	backward,	use	C-x	u.

The	first	time	you	press	C-x	u,	the	screen	changes	to	this:
Click	here	to	view	code	image

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	_upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.	Throughout	its	execution,	it	has	had	complete	possession

The	second	time	you	press	it,	the	screen	goes	even	further	back	in	the	revision
history:

Click	here	to	view	code	image
When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	crept_upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.	Throughout	its	execution,	it	has	had	complete	possession

Finally,	using	C-x	u	three	more	times	causes	the	original	text	to	be	restored:
Click	here	to	view	code	image

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.	A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.	Throughout	its	execution,	it	has	had	complete	possession
of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French	people	before	or	during	the	Revolution,	it	is	truly	made,
on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
Undo!

If	you	don’t	have	a	Delete	key,	some	of	the	deletion	commands	will,	regrettably,	be
unavailable	to	you.	Generally,	though,	emacs	has	as	many	ways	to	delete	text	as	vi	has
—if	not	more.	The	best	feature,	however,	is	that,	unlike	vi,	emacs	remembers	edit
changes	from	the	beginning	of	your	editing	session.	You	can	always	back	up	as	far	as	you
want	by	using	the	C-x	u	undo	request,	all	the	way	back	to	the	original	version	of	the	file
you	launched	the	editor	with.

The	deletion	commands	are	summarized	in	Table	12.2.

TABLE	12.2	Deletion	Commands	in	emacs

Task	12.4:	Searching	and	Replacing	in	emacs
Because	emacs	reserves	the	last	line	of	the	screen	for	its	own	system	prompts,	searching
and	replacing	are	easier	than	in	vi.	Moreover,	the	system	prompts	for	the	fields	and	asks,
for	each	occurrence,	whether	to	change	it.	On	the	other	hand,	this	command	isn’t	a	simple
keystroke	or	two;	rather,	it	is	an	example	of	a	named	emacs	command.	A	named	emacs
command	is	a	command	that	requires	you	to	type	its	name,	such	as	query-replace,
rather	than	a	command	key	or	two.

Searching	forward	for	a	pattern	is	done	by	pressing	C-s,	and	searching	backward	is	done
with	C-r	(the	mnemonics	are	search	forward	and	reverse	search).	To	leave	the	search
when	you’ve	found	what	you	want,	press	Escape,	and	to	cancel	the	search	and	return	to
your	starting	point,	use	C-g.

Note

Unfortunately,	you	might	find	that	pressing	C-s	does	very	strange	things	to	your
system.	In	fact,	^s	and	^q	are	often	used	as	flow	control	on	a	terminal,	and	by
pressing	C-s,	you’re	actually	telling	the	terminal	emulator	to	stop	sending
information	until	it	sees	a	C-q.	Flow	control	is	the	protocol	used	by	your	computer
and	terminal	to	make	sure	that	neither	outpaces	the	other	during	data	transmission.
If	this	happens	to	you,	you	need	to	turn	off	XON/XOFF	flow	control.	Ask	your
system	administrator	for	help	or	check	the	settings	on	your	Terminal	or	telnet	app.

Query	and	replace	is	really	a	whole	new	feature	within	emacs.	To	start	a	query	and
replace,	use	M-x	query-replace.	emacs	will	prompt	for	what	to	do	next.	When	a
match	is	shown,	you	can	type	various	commands	to	affect	what	happens:	y	makes	the
change;	n	leaves	the	matching	sequence	as	is	but	moves	to	the	next	match;	Escape	or	q
quits	replace	mode;	and	!	automatically	replaces	all	occurrences	of	the	pattern	without
further	prompting.

1.	I’m	still	looking	at	the	dickens.note	file,	and	I	have	moved	the	cursor	to	the
upper-left	corner	by	using	M-<.	Somewhere	in	the	file	is	the	word	Revolution,
but	I’m	not	sure	where.	Worse,	every	time	I	press	C-s,	the	terminal	freezes	up	until	I
press	C-q	because	of	flow	control	problems.

Instead	of	searching	forward,	I’ll	search	backward	by	first	moving	the	cursor	to	the
bottom	of	the	file	with	M->	and	then	pressing	C-r:

Click	here	to	view	code	image
–—Emacs:	dickens.note											(Fundamental)–-Bot––––—
I-search	backward:

As	I	type	each	character	of	the	pattern	Revolution,	the	cursor	dances	backward,
matching	the	pattern	as	it	grows	longer	and	longer,	until	emacs	finds	the	word	I
seek:

Click	here	to	view	code	image
Whenever	any	reference	(however	slight)	is	made	here	to	the	condition

of	the	French	people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
understanding	that	terrible	time,	though	no	one	can	hope
to	add	anything	to	the	philosophy	of	Mr	Carlyle’s	wonderful	book.

Tavistock	House
November	1859

–—Emacs:	dickens.note											(Fundamental)–-Bot––––—
I-search	backward:	Revol

2.	Now	to	try	the	query-replace	feature.	To	begin,	I	move	to	the	top	of	the	file
with	M-<	and	then	press	M-x,	which	causes	the	notation	to	show	up	on	the	bottom
status	line:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is	truly	made,
on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
M-x	_

I	then	type	the	words	query-replace	and	press	Return.	emacs	understands	that
I	want	to	find	all	occurrences	of	a	pattern	and	replace	them	with	another.	emacs
changes	the	prompt	to	this:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is
truly	made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
Query	replace:	_

Now	I	type	the	word	I	want	to	replace.	To	cause	confusion	in	the	file,	I	think	I’ll
change	French	to	Danish	because	maybe	A	Tale	of	Two	Cities	really	takes	place
in	London	and	Copenhagen.	To	do	this,	I	type	French	and	press	Return.	The
prompt	changes	to	this:

Click	here	to	view	code	image
of	the	French	people	before	or	during	the	Revolution,	it	is	truly	made,
on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
Query	replace	French	with:	_

I	type	Danish	and	again	press	Return.
Click	here	to	view	code	image

as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	French_people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—

Query	replacing	French	with	Danish:

It	might	not	be	completely	obvious,	but	emacs	has	found	a	match	(immediately
before	the	cursor)	and	is	prompting	me	for	what	to	do	next.	The	choices	here	are
summarized	in	Table	12.3.

TABLE	12.3	Options	During	Query	and	Replace

I	opt	to	make	this,	and	all	other	possible	changes	in	the	file,	by	pressing	!,	and	the
screen	changes	to	tell	me	that	there	were	no	more	occurrences:

Click	here	to	view	code	image
Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	Danish_people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
Done

Searching	in	emacs	is	awkward,	particularly	because	of	the	flow	control	problems	you
may	incur	because	of	your	terminal.	However,	searching	and	replacing	with	the	query-
replace	command	is	fantastic;	it’s	much	better	and	more	powerful	than	the	vi
alternative.	As	I	said	earlier,	your	assessment	of	emacs	all	depends	on	what	features	you
prefer.

Task	12.5:	Using	the	emacs	Tutorial	and	Help	System
Unlike	vi	and,	indeed,	unlike	most	of	Unix,	emacs	includes	its	own	extensive	built-in
documentation	and	a	tutorial	to	help	you	learn	how	to	use	the	program.	As	I	noted	earlier,
you	access	the	help	system	by	pressing	C-h.	Pressing	C-h	two	times	brings	up	the	general
help	menu	screen.	There	is	also	an	information	browser	called	info	(accessed	with	C-h
i),	and	there’s	a	tutorial	system	you	can	start	by	pressing	C-h	t.

emacs	enthusiasts	insist	that	the	editor	is	modeless,	but	in	fact	it	does	have	modes.	You
used	one	just	now—the	query-replace	mode.	To	obtain	help	on	the	current	mode
you’re	working	in,	you	can	use	C-h	m.

1.	Boldly,	I	press	C-h,	and	the	entire	screen	is	replaced	with	this:
Click	here	to	view	code	image

You	have	typed	C-h,	the	help	character.	Type	a	Help	option:

A		command-apropos.		Give	a	substring,	and	see	a	list	of	commands
														(functions	interactively	callable)	that	contain
														that	substring.	See	also	the		apropos		command.

B		describe-bindings.	Display	table	of	all	key	bindings.
C		describe-key-briefly.	Type	a	command	key	sequence;
														it	prints	the	function	name	that	sequence	runs.
F		describe-function.	Type	a	function	name	and	get	documentation	of	it.
I		info.	The		info		documentation	reader.
K		describe-key.	Type	a	command	key	sequence;
														it	displays	the	full	documentation.
L		view-lossage.	Shows	last	100	characters	you	typed.
M		describe-mode.	Print	documentation	of	current	major	mode,
														which	describes	the	commands	peculiar	to	it.
N		view-emacs-news.	Shows	emacs	news	file.
S		describe-syntax.	Display	contents	of	syntax	table,	plus	explanations
T		help-with-tutorial.	Select	the	Emacs	learn-by-doing	tutorial.
V		describe-variable.	Type	name	of	a	variable;
														it	displays	the	variable’s	documentation	and	value.
W		where-is.	Type	command	name;	it	prints	which	keystrokes
														invoke	that	command.
—**-Emacs:	*Help*																	(Fundamental)–-Top––––—
A	B	C	F	I	K	L	M	N	S	T	V	W	C-x		b	C-d	C-n	C-w	or	Space	to	scroll:	_

What	to	do	now?	Seventeen	options	are	possible	from	this	point,	as	shown	in	Table
12.4.

TABLE	12.4	emacs	Help	System	Command	Options

2.	I	choose	K	and	then	press	M-<	to	see	what	that	command	really	does.	The	first	thing
that	happens	after	I	type	K	is	that	the	table	of	help	information	vanishes,	to	be
replaced	by	my	original	text,	and	then	the	prompt	appears	along	the	bottom:

Click	here	to	view	code	image
of	the	Danish_people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
—**-Emacs:	dickens.note											(Fundamental)–-Top––––—
Describe	key:-

Pressing	M-<	brings	up	the	desired	information:
Click	here	to	view	code	image

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea
of	this	story.	A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
–—Emacs:	dickens.note~										(Fundamental)–-Top––––—
beginning-of-buffer:
Move	point	to	the	beginning	of	the	buffer;	leave	mark	at	previous
position.
With	arg	N,	put	point	N/10	of	the	way	from	the	true	beginning.
Don’t	use	this	in	Lisp	programs!
(goto-char	(point-min))	is	faster	and	does	not	set	the	mark.

–—Emacs:	*Help*																	(Fundamental)–-All––––—
Type	C-x	1	to	remove	help	window.

A	quick	C-x	1	removes	the	help	information	when	I’m	done	with	it.

A	considerable	amount	of	help	is	available	in	the	emacs	editor.	If	you’re	interested	in
learning	more	about	this	editor,	the	online	tutorial	is	a	great	place	to	start.	Use	C-h	t	to
start	it	and	go	from	there.

Task	12.6:	Working	with	Other	Files
By	this	point,	it	should	be	no	surprise	to	you	that	about	a	million	commands	are	available
within	the	emacs	editor,	though	some	of	them	can	be	a	bit	tricky.	There	are	many	file-
related	commands,	too,	but	I’m	going	to	focus	on	just	a	few	essentials	so	that	you	can	get
around	in	the	program.	The	emacs	help	system	can	offer	lots	more.	(Try	using	C-h	a	file
to	find	out	what	functions	are	offered	in	your	version	of	the	program.)

To	add	the	contents	of	a	file	to	the	current	edit	buffer,	use	the	command	C-x	i.	It	will
prompt	for	a	filename.	Pressing	C-x	C-w	prompts	for	a	file	to	write	the	buffer	into	rather
than	the	default	file.	To	save	to	the	default	file,	use	C-x	C-s	(that	is,	if	you	can;	the	C-s
might	again	hang	you	up,	just	as	it	did	when	you	tried	to	use	it	for	searching).	If	that
doesn’t	work,	you	always	can	use	the	alternative,	C-x	s,	which	also	works.	To	move	to
another	file,	use	C-x	C-f.	(emacs	users	never	specify	more	than	one	filename	on	the
command	line;	they	use	C-x	C-f	to	move	between	files	instead.)	What’s	nice	is	that	when
you	use	the	C-x	C-f	command,	you	load	the	contents	of	that	file	into	another	buffer,	so

you	can	zip	quickly	between	files	by	using	the	C-x	b	command	to	switch	buffers.	emacs
allows	you	to	edit	several	files	at	once,	using	different	areas	of	the	screen;	these	areas	are
called	buffers.

1.	Without	leaving	emacs,	I	press	C-x	C-f	to	read	another	file	into	the	buffer.	The
system	then	prompts	me	as	follows:

Click	here	to	view	code	image
of	the	Danish	people	before	or	during	the	Revolution,	it	is	truly
made,	on	the	faith	of	the	most	trustworthy
witnesses.	It	has	been	one	of	my	hopes	to	add
–—Emacs:	dickens.note											(Fundamental)–-Top––––—
Find	file:	~/	_

I	type	buckaroo,	and	the	editor	opens	a	new	buffer	and	moves	me	to	that	file:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

–—Emacs:	buckaroo															(Fundamental)–-All––––—

2.	Now	I’ll	flip	back	to	the	other	buffer	with	C-x	b.	When	I	enter	that	command,
however,	it	doesn’t	automatically	move	me	there.	Instead,	it	offers	this	prompt:

Click	here	to	view	code	image
—**-Emacs:	buckaroo															(Fundamental)–-All––––—
Switch	to	buffer:	(default	dickens.note)	_

When	I	type	?,	I	receive	a	split	screen	indicating	what	the	possible	answers	are	here:
Click	here	to	view	code	image

I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

—**-Emacs:	buckaroo															(Fundamental)–-All––––—
Possible	completions	are:
Buffer	List																						*Help*
scratch																										buckaroo
dickens.note

–—Emacs:		*Completions*									(Fundamental)–-All––––—
Switch	to	buffer:	(default	dickens.note)	_

The	default	is	okay,	so	I	press	Return.	Voilà!	I’m	back	in	the	Dickens	file.	One
more	C-x	b;	this	time	the	default	is	buckaroo,	so	I	again	press	Return	to	move
back.

3.	I’m	in	the	buckaroo	file,	and	I	want	to	see	what	happens	if	I	read
dickens.note	into	this	file.	This	is	done	easily.	I	move	the	cursor	to	the	end	of
the	file	with	M->,	press	C-x	i,	and	answer	dickens.note	to	the	prompt
Insert	file:	~/.	Pressing	Return	yields	the	following	screen	display:

Click	here	to	view	code	image
I	found	myself	stealing	a	peek	at	my	own	watch	and	overheard
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”

																																A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea
of	this	story.	A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.	Throughout	its	execution,	it	has	had	complete	possession
—**-Emacs:	buckaroo															(Fundamental)–-Top––––—

4.	It’s	time	to	quit	and	split.	To	do	this,	I	press	C-x	s	and	wait	for	an	emacs	prompt
or	two.	The	first	one	displayed	is	this:

Click	here	to	view	code	image
As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into
its	present	form.	Throughout	its	execution,	it	has	had	complete	possession
—**-Emacs:	buckaroo															(Fundamental)–-Top––––—
Save	file	/users/taylor/buckaroo?	(y	or	n)	_

I	answer	y	to	save	this	muddled	file.	I’m	returned	to	the	top	of	the	file,	and	a	quick
C-x	C-c	drops	me	back	to	the	system	prompt.

One	of	the	more	useful	facets	of	emacs	you	have	learned	about	is	the	capability	to	work
with	multiple	files.

Summary
You	have	now	learned	quite	a	bit	about	the	emacs	editor.	Some	capabilities	exceed	those
of	the	vi	editor,	and	some	are	considerably	more	confusing.	Which	of	these	editors	you
choose	is	up	to	you,	and	your	choice	should	be	based	on	your	own	preferences	for
working	on	files.	You	should	spend	some	time	working	with	the	editor	you	prefer,	making
sure	that	you	can	create	simple	files	and	modify	them	without	any	problems.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
buffer	An	area	of	the	screen	used	to	edit	a	file	in	emacs,	the	buffer	actually	represents	a
portion	of	memory	used	to	store	that	information.

flow	control	The	protocol	used	by	a	computer	and	terminal	to	make	sure	that	neither
outpaces	the	other	during	data	transmission.

key	bindings	This	is	the	emacs	term	for	key	mapping.

Meta	key	A	key	that	is	labeled	either	Meta	or	Alt	on	a	keyboard.	It	is	used	much	like	the
Control	key	in	keyboard	shortcuts.

named	emacs	command	Some	commands	in	emacs	require	you	to	type	the	command
name,	such	as	query-replace,	rather	than	use	a	command	key	or	two.

XON/XOFF	This	is	a	particular	type	of	flow	control	in	which	the	receiving	end	can	send
an	XON	(delay	transmission)	character	until	it’s	ready	for	more	information,	when	it	sends
an	XOFF	(resume	transmission).

Exercises
1.	How	do	you	get	to	the	emacs	help	system?

2.	Check	your	keyboard.	If	you	don’t	have	a	Meta	or	Alt	key,	what	alternative	strategy
can	you	use	to	enter	commands	such	as	M-x?

3.	What’s	the	command	sequence	for	leaving	emacs	when	you’re	done?

4.	What	was	the	problem	you	might	have	with	the	Delete	key?	How	can	you	solve	that
problem?	What’s	the	alternative	delete	command	if	Delete	isn’t	available?

5.	How	do	you	do	global	search-and-replace	in	emacs,	and	what	key	do	you	press	to
stop	a	global	search-and-replace	when	you	are	prompted	for	confirmation	at	the	first
match?

6.	Use	the	emacs	help	system	to	list	the	emacs	copyright	information.	What’s	your
reaction?

Preview	of	the	Next	Hour
The	next	hour	takes	an	in-depth	look	at	the	different	shells	available	in	Unix,	how	to
configure	them,	and	how	to	choose	which	you’d	like	to	use.	You	will	also	learn	about	the
contents	of	the	default	configuration	files	for	both	csh	and	sh,	the	two	most	common
shells	in	Unix.

Hour	13.	Introduction	to	Command	Shells

Goals	for	This	Hour

In	this	hour,	you	will	learn

	What	shells	are	available	and	how	they	differ	from	one	another

	How	to	identify	which	shell	you’re	running

	How	to	choose	a	new	shell

	More	about	the	environment	of	your	shell

	How	to	explore	bash	configuration	files

Welcome	to	your	13th	hour	of	learning	Unix.	Don’t	worry,	this	is	a	lucky	hour:	No	horror
film	tropes	to	worry	about.	Actually,	you	should	take	a	moment	to	pat	yourself	on	the
back.	You’ve	come	a	long	way,	and	you’re	already	quite	a	sophisticated	user.	In	the	past
few	hours,	I’ve	occasionally	touched	on	the	differences	between	the	various	command
shells,	but	I	haven’t	really	stopped	to	explain	what	shells	are	available,	how	they	differ
from	one	another,	and	which	is	the	best	for	your	style	of	interaction.	That’s	what	this	hour
is	all	about.

Shells,	you’ll	recall,	are	the	command-line	interface	programs	through	which	you	tell	the
computer	what	to	do.	All	Unix	systems	include	the	C	shell	(csh)	and	its	predecessor,	the
Bourne	shell	(sh).	All	modern	Unix	systems	also	include	some	nifty	newer	shells,	notably
Korn	shell	(ksh)	and	a	new	rewrite	of	sh	humorously	called	the	Bourne	Again	shell
(bash).	It’s	the	bash	shell	that	I’m	going	to	focus	on	for	all	our	shell-specific	discussion
because	it’s	one	of	the	most	popular	shells,	and	it’s	so	powerful	and	flexible—it	includes
all	the	cool	features	of	both	csh	and	sh	and	adds	tons	of	additional	stuff—that	it’s	a	great
place	to	start.

Various	shells	are	available	in	Unix,	but	two	are	guaranteed	to	be	included	in	just	about	all
Unix	versions:	the	Bourne	shell	(sh)	and	the	C	shell	(csh).	Primarily,	however,	you’ll
learn	about	bash	and	ksh	in	this	lesson.

The	(Command)	Shell	Game
You	can’t	get	very	far	with	Unix	on	most	systems	without	having	a	command-line
interpreter.	This	lesson	gets	quickly	you	up	and	running	with	the	bash	command	shell.

Task	13.1:	What	Shells	Are	Available?
If	I	asked	an	expert	how	many	command	interpreters	are	available	for	the	PC,	the
immediate	answer	would	be	“one,	of	course.”	After	a	few	minutes	of	reflection,	however,
the	answer	might	be	expanded	to	include	the	classic	DOS	command	line	(which	is	still	in
Windows!)	and	various	third-party	interfaces	as	well	as	the	standard	Windows	user
interface.	This	expanded	answer	reflects	the	reality	that	whenever	different	people	use	a
computer,	different	styles	of	interacting	with	the	machine	and	different	products	to	meet
these	needs	evolve.	Similarly,	the	Macintosh	has	several	command	interpreters.	If	you
decide	that	you	don’t	like	the	standard	GUI,	perhaps	you	will	find	that	the	command-line
Terminal	app	or	even	the	X11	environment	works	better.

From	the	very	beginning,	Unix	has	been	a	programmer’s	operating	system,	designed	to
allow	programmers	to	extend	the	system	easily	and	gracefully.	It	should	come	as	no
surprise	that	quite	a	few	command	shells	are	available.	Not	only	that,	but	technically	any
program	can	serve	as	a	command	shell,	so	you	could	even	start	right	in	emacs	if	you
wanted	and	then	use	escapes	to	Unix	for	actual	commands.	(Don’t	laugh!	I	know	people
who’ve	done	this.)

The	original	shell	was	written	by	Ken	Thompson,	back	in	the	early	Unix	laboratory	days,
as	part	of	his	design	of	the	Unix	file	system.	Somewhere	along	the	way,	Steven	Bourne,
also	at	AT&T,	got	ahold	of	the	shell	and	started	expanding	it.	By	the	time	Unix	began	to
be	widely	distributed,	sh	was	known	as	the	Bourne	shell.	Characterized	by	speed	and
simplicity,	it	was	the	default	shell	for	writing	shell	scripts,	but	now	it	is	rarely	used	as	a
command	shell	for	users.

The	next	shell	was	designed	by	the	productive	Bill	Joy,	author	of	vi.	Entranced	by	the
design	and	features	of	the	C	programming	language,	Joy	decided	to	create	a	command
shell	that	shared	much	of	the	C	language	structure	and	that	would	make	it	easier	to	write
sophisticated	shell	scripts:	the	C	shell,	or	csh.	He	also	expanded	the	shell	concept	to	add
command	aliases,	command	history,	and	job	control.	Command	aliases	enable	users	to
rename	and	reconfigure	commands	easily.	Command	history	ensures	that	users	never	have
to	enter	commands	a	second	time.	Job	control	enables	users	to	run	multiple	programs	at
once.	Before	bash	appeared	on	the	scene,	the	C	shell	was	the	shell	I	used	from	the	day	I
first	logged	in	to	a	BSD	Unix	system	in	1980.

Note

A	command	alias	is	a	shortcut	for	a	command	that	allows	you	to	enter	a	shorter
string	for	the	entire	command.	The	command	history	is	a	mechanism	by	which	the
shell	remembers	commands	you	have	typed	and	allows	you	to	repeat	the	command
without	retyping	the	whole	command.	Job	control	is	a	mechanism	that	allows	you
to	start,	stop,	and	suspend	commands.

In	the	1990s,	another	AT&T	Labs	(now	Lucent)	software	wizard,	David	Korn,	built	an
eponymous	shell.	The	Korn	shell,	also	known	as	ksh,	is	designed	to	be	a	superset	of	the
Bourne	shell,	sharing	its	configuration	files	(.profile)	and	command	syntax	but
including	many	of	the	more	powerful	features	of	the	C	shell,	too,	including	command

aliases	(albeit	in	a	slightly	different	format),	command	history,	and	job	control.	You	might
not	have	it	on	your	version	of	Unix.

The	shell	we	focus	on	in	this	book,	however,	was	written	as	part	of	the	extensive	GNU
Project	by	a	large	group	of	programmers	known	as	the	Free	Software	Foundation.	The
original	goal	of	the	GNU	Project	was	to	create	a	version	of	Unix	that	was	free	of	any
licensing	or	intellectual	property	restrictions	because	both	System	V	and	BSD	shared	core
code	from	an	earlier	AT&T	release	and	weren’t	available	for	free	distribution.	Although
much	of	what	the	foundation	released	was	a	re-implementation	of	exactly	the	same
commands	that	were	already	part	of	Unix,	it	did	innovate	in	a	few	areas,	sometimes
spectacularly.

In	my	eyes,	the	three	best	pieces	of	the	GNU	Project	were	the	terrific	compiler	system	it
developed	(gcc,	a	compiler	so	good	that	it	then	was	incorporated	into	many	commercial
versions	of	Unix	because	it	produced	better	code	than	the	commercial	alternative!),	the
extensively	hacked	GNU	emacs,	and	the	humorously	named	“Bourne	Again	shell”
(remember	that	Steve	Bourne	wrote	the	original	Unix	shell),	known	as	bash.

What	makes	bash	such	a	standout	is	that	the	designers	included	a	remarkable	set	of
features	and	capabilities	that	enable	sh,	csh,	and	ksh	users	to	switch	with	minimal,	if
any,	changes	to	their	existing	keystroke	sequences.	It’s	nice	to	innovate,	but	forcing	users
to	learn	something	completely	new	is	a	tough	road	to	travel,	and	the	designers	avoided
that	mistake.	In	addition,	bash	sports	some	remarkable	features	and	capabilities	all	its
own.

Check	on	your	Solaris	Unix	system,	and	you’ll	find	a	ton	of	shells,	actually,	including
bssh	(a	specialized	version	of	Bash	for	browsing	possible	secure	[SSH]	connections),
jsh	(job	control	shell),	pfbash	and	similar	(limited	access	profile	shells),	rbash	(the
“ultra-restricted	shell”),	remsh	(remote	shell),	rksh	(yet	another	restricted	shell),	slsh
(slang	shell),	wish	(a	TCL	programming	language–related	shell),	and	zsh	(yes,	yet
another	command	shell	option).	Linux	has	its	share	of	different	modern	shells,	too,	but	I
suggest	that	you	stick	with	bash	unless	there’s	a	compelling	reason	to	use	something
else.

Other	shells	exist	in	special	niches.	A	modified	version	of	the	C	shell,	tcsh,	a	version
that	incorporates	the	slick	history-editing	features	of	the	Korn	shell,	has	appeared	and	is
prevalent	in	the	BSD	world;	for	instance,	it’s	the	default	shell	on	FreeBSD.	Maintained	by
programmers	at	Cornell	University,	it	is	95%	csh	and	5%	new	features.	The	most
important	tcsh	additions	to	the	C	shell	are	these:

	emacs-style	command-line	editing

	Visual	perusal	of	the	command	history	list

	Identifying	files	with	the	first	few	unique	characters

	Spelling	correction	of	commands,	filenames,	and	usernames

	Automatic	logout	after	an	extended	idle	period

	The	capability	to	monitor	logins,	users,	or	terminals

	New	pre-initialized	environment	variables	$HOST	and	$HOSTTYPE

	Support	for	a	meaningful	and	helpful	system	status	line

Another	shell	you	might	bump	into	is	called	the	MH	shell,	or	msh,	and	it’s	designed
around	the	MH	electronic	mail	program,	originally	designed	at	the	Rand	Corporation.	In
essence,	the	MH	shell	provides	you	with	instant	access	to	any	electronic	mail	message	you
receive	without	requiring	you	to	enter	an	explicit	email	program.

For	sites	that	have	security	considerations,	a	restricted	version	of	the	Bourne	shell	is	also
available,	called	rsh	(ingeniously,	it’s	the	restricted	sh	shell).	Persistent	rumors	of
security	problems	with	rsh	suggest	that	you	should	double-check	before	you	trust
dubious	users	on	your	system	with	rsh	as	their	login	shell.	(The	login	shell	is	the	shell
you	use,	by	default,	when	you	log	in	to	the	system.)

Another	variant	of	the	Bourne	shell	is	worth	mentioning:	jsh	is	a	version	of	the	Bourne
shell	that	includes	C	shell–style	job	control	features.

1.	The	easiest	way	to	ascertain	what	shells	are	available	on	your	system	is	to	look	for
*sh	in	the	/bin	directory.	I’ll	do	this	most	easily	with	an	ls	wildcard:

Click	here	to	view	code	image

$	ls	–F	/bin/*sh
/bin/csh*		/bin/ksh*		/bin/rksh*	/bin/sh*

2.	Where’s	bash?	Well,	different	systems	have	“non-Posix”—which	is	to	say,
nonstandard—shells	in	other	places.	A	smart	place	to	figure	out	where	other	shells
might	be	located	is	to	look	at	your	PATH	environment	variable:

Click	here	to	view	code	image
$	echo	$PATH
/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/usr/local/bin:/home/taylor/bin:
/home/taylor/bin:/home/taylor/bin:/home/taylor/bin:/home/taylor/bin:/home/taylor/bin

A	lot	is	in	this	PATH,	but	I’m	looking	for	other	bin	directories.	I	can	list	them	all
one	by	one	(for	example,	ls	/sbin/*sh),	but	I’m	going	to	use	a	different
strategy:	I’m	going	to	explicitly	look	for	the	Bourne	Again	shell:
$	which	bash
/usr/local/bin/bash

Now	I	know	where	the	system	has	bash;	let’s	see	if	there	are	any	other	shells	in	this
directory:
%	ls	–F	/usr/local/bin/*sh
/usr/local/bin/bash*

Ah	well,	that’s	the	only	shell	in	that	particular	directory.

As	you	can	see,	this	particular	version	of	Unix	offers	five	different	login	shells:	csh,	ksh,
rksh,	sh,	and	bash.	I’ve	opted	to	use	bash	for	my	interaction	with	the	Unix	system.
Most	likely	you’ll	find	more	matches	when	you	search	for	*sh.	Don’t	be	overwhelmed,
though:	Most	of	them	are	likely	not	actually	command	shells.	Not	sure?	Check	the	man
page	for	the	particular	command.

Task	13.2:	Identifying	Your	Shell
You	can	use	many	different	approaches	to	identify	which	shell	you’re	using.	The	easiest,
however,	is	to	type	echo	$SHELL	or,	if	that	fails,	swoop	into	the	/etc/passwd	file	to
see	what	your	account	lists.	It’s	helpful	to	know	some	alternatives	because	searching	the
/etc/passwd	file	isn’t	always	an	option.	(Some	systems	hide	the	/etc/passwd	file
in	the	interest	of	security,	and	others	use	a	shared	account	database	that’s	on	the	network
but	not	on	that	specific	system.)

1.	One	simple	technique	to	identify	your	shell	is	to	check	your	prompt.	If	your	prompt
contains	a	%,	you	probably	are	using	the	C	shell	or	modified	C	shell	(tcsh).	If	your
prompt	contains	$,	you	could	be	using	the	Bourne	shell,	the	Korn	shell,	bash,	or	a
variant	thereof.	Another	easy	way	to	find	out	is	to	check	the	value	of	your	SHELL
environment	variable	with	the	echo	command:
$	echo	SHELL
SHELL

Oops!	Let’s	try	again,	remembering	the	$	to	indicate	that	we’re	asking	for	the	value
of	the	variable	named	SHELL,	not	the	word	itself!
$	echo	$SHELL
/usr/local/bin/bash

(On	your	system,	it	might	be	/bin/bash	instead).

2.	A	cool	way	to	ascertain	which	shell	you’re	using	is	to	ask	the	operating	system	what
program	you’re	currently	running.	The	shell	variable	$$	identifies	the	process	ID	of
the	shell.	You	can	use	the	helpful	ps	(processor	status)	command	with	its	-p
process	flag	to	see	what	shell	you	have.	Here’s	what	happens	when	I	try	it:

Click	here	to	view	code	image

$	ps	-p	$$
		PID	TT			STAT						TIME	COMMAND
	9503	p0		Ss						0:00.12	-bash	(bash)

You	can	see	that	I’m	running	bash.	There	is	a	leading	dash	with	the	indication	of
what	shell	I’m	running	because	that’s	how	the	system	denotes	that	this	particular
shell	process	is	my	login	shell.

3.	Another	way	to	find	out	what	shell	is	running	is	to	peek	into	the	/etc/passwd
file,	which	you	can	do	with	grep:

Click	here	to	view	code	image
%	grep	taylor	/etc/passwd
taylor:*:1001:999:Dave	Taylor,,,:/home/taylor:/usr/local/bin/bash
taylorsu:*:0:0:Dave	as	Root:/home/taylorsu:/bin/csh

Helpful	results,	but	I	ended	up	with	two	matches:	both	the	taylor	account	(which
is	my	current	login	account)	and	the	taylorsu	account,	which	I	don’t	want	to	see.

4.	Here’s	the	fancy	regular	expression	way	to	ensure	that	I	match	only	my	current
account	(refer	to	Hour	8,	“Filters,	Pipes,	and	Wildcards!”):

Click	here	to	view	code	image

$	grep	‘^taylor:’	/etc/passwd
taylor:*:1001:999:Dave	Taylor,,,:/home/taylor:/usr/local/bin/bash

That’s	what	I	want!	In	the	/etc/passwd	file,	fields	of	information	are	separated
by	colons,	and	the	last	field	is	the	login	shell.	As	expected,	you	can	see	that	it’s
/usr/local/bin/bash.

One	more	refinement:	Use	the	cut	command	to	slice	out	just	the	login	shell	rather
than	seeing	all	the	stuff	in	the	/etc/passwd	file:

Click	here	to	view	code	image

$	grep	‘^taylor:’	/etc/passwd	|	cut	-d:	-f7
/usr/local/bin/bash

In	a	nutshell,	you	tell	cut	to	use	the	:	as	a	field	delimiter	and	then	show	just	the
seventh	field	(which	is	the	login	shell—count	it	for	yourself).

5.	For	fun,	I	used	the	preceding	cut	command	as	the	basis	of	a	command	sequence	on
a	busy	system	to	see	what	shells	people	were	using.	The	program	extracts	the	last
field	of	each	line	in	the	password	file	and	then	sorts	and	counts	matches,	showing
the	number	of	occurrences	of	the	shell,	one	per	line.	Ready?

Click	here	to	view	code	image
$	cut	-d:	-f7	/etc/passwd	|	sort	|	uniq	-c
			1	/abuse
	230	/bin/bash
		75	/bin/csh
		23	/bin/ksh
	159	/bin/tcsh
			2	/bin/zsh
	382	/noshell
			3	/usr/local/bin/bash
			6	/usr/local/bin/tcsh

As	you	can	see,	many	people	have	been	disabled	with	the	noshell	option,	and,	on
this	system,	bash	is	the	most	popular.	Also	note	that	apparently	two	versions	of
bash	and	tcsh	are	present	on	this	system,	in	two	different	directories.

Note

The	cut	command	is	a	great	one	to	remember	when	you	want	to	slice	a	column	out
of	a	data	file	like	/etc/passwd.	Take	a	minute	and	learn	more	about	it	with	man
cut	on	your	system.

When	you’ve	identified	your	shell,	you	can	contemplate	choosing	a	different	one.	I
suggest	that	you	try	bash	if	you	aren’t	using	it	already	because	it	enables	you	to	try	all
the	examples	in	the	next	few	lessons	for	yourself.

Task	13.3:	Choosing	a	New	Shell
In	the	old	days	of	Unix,	the	only	way	to	switch	login	shells	on	many	systems	was	to	ask
the	system	administrator	to	edit	the	/etc/passwd	file	directly.	This	usually	meant
waiting	until	the	sysadmin	had	time,	which	could	be	hours	or	even	days.	The	good	news	is
that	a	simple	program	now	exists	to	change	login	shells:	chsh,	or	change	shell.	It	has	no
starting	flags	or	options,	does	not	require	that	any	files	be	specified,	and	can	be	used
regardless	of	your	location	in	the	file	system.	Just	type	chsh	and	press	Return.

1.	To	change	my	login	shell	to	any	of	the	alternative	shells,	or	even	to	verify	what
shell	I’m	running,	I	can	use	the	chsh	command.	The	original	implementation	of
chsh	had	the	system	prompt	for	a	new	shell	on	the	command	line:

Click	here	to	view	code	image

%	chsh
Changing	login	shell	for	taylor.
Old	shell:	/bin/csh
New	shell:	_

At	this	point,	the	program	shows	me	that	I	currently	have	/bin/csh	as	my	login
shell	and	asks	me	to	specify	an	alternative	shell.	I’ll	try	to	confuse	it	by	requesting
that	emacs	become	my	login	shell:

Click	here	to	view	code	image
%	chsh
Changing	login	shell	for	taylor.
Old	shell:	/bin/csh
New	shell:	/usr/local/bin/gnuemacs
/usr/local/bin/gnuemacs	is	unacceptable	as	a	new	shell.

2.	The	program	has	some	knowledge	of	valid	shell	names	as	specified	by	the
administrator,	and	it	requires	you	to	specify	one.	Unfortunately,	it	doesn’t	divulge
that	information,	so	typing	?	to	find	what’s	available	results	in	the	program
complaining	that	?	is	unacceptable	as	a	new	shell.

You	can,	however,	peek	into	the	file	that	this	version	of	chsh	uses	to	confirm	which
programs	are	valid	shells,	if	this	is	what	you’re	seeing	as	you	try	this	command.	The
data	file	is	called	/etc/shells,	and	it	looks	like	this:

Click	here	to	view	code	image

%	cat	/etc/shells
#	List	of	acceptable	shells	for	chpass(1).
#	Ftpd	will	not	allow	users	to	connect	who	are	not	using
#	one	of	these	shells.

/bin/sh
/bin/csh
/bin/tcsh
/bin/bash
/bin/zsh
/bin/ksh
/usr/local/bin/ksh
/usr/local/bin/tcsh
/usr/local/bin/bash

I’ll	leave	my	shell	alone	and	quit	chsh	without	making	any	changes	by	pressing
Enter.	If	you’d	like	to	change	yours,	type	in	the	new	name:

Click	here	to	view	code	image

%	chsh
Changing	login	shell	for	taylor
Old	shell:	/bin/csh
New	shell:	/usr/local/bin/bash

Notice	that,	in	typical	Unix	style,	you	do	not	see	any	actual	confirmation	that
anything	was	done.	I	conclude	that,	because	I	did	not	get	any	error	messages,	the
program	worked.	Fortunately,	I	can	check	easily	by	either	using	chsh	again	or
redoing	the	awk	program	with	a	C	shell	history	command:

Click	here	to	view	code	image
$!grep
grep	‘^taylor:’	/etc/passwd	|	cut	-d:	-f7
/usr/local/bin/bash

In	the	next	hour,	you’ll	learn	more	about	the	powerful	bash	command-history
mechanism,	but	here	just	notice	that	I	only	had	to	type	the	first	few	letters	of	the
previous	command	to	have	it	automatically	run.	Quite	a	time-saver!

Note

Because	of	the	popularity	of	the	Bourne	Again	shell	(bash),	the	next	few	hours	are
focused	on	it.	To	get	the	most	out	of	these	hours,	I	strongly	recommend	that	you	use
the	bash	shell.

Note

If	you	can’t	change	your	login	shell,	perhaps	because	of	not	having	chsh	(as	is	the
case	on	Solaris),	you	always	can	enter	bash	after	you	log	in	by	typing	bash	or
replace	your	login	shell	with	bash	by	typing	in	exec	bash	instead.	That’ll	work
until	you	log	out,	at	which	point	you’ll	be	back	in	your	default	login	shell	on	your
next	login.

It’s	easy	to	change	your	login	shell.	You	can	try	different	shells	until	you	find	the	one	that
best	suits	your	style	of	interaction.	For	the	most	part,	though,	shells	all	have	the	same
basic	syntax	and	use	the	same	commands:	ls	-l	does	the	same	thing	in	any	shell.	The
differences,	then,	really	come	into	play	when	you	use	the	more	sophisticated	capabilities,
including	programming	the	shell	(with	shell	scripts),	customizing	its	features	through
command	aliases,	and	saving	on	keystrokes	by	using	a	history	mechanism.	That’s	where
bash	has	an	edge	and	why	it’s	so	popular.	It	is	easy	and	straightforward,	and	it	has
powerful	aliasing,	history,	and	job-control	capabilities.

Task	13.4:	Learning	the	Shell	Environment
Earlier	in	this	book,	you	used	the	env	or	printenv	command	to	learn	the	various
characteristics	of	your	working	environment.	Now	it’s	time	to	use	this	command	again	to
look	more	closely	at	the	shell	environment	and	define	each	of	the	variables	therein.

1.	To	start	out,	I	enter	env	to	list	the	various	aspects	of	my	working	environment.	Do
the	same	on	your	system,	and	although	your	environment	will	not	be	identical	to
mine,	you	should	see	considerable	similarity	between	the	two:

Click	here	to	view	code	image

%	env	|	cat	-n
					1		PWD=/home/taylor
					2		HOSTNAME=staging
					3		USER=taylor
					4		MAIL=/var/mail/taylor
					5		EDITOR=/bin/vi
					6		LOGNAME=taylor
					7		SHLVL=1
					8		SHELL=/usr/local/bin/bash
					9		HOME=/home/taylor
				10		TERM=vt100
				11		PATH=/home/taylor/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/usr/local/bin
				12		SSH_TTY=/dev/ttyp0
				13		EXINIT=:set	ignorecase
				14				=/usr/bin/env

This	probably	seems	pretty	overwhelming.	What	are	all	these	things,	and	why	on
earth	should	they	matter?	They	matter	because	it’s	important	for	you	to	learn	exactly
how	your	own	environment	is	set	up	so	that	you	can	change	things	if	you	desire.	As
you	soon	will	be	able	to	recognize,	I	have	modified	much	of	my	system’s
environment	so	that	the	shell	does	what	I	want	it	to	do	rather	than	what	its	default
would	tell	it	to	do.

2.	When	I	log	in	to	the	system,	the	system	defines	some	environment	variables,
indicating	where	my	home	directory	is	located,	what	shell	I’m	running,	and	so	on.
These	variables	are	listed	in	Table	13.1.

TABLE	13.1	Default	Variables	Set	by	Unix	on	Login

Caution

Be	careful	not	to	use	.	as	the	first	entry	in	your	PATH	because	it	is	a	security
hazard.	Why?	Imagine	this:	A	devious	chap	has	written	a	program	that	will	do	bad
things	to	my	directory	when	invoked.	But	how	will	he	make	me	invoke	it?	The
easiest	way	is	to	give	the	bad	program	the	same	name	as	a	standard	Unix	utility,
such	as	ls,	and	leave	it	in	a	commonly	accessed	directory,	such	as	/tmp.	Imagine
that	the	.	(current	directory)	is	the	first	entry	in	my	PATH,	and	I	change	directories
to	/tmp	to	check	something.	While	I’m	in	/tmp,	I	enter	ls,	and	I’ve	just	run	the
bad	program	without	knowing	it.	Having	the	.	at	the	end	of	the	search	path	would
avoid	all	this	because	then	the	default	ls	command	will	always	be	matched	first.

Note

Having	both	LOGNAME	and	USER	defined	in	my	environment	demonstrates	how
far	Unix	has	progressed	since	the	competition	and	jostling	between	the	Berkeley
and	AT&T	versions	(BSD	and	SVR3,	respectively)	of	Unix.	When	I	started
working	with	Unix,	if	I	was	on	a	BSD	system,	the	account	name	would	be	defined
as	LOGNAME,	and	if	I	used	an	SVR3	system,	the	account	name	would	be	defined	as
USER.	Programs	had	to	check	for	both,	which	was	frustrating.	Over	time,	each
system	has	begun	to	use	both	terms	(instead	of	using	the	solution	that	you	and	I
might	think	is	most	obvious,	which	is	to	agree	on	a	single	word).

3.	A	glance	back	at	the	output	of	the	env	command	reveals	that	more	variables	are	in

my	environment	than	are	listed	in	Table	13.1.	That’s	because	you	can	define
anything	you	want	in	the	environment.	Certain	programs	can	read	many
environment	variables	that	customize	their	behavior.

Many	Unix	programs	allow	you	to	enter	text	directly,	and	then	they	spin	off	into	an
editor,	if	needed.	Others	start	your	favorite	editor	for	entering	information.	Both
types	of	programs	use	the	EDITOR	environment	variable	to	identify	which	editor	to
use.	I	have	mine	set	to	/bin/vi.

You	learned	earlier	that	vi	can	have	default	information	stored	in	the	.exrc	file,
but	the	program	also	can	read	configuration	information	from	the	environment
variable	EXINIT.	To	make	all	my	pattern	searches	not	case	sensitive	(meaning	that
a	search	for	precision	will	match	Precision),	I	set	the	appropriate	vi
variable	in	the	EXINIT.	Mine	is	set	to	:set	ignorecase.	If	you	want	line
numbers	to	always	show	up,	you	could	easily	have	your	EXINIT	set	to	:set
number.

The	bash	shell	sets	some	internal	variables,	too,	most	notably	SHLVL	(shell	level),
which	tracks	how	many	levels	of	subshell	you’re	within.

You	can	define	many	possible	environment	variables	for	yourself.	Most	large	Unix
programs	have	environment	variables	of	their	own,	enabling	you	to	tailor	the	program’s
behavior	to	your	needs	and	preferences.	Unix	itself	has	quite	a	few	environment	variables,
too.	Until	you’re	an	expert,	however,	I	recommend	that	you	stick	with	viewing	these
variables	and	ensuring	that	they	have	reasonable	values	rather	than	changing	them.
Particularly	focus	on	the	set	of	variables	defined	in	Table	13.1.	If	they’re	wrong,	you
could	have	trouble,	whereas	if	other	environment	variables	are	wrong,	you’ll	be	okay;
you’ll	just	find	that	a	particular	program	behaves	differently	than	expected.

Task	13.5:	Exploring	bash	Configuration	Files
The	bash	shell	uses	two	files	to	configure	itself,	and	although	neither	of	them	needs	to	be
present,	both	probably	can	be	found	in	your	home	directory:	.profile	(or
.bash_profile)	and	.bashrc.	The	difference	between	them	is	subtle	but	important.
The	.profile	file	is	read	only	once,	when	you	log	in,	and	the	.bashrc	file	is	read
every	time	a	shell	is	started.	For	example,	if	you’re	working	in	vi	and	you	enter	:!ls,
vi	carries	out	the	command	by	launching	a	new	subshell	and	then	feeding	the	command
to	that	shell.	Therefore,	the	new	bash	shell	will	read	what’s	in	.bashrc	but	won’t	ever
read	what’s	in	.profile.

This	split	between	two	configuration	files	isn’t	too	bad,	actually,	because	most
modifications	to	the	environment	are	automatically	included	in	all	subshells	(a	shell	other
than	the	login	shell)	invoked.	To	be	specific,	all	environment	variables	are	inherited	by
subshells,	but	shell	command	aliases	are	lost	and,	therefore,	must	be	defined	in	the
.bashrc	file	to	be	available	within	all	occurrences	of	bash.	You’ll	learn	more	about
command	aliases	in	Hour	14,	“Advanced	Shell	Interaction.”

1.	I	use	cat	to	list	the	contents	of	my	.profile	file.	Remember	that	any	line

beginning	with	a	#	is	a	comment	and	is	ignored.
Click	here	to	view	code	image

$	cat	.profile
#	.profile

#	Read	in	my	aliases	before	going	any	further
.	~/.bashrc

#	Tweak	my	environment	variables	to	reflect	my	favorites

PATH=$HOME/bin:$PATH

SHELL=/usr/local/bin/bash
EDITOR=”/bin/vi”
EXINIT=”:set	ignorecase”

export	PATH	SHELL	EDITOR	EXINIT

#	now	set	the	prompt	to	the	current	directory	(base	name)	and
#	the	current	command	number	(for	“!n”	escapes)

PS1=’\W	\!:	‘

#	I’d	like	‘vi’	style	command-line	editing,	don’t	want	to	log
#	out	when	I	accidentally	type	“^D”	at	the	command	line,	and
#	don’t	want	to	accidentally	delete	files	if	I	attempt	to
#	blindly	overwrite	them:

set	-o	vi	ignoreeof	noclobber

#	Finally,	I’d	like	to	have	the	default	file	permission	be
#	755	(rwxr-xr-x)	on	files/directories,	hence	this	umask

umask	022

newmail
mesg	y

This	is	pretty	straightforward,	after	you	remove	all	the	comments.	Environmental
variables	are	set	with	the	NAME=value	lines,	and	then	I	ensure	that	they’re
available	to	the	current	shell	(in	addition	to	any	subshells)	with	the	export
command.	To	allow	me	to	use	any	.bashrc	aliases	or	functions	within
.profile,	I	start	by	having	the	shell	read	in	the	file	(that’s	what	.	means	at	the
beginning	of	the	first	non-comment	line).	You	can	see	that	some	of	the	variables
shown	in	the	previous	unit	are	defined	in	my	.profile	file.

By	setting	the	PS1	variable,	I	create	a	custom	prompt	rather	than	the	default	bash
prompt	of	the	shell	name	and	a	dollar	sign	(bash2.3$,	which	isn’t	very	friendly).
Instead,	I	have	the	prompt	set	to	the	base	name	of	the	current	directory,	the
command	number	(in	the	history	list),	and	a	colon	(bin	343:,	which	shows	that
I’m	in	the	bin	directory	and	that	this	is	the	343rd	command	in	my	history	list).	In
the	next	lesson	you’ll	learn	some	of	the	many	nifty	things	you	can	place	in	your
command	prompt.

Finally,	the	set	commands	are	configuration	options	for	the	shell.	I	have	told	the

shell	to	ignore	^D	sequences	at	the	command	line	so	I	don’t	accidentally	log	myself
out	(instead,	I’ll	need	to	type	in	exit	or	logout),	and	warn	me	before	it
overwrites	existing	files	with	file	redirection	(noclobber).

The	three	commands	at	the	end	of	the	.profile	file	are	invoked	as	though	I’d
entered	them	on	the	command	line.	umask	sets	my	default	file	creation	mask,	the
newmail	command	informs	me	when	new	electronic	mail	arrives	(in	the	mailbox
defined	by	the	environment	variable	MAIL,	in	fact).	The	mesg	y	variable	makes
sure	that	I	have	my	terminal	configured	so	that	other	folks	can	beep	me	or	say	hello
using	talk,	a	communication	tool	discussed	in	Hour	20,	“Communicating	with
Email.”

2.	How	about	the	other	file—the	one	that’s	read	by	the	shell	each	time	a	shell	or
subshell	is	started?

Click	here	to	view	code	image

$	cat	.bashrc
#	.bashrc
#	This	contains	all	user	specific	aliases	and	functions

#	If	there	are	shared	global	definitions,	read	them	in

if	[-f	/etc/bashrc];	then
		.	/etc/bashrc
fi

#	now	some	useful	aliases

alias	ls=“ls	-F”
alias	who=“who	|	sort”

alias	cp=”/bin/cp	-i”
alias	rm=”/bin/rm	-i”

#	Note	that	these	aliases	for	‘cp’	and	‘rm’	are	redundant
#	because	of	the	‘set	-o	noclobber’	in	my	.bash_profile
#	file.	They’re	here	to	show	you	that	there’s	more	than	one
#	way	to	minimize	the	risk	of	accidentally	stepping	on	and
#	deleting	files	with	these	commands.

Any	line	that	begins	with	a	#	is	considered	a	comment	and	is	there	just	for	us
humans	to	read.	There	are,	therefore,	very	few	commands	in	this	file:	one	that	reads
a	system-wide	.bashrc	if	it	exists	in	the	/etc	directory	and	another	that	sets	a
couple	of	useful	command	aliases	that	I	prefer.

You’ll	learn	all	about	aliases	in	the	next	hour,	but	for	now	you	should	know	that	the
format	is	alias	word=command	(or	commands).	When	I	enter	ls,	for	example,
you	can	see	that	the	shell	has	that	aliased	to	ls	-F,	which	saves	me	from	having	to
type	the	-F	flag	each	time.

The	shell	also	has	conditional	statements	and	various	other	commands	that	indicate
what	commands	to	run.	Here	I’m	using	if	[expression];	then	to	execute	a
command	only	if	the	file	it	wants	to	access	exists	on	the	system.	The	condition	-f
/etc/bashrc	is	true	if	the	file	exists.	If	not,	the	condition	is	false,	and	the	shell

zips	to	the	fi	before	resuming	execution	of	the	commands.

If	you’re	thinking	that	there	are	a	tremendous	number	of	ways	to	configure	your	shell,	you
are	correct.	You	can	have	an	incredibly	diverse	set	of	commands	in	both	your	.profile
and	.bashrc	files,	enabling	you	to	customize	many	aspects	of	the	shell	and	the	Unix
environment.	If	you	use	the	C	shell	or	the	tcsh	shell,	the	configuration	information	is
kept	in	a	similar	file,	called	.login.

Summary
Armed	with	the	information	learned	in	this	hour	about	shells	and	shell	environments,
explore	your	own	environment;	examine	your	.profile	and	.bashrc	files	also.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
command	alias	An	alias	is	a	shorthand	command	mapping,	with	which	you	can	define
new	command	names	that	are	aliases	of	other	commands	or	sequences	of	commands.	This
is	helpful	for	renaming	commands	so	that	you	can	remember	them	or	for	having	certain
flags	added	by	default.

command	history	The	shell	uses	this	mechanism	to	remember	what	commands	you	have
entered	already	and	to	allow	you	to	repeat	them	without	having	to	type	the	entire
command	again.

job	control	Job	control	enables	you	to	manage	the	various	programs	that	are	running.	It
lets	you	push	programs	into	the	background	and	pull	them	back	into	the	foreground	as
desired.

login	shell	This	is	the	shell	you	use,	by	default,	when	you	log	in	to	the	system.

subshell	This	is	a	shell	other	than	the	login	shell,	which	is	invoked	from	within	the	login
shell	or	another	program	(for	example,	by	typing	bash	at	the	command	line	or	by	calling
the	shell	from	within	emacs).

Exercises
1.	Draw	lines	to	connect	the	original	shells	with	their	newer	variants:

sh
ksh
tcsh
csh
bash

2.	What	does	chsh	do?

3.	What	shell	are	you	running?	What	shells	are	your	friends	on	the	system	running?

4.	What’s	the	difference	between	the	.profile	file	and	the	.bashrc	file?

5.	What’s	the	csh	equivalent	of	the	bash	.profile	file?

6.	What	aliases	do	you	think	could	prove	helpful	for	your	daily	Unix	interaction?

Preview	of	the	Next	Hour
I	hope	this	hour	has	whetted	your	appetite	for	learning	more	about	the	shell!	In	the	next
hour,	you’ll	learn	how	to	really	customize	the	shell	and	make	your	interaction	with	Unix
quite	a	bit	easier.	Topics	include	how	to	create	command	aliases,	how	to	use	the	history
mechanism,	and	how	to	edit	your	previously	edited	commands	interactively.

Hour	14.	Advanced	Shell	Interaction

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	turn	on	the	bash	and	ksh	history	mechanism

	How	to	use	bash	history	and	ksh	history	to	cut	down	on	typing

	About	command	aliases	in	bash	and	ksh

	Some	power	aliases	for	bash

	How	to	set	custom	prompts

The	preceding	hour	gave	you	an	overview	of	the	different	shells	available	in	Unix.	In	this
hour,	you’ll	learn	much	more	about	the	bash	shell	and	how	to	use	it	to	your	best
advantage.	You’ll	also	learn	valuable	tips	about	working	with	the	immediate	predecessor
to	bash,	the	Korn	shell	(ksh),	a	popular	alternative	shell.	The	goal	of	this	hour	is	for	you
to	be	able	to	easily	customize	your	Unix	environment	to	fit	your	working	style.

This	hour	focuses	on	two	key	facets	of	bash	and	ksh:	the	history	mechanism	and	the
command	alias	capability.	I	guarantee	that	within	a	few	minutes	of	learning	about	these
two	functions,	you	will	realize	that	you	couldn’t	have	survived	in	Unix	without	them.
There	are	actually	three	ways	to	ensure	that	you	never	need	to	enter	commands	more	than
once:	Shell	history	enables	you	to	repeat	previous	commands	without	reentering	them,	an
alias	enables	you	to	name	one	command	as	another,	and	shell	scripts	enable	you	to	place
many	commands	into	a	file	that	you	can	then	reference	as	a	new	command.	The	last	of
these	three,	shell	scripts,	is	covered	in	depth	in	Hour	16,	“Shell	Programming	Overview.”

One	of	the	fun	parts	of	Unix	is	that	you	can	customize	the	prompt	that	greets	you	each
time	you	use	the	system.	There’s	no	need	to	be	trapped	with	a	boring	$	prompt	anymore!
So	we’ll	wrap	up	by	exploring	different	ways	you	can	customize	your	shell	prompt.
Because,	well,	it’s	just	something	you	gotta	do.

Which	Shell	Is	Which?
Let’s	dig	in	and	find	out	about	some	of	the	key	capabilities	of	the	most	popular	Unix
command	shells.

Task	14.1:	The	Shell	History	Mechanisms
You	have	doubtless	heard	the	aphorism	“Those	who	do	not	study	history	are	doomed	to
repeat	it.”	Unix	stands	this	concept	on	its	head.	For	Unix,	it’s	better	stated	“Those	who	are
aware	of	their	history	can	easily	repeat	it.”

Both	bash	and	ksh	build	a	list	of	commands	as	you	enter	them	and	assign	each	of	them	a
command	number.	Each	time	you	log	in,	the	first	command	you	enter	is	command	#1,	and
the	command	number	is	incremented	for	each	subsequent	command	you	enter.	You	can

review	or	repeat	any	previous	command	easily	with	just	a	few	keystrokes.

Unlike	earlier	command	shells,	such	as	C	shell,	both	bash	and	ksh	have	a	default	history
list	of	128	or	more	commands,	which	is	plenty	for	anyone.	To	review	your	history,	you
can	use	the	history	command.	Secretly,	though,	it’s	an	alias:	The	real	command	for
both	shells	is	the	more	cryptic	fc	-l.

1.	Log	in	to	your	system	so	that	you	have	a	shell	prompt.	If	you’re	currently	in	the	C
shell	or	a	shell	other	than	bash,	this	would	be	a	great	time	to	use	chsh	to	change
shells	(see	Hour	13,	“Introduction	to	Command	Shells,”	for	more	details	on	how	to
change	your	login	shell):

Click	here	to	view	code	image

%	history	10
		270		more	/etc/shells
		271		exit
		272		ls
		273
		274		grep	‘^taylor:’	/etc/passwd
		275		grep	‘^taylor:’	/etc/passwd	|	cut	-d:	-f7
		276		env
		277		printenv
		278		alias
		279		exit
		280		history	10
$

I	just	logged	in.	Where’d	all	this	come	from?

Notice	command	#279:	exit.	That’s	giving	you	the	clue.	The	shell	remembers
commands	across	different	invocations,	so	the	commands	I	see	on	this	list	are	from
the	last	time	I	logged	in!	(In	fact,	#271	is	exit,	too,	so	command	#270	is	actually
from	two	logins	ago.)

2.	You	can	change	whether	your	history	is	remembered	across	login	sessions,	and	you
can	also	change	the	size	of	the	history	list.	Both	of	these	are	done	with	environment
variables.	Let’s	see	if	any	of	them	are	set.	First:

Click	here	to	view	code	image
%	echo	$HISTSIZE	$HISTFILESIZE
500		500

This	indicates	that	bash	is	keeping	track	of	the	500	most	recent	commands	I’ve
typed	in	and	will	also	store	500	commands	in	my	history	file	so	that	they’ll	be
automatically	available	next	time	I	log	in.

3.	If	500	seems	too	large,	this	is	easily	set	to	a	different	value,	ideally	in
.bash_profile	or	.profile:
export	HISTSIZE=200

If	for	some	strange	reason	you	don’t	seem	to	have	any	history	(the	default	value	is
500,	so	having	it	explicitly	set	to	0	would	be	a	bit	weird),	you	can	turn	on	the	feature
by	specifying	a	HISTSIZE,	as	shown	above.

You	shouldn’t	end	up	having	to	do	anything	to	get	your	history	mechanism	enabled	for

your	shell,	but	now	you	know	how,	if	it’s	necessary.

One	final	note:	C	shell	requires	most	people	to	fiddle	with	the	environment	variables,	too.
Look	for	set	history=200	or	set	savehist=200	in	the	.cshrc	(though	a
better	alternative	is	to	simply	switch	to	bash	instead).

Task	14.2:	Using	History	to	Cut	Down	on	Typing
There	are	three	main	mechanisms	for	working	with	the	history	list.	You	can	specify	a
previous	command	by	its	command	number,	by	the	first	few	characters	of	the	command,
or,	if	you’ve	set	your	command	editing	parameters,	interactively	on	the	command	line.

Non-interactive	history	commands	begin	with	an	exclamation	point.	If	the	33rd	command
you	entered	was	the	who	command,	for	example,	you	can	execute	it	by	referring	to	its
command	number:	Enter	!33	at	the	command	prompt.	You	can	also	execute	it	by	entering
one	or	more	characters	of	the	command:	!w,	!wh,	or	!who.	Be	careful,	though:	The	most
recent	match	is	invoked	without	confirmation,	so	if	you	typed	who	but	afterward	typed	an
alias	to	the	rm	command	called	wipeout,	it	would	be	the	latter	that	would	match	the	!w
sequence,	but	the	former	would	match	!wh	or	!who.

A	very	useful	shorthand	is	!!,	which	repeats	the	most	recently	executed	command.	Two
other	history	references	are	valuable	to	know:	!$	expands	to	the	last	word	of	the
preceding	command	(which	makes	sense	because	$	always	refers	to	the	end	of	something,
whether	it	be	a	line,	the	file,	or,	in	this	case,	a	command),	and	!*	expands	to	all	the	words
in	the	preceding	command	except	the	first	word.	So,	for	example,	if	I	entered	the
command	ls	/usr	/etc	/dev	and	then	immediately	entered	echo	!*,	it	would	be
expanded	automatically	to	echo	/usr	/etc	/dev.

1.	First,	I	need	to	spend	a	few	minutes	building	up	a	history	list	by	running	various
commands:

Click	here	to	view	code	image

$	cat	buckaroo
I	found	myself	stealing	a	peek	at	my	own	watch	and	overhead
General	Catbird’s
aide	give	him	the	latest.
“He’s	not	even	here,”	went	the	conversation.
“Who?”
“Banzai.”
“Where	the	hell	is	he?”
“At	the	hospital	in	El	Paso.”
“What?	Why	weren’t	we	informed?	What’s	wrong	with	him?”
$	who
taylor			ttyp0				May		1	11:50		(198.76.82.151)
$	date
Sat	Mar		7	13:26:26	MST	2015
$	echo	$HISTSIZE	$HOME
500	/home/taylor
$

2.	Now	I	will	check	my	history	list	to	see	what	commands	are	squirreled	away	for
later:
%	history	10

		310		echo	$HISTFILESIZE
		311		who
		312		ls
		313		vi	buckaroo
		314		cat	buckaroo
		315		who
		316		date
		317		echo	$HISTSIZE	$HOME
		318		history	10

3.	To	repeat	the	date	command,	I	can	specify	its	command	number:
Click	here	to	view	code	image

%	!316
date
Sat	Mar		7	13:26:38	MST	2015

Notice	that	the	shell	shows	the	command	I’ve	entered	as	command	number	316
(date)	and	then	executes	it.	The	ksh	equivalent	here	would	be	r	316.

4.	A	second	way	to	accomplish	this	repeat—a	way	that	is	much	easier—is	to	specify
the	first	letter	of	the	command:

Click	here	to	view	code	image
%	!w
who
taylor			ttyp0				Feb		1	11:50		(198.76.82.151)

5.	Now	glance	at	the	history	list:
%	history	10
		314		cat	buckaroo
		315		who
		316		date
		317		echo	$HISTSIZE	$HOME
		318		history	10
		319		cat	buckaroo
		320		date
		321		who
		322		history	10

Commands	expanded	by	the	history	mechanism	are	stored	as	the	expanded
command,	not	as	the	history	repeat	sequence	that	was	actually	entered.	Thus,	this	is
an	exception	to	the	earlier	rule	that	the	history	mechanism	always	shows	what	was
previously	entered.	It’s	an	eminently	helpful	exception,	however!

History	commands	are	quite	helpful	for	people	working	on	a	software	program.	The
most	common	cycle	for	programmers	to	repeat	is	edit-compile-run,	over	and	over
again.	The	commands	Unix	programmers	use	most	often	probably	will	look
something	like	vi	test.c,	cc	-o	test	test.c,	and	./test,	to	edit,
compile,	and	run	the	program,	respectively.	Using	the	shell	history	mechanism,	a
programmer	easily	can	enter	!v	to	edit	the	file,	!c	to	compile	it,	and	then	!.	to	test
it.	As	your	commands	become	longer	and	more	complex,	this	function	proves	more
and	more	helpful.

6.	It’s	time	to	experiment	a	bit	with	file	wildcards:
Click	here	to	view	code	image

%	ls
Archives											awkscript										dickens.note							src
InfoWorld										bin																keylime.pie								temp
Mail															buckaroo											owl.c
News															buckaroo.confused		sample
OWL																cshrc														sample2x

Oops!	I	meant	to	specify	the	-F	flag	to	ls.	I	can	use	!!	to	repeat	the	command;
then	I	can	add	the	flag:

Click	here	to	view	code	image

%	!!	-F
ls	-F
Archives/										awkscript										dickens.note							src/
InfoWorld/									bin/															keylime.pie								temp/
Mail/														buckaroo											owl.c
News/														buckaroo.confused		sample
OWL/															cshrc														sample2

Note

The	general	idea	of	all	these	history	mechanisms	is	that	you	specify	a	pattern	that	is
replaced	by	the	appropriate	command	in	the	history	list.	So	you	could	enter	echo
!!	to	have	the	system	echo	the	last	command,	and	it	would	end	up	echoing	twice.
Try	it.

I	want	to	figure	out	a	pattern	or	two	that	will	let	me	specify	both	buckaroo	files,
the	dickens	file,	and	sample2,	but	not	sample.	This	is	a	fine	example	of	where
the	echo	command	can	be	helpful:

Click	here	to	view	code	image
%	echo	b*	d*	s*
bin	buckaroo	buckaroo.confused	dickens.note	sample	sample2	src

That’s	not	quite	it.	I’ll	try	again:
Click	here	to	view	code	image

%	echo	bu*	d*	sa*
buckaroo	buckaroo.confused	dickens.note	sample	sample2

That’s	closer.	Now	I	just	need	to	remove	the	sample	file:
Click	here	to	view	code	image

%	echo	bu*	d*	sa*2
buckaroo	buckaroo.confused	dickens.note	sample2

That’s	it.	Check	out	that	complex	pattern,	too:	sa*2.

Now	I	want	to	compute	the	number	of	lines	in	each	of	these	files.	If	I	use	the	csh
history	mechanism,	I	can	avoid	having	to	enter	the	filenames	again:
%	wc	-l	!*
wc	-l	bu*	d*	sa*2
						36	buckaroo
						11	buckaroo.confused
						28	dickens.note
							4	sample2
						79	total

Notice	that	the	!*	expanded	to	the	entire	preceding	command	except	the	very	first
word.

7.	What	happens	if	I	use	!$	instead?
%	wc	-l	!$
wc	-l	sa*2
							4	sample2

8.	If	you	are	using	bash,	here’s	where	it	truly	shines!	Set	the	editor	preference	within
the	shell	to	either	vi	or	emacs.	I	prefer	the	former,	so	I	use:
$	set	–o	vi
$

Now,	any	time	I’m	entering	a	command,	I	can	press	the	Escape	key	and	be	in	bash
history-edit	command	mode.	The	usual	vi	commands	work,	including	h	and	l	to
move	left	and	right;	i	and	Escape	to	enter	and	leave	insert	mode;	w,	W,	b,	and	B	to
zip	about	by	words;	and	0	and	$	to	move	to	the	beginning	or	end	of	the	line.

Much	more	useful	are	k	and	j,	which	replace	the	current	command	with	the
preceding	or	next,	enabling	you	to	zip	through	the	history	list.

If	I’d	just	entered	who	and	then	ls,	to	append	|	wc	-l	to	the	who	command,	I
could	press	the	Escape	key:
$	[_]

Now	each	time	I	type	k,	I	will	see	the	preceding	command.	Typing	k	one	time
reveals	this:
$	ls

Typing	k	a	second	time	reveals	this:
$	who

That’s	the	right	command,	so	$	moves	the	cursor	to	the	end	of	the	line:
$	who

Typing	a	appends,	at	which	point	I	can	add	|	wc	-l	like	this:
$	who	|	wc	-l

Pressing	Return	results	in	ksh	actually	executing	the	command:
$	who	|	wc	-l
				1
$

Note

A	lot	of	modern	Unix	shells	let	you	move	up	and	down	through	your	command
history	with	the	arrow	keys.	For	example,	on	Mac	OS	X,	the	up	arrow	moves
earlier	and	earlier	into	the	history	list,	while	the	down	arrow	shows	increasingly
recent	commands.	That’s	probably	a	lot	easier	for	you	to	remember	than	the	emacs
or	vi	motion	key	sequences!

Tip

Even	with	arrow-key	navigation,	you	might	find	yourself	having	to	repeatedly
scroll	into	your	history	to	find	a	frequently	invoked	but	complicated	command.	The
bash	shell	has	another	trick	up	its	sleeve:	the	^r	command,	which	searches	your
history	for	the	most	recent	match	of	whatever	you	type.	Press	^r	and	then	type	a
few	letters,	and	your	command	line	will	automatically	be	filled	out	with	the	latest
matching	command	you	entered.

The	history	mechanisms	of	the	shells	are	wonderful	time-savers	when	you’re	working
with	files.	I	find	myself	using	the	bash	!!	and	!word	mechanisms	daily	either	to
repeat	intricate	commands	(such	as	the	preceding	example,	in	which	I	built	up	a	very
complex	command,	step	by	step)	or	to	repeat	the	most	recently	used	edit	commands.	Table
14.1	summarizes	the	available	bash	history	mechanisms.	I	encourage	you	to	learn	and
use	them.	They	will	soon	become	second	nature	and	save	you	lots	of	typing	as	you
proceed.

TABLE	14.1	Bash	History	Commands

Task	14.3:	Command	Aliases
If	you	think	the	history	mechanism	has	the	potential	to	save	you	typing,	you’ll	be	glad	to
learn	about	the	command-alias	mechanism	in	bash	and	ksh.	Using	aliases,	you	can
easily	define	new	commands	that	do	whatever	you’d	like,	or	you	can	even	redefine
existing	commands	to	work	differently,	have	different	default	flags,	or	more!

The	general	format	for	using	the	alias	mechanism	in	both	shells	is	alias
word=commands.	If	you	enter	alias	without	any	specified	words,	the	output	shows	a
list	of	aliases	you	have	defined.	If	you	enter	alias	word,	the	output	lists	the	current
alias,	if	there	is	one,	for	the	specified	word.

1.	One	of	the	most	helpful	aliases	you	can	create	specifies	certain	flags	to	ls	so	that
each	time	you	enter	ls,	the	output	will	look	as	though	you	used	the	flags	with	the
command.	I	like	to	have	the	-F	flag	set:

Click	here	to	view	code	image

%	ls
Archives											awkscript										dickens.note							src
InfoWorld										bin																keylime.pie								temp

Mail															buckaroo											owl.c
News															buckaroo.confused		sample
OWL																cshrc														sample2

Now	I’ll	create	a	bash	alias	and	try	it	again:
Click	here	to	view	code	image

%	alias	ls=‘ls	-CF’
%	ls
Archives/										awkscript										dickens.note							src/
InfoWorld/									bin/															keylime.pie								temp/
Mail/														buckaroo											owl.c
News/														buckaroo.confused		sample
OWL/															cshrc														sample2

This	is	very	helpful!

2.	If	you’re	really	an	old	timer,	just	came	out	of	your	digital	cave,	and	are	migrating	to
Unix	from	the	MS-DOS	world,	you	might	find	some	of	the	Unix	file	commands
confusing.	In	MS-DOS,	for	example,	you	use	DIR	to	list	directories,	REN	to	rename
files,	COPY	to	copy	them,	and	so	on.	With	aliases,	you	can	re-create	all	those
commands	and	map	them	to	specific	Unix	equivalents:

Click	here	to	view	code	image
%	alias	DIR	‘ls	-lF’
%	alias	REN	‘mv’
%	alias	COPY	‘cp	-I’
%	alias	DEL	‘rm	-I’
%	DIR
total	33
drwx––		2	taylor								512	Nov	21	10:39	Archives/
drwx––		3	taylor								512	Dec		3	02:03	InfoWorld/
drwx––		2	taylor							1024	Dec		3	01:43	Mail/
drwx––		2	taylor								512	Oct		6	09:36	News/
drwx––		4	taylor								532	Dec		6	18:31	OWL/
-rw-rw–-		1	taylor								126	Dec		3	16:34	awkscript
drwx––		2	taylor								512	Oct	13	10:45	bin/
-rw-rw–-		1	taylor							1393	Dec		5	18:48	buckaroo
-rw-rw–-		1	taylor								458	Dec		4	23:22	buckaroo.confused
-rw––-		1	taylor							1339	Dec		2	10:30	cshrc
-rw-rw–-		1	taylor							1123	Dec		5	18:16	dickens.note
-rw-rw–-		1	taylor						12556	Nov	16	09:49	keylime.pie
-rw-rw–-		1	taylor							8729	Dec		2	21:19	owl.c
-rw-rw–-		1	taylor								199	Dec		3	16:11	sample
-rw-rw–-		1	taylor								207	Dec		3	16:11	sample2
drwx––		2	taylor								512	Oct	13	10:45	src/
drwxrwx–		2	taylor								512	Nov		8	22:20	temp/
%	COPY	sample	newsample
%

3.	To	see	what	aliases	have	been	defined,	use	the	alias	command:
%	alias
alias	COPY=‘cp	-i’
alias	DEL=‘rm	-i’
alias	DIR=‘ls	-lF’

4.	You	could	improve	the	alias	for	DIR	by	having	the	output	of	ls	fed	directly	into
the	less	program	so	that	a	directory	listing	with	a	lot	of	output	will	automatically
pause	at	the	end	of	each	page.	To	redefine	an	alias,	just	define	it	again:

Click	here	to	view	code	image

%	alias	DIR=	‘ls	-lF	|	less’

To	confirm	that	the	alias	is	set	as	you	desire,	try	this:
%	alias	DIR
alias	DIR=‘ls	-lF	|	less’

Note

If	you’re	defining	just	one	command	with	an	alias,	you	don’t	really	need	to	use	the
quotation	marks	around	the	command	argument.	But	what	would	happen	if	you
entered	alias	DIR	ls	-lF	|	more?	The	alias	would	be	set	to	ls	-lF,	and
the	output	of	the	alias	command	would	be	fed	to	the	more	program,	which	is
quite	different	from	what	you	desired.	Therefore,	it’s	just	good	form	to	use	the
quotation	marks,	and	it’s	a	good	habit	to	get	into.

Aliases	are	a	great	addition	to	any	command	shell,	and	with	the	arcane	Unix	commands,
they	also	can	be	used	to	define	full-word	commands	as	synonyms.	For	example,	if	you
decide	you’d	like	the	simplicity	of	remembering	only	the	command	move	to	move	a	file
somewhere	else,	you	could	add	the	new	alias	alias	move=’mv’	to	your	.bashrc,
and	the	shell	would	include	a	new	command.

The	only	warning	I’ll	share	is	that	if	you	become	highly	reliant	on	specific	aliases,	you
might	find	it	frustrating	if	you	ever	have	to	use	a	different	Unix	or	Linux	system	that
doesn’t	include	your	.bashrc	(or	equivalent).	Just	something	to	keep	in	mind	before	you
do	something,	um,	bizarre	like	duplicate	the	MS-DOS	command	line	interface.

Task	14.4:	Some	Power	Aliases
Because	I	have	used	the	C	shell	for	many	years,	I	have	created	various	aliases	to	help	me
work	efficiently.	A	few	of	the	best	are	shown	in	this	section.

1.	To	see	what	aliases	I	have	defined,	I	can	use	the	same	command	I	used	earlier	after
having	read	in	a	different	.bashrc	file	that	defines	all	these	additional	aliases:

Click	here	to	view	code	image
%	alias
alias	diff=’/usr/bin/diff	-c	–w’
alias	from=‘frm	–n’
alias	ls=’/bin/ls	–F’
alias	mail=‘Mail’
alias	mailq=’/usr/lib/sendmail	–bp’
alias	newaliases=‘echo	you	mean	newalias…’
alias	rn=’/usr/local/bin/rn	-d$HOME	-L	-M	-m	-e	-S	-/’
alias	intuitive=‘echo	Intuitive.com;echo	‘'‘MyPassWord.’'’|pbcopy;ssh
dtaylor@intuitive.com’

Recall	that	each	of	these	aliases	started	out	in	my	.bashrc	file:
Click	here	to	view	code	image

%	grep	alias	.bashrc
alias		diff=’/usr/bin/diff	-c	-w’
alias		from=‘frm	-n’

alias		ll=‘ls	-l’
alias		ls=’/bin/ls	-F’
alias		mail=Mail
alias		mailq=’/usr/lib/sendmail	-bp’
alias		newaliases=‘echo	you	mean	newalias…’
alias		rn=’/usr/local/bin/rn	-d$HOME	-L	-M	-m	-e	-S	-/’
alias	intuitive=‘echo	Intuitive.com;	\
		echo	‘'‘MyPassWord.’'’|	pbcopy;ssh	dtaylor@intuitive.com’

Also	notice	that	the	shell	always	shows	an	alphabetically	sorted	list	of	aliases,
regardless	of	the	order	in	which	they	were	defined.

Most	of	these	aliases	are	easy	to	understand.	For	example,	the	first	alias,	diff,
ensures	that	the	command	diff	always	has	the	default	flags	-c	and	-w.	If	I	enter
from,	I	want	the	system	to	invoke	frm	-n;	if	I	enter	ll,	I	want	the	system	to
invoke	ls	-l;	and	so	on.

2.	Some	commands	can	cause	trouble	if	entered,	so	creating	an	alias	for	each	of	those
commands	is	a	good	way	to	stay	out	of	trouble.	For	example,	I	have	an	alias	for
newaliases;	if	I	accidentally	enter	that	command,	the	system	gently	reminds	me
that	I	probably	meant	to	use	the	newalias	command:
$	newaliases
you	mean	newalias…

3.	I	have	created	aliases	for	connecting	to	accounts	on	other	systems.	I	like	to	name
each	alias	after	the	system	to	which	I’m	connecting	(for	example,	intuitive):

Click	here	to	view	code	image

$	alias	intuitive
alias	intuitive=‘echo	Intuitive.com;echo	‘'‘MyPassWord.’'’|	pbcopy;ssh
dtaylor@intuitive.com’

Separating	commands	with	a	semicolon	is	the	Unix	way	of	having	multiple
commands	on	a	single	line,	so	when	I	enter	the	alias	sunworld,	for	example,	it’s	as
if	I’d	entered	all	these	commands	one	after	another:
echo	Intuitive.com
echo	‘MyPassWord.’	|	pbcopy
ssh	dtaylor@intuitive.com

Before	you	get	too	excited,	no,	“MyPassWord.”	is	not	my	real	account	password!

Using	aliases	is	a	great	way	to	really	customize	your	command	interface.	I	always	tweak
the	set	of	commands	and	the	default	flags.	(For	example,	look	at	all	the	options	I	set	as
default	values	for	the	rn	command.)	I	even	effectively	disable	commands	that	I	don’t
want	to	enter	accidentally.

Let	your	imagination	run	wild	with	aliases!	If	you	decide	you	really	like	one	and	you’re
using	bash,	add	the	alias	to	your	.bashrc	file	so	that	it’s	permanent.	(You	can	also	put
these	into	your	.profile	file	if	you	prefer.)	If	you	want	to	temporarily	have	the	system
“forget”	an	alias,	you	can	use	the	unalias	command,	and	it’s	gone	until	you	log	in
again.	For	example,	unalias	intuitive	would	temporarily	remove	from	the	shell
the	intuitive	alias	shown	earlier.

Task	14.5:	Setting	Custom	Prompts
Up	to	this	point,	the	command	prompt	you’ve	seen	is	a	boring	$.	It	turns	out	that	bash
lets	you	set	your	prompt	to	just	about	any	possible	value,	with	PS1=”value”.	Note	that
PS1	must	be	all	uppercase	for	this	to	work.

1.	I’m	getting	tired	of	Unix	being	so	blunt	and	impolite.	Fortunately,	I	easily	can
change	how	it	responds	to	me:
%	PS1=“Yes,	master?	“
Yes,	master?

That’s	more	like	it!

2.	There	are	a	lot	of	things	you	can	tuck	away	in	your	prompt	that	can	be	of	great	help,
and	they	all	take	the	form	of	\x.	The	first	useful	variable	is	\w,	which	holds	the
current	working	directory:

Click	here	to	view	code	image

Yes,	master?	PS1=“In	\w,	oh	master:	“
In	/users/taylor,	oh	master:

What	happens	if	I	change	directories?
Click	here	to	view	code	image

In	/users/taylor,	oh	master:	cd	/
In	/,	oh	master:

Cool,	eh?

3.	There	are	a	lot	of	different	variables	you	can	add,	the	most	useful	of	which	are
shown	in	Table	14.2.

TABLE	14.2	Special	Values	for	the	System	Prompt

Remember	how	you	learned	earlier	this	hour	about	using	the	command	numbers	to
repeat	commands	(like	!37	to	repeat	command	#37)?	It	turns	out	that	there’s	an

environment	variable	HISTCMD	that	contains	the	current	command	number.
Fortunately,	you	can	use	a	shortcut:

Click	here	to	view	code	image

In	/,	oh	master:	PS1=”(The	current	command	is	#\!)	$	“
(The	current	command	is	#132)	$

The	number	shown	is	the	command	number,	as	used	by	the	shell	history	mechanism,
with	a	slightly	more	succinct	variation:

Click	here	to	view	code	image
(132)	$	echo	hi
hi
(133)	$	ls	News
mailing.lists.usenet		usenet.1														usenet.alt
(134)	$!132
echo	hi
hi
(135)	$

Here’s	another	example	that	you	might	find	valuable:
(135)	%	PS1=”\h	(\!)	%	“
limbo	(136)	$

This	is	close	to	what	I	use	myself,	but	I	like	to	include	the	basename	of	the	current
directory.	Basename	means	the	name	of	the	closest	directory,	so	the	basename	of
/home/taylor	is	taylor,	for	example.	Also,	I	replace	the	dollar	sign	with	a
colon,	which	is	a	bit	easier	on	the	eyes:

Click	here	to	view	code	image

limbo	(136)	$	PS1=”\h	(\W)	\!	:	“
limbo	(taylor)	137	:

Experiment	until	you	find	a	set	of	variables	that	can	help	you	customize	your	Unix
prompt.	I	strongly	recommend	that	you	use	command	numbers	to	familiarize	yourself	with
the	history	mechanism.

Taking	advantage	of	the	command-alias	capability	is	a	helpful	way	to	cut	down	on
entering	short	commands	time	and	again,	but	what	if	you	have	a	series	of	5	or	10
commands	you	often	enter	in	sequence?	That’s	where	shell	scripts	can	help	(see	Hour	16).

Summary
This	hour	introduced	you	to	many	of	the	most	powerful	aspects	of	Unix	command	shells.
Practice	creating	aliases	and	working	with	the	history	list	to	minimize	your	typing.	Also,
find	a	prompt	you	like	and	set	it	in	your	.bashrc	or	.profile	so	that	it	will	be	your
default.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
basename	The	basename	is	the	name	of	the	closest	directory.	For	example,	the	basename
of	/usr/home/taylor	is	taylor.

command	number	The	unique	number	by	which	the	shell	indexes	all	commands.	You
can	place	this	number	in	your	prompt	by	using	\$HISTCMD	and	use	it	with	the	history
mechanism	as	!command-number.

Exercises
1.	How	do	you	tell	bash	that	you	want	it	to	remember	the	last	30	commands	during	a
session	and	to	remember	the	last	10	commands	across	login	sessions?

2.	Assume	that	you	get	the	following	output	from	entering	history:
1				ls	-CF
2				who	|	grep	andrews
3				wc	-l	<	test
4				cat	test
5				history

What	would	be	the	result	of	entering	each	of	the	following	history	commands?
!2				!w				!wh				echo	!1

3.	Some	Unix	systems	won’t	enable	you	to	use	the	following.	What	danger	do	you	see
lurking	in	this	alias?
alias	who				who	-a

4.	Which	of	the	following	aliases	do	you	think	would	be	useful?
alias	alias=‘who’
alias	ls=‘cp’
alias	copy=‘cp	–’
alias	logout=‘vi’
alias	vi=‘logout’
alias	bye=‘logout’

5.	Set	your	prompt	to	the	following	value.	Remember	that	33	should	be	replaced	with
the	appropriate	command	number	each	time:

Click	here	to	view	code	image
#33	-	I	know	lots	about	Unix.	For	example:

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	how	to	get	even	more	out	of	your	shell.	You’ll	learn	about
shell	programming	and	how	to	create	shell	programs	on-the-fly.

Hour	15.	Job	Control

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	job	control	in	the	shell:	stopping	jobs

	How	to	put	jobs	in	the	background	and	bring	them	back	to	the	foreground

	How	to	find	out	what	tasks	are	running	by	using	jobs	and	ps

	How	to	terminate	errant	processes	by	using	kill

In	this	hour	you	will	learn	about	how	Unix	handles	jobs	and	how	you	can	manipulate
them.	Commands	you	will	learn	include	jobs	and	ps,	to	see	what	processes	are	running;
fg	and	bg,	to	move	jobs	back	and	forth	between	the	foreground	and	background;	and
kill,	to	terminate	jobs	you	no	longer	want	around.

This	hour	presents	an	explanation	of	a	Unix	philosophical	puzzle:	What	is	a	running
program?	To	learn	the	answer,	you	are	introduced	to	ps	and	jobs,	for	controlling
processes;	fg	and	bg,	to	move	your	own	processes	back	and	forth	between	the
foreground	and	background;	and	the	quasi-omnipotent	kill	command,	for	stopping
programs	in	their	proverbial	tracks.

Wrestling	with	Your	Jobs
Every	program	you	run	is	a	job,	according	to	the	Unix	system,	and	although	it	might	not
be	obvious,	you	have	the	ability	to	start	and	stop	jobs	at	any	time.

Task	15.1:	Job	Control	in	the	Shell:	Stopping	Jobs
Whether	you’re	requesting	a	man	page,	listing	files	with	ls,	starting	vi,	or	running	just
about	any	Unix	command,	you’re	starting	one	or	more	processes.	In	Unix,	any	program
that’s	running	is	a	process.	You	can	have	multiple	processes	running	at	once.	The	pipeline
ls	-l	|	sort	|	more	invokes	three	processes:	ls,	sort,	and	more.	Processes	in
both	the	C	and	Korn	shells	are	also	known	as	jobs,	and	the	program	you’re	running	is
known	as	the	current	or	active	job.

Any	job	or	process	can	have	various	states,	with	“running”	being	the	most	typical	state.	In
both	shells,	you	can	stop	a	job	by	pressing	^z.	To	restart	it,	enter	fg	(foreground)	when
you	are	ready.

1.	Earlier	I	was	perusing	the	man	page	entry	for	sort.	I	had	reached	the	bottom	of	the
first	screen:

Click	here	to	view	code	image

$	man	sort

SORT(1)													DYNIX	Programmer’s	Manual													SORT(1)

NAME
					sort	-	sort	or	merge	files

SYNOPSIS
					sort	[-mubdfinrtx]	[+pos1	[-pos2]]	…	[-o	name]	[
					-T	directory]	[name]	…

DESCRIPTION
					Sort	sorts	lines	of	all	the	named	files	together	and	writes
					the	result	on	the	standard	output.		The	name	`-‘	means	the
					standard	input.		If	no	input	files	are	named,	the	standard
					input	is	sorted.

					The	default	sort	key	is	an	entire	line.		Default	ordering	is
					lexicographic	by	bytes	in	machine	collating	sequence.		The
					ordering	is	affected	globally	by	the	following	options,	one
					or	more	of	which	may	appear.

					b				Ignore	leading	blanks	(spaces	and	tabs)	in	field	com-
—More—

I’d	like	to	try	using	the	-b	flag	mentioned	at	the	bottom	of	this	screen,	but	I	want	to
read	the	rest	of	the	man	page,	too.	Instead	of	typing	q	to	quit	and	then	restarting	the
man	program	later,	I	can	stop	the	program.	I	press	^z	and	see	this:

Click	here	to	view	code	image
ordering	is	affected	globally	by	the	following	options,	one

	or	more	of	which	may	appear.

					b				Ignore	leading	blanks	(spaces	and	tabs)	in	field	com-
—More—
Stopped
$

At	this	point,	I	can	do	whatever	I’d	like:
Click	here	to	view	code	image

$	ls	-sF	|	sort	-b	|	head	-4
			1	Archives/
			1	InfoWorld/
			1	Mail/
			1	News/
			1	OWL/

2.	I	can	resume	the	stopped	job	at	any	time,	too.	I	enter	fg,	the	program	reminds	me
where	I	was,	and	man	(which	is	actually	the	more	program	invoked	by	man)
returns	to	its	prompt:
$	fg
man	sort
—More—
$

3.	Screen-oriented	programs	are	even	smarter	about	stopping	and	starting.	For
example,	vi	refreshes	the	entire	screen	when	you	return	from	it	having	been
stopped.	If	I	were	in	vi	working	on	the	dickens.note	file,	the	screen	would
look	like	this:

Click	here	to	view	code	image

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea
	of	this	story.		A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.		Throughout	its	execution,	it	has	had	complete	possession	of
me;
	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	Danish	people	before	or	during	the	Revolution,	it	is	truly	made,
	on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
“dickens.note”	28	lines,	1123	characters

Pressing	^z	would	result	in	this:
Click	here	to	view	code	image

witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
“dickens.note”	28	lines,	1123	characters

Stopped
$

I	can	check	to	see	whether	someone	is	logged	in	and	then	return	to	vi	with	the	fg
command:

Click	here	to	view	code	image
$	who	|	grep	marv
$	fg

A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie
Collins’s	drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of
this
story.		A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself
into	its	present	form.		Throughout	its	execution,	it	has	had	complete
	possession	of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	Danish	people	before	or	during	the	Revolution,	it	is	truly	made,
on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
“dickens.note”	28	lines,	1123	characters

Processes	and	jobs	in	Unix	have	many	aspects,	particularly	regarding	the	level	of	control
offered	by	the	shell.	The	rest	of	this	hour	explains	how	to	exploit	these	capabilities	to
make	your	work	easier	and	faster.

Task	15.2:	Foreground/Background	and	Unix	Programs
Now	that	you	know	how	to	suspend	programs	(freezing	them	in	their	tracks),	it’s	time	to
learn	how	to	allow	them	to	keep	running	in	the	background	(by	using	the	bg	command)
while	you’re	doing	something	else	and	how	to	have	programs	start	in	the	background	by
using	the	&	suffix.

In	the	first	hour,	you	learned	that	one	of	the	distinguishing	characteristics	of	Unix	is	that
it’s	a	true	multitasking	operating	system.	It	is	capable	of	running	hundreds	of	programs	at
the	same	time.	This	applies	to	any	program	from	a	simple	command-line	utility	to	a	full-
screen	persistent	application.	If	you	want	to	save	a	couple	of	man	pages	to	a	file,	for
example,	you	can	run	those	processes	in	the	background	while	you	are	working	on
something	else.

Once	a	job	is	stopped,	you	can	enter	fg	to	restart	it	as	the	program	you’re	working	with.
(The	fg	command	takes	its	name	from	foreground,	which	refers	to	the	program	that	your
display	and	keyboard	are	working	with.)	If	the	process	will	continue	without	any	output	to
the	screen	and	without	any	requirement	for	input,	you	can	use	bg	to	move	it	into	the
background,	where	it	runs	until	it	is	done.	If	the	program	needs	to	write	to	the	screen	or
read	from	the	keyboard,	the	system	will	stop	its	execution	automatically	and	inform	you.
You	then	can	use	fg	to	bring	the	program	into	the	foreground	to	continue	running.

Tip

If	you	find	that	running	background	jobs	are	still	writing	information	to	your
screen,	try	using	the	shell	command	stty	tostop	prior	to	starting	the	command
as	a	solution.

You	can	also	use	job	control	to	start	multiple	programs	and	then	use	the	fg	command,
with	the	job	ID	as	an	argument,	to	start	the	job	you	want	to	work	with.	Not	entering	the
job	ID	will	bring	the	most	recently	stopped	job	back	to	the	foreground.	If	your	system
takes	a	long	time	to	start	big	applications	(such	as	emacs	or	vi),	this	could	save	you	lots
of	time.

Note

Although	a	job	can	be	stopped,	it	still	typically	consumes	resources,	so	you	should
be	careful	not	to	have	too	many	stopped	programs	around,	in	deference	to	the	other
users	of	the	system.	To	free	resources,	kill	or	terminate	the	jobs	instead.

A	different	strategy	is	to	start	a	program	in	the	background	and	let	Unix	manage	it.	If	the
program	needs	user	input	or	has	output	to	display,	it	stops,	just	like	processes	you’ve	put
into	the	background	with	bg	after	they’ve	already	started	running.	To	have	a	program	(or
pipeline!)	automatically	start	in	the	background,	simply	type	an	&	at	the	end	of	the
command	line.

1.	Here’s	an	example	of	a	complex	sequence	of	awk	commands	that	processes	files
without	needing	any	input	or	offering	any	output:

Click	here	to	view	code	image

$	awk	-F:	‘{print	$1”	=	“$5}’	<	/etc/passwd	|	\
awk	-F,	‘{print	$1}’|	\

awk	‘{	if	(NF	>	2)	print	$0	}’	|	\

sort	>	who.is.who

After	about	10	seconds,	the	$	prompt	returns;	it	takes	that	long	to	feed	the	password
file	through	the	three-part	awk	filter,	sort	the	entire	output,	and	save	it	to	the	file
who.is.who.

Caution

When	you’re	working	with	long	commands,	it’s	useful	to	know	that	you	can	always
move	to	the	next	line—even	in	the	middle	of	entering	something—by	ending	the
current	line	with	a	single	backslash.	Note	that	the	backslash	must	be	the	very	last
character	on	the	line.

With	this	new	file,	I	easily	can	look	up	an	account	to	see	the	full	name	of	that	user:
Click	here	to	view	code	image

$	alias	lookup=‘grep	-i	\!*	who.is.who’
$	who	|	head
root					console	Dec		6	18:02
maritanj	ttyAa			Dec		8	21:20
efb						ttyAb			Dec		8	12:12
wifey				ttyAc			Dec		8	19:41
phamtu			ttyAe			Dec		8	21:14
curts				ttyAf			Dec		8	21:14
seifert		ttyAg			Dec		8	21:11
taylor			ttyAh			Dec		8	21:09
halcyon		ttyAi			Dec		8	18:34
jamilrr		ttyAj			Dec		8	20:25
Broken	pipe
$	lookup	maritanj
maritanj	=	Jorge	Maritan
$	lookup	efb
efb	=	Edward	F.	Billiard
$

2.	To	have	the	build	process	run	in	the	background,	I	can	stop	the	process	immediately
after	I	start	it,	by	using	^z:

Click	here	to	view	code	image

$!awk
awk	-F:	‘{print	$1”	=	“$5}’	<	/etc/passwd	|	awk	-F,	‘{print	$1}’
|	awk	‘{	if	(NF	>	2)	print	$0	}’	|	sort	>	who.is.who
Stopped
$

Note

Notice	that	the	command	I	repeated	using	the	history	mechanism	was	listed	as
being	all	on	a	single	line	even	though	I	originally	entered	it	across	multiple	lines.

At	this	point,	bg	will	continue	the	program,	running	it	in	the	background:
Click	here	to	view	code	image

$	bg
[1]				awk	-F:	{print	$1”	=	“$5}	<	/etc/passwd	|	awk	-F,	{print	$1}	|	awk
{	if	(NF	>	2)	print	$0	}	|	sort	>	who.is.who	&
$

The	number	in	square	brackets	is	this	job’s	control	number	in	the	shell.	In	a	moment,
you’ll	learn	why	this	is	a	handy	number	to	note.

On	some	systems	a	completed	background	job	will	notify	you	immediately	that	it’s
done,	but	on	most	systems,	after	a	completed	background	job	has	finished	running,	it
waits	until	you	press	Return	to	get	a	new	system	prompt	before	it	lets	you	know.
After	about	30	or	40	seconds,	I	press	Return	and	see	this:

Click	here	to	view	code	image
$
[1]				Done																	awk	-F:
{print	$1”	=	“$5}	<	/etc/passwd	|	awk	-F,
{print	$1}	|	awk	{	if	(NF	>	2)	print	$0	}	|	sort	>	who.is.who
$

3.	A	better	strategy	for	moving	a	program	into	the	background	is	to	move	the	process
to	the	background	automatically	by	adding	a	&	to	the	end:

Click	here	to	view	code	image
$!awk	&
awk	-F:	‘{print	$1”	=	“$5}’	<	/etc/passwd	|	awk	-F,	‘{print	$1}’	|	awk	‘{
if	(NF	>	2)	print	$0	}’	|	sort	>	!	who.is.who	&
[1]	27556	27557	27558	27559
$

This	is	more	interesting.	This	command	is	shown	with	a	control	number	of	1,	but	the
four	numbers	listed	after	it	are	the	actual	process	ID	numbers	of	each	piece	of	the
pipeline:	27556	is	the	first	awk	process,	27557	is	the	second	awk	process,	27558
is	the	third	awk	process,	and	27559	is	the	sort	program.

Again,	when	it’s	complete,	pressing	Return	lets	me	know:
Click	here	to	view	code	image

$
[1]				Done																	awk	-F:	{print	$1”	=	“$5}	<	/etc/passwd	|	awk
-F,	{print	$1}	|	awk	{	if	(NF	>	2)	print	$0	}	|	sort	>	who.is.who
$

4.	What	happens	if	I	try	to	automatically	move	to	the	background	a	program	that	has
input	or	output?
$	vi	&
[1]	28258
$

This	looks	fine.	Pressing	Return	indicates	otherwise,	though:
Click	here	to	view	code	image

$
[1]		+	Stopped	(tty	output)	vi
$

You	can	see	that	this	program	has	stopped	because	of	some	information	(output)	it
wants	to	display.	If	the	program	expected	input,	the	message	would	be	Stopped
(tty	input)	program	name.

I	can	use	fg	to	bring	this	program	back	into	the	foreground.

Because	so	much	of	the	Unix	design	focuses	on	running	streams	of	data	through	filters
and	saving	the	output	to	a	file,	you	could	be	running	various	commands	in	the
background,	freeing	you	up	to	do	other	work	while	it’s	chugging	away.	Remember	that
you	can	put	in	the	background	jobs	that	take	a	fair	amount	of	processing	time	and	then
display	information	on	the	screen.	When	it’s	time	for	a	background	job	to	write	something
to	the	screen,	the	program	will	stop	automatically	until	you	enter	fg	to	pull	it	into	the
foreground.

Remember	also	that	when	you	want	a	program	to	be	running	in	the	background,	you	can
redirect	its	output,	too.	A	common	command	would	be	something	like	longcmd	>
longcmd.output	&.

Task	15.3:	Finding	Out	What	Tasks	Are	Running
There	are	two	ways	to	keep	tabs	on	what	programs	are	running	on	a	Unix	system.	The
easier	way	is	to	use	jobs,	which	shows	what	processes	you’ve	stopped	and	moved	into
the	background	in	the	current	shell.	Enter	jobs,	and	the	system	tells	you	what	programs,
if	any,	are	stopped	or	running.

The	alternative	is	a	complex	command	called	ps,	which	shows	the	processor	status	for	the
entire	computer.	The	processor	is	another	name	for	the	computer	itself.	Fortunately,
without	any	arguments,	it	only	shows	the	active	or	stopped	programs	associated	with	your
current	login	session.	Don’t	be	fooled,	however:	The	ps	program	has	more	flags	than
even	ls	does.	The	vast	majority	of	them	are	never	going	to	be	of	value	to	you	or	any
normal	Unix	user.	Confusingly,	the	flags	are	very	different	between	BSD	systems	and
System	V,	too.	Table	15.1	summarizes	the	ps	flags	that	are	most	helpful.

TABLE	15.1	Useful	Flags	to	the	ps	Command,	BSD-Style

The	-a,	and	-x	flags	affect	how	much	information	is	displayed	by	ps.	To	use	the	-x
command,	you	also	must	use	the	-a	command.	On	most	machines,	-ax	yields
considerably	more	output	than	-a.	The	most	commonly	used	flags	(and	flag
combinations)	are	-a,	to	have	all	interesting	processes	listed;	-ax,	to	see	everything	on
the	machine	(you	almost	always	want	to	pipe	this	to	grep	or	more,	lest	you	be	overrun
with	hundreds	of	lines	of	information);	and	-wtxx,	to	show	all	the	processes	associated
with	ttyxx,	in	wide	format.

Note

The	ps	program	varies	from	System	V	to	Berkeley	Unix	more	than	any	other
command.	Fortunately,	the	two	or	three	most	common	flags	are	similar	across	the
two	systems.	To	explore	more	about	the	ps	command	on	your	system,	you	should
start	by	reading	the	man	page.

1.	I	start	vi	in	the	background:
$	vi	dickens.note	&
[1]	4352
$

I	start	that	awk	job	again,	too:
Click	here	to	view	code	image

$!awk
awk	-F:	‘{print	$1”	=	“$5}’	<	/etc/passwd	|	awk	-F,	‘{print	$1}’	|	awk	‘{
if	(NF	>	2)	print	$0	}’	|	sort	>	!	who.is.who	&
[2]	4532	4534	4536	4537
$

The	jobs	command	shows	what	processes	I	have	running:
Click	here	to	view	code	image

$	jobs
[1]		+	Stopped	(tty	output)	vi	dickens.note
[2]		-	Running														awk	-F:	{print	$1”	=	“$5}	<	/etc/passwd	|	awk
-F,
{print	$1}	|	awk	{	if	(NF	>	2)	print	$0	}	|	sort	>	who.is.who

$

2.	Now	that	I	know	the	job	numbers	(the	numbers	in	square	brackets	here),	I	can	easily
move	specific	jobs	into	the	foreground	or	the	background	by	specifying	the	job
number	prefixed	by	%.	To	show	what	I	mean,	I’ll	put	a	couple	more	vi	jobs	in	the
background:

Click	here	to	view	code	image

$	vi	buckaroo.confused	&
[2]	13056
$	vi	awkscript	csh.man	cheryl	mbox	&
[3]	13144
$

Now	I	use	the	jobs	command	to	see	what’s	running:
Click	here	to	view	code	image

$	jobs
[1]				Stopped	(tty	output)	vi	dickens.note
[2]		-	Stopped	(tty	output)	vi	buckaroo.confused
[3]		+	Stopped	(tty	output)	vi	awkscript	csh.man	cheryl	mbox
$

Note

Notice	that	the	awk	job	finished	and	no	longer	shows	up	as	an	active	job.

To	edit	the	buckaroo.confused	note,	I	need	only	to	enter	fg	%2	to	pull	the
file	into	the	foreground.	To	terminate	these	processes	(which	you’ll	learn	more	about
later	in	this	hour),	I	can	use	the	kill	command:
$	kill	%2	%3
$

Nothing	happened.	Or	did	it?	Pressing	Return	again	reveals	what	occurred	in	the
operating	system:

Click	here	to	view	code	image
$
[3]		-	Done																	vi	awkscript	csh.man	cheryl	mbox
[2]		-	Done																	vi	buckaroo.confused
$

3.	I	restart	the	awk	command	with	!awk.	Contrast	the	output	of	jobs	with	the	output
of	the	BSD	ps	command:

Click	here	to	view	code	image
$	ps
		PID	TT	STAT		TIME	COMMAND
	4352	Ah	T					0:00	vi	dickens.note
	4532	Ah	R					0:03	awk	-	:	{print	$1”
	4534	Ah	R					0:02	awk	-	,	{print	$1}
	4536	Ah	S					0:01	-	k	{	if	(NF	>	2)	print	$0	}	(awk)
	4537	Ah	S					0:00	sort
	4579	Ah	R					0:00	ps
$

You	can	see	here	that	four	unique	processes	are	really	running	for	that	pipeline:	three

awk	processes	and	one	sort	process.	In	addition,	vi	and	ps	are	listed	as	running.
Note	that	my	login	shell	(bash)	isn’t	in	this	listing.

Figure	15.1	explains	each	field,	and	Table	15.2	lists	possible	values	for	the	STAT
program	status	column.

FIGURE	15.1	The	ps	default	process	output.

TABLE	15.2	Possible	Process	Status	Values

Other	process	states	exist,	but	they	rarely	show	up	for	most	users.	A	zombie	process
is	one	that	has	ended	but	hasn’t	freed	up	its	resources.	Usually,	it	takes	a	second	or
two	for	the	system	to	completely	recover	all	memory	used	by	a	program.
Sometimes,	zombies	are	stuck	in	the	process	table	for	one	reason	or	other.	Unix	folk
refer	to	this	as	a	wedged	process,	and	such	a	process	has	an	annoying	habit	of
staying	around	until	the	system	is	rebooted.	Sometimes	these	zombie	processes	can
be	listed	as	<defunct>	in	process	listings.	Any	process	that	is	preceded	by	a
sleep	command	is	noted	as	sleeping.

4.	Adding	some	flags	can	change	the	output	of	ps	quite	dramatically:
Click	here	to	view	code	image

$	ps	-x
		PID	TT	STAT		TIME	COMMAND
	4352	Ah	T					0:00	vi	dickens.note
	6171	Ah	R					0:02	awk	-	:	{print	$1”
	6172	Ah	R					0:01	awk	-	,	{print	$1}
	6173	Ah	S					0:01	-	k	{	if	(NF	>	2)	print	$0	}	(awk)
	6174	Ah	S					0:00	sort
	6177	Ah	R					0:00	ps	-x
19189	Ah	S					0:06	-bash	(bash)
19649	Ah	I					0:02	newmail
$

Two	new	processes	show	up	here:	-bash	(the	shell),	which	is,	finally,	my	login
shell;	and	newmail,	a	program	that	automatically	starts	in	the	background	when	I

log	in	to	the	system	(it’s	located	at	the	end	of	my	.login).

Note

The	shell	process	is	shown	with	a	leading	dash	to	indicate	that	it’s	a	login	shell.
Any	other	copies	of	bash	that	I	run	won’t	have	that	leading	dash.	This	is	one	way
the	shell	knows	not	to	read	through	the	.login	file	every	time	it’s	run.

5.	To	see	more	about	what’s	happening,	I	add	yet	another	flag,	-f,	to	expand	the
output	on	the	display:

Click	here	to	view	code	image

$	ps	-xf
USER							PID		%CPU	%MEM			SZ		RSS	TT	STAT	ENG			TIME	COMMAND
taylor				7011		10.4		0.2		184		100	Ah	R						6			0:02	awk	-	:	{print	$1”
taylor				7012			6.3		0.1		160			92	Ah	S										0:01	awk	-	,	{print	$1}
taylor				7013			5.9		0.1		160			92	Ah	R						3			0:01	-	k	{	if	(NF	>	2)
print
taylor			19189			1.1		0.2		256		148	Ah	S										0:07	-bash	(bash)
taylor				7014			1.0		0.1		316			64	Ah	S										0:00	sort
taylor				7022			0.1		0.2		180		116	Ah	R						0			0:00	ps	-xu
taylor				4352			0.0		0.3		452		168	Ah	T										0:00	vi	dickens.note
taylor			19649			0.0		0.1		124			60	Ah	I										0:02	newmail
$

Figure	15.2	explains	these	fields.

FIGURE	15.2	The	-f	user-oriented	output	of	ps.

6.	On	a	Solaris	workstation,	the	output	of	the	ps	command	is	a	bit	different:
Click	here	to	view	code	image

$	ps
		PID	TTY				TIME	COMMAND
	8172	pts/2	0:00	-bash	(bash)
	8182	pts/2						0:00	vi
	8186	pts/2						0:00	ps
$

In	many	ways,	though,	these	different	Unixes	still	have	very	similar	output	from	the
ps	commands.	For	example,	consider	this	Mac	OS	X	output	from	ps	-ef	to	the
ps	-xu	output	on	the	Solaris	system	that	I	showed	earlier:

Click	here	to	view	code	image

$	ps	–ef	|	head	-4
		UID			PID		PPID			C	STIME			TTY											TIME	CMD
				0					1					0			0	Thu11AM	??									2:49.85	/sbin/launchd
				0				19					1			0	Thu11AM	??									0:21.14
/usr/libexec/UserEventAgent	(System)
				0				20					1			0	Thu11AM	??									0:49.64	/usr/sbin/syslogd
$

Unix	works	with	processes.	Your	login	shell,	the	edit	session	you	run,	and	even	the	ls
program	listing	your	files	are	all	processes	in	the	operating	system.	This	means	that	you
can	work	with	processes.	You	can	stop	programs	temporarily	to	do	something	else,	restart
them	as	you	choose,	and	even	look	at	all	the	programs	you’re	running	at	any	time,
including	otherwise	hidden	processes	such	as	your	login	shell	itself.

Task	15.4:	Terminating	Processes	with	kill
Now	that	you	know	how	to	create	multiple	processes,	tuck	some	into	the	background,	and
find	stray	processes,	you	need	some	way	to	permanently	stop	them	from	running,	as
needed.	The	command	to	accomplish	this	in	Unix	is	kill.	For	the	most	part,	to	use
kill,	you	specify	the	process	ID	numbers	of	the	programs	you	want	to	terminate.	Both
the	C	shell	and	the	Korn	shell	have	a	convenient	shorthand	you’ve	already	seen:	the
percent–job-number	notation.

The	kill	command	can	send	various	signals	to	a	process.	To	specify	a	job	control	action,
you	need	to	specify	to	kill	one	of	the	various	signals.	Table	15.3	lists	the	most	common
signals	you’d	use	with	kill.

TABLE	15.3	Some	Signals	to	Use	with	kill

Unix	knows	about	more	than	30	signals,	but	Table	15.3	lists	the	ones	that	are	most	helpful.
The	SIGHUP	signal	is	sent	to	every	process	you	are	running	just	before	you	hang	up	(log
out	of	the	system).	SIGINT	is	the	signal	sent	when	you	press	^c;	many	programs	respond
in	specific	ways	when	this	signal	is	received,	typically	to	cancel	the	current	operation.
SIGKILL	is	the	“Terminator”	of	the	Unix	signals:	Programs	cannot	ignore	it	and	cannot
do	anything	special	when	receiving	it.	The	process	is	terminated	immediately,	without
even	a	chance	to	clean	up	after	itself.	SIGTERM	is	the	more	graceful	alternative:	It
requests	an	immediate	termination	of	the	program,	but	it	allows	the	program	to	remove
temporary	files	it	might	have	created.

By	default,	kill	sends	a	SIGTERM	to	the	processes	specified.	You	can	specify	other
signals,	however,	by	using	either	the	number	or	the	name	of	the	signal	(minus	the	SIG
prefix,	that	is).	On	many	systems,	you	also	can	specify	the	-l	flag	to	kill	to	see	what

signals	are	available.

Caution

Use	the	kill	command	with	caution.	It	can	get	you	into	a	lot	of	trouble.	For
example,	do	you	want	to	log	out	rather	suddenly?	To	do	that,	find	the	process	ID	of
your	login	shell	and	terminate	it.	Learn	to	use	kill,	but	learn	to	use	it	cautiously.

1.	The	simplest	way	to	use	the	kill	command	is	from	the	shell.	First,	I	start	a	job	in
the	background:
$	vi	&
[1]	6016
$

I	can	terminate	this	process	now	by	using	either	kill	%1	or	kill	6016	(without
a	specified	signal,	by	the	way,	kill	sends	a	SIGTERM	signal),	but	if	I	try	both	of
them,	the	second	command	will	fail	because	the	first	already	will	have	terminated
the	process:

Click	here	to	view	code	image

$	kill	%1
$	kill	6016
6016:	No	such	process
[1]				Done																	vi
$

Just	as	if	I	had	dropped	a	process	into	the	background	and	it	instantly	stopped
because	it	needed	to	produce	output,	the	kill	process	also	had	no	feedback	and
took	a	second	or	two	to	occur.	In	the	interim,	I	entered	the	second	kill	command,
which	then	output	the	error	message	No	such	process.	Following	that,	I	got	an
indication	from	the	shell	that	the	job	ended.

2.	Using	the	ps	command,	I	can	find	that	pesky	newmail	program	that’s	always
running	in	the	background:

Click	here	to	view	code	image
$	ps	-ef	|	grep	newmail
taylor				6899			0.1		0.1			52			28	Av	S										0:00	grep	newmail
taylor			25817			0.0		0.1		124			60	Av	I										0:01	newmail
$

I	want	to	send	that	process	a	hang-up	signal	(SIGHUP),	which	I	can	do	with	either
kill	-1	(the	signal	number)	or	kill	-HUP	(the	base	signal	name):

Click	here	to	view	code	image

$	kill	-HUP	25817
$!ps
ps	-ef	|	grep	newmail
taylor				7220			0.0		0.1			52			28	Av	S										0:00	grep	newmail
$

Because	the	newmail	program	isn’t	in	this	output,	I	can	conclude	that	the	SIGHUP
signal	stopped	newmail.

Note

Because	kill	tells	you	whether	a	process	cannot	be	found,	the	typical	Unix
solution	to	finding	out	whether	the	command	worked	is	to	enter	!!	immediately	to
repeat	the	kill	command	a	second	time.	If	kill	worked,	you	see	No	such
process.

3.	Some	processes	are	persistent	and	can	resist	the	less	powerful	signals	SIGTERM
and	SIGHUP.	(In	Unix,	this	is	called	“catching”	a	signal.	In	some	processes,	you
need	to	send	and	catch	signals	to	perform	certain	actions.)	That’s	when	you	need	to
use	what	I	call	the	“big	guns,”	or	SIGKILL.	You	see	this	referred	to	sometimes	as
the	terminate-with-extreme-prejudice	command;	the	format	is	kill	-9
processID,	and	it’s	dangerous!

I	strongly	recommend	that	you	just	let	kill	send	the	SIGTERM	signal	and	see
whether	that	does	the	job.	If	it	doesn’t,	try	SIGHUP,	and	if	that	also	fails,	use
SIGKILL	as	a	last	resort.

4.	What	happens	if	you	try	to	use	kill	on	jobs	that	aren’t	yours?	Fortunately,	it
doesn’t	work:

Click	here	to	view	code	image

$	ps	-ef	|	head	-5
USER							PID		%CPU	%MEM			SZ		RSS	TT	STAT	ENG			TIME	COMMAND
news						7460		97.7		0.4		336		252	?		R	N				4			4:33	sort	–u
/tmp/nnsubj6735a
phaedrus		8693		18.1		1.1	1260		720	rm	S										0:03	nn
root						8741		14.4		0.4		416		252	?		R						9			0:03	nntpd
root						8696		13.9		0.4		416		252	?		S										0:03	nntpd
Broken	pipe
$	kill	7460
7460:	Not	owner
$

5.	Finally,	if	you	forget	and	leave	stopped	jobs	in	the	background	and	try	to	log	out,
here’s	what	happens:
$	logout
There	are	stopped	jobs.
$

You	must	either	use	fg	to	bring	each	job	into	the	foreground	and	terminate	each
normally	or	use	kill	to	terminate	each	of	the	jobs	and	then	log	out.

In	this	task,	you	have	been	introduced	to	the	kill	command	and	some	of	the	signals
associated	with	it.

Summary
Although	the	file	is	the	underlying	unit	in	the	Unix	file	system,	including	all	directories,
the	most	fundamental	piece	of	Unix	is	the	process.	In	this	hour,	you’ve	learned	how	to
have	background	processes,	how	to	stop	and	restart	processes,	and	how	to	use	kill	to
quit	any	errant	program—running	or	not.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
control	number	This	is	a	unique	number	that	the	C	shell	assigns	to	each	background	job
for	easy	reference	and	for	use	with	other	commands,	such	as	fg	and	kill.

current	job	The	current	job	is	the	job	that	is	currently	running	on	the	terminal	and
keyboard—that	is,	the	program	you’re	actually	running	and	working	within.

errant	process	An	errant	process	is	not	performing	the	job	you	expected	it	to	perform.

foreground	job	Foreground	job	is	a	synonym	for	current	job.

job	Job	is	a	synonym	for	process.

kill	Killing	a	process	means	terminating	the	process.

login	shell	The	login	shell	is	the	process	that	started	when	you	logged	in	to	the	system.
This	is	usually	where	you’re	working	when	you’re	logged	in	to	Unix.

process	A	process	is	a	program	that	is	stopped	or	running	within	the	Unix	operating
system.	Also	known	as	a	job.

signals	Signals	are	special	messages	that	can	be	sent	to	stopped	or	running	processes.

stop	a	job	Stopping	a	job	means	stopping	the	running	program	without	terminating	it.

wedged	process	A	wedged	process	is	stuck	in	memory	and	can’t	free	up	its	resources
even	though	it	has	ceased	running.	This	is	rare	but	annoying.

zombie	A	zombie	is	a	terminated	process	that	has	not	been	cleaned	up	by	the	parent
process.

Exercises
1.	Start	a	program,	such	as	vi,	and	use	^z	to	stop	it.	Now	terminate	the	process	by
using	kill.

2.	Start	vi	again,	stop	it,	and	put	it	in	the	background.	Work	on	something	else	and
then	return	vi	to	the	foreground.

3.	Use	ps	to	check	the	status	of	processes	to	see	what	processes	you	have	running	that
aren’t	shown	on	jobs.	Why	might	ps	and	jobs	list	different	processes?

Preview	of	the	Next	Hour
The	next	hour	focuses	on	the	basics	of	shell	script	programming,	a	topic	that’s	not	only
near	to	my	heart	but	will	become	something	you’ll	be	glad	to	learn,	too.	Stay	tuned!

Hour	16.	Shell	Programming	Overview

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	shell	variables

	About	shell	arithmetic

	About	comparison	functions

	How	to	use	conditional	expressions

	About	looping	expressions

	How	to	use	bash	functions

In	the	preceding	few	hours,	you	have	learned	about	some	of	the	many	options	available	to
you	when	you	use	a	command	shell.	Using	these	shells	enables	you	to	enter	commands	for
Unix.	What	most	people	don’t	realize	when	they	first	start	using	Unix	is	that	these	shells
are	also	programming	environments	and	that	you	can	write	your	own	shell	programs	with
remarkably	little	effort.	And,	oh	yeah,	it’s	really	fun,	too!

Because	shells	are	really	just	line-by-line	interpreted	languages,	any	sequence	of
commands	you	can	use	at	the	command	line	can	also	be	placed	in	a	file	and	run
repetitively.	This	is	a	shell	program.	Originally,	Unix	experts	wrote	their	shell	scripts	for
the	Bourne	shell	(/bin/sh)	because	that	shell	was	standard	on	every	Unix	platform;	but
the	extra	flexibility	and	capabilities	of	the	bash	shell	have	made	it	the	most	popular
alternative,	and	that’s	what	I	use	this	hour.

Note

I	strongly	urge	you	to	explore	the	shells	you	have	available,	as	discussed	in	Hour
13,	“Introduction	to	Command	Shells.”	The	best	shell	to	use	is	the	one	that	makes
you	the	most	productive.	And	remember,	the	shell	that	you	use	for	scripting	doesn’t
have	to	be	the	same	as	the	one	you	use	for	your	interactive	commands.

Building	Your	Own	Commands
Unix	is	remarkably	capable	and	includes	over	1,000	different	commands,	but	amazingly,
sometimes	that’s	not	sufficient.	When	it	becomes	time	to	create	your	own	unique
commands,	a	simple	shell	script	almost	always	suffices.

Task	16.1:	Shell	Variables
Programming	languages	usually	include	variables,	and	the	shell	naturally	does,	too.
Variables	are	just	tags	to	identify	values	that	can	change	as	a	program	is	used.	In	the	shell,
these	variables	can	take	a	single	value	and	are	always	interpreted	as	strings	(that	is,
sequences	of	alphanumeric	or	punctuation	characters).	Even	numeric	values	are	strings	to
the	shell.

You	can	use	any	string-manipulation	command,	such	as	sed	or	cut,	to	change	a	shell
variable.

1.	Here	is	an	example	of	setting	the	value	of	a	shell	variable:
$	color=blue

This	sets	the	variable	color	to	the	string	blue.	You	can	output	the	value	of	any
variable	with	the	echo	command:
$	echo	$color
blue

This	also	indicates	how	to	reference	a	shell	variable:	It	must	be	preceded	by	the
dollar	sign	($)	and	be	referenced	by	its	mnemonic	name.	This	can	cause	some
problems,	however,	because	what	if	you	want	to	use	it	in	a	way	that	embeds	it	in
other	text?

2.	If	you	are	using	a	shell	variable	as	a	prefix,	and	you	want	to	append	text
immediately,	you	might	think	that	this	would	work:

Click	here	to	view	code	image

$	leaning=‘anti-‘
$	echo	Joe	is	basically	$leaningtaxes

The	output	here	is	just	Joe	is	basically.	The	shell	does	not	know	what
appears	to	be	a	new	variable,	$leaningtaxes.	Because	no	value	is	assigned	to
$leaningtaxes,	the	output	is	NULL,	or	an	empty	string.	To	solve	this	problem,
enclose	the	variable	name	in	curly	braces:

Click	here	to	view	code	image
$	echo	Joe	is	basically	${leaning}taxes
Joe	is	basically	anti-taxes

If	leaning	is	undefined,	the	output	might	not	make	sense.	It	would	be	Joe	is
basically	taxes.	Fortunately,	the	shell	provides	a	means	to	have	a	default
value	if	a	variable	is	undefined:

Click	here	to	view	code	image

$	echo	Joe	is	basically	${leaning:-pro	}taxes
Joe	is	basically	pro	taxes

3.	If	leaning	is	undefined,	the	:-	notation	tells	the	shell	to	use	the	subsequent
string,	including	the	space	character,	instead	of	leaving	the	output	blank.	This	does
not	assign	a	new	value	to	the	variable,	however.	If	you	need	to	use	the	variable
repeatedly,	you	might	want	to	assign	a	new	value	to	it	if	it’s	undefined.	The	:=
notation	does	this:

Click	here	to	view	code	image

$	echo	Joe	is	basically	${leaning:=pro	}taxes	and	${leaning}spending.
Joe	is	basically	pro	taxes	and	pro	spending.

The	first	occurrence	of	the	variable	has	it	undefined,	so	the	shell	assigns	"pro	"
(pro	with	a	trailing	space)	to	$leaning	and	outputs	that.	The	second	time	the
variable	is	interpreted,	it	has	the	value	"pro	".

4.	Variables	are	typically	assigned	within	scripts	but	can	also	be	assigned	interactively
by	use	of	the	read	command.	This	assigns	an	individual	word	to	a	specified
variable,	with	the	last	variable	in	the	list	being	assigned	the	remaining	words	if	there
are	more	words	entered	than	variables	listed:
$	read	city	state	message
CapeMay,	New	Jersey	Hi	Mom!
$	echo	$city	is	city
CapeMay,	is	city
$	echo	$state	is	state
New	is	state
$	echo	$message	is	message
Jersey	Hi	Mom!	is	message

As	you	can	see,	only	New	is	assigned	to	state.	Frustrating!

The	best	way	around	this	is	to	escape	the	space	(make	sure	that	the	space	isn’t
interpreted	as	separating	variable	values)	with	a	backslash:

Click	here	to	view	code	image
$	read	city	state	message
CapeMay,	New\	Jersey	Hi	Mom!
$	echo	$city	is	city
CapeMay,	is	city
$	echo	$state	is	state
New	Jersey	is	state
$	echo	$message	is	message
Hi	Mom!	is	message

This	can	be	a	bit	tricky	at	first.

5.	The	third	common	way	to	assign	variables	is	by	using	command-line	arguments.
The	shell	has	built-in	variables	to	access	the	command	line.	If	you’ve	written	a	script
to	copy	files	and	named	it	copy-files,	you	might	want	to	list	all	the	files	on	the
command	line:

Click	here	to	view	code	image

$	copy-files.sh	file1	file2	file3

The	program	would	access	these	arguments	as	$1,	$2,	and	$3:
cp	$1	destination
cp	$2	destination
cp	$3	destination

The	$0	variable	is	a	special	case	for	looking	at	the	command	name,	and	$*	lists	all
the	command-line	variables.

The	standard	data	in	any	shell	program	is	the	variable.	Such	variables	can	be	assigned	in
several	ways:	directly	assigned,	read	in	from	a	user’s	typing,	or	assigned	from	the

command	line.	The	shell	also	provides	means	to	provide	some	helpful	manipulation	of
variables.

Task	16.2:	Shell	Arithmetic
Although	the	shell	treats	variable	values	as	strings,	methods	are	available	for	performing
basic	mathematics	on	shell	variables.

1.	If	a	variable	is	assigned	a	numeric	value,	you	can	perform	arithmetic	on	the	value
by	using	the	command	expr.	This	command	takes	several	arguments	to	perform
arithmetic	functions.	You	can	test	it	out	directly	on	the	command	line:
$	expr	1	+	1
2

Arguments	must	be	separated	by	spaces—and	must	be	present—for	the	expr
command	to	work.	If	a	variable	is	undefined	or	does	not	have	a	value	assigned	to	it
(sometimes	called	zero	length),	the	result	is	a	syntax	error.	Here	is	where	the	:-
notation	can	be	particularly	helpful:
$	echo	$noval

$	expr	$noval	+	1
expr:	syntax	error
$	expr	${noval:-0}	+	1
1

expr	also	supports	subtraction,	multiplication,	integer	division,	and	remainders.
These	are	illustrated	here:
$	expr	11	-	5
6
$	expr	11	*	5
55
$	expr	11	/	5
2
$	expr	11	%	5
1

Note	that	I	had	to	escape	the	asterisk	with	a	backslash	and	use	spaces	between
numbers	and	operators,	too.	If	I	didn’t	do	that,	the	shell	would	expand	it	to	be	the	list
of	files	in	the	current	directory,	and	the	expr	program	wouldn’t	understand	that.

2.	Despite	what	I’ve	just	shown	you,	I’ll	tell	you	that	I	never	use	expr	directly
because	all	modern	shells	have	a	shorthand	notation	you	can	use	that’s	faster	and
more	elegant	than	calling	expr:	$((and)).	For	example:
$((11	*	3))

is	functionally	identical	to	expr	11	*	3.	Since	it’s	faster,	I’ll	use	this	notation
from	this	point	on	for	simple	one-operation	math	(it	can’t	support	anything	more
complex),	but	if	your	system	doesn’t	support	it,	use	calls	to	expr	instead.	If	you’d
like,	you	can	use	$(expr	1	+	1)	or	similar,	so	it’s	almost	the	same	thing!

3.	The	expr	command	can	also	work	with	complex	arithmetic	so	if	you	need	a	more
complex	calculation	than	the	basic	four,	you’ll	want	to	use	expr	after	all.	You	can

write	an	expression	to	add	two	numbers	and	then	multiply	by	a	third	number.
Normally,	you	wouldn’t	need	to	worry	about	operator	precedence,	but	expr	isn’t
that	sophisticated:
$	expr	11	+	5	*	6
41

Instead,	you	need	to	group	the	operations	in	parentheses:
$	expr	\(11	+	5	\)	*	6
96

This	command	first	adds	11	and	5,	and	then	it	multiplies	the	result	by	6.	Because	the
parentheses	are	important	shell	characters,	you	need	to	escape	them	with
backslashes,	just	as	I	had	to	do	with	the	asterisk	earlier.	Of	course,	you	could	quote
the	entire	sequence,	too:	expr	"(11	+	5)	*	6".

The	expr	command	is	a	very	useful	command	for	performing	arithmetic	in	any	shell.
Strings	must	be	numbers,	or	errors	will	occur;	the	results	of	the	expr	command	can	be
assigned	to	other	variables.

Note

The	expr	command	is	much	more	powerful	than	described	here;	it	includes	the
capability	to	perform	logical	operations	and	perform	operations	on	strings.	Not
powerful	enough	for	your	needs?	Check	out	the	bc	command.	It’s	considerably
more	powerful,	but	it’s	also	trickier	to	use	in	a	script.	For	more	information,	check
the	man	pages	for	both	commands.

Task	16.3:	Comparison	Functions
Often,	when	writing	a	program,	you	may	want	the	actions	taken	to	be	dependent	on	certain
values.	A	simple	example	is	the	rm	-i	command,	where	the	-i	flag	tells	rm	to	prompt
you	before	deleting	a	file.	Type	y,	and	a	file	is	deleted.	Type	n,	and	it	remains.	The	shell
also	has	similar	options.	This	task	and	the	next	one	cover	how	to	use	those	options.

Just	as	expr	is	a	powerful	program	for	solving	arithmetic	expressions,	the	test
command	can	be	used	to	compare	variables	and	conditions.	test	can	perform
comparisons	on	both	strings	and	numeric	values.	test	will	always	return	zero	if	the
condition	is	true	and	non-zero	if	it	is	false.	It	is	standard	for	Unix	shells	to	use	these
values	as	true	and	false.

test	is	used	for	three	types	of	operations:	numeric	comparisons,	string	comparisons,	and
status	tests	for	the	file	system.	First	up,	let’s	look	at	the	numeric	comparisons.

1.	Because	the	shell	treats	the	less-than	and	greater-than	symbols	as	redirection
characters,	they	can’t	be	used	within	the	test	command	to	compare	two	numbers.
Instead,	test	uses	a	series	of	two-letter	flags,	as	described	in	Table	16.1.	These
flags	are	always	placed	between	the	two	arguments:
test	3	-eq	4

This	example	would	return	non-zero	because	3	and	4	are	not	equal.

TABLE	16.1	Test	Operators

2.	You	can	use	the	result	of	expr,	or	any	other	command	that	returns	a	numeric	value,
in	test.	There	is	also	a	special	expression	in	test,	-l	string,	which	returns	the
length	of	a	string.	So	you	can	write	the	following	tests,	after	setting	a	couple	of
useful	variables:

Click	here	to	view	code	image
value=3	;	string=“my	horse	Horace”
test	$value	<	$(echo	$string	|	wc	-c)
test	`wc	-l	filename`	-ge	10000

The	first	test	determines	whether	$value	is	the	same	as	the	length	of	$string.
The	second	compares	the	number	of	characters	in	variable	string	to	the	number
value.	The	third	example	takes	a	count	of	the	number	of	lines	in	a	file,	and	it
evaluates	to	true	if	10,000	or	more	lines	are	present.

3.	The	second	type	of	comparison	is	on	strings.	The	first	two	are	unary,	which	means
that	each	applies	to	only	one	variable	or	parameter:
test	-z	“$string”
test	-n	“$string”

The	first	test	is	true	if	the	string	is	of	zero	length	or	undefined.	The	second	is	true	if
the	string	has	some	content.

4.	The	next	two	tests	compare	strings	with	each	other.	The	simple	exclamation	point
and	equals	sign	(commonly	used	to	mean	“not!”	in	Unix)	are	used	for	these
comparisons:
test	alphabet	=	Alphabet
test	alphabet	!=	Alphabet

The	first	is	false;	the	second	is	true.

Note

When	comparing	string	variables	that	don’t	have	spaces	within	them,	you	might	see
shell	script	programmers	write	something	like	this:

test	X$string1	=	X$string2

The	presence	of	the	X	prevents	a	null	string	from	confusing	test.	If	string1	is
null,	and	string2	is	string,	you’d	expand	to	this:

test	X	=	Xstring

Without	the	X,	the	test	would	be	expanded	to	this:
test	=	string

This	is	a	syntax	error.	The	other	option	is	to	enclose	the	string	in	quotation	marks:
test	“$string1”	=	“$string2”

which	expands	to	this:
test	””	=	“string”

5.	The	final	test	operators	work	on	the	file	system.	They	are	single	flags,	as	listed	in
Table	16.2,	followed	by	a	path.

TABLE	16.2	The	Most	Useful	File	System	Test	Flags

Here’s	a	sample	test:
test	-d	$HOME/bin

This	checks	to	see	whether	you	have	a	subdirectory	named	bin	in	your	home
directory.	The	most	common	flags	you	see	in	shell	programs	are	the	-f	flag	and	the
-d	flag.	The	others	are	used	only	in	unusual	situations.

6.	The	file	system	also	has	three	binary	comparisons.	The	-ef	test	determines	whether
the	two	files	are	the	same.	(When	you	create	a	link	between	files,	this	is	de	facto
true.)	The	-nt	flag	is	true	if	the	first	file	is	newer	than	the	second,	and	the	-ot	flag
is	true	if	the	first	file	is	older	than	the	second.	You	might	see	a	test	in	a	looping
statement	like	this:
test	file1	-ot	file2

This	test	compares	the	two	files,	and	it	is	true	if	file1	is	older	than	file2.

7.	Test	commands	can	be	negated	with	the	exclamation	point	or	combined	with	-a	for
and	and	-o	for	or.	You	can	make	arbitrarily	long	conditions,	at	the	potential	cost	of
script	readability:

Click	here	to	view	code	image

test	$var	-eq	0	-a	!	-e	file

This	checks	to	see	whether	the	value	of	$var	is	zero	and	whether	file	doesn’t
exist	(note	the	use	of	the	!	in	the	expression).

8.	test	also	has	a	second	form.	Instead	of	explicitly	calling	test,	you	can	surround
the	conditional	expression	with	square	brackets:
[-f	file]

Doing	this	makes	shell	programs	more	readable.	Indeed,	you’ll	rarely	see	test
appear	explicitly,	as	shown	earlier.

Pay	attention	to	spacing,	too:	If	you	don’t	use	the	spacing	shown	here,	particularly
the	spacing	between	the	brackets	and	the	expression	elements,	the	shell	will
complain.

The	test	command	is	one	of	the	most	used	commands	in	shell	programming.	It	is
essential	to	understanding	the	next	two	shell	script	programming	tasks,	conditional
expressions	and	loops.

Task	16.4:	Conditional	Expressions
Sometimes,	when	writing	a	program,	you	want	to	perform	an	action	only	when	a	specific
conditional	expression	is	met.	Shell	programming	provides	you	with	this	capability	by
way	of	the	if	command,	the	case	command,	and	two	special	command	separators.

1.	The	if	command	is	the	most	commonly	seen	conditional	command.	It	takes	the
following	form:
if
				conditional-expression
then
				command-block
fi

A	command	block	is	a	sequence	of	one	or	more	shell	commands.	The	first	command
block,	the	conditional	expression,	is	always	executed.	The	return	value	of	the	last
statement	executed	is	used	to	determine	whether	the	second	block	is	executed.	The
most	commonly	used	sequence	for	the	conditional	expression	is	the	test	command

in	its	[]	notation:
Click	here	to	view	code	image

if
				[-f	$file]
then
				echo	$file	is	a	regular	file
fi

This	if	statement	notifies	the	user	that	a	file	is	a	regular	file.	If	the	file	is	not	a
regular	file	(such	as	a	directory),	the	condition	fails	and	the	shell	doesn’t	execute	the
echo,	with	the	result	that	you	don’t	see	an	output	message.

2.	Sometimes,	you	might	want	output	regardless	of	the	situation.	In	the	preceding	case,
you	might	be	interested	in	the	status	of	the	file	even	if	it	is	not	a	regular	file.	You	can
expand	the	if	command	with	the	else	keyword	to	provide	that	second	option:

Click	here	to	view	code	image
if
				[-f	$file]
then
				echo	$file	is	a	regular	file
else
				echo	$file	is	not	a	regular	file
fi

This	statement	provides	output	regardless	of	the	status	of	the	file.

3.	For	these	simple	tests	and	output,	the	shell	provides	a	second,	quicker	means	of
executing	the	if	statement.	If	the	two	commands	are	joined	by	&&,	the	second
command	is	executed	if	the	first	command	is	evaluated	as	true.	If	the	commands	are
joined	by	||,	the	second	command	is	executed	if	the	first	is	false.	The	preceding
command	would,	therefore,	look	like	this:

Click	here	to	view	code	image
[-f	$file]	&&	echo	$file	is	a	regular	file
[-f	$file]	||	echo	$file	is	not	a	regular	file

This	shorthand	is	very	useful	but	can	be	confusing	for	a	novice.	If	you	accidentally
place	a	space	between	the	characters,	you	have	a	wildly	different	command;	the	&
will	run	the	first	command	at	the	same	time	as	the	echo,	and	the	|	will	pipe	the
output	of	the	test	(none)	to	the	echo.

I	rarely	use	the	&&	or	||	notation	because	I	prefer	to	have	my	scripts	be	slightly
longer	but	easier	to	understand	with	if-then	conditional	statements.

4.	If	you	have	even	more	possibilities,	your	if	statement	can	have	more	than	two
options.	For	multiple	tests,	use	the	elif	keyword:

Click	here	to	view	code	image
if
				[-f	$file]
then
				echo	$file	is	a	regular	file
elif
				[-d	$file]

then
				echo	$file	is	a	directory
else
				echo	$file	is	not	a	regular	file	or	a	directory.
fi

This	command	first	tests	to	see	whether	the	file	is	a	regular	file;	if	it	is	not,	it	checks
to	see	whether	it	is	a	directory;	if	it	is	neither,	it	gives	the	generic	“not	a	regular	file
or	directory”	message.	You	can	expand	any	if	statement	with	an	unlimited	number
of	elif	branches.

One	nice	thing	is	that	you	can	indent	your	code	to	make	things	easier	to	understand,
and	you	can	also	compress	the	statements	themselves	with	the	use	of	the	semicolon,
so	the	preceding	listing	could	be	more	compactly	written	as:

Click	here	to	view	code	image
if	[-f	$file]	;	then
		echo	$file	is	a	regular	file
elif	[-d	$file]	;	then
		echo	$file	is	a	directory
else
		echo	$file	is	not	a	regular	file	or	a	directory
fi

Note	that	the	then	should	appear	on	a	second	line,	so	the	semicolon	after	the
expression	is	necessary.	(Many	shell	programmers	leave	the	then	on	its	own	line,
even	though	it’s	not	quite	as	space	efficient.)

5.	At	some	point,	if-then-else	code	can	become	confusing.	When	you	have
many	possible	branches,	you	should	use	the	case	command.	The	syntax	is	a	bit
more	complicated	than	the	syntax	for	if:
case	string	in
pattern)	command-block	;;
pattern)	command-block	;;
…
esac

If	you	were	looking	for	possible	values	for	a	variable,	you	could	use	case:
Click	here	to	view	code	image

echo	What	do	you	want:
read	var	remainder
case	$var	in
house)				echo	The	price	must	be	very	high;;
car)						echo	The	price	must	be	high;;
popsicle)	echo	The	price	must	be	low;;
*)								echo	I	do	not	know	the	price;;
esac

This	case	statement	follows	an	input	request	and	gives	the	user	a	rough	idea	of	the
price.	A	case	list	can	contain	any	number	of	items.	Note	the	special	;;	notation,
which	denotes	the	end	of	a	case	statement.

Here’s	another	example,	a	mini	file	command:
Click	here	to	view	code	image

case	$filename	in

		*.gif)	echo	Graphics	Interchange	Format	;;
		*.jpg)	echo	Joint	Photographic	Experts	Group	;;
		*.png)	echo	Progressive	Networking	Group	;;
		*.tif)	echo	Tagged	Interchange	Format	;;
		*.scx)	echo	Screen	Capture	format	;;
)					echo	unknown	format	${filename#.}
esac

In	both	of	the	previous	examples,	the	pattern-matching	algorithms	used	are	for
wildcards.	Also	note	the	bash	variable	trick	to	extract	the	filename	suffix	in	the	last
conditional	with	the	#*.	modifier	to	the	filename	variable	reference.	To	extract	the
other	side	(just	the	filename	without	the	suffix),	you	could	use:

${filename%.*}

6.	Here’s	a	simple	shell	script	where	the	read	command	and	if	statements	are	useful
together:

Click	here	to	view	code	image
echo	“Delete	which	file?	“
read	filename
if	[!	–f	$filename]	;	then
		echo	Can't	delete	$filename	since	it	doesn't	exist
else
		echo	Deleting	file	$filename
		/bin/rm	$filename
fi

This	prompts	for	the	filename	and	then	tests	to	see	whether	the	file	exists	before	it
tries	to	delete	it	with	the	/bin/rm	invocation.

There	are	two	basic	conditional	expressions,	as	well	as	a	third	shortcut,	as	explored	in	this
task.	You	can	test	a	condition	and	perform	alternative	actions	by	using	if	statements	and
their	shortcuts.	Or	you	can	compare	strings	and	perform	any	number	of	actions	by	using
the	case	statement.

Task	16.5:	Looping	Expressions
If	you	want	to	run	the	same	set	of	commands	many	times,	instead	of	duplicating	them	in
your	script,	you	are	better	off	using	looping	commands.	There	are	two	types	of	loops:
determinate	and	indeterminate.

A	determinate	loop	is	one	where	you	know	exactly	how	many	times	you	want	to	execute
the	commands	before	you	enter	the	loop.	Stepping	through	a	list	of	files	is	a	good
example;	you	might	not	know	the	exact	number	of	files	when	you’re	writing	the	script,	but
once	invoked,	you	can	start	the	loop	for	those	files.

An	indeterminate	loop	is	one	where	you	need	to	keep	executing	a	command	block	until	a
condition	is	no	longer	true.	You	might	be	either	waiting	for	something	or	performing	a
series	of	modifications	to	reach	a	goal.

1.	The	usual	command	for	a	determinate	loop	is	the	for	command.	It	has	the
following	syntax:
for	var	in	list
do

				command-block
done

You	can	build	any	list	you	like.	It	could	be	a	sequence	of	numbers	or	the	output	of	a
command.	Earlier,	I	mentioned	looping	through	a	list	of	files.	This	is	demonstrated
with	the	following	loop:

Click	here	to	view	code	image
for	var	in	`ls`
do
				if
								[-f	$var]
				then
								echo	$var	is	a	regular	file
				fi
done

This	steps	through	all	the	files	listed	in	the	`ls`	output,	showing	only	regular	files.
Note	that	without	the	backquotes,	the	script	would	test	for	a	file	called	ls	in	the
current	directory.	A	very	different	request!

A	modification	to	the	preceding	code	is	that	because	you’re	in	a	shell	script,	you	can
use	shell	expansion	to	accomplish	some	things	more	efficiently.	Instead	of	using	ls,
for	example,	how	about	the	following?

Click	here	to	view	code	image
for	var	in	*	;	do
	if	[-f	$var]	;	then
				echo	$var	is	a	regular	file
	fi
done

You	can	again	also	see	in	this	example	how	reformatting	the	script	can	make	it
considerably	more	readable.

2.	A	nice	trick	that	can	be	performed	in	a	shell	program	is	to	step	through	the	list	of
command-line	arguments.	The	for	loop	provides	a	neat	mechanism:	If	the	in
list	part	is	omitted	from	the	command,	the	for	loop	steps	through	the	list	of
command-line	arguments	instead:
j=0
for	i
do
			j=$(($j	+	1))
				echo	$i	is	argument	$j
done

This	snippet	steps	through	the	command-line	arguments	and	identifies	where	they
are	in	the	order	of	arguments.

In	both	cases,	when	you	enter	the	for	loop,	you	know	how	many	times	you	need	to
run	the	loop.	If	you	look	at	the	case	where	you	are	waiting	for	something	to	happen,
though,	you	need	to	use	a	different	loop.	The	while	loop	is	the	solution	for	this
problem.

Note

Another	way	to	step	through	arguments	in	a	script	is	to	use	the	shell’s	shift
command.	We’ll	see	that	in	the	next	hour.

3.	In	Task	16.3,	I	mentioned	the	case	where	you	might	want	to	wait	on	the	arrival	of	a
file.	This	echoes	a	real-world	situation	I	recently	faced.	We	were	processing	a
program	log	file,	but	we	did	not	know	exactly	when	it	would	be	placed	in	the	shared
server	directory.	We	tried	to	set	up	the	job	to	run	after	the	file	arrived,	but	this
approach	still	ran	into	problems.

We	solved	the	problem	by	using	the	while	loop.	At	the	end	of	the	execution	of	our
script,	we	created	a	checkpoint	file.	At	the	beginning,	if	the	checkpoint	file	was
newer	than	the	log	file,	we	would	wait.	Programmatically,	that	is:

Click	here	to	view	code	image
while
				[checkpoint	-nt	logfile]
do
				sleep	60
done

This	program	would	wait	one	minute	between	checks.	If	the	new	log	file	had
not	been	written,	the	program	would	go	back	to	sleep	for	60	seconds	and	try	again.

4.	while	loops	can	also	be	used	in	a	determinate	manner.	In	the	case	where	you	are
not	concerned	with	a	variable’s	value	but	know	a	count	of	times	to	run	a	command
block,	you	can	use	a	counter	to	increment	through	the	number:
i=0
while
				[$i	-lt	100]
do
				i=$(($i	+	1))
				commands
done

This	is	certainly	easier	than	enumerating	100	items	in	a	list!

The	shell	provides	two	convenient	mechanisms	for	running	a	group	of	commands
repeatedly.	These	loop	commands	are	useful	from	both	the	command	line	and	a	program.

Task	16.6:	bash	Functions
Much	of	what’s	been	covered	in	this	lesson	has	been	what	I	characterize	as	flow	control:
ways	to	specify	what	command	to	execute	in	what	set	of	conditions.	What’s	interesting
about	using	bash	as	a	programmatic	shell	is	that	you	can	actually	create	your	own
functions	and	use	them	throughout	your	scripting,	as	if	you	were	in	a	more	formal
(powerful)	programming	environment.

The	greatest	value	of	functions	is	that	they	give	you	the	ability	to	specify	and	access
parameters.

Let’s	get	our	feet	wet	and	see	how	they	can	significantly	help	you	develop	powerful	shell

scripts!

1.	Functions	are	defined	as	follows:
function	functionname
{
				shell	commands
}

In	some	sense,	all	command	aliases,	as	discussed	earlier	in	the	book,	are	really
simple	functions.	Here’s	an	example:
$	alias	ls
alias	ls=‘ls	-F’

This	can	be	rewritten	as	the	function
function	ls
{
				/bin/ls	–F
}

and	it	would	work	in	almost	exactly	the	same	way.	The	biggest	difference	is	that
there’s	no	way	to	specify	any	other	arguments	to	the	ls	command	with	the	function,
as	written.

2.	To	add	parameters,	you	simply	add	$*	after	the	-F	flag:
function	ls	{
		/bin/ls	–F	$*
}

Now	a	command	like	ls	/tmp	will	work	as	desired!

3.	Of	course,	the	real	value	of	using	functions	rather	than	aliases	is	that	you	can
dramatically	increase	the	level	of	sophistication	of	your	new	scripts.

As	an	example,	I’d	like	to	have	a	command	that	expands	on	the	earlier	snippet	that
indicated	file	type	based	on	filename	suffix.	In	the	new	version,	I’d	like	to	actually
output	some	HTML	fragments	if	the	graphic	can	be	viewed	in	a	Web	browser	(that
is,	if	it’s	a	GIF	or	JPG	image).	The	new	version	would	also	offer	clickable	links	to
HTML	files	found	and	would	enable	users	to	click	to	step	into	directories	as	they
browse	the	system.

Tip

The	first	line	of	every	shell	script	is	special,	specifying	what	program	or	shell
should	be	used	to	interpret	the	commands	in	the	file.	It’s	denoted	by	#!	and	is
pronounced	“she-bang,”	for	no	obvious	reason!

Here’s	my	first	stab	at	the	problem,	pre-functions:
Click	here	to	view	code	image

#!/usr/local/bin/bash
#	A	Web-friendly	directory	browser	that	knows
#	how	to	show	graphic	images:

directory=${QUERY_STRING:-$HOME}

iamcalled=“browse.cgi”
webroot=”/web”

echo	“Content-type:	text/html”
echo	””

echo	“<h2>Directory	$directory</h2>”

cd	$webroot/$directory

for	filename	in	*
do
		case	$filename	in
				*.gif)	echo	“”
												echo	“
<tt>$filename</tt>”	;;
				*.jpg)	echo	“”
												echo	“
<tt>$filename</tt>”	;;
				*.htm)	echo	“$filename”	;;
				*.html)	echo	“$filename”	;;
				*)						if	[-d	$filename]	;	then
														echo	“<tt><a	“
														echo	“href=$iamcalled?$directory/$filename>”
														echo	“[$filename]</tt>”
												else
														echo	“<tt>$filename</tt>”
												fi
												;;
		esac
done

echo	“”

exit	0

This	works	well,	but	there’s	much	duplication	of	individual	lines	in	the	script,	so	this
is	a	perfect	case	for	a	function.	The	first	one	I’ll	define	is	showname:

Click	here	to	view	code	image
function	showname
{
		echo	“<tt>$1</tt>”
}

This	is	simple	enough,	and	now	I	have	the	statement	in	one	spot,	rather	than	three,
making	it	easier	to	maintain	and	expand	the	script.

4.	One	more	refinement:	Case	conditionals	can	have	multiple	expressions	if	they’re
separated	by	the	|	or	notation,	which	can	make	this	considerably	simpler:

Click	here	to	view	code	image
#!/usr/local/bin/bash
#	A	Web-friendly	directory	browser	that	knows
#	how	to	show	graphic	images:

directory=${QUERY_STRING:-$HOME}
iamcalled=“browse.cgi”
webroot=”/web”

function	showname
{
		echo	“<tt>$1</tt>”

}

echo	“Content-type:	text/html”
echo	””

echo	“<h2>Directory	$directory</h2>”

cd	$webroot/$directory

for	filename	in	*
do
		case	$filename	in
				.gif|.jpg)
												echo	“
”
												showname	$filename
												;;
				.htm|.html)
												echo	“$filename”	;;
				*)						if	[-d	$filename]	;	then
														echo	\
												”<tt>”
														echo	“[$filename]</tt>”
												else
														echo	“”
														showname	$filename
												fi
												;;
		esac
done

echo	“”

exit	0

5.	Of	course,	the	entire	conditional	and	such	could	be	poured	into	the	function	to	make
the	code	even	cleaner.	In	fact,	the	main	routine	is	just	the	following:

Click	here	to	view	code	image
echo	“Content-type:	text/html”
echo	””

echo	“<h2>Directory	$directory</h2>”

showdirectory	$directory

echo	“”

All	the	complex	case	statement	conditionals	are	tucked	neatly	into	the
showdirectory	function:

Click	here	to	view	code	image
function	showdirectory
{
		if	[!	-d	$webroot/$1]	;	then
				echo	“Error:	no	directory	$1	found”
				exit	0
		fi

		cd	$webroot/$1

		for	filename	in	*
		do

				case	$filename	in
						.gif|.jpg)
												echo	“
”
												showname	$filename
												;;
						.htm|.html)
												echo	“$filename”	;;
						*)						if	[-d	$filename]	;	then
														echo	\
												”<tt>”
														echo	“[$filename]</tt>”
												else
														echo	“”
														showname	$filename
												fi
												;;
		esac
done
}

It’s	now	easy	to	add	error	checking	in	the	function	(the	-d	test	to	see	whether	it’s	a
directory	before	moving	there	with	the	cd	command).

Functions	can	be	quite	complex,	but	even	simple	functions	can	help	you	get	the	most	out
of	your	shell	interaction.

Summary
In	this	hour,	you’ve	just	skimmed	the	basics	of	shell	programming.	You	were	introduced
to	the	control	structures	of	the	shell	and	to	two	important	commands.	You	can	learn	much
more	about	shell	programming;	my	popular	book	Wicked	Cool	Shell	Scripts	(No	Starch
Press,	2015)	is	one	place	you	can	dig	much	deeper	into	the	subject.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
command	block	A	list	of	one	or	more	shell	commands	can	be	grouped	in	a	conditional	or
looping	statement,	called	a	command	block.

conditional	expression	This	is	an	expression	that	returns	either	true	or	false.

determinate	loop	In	this	type	of	loop,	the	number	of	times	the	loop	is	run	is	known	before
the	loop	is	started.

expression	This	is	a	command	that	returns	a	value.

indeterminate	loop	In	this	type	of	loop,	the	number	of	times	the	loop	is	run	is	not	known
before	the	loop	is	started.

loop	This	is	a	sequence	of	commands	that	are	repeatedly	executed	while	a	condition	is
true.

variables	These	are	names	to	label	data	that	can	change	during	the	execution	of	a
program.

zero-length	variable	A	variable	that	does	not	have	a	value	assigned	to	it.

Exercises
1.	How	would	you	read	in	a	street	address	in	a	shell	program?	How	would	you	read	in
a	name?

2.	If	you	read	in	the	number	of	people	who	read	a	newspaper	and	the	number	of	people
who	subscribe	to	a	particular	paper,	how	would	you	determine	the	ratio	of
subscribers	to	readers?

3.	How	do	you	know	whether	a	file	has	data?

4.	How	do	you	wait	for	data	to	be	placed	in	a	file?

Preview	of	the	Next	Hour
I’m	really	a	big	fan	of	shell	script	programming,	I	have	to	admit.	In	the	next	hour,	I’ll	give
you	a	guided	tour	of	four	simple	shell	scripts,	scripts	that	will	hopefully	get	you	fired	up
about	trying	this	lightweight	programming	environment	yourself.	Don’t	miss	it!

Hour	17.	Advanced	Shell	Programming

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	find	files	fast	with	mylocate

	How	to	count	commands	on	your	system	with	cmdcnt

	About	finding	your	disk	usage	stats	with	diskspace

	How	to	waste	time	with	the	hi-low	game

In	the	preceding	hour,	you	learned	about	the	basics	of	dropping	a	set	of	Unix	commands
into	a	file	and	turning	them	into	a	shell	script.	It	turns	out	that	shell	scripts	can	be
remarkably	capable,	and	in	just	a	few	lines	you	can	often	produce	sophisticated	mini-
programs	that	make	your	time	at	the	command	line	more	productive	and	even	more	fun.
This	hour	expands	on	the	shell	script	topic	by	presenting	four	shell	scripts	that	should
whet	your	appetite	for	scripting	and	demonstrate	how	Unix	makes	it	simple	to	expand	and
customize	your	computing	experience.

There	are	plenty	of	different	shell	scripts	that	you	could	use	to	explore	more	sophisticated
scripting	techniques,	but	I	believe	that	the	best	approach	is	to	study	a	few	small,	well-
written	scripts.	You	can	always	find	shell	scripts	on	your	own	system	by	using	a	command
sequence	like	this:
Click	here	to	view	code	image

cd	/usr/bin
file	*	|	grep	–i	shell\	script

On	the	latest	Solaris	system,	this	produces	a	list	of	164	different	shell	scripts	included	with
the	operating	system.	There’s	lots	to	study	when	you	want	to	learn	more	about	shell
scripting!

Note

The	shell	scripts	presented	in	this	hour	are	inspired	by	scripts	included	with	my
book	Wicked	Cool	Shell	Scripts	(No	Starch	Press,	2015).	If	you	find	yourself	really
getting	into	scripting,	pick	up	that	book,	which	is	an	excellent	follow-on	to	this
hour,	if	I	say	so	myself!

Searching	a	Database	of	Filenames	with	mylocate
Many	versions	of	Unix	and	Linux	include	a	terrific	application	called	locate,	which
maintains	a	database	of	all	file	and	directory	names	on	your	computer,	letting	you	quickly
and	easily	search	for	files	and	programs	by	name	across	all	known	file	systems.

Locate	can	have	a	significant	security	flaw,	however,	in	that	it	can	end	up	running	as	root
and	index	everything	on	your	system	rather	than	just	the	files	and	directories	that	you

actually	have	permission	to	view.

There	are	also	Unixes	that	just	don’t	have	locate	and	instead	leave	you	having	to	work
with	the	much	slower	(albeit	more	powerful)	find	command.

Let’s	sidestep	both	and	create	a	version	of	locate	that	is	actually	a	shell	script.	It’s
surprisingly	easy!

Task	17.1:	Building	mylocate
There	are	two	parts	to	the	mylocate	script—two	different	scripts.	The	first	builds	the
database	of	every	file	and	directory	accessible	to	you,	and	the	second	utilizes	the	grep
command	to	allow	easy	command-line	searches	of	that	database.	You	could	almost	write
this	as	a	pair	of	shell	aliases,	but	a	bit	more	sophistication	will	prove	useful.

1.	Use	the	find	command	to	create	a	file	that	contains	a	list	of	absolutely	every	file
and	directory	you	can	see	on	the	file	system.	Be	warned:	This	file	will	take	rather	a
while	to	build.	Here’s	the	simple	script	that	builds	the	mylocate.db	file:

Click	here	to	view	code	image

$	cat	mkmylocatedb
#!/bin/sh

#	mklocatedb	-	build	the	locate	database	using	find.	Must	be	root	to	run
this

locatedb=”$HOME/.locate.db”

find	/	-print	>	$locatedb

exit	0

Remember	that	once	you’ve	created	this,	and	any	other	shell	script,	you	need	to	use
chmod	+x	filename	to	ensure	that	your	script	is	directly	executable.

When	you	run	this	program,	you’ll	see	thousands	of	permission	errors	streaming
past	your	screen,	which	is	harmless	but	quite	annoying.	Eliminating	them	requires	a
little	more	shell	trickery:

Click	here	to	view	code	image
$./mkmylocatedb	2>	/dev/null

The	2>	redirects	only	stderr	(the	error	messages),	ensuring	that	anything	sent	to
standard	out	(that	is,	to	stdout)	will	be	displayed	to	the	screen	while	hiding	all
warnings	and	error	messages.	The	output	file	/dev/null	is	a	“bit	bucket,”	a
digital	hole	in	the	ground.	You	can	add	as	much	as	you	want	to	/dev/null,	and	it
all	just	vanishes,	with	the	device	never	getting	any	bigger	than	zero	bytes.

After	some	period	of	time	(at	least	a	few	minutes),	the	script	will	be	done,	and	the
first	half	of	the	script	is	completed.

2.	To	see	what’s	been	added	to	the	file,	let’s	have	a	peek	inside:
Click	here	to	view	code	image

$	head	-10	~/.locate.db

/
/.nfs4
/var
/var/info
/var/inf/usr_share_info_dir.backlink
/var/info/usr_share_info_dir
/var/db
/var/db/ipf
/var/sadm
/var/sadm/pkg

How	many	lines	does	the	file	contain?
Click	here	to	view	code	image

$	wc	-l	~/.locate.db
		173251	/export/home/taylor/.locate.db

Your	results	might	actually	be	even	larger.

3.	With	the	database	built,	it’s	simple,	again,	to	create	a	script	that	uses	grep	to	allow
easy	file	searching:

Click	here	to	view	code	image
#!/bin/sh

#	locate	-	search	the	locate	database	for	the	specified	pattern

locatedb=”$HOME/.locate.db”

if	[$#	-eq	0]	;	then
		echo	“Usage:	locate	pattern”
		exit	0
fi

exec	grep	-i	“$@”	$locatedb

That’s	all	there	is	to	it.	The	conditional	checks	the	number	of	arguments	given	to	the
script	to	ensure	that	the	user	specified	a	pattern;	$#	is	the	number	of	arguments
itself.	The	last	line	requires	a	bit	of	explanation,	however.	Shell	scripts	are	run
within	copies	of	your	login	shell.	(Well,	technically,	they’re	run	in	the	shell	specified
on	the	very	first	line,	hence	the	special	#!	notation.)	This	means	that	a	shell	script
consumes	memory,	requires	its	own	process,	and	so	on.	If	the	script	invokes	a
program,	that	runs	separately,	too,	so	if	the	shell	script	invokes	grep,	there	are	then
three	processes	running:	the	login	shell,	the	subshell	for	the	script,	and	grep	itself.

To	simplify	things	a	bit,	the	special	exec	command	replaces	the	subshell	with	the
command	specified	rather	than	adding	it.	Basically,	it	saves	a	process,	but	the	shell
script	effectively	ends	as	soon	as	that	exec	is	encountered	since	the	shell	that’s
running	it	is	replaced	by	the	specified	command.

The	special	notation	$@	simply	hands	all	the	arguments	specified	to	the	script	along
to	the	grep	command.

4.	Enough	explanation.	Let’s	run	our	new	script	a	few	times!	First	off,	how	many	C
source	files	are	there?	The	first	attempt	would	be	to	simply	use	“.c”	as	the	pattern,
but	that	would	be	a	mistake.	You’ll	recall	from	earlier	that	grep	works	with	regular

expressions,	and	“.c”	turns	out	to	match	any	letter,	followed	by	a	c,	anywhere	in
the	line:
$./mylocate	“.c”	|	wc	-l
		134933

The	first	trick	is	to	escape	the	period,	so	it’s	not	considered	a	regular	expression
token.	To	do	this,	you	simply	preface	the	period	character	with	a	backslash:
$./mylocate	“.c”	|	wc	-l
				3245

Much	better!	But	it’s	still	matching	files	like	sample.css	because	it	has	the
pattern	“.c”	embedded.	To	force	the	pattern	to	only	match	the	end	of	lines,	add	the
$	regular	expression	token:

Click	here	to	view	code	image

$./mylocate	“.c$”	|	wc	-l
						144

This	makes	sense!	Now	double-check	that	it’s	what	you	think	it	is:
Click	here	to	view	code	image

$./mylocate	“.c$”	|	head	-5
/usr/demo/net-snmp/demo_module_8/me1LoadGroup.c
/usr/demo/net-snmp/demo_module_8/demo_module_8.c
/usr/demo/net-snmp/demo_module_2/demo_module_2.c
/usr/demo/net-snmp/demo_module_5/demo_module_5.c
/usr/demo/net-snmp/demo_module_1/demo_module_1.c

5.	To	make	this	part	of	your	overall	environment,	there’s	another	step	required:	adding
it	to	your	PATH	so	that	you	can	just	type	in	the	name	of	the	command	without	any
fuss.	The	best	long-term	solution	is	to	create	a	new	bin	directory	in	your	home
directory	and	then	use	that	as	a	repository	for	new	scripts	and	commands	you	create:
$	cd
$	mkdir	bin

Now	move	your	scripts	into	this	new	directory	and	mark	them	as	executable:
$	cd	bin
$	chmod	+x	*

Then	modify	your	PATH	so	that	the	shell	knows	to	look	in	this	new	directory	for
commands.	This	can	be	done	on	the	command	line.	However,	if	you	append	it	to
your	.profile	instead,	it’ll	be	fixed	forever	instead	of	just	until	you	log	out:

Click	here	to	view	code	image

$	echo	‘export	PATH=”${PATH}:$HOME/bin”’	>>	~/.profile

That’s	it.	Now	you	can	just	type	in	command	names	(the	exact	names	of	your	shell
scripts),	and	they’ll	be	run	much	the	way	that	ls	lists	files	and	ssh	connects
securely	to	another	Unix	server.

This	first	script	demonstrates	a	number	of	useful	shell	script	programming	techniques,
including	taking	full	advantage	of	all	the	power	that	Unix	offers.	Just	as	importantly,	you
now	know	how	to	add	new	directories	to	your	PATH	and	turn	shell	scripts	into	new

commands	that	are	available	on	the	command	line—an	invaluable	skill!

Task	17.2:	How	Many	Commands	Do	You	Have?
As	an	example	of	how	a	shell	script	can	use	the	PATH	variable	discussed	in	Task	17.1,
let’s	have	a	look	at	cmdcnt,	another	simple	script	that	adds	up	the	executable	files	in
every	directory	that’s	in	your	PATH.	The	key	to	this	script	is,	again,	a	looping	mechanism,
though	this	time	instead	of	using	while,	we’ll	use	for	because	it’s	easier	to	step	through
a	set	of	options	until	the	end	is	reached.

1.	To	step	through	the	PATH	variable,	a	simple	strategy	is	to	replace	every	occurrence
of	a	colon	with	a	space:

Click	here	to	view	code	image

$	echo	$PATH
/bin:/sbin:/usr/bin:/usr/sbin:/sw/bin:/usr/X11R6/bin:/Users/taylor/bin
$	myPATH=”$(echo	$PATH	|	sed	-e	‘s/:/	/g’)”
$	echo	$PATH
/bin	/sbin	/usr/bin	/usr/sbin	/sw/bin	/usr/X11R6/bin	/Users/taylor/bin
/sw/bin

This	is	a	reasonably	simple	transformation:	sed	substitutes	a	space	for	every	colon
found.	You	could	do	the	same	thing	with	the	tr	command,	of	course.	Remember
that	with	Unix,	you	always	have	more	than	one	way	to	solve	a	problem!

2.	For	each	directory,	say	that	you	want	to	count	all	the	files	that	are	executable,	not
just	how	many	files	there	are.	This	can	be	accomplished	by	using	the	-x	conditional
to	the	test	command,	so	for	each	file	in	each	directory	in	the	PATH,	if	the	-x
condition	is	true—that	is,	if	the	specified	file	is	marked	as	executable—you	want	to
add	one	to	the	counter.	If	the	-x	condition	is	false,	you	want	to	add	one	to	nonex,
the	non-executable	files	counter.	Here’s	a	script	to	do	this:

Click	here	to	view	code	image
#!/bin/sh

#	cmdcnt:	a	simple	script	to	count	how	many	executable	commands
#			are	in	your	current	PATH.

myPATH=”$(echo	$PATH	|	sed	-e	‘s/:/	/g’)”
count=0	;	nonex=0

for	directory	in	$myPATH	;		do
		if	[-d	“$directory”]	;	then
				for	command	in	$(ls	“$directory”)	;	do
						if	[-x	“$directory/$command”]	;	then
								count=”$(($count	+	1))”
						else
								nonex=”$(($nonex	+	1))”
						fi
				done
		fi
done

echo	“$count	commands,	and	$nonex	entries	that	weren’t	marked	executable”

exit	0

Notice	that	as	a	nice	bonus,	this	script	also	keeps	track	of	how	many	files	it
encounters	in	the	collective	set	of	all	directories	in	the	PATH	and	counts	those,	too.

3.	Do	you	wonder	what	would	happen	if	you	ran	the	script	on	a	few	different	systems?
Watch	and	see.	To	identify	a	specific	version	of	Unix,	use	the	uname	command:

Click	here	to	view	code	image

$	uname
FreeBSD
$	cmdcnt
954	commands,	and	44	entries	that	weren’t	marked	executable

My	FreeBSD	server	has	slightly	fewer	less	than	1,000	commands	marked	as
executable.	Run	the	same	command	on	a	different	FreeBSD	system,	however,	and
the	results	are	significantly	different:

Click	here	to	view	code	image
$	uname
FreeBSD
$	cmdcnt
1962	commands,	and	22	entries	that	weren’t	marked	executable

Amazing,	isn’t	it?

4.	Check	out	a	few	more	command	counts.	Here’s	what	I	get	on	Mac	OS	X:
Click	here	to	view	code	image

$	uname
Darwin
$	cmdcnt
1086	commands,	and	16	entries	that	weren’t	marked	executable

These	results	are	for	SuSE	Enterprise	Linux,	Red	Hat	Enterprise	3	Linux,	and
Solaris,	respectively:

Click	here	to	view	code	image
$	uname
Linux
$	cmdcnt
2059	commands,	and	22	entries	that	weren’t	marked	executable

$	uname
Linux
$	cmdcnt
1665	commands,	and	0	entries	that	weren’t	marked	executable

Finally,	here	the	command	is	running	on	the	Solaris	reference	system:
Click	here	to	view	code	image

$	uname
SunOS
$	cmdcnt
2049	commands,	and	15	entries	that	weren’t	marked	executable

Quite	a	surprising	variation	in	command	count,	given	that	they’re	all	theoretically
running	the	same	base	Unix/Linux	standard	operating	system!

This	is	an	example	of	a	short	script	that	offers	a	useful	and	interesting	capability—one	that
isn’t	part	of	the	existing	suite	of	Unix	commands	included	with	your	own	OS.

Note

The	variation	in	command	count	should	intrigue	you.	What	commands	are	included
in	one	version	of	Unix	or	Linux	that	aren’t	included	in	another?	Why	would
different	versions	have	such	dramatically	different	command	counts?

Task	17.3:	Who	Is	Using	All	the	Disk	Space?
Another	common	question	is	about	disk	space	utilization.	There	are	commands	like	df
that	show	you	all	the	disk	space	used	across	your	entire	system,	but	even	with	the	-h
“human	friendly”	output	format,	the	result	is	still	rather	puzzling.	Instead,	a	shell	script
can	add	up	all	the	individual	disks	and	offer	a	neat	summary	of	disk	space	by	utilizing	the
df	command	and	a	small	awk	script.

1.	The	key	command	in	this	script	is	df	-k,	which,	by	itself,	produces	this	rather
complicated	output:

Click	here	to	view	code	image

$	df	–k	|	head	-11
Filesystem									1024-blocks						Used	Available	Capacity	Mounted	on
rpool/ROOT/solaris				31739904			4391256		21344377		18%				/
/devices																					0									0									0			0%				/devices
/dev																									0									0									0			0%				/dev
ctfs																									0									0									0			0%				/system/contract
proc																									0									0									0			0%				/proc
mnttab																							0									0									0			0%				/etc/mnttab
swap																			5330348						1620			5328728			1%				/system/volatile
objfs																								0									0									0			0%				/system/object
sharefs																						0									0									0			0%				/etc/dfs/sharetab
/usr/lib/libc/libc_hwcap1.so.1		25735629			4391256		21344373		18%		/lib/libc.
so.1
$

2.	The	script	that	utilizes	the	df	command	actually	has	only	one	real	command	in	it
—awk—because	all	the	work	is	done	within	the	awk	script:

Click	here	to	view	code	image
#!/bin/sh

#	diskspace	-	summarize	available	disk	space	and	present	in	a	logical
#				and	readable	fashion

tempfile=”/tmp/available.$$”

trap	“rm	-f	$tempfile”	EXIT

cat	<<	‘EOF’	>	$tempfile
				{	sum	+=	$4	}
END	{	mb	=	sum	/	1024
						gb	=	mb	/	1024
						printf	“%.0f	MB	(%.2fGB)	of	available	disk	space\n”,	mb,	gb
				}
EOF

df	-k	|	awk	-f	$tempfile

exit	0

Isn’t	this	cheating?	How	can	you	write	a	shell	script	if	in	fact	it’s	actually	an	awk
script?	This	is	a	fair	question,	and	the	answer	I	offer	is	that	smart	shell	script
programming	is	all	about	utilizing	all	the	tools	available	in	the	Unix	environment
and	putting	them	together	in	useful	and	novel	ways.	In	this	case,	rather	than	puzzle
through	doing	this	as	a	“pure”	shell	script,	the	awk	utility	makes	summing	up	the
values	in	the	fourth	column	of	the	df	output	and	presenting	the	result	in	megabytes
and	gigabytes	a	breeze.

3.	Let’s	run	the	script	on	a	few	systems.	Here	you	see	that	there’s	not	much	space	at
all:

Click	here	to	view	code	image

$	diskspace
263	MB	(0.26GB)	of	available	disk	space

On	the	other	hand,	here’s	another	system	that	has	lots	of	disk	space:
Click	here	to	view	code	image

$	df	-k
Filesystem												kbytes				used			avail	capacity		Mounted	on
/dev/md/dsk/d10						6050182	1288911	4700770				22%				/
/proc																						0							0							0					0%				/proc
mnttab																					0							0							0					0%				/etc/mnttab
fd																									0							0							0					0%				/dev/fd
swap																	5334352						32	5334320					1%				/var/run
/dev/md/dsk/d40						5289294	1800564	3435838				35%				/local
/dev/md/dsk/d90						8684395	4657949	3939603				55%				/home4
/dev/md/dsk/d60						8684395	4996601	3600951				59%				/home1
/dev/md/dsk/d80						8684395	5087755	3509797				60%				/home3
/dev/md/dsk/d70						8684395	4891352	3706200				57%				/home2
/dev/md/dsk/d30						1987399		143548	1784230					8%				/tmp
/dev/md/dsk/d100					8684395			40520	8557032					1%				/mqueue
/dev/md/dsk/d50						52104655	19815602	31768007				39%				/mail
bandit:/go											35009161	7821905	26837165				23%				/Net/bandit/go
cnssrc:/caus									8703856	6522112
1311359				84%				/Net/cnssrc/usr/caus
cnssrc:/cns										35006620	25965686
5540272				83%				/Net/cnssrc/usr/cns
$	diskspace
213623	MB	(208.62GB)	of	available	disk	space

This	output	is	much	more	interesting	and	a	great	example	of	how	the	summary
really	helps	make	sense	of	this	dump	of	data.

Here’s	the	Solaris	system	that’s	our	reference	system:
Click	here	to	view	code	image

$	diskspace
239689	MB	(234.07GB)	of	available	disk	space

That’s	not	too	bad:	one-quarter	of	a	terabyte	of	space!

4.	Let’s	talk	briefly	about	some	of	the	elements	of	this	script,	now	that	you	can	see	its
utility.	The	sequence	$$	is	a	shell	script	shorthand	for	the	current	process	ID:

Click	here	to	view	code	image
tempfile=”/tmp/available.$$”

This	is	a	simple	way	to	guarantee	that	two	simultaneous	invocations	of	this	script
won’t	end	up	working	with	the	same	temporary	filename	(which	could	be	a
disaster!).

This	line	sets	up	a	signal	trap,	a	command	that	will	be	invoked	when	the	specified
signal,	or	error,	is	encountered:
trap	“rm	-f	$tempfile”	EXIT

In	this	case,	it’s	the	EXIT	signal.	(Technically,	this	should	be	referred	to	as
SIGEXIT,	but	the	trap	command	is	forgiving	of	this	simple	shorthand.)	This	is	an
elegant	way	to	ensure	that	when	the	script	finishes	running,	it	also	removes	the
tempfile	that	was	created.	Remember,	neatness	counts.

5.	The	awk	script	is	a	bit	complex,	but	when	you	learn	that	there	are	two	blocks	of
code	here,	it’ll	seem	a	bit	more	straightforward.	It’s	important	to	know	that	there	are
two	primary	blocks	of	code,	surrounded	by	{	and	},	and	the	first	block	applies	to
each	and	every	line	matched,	while	the	second	is	invoked	only	after	the	last	line	of
the	input	is	read:

Click	here	to	view	code	image
{	sum	+=	$4	}

END	{	mb	=	sum	/	1024
						gb	=	mb	/	1024
						printf	“%.0f	MB	(%.2fGB)	of	available	disk	space\n”,	mb,	gb
				}

For	each	line	in	the	input	(the	output	of	df	-k,	remember),	the	first	block	simply
adds	the	value	of	the	fourth	field	to	the	variable	sum.	This	sums	up	the	available
space,	in	kilobytes.	When	done,	the	block	END	{	}	is	matched,	both	megabytes
and	gigabytes	are	calculated,	and	the	results	are	shown	on	the	screen	with	the
printf	command.

Not	too	confusing	after	all,	is	it?

One	thing	that	the	diskspace	script	example	demonstrates	is	the	importance	of	being
knowledgeable	about	how	to	best	use	a	wide	range	of	different	Unix	commands.	This	is	a
good	reason	for	spending	some	time	every	day	reading	man	pages	and	every	few	weeks
picking	this	book	off	the	shelf	and	flipping	through	it	again.

Task	17.4:	Let’s	Play	a	(Shell	Script)	Game!
Enough	serious	scripting!	We’ve	spent	almost	a	dozen	pages	being	useful.	Let’s	switch	our
attention	to	a	simple	guessing	game,	hi-low.	This	is	the	kind	of	game	that	engages	my
son	as	a	simple	programming	project,	but	it’s	really	a	binary	search	masquerading	as	a
game.

The	basis	of	the	game	is	that	the	computer	is	going	to	randomly	pick	a	number	between	1
and	n,	and	then	you	have	to	figure	out	that	number	in	the	minimum	number	of	guesses.
The	trick	is	to	…	Oh,	wait.	Let’s	try	the	game,	and	I’ll	tell	you	the	trick	after	we’ve	played
it	a	few	times!

1.	The	toughest	part	of	this	game	is	generating	a	random	number,	a	task	that	turns	out

to	be	much	more	difficult	than	it	initially	seems.	In	fact,	computer	scientists	have
spent	an	extraordinary	amount	of	time	trying	to	generate	truly	random	numeric
sequences	for	encryption	algorithms	and	similar.
A	typical	Unix	system	has	two	or	three	different	random	number	libraries	for	just
this	reason.	You	can	see	this	for	yourself:	Just	type	man	-k	random,	and	you’ll
see	just	how	many	matches	appear.

Of	course,	it’s	just	a	game,	right,	so	if	we’re	not	perfectly	random	but	appear
random,	that’s	actually	sufficient	for	this	particular	script.

Fortunately,	modern	Unix—and	Linux—systems	recognize	the	need	for	convenient
access	to	random	numbers,	and	the	shell	supports	a	special	variable	$RANDOM	that
produces	a	different	random	number	between	1	and	MAXINT	(2**16,	or	32767)
each	time	you	reference	it.

Here’s	a	quick	demonstration:
Click	here	to	view	code	image

$	for	i	in	1	2	3	4	5	6	7	8	9	10	;	do
				echo	$RANDOM

done

14335
1829
5301
32149
29112
4091
19813
11287
22004
16074
$

These	10	numbers	appear	random—certainly	sufficiently	random	for	our	needs	with
this	simple	game!

So	how	do	we	constrain	the	value?	We	don’t	want	to	guess	a	number	between	1	and
32,767.	That	turns	out	to	be	easily	done	with	the	shell’s	built-in	math	feature:

Click	here	to	view	code	image
number=$(($RANDOM	%	$biggest))

The	%	notation	is	the	modulus	operator,	which	finds	the	remainder	of	the	division.
Remember	learning	long	division?	The	modulus	is	the	part	that’s	left	over	after	you
ascertain	how	many	times	the	denominator	goes	into	the	numerator.	For	example,	7
%	3	=	1.	Can	you	see	why?	7	/	3	=	2	with	1	left	over,	so	the	modulus	is	1.

This	is	perfect	for	our	needs	because	in	the	unlikely	event	that	$RANDOM	is	smaller
than	the	variable	biggest,	we	can	just	use	that	value.	If	it’s	larger,	we	can	throw
away	everything	that’s	divisible	by	bigger	and	use	the	remainder.	Either	way,	it’s
now	1	..	$biggest	(that	is,	a	range	of	numbers	between	the	value	1	and	the
value	of	the	variable	$biggest).

2.	The	basic	logic	of	this	game	is	to	pick	a	number	and	then	ask	for	a	value,	compare	it

to	the	selected	number,	then	output	whether	it’s	a	match,	too	low,	or	too	high.	In	the
latter	two	cases,	we’ll	increment	a	guesses	counter	so	the	script	can	also	tell	the
users	how	many	guesses	they	had.

Here’s	the	script:
Click	here	to	view	code	image

#!/bin/sh
#	hi-low	-	a	simple	number	guessing	game

biggest=100																													#	maximum	number	possible
guess=0																																	#	guessed	by	player
guesses=0																															#	number	of	guesses	made
number=$(($RANDOM	%	$biggest))								#	random	number,	1	..	$biggest
#	NOTE:	On	Solaris,	omit	the	“$$”	above

echo	“You’re	trying	to	guess	a	number	between	1	and	$biggest”

while	[$guess	-ne	$number]	;	do
		echo	-n	“Guess?	”	;	read	guess			#	NOTE:	On	Solaris,	use:	echo	“Guess?
\c”
		read	guess
		if	[“$guess”	-lt	$number]	;	then
				echo	“…	bigger!”
		elif	[“$guess”	-gt	$number]	;	then
				echo	“…	smaller!”
		fi
		guesses=$(($guesses	+	1))
done

echo	“Right!!	Guessed	$number	in	$guesses	guesses.”

exit	0

The	while	loop	runs	until	the	number	is	guessed.	Once	matched,	the	script	drops
out	of	the	loop	entirely	and	shows	the	last	echo	statement,	including	how	many
guesses	it	took.	Then	it	exits.

3.	Let’s	play	it	a	few	times	to	see	how	it	works:
Click	here	to	view	code	image

$	hi-low
You’re	trying	to	guess	a	number	between	1	and	100
Guess?	50
…	bigger!
Guess?	75
…	smaller!
Guess?	69
Right!!	Guessed	69	in	3	guesses.

$	hi-low
You’re	trying	to	guess	a	number	between	1	and	100
Guess?	50
…	bigger!
Guess?	75
…	smaller!
Guess?	68
…	bigger!
Guess?	73
…	smaller!

Guess?	71
Right!!	Guessed	71	in	5	guesses.

Three	guesses	is	lucky.	Five	guesses	is	good.	More	than	seven	guesses,	and	you’re
being	inefficient	in	your	playing	strategy.

4.	Remember	that	I	said	I’d	tell	you	the	secret	strategy	to	games	like	this?	Here’s	the
trick:	To	solve	the	hi-low	game,	you	need	to	split	the	set	of	possible	numbers	as
evenly	in	half	as	possible	on	each	and	every	guess.	If	you’re	choosing	a	number	in
the	range	1	to	100,	then	the	first	guess	should	be	right	in	the	middle:	50.

With	one	guess,	you’ll	then	be	able	to	eliminate	over	half	of	the	possible	numbers.
(Think	about	that.	In	both	cases	when	the	game	said	that	I	needed	to	guess	a	number
higher	than	50,	it	told	me	that	1–49	weren’t	possible	and	that	50	wasn’t	a	possibility.
Therefore,	the	resultant	number	had	to	be	in	the	set	51–100.)

Each	time	your	guess	should	be	right	in	the	middle	again.

This	turns	out	to	be	a	logarithmic	problem,	and	the	exact	number	of	guesses	it
should	take	to	solve	a	1–100	hi-low	game	is	actually	log2(100),	or	6.6.	We	can
round	up	to	7	and	then	state	unequivocally	that	if	it	takes	you	more	than	seven
guesses,	you’re	not	playing	smart.

This	also	means	that	if	you	wanted	to	try	playing	the	game	with	a	number	between	1
and	1,000,	then	that	should	only	add	three	guesses	to	the	game,	using	an	optimal
strategy.

Next	time	some	youngster	asks	you	to	play	this	game,	you	now	know	the	winning
strategy!

I	wouldn’t	want	to	try	to	write	Call	of	Duty	or	Halo	as	a	shell	script,	but	for	rudimentary
games,	the	shell	offer	a	simple	and	straightforward	programming	environment.	If	you
want	a	challenge,	see	if	you	can	write	the	game	hangman	as	a	shell	script.	In	my	book
Wicked	Cool	Shell	Scripts,	I	present	a	full	implementation	of	this	game	in	74	lines—
including	comments!

Summary
In	this	hour,	you	had	a	chance	to	delve	further	into	the	fun	and	interesting	world	of	shell
script	programming,	and	you	saw	how	knowledge	of	the	commands	available	at	the	Unix
command	line	also	gives	you	the	ability	to	write	some	remarkably	sophisticated	shell
scripts.	Even	better,	almost	all	shell	scripts	are	portable	across	a	wide	range	of	Unix	and
Linux	systems.	All	of	the	scripts	presented	in	this	hour	work	without	modification	on
FreeBSD,	Red	Hat,	Debian	Linux,	and	even	Mac	OS	X.	(Solaris	just	requires	a	couple	of
tweaks	in	order	for	the	hi-low	game	to	work	properly.)

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
modulus	The	modulus	is	the	remainder	value	after	a	numerator	is	divided	by	a
denominator.

signal	trap	A	signal	trap	is	a	shell	script	command	that	lets	you	associate	a	specific	set	of
tasks	with	a	signal	event.	See	the	signal(2)	man	page	for	more	information.

Exercises
1.	What	would	happen	if	you	ran	the	script	mkmylocatedb	by	using	the	sudo
capability	in	Unix?	Why	would	that	be	a	potential	security	hole?

2.	The	first	line	in	a	script	starts	with	#!.	What’s	that	mean,	and	what	important
function	does	this	line	serve	in	shell	script	programming?

3.	How	would	you	modify	the	cmdcnt	script	to	have	it	work	in	situations	where	one
of	the	directories	in	the	PATH	has	a	space	in	its	name?

4.	Offer	an	explanation	for	why	there’s	such	a	dramatic	difference	in	the	number	of
commands	across	different	Unix	installations.

5.	If	the	optimal	number	of	guesses	in	hi-low	for	a	game	ranging	from	1	to	100	is	7,
and	the	optimal	number	of	guesses	for	a	game	ranging	from	1	to	1,000	is	10,	how
many	guesses	should	it	take	for	you	to	guess	the	number	if	the	values	range	from	1
to	10,000?	(Hint:	Try	man	bc.)

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	how	to	work	with	printers	in	the	Unix	environment.	It’s	not
easy,	but	with	a	good	tour	guide,	you’ll	make	it	out	of	the	jungle	unscathed.

Hour	18.	Printing	in	the	Unix	Environment

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	find	local	printers	with	lpstat

	About	CUPS

	How	to	send	a	print	job	to	a	printer	with	lpr	or	lp

	About	formatting	print	jobs	with	pr	and	col

	How	to	work	with	the	print	queue	by	using	lpq	and	lprm

	About	working	with	cloud-based	printing	services

Printing	is	one	of	the	greatest	shortcomings	of	Unix.	Generating	printouts	is	a	sufficiently
common	task	that	it	should	be	fairly	easy	to	accomplish.	However,	in	this	one	area	of
Unix,	continual	conflict	exists	between	the	System	V	and	BSD	groups,	to	the	detriment	of
all.

This	hour	focuses	on	some	of	the	most	common	Unix	commands	for	working	with
printers.	It	is	a	primer	on	learning	what	printers	are	hooked	up	to	your	system,	how	to	send
output	to	a	printer,	how	to	check	that	your	print	requests	are	in	the	queue	for	printing,	and
how	to	remove	your	print	requests	from	the	queue	if	you	decide	not	to	print.

Various	techniques	can	minimize	the	complexity	of	printing	in	Unix.	The	best	one	is	to
create	an	alias	called	print	that	has	all	the	default	configuration	information	you	want.	If
you	define	PRINTER	as	an	environment	variable	(probably	in	your	.login	file	or
similar),	most	of	the	Unix	print	utilities	will	default	to	that	device,	for	example,	when
searching	print	queues	for	jobs.	The	queue,	or	list,	is	where	all	print	jobs	are	placed	for
processing	by	the	specific	printer.

Note

The	differing	“philosophies”	of	BSD	and	System	V	have	caused	problems	in	the
area	of	printing.	In	a	nutshell,	because	Unix	systems	are	almost	always	networked
(that	is,	hooked	together	with	high-speed	data-communications	lines),	the	most
valuable	feature	of	a	printing	tool	would	be	allowing	the	user	to	choose	to	print	on
any	of	the	many	printers	attached	to	the	network.	For	this	to	work,	each	machine
with	an	attached	printer	must	be	listening	for	requests	from	other	machines.	The
root	of	the	BSD	versus	System	V	problem	is	that	the	two	listen	for	different
requests.	A	System	V	machine	typically	can’t	send	a	print	job	to	a	printer	attached
to	a	BSD	machine	and	vice	versa.	And	we	haven’t	even	started	talking	about	Linux
systems,	Windows	servers,	and	Mac	systems	yet.	It’s,	well,	complicated.

Making	a	Printed	Copy
It’s	one	thing	to	create	wonderful	material	in	your	Unix	account	and	another	entirely	to
have	it	printed.	That’s	what	this	lesson	is	all	about.

Task	18.1:	Finding	Local	Printers	with	lpstat
Of	the	many	problems	with	printing	in	Unix,	none	is	more	frustrating	than	trying	to	figure
out	the	names	of	all	the	different	printers	available,	what	kinds	of	printers	they	are,	and
where	they’re	located.

Fortunately,	all	modern	Unix	and	Linux	systems—and	even	Mac	OS	X—include	support
for	the	lp	family	of	printer	commands,	most	notably	the	lpstat	command,	which	lists
printers	available	on	the	system,	albeit	with	very	user-unfriendly	names.

1.	Jump	in	and	use	lpstat	to	see	if	your	system	has	any	printers	configured:
$	lpstat
$

Nothing.	But	you	might	actually	have	a	printer	configured	on	the	system	nonetheless
because	what	lpstat	shows	is	the	current	status	of	the	printer	queue,	not	a	list	of
all	printers	on	the	system.

2.	There	are	a	number	of	different	starting	flags,	but	the	one	that	you’ll	use	with
lpstat	more	often	than	anything	else	is	-a.	Here’s	why:

Click	here	to	view	code	image

$	lpstat	-a
Samsung_ML_191x_252x_Series___MiniMe	accepting	requests	since	Sat	Jun	20
22:57:19	2015
$

There’s	a	printer	configured	and	accepting	print	requests	after	all.	Of	course,	its
name	is	more	than	a	bit	unfriendly:

Click	here	to	view	code	image
Samsung_ML_191x_252x_Series___MiniMe

Still,	this	is	how	you	ascertain	what	printers	are	configured	and	available	with
lpstat.

3.	You	can	fix	the	name	problem	by	creating	a	nickname	for	this	particular	printer.
Doing	so	will	require	a	judicious	copy	and	paste	to	make	sure	that	you	get	exactly
the	current	complex	name	in	use.	This	is	accomplished	with	the	helpful	lpadmin
command:

Click	here	to	view	code	image

$	lpadmin	-p	“Samsung_ML_191x_252x_Series___MiniMe”	-c	“ml191”
$

Turns	out	you	can’t	easily	create	nicknames,	but	you	can	create	a	new	class	of
printers	called	ml191.	That’s	what	the	-c	flag	does	above.

One	more	step	is	required:	You	need	to	enable	the	destination	and	let	it	accept	print
jobs:

$	lpadmin	-p	“ml191”	–E
$

Now,	finally,	you	can	work	with	a	friendlier	name:
Click	here	to	view	code	image

$	lpstat	-a	ml191
ml191	accepting	requests	since	Mon	Jun	29	09:39:48	2015

Quite	a	relief!

The	first,	and	perhaps	biggest,	hurdle	for	printing	on	Unix	has	been	solved:	figuring	out
what	printers	are	available	and,	as	needed,	being	able	to	configure	a	more	command-line-
friendly	nickname	through	lpadmin.

Task	18.2:	An	Introduction	to	CUPS
Modern	Unix	and	Linux	systems—again	including	Mac	OS	X—are	commonly	built	atop
a	different	printing	system,	not	the	lp	commands.	The	more	powerful	and	flexible
solution	is	the	Common	Unix	Printing	System	(CUPS).	It’s	an	attempt	at	a	unified	solution
to	the	chaos	of	printing	and	the	fractured	printer	interaction	on	the	various	Unix	systems
that	occurred	as	different	vendors	tried	to	innovate	without	sharing	code	or	even	matching
each	other’s	rudimentary	features.

The	philosophy	behind	CUPS	is	quite	interesting,	actually.	It’s	based	on	layers	of
processing	and	filtering	and	meta-languages	for	the	printouts	themselves.	It	shows	up	in
unlikely	places,	too,	including	within	the	10.x	Mac	OS	X	printing	subsystem.

The	task	of	installing	and	configuring	CUPS	is	beyond	the	scope	of	this	introductory
book,	but	let’s	at	least	have	a	brief	glimpse	at	the	system	and	the	usual	way	to	add	a	new
printer	to	a	CUPS-friendly	Unix	box.

1.	In	most	cases,	plugging	in	a	USB-based	printer	to	a	Unix	or	Linux	system	is
sufficient	for	it	to	be	recognized	and	properly	configured	and	then	to	show	up	as	an
available	device	for	command-line	and	GUI-based	usage.	Check	to	see	if	your
particular	printer	is	known	by	CUPS	by	referring	to	the	supported	printer	list	at
www.openprinting.org.

Double-check	the	configuration	of	your	particular	printer	by	directing	a	Web
browser	to	http://localhost:631/.	(This	is	easiest	through	a	GUI	system
like	GNOME,	as	demonstrated	in	Hour	24,	“GNOME	and	the	GUI	Environment.”)
Figure	18.1	shows	the	result.

http://www.openprinting.org

FIGURE	18.1	Accessing	CUPS	through	a	Web	browser:	permission	denied.

2.	Oops!	As	you	can	see,	you’ll	need	to	go	back	to	the	command	line	and	invoke	the
following	command:
$	cupsctl	WebInterface=yes
$

Now	try	that	browser	access	to	localhost:631	again,	as	shown	in	Figure	18.2.

FIGURE	18.2	CUPS	is	easiest	to	work	with	via	a	Web	browser.

3.	Click	on	the	Printers	tab	to	see	what	printers,	if	any,	you	have	configured	(see
Figure	18.3).

FIGURE	18.3	A	Samsung	printer	ready	to	go	in	the	CUPS	interface.

4.	Can’t	get	things	to	work	correctly	with	your	printer?	You	might	need	to	install	a
PostScript	interpreter	(GhostScript	is	the	most	popular)	or	similar.	You	can	learn
about	how	to	troubleshoot	your	particular	printer	configuration	by	going	to
http://www.openprinting.org.

However	hardcore	your	command-line	zeal	for	Unix,	there	are	still	a	few	tasks	that	are
more	easily	accomplished	from	a	graphical	interface	like	GNOME.	And	while	CUPS	is
now	extraordinarily	powerful	and	flexible,	I	recommend	that	you	try	to	get	any	new	Unix
printer	configured	and	online	through	the	Unix	or	Linux	GUI	tools,	not	the	command	line.
Once	you’ve	done	so,	they	become	available	for	both	command-line	and	graphical
interface	interaction,	fortunately.

Task	18.3:	Printing	Files	with	lpr	or	lp
Now	that	you	have	identified	the	name	of	the	printer	to	use,	how	do	you	send	information
to	the	printer?	If	you	are	on	a	BSD	system,	the	command	to	do	this	is	lpr.	You	can	print
the	results	of	a	pipe	command	by	adding	lpr	at	the	end	of	the	pipeline,	or	you	can	print
files	directly	by	specifying	them	to	the	program.	You	can	even	use	<	to	redirect	input.

http://www.openprinting.org

Note

If	you’re	using	a	System	V	version	of	Unix,	you	will	need	to	use	the	lp	command
instead.	As	you	read	through	this	hour,	you	will	see	the	differences	between	lpr
and	lp	indicated.	Note	how	the	philosophies	of	the	two	vary.

Numerous	flags	are	available	for	lpr	and	lp;	the	most	valuable	ones	are	listed	in	Table
18.1	and	Table	18.2.	Notice	the	different	meanings	of	the	–P	flag	with	the	two	commands.

TABLE	18.1	Useful	Flags	for	lpr

TABLE	18.2	Useful	Flags	for	lp

1.	Here’s	a	demonstration	of	what	happens	if	you	try	to	use	lp	or	lpr	without
specifying	a	printer	and	without	having	the	PRINTER	environment	variable	set.
First,	remove	the	environment	variable	definition	for	PRINTER	by	setting	it	to	an
empty	string:
$	PRINTER=””
$	who		|	lpr
lpr:	No	printer	specified
Broken	pipe

Some	systems	default	to	a	printer	named	lp	in	this	situation,	so	if	you	don’t	get	an
error	message,	that’s	what	happened.	If	you	have	lpstat	(a	command	for	checking
the	status	of	a	printer),	the	-d	flag	will	result	in	lpstat	listing	your	default	printer.

To	specify	a	printer,	use	the	-P	flag	with	lpr	or	the	-d	flag	with	lp,	followed
immediately	by	the	name	of	the	printer:
$	who	|	lpr	–Pattic3

Specifying	a	printer	with	the	-P	flag	(or	-d	with	lp)	will	always	override	the
environment	variable	specified	in	PRINTER;	therefore,	you	can	specify	the	default
printer	with	PRINTER	and	specify	other	printers	as	needed	without	any	danger.

Notice	that	I	printed	the	output	of	the	who	command	but	received	absolutely	no

information	from	the	lpr	command	regarding	what	printer	it	was	sent	to,	the	print
job	number,	or	any	other	information.

To	make	life	easier,	I’m	going	to	redefine	PRINTER:
$	PRINTER=attic3

2.	To	find	out	what’s	in	the	print	queue,	I	can	use	lpstat	-pprinter	on	System
V	or	the	lpq	-Pprinter	command:

Click	here	to	view	code	image

$	lpq	–Pattic3

attic3@intuitive.com:			driver	not	active
								Printing	is	disabled.

Pos		User						Bin			Size		Jobname
–		–-						–-		–-		––-
		1		KOSHIHWE		0104			008		KOSHIHWE0104a
		2		KOSHIHWE		0104			008		KOSHIHWE0104b
		3		KOSHIHWE		0104			008		KOSHIHWE0104c
		4		kleimanj		0317			032		kleimanj0317a
		5		zeta						0042			008		zeta0042a
		6		jharger			0167			008		jharger0167a
		7		jharger			0167			008		jharger0167b
		8		ssinfo				0353			000		ssinfo0353a
		9		fuelling		0216			024		fuelling0216a
	10		zeta						0042			152		zeta0042b
	11		tkjared			0142			012		tkjared0142a
	12		SUJATHA			0043			016		SUJATHA0043a
	13		SUJATHA			0043			024		SUJATHA0043b
	24		taylor				0889			000		taylor0889a

attic3:	waiting	to	be	transmitted	to	intuitive.com

The	queue	is	empty.

Quite	a	few	print	jobs	are	waiting	to	be	sent,	but	it’s	not	obvious	why	the	printer	is
disabled.	(The	output	of	the	lpq	and	lpstat	commands	is	explained	in	detail	later
in	this	hour.)

3.	To	print	the	file	dickens.note	in	landscape	mode,	without	a	header	page,
indented	eight	spaces,	and	in	reverse	page	order,	I	can	use	the	following	flags:
$	lpr	-hiLR	<	dickens.note

If	I	did	this	often,	a	shell	alias	could	be	helpful:
$	alias	lpr=‘lpr	-hiLR’

On	a	System	V	machine,	you	also	could	create	the	alias	lpr='lp',	though	be
careful	because	none	of	the	particular	options	shown	in	the	previous	example	are
available	with	lp.

If	you	find	yourself	printing	to	a	couple	of	different	printers	quite	often,	you	easily
can	define	a	few	shell	aliases	to	create	printer-specific	print	commands:

Click	here	to	view	code	image
$	alias	mathprint=‘lpr	-Pmathlw’

$	alias	libprint=‘lpr	-Plibrary’
$	alias	edprint=‘lpr	-Pedlw’

On	System	V	machines,	the	aliases	would	look	like	this:
Click	here	to	view	code	image

$	alias	mathprint=‘lp	-dmathlw’
$	alias	libprint=‘lp	-dlibrary’
$	alias	edprint=‘lp	-dedlw’

4.	Some	systems	have	a	command	lpinfo	that	also	offers	information	about	printers:
Click	here	to	view	code	image

$	lpinfo	mathlw
mathlw:	server.utech.edu;	MATH	734;	multiple	HP	LaserJet	Pro

To	find	out	more	information	about	the	printer,	you	can	specify	the	-v	flag:
Click	here	to	view	code	image

$	lpinfo	-v	mathlw
mathlw	description:
								driver:	/usr/local/lib/lp/lpmq
								printer	control	group:	cc
								graphic	filter:	/usr/local/bin/psplot
								log	file:	/usr/spool/lpr/mathlw/logfile
								lock	file:	/usr/spool/lpr/mathlw/lock
								hardware	line:	/dev/null
								maximum	job	count	per	user	=	25
								subqueue	list:	mathlw1,mathlw2,mathlw3
								maximum	print	file	blocks	=	3000
								make	unique	via	bin	change
								network	driver:	/usr/local/lib/lp/lpnc
								ditroff	filter:	/usr/local/lib/devps/devps
								print	formats:	graphics,	ditroff,	use	pr,	troff
								queue	ordering:	age
								host	attachment:	server.utech.edu
								spooling	directory:	/usr/spool/lpr/mathlw
								location:	MATH	734
								description:	multiple	HP	LaserJet	Pro

5.	The	lpinfo	command	also	can	show	you	a	list	of	what	printers	are	available,	but	I
find	the	output	format	considerably	more	difficult	to	understand	than	the	output	of
lpstat:

Click	here	to	view	code	image
$	lpinfo	-a	|	head	-15
aglw:			server.utech.edu;	AG	23;	multiple	HP	LaserJet	Pro
aglw1:								server.utech.edu;	AG	23;	HP	LaserJet	Pro
aglw2:								server.utech.edu;	AG	23;	HP	LaserJet	Pro
aglw3:								server.utech.edu;	AG	23;	HP	LaserJet	Pro
aglw4:								server.utech.edu;	AG	23;	HP	LaserJet	Pro
alpslw:	sentinel.utech.edu;	LIB	111;	HP	LaserJet	ProX
bio:				ace.utech.edu;	COM	B117;	DataPrinter	(self-service)
cary:			franklin.utech.edu;	CQuad	(NE-B7);	IBM	4019	Laser	Printer
cslw:	server.utech.edu;	CS	2249;	HP	LaserJet	Pro
cs115lw:					expert.utech.edu;	CS	115;	IBM	4019	LaserPrinter	(for	CS180)
cs115lw2:				expert.utech.edu;	CS	115;	IBM	4019	LaserPrinter	(for	CS180)
csg40lw:					franklin.utech.edu;	CS	G040;	IBM	4019	LaserPrinter
csg50lw:					franklin.utech.edu;	CS	G050;	IBM	4019	LaserPrinter
cslp1:	expert.utech.edu;	CS	G73;	C.Itoh,	white	paper	(self-service)
eng130ci:				age.utech.edu;	ENG	130;	C.Itoh,	white	paper	(self-service)

Broken	pipe

If	you	find	this	output	readable,	you’re	undoubtedly	becoming	a	real	Unix	expert!

In	this	instance,	the	output	of	the	printers	command	specifies	the	physical	location	of
the	printer,	showing	that	I	need	to	go	to	another	building	to	pick	up	my	hard	copy

Task	18.4:	Formatting	Print	Jobs	with	pr	and	col
The	printout	I	generated	in	Task	18.3	looked	good	but	boring.	I	would	like	to	have	a
running	header	on	each	page	that	specifies	the	name	of	the	file	and	the	page	number.	I’d
also	like	to	have	a	bit	more	control	over	some	other	formatting	characteristics.	This	is
where	the	pr	command	comes	in	handy.	Not	intended	just	for	printing,	pr	is	actually	a
general	pagination	and	formatting	command	that	can	also	be	used	to	display	information
on	the	screen.	Even	better,	pr	is	available	on	both	BSD	and	System	V	Unix.

The	pr	program	is	loaded	with	options,	most	of	which	can	be	quite	useful.	For	example,
-2	makes	the	output	two	columns,	which	is	useful	for	printing	results	of	the	who
command	in	landscape	mode.	The	most	useful	options	are	presented	in	Table	18.3.

TABLE	18.3	Useful	Flags	in	pr

1.	My	printout	of	the	who	command	showed	me	that	my	choice	of	paper	was	poor.	In
a	128-character-wide	landscape	printout,	I	actually	used	only	the	first	30	characters
or	so	of	each	line.	Instead,	I	can	use	pr	to	print	in	two-column	mode:

Note

On	some	Unix	systems,	the	-f	flag	to	pr	causes	the	program	to	put	form	feeds	at
the	bottom	of	each	printed	page.	To	suppress	the	header	and	footer,	use	-t.	I
warned	you	that	printing	in	Unix	is	chaotic,	right?

Click	here	to	view	code	image

$	who	|	pr	-2	|	more

May		9	13:48	2015			Page	1

root					console	May	6	18:02				ab							ttypk		May	9	07:57		(nova)
princess	ttyaV			May	9	13:44				dutch				ttypl		May	8	13:36		(dov)
tempus			ttyaW			May	9	13:43				malman			ttypm		May	9	13:07		(dov)

enatsuex	ttyaY			May	9	13:41				bakasmg		ttypq		May	9	13:09		(age)
coxt					ttyaZ			May	9	13:35				dodsondt	ttyps		May	8	11:37		(age)
scfarley	ttyAa			May	9	13:36				md							ttypv		May	8	08:23		(kraft)
nancy				ttyAb			May	9	13:12				rothenba	ttypw		May	9	13:15	(trinetra)
rick					ttyAc			May	9	13:12				xuxiufan	ttypy		May	9	13:16		(ector)
fitzte			ttyAd			May	9	13:47				nashrm			ttyq3		May	9	13:04		(pc115)
maluong		ttyAe			May	9	13:46				dls						ttyq5		May	9	13:06	(dialup01)
af5						ttyAg			May	9	09:12				myounce		ttyq8		May	9	02:14		(limbo)
zjin					ttyAh			May	9	13:44				liyan				ttyq9		May	9	13:11		(volt)
herbert1	ttyAi			May	9	13:29				daffnelr	ttyqA		May	9	13:36	(localhost)
ebranson	ttyAj			May	9	13:44				mm							ttyqB		May	9	10:32		(mm)
billiam		ttyAk			May	9	13:36				jlapham		ttyqC		May	9	12:46		(mac18)
linet2			ttyAm			May	9	11:04				chuicc			ttyqE		May	9	13:38		(icarus)
—More—	_

Notice	that	the	pr	program	not	only	made	this	a	two-column	listing	but	also	added	a
page	header	that	indicates	the	current	date	and	page	number.

2.	The	header	still	doesn’t	contain	any	information	about	the	command	name,	and	that
would	really	be	helpful.	Fortunately,	I	easily	can	add	the	header	information	I	want
by	using	pr:

Click	here	to	view	code	image

$	who	|	pr	-h	“(output	of	the	who	command)”	-2	|	more

May		9	13:50	2015		(output	of	the	who	command)	Page	1

root					console	May	6	18:02				ab							ttypk			May	9	07:57		(nova)
princess	ttyaV			May	9	13:44				dutch				ttypl			May	8	13:36		(dov)
tempus			ttyaW			May	9	13:43				malman			ttypm			May	9	13:07		(dov)
enatsuex	ttyaY			May	9	13:41				bakasmg		ttypq			May	9	13:09		(age)
coxt					ttyaZ			May	9	13:35				dodsondt	ttyps			May	8	11:37		(age)
scfarley	ttyAa			May	9	13:36				md							ttypv			May	8	08:23		(kraft)
nancy				ttyAb			May	9	13:12				rothenba	ttypw			May	9	13:15	(trinetra)
rick					ttyAc			May	9	13:12				xuxiufan	ttypy			May	9	13:16		(ector)
fitzte			ttyAd			May	9	13:47				dls						ttyq5			May	9	13:06	(dialup01)
maluong		ttyAe			May	9	13:46				myounce		ttyq8			May	9	02:14		(limbo)
maritanj	ttyAf			May	9	13:49				liyan				ttyq9			May	9	13:11		(volt)
af5						ttyAg			May	9	09:12				daffnelr	ttyqA			May	9	13:36	(localhost)
zjin					ttyAh			May	9	13:48				mm							ttyqB			May	9	10:32		(mm)
herbert1	ttyAi			May	9	13:29				jlapham		ttyqC			May	9	12:46		(mac18)
ebranson	ttyAj			May	9	13:44				chuicc			ttyqE			May	9	13:38	(icarus)
—More—	_

That’s	much	better.

3.	I	might	want	to	compare	the	contents	of	two	different	directories.	The	-1	flag	to	ls
forces	the	ls	program	to	list	the	output	one	filename	per	line,	so	I	can	create	a
couple	of	files	in	this	format	easily:
$	ls	-1	src	>	src.listing
$	ls	-1	/tmp	>	tmp.listing

These	files	look	like	this:
Click	here	to	view	code	image

$	head	src.listing	tmp.listing
==>	src.listing	<==
calc-help

calc.c
fixit.c
info.c
info.o

==>	tmp.listing	<==
Erik/
GIri/
Garry/
MmIsAlive
Re01759
Re13201
Sting/
VR001187
VR002540
VR002678

Now	I	can	use	pr	to	build	a	two-column	output:
Click	here	to	view	code	image

$$	pr	-m	src.listing	tmp.listing	|	head	-15

May		9	13:53	2015			Page	1

calc-help																											Erik/
calc.c																														GIri/
fixit.c																													Garry/
info.c																														MmIsAlive
info.o																														Re01759
massage.c																											Re13201
																																				Sting/
																																				VR001187
																																				VR002540
Broken	pipe

4.	This	would	be	more	helpful	if	I	could	turn	off	the	blank	lines	automatically	included
at	the	top	of	each	listing	page,	which	is	a	job	for	the	-f	flag	(or	-t,	if	your	version
of	pr	is	-f	for	form	feeds):

Click	here	to	view	code	image
$	pr	-f	-m	src.listing	tmp.listing	|	head	-15
May		9	13:56	2015			Page	1

calc-help																											Erik/
calc.c																														GIri/
fixit.c																													Garry/
info.c																														MmIsAlive
info.o																														Re01759
massage.c																											Re13201
																																				Sting/
																																				VR001187
																																				VR002540
																																				VR002678
																																				VR002982
																																				VR004477
Broken	pipe

It	looks	good.

5.	Now	it’s	time	to	print	by	piping	the	output	of	the	pr	command	to	the	lpr
command:

Click	here	to	view	code	image

$!pr	|	lpr
pr	-f	-m	src.listing	tmp.listing	|	lpr

6.	As	you	proceed	with	printing	tasks	in	Unix,	you	might	find	sporadically	that	you	get
output	of	the	form
H^HH^HH^Hhe^He^He^Hel^Hl^Hl^Hll^Hl^Hl^Hlo^Ho^Ho^Ho.	Many
versions	of	the	man	command	output	bold	text	in	just	this	fashion:	What	you’re
seeing	is	a	letter	followed	by	a	backspace,	the	letter,	a	backspace,	the	letter,	and	a
backspace,	and	the	letter	one	last	time.	The	above	is	“Hello”	in	this	manner.

Note

The	backspace-for-emphasis	format	is	from	old	daisy-wheel	and	dot-matrix	printers
(remember	those?	I	do!)	and	makes	no	sense	with	modern	printers.	If	you	see	this,
you’ll	want	to	know	about	using	the	helpful	col	command	with	its	-b	flag,	which
strips	out	all	the	backspace	sequences.	You	simply	add	it	to	your	pipe:

Click	here	to	view	code	image
$	pr	–f	–m	src.listing	tmp.listing	|	col	–b	|	lpr

The	pr	command	can	be	used	to	ensure	that	your	printouts	are	always	clean	and	readable.
Again,	it’s	a	perfect	place	to	create	an	alias,	such	as	alias	print='pr	|	lpr'	or
alias	print='pr	|	lp'.	Even	without	any	flags,	pr	automatically	adds	page
numbers	to	the	top	of	each	page.

Task	18.5:	Working	with	the	Print	Queue
On	a	personal	computer,	you	might	have	your	printer	directly	connected	to	your	system,
so	anything	you	print	using	File	->	Print	(on	Windows	and	the	Mac)	instantly	prints.
Larger	networks	tend	toward	shared	printers	with	print	queues	to	manage	the	order	of	jobs
and	pages	coming	out	of	the	device,	however.	This	is	a	model	that	underlies	all	Unix
printing	systems:	When	you	send	a	file	to	a	printer	with	lpr	or	lp,	the	request	is	added	to
a	queue	of	files	waiting	to	print.	Your	request	goes	to	the	bottom	of	the	list,	and	any
subsequent	print	requests	are	added	below	yours.	Your	print	request	gradually	moves	up	to
the	top	and	prints	when	its	turn	has	arrived.

Sometimes	it	can	be	frustrating	to	wait	for	a	printout.	However,	a	queuing	system	has
advantages	over	simply	allowing	users	to	share	a	single	printer.	The	biggest	of	these	is	that
you	can	use	the	lprm	command	to	change	your	mind	and	remove	print	requests	from	the
queue	before	they	waste	paper.

The	lprm	command	works	with	the	print	job	name,	which	you	can	learn	by	checking	the
print	queue	using	lpq.	Both	lprm	and	lpq	can	either	use	the	default	PRINTER	setting
or	can	have	printers	specified	with	-Pprinter.	The	lpq	command	also	can	limit	output

to	just	your	jobs	by	adding	your	account	name	to	the	command.

If	your	system	doesn’t	have	lprm,	use	the	cancel	command	to	remove	entries	from	the
print	queue.	The	lpstat	command	is	also	the	System	V	replacement	for	the	lpq
command,	though	many	sites	alias	lpq	=	lpstat	to	make	life	a	bit	easier.

To	use	cancel,	you	need	to	specify	the	name	of	the	printer	and	the	job	ID,	as	listed	in
the	lpstat	output.	For	example,	if	I	had	print	request	ID	37	on	printer	hardcopy,	I
could	cancel	the	print	request	with	the	command	cancel	hardcopy	-37.

Let’s	have	a	look.

1.	A	glance	at	the	mathlw	queue	shows	that	many	files	are	waiting	to	print:
Click	here	to	view	code	image

$	lpq

mathlw@server.utech.edu:			driver	not	active
								Printing	is	disabled.

Pos		User						Bin			Size		Jobname
–		–-						–-		–-		––-
		1		KOSHIHWE		0104			008		KOSHIHWE0104a
		2		KOSHIHWE		0104			008		KOSHIHWE0104b
		3		KOSHIHWE		0104			008		KOSHIHWE0104c
		4		kleimanj		0317			032		kleimanj0317a
		5		zeta						0042			008		zeta0042a
		6		jharger			0167			008		jharger0167a
		7		jharger			0167			008		jharger0167b
		8		ssinfo				0353			000		ssinfo0353a
		9		fuelling		0216			024		fuelling0216a
	10		zeta						0042			152		zeta0042b
	11		tkjared			0142			012		tkjared0142a
	12		SUJATHA			0043			016		SUJATHA0043a
	13		SUJATHA			0043			024		SUJATHA0043b
	14		SUJATHA			0043			044		SUJATHA0043c
	15		bee							0785			012		bee0785a
	16		bee							0785			056		bee0785b
	17		bee							0785			028		bee0785c
	18		info						0353			004		info0353b
	19		info						0353			000		info0353c
	20		info						0353			000		info0353d
	21		info						0353			004		info0353e
	22		stacysm2		0321			000		stacysm20321a
	23		info						0353			000		info0353f
	24		taylor				0889			000		taylor0889a

mathlw:	waiting	to	be	transmitted	to	server.utech.edu

The	queue	is	empty.

My	print	job,	named	taylor0889a,	is	job	number	24	name.

The	printer	is	also	turned	off.	You	can	see	at	the	top	of	the	lpq	output	the	telltale
message	driver	not	active	Printing	is	disabled.	Obviously,	if	the
printer	is	disabled,	it’s	rather	futile	to	wait	for	a	printout!	Still,	let’s	just	proceed	with
the	expectation	that	it’ll	resume	printing	momentarily.

2.	To	limit	the	output	to	just	those	print	jobs	that	are	mine,	I	specify	my	account	name:

Click	here	to	view	code	image

$	lpq	taylor
mathlw@server.utech.edu:			driver	not	active
								Printing	is	disabled.

Pos		User						Bin			Size		Jobname
–		–-						–-		–-		––-
		1		taylor				0889			004		taylor0889a

mathlw:	waiting	to	be	transmitted	to	server.utech.edu

The	queue	is	empty.

3.	To	check	the	status	of	another	printer,	I	can	specify	the	printer	with	the	-P	flag:
Click	here	to	view	code	image

$	lpq	-Pb280il

b280il@franklin.utech.edu:						driver	not	active

The	queue	is	empty.

b280il:					waiting	to	be	transmitted	to	franklin.utech.edu

The	queue	is	empty.

This	looks	like	a	better	printer	to	use;	its	queue	is	empty.

4.	To	remove	my	print	job	from	the	mathlw	print	queue,	I	specify	the	print	job	name
from	the	lpq	output:
$	lprm	taylor0889a

Unix	carries	out	my	command	without	giving	me	confirmation	that	it	has	succeeded,
but	a	quick	check	with	lpq	shows	that	it	worked:

Click	here	to	view	code	image

$	lpq	taylor
mathlw@server.utech.edu:			driver	not	active
								Printing	is	disabled.

The	queue	is	empty.

mathlw:	waiting	to	be	transmitted	to	server.utech.edu

The	queue	is	empty.

Note

I	wish	that	the	default	for	the	lpq	command	would	show	only	print	jobs	that	I	have
in	the	queue,	and	I	could	use	the	-a	flag	to	show	all	print	jobs	queued.
Furthermore,	instead	of	incorrectly	saying	The	queue	is	empty,	lpq	should
report	something	more	useful,	such	as	there	are	23	other	print	jobs
in	the	queue.	Such	is	the	Unix	life,	though.

5.	Now	I	resubmit	the	print	job	request,	this	time	to	the	b280il	printer:
Click	here	to	view	code	image

$!pr	-Pb280il

pr	-f	-m	src.listing	tmp.listing	|	head	-15	|	lpr	-Pb280il

Uh	oh!	I	don’t	want	that	head	-15	cutting	off	the	information	in	the	printout.
Here’s	the	fix:

Click	here	to	view	code	image
$	lpq	-Pb280il
b280il@franklin.utech.edu:						driver	active;	no	job	printing

Pos		User						Bin			Size		Jobname
–		–-						–-		–-		––-
		1		nfsuser			0058			268		nfsuser0058a
		2		nfsuser			0054			012		nfsuser0054a
		3		taylor				0889			000		taylor0889a

b280il:					waiting	to	be	transmitted	to	franklin.utech.edu

The	queue	is	empty.

To	remove	my	print	request,	I	use	lprm:
$	lprm	taylor0889a
“taylor0889a”	not	located.

I’ve	made	a	second	mistake!	I	need	to	specify	the	printer:
Click	here	to	view	code	image

$	lprm	-Pb280il	taylor0889a

Now	I	can	fix	the	original	command	and	print	the	files	correctly:
Click	here	to	view	code	image

$	pr	-f	-m	src.listing	tmp.listing	|	lpr	-Pb280il

Unix	offers	some	printing	capabilities	you	might	not	be	accustomed	to	working	with,
particularly	the	capability	to	change	your	mind	and	stop	a	print	job	before	it	touches	paper.
You	can	see	that	it’s	a	good	idea	to	set	the	PRINTER	environment	variable	to	your
favorite	printer	so	that	you	can	save	yourself	from	struggling	to	enter	weird	printer	names
each	time	you	print	a	file.

Summary
A	few	judiciously	defined	aliases	can	save	you	a	lot	of	frustration	down	the	road.	Get	your
printer	of	choice	configured	and	set	up	with	your	Unix	system’s	printer	setup	utility,
adding	it	to	CUPS	if	needed.	Then	choose	your	favorite	printer,	define	the	PRINTER
environment	variable	to	point	to	that	printer,	and	give	yourself	an	alias	that	includes	all	the
options	you	like	for	your	printouts.	You	might	consider	creating	an	alias	pq	to	show	your
own	print	requests	queued	for	your	favorite	printer.	(This	is	easy	to	do.	Use	alias
pq='lpq	$LOGNAME'	or	alias	pq=’lpstat	-u	$LOGNAME'.)	You	also	could
show	only	your	print	requests,	if	any,	by	tucking	a	grep	into	the	command:	alias
pq='lpq	|	grep	$LOGNAME'.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
PostScript	This	printout	formatting	language	is	designed	to	allow	sophisticated	page
layout	from	various	programs.	GhostScript	is	an	open	source	implementation	of	the
PostScript	language	and	is	included	as	part	of	the	CUPS	distribution.

print	job	name	This	is	the	unique	name	assigned	to	a	print	job	by	the	lpr	or	lp
command.

print	queue	All	print	jobs	are	placed	in	a	queue,	or	list,	for	processing	by	a	specific
printer.

Exercises
1.	Use	the	lpinfo	-a	command	or	the	printers	command	to	find	out	what
printers	are	available	on	your	system.	Which	command	is	easier	to	use?	How	many
printers	are	available?

2.	Is	your	PRINTER	variable	already	set	to	a	printer?	Is	it	the	printer	you	would
choose?

3.	Use	man	-k	to	see	what	commands	you	have	on	your	system	that	work	with	the
printers	and	print	queues.	Use	man	to	peruse	them.

4.	Show	three	ways	to	print	the	file	dickens.note	with	lpr.

5.	Add	a	print	job	to	the	queue	and	then	remove	it	with	lprm.	What	happened?

6.	How	would	you	use	pr	to	add	A	Tale	of	Two	Cities	as	a	running	title
across	each	printout	page	of	the	file	dickens.note?	How	would	you	start	the
printout	on	the	second	page	of	the	file?

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	about	the	various	ways	you	can	archive	backups	and
otherwise	work	with	your	file	system	as	a	whole.	You’ll	also	learn	about	how	Unixes	now
work	with	package	management	systems	to	make	the	process	of	installing	software
considerably	less	work.

Hour	19.	Archives	and	Backups

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	the	tar	tape	archive	utility

	About	using	zip	to	create	PC-compatible	ZIP	archives

	How	to	use	compress	to	shrink	down	large	files,	along	with	gzip	and	bzip2

	About	cpio	and	tcio

	About	a	common	personal	backup	scheme

	How	to	work	with	package	management	systems

It’s	your	worst	nightmare:	You	wake	up,	log	in	to	your	newly	customized	Unix	account,
and	find	that	everything	is	gone.	All	your	aliases,	shell	scripts,	mail	files,	and	HTML
documents…missing.	You	email	the	administrator	in	a	panic,	and	she	responds,	“Oh,
yeah,	sorry.	Had	to	reformat	the	drive.”

Now,	granted,	it	would	be	a	pretty	poorly	run	system	in	which	the	administrator	thought	it
would	be	acceptable	to	reformat	the	drive	without	restoring	all	users’	data	to	the	condition
it	was	in	immediately	beforehand.	But	it	does	happen.	Especially	with	hobbyist	systems	or
university	clusters,	the	policy	will	often	be	that	they’ll	try	to	restore	your	data	after	a
reinstall,	but	they’ll	make	no	guarantees.	In	any	case,	the	techniques	we’re	about	to	go
over	will	stand	you	in	good	stead	if	you’re	ever	running	your	own	Unix	system.

To	avoid	the	sort	of	horrible	situation	just	described,	you	need	a	solid	archival	and	backup
strategy	for	your	own	files,	and	that’s	the	focus	of	this	lesson.	In	particular,	we	will
explore	the	tar	command	as	a	simple	tool	for	making	single-file	backup	images	of	large
amounts	of	information,	and	we	will	examine	the	compress,	gzip,	and	bzip2
commands	to	shrink	the	resultant	archives	as	small	as	possible.

There	are	a	number	of	ways	to	write	your	backup	data	to	a	tape	unit,	CD-RW,	or	network
backup	device.	Most	of	them	work	with	the	cpio	or	tcio	commands,	so	they’ll	be
examined	this	hour,	too.	I’ve	used	Unix	and	Linux	systems	for	25-plus	years,	and	tar
remains	the	cornerstone	of	my	own	backup	strategy.

With	the	rise	of	cloud	storage,	however,	many	people	are	backing	up	files	and	archives
directly	to	a	cloud	drive	like	Dropbox,	Google	Drive,	or	even	iCloud.	Some	are	easy	to
access	from	the	command	line,	others	not	so	much.	Since	the	cloud	systems	were	designed
for	graphical	user	interfaces,	they	all	require	complicated	programs	to	be	installed	and
verified	before	you	can	use	them	from	a	command	line,	however,	and	that’s	definitely
beyond	the	scope	of	this	book.	If	you’d	like	to	learn	more,	do	some	Google	searches	for
“google	drive	from	linux	command	line”	or	similar.	And	be	prepared	for	the	complexity.

Finally,	this	hour	wraps	up	with	a	brief	discussion	of	modern	Unix	package	management
systems,	notably	Red	Hat	Linux’s	RPM	system.	If	you’re	on	a	contemporary	Unix	system,

it’s	a	must-read.

Regardless	of	which	of	these	backup	strategies	you	choose,	I	highly	recommend	that	you
do	something	to	ensure	the	survival	of	your	data.	Even	if	your	administrator	insists	that
she	does	regular	backups	and	your	files	are	safe,	it’s	dangerous	to	rely	on	someone	else	to
protect	your	precious	data!

Note

Indeed,	I	have	personal	experience	with	the	danger	of	relying	on	backups.	It	was
way	back	in	December	1999,	when	I	noticed	a	hacker	had	broken	into	our	Unix
system	and	was	destroying	files.	(I	used	ps	to	see	what	he	was	doing.)	I	tried	to	log
him	out	and	protect	the	system,	but	it	was	too	late.	We	lost	everything.	Fortunately,
we	had	backup	tapes	…	until	we	tried	to	use	them.	Then	we	found	the	unpleasant
truth:	The	backups	hadn’t	been	working	for	weeks,	and	the	failed	backups	kept
overwriting	the	tapes.	As	a	result,	we	lost	over	a	month	of	files,	software
development,	and	client	documents—not	a	pretty	sight.

The	tar	Tape	Archive	Utility
It’s	not	glamorous,	but	tar	has	been	around	forever	on	Unix.	It	was	originally	written	to
work	with	tape	devices,	actually,	and	has	helped	create	millions	of	backups.	What	most
people	don’t	realize	is	that	tar	can	be	really	useful	for	regular	folk	who	don’t	need	to
learn	how	to	write	to	a	tape	device	or	otherwise	administer	the	computer.	It	might	not	be
the	most	efficient	tool	for	every	task,	but	it’s	definitely	fast	and	easy	to	work	with	once
you	figure	out	all	the	flags.

Task	19.1:	Learning	to	Use	tar
Even	though	you	can	use	about	20	different	flags	with	tar,	fundamentally	the	program
has	three	modes	of	operating:	building	an	archive,	showing	the	contents	of	an	archive,	or
extracting	files	from	an	archive.	They	are	tar	–c	(for	creation),	tar	–t	(for	a	table	of
contents	of	an	archive),	and	tar	–x	(to	extract	data).	tar	commands	look	like	this:
Click	here	to	view	code	image

tar	[flags]	file	or	directory	names

Let’s	take	a	look	at	how	tar	works.

1.	To	start	out,	I’d	like	to	create	a	quick	archival	snapshot	of	all	the	files	and	folders	in
my	home	directory.	To	do	this,	I	create	an	output	file	in	/tmp:

Click	here	to	view	code	image
$	tar	-cf	/tmp/backup.tar	*
$

There	was	no	output,	but	it	took	about	10	seconds	to	execute,	so	I	assume	that
something	happened.	The	-c	flag	tells	tar	to	create	an	archive,	remember,	and	-f
file	indicates	the	name	of	the	output	file.	*,	of	course,	indicates	that	all	files	and
folders	in	the	current	directory	should	be	matched.

Caution

Be	careful	with	*	expansion	and	tar.	In	this	first	example,	the	backup	didn’t
include	any	of	my	dot	files	or	the	dot	directories	created	by	various	programs,
including	my	.profile	and	.bashrc	files.	If	you’re	backing	up	your	home
directory,	use	.	for	the	archive	to	ensure	that	you	get	absolutely	everything,	as
demonstrated	below.

A	quick	peek	with	ls	tells	the	surprising	story:
Click	here	to	view	code	image

$	ls	–l	/tmp/backup.tar
-rw-r—r—		1	taylor		wheel		15360000	Feb		8	02:52	/tmp/backup.tar
$

Wow!	That’s	a	big	output	file—15.3	megabytes.

2.	To	get	more	output	and	have	a	better	idea	of	what’s	going	on,	I	redo	the	archive
command,	but	this	time	I	add	the	-v	(verbose)	flag:

Click	here	to	view	code	image
$	tar	–cvf	/tmp/backup.tar	.
.
./.cshrc
./.login
./.mailrc
./.profile
./.rhosts
./.bash_history
./Talks
./Talks/Writeups
./Talks/Writeups/biz-and-the-net
./Talks/Writeups/html-half.1
./Talks/Writeups/html-half.2
./Talks/Writeups/instant-homepage
./Talks/Writeups/intro-to-the-net

lots	and	lots	of	output	removed

./pict.pict

./browse.sh

./test.html

./Exchange

./Exchange/build-exchrate

./Exchange/exchange.pl

./Exchange/exchange.db

./etcpasswd

./badjoke

./badjoke.rot13
$

Pretty	straightforward,	isn’t	it?

3.	To	have	a	peek	at	what’s	inside	a	tar	archive	file,	use	the	-t	flag	instead	of	–c	for
a	table	of	contents	instead	of	creation	request:

Click	here	to	view	code	image

$	tar	–tf	/tmp/backup.tar	|	head

.

./.cshrc

./.login

./.mailrc

./.profile

./.rhosts

./.bash_history

./Talks

./Talks/Writeups

./Talks/Writeups/biz-and-the-net
$

Notice	that	I	piped	the	output	to	head	so	that	I	only	see	the	top	10	lines.

I	get	more	information	about	the	archival	files	by	combining	-t	with	the	-v	verbose
flag:

Click	here	to	view	code	image

$	tar	-tvf	/tmp/backup.tar	|	head
drwxr-xr-x		2	taylor			taylor					0	Feb		7	14:41	.
-rw-r—r—		1	taylor			taylor			817	Dec	14	16:09	./.cshrc
-rw-r—r—		1	taylor			taylor			581	Dec	14	16:09	./.login
-rw-r—r—		1	taylor			taylor			105	Dec	10	04:04	./.mailrc
-rw-r—r—		1	taylor			taylor			201	Dec	10	04:04	./.profile
-rw––-		1	taylor			taylor				65	Dec	10	04:04	./.rhosts
-rw––-		1	taylor			taylor		7545	Feb		7	15:30	./.bash_history
drwxrwxr-x		2	taylor			taylor					0	Dec	14	16:09	./Talks
drwxrwxr-x		2	taylor			taylor					0	Dec	14	16:09	./Talks/Writeups
-rw-r—r—		1	taylor			taylor		1832	Dec	14	16:09	./Talks/Writeups/biz-and-
the-net
$

4.	Now	that	I	have	a	basic	archival	file,	what	can	I	do	with	it?	Well,	the	easiest	thing	is
to	change	the	output	from	a	file	to	a	Unix	archive	device,	so	I	can	make	a	quick
backup:
$	tar	cf	/dev/rst0	.
$

In	the	old	days,	it	would	have	taken	about	20	minutes	to	write	to	a	backup	tape,	but
newer	media	like	a	DVD	burner	work	much	faster—and	a	USB	3.0	flash	drive	is
lightning	fast.	Regardless	of	the	media	onto	which	I	copy	the	archive,	now	I	have	a
copy	of	all	my	files	that	I	can	drop	in	my	pocket,	without	worrying	about	whether
the	computer	might	crash	or	whether	the	admin	is	checking	the	validity	of	system
backups.

5.	In	addition	to	writing	backups	and	creating	snapshots	of	files	and	folders	for	safety
purposes,	using	tar	turns	out	to	be	a	great	way	to	transfer	clusters	of	files	from	one
computer	to	another.

Note

ftp	is	a	file	transfer	program	(File	Transfer	Protocol)	that	lets	you	easily	send	files
between	two	computers,	basically	a	login/transfer	file/logout	system.

With	the	/tmp/backup.tar	file	created,	all	I’d	have	to	do	is	use	ftp	to	transfer
it	to	another	computer—or	just	email	it	to	myself,	if	it’s	not	insanely	big—and	then

use	tar	on	that	computer	to	unpack	it	and	replicate	all	of	my	files	and	folders	on
that	system:

Click	here	to	view	code	image

$	ftp	intuitive.com
Connected	to	intuitive.com.
220	intuitive.com	FTP	server	(Version	wu-2.6.1(1)	Sat	May	2	14:46:30	PDT
2015)
ready.
Name	(intuitive.com:taylor):	taylor
331	Password	required	for	taylor.
Password:
230	User	taylor	logged	in.
Remote	system	type	is	UNIX.
Using	binary	mode	to	transfer	files.
ftp>	put	/tmp/backup.tar
local:	/tmp/backup.tar	remote:	backup.tar
227	Entering	Passive	Mode	(206,184,139,134,121,43)
150	Opening	BINARY	mode	data	connection	for	backup.tar.
226	Transfer	complete.
15800320	bytes	sent	in	171.45	seconds	(90.00	KB/s)
ftp>	quit
221-You	have	transferred	15800320	bytes	in	1	files.
221-Total	traffic	for	this	session	was	15800805	bytes	in	1	transfers.
221-Thank	you	for	using	the	FTP	service.
221	Goodbye.
$

After	the	archive	file	has	been	transferred	to	the	remote	system,	it’s	just	a	matter	of
unpacking	things	on	the	remote	computer:

Click	here	to	view	code	image
$	ls
$	tar	-xf	backup.tar
$	ls	-F
CraigsList/					Shuttle/										buckaroo												pict.pict
Exchange/							Src/														etcpasswd											test.html
Gator/										Stuff/												getmodemdriver.sh*		test.sh*
Lists/										Talks/												getstocks.sh*							testfile
Lynx.trace						badjoke											gettermsheet.sh*				tif.tif
Mail/											badjoke.rot13					gif.gif
News/											bin/														jpg.jpg
Old/												browse.sh*								niftylister.tar
$

Quickly	and	easily	done.

6.	To	get	output	from	the	tar	extraction	as	it	goes	along,	you	could	add	the	-v	flag:
Click	here	to	view	code	image

$	tar	–xvf	backup.tar
.
./.cshrc
./.login
./.mailrc
./.profile
./.rhosts
./.bash_history
./Talks
./Talks/Writeups
./Talks/Writeups/biz-and-the-net

./Talks/Writeups/html-half.1

./Talks/Writeups/html-half.2

./Talks/Writeups/instant-homepage

./Talks/Writeups/intro-to-the-net

lots	and	lots	of	output	removed

./pict.pict

./browse.sh

./test.html

./Exchange

./Exchange/build-exchrate

./Exchange/exchange.pl

./Exchange/exchange.db

./etcpasswd

./badjoke

./badjoke.rot13
$

7.	One	important	capability	of	tar	worth	showing	here	is	that	you	can	extract	specific
files	and	folders	from	an	archive	based	on	a	pattern	given	to	the	program:

Click	here	to	view	code	image

$	tar	–xvf	backup.tar	Exchange
tar:	WARNING!	These	patterns	were	not	matched:
Exchange
$

8.	Oops!	Patterns	have	to	be	left-rooted	(that	is,	they	need	to	exactly	match	starting	at
the	very	first	character	of	the	file	or	directory	name).	Let’s	try	again:

Click	here	to	view	code	image
$	tar	-xvf	backup.tar	./Exchange
./Exchange
./Exchange/build-exchrate
./Exchange/exchange.pl
./Exchange/exchange.db
$

The	tar	command	has	a	ton	of	options;	the	most	useful	of	them	are	summarized	in	Table
19.1.

TABLE	19.1	Useful	Options	to	tar

If	you	have	a	remote	Unix	account	and	a	local	PC	or	Macintosh,	one	great	use	of	tar	is	to
occasionally	build	an	archival	snapshot	of	all	your	files	and	then	FTP	them	to	your	local
computer.	We’ll	talk	about	this	in	the	latter	part	of	this	hour.

The	zip	Archive	Utility
While	tar	is	a	popular	archival	utility	for	the	Unix	world—including	Linux—when	you
get	to	the	land	of	PCs	and	laptops,	the	ZIP	archive	format	turns	out	to	be	far	more
common	and	far	more	popular.	The	good	news	is	that	there’s	a	command-line	ZIP
interface	available	in	modern	Unixes	like	Solaris,	so	let’s	have	a	look!

Task	19.2:	Learning	to	Use	zip
If	you	thought	that	the	tar	command	had	a	lot	of	command	flags	and	options,	wait	until
you	get	a	look	at	zip.	It’s	so	complicated	that	just	about	every	time	I	use	it,	I	have	to	read
the	man	page	again	to	see	some	examples.	And	I’ve	been	working	with	Unix	and
command	lines	for	a	ridiculously	long	time.

Let’s	take	a	look.

1.	To	start	out,	I’ll	do	the	same	thing	I	did	in	Task	19.1:	Create	a	quick	archival
snapshot	of	all	the	files	and	folders	in	my	home	directory.	But	this	time,	I’ll	create
an	output	file	in	/tmp:

Click	here	to	view	code	image

$	zip	/tmp/archive	*
		adding:	Desktop/	(stored	0%)
		adding:	Documents/	(stored	0%)
		adding:	Downloads/	(stored	0%)
		adding:	Public/	(stored	0%)
		adding:	cmdcnt.sh	(deflated	45%)

		adding:	diskspace.sh	(deflated	24%)
		adding:	hi-low.sh	(deflated	44%)
		adding:	test/	(stored	0%)
		adding:	testme	(stored	0%)

2.	Here’s	what	I’ve	created:
Click	here	to	view	code	image

$	ls	-l	/tmp/*zip
-rw-rw–-			1	taylor			staff							2016	Apr	30	15:11	/tmp/archive.zip

This	seems	quite	small,	but	a	close	examination	reveals	that	most	of	my	directories
are	empty	(Desktop,	Documents,	Downloads,	etc.),	which	is	why	the	zip
command	reported	stored	0%	when	it	encountered	them.

3.	Creating	an	archive	is	easily	done	with	no	command	flags	needed.	But,	oh,	there	are
plenty	of	command	flags,	which	you	can	summarize	with	the	–h	help	flag:

Click	here	to	view	code	image
$	zip	-h
Copyright	(c)	1990-2008	Info-ZIP	-	Type	‘zip	“-L”’	for	software	license.
Zip	3.0	(July	5th	2008).	Usage:
zip	[-options]	[-b	path]	[-t	mmddyyyy]	[-n	suffixes]	[zipfile	list]	[-xi
list]
The	default	action	is	to	add	or	replace	zipfile	entries	from	list,	which
can	include	the	special	name	-	to	compress	standard	input.
If	zipfile	and	list	are	omitted,	zip	compresses	stdin	to	stdout.
-f			freshen:	only	changed	files				-u			update:	only	changed	or	new	files
-d			delete	entries	in	zipfile						-m			move	into	zipfile	(delete	OS
files)
-r			recurse	into	directories							-j			junk	(don’t	record)	directory
names
-0			store	only																					-l			convert	LF	to	CR	LF	(-ll	CR	LF	to
LF)
-1			compress	faster																-9			compress	better
-q			quiet	operation																-v			verbose	operation/print	version
info
-c			add	one-line	comments										-z			add	zipfile	comment
-@			read	names	from	stdin										-o			make	zipfile	as	old	as	latest
entry
-x			exclude	the	following	names				-i			include	only	the	following	names
-F			fix	zipfile	(-FF	try	harder)			-D			do	not	add	directory	entries
-A			adjust	self-extracting	exe					-J			junk	zipfile	prefix	(unzipsfx)
-T			test	zipfile	integrity									-X			eXclude	eXtra	file	attributes
-y			store	symbolic	links	as	the	link	instead	of	the	referenced	file
-e			encrypt																								-n			don’t	compress	these	suffixes
-h2		show	more	help

4.	With	those	flags	in	mind,	I	want	to	get	a	table	of	contents	listing	of	the	archival	ZIP
file.	You	can	do	this	and	also	actually	unpack	a	ZIP	archive	through	a	different
command	called	unzip,	logically	enough.	Without	any	arguments,	it	offers	up
some	help	information:

Click	here	to	view	code	image

$	unzip
UnZip	6.00	of	20	April	2009,	by	Info-ZIP.		Maintained	by	C.	Spieler.
Sendbug	reports	using	http://info-zip.org/zip-bug.html;	see	README	for
details.

Usage:	unzip	[-Z]	[-opts[modifiers]]	file[.zip]	[list]	[-x	xlist]	[-d

exdir]
Default	action	is	to	extract	files	in	list,	except	those	in	xlist,	to
exdir;
file[.zip]	may	be	a	wildcard.		-Z	=>	ZipInfo	mode	(“unzip	-Z”	for	usage).

-p		extract	files	to	pipe,	no	messages				-l		list	files	(short	format)
-f		freshen	existing	files,	create	none			-t		test	compressed	archive	data
-u		update	files,	create	if	necessary					-z		display	archive	comment	only
-v		list	verbosely/show	version	info						-T		timestamp	archive	to	latest
-x		exclude	files	that	follow	(in	xlist)		-d		extract	files	into
exdirmodifiers:
-n		never	overwrite	existing	files								-q		quiet	mode	(-qq	=>	quieter)
-o		overwrite	files	WITHOUT	prompting					-a		auto-convert	any	text	files
-j		junk	paths	(do	not	make	directories)		-aa	treat	ALL	files	as	text
-U		use	escapes	for	all	non-ASCII	Unicode	-UU	ignore	any	Unicode	fields
-C		match	filenames	case-insensitively				-L		make	(some)	names	lowercase
-X		restore	UID/GID	info																		-V		retain	VMS	version	numbers
-K		keep	setuid/setgid/tacky	permissions		-M		pipe	through	“more”	pager
-O	CHARSET		specify	char	encoding	for	DOS,	Windows	and	OS/2	archives
-I	CHARSET		specify	a	character	encoding	for	UNIX	and	other	archives

See	“unzip	-hh”	or	unzip.txt	for	more	help.		Examples:
		unzip	data1	-x	joe			=>	extract	all	files	except	joe	from	zipfile
data1.zip
		unzip	-p	foo	|	more		=>	send	contents	of	foo.zip	via	pipe	into	program
more
		unzip	-fo	foo	ReadMe	=>	quietly	replace	existing	ReadMe	if	archive	is
newer

That’s	not	complex,	is	it?	Yikes.	Nonetheless,	the	examples	at	the	very	bottom	are	a
helpful	reminder.

5.	To	simply	get	that	table	of	contents,	here’s	the	command:
Click	here	to	view	code	image

$	unzip	-l	/tmp/archive.zip
Archive:		/tmp/archive.zip
			Length							Date						Time			Name
	–––			–––-			–—			–-
								0				10-27-2014			10:00			Desktop/
								0				10-27-2014			10:00			Documents/
								0				10-27-2014			10:00			Downloads/
								0				10-27-2014			10:00			Public/
						458				03-16-2015			07:42			cmdcnt.sh
						252				03-16-2015			08:02			diskspace.sh
						440				03-16-2015			08:28			hi-low.sh
								0				12-28-2014			11:42			test/
								0				01-29-2015			12:35			testme
–––																									––-
					1150																									9	files

Weird	output	format,	very	un-Unixlike.

6.	Finally,	here’s	how	I	actually	extract	files	from	a	ZIP	archive:
$	unzip	archive.zip
				Archive:	archive.zip
			creating:	Desktop/
			creating:	Documents/
			creating:	Downloads/
			creating:	Public/
		inflating:	cmdcnt.sh
		inflating:	diskspace.sh

		inflating:	hi-low.sh
			creating:	test/
	extracting:	testme

One	thing	that	makes	ZIP	an	interesting	archival	format—other	than	that	it’s	compatible
with	every	OS	available,	from	Windows	10	to	Mac	OS	X	to	built-in	support	in	utilities
like	Google	Drive—is	that	it	gives	you	more	control	over	the	compression	algorithms
used.

Go	back	to	the	zip	command	and	notice	the	-1	and	-9	flags,	for	example,	which	tell	the
program	to	put	more	or	less	effort	into	compressing	the	individual	files	in	the	archive	than
normal.

But	even	the	normal	ZIP	archive	compressed	the	files	in	this	particular	archive	an	average
of	30%.	Across	hundreds	or	thousands	of	files,	that	can	be	quite	a	meaningful	amount	of
disk	space!

Shrinking	Your	Files	with	compress
One	thing	you’ll	notice	about	the	tar	command	is	that	it	can	generate	remarkably	large
files.	In	fact,	although	disk	space	is	relatively	cheap	nowadays,	a	single	tar	file	can
easily	put	you	over	quota	on	your	system	or	at	least	make	you	unpopular	with	the	other
users.

You	can	use	zip	instead,	which	offers	compression,	or	you	can	use	the	direct	interface	to
the	capability,	using	a	solution	called	compress.

Action	19.3:	Shrinking	Large	Files	on	Unix
The	compress	command	is	available	on	all	versions	of	Unix,	though	sometimes	zip	is
actually	a	better	program	in	terms	of	how	well	it	can	compress	files.	The	problem	is,	zip
isn’t	universally	available,	particularly	on	older	Unix	systems.	Both	compress	and	zip
fundamentally	do	the	same	thing:	They	use	different	compression	algorithms	to	minimize
the	size	of	the	file	or	files	given.

1.	First,	let’s	see	what	compress	can	do	with	the	backup.tar	file	created	earlier:
Click	here	to	view	code	image

$	ls	-l	backup.tar
-rw-r—r—		1	taylor		wheel		15800320	Feb		8	02:58	backup.tar
$	compress	backup.tar
$	ls	-l	backup.tar
ls:	backup.tar:	No	such	file	or	directory

Uh	oh!	No	need	to	panic,	though:	The	compress	program	automatically	renames	the
compressed	file	to	have	a	.Z	filename	suffix,	so	you	know	it’s	compressed:

Click	here	to	view	code	image
$	ls	-l	backup.tar.Z
-rw-r—r—		1	taylor		wheel		7807489	Feb		8	02:58	backup.tar.Z

Not	too	bad:	It’s	gone	down	from	15.8MB	to	7.8MB.

2.	To	reverse	the	file	compression	process	and	have	it	return	to	its	original	state,	use

uncompress:
Click	here	to	view	code	image

$	uncompress	backup.tar.Z
$	ls	-l	backup.tar
-rw-r—r—		1	taylor		wheel		15800320	Feb		8	02:58	backup.tar

3.	It	turns	out	that	there’s	a	useful	flag	to	compress	that	lets	you	see	how	much	it’s
compressed	things:
$	compress	-v	backup.tar
backup.tar:					49.4%	OK

A	quick	turn	with	a	calculator	will	confirm	that	it’s	just	about	50%	smaller	in	size.
Before	finishing	up,	I	want	to	uncompress	it	again:

Click	here	to	view	code	image
$	uncompress	-v	backup.tar.Z
backup.tar.Z:			202.3%	OK

4.	For	comparison,	let’s	have	a	quick	look	at	the	zip	command,	which	offers	very
similar	capabilities:

Click	here	to	view	code	image

$	ls	-l	backup.tar
-rw-r—r—		1	taylor		wheel		15800320	Feb		8	02:58	backup.tar
$	zip	backup.tar.zip	backup.tar
			adding:	backup.tar	(deflated	67%)
$	ls	-l	backup.tar.Z
ls:	backup.tar.Z:	No	such	file	or	directory

Whoops!	I’m	running	on	autopilot.	In	fact,	when	zip	is	invoked,	it	has	two	required
parameters:	the	archive	name	and	the	name	of	the	file	or	folder	to	place	in	the
archive.	So	not	.Z	but	.zip:

Click	here	to	view	code	image
$	ls	-l	backup.tar.zip
-rw-r—r—		1	taylor		wheel		5214105	Feb		8	02:58	backup.tar.zip
$

You	can	see	that	it	did	a	better	job	of	compressing	this	particular	file	than
compress	did:	It’s	only	5.5MB,	instead	of	7.8MB.	Different	files	will	have
different	compress/zip	results,	and	some	rare	files	won’t	be	any	smaller	when
compressed,	for	reasons	known	only	to	the	folk	who	invented	the	compression
algorithms.

5.	To	uncompress	(expand)	the	file,	use	unzip,	as	shown	earlier:
Click	here	to	view	code	image

$	unzip	backup.tar.zip
Archive:		backup.tar.zip
replace	backup.tar?	[y]es,	[n]o,	[A]ll,	[N]one,	[r]ename:	y
			inflating:	backup.tar
$

All	back	to	normal!

Note

A	number	of	different	zip	archive	programs	are	available,	depending	on	your	flavor
of	Unix	or	Linux,	including	gzip,	bzip2,	and	rzip.	They	differ	in	subtle	ways
but	are	all	worth	investigating	if	you	send	a	lot	of	archival	files	or	are	tight	on	space
with	your	Unix	system.

Most	of	the	files	you	have	are	likely	too	small	to	worry	about	compressing	to	save	space.
But	if	you	are	building	large	archival	files	or	if	you’re	planning	on	transferring	large	files
through	FTP,	compress	or	zip	can	be	your	new	best	friend,	saving	you	substantial
transfer	time.

Exploring	the	Unix	Tape	Command:	cpio
It	shouldn’t	surprise	you	that	the	Unix	system	has	general-purpose	backup	programs	that
optionally	can	write	to	a	tape	device	or	other	archival	data	storage	unit.	It’s	called	cpio
and	is	consistent	in	use	with	the	overall	philosophy	of	Unix.

Action	19.4:	A	Quick	Exploration	of	cpio
To	more	fully	understand	how	this	command	works,	it’s	necessary	to	see	it	in	action.

1.	The	most	important	difference	between	cpio	and	tar	is	that	cpio	expects	to	read
the	list	of	files	needing	backup	from	standard	input	rather	than	as	a	directory	or	set
of	filenames	specified	on	the	command	line.

This	doesn’t	seem	like	a	big	deal,	but	it	really	is,	particularly	when	you	combine
cpio	with	the	find	command.	Here’s	a	typical	usage:

Click	here	to	view	code	image

$	find	.	–name	“*.c”	–print	|	cpio	–oO	sourcefiles.cpio
$

This	invocation	(-o	indicates	that	I	want	to	create	an	output	archive,	and	-O	lets	me
specify	the	output	filename)	makes	an	archive	called	sourcefiles.cpio	that
comprises	all	the	*.c	source	files	in	the	current	directory	and	below.	This	would	be
quite	tricky	to	accomplish	with	tar.

2.	I	can	examine	the	contents	of	the	archive:
Click	here	to	view	code	image

$	cpio	-itI	sourcefiles.cpio
./bin/fixit.c
./Src/Embot/embot.c
./Src/Embot/error.c
./Src/Embot/interact.c
./Src/Embot/log.c
./Src/Embot/mail_utils.c
./Src/Embot/savemsg.c
./Src/Embot/sendfile.c
./Src/Embot/utils.c
./Src/Misc/usage_summary.c
./Src/Misc/fixit.c

./Src/Misc/info.c

./Src/Misc/isnew.c

./Src/Misc/mydate.c

./Src/Misc/showmatches.c

./Src/Misc/change.c

./Src/change.c

./Src/cleanup.c

./Src/cribbage.c

./Src/expandurl.c

./Src/extract-mall.c

./Src/futuredate.c

./Src/import.c

./Src/assemble.c

./Src/make-html.c

./Src/old-import.c

./Src/process-data.c

./Src/showmatches.c

./Src/sum-up.c

./Src/text-counter.c

./Src/login.c

./Src/calc.c
$

In	this	case,	the	-i	flag	indicates	that	I	want	to	have	it	read	an	existing	archive,	-t
indicates	that	I	only	want	a	listing	of	the	files,	not	to	have	them	extracted,	and	-I
lets	me	specify	the	input	filename.

3.	The	easiest	way	to	extract	a	file	is	to	specify	the	pattern	that	should	be	compared.
Notice	in	this	case	that	I’m	going	to	feed	the	archive	into	cpio	as	standard	input.
It’s	a	common	way	to	use	the	command:

Click	here	to	view	code	image

$	cpio	-i	cribbage	<	sourcefile.cpio
cpio:	WARNING!	These	patterns	were	not	matched:
cribbage
$

Nope.	The	pattern	cribbage	didn’t	work.	In	fact,	it	wasn’t	a	regular	expression,	so
cpio	helpfully	indicated	that	there	weren’t	any	matches.	Here’s	an	improved
attempt:

Click	here	to	view	code	image
$	cpio	-i	‘*cribbage*’	<	*cpio
cpio:	Unable	to	create	./Src/cribbage.c	<No	such	file	or	directory>
$

4.	We’re	almost	there,	but	there’s	still	a	problem,	though	the	cpio	error	message	isn’t
too	helpful	in	explaining	what’s	happening.	The	problem	is	that	there	is	no	Src
directory,	and	the	program	can’t	create	subdirectories	without	a	new	flag,	-d,	being
added.	The	error	message	is	more	confusing	than	informative	of	that	fact,	however.

While	I’m	at	it,	I’ll	also	add	-v	to	ensure	some	verbose	output	as	it	unpacks:
Click	here	to	view	code	image

$	cpio	-ivd	‘*cribbage*’	<	*cpio
./Src/cribbage.c
30	blocks
$

Got	it.	Hurray!

Table	19.2	summarizes	the	most	useful	cpio	flags.

TABLE	19.2	Useful	cpio	Starting	Flags

The	flag	examples	listed	in	this	table	might	not	make	the	value	of	cpio	obvious,	but	the
reason	that	system	administrators	love	this	program	is	because	it	can	read	standard	input
for	a	list	of	files	to	add	to	an	archive.	As	you’ll	see	in	the	next	section,	this	makes	a	very
sophisticated	level	of	archival	behavior	a	breeze.

Personal	Backup	Solutions
Before	we	leave	this	discussion	of	backup	and	archive	solutions,	I’d	like	to	talk	a	bit	about
a	couple	of	ways	that	you	can	use	these	commands	to	improve	the	reliability	and	safety	of
your	own	interaction	with	Unix.

There	are	two	basic	ways	that	I	use	these	tools	myself:	to	create	“snapshots”—
automatically	dated	archives	of	the	files	I’m	currently	creating—and	to	create	“last
changed”	files	that	I	can	write	to	an	archival	device.

Action	19.5:	A	Personal	Backup	Scheme
It’s	a	good	thing	you	paid	attention	during	the	shell	scripting	lesson	(Hour	16,	“Shell
Programming	Overview”)	because	the	solution	shown	here	is	a	shell	script	that	uses	tar
to	build	instant	archives.

1.	The	first	step	in	this	script-building	process	is	to	figure	out	a	solution	for	creating
filenames	that	automatically	have	the	date	and	time	included.	This	is	done	with	a
backquote	invocation	of	the	date	command	but	an	invocation	that	utilizes	the	+%
format	string	option:
$	date	+%m.%d.%Y.%H:%M

11.08.2015.14:34
$

The	date	specified	is	month.day.year.hour:minute.

2.	Now	I	create	a	snapshot	filename	with	this	suffix:
Click	here	to	view	code	image

snapdir=”$HOME/Snapshots”
thedate=”$(date	+%m.%d.%Y.%H:%M)”
outfile=”$snapdir/snapshot.$thedate.tar.gz”

This	saves	the	date/time	format	as	variable	thedate	and	then	creates	an	outfile
filename	for	use	later	in	the	script	that	is	prefaced	with	the	name	of	the	snapshot
directory.	On	my	system,	outfile	ends	up	looking	like	this:

Click	here	to	view	code	image
/home/taylor/Snapshots/snapshot.12.08.2015.14:40.tar.gz

This	is	just	what	I	want.

3.	There	isn’t	much	more	to	the	script—just	the	actual	invocation	to	the	tar
command	itself.	To	make	it	a	bit	more	sophisticated,	the	script	will	use	the	first
argument,	if	present,	as	the	directory	to	back	up.	Otherwise,	it’ll	use	the	current
directory	as	the	default.	Also	notice	the	use	of	the	-z	flag	to	automatically	zip	the
resultant	output	(which	is	why	the	.gz	was	added	to	the	outfile	variable	above,
too).

Here’s	the	entire	script,	short	and	sweet:
Click	here	to	view	code	image

$	cat	snapshot.sh
#!/bin/bash

snapdir=”$HOME/Snapshots”
thedate=”$(date	+%m.%d.%Y.%H:%M)”
outfile=”$snapdir/snapshot.$thedate.tar.gz”

if	[$#	-gt	0]	;	then
		dirs=$1
else
		dirs=”.”
fi

echo	“Backing	up	$dirs	to	$outfile”

tar	-czf	$outfile	$dirs

echo	“done.”

exit	0
$

4.	And	here	it	is	in	use:
Click	here	to	view	code	image

$	alias	snapshot=”$HOME/bin/snapshot.sh”
$	snapshot
Backing	up	.	to	/home/taylor/Snapshots/snapshot.11.08.2015.14:50.tar

done.
$

With	this	in	your	toolkit,	you	can	easily	save	a	current	copy	of	your	work	at	any	time
prior	to	major	edits	or	at	any	historic	time	in	the	life	of	your	project.

5.	In	a	similar	way,	backup	scripts	usually	use	a	marker	file	that	saves	the	last-backed-
up	time	and	date	for	comparison	purposes.	It	relies	on	the	-cnewer	marker-
file	option	to	find,	which	then	compares	the	last-modified	date	of	all	files
encountered	against	the	marker	file	and	lists	only	those	that	are	newer.	It	can	be	used
as	part	of	a	pipeline:

Click	here	to	view	code	image
find	$HOME	–cnewer	$HOME/.marker	–print	|	cpio	–o	/dev/rst0
touch	$HOME/.marker

Amazingly,	this	is	all	that	is	needed	to	have	an	incremental	backup	written	to
/dev/rst0	(usually	your	tape	or	other	archival	device	on	your	Unix	system)
where	the	only	files	added	are	those	that	you’ve	changed	more	recently	than	the
previous	backup.

The	combination	of	tar,	cpio,	the	compress	utilities,	and	a	bit	of	imagination
regarding	how	to	put	them	all	together	can	yield	remarkably	valuable	results	and	expand
your	toolkit	a	great	deal.

Perhaps	just	as	importantly,	the	last	action	of	the	find	pipe	to	cpio	demonstrates	the
fundamental	elegance	of	Unix:	an	entire	backup	regimen	in	two	lines	of	script.	Pretty	cool,
eh?

Working	with	Linux	Package	Managers
No	discussion	of	tar	and	other	archival	systems	would	be	complete	without	a	brief
discussion	of	Linux	package	managers,	software	suites	that	make	it	simple	to	install—or
even	remove—applications	and	software	packages	from	your	computer.	Instead	of	you
having	to	worry	about	“tarballs”	or	similar,	package	managers	make	working	with
software	a	breeze.

Note

You’ll	notice	that	I	said	“Linux”	here,	not	“Unix”.	One	of	the	biggest	things	that
Linux	brought	to	the	Unix	world	is	package	management	systems.	So	why	include
this	topic	in	the	book?	For	completeness.	I	realize	that	there’s	a	good	chance	that
while	you’re	reading	this	book	to	learn	Unix,	you	might	well	be	using	a	Linux
command	line	to	test	and	learn	everything.	That’s	okay;	I’ve	been	testing
everything	on	Linux	systems,	too.

The	premier	package	manager	for	modern	Linux	systems	is	Red	Hat	Package	Manager,
known	more	informally	as	RPM.	Originally	just	available	on	the	Red	Hat	(now	Fedora)
Linux	system,	it	has	become	a	common	method	of	distributing	software	in	the	Unix
community	and	certainly	across	most	flavors	of	Linux	systems.

There	are	some	upstarts,	though,	notably	the	Debian	Package	Manager,	DBM,	which
offers	a	simpler	interface	and	a	more	flexible	package	creation	environment.	If	you’ve
bumped	into	the	Fink	package	manager	on	Mac	OS	X,	you	might	be	surprised	to	know
that	it’s	based	on	DBM.

In	case	you’d	like	to	learn	more	about	the	package	management	system	on	your	own
version	of	Unix	or	Linux	(or	Mac,	for	that	matter),	Table	19.3	provides	a	handy	list.

TABLE	19.3	Package	Management	Systems

Summary
Whether	it’s	to	assuage	your	anxiety	about	unstable	servers,	to	avoid	possible	problems
with	poor	backups	and	inattentive	administrators,	or	simply	to	help	you	package	up	and
move	large	sets	of	files	around,	tar	and	its	partner	programs	are	a	great	help.	Every	time
I	have	to	move	from	one	system	to	another,	I	invariably	use	tar,	compress,	and	ftp	as
a	power	trio.

Further,	while	you	can	download	tar	archives	or	similar	from	the	Internet,	the	ability	to
use	the	RPM	or	a	similar	package	management	system	makes	it	incredibly	easy	to	browse
through	and	install	just	about	any	open	source	application	that’s	compatible	with	your
version	of	Unix	or	Linux.

Workshop
The	Workshop	poses	some	questions	about	the	topics	presented	in	this	hour.

Exercises
1.	What’s	the	key	difference	between	tar	and	cpio?

2.	What’s	wrong	with	this	command?
tar	cvf	OUTPUT.tar	*

3.	Try	both	compress	and	zip	on	a	few	large	files	to	see	which	produces	better
results.	Try	zip	on	a	very	small	file,	too,	and	see	what	happens.

4.	Build,	move,	and	then	unpack	a	directory	tree	using	zip.	Is	it	easier	or	harder	to
use	than	tar	for	this	task?

5.	Using	your	native	package	management	system,	find	and	install	bzip2	and	then
use	that	on	the	same	large	files	you	used	for	question	4	to	see	if	it	does	a	better	job
with	compression.

Preview	of	the	Next	Hour
In	the	next	hour	you’ll	learn	about	the	ability	to	communicate	with	other	users	on	your
computer	through	electronic	mail.

Hour	20.	Using	Email	to	Communicate

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	read	email	with	mailx

	How	to	send	email	with	mailx

	About	sending	mail	to	the	rest	of	the	digital	universe

It’s	time	to	learn	about	what’s	arguably	the	lifeblood	of	any	operating	system	in	today’s
connected	world:	the	ability	to	communicate	with	other	users	on	your	computer	and
elsewhere	through	electronically	transmitted	mail,	or	email.	You’ve	probably	been	using
email	for	years	through	graphical	interfaces—perhaps	Gmail	in	a	browser,	or	Microsoft
Outlook	or	Apple	Mail.	Turns	out	that	just	as	with	so	many	other	Internet	tools,	email	got
its	start	on	the	Unix	command	line,	and	that’s	still	a	place	where	it’s	very	much	at	home—
and	what	this	lesson	is	all	about.

Of	all	the	places	in	Unix	where	there	is	variety,	most	of	it	surely	is	found	in	electronic
mail,	or	email.	At	least	15	programs	are	available	from	various	vendors	to	accomplish	two
tasks:	to	read	mail	from	and	send	mail	to	other	folks.	In	this	hour,	you’ll	learn	about	the
standard	electronic	mail	system,	Berkeley	Mail.	As	it	happens,	I	wrote	an	email	system	of
my	own	that	you	can	often	find	on	Linux	and	other	Unix-like	systems	called	the	Elm	Mail
System.	It’s	a	full-screen	alternative	mail	program	that’s	widely	distributed.	We’ll	stick
with	Berkeley	Mail	for	this	hour,	however,	because	like	a	number	of	different	screen-
oriented	email	programs	(Mush,	Pine),	Elm	works	identically	from	the	command	line.

There	are,	of	course,	graphically	oriented	email	programs,	too,	in	the	Unix	world,	most
notably	Thunderbird,	a	fully	featured	email	application	that’s	part	of	the	Mozilla	browser
suite.	We’ll	look	at	Thunderbird	in	Hour	24,	“GNOME	and	the	GUI	Environment,”	when
we	peek	at	the	X11	graphical	interface	atop	Unix.

Interacting	with	the	World
Much	of	what	you’ve	learned	in	this	book	has	been	about	how	you	can	exploit	Unix	to	be
more	productive.	Now	it’s	time	to	learn	how	to	communicate	with	others,	to	learn	about
what	I	consider	the	“killer	app”	of	Unix	and	of	the	Internet	overall:	electronic	mail.

Task	20.1:	Reading	Electronic	Mail	with	mailx
Of	all	the	capabilities	of	Unix,	one	of	the	most	popular	is	undoubtedly	the	ability	to	send
electronic	mail	to	another	user—even	on	another	computer	system—with	a	few
keystrokes.	In	this	section,	you’ll	learn	how	to	work	with	other	users	on	your	own
computer,	and	later	in	this	hour	you’ll	learn	how	to	send	mail	to	folks	who	are	on	different
computers,	anywhere	in	the	world.

Various	programs	for	reading	mail	can	be	used	on	Unix	systems,	but	the	two	most

common	are	mail	and	Mail.	(The	latter	is	also	often	called	mailx	on	SVR4	systems.)
Because	of	the	similarity	of	the	names,	the	former	is	known	as	“mail”	and	the	latter	as
either	“cap	mail”	(“cap”	for	the	uppercase,	or	capital,	M)	or	“Berkeley	Mail.”	I	refer	to
“Mail”	either	as	Berkeley	Mail	or	using	its	AT&T	name,	mailx.	You	won’t	want	to	use
mail	to	read	or	write	mail	if	Berkeley	Mail	is	available	to	you	because	Berkeley	Mail	is
much	easier	to	use.	As	a	result,	I	will	focus	on	using	Berkeley	Mail.

To	send	mail,	you	simply	state	on	the	command	line	the	account	name	of	the	recipient,
indicate	a	subject,	enter	the	message	itself,	and	poof!	Your	missive	is	sent	through	the
system	and	arrives	at	the	recipient’s	terminal	posthaste.	When	mail	arrives	for	you,	the
shell	or	one	of	various	optional	utilities,	such	as	biff	or	newmail,	can	notify	you.	Each
time	you	log	in,	the	shell	checks	for	email,	and	if	you	have	any,	will	say	You	have
mail	or	You	have	new	mail.	You	can	save	mail	in	files	called	mail	folders.

Berkeley	Mail	has	many	command	options,	both	flags	that	you	can	specify	when	you
invoke	the	program	from	the	command	line	and	commands	used	within	the	program.
Fortunately,	you	can	always	request	help	while	you’re	in	the	program	to	review	these
options.	The	most	noteworthy	flags	are	-s	subject,	which	enables	you	to	specify	the
subject	of	the	message	on	the	command	line,	and	-f	mailfolder,	which	enables	you	to
specify	a	mail	folder	to	read	rather	than	the	default	(which	is	your	incoming	mailbox).

The	most	valuable	commands	to	use	within	the	program	are	summarized	in	Table	20.1.

TABLE	20.1	mailx	Command	Summary

1.	I	have	lots	of	electronic	mail	in	my	mailbox.	When	I	logged	in	to	the	system	today,
the	shell	indicated	that	I	had	new	mail.	To	find	out	what	the	new	messages	are,	I	use
mailx	(though	I	also	could	have	typed	Mail	because	they’re	synonymous	on	my
machine):

Click	here	to	view	code	image

$	mailx
mailx	version	5.0.		Type	?	for	help.

“/var/mail/taylor”:	9	messages	5	new
				1	disserli	Mon	Nov	22	19:40		54/2749	“Re:	Are	you	out	there”
>N		2	Laura.Ramsey	Tue	Nov	30	16:47		46/1705	“I’ve	got	an	idea…”
	N		3	ljw						Fri	Dec		3	22:57		130/2712	“Re:	Attachments”
	N		4	sartin			Sun	Dec		5	15:15		15/341	“I	need	your	address”
	N		5	rustle			Tue	Dec		7	15:43		29/955	“flash	cards”
				6	harrism		Tue	Dec		7	16:13		58/2756	“Re:	Writing	Lab	OWL	proj”
				7	CBUTCHER	Tue	Dec		7	17:00		19/575	“Smartphone	Based	GRE’s”
				8	harrism		Tue	Dec		7	21:46		210/10636	“writing		environments”
	N		9	v892127		Wed	Dec		8	07:09		38/1558	“Re:	Have	you	picked	up”
&	_

I	have	lots	of	information	here.	On	the	first	line,	the	program	identifies	itself	as
Mail	version	5.0.	Somewhat	tucked	away	in	that	top	corner	is	the	reminder
that	I	can	type	?	at	any	point	to	get	help	on	the	commands.

The	second	line	tells	me	what	mailbox	I’m	reading.	In	this	case,	I’m	looking	at	the
default	mailbox	for	my	incoming	mail,	which	is	/var/mail/taylor.	On	your
system,	you	might	find	your	mailbox	in	this	directory,	or	you	might	find	it	in	a
directory	similarly	named	/usr/mail.	Either	way,	you	don’t	have	to	worry	about
where	it’s	located	because	Berkeley	Mail	can	find	it	automatically.

The	3rd	through	11th	lines	list	mail	messages	I	have	received	from	various	people.
The	format	is	N	in	the	first	column	if	I	haven’t	seen	the	piece	of	mail	before,	a
unique	index	number	(the	first	item	in	each	listing	is	1),	the	account	that	sent	the
message,	the	date	and	time	the	message	was	sent,	the	number	of	lines	and	characters
in	the	message,	and	the	subject	of	the	message,	if	known.	Figure	20.1	illustrates	this
more	clearly.

FIGURE	20.1	Understanding	the	message	display	in	mailx.

2.	To	read	a	specific	message,	I	need	to	enter	only	the	index	number	of	that	message:
Click	here	to	view	code	image

&	7
Message		7:
From:	CBUTCHER	Sun	Dec		7	17:00:28	2014
From:	Cheryl	<CBUTCHER>
Subject:						Smartphone	Based	GRE’s
To:	Dave	Taylor	<TAYLOR>

I’ve	scheduled	to	take	the	smartphone-based	GRE’s	in	Indy.
Call	me	crazy	but	someone’s	got	to	do	it.		I’ll	let	you	know	how	it	goes.

Do	you	know	anyone	else	that	has	taken	the	GRE’s	this	way?		I	figure
there’s	a	paper	in	it	somewhere…….

If	you	have	that	handout	from	seminar	in	a	file,	could	you	please	send	it
to	me?

Thanks.

&	_

This	message	is	from	my	friend	Cheryl	Butcher.	Collectively,	the	first	set	of	lines	in
the	message—each	a	single	word,	a	colon,	and	some	information	or	other—is	the
header	of	the	message,	or	the	electronic	equivalent	of	the	postmark	and	envelope.
The	header	always	includes	From:,	Subject:,	and	To:,	specifying	the	name	and
electronic	address	of	the	sender,	the	subject	of	the	message,	and	the	list	of	recipients.

3.	To	respond	to	this	message,	I	enter	reply:
Click	here	to	view	code	image

&	reply
To:	CBUTCHER
Subject:	RE:	Smartphone	Based	GRE’s

_

Anything	I	now	enter	will	be	sent	back	to	Cheryl:
Click	here	to	view	code	image

Hi.	I	am	very	interested	in	hearing	about	your	reaction	to	the

smartphone-based	GRE	test.	I’m	sure	you’re	correct	that	there

is	a	paper	there,	but	wouldn’t	it	be	best	to	work	with	ETS	on	the

project?

I’ll	dig	around	and	find	those	handouts	soonest.

Happy	holidays!

Dave

To	end	the	message,	I	either	press	^d	on	its	own	line	or	use	the	shorthand	.	by
itself:
.

Cc:	_

Berkeley	Mail	is	now	asking	me	to	specify	any	other	people	I	might	like	to	have
receive	carbon	copies	of	this	message.	Entering	an	account	name	or	two	here	will
allow	the	designated	people	to	see	a	copy	of	this	message	to	Cheryl.	Because	I	don’t
want	anyone	else	to	read	this	message,	I	press	Return,	which	sends	the	message	and
returns	me	to	the	prompt:
&	_

4.	I	now	can	use	the	headers	command	to	see	what	is	the	current	message	(the	one	I
just	read).	It’s	the	message	indicated	by	the	>	(refer	to	Figure	20.1):

Click	here	to	view	code	image

&	headers
				1	disserli	Mon	Nov	22	19:40		54/2749	“Re:	Are	you	out	there”
				2	Laura.Ramsey	Tue	Nov	30	16:47		46/1705	“I’ve	got	an	idea…”
	N		3	ljw						Fri	Dec		3	22:57		130/2712	“Re:	Attachments”
	N		4	sartin			Sun	Dec		5	15:15		15/341	“I	need	your	address”

	N		5	rustle			Tue	Dec		7	15:43		29/955	“flash	cards”
				6	harrism		Tue	Dec		7	16:13		58/2756	“Re:	Writing	Lab	OWL	proj”
>			7	CBUTCHER	Tue	Dec		7	17:00		19/575	“Smartphone	Based	GRE’s”
				8	harrism		Tue	Dec		7	21:46		210/10636	“writing	environments”
	N		9	v892127		Wed	Dec		8	07:09		38/1558	“Re:	Have	you	picked	up”
&	_

To	save	Cheryl’s	message	in	a	folder	called	cherylmail,	I	use	the	save
command:

Click	here	to	view	code	image

&	save	cherylmail
“cherylmail”	[New	file]	19/575
&	_

Naming	conventions	for	folders	are	the	same	as	for	Unix	filenames:	Avoid
punctuation	and	spaces	to	make	your	life	easier,	though	dashes	and	underscores	are
fine.

5.	Now	that	I’m	done	with	this	message,	I	can	mark	it	for	deletion	with	the	delete
command:
&	delete	7
&

Notice	that	after	I	enter	headers,	Cheryl’s	message	vanishes	from	the	list:
Click	here	to	view	code	image

&	headers
				1	disserli	Mon	Nov	22	19:40		54/2749	“Re:	Are	you	out	there”
				2	Laura.Ramsey	Tue	Nov	30	16:47		46/1705	“I’ve	got	an	idea…”
	N		3	ljw						Fri	Dec		3	22:57		130/2712	“Re:	Attachments”
	N		4	sartin			Sun	Dec		5	15:15		15/341	“I	need	your	address”
	N		5	rustle			Tue	Dec		7	15:43		29/955	“flash	cards”
				6	harrism		Tue	Dec		7	16:13		58/2756	“Re:	Writing	Lab	OWL	proj”
>			8	harrism		Tue	Dec		7	21:46		210/10636	“writing	environments”
	N		9	v892127		Wed	Dec		8	07:09		38/1558	“Re:	Have	you	picked	up”
&

Look	closely	at	the	list,	and	you	will	see	that	it	hasn’t	completely	forgotten	the
message;	the	program	hides	message	7	from	this	list.	I	could	still	read	the	message
by	using	print	7,	and	I	could	use	undelete	7	to	pull	it	off	the	deletion	list.

Note

Deleted	messages	in	Berkeley	Mail	are	actually	marked	for	future	deletion	and
aren’t	removed	until	you	quit	the	program.	When	you	quit,	however,	there’s	no
going	back.	A	deleted	message	is	gone.	While	you’re	within	the	program,	you	can
delete	and	undelete	to	your	heart’s	content.

6.	Now	I	want	to	delete	both	of	the	messages	from	harrism	(numbers	6	and	8):
&	delete	6	8

Now	the	list	of	messages	in	my	mailbox	is	starting	to	look	pretty	short:
Click	here	to	view	code	image

&	h

				1	disserli	Mon	Nov	22	19:40		54/2749	“Re:	Are	you	out	there”
				2	Laura.Ramsey	Tue	Nov	30	16:47		46/1705	“I’ve	got	an	idea…”
	N		3	ljw						Fri	Dec		3	22:57		130/2712	“Re:	Attachments”
	N		4	sartin			Sun	Dec		5	15:15		15/341	“I	need	your	address”
	N		5	rustle			Tue	Dec		7	15:43		29/955	“flash	cards”
>N		9	v892127		Wed	Dec		8	07:09		38/1558	“Re:	Have	you	picked	up”
&

Tip

Most	commands	in	Berkeley	Mail	can	be	abbreviated	to	just	their	first	letter—as
you	can	see	above	with	h	being	a	shortcut	for	headers—which	cuts	down	on
typing.

7.	You	can	save	a	group	of	messages	to	a	file	by	specifying	the	numbers	between	the
save	command	and	the	folder	name:
&	save	6	8	harris
6:	Inappropriate	message

Oops.	I	had	deleted	messages	6	and	8.	I	must	undelete	them	before	I	can	proceed:
Click	here	to	view	code	image

&	undelete	6	8
&	save	6	8	harrismail

“harrismail”	[New	file]	268/13392

8.	Now	I	use	the	quit	command	to	get	out	of	this	program:
Click	here	to	view	code	image

&	quit
Saved	1	message	in	mbox
Held	6	messages	in	/var/mail/taylor
$

The	messages	that	I	viewed	and	didn’t	delete	are	moved	out	of	my	incoming
mailbox	to	the	file	mbox.	The	messages	I	saved	and	the	messages	I	marked	for
deletion	are	silently	removed,	and	all	remaining	messages	are	retained	in
/usr/spool/mail/taylor.

Note

The	biggest	complaint	I	have	with	Berkeley	Mail	is	that	it	does	all	this	activity
silently.	I	don’t	like	the	fact	that	saved	messages	are	deleted	automatically	from	the
incoming	mailbox	when	I	quit	and	that—more	importantly—messages	I’ve	read	are
tossed	automatically	into	another	folder.	To	ensure	that	messages	you’ve	read	aren’t
moved	into	mbox	when	you	quit,	you	can	use	the	preserve	command,	which
you	can	use	with	a	list	of	numbers,	the	same	way	you	can	use	other	Berkeley	Mail
commands.	Any	message	that	you	preserve	will	remain	in	your	incoming
mailbox.

You	have	to	use	it	to	get	the	hang	of	it,	but	it’s	worthwhile:	Berkeley	Mail	offers	quite	a
lot	of	power,	enabling	you	to	read	through	your	electronic	mail,	save	it,	and	respond	as
needed	with	ease,	all	without	leaving	the	command	line.	The	program	has	considerably

more	commands	than	are	shown	in	this	initial	task,	too,	so	further	study	is	helpful.

Task	20.2:	Sending	Mail	from	the	Command	Line
Now	you	know	how	to	read	your	electronic	mail	using	Berkeley	Mail	(mailx),	and	you
know	how	to	send	mail	from	within	the	program.	How	do	you	send	messages	and	files	to
people	from	the	command	line?	It’s	quite	simple.	You	even	can	specify	the	message
subject	with	the	-s	starting	flag.

1.	To	send	a	message	to	someone,	enter	the	name	of	the	command	followed	by	the
recipient’s	account	name:

Click	here	to	view	code	image

$	mail	marv
Subject:	Interested	in	lunch	tomorrow?
_

I	now	can	enter	as	many	lines	of	information	as	I	want,	ending,	as	within	the
Berkeley	Mail	program	itself,	with	either	^d	(call	this	“Control-D”	to	sound	like	a
Unix	old-timer)	or	.	on	a	line	by	itself:

Click	here	to	view	code	image
I’m	going	to	be	in	town	tomorrow	and	would	like	to

rustle	up	some	Chinese	food.	What’s	your	schedule

look	like?

Dave

.

Cc:	_

Again,	I’m	offered	the	option	of	copying	someone	else,	but—again—I	opt	not	to	do
so.	Pressing	Return	sends	the	message.

2.	To	send	a	file	to	someone,	combine	file	redirection	with	the	use	of	the	-s	flag:
Click	here	to	view	code	image

$	mail	-s	“here’s	the	contents	of	sample.file”	marv	<	sample.file

The	file	was	sent	without	any	fuss.

3.	Even	though	mailx	gives	you	no	indication,	several	commands	are	available	for
use	while	you’re	entering	the	text	of	a	message,	and	all	can	be	listed	with	~?:

Click	here	to	view	code	image
$	mail	dunlap
Subject:	Good	morning!
~?
––––––—	~	ESCAPES	–––––––––-
~~														Quote	a	single	tilde
~a,~A											Autograph	(insert	‘sign’,‘Sign’	variable)
~b	users								Add	users	to	Bcc	list
~c	users								Add	users	to	Cc	list
~d														Read	in	dead.letter	file
~e														Edit	the	message	buffer
~f	messages					Read	in	messages,	do	not	right-shift
~h														Prompt	for	Subject	and	To,	Cc	and	Bcc	lists
~i	variable					Insert	variable	into	message	(~a	:=	~i	sign)

~m	messages					Read	in	messages,	right-shifted	by	a	tab
~p														Print	the	message	buffer
~q,~Q											Quit,	save	letter	in	$HOME/dead.letter
~r,~<	file						Read	a	file	into	the	message	buffer
~r,~<	!command		Read	output	from	command	into	message
~R														Mark	message	for	return	receipt
~s	subject						Set	subject
~t	users								Add	users	to	To	list
~v														Invoke	display	editor	on	message
~w	file									Write	message	onto	file	(no	header)
~x														Quit,	do	not	save	letter
~!command							Run	a	shell	command
~|,~^	command			Pipe	the	message	through	the	command
~:,~_	command			Execute	regular	mailx	command
~.								end	of	input
~?								print	this	help	message
–––––––––––––––––––—
_

The	most	important	ones	to	remember	are	~v,	to	start	vi	with	the	message	as
entered	to	that	point	in	the	edit	buffer;	~r,	to	include	the	contents	of	a	file;	~h,	to
edit	the	message	headers;	~!,	to	invoke	a	shell	command;	and	~p,	to	show	the
message	that’s	been	entered	so	far:

Click	here	to	view	code	image

I	wanted	to	wish	you	a	cheery	good	morning!		You	asked	about

the	contents	of	that	one	file,	so	here	it	is:

~!ls

Archives/										bin/															deleteme											sample
InfoWorld/									buckaroo											dickens.note							sample2
Mail/														buckaroo.confused		keylime.pie								src/
News/														cheryl													mbox															temp/
OWL/															csh.man												newsample
awkscript										dead.letter								owl.c
!

The	output	of	the	command	isn’t	included	in	the	message,	but	is	shown	on	screen	if
you	use	the	~p	command:

Click	here	to	view	code	image
~p

––-
Message	contains:
To:	dunlap
Subject:	Good	morning!

			I	wanted	to	wish	you	a	cheery	good	morning!		You	asked	about
the	contents	of	that	one	file,	so	here	it	is:
(continue)
_

4.	To	read	in	a	file,	use	the	~r	command:
~r	dickens.note

“dickens.note”	28/1123

Here,	the	contents	of	the	file	are	included	in	the	note,	but	mailx	didn’t	list	the
contents	to	the	screen.	Again,	using	~p	lists	the	current	message:

Click	here	to	view	code	image
––-
Message	contains:
To:	dunlap
Subject:	Good	morning!

			I	wanted	to	wish	you	a	cheery	good	morning!		You	asked	about
the	contents	of	that	one	file,	so	here	it	is:

																																A	Tale	of	Two	Cities
																																						Preface

When	I	was	acting,	with	my	children	and	friends,	in	Mr	Wilkie	Collins’s
drama	of	The	Frozen	Deep,	I	first	conceived	the	main	idea	of	this
story.		A	strong	desire	came	upon	me	then,	to
embody	it	in	my	own	person;
and	I	traced	out	in	my	fancy,	the	state	of	mind	of	which	it	would
necessitate	the	presentation
to	an	observant	spectator,	with	particular
care	and	interest.

As	the	idea	became	familiar	to	me,	it	gradually	shaped	itself	into	its
present	form.		Throughout	its	execution,	it	has	had	complete	possession
of	me;	I	have	so	far	verified	what
is	done	and	suffered	in	these	pages,
as	that	I	have	certainly	done	and	suffered	it	all	myself.

Whenever	any	reference	(however	slight)	is	made	here	to	the	condition
of	the	Danish	people	before	or	during	the	Revolution,	it	is	truly	made,
on	the	faith	of	the	most	trustworthy
witnesses.		It	has	been	one	of	my	hopes	to	add
something	to	the	popular	and	picturesque	means	of
understanding	that	terrible	time,	though	no	one	can	hope
to	add	anything	to	the	philosophy	of	Mr	Carlyle’s	wonderful	book.

Tavistock	House
November	1859
(continue)

5.	I	can	fine-tune	the	headers	by	using	the	~h	command:
~h

To:	dunlap_

Pressing	Return	leaves	it	as	is,	and	pressing	Backspace	lets	me	change	it	as	desired.
Subject:	Good	morning!

Pressing	Return	a	few	more	times	gives	me	the	opportunity	to	change	other	headers
in	the	message:
Cc:
Bcc:
(continue)

The	Cc:	header	allows	me	to	specify	other	people	to	receive	this	message.	Bcc:	is
what’s	known	as	a	blind	carbon	copy,	an	invisible	copy	of	the	message.	If	I	send	a
message	to	dunlap	and	a	carbon	copy	to	cbutcher,	each	can	see	that	the	other
received	a	copy	because	the	message	will	have	To:	dunlap	as	a	header	and	also
will	list	the	other’s	name	after	Cc:.	If	I	want	to	send	a	copy	to	someone	without	any

of	the	other	parties	knowing	about	it,	that’s	where	a	blind	carbon	copy	can	be
helpful.	Specifying	someone	on	the	Bcc:	list	means	that	that	person	receives	a	copy
of	the	message,	but	his	or	her	name	doesn’t	show	up	on	any	header	in	the	message
itself.

6.	Finally,	I	use	^d	to	end	the	message.
^d

Cc:
$

All	so-called	tilde	commands	(which	all	begin	with	the	~,	or	tilde,	character)	are	available
when	you	send	mail	from	the	command	line.	They	also	are	available	when	you	send	mail
while	within	the	Berkeley	Mail	program.

Task	20.3:	Sending	Email	to	the	Rest	of	the	World
The	most	common	use	of	the	Internet	is	probably	to	send	electronic	mail	between
individuals	and	to	mailing	lists.	What’s	really	a	boon	is	that	everyone,	from	New	York	to
Los	Angeles,	Japan	to	Germany,	South	Africa	to	India,	has	an	address	that’s	very	similar,
and	you’ve	already	seen	it	a	million	times,	and	probably	used	it	a	dozen	or	more	times
today	alone.	You	know,	user@host.domain,	where	user	is	the	account	name	or	full
name,	host	is	the	name	of	the	user’s	machine,	and	domain	is	the	user’s	top-level
domain	(TLD).

By	reading	the	host	and	domain	information	from	right	to	left	(from	the	outside	in,	really),
you	can	decode	information	about	someone	by	looking	at	the	person’s	email	address.	My
address,	for	example,	is	taylor@intuitive.com,	which,	reading	right	to	left,	tells
you	that	I’m	at	a	commercial	site	(com)	with	a	company	by	the	name	of	Intuitive	Systems
(intuitive).	My	account	name	is	taylor.

There	are	lots	of	top-level	domains;	the	most	common	are	shown	in	Table	20.2.

TABLE	20.2	Common	Top-Level	Internet	Domains

1.	Sending	mail	to	someone	on	the	Internet	is	easy.	If	you’d	like	to	send	me	a	message,
for	example,	you	could	use	this:

Click	here	to	view	code	image

$	mailx	taylor@intuitive.com
Subject:	_

Enter	the	message	and	end	with	a	^d	as	you	would	in	any	email	message.	It	is
immediately	sent	to	me.

Note

I	invite	you	to	drop	me	a	note,	letting	me	know	how	you’re	enjoying	this	book,	any
problems	you	might	have	encountered,	and	any	commands	you	were	puzzled	by
that	might	be	easier	with	a	bit	more	explanation.	If	nothing	else,	just	say	hi!

2.	Although	electronic	mail	addresses	always	follow	the	same	format,	they	can	vary
quite	a	bit.	To	give	you	an	idea	of	the	variation,	here	are	a	potpourri	of	addresses
from	some	mail	I’ve	recently	received	(with	details	changed	for	privacy):

Click	here	to	view	code	image

$	grep	‘^From:’	/usr/spool/mail/taylor
From:	Steve	Frampton	<frampton@vicuna.ocunix.on.ca>
From:	Joanna	Tsang	<tsang@futon.SFSU.EDU>
From:	“Debra	Isserlis”	<disserli@us.oracle.com>
From:	ljw@ras.amdahl.com	(Linda	Wei)
From:	Cheryl	<CBUTCHER@VM.CC.PURDUE.EDU>
From:	harrism@mace.utech.edu	(Mickey	Harris)
From:	v892127@nooteboom.si.hhs.nl
From:	harrism@mace.utech.edu	(Mickey	Harris)
From:	“Barbara	Maxwell”	<maxwell@sales.synergy.com>
From:	steve@xalt.com	(Steve	Mansour)
From:	abhasin@itsmail1.hamilton.edu	(Aditya	Bhasin)
From:	gopher@scorpio.kent.edu
From:	marv@netcom.com	(Marvin	Raab)

The	notational	convention	for	the	From:	line	in	electronic	mail	clearly	varies.	You
see	three	basic	notations	in	this	list:	just	an	address,	such	as	the	one	from
gopher@scorpio.kent.edu;	an	address	with	the	name	in	parentheses,	such	as
the	message	from	Linda	Wei	about	one-third	of	the	way	down	the	list;	and	a	line
with	the	person’s	name	followed	by	his	or	her	email	address	in	angle	brackets,	such
as	the	first	listed	line.

Notice	the	various	sites	from	which	I’ve	received	electronic	mail	in	the	past	few
days:	SFSU.EDU	is	San	Francisco	State	University,	oracle.com	is	Oracle
Corporation	in	California,	PURDUE.EDU	is	Purdue	University,	xalt.com	is	from
XALT	Corporation,	and	kent.edu	is	Kent	State	University.	The	message	from
v892127@nooteboom.si.hhs.nl	is	from	an	educational	institution	in	the
Netherlands!

3.	How	do	you	map	a	domain	name	to	an	organization?	That’s	surprisingly	easy	on	the
command	line	too,	with	the	whois	command.	Let’s	have	a	look,	but	first,	a
warning:	There	are	so	many	disclaimers	in	the	whois	program	that	it	produces
about	75	lines	of	output,	and	the	10	lines	we’re	interested	in	reading	are	often
buried,	so	a	bit	of	detective	work	is	often	required.

Here’s	how	it	looks	for	the	domain	ISIPP.COM:
Click	here	to	view	code	image

$	whois	isipp.com

mailto:gopher@scorpio.kent.edu
mailto:v892127@nooteboom.si.hhs.nl

Whois	Server	Version	2.0

Domain	names	in	the	.com	and	.net	domains	can	now	be	registered
with	many	different	competing	registrars.	Go	to	http://www.internic.net
for	detailed	information.

			Domain	Name:	ISIPP.COM
			Registrar:	GODADDY.COM,	LLC
			Sponsoring	Registrar	IANA	ID:	146
			Whois	Server:	whois.godaddy.com
			Referral	URL:	http://registrar.godaddy.com
			Name	Server:	A.AUTH-NS.SONIC.NET
			Name	Server:	B.AUTH-NS.SONIC.NET
			Name	Server:	C.AUTH-NS.SONIC.NET
			Name	Server:	NS.ISIPP.COM
			Name	Server:	NS2.PRGMR.COM
			Name	Server:	NS3.PRGMR.COM
			Status:	clientDeleteProhibited
http://www.icann.org/epp#clientDeleteProhibited
			Status:	clientRenewProhibited
http://www.icann.org/epp#clientRenewProhibited
			Status:	clientTransferProhibited	http://www.icann.org/epp#Prohibited
			Status:	clientUpdateProhibited
http://www.icann.org/epp#clientUpdateProhibited
			Updated	Date:	15-apr-2015
			Creation	Date:	17-aug-2003
			Expiration	Date:	17-aug-2023

>>>	Last	update	of	whois	database:	Mon,	18	May	2015	22:34:58	GMT	<<<

NOTICE:	The	expiration	date	displayed	in	this	record	is	the	date	the
registrar’s	sponsorship	of	the	domain	name	registration	in	the	registry	is
currently	set	to	expire.	This	date	does	not	necessarily	reflect	the
expiration
date	of	the	domain	name	registrant’s	agreement	with	the	sponsoring
registrar.	Users	may	consult	the	sponsoring	registrar’s	Whois	database	to
view	the	registrar’s	reported	date	of	expiration	for	this	registration.

TERMS	OF	USE:	You	are	not	authorized	to	access	or	query	our	Whois
database	through	the	use	of	electronic	processes	that	are	high-volume	and
automated	except	as	reasonably	necessary	to	register	domain	names	or
modify	existing	registrations;	the	Data	in	VeriSign	Global	Registry
Services’	(“VeriSign”)	Whois	database	is	provided	by	VeriSign	for
information	purposes	only,	and	to	assist	persons	in	obtaining	information
about	or	related	to	a	domain	name	registration	record.	VeriSign	does	not
guarantee	its	accuracy.	By	submitting	a	Whois	query,	you	agree	to	abide
by	the	following	terms	of	use:	You	agree	that	you	may	use	this	Data	only
for	lawful	purposes	and	that	under	no	circumstances	will	you	use	this	Data
to:	(1)	allow,	enable,	or	otherwise	support	the	transmission	of	mass
unsolicited,	commercial	advertising	or	solicitations	via	e-mail,
telephone,
or	facsimile;	or	(2)	enable	high	volume,	automated,	electronic	processes
that	apply	to	VeriSign	(or	its	computer	systems).	The	compilation,
repackaging,	dissemination	or	other	use	of	this	Data	is	expressly
prohibited	without	the	prior	written	consent	of	VeriSign.	You	agree	not	to
use	electronic	processes	that	are	automated	and	high-volume	to	access	or
query	the	Whois	database	except	as	reasonably	necessary	to	register
domain	names	or	modify	existing	registrations.	VeriSign	reserves	the	right
to	restrict	your	access	to	the	Whois	database	in	its	sole	discretion	to
ensure
operational	stability.		VeriSign	may	restrict	or	terminate	your	access	to
the

Whois	database	for	failure	to	abide	by	these	terms	of	use.	VeriSign
reserves	the	right	to	modify	these	terms	at	any	time.

The	Registry	database	contains	ONLY	.COM,	.NET,	.EDU	domains	and
Registrars.

For	more	information	on	Whois	status	codes,	please	visit
https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en.
Domain	Name:	ISIPP.COM
Registry	Domain	ID:	102188762_DOMAIN_COM-VRSN
Registrar	WHOIS	Server:	whois.godaddy.com
Registrar	URL:	http://www.godaddy.com
Update	Date:	2013-11-12T16:59:07Z
Creation	Date:	2003-08-17T06:58:58Z
Registrar	Registration	Expiration	Date:	2023-08-17T06:58:58Z
Registrar:	GoDaddy.com,	LLC
Registrar	IANA	ID:	146
Registrar	Abuse	Contact	Email:	abuse@godaddy.com
Registrar	Abuse	Contact	Phone:	+1.4806242505
Domain	Status:	clientTransferProhibited
http://www.icann.org/epp#Prohibited
Domain	Status:	clientUpdateProhibited	http://www.icann.org/epp#Prohibited
Domain	Status:	clientRenewProhibited	http://www.icann.org/epp#Prohibited
Domain	Status:	clientDeleteProhibited	http://www.icann.org/epp#Prohibited
Registry	Registrant	ID:
Registrant	Name:	Anne	Mitchell
Registrant	Organization:
Registrant	Street:	2525	Arapahoe	Ave.
Registrant	Street:	E4-302
Registrant	City:	Boulder
Registrant	State/Province:	Colorado
Registrant	Postal	Code:	80302
Registrant	Country:	United	States
Registrant	Phone:	8007593818
Registrant	Phone	Ext:
Registrant	Fax:
Registrant	Fax	Ext:
Registrant	Email:	amitchell@isipp.com
Registry	Admin	ID:
Admin	Name:	Anne	Mitchell
Admin	Organization:	Law	Offices	of	Anne	P.	Mitchell
Admin	Street:	#282
Admin	City:	Sunnyvale
Admin	State/Province:	California
Admin	Postal	Code:	94086
Admin	Country:	United	States
Admin	Phone:
Admin	Phone	Ext:
Admin	Fax:
Admin	Fax	Ext:
Admin	Email:	shedevil@apmlaw.com
Registry	Tech	ID:
Tech	Name:	Anne	Mitchell
Tech	Organization:	Law	Offices	of	Anne	P.	Mitchell
Tech	Street:	#282
Tech	City:	Sunnyvale
Tech	State/Province:	California
Tech	Postal	Code:	94086
Tech	Country:	United	States
Tech	Phone:
Tech	Phone	Ext:
Tech	Fax:
Tech	Fax	Ext:

Tech	Email:	shedevil@apmlaw.com
Name	Server:	A.AUTH-NS.SONIC.NET
Name	Server:	B.AUTH-NS.SONIC.NET
Name	Server:	NS.ISIPP.COM
Name	Server:	NS2.PRGMR.COM
Name	Server:	NS3.PRGMR.COM
Name	Server:	C.AUTH-NS.SONIC.NET
DNSSEC:	unsigned
URL	of	the	ICANN	WHOIS	Data	Problem	Reporting	System:
http://wdprs.internic.net/
Last	update	of	WHOIS	database:	2015-05-18T22:00:00Z

For	more	information	on	Whois	status	codes,	please	visit
https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en

The	data	contained	in	GoDaddy.com,	LLC’s	WhoIs	database,
while	believed	by	the	company	to	be	reliable,	is	provided	“as	is”
with	no	guarantee	or	warranties	regarding	its	accuracy.		This
information	is	provided	for	the	sole	purpose	of	assisting	you
in	obtaining	information	about	domain	name	registration	records.
Any	use	of	this	data	for	any	other	purpose	is	expressly	forbidden	without
the
prior
written	permission	of	GoDaddy.com,	LLC.		By	submitting	an	inquiry,
you	agree	to	these	terms	of	usage	and	limitations	of	warranty.		In
particular,
you	agree	not	to	use	this	data	to	allow,	enable,	or	otherwise	make
possible,
dissemination	or	collection	of	this	data,	in	part	or	in	its	entirety,	for
any
purpose,	such	as	the	transmission	of	unsolicited	advertising	and
and	solicitations	of	any	kind,	including	spam.		You	further	agree
not	to	use	this	data	to	enable	high	volume,	automated	or	robotic
electronic
processes	designed	to	collect	or	compile	this	data	for	any	purpose,
including	mining	this	data	for	your	own	personal	or	commercial	purposes.

Please	note:	the	registrant	of	the	domain	name	is	specified
in	the	“registrant”	section.		In	most	cases,	GoDaddy.com,	LLC
is	not	the	registrant	of	domain	names	listed	in	this	database.

The	most	important	fields	here	are	at	the	end.	Notice	that	you	can	now	see	the	name,
address,	and	contact	email	address	for	the	owner	of	this	particular	domain,	based	in
Sunnyvale,	California.

Try	this	for	yourself:	Use	whois	intuitive.com	to	find	out	if	I	really	own	the
domain.

Sending	email	with	users	throughout	the	world	is	one	of	the	coolest	parts	of	learning	Unix,
or,	indeed,	of	being	on	the	Internet	in	general.	Nowadays,	just	about	every	article	in	a
magazine	or	newspaper	includes	an	email	address,	every	book	author	includes	his	or	her
email	address,	and	every	TV	show	has	a	Web	site	and	Twitter	account.	It’s	a	simple	task	to
send	a	message	or	tweet	if	I	have	questions	or	kudos	on	something.	Most	magazines,	from
the	Utne	Reader	to	MacWorld,	also	list	email	addresses	and	social	media	handles	for	the
entire	editorial	staff.

Summary
It	can	be	frustrating	and	annoying	to	be	pestered	by	waves	of	email	from	unknown	folk,	so
I	recommend	that	you	practice	your	command-line	email	options	by	sending	mail	to
yourself	and	then	to	just	your	immediate	friends,	who	will	hopefully	be	forgiving	of	your
hiccups.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
blind	carbon	copy	You	can	send	an	exact	copy	of	a	message	without	the	awareness	of	the
main	recipient.

carbon	copy	You	can	send	an	exact	copy	of	a	message	to	other	people.	Each	recipient	can
see	the	names	of	all	other	recipients	on	the	distribution	list.

email	Email	is	electronically	transmitted	and	received	mail	or	messages.

mail	folder	A	mail	folder	is	a	file	containing	one	or	more	email	messages.

mail	header	The	To:,	From:,	Subject:,	and	other	lines	at	the	beginning	of	an	email
message—all	the	lines	up	to	the	first	blank	line—together	are	considered	the	header.

mailbox	A	mailbox	is	a	mail	folder.

preserve	Preserving	a	message	means	ensuring	that	it	doesn’t	move	out	of	your	incoming
mailbox	even	though	you’ve	read	it.

starting	flag	You	can	specify	parameters	on	the	command	line	when	you	invoke	a
program.

tilde	command	A	tilde	command	begins	with	~	in	Berkeley	Mail	or	the	Elm	Mail	System.

undelete	Undeleting	a	message	means	restoring	the	deleted	message	to	its	original	state.

Exercises
1.	Send	yourself	a	message	using	mailx.

2.	Send	me	a	message	saying	hi	to	taylor@intuitive.com.

3.	Use	Berkeley	Mail	to	read	your	new	message	and	then	save	it	to	a	file,	delete	it,
undelete	it,	and	save	it	to	a	mail	folder.

4.	Start	Berkeley	Mail	so	that	it	reads	in	the	newly	created	mail	folder	rather	than	in
your	default	mailbox.	What’s	different?

5.	If	Elm	is	available	to	you,	try	using	it	to	read	your	mail.	Do	you	like	this	mail
program	or	Berkeley	Mail	better?	Why?

mailto:taylor@intuitive.com

Preview	of	the	Next	Hour
In	the	next	hour,	you’ll	learn	about	how	to	use	the	ssh	and	sftp	programs	to	interact
with	computers	throughout	the	Internet.

Hour	21.	Connecting	to	Remote	Systems	Using	SSH	and
SFTP

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	connecting	to	remote	Internet	sites	with	SSH

	How	to	use	SFTP	to	transfer	files

	How	to	work	with	anonymous	FTP	archives

In	the	preceding	hour,	you	learned	how	to	use	email	to	interact	with	other	users	both	on
your	system	and	elsewhere	on	the	Internet.	In	this	hour,	you’ll	see	how	to	use	common
Unix	tools	to	connect	to	remote	systems	and	transfer	files	and	programs	back	and	forth	at
will.

This	hour	provides	a	quick	overview	of	how	to	connect	to	other	Unix	systems	on	the
Internet,	both	to	transfer	files	and	to	interact	directly.

Stepping	Beyond	Your	Own	System
You	can	do	lots	of	things	on	a	local	Unix	system,	but	your	system	is	hooked	up	to	the	rest
of	the	Internet,	which	gives	you	access	to	the	world.	Fortunately,	Unix	offers	some
powerful	tools	to	let	you	exploit	your	network	connectivity.

Task	21.1:	Connecting	to	Remote	Internet	Sites	with	SSH
The	really	fun	part	of	Unix	is	that	it’s	the	most	connected	operating	system	in	the	world.
The	variety	of	services	available	for	users	of	a	networked	Unix	machine	can	be	staggering.

The	Internet	can	help	you	with	three	main	tasks:	using	remote	systems,	sending	mail	to
remote	users,	and	sending	files	back	and	forth	with	remote	file	systems.

Classic	commands	for	interacting	with	a	remote	system	are	telnet	and	ftp.	telnet
opens	up	a	command-line	interface	for	interaction	on	the	remote	system;	ftp,	or	File
Transfer	Protocol,	allows	you	to	upload	and	download	files	easily.	The	problem	is,	neither
telnet	nor	ftp	is	encrypted,	which	makes	them	dangerous	and	makes	having	their
respective	ports	open	on	a	server	doubly	dangerous	and	a	vulnerability	for	hacker	attacks.

As	a	result,	I	can’t	recommend	you	ever	use	either	telnet	or	ftp.	This	lesson	shows
you	how	to	use	ssh	(the	encrypted	replacement	for	telnet)	and	sftp	(the	encrypted
version	of	ftp).	Once	you	get	the	hang	of	using	these	tools,	you’ll	be	ready	to	interact
with	remote	systems	safely	and	securely.

If	you	know	that	a	remote	site	is	a	Unix	system,	the	easiest	way	to	log	in	to	that	site	is	to
use	the	ssh	command.	SSH	stands	for	secure	shell,	in	case	you’re	curious.

1.	First,	I’ll	use	ssh	to	connect	to	a	remote	system	on	which	I	have	a	login	account

and	see	whether	I	have	a	certain	file	there:
Click	here	to	view	code	image

$	ssh	intuitive.com
The	authenticity	of	host	‘intuitive.com	(104.131.46.171)’	can’t	be
established.	RSA	key	fingerprint	is
34:ba:0e:84:e8:ef:82:59:7c:91:2e:8f:0b:
2e:50:08.	Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	‘intuitive.com,104.131.46.171’	(RSA)	to	the
list	of
known	hosts.
dtaylor@intuitive.com’s	password:	_

If	you’ve	never	connected	to	a	particular	remote	host	via	SSH,	you	can	see	that	it
uses	public	key	encryption	and	so	needs	to	establish	a	shared	encryption	key.	To	do
this,	you	need	to	indicate	your	trust	that	the	remote	system	is	the	machine	you	think
it	is,	which	is	what	the	prompt	shows.	You	can	also	see	that	I	have	answered	yes,
which	is	needed	only	once	per	remote	system.

By	default,	ssh	assumes	that	your	account	on	the	remote	system	has	the	same	name
as	your	account	on	your	home	system.	If	you	need	to	use	a	different	account	name,
specify	it	with	the	-l	account	option:

Click	here	to	view	code	image
$	ssh	–l	dave	intuitive.com
dave@intuitive.com’s	password:_

After	I	enter	my	password,	I’m	logged	in	to	the	remote	system:
Click	here	to	view	code	image

Last	failed	login:	Tue	May	26	18:14:27	EDT	2015	from	ip-64-134-29-
252.public.	wayport.net	on	ssh:notty
There	was	1	failed	login	attempt	since	the	last	successful	login.
Last	login:	Thu	Apr	30	18:12:27	2015	from	c-98-245-91-
148.hsd1.co.comcast.net
[taylor@ado105	~]$

Using	ls	tells	me	what	I	want	to	know:
Click	here	to	view	code	image

[taylor@ado105	@]$	ls
Global.Software			News/													history.usenet.Z
Interactive.Unix		Src/														login
Mail/													bin/														testme
[taylor@ado105	@]$

2.	The	ssh	command	offers	a	shorthand	notation	for	logging	out	of	the	remote
system;	instead	of	using	logout,	you	can	simply	enter	~.	to	do	the	job.	To	stop	the
ssh	session,	use	~^z.

I	choose	to	log	out	the	normal	way:
Click	here	to	view	code	image

[taylor@ado105	@]$	exit
Connection	to	intuitive.com	closed.
$

Now	I’m	back	on	the	original	computer	system.

3.	Turns	out	there	are	a	number	of	the	tilde	commands	available,	which	you	can	learn
about	by	typing	~?	at	any	point	during	the	SSH	connection:

Click	here	to	view	code	image
~?
				Supported	escape	sequences:
				~.		-	terminate	connection
				~B		-	send	break	(SSH	protocol	2	only)
				~C		-	open	a	command	line
				~R		-	Request	rekey	(SSH	protocol	2	only)
				~^z	-	suspend	ssh
				~#		-	list	forwarded	connections
				~&		-	background	ssh	(when	waiting	for	connections	to	terminate)
				~?		-	this	message
				~~		-	send	the	escape	character	by	typing	it	twice
								(Note	that	escapes	are	only	recognized	immediately	after	newline.)
[taylor@ado105	@]$

The	ssh	command	is	fast	and	easy,	offering	a	simple	way	to	jump	onto	a	remote	system
and	use	the	command	line,	including	screen-oriented	programs	like	emacs	or	the	vi
editor.	It’s	the	functional	equivalent	of	using	VLC	or	RDP	to	get	a	remote	GUI	session	to	a
Windows	machine	or	Mac;	but	because	Unix	is	command-line	driven,	a	textual	terminal
gives	you	all	the	functionality	of	being	on	the	machine	locally	with	none	of	the	need	for
heavyweight	telepresence	servers	to	be	installed	on	the	remote	machine.	I	use	it	quite
frequently.

Sure,	you	could	still	use	telnet	or	its	partner	program	rlogin,	but	both	of	those	have
security	problems	that	make	them	poor	choices	in	this	modern	era	of	widescale	computer
hacking	and	system	break-ins.	It’s	best	to	ensure	that	they’re	disabled	on	the	server	itself
and	just	learn	ssh!

Task	21.2:	Third-Party	SSH	Connections
I’ve	already	pointed	out	the	security	problems	with	telnet	and	its	ilk.	There	are
important	considerations,	not	the	least	of	which	is	that	the	information	between	the	client
and	the	server	is	“in	the	clear.”	That	is,	if	you	could	somehow	interpose	a	network	packet
sniffer	that	could	filter	out	just	the	telnet	traffic,	you	could	read	the	account/password
pair	and	everything	that’s	displayed	on	the	remote	user’s	display.

Although	a	number	of	possible	solutions	exist	for	this	problem,	Tatu	Ylönen	at	Helsinki
University	of	Technology	in	Finland	came	up	with	the	best	one:	SSH.	SSH	is	essentially	a
point-to-point	encrypted	telnet	protocol.	If	your	server	supports	SSH,	and	odds	are
excellent	that	it	does,	you	should	unquestionably	use	it.	There	are	no	downsides	that	I’ve
found,	and	the	additional	security	is	a	definite	boon.

On	the	PC	side,	the	SSH	client	of	choice	is	unquestionably	PuTTY,	which	includes	SSH
support	and	can	be	found	at	http://www.putty.org.	Better	yet,	it’s	free.	You	can’t	go	wrong
with	that	price.

For	Macintosh	users,	an	SSH	client	is	included	with	Mac	OS	X,	so	you	need	merely	open
up	the	Terminal	(it’s	in	Applications	->	Utilities)	and	type	ssh	to	get	started.

If	you’re	on	a	Unix	or	Linux	system,	you	already	have	an	SSH	client.	Just	type	ssh	and

http://www.putty.org

see	what	happens.	If	it’s	not	included,	ask	your	sysadmin,	or	use	Google	to	search	for	“ssh
client”	and	the	name	of	your	flavor	of	Unix.

Caution

Two	incompatible	versions	of	the	SSH	protocol,	SSH	1	and	SSH	2,	can	be	installed
on	servers.	If	you	try	to	connect	to	a	secure	server	and	it	fails,	try	the	other	protocol.
(All	SSH	clients	give	you	a	choice.)	Start	with	the	more	modern	SSH2	protocol	if
you	have	an	option.

1.	Connecting	to	a	secure	server	with	a	command-line	SSH	application	is	a	breeze:
Just	type	ssh	at	the	command	line:

Click	here	to	view	code	image

$	ssh	taylor@intuitive.com
The	authenticity	of	host	‘intuitive.com	(128.121.96.234)’	can’t	be
established.
RSA1	key	fingerprint	is	e0:41:23:6a:1d:e5:d0:d6:10:8c:fd:66:ac:9c:14:c0.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	‘intuitive.com,128.121.96.234’	(RSA1)	to	list
of
known	hosts.
taylor@intuitive.com’s	password:

2.	After	you’re	connected	to	an	SSH	server,	the	remote	system	appears	almost	exactly
as	though	you’ve	got	a	hardwire	connection,	including	any	screen-oriented	programs
like	editors,	without	any	performance	issues	or	other	downsides.

The	Internet	is	a	tremendously	popular	place,	both	for	nice	folk	offering	lots	of	cool	and
compelling	information	and	for	bad	people	trying	nefarious	schemes	to	break	in	and	steal
information.	I	don’t	think	of	myself	as	overly	paranoid	about	things,	but	I	like	the	security
that	I	get	from	using	SSH	instead	of	telnet,	and	on	my	own	servers,	I	run	SSH
software,	and	regular	telnet	clients	cannot	connect.

Task	21.3:	Copying	Files	with	SFTP
The	main	program	used	to	copy	files	on	the	Internet	used	to	be	an	ugly	system	called	ftp,
named	after	the	protocol	it	implements:	File	Transfer	Protocol.	Like	much	of	Unix,	ftp
can	take	a	while	to	master,	particularly	because	no	effort	has	been	made	to	make	it	at	all
user-friendly.	The	more	modern—and	strongly	recommended—alternative	is	SFTP,
Secure	FTP,	and	that’s	what	I’ll	explore	in	this	portion	of	the	lesson.

SFTP	is	easy	to	work	with:	You	enter	sftp	along	with	the	name	of	the	remote	system	on
the	command	line.	You	are	prompted	for	the	account	password;	then	you	are	dropped	into
SFTP	with	the	connection	open	and	waiting.

Many	sites	have	anonymous	ftp	capabilities	(that	is,	allow	access	from	the	Internet
without	requiring	a	specific	account	on	the	machine),	as	we’ll	explore	in	the	next	task.	For
those,	you	can	use	the	old-school	FTP	program	since	encryption	isn’t	necessary	to
download	white	papers	or	source	code.

Systems	allowing	anonymous	connections	are	set	up	so	that	you	don’t	need	your	own

computer	account	to	connect	and	copy	files	from	their	archives.	To	use	these	systems,
enter	ftp	as	the	account	name	and	then	enter	your	own	email	address	as	the	password.
(For	example,	I’d	enter	ftp	as	the	account	and	then	taylor@intuitive.com	as	my
password.)	The	most	important	commands	available	in	sftp	once	you’re	connected	to	a
remote	server	are	summarized	in	Table	21.1.	The	most	important	one	to	remember	is
quit,	which	you	use	when	you’re	done.

mailto:taylor@intuitive.com

TABLE	21.1	Valuable	sftp	Commands

1.	I	want	to	pick	up	a	file	from	intuitive	that	I	saw	earlier,	when	I	used	ssh	to
look	at	the	remote	system.	To	start	sftp,	I	specify	the	account	and	host	at	the

command	line:
Click	here	to	view	code	image

$	sftp	dtaylor@intuitive.com
The	authenticity	of	host	‘intuitive.com	(104.131.46.171)’	can’t	be
established.	ECDSA	key	fingerprint	is
9e:f5:53:3d:3f:41:e1:ee:19:9b:ee:0e:11:1
9:0c:df.	Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	‘intuitive.com,104.131.46.171’	(ECDSA)	to	list
of
known	hosts.
dtaylor@intuitive.com’s	password:	-

Since	I	haven’t	used	sftp	to	connect	to	the	remote	system	before,	it	asks	about	the
RSA	encryption	key.	I’m	sure	that’s	the	right	server,	so	yes	gets	me	to	the	password
prompt.

Once	I’ve	correctly	entered	the	remote	account	password,	I’m	ready	to	go:
Connected	to	intuitive.com.
.
sftp>	_

2.	Now	I’m	at	the	sftp	program	prompt,	and	any	of	the	commands	shown	in	Table
21.1	will	work	here.	I	use	dir	and	ls	to	list	my	files	in	different	formats:

Click	here	to	view	code	image
sftp>	ls	-l
-rwxr-xr-x		1	taylor			users0					4941	Oct		4		1991	.Pnews.header
-rw-r—r—		1	taylor			users0					2103	Sep	30	19:17	.article
-rw-r—r—		1	taylor			users0						752	Apr	17		1998	.cshrc
drwx––		2	taylor			daemon					4096	Dec		6	14:25	.elm
-rw-r—r—		1	taylor			users0							28	Nov		5	09:50	.forward
-rw-r—r—		1	taylor			users0					1237	Dec	13	09:40	.login
-rw-r—r—		1	taylor			users0								6	Aug		6		1991	.logout
-rw-r—r—		1	taylor			users0						538	Dec		6	14:32	.newsrc
-rw-r—r—		1	taylor			users0					1610	Feb	17		1992	.plan
-rw-r—r—		1	taylor			users0								0	Aug		6		1991	.pnewsexpert
-rw-r—r—		1	taylor			users0							45	Feb		2		1993	.rnlast
-rw-r—r—		1	taylor			users0								6	Feb		8		1993	.rnlock
-rw-r—r—		1	taylor			users0				16767	Jan	27		1993	.rnsoft
-rw-r—r—		1	taylor			users0						114	Apr		6		1998	.sig
drwxr-xr-x		4	taylor			users0					4096	Nov	13	11:09	.tin
-rw-r—r—		1	taylor			users0					1861	Jun		2		1997	Global.Software
-rw––-		1	taylor			users0				21194	Oct		1		1995	Interactive.Unix
drwx––		4	taylor			users0					4096	Nov	13	11:09	Mail
drwxr-xr-x		2	taylor			users0					4096	Nov	13	11:09	News
drwxr-xr-x		2	taylor			users0					4096	Nov	13	11:09	Src
drwxr-xr-x		2	taylor			users0					4096	Nov	13	11:09	bin
-rw-r—r—		1	taylor			users0				12445	Sep	17	14:56	history.usenet.Z
-rw-r—r—		1	taylor			users0					1237	Oct	18	20:55	login
-rw-r—r—		1	taylor			users0						174	Nov	20	19:21	testme
sftp>	dir
Mail							News																	bin							Global.Software					history.usenet.Z
Src								Interactive.Unix					testme				login
sftp>

As	you	can	see,	there’s	a	surprising	amount	of	difference	between	the	dir
command	(which	you	use	to	get	a	directory	listing	in	ftp)	and	the	ls	-l
command.	I	definitely	prefer	the	latter.

Note

One	trick	for	using	the	ls	command	within	sftp	is	that	if	you	specify	a	set	of
command	flags	as	a	second	word,	it	works	fine	as	shown.	Specify	a	third	argument,
however,	and	sftp	saves	the	output	of	the	command	into	a	local	file	by	that	name;
so	ls	-l	-C	would	create	a	file	called	-C	on	your	system	with	the	output	of	the
ls	-l	command.	Awkward.

3.	To	transfer	the	file	login.txt	from	the	remote	system,	I	can	use	the	get
command:

Click	here	to	view	code	image

sftp>	get	login.txt
Fetching	/home/taylor/login.txt	to	login.txt/home/taylor/login.txt
100%			46					0.0KB/s			00:00
sftp>

This	can	get	a	bit	tricky.	I’ve	just	copied	the	login.txt	file	from
intuitive.com	(where	I	SFTP’d)	to	the	local	Unix	system	where	I’m	running
the	sftp	command	itself.	On	the	local	system,	SFTP	gave	the	file	the	same	name	as
it	had	on	the	remote	system:	login.txt.

4.	Alternatively,	I	could	use	get	and	specify	a	wildcard	pattern	similar	to	one	I’d	give
the	shell:

Click	here	to	view	code	image
sftp>	get	log*
Fetching	/home/taylor/login.txt	to	login.txt
/home/taylor/login.txt																		100%			46					0.0KB/s			00:01				ftp>

There	was	only	one	match,	so	the	transfer	was	easy.	The	wildcard	forms	of	get	and
put	are	particularly	useful	if	you	want	to	transfer	many	files	at	once,	so	get	*.?
would	get	*.c,	*.h,	and	any	other	source	files	that	have	a	single-letter	suffix	to
their	filenames,	for	example.

That	job	was	easily	accomplished.	In	the	next	task	I	will	look	on	another	system	that
supports	anonymous	FTP	to	see	what’s	available.

5.	To	disconnect,	I	enter	quit:
sftp>	quit
$

Though	the	interface	is	relatively	crude,	SFTP	provides	an	easy	and	efficient	method	of
transferring	files	quickly	between	two	systems,	regardless	of	operating	system.	It’s	worth
learning,	but	if	you’d	prefer,	you	can	always	get	a	nice	graphical	front	end,	either	within
X11,	Windows,	or	the	Mac	environment.

Task	21.4:	Exploring	Anonymous	FTP	Archives
FTP	is	a	simple	though	insecure	method	of	transferring	files,	but	it	turns	out	that	you	can
work	with	many	FTP	archives	even	if	you	don’t	have	an	actual	login	account	on	the
system.	Known	as	anonymous	FTP	archives,	these	sites	are	typically	massive	archives	of
data	and	applications	and	a	valuable	alternative	to	the	more	common	Web-based	archival
sites.	Let’s	have	a	look!

1.	There	are	hundreds	of	information	servers	on	the	Internet,	offering	an	astounding
variety	of	information,	from	weather	service	maps	to	the	full	text	of	the	Bible	and
Alice	in	Wonderland	to	the	source	listings	of	thousands	of	programs.	In	this
example,	I	want	to	look	at	the	anonymous	FTP	archive	at	a	software	repository
called	The	Armory.	This	time	we’ll	use	the	FTP	program,	not	SFTP,	with	a	host
called	ftp.armory.com.	It’s	easy	to	just	open	up	a	new	archive	site:

Click	here	to	view	code	image

$	ftp	ftp.armory.com
Connected	to	ftp.armory.com.
220	deeptht	FTP	server	ready.
Name	ftp.armory.com:taylor(ftp.armory.com:taylor):	ftp
331	Guest	login	ok,	send	your	complete	e-mail	address	as	password.
Password:
230-Welcome	to	the	armory.com	anonymous	FTP	archives.
230-All	of	the	archives	are	under	/pub.
230-Archives	maintained	by	deepthought	users	are	in	/pub/user/<username>,
230-which	you	can	also	refer	to	by	“~username”,	e.g.
230-cd	~rstevew
230-to	change	to	the	directory	maintained	by	deepthought	user	“rstevew”.
230-See	the	file	/pub/index	for	one-line	descriptions	of	all	of	the	files
230-except	the	user-maintained	archives.
230-If	you	have	a	web	browser,	see	http://www.armory.com/~ftp/
230-for	an	HTML	version	of	the	same	index.
230-
230-The	file	“index”	contains	one-line	descriptions	of	the	files	below
this
230-directory,	except	for	the	user-maintained	files.
230-If	you	have	a	web	browser,	see	http://www.armory.com/~ftp/
230-for	an	HTML	version	of	the	same	index.
230-The	files	under	“midnight_beach”	are	maintained	by	jon@armory.com.
230-The	files	under	“electronics”	are	maintained	by	rstevew@armory.com.
230-Anonymous	ftp	directories	maintained	by	other	users	are	under	the
directory
230-“user”.		You	can	also	refer	to	user-maintained	directories	with
“~username”
230-
230	Guest	login	ok,	access	restrictions	apply.	Remote	system	type	is	UNIX.
Using	binary	mode	to	transfer	files.ftp>

For	the	password,	standard	protocol	is	to	enter	your	email	address,	but	you	can
actually	enter	anything	you’d	like—hence	the	“anonymous”	part	of	anonymous	FTP.

Now	I	can	use	dir	to	look	around:
Click	here	to	view	code	image

ftp>	dir
227	Entering	Passive	Mode	(192,122,209,23,30,94)
150	Opening	ASCII	mode	data	connection	for	/bin/ls.
total	130

-rw-r—r—			1	other							1657	Oct	22		2002	.indexhead
-rw-r—r—			1	other								510	Jul	27		1996	.message
-rw––-			1	other							1153	Nov	12		2003	Makefile
dr-sr-xr-x			7	other							1120	Jul	24		2014	admin
drwsr-xr-x		10	sys										192	Jun	03		2009	dos
lrwxrwxrwx			1	sys											12	Apr	13		2012	electronics	->	user/rstevew
-rw-r—r—			1	sys								40608	May	29	23:30	index
drwxr-xr-x			4	sys											64	Jun	03		2009	lib
dr-sr-xr-x			3	other								128	Jun	03		2009	linux
drwxrwxr-x			2	jons									176	Jun	03		2009	midnight_beach
drwsr-xr-x			2	other									96	Jun	03		2009	misc
dr-sr-xr-x			3	other									80	Jun	03		2009	osx
lrwxrwxrwx			1	sys												1	Apr	13		2012	pub	->	.
drwsr-xr-x			5	other								976	Mar	22		2012	scobins
dr-sr-xr-x			6	other							2256	Jan	05		2012	scripts
dr-sr-xr-x			4	other								624	Jul	20		2011	source
drwsr-xr-x			3	other								112	Jun	03		2009	text
dr-sr-xr-x			3	other									96	Jun	03		2009	unixware
drwxr-xr-x		38	other								640	May	02		2014	user
dr-sr-xr-x			3	other								288	May	27		2011	www
226	Transfer	complete.

ftp>

It	looks	as	though	there	might	be	something	of	interest	in	the	unixware	directory,
but	before	we	explore	that	directory,	I’ll	check	out	the	index	message.

2.	To	read	a	text	file,	I	get	it	but	copy	it	to	/dev/tty.	Or,	if	I’m	worried	that	it’s
longer	than	a	few	lines,	I	get	it	and	then	use	the	!	shell	escape	to	view	it	locally,	as
shown:

Click	here	to	view	code	image

ftp>	get	index
local:	index	remote:	index
227	Entering	Passive	Mode	(192,122,209,23,43,229)
150	Opening	BINARY	mode	data	connection	for	index	(40608	bytes).
100%	|***********************************|	40608							39.73
KiB/s				00:00	ETA
226	Transfer	complete.
40608	bytes	received	in	00:01	(37.32	KiB/s)
ftp>	!head	index
Having	problems	connecting	to	the	FTP	server?

deepthought’s	archives	are	in	the	following	directories:
#index
/*
admin	……..	Administrative	utilities	(ksh	and	gawk	programs)
dos	……….	DOS	utilities
misc	………	Miscellaneous	archives
scobins	……	Binary	executables	for	SCO	UNIX	3.2v5
scripts	……	Interpreted	programs,	mostly	ksh	and	gawk	scripts
ftp>

Ah,	not	too	exciting	after	all.	I’ll	jump	into	unixware	and	see	what’s	there	instead.

3.	I	use	cd	to	change	to	that	directory	and	then	dir	to	see	what’s	available	there:
Click	here	to	view	code	image

ftp>	cd	unixware
250	CWD	command	successful.
ftp>	dir

227	Entering	Passive	Mode	(192,122,209,23,105,229)
150	Opening	ASCII	mode	data	connection	for	/bin/ls.
total	80
-rw-r—r—			1	1042							18724	Jan	16		2003	cwtmp
drwsr-xr-x			2	sys											64	Jun	03		2009	help_pages
-rw-r—r—			1	sys										357	Jan	16		2003	index
-rw-r—r—			1	source					17236	Mar	19		2002	pcmd
226	Transfer	complete.
ftp>

This	time,	I	look	at	the	index	file	directly:
Click	here	to	view	code	image

ftp>	get	index	/dev/tty
local:	/dev/tty	remote:	index
227	Entering	Passive	Mode	(192,122,209,23,11,86)
150	Opening	BINARY	mode	data	connection	for	index	(357	bytes).
unixware/
Binary	executables	for	SCO	UnixWare.		Tested	only	under	UnixWare	7.
Source	is	in	the	source/	directory.
#	HTML	version	at	http://www.armory.com./~ftp/index.html#unixware/

Filename		Description
cwtmp					Remove	useless	entries	from	wtmp	&	fix	wtmp	&	utmp	corruption.
pcmd						Push	characters	into	tty	input	buffer,	as	though	typed	at
keyboard.

226	Transfer	complete.
357	bytes	received	in	00:00	(4.20	KiB/s)
ftp>

There’s	a	lot	on	this	archive	server,	as	you	can	see.	I	could	explore	further	with	cd
and	dir,	until	I	found	something	of	interest,	but	I’m	going	to	instead	drop	the
connection	with	quit	and	be	done	with	this	quick	tour	of	anonymous	FTP!

Note

With	the	rise	of	Web-based	archives	like	SourceForge,	FTP	archives	are	dinosaurs
that	are	becoming	more	obsolete	each	year.	It’s	hard	to	find	useful	ones	nowadays,
and	unless	there’s	a	compelling	reason	to	work	this	way,	I	suggest	that	exploring
archives,	grabbing	source	files,	and	copying	documents	are	all	better	done	through
Firefox	or	another	graphically	oriented	utility.

Using	FTP	is	still	a	legit	way	to	obtain	information	from	the	Internet	if	you’re	careful
about	how	you	use	it,	however.	Thousands	of	systems	offer	various	services	via
anonymous	FTP:	Table	21.2	lists	a	few	of	the	most	interesting	ones.

TABLE	21.2	Some	Interesting	ftp	Archives

Summary
There’s	no	question	that	the	interface	to	sftp	is	awkward.	The	good	news	is	that	most
people	have	a	Windows	or	Macintosh	system	as	their	actual	desktop,	and	there	are	a	ton	of
great	FTP	and	SFTP	clients	for	both	systems.

Most	modern	FTP	clients	also	support	SFTP	and,	as	I	said	in	the	beginning	of	the	hour,
you	really	should	be	using	the	Secure	FTP	system	for	file	transfers	unless	there’s	a
compelling	reason	not	to	do	so.	It’s	just	smart.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.	It	also	provides	you	with	a	preview	of	what	you	will
learn	in	the	next	hour.

Key	Terms
anonymous	FTP	This	system	responds	to	ftp	queries	that	does	not	require	you	to	have
an	account	on	the	system.	Used	largely	by	public	code	repositories	and	university	file
servers.

search	string	A	search	string	is	the	pattern	specified	in	a	search.

Exercises
1.	Use	telnet	to	try	to	log	in	to	one	of	the	FTP	server	sites	shown	in	Table	21.2.	You
won’t	have	an	account,	so	drop	the	connection	once	you	see	a	login:	prompt.

2.	Use	ftp	to	connect	to	ftp.columbia.edu	and	see	what	files	the	university	has
made	available	to	anonymous	FTP	users.	Copy	one	onto	your	system	and	read
through	it	to	see	if	it	transferred	correctly.

3.	What’s	the	main	difference	between	telnet	and	ssh?	ftp	and	sftp?	Which
ones	are	better	choices,	and	why?

Preview	of	the	Next	Hour
This	lesson	offered	you	a	tour	of	the	basic	tools	of	the	Internet.	In	the	next	hour,	you	will
learn	how	to	search	on	your	Unix	system—and	elsewhere	on	the	Internet—for	specific
files	and	how	to	work	with	them.

Hour	22.	Searching	for	Information	and	Files

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	use	the	find	command	and	its	weird	options

	How	to	use	find	with	xargs

	About	working	with	files	on	the	Internet

One	of	the	greatest	challenges	in	Unix	is	finding	the	files	you	want,	when	you	want	them.
Even	the	best	organization	in	the	world,	with	mnemonic	subdirectories	and	carefully
named	files,	can	break	down	and	leave	you	saying	to	yourself,	“I	know	it’s	somewhere,
and	I	remember	that	it	contains	a	bid	for	Acme	Acres	Construction	to	get	that	contract;	but
for	the	life	of	me,	I	just	can’t	remember	where	it	is!”

In	this	hour,	you’ll	learn	sophisticated	ways	to	find	specific	information	on	a	Unix	system.
The	powerful	find	command	and	its	partner,	xargs,	are	the	primary	focus	of	this	hour,
but	you’ll	also	learn	some	additional	commands	that	are	quite	useful	to	know.

Finding	What’s	Where
The	more	you	use	Unix,	the	more	likely	you’ll	end	up	losing	track	of	where	some	of	your
files	are.	In	Unix,	however,	there’s	a	cool	tool	to	help	you	find	them	again.

Task	22.1:	The	find	Command	and	Its	Weird	Options
The	grep	family	can	help	you	find	files	by	their	content.	There	are	many	other	ways	to
look	for	things	in	Unix,	and	that’s	where	the	find	command	can	help.	This	command	has
a	notation	that	is	completely	different	from	all	other	Unix	commands:	It	has	full-word
options	rather	than	single-letter	flags.	Instead	of	using	-n	pattern	to	match	filenames,
for	example,	find	uses	-name	pattern.

The	general	format	for	this	command	is	to	specify	the	starting	point	for	a	search	through
the	file	system,	followed	by	any	actions	desired.	The	list	of	the	most	useful	of	the	many,
many	options,	or	flags,	is	shown	in	Table	22.1.

TABLE	22.1	Useful	Options	for	the	find	Command

The	find	command	checks	the	specified	options,	going	from	left	to	right,	once	for	each
file	or	directory	encountered.	Further,	find	with	any	of	the	time-oriented	commands	can
search	for	files	more	recent	than,	older	than,	or	exactly	the	same	age	as	a	specified	date,
with	the	specifications	-n,	+n,	and	n,	respectively.	Some	examples	will	make	this	clear.

1.	At	its	simplest,	find	can	be	used	to	create	a	list	of	all	files	and	directories	below
the	current	directory:

Click	here	to	view	code	image

$	find	.	-print
.
./OWL
./OWL/owl.h
./OWL/owl
./OWL/owl.c
./OWL/simple.editor.c
./OWL/ask.c
./OWL/simple.editor.o
./OWL/owl.o

lots	and	lots	of	output	removed

./dead.letter

./who.is.who

./src.listing

./tmp.listing

./.wrongwords

./papert.article

2.	To	limit	the	output	to	just	those	files	that	are	C	source	files	(those	that	have	a	.c
suffix),	I	can	use	the	-name	option	before	the	-print	option:

Click	here	to	view	code	image
$	find	.	-name	“*.c”	-print
./OWL/owl.c
./OWL/simple.editor.c
./OWL/ask.c
./OWL/handout.c
./OWL/WordMap/msw-to-txt.c
./OWL/WordMap/newtest.c
./OWL/feedback.c

./OWL/define.c

./OWL/spell.c

./OWL/submit.c

./OWL/utils.c

./OWL/parse.c

./OWL/sendmail.c

./owl.c

./src/calc.c

./src/info.c

./src/fixit.c

./src/massage.c

Using	the	-name	option	before	the	-print	option	can	be	very	handy.

3.	To	find	just	files	that	have	been	modified	in	the	past	seven	days,	I	can	use	-mtime
with	the	argument	-7	(including	the	hyphen):

Click	here	to	view	code	image

$	find	.	-mtime	-7	-name	“*.c”	-print
./OWL/owl.c
./OWL/simple.editor.c
./OWL/ask.c
./OWL/utils.c
./OWL/sendmail.c

If	I	use	just	the	number	7	(without	a	hyphen),	I	will	match	only	files	that	were
modified	exactly	seven	days	ago:

Click	here	to	view	code	image
$	find	.	-mtime	7	-name	“*.c”	-print
$

To	find	C	source	files	that	I	haven’t	touched	for	more	than	30	days,	I	use	+30:
Click	here	to	view	code	image

$	find	.	-mtime	+30	-name	“*.c”	-print
./OWL/WordMap/msw-to-txt.c
./OWL/WordMap/newtest.c
./src/calc.c
./src/info.c
./src/fixit.c
./src/massage.c

4.	With	find,	I	now	have	a	tool	for	looking	across	vast	portions	of	the	file	system	for
specific	file	types,	filenames,	and	other	attributes.

To	look	across	the	/bin	and	/usr	directory	trees	for	filenames	that	contain	the
pattern	cp,	I	can	use	the	following	command:

Click	here	to	view	code	image
$	find	/bin	/usr	-name	“*cp*”	-print
/bin/cp
/bin/rcp
/usr/bin/cpan
/usr/bin/cpio
/usr/bin/cpp
/usr/bin/cpp-3.3
/usr/bin/cpp-4.0
/usr/bin/escputil
/usr/bin/scp

/usr/include/architecture/i386/cpu.h
/usr/include/cpio.h
/usr/include/gcc/darwin/3.3/c++/bits/cpp_type_traits.h
/usr/include/gcc/darwin/4.0/c++/bits/cpp_type_traits.h
/usr/include/netinet/tcp.h
/usr/include/netinet/tcp_fsm.h
/usr/include/netinet/tcp_seq.h
/usr/include/netinet/tcp_timer.h
/usr/include/netinet/tcp_var.h
/usr/include/netinet/tcpip.h
/usr/include/tcpd.h

lots	of	output	omitted

/usr/X11R6/lib/X11/fonts/encodings/microsoft-cp1258.enc
/usr/X11R6/lib/X11/locale/ibm-cp1133
/usr/X11R6/lib/X11/locale/microsoft-cp1251
/usr/X11R6/lib/X11/locale/microsoft-cp1255
/usr/X11R6/lib/X11/locale/microsoft-cp1256

Note

This	type	of	search	can	take	a	long	time	on	a	busy	system.	When	I	ran	this
command	on	a	loaded	server,	it	took	almost	5	minutes	to	complete!

5.	To	find	a	list	of	the	directories	I’ve	created	in	my	home	directory,	I	can	use	the	-
type	specifier	with	one	of	the	values	shown	in	Table	22.2.	Here’s	one	example:
$	find	.	-type	d	-print
.
./OWL
./OWL/Doc
./OWL/WordMap
./.elm
./Archives
./InfoWorld
./InfoWorld/PIMS
./Mail
./News
./bin
./src
./temp
$

TABLE	22.2	Helpful	find	-type	File	Types

6.	To	find	more	information	about	each	of	these	directories,	I	can	use	the	-exec
option	to	find,	which	specifies	a	subcommand	to	execute	against	each	file	in	the
result	set.	Unfortunately,	I	cannot	simply	enter	the	command;	the	exec	option	must
be	used	with	{},	which	will	be	replaced	by	the	matched	filename,	and	\;	at	the	end
of	the	command.	(If	the	\	is	left	out,	the	shell	will	interpret	the	;	as	the	end	of	the

find	command.)	You	also	must	ensure	that	there	is	a	space	between	the	{}	and	the
\;	characters:

Click	here	to	view	code	image

$	find	.	-type	d	-exec	ls	-ld	{}	\;
drwx––	11	taylor							1024	Dec	10	14:13	.
drwx––		4	taylor								532	Dec		6	18:31	./OWL
drwxrwx–		2	taylor								512	Dec		2	21:18	./OWL/Doc
drwxrwx–		2	taylor								512	Nov		7	11:52	./OWL/WordMap
drwx––		2	taylor								512	Dec	10	13:30	./.elm
drwx––		2	taylor								512	Nov	21	10:39	./Archives
drwx––		3	taylor								512	Dec		3	02:03	./InfoWorld
drwx––		2	taylor								512	Sep	30	10:38	./InfoWorld/PIMS
drwx––		2	taylor							1024	Dec		9	11:42	./Mail
drwx––		2	taylor								512	Oct		6	09:36	./News
drwx––		2	taylor								512	Dec	10	13:58	./bin
drwx––		2	taylor								512	Oct	13	10:45	./src
drwxrwx–		2	taylor								512	Nov		8	22:20	./temp

7.	The	find	command	is	commonly	used	to	remove	core	files	that	are	more	than	a
few	days	old.	These	core	files	are	copies	of	the	actual	memory	image	of	a	running
program	when	the	program	dies	unexpectedly:

Click	here	to	view	code	image
$	find	.	–name	core	–ctime	+4	–print
./Archives/core
./bin/core
$

The	core	files	can	be	huge,	so	occasionally	trimming	them	is	wise.	It’s	just	a	small
step	from	the	preceding	find	command,	which	shows	matching	core	files:

Click	here	to	view	code	image

$	find	.	-name	core	-ctime	+4	-exec	/bin/rm	-f	{}	\;
$

There’s	no	output	from	this	command	because	I	didn’t	use	the	-print	at	the	end	of
the	command.	What	it	does	is	find	all	files	called	core	that	have	a	creation	time
that’s	more	than	four	days	ago	and	removes	them.

The	find	command	is	a	powerful	command	in	Unix	and	one	of	my	favorites.	It	helps	you
find	files	by	owner,	type,	filename,	and	just	about	any	other	attribute.	The	most	awkward
part	of	the	command	is	the	required	elements	of	the	-exec	option,	and	that’s	where	the
xargs	command	helps	immensely.

Task	22.2:	Using	find	with	xargs
You	can	use	find	to	search	for	files,	and	you	can	use	grep	to	search	within	files,	but
what	if	you	want	to	search	a	combination?	That’s	where	xargs	is	helpful.

1.	A	few	days	ago,	I	was	working	on	a	file	that	was	computing	character	mappings	of
files.	I’d	like	to	find	it	again,	but	I	don’t	remember	either	the	filename	or	where	the
file	is	located.

What	happens	if	I	use	find	and	have	the	-exec	argument	call	grep	to	find	files

containing	a	specific	pattern?
Click	here	to	view	code	image

$	find	.	-type	f	-exec	grep	-i	mapping	{}	\;
typedef	struct	mappings	{
map-entry	character-mapping[]	=	{
int									long-mappings	=	FALSE;
										case	‘l’:	long-mappings	=	TRUE;
												if	(long-mappings)
								/**	do	a	short	mapping	**/
								/**	do	a	long	mapping	**/
								/**	Look	up	the	specified	character	in	the	mapping	database	**/
								while	((character-mapping[pointer].key	<	ch)	&&
															(character-mapping[pointer].key	>	0))
								if	(character-mapping[pointer].key	==	ch)
										return	((map-entry	*)	&character-mapping[pointer]);
#	map,uucp-map				=	The	UUCP	Mapping	Project	=	nca-maps@apple.com
grep	-i	“character*mapping”	*	*/*	*/*/*
to	print	PostScript	files	produced	by	a	mapping	application	that	runs	on
the
bionet.genome.chromosomes						Mapping	and	sequencing	of	eucaryote
chromosomes.
./bin/my.new.cmd:	Permission	denied
typedef	struct	mappings	{
map-entry	character-mapping[]	=	{
int									long-mappings	=	FALSE;
										case	‘l’:	long-mappings	=	TRUE;
												if	(long-mappings)
								/**	do	a	short	mapping	**/
								/**	do	a	long	mapping	**/
								/**	Look	up	the	specified	character	in	the	mapping	database	**/
								while	((character-mapping[pointer].key	<	ch)	&&
															(character-mapping[pointer].key	>	0))
								if	(character-mapping[pointer].key	==	ch)
										return	((map-entry	*)	&character-mapping[pointer]);
or	lower	case	values.	The	table	mapping	upper	to

The	output	is	interesting,	but	it	doesn’t	contain	any	filenames,	so	there’s	no	way	to
know	from	which	files	these	lines	were	extracted.

2.	A	second,	smarter	strategy	would	be	to	use	the	-l	flag	to	grep	so	that	grep
specifies	only	the	matched	filename:

Click	here	to	view	code	image
$	find	.	-type	f	-exec	grep	-l	-i	mapping	{}	\;
./OWL/WordMap/msw-to-txt.c
./.elm/aliases.text
./Mail/mark
./News/usenet.alt
./bin/my.new.cmd:	Permission	denied
./src/fixit.c
./temp/attach.msg
$

This	is	a	step	in	the	right	direction,	but	the	problem	with	this	approach	is	that	each
time	find	matches	a	file,	it	invokes	grep,	which	is	a	very	resource-intensive
strategy.

3.	You	can	use	xargs	to	read	the	output	of	find	and	build	calls	to	grep	that	specify
a	lot	of	files	at	once.	(Remember	that	each	time	a	file	is	seen,	the	grep	program	will

check	through	it.)	This	way,	grep	is	called	only	four	or	five	times,	even	though	it
might	check	through	200	or	300	files.	By	default,	xargs	always	tacks	the	list	of
filenames	to	the	end	of	the	specified	command,	so	using	it	is	easy:

Click	here	to	view	code	image

$	find	.	-type	f	-print	|	xargs	grep	-l	-i	mapping
./OWL/WordMap/msw-to-txt.c
./.elm/aliases.text
./Mail/mark
./News/usenet.alt
./bin/my.new.cmd:	Permission	denied
./src/fixit.c
./temp/attach.msg

This	gives	the	same	output	as	the	command	in	step	3	but	is	quite	a	bit	faster.

4.	What’s	nice	about	this	approach	to	working	with	find	is	that	because	grep	is
getting	multiple	filenames,	it	automatically	includes	the	filename	of	any	file	that
contains	a	match	when	grep	shows	the	matching	line.	Removing	the	-l	flag	results
in	exactly	what	I	want:

Click	here	to	view	code	image
$	find	.	-type	f	-print	|	xargs	grep	-i	mapping
./OWL/WordMap/msw-to-txt.c:typedef	struct	mappings	{
./OWL/WordMap/msw-to-txt.c:map-entry	character-mapping[]	=	{
./OWL/WordMap/msw-to-txt.c:int									long-mappings	=	FALSE;
./OWL/WordMap/msw-to-txt.c:							case	‘l’:	long-mappings	=	TRUE;
./OWL/WordMap/msw-to-txt.c:									if	(long-mappings)
./OWL/WordMap/msw-to-txt.c:					/**	do	a	short	mapping	**/
./OWL/WordMap/msw-to-txt.c:					/**	do	a	long	mapping	**/
./OWL/WordMap/msw-to-txt.c:					/**	Look	up	the	specified	character	in	the
mapping	database	**/
./OWL/WordMap/msw-to-txt.c:					while	((character-mapping[pointer].key
./src/fixit.c:		/**	do	a	long	mapping	**/
./src/fixit.c:		/**	Look	up	the	specified	character	in	the	mapping
database	**/
./src/fixit.c:		while	((character-mapping[pointer].key	<	ch)	&&
./src/fixit.c:									(character-mapping[pointer].key	>	0))
./src/fixit.c:		if	(character-mapping[pointer].key	==	ch)
./src/fixit.c:				return	((map-entry	*)	&character-mapping[pointer]);
./temp/attach.msg:or	lower	case	values.	The	table	mapping	upper	to

When	used	in	combination,	find,	grep,	and	xargs	are	a	potent	team	to	help	find	files
lost	or	misplaced	anywhere	in	the	Unix	file	system.	I	encourage	you	to	experiment	further
with	these	important	commands	to	find	ways	they	can	help	you	work	with	Unix.

Task	22.3:	Getting	Files	from	the	Internet
The	find	command	makes	it	pretty	easy	to	find	files	on	your	own	Unix	system,	but	I
actually	find	myself	getting	files	more	often	from	the	Internet	than	directly	from	another
place	on	my	own	system.	It	turns	out	that	there	are	a	remarkable	number	of	different	ways
that	you	can	download	files	from	a	remote	system,	approaches	that	are	far	easier	than
using	the	clunky	ftp	or	sftp	programs	discussed	in	the	previous	hour.

Which	tool	you	use	depends	on	what	you	have	available	in	your	Unix	system,	too:	The
three	I’m	going	to	consider	are	GET,	curl,	and	lynx.	lynx	is	especially	noteworthy,

actually,	because	it	is	a	text-based	Web	browser,	and	it’s	quite	a	bit	more	powerful	than
will	be	suggested	in	this	hour.

1.	You	might	not	know	it,	but	books	written	more	than	about	80	years	ago	are	no
longer	protected	by	copyright	laws.	This	is	good	for	those	of	us	who	like	to	read,
and	it	also	means	that	there	are	organizations	that	have	put	in	the	effort	to	scan	and
produce	digital	versions	of	some	of	the	most	popular	works	from	the	last	few
hundred	years.	Chief	among	them	is	Project	Gutenberg—www.gutenberg.org—
where	you	can	download	literally	thousands	of	different	books	in	plain-text	format.

Rather	than	wind	through	their	directory	structure,	though,	let’s	say	that	you	emailed
me	and	mentioned	that	you	were	really	a	fan	of	Lewis	Carrol’s	brilliant	Alice	in
Wonderland	(well,	its	more	formal	title	is	The	Adventures	of	Alice	in	Wonderland,
but	for	our	purposes	that’s	not	important).	I	responded	by	saying	Good	news!	I	have
a	plain-text	version	of	this	great	book	available	for	download	from	my	Web	site.
Here’s	the	URL:	http://www.intuitive.com/tyu24/alice.tgz.

The	question	now	is,	using	the	command	line,	how	do	you	retrieve	this	document?
That’s	the	realm	of	GET,	curl,	and	lynx.	But	let’s	look	at	these	in	reverse	order,
shall	we?

2.	It’s	probable	that	you	have	the	text-mode	Web	browser	lynx	installed	on	your
computer.	The	easiest	way	to	know	for	sure	is	just	to	try	it:

Click	here	to	view	code	image

$	lynx	-dump	http://www.intuitive.com/tyu24/alice.tgz	>	alice.tgz

Did	it	work?	If	you	didn’t	see	any	sort	of	error	message,	you	should	now	have	a
gzip’d	tar	archive	of	the	full	text	to	Alice	in	Wonderland.	Unpack	it	with	the
commands	gunzip	then	tar,	as	explained	in	Hour	19,	“Archives	and	Backups.”

If	you	received	a	command	not	found	error,	perhaps	lynx	is	installed	but	not
in	your	PATH.	Use	locate	to	try	to	find	it:
$	locate	lynx

If	that	fails	too,	you	might	need	to	try	one	of	the	other	utilities.

3.	The	next	possibility	is	a	great	command-line	utility	called	curl,	which	also	accepts
URLs	and	makes	it	a	breeze	to	download	and	save	things,	but	it’s	critical	to
remember	that	downloaded	data	is	dumped	to	the	screen	by	default,	unless	you
specify	the	-O	option	(that’s	a	capital	letter	O).

Here’s	how	you	could	use	curl	to	save	the	Alice	archive	file:
Click	here	to	view	code	image

$	curl	-O	http://www.intuitive.com/tyu24/alice.tgz

It’s	even	easier	than	using	lynx	because	you	don’t	need	a	command	parameter!

The	curl	command	has	quite	a	bit	more	power,	including	support	for	grabbing	a
range	of	files	at	once.	With	this	notation,	the	command	would	get	you	file1.txt,
file2.txt,	and	so	on:

http://www.gutenberg.org
http://www.intuitive.com/tyu24/alice.tgz

Click	here	to	view	code	image

$	curl	‘http://test.domain/folder/file[1-10].txt’

Note	that	this	command	expands	the	square	brackets	on	the	remote	system,	not
locally.

You	can	also	use	curl	to	get	ftp:	and	even	https:	files	because	it	speaks	about
a	dozen	different	transfer	protocols.	In	fact,	curl	can	even	upload	files	via	FTP.

The	curl	command	also	has	a	ton	of	different	options,	and	if	you’re	interested	in
learning	how	to	use	it,	man	curl	is	a	critical	first	stop.

4.	The	third	possible	command	you	could	use	is	GET,	which	is	actually	part	of	a	Perl
communications	package.	Type	in	the	command	without	any	arguments,	and	it’ll	tell
you	exactly	how	it	can	be	used:

Click	here	to	view	code	image
$	GET
Usage:	GET	[-options]	<url>…
				-m	<method>			use	method	for	the	request	(default	is	‘GET’)
				-f												make	request	even	if	GET	believes	method	is	illegal
				-b	<base>					Use	the	specified	URL	as	base
				-t	<timeout>		Set	timeout	value
				-i	<time>					Set	the	If-Modified-Since	header	on	the	request
				-c	<conttype>	use	this	content-type	for	POST,	PUT,	CHECKIN
				-a												Use	text	mode	for	content	I/O
				-p	<proxyurl>	use	this	as	a	proxy
				-P												don’t	load	proxy	settings	from	environment
				-H	<header>			send	this	HTTP	header	(you	can	specify	several)

				-u												Display	method	and	URL	before	any	response
				-U												Display	request	headers	(implies	-u)
				-s												Display	response	status	code
				-S												Display	response	status	chain
				-e												Display	response	headers
				-d												Do	not	display	content
				-o	<format>			Process	HTML	content	in	various	ways

				-v												Show	program	version
				-h												Print	this	message

				-x												Extra	debugging	output

Just	like	curl	and	lynx,	GET	allows	you	to	work	with	Web-based	content	on	the
command	line.	This	means	that	if	you	happened	to	know	that	I	keep	a	copy	of	the
uncompressed	Alice	file	on	my	server,	too,	you	could	search	it	for	occurrences	of	the
word	walrus,	say,	without	ever	having	to	save	a	copy	on	your	own	disk:

Click	here	to	view	code	image

$	GET	http://www.intuitive.com/tyu24/alice.txt	|	grep	-i	walrus
Just	then	she	heard	something	splashing	about	in	the	pool	a	little	way
off,	and
she	swam	nearer	to	make	out	what	it	was:	at	first	she	thought	it	must	be	a
walrus
or	hippopotamus,	but	then	she	remembered	how	small	she	was	now,	and	she
soon	made
out	that	it	was	only	a	mouse	that	had	slipped	in	like	herself.
$

Pretty	cool	trick,	isn’t	it?

Oh!	To	get	the	compressed	archive,	the	command	looks	pretty	darn	similar	to	the
previous	invocations	(but	note	that	you	need	to	redirect	the	downloaded	data	into	a
file):

Click	here	to	view	code	image

$	GET	http://www.intuitive.com/tyu24/alice.tgz	>	alice.tgz

Once	you	start	thinking	about	ways	that	you	can	work	with	Web	content	on	a	command
line,	you’ll	realize	that	this	capability	truly	is	one	reason	Unix	is	a	fabulous	working
environment.	Think	about	it:	Any	file,	any	data,	any	HTML	you	can	obtain	from	the	Web
you	can	incorporate	into	a	shell	script	or	otherwise	grep	through	to	find	key	salient	data.
From	stock	quotes	to	weather,	dictionary	lookups	to	RSS	feed	parsing,	the	combinations
of	lynx,	curl,	or	GET	plus	the	thousands	of	Unix	commands	are	unbeatable!

Summary
This	hour	started	by	exploring	the	powerful	find	command,	one	of	the	more	potent
commands	in	Unix.	It	has	many	esoteric	options,	and	to	get	the	full	power	from	find,
xargs,	and	grep,	you	need	to	experiment.	Then	you	moved	to	learning	how	to	work
with	Unix	commands	to	access	Internet	data,	whether	accessible	on	an	FTP	server,	a	Web
site,	or	even	a	secure	Web	site.

Workshop
This	Workshop	poses	some	questions	about	the	topics	presented	in	this	hour.	It	also
provides	you	with	a	preview	of	what	you	will	learn	in	the	next	hour.

Exercises
1.	Use	find	and	wc	-l	to	count	how	many	files	you	have.	Be	sure	to	include	the	-
type	f	option	so	that	you	don’t	include	directories	in	the	count.

2.	Use	the	necessary	commands	to	list	the	following:

	All	filenames	that	contain	abc

	All	files	that	contain	abc

3.	How	many	times	does	the	word	hookah	appear	in	Alice	in	Wonderland?

Preview	of	the	Next	Hour
The	next	hour	introduces	you	to	the	powerful	Swiss	Army	knife	of	Unix:	the	Perl
programming	language.	From	simple	one-liners	to	thousand-line	programs,	it’s	a	must-
know	for	all	modern	Unix	users.

Hour	23.	Perl	Programming	in	Unix

Goals	for	This	Hour

In	this	hour,	you	will	learn

	About	Exchange,	a	demonstration	currency	translator	written	in	Perl

	How	to	check	code	quality	with	-w

	About	online	Perl	documentation	and	information

	About	other	useful	Perl	commands

In	this	hour,	I	introduce	you	to	the	Perl	scripting	and	programming	language.	Perl	is	an
interpreted	language,	so	it	doesn’t	require	you	to	use	a	compiler	as	an	intermediate	step	in
getting	it	to	work,	as	C	and	Java	do.	Perl	works	much	more	like	shell	scripts,	which	makes
it	an	easier-to-use	development	tool.

Whether	or	not	you	plan	on	getting	involved	with	Unix	programming,	I	definitely
encourage	you	to	read	more	about	Perl.	In	addition	to	being	an	elegant	and	powerful	Unix
tool	builder,	Perl	is	also	one	of	the	classic	programming	languages	of	choice	for	Web
professionals.	Want	to	delve	deeper	into	Web	development,	though?	Then	you’d	be	smart
to	learn	PHP	and	Python.	Both	are	definitely	Unix	friendly,	and	more	and	more	code	is
being	written	in	those	languages,	along	with	Ruby.

In	this	hour,	you’ll	learn	what	tools	are	available	with	the	standard	Perl	distribution	to	help
you	develop	smart,	fast	programs.	This	lesson	describes	a	program	that	enables	you	to	do
easy	currency	translation	to	prepare	for	travel	overseas.

Note

Surprisingly,	Perl	isn’t	included	with	every	Unix	implementation.	If	you	don’t	have
it,	or	if	your	version	of	Perl	is	earlier	than	5.0	(try	perl	-v	to	find	out	what
version	you	have),	then	go	to	http://www.perl.org	to	find	out	about	downloading	a
newer	version.

Flexible	and	Powerful:	Perl
Programming	in	C,	the	language	developed	alongside	the	Unix	operating	system,	offers
considerable	flexibility.	C	is	the	core	language	of	the	Unix	operating	system	itself,	but	it
was	originally	designed	for	system-level	programming	tasks.	Perl,	by	contrast,	was
designed	to	be	a	powerful	language	for	string	or	word	processing.	You	can	most	easily	see
the	difference	by	exploring	a	programming	task,	so	that’s	what	we’ll	do	in	this	hour	of	the
book.

http://www.perl.org

Task	23.1:	Exchange,	a	Demonstration	Currency	Translator	Written	in
Perl
When	some	friends	of	mine	returned	from	traveling	throughout	the	world	on	an	extended
trip	they	commented	that	they	were	baffled	by	the	sheer	variety	of	currencies.	They’re	not
the	first	to	observe	this,	of	course,	but	I	thought	“what	a	great	Perl	program	to	write!”

Translating	currencies	is	simple	once	you	get	the	formula	and	exchange	rates.	Here	in	the
United	States,	currency	values	are	usually	presented	relative	to	a	single	U.S.	dollar,	so	the
euro	might	be	valued	at	0.9100,	which	means	that	every	dollar	you	exchange	is	worth	just
a	bit	less	than	€1.	Exchange	$20,	and	it	will	net	you	20×0.9100,	or	€18.2.

The	Exchange	program	started	out	life	by	reading	in	the	current	exchange	rates	for	six
major	world	currencies	(U.S.	dollar,	Japanese	yen,	euro,	Swiss	franc,	Indian	rupee	and
British	pound),	prompting	for	an	amount	in	U.S.	dollars,	and	then	showing	the	equivalent
value	in	these	other	currencies.	Much	more	useful,	however,	is	the	capability	to	translate
from	any	one	of	these	currencies	to	the	other	five.	Further,	sites	exist	on	the	Internet	that
show	the	daily	currency	exchange	rate,	so	ensuring	up-to-date	rates	is	another	desirable
program	feature.

And	thus	Exchange	was	born.	It’s	a	program	that	lets	you	quickly	convert	between	any
of	the	six	major	world	currencies,	using	a	separate	shell	script	to	ensure	that	the
conversion	rates	are	up-to-date.	This	task	shows	how	I	built	it	out	with	Perl	and	Unix.

1.	The	basic	logic	flow	(or	algorithm,	if	you	want	to	be	technical	about	it)	for	the
Exchange	program	is	this:

Click	here	to	view	code	image

Read	current	exchange	rates

Repeat
		Ask	user	for	an	amount	and	currency
		Translate	that	into	US	dollars
		Show	the	equivalent	value	in	the	other	five	currencies
Until	done

2.	Perl	supports	subroutines	to	help	develop	clean,	readable	programs,	so	let’s	have	a
peek	at	the	main	code	in	the	program:

Click	here	to	view	code	image
#!/usr/bin/perl

&read_exchange_rate;					#	read	the	exchange	rate	table	into	memory

#	now	let’s	cycle,	asking	the	user	for	input…

print	“Please	enter	the	amount,	appending	the	first	“;
print	“letter	of	the	name	of\nthe	currency	that	you’re	“;
print	“using	(Euro,	Franc,	Yen,	Rupee,	Pound)	-	\n”;
print	“the	default	value	is	US	dollars.\n\n”;
print	“Amount:	“;

while	(<>)	{

		($amnt,$curr)	=	&breakdown(chop($_));

		$baseval	=	$amnt	*	(1/$rateof{$curr});				#	translate	into	USD

		printf(“%2.2f	USD,	“,	$baseval	*	$rateof{‘U’});
		printf(“%2.2f	Euro,	“,	$baseval	*	$rateof{‘E’});
		printf(“%2.2f	Rupee,	“,	$baseval	*	$rateof{‘R’});
		printf(“%2.2f	Swiss	Franc,	“,	$baseval	*	$rateof{‘F’});
		printf(“%2.2f	Yen,	and	“,	$baseval	*	$rateof{‘Y’});
		printf(“%2.2f	Pounds.\n\nAmount:	“,	$baseval	*	$rateof{‘P’});
}

The	first	line	needs	to	point	to	your	Perl	interpreter;	an	easy	way	to	find	it	is	to	use
which	perl	on	the	command	line.

I’ve	added	some	fancy	output	formatting	with	the	print	statement,	but	otherwise
this	code	is	quite	similar	to	the	algorithm	you’ve	already	seen.	Notice	that	the	array
rateof	uses	the	first	letter	of	the	currency	as	an	index	and	returns	the	current
exchange	rate	relative	to	the	U.S.	dollar	(that	is,	$rateof{‘E’}	is	actually
0.9100).

One	slick	thing	about	Perl	is	that	a	subroutine	can	return	a	list	of	variables,	as	you
see	demonstrated	in	the	call	to	the	breakdown	subroutine,	which	returns	both
$amnt	and	$curr.

3.	Two	subroutines	are	included	in	this	program,	read_exchange_rate	and
breakdown.	Let’s	consider	them	in	reverse	order.

The	breakdown	subroutine	receives	the	user-entered	currency	amount	and	splits	it
into	two	parts:	the	numeric	value	and	the	first	letter	of	the	currency	indicator,	if	any
(the	default	currency	is	U.S.	dollars):

Click	here	to	view	code	image
sub	breakdown	{
			@line	=	split(””,	$_);								#	split	at	space

			$amnt	=	$line[0];
			if	($#line	==	1)	{
					$curr	=	$line[1];
					$curr	=~	tr/a-z/A-Z/;									#	normalize	to	uppercase
					$curr	=	substr($curr,	0,	1);		#	extract	first	char	only
			}	else	{	$curr	=	“U”;	}
			return	($amnt,	$curr);
}

I	won’t	go	into	too	much	detail	here—Perl	can	be	somewhat	overwhelming	when
you	first	start	working	with	it—but	if	the	subroutine	is	given	a	value	such	as	34.5
yen,	it	will	return	$amnt	=	34.5	and	$curr	=	'Y'.

4.	The	current	exchange	rate	is	read	in	from	an	associated	data	file,	exchange.txt,
which	contains	the	exchange	rate	for	the	six	currencies	(although	the	exchange	rate
for	U.S.	dollars	is	always	1,	of	course!):

Click	here	to	view	code	image
sub	read_exchange_rate	{
		open(EXCHRATES,	“exchange.txt”)	||
				die	“Can’t	find	current	exchange	rates.\n”;

		while	(<EXCHRATES>)	{

				chomp;	my	@fields	=	split;		#	remove	control	chars,	break	up	into
words
				$curr	=	@fields[0];
				$val		=	@fields[1];
				$rateof{$curr}	=	$val;
		}
		close(EXCHRATE);
}

By	default,	Perl	opens	files	for	reading	when	the	open	command	is	used.	Here	on
lines	2	and	3	you	can	see	that	the	exchange.db	file	is	being	opened	for	reading.
||	die	is	a	shorthand	way	of	saying	“if	the	open	fails,	output	the	error	message
and	quit	immediately.”

The	exchange.txt	data	file	looks	like	this:
U:1
F:0.940270
E:0.909735
P:0.653988
R:63.747500
Y:124.159500

5.	Here’s	the	cool	part	about	this	program:	The	exchange	rates	can	be	lifted	off	a
handy	Web	page	automatically,	to	ensure	that	they’re	always	current	and	accurate.	I
accomplish	this	task	by	using	the	curl	utility,	as	demonstrated	in	the	previous	hour,
to	grab	a	page	from	x-rates.com	that	has	the	exchange	rates,	then	a	few	simple	Unix
commands	in	a	pipeline	to	strip	out	the	information	I	don’t	want	and	reformat	it	as
needed.

It’s	all	dropped	into	a	shell	script,	build-exchrate:
Click	here	to	view	code	image

#!/bin/sh

#	Build	a	new	exchange	rate	database	by	using	the	data	on	x-rates.com

src=http://www.x-rates.com/table/?from=USD&amount=1
srcUrl=http://www.x-rates.com/

curl=”/usr/bin/curl	-s”								#	-s	enables	silent	mode

currencies=”(EUR|GBP|INR|CHF|JPY)”				#	ISO	symbols	for	currencies

echo	“U:1”								#	make	sure	we	get	this	into	the	output	file

$curl	“$src”	|	grep	‘/graph/?from=USD’	|	grep	-E	“$currencies”	|	\
		sort	|	uniq	|	\
		sed	‘s/EUR/E/;s/GBP/P/;s/INR/R/;s/CHF/F/;s/JPY/Y/’	|	\
		cut	-d’<’	-f2,3	|	\
		sed	“s/’//g;s/>/:/g”	|	\
		cut	-d=	-f5

echo	“#	extracted	from	$srcUrl	on	$(date)”
exit	0

To	learn	more	about	the	useful	lynx	command,	use	man	lynx	on	your	system.
It’s	a	good	addition	to	your	bag	of	Unix	tricks,	particularly	within	scripts	and
programs.

The	output	of	the	build-exchrate	command	is	exactly	the	database	file	format,
but	it’s	sent	to	the	screen	rather	than	the	data	file:
$	build-exchrate
U							1
Y							124.065
E							0.9100
P							0.6537
F							0.9401

Creating	the	data	file	for	the	program	is	easy:
Click	here	to	view	code	image

$	sh	build-exchrate.sh	>	exchange.db
$

6.	Let’s	now	try	out	the	exchange	program	and	see	how	it	works:
Click	here	to	view	code	image

$	perl	exchange.pl
Please	enter	the	amount,	appending	the	first	letter	of	the	name	of
the	currency	that	you’re	using	(Euro,	Franc,	Yen,	Rupee,	Pound)	-
the	default	value	is	US	dollars.

Amount:	20
20.00	USD,	18.19	Euro,	1274.95	Rupee,	18.81	Swiss	Franc,	2483.19	Yen,	and
13.08	Pounds.

Amount:	20	pounds
30.58	USD,	27.82	Euro,	1949.50	Rupee,	28.75	Swiss	Franc,	3797.00	Yen,	and
20.00	Pounds.

Amount:	20	yen
0.16	USD,	0.15	Euro,	10.27	Rupee,	0.15	Swiss	Franc,	20.00	Yen,	and	0.11
Pounds.

Amount:	20	euro
21.98	USD,	20.00	Euro,	1401.45	Rupee,	20.67	Swiss	Franc,	2729.58	Yen,	and
14.38	Pounds.

Amount:	20	francs
21.27	USD,	19.35	Euro,	1355.94	Rupee,	20.00	Swiss	Franc,	2640.93	Yen,	and
13.91	Pounds.

Amount:	20	rupee
0.31	USD,	0.29	Euro,	20.00	Rupee,	0.29	Swiss	Franc,	38.95	Yen,	and	0.21
Pounds.
16.21	USD,	12.91	Euro,	20.00	Swiss	Franc,	1753.20	Yen,	and	8.87	Pounds.

Finally,	one	last	query:	In	the	United	States	the	dynamite	Red	Hat	Linux	Enterprise
Server	client	package	(a	great,	inexpensive	Unix	for	PC-based	computers)	costs
$349.	It’s	easy	to	use	Exchange	to	compute	the	equivalent	price	for	this	product
overseas:

Click	here	to	view	code	image

Amount:	349	USD
349.00	USD,	317.50	Euro,	22247.88	Rupee,	328.15	Swiss	Franc,	43331.67	Yen,
and	228.24	Pounds.

Amount:

To	quit	the	program,	I	use	^d	to	send	an	end-of-file	signal.

Tip

You	can	get	an	online	copy	of	the	Exchange	program	and	its	companion	build-
exchrate	shell	script	by	visiting	http://www.intuitive.com/tyu24/.

The	Exchange	program	demonstrates	how	you	can	write	succinct	and	sophisticated
programs	in	Perl.	It	also	demonstrates	that	Perl	can	be	a	bit	confusing	if	you’re
uninitiated!	That’s	why	your	best	bet	for	learning	Perl,	or	any	other	programming
language,	is	to	spend	the	time	to	find	and	read	a	good	tutorial.	An	excellent	place	to	start
is	at	www.perl.org.

More	importantly,	the	program	demonstrates	that	it’s	the	combination	of	tools—Unix
commands	and	Perl—that	enables	you	to	really	create	some	terrific	applications.

Task	23.2:	Checking	Code	Quality	with	-w
There	are	two	main	ways	to	run	Perl	programs:	by	typing	perl	followed	by	the	name	of
your	program	(as	shown	previously)	or	by	specifying	program	names	directly	on	the
command	line.	For	the	latter	approach	to	work,	you	need	to	include	#!/usr
/bin/perl	as	the	first	line	of	your	program	(you	can	use	which	perl	to	ensure	that’s
the	correct	path	on	your	system,	of	course)	and	use	chmod	to	make	your	program
executable.

Whichever	way	you	choose	to	invoke	your	Perl	program,	the	Perl	interpreter	will	scan	the
program	to	see	whether	it	all	makes	syntactic	sense	and	then	actually	begin	executing	the
instructions	specified.

The	scan	performed	is	rudimentary,	though,	and	catches	only	the	most	grievous	of
mistakes.	Add	a	simple	-w	flag,	however,	and	the	interpreter	looks	much	more	closely	at
the	program,	emitting	various	warnings	(-w	=	warnings)	for	odd	constructs	and	more.

Even	Perl	programs	that	work	fine	can	generate	quite	a	variety	of	warnings!	In	fact,	perl
-w	is	the	Perl	version	of	lint,	a	popular	C	programming	language	syntax-checking
utility.

1.	I	start	by	making	the	exchange.pl	program	executable,	to	save	a	little	bit	of
typing:
$	chmod	+x	exchange.pl
$

This	is	not	much	output,	but	no	output	is	good	news:	It	means	everything	worked
fine.

2.	I’m	going	to	delete	the	semicolon	after	the	call	to	read_exchange_rate	in	the
exchange.pl	file	so	that	you	can	see	what	happens	when	the	Perl	interpreter
finds	the	mistake.

Done.	(We’ll	call	that	an	“edit	between	the	lines,”	okay?)

http://www.intuitive.com/tyu24/
http://www.perl.org

Click	here	to	view	code	image

$	exchange.pl
Scalar	found	where	operator	expected	at	./exchange.pl	line	49,	near
“$rateof”
				(Missing	semicolon	on	previous	line?)
syntax	error	at	./exchange.pl	line	49,	near	“$rateof”
syntax	error	at	./exchange.pl	line	53,	near	“}”
Execution	of	./exchange.pl	aborted	due	to	compilation	errors.

Hmm	…	line	49,	or	line	53?	Let’s	use	the	-n	flag	to	the	cat	command	to	get	line
numbers,	then	sed	to	show	only	lines	48–53:

Click	here	to	view	code	image
$	cat	-n	exchange.pl	|	sed	-n	‘48,53p’
				48							$val		=	@fields[1]
				49							$rateof{$curr}	=	$val;
				50							print	“rateof:	$curr	=	$rateof{$curr}\n”;
				51					}
				52					close(EXCHRATE);
				53			}

Look	closely:	Neither	line	49	nor	line	53	is	where	the	problem	occurs	(it’s	on	line
48;	the	semicolon	on	the	end	of	the	line	is	missing),	but	this	is	a	great	opportunity	to
point	out	that	you	should	never	entirely	trust	the	line	numbers	in	compiler	or
interpreter	error	messages.

3.	Now	I	invoke	Perl	with	the	-w	flag	to	see	whether	it	offers	more	advice	on	what’s
wrong	with	the	program:

Click	here	to	view	code	image

$	perl	-w	exchange.pl
Scalar	value	@fields[0]	better	written	as	$fields[0]	at	exchange.pl	line
47.
Scalar	value	@fields[1]	better	written	as	$fields[1]	at	exchange.pl	line
48.
Scalar	found	where	operator	expected	at	exchange.pl	line	49,	near
“$rateof”
				(Missing	semicolon	on	previous	line?)
syntax	error	at	exchange.pl	line	49,	near	“$rateof”
syntax	error	at	exchange.pl	line	53,	near	“}”
Execution	of	exchange.pl	aborted	due	to	compilation	errors.
$

There’s	help	offered	here,	but	it’s	a	bit	hidden.	Look	at	output	line	4.	It	knows	that
there’s	a	semicolon	missing	but	asks	it	in	the	form	of	a	question.	A	bit	weird,	but	it’s
the	clue	needed	to	get	the	script	working	again!

4.	I’m	going	to	restore	the	semicolon	(though	I	won’t	show	that	here;	just	use	vi	to
add	it)	and	run	the	-w	flag	one	more	time	to	see	whether	there	are	any	additional
useful	suggestions:

Click	here	to	view	code	image
$	perl	-w	exchange.pl
Scalar	value	@_[0]	better	written	as	$_[0]	at	exchange.pl	line	46.
Scalar	value	@_[1]	better	written	as	$_[1]	at	exchange.pl	line	47.
Use	of	implicit	split	to	@_	is	deprecated	at	exchange.pl	line	45.
Name	“main::EXCHRATE”	used	only	once:	possible	typo	at	exchange.pl	line
50.

““Please	enter	the	amount,	appending	the	first	letter	of	the	name	of
the	currency	that	you’re	using	(franc,	yen,	deutschmark,	pound)	-
the	default	value	is	US	dollars.

Amount:

Wow!	Lots	of	output,	most	of	which	is	telling	me	that	there	are	new,	fancier	ways	to
specify	things	(for	example,	use	$_[1]	instead	of	@_[1]).

5.	Buried	in	all	this	output,	however,	is	a	bug	in	the	program	I	surreptitiously	added
during	the	writing	of	this	hour	that	the	Perl	interpreter	found:

Click	here	to	view	code	image
Name	“main::EXCHRATE”	used	only	once:	possible	typo	at	exchange.pl
line	50.

A	closer	look	at	the	read_exchange_rate	subroutine	shows	what’s	wrong:
Click	here	to	view	code	image

$	cat	-n	exchange.pl	|	tail	-12
				42		open(EXCHRATES,	“exchange.txt”)	||
				43				die	“Can’t	find	current	exchange	rates.\n”;
				44
				45		while	(<EXCHRATES>)	{
				46				chomp;	my	@fields	=	split(“:”);
				47				$curr	=	@fields[0];
				48				$val		=	@fields[1];
				49				$rateof{$curr}	=	$val;
				50		}
				51		close(EXCHRATE);
				52		}

Can	you	see	the	problem	it	has	found?	The	open	statement	on	line	42	creates	a	file
handle	called	EXCHRATES,	which	is	then	used	in	the	while	statement	(line	45),
but	when	I	went	to	close	the	file	handle,	I	forgot	the	trailing	s	and	called	it
EXCHRATE	on	line	51.	An	easy	fix,	fortunately!

Even	the	most	carefully	written	Perl	programs	can	have	problems	lurking.	The	-w	flag
isn’t	ideal,	but	you	should	become	familiar	with	its	use	and	learn	how	to	distinguish
important	warnings	from	unimportant	ones.

In	this	case,	the	bug	identified	wouldn’t	have	broken	anything	or	generated	any	incorrect
results,	but	if	I	had	continued	to	work	on	Exchange,	not	closing	the	file	handle	could
have	become	a	significant	problem	down	the	road.

Task	23.3:	Online	Perl	Documentation	and	Information
Earlier	I	recommended	that	you	buy	a	good	Perl	tutorial	book	to	learn	more	about	the
language.	Actually,	though,	the	standard	Perl	installation	includes	a	ton	of	online
documentation,	so	you	should	start	there,	as	described	in	this	task.

1.	If	you’ve	been	trying	all	the	examples	as	you’ve	been	reading	the	lessons,	you’re
already	familiar	with	the	standard	Unix	man	page	format	and	how	to	find	the
information	you	see	there.	Man	pages	are	good	for	summaries	of	how	to	work	with
individual	commands,	but	they’re	much	less	useful	for	explaining	large,	complex
programs	such	as	bash,	the	Elm	Mail	System,	or	the	Perl	interpreter.	That’s	why

the	Perl	documentation	is	broken	into	a	crazy	number	of	man	pages.	Here	are	just
the	first	25:

Click	here	to	view	code	image

$	man	–k	perl	|	grep	‘(1)’	|	head	-25
piconv(1pm)														-	—	iconv(1),	reinvented	in	perl
a2p(1)																			-	Awk	to	Perl	translator
config_data(1)											-	Query	or	change	configuration	of	Perl	modules
enc2xs(1)																-	—	Perl	Encode	Module	Generator
eyapp(1)																	-	A	Perl	front-end	to	the	Parse::Eyapp	module
find2perl(1)													-	translate	find	command	lines	to	Perl	code
h2ph(1)																		-	convert	.h	C	header	files	to	.ph	Perl	header
files
h2xs(1)																		-	convert	.h	C	header	files	to	Perl	extensions
par.pl(1)																-	Make	and	run	Perl	Archives
perl(1)																		-	The	Perl	5	language	interpreter
perl(1),	a2p(1)										-	Practical	Extraction	and	Report	Language
perlaix(1)															-	Perl	version	5	on	IBM	AIX	(UNIX)	systems
perlamiga(1)													-	Perl	under	Amiga	OS
perlapi(1)															-	autogenerated	documentation	for	the	perl	public
API
perlapio(1)														-	perl’s	IO	abstraction	interface
perlartistic(1)										-	the	Perl	Artistic	License
perlbeos(1)														-	Perl	version	5.8+	on	BeOS
perlaix(1)															-	Perl	version	5	on	IBM	AIX	(UNIX)	systems
perlamiga(1)													-	Perl	under	Amiga	OS
perlapi(1)															-	autogenerated	documentation	for	the	perl	public
API
perlapio(1)														-	perl’s	IO	abstraction	interface
perlartistic(1)										-	the	Perl	Artistic	License
perlbeos(1)														-	Perl	version	5.8+	on	BeOS
perlbook(1)														-	Books	about	and	related	to	Perl
perlboot(1)														-	This	document	has	been	deleted
POSIX	(3)																-	Perl	interface	to	IEEE	Std	1003.1

Quite	a	few	man	pages,	eh?	Turns	out	that	when	you	include	all	the	“delta”	pages
that	detail	what’s	changed	in	each	version	and	subversion,	there	are	a	staggering	403
Perl-related	man	pages	just	in	section	1,	user	commands.

2.	The	good	news	(I	think)	is	that	the	standard	Perl	man	page	offers	a	suggested	order
for	reading	the	man	pages	that	can	help	overcome	some	of	the	gasping,	drowning
feeling	you	probably	have	right	now!

For	ease	of	access,	the	Perl	manual	has	been	divided	into	a	number	of	sections:
Click	here	to	view	code	image

perl								Perl	overview	(this	section)
perldelta			Perl	changes	since	previous	version
perlfaq					Perl	frequently	asked	questions

perldata				Perl	data	structures
perlsyn					Perl	syntax
perlop						Perl	operators	and	precedence
perlre						Perl	regular	expressions
perlrun					Perl	execution	and	options
perlfunc				Perl	builtin	functions
perlvar					Perl	predefined	variables
perlsub					Perl	subroutines
perlmod					Perl	modules:	how	they	work
perlmodlib		Perl	modules:	how	to	write	and	use

perlform				Perl	formats
perllocale		Perl	locale	support

perlref					Perl	references
perldsc					Perl	data	structures	intro
perllol					Perl	data	structures:	lists	of	lists
perltoot				Perl	OO	tutorial
perlobj					Perl	objects
perltie					Perl	objects	hidden	behind	simple	variables
perlbot					Perl	OO	tricks	and	examples
perlipc					Perl	interprocess	communication

perldebug			Perl	debugging
perldiag				Perl	diagnostic	messages
perlsec					Perl	security
perltrap				Perl	traps	for	the	unwary
perlstyle			Perl	style	guide

perlpod					Perl	plain	old	documentation
perlbook				Perl	book	information
perlembed			Perl	ways	to	embed	perl	in	your	C	or	C++	application
perlapio				Perl	internal	IO	abstraction	interface
perlxs						Perl	XS	application	programming	interface
perlxstut			Perl	XS	tutorial
perlguts				Perl	internal	functions	for	those	doing	extensions
perlcall				Perl	calling	conventions	from	C

				(If	you’re	intending	to	read	these	straight	through	for
				the	first	time,	the	suggested	order	will	tend	to	reduce
				the	number	of	forward	references.)

I	find	the	Perl	man	pages	overwhelming,	too,	so	don’t	worry	if	this	doesn’t	make
you	want	to	leap	online	and	read	it	all.

3.	The	smarter	way	to	learn	more	about	Perl	is	to	read	the	online	documentation.	You
can	start	at	http://www.perl.org	or	jump	straight	to	the	terrific	Perl	reference	material
in	HTML	form	at	http://search.cpan.org/dist/perl/pod/perl.pod.

Start	with	the	FAQs	and	the	basic	Perl	man	page,	and	then	graduate	to	a	book	on	the
subject	(or	even	a	course)—and	you’ll	be	a	Perl	expert.

Note

There	are	tons	of	books	on	Perl,	ranging	from	the	basics	of	the	language	to
sophisticated	database	and	enterprise	programming	references.	A	good	starting
point	is	Sams	Teach	Yourself	Perl	in	24	Hours.

Task	23.4:	Other	Useful	Perl	Commands
There	are	useful	pieces	to	the	Perl	environment	other	than	just	the	-w	flag	to	the
interpreter!	In	this	section	I’ll	highlight	some	special	command	flags	worth	knowing	to
help	you	get	the	most	out	of	Perl.

1.	The	first	new	flag	to	learn	about	is	the	-d	(debug)	flag.	It’s	documented	(in	detail)
in	perldebug,	the	info	page	you’ll	want	to	read	to	learn	about	the	various
debugging	commands.

http://www.perl.org
http://search.cpan.org/dist/perl/pod/perl.pod

2.	An	interesting	variation	in	debugging	requires	another	flag,	the	-e	(execute	the
following	command)	flag.	It	lets	you	actually	use	the	Perl	interpreter	interactively:

Click	here	to	view	code	image

$	perl	–de	1

Loading	DB	routines	from	perl5db.pl	version	1.33
Emacs	support	available.

Enter	h	or	‘h	h’	for	help,	or	`man	perldebug’	for	more	help.
main::(-e:1):			1
		DB<1>	print	“Hi!”;
Hi!
		DB<2>	q
$

The	1	was	actually	a	command	to	the	Perl	interpreter,	and	because	I	specified	-d	for
debugging,	the	interpreter	executed	the	command	and	then	stopped	for	input.

3.	If	you’ll	be	using	Perl	to	write	Common	Gateway	Interface	(CGI)	scripts	for	a	Web
server,	you’ll	want	to	explore	the	-T	(taint)	flag,	which	keeps	close	track	of	the	flow
of	user	input	for	security.	See	perlsec	for	more	information.

4.	Finally,	no	discussion	of	Perl	can	be	complete	without	highlighting	the	terrific	Perl
developer	community	and	its	Comprehensive	Perl	Archive	Network	(CPAN).	The
best	place	to	learn	about	it	is	http://www.cpan.org.

Note

You	can	also	use	Perl	interactively	to	learn	about	the	CPAN	modules	available,
though	I’ve	never	had	any	luck	with	it	myself.	Try	entering	perl	-MCPAN	-e
shell.

Spending	some	time	learning	the	Perl	language	is	very	worthwhile.	The	Unix	shell	offers
various	capabilities,	but	you’ll	undoubtedly	hit	the	edge	as	you	become	more
sophisticated;	that’s	where	Perl	can	really	help	you	go	further.

Summary
The	C	programming	language	is	the	concrete	foundation	of	the	Unix	operating	system,	but
although	it’s	powerful,	it’s	also	rigid	and	somewhat	of	a	hassle	for	simple	tasks.	Perl	is	a
great	alternative	and	the	next	step	up	for	programmers	who	are	trying	to	bend	Unix	(or
Linux)	to	their	needs	but	finding	the	shell	underpowered.	I	recommend	that	if	you	want	to
become	a	Unix	genius,	learn	C	first,	but	if	you	want	to	become	a	power	user,	Perl	is	the
way	to	go.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.

http://www.cpan.org

Key	Terms
algorithm	An	algorithm	is	a	logical	sequence	of	steps	taken	by	a	program.

file	handle	This	is	an	internal	program	variable	that’s	used	to	refer	to	a	specific	file.	In
Perl,	you	use	an	open	command	to	associate	a	file	handle	with	a	file.

Exercises
Go	to	http://www.intuitive.com/tyu24/	and	download	the	files	for	this	hour.

1.	Congratulations!	You	just	won	£50!	Use	Exchange	to	see	how	much	that’s	worth
in	U.S.	dollars.

2.	Find	and	fix	the	bug	highlighted	in	the	exchange.pl	program	earlier	in	this
lesson.	Run	perl	-w	to	confirm	that	it’s	fixed.

3.	Read	through	the	Perl	FAQ	man	pages.	What	do	the	Perl	FAQ	authors	recommend
as	the	forum	for	free	Perl	advice?

4.	What’s	a	JAPH?

http://www.intuitive.com/tyu24/

Hour	24.	GNOME	and	the	GUI	Environment

Goals	for	This	Hour

In	this	hour,	you	will	learn

	How	to	tweak	the	GNOME	configuration

	About	working	with	the	GNOME	file	manager

	How	to	surf	the	Web	with	Firefox

	About	working	with	Thunderbird	Email

If	you’ve	been	working	with	a	Unix	or	Linux	system	as	you’ve	gone	through	this	book—
and	I	dearly	hope	that	you	have—then	you	might	have	been	curious	about	why	you	have
icons,	menus,	and	all	sorts	of	other	neat	whiz-bang	interface	features	on	your	display	but
we’ve	been	focused	exclusively	on	the	command	line.	The	answer	is	simple:	Many	more
Unix	users	work	through	an	ssh	connection	than	have	a	Unix	or	Linux	system	on	their
desktop.	I	haven’t	had	a	full-blown	Unix	system	(other	than	a	Mac)	on	my	desk	for	at	least
10	years,	but	I	work	with	three	different	Unix	and	Linux	servers	every	single	day	through
the	Internet.

It	wouldn’t	be	fair	or	reasonable	to	completely	ignore	the	graphical	world	of	Unix,
however,	particularly	since	it’s	improved	so	much	in	the	past	few	years.	I	remember	20+
years	ago	when	the	folks	at	the	Massachusetts	Institute	of	Technology	created	a	system
called	Project	Athena	and	built	a	networked	graphical	interface	layer	on	Unix	called	the	X
Window	System.	It	was	a	huge	evolutionary	step,	but	X	still	had	to	go	through	many
iterations	and	evolutionary	hops	before	it	got	to	the	smooth,	well-integrated	and	flexible
graphical	user	interface	(GUI)	we	know	today	as	X11.

One	interesting	feature	of	the	X	architecture	is	that	it	separates	out	the	fundamental
requirements	of	a	graphical	windowing	system	from	the	bells	and	whistles	of	the	interface
particulars	(color,	typeface,	icon	pictures,	etc.).	As	a	result,	dozens	of	different	window
managers	have	come	and	gone	as	the	interface	has	become	more	sophisticated,	more
powerful,	and	more	flexible.	The	two	contenders	for	most	popular	window	manager	on
X11	nowadays	are	the	K	Desktop	Environment,	known	more	informally	as	KDE,	and	the
GNU	Network	Object	Model	Environment,	thankfully	known	more	informally	as
GNOME.

The	trends	are	clear,	however,	and	GNOME	is	going	to	emerge	as	the	winner,	the	de	facto
standard	window	manager	and,	really,	the	user’s	experience	of	the	X11	windowing
environment,	so	that’s	what	I’m	going	to	focus	on	in	this	last	hour.

GNOME	and	its	partner	X11	are	distributed	with	a	wide	variety	of	Unix	and	Linux
operating	systems,	and	almost	all	flavors	of	Unix	now	have	GNOME	as	the	default
window	manager,	too,	notably	including	Oracle’s	Solaris	and	Red	Hat’s	Fedora.	Our
reference	OS	for	this	book,	Solaris	11,	also	ships	with	GNOME	(version	2.30.2)	as	the
default	window	manager.

In	this	hour,	you’ll	take	a	quick	visual	tour	of	the	GNOME	environment,	during	which
you’ll	see	how	to	change	the	display	configuration	and	how	to	work	with	the	menu
system.	You’ll	even	take	a	peek	at	a	few	really	slick	GNOME	applications.

There’s	quite	a	lot	you	can	do	within	the	X11	and	GNOME	environment,	as	you	might
expect,	so	the	focus	of	this	last	hour	is	on	fundamental	operations	rather	than	exhaustive
details.	In	previous	hours,	I’ve	emphasized	the	two	or	three	most	important	command
flags	for	specific	programs,	and	I’ll	be	using	the	same	philosophy	herein	to	determine
what	should	or	shouldn’t	be	shown.	For	just	about	every	GNOME	application,	you	can
press	F1	and	get	help.	Do	so,	and	you’ll	learn	a	lot	more	about	how	things	work.

Tweaking	Your	Inner	GNOME
Since	the	GUI	isn’t	always	a	core	part	of	Unix	distributions,	sometimes	it’s	necessary	to
fiddle	and	prod	to	get	the	configuration	you	want	on	your	computer.	While	the	X11	side	of
things	can	be	a	bit	arcane,	GNOME	is	easy	to	fine-tune	once	you	have	it	running.

Task	24.1:	Fine-tuning	Your	GNOME	Configuration
As	in	any	other	graphical	environment,	half	the	fun	of	working	with	GNOME	is	in
fiddling	and	tuning	its	user	environment	to	meet	your	own	needs	and	desires.	In	the	old
days,	altering	the	appearance	or	default	programs	included	with	GNOME	was	a	complete
nightmare	that	involved	editing	confusing	configuration	files	that	would	break	X11
entirely	if	you	had	a	single	missed	punctuation	mark	or	stray	space.	Fortunately,	those
days	are	long	gone,	and	GNOME	has	just	as	many	graphical	configuration	tools	as	your
favorite	Windows	or	Mac	environment.

Of	course,	you	won’t	need	to	make	dozens	of	adjustments	to	get	it	to	work	just	right,	but
it’s	useful	(and	fun)	to	know	some	of	the	capabilities,	so	let’s	take	a	brief	tour.

1.	The	GNOME	internal	configuration	tools	are	surprisingly	friendly	and	helpful,	and
they	can	be	reached	by	choosing	Desktop	->	Preferences	(or	System	->	Preferences),
as	shown	in	Figure	24.1.

FIGURE	24.1	GNOME	offers	many	different	configuration	options.

I’ll	choose	Appearance	so	you	can	see	how	easy	it	is	to	configure	your	GNOME
desktop.	The	Appearance	Preferences	window	shown	in	Figure	24.2	appears.

FIGURE	24.2	Fine-tuning	the	GNOME	Theme	preferences.

I’ll	select	Sunrise,	Beauty	of	Nature	from	Google’s	license-free	wallpaper	archive,
and	you’ll	see	that	in	the	screenshots	later	in	this	hour.

2.	Another	preference	worth	adjusting	is	the	screensaver,	and	GNOME	includes	lots
and	lots	of	fun	screensavers,	I’m	glad	to	report.	Of	course,	you	probably	don’t
actually	need	a	screensaver	with	modern	screen	and	monitor	design,	but	with	so
many	choices,	why	not?

Tip

You	might	be	presented	with	a	window	that	says	“The	XScreenSaver	daemon
doesn’t	seem	to	be	running	on	display	:0.0.	Launch	it	now?”	when	you	try	to	adjust
your	screensaver	settings.	If	you	get	this	dialog,	click	OK:	This	daemon	is	a	small
application	that	launches	the	screensaver	when	necessary.

Whether	or	not	you	choose	a	graphical	screensaver,	one	very	important	option	to
notice	in	the	configuration	screen	shown	in	Figure	24.3	is	“Lock	Screen	After	X
minutes,”	which	is	a	very	helpful	security	tool,	particularly	if	you’re	in	a	public
environment.	With	this	setting	enabled,	after	the	specified	number	of	idle	minutes,
the	screensaver	launches	and	requires	your	account	password	to	return	to	the
desktop	environment.

FIGURE	24.3	Check	your	Screensaver	Preferences	settings	to	ensure	that	the	system
locks	after	a	few	minutes.	You’ll	thank	me	later,	especially	if	you	work	in	a	computer

lab.

The	Advanced	tab	of	the	Screensaver	Preferences	dialog	also	offers	a	number	of
useful	options,	particularly	for	laptop	Unix	or	Linux	users,	as	shown	in	Figure	24.4.

FIGURE	24.4	Advanced	Screensaver	Preferences	settings	help	you	save	power	and
more!

I	only	enable	power	management	when	I’m	using	a	mobile	system,	but	there’s	really
no	reason	not	to	have	your	system	standby	after	an	hour	or	more	of	inactivity,	just	to
save	power	if	nothing	else.	Here	Standby	is	the	time	until	the	monitor	goes	black,
Suspend	is	the	time	until	the	monitor	itself	goes	into	a	power-saving	mode	(if
supported),	and	Off	is	the	time	until	the	monitor	is	shut	down	completely.

There’s	no	better	demonstration	of	the	power	and	professionalism	of	the	GNOME
interface	than	the	fact	that	everything	you	could	seek	to	customize	can	be	easily	modified
through	a	friendly,	logical,	and	intuitive	graphical	window.	Whether	you	need	to	fine-tune
your	screen	resolution,	adjust	your	mouse	controls,	or	enable	a	fun	new	screensaver,
GNOME	lets	you	make	the	changes	you	need	without	fuss	or	hassle.

Working	with	GNOME	Applications
Adjusting	the	GNOME	interface	itself	is	fun	and	interesting,	but	just	as	Windows	isn’t
much	use	without	some	applications,	GNOME	isn’t	going	to	get	you	very	far	just	on	its
own.	The	key	applications	for	productivity	in	this	realm	are	a	file	system	browser,	a	Web
browser,	and	an	email	application.

Task	24.2:	Working	with	the	GNOME	File	Browser
In	Unix	you	can	do	everything	with	the	command	line,	and	we’ve	certainly	spent	a	lot	of
pages	in	this	book	talking	about	cd,	ls,	and	so	on,	but	there’s	an	easier	way	to	interact
with	the	file	system,	manage	folders,	rename	things,	and	generally	work	with	your	Unix
system.	Enter	the	GNOME	File	Browser.

1.	The	fastest	way	to	launch	the	File	Browser	in	a	known	place	is	to	click	on	the
Places	menu,	as	shown	in	Figure	24.5.

FIGURE	24.5	Where	would	you	like	to	start	exploring	your	file	system	today?

2.	Choose	File	System	as	your	starting	point,	and	a	grid	of	tiny	folder	icons	appears,
along	with	one	or	two	system	files,	as	shown	in	Figure	24.6.

FIGURE	24.6	The	easy	way	to	explore	your	file	system	is	with	the	GNOME	File
Browser.

Notice	at	the	top	of	Figure	24.6	the	menu	that	says	Icon	View.	Click	on	it	and	choose
List	View	instead.	This	gives	you	a	big	change	in	screen,	as	shown	in	Figure	24.7,
and	it’s	probably	easier	to	work	with	if	you’re	becoming	a	hard-core	Unix	expert.

FIGURE	24.7	Super-helpful	list	view	in	the	GNOME	File	Browser.

There’s	a	lot	you	can	do	to	customize	and	make	changes	to	the	file	system	through	the

GNOME	File	Browser.	Experiment	and	click	on	the	various	menus	to	see	what	options	are
available.	You’ll	be	impressed!

Task	24.3:	The	Firefox	Web	Browser
If	I	were	to	keep	track	of	my	time	on	a	per-application	basis,	I’m	willing	to	bet	that	I
spend	more	time	in	my	Web	browser	than	in	any	other	application,	with	the	possible
exception	of	my	email	program.	Even	as	I	write	this	book	and	spend	hours	fine-tuning	my
prose	and	explanations,	I	still	notice	that	I	spend	lots	of	time	surfing	the	Web.

Since	much	of	the	modern	Internet	grew	out	of	the	Unix	platform,	it	should	be	no	surprise
that	Unix,	and	particularly	the	GNOME	and	X11	environment,	offers	support	for	a	number
of	powerful	and	capable	Web	browsers.	It	doesn’t	support	Internet	Explorer	or	Apple
Safari,	but	that’s	okay	because	Firefox	is	a	top-notch	browser,	available	for	all	modern
operating	systems,	and	a	good	fit	for	the	GNOME	environment.

1.	I	don’t	know	about	how	you	surf	the	Web,	but	as	a	prolific	blogger,	I	spend	a	lot	of
time	reading	news	sites	and	other	weblog	sites.	My	favorite	tool	for	reading	online
news	is	Google	News,	at	news.google.com.

Tip

I	don’t	have	space	to	explain	blogging	here,	but	I	write	about	it	in	depth	at
www.askdavetaylor.com.	Also,	if	you’re	curious	about	my	weblogs,	Ask	Dave
Taylor	is	one	of	‘em,	and	I	also	have	a	film	review	site	at
http://www.DaveOnFilm.com	and	a	parenting	blog	at	http://GoFatherhood.com.
You’re	invited	to	check	them	all	out.

You	can	see	the	latest	news	according	to	Google	News	in	Figure	24.8.

http://news.google.com
http://www.askdavetaylor.com
http://www.DaveOnFilm.com
http://GoFatherhood.com

FIGURE	24.8	Firefox	offers	a	powerful	Web	browser.	Here	I’m	viewing	the	latest
news	on	Google	News.

2.	You	can	also	customize	your	Firefox	experience,	including	setting	a	new	home	page
and	changing	fonts,	colors,	languages,	and	much,	much	more.	Choose	Edit	->
Preferences	and	you	too	can	be	a	mad	scientist!

One	of	the	most	powerful	capabilities	of	Firefox	is	its	extensible	plug-in
architecture.	There	are	dozens	of	different	add-on	utilities	that	you	can	download
and	install	to	expand	the	capabilities	of	your	Web	browser—capabilities	that’ll	make
you	shake	your	head	with	sympathy	for	any	poor	Windows	user	who	is	trapped
having	to	use	Microsoft	Internet	Explorer.

You	can	learn	a	lot	about	Firefox—and	download	a	version	of	Firefox	for	Windows	or
Mac	systems—at	the	informative	website	www.getfirefox.com.	If	you	haven’t	yet
experienced	this	alternative	browser,	you	need	to	head	to	this	site	and	download	the
application	for	your	computer	today.	You	won’t	regret	it.

Task	24.4:	Using	Thunderbird	for	Email
Earlier	I	talked	about	the	amount	of	time	I	spend	in	different	applications,	and	I
commented	that	I	spend	lots	of	time	in	my	Web	browser.	That’s	certainly	true,	but	the
majority	of	my	computer	time	goes	to	email,	actually,	and	I	spend	countless	hours—heck,
probably	weeks	each	year—sending	and	answering	email	messages.	If	we	include	the
ceaseless	flow	of	spam,	I	get	more	than	1,000	messages	each	day.	(Thank	goodness	for
some	good	spam-filtering	technologies!)

In	the	Unix	world,	there’s	no	program	more	important	to	me	than	a	good	email	program,
and	while	I	wrote	my	own	email	program	many	years	ago	(the	Elm	Mail	System,	as

http://www.getfirefox.com

discussed	in	Hour	20,	“Using	Email	to	Communicate”),	my	needs	for	an	email	app	have
increased	significantly	since	that	was	in	development,	and	today	I	find	that	there	are	only
a	handful	of	applications	that	have	the	support	I	need	for	multiple	accounts,	multiple
signatures,	HTML	format	email,	attachment	decoding,	IMAP,	and	so	much	more.

Fortunately,	two	of	the	best	applications	are	available	for	the	Unix/Linux/GNOME
environment:	Thunderbird	(which	is	from	the	same	group	that	produces	Mozilla	Firefox)
and	Evolution.	For	this	very	quick	tour,	let’s	just	have	a	brief	look	at	Thunderbird.

1.	The	first	and	most	important	task	with	an	email	program	is	configuring	it	to	work
with	your	Internet	service	provider,	including	incoming	and	outbound	email	servers,
your	own	account	name	and	email	address,	and	so	on.

Thunderbird	includes	a	configuration	wizard	that	makes	this	first	step	easy	to
accomplish,	so	it	shouldn’t	be	more	than	a	minute	or	two	before	you’re	ready	to	go,
with	your	mailbox	incorporated	into	the	program,	too,	if	there’s	anything	in	your
server	mailbox.

I	just	used	my	Google	Gmail	account.	I	easily	entered	the	address	and	password	and
had	Thunderbird	automatically	pick	up	all	my	pending	mail	and	a	list	of	my	folders
and	my	contacts	list.	It	was	remarkably	fast	and	easy.

Once	you	have	everything	configured	and	have	a	few	messages	in	your	mailbox,
you’ll	see	a	mailbox	view	similar	to	that	shown	in	Figure	24.9.

FIGURE	24.9	Thunderbird	is	an	attractive	and	powerful	email	application.

2.	Composing	email	is	straightforward,	too,	with	a	sophisticated	address	book
(Thunderbird	can	automatically	pull	in	configuration	and	addresses	information
from	a	variety	of	different	programs,	including	an	IMAP-based	system	like	Gmail	or

Yahoo	Mail)	and	a	composition	window	that’s	identical	to	its	Windows	and	Mac
email	brethren,	as	illustrated	in	Figure	24.10.

FIGURE	24.10	Composing	a	new	email	message	in	Thunderbird.

3.	Just	like	Firefox,	Thunderbird	also	has	a	zillion	configuration	and	preference
settings	that	you’ll	want	to	explore	and	tweak	to	meet	your	own	preferred	way	of
interacting	with	the	program	and	your	email,	as	shown	in	Figure	24.11.

FIGURE	24.11	Lots	and	lots	of	preferences	to	tweak	and	tune	in	Thunderbird.

And	here’s	a	bonus	productivity	tip:	Change	the	settings	to	have	Thunderbird	check
for	new	email	less	frequently	than	you	prefer.	Having	fewer	interruptions	directly
translates	to	greater	efficiency	and	productivity	in	your	work	day.

Thunderbird	demonstrates	again	the	power	of	the	open	source	community.	This	freely
downloaded	email	application	has	many	of	the	most	important	capabilities	of	commercial
applications	like	Microsoft	Outlook	and	an	interface	just	as	slick	as	Apple	Mail.	It	might
take	a	few	hours	to	really	master	the	program	and	configure	it	exactly	as	you	need,	but
Thunderbird	and	the	other	popular	open	source	Unix	alternative,	Evolution,	are	both
excellent	choices	for	your	day-to-day	electronic	mail	and	communications.

Tip

You	can	learn	more	about	Evolution	at	the	OpenOffice	website
—www.openoffice.org—and	you	can	learn	more	about	Thunderbird	at	the	Mozilla
site—www.mozilla.org.

http://www.openoffice.org
http://www.mozilla.org

Summary
GNOME	and	the	X11	system	form	the	foundation	of	the	twenty-first-century	Unix
experience,	offering	a	graphical	interface	that’s	comparable	in	both	features	and	ease	of
use	to	the	best	that	Microsoft’s	Windows	and	Apple’s	Macintosh	can	offer.	You	can’t	go	to
the	local	computer	store	to	get	GNOME	applications,	but	that’s	because	they’re	probably
already	included	on	your	system	or	available	for	the	cost	of	a	free	download.

Congratulations!
You’ve	gotten	through	the	entire	book,	all	24	hours,	and	you’re	now	a	bona	fide	Unix
expert.	If	you	follow	up	by	using	the	system	as	much	as	possible	for	a	few	weeks,	you’ll
find	that	the	commands,	option	flags,	and	pipes	all	begin	to	come	naturally.	Having	used
Unix	in	various	flavors	for	over	30	years	(it’s	hard	for	me	to	believe,	but	I	first	logged	in
as	a	freshman	in	college,	back	in	1980!),	I	can	assure	you	that	the	reason	Unix	hasn’t
changed	dramatically	is	that	it’s	just	so	darn	powerful,	comprehensive,	and	useful.

The	time	you	spend	learning	to	become	a	Unix	power	user	will	be	time	very	well	spent,
whether	you’re	aiming	at	becoming	an	OS	kernel	hacker	or	simply	want	to	be	able	to
make	the	shared	Web	server	on	which	you	have	an	account	jump	through	hoops.

Thanks	for	spending	your	time	learning	Unix	with	me!	Feel	free	to	pop	over	to	Ask	Dave
Taylor	(www.AskDaveTaylor.com)	if	you	have	any	questions	about	Unix.	And	don’t
forget	to	stop	by	the	official	book	website	for	scripts	you	can	download	and	any	errata
reported	by	eagle-eyed	readers	like	yourself	(www.intuitive.com/tyu24).	Please	always
feel	free	to	drop	me	a	note	if	want	to	let	me	know	if	you	found	this	book	helpful.	You	can
reach	me	at	d1taylor@gmail.com.

Workshop
The	Workshop	summarizes	the	key	terms	you’ve	learned	and	poses	some	questions	about
the	topics	presented	in	this	lesson.

Key	Terms
blog	A	blog	(short	for	weblog)	is	a	type	of	website	that’s	built	around	a	software	tool	that
allows	the	user	to	easily	add	frequent,	date-stamped	entries	and	keep	the	website	up-to-
date.

blogger	A	blogger	is	someone	who	writes	entries	on	a	weblog,	or	blog.

skin	Skin	is	jargon	for	the	necessary	graphics,	icons,	fonts,	and	similar	needed	to	change
the	appearance,	but	not	the	functionality,	of	a	graphical	software	application.

window	manager	A	window	manager	is	a	program	that	controls	the	windows	within	a
graphical	user	interface	environment.	In	the	X11	world,	GNOME	is	a	popular	window
manager.

http://www.AskDaveTaylor.com
http://www.intuitive.com/tyu24
mailto:d1taylor@gmail.com

Exercises
1.	Launch	GNOME	and	get	it	working	on	your	computer	if	you	haven’t	already	done
so.	Now,	change	the	screensaver	so	that	after	15	minutes	of	inactivity,	it	will	prompt
you	for	a	password	before	you	can	use	the	system	again.

2.	Using	Firefox,	head	over	to	Google’s	News	service	and	give	this	way	to	keep	track
of	breaking	news	a	whirl.	While	you’re	at	it,	go	through	all	the	different	Firefox
preferences	screens	and	see	what	you	might	want	to	tweak	for	your	own	tastes.

3.	Configure	and	run	an	email	program	within	GNOME.	Send	me	a	test	message	from
the	Thunderbird	(or	Evolution)	program	to	confirm	that	you	have	everything
working	well.	Don’t	forget	to	say	“hi,”	too,	while	you’re	at	it!

Appendix	A.	Common	Unix	Questions	and	Answers

There	are	hundreds	of	questions	and	answers	buried	in	this	book,	ranging	from	“What’s
the	right	combination	of	flags	to	get	a	specific	command	to	do	something	useful?”	to
“What	commands	work	best	in	a	given	situation?”	Further,	learning	Linux	or	Unix	in	only
24	one-hour	lessons	is	a	difficult	task	to	accomplish,	so	you	wouldn’t	be	alone	if	you’re	a
bit	overwhelmed	and	are	hitting	the	occasional	speedbump	on	your	road	to	becoming	a
true	Unix	guru.

That’s	why	we	included	this	appendix:	so	you	would	have	quick	answers	to	some	of	the
most	common	Unix	questions.	These	questions	are	compiled	both	from	my	experience
working	with	Unix	neophytes	and	the	many	Unix-	and	Linux-related	questions	that	have
been	submitted	to	my	Ask	Dave	Taylor	website,	online	at	www.askdavetaylor.com.

Without	further	ado…

How	do	I	use	find|xargs	with	filenames	that	contain	spaces?
It’s	incredibly	puzzling	trying	to	figure	out	why	you’re	seeing	weird	“file	not	found”
errors	when	you’re	using	the	find	command.	Here’s	a	typical	example:

$	find	./test	-print
./test
./test/Sample	One
./test/Sample	Three	too
./test/Sample-Two

There’s	nothing	unusual	or	confusing	in	this	output,	but	notice	that	two	of	the	files	have
spaces	in	their	names,	so	when	the	find	output	is	fed	to	xargs,	bad	things	happen:
Click	here	to	view	code	image

$	find	./test	-print	|	xargs	ls	-l
ls:	./test/Sample:	No	such	file	or	directory
ls:	./test/Sample:	No	such	file	or	directory
ls:	One:	No	such	file	or	directory
ls:	Three:	No	such	file	or	directory
ls:	too:	No	such	file	or	directory
-rw-r—r—		1	taylor		staff		0	31	May	23:03	./test/Sample-Two

./test:
total	0
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample	One
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample	Three	too
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample-Two

The	problem	is	that	xargs	is	blindly	using	spaces	as	field	delimiters,	meaning	that
./test/Sample	One	is	actually	being	seen	as	./test/Sample	and	One,	neither	of
which	actually	exist	in	the	file	system,	as	shown	in	the	error	message	output.

Fortunately,	the	fix	is	easy:	Use	the	find	predicate	-print0	instead	of	-print	to
instruct	find	to	expect	spaces	in	the	filenames	and	then	make	sure	you	also	use	the	-0
(zero)	flag	to	xargs,	which	tells	it	that	filenames	aren’t	separated	by	spaces	but	rather	by
a	special	control	character:

http://www.askdavetaylor.com

Click	here	to	view	code	image

$	find	./test	-print0	|	xargs	-0	ls	-l
-rw-r—r—		1	taylor		staff		0	31	May	23:03	./test/Sample	One
-rw-r—r—		1	taylor		staff		0	31	May	23:03	./test/Sample	Three	too
-rw-r—r—		1	taylor		staff		0	31	May	23:03	./test/Sample-Two

./test:
total	0
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample	One
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample	Three	too
-rw-r—r—		1	taylor		staff		0	31	May	23:03	Sample-Two

How	do	I	find	large	files	on	my	system?
Your	file	system	is	starting	to	fill	up,	and	you	really	want	to	quickly	identify	the	10	or	20
largest	files	on	the	system	so	you	can	trim	them,	delete	them,	or	whatever.	This	is	a	job	for
the	find	command	again,	this	time	using	a	slight	variation	of	what’s	shown	in	the
previous	question.

You	can	search	the	entire	file	system	by	using	/	as	the	file	argument,	or	you	can	search
your	own	home	directory	by	using	cd	to	move	into	your	home	directory	and	then	using
the	following:
Click	here	to	view	code	image

$	find	.	-type	f	-print0	|	xargs	-0	ls	-s	|	sort	-rn	|	head	-5
227064	./Audio/TheE-MythRevisitedUn_mp332.aa
217056	./Audio/Parent	Night.aif
163488	./Audio/Older	Parent	Night.aif
114384	./Audio/Rahima	Keynote.aif
104608	./Audio/African	Singing.aif

Notice	that	we’ve	constrained	the	find	to	only	match	files,	not	directories,	by	using	the	-
type	f	predicate,	and	then	notice	that	instead	of	ls	-l	we	use	the	more	succinct	(and
more	easily	sorted	numerically)	ls	-s	instead.

Finding	the	five	largest	files	on	the	entire	file	system	would	require	this	invocation:
Click	here	to	view	code	image

find	/	-type	f	-print0	|	xargs	-0	ls	-s	|	sort	-rn	|	head	-5

Remember	that	this’ll	take	rather	a	while	to	run:	It’s	probably	going	to	list	and	sort	more
than	100,000	files	on	a	typical	Unix	or	Linux	system.

How	do	I	run	a	program	on	a	schedule?
There	are	two	different	utilities	in	Unix	that	let	you	schedule	execution	of	a	program	some
time	in	the	future.

The	at	Command
If	you	only	want	to	do	it	once	in	the	future,	then	use	the	at	command:
Click	here	to	view	code	image

$	at
usage:	at	[-q	x]	[-f	file]	[-m]	time
							at	-c	job	[job	…]

							at	[-f	file]	-t	[[CC]YY]MMDDhhmm[.SS]
							at	-r	job	[job	…]
							at	-l	-q	queuename
							at	-l	[job	…]
							atq	[-q	x]	[-v]
							atrm	job	[job	…]
							batch	[-f	file]	[-m]

For	example,	to	run	a	script	called	fixperms	tomorrow	at	3	a.m.,	you	can	use	the
command

at	3am	tomorrow	fixperms

The	man	page	has	more	information	about	this	slick	command.

cron

The	other	possibility,	and	the	scheduling	program	that’s	used	quite	a	bit	more	often	on
Unix	systems,	is	cron,	known	also	as	crontab	for	the	name	of	the	file	it	executes.
Every	60	seconds	on	your	Unix	system,	the	OS	has	the	cron	daemon	check	to	see	if	any
new	commands	need	to	be	invoked.

Unfortunately,	writing	crontab	entries	can	be	a	wee	bit	tricky,	but	here’s	a	prototypical
entry	in	a	user’s	crontab,	added	by	invoking	the	command	crontab	-e:
Click	here	to	view	code	image

51	7	*	*	1-5												$TRIVIAHOME/mailit	-h	-i	-a

The	fields	in	a	crontab	entry	are,	in	order,	minute,	hour,	day	of	month,	month,	day	of
week,	command	with	optional	flags	or	parameters.	Asterisks	in	fields	indicate	that	all
possible	values	of	that	field	are	matched,	so	this	crontab	entry	should	be	read	as	“at
7:15	a.m.	on	Monday	through	Friday	(1-5	in	field	5)	of	any	day	of	the	month	or	month	of
the	year,	run	the	mailit	program	with	the	-h,	-i,	and	-a	flags.”

After	having	worked	with	Unix	for	many	years,	I	find	the	crontab	facility	invaluable
and	typically	have	dozens	of	different	scripts,	programs,	and	utilities	scheduled	to	run	at
different	times	of	the	day,	week,	month,	or	year.	Heck,	you	can	even	use	it	for	critical
birthday	reminders	if	you	need	to!

Tip

Mac	systems	and	all	Linux	systems	also	have	cron,	which	means	you	can	easily
have	recurring	programs	or	scripts	on	those	systems,	too.

Learn	more	at	man	crontab.

How	do	I	fix	file	permission	problems?
If	you’re	seeing	file	permission	problems,	almost	always	the	chmod	command	will	fix	the
issue,	but	remember	that	sometimes	it	can	be	the	permission	of	the	directory	above	the
current	directory	that’s	causing	trouble.	Use	ls	-l	to	ensure	that	your	permissions	are	as
you	think	and	then	use	id	to	ensure	that	you’re	logged	in	to	the	account	you	think	you	are
logged	into.	If	needed,	use	chmod	to	change	permissions	so	you	have	read,	write,	or
execute	permission,	as	needed.

How	do	I	list	files	that	don’t	match	a	given	pattern?
This	is	an	interesting	question	because	it’s	easy	to	list	files	that	match	a	given	pattern	by
using	grep,	right?	To	match	all	files	that	contain	the	pattern	“Bill	Gates”,	for
example,	you’d	use	the	following,	which	would	list	the	filenames	that	match	the	specified
pattern:

grep	-li	“Bill	Gates”	*

To	reverse	the	logic	of	this	search,	use	the	-v	flag	to	grep:
grep	-vli	“Bill	Gates”	*

This	will	list	the	names	of	all	files	that	do	not	contain	the	specified	pattern.	Sorry,	Bill!

How	do	I	view	lines	X–Y	in	a	text	file?
There	are	a	bunch	of	ways	you	can	pull	out	a	snippet	of	content	from	a	text	file.	The	most
common,	though	not	the	most	efficient,	is	to	use	a	combination	of	head	and	tail	to
chop	out	the	desired	piece.	If	you	wanted	lines	170–180,	for	example,	use	this:
Click	here	to	view	code	image

cat	-n	infile	|	head	-180	|	tail	-10

If	you	don’t	care	about	line	numbers,	though,	there’s	a	much	more	efficient	solution,	using
the	handy	sed	command:
Click	here	to	view	code	image

cat	-n	infile	|	sed	-n	‘170,180p’

This	is	quickly	and	easily	done.	In	fact,	if	you	don’t	want	the	line	numbers,	you	can	be
even	more	succinct:

sed	-n	‘170,180p’	infile

By	the	way,	the	-n	flag	to	sed	stops	its	default	behavior	of	echoing	every	line	it	sees	to
standard	output	(for	example,	the	screen).

How	do	I	add	a	new	directory	to	my	PATH?
If	you’re	running	bash,	sh,	or	a	variant	shell,	then	you	can	add	a	new	directory	to	your
PATH,	where	directories	are	colon	separated,	by	doing	this:
Click	here	to	view	code	image

export	PATH=”${PATH}:newdir”

For	example,	to	add	/usr	/X11/bin	to	your	path,	use	this:
Click	here	to	view	code	image

export	PATH=”${PATH}:/usr/X11/bin”

You	can	also	put	the	new	directory	in	the	front	of	the	PATH	by	changing	the	order	of	the
fields:
Click	here	to	view	code	image

export	PATH=”/usr/X11/bin:${PATH}”

If	you’re	in	C	shell	or	a	variant,	then	your	syntax	is	slightly	different:
Click	here	to	view	code	image

setenv	PATH	“${PATH}:/usr/X11/bin”

In	either	case,	if	you	want	the	change	to	be	permanent,	go	into	your	~/.login	or
~/.profile	(csh	and	bash,	respectively)	and	either	tweak	the	existing	PATH
specification	or	add	the	appropriate	line,	as	shown	above.

For	example,	here’s	what’s	in	my	own	~/.profile:
Click	here	to	view	code	image

export	PATH=”${PATH}:/sw/bin:/usr/X11R6/bin:/Users/taylor/bin”;

How	do	I	recover	deleted	files?
Ah,	well,	you	can’t	recover	deleted	files.	Unix	doesn’t	have	that	sort	of	useful	capability.
That’s	why	you	have	to	take	extra	care	when	deleting	files!

Also	make	sure	that	you’re	using	at	least	a	rudimentary	backup	strategy	and	saving
everything	on	your	system	once	a	week,	if	not	more	frequently.

How	can	I	set	my	shell	to	protect	me	from	accidental	deletions?
The	key	to	having	some	protection	from	accidentally	overwriting	files	is	to	use	the
noclobber	setting	to	your	shell	when	you	log	in.	This	is	typically	done	by	including
set	noclobber	in	your	.profile	or	.login.

Here’s	what	can	happen	if	you	don’t	have	it	set:
$	touch	Bcareful
$	ls	>	Bcareful
$

Without	noclobber	set,	I’ve	just	overwritten	an	existing	file!	Once	it’s	specified,
however,	things	work	a	bit	better:
Click	here	to	view	code	image

$	ls	>	Bcareful
bash:	Bcareful:	cannot	overwrite	existing	file

It’s	still	not	perfect,	but	it’s	helpful	nonetheless.

What	do	the	shell	errors	arg	list	too	long	and	broken	pipe
mean?
With	a	broken	pipe	error,	you	have	lots	and	lots	of	data	being	sent	from	one	command
to	the	next,	but	the	latter	command	stops	accepting	information	after	a	certain	amount	of
time.	A	typical	example	would	be	piping	thousands	of	lines	of	output	to	a	command	like
tail	-5,	which	stops	reading	its	input	after	five	lines	are	displayed.	It’s	typically
nothing	to	worry	about.

The	other	error,	arg	list	too	long,	happens	when	you	have	lots	of	files	in	a
directory,	for	example,	and	using	*	as	a	generic	wildcard	produces	an	expanded	command
line	that’s	longer	than	the	shell	can	deal	with.

This	is	an	error	to	be	concerned	about.	If	you	see	arg	list	too	long,	you	need	to
figure	out	what’s	gone	wrong	and	fix	it	to	ensure	that	the	commands	or	scripts	are	working
as	you	expect.	A	typical	solution	would	be	to	use	the	patterns	[a-m]*	and	[n-z]*	to
split	the	wildcard	match	into	two	different	sets	of	filenames.

Why	use	ssh	instead	of	telnet?	Or	sftp	instead	of	ftp?
How	much	would	it	bother	you	if	someone	else	broke	into	your	account	and	rummaged
around,	copied	and	decoded	your	password	file,	or	perhaps	defaced	your	website?
Probably	a	lot.	So	do	yourself	a	favor	and	make	sure	to	always	use	the	secure,	encrypted
remote	login	program	ssh	rather	than	telnet	whenever	possible,	and	if	you	need	to
transfer	files	between	two	systems,	always	try	to	use	sftp	rather	than	ftp	for	exactly	the
same	reasons.

Oh,	and	don’t	forget,	this	goes	double	with	public	networks,	like	an	open	Wi-Fi	hotspot!

Summary
There	ya	go.	Frequently	asked	Unix	questions.	Are	they	the	right	questions	and	answers
based	on	your	own	experience	learning	Unix?	Send	me	a	message	and	let	me	know!

Index

Symbols
[]	(square	brackets),	150

(command,	238

)	command,	238

:	!	command,	238

!	command,	255

!!	command,	238,	286

!	$	command,	286

!	*	command,	286

!	}	command,	238

!	escape-to-Unix	command,	232-237

!	n	command,	286

!	ptrn	command,	286

$	(dollar	sign),	314

$	command,	205

*	(asterisk),	125

+	(plus)	sign,	220

,	(comma),	222

.	(dot),	49

/	(slash),	42,	46

:	(colons),	46,	170,	214-219

:ab	a	bcd	command,	238

:ab	command,	238

:map	a	bcd	command,	238

:map	command,	238

:set	nonumber	command,	238

:set	number	command,	238

:s/old/new/	command,	238

:s/old/new/g	command,	238

@	(at	sign),	42

\{	command,	238

^	(carat),	159

^a^b	command,	286

^b	command,	205

^d	command,	205

^f	command,	206

^g	command,	238

^u	command,	206

^v	command,	238

|	(pipe),	129

0	command,	206

-1	flag,	64,	70,	72

A
A	command,	257

a	command,	205

-A	flag,	379

-a	flag,	64,	303,	379

absolute	filenames,	47-56

access

!	escape-to-Unix,	232-237

concentric	access	models,	94

CUPS	(Common	Unix	Printing	System),	349

adding.	See	inserting

Aho,	Alfred,	169

aliases

command	shells,	286-290

commands,	264,	327

creating,	63

Alt	key,	242

American	Telephone	and	Telegraph	(AT&T),	5

anonymous	archives,	FTP,	410-413

applications,	GNOME,	445-452

applying

cut	command,	169-171

find	command,	420-422

head	program,	128-130

PATH	variables,	337-339

permissions,	83-104

archives

anonymous,	FTP,	410-413

compress	command,	375-376

cpio	command,	377-379

Linux	package	managers,	381-382

tar	commands,	366-372

zip	command,	372-375

arg	list	too	long	error,	460

arithmetic,	programming	shells,	316-317

asterisk	(*),	125

at	command,	457

at	sign	(@),	42

availability

of	command	shells,	264-266

disk	space,	checking,	77-79

The	AWK	Programming	Language,	169

awk	programs,	163-169

commands,	304,	341

navigating,	164

B
B	command,	205,	257

b	command,	205

background	command.	See	bg	(background)	command

Backspace	key,	182,	205

backups,	379-381.	See	also	archives

bash	(Bourne	Again	shell),	263,	265

configuration	files,	navigating,	274-277

history	command,	navigating,	280-281

shells,	programming,	326-331

Bash	shells,	4

.bashrc	file,	274

Bell	Labs,	5

Berkley	Mail,	386.	See	also	mailx	command

bg	(background)	command,	299-302

bin	directory,	42

Bourne,	Steven,	264

Bourne	Again	shell.	See	bash

Bourne	shell.	See	sh

broken	pipe	error,	460

building	mylocate	scripts,	334-337

C
C,	6

C	command,	225,	238,	257

c	command,	225,	238

C	shell.	See	csh

-C	flag,	64

-c	flag,	171,	371

C-a	command,	248

calculating	strings,	numeric	permissions,	98-100

cancel	command,	360

carat	(^),	159

case	command,	321

cat	program,	131-133

c-b	command,	248

cd	command,	54-56

C-d	command,	252,	257

C-e	command,	248

c-f	command,	248

CGI	(Common	Gateway	Interface),	438

change	command,	225-232

characters

emacs	editors,	deleting,	249-252

separator	(directories),	45-46

sets,	172

chmod	command,	458

directories,	modifying,	92-94

files,	modifying,	94-98

numeric	mode,	98

C-k	command,	252

clients,	PuTTY,	406

closing	vi	editors,	181

C-n	command,	248,	257

col	command,	355-359

colons	(:),	46,	170,	214-219

com	domain,	395

combining	flags,	64-65

comma	(,),	222

command	line

email,	sending	from,	391-395

pipes,	163

cut	command,	169-171

inline	editing,	171-175

sed	command,	172-175

tr	command,	172-175

user	interfaces,	4.	See	also	shells

command	prompts,	navigating,	30-35

commands,	4,	10

(,	238

),	238

:	!,	238

:	ab	a	bcd,	238

!,	255

!!,	238,	286

!	$,	286

!	*,	286

!	},	238

!	escape-to-Unix,	232-237

!	n,	286

!	ptrn,	286

$,	314

:ab,	238

:map,	238

:map	a	bcd,	238

:s/old/new/,	238

:s/old/new/g,	238

:set	nonumber,	238

:set	number,	238

^a^b,	286

^b,	205

^d,	205

^f,	206

^g,	238

^u,	206

^v,	238

0,	206

A,	257

a,	205

at,	457

aliases,	264,	327

awk,	304,	341

B,	205,	257

b,	205

bg	(background),	299-302

C,	225,	238,	257

c,	225,	238

C-a,	248

cancel,	360

case,	321

c-b,	248

cd,	54-56

C-d,	252,	257

C-e,	248

c-f,	248

change,	225-232

chmod,	458

modifying	directories,	92-94

numeric	mode,	98

C-k,	252

C-n,	248,	257

col,	355-359

colon	(:),	214-219

compress,	375-376

cp,	110-112

C-p,	248

cpio,	377-379

cron,	457

curl,	422-425

cut,	169-171,	268

C-v,	248

C-w,	257

C-x	[,	248

C-x],	248

C-x	b,	257

C-x	Delete,	252

C-x	u,	252

D,	205

d,	197,	205

date,	35,	380

Delete,	252

delete	msgs,	386

df,	77-79,	340

DIR,	60

du	(disk	usage),	75-77

e,	238

echo,	148,	284

egrep,	158-160

emacs	editors,	258-261

env,	52-53,	271

-exec,	419

exit,	26

export,	275

expr,	316,	318

F,	257

fg	(foreground),	295,	299-302

file,	123-126,	323

identifying	file	types,	123-126

navigating	Unix	directories,	126-128

find,	334,	455-456

applying,	420-422

navigating,	415-420

flags,	73

for,	324

ftp,	461

G,	206

GET,	422-425

grep,	151-154,	334,	420,	458

h,	206

headers,	386,	389

help,	387

history

navigating,	280-281

shortcuts,	281-286

I,	257

i,	189,	206

if,	321

j,	206

K,	257

k,	206

kill,	307-310

L,	257

l,	206

lp,	351

lpadmin,	348

lpinfo,	355

lpr,	351

lprm,	360

lpstat,	348-349,	360

ls,	41,	52,	60-67

file	type	indicators,	84

flags,	67-70

listing	directory	trees,	68-69

long	listing	formats,	70-74

modifying	sorting,	67-68

ls	-1,	104

lynx,	422-425

M,	257

M-<,	248

M->,	248

M-a,	248

mail	address,	387

mailx,	386-391

M-b,	248

M-d,	252

M-Delete,	252

M-e,	248

M-f,	248

M-k,	252

mkdir,	108-110

more	program,	136

motion.	See	motion	commands

mv

moving	files,	112-113

renaming	files,	113-114

M-v,	248

N,	257

n,	206,	255

nG,	206

noclobber,	460

O,	192,	206

o,	192,	206

passwd,	27

pattern,	210

Perl	programming,	438

pr,	355-359

print	msgs,	387

printenv,	271

ps,	302-307

pwd,	54

python,	34

q,	255

query-replace,	256

quit,	181,	387

R,	225,	238

r,	225,	238

read,	324

:redo,	198

replace,	225-232

reply,	387

rm,	116,	118-120

rmdir,	114-115

S,	257

save,	389

save	folder,	387

sed,	172-175,	459

sftp,	407,	461

sleep,	305

sort,	15

spell,	160

ssh,	404,	461

T,	257

tar,	366-372,	380

telnet,	403,	461

test,	318,	338

time,	35

touch,	74-75

tr,	172-175

trap,	342

tree,	69

U,	206

u,	197,	206

umask,	100-103

undelete	msgs,	387

unzip,	373

users,	33

V,	257

vi	editors,	205,	238.	See	also	vi	editors

W,	206,	257

w,	34-35,	206

whatis,	14

who,	185,	356

whoami,	31-33

x,	206

xargs,	420,	455-456

y,	255

zip,	372-375

command	shells,	263

aliases,	286-288

availability	of,	264-266

bash	(Bourne	Again	shell)	configuration	files,	274-277

custom	prompts,	configuring,	290-292

history	command

navigating,	280-281

shortcuts,	281-286

identifying,	267-268

navigating,	271-274

power	aliases,	288-290

selecting,	269-271

C	shell.	See	csh

Common	Gateway	Interface.	See	CGI

Common	Unix	Printing	System.	See	CUPS

comparison	functions,	programming	shells,	318-321

compress	command,	375-376

compression,	79-81

unzip	command,	373

zip	command,	372-375

Computer	Science	Research	Group,	5

concentric	access	models,	94

conditional	expressions,	programming	shells,	321-324

configuring

backups,	379-381

configuration	files,	274-277

CUPS	(Common	Unix	Printing	System),	349

custom	prompts,	command	shells,	290-292

default	variables	at	login,	271

GNOME	(GNU	Network	Object	Model	Environment),	442-445

permissions

directories,	88-91

files,	84-88

connecting

remote	Internet	connections,	403-405

third-party	SSH	connections,	405-406

control

flow,	326

jobs,	295.	See	also	jobs

Control	key,	185

copying.	See	also	moving

directories,	111

files,	110-112

SFTP	(Secure	FTP),	407-410

counting

files,	337-339

words,	143-144

cp	command,	110-112

C-p	command,	248

cpio	command,	377-379

cron	command,	457

csh	(C	shell),	4,	263,	280

CUPS	(Common	Unix	Printing	System),	349-351

curl	command,	422-425

curses	package,	181

cursor-control	keys	(vi	editors),	182-185

custom	prompts,	configuring	command	shells,	290-292

cut	command,	169-171,	268

C-v	command,	248

C-w	command,	257

C-x	b	command,	257

C-x	[command,	248

C-x]	command,	248

C-x	Delete	command,	252

C-x	u	command,	252

cycles,	edit-compile-run,	283

D
D	command,	205

d	command,	197,	205

-d	flag,	319,	379

-d	(debug)	flag,	438

date	command,	35,	380

default	variables,	configuring	login,	271

defaults,	formatting	permissions,	100-103,	109

Delete	command,	252

delete	msgs	command,	386

deleting.	See	also	removing

characters,	emacs	editors,	249-252

files,	114-115

recovering	files,	459

text,	vi	editors,	197-205

df	command,	77-79,	340

dicing	with	cut	commands,	169-171

Digital	Equipment	Corporation	(DEC),	5

DIR	command,	60

directories,	42.	See	also	files;	folders

adding,	459

bin,	42

copying,	111

lib,	43

lists,	65-67

lost+found,	43

mkdir	command,	formatting,	108-110

mnt,	44

modifying,	107

moving,	54-56

navigating,	126-128

net,	45

permissions

configuring,	88-91

formatting	defaults,	100-103

modifying	with	chmod	command,	92-94

present	working,	54

removing,	115

renaming,	113

separator	characters,	45-46

special,	51-52

sys,	44

tmp,	44

trees,	68-69

usr,	44

disk	space

checking	available,	77-79

scripts,	342

utilization,	339-342

disk	usage,	managing,	59

documentation,	Perl	programming,	435-437

dollar	sign	($),	314

domains,	395

dot	(.),	49

dot-dot	notation,	51,	66

-dprinter	flag,	352

du	(disk	usage)	command,	75-77

E
e	command,	238

-E	flag,	379

-e	flag,	303,	320

echo	command,	148,	284

echo	statements,	54

edit-compile-run	cycle,	283

editing

command-line	pipes,	171-175

emacs	editors,	178,	241

deleting	characters,	249-252

file	commands,	258-261

Help	System	commands,	257

inserting	text,	242-244

navigating	files,	244-248

searching/replacing,	253-256

starting,	242

file	permissions,	85

vi	editors,	177

!	escape-to-Unix	command,	232-237

change	command,	225-232

colon	commands,	214-219

commands,	205

deleting	text,	197-205

inserting	text,	188-196

moving	pages/words,	185-188

navigating,	182-185

optimizing,	209

quitting,	181

replace	command,	225-232

searching	files,	210-214

searching/replacing,	222-225

starting,	178-182,	219-222

edu	domain,	395

-ef	flag,	320

egrep	command,	158-160

elements

of	directory	permissions,	72

of	permission	strings,	71

elif	keyword,	322

else	keyword,	321

emacs	editors,	178,	241

characters,	deleting,	249-252

files

commands,	258-261

navigating,	244-248

Help	System	commands,	257

motion	commands,	248

searching/replacing,	253-256

starting,	242

text,	inserting,	242-244

email,	385

command-line,	sending	from,	391-395

globally,	sending,	395-400

reading,	386-391

Thunderbird	(GNOME),	449-452

entering

commands,	136

passwords,	25

env	command,	52-53,	271

environments

commands	shells,	271-274

GNOME	(GNU	Network	Object	Model	Environment),	441-442

applications,	445-452

configuring,	442-445

PRINTER,	352

variables,	53

viewing,	52-53

-eq	flag,	318

errors.	See	also	troubleshooting

arg	list	too	long,	460

broken	pipe,	460

Escape	(Esc)	key,	178,	206

Exchange	program,	428-432

-exec	command,	419

execute	permissions

directories,	89

files,	84.	See	also	permissions

exit	command,	26

EXIT	signal,	342

export	command,	275

expr	command,	316,	318

expressions

conditional,	programming	shells,	321-324

looping,	324-326

regular

egrep	command,	158

formatting,	154-157

F
F	command,	257

-F	flag,	64

-f	flag,	320,	355,	371

fg	(foreground)	command,	295,	299-302

File	Browser	(GNOME),	446-447

file	systems

/	(slash),	42

bin	directory,	42

cd	command,	54-56

directory	separator	characters,	45-46

filenames,	47-56

hidden	files	in	Unix,	48-51

hierarchies,	39-45

HOME	variable,	53

lib	directory,	43

lost+found	directory,	43

mnt	directory,	44

navigating,	39

PATH	variable,	53

pwd	command,	54

special	directories,	51-52

sys	directory,	44

test	flags,	319

Thompson,	6

tmp	directory,	44

Unix,	41-42

usr	directory,	44

viewing,	60-67

filenames,	47-56

mylocate	script,	334

suffixes,	63

wildcards,	148-151

files,	123

.	(dot),	49

.bashrc,	274

commands,	123-126,	323

emacs	editors,	258-261

file	types,	identifying,	123-126

Unix	directories,	navigating,	126-128

compress	command,	375-376

compression,	79-81

copying,	110-112

counting,	337-339

emacs	editors,	navigating,	244-248

grep	command,	151-154

hidden	files	in	Unix,	48-51

hierarchies,	47

Internet,	searching,	422-425

lines,	viewing,	458-459

LISTS,	70

lists,	59,	458

modifying,	107

moving,	112-113

naming,	50

overwriting,	113

permissions,	83

applying,	83-104

configuring,	84-88

directory	settings,	88-91

formatting	defaults,	100-103

identifying	owners,	103-104

modifying	with	chmod	command,	94-98

troubleshooting,	458

printing,	351-355

.profile,	274

recovering,	459

redirecting,	142-143

removing,	114-115

renaming,	113-114

searching,	456-457

SFTP	(Secure	FTP),	407-410

sorting,	67-68

touch	command,	formatting,	74-75

types,	indicators,	84

Unix,	44

vi	editors,	searching,	210-214

viewing,	60-67,	123-138

applying	head	program,	128-130

cat	program,	131-133

identifying	file	types,	123-126

more	program,	133-138

navigating	directories,	126-128

tail	program,	130-131

vmunix,	44

filters,	141,	144-148

find	command,	334,	455-456

applying,	420-422

navigating,	415-420

Firefox	(GNOME),	448-449

flags

-A,	379

-a,	303,	379

-c,	171,	371

combining,	64-65

commands,	73

-d,	319,	379

-d	(debug),	438

-dprinter,	352

-E,	379

-e,	303,	320

-ef,	320

-eq,	318

-f,	320,	355,	371

-g,	320

-ge,	318

grep	command,	152

-gt,	318

-H,	371

-h,	352,	371

-hheader,	355

-I,	379

-i,	352,	379

-j,	371

-L,	319,	352,	379

-l,	303

-le,	318

lp	command,	352

lpr	command,	352

ls	command,	63,	67-70

-lt,	318

-m,	355,	371

+n,	355

-n,	355

-ne,	318

-nt,	320

-O,	379

-o,	379

-ot,	320

-p,	371

-Pn,	352

-Pprinter,	352

pr	command,	355

-R,	215,	352,	379

-r,	320

-s,	320

sort	command,	145

-t,	371,	379

-ttitle,	352

-t	xx,	303

-u,	303

-v,	371,	379

-w,	303,	306

-wn,	355

-X,	371

-x,	303,	306

-Z,	371

-z,	371

flow	control,	326

folders.	See	also	files

/	(slash),	42

opening,	8

for	command,	324

foreground	command.	See	fg	(foreground)	command

formatting

aliases,	63

default	permissions,	100-103,	109

directories,	mkdir	command,	108-110

files,	touch	command,	74-75

jobs,	printing,	355-359

long	listing	formats,	70-74

ls	commands,	long	listing	formats,	70

passwords,	28-30

regular	expressions,	154-157

Free	Software	Foundation,	265

FreeBSD,	265

FTP	(File	transfer	Protocol),	403,	410-413

ftp	command,	461

functions

bash	(Bourne	Again	shell),	326-331

comparison,	programming	shells,	318-321

showdirectory,	330

G
G	command,	206

-g	flag,	320

games,	hi-low,	342-345

-ge	flag,	318

General	Electric	(GE),	5

GET	command,	422-425

GNOME	(GNU	Network	Object	Model	Environment),	4,	8,	225,	441-442

applications,	445-452

configuring,	442-445

GNU	Network	Object	Model	Environment.	See	GNOME

GNU	Project,	265

graphical	interfaces,	4,	8

graphical	user	interfaces.	See	GUIs

grep	command,	151-154,	334,	420,	458

groups,	permissions,	103-104

-gt	flag,	318

GUIs	(graphical	user	interfaces),	441-442

gzip	program,	79-81

H
h	command,	206

-H	flag,	371

-h	flag,	352,	371

head	program,	128-130

headers	command,	386,	389

help,	9

commands,	386

man	pages,	9-16

Unix	online	reference,	9-16

Help	System	commands,	emacs	editors,	257

-hheader	flag,	355

hidden	files	in	Unix,	48-51

hierarchies

file	systems,	39-45

files,	47

hi-low	game,	342-345

history	command

navigating,	280-281

shortcuts,	281-286

history	of	Unix,	5-7

HOME	variable,	53,	271

I
I	command,	257

i	command,	189,	206

-I	flag,	379

-i	flag,	352,	379

identifying	command	shells,	267-268

if	command,	321

if-then	statements,	322

if-then-else	statements,	323

indicators,	file	types,	84

inline	editing,	command-line	pipes,	171-175

inserting

directories,	459

text

emacs	editors,	242-244

vi	editors,	188-196

insertion	commands	(vi	editors),	195-196

installing	CUPS	(Common	Unix	Printing	System),	349

interfaces,	4.	See	also	shells

CGI	(Common	Gateway	Interface),	438

CUPS	(Common	Unix	Printing	System),	349-351

File	Browser	(GNOME),	446-447

Firefox	(GNOME),	448-449

Gnome,	225

Thunderbird	(GNOME)	for	email,	449-452

Internet,	searching	files,	422-425

J
j	command,	206

-j	flag,	371

jobs

control,	295

foregrounds/backgrounds,	299-302

printing,	formatting,	355-359

processes

stopping,	307-310

viewing,	302-307

stopping,	295-298

Joy,	Bill,	178,	264

K
K	command,	257

k	command,	206

KDE,	4,	8

Kernighan,	Brian,	5,	169

keys

Alt,	242

Backspace,	182,	205

Control,	185

cursor-control	keys	(vi	editors),	182-185

Escape	(Ecs),	178,	206

Meta,	242

Return,	182,	206

keywords

elif,	322

else,	321

kill	command,	307-310

Korn,	David,	264

Korn	shells.	See	ksh

ksh	(Korn	shells),	264,	280-281

L
L	command,	257

l	command,	206

-L	flag,	319,	352,	379

-l	flag,	64,	303

languages,	C,	6

-le	flag,	318

lib	directory,	43

lines

counting,	143-144

searching/replacing,	222

viewing,	130-131,	458-459

links,	symbolic,	63

Linux,	4

package	managers,	381-382

lists

directories,	65-67

files,	59,	458

ordered,	52

trees,	68-69

LISTS	file,	70

local	printers,	searching,	348-349

locations,	listing,	65-67

logging	in/out,	23-27,	271

LOGNAME	variable,	53,	273

long	listing	formats,	70,	71-74

loops

expressions,	324-326

while	loops,	326,	344

lost+found	directory,	43

lp	command,	351

lpadmin	command,	348

lpinfo	command,	355

lpr	command,	351

lprm	command,	360

lpstat	command,	348-349,	360

ls	-1	command,	104

ls	command,	41,	52,	60-67

directory	trees,	listing,	68-69

file	type	indicators,	84

long	listing	formats,	70-74

sorting,	modifying,	67-68

special	flags,	67-70

-lt	flag,	318

lynx	command,	422-425

M
M	command,	257

-m	flag,	64,	355,	371

M-a	command,	248

Macintosh	files

copying,	110

removing,	118

renaming,	114

viewing	file	types,	123

mail	address	command,	387

MAIL	variable,	53,	273

mailx	command,	386-391

man	pages,	9-16

mkdir,	11-13

navigating,	10

managing

disk	usage,	59

Linux	package	managers,	381-382

M-b	command,	248

M-<	command,	248

M->	command,	248

M-d	command,	252

M-Delete	command,	252

M-e	command,	248

messages,	viewing,	387.	See	also	email

Meta	key,	242

M-f	command,	248

mil	domain,	395

M-k	command,	252

mkdir	command,	108-110

mkdir	man	page,	11-13

mnt	directory,	44

models,	concentric	access,	94

modifying

chmod	command

directories,	92-94

files,	94-98

directories,	107

files,	107

passwords,	27-28

shells,	variables,	314

sorting,	67-68

more	program,	133-138,	178

motion	commands

emacs	editors,	248

vi	editors,	195-196

moving

directories,	54-56

files,	112-113

pages/words,	185-188

multiuser	systems,	7-8

M-v	command,	248

mv	command,	files

moving,	112-113

renaming,	113-114

mylocate	script,	334

building,	334-337

disk	space	utilization,	339-342

hi-low	game,	342-345

PATH	variables,	applying,	337-339

N
N	command,	257

n	command,	206,	255

+n	flag,	355

-n	flag,	355

+n	notation,	134

naming

directories,	113

file	systems,	48-51

filenames,	47-56

files,	50

wildcards,	148-151

navigating

awk	programs,	164

bash	(Bourne	Again	shell)	configuration	files,	274-277

commands

compress,	375-376

cpio,	377-379

prompts,	30-35

shells,	271-274

directories,	126-128

file	systems,	39

bin	directory,	42

cd	command,	54-56

directory	separator	characters,	45-46

env	command,	52-53

filenames,	47-56

hierarchies,	39-45

HOME	variable,	53

lib	directory,	43

lost+found	directory,	43

mnt	directory,	44

PATH	variable,	53

pwd	command,	54

special	directories,	51-52

sys	directory,	44

tmp	directory,	44

Unix,	41-42

usr	directory,	44

files,	emacs	editors,	244-248

find	command,	415-420

history	command,	280-281

man	pages,	10

tar	commands,	366-372

unzip	command,	373

vi	editors,	182-185

zip	command,	372-375

-ne	flag,	318

net	directory,	45

net	domain,	395

nG	command,	206

noclobber	command,	460

notation

dot-dot,	51

egrep	command,	158

+n,	134

regular	expressions,	154

symbolic,	92

-nt	flag,	320

number	of	lines,	viewing,	130-131

numeric	comparisons,	318

numeric	permissions,	calculating	strings,	98-100

O
O	command,	192,	206

o	command,	192,	206

-O	flag,	379

-o	flag,	379

online	documentation,	Perl	programming,	435-437

open	statements,	435

opening	folders,	8

OpenWindows,	8

operating	systems,	history	of,	5-7

operators,	test,	318

optimizing

rm	command,	118-120

vi	editors,	209

!	escape-to-Unix	command,	232-237

change	command,	225-232

colon	commands,	214-219

replace	command,	225-232

searching/replacing,	210-214,	222-225

starting,	219-222

ordered	lists,	52

org	domain,	395

-ot	flag,	320

overwriting	files,	113

ownership,	permissions,	83,	103-104

P
-p	flag,	371

packages

curses,	181

Linux	package	managers,	381-382

pages,	moving,	185-188

passwd	command,	27

passwords

entering,	25

formatting,	28-30

modifying,	27-28

PATH	variables,	53,	271,	337-339,	459

pattern	command,	210

patterns

egrep	command,	158

files,	listing,	458

searching,	210

performance

disk	usage,	managing,	59

du	(disk	usage)	command,	75-77

Perl,	169,	427

commands,	438

Exchange	program,	428-432

online	documentation,	435-437

-w	(warnings),	433-435

permissions

defaults,	formatting,	100-103,	109

directories

configuring,	88-91

modifying	with	chmod	command,	92-94

removing,	115

files

applying,	83-104

configuring,	84-88

directory	settings,	88-91

modifying	with	chmod	command,	94-98

numeric,	calculating	strings,	98-100

ownership,	83,	103-104

strings,	70-81

troubleshooting,	458

phrases,	searching/replacing,	222

pipes	(|),	129,	141,	163.	See	also	command	line,	pipes

cut	command,	169-171

inline	editing,	171-175

sed	command,	172-175

tr	command,	172-175

plus	(+)	sign,	220

-Pn	flag,	352

power	aliases,	288-290

-Pprinter	flag,	352

pr	command,	355-359

present	working	directories,	54

print	msgs	command,	387

printenv	command,	271

PRINTER	environment,	352

printing,	347

CUPS	(Common	Unix	Printing	System),	349-351

files,	351-355

jobs,	formatting,	355-359

local	printers,	searching,	348-349

queues,	359-362

processes,	jobs

stopping,	307-310

viewing,	302-307

.profile	file,	274

programming

C,	6

logging	in/out,	23-27

overview	of,	3-4

Perl,	169,	427

commands,	438

Exchange	program,	428-432

online	documentation,	435-437

-w	(warnings)	flag,	433-435

schedules,	457-458

shells,	313,	333

applying	PATH	variables,	337-339

arithmetic,	316-317

bash	(Bourne	Again	shell),	326-331

building	mylocate	scripts,	334-337

comparison	functions,	318-321

conditional	expressions,	321-324

disk	space	utilization,	339-342

hi-low	game,	342-345

looping	expressions,	324-326

variables,	314-316

programs.	See	also	commands

awk,	163-169

cat,	131-133

Exchange,	428-432

gzip,	79-81

head,	128-130

more,	133-138,	178

sort,	144-148

suspending,	295-298

tail,	130-131

wc,	143-144

prompts,	command

configuring	custom,	290-292

navigating,	30-35

protecting	shells,	460

protocols

FTP	(File	transfer	Protocol),	403

SFTP	(Secure	FTP),	407-410

SSH.	See	SSH	(secure	shell)

ps	command,	302-307

PuTTY	client,	406

pwd	command,	54

python	command,	34

Q
q	command,	255

query-replace	command,	256

queues,	printing,	359-362

quit	command,	181,	387

quitting	vi	editors,	181

R
R	command,	225,	238

r	command,	225,	238

-R	flag,	215,	352,	379

-r	flag,	320

rc	(resource	config),	50

read	command,	324

read	permissions

directories,	89

files,	84.	See	also	permissions

reading	email,	386-391

recovering	files,	459

redirecting	files,	142-143

:redo	command,	198

regular	expressions

egrep	command,	158

formatting,	154-157

relative	filenames,	47-56

remote	Internet	connections,	403-405

removing

directories,	115

files,	114-115

renaming	files,	113-114

replace	command,	225-232

replacing.	See	also	searching

emacs	editors,	253-256

vi	editors,	222-225

reply	command,	387

resource	config	(rc),	50

Return	key,	182,	206

revising.	See	editing

Ritchie,	Dennis,	5

rm	command,	116,	118-120

rmdir	command,	removing	files,	114-115

S
S	command,	257

-s	flag,	64,	320

save	command,	389

save	folder	command,	387

schedules,	programming,	457-458

scripts

diskspace,	342

mylocate,	334

applying	PATH	variables,	337-339

building,	334-337

disk	space	utilization,	339-342

hi-low	game,	342-345

searching,	9.	See	also	find	command	emacs	editors,	253-256

files,	456-457

grep	command,	151-154

Internet,	422-425

vi	editors,	210-214

local	printers,	348-349

mylocate	script,	334

patterns,	210

vi	editors,	222-225

Secure	FTP.	See	SFTP

secure	shell.	See	SSH

security,	24,	70.	See	also	permissions

sed	command,	172-175,	459

selecting

command	shells,	269-271

passwords,	28-30

sending	email

from	command-line,	391-395

globally,	395-400

separator	characters	(directories),	45-46

sets,	characters,	172

SFTP	(Secure	FTP),	407-410

sftp	command,	407,	461

sh	(Bourne	shell),	263

SHELL	variable,	53,	271

shells,	4

command,	263.	See	also	command	shells

jobs,	stopping,	295-298

overview	of,	8-9

programming,	313,	333

applying	PATH	variables,	337-339

arithmetic,	316-317

bash	(Bourne	Again	shell),	326-331

building	mylocate	scripts,	334-337

comparison	functions,	318-321

conditional	expressions,	321-324

disk	space	utilization,	339-342

hi-low	game,	342-345

looping	expressions,	324-326

variables,	314-316

protecting,	460

troubleshooting,	460

shortcuts,	history	command,	281-286

showdirectory	function,	330

shrinking	files,	compress	command,	375-376

SIGHUP	signal,	308

SIGINT	signal,	308

SIGKILL	signal,	308

signals

EXIT,	342

SIGHUP,	308

SIGINT,	308

SIGKILL,	308

SIGTERM,	308

SIGTERM,	308

slash	(/),	42,	46

sleep	command,	305

slicing	with	cut	command,	169-171

snippets,	14

sort	command,	15

sort	program,	144-148

sorting,	modifying,	67-68

special	directories,	51-52

special	flags,	ls	command,	67-70

spell	command,	160

square	brackets	([]),	150

SSH	(secure	shell)

remote	Internet	connections,	403-405

third-party	SSH	connections,	405-406

ssh	command,	404,	461

starting

emacs	editors,	242

vi	editors,	178-182,	219-222

statements

echo,	54

if,	322

if-then,	322

if-then-else,	323

open,	435

status,	process	values,	305

stopping

jobs,	295-298

processes,	307-310

strings

numeric	permissions,	calculating,	98-100

permissions,	70-81

suffixes,	filenames,	63

suspending	programs,	295-298

symbolic	links,	63

symbolic	notation,	92

sys	directory,	44

T
T	command,	257

-t	flag,	371,	379

-t	xx	flag,	303

tail	program,	130-131

tar	commands,	366-372,	380

telnet	command,	403,	461

TERM	variable,	53,	271

test	command,	318,	338

test	operators,	318

text

emacs	editors,	inserting,	242-244

lines,	viewing,	458-459

vi	editors

deleting,	197-205

inserting,	188-196

themes,	GNOME,	443

third-party	SSH	connections,	405-406

Thompson,	Ken,	5,	264

Thompson	file	system,	6

Thunderbird	(GNOME),	email,	449-452

time	command,	35

TLD	(top-level	domain),	395

tmp	directory,	44

top-level	domain.	See	TLD

touch	command,	74-75

tr	command,	172-175

trap	command,	342

tree	command,	69

trees,	listing	directories,	68-69

troubleshooting

disk	usage,	managing,	59

du	(disk	usage)	command,	75-77

Perl	code,	433-435

permissions,	458

rm	command,	118-120

shells,	460

-ttitle	flag,	352

-type	file	types,	418

types,	files

identifying,	123-126

indicators,	84

U
U	command,	206

u	command,	197,	206

-u	flag,	303

umask	command,	100-103

undelete	msgs	command,	387

Unity,	4,	8

Unix

file	systems,	41-42

hidden	files	in,	48-51

history	of,	5-7

multiuser	systems,	7-8

online	reference,	9-16

overview	of,	3-4

unix	file,	44

unzip	command,	373

us	domain,	395

user	environments,	52-53.	See	also	environments

USER	variable,	271

users	command,	33

usr	directory,	44

utilities,	tar	commands,	366-372

V
V	command,	257

-v	flag,	371,	379

values.	See	also	variables

process	status,	305

special	for	system	prompts,	290

variables

default,	configuring	at	login,	271

environments,	52-53

HOME,	53,	271

LOGNAME,	53,	273

MAIL,	53,	273

PATH,	53,	271

adding	directories,	459

applying,	337-339

SHELL,	53,	271

shells,	programming,	314-316

TERM,	53,	271

USER,	271

versions	of	file	command,	124

vi	editors,	177

!	escape-to-Unix	command,	232-237

change	command,	225-232

colon	commands,	214-219

commands,	205,	238

files,	searching,	210-214

insertion	commands,	195-196

motion	commands,	195-196

navigating,	182-185

optimizing,	209

pages/words,	moving,	185-188

quitting,	181

replace	command,	225-232

searching/replacing,	222-225

starting,	178-182,	219-222

text

deleting,	197-205

inserting,	188-196

viewing

environments,	52-53

files,	60-67,	123-138

applying	head	program,	128-130

cat	program,	131-133

identifying	file	types,	123-126

more	program,	133-138

navigating	directories,	126-128

tail	program,	130-131

hidden	files,	49

lines,	458-459

messages,	387

processes,	302-307

vmunix	file,	44

W
W	command,	206,	257

w	command,	34-35,	206

-w	flag,	303,	306

-w	(warnings)	flag,	Perl	programming,	433-435

wc	program,	143-144

Weinberger,	Peter,	169

whatis	command,	14

while	loops,	326,	344

who	command,	185,	356

whoami	command,	31-33

wildcards,	141,	148-151

Windows,	files

copying,	110

removing,	118

renaming,	114

viewing	file	types,	123

-wn	flag,	355

words

counting,	143-144

deleting,	249-252

moving,	185-188

searching/replacing,	222

write	permissions

directories,	90

files,	84.	See	also	permissions

X
x	command,	206

-X	flag,	371

-x	flag,	67,	303,	306

xargs	command,	420,	455-456

Y
y	command,	255

Z
-Z	flag,	371

-z	flag,	371

zip	command,	372-375

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Does Each Chapter Take an Hour?
	What if I Take Longer Than 24 Hours?
	How to Use This Book
	Main Section
	Tasks
	Workshops

	Hour 1. What Is This Unix Stuff?
	What Is Unix?
	A Brief History of Unix
	The C Programming Language
	Unix Becomes Popular

	What’s All This About Multiuser Systems?
	Cracking Open the Shell
	Getting Help
	Task 1.1: Man Pages, Unix Online Reference
	Task 1.2: Other Ways to Find Help in Unix

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 2. Getting onto the System and Using the Command Line
	Beginning Your Session
	Task 2.1: Logging In to and Out of the System
	Task 2.2: Changing Passwords with passwd
	Task 2.3: Picking a Secure Password

	Seeing What’s Going On Around You
	Task 2.4: Who Are You?
	Task 2.5: Finding Out What Other Users Are Logged In to the System
	Task 2.6: What Is Everyone Doing on the Computer?
	Task 2.7: Checking the Current Date and Time

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 3. Moving About the File System
	What a Hierarchical File System Is All About
	Task 3.1: The Unix File System Organization
	The bin Directory
	The dev Directory
	The etc Directory
	The lib Directory
	The lost+found Directory
	The mnt and sys Directories
	The tmp Directory
	The usr Directory
	Other Miscellaneous Stuff at the Top Level

	Directory Separator Characters
	The Difference Between Relative and Absolute Filenames
	Task 3.2: Hidden Files in Unix
	Task 3.3: The Special Directories . and ..
	Task 3.4: The env Command
	Task 3.5: PATH and HOME
	Task 3.6: Find Where You Are with pwd
	Task 3.7: Moving to Another Location with cd

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 4. Listing Files and Managing Disk Usage
	The ls Command
	Task 4.1: All About the ls Command
	Task 4.2: Having ls Tell You More
	Task 4.3: Combining Flags
	Task 4.4: Listing Other Directories Without Changing Location

	Special ls Command Flags
	Task 4.5: Changing the Sort Order in ls
	Task 4.6: Listing Directory Trees Recursively in ls
	Task 4.7: Long Listing Format in ls

	Permissions Strings
	Task 4.8: Long Listing Format for Directories in ls
	Task 4.9: Creating Files with the touch Command
	Task 4.10: Checking Disk Space Usage with du
	Task 4.11: Checking Available Disk Space with df
	Task 4.12: Shrinking Big Files with the gzip Program

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 5. Ownership and Permissions
	Working with File Permissions
	Task 5.1: Understanding File Permissions Settings
	Task 5.2: Directory Permissions Settings
	Task 5.3: Modifying File and Directory Permissions with chmod
	Task 5.4: Setting New File Permissions with chmod
	Task 5.5: Calculating Numeric Permissions Strings
	Task 5.6: Establishing Default File and Directory Permissions with the umask Command
	Task 5.7: Identifying Owner and Group for Any File or Directory

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 6. Creating, Moving, Renaming, and Deleting Files and Directories
	Manipulating the Unix File System
	Task 6.1: Creating New Directories Using mkdir
	Task 6.2: Copying Files to New Locations Using cp
	Task 6.3: Moving Files to New Locations Using mv
	Task 6.4: Renaming Files with mv
	Task 6.5: Removing Directories with rmdir
	Task 6.6: Removing Files Using rm
	Task 6.7: Minimizing the Danger of the rm Command

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 7. Looking into Files
	Looking Inside Files
	Task 7.1: Using file to Identify File Types
	Task 7.2: Exploring Unix Directories with file
	Task 7.3: Peeking at the First Few Lines with head
	Task 7.4: Viewing the Last Few Lines with tail
	Task 7.5: Viewing the Contents of Files with cat
	Task 7.6: Viewing Larger Files with more

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 8. Filters, Pipes, and Wildcards!
	Maximizing the Command Line
	Task 8.1: The Secrets of File Redirection
	Task 8.2: Counting Words and Lines Using wc
	Task 8.3: Sorting Information Using sort
	Task 8.4: Filename Wildcards
	Task 8.5: Searching Files with grep
	Task 8.6: Creating Regular Expressions
	Task 8.7: The Rest of the grep Family

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 9. Slicing and Dicing Command-Pipe Data
	The awk Programming System
	Task 9.1: Learning to Use awk

	How to Use cut in Pipes
	Action 9.2: Slicing and Dicing with cut

	Inline Editing with sed and tr
	Action 9.3: Inline Editing with sed and tr

	Summary
	Workshop
	Exercises
	Preview of the Next Hour

	Hour 10. An Introduction to the vi Editor
	Editing the Unix Way
	Task 10.1: Starting and Quitting vi
	Task 10.2: Simple Cursor Motion in vi
	Task 10.3: Moving by Words and Pages
	Task 10.4: Inserting Text Using i, a, o, and O
	Task 10.5: Deleting Text

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 11. Advanced vi Tricks, Tools, and Techniques
	Advanced Editing with vi
	Task 11.1: Searching Within a File
	Task 11.2: The Colon Commands in vi
	Task 11.3: Starting vi Correctly
	Task 11.4: Searching and Replacing
	Task 11.5: Using the Change and Replace Commands
	Task 11.6: Accessing Unix with !

	Summary of vi Commands
	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 12. An Overview of the emacs Editor
	The Other Popular Editor: emacs
	Task 12.1: Launching emacs and Inserting Text
	Task 12.2: Moving Around in a File
	Task 12.3: Deleting Characters and Words
	Task 12.4: Searching and Replacing in emacs
	Task 12.5: Using the emacs Tutorial and Help System
	Task 12.6: Working with Other Files

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 13. Introduction to Command Shells
	The (Command) Shell Game
	Task 13.1: What Shells Are Available?
	Task 13.2: Identifying Your Shell
	Task 13.3: Choosing a New Shell
	Task 13.4: Learning the Shell Environment
	Task 13.5: Exploring bash Configuration Files

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 14. Advanced Shell Interaction
	Which Shell Is Which?
	Task 14.1: The Shell History Mechanisms
	Task 14.2: Using History to Cut Down on Typing
	Task 14.3: Command Aliases
	Task 14.4: Some Power Aliases
	Task 14.5: Setting Custom Prompts

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 15. Job Control
	Wrestling with Your Jobs
	Task 15.1: Job Control in the Shell: Stopping Jobs
	Task 15.2: Foreground/Background and Unix Programs
	Task 15.3: Finding Out What Tasks Are Running
	Task 15.4: Terminating Processes with kill

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 16. Shell Programming Overview
	Building Your Own Commands
	Task 16.1: Shell Variables
	Task 16.2: Shell Arithmetic
	Task 16.3: Comparison Functions
	Task 16.4: Conditional Expressions
	Task 16.5: Looping Expressions
	Task 16.6: bash Functions

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 17. Advanced Shell Programming
	Searching a Database of Filenames with mylocate
	Task 17.1: Building mylocate
	Task 17.2: How Many Commands Do You Have?
	Task 17.3: Who Is Using All the Disk Space?
	Task 17.4: Let’s Play a (Shell Script) Game!

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 18. Printing in the Unix Environment
	Making a Printed Copy
	Task 18.1: Finding Local Printers with lpstat
	Task 18.2: An Introduction to CUPS
	Task 18.3: Printing Files with lpr or lp
	Task 18.4: Formatting Print Jobs with pr and col
	Task 18.5: Working with the Print Queue

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 19. Archives and Backups
	The tar Tape Archive Utility
	Task 19.1: Learning to Use tar

	The zip Archive Utility
	Task 19.2: Learning to Use zip

	Shrinking Your Files with compress
	Action 19.3: Shrinking Large Files on Unix

	Exploring the Unix Tape Command: cpio
	Action 19.4: A Quick Exploration of cpio

	Personal Backup Solutions
	Action 19.5: A Personal Backup Scheme

	Working with Linux Package Managers
	Summary
	Workshop
	Exercises
	Preview of the Next Hour

	Hour 20. Using Email to Communicate
	Interacting with the World
	Task 20.1: Reading Electronic Mail with mailx
	Task 20.2: Sending Mail from the Command Line
	Task 20.3: Sending Email to the Rest of the World

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 21. Connecting to Remote Systems Using SSH and SFTP
	Stepping Beyond Your Own System
	Task 21.1: Connecting to Remote Internet Sites with SSH
	Task 21.2: Third-Party SSH Connections
	Task 21.3: Copying Files with SFTP
	Task 21.4: Exploring Anonymous FTP Archives

	Summary
	Workshop
	Key Terms
	Exercises
	Preview of the Next Hour

	Hour 22. Searching for Information and Files
	Finding What’s Where
	Task 22.1: The find Command and Its Weird Options
	Task 22.2: Using find with xargs
	Task 22.3: Getting Files from the Internet

	Summary
	Workshop
	Exercises
	Preview of the Next Hour

	Hour 23. Perl Programming in Unix
	Flexible and Powerful: Perl
	Task 23.1: Exchange, a Demonstration Currency Translator Written in Perl
	Task 23.2: Checking Code Quality with -w
	Task 23.3: Online Perl Documentation and Information
	Task 23.4: Other Useful Perl Commands

	Summary
	Workshop
	Key Terms
	Exercises

	Hour 24. GNOME and the GUI Environment
	Tweaking Your Inner GNOME
	Task 24.1: Fine-tuning Your GNOME Configuration

	Working with GNOME Applications
	Task 24.2: Working with the GNOME File Browser
	Task 24.3: The Firefox Web Browser
	Task 24.4: Using Thunderbird for Email

	Summary
	Congratulations!

	Workshop
	Key Terms
	Exercises

	Appendix A. Common Unix Questions and Answers
	How do I use find|xargs with filenames that contain spaces?
	How do I find large files on my system?
	How do I run a program on a schedule?
	The at Command
	cron

	How do I fix file permission problems?
	How do I list files that don’t match a given pattern?
	How do I view lines X–Y in a text file?
	How do I add a new directory to my PATH?
	How do I recover deleted files?
	How can I set my shell to protect me from accidental deletions?
	What do the shell errors arg list too long and broken pipe mean?
	Why use ssh instead of telnet? Or sftp instead of ftp?
	Summary

	Index
	Code Snippets

